

\
)

/

)
/

)

)

--------- ----- - -- -. ---- -------------·-
MVS/ESA
Linkage Editor and Loader
User's Guide

Version 3 Release 1

SC26-4510-1

Second Edition (June 1989)

This edition replaces and makes obsolete the previous edition, SC26-4510-0.

This edition applies to Version 3 Release 1 of MVS/DFP™, Program Number 5665-XA3, and to any sub­
sequent releases until otherwise indicated in new editions or technical newsletters.

(~
/

n

The changes for Version 3 support are summarized under "Summary of Changes" following the table
of contents. Specific changes are indicated by a vertical bar to the left of the change. A vertical bar to
the left of a figure caption indicates that the figure has changed. Editorial changes that have no tech- n
nical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli­
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed, 1!)
comments may be addressed to IBM Corporation, Department J57, P. 0. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1986, 1988, 1989. All rights reserved.

L> Trademarks

u

u

u

The following names have been adopted by IBM for trademark use and are
used throughout this publication:

MVS/DFPTM

MVS/ESATM

MVS/SP™

Trademarks iii

()
/

n,

u

Contents

Introduction
Notational Conventions

1
1

Part I. Linkage Editor 5

Chapter 1. Overview
Object and Load Modules
Linkage Editor Processing

Input and Output Sources
Load Module Creation ..

Chapter 2. Uses of the Linkage Editor
Linkage Editor Input
Relationship to the Operating System

Chapter 3. Defining Input to the Linkage Edito'r
Primary Input Data Set

Object Modules
Control Statements
Object Modules and Control Statements

Automatic Library Call
SYSLIB DD Statement
Library Control Statement
NCAL Option

Included Data Sets

Chapter 4. Specifying JCL to Run a Linkage Editor Job
EXEC Statement-Introduction ...
EXEC Statement-Job· Step Options .

Module Attributes
Special Processing Options
Space Allocation Options
Output Options
Incompatible Job Step Options
EXEC Statement-Region Parameter
EXEC Statement-Return Code
DD Statements
Linkage Editor DD Statements
Additional DD Statements .
Size Parameter Guidelines

Cataloged Procedures
Linkage Editor Cataloged Procedures
Overriding Cataloged Procedures
Adding DD Statements

Chapter 5. Specifying an Operation with Control Statements

Chapter 6. Editing a Control Section
Changing External Symbols·
Replacing Control Sections

7
9

12
12
13

15
15
24

27
27
28
31
32
33
34
36
38
38

43
43
43
44
49
50
58
59
60
60
60
62
66
66
67
68
71
73

75

103
105
107

Contents V

Part II. Loader

Automatic Replacement
REPLACE Statement

Deleting a Control Section or Entry Name
Ordering Control Sections or Named Common Areas
Aligning Control Sections or Named Common Areas on Page Boundaries

Chapter 7. Interpreting Linkage Editor Output
Output Load Module ...

Output Module Library
Entry Point
Reserving Storage in the Output Load Module
Processing Pseudoregisters
Multiple Load Module Processing

Diagnostic Output
Output Listing Header
Module Disposition Messages
Error/Warning Messages
Sample Diagnostic Output
Optional Output

Chapter 8. Overview and Uses of the Loader
Functional Characteristics
Compatibility and Restrictions

Chapter 9. Preparing Input for the Loader
Input for the Loader

EXEC Statement
Loader Options
EXEC Statement Example
DD Statements
Loaded Program Data

Sample Input for the Loader

Chapter 10. Interpreting Loader Output

Appendix A. Sample Linkage Editor Programs
Sample Program COBFORT
Sample Program RPLACJOB

Linkage Editor Control Statements
Sample Program REGNOVL Y
Sample Program PARTDS

Appendix B. Linkage Editor Requirements and Capacities

Appendix C. Designing and Specifying Overlay Programs
Design of an Overlay Program

Single Region Overlay Program
Multiple Region Overlay Program

Specification of an Overlay Program
Segment Origin
Region Origin
Positioning Control Sections

vi MVS/ESA Linkage Editor and Loader User Is Guide

107
111
112
114
116

119
119
119
122
123
124
124
125
126
126
127
128
129

133

135
135
140

143
143
143
144
147
148
150
151

155

157
157
159
161
162
169

173

177
177
178
186
188
189
190
191

n

n

n

Special Options ...
Special Consid-erations

Common Areas
Storage Requirements
Overlay Communication

195
196
196
198
199

Appendix D. Loader Storage Considerations 205

Appendix E. Invoking the Linkage Editor and Loader from a Program 207
Invoking the Linkage Editor from a Program 207
Invoking the Loader from a Program 209

Appendix F. Linkage Editor and Loader Return Codes 215
Linkage Editor Return Codes 215
Loader Return Codes 216

Abbreviations 219

Glossary 221

Index .. 225

Contents vii

n
' I

i ' u

u

u

Summary of Changes

Second Edition, June 1989

Service Changes
Information about invoking the linkage editor and the loader from a program
were formerly contained in two chapters. Those two chapters have been com­
bined into a new appendix, "Appendix E. Invoking the Linkage Editor and
Loader from a Program."

"Appendix F. Linkage Editor and Loader Return Codes" contains the return
codes which can result from the execution of the linkage editor or loader
through the EXEC job control statement. These return codes can be examined
by a user program.

Minor technical and editorial changes have been made.

First Edition, December 1988

New Device Support for Release 1
"Chapter 4. Specifying JCL to Run a Linkage Editor Job," Figure 13 on
page 52 and Figure 14 on page 53, as well as "Appendix B. Linkage Editor
Requirements and Capacities," Figure 55 on page 173, and the "Intermediate
Data Set" table, have been updated to reflect support of the following new
devices:

DASO

• IBM 3380 Direct Access Storage Models AJ4, BJ4, AK4, and BK4
• IBM 3380 Direct Access Storage Direct Channel Attach Model CJ2

Storage Control

• IBM 3880 Storage Control Model 3 with 3380 AJ4/ AK4 Attachment (feature
3005)

• IBM 3990 Storage Control Models 1 and 2

Cache Storage Control

• IBM 3880 Storage Control Model 23 with 3380 AJ4/AK4 Attachment (feature
3010)

• IBM 3990 Storage Control Model 3.

The new device updates, as well as other minor changes, are indicated by
revision bars. In "Chapter 4. Specifying JCL to Run a Linkage Editor Job" and
"Appendix B. Linkage Editor Requirements and Capacities" where specific
models of the 3380 were listed, the model numbers have now been replaced by
"3380 all models " where applicable.

Summary of Changes ix

Service Changes
MVS/DFP Version 3 publications have new order numbers. Publications listed
in the preface reflect these new order numbers.

Minor technical and editorial changes have been made.

X MVS/ESA Linkage Editor and Loader User's Guide

(~
I

r-'\
I)

n

u

u

Preface

About This Book
This book is intended to help you use the linkage editor and loader to prepare
the output of a language translator for execution. Additional information on the
operation and use of the linkage editor and loader is provided to help you
install and maintain the operating system. Un'iess specifically stated otherwise,
the information in this book must not be used for programming purposes.
However, this book also provides the following type of information, which is
explicitly identified where it occurs:

General-Use Programming Interface

General-use programming interfaces are provided to allow you to write pro­
grams that use the services of MVS/DFP .

.__ ______ End of General-Use Programming Interface ______ __.

The JCL examples shown in this book may assume a non-SMS environment
and specify parameters which are not required in an SMS environment. For
example, with SMS it is not necessary to specify the UNIT, VOL= SER, or
SPACE parameters in the DD statement. Examples intended for use only in an
SMS environment or only in a non-SMS environment identify the approrpriate
restriction.

Required Product Knowledge
In order to use this book effectively, you should be familiar with MVS/ESA job
control language.

