

I
t I v

--------- ----- - -- -- ---- -------------·-
MVS/ESA SC26-4506-1

Data Administration:
Macro Instruction Reference

Version 3 Release 1

Second Edition (June 1989)

This edition replaces and makes obsolete the previous edition, SC26-4506-0. ,

This edition applies to Version 3 Release 1 of MVS/DFP™, Program Number 5665-XA3, and to any sub
sequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the table of con
tents. Specific changes are indicated by a vertical bar to the left of the change. A vertical bar to the
left of a figure caption indicates that the figure has changed. Editorial changes that have no technical
significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,

\.._..,

\

_)

comments may be addressed to IBM Corporation, Department J57, P. 0. Box 49023, San Jose, 1

California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it \~
believes appropriate without incurring any obligati~n to you.

©Copyright International Business Machines Corporation 1985, 1986, 1987, 1988, 1989. All rights
reserved.

\ :

""'--/
Trademarks

The following names have been adopted by IBM for trademark use and are
used throughout this publication:

ESA/370™

MVS/DFP™

MVS/ESATM

MVS/SP™

Trademarks iii

)
~'

I

\ ;
"L./

Contents

Introduction
24- and 31-Bit Addressing Considerations
ISO, ANSI, and FIPS Labels
Notational Conventions
Macro Instruction Format

Rules for Register Usage
Rules for Continuation Lines

Macro Instruction Descriptions
BLDL-Build a Directory Entry List (BPAM)

Completion Codes
BSP-Backspace a Physical Record (BSAM-Magnetic Tape and Direct

Access Only)
Completion Codes

BUILD-Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM, and
QSAM)

BUILDRCD-Build a Buffer Pool and a Record Area (QSAM)
BUILDRCD-List Form
BUILDRCD-Execute Form
CHECK-Wait for and Test Completion of a Read or Write Operation (BDAM,

BISAM, BPAM, and BSAM)
CHKPT-Take a Checkpoint for Restart within a Job Step
CLOSE-Logically Disconnect a Data Set (BDAM, BISAM, BPAM, BSAM,

QISAM, and QSAM)
CLOSE-List Form
CLOSE-Execute Form

Return Codes from CLOSE
CNTRL-Control Online Input/Output Device (BSAM and QSAM)
DCB-Construct a Data Control Block (BDAM)
DCB-Construct a Data Control Block (BISAM)
DCB-Construct a Data Control Block (BPAM)
DCB-Construct a Data Controf Block (BSAM)
DCB-Construct a Data Control Block (QISAM)
DCB-Construct a Data Control Block (QSAM)
DCBD-Provide Symbolic Reference to Data Control Blocks (BDAM, BISAM,

BPAM, BSAM, QISAM, and QSAM)
ESETL-End Sequential Retrieval (QISAM)
FEOV-Force End-of-Volume (BSAM and QSAM)
FIND-Establish the Beginning of a Data Set Member (BPAM)

Completion Codes
FREEBUF-Return a Buffer to a Pool (BDAM, BISAM, BPAM, and BSAM)
FREEDBUF-Return a Dynamically Obtained Buffer (BDAM and BISAM)
FREEPOOL-Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,

and QSAM)
GET-Obtain Next Logical Record (QISAM)
GET-Obtain Next Logical Recor:d (QSAM)

GET Routine Exits
GETBUF-Obtain a Buffer (BDAM, BISAM, SPAM, and BSAM)
GETPOOL-Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,, and

QSAM)
MSGDISP-Displaying a Ready Message

2
4
6
7

9
9

11

12
13

14
16
18
19

20
22

23
26
28
29
30
33
42
48
55
72
80

98
100
101
102
102
104
105

106
107
108
110
111

112
113

Contents V

MSGDISP-List Form
MSGDISP-Execute Form

Completion Codes
NOTE-Provide Relative Position (BPAM and BSAM-Tape and Direct

Access Only)
Completion Codes-If Type =ABS is Specified
Completion Codes-If Type= REL is Specified

OPEN-Logically Connect a Data Set (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

Return Codes from OPEN
OPEN-List Form

114
115
116

117
118
118

119
123
125

OPEN-Execute Form 127
PDAB-Construct a Parallel Data Access Block (QSAM) 129
PDABD-Provide Symbolic Reference to a Parallel Data Access Block

(QSAM) . 130
POINT-Position to a Relative Block (BPAM and BSAM-Tape and Direct
Access Only)

Completion Codes
PRTOV-Test for Printer Carriage Overflow (BSAM and QSAM-Online

Printer and 3525 Card Punch, Print Feature)
PUT-Write Next Logical Record (QISAM)

PUT Routine Exit
PUT-Write Next Logical Record (QSAM)

PUT Routine Exit
PUTX-Write a Record from an Existing Data Set (QISAM and QSAM)

PUTX Routine Exit
REAP-Read a Block (BDAM)
READ-Read a Block of Records (BISAM)
READ-Read a Block (BPAM and BSAM)
READ-Read a Block (Offset Read of Keyed BDAM Data Set Using BSAM)
READ-List Form
READ-Execute Form
RELEX-Release Exclusive Control (BDAM)

Completion Codes
RELSE-Release an Input Buffer (QISAM and QSAM Input)
SETL-Set Lower Limit of Sequential Retrieval (QISAM Input)

SETL Exit
SETPRT-Printer Setup (BSAM, QSAM, and EXCP)

3800 Printers and SYSOUT Data Sets .
Non-3800 Printers
4248 Printers
All Printers ..
Retur.n Codes
Reason Codes

SETPRT-List Form
· SETPRT-Execute Form

STOW-Update Partitioned Data Set Directory (BPAM)
Completion Codes

SYNADAF-Perform SYNAD Analysis Function (BDAM, BISAM, SPAM,
BSAM, EXCP, QISAM, and QSAM)

Completion Codes
Message Buffer Format

SYNADRLS-Release SYNADAF Buffer and Save Areas (BDAM, BISAM,
SPAM, BSAM, EXCP, QISAM, and QSAM) · ..

SYNCDEV-Synchronize Device ..

Vi MVS/ESA Data Administration: Macro Instruction Reference

131
133

134
136
137
138
140
141
141
142
145
147
149
150
151
152
152
153
154
155
156
156
156
157
157
164
170
173
175
178
180

182
184
185

187
188

\

\~

I

\ I

~

I
\ I "'--'/

(_/

Tape Data Sets
SYNCDEV-List Form
SYNCDEV-Execute Form

188
190
191

Completion Codes 192
TRUNC-Truncate an Output Buffer (QSAM Output-Fixed- or

Variable-Length Blocked Records) 193
WAIT-Wait for One or More Events (BDAM, BISAM, SPAM, and BSAM) 194
WRITE-Write a Block (BDAM) 196
WRITE-Write a Logical Record or Block of Records (BISAM) 199
WRITE-Write a Block (SPAM and BSAM) 201
WRITE-Write a Block (Create a Direct Data Set with BSAM) 203

Completion Codes for WRITE-Write a Block (Create a Direct Data Set
with BSAM) 205

WRITE-List Form . 206
WRITE-~xecute Form . 207
XLATE-Translate to and from ISCll/ ASCII (BSAM and QSAM) 208

Appendix A. Status Information Following an Input/Output Operation
Data Event Control Block

Appendix B. Data Management Macro Instructions Available by Access

209
209

Method 211

Appendix C. Device Capacities
Card Readers and Card Punches
Printers
Magnetic Tape Units
Direct Access Devices
Track Capacity Determination .

Space Calculation Formulas for Models 2305 through 3375
3380 (All Models)

Track Capacity Calculation Examples for 3380 Models
Equal Length Records ..
Unequal Length Records

Appendi·x D. DCB Exit List Format and Contents

Appendix E. Control Characters
Machine Code
ISO/ ANSI/Fl PS Control Characters
Tables for Translating Codes

Translating from EBCDIC to ASCII
Translating from ASCII to EBCDIC

Appendix F. Data Control Block Symbolic Field Names
Data Control Block-Common Fields
Data Control Block-SPAM, BSAM, QSAM

Direct Access Storage Device Interface
Magnetic Tape Interface
Card Reader, Card Punch Interface .
Printer Interface
Access Method Interface

Data Control Block-ISAM
Data Control Block-BDAM

213
213
213
213
214
214
214
215
217
217
218

221

223
223
225
226
226
226

227
228
229
232
232
233
233
235
238
242

Contents Vii

Appendix G. PDABD Symbolic Field Names 245

Abbreviations 247

Glossary 251

Index .. 259

Viii MVS/ESA Data Administration: Macro Instruction Reference

\\......_,,,

\

\~

:)
\~

't

\ }
~

1·

1

• Summary of Changes \,_)

Second Edition, June 1989

New Device Support

I Service Changes

Track capacity determination formulas and examples for the 3380 models have
been added to Appendix C, "Device Capacities."

;J Minor technical and editorial changes have been made.

_.) First Edition, December 1988

New Programming Support for Release 1
The system can determine the block size for your data set. Information on
system-determined block size has been added to the description of the DCB
macro.

(
1

New Device Support for Release 1
~, Information has been added to Appendix C, "Device Capacities" on page 213

to reflect support of the following device types:

(I

'--./

DASO

• IBM 3380 Direct Access Storage Models AJ4, BJ4, AK4, and BK4

• IBM 3380 Direct Access Storage Direct Channel Attach Model CJ2.

Storage Control

• IBM 3880 Storage Control Model 3 with 3380 AJ4/AK4 Attachment {feature
3005)

• IBM 3990 Storage Control Models 1 and 2

Cache Storage Control

• IBM 3880 Storage Control Model 23 with 3380 AJ4/AK4 Attachment (feature
3010)

• IBM 3990 Storage Control Model 3.

Information has also been added throughout the book to support the:

• IBM 4245, 4248, and 3262 Model 5 Printers.

Summary of Changes ix

Service Changes
Several new options have been added to the SETPRT macro.

MVS/DFP Version 3 publications have new order numbers. Publications listed
in the preface reflect these new order numbers.

Minor technical and editorial changes have been made.

X MVS/ESA Data Administration: Macro Instruction Reference

I~

I

\ ' "\,,.._./

(
~!

Preface

About This Book·
This book is intended to help you use IBM data management access methods
other than the virtual storage access method (VSAM) to process data sets. It
contains general-use programming interfaces, which allow you to write pro
grams that use the services of MVS/DFP.

This book discusses the non-VSAM data management macro instructions avail
able in the assembler language. The macro instructions are presented in
alphabetical order. The standard form of each is described first, followed by
the list and execute forms. The list and execute forms are available only for
those macro instructions that pass parameters in a list. To learn how to write
programs that create and process non-VSAM data sets, see:

• MVSIESA Data Administration G.uide, SC26-4505.

To learn about VSAM macros or to write programs that create and process
VSAM data sets, see:

• MVSIESA Catalog Administration Guide, SC26-4502, which describes how to
create master and user catalogs

• MVSIESA Integrated Catalog Adminstration: Access Method Services Refer
ence, SC26-4500, and MVSIESA VSAM Catalog Administration: Access
Method Services Reference, SC26-4501, which describe the access method
services commands used to manipulate VSAM data sets

• MVSJESA VSAM Administration Guide, SC26-4518, which describes how to
create VSAM data sets

• MVSIESA VSAM Administration: Macro Instruction Reference, sc:rn-4517,
which describes how to code the macro instructions required with VSAM
data sets.

The following access methods and macros are shown in this publication for the
sake of compatibility only. Although they are still supported, their usie is not
recommended, and where applicable, alternatives are suggested.

• The access methods BDAM and EXCP-we recommend you use \/SAM key
sequenced data sets (KSDS) instead of BDAM.

• The access methods BISAM and QISAM-we recommend you use VSAM
instead.

• The macros:

DCB (BDAM, BISAM, QISAM)
ESETL
FREEDBUF
GET (QISAM)
PUT (QISAM)
READ (BDAM, BISAM)

Preface Xi

RE LEX
SETL
WRITE (BDAM, BISAM)

Required Product Knowledge
To use this book effectively, you should be familiar with:

• assembler language

• job control language.

If you know how to write assembler language programs and use job control
statements, you can use this book and MVSIESA Data Administration Guide,
SC26-4505, to write programs that create and process data sets.

Required Publications
You should be familiar with the information presented in the following publica
tions:

Publication Title

Assembler H Version 2 Application Programming: Guide

Assembler H Version 2 Application Programming: Lan
guage Reference

MVSIESA Application Development Guide

MVSIESA Application Development Macro Reference

MVS!ESA Data Administration Guide

MVSIESA JCL Reference

MVSIESA JCL Users Guide

Related Publications

Order Number

SC26-4036

SC26-4037

GC28-1821

GC28-1822

SC26-4505

GC28-1829

GC28-1830

Some publications from the MVS/SP Version 3 library are referenced in this
book. The MVS!ESA Library Guide for System Product Version 3, GC28-1563,
contains a complete listing of the MVS/SP Version 3 publications and their
counterparts for the prior version.

The MVS!ESA Data Facility Product Version 3: Master Index, GC26-4512, con
tains both an index to the MVS/DFP library and a summary of the changes
made to the library. You can use it to:

• Find information in other MVS/DFP publications

• Determine how new programming support changes information in the
MVS/DFP library

• Determine which MVS/DFP publications have been changed.

Xii MVS/ESA Data Administration: Macro Instruction Reference

)

\J

I

\..._,/

In addition, the following publications may be helpful:

Publication Title

MVSIESA Data Facility Product Version 3: Diagnosis Guide

MVSIESA Message Library: System Messages Volume 1

MVSIESA Message Library: System Messages Volume 2

MVS Storage Management Library: Configuring Storage
Subsystems

Referenced Publications

Order Nlumber

LY27-9550

GC28-1B12

GC28-1B13

SC26-4409

Within the text, references are made to the publications listed below:

Short Title

Application Develop
ment Guide

Application Develop
ment Macro Reference

Assembler H V2 Appli
cation Programming:
Guide

Assembler H V2 Appli
cation Programming:
Language Reference

Checkpoint/Restart
User's Guide

Data Administration
Guide

Data Areas Volume 5

DFP: Customization

DFP: Diagnosis Refer
ence

IBM System/370 XA
Principles of Operation

IBM 3262 Model 5
Printer Product
Description

IBM 3800 Printing Sub
system Programmer's
Guide

Publication Title

MVSJESA Application Develop
ment Guide

MVS/ESA Application Develop
ment Macro Reference

Assembler H Version 2 Applica
tion Programming: Guide

Assembler H Version 2 Applica
tion Programming: Language
Reference

MVSIESA Checkpoint/Restart
User's Guide

MVS/ESA Data Administration
Guide

MVSIESA Diagnosis: Data Areas
Volume 5

MVSIESA Data Facility Product
Version 3: Customization

MVSIESA Data Facility Product
Version 3: Diagnosis Reference

IBM System/370 Extended
Architecure Principles of Opera
tion

IBM 3262 Model 5 Printer
Product Description

IBM 3800 Printing Subsystem
Programmer's Guide

Order Number

GC28-1821

GC28-1822

SC26-4036

SC26-4037

SC26-4503

SC26-4505

LY28-'1047

SC26-4504

L Y27-B551

SA22-7085

GA24-·3936

GC26-·3846

Preface xiii

Short Title Publication Title Order Number
IBM 3800 Printing Sub- IBM 3800 Printing Subsystem SH35-0061
system Programmer's Models 3 and 8 Programmer's I

\._..
Guide Guide

IBM 3890 Document IBM 3890 Document Processor GA24-3612
Processor Machine and Machine and Programming
Programming Description
Description

IBM 4245 Printer Model IBM 4245 Printer Model 1 Com- GA33-1541
1 Component ponent Description and Operator
Description and Oper-
a tor

IBM 4248 Printer Model IBM 4248 Printer Model 1 GA24-3927
1 Description Description

JCL Reference MVSIESA JCL Reference GC28-1829

JCL User's Guide MVSIESA JCL User's Guide GC28-1830 ~

Magnetic Tape Labels MVSIESA Magnetic Tape Labels SC26-4511
and File Structure and File Structure Administration

Mass Storage System OS/VS Mass Storage System SH35-0036
(MSS) Extensions Ser- (MSS) Extensions Services: Ref-
vices: Reference erence

Programming Support Programming Support for the GC21-5097
for the IBM 3505 Card IBM 3505 Card Reader and the
Reader and the IBM IBM 3525 Card Punch \.._,I
3525 Card Punch

RACF General lnforma- Resource Access Control Facility GC28-0722
ti on (RACF) General Information

SPL: Application Devel- MVSIESA System Programming GC28-1852
opment Guide Library: Application Development

Guide

System Codes MVSIESA Message Library: GC28-1815
I System Codes \,._)

System-Data Adminis- MVSIESA System-Data Adminis- SC26-4515
tration tration

Utilities MVS/ESA Data Administration: SC26-4516
Utilities

VSAM Administration MVSIESA VSAM Administration SC26-4518
Guide Guide

VSAM Administration: MVS/ESA VSAM Administration: SC26-4517
Macro Instruction Ref- Macro Instruction Reference
erence

3380 DAS Reference IBM 3380 Direct Access Storage GX26-1678
Summary Reference Summary

I

:'--"';

xiv MVS/ESA Data Administration: Macro Instruction Reference

Introduction

Before using this publication, familiarize yourself with the information in Data
Administration Guide.

IBM provides a set of macro instructions so that you can communicate service
requests to the data management access method routines. These macro
instructions are available only when the assembler language is being used, and
they are processed by the assembler program using macro definitions supplied
by IBM and placed in the macro library when the operating system is gener
ated.

The assembler program expands each macro instruction into executable,
assembler language instructions or data, and shows you the exact macro
expansion in the assembler listing. The executable instructions generally
consist of branches around data fields, load register instructions, and either
branch instructions or supervisor calls (SVC) that transfer control to the proper
program. The data fields in each macro instruction are parameters that are
passed to the access method routine.

Before coding programs that request supervisor services, familiarize yourself
with the information contained in Application Development Guide. This book
explains how to write assembler language programs that use MVS services
available to all programs. Application Development Macro Reference, a com
panion volume to Application Developmen{Guide, describes the macros avail
able to all application programs. If you want to use VSAM (virtual storage
access method), see the VSAM publications listed in the preface.

The operation of some macro instructions depends on the options selected
when the macro instruction is coded. For these macro instructions, either sepa
rate descriptions are provided or the differences are listed within a sin£1le
description. If no differences are explicitly listed, none exist. The description of
each macro instruction starts on a right-hand page; the descriptions that do not
apply to the access methods being used can be removed. Appendix B, "Data
Management Macro Instructions Available by Access Method" on page 211 lists
the macro instructions available for each access method.

24- and 31-Bit Addressing Considerations
Unless otherwise stated, executable macros described in this book can be exe
cuted only in 24-bit addressing mode, and data referenced by the macros must
reside below the 16M line.

ISO, ANSI, and FIPS Labels
This publication refers to tape labels defined by the International Organization
for Standardization (ISO), the American National Standards Institute (ANSI), and
the Federal Information Processing Standard (Fl PS). In general, ISO/ ANSI/Fl PS
labels are similar to IBM standard labels, and, unless otherwise specified, the
term "standard label," refers to both IBM standard labels and ISO/ ANSI/Fl PS
standard labels. ISO labeled tapes are coded in the Organization Standard
Code for Information Interchange (ISCll), and ANSI labeled tapes are coded in

Introduction 1

the American National Standards Code for Information Interchange {ASCII),
while iBM labeled tapes are coded either in the extended binary.:.coded-decimal
interchange code (EBCDIC) or in binary coded decimal {BCD). For further infer- \.._,..
mation about ISO/ ANSI/Fl PS labels, see Magnetic Tape Labels and File Struc-
ture.

Notational Conventions
A uniform system of notation describes the format of data management macro
instructions. This notation is not part of the language; it merely provides a
basis for describing the structure of the macros.

The command format illustrations in this book use the following conventions:
Brackets

Braces

OR Sign

Ellipses

Brackets, [] , enclose optional elements that you may or may not
code as you choose.

Examples:

• [length]

• [MF =E]

Braces, { } , enclose alternative elements from which you must
choose one, and only one, element.

Examples:

• BFTEK={SIA}

• {KID}

• {addresslSIO}

Sometimes, alternative elements (especially complicated alterna
tives) are grouped in a vertical stack of braces.

Example:

MACRF = {{(R[CI P])}
{(W[CI Pl L])}
{(R[C],W[CJ) }}

In the examples above, you must choose only one element from the
vertical stack.

Items separated by a vertical bar (I) represent alternative items.
No more than one of the items may be selected.

Examples:

• [REREADILEAVE]

• [length I'S']

Ellipses, , indicate that elements may be repeated.

Example:

• {dcbaddr[,(options)],)

2 MVS/ESA Data Administration: Macro Instruction. Reference

\

\~

Other Punctuation

Bold Type

Other punctuation (parentheses, commas, etc.) must be entered as
shown.

Bold type is used for elements that you must code exactly as they
are shown. These elements consist of macro names, keywords, and
these punctuation symbols: commas, parentheses, and equal signs.

Examples:

• DCB

• CLOSE,,, ,TYPE=T

• MAC RF= (PL,PTC)

• SK,5

Underscored Bold

Italics

''

()

Underscored BOLD elements indicate the defaults that are assumed
if you don't want to code the optional element.

Examples:

• [EROPT= {ACCISKPIABE}]

• [BFALN = {FIQ}]

Italics type are used for elements for which you code values that you
choose, usually according to specifications and limits described for
each parameter. Italics type also specifies fields to be supplied by
the user.

Examples:

• number

• image-id

• count

A ' ' in the macro format indicates that a blank (an empty space)
must be present before the next parameter.

Parentheses () must enclose subfields if more than one is specified.
If only one subfield is specified, you may omit the parentheses.

Blank Symbol
The blank symbol, b, indicates omitted operands.

Example:

b I PDABD b

Comprehensive Example

• MF= (E,{ addressl(1)})

In this example, MF=(E, must be coded exactly as shown. Then,
either address or (1) must be coded. (The parentheses around

Introduction 3

the 1 are required.) Finally, the closing parenthesis must be
coded. Thus, MF=(E,(1)) might be coded.

• RECFM = {{U[T][AIMJ}
{V[B Is ITI BS I BT] [Al M]}
{D[B][A]}
{F[BISITIBSIBT][AIMJ}}

In this example, you must first choose one of the four alternative ele
ments shown on each line. Then, you must choose one of the major
elements. Assuming you selected the major element beginning with
F, you would code F; then you could choose one of B, S, T, BS, or
BT. Finally, you could select either A or M. Thus, you might code
any one of the following: RECFM=FBTM, RECFM=FA, or
RECFM=F.

Macro Instruction Format
Data management macro instructions are subject to the rules of assembler Ian- ~
guage and are written in the following format:

Name Operation Operands Comments

Symbol Macro None, one or more operands
or blank name separated by commas

Use the operands to specify services and options you need and code them
according to the following general rules:

• If the operand you select is shown in bold capital letters (for example,
MACRF=WL), code the operand exactly as shown.

• If the operand you select is a character string in bold type (for example, if
the type operand of a READ macro instruction is SF), code the operand
exactly as shown.

• If the operand is shown in underscored lowercase letters (for example, deb
address), substitute the indicated address, name, or value.

• If the operand is a combination of bold capital letters and underscored low
ercase letters (for example, LRECL=absexp), code the capital letters and
equal sign exactly as shown and substitute the appropriate address, name,
or value for the underscored lowercase letters.

• Code commas and parentheses exactly as shown.

Note: Omit the comma that follows the last operand in a statement.
Brackets and braces show how to use commas and parentheses the same
way they show how to use operands.

• Several macro instructions contain the designation 'S'. Use the apos
trophe on both sides of the S operand.

If you need to substitute a name, value, or address, the notation you use
depends on the operand you are coding. The following two examples show
how an operand can be coded:

4 MVS/ESA Data Administration: Macro Instruction Reference

_)

f

\~

(.

\.._ .. /

\
\...._/'

('-)

DD NAME= symbol
In this example, you can only code a valid assembler-language symbol for
the operand.

deb address-RX-Type Address, (2-12), or (1)
In the above example, you can substitute an RX-type address, any ~Jenera!
register 2 through 12, or general register 1.

The following examples show what each notation means and how you can code
an operand:

symbol
This notation indicates that the operand can be any valid assembler
language symbol.

decimal digit
This notation indicates that the operand can be any decimal digit up to the
maximum value allowed for the specific operand.

(2-12) _,
This notation indicates that the operand can be any of the ge~eral registers
2 through 12. All register operands must be coded in parentheses, to dis
tinguish the register number from an A-type address. For example, if you
code register 3, use the form (3). The following is an example with the
CLOSE macro:

(1)

(0)

CLOSE ((3))

If you want to use one of the registers 2 through 12, code it as a decimal
digit, a symbol (equated to a decimal digit), or an expression that yields a
value of 2 through 12.

When this notation is shown, you can use general register 1 as an operand.
The register can be specified as a decimal digit 1 enclosed in parentheses.
When register 1 is used as an operand, the instruction that loads the
parameter value into the register is not included in the macro expansion.

When this notation is shown, you can use general register 0 as an operand.
The register can be specified as a decimal digit 0 enclosed in parentheses.
When register 0 is used as an operand, the instruction that loads the
parameter value into the register is not included in the macro expansion.

RX-Type Address
When this notation is shown, you can specify the operand as any valid
assembler-language RX-type address. The following shows examples of
each valid RX-type address:

Name Operation Operand
ALPHA1 L 1,39(4, 10)

ALPHA2 L REG1 ,39(4,TEN)

BETA1 L 2,ZETA(4)
BETA2 L REG2,ZET A(REG4)

GAMMA1 L 2,ZETA

GAMMA2 L REG2,ZETA

GAMMA3 L 2, = F 11000 1

LAMBDA1 L 3,20(,5)

Introduction 5

Both ALPHA instructions specify explicit addresses; REG1 and TEN are
absolute symbols. Both BETA instructions specify implied addresses, and
both use index registers. Indexing is omitted from the GAMMA instructions.
GAMMA 1 and GAMMA2 specify implied addresses. The second operand of
GAMMA3 is a literal. LAMBDA 1 specifies an explicit address with no
indexing.

A-Type Address
When this notation is shown, you can specify the operand as any address
that can be written as a valid assembler-language A-type address constant.
You can write an A-type address constant as an absolute value, a relocat
able symbol, or a relocatable expression. Operands that require an A-type
address are inserted into an A-type address constant during the macro
expansion process. For more details about A-type address constants, see
Assembler H V2 Application Programming: Language Reference.

abs exp
When this notation is shown, the operand can be an absolute value or
expression. An absolute expression can be an absolute term or an arith
metic combination of absolute terms. An absolute t~rm can be a
nonrelocatable symbol, a self-defining term, or the length attribute refer
ence. For more details about absolute expressions, see Assembler H V2
Application Programming: Language Reference.

re/exp
When this notation is shown, the operand can be a relocatable symbol or
expression. A relocatable symbol or expression is one whose value
changes by n if the program in which it appears is relocated n bytes away
from its originally assigned area of storage. For more details about relocat
able symbols and expressions, see Assembler H V2 Application Program
ming: Language Reference.

Rules for Register Usage
Many macro instruction expansions include instructions that use a base register
previously defined by a USING statement. The USING statement mus~ establish
addressability so that the macro expansion can include a branch around the
in-line parameter list, if present, and list the data fields and addresses specified
in the macro instruction operands.

Macro instructions that use a BAL or BALR instruction to pass control to an
access method routine, normally require that register 13 contain the address of
an 18-word register-save area. The READ, WRITE, CHECK, GET, and PUT
macro instructions are of this type.

Some macro instructions may modify general registers 0, 1, 14, and 15 without
restoring them. Unless otherwise specified in the macro instruction description,
the contents of these registers are undefined when the system returns control
to the problem program.

When an operand is specified as a register, the problem program must have
inserted the value or address to be used into the register as follows:

• Unless the macro instruction description states otherwise, and the register
is to contain a value, that value must be placed in the low-order portion of
the register. Any unused bits in the register should be set to zero.

6 MVS/ESA Data Administration: Macro Instruction Reference

I

\....-/

LJ

• If the register is to contain a 24-bit address, the address must be placed in

the low-order three bytes of the register, and the high-order byte of the reg
ister should be set to zero.

• If the register is to contain a 31-bit address, the address must be placed in

the low-order 31 bits of the register1 and the high-order bit of the register
should be set to zero.

Note that, if the macro instruction accepts the RX-type address, an efficiE~nt way

to clear the high-order byte of a register is to code the parameter as O (reg)

rather than merely as (reg).1 Then the macro instruction expands as:

LA parmreg,O(reg) by macro

rather than:

LA reg,O(reg) by user

and

LR parmreg,reg by macro

Rules for Continuation Lines
The operand field of a macro instruction can be continued on one or more addi

tional lines as follows:

1. Enter a continuation character (not blank, and not part of the operand
coding) in column 72 of the line.

2. Continue the operand field on the next line, starting in column 16. All

columns to the left of column 16 must be blank. Comments may be con
tinued after column 16.

Note that if column 72 is filled in on one line and you try to continue an operand

or start a new statement after column 16 on the next line, this statement will be

taken as a comment belonging to the previous statement.

You can code the operand field being continued in one of two ways. 1) The

operand field can be coded through column 71, with no blanks, and be con

tinued in column 16 of the next line, or 2) the operand field can be truncated by

a comma, where a comma normally falls, with at least one blank before column

71, and then be continued in column 16 of the next line. An example is shown

in the following illustration:

·Name
MYFILE

Operation
DCB

Operand Comments Cont'd
DSORG=PS, THIS IS ONE WAY X
DDNAME= IP, X
EODAD = EOFRTN, X
MACRF=GM,RECFM=F, X
LRECL=80, X
BLKSIZE=80

1 For 31-bit addressing mode expansion, the high-order bit of a register can be cleared using this same tiech

nique.

Introduction 7

1
'"'>-,/

~i

L

BLDL

Macro Instruction Descriptions

BLDL-Build a Directory Entry List (BPAM)
The BLDL macro is used to obtain a list of information from the directory of a
partitioned data set. The problem program must supply a storage area that
must include information about the number of entries in the list, the length of
each entry, and the name of each data set member (or alias) before the~ BLDL
macro is issued. Data set member names in the list must be in alphameric
order. You must test all read and write operations using the same data. control
block for completion before issuing the BLDL macro.

The BLDL macro is written:

[symbol] BLDL deb address
,list address

deb address-RX-Type Address, (2-12) or (1)
specifies the address of the data control block for an open partitioned data
set, or you can specify zero to indicate that the data set is in a job liibrary,
step library, or link library.

list address-RX-Type Address, (2-12), or (0)

List

specifies the address of the list to be completed when the BLDL macro is
issued. The list address must be on a halfword boundary. The following
illustration shows the format of the list:

List Oor
Description List More

Address1 Field Entry (LL bytes) Entries (FF total)
~-----. r

Length lFF I LL I NAME1 ITTRH+I USER DATA NAME2)0
(bytes) 2 2 8 3 1 1 1 o to 62

FF: This field must contain a binary value indicating the total number of
entries in the list.

LL: This field must contain a binary value indicating the length, in bytes, of
each entry in the list (must be an even number of bytes). If the exact length
of the entry is known, specify the exact length. Otherwise, specify at least
58 bytes (decimal) if the list is to be used with an ATTACH, LINK, LOAD, or
XCTL macro. The minimum length for a list is 12 bytes.

NAME: This field must contain the member name or alias to be located.
The name must start in the first byte of the name field and be paddE!d to the
right with blanks (if necessary) to fill the 8-byte field.

Macro Instruction Descripltions 9

BLDL

When the BLDL macro is executed, five fields of the directory entry list are
filled in by the system. The specified length (LL) must be at least 14 bytes
to fill in the Zand C fields. If the LL field is 12 bytes, only the NAME, TT, R, \..._,.
and K fields are returned. The five fields are:

TT: Indicates the relative track number where the beginning of the data set
member is located.

R: Indicates the relative block (record) number on the track indicated by
TT.

K: Indicates the concatenation number of the data set. For the first or only
data set, this value is zero.

Z: Indicates where the system found the directory entry:

Code Meaning

0 Private library

Link library

2 Job, task, or step library

3-255 Job, task, or step library of parent task n, where n = Z-2

C: Indicates the type (member or alias) for the name, the number of note
list fields (TTRNs), and the length of the user data field (indicated in
halfwords). The following describes the meaning of the 8 bits:

Bit Meaning

O=O Indicates a member name.

0=1 Indicates an alias.

1-2 Indicate the number of TTRN fields (maximum of 3) in the user data
field.

3-7 Indicate the total number of halfwords in the user data field. If the
list entry is to be used with an ATTACH, LINK, LOAD, or XCTL
macro, the value in bits 3 through 7 is 22 (decimal).

',~

USER DATA: The user data field contains the user data from the directory ,)
entry. If the length of the user data field in the BLDL list is equal to or ~
greater than the user data field of the directory entry, the entire user data
field is entered into the list. Otherwise, the list contains only the user data
for which there is space.

10 MVS/ESA Data Administration: Macro Instruction Reference

(

(I

\._.,./

('
~I

BLDL

Completion Codes
When the system returns control to the problem program, the low-order byte of
register 15 contains a return code; the low-order byte of register 0 contains a
reason code, as follows:

Return Reason
Code (15) Code (0) Meaning

00 (X'00') 00 (X'00') Successful completion.

04 (X'04') 00 (X '00') One or more entries in the list could not be
filled; the list supplied may be invalid. If a
search is attempted but the entry is not found,
the R field (byte 11) for that entry is set to zero.

08 (X'08') 00 (X'OO') A permanent 1/0 error was detected when the
system attempted to search the directory.

08 (X'08 ') 04 (X'04 ') Insufficient virtual storage was available.

08 (X'08 ') 08 (X'08') Invalid DEB. (Not in key 0 through 7.)

Macro Instruction Descriptions 11

BSP

BSP-Backspace a Physical Record {BSAM-Magnetic Tape and
Direct Access Only)

The BSP macro backspaces the current volume one data block (physical
record). All input and output operations must be tested for completion before
the BSP macro is issued. Do not use the BSP macro ifthe CNTRL, NOTE, or
POINT macro is being used.

Any attempt to backspace across a file mark results in a return code of X 104 1

and your tape or direct access volume is not repositioned. This means you
cannot issue a successful BSP macro after your EODAD routine is entered
unless you first reposition the tape or direct access volume into your data set.
(CLOSE TYPE =T would get you repositioned at the end of your data set.)

Magnetic Tape: A backspace is always made toward the beginning of the tape.

Direct Access Device: A BSP macro must not be issued for a data. set created
by using track overflow.

SYSIN or SYSOUT Data Sets: A BSP macro is ignored, but a completion code
is returned.

The BSP macro is written:

I [symbol] I BSP deb address

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the volume to be back
spaced. You must open the data set on the volume to be backspaced
before issuing the BSP macro.

12 MVS/ESA Data Administration: Macro Instruction Reference

I)

·~

')
' \-_/

\
\....._./

\ i

~

L)

I

\ /
'._,/

BSP

Completion Codes
When the system returns control to the problem program, the low-order byte of
register 15 contains a return code; the low-order byte of register O contains a
reason code, as follows:

Return Reason
Code (15) Code (0) Meaning

00 (X'00') 00 (X 100 1
) Successful completion.

04(X 104 1
) 01 (X'01 ') A backspacing request was ignored on a SYSIN

or SYSOUT data set.

04 (X'04') 02 (X '02 ') Backspace not supported for this device type.

04 (X'04') 03 (X'03 ') Backspace not successful; insufficient virtual
storage was available.

04 (X'04') 04 (X'04') Backspace not successful; permanent 1/0 error.

04 (X'04') 05 (X'05') Backspace into load point or beyond start of
data set on the current volume.

04 (X 104 1
) 06 (X'06') The supplied DCB or its DEB is invalid.

04 (X'04') 07 (X '07 ') Backspace detected an invalid extent value (M).

04 (X'04') 08 (X'08') Backspace issued while 1/0 was in progress.

Macro Instruction Descriptions 13

BUILD

BUILD-Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM)

The BUILD macro is used to construct a buffer pool in an area provided by the
problem program. The buffer pool may be used by more than one data set
through separate data control blocks. Individual buffers are obtained from the
buffer pool using the GETBUF macro, and buffers are returned to the buffer pool
using a FREEBUF macro. See Data Administration Guide for an explanation of
the interaction of the DCB, BUILD, and GETBUF macros in each access method,
and the buffer size requirements.

The BUILD macro is written:

[symbol] BUILD area address
,{number of buffers,buffer Jengthl(O)}

area address-RX-Type Address, (2-12), or (1)
specifies the address of the area to be used as a buffer pool. The area
must start on a fullword boundary.

The following illustration shows the format of the buffer pool:

Area
Address

I ...

Buffer Pool
Control
Block

Buffer

... ~ Buffer I 8 bytes----11,.
1

._-Length _____.,

----------Area Length

I
Buffer

r-Length
I. Buffer j

Area Length= (Buffer Length) x (Number of Buffers) +8

14 MVS/ESA Data Administration: Macro Instruction Reference

\
\._,;)

BUILD

number of buffers-symbol, decimal digit, absexp, or (2-12)
specifies the number of buffers in the buffer pool to a maximum of 255.

buffer length-symbol, decimal digit, absexp, or (2-12)

(0)

specifies the length, in bytes, of each buffer in the buffer pool. The value
specified for the buffer length must be a fullword multiple; otherwise, the
system rounds the value specified to the next higher fullword multiple. The
maximum length that can be specified is 32760 bytes. For QSAM, the buffer
length must be at least as large as the value specified in the block size
(DCBBLKSI) field of the data control block.

The number of buffers and buffer length can be specified in general register
0. If (0) is coded, register 0 must contain the binary values for the number
of buffers and buffer length as shown in the following illustration.

Register O

Number of Buffers Buffer Length

Bits: 0 15 16 31

Macro Instruction Descriptions 15

BUILDRCD

BUILDRCD-Build a Buffer Pool and a Record Area (QSAM)
The BUILDRCD macro constructs a buffer pool and a record area in a user
provided storage area. This macro is used only for variable-length, spanned
records processed in QSAM locate mode. If the extended logical record inter
face (XLRI) is used to process RECFM = DS or RECFM =DBS records
(ISO/ANSl/FIPS variable spanned or variable blocked spanned), you can use the
BUILDRCD macro to build a record area to a maximum length of 16777183
bytes. Using this macro before the data set is opened, or before the end of the
DCB open exit routine, provides a buffer pool that can be used for a logical
record interface rather than a segment interface for variable-length spanned
records. To invoke a logical record interface, specify BFTEK=A in the DCB.
You cannot specify the BUILDRCD macro when logical records exceed 32760
bytes.

It is your responsibility to release the buffer pool and the record area after
issuing a CLOSE macro for all the data control blocks that use the buffer pool
and the record area.

The standard form of the BUILDRCD macro is written as follows (the list and
execute forms are shown following the description of the standard form):

[symbol] BUILDRCD area address
,number of buffers
,buffer length
,record area address
[,record area length]

area address-A-Type Address or (2-12)
specifies the address of the area to be used as a buffer pool. The area
must start on a fullword boundary.

Note: area length = [(buffer length) x (number of buffers) + 12]

number of buffers-symbol, decimal digit, absexp, or (2-12)
specifies the number of buffers, to a maximum of 255, to be in the buffer
pool.

buffer length-symbol, decimal digit, absexp, or (2-12)
specifies the length, in bytes, of each buffer in the buffer pool. The value
specified for the buffer length must be a fullword multiple; otherwise, the
system rounds the value specified to the next higher fullword multiple. The
maximum length that can be specified is 32760 bytes.

record area address-A-Type Address or (2-12)
specifies the address of the storage area to be used as a record area. The
area must start on a doubleword boundary and have a length of the
maximum logical record (LRECL) plus 32 bytes.

record area length-symbol, decimal digit, absexp, or (2-12)
specifies the length of the record area to be used. The area must be as
long as the maximum length logical record plus 32 bytes for control infor
mation. If the record area length operand is omitted, the problem program
must store the record area length in the first four bytes of the record area.

16 MVS/ESA Data Administration: Macro Instruction Reference

\""-"'

\
'-.,...I

()

~

BUILDRCD

It is your responsibility to release the buffer pool and the record area after
issuing a CLOSE macro for all the data control blocks that use the buffer pool
and the record area.

Macro Instruction Descriptions 17

BUILDRCD

BUILDRCD-List Form
The list form of the BUILDRCD macro is used to construct a program parameter ---
list. The description of the standard form of the BUILDRCD macro instruction
provides the explanation of the function of each operand. The description of the
standard form also indicates the operands that are totally optional and those
that are required in at least one of the pair of list and execute forms. The
format description below indicates the optional and required operands in the
list form only.

The list form of the BUILDRCD macro is written:

[symbol] BUILDRCD area address
,number of buffers
,buffer length
,record area address
[,record area length]
,MF=L

area address-A-Type Address

number of buffers-symbol, decimal digit, or absexp

buffer length-symbol, decimal digit, or absexp

record area address-A-Type Address

record area length-symbol, decimal digit, or absexp

MF=L
specifies that the BUILDRCD macro instruction is used to create a param
eter list that is referenced by an execute form instruction.

Note: You can construct a parameter list by coding only the MF=L operand
(without the preceding comma); in this case, the list is constructed for the area
address, number of buffers, buffer length, and record area address operands. If
the record area length operand is also required, code the operands as follows:

[symbol] BUILDRCD,,,,O,MF = L

The preceding example shows the coding to construct a list containing address
constants with a value of 0 in each constant. The actual values can then be
supplied by the execute form of the BUILDRCD macro.

18 MVS/ESA Data Administration: Macro Instruction Reference

i \........,,,,

\ v

i
I :

~

BUILDRCD

BUILDRCD-Execute Form
A remote parameter list is referred to, and can be modified by, the execute
form of the BUILDRCD macro. The description of the standard form of the
BUILDRCD macro instruction provides the explanation of the function of each
operand. The description of the standard form also indicates the operands that
are totally optional and those that are required in at least one of the pair of list
and execute forms. The format description below indicates the optional and
required operands for the execute form only.

The execute form of the BUILDRCD macro is written:

[symbol] BUILDRCD [area address]
,[number of buffers]
,[buffer length]
,[record area address]
[,record area length]
,MF=(E,list address)

area address-RX-Type Address or {2-12)

number of buffers-absexp

buffer length-absexp

record area address-RX-Type Address or (2-12)

record area /ength-absexp

MF=(E,/ist address)
specifies that the execute form of the BUILDRCD macro instruction is used,
and an existing parameter list {created by a list-form instruction) is used.
The MF= operand is coded as described in the following:

E

list address-RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions 19

CHECK

CHECK-Wait for and Test Completion of a Read or Write Operation
(BDAM, BISAM, BPAM, and BSAM)

The CHECK macro places the active task in the wait condition, if necessary,
until the associated input or output operation is completed. The input or output
operation is then tested for errors and exceptional conditions. If the operation
is completed successfully, control is returned to the instruction following the
CHECK macro. If the operation is not completed successfully, the error anal
ysis (SYNAD) routine is given control or, if no error analysis routine is provided,
the task is abnormally terminated. The error analysis routine is discussed in
the SYNAD operand of the DCB macro.

The following conditions are also handled for BPAM and BSAM only:

When Reading: The end-of-data (EODAD) routine is given control if an input
request is made after all the records have been retrieved. Volume switching is
automatic for a BSAM data set that is not opened for UPDAT. For a BSAM data
set that is opened for update, the end-of-data routine is entered at the end of \~
each volume.

When Writing: Additional space on the device is obtained when the current
space is filled and more WRITE macro instructions have been issued.

For BPAM and BSAM, you must issue a CHECK macro for each input and
output operation. The CHECK macros must be issued in the same order as the
READ or WRITE macros were issued for the data set. For BDAM or BISAM, you
can use either a CHECK or a WAIT macro. For information on when you can
use the WAIT macro, see Data Administration Guide.

If the ISCll/ ASCII translation routines are included when the operating. system is
generated, translation can be requested by coding LABEL=(,AL) or (,AUL) in
the DD statement, or by coding OPTCD=Q in the DCB macro or DCB subpa
rameter of the DD statement. If translation is requested, the check routine
automatically translates BSAM records, as they are read, from ISCll/ASCll code
to EBCDIC code, if the record format is F, FB, D, DB, or U. Translation occurs
when the check routine determines that the input buffer is full. For translation
to occur correctly, all input data must be in ISCll or ASCII code.

The CHECK macro is written:

[symbol] CHECK decb address
[,DSORG={ISIALL}]

decb address-RX-Type Address, (2-12), or (1)
specifies the address of the data event control block created or used by the
associated READ or WRITE macro.

20 MVS/ESA Data Administration: Macro Instruction Reference

/
~)

I

\ '
\,..._..,/

I '
_)

CHECK

DSORG = {ISIALL}
specifies the type of data set organization. The following describes the
characters that can be coded:

IS

ALL

specifies that the program generated is for BISAM use only.

specifies that the program generated is for BDAM, BISAM, BPAM, or
BSAM use.

If the DSORG operand is omitted, the program generated is for BDAM,
BPAM, or BSAM use only.

Macro Instruction Descriptions 21

CHKPT

CHKPT-Take a Checkpoint for Restart within a Job Step
The CHKPT macro is coded in-line in the problem program. When this macro
executes, the operating system writes a checkpoint entry in a checkpoint data
set. The entry consists of job step information, such as virtual-storage data
areas, data set position, and supervisor control, from the problem program.
The problem program automatically restarts with the instruction immediately
following the CHKPT macro.

For details on the CHKPT macro, see Checkpoint/Restart User's Guide.

22 MVS/ESA Data Administration: Macro Instruction Reference

1~)

J \.......,,

CLOSE

CLOSE-Logically Disconnect a Data Set (BDAM, BISAM, SPAM,
~; BSAM, QISAM, and QSAM)

~)

I

~)

(;

'-/

The CLOSE macro creates output data set labels and allows you to position
volumes. The fields of the data control block are restored to the condition that
existed before the OPEN macro was issued, and the data set is disconnected
from the processing program. You can specify final volume positioning or dis
position for the current volume to override the positioning implied by the DD
control statement DISP parameter. Any number of deb address operands and
associated options may be specified in the CLOSE macro.

Associated data sets for an IBM 3525 Card Punch can be closed in any
sequence, but, if one data set is closed, 1/0 operations cannot be initiated for
any of its associated data sets. Additional information about closing associated
data sets is contained in Data Administration Guide.

After a CLOSE has been issued for several data sets, a return code of 4 indi
cates that at least one of the data sets, VSAM or non-VSAM, was not closed
successfully.

A FREEPOOL macro should normally follow a CLOSE macro instruction (without
TYPE =T) to regain the buffer pool storage space and to allow a new buffer pool
to be built if the DCB is reopened with different record size attributes.

A special operand, TYPE=T, is provided for processing with BSAM.

The standard form of the CLOSE macro is written as follows (the list and
execute forms are shown following the description of the standard form):

[symbol] CLOSE (deb address,[option, ...])
[,TYPE=T]
[,MODE=24l31]

deb address-A-Type Address or (2-12)
specifies the address of the data control block for the opened data set that
is to be clos·ed.

option
One of these options indicates the volume positioning that is to occur when
the data set is closed. This option is generally used with the TYPE =T
operand or for data sets on magnetic tape. However, options specified in
the CLOSE macro override disposition specifications in the JCL for all data
sets. The options are:

REREAD
specifies that the current volume is to be positioned to reprocess the
data set. If processing was forward, the volume is positioned to the
beginning of the data set; if processing was backward (ROBACK), the
volume is positioned to the end of the data set. If FREE= CLOSE is
specified in the JCL, the data set is not unallocated until the end of the
job step.

Macro Instruction Descriptions 23

CLOSE

LEAVE
specifies that the current volume is to be positioned to the logical end
of the data set. If processing was forward, the volume is positioned to
the end of the data set; if processing was backward (ROBACK), the
volume is positioned to the beginning of the data set.

REWIND
specifies that the current magnetic tape volume is to be positioned at
the load point, regardless of the direction of processing. REWIND
cannot be specified when TYPE=T is specified. If FREE=CLOSE has
been coded on the DD statement associated with the data set being
closed, coding the REWIND option will result in the data set being freed
at the time it is closed rather than at the termination of the job step.

FREE
specifies that the current data set is to be freed at the time the data set
is closed, rather than at the time the job step is terminated. For tape
data sets, this means ttiat the volume is eligible for use by other tasks
or to be demounted. Direct access volumes may also be freed for use
by other tasks. They may be freed for demounting if (1) no other data
sets on the volume are open and (2) the volume is otherwise demount
able. Do not use this option with CLOSE TYPE=T. (For other
restrictions on the FREE parameter, see JCL User's Guide.)

DI.SP
specifies that a tape volume is to be disposed of in the manner implied
by the DD statement associated with the data set. Direct access
volume positioning and disposition are not affected by this parameter.
There are several dispositions that can be specified in the DISP param
eter of the DD statement; DISP can be PASS, DELETE, KEEP, CATLG, or
UNCATLG.

Depending on how the DISP option is coded in the DD statement, the
current magnetic tape volume is positioned as follows:

DISP Parameter

PASS

DELETE

KEEP,CATLG,orUNCATLG

Action

Forward space to the end of data set
on the current volume.

Rewind the current volume.

The volume is rewound and unloaded,
if necessary.

If FREE=CLOSE has been coded in the DD statement associated with
this data set, coding the DISP option in the CLOSE macro results in the
data set being freed when the data set is closed, rather than at the time
the job step is terminated.

Note: When the option operand is omitted, DISP is assumed. For TYPE =T,
this is processed as LEAVE during execution.

The LEAVE and REREAD options used only for magnetic tape and CLOSE
TYPE=T.

TYPE=T
You can code CLOSE TYPE =T to perform some close functions for sequen
tial data sets on magnetic tape and direct access volumes processed with
BSAM. When you use TYPE=T, the DCB used to process the data set
maintains its open status, and you should not issue another OPEN macro to

24 MVS/ESA Data Administration: Macro Instruction Reference

\~

i"'-./

I I

'\._.,.)

CLOSE

continue processing the same data set. This option cannot be used in a
-SYNAD exit routine.

The TYPE=T operand causes the system control program to process labels,
modify some of the fields in the system control blocks for that data set, and
reposition the volume (or current volume for multivolume data sets) in
much the same way that the normal CLOSE macro does. When you code
TYPE =T, you can specify that the volume either be positioned at the end of
data (the LEAVE option) or be repositioned at the beginning of data (the
REREAD option). Magnetic tape volumes are repositioned either imme
diately before the first data record or immediately after the last data record;
the presence of tape labels has no effect on repositioning.

If you code the RLSE keyword with the SPACE parameter on the DD state
ment that describes the output data set, it is ignored by temporary close
(CLOSE TYPE= T). If the last operation occurring before the normal CLOSE
(without TYPE =T) and after the temporary close was a write, then any
unused space is released.

MODE=24l31
You can code CLOSE MODE= 31 to specify a Jong form parameter list that
can contain 31-bit addresses. The default, MODE= 24, specifies a standard
form parameter list with 24-bit addresses. Your program does not need to
be executing in 31-bit addressing mode to use MODE= 31 in the CLOSE
macro. This parameter specifies the form of the parameter list, not the
_addressing mode of the program.

The standard form parameter list must reside below 16M, but the calling
program may be above 16M. Assume that all ACBs and DCBs are below
16M.

The long form parameter list can reside above or below 16M. Although the
ACB or DCB address is contained in a 4-byte field, the DCB must be below
16M. Except for VSAM or VTAM ACBs, all ACBs must also be below 16M.
Therefore, the leading byte of the ACB or DCB address must contain zeros.
If the byte contains something other than zeros, an IEC290I message is
issued and the data set is not closed.

Note: It is up to you to keep the mode specified in the MF=L and MF=E.
versions of the OPEN and CLOSE macros consistent. Errors and unpredict
able results will occur if the specified modes are inconsistent.

For additional information and coding restrictions, see Data Administration
Guide.

Macro Instruction Descriptions 25

CLOSE

CLOSE-List Form
The list form of the CLOSE macro is used to construct a data management
parameter list. Any number of operands (data control block addresses and
associated options) can be specified.

The list consists of a one-word entry for each DCB in the parameter list; the
high-order byte is used for the options and the three low-order bytes are used
for the DCB address. The end of the list is indicated by a 1 in the high-order bit
of the last entry's option byte. The length of a list generated by a list-form
instruction must be equal to the maximum length required by an execute-form
instruction that refers to the same list. You can construct a maximum length
list by one of two methods:

• Code a list-form instruction with the maximum number of parameters that
are required by an execute-form instruction that refers to the list.

• Code a maximum length list by using commas in a list-form instruction to
acquire a list of the appropriate size. For example, coding CLOSE
{,,,,,,,,,),MF= L would provide a list of five fullwords (five deb addresses and
five options).

Entries at the end of the list that are not referenced by the execute-form instruc
tion are assumed to have been filled in when the list was constructed or by a
previous execute-form instruction. Before using the execute-form instruction,
you may shorten the list by placing a 1 in the high-order bit of the last DCB
entry to be processed.

A zeroed work area on a word boundary is equivalent to CLOSE 0
{,DISP, ...),MF = L and can be used in place of a list-form instruction. The high-
order bit of the last DCB entry must contain a 1 before this list can be used with
the execute-form instruction.

A parameter list constructed by a CLOSE macro, list form, can be referred to by
either an OPEN or CLOSE execute-form instruction.

The description of the standard form of the CLOSE macro provides the explana
tion of the function of each operand. The description of the standard form also
indicates the operands that are completely optional and those required in at
least one of the pair of list and execute forms. The format destription below
indicates the optional and required operands in the list form only.

The list form of the CLOSE macro is written:

[symbol] CLOSE ([deb address,],[option], ...)
[,TYPE=T]
[,MF=L
[,MODE= 24131]

deb address-A-Type Address

option-Same as standard form

26 MVS/ESA Data Administration: Macro Instruction Reference

<.)

' ' I I

\.._,!

I
_,;'

CLOSE

TYPE=T
can be coded in the list-form instruction to allow the specified option to be
checked for validity when the program is assembled.

MF=L
specifies that the CLOSE macro instruction is used to create a data man
agement parameter list that is referred to by an execute-form instruction.

MODE=24l31
You can code CLOSE MODE= 31 to specify a long form parameter list that
can contain 31-bit addresses. The default, MODE= 24, specifies a standard
form parameter list with 24-bit addresses. Your program does not need to
be executing in 31-bit addressing mode to use MODE= 31 in the CLOSE
macro. This parameter specifies the form of the parameter list, not the
addressing mode of the program.

The standard form parameter list must reside below 16M, but the calling
program may be above 16M. Assume that all ACBs and DCBs are below
16M.

The long form parameter list can reside above or below 16M. Although the
ACB or DCB address is contained in a 4-byte field, the DCB must be below
16M. Except for VSAM or VTAM ACBs, all ACBs must also be below 16M.
Therefore, the leading byte of the ACB or DCB address must contain zeros.
If the byte contains something other than zeros, an IEC2901 message is
issued and the data set is not closed.

Note: It is up to you to keep the mode specified in the MF= l and MF= E
versions of the OPEN and CLOSE macros consistent. Errors and unpredict
able results will occur if the specified modes are inconsistent.

Macro Instruction Descriptions 27

·CLOSE

CLOSE-Execute Form
A list form of the CLOSE macro is Lised in and can be modified by the execute ,"'-"
form of the CLOSE macro. The parameter list can be generated by the list form
of either an OPEN macro or a CLOSE macro.

The description of the standard form of the CLOSE macro provides the explana
tion of the function of each operand. The description of the standard form also
indicates the operands that are totally optional and those required in at least
one of the pair of list and execute forms. The format description below indi
ca,tes the optional and required operands in the execute form only.

The execute form of the CLOSE macro is written:

[symbol] CLOSE [([deb address,],[option], ...)]
[,TYPE=T]
[,MF=(E,address of list form)
[,MODE= 24131]

deb address-RX-Type Address or (2-12)

option-If specified, same as the standard form. If not specified, the option
specified in the list form of the CLOSE macro is used.

TYPE=T-Same as standard form.

MF= (E,address of the list form) ·~
specifies that the execute form of the CLOSE macro instruction is being
used, and the parameter list is created by the list form of the CLOSE macro
instruction. The MF= operand is coded as described in the following:

E
address of the list form of the CLOSE (or OPEN) macro
instruction-RX-Type Address, (2-12), or (1)

MODE=24l31
You can code CLOSE MODE= 31 to specify a long form parameter list that
can contain 31-bit addresses. The default, MODE= 24, specifies a standard
form parameter list with 24-bit addresses. Your program does not need to
be executing in 31-bit addressing mode to use MODE= 31 in the CLOSE
macro. This parameter specifies the form of the parameter list, not the
addressing mode of the program.

The standard form parameter list must reside below 16M, but the calling
program may be above 16M. Assume that all ACBs and DCBs are below
16M.

The long form parameter list can reside above or below 16M. Although the
ACB or DCB address is contained in a 4-byte field, the DCB mus_t be below
16M. Except for VSAM or VTAM ACBs, all ACBs must also be below 16M.
Therefore, the leading byte of the ACB or DCB address must contain zeros.
If the byte contains something other than zeros, an IEC290I message is
issued and the data set is not closed.

28 MVS/ESA Data Administration: Macro Instruction Reference

I

_,,.r

I

~/

CLOSE

Note: It is up to you to keep the mode specified in the MF= L and MF= E
versions of the OPEN and CLOSE macros consistent. Errors and unpredict
able results will occur if the specified modes are inconsistent.

Return Codes from CLOSE
When your program receives control after it has issued a CLOSE macro, a
return code in register 15 indicates whether all data sets were closed success
fully:

Return
Code (15)

0(0)

4(4)

Meaning

All data sets were closed successfully.

At least one data set (VSAM or non-VSAM) was not closed suc
cessfully.

Macro Instruction Descriptions 29

CNTRL

CNTRL-Control Online Input/Output Device (BSAM and QSAM)
The CNTRL macro controls magnetic tape drives (BSAM only for a data set that
is not open for output), online card readers, IBM 3525 Card Punches (read and
print features), printers (BSAM and QSAM), and the IBM 3890 Document
Processor (QSAM only). For information on additional operands for the CNTRL
macro for the 3890, see IBM 3890 Document Processor Machine and Program
ming Description.

The MACRF operand of the DCB macro must specify a C. The CNTRL macro is
ignored for SYSIN or SYSOUT data sets. For BSAM, all input and output oper
ations must be tested for completion before the CNTRL macro is issued. The
control facilities available are as follows:

Card Reader: Provides stacker selection, as follows:

QSAM-For unblocked records, issue a CNTRL macro after every input request.
For blocked records, issue a CNTRL macro after the last logical record on each
card that is retrieved. Whether reading blocked or unblocked records, do not
issue a CNTRL macro after a GET macro has caused control to pass to the
EODAD routine. The move mode of the GET macro must be used, and the
number of buffers (BUFNO field of the DCB) must be 1. If a CLOSE macro is
issued before the last card is read, the operator should clear the reader before
the device is used again.

BSAM-The CNTRL macro should be issued after every input request.

Printer: Provides line spacing or a skip to a specific carriage control channel.
You cannot use a CNTRL macro if carriage control characters are provided in
the record. If the printer contains the universal character set feature, data
checks should be blocked (OPTCD = U should not appear in the data control
block).

Magnetic Tape: Provides method of forward spacing and backspacing (BSAM
only for a data set that is not open for output). If OPTCD = H is indicated in the
data control block, you can use the CNTRL macro to perform record positioning
on DOS tapes that contain embedded checkpoint records. Embedded check
point records encountered during the record positioning are bypassed and are
not counted as blocks spaced over. OPTCD=H must be specified in a job
control language DD statement. The CNTRL macro cannot be used to back
space DOS 7-track tapes that are written in data convert mode that contain
embedded checkpoint records (BSAM).

Note: Do not use the CNTRL macro with output operations on BSAM tape data
sets.

3525 Printing: Provides line spacing or a skip to a specific printing line on the
card. The card contains 25 printing lines; the odd-numbered lines 1 through 23
correspond to the printer skip channels 1 through 12 (see the SK operand). For
additional information about 3525 printing operations, see Programming Support
for the IBM 3505 Card Reader and the IBM 3525 Card Punch.

30 MVS/ESA Data Administration: Macro Instruction Refer~nce

_;!

CNTRL

The CNTRL macro is written:

[symbol] CNTRL deb address
{,SS,{112}}
{,SP,{11213}}
{,SK,{1121 ... 111112}}
{,BSM}
{,FSM}
{,BSR[,number of blocks]}
{,FSR[,number of blocks]}

deb address
specifies the address of the data control block for the data set opened for
the online device.

SS,{112}
is coded as shown to indicate that the control function requested is stacker
selection on a card reader; either 1 or 2 must be coded to indicate which
stacker is to be selected.

SP,{11213}
is coded as shown to indicate that the control function requested is printer
line spacing or 3525 card punch line spacing; either 1, 2, or 3 must be
coded to indicate the number of spaces for each print line.

SK,{1121 ... 111112}
is coded as shown to indicate that the control function requested is a skip
operation on the printer or 3525 card punch, print feature; a number (1
through 12) must be coded to indicate the channel or print line to which the
skip is to be taken.

BSM
indicates that the control function requested is to backspace the magnetic
tape past a tape mark, then forward space over the tape mark.

FSM
indicates that the control function requested is to forward space the mag
netic tape over a tape mark, then backspace past the tape mark.

BSR
indicates that the control function requested is to backspace the magnetic
tape the number of blocks indicated in the number-of-blocks operand.

FSR
indicates that the control function requested is to forward space the mag
netic tape the number of blocks indicated in the number-of-blocks operand.

number of blocks-symbol, decimal digit, absexp, or (2-12)
specifies the number of blocks to backspace (see BSR operand) or
forward space (see FSR operand) the magnetic tape. The maximum
value that can be specified is 32767. If the number-of-blocks operand is
omitted, 1 is assumed.

Macro Instruction Descriptions 31

CNTRL

If the forward space or backspace operation is not completed successfully,
control is passed to the error analysis (SYNAD) routine; if no SYNAD exit
routine is designated, the task is abnormally terminated. For more information on register contents when control is passed to the error analysis routine, see DFP: Customization. If a tape mark is encountered for BSR or FSR, control is returned to the processing program, and register 15 contains a count of the uncompleted forward spaces or backspaces. If the operation is completed
normally, register 15 contains the value zero.

32 MVS/ESA Data Administration: Macro Instruction .Reference

\...._,,

I

~

i~

(;

·~

(v

DCB (BDAM)

DCB-Construct a Data Control Block {BDAM)
Use of the DCB (BDAM) macro is not recommended; we recommend you use a
device-independent access method such as BSAM, SPAM, or QSAM instead.

The data control block for a basic direct access method (BDAM) data set is con
structed during assembly of the problem program. You must code the DSORG
and MACRF operands in the DCB macro instruction, but the other operands can
be supplied to the DCB from the DD statement or an existing data set label
(DSCB). If more than one of these sources specifies information for a particular
field, the order of priority is the DCB macro instruction, DD statement, and data
set label. Each BDAM DCB operand description contains a heading, "Source."
The information under this heading describes the sources that can supply the
operand.

The DCB macro for BDAM is written:

[symbol] DCB [BFALN = {FIQ}]
[,BFTEK=R]
[,BLKSIZE = absexp]
[,BUFCB =re/exp]
[,BUFL= absexp]
[,BUFNO = absexp]
[,DD NAME= symbol] 1

,DSORG ={DAI DAU}
[,EXLST=re/exp]
[,KEYLEN = absexp]
[,LIMCT=absexp]
,MACRF= {{(R{K[l]ll}[X][S][C])}

{(W{A[K][l]!K[l]ll}[C])}
{(R {K[I] ll}[X][S][C],W{A[K][I] IK[I] II} [CJ)}}

[,OPTCD = {[R IA][E][F][W]}]
[,RECFM = {UIV[SIBS]IF[T]}]
[,SYNAD =re/exp]

This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

Note: When creating a DCB to open a data set that has been allocated to a·n
SMS-managed volume, do not specify values that would change the data set to
a type which cannot be SMS-managed, such as DSORG=DAU.

When you create or process a BDAM data set, you can specify the following
operands in the DCB macro instruction:

BFALN={FIQ}
specifies the boundary alignment for each buffer in the buffer pool. You can
specify the BFALN operand when (1) BSAM is being used to create a BDAM
data set and buffers are acquired automatically, (2) when an existing BDAM
data set is being processed and dynamic buffering is requested, or (3) when
the GETPOOL macro instruction is used to construct the buffer pool. If the
BFALN operand is omitted, the system provides doubleword alignment for
each buffer. The characters that can be specified are:

Macro Instruction Descriptions 33

DCB (BDAM)

F
specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

specifies that each buffer is on a doubleword boundary.

If you use the BUILD macro instrnction to construct the buffer pool, or if the
problem program controls all buffering, the problem program must provide
the area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. If both the BFALN
and BFTEK operands are specified, they must be supplied from the same
source.

BFTEK=R
specifies that the data set is being created for or contains variable-length
spanned records. You can code the BFTEK = R operand only when the
record format is specified as REC FM= VS.

When variable-length spanned records are written, the data length can
exceed the total capacity of a single track on the direct access device being
used, or it can exceed the remaining capacity on a given track. The system
divides the data block into segments (if necessary), writes the first segment
on a track, and writes the remaining segment(s) on the following track(s).

When a variable-length spanned record is read, the system reads each
segment and assembles a complete data block in the buffer designated in
the area address operand of a READ macro instruction.

Note: Variable-length spanned records can also be read using BSAM.
When BSAM is used to read a BDAM variable-length spanned record, the
record is read one segment at a time, and the problem program must
assemble the segments into a complete data block. This operation is
described in the section for the BSAM DCB macro instruction.

Source: The BFTEK operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. If both the BFTEK
~nd BFALN operands are specified, they must be supplied from the same \,.....)
source.

BLKSIZE=absexp (maximum value is 32760)
specifies the length, in bytes, of each data block for fixed-length records, or
it specifies the maximum length, in bytes, of each data block for variable
length or undefined-length records. If keys are used, the length of the key
is not included in the value specified for the BLKSIZE operand.

The actual value that you can specify in the BLKSIZE operand depends on
the record format and the type of direct access device being used. If track
overflow is used or if variable-length spanned records are used, the value
specified in the BLKSIZE operand can be up to the maximum. For all other
record formats (F, V, VBS, and U), the maximum value that can be specified
in the BLKSIZE operand is determined by the track capacity of a single
track on the direct access device being used. Device capacity for direct
access devices is described in Appendix C, "Device Capacities" on 0

34 MVS/ESA Data Administration: Macro Instruction Reference

(.•

~

DCB (BDAM)

page 213. For additional information about space allocation, see Data
Administration Guide.

Source: The BLKSIZE operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set. Block size can also be derived from the JCL
keyword LIKE. For more information on LIKE, see JCL User's Guide.

BUFCB =re/exp
specifies the address of the buffer pool control block in a buffer pool con
structed by a BUILD macro instruction.

If the buffer pool is constructed automatically, dynamically, or by a
GETPOOL macro instruction, you do not need to use the BUFCB operand
because the system places the address of the buffer pool control block into
the data control block. Also, if the problem program is to control all buf
fering, omit the BUFCB operand.

Source: The BUFCB operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

BUFL=absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the length, in bytes, of each buffer in the buffer pool when the
buffers are acquired automatically (create BDAM) or dynamically (existing
BDAM).

When buffers are acquired automatically (create BDAM), the BUFL operand
is optional; if specified, the value must be at least as large as the sum of
the values specified for the KEYLEN and BLKSIZE operands. If the BUFL
operand is omitted, the system constructs buffers with a length equal to the
sum of the values specified in the KEYLEN and BLKSIZE operands.

You must specify the BUFL operand when processing an existing BDAM
data set with dynamic buffering. Its value must be at least as large as the
value specified for the BLKSIZE operand when the READ or WRITE macro
instruction specifies a key address, or the value specified in the BUFL
operand must be at least as large as the sum of the values specified in the
KEYLEN and BLKSIZE operands if the READ and WRITE macro instructions
specify 'S' for the key address.

You can omit the BUFL operand if the buffer pool is constructed by a BUILD
or GETPOOL macro instruction or if the problem program controls all buf
fering.

Source: The BUFL operand can be supplied in the DCB macro instruction, in
the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers to be constructed by a BUILD macro instruc
tion, or the number of buffers and/or segment work areas to be acquired
automatically by the system.

If the buffer pool is constructed by a BUILD macro instruction or if buffers
are acquired automatically when BSAM is used to create a BDAM data set,
you must specify the number of buffers in the BUFNO operand.

Macro Instruction Descriptions 35

DCB (BDAM)

If dynamic buffering is requested when an existing BDAM data set is being
processed, the BUFNO operand is optional; if omitted, the system acquires
two buffers.

If variable-length spanned records are being processed and dynamic buf
fering is requested, the system also acquires a segment work area for each
buffer. If dynamic buffering is not requested, the system acquires the
number of segment work areas specified in the BUFNO operand. If the
BUFNO operand is omitted when variable-length spanned records are being
processed and dynamic buffering is not requested, the system acquires two
segment work areas.

If the buffer pool is constructed by a GETPOOL macro instruction or if the
problem program controls all buffering, you can omit the BUFNO operand
unless you need it to acquire additional segment work areas for variable
length spanned records.

Source: The BUFNO operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. \.._,,1

DD NAME= symbol
specifies the name used to identify the job control language data definition
(DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruc
tion or can be moved into the DCB by the problem program before an OPEN
macro instruction is issued to open the data set.

DSORG ={DAI DAU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. For
example, if actual device addresses are used to process a BDAM data set,
the-data set may be unmovable. The following characters can be specified:

DA
specifies a direct organization data set.

DAU
specifies a direct organization data set that contains location-dependent
information that would make it unmovable.

Note: A DSORG=DAU data set cannot be SMS-managed.

When a BDAM data set is created, the basic sequential access method
(BSAM) is used. You must code the DSORG operand in the DCB macro
instruction as DSORG =PS or PSU when the data set is created, and code
the DCB subparameter in the corresponding DD statement as DSORG =DA
or DAU. This creates a data set with a data set label identifying it as a
BDAM data set.

Source: The DSORG operand must be specified in the DCB macro instruc
tion. See the preceding comment about creating a BDAM data set.

EXLST =re/exp
specifies the address of the problem program exit list. The EXLST operand
is required if the problem program processes user labels during the open

I I
\._/

or close routine, if the data control block exit routine is used for additional ")
processing, or if the DCB ABEND exit is used for ABEND condition analysis. ~

36 MVS/ESA Data Administration: Macro Instruction Reference

,· !
(!

\~/

I I
\J_,;

i I
\ i !
~)

, I

I I '
~!

DCB (BDAM)

For the format and requirements of exit list processing, see Appendix D,
"DCB Exit List Format and Contents" on page 221. For additional informa
tion about exit list processing, see DFP: Customization.

Source: The EXLST operand can be supplied in the DCB macro instruction
or by the problem program before the exit is needed.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, of all keys used in the data set. When keys
are used, a key' is associated with each data block in the data set. If the
key length is not supplied by any source, no input or output requests that
require a key can be specified in a READ or WRITE macro instruction.

Source: The KEYLEN operand can be supplied)n the DCB macro instruc
tion; in the DCB subparameter of a DD statement, by the problem program
before the completion of the data control block exit routine, or by an
existing data set label. If KEYLEN =O is specified in the DCB macro instruc
tion, a special indicator is set in RECFM so that KEYLEN cannot be supplied
from the DCB subparameter of a DD statement or data set label of an
existing data set. KEYLEN =O can be coded only in the DCB macro instruc
tion and will be ignored if specified in the DD statement.

Key length can be derived from the data class associated with the data set.
Key length can also be derived from the JCL keyword LIKE. However, if
KEYLEN is specified in the DCB macro instruction, it overrides the value
derived from data class or LIKE. For more information, see JCL User's
Guide.

LIMCT=absexp
specifies the number of blocks or tracks to be searched when the extended
search option (OPTCD = E) is requested.

When the extended search option is requested and relative block
addressing is used, the records must be fixed-length record format. The
system converts the number of blocks specified in the LIMCT operand into
the number of tracks required to contain the blocks, then proceeds in the
manner described below for relative track addressing.

When the extended search option is requested and relative track
addressing is used (or the number of blocks has been converted to the
number of tracks), the system searches for two things: (a) the block speci
fied in a READ or WRITE macro instruction (type DK), or (b) available space
where it can add a block (WRITE macro instruction, type DA). The search is
as follows:

1. The search begins at the track specified by the block address operand
of a READ or WRITE macro instruction.

2. The search continues until the search is satisfied, the number of tracks
specified in the LIMCT operand have been searched, or the entire data
set has been searched. If the search has not been satisfied when the
last track of the data set is reached, the system continues the search by
starting at the first track of the data set if the EOF marker is on the last
track that was allocated to the data set. (This operation allows the
number specified in the LIMCT operand to exceed the size of the data
set, causing the entire data set to be searched.) Y,ou can ensure that
the EOF marker is on the last allocated track by determining the size of
the data set and allocating space in blocks, or by allocating space in
tracks and including the RLSE parameter on the SPACE operand of the

Macro Instruction Descriptions 37

DCB (BDAM)

-·
DD statement (RLSE specifies that all unused tracks be returned to the
system).

The problem program can change the DCBLIMCT field in the data control
block at any time, but, if the extended search option is used, the DCBLIMCT
field must not be zero when a READ or WRITE macro instruction is issued.

If the extended search option is not requested, the system ignores the
LIMCT operand, and the search for a data block is limited to a single track.

Source: The LIMCT operand can be supplied in the DCB macro instruction,
the DCB subparameter of a DD statement, or by the problem program
before the count is required by a READ or WRITE macro instruction.

MACRF = {{(R{K[IJll}[X][S][C])}
{(W{A[K][l]IK[IJI l}[C])}
{(R{K[IJll}[X][SJ[C],W{A[K][l]IK[l]ll}[C])}}

specifies the type of macro instructions (READ, WRITE, CHECK, and WAIT)
that are used to process the data set. The MACRF operand also specifies
the type of search argument and BDAM functions used with the data set.
When BSAM is ·used to create a BDAM data set, the BSAM operand
MACRF=WL is specified. This special operand invokes the BSAM routine
that can create a BDAM data set. The following characters can be coded
for BDAM:

A

c

K

R

s

w

specifies that data blocks are to be added to the data set.

specifies that the CHECK macro instruction is used to test for com-
pletion of read and write operations. If C is not specified, WAIT macro ~
instructions must be used to test for comp,letion of read and write oper-
ations.

specifies that the search argument is to be the block identification
portion of the data block. If relative addressing is used, the system con
verts the relative address to a full device address (MBBCCHHR) before
the search.

specifies that the search argument is to be the key portion of the data
block. The location of the key to be used as a search argument is spec
ified in a READ or WRITE macro instruction.

specifies that READ macro instructions are to be used. READ macro
instructions can be issued when the data set is opened for INPUT,
OUTPUT, or UPDAT.

specifies that dynamic buffering is requested by specifying 'S' in the
area address operand of a READ or WRITE macro instruction.

specifies that WRITE macro instructions are to be used. WRITE macro
instructions can be issued only when the data set is opened for
OUTPUT or UPDAT.

38 MVS/ESA Data Administration: Macro Instruction Reference

_;;

'_.,,;

\.._./

x

DCB (BDAM)·

specifies that READ macro instructions request exclusive control of a
data block. When exclusive control is requested, the data block must
be released by a subsequent WRITE or RELEX macro instruction.

Source: The MACRF operand must be supplied in the DCB macro instruc
tion.

OPTCD = {[RIAJ[E][F][W]}
specifies the optional services used with the BDAM data set. These options
are related to the type of addressing used, the extended search option,
block position feedback, and write-validity checking. You may code the fol
lowing characters in any order, in any combination, and without commas
between characters:

A

E

F

R

w

specifies that actual device addresses (MBBCCHHR) are provided to the
system when READ or WRITE macro instructions are issued.

specifies that the extended search option is used to locate data blocks
or available space where a data block can be added. When the
extended search option is specified, the number of blocks or tracks to
be searched must be specified in the LIMCT operand. The extended
search option is ignored if actual addressing (OPTCD =A) is also speci
fied. The extended search option requires that the data set have keys
and that the search be made by key (by specifying DK in the READ or
WRITE macro or DA in the WRITE macro).

specifies that block position feedback requested by a READ or WRITE
macro instruction is to be in the same form that was originally pre
sented to the system in the READ or WRITE macro instruction. If the F
operand is omitted, the system provides feedback, when requested, in
the form of an 8-byte actual device address. (Feedback is always pro
vided if exclusive control is requested.)

specifies that relative block addresses (in the form of 3-byte binary
numbers) are provided to the system when a READ or WRITE macro
instruction is issued.

specifies that the system is to perform a validity check for each record
written.

Note: Relative track addressing can only be specified by omitting both A
. and R from the OPTCD operand. If you want to specify relative track
addressing after your data set has been accessed using another addressing
scheme (OPTCD =A or R), you should either specify a valid OPTCD operand
(E, F, or W) in the DCB macro or DD card when you reopen your data set,
or zero out the OPTCD =A or R bits in the data control block exit routine.
Note that the first method prevents the open routines from merging any of
the other OPTCD bits from the format-1 DSCB in the DCB. Both methods
update the OPTCD bits in the DSCB if the open is for OUTPUT, OUTIN, or
UPDAT.

Macro Instruction Descriptions 39

DCB (BDAM)

Source: The OPTCD operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the DCB open exit routine.

RECFM = {UIV[SIBS]IF[T]}
specifies the record format and characteristics of the data set being created
or processed. The following describes the characters that can be coded (if
the optional characters are coded, they must be coded in the order shown
above):

B

F

s

T

specifies that the data set contains blocked records. The record format
RECFM =VBS is the only combination in which B can be specified.
RECFM =VBS does not cause the system to process spanned records;
the problem program must block and segment the records.
RECFM =VBS is treated as a variable-length record by BDAM.

specifies that the data set contains fixed-length records.

specifies that the data set contains variable-length spanned records
when it is coded as RECFM=VS. When RECFM=VBS is coded, the
records are treated as variable-length records, and the problem
program must block and segment the records.

specifies that track overflow is to be used with the data set. Track over
flow allows a record to be partiaUy written on one track and the
remainder is written on the following track (if required). Note: Track 1~
overflow is not supported on DASO models 3375 through 3380.

u
specifies that the data set contains undefined-length records.

v
specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, the problem program before
completion of the data control block exit routine, or by the data set label of
an existing data set.

Record format can be derived from the data class associated with the data
set. Record format can also be derived from the JCL keyword LIKE.
However, if RECFM is specified in the DCB macro instruction, it overrides
the value derived from data class or LIKE. For more information, see JCL
User's Guide.

SYNAD =re/exp
specifies the address of the error analysis routine to be given control when
an uncorrectable input/output error occurs. The contents of the registers
when the error analysis routine is given control are described in DFP:
Customization.

The error analysis routine must not use the save area pointed to by register
13, because this area is used by the system. The system does not restore
registers when it regains control from the error analysis routine. The error
analysis routine can issue a RETURN macro instruction that uses the
address in register 14 to return control to the system. When control is

40 MVS/ESA Data Administration: Macro Instruction Reference

. \
\.J

I ,
\._,/

I

\"---./

DCB (BDAM)

returned in this manner, the system returns control to the problem program
and proceeds as though no error had been encountered. When a BDAM
data set is being created, a return from the error analysis routine to the
system causes abnormal termination of the task.

If the SYNAD operand is omitted, the task is abnormally terminated when
an uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction
or by the problem program. The problem program can also change the
error routine address at any time.

Macro Instruction Descriptions 41

DCB (BISAM)

DCB-Construct a Data Control Block (BISAM)
Use of the DCB (BISAM) macro is not recommended; we recommend you Jse ""-
VSAM instead.

The data control block for a basic indexed sequential access method (BISAM)
data set is constructed during assembly of the problem program. You must
code the DSORG and MACRF operands in the DCB macro instruction, but the
other DCB operands can· be supplied to the data control block from other ·
sources. Each BISAM DCB operand description contains a heading, "Source."
The information under this heading describes the sources that can supply the
operands.

Note: You cannot use a BISAM DCB to open a data set allocated to an
SMS-managed volume.

The DCB macro for S.ISAM is written:

[symbol] DCB [BFALN = {FIQ}]
[,BUFCB =re/exp]
[,BUFL = absexp]
[,BUFNO =abs exp]
[,DDNAME = symbo/]1
,DSORG=IS
[,EXLST =re/exp]
,MACRF = { {(R[S][C])}

{(W{U[A]IA}[C])}
{(R[U[SJISJ[C],W{U[A]IA}[C])}}

[,MSHI =re/exp]
[,MSWA=relexp]
[,NCP = absexp]
[,OPTCD = {([L][R][W])}]
[,SMSI = absexp]
[,SMSW =abs exp]
[,SYNAD =re/exp]

This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

When you create or process a BISAM data set, you can specify the following
operands in the DCB macro instruction:

BFALN = {FIQ}
specifies the boundary alignment for each buffer in the buffer pool when the
buffer pool is acquired for use with dynamic buffering or when the buffer
pool is constructed by a GETPOOL macro instruction. If the BFALN operand
is omitted, the system provides doubleword alignment for each buffer. The
characters that can be specified are:

F
specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

42 MVS/ESA Data Administration: Macro Instruction Reference

\~

L/

f
_,J

DCB (BISAM)

specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool, or if the
problem program controls all buffering, the problem program must provide
an area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BUFCB =re/exp
specifies the address of the buffer pool control block when the buffer pool is
constructed by a BUILD macro instruction.

You can omit the BUFCB operand if you request dynamic buffering or use
the GETPOOL macro instruction to construct the buffer pool, because the
system places the address of the buffer pool control block into the data
control block. Also, if the problem program is to control all buffering, omit
the BUFCB operand.

Source: The BUFCB operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool to be con
structed by a BUILD or GETPOOL macro instruction. When the data set is
opened, the system computes the minimum buffer length required and veri
fies that the length in the buffer pool control block is equal to or greater
than the minimum length required. The system then inserts the computed
length into the BUFL field of the data control block.

If dynamic buffering is requested, the system computes the buffer length
required, and the BUFL operand is not required.

If the problem program controls all buffering, the BUFL operand is not
required. However, an ISAM data set requires additional buffer space for
system use. For a description of the buffer length required for various ISAM
operations, see Data Administration Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers requested for use with dynamic buffering, or
the number of buffers to be constructed by a BUILD macro instruction. If
dynamic buffering is requested but the BUFNO operand is omitted, the
system automatically acquires two buffers for use with dynamic buffering.

If the GETPOOL macro instruction is used to construct the buffer pool, the
BUFNO operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, or by the problem
program before completion of the data control block exit routine.

DD NAME= symbol
specifies the name used to identify the job control language data definition
(DD) statement that defines the ISAM data set being created or processed.

Macro Instruction Descriptions 43

DCB (BISAM)

Source: The DDNAME operand can be supplied in the DCB macro instruc
tion or by the problem program before an OPEN macro instruction is issued
to open the data set.

DSORG=IS
specifies the indexed sequential organization of the data .set. IS is the only
combination of characters that can be coded for BISAM.

Source: Unless it is for a data set passed from a previous job step, the
DSORG operand must be coded in the DCB macro instruction and in the
DCB subparameter of a DD statement. In this case, DSORG may be omitted
from the DD statement.

EXLST=relexp
specifies the address of the problem program exit list. The EXLST operand
is required only if the problem program uses the data control block exit
routine for additional processing.

For the format and requirements for exit list processing, see Appendix D,
"DCB Exit List Format and Contents" on page 221. For additional informa
tion about exit list processing, see DFP: Customization.

Source: The EXLST operand can be supplied in the DCB macro instruction
or by the problem program before the associated exit is required.

MAC RF= { {(R[SJ[C])}
{(W{U[AJIA}[C])}
{(R[U[SJISJ[C],W{U[AJIA}[C])}}

specifies the type of macro instructions (READ, WRITE, CHECK, WAIT, and
FREEDBUF) and type of processing (add records, dynamic buffering, and
update records) to be used with the data set being processed. The operand \.._}
can be coded in any of the combinations shown above; the following char-
acters can be coded for BISAM:

A

c

R

s

u

w

specifies that new records are to be added to the data set. This char
acter must be coded if WRITE KN macro instructions are used with the
data set.

specifies that the CHECK macro instruction is used to test 1/0 oper
ations for completion. If C is not specified, WAIT macro instructions
must be used to test for completion of 1/0 operations.

specifies that READ macro instructions are to be used.

specifies that dynamic buffering is requested in READ macro
instructions. Do not specify S if the problem program provides the
buffer pool.

specifies that records in the data set are to be updated in place. If U is
coded in combination with R, it must also be coded in combination with
W. For example, MACRF=(RU,WU).

specifies that WRITE macro instructions are to be used.

Source: The MACRF operand must be coded in the DCB macro instruction.

44 MVS/ESA Data Administration: Macro Instruction Reference

{ u

\._,}

u

~!

DCB (BISAM)

MSHI =re/exp
specifies the address of the storage area used to contain the highest-level
master index for the data set. The system uses this area to reduce the
search time required to find a given record in the data set. The MSHI
operand is coded only when the SMSI operand is coded.

Source: The MSHI operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

MSWA =re/exp
specifies the address of the storage work area to be used by the system
when new records are being added to the data set. This operand is
optional, but the system acquires a minimum-size work area if the operand
is omitted. The MSWA operand is coded only when the SMSW operand is
coded.

Processing efficiency can be increased if more than a minimum-size work
area is provided. For more detailed information about work area size, see
Data Administration Guide.

Note: QISAM uses the DCBMSWA, DCBSMSI, and DCBSMSW fields in the
data control block as a work area; these fields contain significant informa
tion only when the data set is opened for BISAM.

Source: The MSWA operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

NCP=absexp (maximum value is 99)
specifies the maximum number of READ and WRITE macro instructions that
are issued before the first CHECK (or WAIT) macro instruction is issued to
test for completion of the 1/0 operation. The maximum number may be less
than 99, depending on the amount of virtual storage available in the region.
If the NCP operand is omitted, 1 is assumed. If dynamic buffering is used,
the value specified for the NCP operand must not exceed the number of
buffers specified in the BUFNO operand.

Source: The NCP operand can be supplied in the DCB macro instruction, in
the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block open exit routine.

OPTCD = {([L][R][W])}
specifies the optional services performed by the control program when cre
ating or updating an ISAM data set. You must request all optional services
by one method; that is, by the data set label of an existing data set, this
macro, or the DD statement on the DCB parameter. However, it can be
modified by the problem program. You may code the following characters
in any order, in any combination, and without commas between characters:

L

R

specifies that the control program delete records that have a first byte
of all 1's. (These records can be deleted when space is required for
new records. To use the delete option, the relative key position (RKP)
must be greater than O for fixed-length records and greater than 4 for
variable-length records.)

specifies that the control program place reorganization statistics in
certain fields of the data control block. The problem program can

Macro Instruction Descriptions 45

DCB (BISAM)

analyze these statistics to determine when to reorganize the data set. If
the OPTCD operand is omitted, the reorganization statistics are auto-
matically provided. However, if you use the OPTCD operand, you must ,

\specify OPTCD = R to get the reorganization statistics.

w
specifies a validity check for write operations on direct access devices.

SMSI =absexp (maximum value is 65535)
specifies the length, in bytes, required to contain the highest-level master
index for the data set being processed. Look at the DCBNCRHI field of the
data control block to determine the size required. When an ISAM data set
is created (with QISAM), the size of the highest-level index is inserted into
the DCBNCRHI field. If the value specified in the SMSI operand is less than
the value in the DCBNCRHI field, the task is abnormally terminated.

Note: QISAM uses the DCBMSWA, DCBSMSI, and DCBSMSW fields as a
work area; these fields contain significant information only when the data
set is opened for BISAM.

Source: The SMSI operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

SMSW=absexp (maximum value is 65535)
specifies the length, in bytes, of a work area that is used by BISAM. This
operand is optional, but the system acquires a minimum-size work area if
the operand is omitted. Code the SMSW operand together with the MSWA
operand. If you code the SMSW operand but the size you specified is less
than the minimum required, the task is abnormally terminated. Data
Administration Guide describes the methods of calculating the size of the \...._,,,
work area.

If unblocked records are used, the work area must be large enough to
contain all the count fields (8 bytes each), key fields, and data fields con
tained on one direct access device track.

If blocked records are used, the work area must be large enough to contain
all the count fields (8 bytes each) and data fields contained on one direct
access device track plus additional space for one logical record (LRECL
value). 1~

Note: QISAM uses the DCBMSWA, DCBSMSI, and DCBSMSW fields in the
data control block as a work area; these fields contain significant informa-
tion only when the data set is opened for BISAM.

Source: The SMSW operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

SYNAD =re/exp
specifies the address of the error analysis routine given control when an
uncorrectable input/output error occurs. The contents of the registers when
the error analysis routine is given control are described in DFP:
Customization.

The error analysis routine must not use the save area pointed to by register
13 because this area is used by the system. The system does not restore
registers when it regains control from the error analysis routine. The error
analysis routine can issue a RETURN macro instruction that uses the

\"'"-"'/

46 MVS/ESA Data Administration: Macro Instruction Reference

('

\._ ... /

\~/

DCB (BISAM)

address in register 14 to return control to the system. When control is
returned in this manner, the system returns control to the problem program
and proceeds as though no error had been encountered. If the error anal
ysis routine continues processing, the results are unpredictable.

If the SYNAD operand is omitted, the task is abnormally terminated when
an uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction
or by the problem program. The problem program can also change the
error analysis routine address at any time.

Macro Instruction Descriptions 47

DCB (BPAM)

DCB-Construct a Data Control Block (BPAM)
The data control block for a basic partitioned access method (SPAM) data set is \..._,.,,
constructed during assembly of the problem program. You must code the
DSORG and MACRF operands in the DCB macro instruction, but the other DCB
operands can be supplied from other sources. Each of the SPAM DCB operand
descriptions contains a heading, "Source." The information under this heading
describes the sources that can supply the operand to the data control block.

The DCB macro for SPAM is written:

[symbol] DCB [BFALN = {FIQ}]
[,BLKSIZE = absexp]
[,BUFCB =re/exp]
[,BUFL = absexp]
[,BUFNO =abs exp]
[,DD NAME= symbo/]1
,DSORG= {POIPOU}
[,EODAD =re/exp]
[,EXLST=re/exp]
[,KEVLEN = absexp]
[,LRECL = absexp]
,MACRF= {(RIWIR,W)}1
[,NCP=absexp]
[,OPTCD = {{CIW[C]}

{CIH[C]}
{CIW[H][C]}}]

[,RECFM = {{U[T][AIMJ}
{V[B[T]ITJ[AIMJ}
{F[B[TJIT][AIMJ}}]

[,SVNAD =re/exp]

This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

Note: When creating a DCB to open a data set that has been allocated to an
SMS-managed volume, do not specify values that would change the data set to
a type which cannot be SMS-managed, such as DSORG=POU. Refer to Data
Administration Guide for further information.

When you create or process a SPAM data set, you can specify the following
operands in the DCB macro instruction:

BFALN={FIQ}
specifies the boundary alignment for each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro instruc
tion. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer. The characters that can be specified in the
BFALN operand are:

F
specifies that each buffer is aligned on a fullword boundary that is not
also a doubleword boundary.

48 MVS/ESA Data Administration: Macro Instruction Reference

\~

\)
\ _,,,/

I ,...._,

l
\~

DCB (BPAM)

specifies that each buffer is aligned on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the
problem program controls all buffering, the problem program must provide
an area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BLKSIZE=absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the length, in bytes, of each data block for fixed-length records, or
it specifies the maximum length, in bytes, for variable-length or undefined
length records. If keys are used, the length of the key is not included in the
value specified for the BLKSIZE operand.

The actual block size that you can specify depends on the record format
and the type of direct access device being used. If track overflow is used
the block size can be up to the maximum. If track overflow is not used, the
maximum block size is determined by the track capacity of a single track on
the direct access device being used. Device capacity for direct access
devices is described in Appendix C, "Device Capacities" on page 213. For
additional information about space allocation, see Data Administration
Guide.

For fixed-length records, the value specified in the BLKSIZE operand should
be a multiple of the value specified for the logical record length (LRECL).

For variable-length records, the value specified in the BLKSIZE operand
must include the maximum logical record length (up to 32756 bytes) plus 4
bytes for the block descriptor word (BOW).

For undefined-length records, the value specified for the BLKSIZE operand
can be altered by the problem program when the actual length becomes
known to the problem program. The value can be inserted into the
DCBBLKSI field of the data control block or specified in the length operand
of a READ/WRITE macro instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set. Block size can also be derived from the JCL
keyword LIKE. For more information on LIKE, see JCL User's Guide.

System-Dete,rmined Block Size: For blocked DASO data sets, if the block
size is not specified at the time that the data set is created, and the LRECL
and RECFM are known, the system derives an optimum block size for the
data set. This system-determined block size is retained in the data set
label. When the data set is opened for output, OPEN checks the block size
in the data set label. If it is a system-determined block size, and the LRECL
or RECFM have changed from those specified in the data set label, OPEN
will rederive an optimum block size for the data set.

BUFCB =re/exp
specifies the address of the buffer pool control block when the buffer pool is
constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro
instruction, you can omit the BUFCB operand because the system places

Macro Instruction Descriptions 49

DCB (BPAM)

the address of the buffer pool control block into the data control block.
Also, if the problem program is to control all buffering, omit the BUFCB
operand.

Source: The BUFCB operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool when the
buffer pool is acquired automatically. If the BUFL operand is omitted and
the buffer pool is acquired automatically, the system acquires buffers with a
length that is equal to the sum of the values specified in the KEYLEN and
BLKSIZE operands. If the problem program requires longer buffers, specify
the BUFL operand.

If the problem program controls all buffering, the BUFL operand is not
required.

Source: The BUFL operand can be supplied in the DCB macrq instruction, in
the DCB subparameter of a DD statement, or by the problem program '"'-"
before completion of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers to be constructed by a BUILD macro instruc
tion, or it specifies the number of buffers to be acquired automatically by
the system.

If the problem program controls all buffering or if the buffer pool is con
structed by a GETPOOL macro instruction, the BUFNO operand should be
omitted.

Source: The BUFNO operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

DDNAME::: symbol
specifies the name used to identify the job control language data definition
(DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruc
tion or by the problem program before an OPEN macro instruction is issued
to open the data set.

DSORG ={POI POU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. The charac
ters that can be specified are:

PO
specifies a partitioned data set organization.

POU
specifies a partitioned data set organization and that the data set con
tains location-dependent information that would make it unmovable.

50 MVS/ESA Data Administration: Macro Instruction Reference

'"-"'"

l i ··-._,}

I

_;

DCB (BPAM)

Notes:

1. Unmovable data sets cannot be SMS-managed.

2. If BSAM or QSAM is used to add or retrieve a single member of a parti
tioned data set, specify DSORG =PS or PSU in the BSAM or QSAM
DCB. The name of the member being processed in this manner is sup
plied in a DD statement.

Source: The DSORG operand must be specified in the DCB macro instruc
tion.

EODAD =re/exp
specifies the address of the routine given control when the end of the input
data set is reached. Control is given to this routine when an input request
is made (READ macro instruction) and there are no additional input records
to retrieve. The routine is entered when a CHECK macro instruction is
issued and the end of the data set is reached. If the end of the data set is
reached but no EODAD address was supplied, the task is abnormally termi
nated. For additional information on the EODAD routine, see Data Adminis
tration Guide and DFP: Customization.

Source: The EODAD operand can be supplied in the DCB macro instruction
or by the problem program before the end of the data set is reached.

EXLST =re/exp
specifies the address of the problem program exit list. The EXLST operand
is required if the problem program uses the data control block exit routine
for additional processing or if the DCB ABEND exit is used for ABEND con
dition analysis.

For the format and requirements of the exit list processing, see
Appendix D, "DCB Exit List Format and Contents" ori page 221. For addi
tional information about exit list processing, see DFP: Customization.

Source: The EXLST operand can be supplied in the DCB macro instruction
or by the problem program before the OPEN macro instruction is issued to
open the data set.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, of the key associated with each data block in
the direct access device data set. If the key length is not supplied from any
source by the end of the data control block exit routine, a key length of zero
(no keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, by the problem program
before the completion of the data control block exit routine, or by the data
set label of an existing data set. If KEYLEN = 0 is specified in the DCB
macro instruction, a special indicator is set in RECFM so that KEYLEN
cannot be supplied from the DCB subparameter of a DD statement or data
set label of an existing data set. KEYLEN = O can be coded only in the DCB
macro instruction and is ignored if specified in the DD statement.

Key length can be derived from the data class associated with the data set.
Key length can also be derived from the JCL keyword LIKE. However, if
KEYLEN is specified in the DCB macro instruction, it overrides the value
derived from data class or LIKE. For more information, see JCL User's
Guide.

Macro Instruction Descriptions 51

DCB {BPAM)

LRECL=absexp {maximum value is 32760)
specifies the length, in bytes, of each fixed-length logical record in the data
set, or it specifies the maximum length, in bytes, for variable-length

1

~
records. It is required only for fixed-length records. The value specified in
the LRECL operand cannot exceed the value specified in the BLKSIZE
operand.

For fixed-length records, if the records are unblocked, the value specified in
the LRECL operand must equal the value specified in the BLKSIZE operand.
For variable-length records, if the records are blocked, the value specified
in the LRECL operand must be evenly divisible into the value specified in
the BLKSIZE operand.

Source: The LRECL operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set.

Record length can be derived from the data class associated with the data
set. Record length can also be derived from the JCL keyword LIKE. For
undefined-length records, if LRECL is specified in the DCB macro instruc-
tion, it overrides the value derived from data class or LIKE. For more infor-
mation, see JCL User's Guide.

MACRF= {CRIWIR,W)}
specifies the type of macro instructions (READ, WRITE, and NOTE/POINT)
that are used to process the data set. The following characters can be
specified for BPAM:

R

w

specifies that READ macro instructions are to be used. This operand
automatically allows you to use both the NOTE and POINT macro
instructions with the data set.

specifies that WRITE macro instructions are to be used. This operand
automatically allows you to use both the NOTE and POINT macro
instructions with the data set.

All BPAM READ and WRITE macro instructions issued must be tested for
completion using a CHECK macro instruction. The MACRF operand does
not require any coding to specify that a CHECK macro instruction is to be
used.

Source: The MACRF operand must be specified in the DCB macro instruc
tion.

NCP=absexp {maximum value is 99)
specifies the maximum number of READ and WRITE macro instructions that
are issued before the first CHECK macro instruction is issued to test com
pletion of the 1/0 operation. The maximum number may be less than 99,
depending on the amount of virtual storage available in the region. If
chained scheduling is specified, the value of NCP determines the maximum
number of channel program segments that can be chained and must be
specified as more than 1. If the NCP operand is omitted, 1 is assumed.

\)
'.._.!

Source: The NCP operand can be supplied in the DCB macro instruction, in \._j
the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block open exit routine.

52 MVS/ESA Data Administration: Macro Instruction Reference

!

v

\'-)

(

\._/

DCB (BPAM)

OPTCD = {{CIW[C]}
{CIH[C]}
{CIW[H][C]}}

specifies the optional services performed by the system.

c

H

w

specifies that chained scheduling is used. This option is ignored for
direct access devices.

If OPTCD = H is coded in the DCB parameters of a DD statement, H
specifies that, if a partitioned data set is being opened for input and
resides on an MSS device, then, at OPEN time, the data set is to be
staged to EOF on the virtual DASO device. (See Mass Storage System
(MSS) Extensions Services: Reference for more information on MSS.
Use of MSS is not recommended.

specifies that the system is to perform a validity check for each record
written.

Source: The OPTCD operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before an OPEN macro instruction is issued to open the data set. However,
all optional services must be requested from the same source.

RECFM = {{U[T][AIMJ}
{V[B[T]ITJ[AIM]}
{F[B[TJITJ[AIMJ}}

specifies the record format and characteristics of the data set being created
or processed. All the record formats shown above can be specified, but in
those record formats that show blocked records, the problem program must
perform the blocking and deblocking of logical records. SPAM recognizes
only data blocks. The characters that can be specified are:

A

B

F

M

T

specifies that the records in the data set contain ISO/ ANSI/Fl PS control
characters. For a description of control characters, see Appendix E,
"Control Characters" on page 223.

specifies that the data set contains blocked records.

specifies that the data set contains fixed-length records.

specifies that the records in the data set contain machine code control
characters. For a description of control characters, see Appendix E,
"Control Characters" on page 223.

specifies that track overflow is used with the data set. Track overflow
allows a record to be written partially on one track of a direct access
device and the remainder of the record written on the following track (if
required).

Note: Track overflow is not supported on DASO models 3375 through
3380.

Macro Instruction Descriptions 53

DCB (BPAM)

u
specifies that the data set contains undefined-length records.

v
specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set.

Record format can be derived from the data class associated with the data
set. Record format can also be derived from the JCL keyword LIKE.
However, if RECFM is specified in the DCB macro instruction, it overrides
the value derived from data class or LIKE. For more information, see JCL
User's Guide.

SYNAD =re/exp
specifies the address of the error analysis (SYNAD) routine to be given
control when an uncorrectable input/output error occurs. The contents of

1

"--"

the registers when the error analysis routine is given control are described
in DFP: Customization.

The error analysis routine must not use the save area pointed to by register
13, because this area is used by the system. The system does not restore
registers when it regains control from the error analysis routine. The error
analysis routine can issue a RETURN macro instruction that uses the
address in register 14 to return control to the system. If control is returned
in this manner, the system returns control to the problem program and pro-
ceeds as though no error had been encountered. \....._,,

If the SYNAD operand is omitted, the task is abnormally terminated when
an uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction
or by the problem program. The problem program can also change the
error routine address at any time.

54 MVS/ESA Data Administration: Macro Instruction Reference

DCB (BSAM)

_) DCB-Construct a Data Control Block (BSAM)

I

\ I

~

('
\ '
\....._,/

The data control block for a basic sequential access method (BSAM) data set is

constructed during assembly of the problem program. You must code the

DSORG and MACRF operands in the DCB macro instruction, but the other DCB

operands can be supplied to the data control block from other sources. Each

DCB operand description contains a heading, "Source." The information under

this heading describes the sources that can supply the operands.

The DCB macro for BSAM is written:

[symbol] DCB [BFALN ={Fl!!}]
[,BFTEK=R]
[,BLKSIZE = absexp]
[,BUFCB= re/exp]
[,BUFL=absexp]
[,BUFNO=absexp]
[,BUFOFF= {absexptl}]
[,DDNAME=symbo/] 1

[, DEVD = {{DA
[, KEYLEN = absexp]}

{TA
[,DEN= {1121314}]
[,TRTCH = {CIEIETIT}]}

{PR
[,PRTSP = {0111213}]}

{PC
[,MODE= [Cl;J[R]]
[,STACK= {!12}]
[,FUNC= {llPIPW[XT]IRIRP[D]I

RW[T]IRWP[XT][D]IW[T]}]
{RD
[,MODE= [Cl;J[OIR]J
[,STACK= {!12}]
[,FUNC= {llPIPW[XT]IRIRP[D]I

'RW[TJIRWP[XT][D]IW[T]}]}]
,DSORG = {PSIPSU} 1

[,EODAD= re/exp]
[,EXLST= re/exp]
[,KEYLEN = absexp]
[,LRECL= {absexplX}]
,MACRF= {{(R[CIP])}

{(W[CIPIL])}
{(R[CIPJ,W[CIP])}} 1

[,NCP = absexp]
[,OPTCD= {{B}

{T}
{U[C]}
{C[T][B][U]}
{H[Z][B]}
{J[CJ[U]}
{W[C][T][B][U]}
{Z[C][T][B][U]}
{Q[C][B][TI}}
{Z}]

[,RECFM = W![T][AIM]}
{V[B][S][T] I[A][M]}
{D[B][SJ[A]}
{F[BISITIBSIBT][AIM]}}]

[,SYNAD= re/exp]

This parameter must be supplied before an OPEN macro is issued for this

DCB; it cannot be supplied in the open exit routine.

Macro Instruction Descriptions 55

DCB (BSAM)

Note: When creating a DCB to open a data set that has been allocated to an
SMS-managed volume, do not specify values that would change the data set to
a type which cannot be SMS-managed, such as DSORG=PSU.

When you create or process a BSAM data set, you can specify the following
operands in the DCB macro instruction:

BFALN={FIQ}
specifies the boundary alignment for each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro instruc
tion. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer.

If the data set being created or processed contains ISCll/ ASCII tape records
with a block prefix, the block prefix is entered at the beginning of the buffer,
and data alignment depends on the length of the block prefix. For a
description of how to specify the block prefix length, see the description of
the DCB BUFOFF operand.

The characters that can be specified are:

F

D

specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the
problem program controls all buffering, the problem program must provide
an area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. If both the BFALN
and BFTEK operands are specified, they must be supplied from the same
source.

BFTEK=R
specifies that BSAM is used to read unblocked variable-length spanned
records with keys from a BDAM data set. Each read operation reads one
segment of the record and places it in the area designated in the READ
macro instruction. The first segment enters at the beginning of the area,
but all subsequent segments are offset by the length of the key (only the
first segment has a key). The problem program must provide an area in
which it can assemble a record, identify each segment, and assemble the
segments into a complete record.

Source: The BFTEK operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. If both the BFTEK
and BFALN operands are specified, they must be supplied from the same
source.

BLKSIZE=absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the maximum block length in bytes. For fixed-length, unblocked
records, this operand specifies the record le~gth. The BLKSIZE operand
includes only the data block length; if keys are used, the length of the key is
not included in the value specified for the BLKSIZE operand.

56 MVS/ESA Data Administration: Macro Instruction Reference

DCB (BSAM)

The actual value that you can specify in the BLKSIZE operand depends on
the device type and the record format being used. Device capacity for
direct access devices is described in Appendix C, "Device Capacities" on
page 213. For additional information about device capacity, see the rele
vant device publication.

For direct access devices when track overflow is used, or variable-length
spanned records are being processed, the value specified in the BLKSIZE
operand can be up to the maximum value. For other record formats used
with direct access devices, the value specified for BLKSIZE cannot exceed
the capacity of a single track.

If fixed-length records are used, the value specified in the BLKSIZE operand
should be an integral multiple of the value specified for the logical record
length (LRECL).

If variable-length records are used, the value specified in the BLKSIZE
operand must include the maximum logical record length (up to 32756
bytes) plus the 4 bytes required for the block descriptor word (BOW). For
format-D variable-length records (ISCll/ASCll data sets), the minimum
BLKSIZE value is 18 bytes. The maximum value is 2048 bytes. For more
information about the BLKSIZE restrictions, see Data Administration Guide.

If ISCll/ ASCII tape records with a block prefix are processed, the value
specified in the BLKSIZE operand must also include the length of the block
prefix.

If BSAM is used to read variable-length spanned records the value specified
for the BLKSIZE operand must be as large as the longest possible record
segment in the data set, including 4 bytes for the segment descriptor word
(SOW) and 4 bytes for the block descriptor word (BOW).

If undefined-length records are used, the value specified for the BLKSIZE
operand can be altered by the problem program when the actual length
becomes known to the problem program. The value can be inserted
directly into the DCBBLKSI field of the data control block or specified in the
length operand of a READ/WRITE macro instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set. Block size can also be derived from the JCL
keyword LIKE. For more information on LIKE, see JCL User's Guide.

System-Determined Block Size: For blocked DASO data sets, if the block
size is not specified at the time that the data set i~ created, and the LRECL
and RECFM are known, the system derives an optimum block size for the
data set. This system-determined block size is retained in the data set
label. When the data set is opened for output, OPEN checks the block size
in the data set label. If it is a system-determined block size, and the LRECL
or RECFM have changed from those specified in the data set label, OPEN
will rederive an optimum block size for the data set.

Note: The maximum block size for Version 3 ISO/ANSI/Fl PS tapes (ISO
1001-1979 and ANSI X3.27-1978) is 2048 bytes. An attempt to exceed 2048
bytes for a Version 3 tape results in a label validation installation exit being
taken.

Macro Instruction Descriptions 57

DCB (BSAM)

BUFCB =re/exp
specifies the address of the buffer pool control block when a buffer pool is
constructed by a BUILD macro instruction.

If the buffer pool is to be constructed automatically or by a GETPOOL macro
instruction, omit the BUFCB operand. This is because the system places
the address of the buffer pool control block into the data control block.
Also, if the problem program is to control all buffering, omit the BUFCB
operand.

Source: The BUFCB operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, for each buffer in the buffer pool when the
buffer pool is acquired automatically. If the BUFL operand is omitted, the
system constructs buffers with a length equal to the sum of the values spec
ified in the KEYLEN and BLKSIZE operands. If the problem program
requires larger buffers, the BUFL operand is required. If the BUFL operand
is specified, it must be at least as large as the value specified in the
BLKSIZE operand. If the data set is for card image mode, the BUFL
operand should be specified as 160. The description of the DEVD operand
contains a description of card image mode.

If the data set contains ISCll/ ASCII tape records with a block prefix, the
value specified in the BUFL operand must include the block length plus the
length of the block prefix.

If the problem program is to control all buffering or if the buffer pool is to be
constructed by a GETPOOL or BUILD macro instruction, the BUFL operand
is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in
the DCB keyword on a DD statement, or by the problem program before
completion of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers constructed by a BUILD macro instruction or
the number of buffers to be acquired automatically by the system.

If the problem program controls all buffering or if the buffer pool is con
structed by a GETPOOL macro instruction, omit the BUFNO operand.

Source: The BUFNO operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BUFOFF= {absexpll}
specifies the length, in bytes, of the block prefix used with an ISCll/ ASCII
tape data set. When BSAM is used to read an ISCll/ ASCII tape data set, the
problem program must use the block prefix length to determine the location
of the data in the buffer. When BSAM is used to write an output ISCll/ ASCII
tape data set, the problem program must insert the block prefix into the
buffer, followed by the data (BSAM considers the block prefix as data). The
block prefix and data can consist of any characters that can be translated
into 7-bit ISCll/ ASCII code; any character that cannot be translated is
replaced with a substitute character. (For a more detailed description of
ISCll/ ASCII translation characteristics, see Magnetic Tape Labels and File
Structure.) For format-D records, the ROW must be binary; if RECFM = D

58 MVS/ESA Data Administration: Macro Instruction Reference

(:
\.,._.,./

DCB (BSAM)

and BUFOFF= L, the ROW and BOW must both be binary. On output, the
control program translates the BOW and ROW to ISCll/ ASCII characters and,
on input, the control program converts ISCll/ ASCII data to BOW and ROW.
The following can be specified in the BUFOFF operand:

abs exp

L

specifies the length, in bytes, of the block prefix. This value can be
from 0 to 99 for an input data set. The value must be 0 for writing an
output data set with fixed-length or undefined-length records (BSAM
considers the block prefix part of the data record).

specifies that the block prefix is 4 bytes long and contains the block
length. BUFOFF=L is used when format-D records (ISCll/ASCll) are
processed. When BUFOFF=L is specified, the BSAM problem program
can process the data records (using READ and WRITE macro
instructions) in the same manner as if the data were in format-V
variable-length records. For further information on this operand, see
"Variable-Length Records-Format D" in Data Administration Guide.

If the BUFOFF operand is omitted for an input data set with format-D
records, the system inserts the record length into the DCBLRECL field of the
data control block; the problem program must obtain the length from this
field to process the record.

If the BUFOFF operand is omitted from an output data set with format-D
records, the problem program must insert the actual record length into the
DCBBLKSI field of the data control block or specify the record length in the
length operand of a WRITE macro instruction.

Source: The BUFOFF operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, or by the problem
program before an OPEN macro instruction is issued to open the data set.
BUFOFF=absexp can also be supplied by the label of an existing data set;
BUFOFF=L cannot be supplied by the label of an existing data set.

DD NAME= symbol
spe_cifies the name used to identify the job control language data definition
(DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruc
tion or by the problem program before an OPEN macro instruction is issued
to open the data set.

DEVD = {DAITAIPRIPCIRD}
specifies the device type where the data set can or does reside. The
device types above are shown with the optional operand(s) that can be
coded when a particular device is used. The devices are listed in order of
device independence. For example, if you code DEVD =DA in a DCB macro
instruction (or omit the DEVD operand, which causes a default to DA), you
can use later the data control block constructed during assembly for any of
the other devices, but, if you code DEVD =RD, you can use the data control
block only with a card reader or card reader punch. Unless you are certain
that device interchangeability is not required, you should either code
DEVD =DA or omit the operand and allow it to default to DA.

If system input is directed to an intermediate storage device, the DEVD
operand is omitted, and the job control language for the problem program
designates the system input device to be used. Also, if system output is

Macro Instruction Descriptions 59

DCB (BSAM)

DEN

1
2
3
4

directed to an intermediate storage device, the DEVD operand is omitted,
and the job control language for the problem program designates the
system output device to be used. If you coqe DEVD =PR, PC, or RD, do not
code the DCB macro within the first 16 bytes of addressability for the
control section.

The DEVD operand is discussed below according to individual device type:

DEVD=DA
[,KEYLEN = absexp J
specifies that the data control block can be used for a direct access
device (or any of the other device types described following QA).

KEY LEN= absexp

DEVD=TA

can be specified only for data sets that reside on direct access
devices. Because the KEYLEN is usually coded without a DEVD
operand (default taken), the description of the KEYLEN operand
is in alphabetic sequence with the other operands.

[,DEN= {1121314}]
[,TRTCH = {CIEIETIT}]

specifies that the data control block can be used for a magnetic
tape data set (or any of the other device types described fol
lowing TA). If TA is coded, the following optional operands can
be coded:

DEN={1121314}
specifies the recording density in the number of bits-per
inch per track as shown in the following:

Recording Density
7-Track 9-Track 18-Track

556
800
N/A
N/A

2

N/A
800 (NRZI) 1

1600 (PE) 2

6250 (GCR) 3

N/A
N/A
N/A
N/A

NRZI is for nonreturn-to-zero inverted mode.

PE is for phase encoded mode.

GCR is for group coded recording mode.

If the DEN operand is not supplied by any source, the
highest applicable density is assumed.

60 MVS/ESA Data Administration: Macro Instruction Reference

\~

\)
~

~I

(
~!

DEVD=PR

DCB (BSAM)

TRTCH ={Cl El ETIT}
These values specify the recording technique for 7-track

tape. One of the above four values can be coded. If the

TRTCH operand is omitted, odd parity with no translation

or conversion is assumed. The values that can be spec

ified are:

c

E

ET

T

specifies that the data-conversion feature is used

with odd parity and no translation.

specifies even parity with no translation or conver

sion.

specifies even parity with BCDIC to EBCDIC trans

lation required and no data-conversion feature.

specifies that BCDIC to EBCDIC translation is

required with odd parity and no data-conversion

feature.

Source: The TRTCH operand can be supplied in the DCB

macro instruction, in the DCB keyword on a DD statement,

in the IBM standard tape label or by the problem program

before completion of the data control block exit routine.

[,PRTSP = {0111213}]
specifies that the data control block is used for an online

printer (or any of the other device types following PR). If PR

is coded, the following optional operand can be coded:

PRTSP = {0111213}
specifies the line spacing on the printer. This operand

is not valid if the RECFM operand specifies either

machine (RECFM=M) or ISO/ANSl/FIPS (RECFM=A)
control characters. If the PRTSP operand is not speci

fied from any source, 1 is assumed. The characters that

can be specified are:

0

1

2

3

specifies that spacing is suppressed (no space).

specifies single spacing.

specifies double spacing (one blank line between

printed lines).

specifies triple spacing (two blank lines between

printed lines).

Macro Instruction Descriptions 61

DCB (BSAM)

DEVD=PC
[,MODE= [Clg_J[R]]
[,STACK= {112}]
[,FUNC = {llPIPW[XT]IRIRP[DJIRW[TJIRWP[XT][DJIW[T]}]

specifies that the data control block is used for a card
punch (or any of the other device types following PC). If
PC is coded, the following optional operands can be
specified:

MODE= [Clg_J[R]
specifies the mode of operation for the card punch.
The characters that can be specified (if the MODE
operand is omitted, E is assumed) are:

c
specifies that the cards are to be punched in
card image mode. In card image mode, the 12
rows in each card column are punched from two
consecutive bytes in virtual storage. Rows 12
through 3 are punched from the low-order 6 bits \......,,,/

R

of one byte and rows 4 through 9 are punched
from the low-order 6 bits of the following byte.

specifies that cards are to be punched in
EBCDIC code.

specifies that the program run~ in read-column
eliminate mode (3525 card punch, read feature).

Note: If the MODE operand for a 3525 is specified in
the DCB subparameter of a DD statement, either C
or E must be specified if R is specified.

STACK={112}
specifies the stacker bin where the card is placed after punching is
completed. If this operand is omitted, stacker number 1 is used. The
characters that can be specified are:

1
specifies stacker number 1.

2
specifies stacker number 2.

FUNC = {llPIPW[XT]IRIRP[D]IRW[TJIRWP[XT][DJIW[T]}
defines the type of 3525 card punch data sets that are used. If the
FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch
only. The characters that can be specified in the FUNC operand are:

D
specifies that the data protection option is to be used. The data
protection option prevents punching information into card columns
that already contain data. When the data protection option is used,
an 80-byte data protection image (DPI) must have been previously
stored in SYS1.IMAGELIB. Data protection applies only to the
output/punch portion of a read and punch or read, punch, and print
operation.

62 MVS/ESA Data Administration: Macro Instruction Reference

"-')

\

_)

~;

p

R

T

w

x

DCB (BSAM)

specifies that the data in the data set is to be punched into cards
and printed on the cards; the first 64 characters are printed on line
1 of the card and the remaining 16 characters are printed on line 3.

specifies that the data set is for punching cards. See the
description of the character X for associated punch and print data
sets.

specifies that the data set is for reading cards.

specifies that the two-line print option is used. The two-line print
option allows two lines of data to be printed on the card (lines 1 and
3). If T is not specified, the multiline print option is used; this allows
printing on all 25 possible print lines. In either case, the data
printed may be the same as the data punched in the card, or it may
be entirely different data.

specifies that the data set is for printing. See the description of the
character X for associated punch and print data sets.

specifies that an associated data set is opened for output for both
punching and printing. Coding the character X is used to distin
guish the 3525 printer output data set from the 3525 punch output
data set.

Note: If data protection is specified, the data protection image (DPI)
must be specified in the FCB parameter of the DD statement for the
data set.

DEVD=RD
[,MODE= [Clg:J[OIRJ]
[,STACK= {112}]
[,FUNC = {llPIPW[XT]IRIRP[D]IRW[TJIRWP[XT][DJIW[T]}]
specifies that the data control block is used with a card reader or card
read punch. If RD is specified, the data control block cannot be used
with any other device type. When RD is coded, the following optional
operands can be specified:

MODE= [Clg][OIRJ
specifies the mode of operation for the card reader. The characters
that can be specified are:

c
specifies that the cards to be read are in card image mode. In
card image mode, the 12 rows in each card column are read
into two consecutive bytes of virtual storage. Rows 12 through 3
are read into one byte and rows 4 through 9 are read into the
following byte.

specifies that the cards to be read contain data in EBCDIC code.

Macro Instruction Descriptions 63.