Required Publications
You should be familiar with the information presented in the following publica­
tions:

Publication Title Order Number

MVS/ESA JCL User's Guide GC28-1830

MVS/ESA JCL Reference GC28-1829

MVSIESA Message Library: System Messages Volume 1 GC28-1812

MVS/ESA Message Library: System Messages Volume 2 GC28-1813

Preface Xi

Related Publications
Some publications from the MVS/SP Version 3 library are referenced in this
book. The MVS!ESA Library Guide for System Product Version 3, GC28-1563,
contains a complete listing of the MVS/SP Version 3 publications and their
counterparts for the prior version.

The MVS!ESA Data Facility Product Version 3: Master Index, GC26-4512, con­
tains both an index to the MVS/DFP library and a summary of the changes
made to the library. You can use it to:

• Find information in other MVS/DFP Publications

• Determine how new programming support changes information in the
MVS/DFP library

• Determine which MVS/DFP publications have been changed

The following publications may be helpful:

Publication Title

MVSIESA Data Administration Guide

MVSIESA VSAM Administration Guide

MVS/ESA System Programming Library: Initialization and
Tuning

Referenced Publications

Order Number

SC26-4505

SC26-4518

GC28-1828

Within the text, references are made to the publications listed below:

Short Title

JCL User's Guide

JES3 Data Areas

Service Aids

SMP System Program­
mer's Guide

SMP/E User's Guide

Application Develop­
ment Macro Reference

SPL: Application Devel­
opment Guide

System Messages
Volume 1

Publication Title

MVS/ESA JCL User's Guide

MVS/ESA Data Areas
(MVS/JES3) (Microfiche)

MVS/ESA System Programming
Library: Service Aids

Order Number

GC28-1830

LYBB-1851

LY28-1844

System Modification Program GC28-0673
System Programmer's Guide

System Modification Program SC28-1302
Extended User's Guide

MVS/ESA Application Develop- GC28-1822
ment Macro Reference

MVSIESA System Programming GC28-1852
Library: Application Development
Guide

MVS/ESA Message Library: GC28-1812
System Messages Volume 1

xii MVS/ESA Linkage Editor and Loader User Is Guide

(r-\
' !

fr'\
'•)

n
/

Short Title Publication Title Order Number

(' System Messages MVSIESA Message Library: GC28-1813
\,.,_) Volume 2 System Messages Volume 2

TSO/E V2 Command TSOIE Version 2 Command Ref- SC28-1881
Reference erence

Utilities MVS/ESA Data Administration: SC26-4516
Utilities

u

u

Preface Xiii

()

u

u

/
(!

~

Introduction

The linkage editor and the loader processing programs prepare the output of

language translators for execution. The linkage editor prepares a load module

that is to be brought into storage for execution by program fetch. The loader

prepares the executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities, such as creating

overlay programs and aiding program modification. (The linkage editor is also

used to build and edit system libraries.) The loader provides high performance

loading of programs that do not require the special processing facilities of the

linkage editor.

Use of the linkage editor is recommended in the following cases:

• If the program requires linkage editor servi:ces in addition to the MAP, LET,

NCAL, and SIZE options

• If the program uses linkage editor control statements, such as INCLUDE,

NAME, OVERLAY

• If a load module is to be produced for a program library

Use of the loader is recommended if the program only requires the use of the

following linkage editor options: MAP, LET, NCAL, and SIZE. Because of its

fewer options and because it can process a job in one job step, the loader

reduces editing and loading time by about one-half.

Linkage editor processing is performed in a link-edit step. The linkage editor

can be used for compile-link edit-go, compile-link edit, link-edit, and link-edit-go

jobs. Loader processing is performed in a load step, which is equivalent to the

link-edit-go steps. The loader can be used for compile-load and load jobs.

The MVS/DFP linkage editor is modified to support the following:

• AMODE/RMODE attributes

• Read-only CSECT (RSECT)

• Preservation of the high-order bit in 4-byte A-CONs and V-CONs

Details of how each language interfaces with the linkage editor can be found in

the publication(s) describing that language.

Notational Conventions
A uniform system of notation describes the format of linkage editor and loader

control statements. This notation is not part of the language; it simply provides

a basis for d€scribing the structure of the commands. The command format

illustrations in this book use the following conventions:

Brackets
Brackets, [] , enclose optional elements that you may or may not

code as you choose.

Introduction 1

Braces

OR Sign

Ellipses

Examples:

• [length]

• [MF=E]

Braces, { } , enclose alternative elements from which you must
choose one, and only one, element.

Examples:

• BFTEK ={SIA}

• {KID}

• {addresslSIO}

Sometimes, alternative elements (especially complicated alterna­
tives) are grouped in a vertical stack of braces.

Example:

MACRF={{(R[CIP])}
{(W[CIPIL])}
{(R[C],W[C])}}

In the examples above, you must choose only one element from the
vertical stack.

Items separated by a vertical bar (I) represent alternative items.
No more than one of the items may be selected.

Examples:

• [REREADILEAVE]

• [length I'S']

Ellipses, , indicate that elements may be repeated.

Example:

• (dcbaddr,[(options)],)

Other Punctuation

Bold Type

Other punctuation (parentheses, commas, etc.) must be entered as
shown.

Bold type is used for elements that you must code exactly as they
are shown. These elements consist of macro names, keywords, and
these punctuation symbols: commas, parentheses, and equal signs.
Examples:

• DCB

• CLOSE,,, ,TYPE=T

• MACRF = (Pl,PTC}

• SK,5

2 MVS/ESA Linkage Editor and Loader User 1 s Guide

n

(I

~

u

Underscored Bold

Italics

''

()

Underscored BOLD elements indicate alternative choices that are
assumed if you don't want to code the optional element.

Examples:

• [EROPT= {ACCISKPIABE}]

• [BFALN={FIQ}]

Italics type specifies fields to be supplied by the user, usually
according to specifications and limits described for each parameter.
In some examples, underscored lowercase letters are used instead
of italics to specify user-supplied fields.

A ' ' in the macro format indicates that a blank (an empty space)
must be present before the next parameter.

Parentheses () must enclose subfields if more than one is specified.
If only one subfield is specified, you may omit the parentheses.

Introduction 3

(~
I

(~

/ u
Part I. Linkage Editor

u

u
Part I. Linkage Editor 5

n

n

nl
/

(~
/

(;
_.,)

I u

u

u

Chapter 1. Overview

Source
Module

Linkage editor processing is a necessary step that follows the source program

assembly or compilation of any problem program. The linkage editor is both a

processing program and a service program used in association with the lan­

guage translators.

Every problem program is designed to fulfill a particular purpose. To achieve

that purpose, the program can generally be divided into logical units that
perform specific functions. A logical unit of coding that performs a function, or

several related functions, is a module. Separate functions should be pro­

grammed into separate modules, a process called modular programming. Each

module can be written in the symbolic language that best suits the function to

be performed. (The symbolic languages are Assembler, ALGOL, BASIC,

COBOL, FORTRAN, PASCAL, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the language
translators. The input to a language translator is a source module; the output

from a language translator is an object module. Before an object module can
be executed, it must be processed by the linkage editor. The output of the
linkage editor is a load module (Figure 1).

1
Object
Module

Load
Module

Figure 1. Preparing a Source Module for Execution

An object module is in relocatable format with machine code that is not execut­

able. A load module is also relocatable, but with executable machine code. A

load module is in a format that can be loaded into virtual storage and relocated

by program fetch (Figure 2 on page 8).