DCB (BSAM)

0

R

specifies that the program runs in optical-mark-read mode (3505
card reader).

specifies that the program runs in read-column-eliminate mode
(3505 card reader or 3525 card punch, read feature).

Note: If the MODE operand for a 3505 or 3525 is specified in the
DCB subparameter of a DD statement, either C or E must be speci
fied if R or 0 is specified.

ST ACK= {112}
specifies the stacker bin where the card is placed after reading is
completed. If this operand is omitted, stacker number 1 is used.
The characters that can be specified are:

1
specifies stacke.r number 1.

2
specifies stacker number 2.

FUNC = {llPIPW[XT]IRIRP[DJIRW[T]IRWP[XT][DJIW[T]}
defines the type of 3525 card punch data sets that are used. If the
FUNC operand is omitted from all sources, a data set opened for
input defaults to read only, and a data set opened for output
defaults to punch only. The characters that can be specified in the
FUNC operand are:

D

p

R

T

specifies that the data protection option is to be used. The data
protection option prevents punching information into card
columns that already contain data. When the data protection
option is used, an 80-byte data protection image (DPI) must
have been previously stored in SYS1 .IMAGELIB. Data protection
applies only to the output/punch portion of a read and punch or
read, punch, and print operation.

specifies that the data in the data set is to be punched into
cards and printed on the cards; the first 64 characters are
printed on line 1 of the card and the remaining 16 characters
are printed on line 3.

specifies that the data set is for punching cards. See the
description of the character X for associated punch and print
data sets.

specifi.es that the data set is for reading cards.

specifies that the two-line print option is used. The two-line
print option allows two lines of data to be printed on the card
(lines 1 and 3). If T is not specified, the multiline print option is
used; this allows printing on all 25 possible print lines. In either
case, the data printed may be the same as the data punched in
the card, or it may be entirely different data.

64 MVS/ESA Data Administration: Macro Instruction Reference

(i

~

I

~)

(

~i

w

x

DCB (BSAM)

specifies that the data set is for printing. See the description of
the character X for associated punch and print data sets.

specifies that an associated data set is opened for output for
both punching and printing. Coding the character X is used to
distinguish the 3525 printer output data set from the 3525 punch
output data set.

Note: If data protection is specified, the data protection image
(DPI) must be specified in the FCB subparameter of the DD
statement for the data set.

Source: The DEVD operand can be supplied only in the DCB macro
instruction. However, the optional operands can be supplied in the
DCB macro instruction, the DCB subparameter of a DD statement,
or by the problem program before completion of the data control
block exit routine.

DSORG = {PSIPSU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. The fol
lowing characters can be specified:

PS
specifies a physical sequential data set.

PSU
specifies a physical sequential data set that contains location
dependent information that would make it unmovable.

Notes:

1. Unmovable data sets cannot be SMS-managed.

Source: You must code the DSORG operand in the DCB macro instruction.

EODAD =re/exp
specifies the address of the routine given control when the end of an input
data set is reached. If the record format is RECFM = FS or FBS, the end-of
data condition is sensed when a file mark is read or when more data is
requested after reading a truncated block. The end-of-data routine is
entered when the CHECK macro instruction determines that the READ
macro instruction reached the end of the data. If the end of the data set is
reached but no EODAD address was supplied to the data control block, the
task is abnormally terminated. For additional information on the EODAD
routine, see DFP: Customization.

When the data set has been opened for UPDAT and volumes are to be
switched, the problem program should issue a FEOV macro instruction after
the EODAD routine has been entered.

Source: The EODAD operand can be supplied in the DCB macro instruction
or by the problem program before the end of the data set is reached.

EXLST=re/exp
specifies the address of the problem program exit list. The EXLST operand
is required if the problem program requires additional processing for user
labels, user totaling, data control block exit routines, end-of-volume, block
count exits, defining a forms control buffer (FCB) image, using the JFCBE

Macro Instruction Descriptions 65

DCB (BSAM)

exit (for the IBM 3800 Printing Subsystem), or using the DCB ABEND exit for
ABEND condition analysis.

For the format and requirements of exit list processing, see Appendix D, \,_
"DCB Exit List Format and Contents" on page 221. For additional informa-
tion about exit list processing, see DFP: Customization.

Source: The EXLST operand can be supplied in the DCB macro instruction
or by the problem program any time before the exit is required by the
problem program.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, for the key associated with each data block in
a direct access device data set. . If the key length is not supplied from any
source before completion of the data control block exit routine, a key length
of zero (no keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, by the problem program
before the completion of the data control block exit routine, or by the data
set label of an existing data set. If KEYLEN = 0 is specified in the DCB \-.._..i

macro instruction, a special indicator is set in RECFM so that KEYLEN
cannot be supplied from the DCB subparameter of a DD statement or data
set label of an existing data set. KEYLEN = 0 can be coded only in the DCB
macro instruction and is ignored if specified in the DD statement.

Key length can be derived from the data class associated with the data set.
Key length can also be derived from the JCL keyword LIKE. However, if
KEYLEN is specified in the DCB macro instruction, it overrides the value
derived from data class or LIKE. For more information, see JCL User's
Guide.

LRECL= {absexplX}
specifies the length, in bytes, for fixed-length records, or it specifies the
maximum length, in bytes, for variable-length records. LRECL=X is used
for variable-length spanned records that exceed 32756 bytes. Except when
vari~ble-length spanned records are used, the value specified in the LRECL
operand cannot exceed the value specified in the BLKSIZE operand.

Except when variable-length spanned records are used, the LRECL operand
can be omitted for BSAM; the system uses the value specified in the
BLKSIZE operand. If the LRECL value is coded, it is coded as described in
the following.

For fixed-length records that are unblocked, the value specified in the
LRECL operand must be equal to the value specified in the BLKSIZE
operand. For blocked fixed-length records, the value specified in the LRECL
operand must be evenly divisible into the value specified in the BLKSIZE
operand. However, the LRECL operand is not checked for validity.

For variable-length records, the value specified in LRECL must include the
maximum data length (up to 32752 bytes) plus 4 bytes for the record
descriptor word (ROW).

For undefined-length records, omit the LRECL operand; the actual length is
supplied dynamically in a READ/WRITE macro instruction. When an
undefined-length record is read, the actual length of the record is returned
by the system in the DCBLRECL field of the data control block. \.__}

66 MVS/ESA Data Administration: Macro Instruction Reference

/
\ j
'-"'

(I

v

u

x

DCB (BSAM)

When using BSAM to create a BDAM data set with variable-length
spanned records, the LRECL value should be the maximum data length
(up to 32752) plus four bytes for the record descriptor word (ROW).
Specify LRECL=X if the logical record length is greater than 32756
bytes.

Source: The LRECL operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set.

Record length can be derived from the data class associated with the data
set. Record length can also be derived from the JCL keyword LIKE.
However, if LRECL is specified in the DCB macro instruction, it overrides
the value derived from data class or LIKE. For more information, see JCL
User's Guide.

MACRF = {{(R[CIP])}
{(W[CIPIL])}
{(R[CIP],W[CIPJ)}}

specifies the type of macro instructions (READ, WRITE, CNTRL, and
NOTE/POINT) that are used with the data set being created or processed.
The BSAM MACRF operand also provides the special form (MACRF=WL)
for creating a BDAM data set. The MACRF operand can be coded in any of
the combinations shown above. The following characters can be coded for
BSAM:

c

L

p

R

w

specifies that the CNTRL macro instruction is used with the data set. If
C is specified to be used with a card reader, a CNTRL macro instruction
must follow every input request.

specifies that BSAM is used to create a BDAM data set. This character
can be specified only in the combination MACRF=WL.

specifies that POINT macro instructions are used with the data set being
created or processed. Specifying P in the MACRF operand also auto
matically allows you to use NOTE macro instructions with the data set.
Do not code P for SYSIN or SYSOUT data sets. (See explanations of the
NOTE and POINT macro instructions.)

specifies that READ macro instructions are to be used.

specifies that WRITE macro instructions are to be used.

Note: Each READ and WRITE macro instruction issued in the problem
program must be checked for completion by a CHECK macro instruction.

Source: The MACRF operand must be specified in the DCB macro instruc

tion.

NCP = absexp (maximum value is 99)
specifies the maximum number of READ and WRITE macro instructions that

are issued before the first CHECK macro instruction is issued to test for

completion of the 1/0 operation. The maximum number may be less _than

Macro Instruction Descriptions 67

DCB (BSAM)

99, depending on the amount of virtual storage available in the region. If
the NCP operand is omitted, 1 is assumed.

Source: The NCP operand can be supplied in the DCB macro instruction, in
the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block open exit routine.

OPTCD={{B}
{T}
{U[C]}
{C[T][B][U]}
{H[Z][B]}
{J[C][U]}
{W[C][T][B][U]}
{Z[C][T][B][U]}
{Q[C][B][T}
{Z}}

specifies the optional services used with the BSAM data set. Two of the
optional services, OPTCD = B and OPTCD = H, cannot be specified in the
DCB macro instruction. They are requested in the DCB subparameter of a
DD statement. Because all optional services requests must be supplied by
the same source, you must omit the OPTCD operand from the DCB macro
instruction if either of these options is requested in a DD statement.

You may code the following characters in any order, in any combination,
and without commas between characters.

c

J

Q

specifies that chained scheduling is used. OPTCD =C cannot be speci-
fied if BFTEK = R is specified for the same data control block. Also, \~
chained scheduling cannot be specified for associated data sets or
printing on a 3525 and is ignored for direct access devices.

Note: Except where it is not allowed, chained scheduling is used
whether requested or not. For conditions under which chained sched
uling is not allowed, see Data Administration Guide.

specifies that the first data byte in the output data line is to be a 3800
table reference character. This table reference character selects a par
ticular character arrangement table for the printing of the data line and
can be used singly or with ISO, ANSI, or machine control characters.
This option is valid only for the IBM 3800 Printing Subsystem. For infor
mation on the table reference character and character arrangement
table modules, see IBM 3800 Printing Subsystem Programmer's Guide.

requests that ISCll/ASCll tape records in an input data set be converted
to EBCDIC code after the input record has been read. Translation is
done at CHECK time for input. It also requests that an output record in
EBCDIC code be converted to ISCll/ ASCII code before the record is
written. For further information on this conversion, see "Variable
Length Records-Format D" in Data Administration Guide.

The Q option is unconditionally set by open routines if the data set is for
a tape with ISO/ ANSI/Fl PS labels. For more information about
ISCll/ ASCII to EBCDIC or EBCDIC to ISCll/ ASCII translations, see 0
MVSIESA Magnetic Tape Labels and File Structure Administration.

68 MVS/ESA Data Administration: Macro Instruction Reference

! u

T

u

w

z

DCB (BSAM)

requests the user totaling function. If this function is requested, the
EXLST operand should specify the address of an exit list to be used. T
cannot be specified for SYSIN and SYSOUT data sets.

For printers, U is specified for a printer with the universal character set
(UCS) feature or the 3800 Printing Subsystem. This option unblocks
data checks (permits them to be recognized as errors) and allows anal
ysis by the appropriate error analysis routine (SYNAD exit routine). If
the U option is omitted, data checks are not recognized as errors.

For the IBM Mass Storage System (MSS): U requests window proc
essing to reduce the amount of staging space required to process large
sequential data sets on MSS. DSORG must specify physical sequential,
allocation must be in cylinders, and type of 1/0 accessing must be
either INPUT only or OUTPUT only. (See Mass Storage System (MSS)
Extensions Services: Reference for more information on MSS.)

for DASO, specifies that the system is to perform a validity check on
each record written on a direct access device. For buffered devices,
specifies that device end interrupt is to be given only when a record is
physically on the device. By specifying OPTCD = W with buffered
devices, you do not benefit from the performance advantage of buf
fering.

requests, for magnetic tape, input only, the system to shorten its normal
error recovery procedure to consider a data check as a permanent 1/0
error after five unsuccessful attempts to read a record. This option is
available only if it has also been specified as a SYSGEN option.
OPTCD=Z is used when a tape is known to contain errors and there is
no need to process every record. The error analysis routine (SYNAD)
should keep a count of permanent errors and terminate processing if
the number becomes excessive.

Note: The following describes the optional services that can be requested
in the DCB subparameter of a DD statement. If either of these options is
requested, the complete OPTCD operand must be supplied in the DD state
ment.

B

H

If OPTCD = B is specified in the DCB subparameter of a DD statement, it
forces the end-of-volume (EOV) routine to disregard the end-of-file
recognition for magnetic tape. When this occurs, the EOV routine uses
the number of volume serial numbers to determine end of file.

If OPTCD = H is specified in the DCB subparameter of a DD statement, it
specifies that the DOS/OS interchange feature is being used with the
data set.

Source: The OPTCD operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, in the data set label for direct
access devices, or by the problem program before completion of the DCB
open exit routine or JFCBE exit routine. However, all optional services
must be requested from the same source.

Macro Instruction Descriptions 69

DCB (BSAM)

RECFM = {{!![T][AIMJ}
{V[B][S][TJI [A][M]}
{D[B][S][A]}
{F[BISITIBSIBT][AIM]}}

specifies the record format and characteristics of the data set being created
or processed. All the record formats shown above can be specified, but in
those record formats that specify blocked records, the problem program
must perform the blocking and deblocking of logical records; BSAM recog
nizes only data blocks. The following characters can be specified:

A

B

D

F

M

s

T

specifies that the records in the data set contain International Organiza
tion for Standardization (ISO) or American National Standards Institute
(ANSI) control characters. For a description of control characters, see
Appendix E, "Control Characters" on page 223.

specifies that the data set contains blocked records.

specifies that the data set contains variable-length ISCll/ASCll tape
records.

specifies that the data set contains fixed-length records.

specifies that the records in the data set contain machine code control
characters. For a description of control characters, see Appendix E,
"Control Characters" on page 223. RECFM = M cannot be used with
ISCll/ ASCII data sets.

specifies, for fixed-length records, that the records are to be written as
standard blocks; except for the last block or track in the data set, the
data set contains no truncated blocks or unfilled tracks. Do not code S
to retrieve fixed-length records from a data set that was created using a
RECFM other than standard.

For variable-length records, including variable-length ISCll/ ASCII, S
specifies that a record can span more than one block.

specifies that track overflow is used with the data set. Track overflow
allows a record to be written partially on one track of a direct access
device and the remainder of the record to be written on the following
track(s) (if required).

Note: Track overflow is not supported on DASO models 3375 through
3380.

specifies that the data set contains undefined-length records.

Note: Format-LI records are not supported for Version 3 ISO/ ANSI/Fl PS
tapes. An attempt to process a format-LI record for a Version 3 tape
results in a label validation installation exit being taken.

Only ISO/ANSI Version 1 (ISO 1001-1969 or ANSI X3.27-1969) format-LI
records can be used for input.

70 MVS/ESA Data Administration: Macro Instruction Reference

\

~

I

' '-"

\~

I .
\~

L/

DCB (BSAM)

v
specifies that the data set contains variable-length records.

Notes:

• RECFM =V cannot be specified for a card reader data set or an
ISO/ ANSI/Fl PS tape data set.

• RECFM =VBS does not provide the spanned record function; if this
format is used, the problem program must block and segment the
records.

• RECFM =DBS or RECFM =OS does not provide the spanned record
function; if this format is used, the problem program must block and
segment the records.

• RECFM=VS, VBS, OS, or DBS cannot be specified for a SYSIN data set.

• RECFM =V cannot be used for a 7-track tape unless the data conversion
feature (TRTCH=C) is used.

Source: The RECFM operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, by the problem program
before completion of the d~ta control block exit routine, or by the data set
label of an existing data set.

Record format can be derived from the data class associated with the data
set. Record format can also be derived from the JCL keyword LIKE.
However, if RECFM is specified in the DCB macro instruction, it overrides
the value derived from data class or LIKE. For more information, see JCL
User's Guide.

SYNAD =re/exp
specifies the address of the error analysis (SYNAD) routine given control
when an uncorrectable input/output error occurs. The contents of the regis
ters when the error analysis routine is given control are described in DFP:
Customization.

The error analysis routine must not use the save area pointed to by register
13, because this area is used by the system. The system does not restore
registers when it regains control from the error analysis routine. The error
analysis routine can issue a RETURN macro instruction that uses the
address in register 14 to return control to the system. If control is returned
in this manner, the system returns control to the problem program and pro
ceeds as though no error had been encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when
an uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction
or by the problem program. The problem program can also change the
error routine address at any time.

When operating a directly allocated IBM 3800 Model 3 using all-points address
ability, the SYNAD routine is entered if Print Services Facility (PSF) detects an
unrecoverable error. However, no error information is available to the SYNAD
routine for a directly allocated 3800 Model 3. If you want to continue proc
essing, you must close and reopen the data set to restart PSF. For more infor

mation on the 3800 Model 3, see IBM 3800 Printing Subsystem Programmer's
Guide for Models 3 and 8.

Macro Instruction Descriptions 71

DCB (QISAM)

DCB-Construct a Data Control Block (QISAM)
Use of the DCB (QISAM) macro is not recommended; we recommend you use
VSAM instead.

The data control block for a queued indexed sequential access method (QISAM)
data set is constructed during assembly of the problem program. You must
code the DSORG and MACRF operands in the DCB macro instruction, but the
other DCB operands can be supplied to the data control block from other
sources. Each QISAM DCB operand description contains a heading, "Source."
The information under this heading describes the sources that can supply the
operand.

Note: You cannot use a QISAM DCB to open a data set allocated to an
SMS-managed volume.

The DCB macro for QISAM is written:

[symbol] DCB [BFALN = {FIQ}]
[,BLKSIZE =absexp]
[,BUFCB =re/exp]
[,BUFL = absexp]
[,BUFNO = absexp]
[,CYLOFL = absexp]
[,DDNAME = symbo/]1
,DSORG= {ISjlSU}
[,EODAD =re/exp]
[,EXLST =re/exp]
[,KEYLEN =abs exp]
[,LRECL = absexp]
,MACRF= {{(PM)}

{(PL)}
{(GM[,S{Kll}J)}
{ (GL[,S{Kll}][,PU])}}

[,NTM = absexp]
[,OPTCD = {[l][L][M][R][U][W][Y]]}
[,RECFM = {V[BJIF[B]}]
[,RKP = absexp]
[,SYNAD =re/exp]

This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

When you create or process a QISAM data set, you can specify the following
operands in the DCB macro instruction:

BFALN={FIQ}
specifies the boundary alignment of each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro instruc
tion. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer. The characters that can be specified are:

F
specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

72 MVS/ESA Data Administration: Macro Instruction Reference

I

\..._,/

\L,;

DCB (QISAM)

specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool, the
prob.lem program must provide a storage area for the buffers and control
buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BLKSIZE=absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the length, in bytes, for each data block when fixed-length records
are used, or it specifies the maximum length in bytes, for each data block
when variable-length records are used. You must specify the BLKSIZE
operand when creating an ISAM data set. When processing an existing
ISAM data set, you must omit the BLKSIZE operand (it is supplied by the
data set label).

You need to consider the track capacity of the direct access device being
used when specifying the block size for an ISAM data set. For fixed-length
records, the sum of the key length, data length, and device overhead plus
10 bytes (for ISAM use) must not exceed the capacity of a single track on
the direct access device being used. For variable-length records, the sum
of the key length, block-descriptor word length, record-descriptor word
length, data length, and device overhead plus 10 bytes (for ISAM use) must
not exceed the capacity of a single track on the direct access device being
used. Device capacity and device overhead are described in Appendix C,
"Device Capacities" on page 213. For additional information about space
allocation, see Data Administration Guide.

If fixed-length records are used, the value specified in the BLKSIZE operand
must be a whole number multiple of the value specified in the LRECL
operand.

Source: When an ISAM data set is created, the BLKSIZE operand can be
supplied in the DCB macro instruction, in the DCB subparameter of a DD
statement, or by the problem program before completion of the data control
block exit routine. When an existing ISAM data set is processed, the
BLKSIZE operand must be omitted from the other sources, allowing the
data set label to supply the value.

BUFCB =re/exp
specifies the address of the buffer pool control block constructed by a
BUILD macro instruction.

If the system constructs the buffer pool automatically or if the buffer pool is
constructed by a GETPOOL macro instruction, omit the BUFCB operand,
because the system places the address of the buffer pool control block into
the data control block.

Source: The BUFCB operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool to be con
structed by a BUILD or GETPOOL macro instruction. When the data set is
opened, the system computes the minimum buffer length required and veri
fies that the length in the buffer pool control block is equal to or greater

Macro Instruction Descriptions 73

DCB (QISAM)

than the minimum length required. The system then inserts the computed
length into the data control block.

The BUFL operand is not required for QISAM if the system acquires buffers
automatically, because the system computes the minimum buffer length
required and inserts the value into the data control block.

If the buffer pool is constructed with a BUILD or GETPOOL macro instruc
tion, additional space is required in each buffer for system use. For a
description of the buffer length required for various ISAM operations, see
Data Administration Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction,
in the· DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers to be constructed by a BUILD macro instruc
tion, or the number of buffers to be acquired automatically by the system. If
the BUFNO operand is omitted, the system automatically acquires two
buffers. \.._,.

If the GETPOOL macro instruction is used to construct the buffer pool, the
BUFNO operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, or by the problem
program before completion of the data control block exit routine.

CYLOFL=absexp (maximum value is number of tracks minus 1)
specifies the number of tracks on each cylinder that is reserved as an over-
flow area. The overflow area contains records that are forced off prime \ ... _.i
area tracks when additional records are added to the prime area track in
ascending key sequence. ISAM maintains pointers to records in the over-
flow area so that the entire data set is logically in ascending key sequence.
Tracks in the cylinder overflow area are used by the system only if
OPTCD =Y is specified. For a more complete description of cylinder over-
flow area, refer to the space allocation section of Data Administration
Guide.

Source: When an ISAM data set is created, the CYLOFL operand can be
supplied in the DCB macro instruction, in the DCB subparameter of a DD \..-;'
statement, or by the problem program before completion of the data control
block exit routine. When an existing ISAM data set is processed, the
CYLOFL operand should be omitted, allowing the data set label to supply
the operand.

DD NAME= symbol
specifies the name used to identify the job control language data definition
(DD) statement that defines the ISAM data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruc
tion or by the problem program before an OPEN macro instruction is issued
to open the data set.

\....,)

74 MVS/ESA Data Administration: Macro Instruction Reference

I

"'-)

DCB (QISAM)

DSORG = {ISi ISU}
specifies the organization of the data set, and indicates if the data set con
tains any location-dependent information that would make it unmovable.
The following characters can be specified:

IS

ISU

specifies an indexed sequential data set organization.

specifies an indexed sequential data set that contains location
dependent information. You can specify ISU only when creating an
ISAM data set.

Source: The DSORG operand must be specified in the DCB macro instruc
tion. When an ISAM data set is created, DSORG =IS or ISU must also be
specified in the DCB subparameter of the corresponding DD statement.

EODAD =re/exp
specifies the address of the routine to be given control when the end of an
input data set is reached. For ISAM, this operand applies only to scan
mode when a data set is open for an input operation. Control is given to
this routine when a GET macro instruction is issued and there are no more
input records to retrieve. For additional information on the EODAD routine,
see Data Administration Guide and DFP: Customization.

Source: The EODAD operand can be supplied in the DCB macro instruction
or by the problem program before the end of the data set is reached.

EXLST =re/exp
specifies the address of the problem program exit list. The EXLST operand
is required only if the problem program uses the data control block exit
routine for additional processing.

For the format and requirements for exit list processing, see Appendix D,
"DCB Exit List Format and Contents" on page 221. For additional informa
tion about exit list processing, see DFP: Customization.

Source: The EXLST operand can be supplied in the DCB macro instruction
or by the problem program before the associated exit is required.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, of the key associated with each record in an
indexed sequential data set. When blocked records are used, the key of the
last record in the block (highest key) is used to identify the block. However,
each logical record within the block has its own identifying key that ISAM
uses to access a given logical record.

Source: When an ISAM data set is created, the KEYLEN operand can be
supplied in the DCB macro instruction, in the DCB subparameter of a DD
statement, or by the problem program before completion of the data control
block exit routine. When an existing ISAM data set is processed, the
KEYLEN operand must be omitted, allowing the data set level to supply the
key length value. KEYLEN=O is not valid for an ISAM data set.

LRECL=absexp (maximum value is device-dependent)
specifies the length, in bytes, for fixed-length records, or it specifies the
maximum length, in bytes, for variable-length records. The value specified
in the LRECL operand cannot exceed the value specified in the BLKSIZE
operand. When fixed, unblocked records are used and the relative key
position (as specified in the RKP operand) is zero, the value specified in the

Macro Instruction Descriptions 75

DCB (QISAM)

LRECL operand should include only the data length (the key is not written
as part of the fixed, unblocked record when RKP = 0).

You need to consider the track capacity of the direct access device being ',_
used when using maximum-length logical records. For fixed-length records,
the sum of the key length, data length, and device overhead plus 10 bytes
(for ISAM use) must not exceed the capacity of a single track on the direct
access device being used. For variable-length records, the sum of the key
length, data length, device overhead, block-descriptor-word length, and
record-descriptor-word length plus 10 bytes (for ISAM use) must not exceed
the capacity of a single track on the direct access device being used.
Device capacities are shown in Appendix C, "Device Capacities" on
page 213. For additional information about space allocation, see Data
Administration Guide.

Source: When an ISAM data set is created, the LRECL operand can be sup
plied in the DCB macro instruction, in the DCB subparameter of a DD state
ment, or by the problem program before completion of the data control
block exit routine. When an existing ISAM data set is processed, the LRECL
operand must be omitted, allowing the data set label to supply the value. \,..

MACRF= {{(PM)}
{(PL)}
{(GM[,S{K!I}])}
{(GL[,S{KI I}][,PU])}}

specifies the type of macro instructions, the transmittal mode, and type of
search to be used with the data set being processed. The operand can be
coded in any of the combinations shown above; the following characters
can be coded for QISAM:

The following characters can be specified only when the data set is being
created (load mode) or additional records are being added to the end of the
data set (resume load):

PL

PM

specifies that PUT macro instructions are used in the locate transmittal
mode; the system provides the problem program with the address of a
buffer containing the data to be written into the data set.

specifies that PUT macro instructions are used in the move transmittal
mode; the system moves the data to be written from the problem
program work area to the buffer being used.

The following characters can be specified only when the data set is being
processed (scan mode) or when records in an ISAM data set are being
updated in place:

GL

GM

specifies that GET macro instructions are used in the locate transmittal
mode; the system provides the problem program with the address of a
buffer containing the logical record read.

specifies that GET macro instructions are used in the move mode; the
system moves the logical record from the buffer to the problem
program work area.

I
\...._,/

76 MVS/ESA Data Administration: Macro Instruction Reference

,\..._.,,;,

K

PU

s

DCB (QISAM)

specifies that actual device addresses (MBBCCHHR) are used to search

for a record (or the first record) to be read.

specifies that a key or key class is used to search for a record (or the

first record) to be read.

specifies that PUTX macro instructions are to be used to return updated

records to the data set.

specifies that SETL macro instructions are used to set the beginning

location for processing the data set.

Source: The MACRF operand must be coded in the DCB macro instruc

tion.

NTM=absexp (maximum value is 99)

specifies the number of tracks to be created in a cylinder index before a

higher-level index is created. If the cylinder index exceeds this number, a

master index is created by the system; if a master index exceeds this

number, the next level of master index is created. The system creates as

many as three levels of master indexes. The NTM operand is ignored

unless the master index option (OPTCD = M) is selected.

Source: When an ISAM data set is being created, the NTM operand can be

supplied in the DCB macro instruction, in the DCB subparameter of a DD

statement, or by the problem program before completion of the data control

block exit routine. When an ISAM data set is being processed, master

index .information is supplied to the data control block from the data set

label, and the NTM operand must be omitted.

OPTCD = {[l][L][M][R][U][W][Y]}
specifies the optional services performed by the system when an ISAM data

set is being created or updated. You may code the following characters in

any order, in any combination, and without commas between characters:

L

specifies that the system uses the independent overflow areas to

contain overflow records. Note that it is only the use of the allocated

independent overflow area that is optional. Under certain conditions,

the system designates an overflow area that was not allocated for inde

pendent overflow by the problem program. See "Allocating Space for

an Indexed Sequential Data Set" in Data Administration G~ide.

specifies that the data set is to contain records flagged for deletion. A

record is flagged for deletion by placing a hexadecimal value of 'FF' in

the first data byte. Records flagged for deletion remain in the data set

until the space is required for another record to be added to the track

and are ignored during sequential retrieval of the ISAM data set

(QISAM, scan mode). This option cannot be specified for blocked fixed

length records if the relative key position is 0 (RKP =O), or it cannot be

specified for variable-length records if the relative, key position is 4

(RKP=4).

When an ISAM data set is being processed with BISAM, a record with a

duplicate key can be added to the data set (WRITE KN macro instruc-

Macro Instruction Descriptions 77

DCB (QISAM)

M

R

u

w

y

tion), only when OPTCD = L has been specified and the original record
(the one whose key is being duplicated) has been flagged for deletion.

specifies that the system create and maintain a master index(es)
according to the number of tracks specified in the NTM operand.

specifies that the system place reorganization statistics in the data
control block. The problem program can analyze these statistics to
determine when to reorganize the data set. If the OPTCD operand is
omitted, the reorganization statistics are automatically provided.
However, if you use the OPTCD operand, you must specify OPTCD=R
to obtain the reorganization statistics.

specifies that the system is to accumulate track index entries in storage
and write them as a group for each track of the track index. OPTCD = U
can be specified only for fixed-length records. The entries are written in
fixed-length unblocked format.

specifies a validity check on each record written.

specifies that the system is to use the cylinder overflow area(s) to
contain overflow records. If OPTCD = Y is specified, the CYLOFL
operand specifies the number oftracks to be used for the cylinder over
flow area. The reserved cylinder overflow area is not used unless
OPTCD=Y is specified.

Source: When an ISAM data set is created, the OPTCD operand can be
supplied in the DCB macro instruction, in the DCB subparameter of a DD
statement, or by the problem program before an OPEN macro instruction is
issued to open the data set. However, all optional services must be
requested from the same source. When an existing ISAM data set is proc
essed, the optional service information is supplied to the data control block
from the data set label, and the OPTCD operand should be omitted.

RECFM = {V[BJIF[B]}
specifies the format and characteristics of the records in the data set. If the

1

~
RECFM operand is omitted, variable-length records (unblocked) are
assumed. The following describes the characters that can be specified:

B
specifies that the data set contains blocked records.

F
specifies that the data set contains fixed-length records.

v
specifies that the data set contains variable-length records.

Source: When an ISAM data set is created, the RECFM operand can be
supplied in the DCB macro instruction, in the DCB subparameter of a DD
statement, or by the problem program before an OPEN macro instruction is
issued to open the data set. When an existing ISAM data set is processed,
the record format information is supplied by the data set label, and the \ • ..,.,)
RECFM operand should be omitted.

78 MVS/ESA Data Administration: Macro Instruction Reference

(

\ '

\._ .. /

DCB (QISAM}

If the record format information is supplied in the DD statemen.t or the DCB,
it must agree with the information in the data set label.

RKP=absexp
specifies the relative position of the first byte of the key within each logical
record. For example, if RKP=9 is specified, the key starts in the 10th byte
of the record. Do not specify the delete option (OPTCD = L) if the relative
key position is the first byte of a blocked fixed-length record or the fifth byte
of a variable-length record. If the RKP operand is omitted, RKP = O is
assumed.

If unblocked fixed-length records with RKP=O are used, the key is not
written as a part of the data record, and the delete option can be specified.
If blocked fixed-length records are used, the key is written as part of each
data record; either RKP must be greater than zero or the delete option must
not be used.

If variable-length records (blocked or unblocked) are used, and if the delete
option is not specified, RKP must be 4 or greater; if the delete option is
specified, RKP must be specified as 5 or greater. The 4 additional bytes
allow for the block descriptor word in variable-length records.

Source: When an ISAM data set is created, the RKP operand can be sup
plied in the DCB macro instruction, in the DCB subparameter of a DD state
ment, or by the problem program before completion of the data control
block exit routine. When an existing ISAM data set is processed, the RKP
information is supplied by the data set label and the RKP operand should
be omitted.

SYNAD =re/exp
specifies the address of the error analysis routine given control when an
uncorrectable input/output error occurs. The contents of the registers when
the error analysis routine is given control are described in DFP:
Customization.

The error analysis routine must not use the save area pointed to by register
13, because this area is used by the system. The system does not restore
registers when it regains control from the error analysis routine. The error
analysis routine can issue a RETURN macro instruction that uses the
address in register 14 to return control to the system. When control is
returned in this manner, the system returns control to the problem program
and proceeds as though no error had been encountered; if the error anal
ysis routine continues processing, the results may be unpredictable.

For additional information on error analysis routine processing for indexed
sequential data sets, see Data Administration Guide.

Source: The SYNAD operand can be supplied in the DCB macro instruction
or by the problem program. The problem program can also change the
error analysis routine address at any time.

Macro Instruction Descriptions 79

DCB (QSAM)

DCB-Construct a Data Control Block (QSAM)
The data control block for a queued sequential access method (QSAM) data set
is constructed during assembly of the problem program. You must code the
DSORG and MACRF operands in the DCB macro instruction, but the other DCB
operands can be supplied to the data control block from other sources. Each
DCB operand description contains a heading, "Source." The information under
this heading describes the sources that can supply the operand.

The DCB macro for QSAM is written:

[symbol] DCB [BFALN = {FIQ}]
[,BFTEK= {~IA}]
[,BLKSIZE=absexp]
[,BUFCB= re/exp]
[,BUFL=absexp]
[,BUFNO=absexp]
[,BUFOFF= {absexpjl}]
[,DD NAME= symbol] 1

[,DEVD= {{M.}
{TA
[,DEN= {1121314}]
[,TRTCH = {CIEIETIT}]}

{PR
[,PRTSP= {01!1213}]}

{PC
[,MODE= [ClrnRJ]
[,STACK= {!12}]
[,FUNC= {llPIPW[XT]IRIRP[D]I

RW[T]IRWP[XT][D]IW[T]}]}
{RD
[,MODE= [c1rno1RJ]
[,STACK= {!12}]
[,FUNC= {llPIPW[XT]IRIRP[D]I

RW[T]IRWP[XT][D]IW[T]}]}}]
,DSORG ={PS IPSU}
[,EODAD= re/exp]
[,EROPT= {ACCjSKPIABE}]
[,EXLST=re/exp]
[,LRECL = { absexplXIOKlnnnnnK}]
,MACRF= {{(G{MILID}[C])}

{(P{MILID}[C])}
{(,G{MILID}[C],P{MILID}[C])}}

[,OPTCD= {{B}
{T}
{U[C]}
{C[T][B][U]}
{H[Z][B]}
{J[CJ[U]}
{W[C][T][B][U]}
{Z[C][T][B][U]}
{Q[CJ[B][TJ}]
{Z}}]

[,RECFM= {{!![T][AIM]}
{V[B][S][T] I[A][M]}
{D[B][S][AJ}
{F[BISITIBSIBT][AIM]}}]

[,SYNAD= re/exp]

This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

80 MVS/ESA Data Administration: Macro Instruction Reference

!

\~)
~

('

~'

DCB (QSA~)

Notes:

1. When creating a DCB to open a data set that has been allocated to an
SMS-managed volume, do not specify values that would change the data
set to a type which cannot be SMS-managed, such as DSORG=PSU.

2. For information on additional operands for the DCB macro for the IBM 3890
Document Processor, see IBM 3890 Document Processor Machine and Pro
gramming Description.

When you create or process a QSAM data set, you can specify the following
operands in the DCB macro instruction:

BFALN = {FIQ}
specifies the boundary alignment of each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro instruc
tion. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer.

If the data set being created or processed contains ISCll/ASCll tape records
with a block prefix, the block prefix is entered at the beginning of the buffer,
and data alignment depends on the length of the block prefix. For a
description of how to specify the block prefix length, see the description of
the BUFOFF operand.

The characters that can be specified are:

F
specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool, the
problem program must control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. If both the BFALN
and BFTEK operands are specified, they must be supplied from the same
source.

BFTEK={~IA}
specifies the buffering technique that is used when the QSAM data set is
created or processed. If the BFTEK operand is omitted, simple buffering is
assumed. The following describes the characters that you can specify:

s

A

specifies that simple buffering is used.

specifies that a logical record interface is used for variable-length
spanned records. When BFTEK=A is specified, the open routine
acquires a record area equal to the length specified in the LRECL field
plus 32 additional bytes for control information. LRECL=O is invalid.
The LRECL provided at open should be the maximum length in bytes.
The open routine uses this value to acqufre the record area. When a
logical record interface is requested, the system uses the simple buf
fering technique.

Macro Instruction Descriptions 81

DCB (QSAM)

BFTEK=A is invalid with MOVE mode.

To use the simple buffering technique efficiently, you should be familiar with
the three transmittal modes for QSAM and the buffering techniques \-
described in Data Administration Guide.

Source: The BFTEK operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine. If both the BFTEK
and BFALN operands are specified, they must be supplied from the same
source.

BLKSIZE=absexp (maximum value is 32760 bytes for IBM standard labels)
specifies the length, in bytes, of each data block for fixed-length records, or
it specifies the maximum length, in bytes, of each data block for variable
length or undefined-length records.

The actual value that you can specify in the BLKSIZE operand depends on
the device type and record format being used. Device capacities are shown
in Appendix C, "Device Capacities" on page 213. (For additional informa
tion about device capacity, refer to the relevant device publication.)

For direct access devices when track overflow is used or variable-length
spanned records are being processed, the value specified in the BLKSIZE
operand can be up to the maximum value. For other record formats used
with direct access devices, the value specified in the BLKSIZE operand
cannot exceed the capacity of a single track.

Because QSAM provides a logical record interface, the device capacities
shown in Appendix C, "Device Capacities" on page 213, also apply to a
maximum-length logical record. One exception to the device capacity for a
logical record is the size of variable-length spanned records. Their length
can exceed the value specified in the BLKSIZE operand (see the description
of the LRECL operand).

If fixed-length records are used, the value specified in the BLKSIZE operand
must be a whole number multiple of the value specified in the LRECL
operand. If the records are unblocked fixed-length records, the value speci
fied in the BLKSIZE operand must equal the value specified in the LRECL
operand if the LRECL operand is specified.

If variable-length records are used, the value specified in the BLKSIZE
operand must include the data length (up to 32756 bytes) plus 4 bytes
required for the block descriptor word (BOW). For format-D variable-length
records, the minimum BLKSIZE value is 18 bytes. The maximum is 2048
bytes. For more information about the BLKSIZE restrictions, see Data
Administration Guide.

If ISCll/ ASCII tape records with a block prefix are processed, the value
specified in the BLKSIZE operand must also include the length of the block
prefix. If an ISCll/ ASCII format DB or DBS tape data set is opened for
output using QSAM with the system acquiring the buffers and BUFOFF=O
specified, the value specified in the BLKSIZE operand must be increased by
4 to allow for a 4 byte QSAM internal processing area. If BUFL is specified,
the BUFL operand value must be increased by 4, instead of the BLKSIZE
operand value.

If variable-length spanned records are used, the value specified in the
BLKSIZE operand can be the best one for the device being used or the
processing being done. When unit record devices (card or printer) are

82 MVS/ESA Data Administration: Macro Instruction Reference

/
I

_,;/

I I

~/

DCB (QSAM)

used, the system assumes records are unblocked; the value specified for
the BLKSIZE operand is equivalent to one print line or one card. A logical
record that spans several blocks is written one segment at a time.

If undefined-length records are used, the problem program can insert the
actual record length into the DCBLRECL field. See the description of the
LRECL operand.

Source: The BLKSIZE operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block e·xit routine, or by the data set
label of an existing data set. Block size can also be derived from the JCL
keyword LIKE. For more information on LIKE, see JCL User's Guide.

System-Determined Block Size: For blocked DASD data sets, if the block
size is not specified at the time that the data set is created, and the
pk.LRECL and RECFM are known, the system derives an optimum block
size for the data set. This system-determined block size is retained in the
data set label. When the data set is opened for output, OPEN checks the
block size in the data set label. If it is a system-determined block size, and
the LRECL or RECFM have changed from those specified in the data set
label, OPEN will rederive an optimum block size for the data set.

Note: The maximum block size for Version 3 ISO/ANSl/FIPS tapes (ISO
1001-1979 or ANSI X3.27 1978) is 2048 bytes. An attempt to exceed 2048
bytes for a Version 3 tape results in a label validation installation exit being
taken.

BUFCB =re/exp
specifies the address of the buffer pool control block constructed by a
BUILD or BUILDRCD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro
instruction, you can omit the BUFCB operand, because the system places
the address of the buffer pool control block into the data control block.

Source: The BUFCB operand can be supplied in the DCB macro instruction
or by the problem program before completion of the data control block exit
routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool when the
buffer pool is acquired automatically. If the BUFL operand is omitted, the
system acquires buffers with a length equal to the value specified in the
BLKSIZE operand. If the problem program requires larger buffers, the
BUFL operand is required. If the data set is for card image mode, the BUFL
operand is specified as 160 bytes. The description of the DEVD operand
contains a description of card image mode.

If the data set contains ISCll/ ASCII tape records with a block prefix, the
value specified in the BUFL operand must also include the length of the
block prefix. If an ISCll/ ASCII format DB or DBS tape data set is opened for
output using QSAM and .BUFOFF=O is specified, then the BUFL operand
value, if specified, must be increased by 4 to allow for a 4-byte QSAM
internal processing area.

If the buffer pool is constructed by a BUILD, BUILDRCD, or GETPOOL macro
instruction, the BUFL operand is not required.

Macro Instruction Descriptions 83

DCB (QSAM)

Source: The BUFL operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, or by the problem program
before completion of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers in the buffer pool constructed by a BUILD or
BUILDRCD macro instruction or the number of buffers to be acquired auto
matically. If chained scheduling is specified, the value of BUFNO deter
mines the maximum number of channel program segments that can be
chained and must be specified as more than one. If the BUFNO operand is
omitted and the buffers are acquired automatically, the system acquires
three buffers if the device is a 2540 device or five buffers for any other
device type.

If the buffer pool is constructed by a GETPOOL macro instruction, the
BUFNO operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, or by the problem
program before completion of the data control block exit routine.

BUFOFF= {absexpll}
specifies the length, in bytes, of the block prefix used with an ISCll/ ASCII
tape data set. When QSAM is used to read an ISCll/ ASCII tape data set,
only the data portion (or its address) is passed to the problem program; the
block prefix is not available to the problem program. Block prefixes (except
BUFOFF=L) cannot be included in QSAM output records. The following can
be specified in the BUFOFF operand:

abs exp

L

specifies the length, in bytes, of the block prefix. This value can be
from 0 to 99 for an input data set. The value must be 0 for writing an
output data set with fixed-length or undefined-length records.

specifies that the block prefix is 4 bytes long and contains the block
length. BUFOFF= L is used when format-D records (ISCll/ ASCII) are
processed. QSAM uses the 4 bytes as a block-descriptor word (BDW).
For further information on this operand, see "Variable-Length
Records-Format D" in Data Administration Guide.

Source: The BUFOFF operand can be supplied in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, or by the problem
program before an OPEN macro instruction is issued to open the data set.
BUFOFF=absexp can also be supplied by the second system label of an
existing data set; BUFOFF= L cannot be supplied by the label of an existing
data set.

DD NAME= symbol
specifies the name used to identify the job control language data definition
(DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruc
tion or by the problem program before an OPEN macro instruction is issued
to open the data set.

\"--"

DEVD = {DAITAIPRIPCIRD}[,options]
specifies the device type where the data set can or does reside. The '\._,)
device types above are shown with the optional operand(s) that can be
coded when a particular device is used. The devices are listed in order of

84 MVS/ESA Data Administration: Macro Instruction Reference

__)

DCB (QSAM)

device independence. For example, if you code DEVD =DA in a DCB macro
instruction (or omit the DEVD operand, which causes a default to DA), you
can use later the data control block constructed during assembly for any of
the other devices, but, if you code DEVD =RD, you can use the data control
block only with a card reader or card reader punch. Unless you are certain
that device interchangeability is not required, you should either code
DEVD=DA or omit the operand and allow it to default to DA.

If system input is directed to an intermediate storage device, the DEVD
operand is omitted, and the job control language for the problem program
must designate the system input to be used. Similarly, if system output is
directed to an intermediate storage device, the DEVD operand is omitted,
and the job control language for the problem program must designate the
system output to be used. If you code DEVD =PR, PC, or RD, do not code
the DCB macro within the first 16 bytes of addressability for the control
section.

The DEVD operand is discussed below according to individual device type:

DEVD=DA
specifies that the data control block can be used for a direct access
device (or any of the other device types described following DA).

DEVD=TA
[,DEN= {1121314}]
[,TRTCH = {CIEIETIT}]

specifies that the data control block can be used for a magnetic tape data
set (or any of the other device types described following TA). If TA is
coded, the fol~owing optional operands can be coded:

DEN= {1121314}
specifies the recording density in the number of bits-per-inch per track
as shown in the following:

Recording Density
DEN 7-Track 9-Track 18-Track

1 556 N/A N/A
2 800 800 (NRZI)l N/A
3 N/A 1600 (PE)2 N/A
4 N/A 6250 (GCR) 3 N/A

NRZI is for nonreturn-to-zero inverted mode.

2 PE is for phase encoded mode.

GCR is for group coded recording mode.

TRTCH = {CIEIETIT}
These values specify the recording technique for 7-track tape. One of
the above four values can be coded. If the TRTCH operand is omitted,
odd parity with no translation or conversion is assumed. The values
that can be specified are:

c
specifies that the data-conversion feature is used with odd parity
and no translation.

Macro Instruction Descriptions 85

DCB (QSAM)

E

ET

T

specifies even parity with no translation or conversion.

specifies even parity with BCDIC to EBCDIC translation required, but
no data-conversion feature.

specifies that BCDIC to EBCDIC translation is required with odd
parity and no data-conversion feature.

Source: The TRTCH operand can be supplied in the DCB macro instruction,
in the DCB keyword on a DD statement, in the IBM standard tape label or
by the problem program before completion of the data control block exit
routine.

DEVD=PR
[,PRTSP = {0111213}]

specifies that the data control block is used for an on-line printer (or any of
the other device types following PR). If PR is coded, the following optional
operand can be coded: ~

PRTSP= {0111213}
specifies the line spacing on the printer. This operand is not valid if the
RECFM operand specifies either machine (RECFM = M), or ANSI or ISO
control characters (REC FM= A). If the PRTSP operand is not specified
from any source, 1 is assumed. The following describes the characters
that can be specified:

0

1

2

3

DEVD=PC

specifies that spacing is suppressed (no space).

specifies single spacing.

specifies double spacing (one blank line between printed lines).

specifies triple spacing (two blank lines between printed lines).

Note: You cannot use MODE and FUNC subparameters with this
specification. \,/

[,MODE= [Cl~[R]]
[,STACK= {112}]

. [,FUNC = {llPIPW[XTJIRIRP[DJIRW[TJIRWP[XT][DJIW[T]}]
specifies that the data control block is used for a card punch (or any of the
other device types following PC). If PC is coded, the following optional
operands can be specified:

MODE= [Cl~[R]]
specifies the mode of operation for the card punch. If the MODE
operand is omitted, E is assumed. The characters that can be specified
are:

c
specifies that the cards are to be punched in card image mode. In
card image mode, the 12 rows in each card column are punched \._)
from two consecutive bytes of virtual storage. Rows 12 through 3

86 MVS/ESA Data Administration: Macro Instruction Reference

_,;!

l ,
~/

I
\.._./

(;
\.._../'

R

DCB (QSAM)

are punched from the 6 low-order bits of one byte, and rows 4
through 9 are punched from the 6 low-order bits of the following
byte.

specifies that cards are to be punched in EBCDIC code.

specifies that the program runs in read-column-eliminate mode
(3505 card reader or 3525 card punch, read feature).

STACK= {112}
specifies the stacker bin where the card is placed after punching is
completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
specifies stacker number 1.

2
specifies stacker number 2.

FUNC = {11 PI PW[XT] I RI RP [D JI RW[T] I RWP [XT][DJI W[T]}
defines the type of 3525 card punch data sets that are to be used. If the
FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch
only. The following describes the characters that can be specified in
the f="UNC operand:

D

p

R

T

specifies that the data protection option is to be used. The data
protection option prevents punching information into card columns
that already contain data. When the data protection option is used,
an 80-byte data protection image (DPI) must have been previously
stored in SYS1 .IMAGELIB. Data protection applies only to the
output punch portion of a read and punch or read, punch, and print

. operation.

specifies that the data in the data set is to be punched into cards
and printed on the cards; the first 64 characters are printed on line
1 of the card and the remaining 16 characters are printed on line 3.

specifies that the data set is for punching cards. See the
description of the character X for associated punch and print data
sets.

specifies that the data set is for reading cards.

specifies that the two-line print option is used. The two-line print
option allows two lines of data to be printed on the card (lines 1 and
3). If T is not specified, the multiline print option is used; this allows
printing on all 25 possible print lines. In either case, the data
printed may be the same as the data punched in the card, or it may
be entirely different data.

Macro Instruction Descriptions 87

DCB (QSAM)

w

x

specifies that the data set is for printing. See the description of the
character X for associated punch and print data sets.

specifies that an associated data set is opened for output for both
punching and printing. Coding the character X is used to distin
guish the 3525 printer output data set from the 3525 punch output
data set.

Note: If data protection is specified, the data protection image (DPI) must
be specified in the FCB subparameter of the DD statement for the data set.

DEVD=RD

RD

[,MODE= [Cl~[OIR]]
[,STACK= {112}]
[,FUNC = {llPIPW[XT]IRIRP[D]IRW[T]IRWP[XT][D]IW[T]}]

specifies that the data control block is used with a card reader or card read
punch. If RD is specified, the data control block cannot be used with any
other device type. When RD is coded, the following optional operands can
be specified:

MODE= [Cl~[OIR]
specifies the mode of operation for the card reader. The characters
that can be specified are:

c

0

R

specifies that the cards to be read are in card image mode. In card __,,
image mode, the 12 rows of each card column are read into two
consecutive bytes of virtual storage. Rows 12 through 3 are read
into the 6 low-order bits of one byte, and rows 4 through 9 are read
into the 6 low-order bits of the following byte.

specifies that the cards to be read contain data in EBCDIC code.

specifies that the program runs in optical mark read mode (3505
card reader).

specifies that the program runs in read-column-eliminate mode
(3505 card reader and 3525 card punch, read feature).

Note: If the MODE operand for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be specified if R or
0 is specified.

STACK={112}
specifies the stacker bin into which the card is placed after reading is
completed. If this operand is omitted, stacker number 1 is used. The
characters that can be specified are:

1
specifies stacker number 1.

2
specifies stacker number 2.

88 MVS/ESA Data Administration: Macro Instruction Reference

I

_,,1

I v

DCB (QSAM)

FUNC = {llPIPW[XTJIRIRP[DJIRW[TJIRWP[XT][DJIW[T]}
defines the type of 3525 card punch data sets that are used. If the
FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch
only. The characters that can be specified in the FUNC operand are:

D

p

R

T

w

x

specifies that the data protection option is to be used. The data
protection option prevents punching information into card columns
that already contain data. When the data protection option is used,
an 80-byte data protection image (DPI) must have been previously
stored in SYS1 .IMAGELIB. Data protection applies only to the
output punch portion of a read and punch or read, punch, and print
operation.

specifies that the data in the data set is to be punched into cards
and printed on the cards; the first 64 characters are printed on line
1 of the card and the remaining 16 characters are printed on line 3.

specifies that the data set is for punching cards. See the
description of the character X for associated punch and print data
sets.

specifies that the data set is for reading cards.

specifies that the two-line option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If
T is not specified, the multiline print option is used; this allows
printing on all 25 possible print lines. In either case, the data
printed may be the same as the data punched in the card, or it may
be entirely different data.

specifies that the data set is for printing. See the description of the
character X for associated punch and print data sets.

specifies that an associated data set is opened for output for both
punching and printing. Coding the character X is used to distin
guish the 35?5 printer output data set from the 3525 punch output
data set.

Note: If data protection is specified, the data protection image (DPI)
must be specified in the FCB subparameter of the DD statement for
the data set.

Source: The DEVD operand can be supplied only in the DCB macro
instruction. However, the optional operands can be supplied in the DCB
macro instruction, the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit
routine.

Macro Instruction Descriptions 89

DCB (QSAM)

DSORG={PSIPSU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. The fol
lowing characters can be specified:

PS
specifies a physical sequential data set.

PSU
specifies a physical sequential data set that contains location
dependent information that would make it unmovable.

Note:

An unmovable data set cannot be SMS-managed.

Source: You must code the DSORG operand in the DCB macro instruc
tion.

EODAD =re/exp
specifies the address of the routine given control when the end of an input
data set is reached. Control is given to this routine when a GET macro
instruction is issued and there are no additional records to be retrieved. If
the record format is RECFM = FS or FBS the end-of-data condition is sensed
when a file mark is read or when more data is requested after reading a
truncated block. If the end of the data set is reached but no EODAD
address was supplied to the data control block, or if a GET macro instruc
tion is issued after an end'."of-data exit is taken, the task is abnormally ter
minated. For additional information on the EODAD routine, see Data
Administration Guide and DFP: Customization.

Source: The EODAD operand can be supplied in the DCB macro instruction
or by the problem program before the end of the data set has been
reached.

EROPT= {ACCISKPIABE}
specifies the action taken by the system if an uncorrectable input/output
data validity error occurs and no error analysis (SYNAD) routine address
has been provided,_or it specifies the action taken by the system after the
error analysis routine has returned control to the system with a RETURN
macro instruction. The specified action is taken for input operations for all
devices or for output operations to a printer.

Uncorrectable input/output errors resulting from channel operations or
direct access operations that make the next record inaccessible cause the
task to be abnormally terminated regardless of the action specified in the
EROPT operand.

ACC
specifies that the problem program accepts the block causing the error.
You can specify this action when opening a data set for INPUT,
ROBACK, UPDAT, or OUTPUT (OUTPUT applies to printer data sets
only).

SKP
specifies that the block that caused the error is to be skipped. Speci
fying SKP also releases the buffer associated with the data block. You
can specify this action when opening a data set for INPUT, ROBACK, or
UPDAT.

90 MVS/ESA Data Administration: Macro Instruction Reference

I

\._.)

I

~I

DCB (QSAM)

ABE
specifies that the error is to result in the abnormal termination of the
task. You can specify this action when opening the data set for INPUT,
OUTPUT, ROBACK, or UPDAT.

If the EROPT operand is omitted, the ABE action is assumed.

Note: If the EROPT operand is ACC or SKIP, accept or skip processing is
done after returning from the error analysis (SYNAD) routine. For this
reason, do not issue FEOV from within the error analysis routine.

Source: The EROPT operand can be specified in the DCB macro instruc
tion, in the DCB subparameter of a DD statement, or by the problem
program at any time. The problem program can also change the action
specified at any time.

EXLST =re/exp
specifies the address of the problem program exit list. The EXLST operand
is required if the problem program requires additional processing for user
labels, user totaling, data control block exit routines, end-of-volume, block
count exits, defining a forms control buffer (FCB) image, using the JFCBE
exit (for the 3800 printer), or using the DCB ABEND exit for ABEND condition
analysis.

For the format and requirements of exit list processing, see Appendix D,
"DCB Exit List Format and Contents" on page 221. For additional informa
tion about exit routine processing, see DFP: Customization.

Source: The EXLST operand can be supplied in the DCB macro instruction
or by the problem program any time before the exit is required by the
problem program.

LRECL = { absexplXIOKlnnnnnK}
specifies the length, in bytes, for fixed-length records, or it specifies the
maximum length, in bytes, for variable-length or undefined-length (output
only) records. The value specified in the LRECL operand cannot exceed the
value specified in the BLKSIZE operand except when variable-length
spanned records are used.

For fixed-length records that are unblocked, the value specified in the
L~ECL operand must be equal to the value specified in the BLKSIZE
operand. For blocked fixed-length records, the value specified in the LRECL
operand must be evenly divisible into the value specified in the BLKSIZE
operand.

For variable-length logical records, the value specified in the LRECL
operand must include the maximum data length (up to 32752 bytes) plus 4
bytes for the record-descriptor word (ROW).

For undefined-length records, the problem program must insert the actual
logical record length into the DCBLRECL field before writing the record, or
else the maximum-length record is written.

For variable-length spanned records, the logical record length (LRECL) can
exceed the value specified in the BLKSIZE operand, and a variable-length
spanned record can exceed the maximum block size (32760 bytes). When
the logical record length exceeds the maximum block size (for non-XLRI
processing), you must specify LRECL=X and use GET or PUT locate mode.

For ISO/ ANSI/Fl PS variable-length spanned records (RECFM = DS or
RECFM =DBS), you may use the extended logical record interface (XLRI)

Macro Instruction Descriptions 91

DCB (QSAM)

when the maximum logical record length exceeds 32760 bytes. XLRI must
be invoked by specifying LRECL=OK or LRECL=nnnnnK.

nnnnnK
The value nnnnnK may range from 1K to 16383K. The value determines
the size of the record area (in 1024-byte units) required to contain the
longest logical record of the data set.

LRECL=OK

x

When LRECL=OK is specified, the length of the longest logical record
must come from the DD statement or the data set label. XLRI proc
essing is only valid in QSAM locate mode. You must not specify
LRECL=X for RECFM=DS or DBS.

Specify if the logical record length exceeds the maximum block size
(32760 bytes), and use GET or PUT locate mode.

Source: The LRECL operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, by the problem program _..,
before completion of the data control block exit routine, or by the data set
label of an existing data set. The label indicates a logical record length of
'99999 1 when an IBM standard label tape contains a logical record equal to
or greater than 100K bytes. The label indicates 100000 1 if the same
maximum is reached for an ISO/ANSl/FIPS label tape.

Note: When LRECL=OK is used in the DCB, the LRECL data must come
from JCL, the file label (for an input data set), or from the DCB exit during
open merge.

Record length can be derived from the data class associated with the data
1

~
set. Record length can also be derived from the JCL keyword LIKE.
However, if LRECL is specified in the DCB macro instruction, it overrides
the value derived from data class or LIKE. For more information, see JCL
User's Guide.

Although LRECL=OK is only valid when RECFM=DS or DBS, you can
specify the OK option on the DCB macro even though the RECFM is not
determined until the DCB is opened. (The RECFM is obtained from the data
set label or the DD statement.) If you specify neither the OS nor the DBS
option, the system turns the OK indicator off, and restores it when the DCB '~
is closed.

MACRF= {{(G{MILID}[C])}
{(P{MILID}[C])}}
{(G{MILID}[C],P{MILID}[C])}}

specifies the type of macro instructions (GET, PUT or PUTX, CNTRL, RELSE,
and TRUNC) and the transmittal modes (move, locate, and data) that are
used with the data set being created or processed. The operand can be
coded in any of the combinations shown above. The following characters
can be coded:

c
specifies that the CNTRL macro instruction is used with the data set. If
the CNTRL macro instruction is specified, the data set should be for a
card reader (stacker selection) or printer (carriage and spacing control).
The CNTRL option can be specified with GET in the move mode only. _)
Use of the CNTRL macro is invalid for 3525 input data sets.

92 MVS/ESA Data Administration: Macro Instruction Reference

/

\"-../

I

\..__ ... /

D

G

L

M

p

DCB (QSAM)

specifies that the data transmittal mode is used (only the data portion of
a record is moved to or from the work area). Data mode is used only
with variable-length spanned records.

specifies that GET macro instructions are used. Specifying G also pro
vides the routines that allow the problem program to issue RELSE
macro instructions.

specifies that the locate transmittal mode is used; the system provides
the address of the buffer containing the data.

specifies that the move transmittal mode is used; the system moves the
data from the buffer to the work area in the problem program.

specifies that PUT or PUTX macro instructions are used. Specifying P
also provides the routines that allow the problem program to issue
TRUNC macro instructions.