Chapter 1. Overview 7

Source
Module

Language
Translator

Object
Module

Linkage
Editor

Load
Module

Program
Fetch

Execution

Figure 2. Preparing a Source Module for Execution, and Executing the Load Module

Any module is composed of one or more control sections. A control section is
a unit of coding (instructions and data) that is, in itself, an entity. All elements
of a control section are loaded and executed in a constant relationship to one
another. A control section is, therefore, the smallest separately relocatable unit
of a program.

Each module in the input to the linkage editor may contain symbolic references
to control sections in other modules; such references are called external refer­
ences. These references are made by means of address constants (adcons).
The symbol referred to by an external reference must be either the name of a
control section or the name of an entry point in a control section. Control
section names and entry names are called external names. By matching an
external reference with an external name, the linkage editor resolves refer­
ences between modules. External references and external names are called
external symbols (Figure 3 on page 9). An external symbol is one that is
defined in one module and can be referred to in another.

8 MVS/ESA Linkage Editor and Loader User 1 s Guide

~I

n

n
/

(

~)

u

Input
Module A

CSECT A

CALL B

CSECTC

ENTRYC1

[

External Names:

con;._rol Section Entry Name

External B

Symbols l C

External References:

From A to B
'- From B to C1

C1

Input
Module B

CSECT B

CALL C1

Figure 3. External Names and External References

Output Load
Modula AB

CSECT A1

CALL B

CSECT C

ENTRY C1

CSECT B

CALL

U Object and Load Modules

u

u

Object modules and load modules have the same basic logical structure. Each
consists of:

• Control dictionaries, containing the information necessary to resolve sym­
bolic cross-references between control sections of different modules, and to
relocate address constants. Control dictionary entries are generated when
external symbols, address constants, or control sections are processed by a
language translator~ Each language translator usually produces two kinds
of control dictionaries: an external symbol dictionary (ESD) and a relocation
dictionary (RLD).

• Text, containing the instructions and data of the program.

• An end-of-module indication: an END statement in an object module, an
end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described in greater detail
below.

Both object modules and load modules can contain data used by the linkage
editor to create CSECT identification records (IDR). If the language translator
creating an object module supports CSECT identification, the input object
module can contain translator data for identification records on the END state­
ment. Input load modules differ from object modules in the type of data they
supply. Input load modules can also provide HMASPZAP data, linkage editor
data, and user data to the identification records that are built during linkage
editor processing. During the link-edit step, the optional IDENTIFY control state-

Chapter 1. Overview 9

ment is used to supply the optional user data for the CSECT identification
records. See "IDENTIFY Statement" on page 82 for more information.

The design intent of the linkage editor is that object and load modules that can
be correctly processed by a previous MVS linkage editor will be correctly proc­
essed by the current linkage editor.

External Symbol Dictionary
The external symbol dictionary (ESD) contains one entry for each external
symbol defined or referred to within a module. The dictionary contains an entry
for each external reference, pseudoregister (external dummy section), entry
name, named or unnamed control section, and blank or named common area.
An entry name, pseudoregister, or named control section can be referred to by
any control section or separately processed module; an unnamed control
section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its location, if ,/,~ known, within the module. Each entry in the external symbol dictionary is clas-)
sified as one of the following:

• External reference-a symbol that is defined as an external name in another
separately processed module, but is referred to in the module being proc­
essed. The external symbol dictionary entry specifies the symbol; the
location is unknown.

• Weak external reference-a special type of external reference that is not to
be resolved by automatic library call unless an ordinary external reference
to the same symbol is found. The external symbol dictionary entry specifies
the symbol; the location is unknown.

• Entry name-a name that defines an entry point within a control section.
The external symbol dictionary entry specifies the symbol and its location,
and identifies the control section to which it belongs.

• Control section name- the symbolic name of a control section. The
external symbol dictionary entry specifies the symbol, the length of the
control section, and its location. In this case, the location represents the
origin of the control section, which is the first byte of the control section.
This external symbol dictionary entry specifies the addressing mode and
residence mode of the control section, and whether the control section is
read-only.

• Blank or named common area-a control section used to reserve a virtual
storage area that can be referred to by other modules. The reserved
storage area can be used, for example, as a communications region within
a program or to hold data supplied at execution time. The external symbol
dictionary entry specifies the name, if there is one, and the length of the
area. If there is no name, the name field contains blanks.

• Private code-an unnamed control section. This external symbol dictionary
entry specifies the length of the control section and the origin. The name
field contains blanks. The external symbol dictionary entry may also
specify the addressing mode and residence mode of the control section and
whether or not the control section is read-only.

• Pseudoregister-a special facility (corresponding to the external dummy i'~
section feature of Assembler H Version 2) that can be used to write reenter-
able programs. A pseudoregister is a dynamically obtained word in virtual

10 MVS/ESA Linkage Editor and Loader User's Guide

u

u

Input

// Module A

/

I/
ESD I/ I\ CSECT A1

ENTRY A11

CALL B1 v

storage that can be used as a pointer to dynamically acquired storage; that
is, the space for such areas is not reserved in the load module but is
acquired during execution. The external symbol dictionary contains the
name, length, alignment, and displacement of the pseudoregister.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols. To
do this, the linkage editor searches for the external symbol definition in the
external symbol dictionary of each input module. As shown in Figure 4, the
linkage editor matches the external reference to 81 by locating the definition for
81 in the external symbol dictionary of Module 8. In the same way, it matches
the external reference to A 11 by locating the definition for A 11 in the external
symbol dictionary of Module A.

Note: External names, including CSECT names and entry names, must be 1 to
8 alphameric characters in length. No leading or embedded blanks are per­
mitted, nor are the following characters permitted:

, (or)

All other characters in the 48-character set are permitted in any character posi­
tion of the name by the linkage editor, including:

+ - = . * I I &

Special characters should be used with caution, however, because the com­
pilers and assemblers that produce the object decks usually have a more
limited character set.

ESDfor A

Symbol Type Location ESD for 8 Input

\\/Module B A1 Control Known Symbol Type Location
Section /
Name B1 Control Known

Section /
Name A11 Entry Name Known •.a I ESD / , .. 81 External Unknown A11 External Unknown Re'ference
Reference CSECT 81

CALL A11

I/

Figure 4. Use of the External Symbol Dictionary

Text
The text contains the instructions and data of the module.

Note: Object module text records may not necessarily be in ascending address
sequence (it is possible that the language translator may have created them out
of order). When processing large object modules with out-of-order text, the per­
formance of the linkage editor may be improved by presorting the object
module text in ascending address sequence (columns 6 through 8 of the text
record).

Chapter 1. Overview 11

Relocation Dictionary

End Indication

The relocation dictionary (RLD) contains one entry for each relocatable address
constant that must be modified before a module is executed. An entry identifies
an address constant by indicating both its location within a control section and
the external symbol whose value must be used to compute the value of the
address constant. (The external symbol is defined in an external symbol dic­
tionary entry in another control section or module.)

The linkage editor uses the relocation dictionary whenever it processes a
module to adjust the address constants for references to other control sections
and modules. This dictionary is also used to adjust these address constants
again after program fetch reads an output load module from a library and loads
it into virtual storage for execution.

/~
!

The end of a load module is marked by an end-of-module indicator (EOM). The
EOM cannot, unlike the assembler END instruction, specify an entry point.

1

')

Therefore, whenever a load module is reprocessed by the linkage editor, a
main entry point should be specified on an ENTRY statement. If one is not
specified, the linkage editor will assign the first byte of the first control section
encountered as the entry point. The programmer will not usually be concerned
with the format of records in the object deck.

Linkage Editor Processing
This section dis·cusses the input and output sources of the linkage editor, and
the way in which the linkage editor produces a load module.

Input and Output Sources
The linkage editor accepts two major types of input:

• Primary input, which can contain only object modules and linkage editor
control statements (called control statements in the following text).