Note: For data sets processed by QSAM using MACRF=(GM) or
MAC RF= (PM), do not code BFTEK =A.

Source: The MACRF operand can be supplied only in the DCB macro
instruction.

OPTCD={{B}
{T}
{U[C]}
{C[T][B][U]}
{H[Z][B]}
{J[C][U]}
{W[C][T][B][U]}
{Z[C][T][B][U]}
{Q[C][B][T]}
{Z}}

specifies the optional services used with the QSAM data set. Two of the
optional services, OPTCD = B and OPTCD = H, cannot be specified in the
DCB macro instruction. They are requested in the DCB subparameter of a
DD statement. Because all optional services codes must be supplied by the
same source, you must omit the OPTCD operand from the DCB macro
instruction if either of these options is requested in a DD statement.

You may code the following characters in any order without commas
between characters:

c
specifies that chained scheduling is used. OPTCD=C cannot be speci
fied when either BFTEK=A or BFTEK=R is specified for the same data
control block. Also, chained scheduling cannot be specified for associ
ated data sets or printing on a 3525 and is ignored for direct access
devices.

Note: Except where it is not allowed, chained scheduling is used
whether requested or not. For conditions under which it is not allowed,
see Data Administration Guide.

Macro Instruction Descriptions 93

DCB (QSAM)

J

Q

T

u

w

z

specifies that the first data byte in the output data line is to be a 3800
table reference character. This table reference character selects a
particular character arrangement table for the printing of the data line \,._
and can be used singly or with ISO/ANSl/FIPS or machine control char-
acters. This option is valid only for the IBM 3800 Printing Subsystem.
For information on the table reference character and character arrange-
ment table, see IBM 3800 Printing Subsystem Programmer's Guide.

requests that ISCll/ ASCII tape records in an input data set be converted
to EBCDIC code after the input record has been read, or an output
record in EBCDIC code be converted to ISCll/ ASCII code before the
record is written. For further information on this conversion, see
"Variable-Length Records-Format D" in Data Administration Guide.

The Q option is unconditionally set by open routines if the data set is for
a tape with ISO/ANSl/FIPS labels. For more information about
ISCll/ASCll to EBCDIC or EB~DIC to ISCll/ASCll translations, see Mag-
netic Tape Labels and File Strupture. '-.._i

requests the user totaling function. If this function is requested, the
EXLST operand should specify the address of an exit list to be used. T
cannot be specified for a SYSIN or SYSOUT data set.

For printers, U is specified for a printer with the universal-character-set
feature (UCS) or the IBM 3800 Printing Subsystem. This option unblocks
data checks (permits them to be recognized as errors) and allows anal
ysis by the appropriate error analysis routine (SYNAD exit routine). If
the U option is omitted, data checks are not recognized as errors.

For the IBM 3480 Magnetic Tape Subsystem, sets to write-tape
immediate mode.

For the IBM Mass Storage System (MSS): U requests window proc
essing to reduce the amount of staging space required to process large
sequential data sets on MSS. DSORG must specify physical sequential,
allocation must be in cylinders, and type of 1/0 accessing must be
either INPUT onJy or OUTPUT only. (See Mass Storage System (MSS) '~
Extensions Services: Reference for more information on MSS.)

specifies, for DASO, that the system is to perform a validity check on
each record written on a direct access device. For buffered devices,
specifies that device end interrupt is to be given only when a record is
physically on the device. By specifying OPTCD = W with buffered
devices, you do not benefit from the performance advantage of buf
fering.

requests, for magnetic tape, input only, the system to shorten its normal
error recovery procedure to consider a data check as a permanent 1/0
error after five unsuccessful attempts to read a record. This option is
available only if it is also specified as a SYSGEN option. OPTCD=Z is
used when a tape is known to contain errors and there is no need to <._)
process every record. The error analysis routine (SYNAD) should keep

94 MVS/ESA Data Administration: Macro Instruction Reference

\.._./

(
_/

DCB (QSAM)

a count of permanent errors and terminate processing if the number
becomes excessive.

For direct access devices only, the Z option is ignored.

Note: The following describes the optional services that can be specified in
the DCB subparameter of a DD statement. If either of these options is
requested, the complete OPTCD operand must be supplied in the DD state
ment.

B

H

If OPTCD = B is specified in the DCB subparameter of a DD statement, it
forces the end-of-volume (EOV) routine to disregard the end-of-file
recognition for magnetic tape. When this occurs, the EOV routine uses
the number of volume serial numbers to determine end of file. For an
input data set on a standard labeled (SL or AL) tape, the EOV routine
treats EOF labels as EOV labels until the volume serial list is exhausted.
After all the volumes have been read, control is passed to your end-of
data routine. This option allows SL or AL tapes to be read out of
volume sequence or to be concatenated to another tape using one DD
statement.

If OPTCD = H is specified in the DCB subparameter of a DD statement, it
specifies that the DOS/OS interchange feature is being used with the
data set.

Source: The OPTCD operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, in the data set label for direct
access devices, or by the problem program before completion of the DCB
open exit routine or JFCBE exit routine. However, all optional services
must be requested from the same source.

RECFM = {{!l[T][AIMJ}
{V[B][S][TJI [A][M]}
{D[B][S](A]}
{F[BISITIBSIBT][AIMJ}}

specifies the record format and characteristics of the data set being created
or processed. All record formats can be used in QSAM. The following
characters can be specified:

A

B

D

f

M

specifies that the records in the data set contain ISO/ANSI/Fl PS control
characters. For a description of control characters, see Appendix E,
"Control Characters" on page 223.

specifies that the data set contains blocked records.

specifies that the data set contains variable-length ISCll/ ASCII tape
records. See OPTCD = Q and the BUFOFF operand for a description of
how to specify ISCll/ ASCII data sets.

specifies that the data set contains fixed-length records.

specifies that the records in the data set contain machine code control
characters. For a description of control characters, see Appendix E,

Macro Instruction Descriptions 95

DCB (QSAM)

s

T

v

"Control Characters" on page 223. RECFM=M cannot be used with
ISCll/ ASCII data sets.

specifies, for fixed-length records, that the records are to be written as
standard blocks; except for the last block or track in the data set, the
data set does not contain any truncated blocks or unfilled tracks. Do
not code S to retrieve fixed-length records from a data set that was
created using a RECFM other than standard.

For variable-length records, S specifies that a record can span more
than one block.

specifies that track overflow is used with the data set. Track overflow
allows a record to be written· partially on one track and the remainder of
the record on the following track (if required).

Note: Track overflow is not supported on DASO models 3375 through
3380.

specifies that the data set contains undefined-length records.

Note: Format-LI records are not supported for Version 3 ISO/ANSI/Fl PS
tapes. An attempt to process a format-LI record for a Version 3 tape
results in a label validation installation exit being taken.

ISO/ANSI Version 1 (ISO 1001-1969 or ANSI X3.27-1969) format-LI records
can be used for input only. These records are the same as the
format-LI records described above, except that the control characters
must be ISO/ ANSI control characters, and block prefixes can be used.

specifies that the data set contains variable-length records.

Notes:

• RECFM =V cannot be specified for a card reader data set or an
ISO/ ANSI/Fl PS tape data set.

• RECFM =VS, VBS, DS, or DBS cannot be specified for a SYSIN data set.

• RECFM =OS or RECFM =DBS provides blocking, unblocking, and seg-
menting for Version 3 ISO/ANSl/FIPS tape data sets.

Source: The RECFM operand can be supplied in the DCB macro instruction,
in the DCB subparameter of a DD statement, by the problem program
before completion of the data control block exit routine, or by the data set
label of an existing data set.

Record format can be derived from the data class associated with the data
set. Record format can also be derived from the JCL keyword LIKE.
However, if RECFM is specified in the DCB macro instruction, it overrides
the value derived from data class or LIKE. For more information, see JCL
User's Guide.

SYNAD =re/exp
specifies the address of the error analysis (SYNAD) routine given control if
an uncorrectable input/output error occurs. The contents of the registers
when the error analysis routine is given control are described in DFP:
Customization.

96 MVS/ESA Data Administration: Macro Instruction Reference

\

\

~

DCB (QSAM)

The error analysis routine must not use the save area pointed to by register
13, because this area is used by the system. The system does not restore
registers when it regains control from the error analysis routine. The error
analysis routine can issue a RETURN macro instruction that uses the
address in register 14 to return control to the system.

If the error condition was the result of a data-validity error, the control
program takes the action specified in the EROPT operand; otherwise, the
task is abnormally terminated. The control program takes these actions
when the SYNAO operand is omitted or when the error analysis routine
returns control.

Source: The SYNAO operand can be supplied in the DCB macro instruction
or by the problem program. The problem program can also change the
error routine address at any time.

Macro Instruction Descriptions 97

DCBD

DCBD-Provide Symbolic Reference to Data Control Blocks (BDAM,
BISAM, BPAM, BSAM, QISAM, and QSAM)

The DCBD macro instruction generates a dummy control section that provides
symbolic names for the fields in one or more data control blocks. The DCBD
macro maps the assembler version of the DCB. The names and attributes of
the fields appear as part of the description of each data control block in
Appendix F, "Data Control Block Symbolic Field Names" on page 227. Attri
butes of the symbolically named fields in the dummy section are the sarne as
the fields in the data control blocks, except for fields containing 3-byte
addresses. The symbolically named fields containing 3-byte addresses have
length attributes of 4 and are aligned on fullword boundaries.

The labels generated by the DCBD macro should not be defined within your
user program. The macro labels are structured as DCBxxxxx, where DCB is
the first 3 characters and xxxxx is 1 to 5 alphameric characters.

The name of the dummy control section generated by a DCBD macro instruc- \...._.,;
tion is IHADCB. The use of any of the symbolic names provided by the dummy
section must be preceded by a USING instruction specifying IHADCB and a
dummy section base register (which contains the address of the actual data
control block). You can issue the DCBD macro instruction only once within any
assembled module; however, you can use the resulting symbolic names for any
number of data control blocks by changing the address in the dummy section
base register. You can code the DCBD macro instruction at any point in a
control section. However, if it is coded at any point other than at the end of a
control section, you must ·code a CSECT instruction to resume the control _)
section.

The DCBD macro is written:

b DCBD

DSORG=({GSl(dsorg/ist)})

[DSORG = ({GSl(dsorg/ist)})]
[,DEVD = (dev/ist)]

specifies the types of data control blocks for which symbolic names are pro- 1~
vided. If the DSORG operand is omitted, the DEVD operand is ignored, and
symbolic names are provided only for the 'foundation block' portion that is
common to all data control blocks.

GS
specifies a data control block for graphics; this operand cannot be used
in combination with any of the below.

dsorglist
You can specify one or more of the following values (each value must
be separated by a comma):

BS

DA

specifies a data control block for a sequential data set and basic
access method.

specifies a data control block for a direct data set. Although this
option is supported, its use is not recommended.

98 MVS/ESA Data Administration: Macro Instruction Reference

\
c J_,,,,

I i
·~

I

\ ,
~

(}
~

IS

LR

PO

PS

QS

DCBD

specifies a data control block for an indexed sequential data set.
Although this option is supported, its use is not recommended.

specifies a dummy section for the logical record length field
(DCBLRECL) only.

specifies a data control block for a partitioned data set.

specifies a data control block for a sequential data set. PS includes
both BS and QS.

specifies a data control block for a sequential data set and queued
access method.

DEVD = (dev/ist)
The DEVD operand specifies the types of devices on which the data set can
reside. If the DEVD operand is omitted and a .sequential data set is speci
fied in the DSORG operand, symbolic names are provided for all the device
types listed below.

devlist
You can specify one or more of the following values (each value must
be separated by a comma). If you specify more than one value, they
must have parentheses around them.

DA
Direct access device

PC
Online punch

PR
Online printer

RD
Online card reader or read punch feed

TA
Magnetic tape

MR
Magnetic character reader

Macro Instruction Descriptions 99

ESETL

ESETL-End Sequential Retrieval (QISAM)
I Use of the ESETL macro is not recommended because it is a QISAM macro; we '"-

recommend you use VSAM instead.

The ESETL macro instruction ends the sequential retrieval of data from an
indexed sequential data set and causes the buffers associated with the speci
fied data control block to be released. An ESETL macro instruction must sepa
rate SETL macro instructions issued for the same data control block.

The ESETL macro is written:

I [symbol] j ESETL deb address

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block opened for the indexed
sequential data set being processed.

100 MVS/ESA Data Administration: Macro Instruction Reference

l :
\....._/

FEOV

FEOV-Force End-of-Volume {BSAM and QSAM)
The FEOV macro instruction causes the system to assume an end-of-volume
condition, and switches volumes automatically. You can specify volume posi
tioning for magnetic tape with the option operand. If no option is coded, the
positioning specified in the OPEN macro instruction is used. Output labels are
created as required and new input labels are verified. The standard exit rou
tines are given control as specified in the data control block exit list. For
BSAM, all input and output operations must be tested for completion before the
FEOV macro instruction is issued. The end-of-data-set (EODAD) routine is given
control if an input FEOV macro instruction is issued for the last volume of an
input data set. FEOV is ignored if issued for a SYSIN or SYSOUT data set.

The FEOV macro is written:

[symbol] FEOV deb address
[,REWINDl,LEAVE]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for an opened sequential
data set.

REWIND
requests that the system position the tape at the load point regardless of
the direction of processing.

LEAVE
requests that the system position the tape at the logical end of the data set
on that volume; this option causes the tape to be positioned at a point after
the tape mark that follows the trailer labels. Note that multiple tape units
must be available to achieve this positioning. If only one tape unit is avail
able, its volume is rewound and unloaded.

Note: If an FEOV macro is issued for a multivolume data set with spanned
records that is being read using QSAM, errors may occur when the next
GET macro is issued following an FEOV macro if the first segment on the
new volume is not the first segment of a record. The errors include dupli
cate records, program checks in your user program, and invalid input from
the variable spanned data set.

The FEOV macro should not be used within the error analysis routine
(SYNAD).

Macro Instruction Descriptions 101

FIND

FIND-Establish the Beginning of a Data Set Member (BPAM)
The FIND macro instruction causes the system to use the address of the first
block of a specified partitioned data set member as the starting point for the
next READ macro instruction for the same data set. All previous input and
output operations that specified the same data control block must have been
tested for completion before the FIND macro instruction is issued.

The FIND macro is written:

[symbol] FIND deb address
,{name address,Dlrelative address list,C}

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened partitioned
data set being processed.

name address-RX-Type Address, (2-12), or (0)

D

specifies the address of an 8-byte field that contains the data set member
name. The name must start in the first byte and be padded on the right (if
necessary) to complete the 8 bytes.

specifies that only a member name has been supplied, and the access
method inust search the directory of the data set indicated in the data
control block to find the location of the member.

relative address list-RX-Type Address, (2-12), or (0)

c

Completion Codes

specifies the address of the area that contains the relative address (TTR)
for the beginning of a data set member. The relative address can be a list
entry completed by using a BLDL macro instruction for the data set being
processed, or the relative address can be supplied by the problem
program.

specifies that a relative address has been supplied, and no directory search
is required. The relative address supplied is used directly by the access
method for the next input operation.

Note: The FIND macro should not be used after WRITE and STOW proc
essing without first closing the data set and reopening it for INPUT proc
essing.

For relative address list, C, when the system returns control to the problem
program, the 3 high-order .bytes of register 15 are set to 0 and the low-order
byte of register 15 contains the following return code:

00 - At all times. If the relative address is in error, execution of the next
CHECK macro instruction causes control to be passed to the error anal
ysis (SYNAD) routine.

102 MVS/ESA Data Administration: Macro Instruction Reference

~I

u

FIND

For name address, D, when the system returns control to the problem program,
the three high-order bytes of registers 0 and 15 are set to 0, the low-order byte
of register 15 contains one of the following return codes and the low-order byte
of register 0 contains one of the following reason codes:

Return Reason
Code (15) Code (0) Meaning

00(X 100 1
) 00 (X'00') Successful execution.

04 (X '04 ') 00 (X'OO') Name not found.

08 (X'08 ') 00 (X '00') Permanent 1/0 error during directory search.

08 (X'08 ') 04 (X'04') Insufficient virtual storage available.

08 (X'08 ') 08 (X '08 ') Invalid DEB (not in key 0 through 7).

Macro Instruction Descriptions 103

FREEBUF

FREEBUF-Return a Buffer to a Pool (BDAM, BISAM, BPAM, and
BSAM)

The FREEBUF macro instruction causes the system to return a buffer to the
buffer pool assigned to the specified data control block. The buffer must have
been acquired using a GETBUF macro instruction.

The FREEBUF macro is written:

[symbol] FREEBUF· deb address
,register

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for an opened data set to
which the buffer pool has been assigned.

register-(2-12)
specifies one of registers 2 through 12 that contains the address of the
buffer being returned to the buffer pool.

104 MVS/ESA Data Administration: Macro Instruction Reference

FREEDBUF

FREEDBUF-Return a Dynamically Obtained Buffer (BDAM and
1

_) BISAM)

\ ' ,;
"'-/

Use of the FREEDBUF macro is not recommended.

The FREEDBUF macro instruction causes the system to return a buffer to the
buffer pool assigned to the specified data control block. The buffer must have
been acquired through dynamic buffering; that is, by coding 'S' for the area
address operand in the associated READ macro instruction.

Note: A buffer acquired dynamically can also be released by a WRITE macro
instruction; see the description of the WRITE macro instruction for BDAM or
BISAM.

The FREEDBUF macro is written:

[symbol] FREEDBUF deeb address
,{KID}
,deb address

deeb address-RX-Type Address, (2-12), or (0)

K

D

specifies the address of the data event control block (DECB) used or
created by the READ macro instruction that acquired the buffer dynamically.

specifies that BISAM is being used.

specifies that BDAM is being used.

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened data set being
processed.

Macro Instruction Descriptions 105

FREE POOL

FREEPOOL-Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The FREEPOOL macro instruction releases an area of storage, previously
acquired for a buffer pool for a specified data control block. The area must
have been acquired either automatically (except when dynamic buffer control is
used) or by executing a GETPOOL macro instruction. For queued access
methods, you must issue a CLOSE macro instruction for all the data control
blocks using the buffer pool before issuing the FREEPOOL _macro instruction.
For basic access methods, you can issue the FREEPOOL macro instruction
when the buffers are no longer required. A buffer pool should be released only
once, regardless of the number of data control blocks sharing the buffer pool.

The FREEPOOL macro is written:

I [symbol] j FREEPOOL I deb address

deb address-RX-Type Address, (2-12), or (1)
specifies the address of a data control block to which the buffer pool has
been assigned.

106 MVS/ESA Data Administration: Macro Instruction Reference

\~

! I
\~

\ v

(I

~

I

\._./

GET

GET-Obtain Next Logical Record (QISAM)
Use of the GET (QISAM) macro is not recommended; we recommend you use
VSAM instead.

The GET macro instruction retrieves (reads) the next record. Control is not
returned to the problem program until the record is available.

The GET macro is written:

[symbol] GET deb address
[,area address]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened input data set
being retrieved.

area address-RX-Type Address, (2-12), or (0)
specifies the storage address into which the system is to move the record
(move mode only). Either the move or locate mode can be used with
QISAM, but they must not be mixed within the specified data control block.
The following describes operations for move and locate modes:

Locate Mode: If locate mode has been specified in the data control block,
the area address operand must be omitted. The system returns the
address of the buffer segment containing the record in register 1.

Move Mode: If move mode has been specified in the data control block, the
area address operand must specify the address in the problem program
into which the system will move the record. If the area address operand is
omitted, the system assumes that register 0 contains the area address.
When control is returned to the problem program, register 0 contains the
area address, and register 1 contains the address of the data control block.

Notes:

1. The end-of-data-set (EODAD) routine is given control if the end of the data
set is reached; the data set may be closed if processing is completed, or an
ESETL macro must be issued before a SETL macro to continue further input
processing.

2. The error analysis (SYNAD) routine is given control if the input operation
could not be completed successfully. The contents of the general registers
when control is given to the SYNAD exit routine are described in DFP:
Customization.

3. When the key of an unblocked record is retrieved with the data, the address
of the key is returned as follows (see the SETL macro instruction):

Locate Mode: The address of the key is returned in register 0.

Move Mode: The key appears before the record in your buffer area.

4. If a GET macro instruction is issued for a data set and the previous request
issued for the same data set was an OPEN, ESETL, or unsuccessful SETL
(no record found), a SETL B (key and data) is invoked automatically, and the
first record in the data set is returned.

Macro Instruction Descriptions 107

GET

GET-Obtain Next Logical Record (QSAM)
The GET macro instruction retrieves (reads) the next record. Various modes \-
are available and are specified in the DCB macro instruction. In the locate
mode, the GET macro instruction locates the next sequential record or record
segment to be processed. The system returns the address of the record in reg-:-
ister 1 and places the length of the record or segment in the logical record
length (DCBLRECL) field of the data control block. The DCBLRECL field is not
changed when GET is used in XLRI processing. You can process the record
within the input buffer or move the record to a work area.

In move mode, the GET macro instruction moves the next sequential record to
your work area. This work area must be large enough to contain the largest
logical record of the data set and its record-descriptor word (variable-length
records). The system returns the address of the work area in register 1. The
record length is placed in the DCBLRECL field. You can use move mode only
with simple buffering.

In data mode, which is available only for variable-length spanned records, the
GET macro instruction moves only the data portion of the next sequential
record to your work area. You cannot use the TYPE= P operand with data
mode.

If the ISCll/ASCll translation routines are included when the operating system is
generated, you can request translation by coding LABEL=(,AL) or (,AUL) in the
DD statement, or by coding OPTCD =Q in the DCB macro instruction or DCB
subparameter of the DD statement. When translation is requested, all QSAM

\"-"

records whose record format (RECFM operand) is F, FB, D, OS, DB, DBS, or U \...........,
are automatically translated from ISCll/ ASCII code to EBCDIC code when the
input buffer is full. For translation to occur correctly, all input data must be in
ISCll/ ASCII code.

The GET macro is written:

[symbol] GET {deb addresslpdab address}
[,area address]
[,TYPE=P]

deb address-RX-Type Address, (2-12), or (1)
specifies' the address of the data control block for the opened input data set
being retrieved.

pdab address-RX-Type Address, (2-12), or (1)
specifies the address of the parallel data access block for the opened input
data sets from which a record is to be retrieved. When pdab address is
used, TYPE= P must be coded.

108 MVS/ESA Data Administration: Macro Instruction Reference

I ,

~

,.
(' \L_,,,J

GET

area address-RX-Type Address, (2-12), or (0)
specifies the address of an area into which the system is to move the
record (move or data mode). The move, locate, or data mode can be used
with QSAM, but must not be mixed within the specified data control block.
If the area address operand is omitted in the move or data mode, the
system assumes that register 0 contains the area address. The following
describes the operation of the three modes:

Locate Mode: If locate mode has been specified in the data control block,
the area address operand must be omitted. The system returns the
address of the beginning buffer segment containing the record in register 1.
If the data set is open for ROBACK, register 1 will point to the beginning of
the record.

When retrieving variable-length spanned records, and the logical record.
interface (LRI) or extended logical record interface (XLRI) is not used, the
records are obtained one segment at a time. The problem program must
retrieve additional segments by issuing subsequent GET macro instructions,
except when a logical record interface is requested (by specifying
BFTEK=A in the DCB macro instruction or by issuing a BUILDRCD macro
instruction, or by specifying DCBLRECL=OK or nnnnnK in the DCB macro).
In this case, the control program retrieves all record segments and assem
bles the segments into' a complete logical record. The system returns the
address of this record area in register 1.

When the maximum logical record length is greater than 32756 bytes,
LRECL=X must be specified in the data ·control block, and the problem
program must assemble the segments into a complete logical record.
LRECL=X and/or segment mode processing is invalid for ISO/ANSl/FIPS
spanned records, RECFM =OS or RECFM =DBS.

Move Mode: If move mode has been specified in the data control block, the
area address operand specifies the beginning address of an area in the
problem program into which the system will move the record. If the data
set is open for ROBACK, the area address operand specifies the ending
address of an area in the problem program.

If move mode has been specified in the data control block, do not code
BFTEK=A.

For variable-length spanned records, the system constructs the record
descriptor word in the first four bytes of the area and assembles one or
more segments into the data portion of the logical record area; the segment
descriptor words are removed. When XLRI mode is used, the record
descriptor word (ROW) in the record area is a fullword value.

Data Mode: If data mode has been specified in the data control block (data
mode can be specified for variable-length spanned records only), the area
address operand specifies the address of the area in the problem program
into which the system moves the data portion of the logical record; a
record-descriptor word is not constructed when data mode is used. The
TYPE= P operand cannot be used with data mode.

Extended Logical Record Interface (XLRI): When the GET macro is used in
XLRI mode, the address returned in register 1 points to a fullword record
length value. The three low-order bytes of the fullword indicate the length
of the complete logical record plus four bytes for the fullword.

Macro Instruction Descriptions 109

GET

XLRI mode requires a record area to assemble a complete logical record
from the segments that are read.

If a record area is not automatically obtained by OPEN processing, you can
construct a record by using the BUILDRCD macr.o before issuing the OPEN.
The DCB LRECL field indicates the length of the area in 1 K 1 units (1024
bytes) required to contain the longest logical record of the data set.

Note: If spanned records extend across volumes, errors may occur when
using the GET macro if a volume that begins with a middle or last record
segment is mounted first, or if an FEOV macro is issued followed by a GET
macro. QSAM cannot begin reading from the middle of the record. (This
applies to move mode, data mode, and locate mode if logical record inter
face is specified.)

TYPE=P

GET Routine Exits

The TYPE= P and pdab address operands are used to retrieve a record from
a queue of input data sets that have been opened. The open and close
routines add and delete DCB addresses in the queue. The DCB from which \~
a record is retrieved can be located from information in the PDAB. For this
purpose, the formatting macro, PDABD, should be used.

The end-of-data-set (EODAD) routine is given control if the end of the data set is
reached; the data set must be closed. Issuing a GET macro instruction in the
EODAD routine results in abnormal termination of the task.

The error analysis (SYNAD) routine is given control if the input operation could
not be completed successfully. The contents of the general registers when
control is given to the SYNAD exit routine are described in Appendix A, "Status
Information Following an Input/Output Operation" on page 209.

110 MVS/ESA Data Administration: Macro Instruction Reference

~·'

' ' \.._/

GETBUF

GETBUF-Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM)
The GETBUF macro instruction causes the control program to obtain a buffer
from the buffer pool assigned to the specified data control block and to return
the address of the buffer in a designated register. The BUFCB field of the data
control block must contain the address of the buffer pool control block when the
GETBUF macro instruction is issued. The system returns control to the instruc
tion following the GETBUF macro instruction. Use the FREEBUF macro instruc
tion to return the buffer obtained to the buffer pool.

The GETBUF macro is written:

[symbol] GETBUF deb address
,register

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block that contains the buffer pool
control block address.

register-(2-12)
specifies one of the registers 2 through 12 in which the system is to place
the address of the buffer obtained from the buffer pool. If no buffer is avail
able, the contents of the designated register are set to 0.

Macro Instruction Descriptions 111

GETPOOL

GETPOOL-Build a Buffer Pool {BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM)

The GETPOOL macro instruction constructs a buffer pool in a storage area
acquired by the system. The system places the address of the buffer pool
control block in the BUFCB field of the data control block. The GETPOOL macro
instruction must be issued either before an OPEN macro instruction is issued or
during the data control block exit routine for the specified data control block.

The GETPOOL macro is written:

[symbol] GETPOOL deb address
,{number of buffers,buffer lengthl(O)}

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block to which the buffer pool is
assigned. Only one buffer pool can be assigned to a data control block.

The value you specify may be either a positive or a negative value. If this
operand has the high-order bit on (for example, to signify the last address
in a list), this bit must be reset to zero. Otherwise, the address will be
treated as a negative value.

number-of-buffers-symbol, decimal digit, absexp, or (2-12)
specifies the number of buffers in the buffer pool to a maximum of 255.

buffer length-symbol, decimal digit, absexp, or (2-12)

(0)

specifies the length, in bytes, or each buffer in the buffer pool. The value
specified for the buffer length must be a doubleword multiple; otherwise,
the system rounds the value specified to the next higher doubleword mul
tiple. The maximum· length that can be specified is 32760 bytes. For QSAM,
the buffer length must be at least as large as the value specified in the
block size (DCBBLKSI) field in the data control block.

The number of buffers and buffer length can be specified in general register
0. If (0) is coded, register 0 must contain the binary values for the number
of buffers and buffer length as shown in the following illustration:

Register O

Number of Buffers Buffer Length

Bits: 0 15 16 31

The buffer pool and the associated storage area are released by issuing a
FREEPOOL macro instruction after issuing a CLOSE macro instruction for the
data set indicated in the specified data control block.

112 MVS/ESA Data Administration: Macro Instruction Reference

\)

~,

I

~)
\.-L,./

MSGDISP

MSGDISP-Displaying a Ready Message
The MSGDISP macro is written:

[symbol] MS GD ISP ROY
,DCB=addr
[,TXT= {'msgtxt'laddr}]

ROY
specifies that text supplied in the TXT parameter is to be displayed in posi
tions 2 through 7 of the display while the data set is open. The display is
steady (not flashing) and is enclosed in parentheses. The display is also
written to the tape pool console (routing code 3, descriptor code 7).

DCB=addr
specifies the address of a DCB opened to a data set on the mounted
volume. If multiple devices are allocated, the message display is directed
to the one containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you may
update a message display after an end-of-volume condition by using the
EOV exit specified in a DCB exit list. For a concatenated data set with
unlike characteristics, the open DCB exit may be used to update the
display.

addr-RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of the opened DCB.

TXT= {'msgtxt'laddr}
specifies as many as six characters to be displayed in positions 2 through
7. If TXT is not specified, blanks are displayed.

'msgtxt'
specifies the 1- to 6-character text. The text must be enclosed in apos
trophes.

addr-RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of an area containing the text to be dis
played.

Macro Instruction Descriptions 113

MSGDISP

MSGDISP-List Form
The list form of the MSGDISP macro is written:

[symbol] MS GO ISP [ROY]
[,DCB= addr]
,MF=L
[,TXT= {'msgtxt'laddr}]

ROY
specifies that text supplied in the TXT parameter is to be displayed in posi
tions 2 through 7 while a data set is open. The display is steady (not
flashing) and is enclosed in parentheses. The display is also written to the
tape pool console (routing code 3, descriptor code 7).

OCB=addr
specifies the address of a DCB opened to a data set on the mounted
volume. If multiple devices are allocated, the message display is directed
to the one containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you may
update a message display after an end-of-volume condition by using the
EOV exit specified in a DCB exit list. For a concatenated data set with
unlike characteristics, the open DCB exit may be used to update the
display.

addr-A-Type address
specifies an in-storage address of the opened DCB.

MF=L
specifies the list form of MSGDISP. This generates a parameter list that
contains no executable instructions. The list can be used as input to and
can be modified by the execute form.

TXT= {'msgtxt'laddr}
specifies as many as six characters to be displayed in positions 2 through
7. If TXT is not specified, blanks are displayed.

'msgtxt'
specifies the 1- to 6-character text. The text must be enclosed in apos
trophes.

addr-A-Type address
specifies an in-storage address of an area containing the text to be dis
played.

114 MVS/ESA Data Administration: Macro Instruction Reference

I .1
\.._,.,./

\ .1

''-/

~··

MSGDISP

MSGDISP-Execute Form
The execute form of the MSGDISP macro is written:

[symbol] MSGDISP ROY
[,DCB= addr]
,MF= (E,addr)
[,TXT= {'msgtxt'laddr}]

ROY
specifies that text supplied in the TXT parameter is to be displayed in posi
tions 2 through 7 while a data set is open. The display is steady (not
flashing) and is enclosed in parentheses. The display is also written to the tape pool console (routing code 3, descriptor code 7).

DCB=addr
specifies the address of a DCB opened to a data set on the mounted
volume. If multiple devices are allocated, the message display is directed
to the one containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you may
update a message display after an end-of-volume condition by using the
EOV exit spedfied in a DCB exit list. For a concatenated data set with
unlike characteristics, the open DCB exit may be used to update the
display.

addr-RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of the opened DCB.

MF=(E,addr)
specifies that the execute form of MSGDISP and an existing parameter list
is to be used.

addr-RX-Type address, (1), or (2-12)
specifies an in-stor~ge address of the parameter list.

TXT= {'msgtxt'laddr}
specifies as many as six characters to be displayed in positions 2 through
7. If TXT is not specified, blanks are displayed.

'msgtxt'
specifies the 1- to 6-character text. The text must be enclosed in apos
trophes.

addr-RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of an area containing the text to be dis
played.

Macro Instruction Descriptions 115

MSGDISP

Completion Codes
When the system returns control to your problem program, the low-order byte
of register 15 contains a return code. For return code = 08, the low-order byte
of register 0 contains a reason code.

Return
Code (15)

00 (X 100 1
)

04 (X 104 1
)

08 (X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

12 (X •oc •)

Reason
Code (0)

01 (X 101 1
)

02(X 102 1
)

03 (X 103 1
)

04(X 104 1
)

05(X 105 1
)

06 (X 1 06 1
)

11 (X 108 1)

12 (X •oc 1
)

Meaning

Successful completion.

Device does not support MSGDISP.

Invalid parameter.

Invalid DCB or DEBCHK error.

Environmental error.

Authorization violation.

Invalid UCB.

Invalid request.

Unsuccessful ESTAE macro call.

Unsuccessful GETMAIN request.

Input/output error (1/0 supervisor posted the
request as an error).

Note: An 1/0 error occurs for load display if
the drive display has a hardware failure.

116 MVS/ESA Data Administration: Macro Instruction Reference

\~

:~

NOTE

NOTE-Provide Relative Position (BPAM and BSAM-Tape and Direct
(__) Access Only)

The NOTE macro instruction returns the position of the last block read from or
written into a data set. All input and output operations using the same data
control block must be tested for completion before the NOTE macro instruction
is issued.

The capability of using the NOTE macro instruction is automatically provided
when a partitioned data set is used (DSORG =PO or POU), but, when a sequen
tial data set (BSAM) is used, the use of NOTE/POINT macro instructions must

· be indicated in the MACRF operand of the DCB macro instruction.

The NOTE macro is written:

[symbol] NOTE deb address
[,TYPE= {ABSIREL}]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block opened for the partitioned or
sequential data set being processed.

TYPE= {ABSIREL}
indicates whether the deb address is a physical block identifier or a relative
address.

ABS
specifies that, after NOTE executes successfully (contents of register 15
is 0), register 0 contains the physical block identifier for the next data
block waiting for transfer between main storage and the control unit
buffer, and register 1 contains the physical block identifier of the next
data block waiting for transfer between the control unit buffer and the
tape drive.

If you subtract the low-order 20 bits of register 1 from the low-order 20
bits of register 0, the remainder is the number of data blocks left in the
control unit buffer. A negative remainder means the buffer is in read
mode, and a positive remainder means the buffer is in either write or
read-backward mode. A zero remainder means that no data is buf
fered.

REL
causes the system to return the relative position of the last block read
from or written into a data set. The position of the current volume is
returned in register 1 as follows:

Magnetic Tape

The block number is in binary, right-adjusted in register 1 with high
order bits set to zero. Do not use a NOTE macro instruction for tapes
without standard labels when:

• The data set is opened for ROBACK (specified in the OPEN macro
instruction) or

• The DISP parameter of the DD statement for the data set specifies
DISP=MOD.

Macro Instruction Descriptions 117

NOTE

Direct Access Device

TTRz format, where:

TTR is a 3-byte field indicating the relative track record address of the ~
block positioned to.

z is a byte set to zero.

The NOTE macro instruction cannot be used for SYSOUT data sets.

Note: When a direct access device is being used, the amount of remaining
space on the track is returned in register 0 if a NOTE macro instruction follows
a WRITE macro instruction. If a NOTE macro instruction follows a READ or
POINT macro instruction, the track capacity of the direct access device is
returned in register 0.

Completion Codes-If Type= ABS is Specified
When the system returns control to your problem program and you have speci
fied the ABS parameter, the low'."order byte of register 15 contains a return
code; if return code = 08, the low-order byte of register 0 contains a reason ___,;
code:

Return
Code (15)

00(X 100 1
)

04 (X 104 1
)

08 (X 108 1
)

08 (X 108 1
)

08(X 108 1
)

08 (X 108 1
)

08 (X 108 1
)

12 (X 10C 1
)

Reason
Code (0)

01 (X 101 ')

02 (X'02')

03(X 103 1
)

11 (X 'OB')

12 (X'OC ')

Meaning

Successful completion.

Device does not support block identifier.

Incorrect parameter.

Incorrect DCB or a DEBCHK error.

Environmental error.

Unsuccessful call to EST AE macro.

Unsuccessful GETMAIN request.

Input/output error.

Completion Codes-If Type= REL is Specified
None.

118 MVS/ESA Data Administration: Macro Instruction Reference

\
\.~

J
\.._/

)

\.._./

OPEN

OPEN-Logically Connect a Data Set (BDAM, BISAM, SPAM, BSAM, U QISAM, and QSAM)

I '

_.;'

\ . J "'-'/

(l

\~

The OPEN macro instruction completes the specified data control block(s) and
prepares for processing the data set(s) identified in the data control block(s).
Input labels are analyzed and output labels are created. Control is given to exit
routines as specified in the data control block exit list. The processing method
(option 1) is designated to provide correct volume positioning for the data set
and define the processing mode (INPUT, OUTPUT, and so forth) for the data
set(s). Final volume positioning (when volume switching occurs) can be speci
fied (option 2) to override the positioning implied by the DD statement DISP
parameter. Option 2 applies only to volumes in a multivolume data set other
than the last volume. Any number of data control block addresses and associ
ated options may be specified in the OPEN macro instruction.

The maximum number of DCBs that can be concurrently open to one unit is
127.

If associated data sets for a 3525 card punch are being opened, all associated
data sets must be open before an 1/0 operation is initiated for any of the data
sets. For a description of associated data sets, see Programming Support for
the IBM 3505 Card Reader and the IBM 3525 Card Punch.

The standard form of the OPEN macro instruction is written as follows (the list
and execute forms are shown following the description of the standard form):

[symbol] OPEN (deb address,[(options)], ...)
,[TYPE=J]
,[MODE= 24131]

deb address-A-Type Address or (2-12)
Specifies the address of the data control block(s) for the data set(s) to be
prepared for processing.

options
The options operands shown in the following illustration indicate the volume
positioning available based on the device type and access method being
used. If option 1 is omitted, INPUT is assumed. If option 2 is omitted, DISP
is assumed. You must code option 1 if also coding option 2. Option 2 is
ignored for SYSIN and SYSOUT data sets. Options 1 and 2 are ignored for
BISAM and QISAM (in the scan mode), and the data control block indicates
the operation. You must specify OUTPUT or OUTIN when creating a data
set.

Macro Instruction Descriptions 119

OPEN

DEVICE TYPE
Access
Method Magnetic Tape Direct Access Other Types

Opti.o~ 1 Option 2 Option 1 Option 2 Option 1 Option 2

QSAM [INPUT] [,REREAD] [INPUT] [,REREAD] [INPUT]
[EXTEND] [,LEAVE] [EXTEND] [,LEAVE] [EXTEND]
[OUTPUT] [,DISP] [OUTPUT] [,DISP] [OUTPUT]
[ROBACK] [UPDAT]

BSAM [INPUT] [,REREAD] [INPUT] [,REREAD] [INPUT]
[EXTEND] [,LEAVE] [EXTEHD] [,LEAVE] [OUTPUT]
[OUTINX] [,DISP] [OUTINX] [,DISP]
[OUTPUT] [OUTPUT]
[INOUT] [INOUT]
[OUTIN] [OUTIN]
[RD BACK] [UPDAT]

QI SAM [OUTPUT] -
Load Mode [EXTEND]

BPAM, [INPUT] -
BDAM [OUTPUT]

[UPDAT]

The following describes the options shown in the preceding illustration. All
option operands are coded as shown.

Note: The EXTEND, INOUT, OUTIN, and OUTINX options are not allowed for
ISO/ANSl/FIPS Version 3 tape processing.

Option 1' Meaning

EXTEND The data set is treated as an OUTPUT data set, except that records
are added to the end of the data set regardless of what was speci
fied on the DISP parameter of the DD statement.

INPUT Input data set.

INOUT The data set is first used for input and, without reopening, is used as
an output data set. The data set is processed as INPUT if it is a
SYSIN data set or if LABEL=(,,,IN) is specified in the DD statement.

OUTPUT Output data set (for BDAM, OUTPUT is equivalent to UPDAT).

OUTIN The data set is first used for output and, without reopening, is used
as an input data set. The data set is processed as OUTPUT if it is a
SYSOUT data set or if LABEL=(,,,OUT) is specified in the DD state
ment.

OUTINX The data set is treated as an OUTIN data set, except that records
are added to the end of the data set regardless of what was speci
fied on the DISP parameter of the DD statement.

ROBACK Input data set, positioned to read ba~kward.

UPDAT

Note: Variable-length records cannot be read backward.

Data set to be updated in place or,- for BDAM, blocks are to be
updated or added.

120 MVS/ESA Data Administration: Macro Instruction Reference

\"-'

i
~j

i :
~

OPEN

Option 2 Meaning

LEAVE Positions the current tape volume to the logical end of the data set
when volume switching occurs. If processing was forward, the
volume is positioned to the end of the data set; if processing was
backward (ROBACK), the volume is positioned to the beginning of
the data set.

REREAD Positions the current tape volume to reprocess the data set when
volume switching occurs. If processing was forward, the volume is
positioned to the beginning of the data set; if processing was back
ward (ROBACK), the volume is positioned to the end of the data set.

DISP Specifies that a tape volume is to be disposed of in the manner
implied by the DD statement associated with the data set. Direct
access volume positioning and disposition are not affected by this
parameter of the OPEN macro instruction. There are several disp
ositions that you can specify in the DISP parameter of the DD state
ment; DISP can be PASS, DELETE, KEEP, CATLG, or UNCATLG. This
option has significance at the time an end-of-volume condition is
encountered only when DISP is PASS. The end-of-volume condition
may result from issuing an FEOV macro instruction or may be the
result of reaching the end of a volume.

If DISP is PASS in the DD statement, the tape is spaced forward to
the end of the data set on the current volume.

If any DISP option is coded in the DD statement, (except when DISP
is PASS), the resultant action at the time an end-of-volume condition
arises depends on (1) how many tape units are allocated to the data
set and (2) how many volumes are specified for the data set in the
DD statement. This is determined by the UNIT and VOLUME param
eters of the DD statement associated with the data set. If the
number of volumes is greater than the number of units allocated, the
current volume is rewound and unloaded. If the number of volumes
is less than or equal to the number of units, the current volume is
merely rewound.

Note: When the DELETE option is specified, the system waits for the com
pletion of the rewind operation before it continues processing subsequent reels
of tape.

The LEAVE and REREAD options are meaningless except for magnetic tape and
CLOSE TYPE =T. Any other options specified for CLOSE TYPE =T besides
LEAVE and REREAD are treated as LEAVE during execution.

TYPE=J
You can code OPEN TYPE =J to specify that, for each data control block
referred to, you have supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal representation of information in
a DD statement. This option, because it is used with modifying a JFCB,
should be used only by the system programmer or only under the system
programmer's supervision. MODE=31 is not allowed when TYPE=J is
specified.

When you specify TYPE=J, you must also supply a DD statement. The
amount of information in the DD statement is up to you, but you must
specify the device allocation and a ddname that corresponds to the associ
ated data control block DCBDDNAM field.

Macro Instruction Descriptions 121

OPEN

For more detailed information on using TYPE= J, see System-Data Admin
istration.

MODE=24l31
You can code OPEN MODE= 31 to specify a long form parameter list that
can contain 31-bit addresses. Your program does not need to be executing
in 31-bit addressing mode to use MODE= 31 in the OPEN macro. This
parameter specifies the form of the parameter list, not the addressing mode
of the program. The default, MODE= 24, specifies a standard form param
eter list with 24-bit addresses. MODE= 31 is not permitted if TYPE =J is
specified. If TYPE =J is specified, you must use the standard form param
eter list.

The standard form parameter list must reside below 16M, but the calling
program may be above 16M. Assume that all ACBs and DCBs are below
16M.

The long form parameter list can reside above or below 16M. Although the
ACB or DCB address is contained in a 4-byte field, the DCB must be below
16M. Except for VSAM or VTAM ACBs, all ACBs must also be below 16M. '~
Therefore, the leading byte of the ACB or DCB address must contain zeros.
If the byte contains something other than zeros, an IEC190I message is
issued and the data set is not opened. The program is not abnormally ter-
minated unless an attempt is made to read to or write from the data set.

Note: It is up to you to keep the mode specified in the MF= L and MF= E
versions of the OPEN and CLOSE macros consistent. Errors and unpredict-
able results will occur if the specified modes are inconsistent.

Note: After the OPEN macro instruction has been executed, bit 3 of the
DCBOFLGS field i.n the data control block is set to 1 if the data control block
has been opened successfully, but is set to 0 if the data control block has not
been opened successfully.

122 MVS/ESA Data Administration: Macro Instruction Reference

!)

'~

OPEN

The following errors in opening a DCB cause the results indicated:

Error Result

Attempting to open a data control No action.
block that is already open.

Attempting to open a data control Unpredictable.
block when the deb address
operand· does not specify the
address of a data control block.

Attempting to open a data control A "DD STATEMENT MISSING"
block when a corresponding DD message is issued. An attempt to
statement has not been provided. use the data set causes unpredict-

able results (see note 1).

Notes:

1. You need to test bit 3 of the DCBOFLGS field in the data control block. Bit 3
is set to 1 if the data control block has been opened successfully, but is set
to 0 in the case of an error, and can be tested by the sequence:

TM DCBOFLGS,X 1 10 1

BZ ERRORRTN (Branch to your error routine)

Executing the two instructions shown above requires writing a DCBD macro
instruction in the program, and a base register must be defined with a
USING statement before the instructions are executed.

2. Other errors detected by OPEN result in an ABEND being issued with a
valid system completion code in the form x13 where x is a hex digit from O
to F. See System Codes for the ABEND codes.

Return Codes from OPEN
When your prog.ram receives control after issuing an OPEN macro, the return
code in register 15 indicates if all the data sets were opened successfully: The
enJries with errors are not restored, and cannot be reopened without restora
tion.

Return
Code (15)

0(0)

4(4)

8(8)

Meaning

All data sets were opened successfully.

All data sets were opened successfully, but one or more
warning messages were issued.

At least one data set (VSAM or non-VSAM) was not opened
successfully; the access method control block was restored to
the contents it had before OPEN was issued; or, if the data set
was already open, the access method control block remains
open and usable and is not changed.

Macro Instruction Descriptions 123

OPEN

Return
Code (15)

12(C)

Meaning

A non-VSAM data set was not opened successfully when a
non-VSAM and a VSAM data set were being opened at the
same time; the non-VSAM data control block was not restored
to the contents it had before OPEN was issued (and the data
set cannot be opened without restoring the control block).

124 MVS/ESA Data Administration: Macro Instruction Reference

I
\~

i
~!

I

_,/

(

\ .• _.)

(
\.____)

OPEN

OPEN-List Form
The list form of the OPEN macro instruction constructs a data management
parameter list. You can specify any number of operands (data control block
addresses and associated options).

The list consists of a one-word entry for each DCB in the parameter list; the
high-order byte is used for the options and the three low-order bytes are used
for the DCB address. The end of the list is indicated by a 1 in the high-order bit
of the last entry's option byte. The length of a list generated by a list form
instruction must be equal to the maximum length list required by any execute
form instruction that refers to the same list. A maximum length list can be con
structed by one of two methods:

• Code a list-form instruction with the maximum number of parameters that
are required by an execute form instruction that refers to the list.

• Code a maximum length list by using commas in a list-form instruction to
acquire a list of the appropriate size. For example, coding OPEN
(,,,,,,,,,},MF= L would provide a list of five fullwords (five deb addresses and
five options).

Entries at the end of the list that are not referenced by the execute-form instruc
tion are assumed to have been filled in when the list was constructed or by a
previous execute-form instruction. Before using the execute-form instruction,
you may shorten the list by placing a 1 in the high-order bit of the last DCB
entry to be processed.

A zeroed work area on a fullword boundary is equivalent to OPEN
(,(INPUT,DISP), ...),MF= L and can be used in place of a list-form instruction.
The high-order bit of the last DCB entry must contain a 1 before this list can be
used with the execute-form instruction.

A parameter list constructed by an OPEN, list-form, macro instruction can be
referred to by either an OPEN or CLOSE execute form instruction.

The description of the standard form of the OPEN macro instruction provides
the explanation of the function of each operand. The description of the
standard form also indicates which operands are completely optional and those
required in at least one of the pair of list and execute forms. The format
description below indicates the optional and required operands in the list form
only.

The list form of the OPEN macro is written:

[symbol] OPEN

deb address-A-Type Address

MF=L

([deb address],[(options)], ...) ,MF=L
[,TYPE=J] [,MODE=24l31]

The MF=L operand specifies that the OPEN macro instruction is used to
create a data management parameter list that is referenced by an execute
form instruction.

Macro Instruction Descriptions 125

OPEN

TYPE=J
You can code OPEN TYPE=J to specify that, for each data control block
referred to, you have supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal representation of information in
a DD statement. This option, because it is used with modifying a JFCB,
should be used only by the system programmer or only under the system
programmer's supervision. MODE=31 is not allowed when TYPE=J is
specified.

When you specify TYPE =J, you must also supply a DD statement. The
amount of information in the DD statement is up to you, but you must
specify the device allocation and a ddname that corresponds to the. associ
ated data control block DCBDDNAM field.

For more detailed information on using TYPE=J, see System-Data Admin
istration.

MODE=24l31
You can code OPEN MODE= 31 to specify a long form parameter list that
can contain 31-bit addresses. Your program does not need to be executing
in 31-bit addressing mode to use MODE= 31 in the OPEN macro. This
parameter specifies the form of the parameter list, not the addressing mode
of the program. The default, MODE= 24, specifies a standard form param
eter list with 24-bit addresses. MODE= 31 is not permitted if TYPE= J is
specified. If TYPE=J is specified, you must use the standard form param
eter list.

The standard form parameter list must reside below 16M, but the calling
program may be above 16M. Assume that all ACBs and DCBs are below
16M.

The long form parameter list can reside above or below 16M. Although the
ACS or DCB address is contained in a 4-byte field, the DCB must be below
16M. Except for VSAM or VTAM ACBs, all ACBs must also be below 16M.
Therefore, the leading byte of the ACS or DCB address must contain zeros.
If the byte contains something other than zeros, an IEC1901 message is
issued and the data set is not opened. The program is not abnormally ter
minated unless an attempt is made to read to or write from the data set.
Note: It is up to you to keep the mode specified in the MF= L and MF= E
versions of the OPEN and CLOSE macros consistent. Errors and unpredict- \....._,,
able results will occur if the specified modes are inconsistent.

\,.,..,,,,,,/

126 MVS/ESA Data Administration: Macro Instruction Reference

I

~;

l
\~

OPEN

OPEN-Execute Form
A remote data management parameter list is used in, and can be modified by,
the execute form of the OPEN macro instruction. The parameter list can be
generated by the list form of either an OPEN or CLOSE macro instruction.

The description of the standard form of the OPEN macro instruction provides
the explanation of the function of each operand. The description of the
standard form also indicates which operands are totally optional and those
required in at least one of the pair of list and execute forms. The format
description below indicates the optional and required operands in the execute
form only.

The execute form of the OPEN macro is written:

[symbol] OPEN [([deb address],[(options)], ...)]
,MF= {E,data management list address)
[,TYPE=J]
[,MODE= 24131]

deb address-RX-Type Address or (2-12)

MF= {E,data management list address)
The MF=E operand specifies that the execute form of the OPEN macro
instruction is used, and an existing data management parameter list
(created by a list-form instruction) is used. The MF= operand is coded as
follows:

E

data management list address-RX-Type, (2-12), (1)

TYPE=J
You can code OPEN TYPE=J to specify that, for each data control block
referred to, you have supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal representation of information in
a DD statement. This option, because it is used with modifying a JFCB,
should be used only by the system programmer or only under the system
programmer's supervision. MODE=31 is not allowed when TYPE=J is
specified.

When you specify TYPE =J, you must also supply a DD statement. The
amount of information in the DD statement is up to you, but you must
specify the device allocation and a ddname that corresponds to the associ
ated data control block DCBDDNAM field.

For more detailed information on using TYPE=J, see System-Data Admin
istration.

MODE=24l31
You can code OPEN MODE= 31 to specify a long form parameter list that
can contain 31-bit addresses. Your program does not need to be executing
in 31-bit addressing mode to use MODE=31 in the OPEN macro. This
parameter specifies the form of the parameter list, not the addressing mode
of the program. The default, MODE= 24, specifies a standard form param
eter list with 24-bit addresses. MODE=31 is not permitted if TYPE=J is

Macro Instruction Descriptions 127

OPEN

specified. If TYPE= J is specified, you must use the standard form param
eter list.

The standard form parameter list must reside below 16M, but the calling
program may be above 16M. Assume that all ACBs and DCBs are below
16M.

The long form parameter list can reside above or below 16M. Although the
ACB or DCB address is contained in a 4-byte field, the DCB must be below
16M. Except for VSAM or VTAM ACBs, all ACBs must also be below 16M.
Therefore, the leading byte of the ACB or DCB address must contain zeros.
If the byte contains something other than zeros, an IEC190I message is
issued and the data set is not opened. The program is not abnormally ter
minated unless an attempt is made to read to or write from the data set.
Note: It is up to you to keep the mode specified in the MF= L and MF= E
versions of the OPEN and CLOSE macros consistent. Errors and unpredict
able results will occur if the specified modes are inconsistent.

The data sets with errors are not restored, and cannot be reopened without res
toration.

128 MVS/ESA Data Administration: Macro Instruction Reference

\,._.,.

"'-··/

PDAB

PDAB-Construct a Parallel Data Access Block (QSAM)
The PDAB macro instruction is used with the GET (TYPE=P) macro instruction.
It defines an area in the problem program where the open and close routines
build and maintain a queue of DCB addresses for use by the get routine.

The parallel data access block is constructed during the assembly of the
problem program. The MAXDCB operand must be coded in the PDAB macro
instruction, because it cannot be supplied from any other source.

Certain data set characteristics prevent a DCB address from being available on
the queue-see the description of QSAM paraHel input processing in Data
Administration Guide.

The PDAB macro is written:

I [symbol] I PDAB MAXDCB = absexp

MAXDCB=absexp (maximum value is 32767 bytes)
specifies the maximum number of DCBs that you require in the queue for a
GET request.

Note: The number of bytes required for PDAB is equal to
24 + Bn, where n is the value of the keyword, MAXDCB.

Macro Instruction Descriptions 129

PDABD

PDABD-Provide Symbolic Reference to a Parallel Data Access Block
(QSAM)

The PDABD macro instruction generates a dummy control section that provides
symbolic names for the fields in one or more parallel data access blocks. The
names, attributes, and descriptions of the fields appear in Appendix G, "PDABD
Symbolic Field Names" on page 245.

The name of the dummy control section generated by a PDABD macro instruc
tion is IHAPDAB. A USING instruction specifying IHAPDAB and a dummy
section base register containing the address of the actual parallel data access
block should come before any of the symbolic names provided by the dummy
section. You should use the PDABD macro instruction once within any assem
bled module; however, you can use the resulting symbolic names for any
number of parallel data access blocks by changing the address in the dummy
section base register. You can code the PDABD macro instruction at any point
in a control section. If coded at any point other than at the end of a control
section, the control section must be resumed by coding a CSECT instruction.

The PDABD macro is written:

b PDABD b

130 MVS/ESA Data Administration: Macro Instruction Reference

\

<.)

_)l

I

r
\ I

~

POINT

POINT---Position to a Relative Block (BPAM and BSAM-Tape and
Direct Access Only)

The POINT macro starts the next READ or WRITE operation at the specified data
set block on the current volume. Before you issue the POINT macro, test for
completion all input and output operations using the same data control block. If
you are processing a data set that has been opened for UPDAT, you must issue
a READ macro immediately after the POINT macro. If you are processing an
output data set, you must issue a WRITE macro immediately after the POINT
macro before you close the data set, unless you have already issued the
CLOSE macro (with TYPE =T specified) before the POINT macro.

Note: If you specify the TYPE =T option in the CLOSE macro and you do not
issue a WRITE macro before you close the data set, use the end-of-data
location that is determined by TCLOSE.

The POINT macro is written:

[symbol] POINT deb address
,block address
,[TYPE= {ABSIREL}]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened data set that
is to be positioned.

block address-RX-Type Address, (2-12), or (0)
indicates which block in the data set is to be processed next.

For an IBM 3480 Magnetic Tape subsystem, when TYPE =ABS is specified,
the block address operand specifies the address of a fullword on a fullword
boundary that contains the physical block identifier of the block in the data
set that is to be processed next. This physical block identifier is provided
as output from a prior execution of the NOTE macro.

When TYPE= REL is specified or defaults, the block address operand speci
fies the address of a fullword on a fullword boundary that contains the rela
tive address of the block in the data set that is to be processed next. The
relative address is specified as follows:

Magnetic Tape: The block number is in binary and is right-adjusted in the
fullword with the high-order bits set to O; add 1 if reading tape backward.
Do not use the POINT macro instruction for tapes without standard labels
when:

• The data set is opened for ROBACK, or

• The DD statement for· the data set specifies DISP =MOD

If OPTCD=H is indicated in the data control block, you can use the POINT
macro instruction to perform record positioning on DOS tapes that contain
embedded checkpoint records. Any embedded checkpoint records that are
encountered during the record positioning are bypassed and are not
counted as blocks spaced over. OPTCD = H must be specified in a job
control language DD statement. Do not use the POINT macro instruction to
backspace DOS 7-track tapes that are written in data convert mode and that
contain embedded checkpoint records.

Macro Instruction Descriptions 131

POINT

Note: When an end-of-data condition is encountered on magnetic tape, you
must not issue the POINT macro instruction unless you have first reposi-
tioned the tape for processing within your data set; otherwise, the POINT ,'-
operation will fail. {Issuing CLOSE TYPE=T is an easy method to use to
accomplish repositioning in your EODAD routine.)

Direct Access Device: The fullword specified in the block address operand
contains the relative track address {in the form TTRz), where:

TT is a 2-byte relative track number.
R is a 1-byte block (record) number on the track indicated by TT.
z is a byte set to O; it may also be set to 1 to retrieve the block following

the TTR block.

Note: The first block of a magnetic tape data set is always specified by the
hexadecimal value 00000001. The first block of a direct access device data
set can be specified by either hexadecimal 00000001 or 00000100 (see the
preceding description of TTRz).

TYPE= {ABSf REL}
indicates whether the block address operand is a physical block identifier or
a relative address.

ABS
indicates that the block address operand specifies an address of a
fullword on a fullword boundary containing a physical block identifier of
the block in the data set that is to be processed next.

indicates that the block address operand specifies an address of a
fullword on a fullword boundary containing the relative address of the
block in the data set that is to be processed next.

POINT cannot be used for SYSIN or SYSOUT data sets.

If the volume cannot be positioned correctly or if the block identification is not
of the correct format, the error analysis (SYNAD) routine is given control when
the next CHECK macro instruction is executed.

132 MVS/ESA Data Administration: Macro Instruction Reference

\

""-'

(

_ ..)

r
I j
\...._;··

POINT

Completion Codes
\/Vhen the system returns control to your problem program and you have speci
fied the ABS parameter, the low-order byte of register 15 contains a return
code; if return code = 08, the low-order byte of register 0 contains a reason
code:

Return Reason
Code (15) Code (0) Meaning

00 (X 100 1
) Successful completion.