• Additional user-specified input, which can contain either object modules
and control statements, or load modules. This input is either specified by n
the user as input, or incorporated automatically by the linkage editor from a
call library.

During processing, the linkage editor generates intermediate data. Intermediate
data is placed on a direct access storage device when virtual storage allocated
for input data is exhausted.

Output of the linkage editor is of two types:

• A load module,. which is always placed in a library (a partitioned data set)
as a named member

• Diagnostic output, which is produced as a sequential data set

Figure 5 on page 13 shows the input, intermediate, and output sources for the
linkage editor program.

12 MVS/ESA Linkage Editor and Loader User's Guide

u

u

Load Module Creation
In processing object and load modules, the li.nkage editor assigns consecutive
relative virtual storage addresses to all control sections and resolves all refer­
ences between control sections. Object modules produced by several different
language translators can be used to form one load module.

An output load module is composed of all input object modules and input load
modules processed by the linkage editor. The control dictionaries of an output
module are, therefore, a composite of all the control dictionaries in the linkage
editor input. The control dictionaries of a load module are called the composite
external symbol dictionary (CESD) and the relocation dictionary (RLD). The load
module also contains all of the text from each input module, and one end-of­
module indicator (see Figure 6 on page 14).

Primary
Input

Automatic 1-------­
Ca II
Library

Diagnostic
Output

Figure 5. Input, Intermediate, and Output Sources for the Linkage Editor

Assigning Addresses
Each module to be processed by the linkage editor has an origin that was
assigned during assembly, compilation, or a previous execution of the linkage
editor. When several modules, each with an independently assigned origin, are
to be processed by the linkage editor, the sequence of the addresses is unpre­
dictable; two input modules may even have the same origin.

Each input module can be made up of one or more control sections. To
produce an executable output load module, the linkage editor assigns relative

virtual storage addresses to each control section by assigning an origin to the
first control section encountered and then assigning addresses, relative to that
origin, to all other control sections to be included in the output load module.

Chapter 1. Overview 13

The value assigned as the origin of the control section is used to relocate each
address-dependent item in the control section. /~

Although the addresses in a load m~dule are consecutive, they are all relative
to base zero. When a load module is to be executed, program fetch prepares
the module for execution by loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address. Each
address constant must also be readjusted, another function of program fetch.

Object Module A

ESD

TXT

RLD

END

Object Module B

ESD

TXT

RLD

END

Figure 6. A Load Module Produced by the Linkage Editor

Resolving External Refere1nces

CESD

. TXT

RLD

EOM

Output Load
Module AB

/

I~
/

The linkage editor also resolves external references in input modules. Cross- n
references between control sections in different modules are symbolic. They \ ·.
must be resolved relative to the addresses assigned to the load module. The
linkage editor calculates the new address of each relocatable expression in a
control section and determines the assigned origin of the item to which it
refers.

n

14 MVS/ESA Linkage Editor and Loader User 1 s Guide

L) Chapter 2. Uses of the Linkage Editor

~!

(' v

u

Linkage Editor Input
Linkage editor input may consist of a combination of object modules, load
modules, and control statements. The primary function of the linkage editor is
to combine these modules, in accordance with the requirements stated on
control statements, into a single output load module. Although this linking or
combining of modules is its primary function, the linkage editor also:

• Edits modules by replacing, deleting, rearranging, and ordering control
sections as directed by control statements

• Aligns control sections and named common areas on 4K-byte page bounda­
ries as directed by control statements

• Accepts additional input modules from data sets other than the primary
input data set, either automatically or upon request

• Reserves storage for the common control sections generated by Assembler
and FORTRAN language translators, and static external areas generated by
PL/I

• Computes total length and assigns displacements for all pseudoregisters
(external dummy sections)

• Creates overlay programs in a structure defined by control statements

• Creates multiple output load modules as directed by control statements

• Provides special processing and diagnostic output options

• Assigns module attributes that describe the structure, content, and logical
format of the output load module

• Allocates storage areas for linkage editor processing as specified by the
programmer

• Stores system status index information in the directory of the output module
library (systems personnel only)

• Traces the processing history of a program

• Allows the user to lengthen a control section or named common section
without changing source code, reassembling, or recompiling

• Allows the user to assign an authorization code to a load module that (a)
makes it a restricted resource and (b) enables it to pass control to other
restricted resources

• Assigns an addressing mode for the main entry point, all true aliases, and
each alternate entry point into the output load module

• Assigns a residence mode for the output load module

Chapter 2. Uses of the Linkage Editor 15

Links Modules

Assembler
Source
Module

• Indicates which control sections are read-only (relevant only in creating a
nucleus load module for MVS/DFP) ,~

Each of the linkage editor functions is described in the following paragraphs.

·Processing by the linkage editor makes it possible for the programmer to divide
a program into several modules, which can be separately assembled or com­
piled, and each containing one or more control sections. The linkage editor
combines these modules into one output load module (see Figure 7) with con­
tiguous, virtual storage addresses. During processing by the linkage editor, ref­
erences between modules within the input are resolved. The output module is
placed in a library (partitioned data set).

Object
Module

Load
Module

FORTRAN
Compiler

n

()

Figure 7. Linkage Editor Processing-Module Linkage

Edits Modules
Program modification is made easier by the editing functions of the linkage
editor. When the functions of a program are changed, the programmer modi­
fies, then compiles and link-edits again, only the affected control sections
instead of the entire source module.

Control sections can be replaced, renamed, deleted, moved, or ordered as
directed by control statements. Control sections can also be automatically
replaced by the linkage editor. External symbols can be changed or deleted as
directed by control statements. n
Figure 8 on page 17 illustrates the module editing function of the linkage editor.

16 MVS/ESA Linkage Editor and loader User's Guide

(.

\.._.,/

u

u

Control
Statements

Object
Module

A

Load
Module

B
c

Figure 8. Linkage Editor Processing-Module Editing

Aligns Control Sections or Common Areas on Page Boundaries
Control sections or named common areas in the output load module can be
aligned on 4K-byte page boundaries. Alignment on page boundaries enables
the programmer to use real storage more efficiently and thus appreciably
reduce the paging rate for the job.

Accepts Additional Input Sources
Standard subroutines can be included in the output module, thus reducing the
work in coding programs. The programmer can specify that a subroutine be
included at a particular time during the processing of the program by using a
control statement. When the linkage editor processes a program that contains
this statement, the module containing the subroutine is retrieved from the indi­
cated input source and made a part of the output module (Figure 9 on
page 18).

Symbols that are still undefined after all input modules have been processed
cause the automatic library-call mechanism to search for modules that will
resolve these references. When a module name is found that matches the
unresolved symbol, the module is processed by the linkage editor and also
becomes part of the output module (Figure 9).

Note: The linkage editor distinguishes a special type of external reference.._the
weak external reference. An unresolved weak external reference does not
cause the linkage editor to use the automatic library-call mechanism. Instead,
the reference is left unresolved, and the load module is marked as executable.

Chapter 2. Uses of the Linkage Editor 17

Reserves Storage

Primary Input:

Control
Statements

Additional Input:

Object
Module E

Object
Module

F

Object
Module

A

Figure 9. Linkage Editor Processing-Additional Input Sources

B
c
D

E
F

G

The linkage editor processes common control sections generated by the
FORTRAN and Assemblerdanguage translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved virtual
storage area is provided within the output module.

Processes Pseudoregisters
Pseudoregisters, like the external dummy sections of Assembler H Version 2,
aid in generating reenterable code. The linkage editor processes
pseudoregisters by accumulating the total length of storage required for all
pseudoregisters and recording the displacement of each. During execution, the
program dynamically acquires the necessary storage.