04 (X'04') Device does not support block identifier.

08 (X 108 1
) 01 (X 101 1

) Incorrect parameter.

08 (X'08 ') 02 (X 1 02 1
) Incorrect DCB or a DEBCHK error.

08 (X 108 1
) 03 (X 103 1

) Environmental error.

08 (X 108 1
) 11 (X 10B 1

) Unsuccessful call to ESTAE macro.

08 (X 108 1
) 12 (X 10C 1

) Unsuccessful GETMAIN request.

12 (X 10C 1
) Input/output error.

Macro Instruction Descriptions 133

PRTOV

PRTOV-Test for Printer Carriage Overflow (BSAM and QSAM-Online
Printer and 3525 Card Punch, Print Feature)

The PRTOV macro instruction controls the page format for an online printer
when carriage control characters are not being used or to supplement the car
riage control characters that are being used.

The PRTOV macro instruction tests for an overflow condition on the specified
channel (either channel 9 or channel 12) of the printer carriage control, and
either skips the printer carriage to the line corresponding to channel 1, or trans
fers control to the exit address, if one is specified. Overflow is detected after
printing the line that follows the line corresponding to channel 9 or channel 12.
You should issue the PRTOV macro each time you want the system to test for
an overflow condition.

When the PRTOV macro instruction is used with a 3525 card punch, print
feature, channel 9 or 12 can be tested. If an overflow condition occurs, control
is passed to the overflow exit routine if the overflow exit address is coded, or a
skip to channel 1 (first print-line of the next card) occurs.

When requesting overprinting (for example, to underscore a line), issue the
PRTOV macro instruction before the first PUT or WRITE macro instruction only.
You should issue the PRTOV macro instruction only when the device type is an
online printer. You cannot use PRTOV to request overprinting on the 3525.
Overprinting cannot be performed on the 3800.

The PRTOV macro is written:

[symbol] PRTOV deb address
,{9112}
[,overflow exit address]

deb address-RX-Type Address or (2-12)

9
12

specifies the address of the data control block opened for output to an
online printer or 3525 card punch with a print feature.

These operands specify the channel that is to be tested by the PRTOV
macro instruction. For an online printer, 9 and 12 correspond to carriage
control channels 9 and 12. For the 3525 card punch, 9 corresponds to print
line number 17, and 12 corresponds to print line number 23. More detail
about the card print-line format is included in Programming Support for the
IBM 3505 Card Reader and the IBM 3525 Card Punch.

overflow exit address-RX-Type Address or (2-12)
specifies the address of the user-supplied routine to be given control when
an overflow condition is detected on the specified channel. If this operand
is omitted, the printer carriage skips to the first line of the next page or the
3525 skips to the first line of the next card before executing the next PUT or
WRITE macro instruction.

134 MVS/ESA Data Administration: Macro Instruction Reference

'\..._;

\)
~

\""'-·)

PRTOV

When the overflow exit routine is given control, the contents of the registers are
as follows:

Register Contents

O and 1

2 - 13

14

15

The contents are destroyed.

The same contents as before the macro instruction was executed.

Return address.

Overflow exit routine address.

Macro Instruction Descriptions 135

PUT

PUT-Write Next Logical Record (QISAM)
Use of the PUT (QISAM) macro is not recommended; we recommend you use
VSAM instead.

The PUT macro instruction writes a record into an indexed sequential data set.
If the move mode is used, the PUT macro instruction moves a logical record
into an output buffer from which it is written. If locate mode is specified, the
address of the next available output buffer segment is available in register 1
after the PUT macro instruction is executed. The logical record can then be
constructed in the buffer for output as the next record.

The records are blocked by the system (if specified in the data control block)
before being placed in the data set. The system uses the length specified in
the record length (DCBLRECL) field of the data control block as the length of
the record currently being written. When constructing blocked variable-length
records in the locate mode, the problem program may either specify the
maximum record length once in the DCBLRECL field of the data control block or \.._-
provide the actual record length in the DCBLRECL field before issuing each PUT
macro instruction. Using the maximum record length may result in more but
shorter blocks, because the system uses this length when it tests to see if the
next record can be contained in the current block.

The PUT macro instruction is used to create or extend an indexed sequential
data set. To extend the data set, the key of any added record must be higher
than the highest key existing in the data set, and the disposition parameter of
the DD card must be specified as DISP =MOD. The new records are placed in
the prime data space, starting in the first available space, until the original ·"-"
space allocation is exhausted.

To create a data set using previously allocated space, the disposition param
eter of the DD card must specify DISP =OLD.

The PUT macro is written:

[symbol] PUT deb address
[,area address]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened ISAM data
set.

area address-RX-Type Address, (2-12), or (0)
specifies the address of the area that contains the record to be written
(move mode only). Either move or locate mode can be used with QISAM,
but they must not be mixed within the specified data control block. The fol
lowing describes operations for locate and move modes:

Locate Mode: If locate mode is specified in the data control block, the area
address operand must be omitted. The system returns the address of the
next available buffer in register 1; this is the buffer into which the next
record is placed. The record is not written until another PUT macro instruc
tion is issued for the same data control block. The last record is written
when a CLOSE macro instruction is issued to close the data set.

136 MVS/ESA Data Administration: Macro Instruction Reference

(.

\._..,)

(
\._ ... /

PUT Routine Exit

PUT

Move Mode: If move mode has been specified in the data control block, the
area address operand must specify the address in the problem program that
contains the record to be written. The system moves the record from the
area to an output buffer before control is returned. If the area address
operand is omitted, the system assumes that register 0 contains the area
address.

The error analysis (SYNAD) routine is given control if the output operation
cannot be completed satisfactorily. The contents of the registers when the
error analysis routine is given control are described in Appendix A, "Status
Information Following an Input/Output Operation" on page 209.

Macro Instruction Descriptions 137

PUT

PUT-Write Next Logical Record (QSAM)
The PUT macro instruction writes a record in a sequential data set. Various ·\.......
modes are available and are specified in the DCB macro instruction. The
modes are locate mode, move mode, and data mode. In the locate mode, the
address of an area within an output buffer is returned in register 1 after the 'PUT
macro instruction is executed. You should then construct, at this address, the
next sequential record or record segment. If the move mode is used, the PUT
macro instruction moves a logical record into an output buffer. In the data
mode, which is available only for variable-length spanned records, the PUT
macro instruction moves only the data portion of the record into one or more
output buffers.

The records are blocked by the control program (as specified in the data
control block) before being placed in the data set. For undefined-length
records, the DCBLRECL field determines the length of the record that is subse
quently written. For variable-length records, the DCBLRECL field is used to
locate a buffer segment of sufficient size (locate mode), but the length of the
record actually constructed is verified before the record is written (the output
block can be filled to the maximum if, before issuing the PUT macro,
DCBLRECL is set equal to the record length). For variable-length spanned
records, the system segments the record according to the record length, buffer
length, and amount of unused space remaining in the output buffer. The
smallest segment created is 5 bytes, 4 for the segment descriptor word plus 1
byte of data.

If the ISCll/ ASCII translation routines are included when the operating system is
generated, you can request translation by coding LABEL=(,AL) or (,AUL) in the ~
DD statement, or by coding OPTCD =Q in the DCB macro instruction or DCB
subparameter of the DD statement. When translation is requested, all QSAM
records whose record format (RECFM operand) is F, FB, D, OS, DB, DBS, or U
are automatically translated from EBCDIC code to ISCll/ ASCII code. For trans-
lation to occur correctly, all output data must be in EBCDIC code; any EBCDIC
character that cannot be translated into an ISCll/ ASCII character is replaced by
a substitute character.

The PUT macro is written:

[symbol] PUT deb address
[,area address]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the data set opened for
output.

area address-RX-Type Address, (2-12), or (0)
specifies the address of an area that contains the record to be written
(move or data mode). The move, locate, or data mode can be used with
QSAM, but they must not be mixed within the specified data control block.
If the area address operand is omitted in the move or data mode, the
system assumes that register zero contains the area address.

138 MVS/ESA Data Administration: Macro Instruction Reference

(

\._,)

' I

\..__)

(

~;

PUT

The following describes the operation of the three modes:

Locate Mode: If you specify locate mode, omit the area address operand.
The system returns the address of the next available buffer in register 1;
this is the buffer into which the next record is placed.

When variable-length spanned records are processed without the extended
logical record interface (XLRI), and a record area has been provided for a
logical record interface (LRI) (BFTEK =A has been specified in the data
control block or a BUILDRCD macro instruction has been issued), the
address returned in register 1 points to an area large enough to contain the
maximum record size (up to 32756 bytes). The system segments the record
and writes all segments, providing proper control codes for each segment.
If, for variable-length spanned records, an area has not been provided, the
actual length remaining in the buffer is returned in register 0. In this case,
you must segment the records and process them in record segments.
ISO/ ANSI/Fl PS spanned records, REC FM= DS or REC FM= DBS, may not be
processed in segment mode. The record or segment is not written until
another PUT macro instruction is issued for the same data control block.
The last record is written when the CLOSE macro instruction is issued.

When a PUT macro instruction is used in the locate mode, the address of
the buffer for the first record or segment is obtained by issuing a PUT
macro after open. QSAM returns the address in register 1. Then, move
data to this address. The buffer is not written to the data set until the next
PUT macro is issued. If records are blocked, the data is not written to the
data set until the PUT following the one that filled the buffer. Each PUT
macro returns the address of the next buffer in register 1. After this
address is given to you, QSAM always will count this address as a valid
record. You should always place valid data at the address returned in reg
ister 1 before issuing another PUT or FEOV or CLOSE MACRO; otherwise,
residual data at that location is written to the data set. After issuing an
FEOV macro (for multivolume data sets), you must reinitialize register 1
with the first buffer address for the next volume by issuing a PUT macro
after return from FEOV.

Move Mode: If move mode has been specified in the data control block, the
area address operand specifies the address of the area that contains the
record to be written. The system moves the record to an output buffer
before control is returned.

Data Mode: If data mode is specified in the data control block (data mode
can be specified for variable-length spanned records only), the area address
operand specifies the address of an area in the problem program that con
tains the data portion of the record to be written. The system moves the
data portion of the record to an output buffer before control is returned.
You must place the total data length in the DCBPRECL (not the DCBLRECL)
field of the data control block before issuing the PUT macro instruction.

Extended Logical Record Interface (XLRI): When the PUT macro is used
with the extended logical record interface, the address returned in register
1 points to an area that is used to build a 4-byte logical record length field
(ROW) followed by a complete logical record. The logical record length
byte count occupies the three low-order bytes of the record length field and
must include the length of the field. The high-order byte must be zero. The
DCB LRECL value indicates the length of the longest logical record of the
data set in 'K' (1024-byte) units.

Macro Instruction Descriptions 139

PUT

PUT Routine Exit
If the output operation could not be completed satisfactorily, the error analysis (SYNAD) routine is given control after the next PUT instruction is issued. The contents of the registers when the error analysis routine is given control are described in DFP: Customization.

140 MVS/ESA Data Administration: Macro Instruction Reference

\-

l
~

I
' I

\..__./

/

(_/

PUTX

PUTX-Write a Record from an Existing Data Set (QISAM and QSAM)
The PUTX macro instruction causes the control program to return an updated

record to a data set (QISAM and QSAM) or to write a record from an input data

set into an output data set (QSAM only). There are two modes of the PUTX

macro instruction. The output mode (QSAM only) allows writing a record from

an input data set on a different output data set. The output data set may

specify the spanning of variable-length records., but the input data set must not

contain spanned records.

The update mode returns an updated record to the data set from which it was

read. The logical records are blocked by the control program, as specified in

the data control block, before they are placed in the output data set. The

control program uses the length specified in the DCBLRECL field as the length

of the record currently being stored. Control is not returned to your user

program until the control program has processed the record.

For SYSIN or SYSOUT data sets, the PUTX macro instruction can be used only

in the output mode.

The record descriptor word in variable-length records must not be changed.

The PUTX macro is written:

[symbol] PUTX deb address [,input deb address]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for a data set opened for

output.

input deb address-RX-Type Address, (2-12), or (0)

PUTX Routine Exit

specifies the address of a data control block opened for input. The PUTX

macro instruction can be used for the following modes:

Output Mode: This mode is used with QSAM only. The input deb address

operand specifies the address of the data control block opened for input. If

this operand is omitted, the system assumes that register 0 contains the

input deb address.

Update Mode: The input deb address operand is omitted for update mode.

The error analysis (SYNAD) routine is given control if the operation is not com

pleted satisfactorily. The contents of the registers when the error analysis

routine is given control are described in DFP: Customization.

Macro Instruction Descriptions 141

READ

READ-Read a Block {BDAM)
Use of the READ (BDAM) macro is not recommended; we recommend you use '"-' a device-independent access method such as BSAM, SPAM, or QSAM instead.

The READ macro instruction retrieves a block from a data set and places it in a
designated area of storage. Control may be returned to the problem program
before the block is retrieved. The input operation must be tested for completion
using a CHECK or WAIT macro instruction. A data event control block, shown
in Appendix A, "Status Information Following an Input/Output Operation" on
page 209, is constructed as part of the macro expansion.

The standard form of the READ macro instruction is written as follows (the list
and execute forms are shown following the descriptions of the standard form):

[symbol] READ decb name
,{Dl[FIX][Rf RU]}
{DK[FIX][RIRU]}

,deb address
,{area address I 'S '}
,{length I'S'}
,{key addressl 'S' IO}
,block address
[,next address]

decb name-symbol
specifies the name assigned to the data event control block created as part
of the macro expansion.

{Dl[FIXJ[Rf RU]}
{DK[FIXJ[RIRU]}

The type operand is coded in one of the combinations shown above to
specify the type of read operation and the optional services performed by
the system:

DI

DK

F

specifies that the data and key, if any, are to be read from a specific
device address. The device address, which can be designated by any
of the three addressing methods, is supplied by the block address
operand.

specifies that the data (only) is to be read from a device address identi
fied by a specific key. The key to be used as a search argument must
be supplied in the area specified by the key address operand; the
search for the key starts at the device address supplied in the area
specified by the block address operand. The description of the DCB
macro instruction, LIMCT operand, contains a description of the search.

requests that the system provide block position feedback into the area
specified by the block address operand. This character can be coded
as a suffix to DI or DK as shown above.

142 MVS/ESA Data Administration: Macro Instruction Reference

I
~I

x

R

RU

READ

requests exclusive control of the data block being read, and that the ·

system provide block position feedback into the area specified by the

block address operand. The descriptions of the WRITE and RE LEX

macro instructions contain a description of releasing a data block that is

under exclusive control. This character can be coded as a suffix to DI

or DK as shown above.

requests that the system provide next address feedback into the area

specified by the next address operand. When R is coded, the feedback

is the relative track address of the next data record. This character can

be coded as a suffix to DI, DK, DIF, DIX, DKF, or DKX as shown above,

but can be coded only for use with variable-length spanned records.

requests that the system provide next address feedback into the area

specified by the next address operand. When RU is coded, the feed

back is the relative track address of the next capacity record (RO) or

data record whichever occurs first. These characters can be coded as

a suffix to DI, DK, DIF, DIX, DKF, or DKX, but it can be coded only for

use with variable-length spanned records.

deb address-A-Type Address or (2-12)
specifies the address of the data control block opened for the data set to be

read.

area address-A-Type Address, (2-12), or 'S'
specifies the address of the area in which the data block is to be placed. If

'S' is coded instead of an address, dynamic buffering is requested

(dynamic buffering must also be specified in the MACRF operand of the

DCB macro instruction). When dynamic buffering is used, the system

acquires a buffer and places its address in the data event control block.

length-symbol, decimal digit, absexp, (2-12), or 'S'
specifies the number of data bytes to be read up to a maximum of 32760. If

'S' is coded instead of a length, the number of bytes to be read is taken

from the data control block. If the length operand is omitted for format-LI

records, no error indication is given when the program is assembled, but

the problem program must insert a length into the data event control block

(DECB) before the READ is issu.ed.

key address-A-Type Address, (2-12), 'S', or 0
specifies the address of the area for the key of the desired data block. If

the search operation is made using a key, the area must contain the key.

Otherwise, the key is read into the designated area. If the key is read and

'S' was coded for the area address, You can also code 'S' for the key

address; the key and data are read sequentially into the buffer acquired by

the system. If the key is not to be read, specify 0 instead of an address or

'S'.

block address-A-Type Address or (2-12)
specifies the address of the area containing the relative block address, rela

tive track address, or actual device address of the data block to be

retrieved. The device address of the data block retrieved is placed in this

area if block position feedback is requested. The length of the area that

contains the address depends on whether the feedback option (OPTCD = F)

Macro Instruction Descriptions 143

READ

has been specified in the data control block and if the READ macro instruc
tion requested feedback.

If OPTCD = F has been specified, feedback (if requested) is in the same form
as originally presented by the READ macro instruction, and the field can be either 3 or 8 bytes long, depending on the type of addressing.
If OPTCD = F has not been specified, feedback (if requested) is as an actual
device address, and the field must be 8 bytes long.

next address-A-Type Address or (2-12)
specifies the address of the storage area in which the system places the
relative address of the next block. The length operand must be specified as 'S'. When the next address operand is specified, an R or RU must be
added to the type operand (for example, DIR or DIRU). The R indicates that
the next address returned is the next data record. RU indicates that the
next address returned is for the next data or capacity record, whichever
occurs first. The next address operand can be coded only for use with
variable-length spanned records.

144 MVS/ESA Data Administration: Macro Instruction Reference

\........,,.;'

Iv

\)
"--/

\ /

~

READ

READ-Read a Block of Records (BISAM)
Use of the READ (BISAM) macro is not recommended; we recommend you use
VSAM instead.

The READ macro instruction retrieves an unblocked record, or a block con

taining a specified logical record, from a data set. The block is placed in a

designated area of storage, and the address of the logical record is placed in

the data event control block. The data event control block is constructed as

part of the macro expansion and is described in Appendix A, "Status Informa
tion Following an Input/Output Operation" on page 209.

Control may be returned to the problem program before the block is retrieved.

The input operation must be tested for completion using a WAIT or CHECK
macro instruction.

The standard form of the READ macro instruction is written as follows for

BISAM (the list and execute forms are shown following the descriptions of the

standard form):

[symbol] READ decb name
,{KIKU}
,deb address
,{area address I 'S '}
,{length!' S '}
,key address

decb name-symbol
specifies the name assigned to the data event control block (DECB) created

as part of the macro expansion.

{KIKU}
The type operand is coded as shown to specify the type of read operation:

K

KU

specifies normal retrieval.

specifies that the record retrieved is to be updated and returned to the

data set; the system saves the device address to be returned.

When an ISAM data set is being updated with a READ KU macro
instruction and a WRITE K macro instruction, both the READ and WRITE
macro instructions must reference the same data event control block.
This update operation can be performed by using a list-form instruction

to create the list (data event control block) and by using the execute

form of the READ and WRITE macro instructions to reference the same

list.

deb address-A-Type Address or (2-12)
specifies the address of the data control block for the opened data set to be

read.

area address-A-Type Address, (2-12), or 'S'
specifies the address of the area in which the data block is placed. The

first 16 bytes of this area are used by the system and do not contain infor-

Macro Instruction Descriptions 145

READ

mation from the data block. The area address must spedfy a different area
than the key address. Dynamic buffering is specified by coding •s·• instead
of an address; the address of the acquired storage area is returned in the _ data event control block. Indexed sequential buffer and work area require-
ments are described in Data Administration Guide.

length-symbol, decimal digit, absexp, (2-12), or 'S'
specifies the number of bytes to be read up to a maximum of 32760. If 'S'
is coded instead of a length, the number of bytes to be read is taken from
the count field of the record; for blocked records, 'S' must be coded.

key address-A-Type Address or (2-12)
specifies the address of the area in the problem program containing the key
of a logical record in the block that is to be retrieved. When the input oper
ation is completed, the storage address of the logical record is placed in
the data event control block. The key address must specify a different area
than the area address.

\

146 MVS/ESA Data Administration: Macro Instruction Reference

i I

~/

I ('--'!

READ

READ-Read a Block (BPAM and BSAM)

The READ macro instruction retrieves a block from a data set and places it in a

designated area of storage (input area). Control may be returned to the

problem program before the block is retrieved. The input operation m'ust be

tested for completion using a CHECK macro instruction. A data event control

block, shown in Appendix A, "Status Information Following an Input/Output

Operation" on page 209, is constructed as part of the macro expansion.

If the OPEN macro instruction specifies UPDAT, both the READ and WRITE

macro instructions must reference the same data event control block. (See the

list form of the READ or WRITE macro instruction for a description of how to

construct a data event control block; see the execute form of the READ or

WRITE macro instruction for a description of how to modify an existing data

event control block.)

The standard form of the READ macro instruction is written as follows (the list

and execute forms are shown following the descriptions of the standard form

instructions):

[symbol] READ decb name
,{SFISB}
,deb address
,area address
[,lengthl,' S ']

decb name-symbol
specifies the name assigned to the data event control block (DECB) created

as part of the macro expansion.

{SFISB}
The type operand is coded as shown to specify the type of read operation:

SF

SB

specifies normal, sequential, forward retrieval.

specifies a read-backward operation; this operand can be specified only

for magnetic tape with format-F or format-LI records.

This operand is intended to be used when the data set is OPEN for

ROBACK. Tape positioning, label processing, and volume mounting

errors will occur d_uring EOV and CLOSE if an OPEN option, other than

ROBACK, is used.

deb address-A-Type Address or (2-12)

specifies the address of the data control block for the opened data set to be

read.

area address-A-Type Address or (2-12)

specifies the address of the problem program area in which the block is

placed. When a READ SB macro instruction is issued, the area address

must be the address of the last byte of the area into which the block is

read. If the data set contains keys, the key is read into the buffer followed

by the data.

Macro Instruction Descriptions 147

READ

length-symbol, decimal digit, absexp, (2-12), or 'S'
specifies the number of data bytes to be read, to a maximum of 32760. If
the data is translated from ISCll/ ASCII code to EBCDIC code, the maximum
number of bytes that can be read is 2048. For format-LI records, 'S' or a
valid length must be coded. The number of bytes to be read is taken from
the data control block if 'S' is coded instead of a number. (This operand is ignored for format-F or format-V records.) For format-D records only, the
length of the block just read is automatically inserted into the DCBLRECL
field by the check routine if BUFOFF = L is not specified in the data control
block.

148 MVS/ESA Data Administration: Macro Instruction Reference

READ

READ-Read a Block (Offset Read of Keyed BDAM Data Set Using
t~ BSAM)

/ '
(
'-..L/

(
'\.L)

\ i)
~·

Use of the READ (BDAM) macro is not recommended; we recommend you use
a device-independent access method such as BSAM, SPAM, or QSAM instead.

The READ macro instruction retrieves a block from a data set and places it in a
designated area of storage. The data set is a BDAM data set and its record
format is unblocked variable-length spanned records. You must specify
BFTEK=R in the data control block. Control may be returned to the problem
program before the block is retrieved. The input operation must be tested for
completion using a CHECK macro instruction. A data event control block,
shown in Appendix A, "Status Information Following an Input/Output Operation"
on page 209, is constructed as part of the macro expansion.

The standard form of the READ macro instruction is written as follows (the list
and execute forms are shown following the descriptions of the standard form):

[symbol] READ deeb name
,SF
,deb address
,area address

deeb name-sym bot

SF

specifies the name assigned to the data event control block (DECB) created
as part of the macro expansion.

specifies normal, sequential, forward retrieval.

deb address-A-Type Address or (2-12)
specifies the address of the data control block for the opened BDAM data
set to be read.

area address-A-Type Address or (2-12)
specifies the address of the area in which the block is placed.

When a spanned BDAM data set is created with keys, only the first segment of
a record has a key; successive segments do not. When a spanned record is
retrieved by the READ macro instruction, the system places a segment in a
designated area addressed by the area address operand. The problem
program must assemble all the segments into a logical record. Because only
the first segment has a key, the successive segments are read into the desig
nated area offset by key length to ensure that the block-descriptor word and the
segment-descriptor word are always in their same relative positions.

Macro Instruction Descriptions 149

READ

READ-List Form
The list form of the READ macro instruction is used to construct a data manage
ment parameter list as a data event control block (DECB). For a description of
the various fields of the DECB for each access method, see Appendix A,
"Status Information Following an Input/Output Operation" on page 209.

The description of the standard form of the READ macro instruction explains the
function of each operand. The description of the standard form also indicates
the operands used for each access method, and the meaning of 'S' when
coded for the area address, length, and key address operands. For each access
method, 'S' can be coded only for those operands for which it can be coded in
the standard form of the macro instruction. The format description below indi
cates the optional and required operands in the list form only.

The list form of the READ macro is written:

[symbol] READ decb name
,type
,[deb address]
,[area addressl 'S ']
,[lengthl 'S ']
,[key address I'S']
,[block address]
,[next address]
,MF=L

decb name-symbol

type-Code one of the types shown in the standard form

deb address-A-Type Address

area address-A-Type Address or '5'

length-symbol, decimal digit, absexp, or 'S'

key address-A-Type Address or 'S'

block address-A-Type Address

next address-A-Type Address

MF=L
specifies that the READ macro instruction is used to create a data event
control block that can be referenced by an execute-form instruction.

150 MVS/ESA Data Administration: Macro Instruction Reference

\~

i
' !

~

l
~,

\.....__,/

READ

READ-Execute Form
A remote data management parameter list (data event control block) is used in,
and can be modified by, the execute form of the READ macro instruction. The
data event control block can be generated by the list form of either a READ or
WRITE macro instruction.

The description of the standard form of the READ macro instruction explains the
function of each operand. The description of the standard, form also indicates
the operands used for each access method and the meaning of 'S' when coded
for the area address, length, and key address operands. For each access
method, 'S' can be coded only for those operands for which it can be coded in
the standard form of the macro instruction. The format description below indi
cates the optional and required operands in the execute form only.

The execute form of the READ macro is written:

[symbol] READ decb address
,type
,[deb address]
,[area address! 'S']
,[length I'S']
,[key addressl'S']
,[block address]
,[next address]
,MF=E

decb address-RX-Type Address or (2-12)

type-Code one of the types shown in the standard form

deb address-RX-Type Address or (2-12)

area address-RX-Type Address, (2-12), or 'S'

length-symbol, decimal digit, absexp, (2-12), or 'S'

key address-RX-Type Address, (2-12), or 'S'

block address-RX-Type Address, or (2-12)

next address-RX-Type Address or (2-12)

MF=E
specifies that the execute form of the READ macro instruction is used, and
that an existing data event control block (specified in the decb address
operand) is used by the access method.

Macro Instruction Descriptions 151

RE LEX

RELEX-Release Exclusive Control {BDAM}
Use of the RE LEX macro is not recommended because it uses the device
dependent access method BDAM. We recommend you use a device
independent access method such as BSAM, BPAM, or QSAM instead.

The RELEX macro instruction releases a da.ta block from exclusive control. The
block must have been requested in an earlier READ macro instruction that
specified either DIX or DKX.

Note: You can also use a WRITE macro instruction that specifies either DIX or
DKX to release exclusive control.

The RELEX macro is written:

[symbol] REL EX

D
specifies direct access.

D
,deb address
,block address

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for a BDAM data set opened
for processing. The operand must specify the same data control block des
ignated in the associated READ macro instruction.

block address-RX-Type Address, (2-12), or (0)
specifies the address of the area containing the relative block address, rela
tive track address, or actual device address of the data block being
released. The operand must specify the same area designated in the block
address operand of the associated READ macro instruction.

Completion Codes
When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order
bytes of register 15 are set to 0.

Return
Code (15)

00 (X 100 1
)

04 (X 104 1
)

08 (X 108 1
)

Meaning

Operation completed successfully.

The specified data block was not in the exclusive control list.

The relative track address, relative block address, or actual
device address was not within the data set.

152 MVS/ESA Data Administration: Macro Instruction Reference

I

~

\

\)

u

(:
"--'!

~I

RELSE

RELSE-Release an Input Buffer (QISAM and QSAM Input)
The RELSE macro instruction immediately releases the current input buffer.
The next GET macro instruction retrieves th-e first record from the next input
buffer. For variable-length spanned records (QSAM), the input data set is
spaced to the next segment that starts a logical record in a following block.
Thus, one or more blocks of data or records may be skipped. The RELSE
macro instruction is ignored if a buffer has just been completed or released, if
the records are unblocked, or if issued for a SYSIN data set.

The RELSE macro is written:

I [symbol] I RELSE deb address

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened input data set.

Macro Instruction Descriptions 153

SETL

SETL-Set Lower Limit of Sequential Retrieval (QISAM Input)
Use of the SETL macro is not recommended because it is a QISAM macro; we
recommend you use VSAM instead.

The SETL macro instruction causes the control program to start processing the
next input request at the specified record or device address. Sequential
retrieval of records using the GET macro instruction continues from that point
until the end of the data set is encountered or a CLOSE or ESETL macro
instruction is issued. You must issue an ESETL macro instruction between
SETL macro instructions that specify the same data set.

The SETL macro instruction can specify that retrieval is to start at the beginning
of the data set, at a specific address on the device, at a specific record, or at
the first record of a specific class of records. For additional information on
SETL functions, see Data Administration Guide.

The SETL macro is written:

[symbol] SETL deb address
{,K[H],lower limit address}
{,KC,lower limit address}
{,KO[H],lower limit address}
{,KCO,lower limit address}
{,l,lower limit address}
{,10,lower limit address}
{,B}
{,BO}

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block opened for the indexed
sequential data set being processed.

The following operands are coded as shown; they specify the starting point and
type of retrieval:

K

KC

H

KO

specifies that the next input operation is to begin at the record containing
the key specified in the lower limit address operand.

specifies that the next input operation is to begin at the first record of the
key class specified in the lower limit address operand. If the first record of
the specified key class has been deleted, retrieval begins at the next non
deleted record regardless of key class.

used with either K or KO, specifies that, if the key in the lower limit address
operand is not in the data set, retrieval begins at the next higher key. The
character H cannot be coded with the key class operands (KC and KCO).

specifies that the next input operation is to begin at the record containing
the key specified in the lower limit address operand, but only the data

154 MVS/ESA Data Administration: Macro Instruction Reference

'\......./

(:
~/

SETL Exit

SETL

portion of the record is retrieved. This operand is valid only for unblocked
records.

KCD

ID

B

BD

specifies that the next input operation is to begin at the first record of the
key class specified in the lower limit address operand, but only the data
portion of the record is retrieved.· This operand is valid only for unblocked
records.

specifies that the next input operation is to begin with the record at the
actual device address specified in the lower limit address operand.

specifies that the next input operation is to begin with the record at the
actual device address specified in the lower limit address operand, but only
the data portion of the record is retrieved. This operand is valid only for
unblocked records. ·

specifies that the next input operation is to begin with the first record rn the
data set.

specifies that the next input operation is to begin with the first record in the
data set, but only the data portion is retrieved. T.his. operand is valid only
for unblocked records.

lower limit address-RX-Type Address, (2-12), or (0)
specifies the address of the area containing the key, key class, or actual
device address that designates the starting point for the next input opera
tion. lfl or ID has been specified, the addressed area must contain the
actual device address (in the form MBBCCHHR) of a prime data record; the
other types require that the key or key class be contained in the addressed
area.

The error analysis (SYNAD) routine is given control if the operation could not be
completed successfully. For information on how the exception condition code
and general registers are set, see DFP: Customization. If the SETL macro
instruction is not reissued, retrieval starts at the beginning of the data set.

Macro Instruction Descriptions 155

SETPRT

SETPRT-Printer Setup (BSAM, QSAM, and EXCP)

3800 Printers and SYSOUT Data Sets

Non-3800 Printers

The SETPRT macro instruction is used to initially set or dynamically change the
printer control information for the IBM 3800 Printing Subsystem and SYSOUT
data sets. You can use SETPRT with any 3800 model printer that is allocated to
the program (not to JES). You can also use SETPRT when creating SYSOUT
data sets. You may change the following control information with the SETPRT
macro:

• Bursting of forms (BURST parameter)

• Character arrangements to be used (CHARS parameter)

• The number of copies (COPIES parameter)

• The starting copy number (COPYNR parameter)

• Vertical formatting of a page (FCB parameter)

• Flashing of forms (FLASH parameter)

• Initializing the printer control information (INIT parameter)

• Modification of copy (MODIFY parameter)

• Blocking or unblocking of data checks (OPTCD parameter).

Besides changing the control information, you can do the following:

• Supply your own 3800 load modules in a PDS to replace the use of
SYS1.IMAGELIB (UBDCB parameter).

• SETPRT error messages that are sent to the printer can also be passed
back to the invoking program (MSGAREA parameter).

• Print or suppress error messages on the directly allocated printer (PRTMSG
parameter).

• Control the scheduling of SYSOUT segment printing (DISP parameter).

To use all-points addressability when operating the 3800 Model 3, 6, or 8, PSF
libraries (for example, SYS1.FONTLIB, SYS1.FDEFLIB, SYS1.PDEFLIB) are used
instead of SYS1 .IMAGELIB.

For additional information on how to use the SETPRT macro instruction with the
IBM 3800 Model 3, 6, or 8, see IBM 3800 Printing Subsystem Models 3 and 8
Programmer's Guide.

For printers other than the IBM 3800 Printing Subsystem, SETPRT controls the
following:

• Selection and verification of UCS and FCB images (UCS and FCB parame
ters)

• Blocking or unblocking of data checks (OPTCD parameter).

• Printing lowercase EBCDIC characters in uppercase (OPTCD and UCS
parameters)

156 MVS/ESA Data Administration: Macro Instruction Reference

\,_/
1 4248 Printers

L I

J

(.

~

All Printers

SETPRT

• Bypassing automatic forms positioning.

The SETPRT macro automatically positions forms in the printer to the first line
of a new page when a new FCB is requested. If you wish to position the form
yourself, specify the N option of the FCB parameter and insert the new form,
matching the top of its page to the same position as the old form occupied.

This is how the SETPRT macro aligns a new form: If the FCB is different from
the one currently in the printer, the old FCB and the current position within it is
read from the printer. If the old form is not already at the top of a page, a
temporary FCB is constructed and loaded back into the printer. A skip to 1
command is then executed to move the old form to the top of a new page. The
requested FCB is then loaded into the printer. SETPRT's preparation is now
complete. The new FCB and the old form are now at the first line of a new
page. Printing is ready to proceed. If you wish to bypass automatic forms posi
tioning, use the N option of the FCB Parameter.

For the 4248 printer, the SETPRT macro instruction is also used to change the
following control information:

• Activation, deactivation, and positioning of horizontal copy (COPYP param
eter)

• Speed of the printer (PSPEED parameter).

When BSAM is used, all write operations must be checked for completion
before the SETPRT macro instruction is issued. Otherwise, an incomplete write
operation may be purged.

Issuing the_ SETPRT macro instruction for a device other than a SYSOUT data
set, or a UCS printer, or the IBM 3800 Printing Subsystem results in an error
return code.

Note: A permanent error on a SETPRT macro causes one or both of the first
two bits of the DCBIFLGS field to be set on. A cancel key or a paper jam that
requires a printer subsystem-restart sets in the DCBIFLGS field the lost data
indicator bit, DCBIFLDT. Before reissuing a SETPRT macro, you must reset
these bits to zero.

Macro Instruction Descriptions 157

SETPRT

The standard form of the SETPRT macro instruction is written as follows (the list
and execute forms are shown following the standard form):

[symbol] SETPRT dcbaddr
[,BURST= {~JV}]
[,CHARS= {name IA(address) IR (register)}}

{({name IA(address) IR(register) }, ...)}]
[,COPIES= number]
[,COPYNR =number]
[,COPYP= {positionlO}]
[,DISP= {SCHEDULEINOSCHEDULEIEXTERNAL}]
[,FCB = {imageidlA(address) IR(register)}

({imageidlA(address) IR(register)} [,{VIA }[,N]])
[,FLASH= {NONElname}

{NONE l([name],count)}]
[,INIT= {~JV}]
[,LI BDCB = dcbaddress]
[,MODI FY= { {name IA(address)IR(register)}

'{({namelA(address)IR(register)},trc)}]
[,MSGAREA =address]
[,OPTCD= {BIU}

{({BIU},{FIU})}]
[,PRTMSG = {N IY}]
[,PS PEED= {LIM IH IN}]
[,REXMIT= rnJY}]
[,UCS = { csc}

{(csc,{FIF,VIV})}]

dcbaddr-A-Type Address or (2-12)
specifies the address of the data control block for the data set to be printed; \._;
the data set must be opened for output before the SETPRT macro instruc-
tion is issued.

BURST= rnJY}
specifies whether the paper output is to be burst. BURST=Y indicates that
the printed output is to be burst into separate sheets and stacked.
BURST= N indicates that the printed output is to go into the continuous
forms stacker. If BURST is not specified, the SETPRT routine assumes
BURST= N. If bursting is requested, the printed output is threaded into the
burster-trimmer-stacker. Otherwise, the printed output is threaded into the \.J
continuous forms stacker. The operand prints a message at the system
console telling the operator to thread the paper again if needed. This
operand is effective for all IBM 3800 printers only.

CHARS= { namelA(address)I R(register)}
{({namelA(address)IR(register)}, ...)}

specifies one to four character arrangement tables to be used when printing
a data set. This operand is effective for all IBM 3800 models printers.

name
is the last four characters of the 8-byte member name for a character
arrangement table module. For information on the modules available,
see IBM 3800 Printing Subsystem Programmer's Guide.

A(address)
specifies an in-storage address of the user-provided character arrange
ment table module. For information on the format of the module, see
Utilities.

158 MVS/ESA Data Administration: Macro Instruction Reference

I
_)

I

\..._,;;

SETPRT

R(register)
specifies the register that contains an in-storage address of the user
provided character arrangement table module. For information on the
format of the module, see Utilities.

COPIES= number
specifies the total number of copies of each page of the data set that is to
be printed (from 1 to 255) before going to the next page. If the COPIES
operand is omitted, one copy of each page is printed. This operand is
effective for the IBM 3800 printer only.

COPYNR =number
specifies the starting copy number for this transmission. number is a value
from 1 to 255. This operand defaults to a value of 1 if not specified. This
operand is effective for an online IBM 3800 printer only.

COPYP = {positionlO}
activates or deactivates the horizontal copy feature of the 4248 printer. This
overrides the horizontal copy offset in the specified FCB. (If no FCB is
specified, the horizontal copy offset in the already loaded FCB is over
ridden.) COPYP also controls horizontal copy capabilities with 3211 FCBs
that are loaded in a 4248 printer.

position

0

is a decimal number from 2 to 168 indicating the print position where
the horizontal copy starts. If your 4248 printer has only 132 print posi
tions installed, the maximum number you should specify here is 132.
When horizontal copy is activated, the maximum amount of data that
can be sent to the printer is equal to the size of the smaller of the two
copy areas. If the two copy areas are equal, the maximum amount of
data that can be sent is equal to half the number of print positions.

For example, if you specify COPYP = 101 for a 4248 printer with 132 print
positions, the maximum amount of data that can be sent to the printer is
32 bytes. (Thirty-two bytes is equal to the smaller copy area, from posi
tion 101 to position 132.) If you specify COPYP=67 for a 4248 printer
with 132 print positions, the maximum amount of data that can be
printed is 66 bytes. (Sixty-six bytes is equal to half the number of print
positions.)

If COPYP =position is specified and a 3211 format FCB is being used,
the 3211 format FCB is converted to 4248 format FCB and the specified
offset value is inserted.

Note: COPYP=position is not available with the IBM 3262 Model 5
printer.

specifies that no horizontal copy is to be made. Any offset value in the
specified or already loaded FCB is be overridden.

Note: Channel programs that are used when horizontal copy is acti
vated must have the suppress length indication (SU) bit set. For infor
mation on the SU bit, see IBM System/370 XA Principles of Operation.

DISP = {SCHEDULEINOSCHEDULEIEXTERNAL}
DISP allows you to control how JES disposes of the data that is created
before the SETPRT request. This parameter is valid only for SYSOUT data
sets and is ignored for the direct user who issues SETPRT. You may abbre-

Macro Instruction Descriptions 159

SETPRT

viate the parameters to S, N, and E, respectively. This operand is effective
for the IBM 3800 printer only.

SCHEDULE
specifies that JES is to schedule the previous data for printing imme
diately.

NOSCHEDULE
specifies that JES is to separate the data into a separate JES data set
and to schedule the previous data set for printing after the job termi
nates.

EXTERNAL
specifies that the schedule of the data set for printing is determined by
the JCL parameter FREE= CLOSE. FREE= CLOSE is the same as speci
fying DISP=SCHEDULE. The absence of FREE=CLOSE in the JCL is
the same as coding DISP=NOSCHEDULE on the SETPRT macro.
EXTERNAL is the default.

FCB = {imageidfA(address)IR(register)}
({imageidlA(address)IR(register)}[,{VIA}[,N])

specifies that the forms control buffer (FCB) is to be selected from the
image library. The possible specifications are:

imageid
specifies the forms control image to be loaded. A forms control image
is identified by a 1- to 4-character name.< IBM-supplied 3211 format
images are identified by imageid value of STD1 and STD2; user
designed forms control images are defined by the installation. Note that
the 4248 accepts both 3211 and 4248 format FCBs. For descriptions of
the standard forms control images for the 3203 and 3211, 3262 Model 5
or 4245, see System-Data Administration. For a description of the 4248
FCB, see Utilities. For more information about 3800 FCB modules, see
Utilities.

A(address)
specifies an in-storage address of the user-supplied forms control buffer
module to be used. (For information on the format of the module, see
Utilities.)

Note: This subparameter is effective for online IBM 3800 Model 1
printers.

R(register)
specifies the register that contains an in-storage address of the user
provided forms control buffer module to be used when printing a data
set. (For information on the format of the module, see Utilities.)

Note: This subparameter is effective for online IBM 3800 Model 1
printers.

V or VERIFY
requests that the forms control image be displayed on the printer for
visual verification. This operand allows forms verification and align
ment using the WTOR macro instruction.

A or ALIGN
allows forms alignment using the WTOR macro i_nstruction. This subpa
rameter is ignored if specified for the IBM 3800 printer.

160 MVS/ESA Data Administration: Macro Instruction Reference

')
\~

l '
~/

N

SETPRT

bypasses automatic forms positioning. This subparameter is ignored if
specified for the IBM 3800 printer. N is not available via JCL and, thus,
cannot be used when opening an online because all SETPRT parame
ters are obtained from the JCL at open.

FLASH= {NONElname}
{NONE I ([name] ,count)}

identifies the forms overlay frame to be used. Unless REXMIT=Y is
coded and the forms overlay frame is still in use from the previous
SETPRT macro issuance, a message tells the operator to insert this
forms overlay frame into the printer. This operand also lets you specify
the number of copies on which the overlay is to be printed (flashed). If
you omit this operand for a directly attached printer, flashing stops. If
you omit this operand when doing a SETPRT while generating SYSOUT
data, the FLASH parameters previously in effect for this data set are
used. This operand is effective for the IBM 3800 printer only.

NONE
is valid only when using SETPRT while generating SYSOUT data,
and causes zero copies to be flashed. If flashing is resumed in a
later SETPRT, a message is generated by JES regarding the
insertion of the forms overlay frame, even if no change in the forms
overlay frame is necessary.

name
is the 1- to 4-character name of the forms overlay frame.

count

INIT={NIY}

indicates the total number (0 to 255) of copies of each page of the
data set on which the overlay is to be printed, beginning with the
first copy. The number of copies printed is not greater than the
number of copies specified by the COPIES operand.

For a directly attached printer: No copies are flashed if you specify
a flash count of zero. If you specify a nonzero flash count and omit
the name of the forms overlay frame, the operator is not requested
to insert a frame. Whatever frame is inserted is used.

During the generation of SYSOUT data: If you specify a flash count
of zero, the flash count previously in effect for the data set is used.
If you specify a nonzero flash count and omit the name of the forms
overlay frame, the operator is not requested to insert a frame
except when flashing has stopped. If flashing has stopped, a
message from JES requests the operator to insert a new frame.
Then the flashing of the forms will resume using the count specified
in the flash count parameter.

When INIT=Y is specified for an online IBM 3800 printer, it initializes the
control information in the printer with a folded character arrangement table:
the 10-pitch Gothic character set (12 pitch for the IBM 3800 Models 3,6, and
8), and a six lines per inch FCB corresponding to the forms size in the
printer. COPIES and COPYNR are initialized to 1, FLASH and MODIFY are
cleared, and BURST is initialized to N (continuous forms).

When INIT=Y is specified for a SYSOUT data set, other parameters not
specified on the same invocation are reset, meaning the JES default will be
used. For INIT=N, all control information for the IBM 3800 printer remains

Macro Instruction Descriptions 161

SETPRT

unchanged. Any parameters included on the same macro statement as the
INIT operand are processed after printer initialization has been completed.
This operand is effective for the IBM 3800 printer only. \'-

LIBDCB =dcbaddress-A-Type Address or (2-12)
dcbaddress is the address of an authorized user library DCB that has been
opened, and that you want to use instead of SYS1 .IMAGELIB. If LIBDCB is
not specified, SYS1.IMAGELIB is used.

Note: This operand is effective for online IBM 3800 Model 1 printers.

MOD I FY= { namelA(address)I R(register)}
{({namelA(address)IR(register)},trc)}

identifies the copy modification module and an associated character
arrangement table module to be used when modifying the data to be
printed.

Note: This operand is effective for online IBM 3800 Model 1 printers.

name
is the 1- to 4-character name of the copy modification module stored in
SYS1 .IMAGELIB. These one to four characters are the last characters
of the 8-byte member name of a copy modification module in
SYS1 .IMAGELIB.

A(address)
specifies an in-storage address of the user-supplied copy modification
module. For information on the format of the module, see Utilities. This
subparameter is effective for the IBM 3800 Model 1 printer.

R(register)

trc

specifies the register that contains an in-storage address of the user
provided copy modification module. For information on the format of
the module, see Utilities. This subparameter is valid for the IBM 3800
Model 1 printer.

specifies the table reference character used to select one of the char
acter arrangement table modules to be used for the copy modification
text. The values of 0, 1, 2, and 3 correspond to th.e order in which the
module names have been specified in the CHARS operand. If trc is not
included, the first character arrangement table module (0) is assumed.

MSGAREA=address-A-Type Address or (2-12)
address is the address of the message feedback area. This area is used to
transfer message text between the SETPRT macro and the caller. You must
allow at least 80 bytes for the message text plus 10 bytes for prefix informa
tion or a total length of at least 95 bytes. The message is truncated if it
does not fit into the area. This operand is effective with the IBM 3800 only.
The following shows the layout of the message area:

bytes 0-1:
bytes 2-5:
bytes 6-7:
bytes 8-9:
bytes 10-variable:

total length
reserved
text length
reserved
message text

162 MVS/ESA Data Administration: Macro Instruction Reference

\~

\

\._..,/

I

\ .. ,_,/

SETPRT

OPTCD = {BIU}
{({BIU},{FIU})}

specifies whether printer data checks are blocked or unblocked and if the
printer is to operate in fold or normal mode. The possible specifications
are:

B

u

specifies that printer data checks are block~d; this option updates the
DCBOPTCD field of the data control block.

specifies that printer data checks are unblocked; this option updates the
DCBOPTCD field of the data control block.

FOLD or F
specifies that printing i$ in fold mode. This subparameter is ignored if
specified for the IBM 1403 or IBM 3800 printer. ·For 1403 fold mode, use
FOLD option under the UCS operand.

UNFOLD or U
specifies that printing is in normal mode; this operand causes fold mode
to revert to normal mode. This subparameter is ignored if specified for
the IBM 1403 or IBM 3800 printer. Because UCS processing occurs
after OPTCD processing, if FOLD is specified in the UCS operand, fold
mode is set. If FOLD is not coded, unfold is set.

PRTMSG={NIY}
allows printer error messages to be printed for the programmer on the IBM
3800. This operand is effective with IBM 3800 only.

N
specifies not to print error messages on the IBM 3800.

y
specifies to print error messages on the IBM 3800. Y is the default.

PSPEED= {LIMIHIN}
is effective for the 4248 printer only, and is ignored for all other printers.
The PSPEED operand specifies the printer's speed, which affects print
quality. LOW speed produces the best quality. The PSPEED operand is
used to set the printer's speed or override that set in the FCB. If no FCB is
specified, the PSPEED, if any, in the already loaded FCB is used.

L or LOW
sets the printer speed to 2200 lines per minute.

M or MEDIUM
sets the printer speed to 3000 lines per minute.

H or HIGH
sets the printer speed to 3600 lines per minute.

N or NOCHANGE
indicates that the speed at which the printer is currently running is to
remain the same no matter what is specified in the requested FCB, or if
none is specified, in the already loaded FCB.

Actual printer speed may vary. For information on determining the exact
printer speed, see IBM 4248 Printer Model 1 Description.

Macro Instruction Descriptions 163

SETPRT

Return Codes

REXMIT= rnJY}
specify REXMIT=Y to modify the starting copy number (COPYNR), the
number of copies of the pages in a data set to be printed (COPIES), the
forms overlay frame to be used (FLASH), and the number of copies to be
printed (FLASH) without changing the other control information already set
up in the printer. The SETPRT SVC ignores all other parameters in the
parameter list.

UCS={csc}
{(csc,{FIF,VIV})}

specifies the character set image to be used. This operand is ignored if
specified for the IBM 3800 printer. The possible specifications are:

csc (character set code)
The csc operand specifies the character set selected. A character set is
identified by a 1- to 4-character code. Codes for standard IBM char
acter sets are as follows:

1403 or 3203 Printer: AN, HN, PCAN, PCHN, PN, QN, QNC, RN, SN, TN,
XN, and YN

3211 Printer: A11, H11, G11, P11, and T11

IBM 4245 Printer: AN21, AN31, HN21, HN31, PL21, PL31, GN21, RN21,
RN31, TN21, SN21, FC21, KA21, and KA22

4248 Printer: 40E1, 40E2, 4101, 4102, 4121, 4122, 41C1, 41C2, 4181, 4201,
4061, 40C1, 4161, 4041, and 4042

Note: There are no standard IBM character sets supplied for the IBM
3262 Model 5 printer.

The 4245 and 4248 printers load their own images on recognition of the
mounted band. The image table provides a correspondence between
the band identification and the character set code.

For a description of the 4245 and 4248 UCS image tables and informa
tion on adding user-defined entries to an image table, see System-Data
Administration.

FOLD or F
specifies that the character set image selected is to be in fold mode.
The fold mode translates the EBCDIC code for lowercase characters to
the EBCDIC code for the corresponding uppercase characters. Unless
FOLD is specified, UNFOLD mode is set.

V or VERIFY
requests that the character set image be displayed on the printer for
visual verification.

After the SETPRT macro instruction is executed, a return code is placed in reg
ister 15, and control is returned to the instruction following the SETPRT macro
instruction. The illustrafiion below shows how the four bytes of register 15 are
used for a specific printer.

164 MVS/ESA Data Administration: Macro Instruction Reference

I

\-...,,,)

(

\)

"--""

('-)

\ I

\...._./

SETPRT

Byte 0 1 2 3

3800 Code
Unused Other than FCB Code UCS Code

FCB

Bit 8 7 8 15 16 23 24 31

The return codes in the figures that follow are in hexadecimal.

• Return codes 0 through 24 apply to all printers.

• Return codes 28 through 4C apply to the 3800 printer only. There is one
exception; return code 48 also applies to the IBM 3262 Model 5 and the IBM
4248 printer.

• Return code 50 applies to SYSOUT data sets only for any printer.

Return Codes 0 to 14
Figure 1 shows the hexadecimal return codes 00 through 14 for specific
printers.

Figure 1 (Page 1 of 3). SETPRT Return Codes 00 to 14

3800 Code
Other than FCB ucs
FCB Code Code
(Byte 1) (Byte 2) (Byte 3) Meaning

00 00 00 Successful completion.

00 00 04 The operator canceled the UCS request for one of the fol-
lowing reasons:

. The UCS image could not be found in SYS1 .IMAGELIB .

. The requested train or band was not available .

00 04 00 For non-3800 printers, the operator canceled the FCB load
operation for one of the following reasons:

. The form could not be aligned to match the buffer .

. The FCB module could not be found in SYS1 .IMAGELIB
or your DCB exit list.

For a 3800, the specified FCB module could not be found in
SYS1.IMAGELIB, a user library, or the DCB exit list, and
SETPRT processing was terminated.

Macro Instruction Descriptions 165

SETPRT

Figure 1 (Page 2 of 3). SETPRT Return Codes 00 to 14

3800 Code
Other than FCB ucs \._

FCB Code Code
(Byte 1) (Byte 2) (Byte 3) Meaning

04 00 00 The 3800 SETPRT processing was suspended for one of the
following reasons:

• A character arrangement table module could not be
found in SYS1.IMAGELIB or a user library. . A copy modification module could not be found in
SYS1 .IMAGELIB or a user library.

• A graphic character modification module (required by a
character arrangement table module) could not be
found in SYS1 .IMAGELIB or a user library.

• A library character set module could not be found in
SYS1 .IMAGELIB or a user library.

Register 0 contains a reason code identifying which of the
above conditions occurred.

For an explanation, see Figure 3 on page 170.

00 00 08 A permanent 1/0 error was detected when the BLDL macro
instruction was issued to locate a UCS image or image
table in SYS1.IMAGELIB.

00 08 00 A permanent 110 error was detected when the BLDL macro
instruction was issued to locate an FCB module in
SYS1.IMAGELIB or a user library.

08 00 00 A permanent 1/0 error was detected when the BLDL macro
instruction was issued to locate one of the following
modules in SYS1 .IMAGELIB or a user library. . A character arrangement table module

• A copy modification module

• A graphic character modification module . A library character set module .

Register O contains a reason code identifying which of the
above conditions occurred.

For an explanation, see Figure 3 on page 170.

00 00 oc A permanent 1/0 error was detected while loading the print-
er's UCS buffer, or displaying a message on the 4248
printer.

00 oc 00 A permanent 1/0 error was detected during forms posi-
tioning or while loading the printer's FCB buffer.

Register 0 contains a reason code identifying which of the
above conditions occurred.

For an explanation, see Figure 7 on page 172.

166 MVS/ESA Data Administration: Macro Instruction Reference

i
~}

SETPRT

Figure 1 (Page 3 of 3). SETPRT Return Codes 00 to 14

3800 Code
Other than
FCB
(Byte 1)

oc

00

00

00

00

FCB ucs
Code Code
(Byte 2) (Byte 3) Meaning

00

00

10

00

14

00 A permanent 1/0 error was detected while loading one of
the following:

. Character arrangement table

• Copy modification record

. Starting copy number

• Graphic character modification record

• Forms overlay sequence control record (copy counts
and flash counts)

. Writable character generation module (WCGM)

. Library character set (3800 only) .

Register O contains a reason code ider.tifying which of the
above conditions occurred.

For an explanation, see Figure 3 on page 170.

10 A permanent 1/0 error was detected during UCS verification
display or while reading the UCS buffer.

00 A permanent 1/0 error was detected during FCB verification
display.

14 The operator canceled the UCS request because an
improper character set image was displayed for visual ver-
ification.

00 The operator canceled the FCB request because an
improper forms control image was displayed for visual ver-
ification.

The illustration below shows how the four bytes of register 15 are used for all
printers.

Byte 0 1 2 3

Unused Unused Unused General
Code

Bit 0 7 8 15 16 23 24 31

Macro Instruction Descriptions 167

SETPRT

Return Codes 18 to 50
Figure 2 shows the hexadecimal return codes 18 through 50 for all printers.

Figure 2 (Page 1 of 2). SETPRT Return Codes 18 to 50

Return
Code
(Byte 3)

18

1C

20

24

Meaning

No operation was performed for one of the following reasons:

• The dat.a control block was not open

• The data control block was not valid for a sequential data
set

• The SETPRT parameter list was not valid

• The output device was not a UCS or 3800 printer.

No operation was performed because an uncorrectable error
occurred in a previously initiated output operation. The error
analysis (SYNAD) routine is entered whe'n the next PUT or
CHECK macro instruction is issued.

No operation was performed because an uncorrectable error
occurred when the block data check or the reset block data
check command was issued by SETPRT. For a 4245, a possible
lost data condition was detected.

For a 3800, message IEC1731 indicates which of the above
errors has occurred.

Register 0 contains a reason code identifying whether data was
lost. For an explanation, see Figure 4 on page 171.

Not enough storage was available for opening the
SYS1.IMAGELIB, or, for a 3800 printer, not enough storage was
available to contain the control blocks for a user library, or
insufficient storage was available for SETPRT.

SYS1 .IMAGELIB (or, for the 3800 printer, a user library) cannot
be opened to load the specified module. Either a permanent
1/0 error occurred or the SYS1 .IMAGELIB was mounted or cata
loged incorrectly.

28 The operator canceled the forms overlay request.

2C The operator canceled the paper threading request.

30 More writable character generation modules (WCGMs) were
requested than there are .writable buffers installed on the
printer ..

34 There was an invalid table reference character for copy modifi
cation.

38 An error occurred when attempting to execute the initialize
printer command.

3C Bursting was requested but the burster-trimmer-stacker feature
is not installed on the printer.

168 MVS/ESA Data Administration: Macro Instruction Reference

I\.._

\'-

(!

~I

!\._./

\.__)

SETPRT

Figure 2 (Page 2 of 2). SETPRT Return Codes 18 to 50

Return
Code
(Byte 3)

40

44

48

Meaning

A permanent 1/0 error occurred while executing a sense, final
select character arrangement table command, or display status
code.

The translate table character arrangement table entry refer
ences a character set that is not in the image library.

Data was lost because of one of the following (3800 only):

• 3800 system restart after a paper jam

• Cancel key

• Lost resources after paper jam.

For a 4248, a possible lost data condition was detected.

Register 0 contains a reason code identifying which of the
above conditions occurred.

See Figure 5 on page 171 for an explanation.

4C A load check was detected while loading one of the following

50

(3800 only):

• Forms control buffer (FCB)

• Character arrangement table (CAT)

• Graphic arrangement table (GCM)

• Copy modification record

• Writable character generation module (WCGM)

• Library character set (LCS).

Register 0 contains a reason code identifying which of the
above conditions occurred.

For an explanation, see Figure 3 on page 170.

When a SETPRT was issued to a Direct Attach (an online 3800
Model 3, 6 or 8 printer) or a SYSOUT data set, there was a
failure in one of the following:

• The subsystem interface (SSI) for OPEN or CLOSE

• Data set segmentation

• Queue manager issuing 1/0 to read the JFCB and/or the
JFCBE

• ENQ failure

• More than one DCB is open for the SYSOUT data set.

For an explanation of the reason codes associated with return
code 50, see Figure 6 on page 171.

Macro Instruction Descriptions 169

SETPRT

Reason Codes

All 3800 Printers
The following illustration shows the contents of register 0, which includes the
GCM ID, the CAT ID, and _the reason code.

Byte (:) 1 2 3

Unused GCM ID CAT ID Reason
Code

Bit 0 7 8 15 16 23 24 31

Figure 3 shows the hexadecim~I reason codes for the IBM 3800 Model 1 and
the other 3800 models in compatibility mode. These reason codes, returned in
register 0, are in addition to return codes 04, 08, OC, and 4C returned in register
15.

Figure 3. Reason Codes for IBM 3800 Printers (with Return Codes 04, 08, OC, 4C)
GCMID CATID Reason Code
(Byte 1) (Byte 2) (Byte 3) Meaning

00 01-04 04 Character arrangement table
module/record.

00 00 ·oa Copy modification module/record.
00 00 oc Starting copy number.

01-04 01-04 10 Graphic character_ modification
module/record.

00 00 14 Forms overlay sequence control
record.

00 00 18 Library character set.

00 00 1C Writable character generation
module (WCGM).

00 00 20 Forms control buffer module.