Creates Overlay Programs
To minimize virtual storage requirements, the programmer can organize a
program into an overlay structure by dividing it into segments according to the
fun~tional relationships of the control sections. Two or more segments that

()
I

()
/

need not be in virtual storage at the same time can be assigned the same rela- ,()
tive virtual storage addresses, and can be loaded at different times.

18 MVS/ESA Linkage Editor and· Loader User 1 s Guide

(I

_)

u

u

u

The programmer uses control statements to specify the relationship of seg­
ments within the overlay structure. The segments of the load module are
placed in a library so that the control program can load them separately when
the load module is executed.

Creates Multiple Load Modules
The linkage editor can also process its input to form more than one load
module within a single job step. Each load module is placed in the library
under a unique member name, as specified by a control statement.

Provides Special Processing and Diagnostic Output Options
The programmer can specify special processing options that negate automatic
library call or the effect of minor errors. In addition, the linkage editor can
produce a module map or cross-reference table that shows the arrangement of
control sections in the output module and indicates how they communicate with
one another. A list of the control statements processed can also be produced.

Throughout processing, errors and possible error conditions are logged.
Serious errors cause the linkage editor to mark the output module not execut­
able. Additional diagnostic data is automatically logged by the linkage editor.
The data indicates the disposition of the load module in the output module
library.

Assigns Load Module Attributes
When the linkage editor generates a load module, it places an entry for the
module in the directory of the library. This entry contains attributes that
describe the structure, content, and logical format of the load module. The
control program uses these attributes to determine how a module is to be
loaded, what it contains, if it is executable, whether it is executable more than
once without reloading, and if it can be executed by concurrent tasks. Some
module attributes can be specified by the programmer; others are specified by
the linkage editor as a result of information gathered during processing. See
also "Assigns Addressing Mode" on page 21, "Assigns Residence Mode" on
page 22, and "Assigns Read-only Attribute" on page 24.

Allocates User-Specified Virtual Storage Areas
The programmer can specify the total amount of virtual storage to be made
available to the linkage editor, the amount to be used for the load module
buffer, and the buffer for the output load module.

Stores System Status Index Information
The following information is intended for systems personnel responsible for
maintaining IBM-supplied load modules. It is not generally applicable to
non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load modules are used
to store system status index information. This information, which is used for
maintenance of the modules, is placed in the directory with a control statement.

Chapter 2. Uses of the Linkage Editor 19

Traces Processing History
Tracing the processing history of a program is simplified by the CSECT identifi­
cation {IDR) records created and maintained by the linkage editor. A CSECT
identification record can contain data that describes:

• The language translator, its level, and the translation date for each control
section

• The most recent processing by the linkage editor

• Any modification made to the executable code of any control section

Optionally, user-supplied data associated with the executable code of a control
section can also be recorded.

Lengthens Control Sections or Named Common Sections
The user can lengthen control sections or named common sections of a
program to add patch space without changing the source code, reassembling,
or recompiling.

Added space, consisting of binary zeros, is put at the end of a specified control
section by using the EXPAND control statement (see "Chapter 5. Specifying an
Operation with Control Statements" on page 75). Space cannot be added to a
private code or blank common section.

Assigns an Authorization Code to Output Load Modules
The authorized program facility (APF) limits the use of sensitive system and

(~
J

(optionalty) use.r services and resources to authorized system and user pro- 0
grams. Authorization is defined as access to those services and resources. 1

)

The servi,ces and resources to which access is limited are described in SPL:
Application Development Guide

Programs are authorized at the job-step level. For a job step to gain authori­
zation initially, the first module loaded at the start of the job step must be an
authorized module, and it must have been loaded from an authorized library.
As the authorized program executes, the program manager verifies that all sub­
sequent modules for the program come from authorized libraries. If one or
more modules are not from APF authorized libraries, a 306 abend results. 1~

For a job step to maintain its authorization, all subsequent modules invoked
during the job step (via LINK, LOAD, ATTACH, and/or XCTL macro instructions)
must be loaded from an authorized library.

A library becomes an "authorized" library by the inclusion of its name in a list
called IEAAPFOO. This list is described in more detail in Initialization and
Tuning.

A load module becomes "authorized" by the assignment of an authorization
code to the load module during linkage-editing. This assignment is made via
the PARM field parameter AC or via the control statement SETCODE, which are
described in the sections that follow. See "SETCODE Statement" on page 101.

20 MVS/ESA Linkage Editor and Loader User 1 s Guide

I

u

u

u

u

Assigns Addressing Mode
The addressing mode (AMODE) is the attribute of an entry point into a load
module that specifies the addressing mode in effect when the load module is
entered at that entry point at execution time.

The valid addressing modes are:

24 Indicating that 24-bit addressing will be in effect

31 Indicating that 31-bit addressing will be in effect

ANY Indicating that either 24-bit or 31-bit addressing may be in effect

The linkage editor determines the addressing mode for an entry point (either
the main entry point, its true alias, or an alternate entry point) according to the
following rules:

• The linkage editor assigns a default AMODE of 24. This is done only in the
absence of a valid, explicit specification of the addressing mode for the
entry point.

• The linkage editor assigns the AMODE values contained in the object mod­
ule's ESD. These AMODE values were specified by the user at assembly
time and represent the AMODE values assigned to the entry points within
the CSECTs and private code for the module.

• The linkage editor assigns all the entry points into the load module (the
main entry point, its true aliases, and the alternate entry points) the AMODE
value specified as a parameter in the PARM field of the EXEC statement.
This AMODE value overrides the AMODE value, if any, found in the ESD
data.

• The linkage editor assigns the AMODE vatue specified as an operand on the
MODE control statement to all of the entry points into the load module (the
main entry point, its true aliases, and the alternate entry points). This
AMODE value overrides any value specified as a parameter in the EXEC
statement or any values found in the ESD data.

The linkage editor provides the AMODE value for each entry point into the load
module in its directory entry. In the case of a true alias of the main entry point
or an alternate entry point, the directory entry contains the AMODE value for
both the alias/alternate entry point and the main entry point.

The AMODE value provided to the linkage editor in the ESD data of an object
module is retained in the ESD data of the load module, for use in su-bsequent
link-editing, except in the case of a load module built for overlay. In building a
load module for overlay, the AMODE value in the ESD data of the load module
is lo~t and can only be reintroduced by inclusion of the object module(s) car­
rying that value. Use of the overriding AMODE specifications (the parameter in
the PARM field of the EXEC statement or the operand in the MODE control
statement) establishes the AMODE value carried in the directory entry, but does
not affect the ESD data.

All entry points in load modules built for overlay are assigned an AMODE of 24,
regardless of the ESD data, the PARM field parameter, or the MODE statement
operand.

Chapter 2. Uses of the Linkage Editor 21

Assigns Residence Mode
The residence mode (RMODE) is the attribute of a load module that specifies ,rj
the residence mode of a load module when it is loaded into virtual storage for ·
execution.

The valid residence modes are:

24 Indicating that the module must reside within 24-bit addressable virtual
storage (that is, below the 16-megabyte virtual storage line)

ANY Indicating that the module may reside anywhere in virtual storage (that
is, either above or below the 16-megabyte virtual storage line)

The linkage editor determines the residence mode for a load module according
to the following rules:

• The linkage editor assigns a default RMODE of 24. This occurs only in the
absence of a valid explicit specification of the residence mode for the load
module. rJ

• The linkage editor assigns the RMODE specified in the object module. This
RMODE value is specified by the user to the assembler for the control
section or private code. The RMODE value passes to the linkage editor in
the ESD data. The linkage editor assigns the RMODE value taken from the
control section or private code that contributes to the output load module,
ignoring identically named control sections and private code that are
replaced or deleted.

• As the control sections and private code that contribute to the output load
module are processed, the RMODE value for the load module, based on the
ESD data, is accumulated on a "most restrictive" basis. This means:

If any section in the load module has an RMODE of 24, the RMODE for
the load module is 24.