170 MVS/ESA Data Administration: Macro Instruction Reference

r I u

' \
\ I

~

SETPRT

3800 Printers and the 4245 Printer
These reason codes apply to all 3800 printers and the IBM 4245 printer.
Figure 4 shows the reason codes besides return code 1C returned in register
15. The reason code is placed in byte 3 of register 0.

Figure 4. Reason Codes for All Printers (for Return Code 1 C)

Reason Code
(Byte 3) Meaning

00 Indicates no data lost.

04 Indicates data has been lost.

Figure 5 shows the reason codes in addition to return code 48 returned in reg
ister 15. The reason code is placed in byte 3 of register 0.

Figure 5. Reason Codes for 3800 Printers and 4248 Printer (for Return Code 48)

Reason Code
(Byte 3) Meaning

04 A paper jam caused a restart. A possible lost data condi-
tion was detected.

08 The cancel key was pressed.
~

oc Resources were lost after a paper jam.

Figure 6 shows the reason codes in addition to return code 50 returned in reg
ister 15. The reason code is placed in byte 3 of register 0.

Figure 6 (Page 1 of 2). Reason Codes for Return Code 50

Reason Code
(Byte 3) Meaning

04 An invalid SETPRT request for a SYSOUT data segment
was specified. An in-storage address was used for a
copymod, character arrangement table, FCB, or user
library DCB. Only load module IDs in SYS1 .IMAGELIB are .
allowed for SYSOUT setup.

08 During SETPRT processing for a SYSOUT data segment, an
error was detected while attempting to read a JFCB or
JFCBE control block from SWA.

oc During SETPRT processing for a SYSOUT data segment, an
error was detected while invoking the CLOSE subsystem
interface (SSI) for the previous data segment.

10 During SETPRT processing for a SYSOUT data segment, an
error was detected while invoking the OPEN subsystem
interface (SSI) for the new data segment being created.

14 During SETPRT processing for a SYSOUT data segment, an
error was detected while the scheduler spool file allocation
routine was segmenting the data set.

Macro Instruction Descriptions 171

SETPRT

Figure 6 (Page 2 of 2). Reason Codes for Return Code 50

Reason Code
(Byte 3) Meaning

18 An ENQ macro failed. The ENQ was issued by SETPRT
processing.

1C More than one DCB is open for the SYSOUT data set.

All Non-3800 Printers
Figure 7 shows the reason code in addition to completion code OCOO.

Figure 7. Reason Codes for Non-3800 Printers (for Completion Code OCOO)

Reason Code
(Byte 3) Meaning

00 The 1/0 error was not caused by a load check.

04 FCB load failed because of a load check. Probably caused
by invalid FCB contents.

\,_

172 MVS/ESA Data Administration: Macro Instruction Reference

i

__,/

I

~/

SETPRT

SETPRT-List Form
The list form of the SETPRT macro instruction is used to construct a data man
agement parameter list.

The description of the standard form of the SETPRT macro instruction provides
the explanation of the function of each operand. The format description below
indicates the optional and required operands for the list form only. The
dcbaddr parameter must appear in the list or execute form of the SETPRT
macro.

The list form of the SETPRT macro instruction is written as follows:

[symbol] SETPRT

dcbaddr-A-Type Address

BURST= rnJY}

[dcbaddr]
[,BURST= rnJY}]
[,CHARS= {[name}

{(name, ...)}]
[,COPIES=number]
[,COPYNR =number]
[,COPYP = {positionlO}]
[,D ISP= {SCHEDULE I NOSCHEDULE I EXTERNAL}]
[,FCB = {imageid}

(imageid,{VIA}[,N])
[,FLASH= {NONElname}

{NONEl([name],count)}]
[,INIT= {NIY}]
[,LI BDCB = dcbaddress]
[,MODIFY= {name}

{(name,trc)}]
[,MSGAREA =address]
[,OPTCD = {BIU}

{({BIU},{FIU})}]
[,PRTMSG = {NIY}]
[,PSPEED = {LIMIHIN}]
[,REXMIT= {NIY}]
[,UCS={csc}

{(csc,{FIF,VIV})}]
,MF=L

is coded as shown in the standard form of the macro instruction.

CHARS= {name}
{(name, ...)}

is coded as shown in the standard form of the macro instruction, except for
the A(address) and R(register) parameters, which cannot be specified.

COPIES= number
is coded as shown in the standard form of the macro instruction.

COPYNR =number
is coded as shown in the standard form of the macro instruction.

Macro Instruction Descriptions 173

SETPRT

COPYP = {positionlO}
is coded as shown in the standard form of the macro instruction.

DISP ={SCHEDULE I NOSCHEDULEI EXTERNAL}
is coded as shown in the standard form of the macro instruction.

FCB = {imageid}
(imageid,{VIA}[,N])

is coded as shown in the standard form of the macro instruction, except for
the A(address) and R(register) parameters, which cannot be specified.

FLASH= {NONE I name}
{NONEl([name],count)}

is coded as shown in the standard form of the macro instruction.

INIT=rnJv}
is coded as shown in the standard form of the macro instruction.

LIBDCB =dcbaddress-A-Type Address or (2-12)
is coded as shown in the standard form of the macro instruction.

MODIFY={name}
{(name,trc)}

is coded as shown in the standard form of the macro instruction, except for
the A(address) and R(register) parameters, which cannot be specified.

MSGAREA=address-A-Type Address or (2-12)
is coded as shown in the standard form of the macro instruction.

OPTCD={BlU}
{({BIU},{FIU})}

is coded as shown in the standard form of the macro instruction.

PRTMSG = {NIY}
is coded as shown in the standard form of the macro instruction.

PSPEED = {LIMIHIN}
is coded as shown in the standard form of the macro instruction.

REXMIT= rnJY}
is coded as shown in the standard form of the macro instruction.

UCS={csc}
{(csc,{FIF,VIV})}

is coded as shown in the standard form of the macro instruction.

MF=L
specifies that the list form of the macro instruction is used to create a
parameter list that can be referenced by an execute form of the SETPRT
macro instruction.

174 MVS/ESA Data Administration: Macro Instruction Reference

I)
~

I

v

I
! .

~I

(

\._)

(

\ J

\ .• __ ,/

SETPRT

SETPRT-Execute Form
A remote data management parameter list is referred to, and can be modified
by, the execute form of the SETPRT macro instruction.

The description of the standard form of the SETPRT macro instruction provides
the explanation of the function of each operand. The format description below
indicates the optional and required operands for the execute form only. The
dcbaddr parameter must be specified in the list or execute form of the SETPRT
macro.

The execute form of the SETPRT macro instruction is written as follows:

[symbol] SETPRT [dcbaddr]
[,BURST= {~.IYI*}]
[,CHARS= {namelA(address)IR(register)}

{({name 1.A(address) IR(register) }, ...)}
{*}]

[,COPIES= {number!*}]
[,COPYNR= {numberj*}]
[,COPYP ={position 10}]
[,DISP = {SCH EDU LE IN OS CH EDU LE I EXTERNAL}]
[,FCB = {imageidlA(address) IR(register)}

({imageidlA(address) I R(register)[,{VIA} [,N]])
{*}]

[,FLASH= {NONElname}
{([NONElname],count)}
{*}]

[,INIT= {tilY}]
[,LIBDCB = dcbaddress]
[,MODIFY= {namejA(address)IR(register)*}

{({name IA(address) IR(register) },trc)}
{*}]

[,MSGAREA =address]
[,OPTCD = {B IU}

{({BIU},{FIU})}]
[,PRTMSG = {N IY}]
[,PSPEED= {LIMIHIN}]
[,REXMIT= {tilYI*}]
[,UCS = {csc}

{ (csc, {FIFI VIV})}]
,MF= (E,data management list address)

dcbaddr-RX-Type Address or (2-12)

BURST= {~IYI*}
is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When BURST=* is
coded, the BURST field in the parameter list remains as it was previously
set. This operand is effective for the IBM 3800 printer only.

CHARS= { namelA(address)I R(register)}
{({namelA(address)IR(register)}, ...)}
{*}

is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When CHARS=* is

Macro Instruction Descriptions 175

SETPRT

coded, the CHARS field in the parameter list remains as it was previously
set.

COPIES= {numbed*}
is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When COPIES=* is
coded, the COPIES field in the parameter list remains as it was previously
set.

COPYNR ={numbed*}
is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When COPYNR = * is
coded, the COPYNR field in the parameter list remains as it was previously
set.

COPYP = {positionlO}
is coded as shown in the standard form of the macro instruction.

DISP = {SCHEDULEINOSCHEDULEIEXTERNAL}
is coded as shown in the standard form of the macro instruction.

FCB = {imageidlA(address)IR(register)}
({imageidlA(address)IR(register)}[,{VIA}[,N])
{*}

is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When FCB = * is coded,
the FCB field in the parameter list remains as it was previously set.

FLASH= {NONE I name}
{NONEl([name],count)}
{*}

is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When FLASH=* is
coded, the FLASH field in the parameter list remains as it was previously
set.

INIT= {M.IY}
is coded as shown in the standard form of the macro instruction. When
INIT=Y is specified on the execute form of the SETPRT macro instruction,
all 3800 fields in the parameter list (BURST, CHARS, COPIES, COPYNR,
FCB, FLASH, MODIFY, and REXMIT) are reset to binary zeros unless a
specified field is preserved by coding keyword parameter=* or changed by
specifying a valid subparameter for the keyword parameter as described in
the standard form of the macro instruction.

LIBDCB=dcbaddress-A-Type Address or (2-12)
is coded as shown in the standard form of the macro instruction.

MODIFY= { namelA(address)I R(register)}
{({namelA(address)IR(register)},trc)}
{*}

is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When MODIFY=* is

176 MVS/ESA Data Administration: Macro Instruction Reference

\

"'-

< : j

~

{ i I

\,__[_,./

SETPRT

coded, the MODIFY field in the parameter list remains as it was previously
set.

MSGAREA=address-A-Type Address or (2-12)
is coded as shown in the standard form of the macro instruction.

OPTCD={BIU}
{({BIU},{FIU})}

is coded as shown in the standard form of the macro instruction.

PRTMSG = {NIY}
is coded as shown in the standard form of the macro instruction.

PSPEED={LIMIHIN}
is coded as shown in the standard form of the macro instruction.

REXMIT= {MJYI*}
is coded as shown in the standard form of the macro instruction, except for
the * subparameter, which can be used only when INIT=Y is specified in
the execute form of the SETPRT macro instruction. When REXMIT= * is
coded, the REXMIT field in the parameter list remains as it was previously
set.

UCS={csc}
{(csc,{FIF,VIV})}

is coded as shown in the standard form of the macro instruction.

MF= (E,data management list address)
specifies that the execute form of the SETPRT macro instruction is used,
and an existing data management parameter list is used.

E

data management list address-RX-Type Address, (2-12),
or (1)

Macro Instruction Descriptions 177

STOW

STOW-Update Partitioned Data Set Directory (BPAM)
The STOW macro instruction updates a partitioned data set directory by adding,
changing, replacing, or deleting an entry in the directory. Only one entry can
be updated at a time using the STOW macro instruction. If the entry to be
added is a member name, the system writes an end-of-data indication following
the member. If the entry to be replaced is open for update, the system rewrites
the directory entry. All input/output operations using the same data control
block must have previously been tested for completion.

You can use the STOW macro instruction only when the data set is opened for
OUTPUT, UPDAT or OUTIN (BSAM). It is best to use a BPAM DCB with the
STOW macro. See Data Administration Guide, "Processing a Partitioned Data
Set" for more information on using the STOW macros with different types of
DCBs.

The STOW macro is written:

[symbol] STOW deb address
,list address
[,directory action]

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened partitioned
data set.

list address-RX-Type Address, (2-12), or (0) ,~
specifies the address of the area containing the information required by the
system to maintain the partitioned data set directory. The size and format
of the area depend on the directory action requested as follows:

Adding or Replacing a Directory Entry: The list address operand must
specify an area at least 12 bytes long and beginning on a halfword
boundary. The following illustration shows the format of the area:

List Address

Lej
Bytes

NAME:

TT:

R:

NAME

I
TI

I A I c I
USER DATA \

8 2 0 to 62

Specifies the member name or alias being added or replaced.
The name must begin in the first byte of the field and be padded
on the right with blanks, if necessary, to complete the 8-byte
field.

Specifies the relative track number where the beginning of the
data set is located.

Specifies the relative block (record) number on the track identi
fied by TI.

178 MVS/ESA Data Administration: Macro Instruction Reference

\l
'.._,/

\

_)

' .
\~

(: '

\L)

I

\GI

STOW

Note: The TTR fields shown above must be supplied by the problem
program if an alias (alias bit is 1) is being added or replaced. The system
supplies the TTR fields when a member name is being added or replaced.
Issue the FIND macro to locate the member before using STOW to replace
it.

C: Specifies the type of entry (member or alias) for the name, the
number of note list fields (TTRNs), and the length in halfwords, of
the user data field.

The following describes the meaning of the 8 bits:

Bit Meaning

O=O Indicates a member name.

0=1 Indicates an alias.

1 and 2 Indicate the number of TTRN fields (maximum of 3) in your data
field.

3-7 Indicate the total number of halfwords in the user data field.

USER DATA FIELD: The user data field contains the user data from the
directory entry. You can use the user data field to provide vari
able data as input to the STOW macro.

Deleting a Directory Entry: The list address operand must specify an 8-byte
area that contains the member name or alias to be deleted. The name
must begin in the first byte of the area and be padded on the right with
blanks, if necessary, to complete the 8 bytes.

Changing the Name of a Member: The list address operand must specify
the address of a 16-byte area; the first 8 bytes contain the old member
·name or alias, and the second 8 bytes contain the new member name or
alias. Both names must begin in the first byte of their 8-byte area and be
padded on the right with blanks, if necessary, to complete the 8-byte field.

directory action-[~JCIDIRJ
If the directory action operand is not coded, A (add an entry) is the default.
The operand is coded as shown to specify the type of directory action:

c

D

R

specifies that an entry is to be added to the directory.

specifies that the name of an existing member or alias is to be
changed.

specifies that an existing directory entry is to be deleted.

specifies that an existing directory entry is to be replaced by a new
directory entry. If R is coded but the old entry is not found, the new
ehtry is added to the directory and a completion code of X 108' is
returned in register 15.

Macro Instruction Descriptions 179

STOW

Completion Codes
When the system returns control to the problem program, register 15 contains a
return code and register 0 contains a reason code in the two low-order bytes. "'-
The high-order bytes of both registers are set to 0.

The following is a list of return codes contained in register 15:

Return Directory Action
Codes (15) A c D R

00 (X 100 1
) The update of the The update of the The update of the The update of the

directory was directory was directory was directory was com-
completed sue- completed sue- completed sue- _pleted successfully.
cessfully. cessfully. cessfully.

04(X 104 1
) The directory The directory

already contains already contains
the specified the specified new
name. name.

08 (X'08 ') The specified The specified The specified old
name could not be name could not name could not be
found. be found. found.

12 (X'OC') No space left in No space left in No space left in the
the directory. The the directory. The directory. The entry
entry could not be entry could not be could not be added,
added, replaced, added, replaced, replaced, or
or changed. or changed. changed. \

~

16 (X' 10 I) A permanent input A permanent input A permanent input A permanent input
or output error or output error or output error or output error was
was detected. was detected. was detected. detected. Control is
Control is not Control is not Control is not not given to the
given to the error given to the error given to the error error analysis
analysis (SYNAD) analysis (SYNAD) analysis (SYNAD) (SYNAD) routine.
routine. routine. routine.

20(X'14') The specified data The specified data The specified data The specified data
control block is control block is control block is control block is not ~
not open or is not open or is not open or is open or is opened
opened for input. opened for input. opened for input. for in put.

24(X 1 18 1
) Insufficient virtual Insufficient virtual Insufficient virtual Insufficient virtual

storage was avail- storage was avail- storage was avail- storage was avail-
able to perform able to perform able to perform able to perform the
the STOW func- the STOW func- the STOW func- STOW function.
tion. tion. ti on.

180 MVS/ESA Data Administration: Macro Instruction Reference

STOW

The following is a list of reason codes contained in register 0.

Reason
Code (0)

00 (X 100 1
)

01 (X 101 1
)

02 (X 102 1
)

3383 (X 1 037 1
)

Meaning

Reason code is not applicable. (Returned with all return
codes except 10.)

All functions; the permanent 110 error occurred while
reading or writing directory blocks.

Add and replace functions; the permanent 1/0 error
occurred while attempting to write the EOF mark after the
member.

Error occurred when trying to write an EOF; all primary
space used.

Macro Instruction Descriptions 181

SYNADAF

SYNADAF-Perform SYNAD Analysis Function (BDAM, BISAM, BPAM,
BSAM, EXCP, QISAM, and QSAM) ,~

The SYNADAF macro instruction is used in an error analysis routine to analyze
permanent input/output errors. The routine can be a SYNAD exit routine speci
fied in a data control block for BDAM, BISAM, SPAM, BSAM, QISAM, QSAM, or
a routine that is entered directly from a program that uses the EXCP macro
instruction. (The EXCP macro instruction is described in System-Data Adminis
tration and DFP: Customization)

The SYNADAF macro instruction uses register 1 to return the address of a
buffer containing a message. The message describes the error, and can be
printed by a later PUT or WRITE macro instruction. The message consists of
EBCDIC information and is in a variable-length record. The format of the
message is shown following the descriptions of the SYNADAF operands.

The system does not use the save area whose address is in register 13.
Instead, it provides a save area for its own use, and then makes this area avail
able to the error anaiysis routine. The system returns the address of the new
save area in register 13 and in the appropriate location (word 3) of the previous
save area; it also stores the address of the previous save area in the appro
priate location (word 2) of the new save area.

The SYNADAF macro instruction passes parameters to the system in registers 0
and 1. When used in a SYNAD exit routine, you should code the SYNADAF
macro at the beginning of the routine. (See DFP: Customization.) For BISAM
and QISAM, the SYNAD exit routine has to set up these parameters as
explained under PARM1 and PARM2. To save these parameters for use by the
SYNAD exit routine, the system stores them in a parameter save area that
follows the message buffer as shown in the message buffer format. The system
does not alter the return address in register 14 or the entry point address in
register 15.

When a SYNADAF macro instruction is used, you must use a SYNADRLS macro
instruction to release the message buffer and save areas, and to restore the
original contents of register 13.

182 MVS/ESA Data Administration: Macro Instruction Reference

i

\ ,..,.)

\ ..)

_J

SYNADAF

The SYNADAF macro is written:

[symbol] SYNADAF ACSMETH = {BDAM
[,PARM1 =parm register]
[,PARM2=parm register]}

{BPAM
[,PARM1 =parm register]
[,PARM2=parm register]}

{BSAM
[,PARM1 =parm register]
[,PARM2=parm register]}

{QSAM
[,PARM1 = parm register]
[,PARM2=parm register]}

{BISAM
[,PARM1 =dcbaddr]
[,PARM2=dcbaddr]}

{EXCP
[,PARM1 =iobaddr]}

{QISAM
[,PARM1 =dcbaddr]
[,PARM2=parm register]}

ACSMETH=BDAM, BPAM, BSAM, QSAM, BISAM, EXCP, or QISAM
specifies the access method used to perform the input/output operation for
which error analysis is performed.

Note: BDAM, BISAM, EXCP, and QISAM are not recommended.

PARM1 =parm register, iobaddr, or dcbaddr-(2-12) or (1)
specifies the address of information that is dependent on the access
method being used. For BDAM, BPAM, BSAM, or QSAM, the operand spec
ifies a register that contains the information that was in register 1 on entry
to the SYNAD routine. For BISAM or QISAM, it specifies the address of the
data control block; for EXCP, it specifies the address of the input/output
block. If the operand is omitted, PARM1 =(1) is assumed.

PARM2=parm register, dcbaddr, or iobaddr-(2-12), (0), or RX-Type
specifies the address of additional information that is dependent on the
access method being used. For BDAM, BPAM, BSAM, QISAM, and QSAM,
the operand specifies a register that contains the information that was in
register 0 on entry to the SYNAD exit routine. For BISAM, the operand
specifies a register that contains the information that was in register 1 on
entry to the SYNAD exit routine (the address of the DECB). For EXCP, the
operand is meaningless and should be omitted. If the operand is omitted,
except for EXCP, PARM2=(0) is assumed.

Note: To correctly load the registers for SYNADAF for BISAM, code these two
instructions before issuing the SYNADAF macro:

LR 0,1 GET DECB ADDRESS

L 1,8(1) GET DCB ADDRESS

Macro Instruction Descriptions 183

SYNADAF

Completion Codes
When the system returns control to the problem program, the low-order byte of
register 0 contains one of the following reason codes; the three high-order
bytes of register 0 are set to 0.

Reason
Code (0)

00 (X 100 1
)

04(X 104 1
)

08 (X 108 1
)

Meaning

Successful completion. Bytes 8 through 13 of the message
buffer contain blanks.

Successful completion. Bytes 8 through 13 of the message
buffer contain binary data.

Unsuccessful completion. The message can be printed, but
some information is missing in bytes 50 through 127 and is
represented by asterisks. If byte 8 is a blank (X '40 '), bytes 9
through 13 are either blanks or are not initialized. If byte 8 is
not a blank, then data was read, and bytes 8 through 13 of the
message buffer contain binary data.

184 MVS/ESA Data Administration: Macro Instruction Reference

·,---

I
I

\ ;
"---'/

i_/.

SYNADAF

Message Buffer Format
The following illustration shows the format of the message buffer; the address
of the buffer is returned in register 1.

Message Buffer

B}1e 0

14 18-Llbb 11 b b

Doubleword
Boundry

LL= 128; 11=124; bb=OOO

50

Job name

84

Operation
Attempted

Un it Record:

Magnetic Tape:

Direct Access:

Parameter Save Area

1~ 1~ 1W
Parameter
Register 0
(PARM2)

Notes:

Parameter
Register 1
(PARM1}

Message Area, Part I

8 12 14\

Input No. of
Input Buffer Bytes

Address Read

114
8

114
Oillpilll (Blanks)

/

1

. so

-L-~~~~(B-la-nk-s)_,~

59 68

Stepname
Unit
Address•

91

Error Description

107 115 120

Relative Block Access
Number (decimal) Method

107

Actual Track Address and Block Number
(BBCCHHR in hexadecimal format)

72

Device
Type

107

'

(Blanks)

122

Access
Method

75 84

DDname

128

127 128

s

(End of Buffer
- Beginning of

Parameter
Save Area

1. If no data was transmitted, or if the access method is QISAM, bytes 8 through 13 contain blanks or
binary zeros.

2. The unit address field (bytes 68 through 70) contains the letters 1JES 1 if the data set is SYSIN or
SYSOUT.

3. The device type field (bytes 72 th rough 73) contains UR for a unit record device, TA for a magnetic
tape device, or DA for a direct access device.

Macro Instruction Descriptions 185

SYNADAF

4. If a message field (bytes 91 through 105) is not applicable to the type of error that occurred, it
contains N/ A or NOT APPLICABLE.

5. If the access method is BISAM, bytes 68 through 70, 84 through 89, and 107 through 120 contain
asterisks.

6. If the access method is BDAM, and if the error was an invalid request, bytes 107 through 120
contain EBCDIC zeros.

186 MVS/ESA Data Administration: Macro Instruction Reference

SYNADRLS

SYNADRLS-Release SYNADAF Buffer and Save Areas (BDAM,
BISAM, BPAM, BSAM, EXCP, QISAM, and QSAM)

The SYNADRLS macro instruction releases- the message buffer, parameter save
area, and register save area provided by a SYNADAF macro instruction. It
must be used to perform this function whenever a SYNADAF macro instruction
is used.

When the SYNADRLS macro instruction is issued, register 13 must contain the
address of the register save area provided by the SYNADAF macro instruction.
The control program loads register 13 with the address of the previous save
area, and sets word 3 of that save area to 0. Thus, when control is returned,
the save area pointers are the same as before the SYNADAF macro instruction
was issued.

The SYNADRLS macro is written:

I [symbol] I SYNADRLS I b

When the system returns control to the problem program, the low-order byte of
register 0 contains one of the following reason codes; the three high-order
bytes of register O are set to 0.

Reason
Code (0)

oo (X •oo 1
)

08 (X 108 1
)

Meaning

Successful completion.

Unsuccessful completion. The buffer and save areas were not
released; the contents of register 13 remain unchanged. Reg
ister 13 does not point to the save area provided by the
SYNADAF macro instruction, or this save area is not properly
chained to the previous save area.

Macro Instruction Descriptions 187

SYN CD EV

SYNCDEV-Synchronize Device

Tape Data Sets
The SYNCDEV macro instruction allows you to synchronize data to the IBM 3480
Magnetic Tape Subsystem that supports buffered write mode. Data records in
the tape control unit buffer may not yet be on tape when your program is ready
to send more. There is no way to determine how much data is left in the buffer,
and it is time dependent to tape motion. This data is not synchronized to your
program; that is, you could overlay unwritten data in the buffer, or lose data
when it is transferred from the channel if the buffer does not have enough
space to hold it. You can use the SYNCDEV macro to:

• Request information regarding synchronization

• Demand synchronization if the specified number of data blocks are buffered.
If more blocks are buffered than were specified, the system stays in control
until all the blocks are written to the tape or it detects an 1/0 error.

If the same amount or fewer blocks are buffered, buffering is not affected.

Note: Demands for synchronization are ignored if the drive is in read mode.

The SYNCDEV macro is written:

[symbol] SYNC DEV DCB=addr
[,{ ABUFBLK = addrj

BUFBLK= {maximum buffer depthlO}}]
[,INQ = {YESINO}]

The following describes the operands that can be specified for SYNCDEV.

DCB =addr-A-Type address or (2-12)
specifies the address of the data control block.

ABUFBLK = addrjBUFBLK ={maximum buffer depth ID}
specifies the maximum number of data blocks that can be buffered.

ABUFBLK=addr-A-Type address or (2-12)
specifies the address of a halfword on a halfword boundary that con
tains a value that specifies the maximum number of data blocks that
can be buffered.

BUFBLK={maximum buffer depthlO}
specifies the maximum number of data blocks that can be buffered.
This number can be an absolute value from 0 to 65535. The BUFBLK
value can be in the two low-order bytes of a register (2-12).

0
If neither ABUFBLK nor BUFBLK is specified, the number of data
blocks that can be buffered defaults to 0, and no data blocks are
buffered.

INQ ={YES I NO}
specifies whether this is a request for information about the degree of syn
chronization or a request for synchronization.

188 MVS/ESA Data Administration: Macro Instruction Reference

')
~

i)

~

YES

_,;;

I ,

__,,;

SYN CD EV

specifies an inquiry as to how many data blocks are in the buffer.

specifies a request for synchronization based on the number of data
blocks that can be buffered as specified in ABUFBLK or BUFBLK.

Register 0 contains the number of buffered physical blocks if the pre
vious operation completed successfully.

Macro Instruction Descriptions 189

SYNCDEV

SYNCDEV-List Form
The list form of the SYNCDEV macro is written:

[symbol] SYNCDEV [DCB=addr]
[,{BUFBLK=maximum buffer depthlO}]
[,INQ = {YESINO}]
,MF=L

The following describes the operands that can be specified for the list form of
SYNCDEV.

DCB= addr-A-Type address
specifies the address of the data control block.

BUFBLK= {maximum buffer depthlO}
specifies the maximum number of data blocks that can be buffered. This
number can be an absolute value from 0 to 65535. If BUFBLK is not speci
fied, the number of data blocks that can be buffered defaults to 0, and no
data blocks are buffered.

0
If neither ABUFBLK nor BUFBLK is specified, the number of data blocks
that can be buffered defaults to 0, and no data blocks are buffered.

INQ={YESINO}
specifies whether this is a request for information about the degree of syn
chronization or a request for synchronization.

YES

MF=L

specifies an inquiry as to how many data blocks are in the buffer.

specifies a request. for synchronization based on the number of data
blocks that can be buffered as specified in BUFBLK.

generates a parameter list that contains no executable instructions. The list
can be used as input and can be modified by the execute form of the
SYNCDEV macro. \"'-"'

190 MVS/ESA Data Administration: Macro Instruction Reference

(;
~/

{ 1

~)

SYN CD EV

SYNCDEV-Execute Form
The execute form of the SYNCDEV macro is written:

[symbol] SYNC DEV [DCB=addr]
[,{ABUFBLK = addrl

BUFBLK={maximum buffer depthfO}}]
[,INQ = {YESf NO}]
,MF= (E ,addr)

The following describes the operands that can be specified for the execute form
of SYNCDEV.

DCB= addr-A-Type address or (2-12)
specifies the address of the data control block.

ABUFBLK = addrlBUFBLK = {maximum buffer depthf O}
specifies the maximum number of data blocks that can be buffered.

ABUFBLK = addr-A-Type address or (2-12)
specifies the address of a halfword on a halfword boundary that con
tains a value that specifies the maximum number of data blocks that
can be buffered.

BUFBLK= {maximum buffer depthfO}
specifies the maximum number of data blocks that can be buffered.
This number can be an absolute value from 0 to 65535. The BUFBLK
value can be in the two low-order bytes of a register (2-12).

0
If neither ABUFBLK nor BUFBLK is specified, the number of data
blocks that can be buffered defaults to 0, and no data blocks are
buffered.

INQ={VESfNO}
specifies whether this is a request for information about the degree of syn-
chronization or a request for synchronization.

YES
specifies an inquiry as to how many data blocks are in the buffer.

specifies a request for synchronization based on the number of data
blocks that can be buffered as specified in ABUFBLK or BUFBLK.

Register 0 contains the number of buffered physical blocks if the pre
vious operation completed successfully.

MF=(E,addr)
specifies the execute form of SYNCDEV.

addr-A-Type address, RX-Type address, or (2-12)
specifies the address for the parameter list.

Macro Instruction Descriptions 191

SYN CD EV

Completion Codes

)

When the system returns control to your problem program, the low-order byte
of register 15 contains a return code; the low-order byte of register 0 contains a
reason code:

Return
Code (15)

oo (X •oo 1
)

04 (X 104 1
)

04 (X 104 1
)

04 (X 104 1
)

04 (X 104 1
)

04 (X 104 1
)

04 (X 104 1
)

04 (X 104 1
)

08 (X 108 1
)

12 (X 10C 1
)

Reason
Code (0)

01 (X 101 1
)

02 (X 102 1
)

03 (X 103 1
)

04 (X 104 1
)

05 (X •05 •)

11 (X 10B 1
)

12 (X 10C 1
)

00 (X 100 1
)

00(X 100 1
)

Meaning

Successful completion. Register 0 contains the
number of data blocks in the control unit buffer.

Incorrect parameter.

Incorrect DCB or a DEBCHK error.

System error occurred.

Possible system error.

Device does not support buffering.

Unsuccessful call to ESTAE macro.

Unsuccessful GETMAIN request.

Permanent 110 error during read block ID or
synchronize command.

Permanent 1/0 error on the last channel
program with loss of data (for tape data only).

Note: If you specified a SYNAD option in the
DCB and issue a PUT or CHECK macro after
this error occurs, your program cannot enter
the SYNAD routine.

192 MVS/ESA Data Administration: Macro Instruction Reference

TRUNC-Truncate an Output Buffer (QSAM Output-Fixed- or
Variable-Length Blocked Records)

TRUNC

The TRUNC macro instruction causes the current output buffer to be regarded
as full. The next PUT or PUTX macro instruction specifying the same data
control block uses the next buffer to hold the logical record.

When a variable-length spanned record is truncated and logical record inter
face, or extended logical record interface, is specified (that is, if BFTEK=A is
specified in the DCB macro instruction, or if a BUILDRCD macro instruction is
issued, or if DCBLRECL=OK or nnnnnK is specified), the system segments and
writes the record before truncating the buffer. Therefore, the block being trun
cated is the one that contains the last segment of the spanned record.

The TRUNC macro instruction is ignored if it is used for unblocked records, if it
is used when a buffer is full, or if it is used without an intervening PUT or PUTX
macro instruction.

The TRUNC macro is written:

I [symbol] I TRUNC I deb address

deb address-RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the sequential data set
opened for output. The record format in the data control block must not
indicate standard blocked records (RECFM = FBS).

Macro Instruction Descriptions 193

WAIT

WAIT-Wait for One or More Events (BDAM, BISAM, SPAM, and
BSAM)

The WAIT macro instruction is used to inform the control program that perform
ance of the active task cannot continue until one or more specific events, each
represented by a different ECB (event control block), have occurred. In the
context of this manual, the ECBs represent completion of 1/0 processing associ
ated with a READ or WRITE macro. ECBs are located at the beginning of
access method DECBs (data event control blocks), so that the DECB name pro
vided in READ and WRITE macros is also used for WAIT. (A description of the
ECB is found in Appendix A, "Status Information Following an Input/Output
Operation" on page 209. For information on when to use the WAIT macro, see
Data Administration Guide.)

The control program takes the following action:

• For each event that has already occurred (each ECB is already posted), the
count of the number of events is decreased by 1.

• If number of events is 0 when the last event control block is checked,
control is returned to the instruction following the WAIT macro instruction.

• If number of events is not 0 when the last ECB is checked, control is not
returned to the issuing program until sufficient ECBs are posted to bring the
number to 0. Control is then returned to the instruction following the WAIT
macro instruction.

• The events will be posted complete by the system when all 1/0 has been
completed, temporary errors have been corrected, and length checking has
been performed. The DECB is not checked for errors or exceptional condi
tions, nor are end-of-volume procedures initiated. Your program must
perform these operations.

The WAIT macro is written:

[symbol] WAIT [number of events]
{,ECB = addrl ECBLIST = addr}
[,LONG= {YESINO}]

number of events
specifies a decimal integer from 0 to 255. Zero is an effective NOP instruc
tion; 1 is assumed if the operand is omitted. The number of events must
not exceed the number of event control blocks. You may also use register
notation (2-12).

ECB=addr
specifies the address of the event control block (or DECB) representing the
single event that must occur before processing can continue. The operand
is valid only if the number of events is specified as 1 or is omitted.

addr
specify RX type or use register notation (1-12).

ECBLIST = addr
specifies the address of a virtual storage area containing one or more con- \...._,,,
secutive fullwords on a fullword boundary. Each fullword contains the

194 MVS/ESA Data Administration: Macro Instruction Reference

I
\ ' '-/

(.

\...._.,/

I

\.__./

WAIT

address of an event control block (or DECB); the high-order bit in the last
word (address) must be set to 1 to indicate the end of the list. The number
of event control blocks must be equal to or greater than the specified
number of events.

LONG= [YESINO]
specifies whether the task is entering a long wait or a regular wait.
Normally, 1/0 events should not be considered 1 long 1 unless it is antic
ipated that operator intervention will be required.

Caution: A job step with all its tasks in a WAIT condition terminates on expira
tion of the time limits that apply to it.

Access method ECBs are maintained entirely by the access methods and sup
porting control program facilities. You may inspect access method ECBs, but
should never modify them.

Macro Instruction Descriptions 195

WRITE

WRITE-Write a Block (BDAM)
Use of the WRITE (BDAM) macro is not recommended; we recommend you use ''-
a device-independent access method such as BSAM, SPAM, or QSAM instead.

The WRITE macro instruction adds or replaces a block in an existing direct data
set. (This version of the WRITE macro instruction cannot be used to create a
direct data set because no capacity record facilities are provided.) Control may
be returned to the problem program before the block is written. The output
operation must be tested for completion using a CHECK or WAIT macro instruc
tion. A data event control block, shown in Appendix A, "Status Information Fol
lowing an Input/Output Operation" on page 209, is constructed as part of the
macro expansion.

The standard form of the WRITE macro instruction is written as follows (the list
and execute forms are shown following the descriptions of the standard form):

[symbol] WRITE decb name
,{DA[F]}
{Dl[FIXJ}
{DK[FIXJ}

,deb address
,{area address I 'S '}
,{length!' S '}
,{key address!' S' IO}
,block address

decb name-symbol
specifies the name assigned to the data event control block created as part
of the macro expansion.

{DA[F]}
{Dl[FIXJ}
{DK[FIXJ}

The type operand is coded in one of the combinations shown to specify the
type of write operation and optional services performed by the system:

DA

DI

specifies that a new block is to be added to the data set. The search
for available space starts on the track indicated by the block address
operand. Fixed-length records (with keys only) are added to a data set
by replacing dummy records. Variable-length records (with or without
keys) are added to a data set by using available space on a track. (For
more information on adding records to a direct data set, see Data
Administration Guide. For a description of adding records with
extended search, see the LIMCT operand of the DCB macro.)

specifies that a data block and key, if any, are to be written at the
device address indicated in the area specified in the block address
operand. Any attempt to write a capacity record (RO) is an invalid
request when relative track addressing or actual device addressing are

\'-

used, but when relative block addressing is used, relative block O is the _..1
first data block in the data set.

196 MVS/ESA Data Administration: Macro Instruction Reference

(I

\.,..,_,1

DK

F

x

WRITE

specifies that a data block (only) is to be written using the key in the
area specified by the key address operand as a search argument; the
search for the block starts at the device address indicated in the area
specified in the block address operand. The description of the DCB
macro instruction, LIMCT operand, contains a description of the search.

requests that the system provide block position feedback into the area
specified in the block address operand. This character can be coded as
a suffix to DA, DI, or DK as shown above.

requests that the system release the exclusive control requested by a
previous READ macro instruction and provide block position feedback
into the area specified in the block address operand. This character
can be coded as a suffix to DI or DK as shown above.

deb address-A-Type Address or (2-12)
specifies the address of the data control block for the opened BDAM data
set.

area address-A-Type Address, (2-12), or 'S'
specifies the address of the area that contains the data block to be written.
'S' can be coded instead of an area address only if the data block (or key
and data) are contained in a buffer provided by dynamic buffering; that is,
'S' was coded in the area address operand of the associated READ macro
instruction. If 'S' is coded in the WRITE macro instruction, the area address
from the READ macro instruction data event control block must be moved
into the WRITE macro instruction data event control block; the buffer area
acquired by dynamic buffering is released after the WRITE macro instruction
is executed. For a description of the data event control block, see
Appendix A, "Status Information Following an Input/Output Operation" on
page 209.

length-symbol, decimal digit, absexp, (2-12) or 'S'
specifies the number of data bytes to be written up to a maximum of 32760.
If 'S' is coded, it specifies that the system uses the value in the block size
(DCBBLKSI) field of the DCB as the length. When undefined-length records
are used, if the WRITE macro instruction is for update and the length speci
fied differs from the original block, the new block is truncated or padded
with binary zeros accordingly. The problem program can check for this sit
uation in the SYNAD routine.

If the length operand is omitted for format-LI records, no error indication is
given when the program is assembled, but the problem program must
insert a length into the data event control block before the WRITE macro
instruction is executed.

key address-A-Type Address, (2-12), 'S', or 0
specifies the address of the area that contains the key to be used. Specify
'S' instead of an address only if the key is contained in an area acquired
by dynamic buffering. If the key is not to be written or used as a search
argument, specify zero instead of a key address.

block address-A-Type Address or (2-12)
specifies the address of the area that contains the relative block address,
relative track address, or actual device address used in the output opera-

Macro Instruction Descriptions 197

WRITE

tion. The length of the area depends on the type of addressing used and if
the feedback option (OPTCD = F) is specified in the data control block.
If OPTCD = F has been specified in the DCB macro and F or X is specified in
the WRITE macro, you must provide a relative block address in the form
specified by OPTCD in the DCB macro. For example, if OPTCD = R is speci
fied, you must provide a 3-byte relative block address; if OPTCD =A is spec
ified, you must provide an 8-byte actual device address (MBBCCHHR); if
neither is specified, you must provide a 3-byte relative address (TTR).
If OPTCD = F has not been specified in the DCB macro and F or X is speci
fied in the WRITE macro, then you must provide an 8-byte actual device
address (MBBCCHHR) even if relative block or relative track addressing is
being used.

198 MVS/ESA Data Administration: Macro Instruction Reference

(

\._)

I .
_,,)

(I '-/

\.._./

WRITE

WRITE-Write a Logical Record or Block of Records (BISAM)
Use of the WRITE (BISAM) macro is not recommended; we recommend you use
VSAM instead.

The WRITE macro instruction adds or replaces a record or replace an updated
block in an existing indexed sequential data set. Control may be returned to
the problem program before the block or record is written. The output opera
tion must be tested for completion using a WAIT or CHECK macro instruction.
A data event control block, shown in Appendix A, "Status Information Following
an Input/Output Operation" on page 209, is constructed as part of the macro
expansion.

The standard form of the WRITE macro instruction is written as follows (the list
and execute forms are shown following the descriptions of the standard form):

[symbol] WRITE decb name
,{KIKN}
,deb address
,{area address I 'S '}
,{length!' S '}
,key address

decb name-sym bot
specifies the name assigned to the data event control block created as part
of the macro expansion.

{KIKN}
The type operand is coded as shown to specify the type of write operation:

K

KN

specifies that either an updated unblocked record or a block containing
an updated record is to be written. If the record has been read using a
READ KU macro instruction, the data event control block for the READ
macro instruction must be used as the data event control block for the
WRITE macro instruction, using the execute form of the WRITE macro
instruction.

specifies that a new record is to be written, or a variable-length record
is to be rewritten with a different length. All records or blocks of
records read using READ KU macro instructions for the same data
control block must be written back before a new record can be added,
except when the READ KU and WRITE KN reference the same DECB.

deb address-A-Type Address or (2-12)
specifies the address of the data control block for the opened existing
indexed sequential data set. If a block is written, the data control block
address must be the same as the deb address operand in the corresponding
READ macro instruction.

area address-A-Type Address, (2-12), or 'S'
specifies the address of the area containing the logical record or block of
records to be written. The first 16 bytes of this area are used by the system
and should not contain your data. The area address must specify a different
area than the key address. When new records are written (or when

Macro Instruction Descriptions 199

WRITE

variable-length records are rewritten with a different length), the area
address of the new record must always be supplied by the problem
program. The addressed area may be altered by the system. 'S' may be
coded instead of an address only if the block of records is contained in an
area provided by dynamic buffering; that is, 'S' was coded for the area
address operand in the associated READ KU macro instruction. The
addressed area is released after execution of a WRITE macro instruction
using the same DECB. The area can also be released by a FREEDBUF
macro instruction.

The following illustration shows the forrnat of the area:

Area--,
Address I

v

Control Logical Record (WRITE KN) or Block
Program Use of Records (WRITE K)

Indexed sequential buffer and work area requirements are discussed in
Data Administration Guide.

length-symbol, decimal digit, absexp, (2-12) or 'S'
specifies the number of data bytes to be written, up to a maximum of 32760.
Specify 'S' unless a variable-length record is to be rewritten with a dif- , ferent length. \~

key address-A-Type Address or (2-12)
specifies the address of the area containing the key of the new or updated
record. The key address must specify a different area than the area
address. For blocked records, this is not necessarily the high key in the
block. For unblocked records, this field should not overlap with the work
area specified in the MSWA parameter of the DCB macro instruction.
Note: When new records are written, the key area may be altered by the
system.

200 MVS/ESA Data Administration: Macro Instruction Reference

\

"'-"'

\...._,J

WRITE

WRITE-Write a Block (BPAM and BSAM)
The WRITE macro instruction adds or replaces a block in a sequential or parti
tioned data set being created or updated. Control may be returned to the.
problem' program before the block is written. The output operation must be
tested for completion using the CHECK macro instruction. A data event control
block, shown in Appendix A, "Status Information Following an Input/Output
Operation" on page 209, is constructed as part of the macro expansion.

If translation from EBCDIC code to ISCll/ASCll code is requested, issuing mul
tiple WRITE macro instructions for the same record causes an error because
the first WRITE macro instruction issued translates the output data in the output
buffer into ISCll/ ASCII code.

If the OPEN macro instruction specifies UPDAT, both the READ and WRITE
macro instructions must reference the same data event control block. See the
list form of the READ or WRITE macro instruction for a description of how to
construct a data event control block; see the execute form of the READ or
WRITE macro instrucUon for a description of modifying an existing data event
control block.

The standard form of the WRITE macro instruction is written as follows (the list
and execute forms are shown following the descriptions of the standard form):

[symbol] WRITE decb name
,SF
,deb address
,area address
[,{length I'S'}]

decb name-symbol

SF

specifies the name assigned to the data event control block created as part
of the macro expansion.

specifies normal, sequential, forward operation.

deb address-A-Type Address, or (2-12)
specifies the address of the data control block for the opened data set being
created or processed. If the data set is being updated, the data control
block address must be the same as the deb address operand in the corre
sponding READ macro instruction.

area address-A-Type Address or (2-12)
specifies the address of the area that contains the data block to be written;
if a key is written, the key must precede the data in the same area.

length-symbol, decimal digit, absexp, (2-12) or 'S'
specifies the number of bytes to be written; this operand is specified for
only undefined-length records (RECFM = U) or for ASCII records
(RECFM = D) when the DCB BUFOFF operand is zero. For AL tapes, the
maximum length is 2048 bytes; otherwise, the maximum length is 32760
bytes. You can code 'S' to indicate that the value specified in the block
size (DCBBLKSI) field of the data control block is used as the length to be

Macro Instruction Descriptions 201

WRITE

written. Omit the length operand for all record formats except format-LI and
format-0 (when BUFOFF=O).

If the length operand is omitt~d for format-LI or format-0 (with BUFOFF=O)
records, no error indication is given when the program is assembled, but
the problem program must insert a length into the data event control block
before the WRITE macro is issued.

202 MVS/ESA Data Administration: Macro Instruction Reference

. I
\~

u

WRITE

1
WRITE-Write a Block (Create a Direct Data Set with BSAM)

Use of the WRITE (BDAM) macro is not recommended; we recommend you

WRITE (BSAM) or WRITE (QSAM) instead.

The WRITE macro instruction adds a block to the direct data set being created.

For fixed-length blocks, the system writes the capacity record automatically

when the current track is filled; for variable and undefined-length blocks, a

WRITE macro instruction must be issued for the capacity record. Control may

be returned to the problem program before the block is written. The output

operations must be tested for completion using a CHECK macro instruction. A

data event control block, shown in Appendix A, "Status Information Following

an Input/Output Operation" on page 209, is constructed as part of the macro

expansion.

The standard form of the WRITE macro instruction is written as follows (the list
and execute forms are shown following the descriptions of the standard form):

[symbol] WRITE decb name
,{SFISFRISDISZ}
,deb address
,area address
[,{length I'S'}]
[,next address]

decb name-symbol
specifies the name assigned to the data event control block created as part
of the macro expansion.

{SFISFRISDISZ}
The type operand is coded as shown, to specify the type of write operation
performed by the system:

SF
specifies that a new data block is to be written in the data set.

SFR

SD

sz

specifies that a new variable-length spanned record is to be written in

the data set, and next address feedback is requested. This operand can

be specified only for variable-length spanned records (BFTEK = R and

RECFM =VS are specified in the data set control block). If type SFR is

specified, the next address operand must be included.

specifies that a dummy data block is to be written in the data set;

dummy data blocks can be written only when fixed-length records with

keys are used.

specifies that a capacity record (RO) is to be written in the data set;

capacity records can be written only when variable-length or undefined

length records are used.

Macro Instruction Descriptions 203

WRITE

deb address-A-Type Address or (2-12)
specifies the address of the data control block opened for the data set being
created. You must specify DSORG=PS (or PSU) and MACRF=WL in the
DCB macro instruction to create a BDAM data set.

area address-A-Type Address or (2-12)
specifies the address of the area that contains the data block to be added to
the data set. If keys are used, the key must precede the data in the same
area. For writing capacity records (SZ), the area address is ignored and
can be omitted (the system supplies the information for the capacity
record). For writing dummy data blocks (SD), the area need be only large
enough to hold the key plus one data byte. The system constructs a
dummy key with the first byte set to all 1 bits (hexadecimal FF) and adds
the block number in the first byte following the key. When a dummy block
is written, a complete block is written from the area immediately following
the area address; therefore, the area address plus the value specified in the
BLKSIZE and KEYLEN operands must be within the area allocated to the
program writing the dummy blocks.

length-symbol, decimal digit, absexp, (2-12), or 1S 1

is used only when undefined-length (RECFM = U) blocks are being written.
The operand specifies the length of the block, in bytes, up to a maximum of
32760. If Is I is coded, it specifies that the system is to use the length in the
block size (DCBBLKSI) field of the data control block as the length of the
block to be written.

If the length operand is omitted for format-LI records, no error indication is
given when the program is assembled, but the problem program must
insert a length into the data event control block before the WRITE is issued.

next address-A-Type Address or (2-12)
specifies the address of the area where the system places the relative track
address of the next record to be written. Next address feedback can be
requested only when variable-length spanned records are used.

Note: When variable-length spanned records are used (RECFM =VS and
BFTEK = R are specified in the data control block), the system writes capacity
records (RO) automatically in the following cases:

• When a record spans a track.

• When the record cannot be written completely on the current volume. In
this case, all capacity records of remaining tracks on the current volume
are written; tracks not written for this reason are still counted in the search
limit specified in the LIMCT operand of the data control block.

• When the record written is the last record on the track, the remaining space
on the track cannot hold more than eight bytes of data.

204 MVS/ESA Data Administration: Macro Instruction Reference

I

'-

l) ',_/

(I

\._)

WRITE

Completion Codes for WRITE-Write a Block (Create a Direct Data Set with
BSAM)

Return
Code (15)

00 (X 100 1
)

04(X 104 1
)

08 (X 108 1
)

12 (X 10C 1
)

After the write has been scheduled and control has been returned to your
problem program, the three high-order bytes of register 15 are set to O; the low
order byte contains one of the following return codes:

Meaning

Fixed-Length

(SF or SD)

Block is written. (If the
previous return code was
08, a block is written only if
the DD statement specifies
secondary space allocation
and sufficient space is
available.)

Block is written, followed
by a capacity record. (If
the previous return code
was 08, a block is written
only if the DD statement
specifies secondary space
allocation and sufficient
space is available.)

Block is written, followed
by a capacity record. The
next block requires sec
ondary space allocation.

Block is not written; issue
a CHECK macro instruction
for the previous WRITE
macro instruction, then
reissue the WRITE macro
instruction.

Variable or Undefined
length

(SF or SFR)

Block is written. (If the
previous return code was
08, a block is written only if
the DD statement specifies
secondary space allocation
and sufficient space is
available.)

Block was not written;
write a capacity record
(SZ) to describe the
current track, then reissue
the WRITE macro instruc
tion.

Block is not written; issue
a CHECK macro instruction
for the previous WRITE
macro instruction, then
reissue the WRITE macro
instruction.

Variable or Undefined
/ength

(SZ)

Capacity record was
written; another track is
available.

Capacity record was
written. The next block
requires secondary
space allocation. This
code is not issued if the
WRITE macro instruction
is issued on a one-track
secondary extent.

Block is not written;
issue a CHECK macro
instruction for the pre
vious WRITE macro
instruction, then reissue
the WRITE macro
instruction.

Note: For fixed-length records, the return codes are unpredictable when writing
on record per track with one track per extent.

Macro Instruction Descriptions 205

WRITE

WRITE-List Form
The list form of the WRITE macro instruction is used to construct a data man- \-._
agement parameter list as a data event control block {DECB). For a description
of the various fields in the DECB for each access method, see Appendix A,
"Status Information Following an Input/Output Operation" on page 209.

The description of the standard form of the WRITE macro instruction provides
the explanation of the function of each operand. The description of the
standard form also indicates the operands used for each access method and
the meaning of 'S' when coded for the area address, length, and key address
operands. For each access method, 'S' can be coded only for those operands
for which it can be coded in the standard form of the macro instruction. The
format description below indicates the optional and required operands in the
list form only, but does not indicate optional and required operands for any spe
cific access method.

The list form of the WRITE·macro is written:

[symbol] WRITE decb name
,type
,[deb address]
,[area address!' S ']
,[length! 'S']
,[key address!' S ']
,[block address]
,[next address],MF=L

decb name-symbol

type-Code one of the types shown in the standard form

deb address-A-Type Address

area address-A-Type Address or 'S'

length-symbol, decimal digit, absexp, or 'S'

key address-A-Type Address or 'S'

block address-A-Type Address

next address-A-Type Address

MF=L
specifies that the WRITE macro instruction is used to create a data event
control block that is to be referenced by an execute-form instruction.

206 MVS/ESA Data Administration: Macro Instruction Reference

\
~

\~

'i

(\j_/

/ !
(i)
~I

, I
' !

~)

!
i I

~i

WRITE-Execute Form
A remote data management parameter list (data event control block) is used in,
and can be modified by, the execute form of the WRITE macro instruction. The
data event control block can be generated by the list form of either a READ or
WRITE macro instruction.

The description of the standard form of the WRITE macro instruction provides
the explanation of the function of each operand. The description of the
standard form also indicates the operands used for each access method and
the meaning of 'S' when coded for the area address, length, and key address
operands. For each access method, 'S' can be coded only for those operands
for which it can be coded in the standard form of the macro instruction. The
format description below indicates the optional and required operands in the
execute form only, but does not indicate the optional and required operands for
any specific access method.

The execute form of the WRITE macro instruction is written as follows:

[symbol] WRITE decb address
,type
,[deb address]
,[area address! 'S']
,[length I'S']
,[key addressl'S']
,[block address]
,[next address]
,MF=E

decb address-RX-Type Address or (2-12)

type-Code one of the types shown in the standard form

deb address-RX-Type Address or (2-12)

area address-RX-Type Address, (2-12), or 'S'

length-symbol, decimal digit, absexp, (2-12), or 'S'

key address-RX-Type Address, (2-12), or 'S'

block address-RX-Type Address or (2-12)

next address-RX-Type Address or (2-12)

MF=E
specifies that the execute form of the WRITE macro instruction is used, and
an existing data event control block (specified in the decb address operand)
is to be used by the access method.

Macro Instruction Descriptions 207

XLATE

XLATE-Translate to and from ISCll/ ASCII {BSAM and QSAM)
The XLATE macro instruction is used to translate the data in an area in virtual
storage from ISCll/ ASCII code to EBCDIC code or from EBCDIC code to
ISCll/ ASCII code.

See "Tables for Translating Codes" on page 226 for the ISCll/ASCll to EBCDIC
and EBCDIC to ISCll/ ASCII translation codes. When translating EBCDIC code to
ISCll/ ASCII code, all EBCDIC code not having an ISCll/ ASCII equivalent is trans
lated to X' 1A'. When translating ISCll/ ASCII code to EBCDIC code, all
ISCll/ ASCII code not having an EBCDIC equivalent is translated to X' 3F 1

•
Because Version 3 ISCll/ ASCII uses only 7 bits in each byte, bit 0 is always set
to 0 during EBCDIC to ISCll/ ASCII translation and is expected to be 0 during
ISCll/ ASCII to EBCDIC translation.

The XLATE macro is written:

[symbol] XLATE area address
,length
[,TO= {Al£}]

area address-RX-Type Address, symbol, decimal digit, absexp,
(2-12), or (1)

specifies the address of the area that is to be translated.

length-symbol, de~imal digit, absexp, (2-12), or (0)
specifies the number of bytes to be translated ..

TO={AI£}
specifies the type of translation requested. If this operand is omitted, E is
assumed. The following describes the characters that can be specified:
A

specifies that translation from EBCDIC code to ISCll/ ASCII code is
requested.

specifies that translation from ISCll/ ASCII code to EBCDIC code is
requested.

208 MVS/ESA Data Administration: Macro Instruction Reference

I

"""-

(

__/

(
"'--/

Appendix A. Status Information Following an Input/Output
Operation

Following an input/output operation, the control program makes certain status
information available to the problem program. This information is a 2-byte
exception code, or a 16-byte field of standard status indicators, or both.

Exception codes are provided in the data control block (DCB), or in the data
event control block (DECB) (basic access methods). The data event control
block is described below, and the exception code lies within the block as shown
in the illustration for the data event control block. If you code a DCBD macro
instruction, the exception code in a data control block can be addressed as two
1-byte fields, DCBEXCD1 and DCBEXCD2. For more information, see DFP:
Customization.

Status indicators are available only to the error analysis routine designated by
the SYNAD entry in the data control block. A pointer to the status indicators is
provided either in the data event control block (BSAM, BPAM, and BDAM), or in
register 0 (QISAM and QSAM). For more information, see DFP: Customization.

Data Event Control Block
A data event control block is constructed as part of the expansion of READ and
WRITE macro instructions and is used to pass parameters to the control
program, help control the read or write operation, and receive indications of the
success or failure of the operation. The data event control block is named by
the READ or WRITE macro instruction, begins on a fullword boundary, and con
tains the information shown in the following illustration:

Field Contents
Offset from DECB
Address (Bytes) BSAM and BPAM BI SAM BDAM

0

+4

+6

+8

+12

+16

+20

+24

+28

ECB ECB ECB 1

Type Type Type

Length Length Length

DCB address DCB address DCB address

Area address Area address Area address

IOB address Logical record IOB address
address

Key address Key address

Exception code Block address
(2 bytes)

Next address

The control program returns exception codes in bytes + 1 and + 2 of the
ECB.

Appendix A. Status Information Following an Input/Output, Operation 209

'\.....,,

'[I

~·

\ ... _/

Appendix B. Data Management Macro Instructions Available
by Access Method

Macro Instruction BDAM BISAM BPAM BSAM QISAM QSAM

BLDL x
BSP x

-

BUILD x x x x x x
..

BUILDRCD x

CHECK x x x x
CHKPT x x x x x x
CLOSE x x x x x x
CNTRL x x

DCB x x x x x x
DCBD x x x x x x

ESETL x

FEOV x x
FIND x
FREEBUF x x x x
FREEDBUF x x
FREE POOL x x x x x x

GET x x
GETBUF x x x x
GET POOL x x x x x x

MSGDISP x x

NOTE x x

OPEN x x x x x x

PDAB x

Appendix B. Data Management Macro Instructions Available by Access Method 211

Macro Instruction BDAM BISAM BPAM BSAM QISAM QSAM
PDABD x \ .'-
POINT x x
PRTOV x x
PUT x x
PUTX x x

READ x x x x
RE LEX x
RELSE x x

SETL x
SETPRT x x
STOW x
SYNADAF x x x x x x
SYNADRLS x x x x x x
SYNCDEV x x

TRUNC x

WAIT x x x x
WRITE x x x x

XLATE x x

212 MVS/ESA Data Administration: Macro Instruction Reference

(:
'\...J

(_)

(_j

Appendix C. Device Capacities

The following information provides a guide to coding the block size (BLKSIZE)
and logical record length (LRECL) operands in the DCB macro instruction. You
can use these va'lues to determine the maximum block size and logical record
length for a given device, and to determine the optimum blocking factor when
records are to be blocked.

Card Readers and Card Punches

Printers

Format F, V, or U records are accepted by readers and punches, but the logical
record length for a card reader or card punch is fixed at 80 bytes. If the
optional control character is specified, the logical record length is 81 (the
control character is not part of the data record). If card image mode is used,
the buffer required to contain the data must be 160 bytes.

The following table shows the record length that can be specified for the
various printers. In some cases, two values are shown; except for the 3800, the
larger of the two values requires that an optional feature be installed on the
printer being used. If the optional control character is specified to control
spacing and skipping, the record length is specified as one greater than the
actual data length (the control character is not part of the data record).

Printer

1403 Printer
3203 Printer
3211 Printer
3525 Card Punch,
Print Feature
3800 Printing Subsystem

4245 Printer
4248 Printer
3262 Model 5 Printer

Record Length

120 or 132 bytes
132 bytes
132 or 150 bytes

64 bytes
136 bytes for 10 pitch
163 bytes for 12 pitch
204 bytes for 15 pitch
132 bytes
132 or 168 bytes
132 bytes

Magnetic Tape Units

Tape

3410 Magnetic Tape Units
(7 track and 9 track)

3420 Magnetic Tape Units
(7 track and 9 track)

3430 Magnetic Tape Units

3480 Magnetic Tape Subsystem

Capacity

32760 bytes

32760 bytes

32760 bytes

32760 bytes

Appendix C. Device Capacities 213

Direct Access Devices
The following figure lists the physical characteristics of direct access storage
devices.