If all sections in the load module have an RMODE of ANY, the RMODE
for the load module is ANY.

• The linkage editor assigns to the load module the RMODE value specified
as a parameter in the PARM field of the EXEC statement. This RMODE
value overrides the RMODE value, if any, found in the ESD data.

• The linkage editor assigns to the load module the RMODE value specified
as an operand on the MODE control statement. This RMODE value over­
rides the RMODE value, if any, specified as a parameter in the PARM field
of the EXEC statement as well as the RMODE value, if any, found in the ESD
data.

Load modules built for overlay are assigned an RMODE of 24, regardless of the
ESD data, the PARM field parameter, or the MODE statement operand.

The linkage editor provides the RMODE value for the load module in each
directory entry applicable to that load module.

Except in the case of a load module built for overlay, the RMODE value pro­
vided to the linkage editor in the ESD data of an object module is retained in
the ESD data of the load module, for use in subsequent link-editing. In building
a load module for overlay, the RMODE value in the ESD data of the load module
is lost and can only be reintroduced by inclusion of the object module(s) car-

22 MVS/ESA Linkage Editor and Loader User 1 s Guide

I~
I

u

u

u

u

rying that value. Use of the overriding RMODE specifications (the parameter in
the PARM field of the EXEC statement or the operand in the MODE control
statement) establishes the RMODE value carried in the directory entry, but does
not affect the ESD data.

AMODE/RMODE Combinations from the ESD
When AMODE and RMODE data have not been specified on either a MODE
linkage editor control statement or in the PARM field of the EXEC statement, the
linkage editor determines the AMODE for each entry point and the RMODE for
the load module based on ESD data. (Load module entry point designation is
discussed under "Entry Point" on page 122.) The linkage editor validates the
six possible AMODE/RMODE combinations from the ESD as follows:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMODE=31 valid valid

AMODE=ANY valid valid

Load module entry points {main and alternate) may be either control section
name external symbols or entry name external symbols.1 (See "External
Symbol Dictionary," the section on Control section name on page 10.) When an
entry point is a control section name, the linkage editor acquires AMODE and
RMODE data dire.ctly from the control section name ESD entry. When an entry
point is an entry name external symbol, the linkage editor acquires AMODE and
RMODE data from the associated control section name ESD entry.

Based on the AMODE and RMODE data acquired from the ESD, the linkage
editor determines a load module RMODE (see "Assigns Residence Mode" on
page 22), and assigns an AMODE to each entry point as outlined below:

• If an entry point external symbol is marked with any of the allowable
AMODE values and an RMODE of 24, the entry point is assigned the same
AMODE attribute as its associated external symbol.

• The AMODE 24/RMODE ANY combination is invalid as it could allow 24-bit
addressing above the 16Mb line. The linkage editor should never find this
combination in the ESD because it is flagged by IBM compilers and assem­
blers as an error condition. If it does find this combination, the linkage
editor issues a nonterminal error message, forces the load module RMODE
to 24, and assigns an AMODE of 24 to the entry point.

• If the entry point external symbol is marked AMODE 31/RMODE 'ANY, the
entry point AMODE will be 31 and the RMODE will be that of the load
module.

1 The main entry point to a load module is usually an external symbol, although when specified on an assembler
language END statement, it may be a displacement into the CSECT. Alternate entry points must always be
external symbols.

Chapter 2. Uses of the Linkage Editor 23

• If the entry point external symbol is marked AMODE ANY/RMODE ANY,
associated entry point attributes are assigned according to the following
hierarchy:

If the load module contains one or more CSECTs marked AMODE 24,
the linkage editor assigns an AMODE of 24 to all entry points that have
ESD entries marked AMODE ANY/RMODE ANY.

If the load module has an RMODE of 24 and it contains no CSECTs
marked AMODE 24, the linkage editor assigns an AMODE of ANY to
these entry points.

If the load module RMODE is ANY, the linkage editor assigns an
AMODE of 31 to these entry points. ~

AMODE/RMODE Hierarchy
The following hierarchy is used to determine the addressing and residence
modes of the linkage editor output:

1. Value of the linkage editor MODE statement

2. Value of the parm field on the EXECUTE statement

3. Value in the ESD data produced by the AMODE = or RMODE = assembler
statement

4. Default value of 24

Note: An overlay module always results in an AMODE of 24 and an RMODE of
24. A load module produced from multiple object modules results in an RMODE
of 24, if any one of the object modules has an RMODE of 24. n

Assigns Read-only Attribute
A read-only control section (RSECT) is defined by the user in the source lan­
guage which assembles the control section. The assembler indicates in the
external symbol dictionary entry for the control section that it is read-only. The
linkage editor reflects that indication in the scatter table for the output load
module.

The indication of the read-only attribute is relevant only to the nucleus initializa-
1

r-"\, /

tion program in MVS/DFP. In all other cases it is ignored. r,)

Relationship to the Operating System
The linkage editor has the same relationship to the operating system as any
other processing program. It can be executed as a job step, a subprogram, or
a subtask. Control is passed to the linkage editor as a job step when the
linkage editor is specified on an EXEC job control statement in the input stream.

See "Appendix E. Invoking the Linkage Editor and Loader from a Program" on
page 207 for information on executing the linkage editor as a subprogram or a
subtask.

Execution of the linkage editor and the data sets used by the linkage editor are
described to the system with job control language statements. These state- r-'\. :

ments describe all jobs to be performed by the system. 1
.)

24 MVS/ESA Linkage Editor and Loader User's Guide

(I u

[)

_,;

u

u

Note: Job control statements should not be confused with linkage editor
control statements. Job control statements are processed before the linkage
editor is executed; linkage editor control statements are processed during
linkage editor execution.

Time Sharing Option (TSO)
When the linkage editor is used under TSO, it is invoked by the linkage editor
prompter program that acts as an interface between the user, the operating
system, and the linkage editor. Under TSO, execution of the linkage editor and
definition of data sets used by the linkage editor are described to the system
through use of the LINK command that causes the prompter to be executed.
Operands of the LINK command can also be used to specify the linkage editor
options a job requires. Complete procedures for use of the LINK command are
given in TSO!E V2 Command Reference.

Chapter 2. Uses of the Linkage Editor 25

r-'\
i)

irJ

I \

r I v

u

u

u

Chapter 3. Defining Input to the Linkage Editor

The linkage editor accepts input from two major sources: the primary input
data set and additional crata sets. The primary input data set is mac;le available
through job control statements. Additional data sets are made available either
through the automatic library call mechanism, or through user-specified control
statements which must also be defined with job control statements.

Primary and additional input data sets may contain the following types of data:

• One or more object modules

• One or more load modules

• Control statements

• Combinations of the above (restrictions on certain combinations are noted
where they apply).

Object modules and control statements may be contained in either sequential
or partitioned data sets. Load modules must be contained in partitioned data
sets.

This chapter describes the "linking" functions of the linkage editor only; the
"editing" functions are described in "Chapter 6. Editing a Control Section" on
page 103.

Primary Input Data Set
The primary input data set is required for every linkage editor job step. It must
be defined by a DD statement with the ddname SYSLIN. The primary input can
be:

• A sequential data set

• A member of a partitioned data set

• A concatenation of sequential data sets and/or members of partitioned data
sets.

The primary input data set must contain object modules and/or control state­
ments. The modules and control statements are processed sequentially and
their order determines the basic order of linkage editor processing during a
given execution. However, the order of the control sections after processing
does not necessarily reflect the order in which they appeared in the input.

In the examples that follow, only the statements necessary to define the input to
the linkage editor are shown; complete examples are shown in "Appendix A.

Sample Linkage Editor Programs" on page 157.