Figure 8. DASO Physical Characteristics
DASO Characteristics Block Size

512 1024 2048 4096
Type Trk/Cyl Cyl/Vol Number of Physical Blocks per Track2

2305-2 8 96 20 12 6 3

3330-1 19 404 20 11 6 3

3330-11 19 808 20 11 6 3

3340/3344 12 348 12 7 3 2

3350 30 555 27 15 8 4

3375 12 959 40 25 14 8

33803 15 885 46 31 18 10

33804 15 1770 46 31 18 10

33805 15 2655 46 31 18 10

Track Capacity Determination
Each record written on a direct access device requires some "device
overhead." The term device overhead means the space required by the device
for address markers, count areas, gaps between the count, key, and data areas,
and gaps between blocks. Use the following calculations to compute the
number of bytes required for each data block i'ncluding the space required for
device overhead. Note that any fraction of a byte must be ignored. For
example, if the calculation results in 15.644 bytes, use 15 bytes to determine
track capacity.

Space Calculation Formulas for Models 2305 through 3375

Blocks
Device With Keys
2305-2 289+KL1 +DL2

3330/3333 (Model 1 or 11) 3 191 +KL+DL

3340/3344 242+KL+DL

2 Assumes without keys (KL = 0).

3 3380 single capacity Models A04, AA4, 804, AD4, BD4, AJ4, BJ4, and CJ2.

4 3380 double capacity Models AE4 and BE4.

s 3380 triple capacity Models AK4 and BK4.

214 MVS/ESA Data Administration: Macro Instruction Reference

Blocks
Without Keys
198+DL

135+DL

167+DL

\...,

\._

Device
3350

3375

3380 (All Models)

2

3

Blocks
With Keys
267+KL+DL

224+((KL+191)/32)(32) +
((DL + 191)/32)(32)

KL is key length.

DL is data length.

Blocks
Without Keys
185+DL

224+((DL+191)/32)(32)

The Mass Storage System (MSS) virtual volumes assume the character
istics of the 3330/3333, Model 1.

When track overflow is used or variable-length spanned records are written, the
size of a data block or logical record can exceed the capacity of a single track
on the direct access device used. Note: Track overflow is not available on
DASO models 3375 through 3380.

Each 3380 model track is divided into 1499 user data cells (with IBM standard
RO) or 1515 user data cells (without an RO record). A record can occupy from
16 to 1515 of these cells. The number of cells (Space) occupied by a record is a
function of the key length (KL) and data length (DL) as specified in the count
area of the record. The following formula applies to both blocked and
unblocked records.

I
\.._.,,' Space Calculation Formula for 3380

(:

~

The space, in cells, occupied by a record can be calculated from the following
formula:

Space=C + K + D

where:

C=8

If KL=O, K=O

If KL =f: 0,

K=7 + KL 3~
12 , rounded up to an integral value.

D=7 + DL 3~
12 , rounded up to an integral value.

Appendix C. Device Capacities 215

Track Capacity
A track can hold a given set of records providing that the sum of the Space
values for all records is less than or equal to the maximum value.

The maximum value for the sum is 1499 if an IBM standard RO record is
provided and the summation of Space values does not include RO.

The maximum value for the sum is 1515 if the summation of Space values
includes RO.

A standard end-of-file record has a Space value of 16.

If all records on a track are of equal KL and DL, each of which occupies Space
cells, the maximum number of records which can fit on a track is:

1515 . S , rounded down to an integral value. pace

\"'-"

If an IBM standard RO is provided and all the other records on a track are of \"'-'
equal KL and DL, each of which occupies Space cells, the maximum number of
records (other than RO) which can fit on a track is:

S1499 , rounded down to an integral value. pace

See 3380 DAS Reference Summary for more information.

216 MVS/ESA Data Administration: Macro Instruction Reference

\~

:)
\~

I

~

I '.

~)

(.

\J.._,;/

Track Capacity Calculation Examples for 3380 Models

Equal Length Records

Unblocked Records

Blocked Records

The examples of track capacity calculation with equal length records use a data
set consisting of 45,000 records of 80 bytes, both unblocked and blocked as 900
blocks of 4000 bytes each. All tracks use an IBM standard RO.

Using the calculations shown in "Space Calculation Formula for 3380" on
page 215 with KL=O and DL=80:

C=B

K=O

DL + 12 . D=7 +
32

, rounded up to an integral value,

=7 + 80 + 12· , rounded up to an integral value, 32
=10

Space=C + K + D
=:=8 + 0 + 10
=18

The maximum number of records (other than RO) which can fit on a track is:

5
1499 , rounded down to an integral value. pace

=
1 ~~9 , rounded down to an integral value.

=83

At 83 records per track, the 45,000 record data set would require 543 tracks, or
36 cylinders and 3 tracks.

Using the calculations shown in "Space Calculation Formula for 3380" on
page 215 with KL=O and DL=4000:

C=B

K=O

DL + 12 . 0=7 +
32

, rounded up to an integral value,

4000 + 12 . =7 +
32

, rounded up to an integral value,

=133

Appendix C. Device Capacities 217

Space=C + K + D

=8 + 0 + 133
=141

The maximum number of records (other than RO) which can fit on a track is:

1499 . S , rounded down to an integral value. pace

1499 . = 141' rounded down to an integral value.

=10

At 10 blocks per track, the 900 block data set would require 90 tracks, or 6 cylin
ders.

Unequal Length Records

Space Calculations

As an example of calculating track capacity for unequal length records, con
sider a partitioned data set with the following records:

1. A directory, consisting of 25 records, each with KL=8 and DL=256.

2. A number of members, blocked into 4096-byte blocks.

3. End-of-file records between blocks which contain different members.

All tracks contain an IBM standard RO.

The space occupied by the different types of records is first calculated.

Directory Records: Using the calculations shown in "Space Calculation
Formula for 3380" on page 215 with KL=8 and DL=256:

C=8

KL+ 12 . K=7 +
32

, rounded up to an integral value,

=7 + 8
;

2
12

, rounded up to an integral value,

=8

DL + 12 . 0=7 +
32

, rounded up to an integral value,

=7 + 256
3
;

12
, rounded up to an integral value,

=16

Space=C + K + D

=8 + 8 + 16
=32

\
\ . ._,/

\
Member Blocks: Using the calculations shown in "Space Calculation Formula \._)
for 3380" on page 215 with KL=O and DL=4096:

218 MVS/ESA Data Administration: Macro Instruction Reference

Track Capacity

(\.J_)

C=B

K=O

D=7 + DL + 12
, rounded up to an integral value, 32

=7 + 4096
+

12
, rounded up to an integral Value, 32

=136

Space=C + K + D

=8+0+136
=144

End-of-File Records: End-of-file records have a Space value of 16.

First Track: In 3380 models, all tracks have an available Space value of 1499
cells. The directory consists of 25 records, each occupying 32 cells. Hence,
1499 - (25 x 32)=699 cells are available for member blocks and end-of-file
records. Each member block occupies 144 cells. Hence, in addition to the
directory, the first track can contain 4 member blocks with 123 cells left over for
end-of-file ~ecords. Since an end-of-File record occupies 16 cells, there is
enough space for up to 4 end-of-file records which is the maximum required for
4 member blocks.

In this example, the first track of the data set would contain the directory and 4
or fewer member blocks, with end-of-file records as required.

Subsequent Tracks: The available Space of 1499 cells on subsequent tracks
·could hold 10 member blocks of 144 cells each. The remaining space of
1499 - (10 x 144)=59 cells would hold up to 3 end-of-file records occupying 16
cells each. If more end-of-file records were necessary,,the number of member
blocks would have to be decreased to 9 to accommodate them.

In this example, tracks other than the first track of the data set would contain
either:

10 member blocks and 3 or fewer end-of-file records OR

9 or fewer member blocks and 9 or fewer end-of-file records.

Appendix C. Device Capacities 219

\...._,

t~, Appendix D. DCB Exif List Format and Contents

I

\.__.,;}

I

\,_)

L,

'\..__,,)

The following shows the format and contents that must be supplied by the
problem program when the EXLST operand is specified in a DCB macro instruc
tion. The exit list must begin on a fullword boundary and each entry in the list
requires one fullword.

Hex
Entry Type Code 3-Byte Address-Purpose

Inactive entry 00 Ignore the entry; it is not active.

Input header label exit 01 Process a user input header label.

Output header label exit 02 Create a user output header label.

Input trailer label exit 03 Process a user input trailer label.

Output trailer label exit 04 Create a user output trailer label.

Data control block exit 05 Take a data control block exit.

End-of-volume exit 06 Take an end-of-volume exit.

JFCB exit 07 JFCB address for RDJFCB and OPEN TYPE=J SVCs.

08 Reserved.

1/0 error processing exit 09 User option to process 1/0 errors.

User totaling area OA Address of beginning of user's totaling area.

Block count exit OB Take a block-count-unequal exit.

Defer input trailer label oc Defer processing of a user input trailer label from end-of-data
until closing.

Defer nonstandard input OD Defer processing a nonstandard input trailer label on mag-
trailer label netic tape unit from end-of-data until closing (no exit routine

address).

OE-OF Reserved.

FCB image 10 Define an FCB image.

DCB ABEND exit 11 Examine the ABEND condition and select one of several
options.

QSAM parallel input 12 Address of the PDAB for which this DCB is a member.

Allocation retrieval list 13 Retrieve allocation information for one or more data sets with
RDJFCB.

14 Reserved.

JFCBE exit 15 Take an exit during OPEN to allow user to examine
JCL-specified setup requirements for a 3800 printer.

16 Reserved.

OPEN/EOV nonspecific 17 Option to specify a tape volume serial number.
tape volume mount

Appendix D. DCB Exit List Format and Contents 221

Entry Type

OPEN/EOV volume
security /verification

Last entry

Hex
Code

18

3-Byte Address-Purpose

Verify a tape volume and some security checks.

19-?F Reserved.

80 Treat this entry as the last entry in the list. This code can be
specified with any of the above but must always be specified
with the last entry.

To dynamically shorten the list during execution, set the high-order bit of the
word to a value of 1. To dynamically inactivate an entry in the list, set the high
order byte of the word to a value of hexadecimal 00.

When control is passed to an exit routine, the general registers contain the fol
lowing information:

Register Contents

0 Variable; the contents depend on the exit routine used.

1 The three low-order bytes contain either the address of the DCB cur
rently being processed or, when certain exits are taken, the address
of the exit parameter list. These exits are: user-label exits

2-13

(X 101 1 -X 104 1
), deferred nonstandard input trailer exit (X 10D 1

), and
DCB ABEND exit (X 1 11 1

).

Contents prior to execution of the macro instruction.

14 Return address (must not be altered by the exit routine).

15 Address of the exit routine entry point.

The conventions for saving and restoring registers are as follows:

• The exit routine must preserve the contents of register 14. It need not pre
serve the contents of other registers. The control program restores regis-

\~

ters 2 through 13 before returning control to the problem program. :,~

• The exit routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the exit routine calls
another routine or issues supervisor or data management macro
instructions, it must provide the address of a new save area in register 13.

For a detailed description of each exit list processing option, see DFP:
Customization.

222 MVS/ESA Data Administration: Macro Instruction Reference

Appendix E. Control Characters

Machine Code

Each logical record, in all record formats, can contain an optional control char
acter. This control character is used to control stacker selection on a card
punch or card read punch, or it is used to control printer spacing and skipping.
If a record containing an optional control character is directed to any other
device, it is considered to be the first data byte, and it does not cause a control
function to occur.

In format-F and format-LI records, the optional control character must be in the
first byte of the logical record.

In format-V or format-D records, the optional control character· must be in the
fifth byte of the logical record, immediately following the record descriptor word
of the record.

Two control character options are available. You can select a control character
option by coding the appropriate character in the RECFM operand of the DCB
macro instruction. If either option is specified in the data control block, you
must include a control character in each record. Other spacing or stacker
selection options also specified in the data control block are ignored.

The record format field in the data control block indicates that the machine
code control character has been placed in each logical record. If the record is
written, the appropriate byte must contain the command code bit configuration
specifying both the write and the desired carriage or stacker select operation.

Appendix E. Control Characters 223

The machine code control characters for a printer are:

Print-Then
Act Action
X 101 1 Print only (no space)

x•og• Space 1 line

x• 11 • Space 2 lines

X 1 19 1 Space 3 lines

X 1SA 11 Change from line mode to page
mode

X 189 1 Skip to channel 1

X 1 91 1 Skip to channel 2

x•gg• Skip to channel 3

X'A1 I Skip to channel 4

X 1A9 1 Skip to channel 5

X 1 B1 I Skip to channel 6

X 1 B9 1 Skip to channel 7

X'C1 I Skip to channel 8

x•cg• Skip to channel 9

X'D1 I Skip to channel 10

X 1 09 1 Skip to channel 11

X'E1 I Skip to channel 12

Act Immediately
Without Printing

x•oB•

X 113 1

X 1 1B 1

X 18B 1

x•93•

X 19B 1

X 1A3 1

X 1AB 1

X 1B3 1

X 1 BB 1

x•c3•

x•cB•

X 1 D3 1

X 1DB 1

X 1 E3 1

With the IBM 3800 Model 3 all-points-addressable mode, this code means
that the record is in page mode instead of line compatibility mode.

The machine code control characters for a card read punch device are as
follows:

Control Code
X 1 01 1

X 141'

X 1 81 1

Action
Select stacker 1

Select stacker 2

Select stacker 3

Other command codes for specific devices are contained in IBM System Refer
ence Library publications describing the control units or devices.

224 MVS/ESA Data Administration: Macro Instruction Reference

'"-"'

\~

\ :
\._.,/

ISO/ ANSI/Fl PS Control Characters ·
In place of machine code, you can specify control characters defined by the
International Organization for Standardization (ISO), American National Stand
ards Institute (ANSI), or the Federal Information Processing Standards (FIPS).
These characters must be represented in EBCDIC code.

International Organization for Standardization (ISO), American National Stand
ards Institute (ANSI), or Federal Information Processing Standards (FIPS)
control characters are as follows:

Code Action before Printing a Line

b Space one line (blank code)

0 Space two lines

Space three lines

+ Suppress space

Skip to channel 1

2 Skip to channel 2

3 Skip to channel 3

4 Skip to channel 4

5 Skip to channel 5

6 Skip to channel 6

7 Skip to channel 7

8 Skip to channel 8

9 Skip to channel 9

A Skip to channel 10

B Skip to channel 11

c Skip to channel 12

X 15A .i Change from line mode to page mode

With the IBM 3800 Model 3 all-points-addressable mode, this code means
that the record is in page mode instead of line compatibility mode.

Code Action after Punching a Card

V Select punch pocket 1

W Select punch pocket 2

These controL characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 1 b 1 or V, depending on the device
being used; no error indication is returned.

Appendix E. Control Characters 225

Tables for Translating Codes

Translating from EBCDIC to ASCII
The next line shows that the first four EBCDIC values (00, 01, 02, 03) are not
changed during translation to ASCII.

0 1 2 3 4 5 6 7 8 9 A B C D E F
00-0F 000102031A091A7F 1AlA1A080C0D0E0F
10-lF 101112131AlA081A 18191AlA1ClD1ElF
20-2F 1AlA1A1AlA0A1718 1A1AlA1AlA058607
30-3F 1AlA161AlA1AlA04 1AlA1AlA14151AlA
40-4F 201AlA1AlA1A1AlA 1AlA5B2E3C282821
50-SF 261A1AlA1AlA1AlA 1A1A5D242A29385E
60-6F 2D2F1AlA1AlA1AlA 1AlA7C2C255F3E3F
70-7F 1AlA1AlA1AlA1AlA 1A603A2340273D22
80-8F 1A61626364656667 68691AlA1AlA1AlA
90-9F 1A6A686C6D6E6F70 71721AlA1AlA1AlA
A0-AF 1A7E737475767778 797AlA1A1AlA1AlA
80-BF 1AlA1AlA1AlA1AlA 1AlA1AlA1AlA1AlA
C0-CF 7841424344454647 48491AlA1AlA1AlA
00-DF 7D4A484C4D4E4F50 51521AlA1AlA1AlA
E0-EF 5C1A535455565758 595A1AlA1AlA1AlA
F0-FF 3031323334353637 38391AlA1AlA1AlA

Translating from ASCII to EBCDIC
0 1 2 3 4 5 6 7 8 9 A B C D E F

88818283372D2E2F 168525888C8D8E8F
18-lF 181112133C3D3226 18193F271ClD1ElF
28-2F 484F7F78586C507D 4D5D5C4E68684861
38-3F F8F1F2F3F4F5F6F7 F8F97A5E4C7E6E6F
48-4F 7CC1C2C3C4C5C6C7 C8C9D1D2D3D4D5D6
58-SF D7D8D9E2E3E4E5E6 E7E8E94AE85A5F6D
60-6F 7981828384858687 8889919293949596
78-7F 979899A2A3A4A5A6 A7A8A9C06AD8A187
80-8F 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
98-9F 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
A0-AF 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
88-BF 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
C8-CF 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
00-DF 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
E0-EF 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F
F0-FF 3F3F3F3F3F3F3F3F 3F3F3F3F3F3F3F3F

226 MVS/ESA Data Administration: Macro Instruction Reference

\

\~

(L1 Appendix F. Data Control Block Symbolic Field Names

I
I ! ' l\j__;

\j_)

The following describes data control block fields that contain information that
defines the data characteristics and device requirements for a data set. Each of
the fields described shows the values that result from specifying various
options in the DCB macro instruction. These fields can be referred to by the
problem program through the use of a DCBD macro instruction that creates a
dummy control section (DSECT) for the data control block. Fields that contain
addresses are 4 bytes long and are aligned on a fullword boundary. If the
problem program inserts an address into a field, the address must be inserted
into the low-•order 3 bytes of the field without changing the high-order byte.

The contents of some fields in the data control block depend on the device and
access method being used. A separate description is provided when the con
tents of the field are not common to all device types and access methods.

Appendix F. Data Control Block Symbolic Field Names 227

Data Control Block-Common Fields

Offset

26(1A)

40(28)

40(28)

42(2A)

45(2D)

48(30)

Bytes and Align· Field Name
ment
2 DCBDSORG

8

2

2

.3

1

1 ...
.1 ..
.. 1.
... X XX ..

.. 1.
.... . .. 1

DCBDDNAM

DCBTIOT

DCBMACRF

DCB DE BA

DCBOFLGS

... 1

1 ...

.. 0.

.... ..1.

Description

Data set organization.

Code
IS
PS
DA

PO
u

Indexed sequential.
Physical sequential.
Direct organization.
Reserved bits .
Partitioned organization.
Unmovable-the data set contains
location-dependent information.

Eight-byte name ofthe data definition state
ment that defines the data set associated with
this DCB. (Before DCB is opened.)

(After DCB is opened.) Offset from the TIOT
origin to the TIOELNGH field in the TIOT entry
for the DD statement associated with this
DCB.

This field may only be referenced during and
after OPEN. It is common to all uses of the
DCB and is created by moving the DCBMACR
field into this area.

(After DCB is opened.) Address of the associ
ated DEB.

Flags used by open routine.

OPEN has completed successfully .

Set to 1 by problem program to indicate con
catenation of unlike attributes.

Set to 0 by an 1/0 support function when that
function takes a user exit. It is set to Oto
inhibit other 1/0 support functions from proc
essing this DCB.

-Set to 1 on return from the 1/0 support func
tion that took the exit.

228 MVS/ESA Data Administration: Macro Instruction Reference

\

'-

(;
\..,.__,,/

t)
\,,_...!

u

Offset

50(32)

Bytes and Align- Field Name
ment
.. 2 DCBMACR

(Before
OPEN)

Description

Macro instruction reference before OPEN.
Major macro instructions and various options
associated with them. Used by the open
routine to determine access method. Used by
the access method executes in conjunction
with other parameters to determine which
load modules are required. This field is
moved to overlay part of DCBDDNAM at OPEN
time and becomes the DCBMACRF field.

This field is common to all uses of the DCB,
but each access method must be referenced
for its meaning.

Data Control Block-SPAM, BSAM, QSAM

Offset

20(14)

21 (15)

24(18)

32(20)

32(20)

Bytes and
Alignment

.3

2

1

Field
Name

DCBBUFNO

DCBBUFCA

DCBBUFL

DCBBFALN

.. xx

.. 10

.. 01

DCBBFTEK

. xxx

.100

.110

Description

Number of buffers required for this data set.
May range from 0 to a maximum of 255.

Address of buffer pool control block.

Length of buffer. May range from 0 to a
maximum of 32760 bytes.

D

F

s
A

Buffer alignment:

Reserved bits .

Doubleword boundary.

Fullword not a doubleword boundary,
coded in the DCB macro instruction.

Buffering technique:

Reserved bits .

Simple buffering.

QSAM locate mode processing of
spanned records: OPEN is to construct
a record area if it automatically con
structs buffers.

Appendix F. Data Control Block Symbolic Field Names 229

Bytes and Field
Offset Alignment Name Description

.010 R BSAM create BDAM processing of
unblocked spanned records: Software
track overflow. OPEN forms a segment
work area pool. However, WRITE uses
a segment work area to write a record
as one or more segments.

BSAM input processing of unblocked
spanned records with keys: Record
offset processing. READ reads one
record segment into the record area.
The first segment of a record is pre-
ceded in the record area by the key.
Subsequent segments are at an offset
equal to the key length.

.... 1 ... XLRI being used to process a ·~

RECFM =OS or RECFM =DBS format
tape data set (QSAM).

33(21) .3 DCBEODA End-of-data address. Address of a user-
provided routine to handle end-of-data condi-
tions.

36(24) 1 DCBRECFM Record format.

Code

001. D Format-D record.
I~

....

10 .. F Fixed record length.

01 .. v Variable record length.

11 .. u Undefined record length.

.. 1. T Track overflow .

... 1 B Blocked records . May not occur with
undefined (U). i,0

1 s Fixed length record format: Standard
blocks. (No truncated blocks or unfilled
tracks are embedded in the data set.)
Variable length record format: Spanned
records.

.10. A ISO/ANSl/FIPS control character.

.01. M Machine control character.

. 00. No control character .

... 1 Key length (KEYLEN) was specified in
the DCB macro instruction. This bit is
inspected by the open routine to
prevent overriding a specification of
KEYLEN = 0 by a nonzero specification _)
in the JFCB or data set label.

1 230 MVS/ESA Data Administration: Macro Instruction Reference

Bytes and Field
I Offset Alignment Name Description \._) 37(25) .3 DCBEXLSA Exit list. Address of a user-provided exit list

control block.

42(2A) 2 DCBMACRF Macro instruction reference after OPEN.

Contents and meaning are the same as those
of the DCBMACR field in the foundation
segment before OPEN.

50(32) .. 2 DCB MA CR Major macro instructions and various options
(Before associated with them. Used by the open
OPEN) routine to determine access method.

Code
Byte 1 BSAM-ln~ut
00 Always zero for BSAM.
.. 1 R READ

I I

Reserved bit. ~ .. ~x
.... .1 .. p POINT (which implies NOTE).
.... .. 1. c CNTRL

51 (33) Byte 2 BSAM-Outgut
00 Always zero for BSAM
.. 1 w WRITE

1 ... L Load mode BSAM (create BDAM data
. 1 .. set) .
.. 1-. p POINT

\._,_/ ... 1 c CNTRL
BSAM create BDAM processing of
unblocked spanned records, with
BFTEK = R specified: The user's
program has provided a segment work
area pool.

50(32) Byte 1 QSAM-ln~ut
. 0 Always zero for QSAM .
.1 .. G GET

(_/ .. 0 Always zero for QSAM .
... 1 M Move mode.

1 ... L Locate mode.
.. 1. c CNTRL
... 1 D Data mode.

51 (33) Byte 2 QSAM-Out~ut

0 ... Always zero for QSAM.
.1 .. p PUT
.. 0. Always zero for QSAM .
... 1 M Move mode.

1 ... L Locate mode.
.. 1. c CNTRL
... 1 D Data mode.

~)

Appendix F. Data Control Block Symbolic Field Names 231

Bytes and Field
Offset Alignment Name Description
50(32) Byte 1 BPAM~lnput .,._

00 Always zero for SPAM .
.. 1. R READ
.... . 1 .. p POINT (which implies NOTE).
... X X.XX Reserved bits .

51(33) Byte 2 BP AM-Output
00 Always zero for SPAM .
.. 1. w WRITE
..... . 1 .. p POINT (which implies NOTE).
... x x.xx Reserved bits;

Direct Access Storage Device Interface

Bytes and Field
Offset Alignment Name Description

16(10) DCB KEY LE Key length of the data set.

17(11) .1 DCBDEVT Device type.

0010 0111 2305 Disk Storage Facility, Model 2.
0010 1001 3330 Disk Storage, Model 1, or

Mass Storage System (MSS)
virtual volume.

0010 1101 3330 Disk Storage, Model 11.
0010 1010 3340/3344 Disk Storage.
0010 1011 3350 Direct Access Storage.
0010 1100 3375 Direct Access Storage.
0010 1110 3380 Direct Access Storage.

Magnetic Tape Interface
:

Bytes and Field \~

Offset Alignment Name Description
16(10) 1 DCBTRTCH Tape recording technique for 7-track tape.

Code
0010 0011 E Even parity.
0011 1011 T BCD/EBCDIC translation.
0001 0011 c Data conversion.
0010 1011 ET Even parity and translation.

17(11) .1 DCBDEVT Device type.

1000 0011 3400 series magnetic tape unit.
1000 1000 3480 Magnetic Tape Subsystem.

18(12) .. 1 DCB DEN Tape density-3400 series magnetic tape units.

\~

232 MVS/ESA Data Administration: Macro Instruction Reference

/

~)

r v

[\._)

\~

Bytes and Field
Offset Alignment Name

0100 0011
1000 0011
1100 0011
1101 0011

Card Reader, Card Punch Interface

Bytes and
Offset Alignment
16(10) 1

17(11) . 1

Printer Interface

Offset
16(10)

17(11)

Bytes and
Alignment
1

.2

Field
Name
DCB MODE,
DCBSTACK

1000
0100

xx xx
0001
0010
0011

DCBDEVT

0100 0001
0100 0010
0100 0100
0100 0110
0100 1100

Field
Name
DCBPRTSP

0000 0000
0000 0001
0001 0001
0001 1001

DCBDEVT

Byte 0
0100 1000
0100 1001
0100 1011
0100 1101

Description
Code 7-track 9-track 18-track

1 556 BPI NIA NIA
2 800 BPI 800 BPI NIA
3 NIA 1600 BPI NIA
4 NIA 6250 BPI NIA

Description

Code
c Column binary mode.
E EBCDIC mode.

Stacker selection.
1 Stacker 1.
2 Stacker 2.
3 Stacker 3.

Device type .

2540 Card Reader
.2540 Card Punch
2501 Card Reader
3505 Card Reader
3525 Card Punch

Description
Number indicating normal printer spacing.

Code
0
1
2
3

No spacing.
Space one line.
Space two lines.
Space three lines.

Device type.

1403 Printer
3211 Printer
3203 Printer
Look at UCB DEVTYPE field or issue the
DEVTYPE macro for
the actual type of printer.

Appendix F. Data Control Block Symbolic Field Names 233

Offset

19(13)

Bytes and
Alignment

... 1

Field
Name
0100 1110

Byte 1
0010 0000
0001 0000

DCBPRBYT

xxxx xx ..
.... ..11

Description
3800 Printing Subsystem

Test-for-printer-overflow mask (PRTOV mask).
If printer overflow is to be tested for, the
PRTOV macro instruction sets the mask as
follows:

Code
9 Test for channel 9 overflow.
12 Test for channel 12 overflow.

Reserved.
Bits to identify presently active table
reference character when 3800 printer is
operating under OPTCD=J.

Note: UCB DEVTYPE fields are presented in Data Areas Volume 5.

234 MVS/ESA Data Administration: Macro Instruction Reference

\""-"

Access Method Interface
(I
~ BSAM, BPAM Interface

Bytes and Field
Offset Alignment Name Description
52(34) 1 DCBOPTCD Option codes.

Code

1 ... w Write-validity check (DASO).

.1 .. u Allow a data check caused by an
invalid character. (1403 printer with
UCS feature.) Write-tape-immediate
mode (3480). Window processing
requested. (MSS)

\.__) .. 1. B Treat EOF and EOV labels as EOV
labels which allows SL or AL tapes to
be read out of order. (Magnetic tape.)

... 1
c Chained scheduling. Input Tape Files:

....
Requests the testing for and bypassing
of any embedded DOS checkpoint
records encountered. (This code can
only be specified in a JCL statement.)

1 ... Q An ISCll/ ASCII data set is to be proc-

Li essed .
. 1 .. z Magnetic tape devices: Use reduced

error recovery procedure .
.. 1.

T BSAM only: user totaling.
... 1

J Specifies that the first data byte in the
output data line will be a 3800 table ref-
erence character for dynamic selection

i
of character sets.

_.,;:
57(39) .3 DCBSYNA Address of user's synchronous error routine

to be entered when a permanent error occurs.

62(3E) .. 2 DCBBLKSI Block size .

72(48) 1 DCBNCP Number of channel programs. Number of
READ or WRITE requests that may be issued
prior to a CHECK. Maximum number: 99.

80(50) DCBUSASI/ ISCll/ ASCII tape.
DCBLBP Block prefix.

.1 Block prefix is a 4-byte field containing the
block length.

81 (51) .1 DCBBUFOF Block prefix length.

~)

Appendix F. Data Control Block Symbolic Field Names 235

Offset
82(52)

Bytes and
Alignment
.. 2

QSAM Interface

Bytes and
Offset Alignment
52(34) 1

57(39) .3

62(3E) .. 2

80(50) 1

Field
Name
DCBLRECL

Field
Name
DCBOPTCD

1

.1 ..

.. 1.

... 1

.... 1 ...

.1 ..

.. 1.

... 1

DCB SY NA

DCBBLKSI

DCBUSASI/
DCBLBP

.1 , ..

Description
Logical record length. For fixed-length
blocked record format, the presence of
DCBLRECL allows BSAM to read truncated
records. For undefined records, this field con
tains block size.

Description
Option codes.

Code

w Write-validity check (DASO).

u Allow a data check caused by an
invalid character. (1403 printer with
UCS feature.) Write-tape-immediate
mode (3480). Window processing
requested. (MSS)

B Treat EOF and EOV labels as EOV
labels which allows SL or AL tapes to
be read out of order (magnetic tape).

c Chained scheduling .

H Input Tape Files: Requests the testing
for and bypassing of any embedded
DOS checkpoint records encountered.
(This code can only be specified in a
JCL statement.)

Q An ISCll/ ASCII data set is to be proc-
essed.

z Magnetic tape devices: Use reduced
error recovery procedure.

T User totaling.

J Specifies that the first data byte in the
output data line will be a 3800 table ref-
erence character.

Address of the user's synchronous error
routine to be entered when a permanent error
occurs.

Block size.

ISCll/ ASCII tape.
Block prefix.

Block prefix is a 4-byte field containing the
block length. (BUFOFF=L was specified).

236 MVS/ESA Data Administration: Macro Instruction Reference

\.._,,;1

" ' I

_)

I
\._/

\._)

Bytes and Field
I Offset Alignment Name Description ~)

81(51) .1 . DCBBUFOF Block prefix length.

82(52) .. 2 DCBLRECL Format-F records: Record length.
Format-LI records: Block size.
Format-V records:

• Unspanned record format:

GET: PUTX; record length.
PUT: Actual or maximum record
length.

. Spanned record format:

Locate mode:
- GET: Segment length.
- PUT: Actual or minimum segment

I length. _,,i

Logical record interface:
- Before OPEN: Maximum logical
record length.
- After GET: Record length.
- Before PUT: Actual or maximum
record length.
- ISO/ANSl/FIPS spanned record
format with XLRI; length of the record

I area in 1 K 1 units (1024). ~)

Move mode:
- GET: Record length.
- PUT: Actual or maximum record
length.

. Data mode, GET:

Data records up to 32752 bytes: Data
length.

(I Data records exceeding 32752 bytes:
~ - Before OPEN: X 18000 1

- After OPEN: Data length.

• Output mode, PUTX (output data set):

Segment length.

84(54) 1 DCBEROPT Error option. Disposition of permanent errors if
the user returns from a synchronous error exit
(DCBSYNAD), or if the user has no synchro-
nous error exit.

100. ACC: Accept.
010. SKP: Skip.
001. ABE: Abnormal end of task.
... x xxxx Reserved bits .

\ .. .__)
90(5A) 2 DCB PRE CL Block length, maximum block length, or data

length.

Appendix F. Data Control Block Symbolic Field Names 237

Data Control Block-ISAM
\"-

Bytes and Field
Offset Alignment Name Description
16(10) 1 DCB KEY LE Key length.

17(11) .1 DCBDEVT Device type.

0010 0111 2305 Disk Storage Facility, Model 2.
0010 1001 3~30 Disk Storag.e, Model 1, or

Mass Storage System (MSS)
virtual volume.

0010 1101 3330 Disk Storage, Model 11.
0010 1010 3340 Disk Storage.
0010 1011 3350 Direct Access Storage.
0010 1100 3375 Direct Access Storage.
0010 1110 3380 Direct Access Storage, all models.

~ 20(14) 1 DCBBUFNO Number of buffers required for this data set:
0-255.

21 (15) .3 DCBBUFCA Address of buffer pool control block.

24(18) 2 DCBBUFL Length of buffer: 0 - 32760 bytes.

32(20) 1 DCBBFALN Buffer alignment:

Code
.. xx Reserved bits .
.. 10 D Doubleword boundary . ·~

.. 01 F Fullword not a doubleword boundary,

.. 11
coded in the DCB macro instruction .

F Fullword not a doubleword boundary,
coded in the DD statement.

33(21) .3 DCBEODA Address of a user-provided routine to handle
end-of-data conditions.

36(24) DCBRECFM Record format.

~

\~

238 MVS/ESA Data Administration: Macro Instruction Reference

Bytes and Field
/'

Offset Alignment Name Description (_)
Code

10 .. F Fixed length records.
01 .. v Variable length records.
11 .. u Undefined length records .
.. 1. T Track overflow .
... 1 B Blocked records. May not occur with

1 ...
undefined (U). s Standard records. No truncated blocks
or unfilled tracks are embedded in the

.10.
data set.

A ISO/ANSl/FIPS control character. .01.
M Machine control character. .00.

No control character 1
Key length (KEYLEN) was specified in

~)
the DCB macro instruction; this bit is
inspected by the open routine to
prevent overriding a specification of
KEYLEN=O by a nonzero specification
in the JFCB or data set label.

37(25) .3 DCBEXLSA Exit list. Address of a user-provided list.

42(2A) .. 2 DCBMACRF Macro instruction reference after OPEN:

Contents and meaning are the same as those
of the DCBMACR field before OPEN.

_)
50(32) .. 2 DCBMACR Macro instruction reference before OPEN:

specifies the major macro instructions and
various options associated with them. Used
by the open routine to determine access
method. Used by the access method execu-
tors in conjunction with other parameters to
determine which load modules are required.

Code
I

i Byte 1 BISAM l 50(32) \,._J 00.0 0 ... Always zero for BISAM.
.. 1 R READ

.1 .. s Dynamic buffering.
.... .. 1 . c CHECK
.... ... x Reserved bit.

51(33) Byte 2 BISAM
00.0 0000 Always zero for BISAM.
.. 1 w WRITE

50(32) Byte 1 QISAM
0.0 . . 0 .. Always zero for BISAM.
.1 G GET
... 1 M Move mode of GET ..

1... L Locate mode for GET.
.. xx Reserved bit.

~)

Appendix F. Data Control Block Symbolic Field Names 239

Bytes and Field
Offset Alignment Name Description :
51 (33) Byte 2 QISAM "'-

1 ... s SETL
.1 .. p PUT or· PUTX
.. 0. Always zero for QISAM .
... 1 M Move mode of PUT.

1 ... L Locate mode for PUT.
.1 .. u Update in place (PUTX).
.. 1. K SETL by key .
... 1 I SETL by ID.

52(34) 1 DCBOPTCD Option codes:

Code
1 ... w Write-validity check.
.1 .. u Full-track index write .
.. 1. M Master indexes.
... 1 I Independent overflow area. \

'"'-"'
1 ... y Cylinder overflow area .
.. 1. L Delete option .
... 1 R Reorganization criteria.
.x .. Reserved bit.

53(35) 1 DCB MAC Extension of the DCBMACRF field for ISAM.

Code
xxxx ... x Reserved bits.

1 ... u Update for read.
.... .1 .. u Update type of write.
.... ..1. A Add type of write.

54(36) .. 1 DCBNTM Number of tracks that determines the develop-
ment of a master index. Maximum permis-
sible value: 99.

55(37) ... 1 DCBCYLOF The number of tracks to be reserved on each
prime data cylinder for records that overflow
from other tracks on that cylinder. To deter-
mine how to calculate the maximum number,
see the section on allocating space for an
ISAM data set in Data Administration Guide.

56(38) 4 DCBSYNAD Address of user's synchronous error routine
to be entered when uncorrectable errors are
detected in processing data records.

60(3C) 2 DCBRKP Relative position of the first byte of the key
within each logical record. Maximum permis-
sible value: logical record length minus key
length.

62(3E) .. 2 DCBBLKSI Block size.

64(40) 4 DCBMSWA Address of the storage work area reserved for
use by the control program when new records
are being added to an existing data set.

~

240 MVS/ESA Data Administration: Macro Instruction Reference

Bytes and Field
I Offset Alignment Name Description '_) 68(44) 2 DCBSMSI Number of bytes in area reserved to hold the

highest level index.

70(46) 2 DCBSMSW Number of bytes in work area used by control
program when new records are being added
to the data set.

72(48) 1 DCBNCP Number of copies of the READ-WRITE (type K)
channel programs that are to be established
for this data control block (99 maximum).

73(49) .3 DCBMSHIA Address of the storage area holding the
highest level index.

80(50) 1 DCBEXCD1 First byte in which exceptional conditions
detected in processing data records are
reported to the user. _,;:

1 ... Lower key limit not found.
.1 .. Invalid device address for lower limit

.. 1. (QISAM only). Record length check (BISAM

... 1
only) .

1 ...
Space not found.

.1 .. Invalid request.
Uncorrectable input error.
Uncorrectable output error (BISAM only).

.. 1. Block could not be reached (BISAM only) .
_) Block could not be reached (input) (QISAM

... 1
only) .
Overflow record (BISAM only).
Block could not be reached (update) (QISAM
only)
Duplicate record (BISAM only)

81(51) .1 DCBEXCD2 Second byte in which exceptional conditions
detected in processing data records are
reported to the user (QISAM only).

~) 1 ... Sequence check.
. 1 .. Duplicate record .
.. 1. DCB closed when error was detected .
... 1 Overflow record .

1 ... PUT: length field of record larger than

.xxx
length indicated in DCBLRECL.
Reserved bits.

82(52) .. 2 DCBLRECL Logical record length for fixed-length record
formats. Variable-length record formats:
maximum logical record length or an actual
logical record length changed dynamically by
the user when creating the data set.

150(96) 2 DCBNCRHI Number of storage locations needed to hold
the highest level index.

~;
197(C5) .1 DCBOVDEV Device type for independent overflow.

Appendix F. Data Control Block Symbolic Field Names 241

Offset
Bytes and
Alignment

Field
Name
0010 0111
0010 1001

0010 1101
0010 1010
0010 1011
0010 1100
0010 1110

Data Control Block-BDAM

Bytes and
Offset Alignment
16(10) 1

17(11) .3

20(14) 1

21 (15) .3

24(18) 2

32(20) 1

32(20) 1

Field
Name
DCB KEY LE

DCB REL

DCBBUFNO

DCBBUFCA

DCB BU FL

DCBBFALN

.. 10

.. 01

.. 11

.x.x x ...

DCBBFTEK

.. 1.

Description
2305 Disk Storage Facility, Model 2.
3330 Disk Storage., Model 1, or
Mass Storage System (MSS)
virtual volume.
3330 Disk Storage, Model 11.
3340/3344 Disk Storage.
3350 Direct Access Storage.
3375 Direct Access Storage.
3380 Direct Access Storage.

Description
Key length.

Number of relative tracks or blocks in this
data set.

Number of buffers required for this data set.
May range from 0 to 255.

Address of buffer pool control block or of
dynamic buffer pool control block.

Length of buffer. May range from 0 to 32760.

Buffer alignment:

Doubleword boundary .
Fullword not a doubleword boundary, coded in
the DCB macro instruction.
Fullword not a doubleword boundary, coded in
the DD statement.
Reserved bits .

Buffering technique.

R Unblocked spanned records: Variable
spanned record format. Open forms a
segment work area pool. The number
of segment work areas is determined
by DCBBUFNO. WRITE uses a segment
work area to write a record as one or
more segments. READ uses a segment
work area to read a record that was
written as one or more segments.

242 MVS/ESA Data Administration: Macro Instruction Reference

.)
\~

Bytes and Field
Offset Alignment Name Description

'\.__..,;! 36(24) 1 DCBRECFM Record format.

Code
10 .. F Fixed record length.
01.. v Variable record length.
11 .. u Undefined record length .
.. 1. T Track overflow .
... 1 B Blocked (allowed only with V).

1 ... s Spanned (allowed only with V) .
. 00. Always zeros .
... 1 Key length (KEYLEN) was specified in

the DCB macro instruction. This bit is
inspected by the open routine to
prevent overriding a specification of
KEYLEN = 0 by a nonzero specification
in the JFCB or data set label. ~ ,:

-.._/ 37(25) .3 DCBEXLSA Exit list. Address of a user-provided exit list
control block.

42(2A) .. 2 DCBMACRF Macro instruction reference after OPEN.

Contents and meaning are the same as
DCBMACR before OPEN.

50(32) .. 2 DCBMACR Macro instruction reference before OPEN:
major macro instructions and various options

_) associated with them that will be used.
50(32) Byte 1 Code

00 Always zero for BDAM.
.. 1 R READ
... 1 K Key segment with READ.

1 ... I ID argument with READ.
.1 .. s System provides area for READ

.. 1. {dyhami.c

... 1 buffering) .
x Read exclusive. \._,,/
c CHECK macro instruction.

51(33) Byte 2 Code
00 Always zero for BDAM.
.. 1 w WRITE
... 1 K Key segment with WRITE.

1 ... ID argument with WRITE.
.x .. Reserved bit.
.. 1. A Add type of WRITE.
... 1 Unblocked spanned records, with

BFTEK = R specified and no dynamic
buffering: The user's program has pro-
vided a segment work area pool.

:~;

Appendix F. Data Control Block Symbolic Field Names 243

Bytes and Field
Offset Alignment Name Description
52(34) 1 DCBOPTCD Option codes: '-

Code
1 ... w Write-validity check .
. 1 .. Track overflow .
.. 1. E Extended search.
... 1 F Feedback.

1 ... A Actual addressing .
. 1 .. Dynamic buffering .
.. 1. Read exclusive.
... 1 R Relative block addressing .

56(38) 4 DCBSYNAD Address of SYNAD (synchronous error)
routine.

62{3E) .. 2 DCBBLKSI Block size.

81(51) .3 DCBLIMCT Number of tracks or number of relative blocks '.,._.
to be searched {extended search option).

244 MVS/ESA Data Administration: Macro Instruction Reference

I _;)

{
~)

I

_.J

I

~;

(I

~

Appendix G. PDABD Symbolic Field Names

IHAPDAB
PDANODCB
PD AM AX CB

PDADCBLA
PDADCBEP

PDADCBAL

The following describes PDABD fields of the dummy control section generated
by the PDABD macro instruction. Included are the names, attributes, and
descriptions of the dummy control section. A USING instruction specifying
IHAPDAB and a d_ummy section base register containing the address of the
actual parallel data access block should precede the use of any of the symbolic
names provided by the dummy section. ·

PDABD
DSECT
OS H Number of DCB addresses in list
OS H Maximum number of addresses allowed
OS A Reserved for IBM use.
OS F Reserved for IBM use.
OS A Address of last DCB entry
OS A Address of DCB entry last processed
OS F Reserved for IBM use.
EQU Start of DCB list

Appendix G. PDABD Symbolic Field Names 245

\\._>

I i
~

I
\.._,,/

Abbreviations

The following abbreviations are defined as they are
used in the MVS/DFP library. If you do not find the
abbreviation you are looking for, see Dictionary of
Computing, SC20-1699.

This list includes acronyms and abbreviations devel
oped by the American National Standards Institute
(ANSI) and the International Organization for Stand
ardization (ISO). This material is reproduced from the
American National Dictionary for Information Proc
essing, copyright 1977 by the Computer and Business
Equipment Manufacturers American National Stand
ards Institute, 1430 Broadway, New York, New York
10018.

ABE. Abnormal end (value of EROPT).

ABEND. Abnormal end.

ABSTR. Absolute track (value of SPACE).

ACC. Accept erroneous block (value of EROPT).

ACS. Automatic class selection.

AFF. Affinity.

AL. American National Standard Labels.

ANSI. American National Standards Institute.

ASCII. American National Standard Code for Infor
mation Interchange.

AUL. American National Standard user labels (value
of LABEL).

BCD. Binary coded decimal.

BCDIC. Binary coded decimal interchange code.

BDAM. Basic direct access method.

BOW. Block descriptor word.

BFALN. Buffer alignment (operand of DCB).

BFTEK. Buffer technique (operand of DCB).

BISAM. Basic indexed sequential access method.

BLDL. Build list (macro instruction).

BLKSIZE. Block size (operand of DCB).

BPAM. Basic partitioned access method.

BPI. Bits per inch.

BSAM. Basic sequential access method.

BSM. Backspace past tape mark and forward space
over tape mark (operand of CNTRL).

BSP. Backspace one block (macro instruction).

BSR. Backspace over a specified number of blocks
(operand of CNTRL).

BUFCB. Buffer pool control block (operand of DCB).

BUFL. Buffer length (operand of DCB).

BUFNO. Buffer number (operand of DCB).

BUFOFF. Buffer offset.

CCHHR. Cylinder/head record address.

CCW. Channel command word.

CNTRL. Control (macro instruction).

CONTIG. Contiguous space allocation (value of
SPACE) ..

CSECT. Control section.

CSW. Channel status word.

CVOL. Control volume.

·CYLOFL. Number of tracks for cylinder overflow
records (operand of DCB).

D. Format-D (ISCll/ASCll variable-length) records
(value of RECFM).

DA. Direct access (value of DEVD or DSORG).

DASO. Direct access storage device.

DAU. Direct access unmovable data set (value of
DSORG).

DB. ISCll/ASCll variable-length, blocked records
(value of RECFM).

DBS. ISCll/ASCll variable-length, blocked spanned
records (value of RECFM).

DCB. Data control block.

DCBD. Data control block dummy section.

DD. Data definition.

Abbreviations 247

DDNAME. Data definition name.

DEB. Data extent block.

DECB. Data event control block.

DEN. Magnetic tape density (operand of DCB).

DEVD. Device-dependent (operand of DCB).

DFDSS. Data Facility Data Set Services.

DISP. Data set disposition (parameter of DQ state
ment).

DPI. Data protection image.

OS. ISCll/ASCll variable-length, spanned records
(value of RECFM).

DSCB. Data set control block.

DSECT. Dummy control section.

DSNAME. Data set name.

DSORG. Data set organization (operand of DCB).

EBCDIC. Extended binary-coded decimal interchange
code.

EODAD. End-of-data set exit routine address
(operand of DCB).

EOF. End-of-file.

EOV. End-of-volume.

EROPT. Error options (operand of DCB).

ESETL. End sequential retrieval (QISAM macro
instruction).

ESTAE. Extended specify task abnormal exit.

EXCP. Execute channel program.

EXLST. Exit list (operand of DCB).

F. Fixed-length records (value of RECFM).

FB. Fixed-length, blocked records (value of RECFM).

FBS. Fixed-length, blocked, standard records (value
of RECFM).

FBT. Fixed-length, blocked records with track over
flow option (value of RECFM).

FCB. Forms control buffer.

FEOV. Force end-of-volume (macro instruction).

FIPS. Federal Information Processing Standard.

Format-D. ISCll/ASCll or ISO/ANSl/FIPS variable
length records.

Format-F. Fixed-length records.

Format-U. Undefined-length records.

Format-V. Variable-length records.

FS. Fixed-length, standard records (value of RECFM).

FSM. Forward space past tape mark and backspace
over tape mark (operand of CNTRL).

FSR. Forward space over a specified number of
blocks (records) (operand of CNTRL).

GCR. Group coded recording.

GOG. Generation data group.

GOS. Generation data set.

GL. GET macro, locate mode (value of MACRF).

GM. GET macro, move mode (value of MACRF).

HA. Home address.

IBG. Inter-block gap.

ID. Identifier.

INOUT. Input then output (operand of OPEN).

1/0. Input/output.

IOB. Input/output block.

IPL. Initial program load.

IRG. lnterrecord gap.

IS. Indexed sequential (value of DSORG).

ISAM. Indexed sequential access method.

ISCll. International Standard Code for Information
Interchange.

ISO. International Organization for Standardization.

ISU. Indexed sequential unmovable (value of
DSORG).

JCL. Job control language.

JFCB. Job file control block.

248 MVS/ESA Data Administration: Macro Instruction Reference

I)

\._)

\:)
\i_.../

(I) \..._,;!

JFCBE. Job file control block extension.

K. Kilobyte.

KEYLEN. Key length (operand of DCB).

LPA. Link pack area.

LPALIB. Link pack area library.

LRECL. Logical record length (operand of DCB).

LRI. Logical record interface.

M. Machine control code (value of RECFM).

M. Megabyte

MACRF. Macro instruction form (operand of DCB).

MBBCCHHR. Module#, bin#, cylinder#, head#,
record#.

MOD. Modify data set (value of DISP).

MSHI. Main storage for highest-level index (operand
of DCB).

MSS. Mass Storage System.

MSVC. Mass Storage Volume Control.

MSWA. Main storage for work area (operand of
DCB).

NCP. Number of channel programs (operand of DCB).

NOPWREAD. No password required to read a data
set (value of LABEL).

NRZI. Nonreturn-to-zero-inverted.

NSL. Nonstandard label (value of LABEL).

NTM. Number of tracks in cylinder index for each
entry in lowest level of master index (operand of
DCB).

OPTCD. Optional services code (operand of DCB).

OS CVOL. Operating system control volume.

OSNS. Operating system/virtual storage.

OUTIN. Output then input (operand of OPEN).

PCI. Program-controlled interruption.

PDAB. Parallel data access block.

PDS. Partitioned data set.

PE. Phase encoding (tape recording mode).

PL. PUT macro, locate mode (value of MACRF).

PM. PUT macro, move mode (value of MACRF).

PO. Partitioned organization (value of DSORG).

POU. Partitioned organization unmovable (value of
DSORG).

PRTSP. Printer line spacing (operand of DCB).

PS. Physical sequential (value of DSORG).

PSF. Print Services Facility.

PSU. Physical sequential unmovable (value of
DSORG).

QISAM. Queued indexed sequential access method.

QSAM. Queued sequential access method.

RO. Record zero.

RACF. Resource Access Control Facility.

ROBACK. Read backward (operand of OPEN).

ROW. Record descriptor word.

RECFM. Record format (operand of DCB).

RKP. Relative key position (operand of DCB).

RLSE. Release unused space (DD statement).

RPS. Rotational position sensing.

SAM. Sequential access method.

SOW. Segment descriptor word.

SER. Volume serial number (value of VOLUME).

SETL. Set lower limit of sequential retrieval (QISAM
macro instruction).

SF. Sequential forward (operand of READ or WRITE).

SK. Skip to a printer channel (operand of CNTRL).

SKP. Skip erroneous block (value of EROPT).

SL. IBM standard labels (value of LABEL).

SLI. Suppress length indication bit.

SMS. Storage Management Subsystem.

Abbreviations 249

SMSI. Size of main-storage area for highest-level
index (operand of DCB).

SMSW. Size of main-storage work area (operand of
DCB).

SP. Space lines on a printer (operand of CNTRL).

SS. Select stacker on card reader (operand of
CNTRL).

SUL. IBM standard and user labels (value of LABEL).

SVC. Supervisor call.

SVCLIB. Supervisor call library.

SYNAD. Synchronous error routine address (operand
of DCB).

SYSIN. System input stream.

SYSOUT. System output stream.

T. Track overflow option (value of RECFM); user
totaling (value of OPTCD).

TIOT. Task 1/0 table.

TRC. Table reference character.

TRTCH. Track recording technique (operand of DCB).

TSO. Time sharing option.

TTR. Track record address.

U. Undefined length records (value of RECFM).

UCS. Universal character set.

UHL. User header label.

UTL. User trailer label.

V. Format-V (variable-length) records (value of
REC FM).

VB. Variable-length, blocked records (value of
RECFM).

VBS. Variable-length, blocked, spanned records
(value of RECFM).

VS. Variable-length, spanned records.

VSAM. Virtual storage access method.

VTOC. Volume table of contents.

XLRI. Extended logical record interface.

250 MVS/ESA Data Administration: Macro Instruction Reference

11 .

~)

Q_I \
I

.,/

;I \ v·

Glossary

The following terms and abbreviations are defined as
they are used in the MVS/DFP library. If you do not
find the term or abbreviation you are looking for, see
Dictionary of Computing, SC20-1699.

This glossary includes acronyms and abbreviations
developed by the American National Standards Insti
tute (ANSI) and the International Organization for
Standardization (ISO). This material is reproduced
from the American National Dictionary for Information

· Processing, copyright 1977 by the Computer and Busi
ness Equipment Manufacturers American National
Standards Institute, 1430 Broadway, New York, New
York 10018.

A

abnormal end (ABEND). Termination of a task prior
to its completion as a result of an error condition that
could not be resolved by error recovery facilities
during task execution.

access method. A technique for organizing and
moving data between main storage and input/output
devices.

access method services. A multifunction service
program that is used to manage both VSAM and
non-VSAM data sets and integrated.catalog facility or
VSAM catalogs. Access method services is used to
define data sets and allocate space for them, convert
indexed-sequential (ISAM) data sets to key-sequenced
data sets, modify data set attributes in the catalog,
reorganize data sets, facilitate data portability
between operating systems, create backup copies of
data sets and indexes, help make inaccessible data
sets accessible, list the records of data sets and cata
logs, define and build alternate indexes, and convert
OS CVOLs and VSAM catalogs to integrated catalog
facility catalogs.

ACS routine. A procedural set of ACS language
statements. Based on a set of input variables, the
ACS language statements generate the name of a
predefined SMS class, or a list of names of predefined
storage groups, for a data set.

address marker. A byte of data on a disk or diskette,
used to identify the data field and ID field in the
record.

alias. An alternative name for an entry or for a
member of a partitioned data set (PDS).

alias entry. An entry that relates an alias to the real
entry name of a user catalog or non-VSAM data set.

allocation. Generically, the entire process of
obtaining a volume and unit of external storage, and
setting aside space on that storage for a data set.

application. The use to which an access method is
put or the end result that it serves; contrasted to the
internal operation of the access method.

automatic class selection (ACS). A mechanism for
assigning SMS classes and storage groups to data
sets.

auxiliary storage. All addressable storage, other than
the memory of a processing unit, that can be
accessed using an input/output channel; for ex.ample,
storage on DASO, tape, or mass storage system
volumes.

B
basic direct access method (BDAM). An access
method used to directly retrieve or update particular
blocks of a data set on a DASO.

basic partitioned access method (BPAM). An access
method used to create program libraries on DASO for
convenient storage and retrieval of programs.

basic sequential access method (BSAM). An access
method for storing or retrieving data blocks in a con
tinuous sequence, using either a sequential access or
direct access device.

block prefix. An optional variable length field that
may precede unblocked records or blocks of records
in ASCII on magnetic tapes.

block size. The number of records, words, or charac
ters in a block; usually specified in bytes.

blocking. The process of combining two or more
records into one block.

buffer. A routine or storage used to compensate for
a difference in the rate of flow of data, or time of
occurrence of events, when transferring data from
one device to another.

buffer pool. A continuous area of storage divided
into buffers.

Glossary 251

c
cache. In a storage controller, a high-speed storage
buffer that is continually updated to contain recently
accessed contents of DASO storage. Its purpose is to
reduce access time.

channel program. One or more channel command
words that control a specific sequence of data
channel operations. Execution of the specific
sequence is initiated by a single start 1/0 (SIO)
instruction.

class. See SMS class.

configuration. (1) The arrangement of a computer
system as defined by the characteristics of its func
tional units. (2) See SMS configuration.

control character. A character whose occurrence in
a particular context initiates, modifies, or stops a
control operation. It may be recorded for use in a
later action, and may have a graphic representation
in some circumstances.

control program. A routine, usually part of an oper
ating system, that aids in controlling the operations
and managing the resources of a computer system.

control section (CSECT). The part of a program spec
ified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining
storage locations for execution.

control unit. A hardware device that controls the
reading, writing, or displaying of data at one or more
input/output devices. See also storage control.

control volume (CVOL). A volume that contains one
or more indexes of the catalog.

cylinder. The tracks of a disk storage device that can
be accessed without repositioning the access mech
anism.

D

data class. A list of the data set allocation parame
ters and their values, used when allocating a new
SMS-managed data set.

data control block (DCB). A control block used by
access method routines in storing and retrieving data.

data conversion. The process of changing data from
one form of representation to another.

data definition (DD) statement. A job control state
ment that describes a data set associated with a par
ticular job step.

data extent block (DEB). A control block that
describes the physical attributes of the data set.

Data Facility Data Set Services (DFDSS). An IBM
licensed program used to copy, move, dump, and
restore data sets and volumes.

Data Facility Product (DFP). An IBM licensed
program used to manage programs, devices, and data
in an MVS operating environment.

data management. The task of systematically identi
fying, organizing, storing, and cataloging data in an
operating system.

data set. The major unit of data storage and retrieval
in the operating system, consisting of data in a pre
scribed arrangement and described by control infor
mation to which the system has access. As used in
this publication, a collection of fixed-, variable-, or
undefined-length records in auxiliary storage.

data set control block (DSCB). A control block in the
VTOC that describes data set characteristics.

data set label. A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set.

dequeue. To remove items from a queue. Contrast
with enqueue.

device address. Three or four hexadecimal digits that
uniquely define a physical 1/0 device on a channel
path in System/370 mode. The one or two leftmost
digits are the address of the channel to which the
device is attached. The two rightmost digits repre
sent the unit address.

direct access. The retrieval or storage of data by a
reference to its location in a data set rather than rela
tive to the previously retrieved or stored data. See
also addressed-direct access and keyed-direct access.

direct access device space management (DADSM). A
DFP component used to control space allocation and
deallocation on DASD.

direct access storage device (DASO). A device in
which the access time is effectively independent of
the location of the data.

direct data set. A data set whose records are in
random order on a direct access volume. Each
record is stored or retrieved according to its actual
address or its address according to the beginning of
the data set. Contrast with sequential data set.

directory. (1) A table of identifiers and references to
the corresponding items of data. (2) An index that is
used by a control program to locate one or more

252 MVS/ESA Data Administration: Macro Instruction Reference

\ ·-..._.,,

/! '
l i)

~

MVS/XA. An MVS operating system environment that
supports 31-bit real and virtual storage addressing,
increasing the size of addressable real and virtual
storage from 16 megabytes to 2 gigabytes.

MVS/370. An MVS operating system environment
that supports 24-bit real and virtual storage
addressing.

N

non-VSAM data set. A data set created and accessed
using one of the following methods: BDAM, BPAM,
BSAM, QSAM, QISAM.