Chapter 3. Defining Input to the Linkage Editor 27

Object Modules
The primary input to the linkage editor may consist solely of one or more object ,~,
modules. The rest of this section discusses object module input from cards, as

From Cards

a member of a partitioned data set, passed from a previous job step, or created
in a separate job.

Object module input to the linkage editor may be on cards. The card deck itself
is treated as a sequential data set; the cards are placed in the input stream,
after a DD * statement, as follows:

I ISYSLIN DD
Object Deck A
Object Deck B
I*

*

The card input is followed by a /* statement.

An example of the JCL when card decks are used in addition to other input is
as follows:

I ISYSLIN DD
II DD
Object Deck A
Object Deck B
I*

DSNAME=INPUT, •••
*

By omitting the ddname on the second DD statement, the card input is concat­
enated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data Set
An object module in a partitioned data set can be used as primary input to the
linkage editor by specifying its data set name and member name on the SYSLIN
DD statement. In the following example, the member named TAXCOMP in the
object module library LIBROUT is to be the primary input; LIBROUT is a cata­
loged data set:

I ISYSLIN
II

DD DSNAME=LIBROUT(TAXCOMP),
DISP=(OLD,KEEP)

The library member is processed as if it were a sequential data set.

28 MVS/ESA Linkage Editor and Loader User's Guide

(~
}

11)

n
)

(' u
Members of partitioned data sets can be concatenated with other input data
sets, as follows:

I /SYSLIN
II
II

DD
DD

DSNAME=OBJLIB,DISP=(OLD,KEEP), •..
DSNAME=LIBROUT(TAXCOMP),
DISP= (OLD, KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB; because they
are the primary input, both must contain object modules.

Passed from a Previous Job Step
An object module to be used as input can be passed from a previous job step
to a linkage editor job step in the same job, as in a compile-link-edit job. That
is, the output from the compiler is direct input to the linkage editor. In the fol-

/ . lowing example, an object module that was created in a previous job step
_) ·(STEPA) is passed to the linkage editor job step (STEPS):

u

u

ST EPA

llSYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS), ...

STE PB

//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The data set name &&OBJECT, used in both job steps, identifies the object
module as the output of the language processor on the SYSGO DD statement,
and as the primary input to the linkage editor on the SYSLIN DD statement.

Note: The double ampersand (&&) in the data set name defines a temporary
data set. These data sets exist for the duration of the job and are automatically
deleted at the end of the job. If.the data set is to be preserved for longer than
the duration of a single job, the double ampersand is not used
(DSNAME =OBJECT).

Chapter 3. Defining Input to the Linkage Editor 29

The method used in the preceding example can also be used to retrieve object
modules created in previous steps. If the same data set name is used for the
output of each language processor, one SYSLIN DD statement can be used to
retrieve all the object modules, as follows:

ST EPA:

//SYSGO DD DSNAME=&&OBJMOD,DISP=(NEW,PASS), ...

STEPB:

//SYSPUNCH DD DSNAME=&&OBJMOD,DISP=(MOD,PASS)

STEPC:

//SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

The two object modules from STEPA and STEPS are placed in the same
sequential data set, &&OBJMOD. The SYSLIN DD statement in STEPC causes
both object modules to be used as the primary input to the linkage editor.

30 MVS/ESA Linkage Editor and Loader User's Guide

·(~
< J

u

u

u

I

(_)

u

Another method can be used to accomplish this purpose: concatenation of data

sets. This method could be used if the object modules were created in pre­

vious job steps with different member names, as follows:

STEPA:

llSYSGO
II

STEPB:

llSYSPUNCH
II

STEPC:

I ISYSLIN
II
II
II

DD

DD

DD

DD

DSNAME=&&OBJLIB(MODA),DISP=(NEW,
PASS), ...

DSNAME=&&OBJLIB(MODB),DISP=(MOD,
PASS), ...

DSNAME=&&OBJLIB(MODA),DISP=(OLD,
DELETE)
DSNAME=&&OBJLIB(MODB),DISP=(OLD,
DELETE),VOL=REF=*.STEPB.SYSPUNCH

The object modules created in STEPA and STEPS were placed in a partitioned

data set with different member names. The two members are concatenated in

STEPC as primary input. Each member is considered to be a sequential data

set.

Created in a Separate Job
If the only input to the linkage editor is an object module from a previous job,

the SYSLIN DD statement contains all the information necessary to locate the

object module, as follows:

I ISYSLIN
II

DD DSNAME=OBJECT,DISP=(OLD,DELETE),
UNIT=3380,VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in which

case it is handled as described earlier.

Control Statements
The primary input data set may also consist solely of control statements. When

the primary input is control statements, input modules are specified on

INCLUDE control statements (see "Included Data Sets" on page 38). The control

statements may be either placed in the input stream or stored in a permanent

data set.

Chapter 3. Defining Input to the Linkage Editor 31

In the following example, the primary input consists of control statements in the
input stream: 0,

//SYSLIN DD *
Linkage Editor Control Statements
/*

In the next example, the primary input consists of control statements stored in
the member INCLUDES in the partitioned data set CTLSTMTS:

llSYSLIN
II

DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,
KEEP), ...

In either case, the control statements can be any of those described in
"Chapter 5. Specifying an Operation with Control Statements" on page 75, as
long as the rules given there are followed.

Object Modules and Control Statements
The primary input to the linkage editor may contain both object modules and
control statements. The object modules and control statements may be either
in the same data set or in different data sets. If the modules and statements
are in the same data set, this data set is described on the SYSLIN DD state­
ment as any data set is described.

If the modules and statements are in different data sets, the data sets are con­
catenated. The control statements may be defined either in the input stream or
as a separate data set.

Control Statements in the Input Stream
Control statements can be placed in the input stream and concatenated to an
object module data set, as follows:

I ISYSLIN
II

DD
DD

DSNAME=&&OBJECT, ...
*

Linkage Editor Control Statements
/*

32 MVS/ESA Linkage Editor and Loader User 1 s Guide

)

/'--..\
j

(\,
')

n
' /

n

Another method of handling control statements in the input stream is to use the

DDNAME parameter, as follows:

llSYSLIN
II

DD
DD

DSNAME=&&OBJECT, ...
DDNAME=SYSIN

llSYSIN DD *
Linkage Editor Control Statements
/*

Note: The linkage editor cataloged procedures use DDNAME = SYSIN for the

SYSLIN DD statement to allow the programmer to specify the primary input data

set required.

(\

V Control Statements. in a Separate Data Set

u

A separate data set that contains control statements may be concatenated to a

data set that contains an object module. The control statements for a fre­

quently used procedure (for example, a complex overlay structure or a series of

INCLUDE statements) can be stored permanently. In the following example, the

members of data set CTLSTMTS contain linkage editor control statements. One

of the members is concatenated to data set &&OBJECT.

I /SYSLIN
II
II

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE), ...
DSNAME=CTLSTMTS(OVLY),DISP=(OLD,
KEEP), ...

The control statements in the member named OVL Y of the partitioned data set

CTLSTMTS are used to structure the object module.

U Automatic Library Call
The automatic library-call mechanism is used to resolve external references

that were not resolved during primary input processing. Unresolved external

references found in modules from additional data sources are also processed

by this mechanism.

Note: The following discussion of automatic library call does not apply to unre­

solved weak external references; they are left unresolved.

The automatic library-call mechanism involves a search of the directory of the

automatic call library for an entry that matches the unresolved external refer­

ence. When a match is found, the entire member is processed as input to the

linkage editor.

Automatic library call can resolve an external reference when the following con­

ditions exist: The external reference must be (1) a member name or an alias of

a module in the call library, and (2) it must be defined as an external name in

the external symbol dictionary of the module with that name. If the unresolved

Chapter 3. Defining Input to the Linkage Editor 33

external reference is a member name or an alias in the library, but is not an
external name in that member, the member is processed but the external refer- ~\
ence remains unresolved unless subsequently defined.