0

online. Pertaining to equipment, devices, or data
under the direct control of the processor.

operand. Information entered with a command name
to define the data on which a command operates and
to control the execution of the command.

operating system. Software that controls the exe
cution of programs; an operating system may prov,ide
services such as resource allocation, scheduling,
input/output control, and data management.

optimum block size. For non-VSAM data sets,
optimum block size represents the block size that
would result in the greatest space utilization on a
device, taking into consideration record length and
device characteristics.

OS control volume (OS CVOL). A volume that con
tains one or more indexes of the catalog.

p

page. (1) A fixed-length block of instructions, data,
or both, that can be transferred between real storage
and external page storage. (2) To transfer
instructions, data, or both between real storage and
external page storage.

page space. A system data set that contains pages
of virtual storage. The pages are stored into and
retrieved from the page space by the auxiliary
storage manager.

paging. A technique in which blocks of data, or
pages, are moved back and forth between main
storage and auxiliary storage. Paging is the imple
mentation of the virtual storage concept.

partitioned data set (PDS). A data set in DASD
storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. See also library.

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a ter
minal user must supply to meet security requirements
before a program gains access to a data set.

PDS directory. A set of records in a partitioned data
set (PDS) used to relate member names to their
locations on a DASD volume.

physical record. A record whose characteristics
depend on the manner or form in which it is stored,
retrieved, or moved. A physical record may contain
all or part of one or more logical records.

pointer. An address or other indication of location.

primary space allocation. Initially allocated space on
a direct access storage device, occupied by or
reserved for a particular data set. See also sec
ondary space a/location.

problem program. Any program that is executed
when the processing unit is in the problem state; that
is, any program that does not contain privileged
instructions. This includes IBM-distributed programs,
such as language translators and service programs,
and programs written by a user.

Q

queued sequential access method (QSAM). An
extended version of the basic sequential access
method (BSAM). Input data blocks awaiting proc
essing or output data blocks awaiting transfer to aux
iliary storage are queued on the system to minimize
delays in 1/0 operations.

R

record. A set of data treated as a unit.

register. An internal computer component capable of
storing a specified amount of data and accepting or
transferring this data rapidly.

relative address. An address expressed as a differ
ence with respect to a base address.

Resource Access Control Facility (RACF). An IBM
licensed program that provides access control by
identifying and verifying users to the system. RACF
authorizes access to DASD data sets, logs unauthor
ized access attempts, and logs accesses to protected
data sets.

rotational position sensing (RPS). A function that
permits a DASD to reconnect to a block multiplexer
channel when a specified sector has been reached.
This allows the channel to service other devices on
the channel during positional delay.

Glossary 255

or data set label that precedes the data records on a
unit of recording media.

home address. An address written on a direct access
volume, denoting a track's address relative to the
beginning of the volume. The home address is
written after the index point on each track.

indexed sequential access method (ISAM). An access
method that retrieves or updates blocks of data using
an index to locate the data set.

initial program load (IPL). (1) The initialization proce
dure that causes an operating system to commence
operation. (2) The process by which a configuration
image is loaded into storage at the beginning of a
work day or after a system malfunction.

integrated catalog facility. The name of the catalog in
MVS/DFP that replaces OS CVOLs and VSAM cata
logs.

internal storage. Storage that is accessible by a
computer without the use of input/output channels.

110 device. An addressable input/output unit, such as
a direct access storage device, magnetic tape device,
or printer.

J

job control language (JCL). ·A problem-oriented lan
guage used to identify the job or describe its require
ments to an operating system.

job entry subsystem (JES). A system facility for
spooling, job queueing, and managing input and
output. The two types of job entry subsystems in
MVS are JES2 and JES3.

K

key. One or more characters within an item of data
that are used to identify it or control its use. As used
in this publication, one or more consecutive charac
ters taken from a data record, used to identify the
record and establish its order with respect to other
records.

kilobyte. 1024 bytes.

L

library. A partitioned data set containing a related
collection of named members. See partitioned data
set.

load module. The output of the linkage editor; a
program in a format ready to load into virtual storage
for execution.

locate mode. A way of providing data by pointing to
its location instead of moving it.

logical record. (1) A record from the standpoint of its
content, function, and use rather than its physical
attributes; that is, defined in terms of the information
it contains. (2) A unit of information normally per
taining to a single subject; a logical record is that
user record requested of or given to the data man
agement function.

M

management class. A list of the migration, backup,
and retention parameters and their values, for an
SMS-managed data set.

Mass Storage System. The name for the entire
storage system, consisting of the Mass Storage
Facility and all devices that are defined to the Mass
Storage Control.

mass storage volume. Two data cartridges in the
IBM 3850 Mass Storage System that contain informa
tion equivalent to what would be stored on a direct
access storage volume.

master catalog. A catalog that contains extensive
data set and volume information that VSAM requires
to locate data sets, to allocate and deallocate storage
space, to verify the authorization of a program or
operator to gain access to a data set, and accumulate
usage statistics for data sets.

megabyte (Mb). 1,048,576 bytes

member. A partition of a partitioned data set.

move mode. A transmittal mode in which the record
to be processed is moved into a user work area.

MVS/DFP. An IBM licensed program which is the
base for the Storage Management Subsystem.

MVS/ESA. An MVS operating system environment
which supports ESA/370.

MVS/SP. An IBM licensed program used to control
the MVS operating system and establish a base for an
MVS/ESA, MVS/XA, or MVS/370 environment.

254 MVS/ESA Data Administration: Macro Instruction Reference

u

MVS/XA. An MVS operating system environment that
supports 31-bit real and virtual storage addressing,
increasing the size of addressable real and virtual
storage from 16 megabytes to 2 gigabyte.s.

MVS/370. An MVS operating system environment
that supports 24-bit real and virtual storage
addressing.

N

non-VSAM data set. A data set created and accessed
using one of the following methods: BDAM, BPAM,
BSAM, QSAM, QISAM.

0

online. Pertaining to equipment, devices, or data
under the direct control of the processor.

operand. Information entered with a command name
to define the data on which a command operates and
to control the execution of the command.

operating system. Software that controls the exe
cution of programs; an operating system may prov.ide
services such as resource allocation, scheduling,
input/output control, and data management.

optimum block size. For non-VSAM data sets,
optimum block size represents the block size that
would result in the greatest space utilization on a
device, taking into consideration record length and
device characteristics.

OS control volume (OS CVOL). A volume that con
tains one or more indexes of the catalog.

p

page. (1) A fixed-length block of instructions, data,
or both, that can be transferred between real storage
and external page storage. (2) To transfer
instructions, data, or both between real storage and
external page storage.

page space. A system data set that contains pages
of virtual storage. The pages are stored into and
retrieved from the page space by the auxiliary
storage manager.

paging. A technique in which blocks of data, or
pages, are moved back and forth between main
storage and auxiliary storage. Paging is the imple
mentation of the virtual storage concept.

partitioned data set (PDS). A data set in DASD
storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. See also library.

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a ter
minal user must supply to meet security requirements
before a program gains access to a data set.

PDS directory. A set of records in a partitioned data
set (PDS) used to relate member names to their
locations on a DASD volume.

physical record. A record whose characteristics
depend on the manner or form in which it is stored,
retrieved, or moved. A physical record may contain
all or part of one or more logical records.

pointer. An address or other indication of location.

primary space allocation. Initially allocated space on
a direct access storage device, occupied by or
reserved for a particular data set. See also sec
ondary space a/location.

problem program. Any program that is executed
when the processing unit is in the problem state; that
is, any program that does not contain privileged
instructions. This includes IBM-distributed programs,
such as language translators and service programs,
and programs written by a user.

Q

queued sequential access method (QSAM). An
extended version of the basic sequential access
method (BSAM). Input data blocks awaiting proc
essing or output data blocks awaiting transfer to aux
iliary storage are queued on the system to minimize
delays in 1/0 operations.

R

record. A set of data treated as a unit.

register. .An internal computer component capable of
storing a specified amount of data and accepting or
transferring this data rapidly.

relative address. An address expressed as a differ
ence with respect to a base address.

Resource Access Control Facility (RACF). An IBM
licensed program that provides access control by
identifying and verifying users to the system. RACF
authorizes access to DASD data sets, logs unauthor
ized access attempts, and logs accesses to protected
data sets.

rotational position sensing (RPS). A function that
permits a DASD to reconnect to a block multiplexer
channel when a specified sector has been reached.
This allows the channel to service other devices on
the channel during positional delay.

Glossary 255

s
save area. An area of main storage in which the con
tents of registers are saved.

scheduling. The ability to request that a task set
should be started at a particular interval or on occur
rence of a specified program interrupt.

secondary space allocation. A predefined contiguous
space on a DASD volume reserved for additions to a
particular data set, and allocated only after the
primary allocation space is full. See also primary
space a/location.

sequential access. The retrieval or storage of a data
record in: its entry sequence, its key sequence, or its
relative record number sequence, relative to the pre
viously retrieved or stored record. See also
addressed-sequential access and keyed-sequential
access.

sequential access method (SAM). An access method
for storing or retrieving data blocks in a continuous
sequence, using either a sequential access or a direct
access device.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. Contrast with
direct data set.

serialization. In MVS, the prevention of a program
from using a resource that is already being used by

storage class. A list of DASD storage performance,
security, and availability service level requirements
for an SMS-managed data set.

storage group. A list of traits and characteristics that
SMS applies to groups of storage volumes having
similar migration, backup, and dump needs. Only the
storage administrator can access storage group defi
nitions.

Storage Management Subsystem (SMS). An oper
ating environment that helps automate and centralize
the management of storage. To manage storage,
SMS provides the storage administrator with control
over data class, storage class, management class,
storage group, and ACS routine definitions.

substitute mode. A transmittal mode used with
exchange buffering on which segments are pointed to,
and exchanged with, user work areas.

subtask. (1) A task that is initiated and terminated
by a higher order task. (2) A task that is restricted
from communication with an operator device.

system-managed storage. An approach to storage
management in which the system determines data
placement and an automatic data manager handles
data backup, movement, space, and security.

system residence volume (SYSRES). The volume on
which the nucleus of the operating system and the
master catalog are stored.

an interrupted program until the interrupted program T
is finished using the resource.

SMS class. A list of attributes that SMS applies to
data sets having similar allocation (data class), per
formance (storage class), or backup and retention
(management class) needs.

SMS-managed data set. A data set that has been
assigned a storage class.

spooling. (1) The use of auxiliary storage as a buffer
to reduce processing delays when transferring data
between peripheral equipment and the processors of
a computer. (2) The reading of input data streams
and the output of data streams on auxiliary storage
devices, concurrently with job execution, in a format
convenient for later processing or output operations.

spanned record. A logical record whose length
exceeds control interval length, and as a result,
crosses, or spans, one or more control interval
boundaries within a single control area.

storage administrator. A person in the data proc
essing installation who is responsible for defining,
implementing, and maintaining storage management
policies.

time sharing option (TSO). An optional configuration
of the operating system that provides conversational
time sharing from remote stations.

trailer label. A file or data set label that follows the
data records on a unit of recording media.

u
unit address. The last two hexadecimal digits of a
device address. This identifies the storage control
and DAS string, controller, and device to the channel
subsystem. Often used interchangeably with control
unit address and device address in System/370 mode.

. universal character set (UCS). A printer feature that
permits the use of a variety of character arrays.
Character sets used for these printers are called UCS
images.

user catalog. An optional catalog used in the same
way as the master catalog and pointed to by the
master catalog. It also lessens the contention for the
master catalog and facilitates volume portability.

256 MVS/ESA Data Administration: Macro Instruction Reference

\~

:)
~

I

\...j//

v
virtual 1/0 (VIO). A facility that pages data into and
out of external page storage; to the problem program,
the data to be read from or written to direct access
storage devices.

volume. A certain portion of data, together with its

data carrier, that can be mounted on the system as a
unit; for example, a tape reel or a disk pack. For
DASO, a volume refers to the amount of space acces
sible by a single actuator.

volume table of contents (VTOC). A table on a direct
access storage device (DASO) that describes each
data set on the volume.

Glossary 257

\
~I

i~;

Index

A
A-type address constant

defined 6
abbreviations

list 247
ABEND macro

BDAM 36
BPAM 51
BSAM 66
list format 221-222
QSAM 91

absexp defined 6
absolute expression defined 6
access methods

general description
BDAM 33
BIS.AM 42
BPAM 48
BSAM 55
QISAM 72
QSAM 80

macro instructions used with 194
not recommended, list of xi

acronyms 247
ACSMETH operand

SYNADAF macro 183
actual device addressing

BDAM 39
QISAM 77

adding to a data set
BDAM 38, 203
BISAM 44, 199
BPAM 201
BSAM 201, 203
QISAM 107
QSAM 108

address feedback
current block position 142
next block position 143

address of buffers
obtained from a pool 111
returned to pool 104, 105

addressing
types of (BDAM) 39
24- and 31-bit modes

aids, coding 4
alias names

in directory 178-179
alignment of buffers

BDAM 33
BISAM 42
BPAM 48
BSAM 56

alignment of buffers (continued)
QISAM 72
QSAM 81

alignment of printer forms
automatic 156
manual 161

allocation retrieval list 221
ANSI control characters

BPAM 53
BSAM 70
QSAM 95

argument, search
BDAM 38
QISAM 76

ASCII data sets
block prefix

BSAM 58
QSAM 84
restriction 58, 84

block size
BSAM 57
QSAM 82

buffer length
BSAM 58
QSAM 83

record format restriction
BSAM 70
QSAM 96

ASCII translation routines
check routine 20
get routine 108
put routine 138
write routine 201
XLA TE macro 208

associated data sets
closing 23
opening 119
specifying

BSAM 63, 65
QSAM 88, 89

ATTACH macro
relationship with BLDL macro 9

automatic buffer pool construction
BDAM 33
BISAM 42
BPAM 48
BSAM 55
QISAM 72-74
QSAM 80

automatic checkpoint restart 22
automatic error options

See EROPT
automatic volume switching

FEOV macro 101

Index 259

B
backspacing

BSP macro 12
CNTRL macro 30

backward read
open option 120
read operation 147

base registers
dummy sections 98
macro instructions 6

basic direct access method
See BDAM

basic partitioned access method
See BPAM

basic sequential access method
See BSAM

BDAM (basic direct access method)
general description 33
macro instructions used with 211
symbolic field names in DCB 242-244

BOW (block descriptor word)
BLKSIZE operand 49, 57

BFALN operand
DCB macro

BDAM 33
BISAM 42
BPAM 48
BSAM 56
QISAM 72
QSAM 81

BFTEK operand
DCB macro

BDAM 34
BSAM 56
QSAM 81-82

BISAM (basic indexed sequential access method)
general description 42
macro instructions used with 211
symbolic field names in DCB 238-242

BLDL macro
described 9-11
reason codes 11
return codes 11
use by access method 211
using FIND macro 102

BLKSIZE operand
DCB macro

BDAM 34
BPAM 49
BSAM 56
QISAM 73
OSAM 82-83

block
backspacing 12
BUFOFF operand

effect on buffer length 58
count exit

BSAM 66
list format 221

block (continued)
count exit (continued)

QSAM 91
data control 33
data event control 209
descriptor word

BLKSIZE operand 49, 57, 73, 82
BUFOFF operand 59, 84
LRECL operand 76

event control 209
position feedback 131, 197
positioning with POINT 131-132
prefix

See also BUFOFF operand
effect on block length 57
effect on buffer length 83
effect on data alignment 56, 81

reading 142-148
size

See BLKSIZE operand
writing 196-204

block size
for SYSOUT data sets

See also BLKSIZE operand
QSAM 82

SYSOUT data sets
BSAM 57

system-determined
BPAM 49
BSAM 57
QSAM 83

blocking
data checks (UCS printer) 164
records

BDAM 33, 40
BPAM 48, 53
BSAM 70
QISAM 78
QSAM 95-97

boundary alignment
See BFALN operand

BPAM (basic partitioned access method)
general description 48
macro instructions used with 211
symbolic field names for DCB 229-236

BSAM (basic sequential access method)
general description 55
macro instructions used with 211
symbolic field names for DCB 227-233

BSP macro
described 12
reason codes 13
return codes 13
use by access method 211

BUFCB operand
DCB macro

BDAM 35
BISAM 43
SPAM 58

260 MVS/ESA Data Administration: Macro Instruction Reference

I

\~

' I
\~

BUFCB operand (continued)

0'
DCB macro (continued)

BSAM 58
GETBUF macro 111
GETPOOL macro 112
QISAM 73
QSAM 83

buffer
alignment

See BFALN operand
BUFCB operand

GETPOOL macro 112
control

FREEBUF macro 104
FREEDBUF macro 105
FREEPOOL macro 106
GETBUF macro 111
GETPOOL macro 112
RELSE macro 153

\._;' forms control
SETPRT macro 156

length
ASCII data sets 58, 83
BUILD macro 15
BUILDRCD macro 16
card image mode 58, 83
GETPOOL macro 112

message format (SYNADAF macro)
pool construction

See also BUFCB operand
\~/ BUILD macro 14-15

BUILDRCD macro 16-17
releasing

FREEBUF macro 104
FREEDBUF macro 105
FREEPOOL macro 106
RELSE macro 153
SYNADRLS macro 187

specifying number
See BUFNO operand

buffering

\._./ dynamic 105
problem program controlled

BISAM 42
BSAM 55

simple 81-82
specifying 35, 56-57, 81-82
variable-length spanned record

BDAM 34
BSAM 57
BUILDRCD macro 16-17
QSAM 81

BUFL operand
DCB macro

BDAM 35
BISAM 43
BPAM 50
BSAM 58
QISAM 73

\
\~

185-186

BUFL operand (continued)
DCB macro (continued)

QSAM 83
BUFNO operand

DCB macro
BDAM 35
BISAM 43
BPAM 50
BSAM 58
CNTRL macro 30
NCP operand 43
QISAM 74
QSAM 84

BUFOFF operand
DCB macro

BSAM 58-59
QSAM 84

effect on buffer length 58
BUILD macro

described 14-15
relationship to

BFALN operand 33
BUFCB operand 35
BUFL operand 35
BUFNO operand 35

use by access method 211
BUILDRCD macro

execute form 19
GET macro 109
list form 18
relationship to

BUFL operand 84
BUFNO operand 80
PUT macro 139
TRUNC macro 193

standard form 14-15
use by access method 211

BURST operand (SETPRT macro) 158, 173, 175
bypassing automatic forms alignment 161

c
capacity record (RO)

relationship with
READ macro 143
WRITE macro 196, 203

card codes
BSAM 62
QSAM 86

card image
buffer length required 58, 83
defined 62, 86
eliminate mode, read column

BSAM 62, 64
QSAM 87

card punch
described 62, 86

Index 261

card reader
described 63, 87

carriage control channel
CNTRL macro 30-32
PRTOV macro 134-135

carriage control characters
CNTRL macro 30-32
machine 223-224
PRTOV macro 134-135

chained scheduling
BPAM 53
BSAM 68
QSAM 93

changing
name

partitioned data set 178
channel

overflow 134-135
programs, number

BPAM 52
BSAM 67

programs, number of
BISAM 45

channel programs
using suppress length indication (SU) 159

character arrangement table
specifying use of 158

character set code
1403 printer 164
3203 printer 164
3211 printer 164
3262 Model 5 printer 164
4245 printer 164
4248 printer 164

CHARS operand (SETPRT macro) 158
CHECK macro

described 20
end of data (EODAD) 51, 65
operations (NCP) 52, 67
relationship to

MACRF operand 38
operations (NCP) 45
POINT macro 132
READ macro 142, 145, 147, 149
S'INCDEV macro 188
WRITE macro 196, 199, 201, 203

use by access method 211
checking, write-validity

BDAM 39
BPAM 53
QISAM 78
QSAM 94

checkpoint records, embedded (DOS)
CNTRL macro 30
POINT macro 131

CHKPT macro
use by access method 211

CLOSE macro
execute form 28
FREEPOOL macro 106
list form 26
MODE 25, 27, 28
relationship to

BUILDRCD macro 16
POINT macro 131
PUT macro 139
SETL macro 154

return codes 29
standard form 23-25
TYPE=T 24
use by access method 211

CNTRL macro
described 30-32
MACRF operand (DCB macro)

BSAM 67
QSAM 92

restrictions 30
use by access method 211

codes
See also card codes
See also completion codes
See also control characters
See also conversion
See also exception code
See also return codes
card

BSAM 62
QSAM 86

completion
See codes, return

control character
See control characters

conversion
ASCII to EBCDIC 20, 108, 208
EBCDIC to ASCII 201, 208
XLATE macro 208

return
BLDL macro 11
BSP macro 13
FIND macro 102
MSGDISP macro 116
NOTE macro 118
POI NT macro 133
RELEX macro 152
SETPRT macro 164-169
STOW macro 180-181
SYNADAF macro 184
SYNADRLS macro 187
WRITE macro 205

coding
aids 4
macro instructions 1-7
registers as operands 6

column, binary
See also card image

262 MVS/ESA Data Administration: Macro Instruction Reference

\

\~

column, binary (continued)
eliminate mode, read column

QSAM 88
completion codes

BLDL macro 11
BSP macro 13
FIND macro 102
MSGDISP macro 116
NOTE macro 118
POI NT macro 133
RELEX macro 152
STOW macro 180-181
SYNADAF macro 184
SYNADRLS macro 187
WRITE macro 205

completion testing of 1/0 operations 20, 194
condition, exception 209
construct

a DECB (data event control block) 209
control

1/0 device 30-32, 134
page format 134-135
printer (3800) 156-164
releasing

buffer pool (FREEPOOL macro) 106
buffer (FREEBUF macro) 104
data block (RELEX macro) 152
dynamically acquired buffer 105, 197
QSAM buffer (RELSE macro) 153

requesting
buffer (GETBUF macro) 111
data block 112

control characters
CNTRL macro 30-32
described 223-224
ISO/ANSl/FIPS 225
machine 223
PRTOV macro 134-135
specifying

BPAM 53
BSAM 70
QSAM 95

control section
See DCB macro

COPIES operand
SETPRT macro

modifying 164
specifying 159

copy modification module
specifying 162

COPYNR operand in SETPRT macro
modifying 164
specifying 159

COPYP parameter
described 159
execute form 176
list form 174
restrictions 159

COPYP parameter (continued)
3262 Model 5 printer 159
4248 printer 159

count exit, block
BSAM 66
format list 221
QSAM 91

cylinder
DCB macro 74
index 77
overflow area 7 4

CYLOFL operand (DCB macro)
described 7 4

D
D-format records

BSAM 70
QSAM 95

DASO (direct access storage device)
capacity 213-215
considerations with

BSP macro 12
CLOSE macro 23, 24
POI NT macro 131-132

interface in DCB 232
data block

exclusive control of 143
locating with POINT macro 131-132
release of exclusive control 152
retrieving 107-110, 142-149
writing 136-141, 196-204

data check
blocking and unblocking 94, 163
restriction with CNTRL macro 30

data control block
See DCB

data definition (DD) statement
See DD statement

data event control block
See DECB

data extent block
See DEB

data management
parameter list 26, 125

data mode processing
GET macro 93, 110
PUT macro 93, 139

data protection image
See DPI

data set
block size for SYSOUT 57, 82
closing 23-25
connecting 119-123
disconnecting from 23-25
disposition at dose 24
opening 119-123
organization

See DSORG operand

I

lrndex 263
\

I

data set (continued)
temporary closing 25
types

See access methods
data translation

See code conversion
data transmittal modes

data 93, 110, 139
locate 107, 109, 136, 139
move 107, 109, 137, 139
specified in DCB 93

data, end of
See EODAD operand

DCB macro
BDAM 33-41
BISAM 42-47
BPAM 48-54
BSAM 55-71
QISAM 79
QSAM 81-97
use by access method 211

DCB open exit routine
OPTCD operand 39, 69
restriction with BUILDRCD macro 16

DCB operands
described

See DCB macro
symbolic names for 227-244

DCB (data control block)
abend exit

BDAM 36
BPAM 51
BSAM 66
list format 221-222
QSAM 91

completing 1 119
data event 145-149, 209
DCBEXCD1 field 209
DCBEXCD2 field 209
DCBLRECL field 138
DCBNCRH I field 46
DCBOFLGS field 122
described

See DCB macro
dummy section for 98-99
exit list

See EXLST operand
special options with BLDL macro 9-11
specifying operands 26
symbolic references to 227-244

DCBD macro
described 98-99
use by access method 211

DD statement
See also DDNAME operand
DCB 117, 119, 121
NOTE macro 117
OPEN macro 119-121

DD statement (continued)
POINT macro 131
relationship to data control block 1, 131

DDNAME operand
DCB macro

BDAM 36
BISAM 43
BPAM 50
BSAM 59
QISAM 74
QSAM 84

deblocking records
BDAM 33, 40
BPAM 53
BSAM 70
QISAM 78

DECB (data event control block)
construction 150, 206
described 209
exception code 209
modifying with execute form 151, 207
requirement with CHECK macro 20
requirement with FREEDBUF macro 105

delete option
described 77

DEN operand
DCB macro

BSAM 60
QSAM 85

density, recording
See DEN operand

descriptor word
block

BPAM 49
BSAM 57, 59, 149
QISAM 73, 76
QSAM 82, 84

record
BSAM 59
QISAM 73, 76
QSAM 91

segment 57, 149
DEVD operand

DCB macro
BSAM 59-65
DCBD macro 99
QSAM 84-89

device addressing, types of (BDAM) 39
device capacities 213-215
device types in a dummy section 99
direct data set

See BDAM data set
direct search option

QSAM 94
directory

obtaining contents with BLDL
partitioned data set 9-11

partitioned data set
operations performed by STOW

macro · 178-179

264 MVS/ESA Data Administration: Macro Instruction Reference

__,,

directory (continued)
partitioned data set (continued)

search by FIND macro 102
DISP option

See disposition option
disposition option

CLOSE macro 24
OPEN macro 121
requirement for extending an ISAM data set 117

DOS (disk operating system)
embedded checkpoint records

CNTRL macro 30
DOS/OS interchange feature, specifying 69, 95
POI NT macro 131

doubleword alignment
See BFALN operand

DPI (data protection image)
BSAM 63, 64
QSAM 88, 89

DSECT statement
DCB symbolic names 227

DSORG operand
DCB macro

BDAM 36
BISAM 44
BPAM 50
BSAM 65
QISAM 75
QSAM 90

DSORG operand (CHECK macro) 21
dummy control section

DCBD macro 98-99
PDABD macro 130
used for DCB 227

dummy data block (BDAM) 203-204
dummy key 203
dynamic buffering

E

effect on buffer length 35, 42
effect on number of channel programs 45
requesting in READ macro 143, 146
requesting in WRITE macro 197, 199
returning buffer to pool 105, 197
specified in BDAM DCB 38
specified in BISAM DCB 45

EBCDIC (extended binary coded decimal interchange
code)

ASCII translation
check routine 20
DCB option 68, 94
GET routine 108
put routine 138
write routine 201
XLA TE macro 208

ECB operand
WAIT macro 194

ECB (event control block)
described 209

ECBLIST operand
WAIT macro 194

eliminate mode, read column
BSAM 64
QSAM 87, 88

embedded checkpoint records (DOS)
CNTRL macro 30
POINT macro 131

end-of-data
See EODAD operand

end-of-data routine
See EODAD routine

end-of-file on magnetic tape
ignored

BSAM 69
QSAM 95

end-of-sequential retrieval
See ESETL

entry
to exit routine 221
to SYNAD exit routine 209

EODAD operand
DCB macro

BPAM 51
BSAM 65
QISAM 75
QSAM 90

EODAD (end-of-data) routine
BSP macro 12
CHECK macro 20
CNTRL macro 30
FEOV macro 101
GET macro 107, 110
POI NT macro 132

EOV (end-of-volume)
exit

BSAM 66
QSAM 91

forced (FEOV macro) 101
EROPT (automatic error options) operand

DCB macro 90-91
ERP (error recovery procedure)

QSAM 94
error analysis, 1/0

DCB macro 69
BSAM 69

GET macro 107, 110
relationship with

CHECK macro 20
CNTRL macro 31-32
DCB macro 94
POINT macro 132
PUT macro 137, 140
PUTX macro 141
SETL macro 155
SYNADAF macro 182

Index 265

error analysis, 1/0 (continued)
specifying in DCB macro

BDAM 40
BISAM 46
BPAM 54
QISAM 79
QSAM 96

status indicators
QISAM 209

error codes
See return codes

error conditions
opening a data set 123

error exits
CH ECK macro 20
CNTRL macro 31-32
DCB macro 69, 94
GET macro 107, 110
POINT macro 132
PUT macro 137, 140
PUTX macro 141
SETL macro 155
SYNADAF macro 182-183

error option operand (QSAM) 90
error recovery

procedure
tape 69, 94

ESETL (end-of-sequential retrieval) macro
described 100
GET macro 107
relationship to

SETL macro 154
use by access method 211

event control block
See ECB
open

See DCB open exit routine
exceptioh code 209
exclusive control of data block (BDAM)

releasing 197
requesting 143
specified in DCB 39

EXCP macro
relationship with SYNADAF macro 182

execute form
BUILDRCD macro 19
CLOSE macro 28
OPEN macro 127
READ macro 151
SETPRT macro 175-177
WRITE macro 207

executing macros
addressing mode, 24- and 31-bit

exit routine
See also EXLST operand
block count 91
data control block

See EXLST operand

exit routine (continued)
end-of-data

See EODAD operand
end-of-volume 91
error analysis

See error exits
FCB image 91
list format 221
user labeling 91
user totaling 91

EXLST operand
DCB macro

BDAM 36
BISAM 44
BPAM 51
BSAM 65
list format 221
QISAM 75
QSAM 91

exit routine
block count 66
end-of-volume 66
FCB image 66
user labeling 66
user, processing 66

expressions
absolute (absexp) 6
relocatable (relexp) 6

EXTEND operand
OPEN macro 120

extended binary coded decimal interchange code
See EBCDIC

extended logical record interface
See XLRI

extended search option
LIMCT operand 37-38
OPTCD operand 39

F
F-format records

See RECFM operand
FCB (forms control buffer)

image
defining 66, 91

operand (SETPRT macro) 160
3203 printer 160
3211 printer 160
3262 Model 5 printer 160
4245 printer 160
4248 printer 160

feedback
block position
next address

FEOV macro

143, 197
144

use by access method 211
using 101

266 MVS/ESA Data Administration: Macro Instruction Reference

,..._,,,

\ :_../

file, end of
See end-of-file

FIND macro
described 102
reason codes 1 03
return codes 102
use by access method 211

fixed-length records
See BLKSIZE operand, RECFM operand

FLASH operand
modifying in SETPRT macro 164
specifying SETPRT macro 161

format
exit list 221
page 134
record

BDAM 40
BPAM 53
BSAM 70-71
QISAM 78
QSAM 95-97

forms alignment 156, 160
forms control buffer
forms overlay frame 161
forward space (CNTRL macro) 31
FREE option

CLOSE macro 24
FREEBUF macro

described 104
GETBUF macro 111
relationship to

BUILD macro 14
use by access method 211

FREEDBUF macro
described 105
use by access method 211
used with BISAM 44, 200

FREEPOOL macro
described 106
GETPOOL macro 112
relationship to

CLOSE macro 23
use by access method 211

full-track-index write option 78
fullword boundary alignment

See BFALN operand
FU NC operand

DCB macro
BSAM 62-64
QSAM 87-89

G
GET macro

ASCII translation 108
data mode

QSAM 93, 110
locate mode

QISAM 76, 107
QSAM 93, 109

GET macro (continued)
move mode

QISAM 76, 107
QSAM 93, 109
restriction when using CNTRL macro 30, 92

PDAB macro 129
QISAM 107
QSAM 108-110
relationship to

CNTRL macro 30
EODAD (see EODAD operand)
RELSE macro 153
SETL macro 154

specified in DCB macro
QISAM 76
QSAM 92

TYPE= P 110
use by access method 211

GET routine exits 107, 110
GETBUF macro

described 111
FREEBUF macro 104
relationship to

BUILD macro 14
use by access method 211

GETPOOL macro
described 112
FREEPOOL macro 106
relationship to

BFALN operand 33
BUFCB operand 35
BUFL operand 35
BUFNO operand 36

use by access method 211
glossary 251, 257

IBM 3800 Printing Subsystem 156
IHADCB dummy section 98
IHAPDAB dummy section 130
image

data protection
BSAM 63, 65
QSAM 88, 89

FCB (forms control buffer) 66, 91, 160
UCS (universal character set) 164

image mode, card
BSAM 62
QSAM 86

independent overflow area
described 77

index
cylinder 77
highest-level

address of 45
size of 46

master
number of tracks per level 77
specified in OPTCD operand (DCB macro) 77

Index 267

INIT operand (SETPRT macro) 161
INOUT operand (OPEN macro) 120
input data set

closing 24-25
opening 119-123
QSAM 110
READ or GET specified in DCB

BDAM 38
BISAM 44
BPAM 52
BSAM 67
QISAM 76
QSAM 92

reading
BDAM
BISAM
BPAM

142-144
144-145

147-148
BSAM (read a direct data set) 149
BSAM (read a sequential data set)
QISAM 107
QSAM 108

testing completion of 1/0 operations
CHECK 20
WAIT 194-195

used with GET macro 108
INPUT operand (OPEN macro) 120
IN PUT option

OPEN macro 119
input/output devices

card reader and card punch 30
control

PRTOV macro 134
control of

CNTRL macro 30-32
magnetic tape 30
printer 30
3505 card reader

DCB macro 64, 87, 88
3525 card punch

CLOSE macro 23
CNTRL macro 30
DCB macro 64, 65, 87, 88
OPEN macro 119

input/output error analysis
See SYNAD exit routine

input/output operations
completion of 20, 194

interface
DCB

BPAM 235-236
BSAM 235-236
card reader, card punch 233
direct access devices 232
magnetic tape 232
printer 233
QSAM 236

ISAM (.indexed sequential access method)
See also BISAM, QISAM

147-148

ISAM (indexed sequential access method) (continued)
general description 42, 72
macro instructions used with 211
symbolic field names in DCB 238-242

ISO/ANSl/FIPS control characters
defined 225

J
JCL (job control language)

DD statement
CLOSE macro 23
data control block (see DDNAME operand)
DCB macro 36, 50
GET macro 108
NOTE macro 117
OPEN macro 119-120
POINT macro 131
PUTmacro 136

LABEL parameter to request ASCII translation 20,
108, 138

JFCBE (job file control block extension)
exit list format 221
EXLST operand 91
OPTCD parameter 69

job step
checkpoint restart 22

K
key position, relative (RKP) 79
key (BDAM)

address 143
reading 142
specifying as search argument 38
specifying length 37
writing 197

key (ISAM)
address 146, 200
reading 146
specifying length 75
specifying position 79
writing 199

KEYLEN operand
DCB macro

BDAM 37
BPAM 51
BSAM 66
QISAM 75

key, record
PUTmacro 136
READ macro 145
RKP (relative key position) operand 79
SETL macro 154-155
WRITE macro 200

268 MVS/ESA Data Administration: Macro Instruction Reference

I

"--'/

\ /

\ ;
~/

L
LABEL operand

DD statement 20, 108, 138
labels

See also EXLST operand
exit list format 221
input data set 95, 101, 119
output data set

CLOSE macro 23
FEOV macro 101
OPEN macro 119

user, processing 91
LEAVE option

CLOSE macro 24
FEOV macro 101
OPEN macro 121

levels of master index (ISAM) 77
LIMCT operand

DCB macro 37-38
line spacing, printer

CNTRL macro 30-32
PRTSP operand (DCB macro)

BSAM 61
QSAM 86

LINK macro"
relationship with BLDL macro 9

list address
data management 28, 127, 178

list form
BUILDRCD macro 18
CLOSE macro 26
OPEN macro 125
READ macro 150
SETPRT macro 173-174
WRITE macro 206

list format, exit 221
LOAD macro

relationship with BLDL macro 9
loading

FCB (forms control buffer) 160
UCS (universal character set buffer)

locate mode
BUILDRCD macro 16
GET macro

QISAM
QSAM

PUT macro
QISAM
QSAM

107, 109
109

137
139

specified in DCB macro
QISAM 76
QSAM 93

logical record interface
See LRI

logical record length
See also LRECL operand
GET macro 108
PUT macro 136, 138

164

logical record length (continued)
PUTX macro 141

LONG operand
WAIT macro 195

lower limit of sequential retrieval
SETL macro 154-155

LRECL operand
DCB macro

BPAM 52
BSAM 66
QISAM 75
QSAM 91

LRI (logical record interface)
invoked by BUILDRCD macro 16
provided by QSAM 82
specifying in DCB macro (BFTEK) 81-82
used with PUT macro 138

M
machine control characters

BPAM 53
BSAM 70
described 223.-224
QSAM 95

MACRF operand
DCB macro

BDAM 38-39
BISAM 44
BPAM 52
BSAM 67
QISAM 76
QSAM 92

locate
QISAM 107

optical mark read
BSAM 64

read column eliminate
BSAM 64
QSAM 87

macro
coding 1-4
DCB

BDAM 33-41
BISAM 42-47
BPAM 48-54
BSAM 55-71

GET
QISAM 107
QSAM 108-110

OPEN
execute form 127
list form 125
standard form 119-123

return codes 29, 123
macros

not recommended, list of xi

Index 269

macros that run in 31-bit mode
CLOSE 25
OPEN 122

macros, data management
BISAM 144
BLDL 9
BSP 12
BUILD 14-15
BUILDRCD

execute form 19
list form 18
standard form 16-17

CHECK 20
CHKPT 22
CLOSE

execute form 28
list form 26
standard form 23-25

CNTRL 30-32
DCB

QISAM 72-79
QSAM 81-97

DCBD 98-99
ESETL 100
FEOV 101
FIND 102
FREEDBUF 105
FREEPOOL 106
GETBUF 111
GETPOOL 112
NOTE 117
PDAB 129
PDABD 130
POINT 131-132
PRTOV 134-135
PUT

QISAM 136
QSAM 138-139

PUTX 141
READ

BDAM 142-144, 149
BISAM 145
BPAM 147-148
BSAM 147-149
execute form 151
list form 150

RELEX 152
RELSE 153
SETL 154-155
SETPRT

execute form 177
list form 173-174
standard form 156-172

STOW 178-181
SYNADAF 182-186
SYNADRLS 187
TRUNC 193
using by access method 211

macros, data management (continued)
WAIT 194-195
WRITE

BDAM 196-198, 203-205
BISAM 199-200
BPAM 201
BSAM 201
execute form 207
list form 206

XLATE 208
magnetic tape

backspace
BSP macro 12
CNTRL macro 30

considerations with
BSP macro 12
CLOSE macro 23-25
POINT macro 131-132

density 60, 85
end-of-file, ignored 69, 95
FEOV macro

final volume positioning 101
forward space 30
interface in DCB 232
read backward 147
recording technique 60, 85
restriction

NOTE macro 117
POINT macro 131

short error recovery procedure 69, 94
Mass Storage System

See MSS
master index

highest level in storage
address of storage area 45
size of storage area 46

number of tracks per level 77
option specified in DCB 77

MAXDCB operand
PDAB macro 129

member
complete list with BLDL macro

partitioned data set 9-11
partitioned data set

locate beginning with FIND macro 102
update directory with STOW macro 178-179

MF operand
BUILDRCD macro 18, 19
CLOSE macro 28
OPEN macro 125, 127
READ macro 150, 151
SETPRT macro 174, 177
WRITE macro 206, 207

mode
See also MACRF operand
card image

BSAM 62
QSAM 86

270 MVS/ESA Data Administration: Macro Instruction Reference

i_./

\......__,./

~;

mode (continued)
data

QSAM 93, 110, 139
locate

QISAM 76, 137
QSAM 93, 109, 139

move
QISAM 76, 107, 136
QSAM 93, 109, 139

optical mark read
QSAM 88

read column eliminate
QSAM 88

scan (QISAM) 77
MODE operand

DCB macro
BSAM 62, 63
QSAM 86, 88

MODIFY operand (SETPRT macro) 162
modifying

parameter list
BUILDRCD macro 19
CLOSE macro 28
OPEN macro 125, 127
READ macro 151
WRITE macro 207

modifying a parameter list
SETPRT macro 175

move mode
QISAM

GET macro 107
PUT macro 136
specified in DCB 76

QSAM
GET macro 109
PUT macro 139
specified in DCB 93

restriction 30, 93
MSGDISP macro

return codes 116
MSHI operand (DCB macro) 45
MSS (Mass Storage System)

DCB 232, 235, 236
MSWA operand

DCB macro 45
multiline print option

BSAM 63, 64
QSAM 87, 89

N
NCP operand

DCB macro
BISAM 45
BPAM 52
BSAM 67

next address feedback
BDAM (creating) 204
BDAM (existing) 143

not recommended
access methods

BDAM 33
BISAM 42
QISAM 72

ESETL macro 100
FREEDBUF macro 105
GET (QISAM) macro 107
PUT (QISAM) macro 136
READ (BDAM) macro 142, 149
READ (BISAM) macro 145
RELEX macro 152
SETL macro 154
WRITE (BDAM) macro 196, 203
WRITE (BISAM) macro 199

notational conventions
described 2

NOTE macro
described 117
POI NT macro 117
restriction

BSP macro 12
return codes 118
specified in DCB

BPAM 52
BSAM 67

use by access method 211
NTM operand

DCB macro 78
number of channel programs

See NCP operand
number of tracks per index level

See NTM operand

0
OMR (optical mark read) mode

BSAM 64
QSAM 88

online printer
control 30-32
skipping 134, 223-224
spacing 134, 223-224

open exit
See DCB open exit routine

OPEN macro
execute form 127
FEOV macro 101
GETPOOL macro 112
list form 125
MODE 122, 126, 127
NOTE macro 117
relationship to

CLOSE macro 23
DDNAME operand
READ macro 147
WRITE macro 201

return codes 123
standard form 119-123

Index 271

OPEN macro (continued)
TYPE 121, 126, 127
use by access method 211

open operation, testing 121-123
open options 119-121
operands

substitution for 4
OPTCD operand

DCB macro
BDAM 39
BISAM 45
BPAM 53
BSAM 69
QISAM 77
QSAM 93-95

SETPRT macro 163
optical mark read mode

See OMR
option codes

See OPTCD operand
organization, data set

See access methods
OUTIN operand (OPEN macro) 120
OUTINX operand (OPEN macro) 120
output data set

closing 23-25
opening 119-123
WRITE or PUT specified in DCB macro

BDAM 38
BISAM 44
BPAM 52
BSAM 67
QISAM 76
QSAM 93

writing
BDAM 196-198
BISAM 199-200
BPAM 201
BSAM (create a direct data set) 203-204
BSAM (sequential or partitioned data set) 201
QISAM 136, 141
QSAM 138-139

OUTPUT operand (OPEN macro)
described 120

overflow
area

independent 77
channel 134
exit address (PRTOV macro) 134
printer carriage 134
track

BDAM 40
overflow, track

BPAM 53
BSAM 70
QSAM 96
restrictions

chained scheduling 53, 96
OPTCD operand 96

overlay frame 161
overprinting 134

p
parallel data access block

See PDAB
parameter list construction

BUILDRCD macro 18
CLOSE macro 26
OPEN macro 125
READ macro 150
SETPRT macro 173-174
WRITE macro 206

parameter list modification
BUILDRCD macro 19
CLOSE macro 28
OPEN macro 127
READ macro 151
SETPRT macro 175-177
WRITE macro 207

partitioned data set
FIND macro 102
macro instructions used with 211
relationship to

BLDL macro 9-11
STOW macro 178-179

PDAB macro
use by access method 211
using 129

PDAB (parallel data access block)
constructing 129
generating a DSECT 130
symbolic field names 245

PDABD macro
symbolic field names 245
use by access method 211

POINT macro
described 131-132
MACRF operand

BSAM 67
NOTE macro 117
restriction

BSP macro 12
return codes 133
specified in MACRF operand

BPAM 52
use by access method 211

position feedback
current block 142, 197
next block 143, 203

positioning volumes
CH ECK macro 20
CLOSE macro 23-25
FEOV macro 101
OPEN macro 119
POI NT macro 131-132

272 MVS/ESA Data Administration: Macro Instruction Reference

\...._ . ./·

position, relative key (RKP) 79
prefix, block

See also BUFOFF operand
effect on block length 57, 83
effect on buffer length 83
effect on data alignment 56, 81

print option for 3525
BSAM 63, 65
QSAM 87, 89

Print Services Facility
See PSF

printer
carriage control 30-135
character set buffer loading 164
control characters 223-224
control information (SETPRT macro) 156
control tape 134-135
forms alignment 156
forms control buffer loading 160
skipping 30-32, 223-224
spacing 30-224

program, channel
BISAM 45
BPAM 52
BSAM 67

protection option, data
BSAM 63, 65
QSAM 88, 89

PRTOV macro
described 134
use by access method 211

PRTSP operand
DCB macro

BSAM 61
QSAM 86

PSF (Print Services Facility)
SYNAD routine 71
SYS1.FDEFLIB 156
SYS1.FONTLIB 156
SYS1.PDEFLIB 156

PSPEED parameter
described 163
execute form 177
list form 174

punch, card 62, 86
PUT macro

data mode
QSAM 92, 139

locate mode
QISAM 137
QSAM 139

move mode
QISAM 136
QSAM 139

QISAM 136
QSAM 119-121
relationship with

PRTOV macro 134
SYNADAF macro 182

PUT macro (continued)
relationship with (continued)

TRUNC macro 1'93
specified in DCB macro

QISAM 76
QSAM 92

use by access method 211
PUTX macro

Q

described 141
output mode 141
specified in DCB macro

QISAM 77
QSAM 93

TRUNC macro 193
update mode 141
use by access method 211

QISAM (queued indexed sequential access method)
general description 72
macro instructions used with 211
symbolic field names in DCB 238-242

QSAM (queued sequential access method)
general description 80

R

macro instructions used with 211
symbolic field names in DCB 227-237

ROBACK operand (OPEN macro)
restriction 120

read backward
magnetic tape 120, 147

read column eliminate mode
BSAM 64
QSAM 87, 88

READ macro
BDAM 142-144, 149
BFTEK operand 56
BISAM 144
BPAM 147-148
BSAM 147-149
EODAD operand 51, 65
execute form 151
FIND macro 102
FREEDBUF macro 105
list form 150
MACRF operand 52, 66-67
NCP operand 52, 67
relationship to

BFTEK operand 34
BUFL operand 35
CHECK macro 20
KEYLEN operand 37
LIMCT operand 37
MACRF operand 38, 44
NCP operand 45
OPTCD operand 39
POINT macro 131

Index 273

READ macro (continued)
relationship to (continued)

RELEX macro 152
SYNCDEV macro 188
WAIT macro 194
WRITE macro 196-198

specified in DCB macro
BDAM 38
BISAM 44
BPAM 52
BSAM 66

standard form
BDAM 142-144
BISAM 144
BPAM 147-148
BSAM (read direct data set) 149
BSAM (read sequential data set) 147-148

use by access method 211
reason codes

BLDL macro 11
BSP macro 13
FIND macro 103
SETPRT macro .170
STOW macro 180-181

RECFM operand
DCB macro

BDAM 40
BPAM 53
BSAM 70-71
QISAM 78
QSAM 95-97

record
area

construction 147
deletion option (ISAM) 77
format (see RECFM operand) 1
length (see LRECL operand) 1

descriptor word
BSAM 59
QISAM 73, 76
QSAM 91

physical
See BLKSIZE operand

retrieval 107-110, 142-149
segment 138
variable-length, spanned 82
writing 136-141, 196-204

recording density
magnetic tape

BSAM 60
QSAM 85

recording technique
magnetic

BSAM 60
magnetic tape

BSAM 60
QSAM 85

recovery procedure
tape error 69

register
contents on entry to

DCB exit routine 222
overflow exit routine 134

DCBD base 98-99
usage rules 6

register contents
exit list 222

relative addressing
BDAM 39
FIND macro 102
POINT macro 132

relative key position 79
release

buffer 104
buffer pool 106
dynamically acquired buffer 105
exclusive control 197
QSAM buffer 153

RELEX macro
described 152
MACRF operand 39
return codes 152
use by access method 211

relexp defined 6
relocatable expression defined 6
RELSE macro

use by access method 211
using 153

reorganization statistics (ISAM) 78
REREAD option

CLOSE macro 23
OPEN macro 121

restore data control block 23-25
return codes

BLDL macro 11
BSP macro 13
CLOSE macro 29
FIND macro 102
MSGDISP macro 116
NOTE macro 118
OPEN macro 123
POI NT macro 133
RELEX macro 152
SETPRT macro 164,.-169
STOW macro 180-181
SYNADAF macro 184
SYNADRLS macro 187
WRITE macro 205

RETURN macro
SYNAD operand

BDAM 40
BISAM 47
BPAM 54
BSAM 71
QISAM 79, 225
QSAM 97

274 MVS/ESA Data Administration: Macro Instruction Reference

\.._ .. /

\ I
~/

REWIND option
CLOSE macro 24
FEOV macro 101

REXMIT operand
SETPRT macro 164

RKP (relative key position) operand
DCB macro 76
record format information 79

RO record
See capacity record

s
save area

general register requirements 6
SYNADAF requirement 182
SYNADRLS macro 187

scan mode
QISAM 76

search
BLDL macro

PDS directory 9-11
partitioned data set directory

FIND macro 102
type of

BDAM 38
QISAM 77

search argument
BDAM 38
QISAM 76

search direct option 95
search option, extended 39
segment

buffer 136
descriptor word 57, 149
interface, restriction 16
work area 36

sequential access methods
See access methods

services, optional
BDAM 39
BPAM 53
BSAM 68
QISAM 77
QSAM 93

SETL macro
described 154-155
ESETL macro 100
GET macro 107
use by access method 211

SETPRT macro
blocking/unblocking data checks 156
bypassing automatic forms positioning 157
execute form 175-177
list form 173-174
printing by print train or band 156
reason codes for 3800 170
return codes 164-169
selecting UCS and FCB images 156

SETPRT macro (continued)
standard form 156-172
use by access method 211
4248 printer

activation 157
deactivation 157
positioning 157

simple buffering 81
skipping, printer

See also spacing, printer
CNTRL macro 30
control characters 223-224

SMSI operand
DCB macro 46

SMSW operand
DCB macro 46

space, magnetic tape
backward 12, 30
forward 30

spacing, printer
See also skipping, printer
CNTRL macro 30
control characters 223-224
specified in DCB macro

BSAM 61
QSAM 86

spanned records
See variable-length, spanned records

STACK operand
DCB macro

BSAM 62, 64
QSAM 87, 88

stacker selection
CNTRL macro 30-32
control characters 223-224
DCB macro

BSAM 64
specified in DCB macro

BSAM 62
QSAM 87, 88

standard blocks
restriction with OPTCD operand 96
specifying 70, 96

statistics reorganization (ISAM) 78
status

following an 1/0 operation 209
STOW macro

described 178-181
directory action 179
reason codes 180
return codes 180-181
use by access method 211

suppress length indication (SU)
relationship with channel programs 159

switching volumes
CHECK macro 20
FEOV macro 101

Index 275

symbol defined 5
SYNAD exit routine

DCB macro
BSAM 71

GET macro 107, 110
relationship with

CH ECK macro 20
CNTRL macro 32
DCB macro (see SYNAD operand)
POINT macro 132
PUT macro 137, 140
PUTX macro 141
SETL macro 155
SYNADAF macro 183

specifying in DCB macro
BDAM 40
BISAM 46
SPAM 54
QISAM 79
QSAM 96

SYNAD operand
DCB macro

BDAM 40
BISAM 46
SPAM 54
BSAM 71
QISAM 79
QSAM 96

SYNAD routine
PSF (Print Services Facility) 71

SYNADAF macro
described 182-183
message format 185
relationship with SYNADRLS macro 187 ·
return codes 184
use by access method 211

SYNADRLS macro
described 187
relationship with SYNADAF macro 182
return codes 187
use by access method 211

SYNCDEV macro
data synchronization 188

synchronization of data to
tape 188

synchronizing 1/0 operations 20, 194-195
synchronous error exit

See SYNAD operand
SYSIN DD statement

BSP macro 12
CNTRL macro 30
FEOV macro 101
MACRF operand 67
NOTE macro 118
OPEN macro 119, 120
OPTCD operand 94
PUTX macro 141
RECFM operand 96

SYSIN DD statement (continued)
RELSE macro 153

SYSOUT DD statement.
BSP macro 12
CNTRL macro 30
FEOV macro 101
MACRF operand 67
NOTE macro 118
OPEN macro 119, 120
OPTCD operand 94
POINT macro 132
PUTX macro 141

system-determined block size
SPAM 49
BSAM 57
QSAM 83

T
table reference character

See TRC
tape density

magnetic
BSAM 60
QSAM 85

tape error recovery procedure
BSAM 69
QSAM 94

tape recording technique
QSAM 85

temporary close
of data set 23

termination, abnormal
check routine 20
end-of-data

See EODAD operand
uncorrectable 1/0 error

See SYNAD operand
testing

completion of 1/0 20, 194-195
for open data set 121~123

totaling exit
BSAM 66
list format 221
QSAM 91

track addressing, relative
BDAM 39
FIND macro 102
POI NT macro 132

track index write, full 78
track overflow

BDAM 40
SPAM 53
BSAM 70
QSAM 96

translation
ASCII to EBCDIC

CHECK macro 20
GET macro 108
XLA TE macro 208

276 MVS/ESA Data Administration: Macro Instruction Reference

\'-""'

I I

\ _../

\ I

~

I

l
·~

'-..._,;

\-.L/

translation (continued)
EBCDIC to ASCII

PUT macro 138
WRITE macro 201
XLA TE macro 208

paper tape code 61
transmittal modes

See also MACRF oper<:ind
data 92, 110, 139
locate 107, 109, 139
move 107, 109, 136, 139
specifying 76

TRC (table reference character 3800) 68, 94, 162
TRTCH operand

DCB macro
BSAM 61
QSAM 85

TRUNC macro
described 193
specified in QSAM DCB 93
use by access method 211

truncating a block 193
TTR (track record address)

as used by BLDL macro 9
as used by Fl ND macro 102
as used by NOTE macro 117

TYPE= P (GET macro) 110
TYPE=T (CLOSE macro) 23-25

u
U-format records

BDAM 40
BPAM 54
BSAM 70
QSAM 96

UCS operand (SETPRT macro) 164
UCS (universal character set)

unblocking data checks 94
unblocking data checks

QSAM 94
SETPRT macro 163

uncorrectable 1/0 errors
See SYNAD operand

undefined length records
See U-format records

universal character set
See UCS

unmovable data sets
See DSORG operand

U POAT operand
OPEN macro 120, 131, 147
restriction with POINT macro 131
restriction with READ macro 147

updating
partitioned data set directory 178-179

user
BLDL macro

data in PDS directory 9-11

user (continued)
data in partitioned data set directory

STOW macro 178-179
label exit

BSAM 66
list format 221
QSAM 91

totaling exit
BSAM 66
list format 221
QSAM 91

USING statement requirement
DCBD macro 98-99
PDABD macro 130

v
V-format records

BDAM 40
BPAM 54
BSAM 71
GET macro 108
QISAM 78
QSAM 96

validity checking
BDAM 39
BPAM 53
QISAM 78
QSAM 94

variable-length record (format-V)
See V-format records

variable-length, spanned records
See also V-format records
BFTEK 34, 56, 82
FEOV macro 101
PUT macro 138
restriction with

OPTCD operand 96
writing for BDAM 203

volume
forcing end 101

volume positioning
CHECK macro 20
CLOSE macro 23-25
FEOV macro 101
OPEN macro 119
POINT macro 131-132

volume switching
described 20
FEOV macro 101

VSAM (virtual storage access method)
referenced publications 1

w
WAIT macro

described 194-195
relationship to

CHECK macro 20
MACRF operand 38

Index 277

WAIT macro (continued)
relationship to (continued)

READ macro 142, 145
· WRITE macro 196, 199

use by access method 211
work area

BISAM
address of 47
size of 46

WRITE macro
execute form 207
list form 206
MACRF operand 52, 67
NCP operand 52, 67
relationship to

BUFL operand 35
CH ECK macro 20
KEYLEN operand 37
LI MCT operand 37-38
MACRF operand 38, 44
NCP operand 45
OPTCD operand 39
POINT macro 131
PRTOV macro 134
READ macro 143, 145, 147
RELEX macro 152
SYNADAF macro 182
SYNCDEV macro 188
WAIT macro 194

return codes 205
specified in DCB macro

BDAM 38-40
BISAM 44
BPAM 52
BSAM 66-67

standard form
BDAM (create with BSAM) 203-205
BDAM (existing) 196-198
BISAM 199-200
BPAM 201
BSAM 201

testing for completion 20, 194-195
use by access method 211

WTOR macro
relationship with SETPRT macro 160

x
XCTL macro

relationship with BLDL macro 9
XLATE macro

use by access method 211
using 208

XLRI (extended logical record interface)
BUILDRCD macro 16
GET macro
use

QSAM 92

Numerics
31-bit addressing mode

executing macros 1
3262 Model 5 printer

COPYP parameter 159
maximum record length specification 213

3430 magnetic tape unit
record length 213

3480 magnetic tape subsystem
record length 213

3800 Model 3 printer 71, 156
4245 printer

maximum record length specification 213
4248 printer

COPYP parameter 159
maximum record length specification 213
SETPRT macro 157

278 MVS/ESA Data Administration: Macro Instruction Reference

I
\-_

\~

' \

'"'-';'
.§

...... 0
C'+-
(1) Cf)

E·c_..c:: ·-...,
:l
o- 0
(I) (I)

Ol Cf)

.~ .8
t'. (I)
0 Q_
Cf) 0
I_..,

=-o
0 Q)

EE
o E
·- :i c; Ol
E .._
0 (I),..c::
:i-+-'

0 ~
:5 0
·-(I)

!!:: >
(/):;:;
E'iii
Q) c
:0 ~ e1
c. e
Q) :i
Cf) Cf)
:i Cf)

0 Q)
()

Q_

c Q)
0 Cf)
() :i

(/) Q)

~Cf)
Q_ 0
0 (I)

(;)O::

Q.i
0
z

MVS/ESA
Data Administration:
Macro Instruction Reference

SC26-4506-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name-------------------------~ Date--------------------

CompanY------------------------~

Address ~--~

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or represe~tative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4506-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

I
I
I
I
I
I
I
I
I
I
I .. ·11· · 1· ·1· ·1· -~~ ~~~:~~E· i

NECESSARY I
IF MAILED I

INTHE I

BUSINESS· .REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P.O. Box 49023
San Jose, CA 95161-9945

11.1 ... 1.1 11.11 111.1 •• 1.1 ... 1 .. 1.1.1 111

UNITED STATES I

I

I
I
I
I
I

••• 1

Fold and tape

--------- - - --- - -- - ---- -------- --___ ,_

Please do not staple Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1..._,.

I

\.._,-

_/i

l

_)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

. E I
+-' 0

~ ';;; I
[:c I
·- +-'

6--o I
~~ I

:§ .8 I
o~I
f B I
~] I
EE I
u E
~ g, I
~ 03 I,.r.:
::i I
0 ~
:S o I
·i ~ I
~~ I
Cl) c I
:o ~ I e1
~~ I
~ ~ I
8~1
§ ~ I
u ::i I
Ul (!)

~~ I
~£ I

I
2
0
z

MVS/ESA
Data Administration:
Macro Instruction Reference

SC26-4506-1

Reader's
Comment"
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name-------------------------~ Date--------------------

CompanY------------------------~

Address ~--~

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4506-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I .. ·1· ·1· -~O ~~~;~GE i

NECESSARY I
IF MAILED I

INTHE I

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDHESSEE

International Business Machines Corporation
Department J57
P .0. Box 49023
San Jose, CA 95161-9945

11.1 ... 1.1 •••• 11.11 111.1 .. 1.1 ••• 1 .. 1.1.1 111

UNITED STATES I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

••• j

Fold and tape

--------- - - --- - -- - ---- - --------- -----·-@

Please do not staple Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\-

SC26-4506-1