The automatic library-call mechanism searches the call library defined on the
SYSLIB DD statement. The call library can contain either (1) object modules
and control statements or (2) load modules; it must not contain both.

Modules from libraries other than the SYSLIB call library can be searched by
the automatic library-call mechanism as directed by the LIBRARY control state­
ment. The library specified in the control statement is searched for member
names that match specific external references that are unresolved at the end of
input processing. If any unresolved references are found in the modules
located by automatic library call, they are resolved by another search of the
library. Any external references not specified on a LIBRARY control statement
are resolved from the library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic library-call mechanism.
The LIBRARY statement can be used to negate the automatic library call for
selected external references unresolved after input processing; the NCAL option
on the EXEC statement can be used to negate the automatic library call for all
external references unresolved after input processing. Use of the LIBRARY
control statement and the NCAL option are discussed after the SYSLIB DD
statement following.

SYSLIB DD Statement
If the automatic library-call mechanism is to be used, the call library must be a
partitioned data set described by a DD statement with a ddname of SYSLIB.
Details concerning DCB requirements and record formats for SYSLIB libraries
are given in "SYSLIB DD Statement" on page 63. The call library may be
either a system call library or a private call library; call libraries may be concat­
enated.

System Call Library
For an example of some of the system programs that have their own automatic
call library, see Figure 10. This library must be defined when an object module
produced by that assembler or compiler is to be link-edited.

Figure 10. System Automatic Call
Libraries

Program Library Name

ALGOL SYS1.ALGLIB

COBOL SYS1 .COBLIB

FORTRAN SYS1 .FORTLIB

PL/I SYS1.PL 1BASE

Sort/Merge SYS1 .SORTLIB

The call library may contain input/output, data conversion, and/or other special
routines (such as Sort/Merge SYS1.SORTLIB) that are needed to complete the
module. The assembler or compiler creates an external reference for these

34 MVS/ESA linkage Editor and Loader User's Guide

n
/

I~
\)

n
\)

1:)

I

u

/
I I _/I

(~)

special routines and the linkage editor resolves the references from the appro­

priate call library.

In the following example, a FORTRAN object module created in STEPA is to be

link-edited in STEPB, and the FORTRAN automatic call library is used to resolve

external references:

ST EPA:

llSYSOBJ
II

STEPB:

I ISYSLIN
I ISYSLIB

DD

DD
DD

DSNAME=&&OBJMOD,DISP=(NEW,
PASS) , ...

DSNAME=&&OBJMOD,DISP=(OLD,DELETE)
DSNAME=SYSl.FORTLIB,DISP=SHR

The disposition of SHR on the SYSLIB DD statement means that other tasks that

may be executing concurrently with STE PB may also use SYS1 .FORTLIB.

Private Call Libraries
The SYSLIB DD statement can also describe a private, user-written library. In

this case, the automatic library-call mechanism searches the private library for

unresolved external references. In the following example, unresolved external

references are to be resolved from a private library named PVTPROG:

I ISYSLIB
II

DD DSNAME=PVTPROG,DISP=SHR,UNIT=3380,
VOLUME=SER=PVT002

U Concatenation of Call Libraries

u

System call libraries and private call libraries may be concatenated either to

themselves, and/or to each other. When libraries are concatenated, they must

all be either object module libraries or load module libraries; they may not be

mixed.

If object modules from different system processors are to be link-edited to form

one load module, the call library for each must be defined. This is accom­

plished by concatenating the additional call libraries to the library defined on

the SYSLIB DD statement. In the following example, a FORTRAN object module

and a COBOL object module are to be link-edited; the two system call libraries

are concatenated as follows:

I ISYSLIB
II

DD
DD

DSNAME=SYSl.FORTLIB,DISP=SHR
DSNAME=SYSl.COBLIB,DISP=SHR

Chapter 3. Defining Input to the Linkage Editor 35

System libraries are cataloged; no unit or volume information is needed.

A system call library and a private call library can also be concatenated in this
way. For example, by adding the following statement to the two in the pre­
ceding example, the private call library PVTPROG, which is not cataloged, is
concatenated to the two system call libraries:

II
II

DD DSNAME=PVTPROG,DISP=SHR,UNIT=3380,
VOLUME=SER=PVT002

Any external references not resolved from the two system libraries are resolved
from the private library.

Library Control Statement
The LIBRARY control statement can be used to direct the automatic library-call
mechanism to a library other than that specified in the SYSLIB DD statement.
Only external references listed on the LIBRARY statement are resolved in this
way. All other unresolved external references are resolved from the library in
the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references that
are not to be resolved by the automatic library-call mechanism. The LIBRARY
statement specifies the duration of the non resolution: either during the current
linkage editor job step, called restricted no-call; or during this or any subse­
quent linkage editor job step, called never-call.

Examples of each use of the LIBRARY statement follow; a description of the
format is given in "LIBRARY Statement" on page 88.

Additional Call Libraries
If the additional libraries are to be used to resolve specific references, the
LIBRARY statement contains the ddname of a DD statement that describes the
library. The LIBRARY statement also contains, in parentheses, the external ref­
erences to be resolved from the library; that is, the names of the members to
be used from the library. If the unresolved external reference is not a member
name in the specified library, the reference remains unresolved unless subse­
quently defined.

For example, two modules (DATE and TIME) from a system call library have
been rewritten. The new modules are to be tested with the calling modules
before they replace the old modules. Because the automatic library call mech­
anism would otherwise search the system call library (which is needed for
other modules), a LIBRARY statement is used, as follows:

I ISYSLIB
llTESTLIB
I ISYSLIN
II

LIBRARY
I*

DD
DD
DD
DD

DSNAME=SYSl.COBLIB,DISP=SHR
DSNAME=TEST,DISP=(OLD,KEEP), ...
DSNAME=ACCTROUT, ...
*
TESTLIB(DATE,TIME)

36 MVS/ESA Linkage Editor and Loader User's Guide

.~
)

r-'\
r.)

u

u

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external refer­
ences are resolved from the library described on the SYSLIB DD statement.

Restricted No-Call Function
The programmer can use the LIBRARY statement to specify those external ref­
erences in the output module for which there is to be no library search during
the current linkage editor job step. This is done by specifying the external
reference(s) in parentheses without specifying a ddname. The reference
remains unresolved, but the linkage editor marks the module executable.

For example, a program contains references to two large modules that are
called from the automatic call library. One of the modules has been tested and
corrected; the other is to be tested in this job step. Rather than execute the
tested module again, the restricted no-call function is used to prevent automatic
library call from processing the module as follows:

II
I ISYSLIB
II

I ISYSLIN
II

LIBRARY
/*

EXEC
DD

DD
DD

PGM=HEWL,PARM=LET
DSNAME=PVTPROG,DISP=SHR,UNIT=3380,
VOLUME=SER=PVT002

DSNAME=&&PAYROL, ...
*
(OVERTIME)

As a result, the external reference to OVERTIME is not resolved by automatic
library call.

Never-Call Function
The never-call function specifies those external references that are not to be
resolved by automatic library call during this or any subsequent linkage editor
job step. This is done by specifying an asterisk followed by the external
reference(s) in parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but it contains an
external reference to a large module _(CITYTAX) which is no longer used by t~is
program. However, the module is in a call library needed to resolve other ref­
erences. Rather than take up storage for a module that is never used, the
never-call function is specified, as follows:

Chapter 3. Defining Input to the Linkage Editor 37

NCAL Option

II
I ISYSLIB
II

I ISYSLIN
II

LIBRARY
I*

EXEC PGM=HE~JL, PARM=LET
DD DSNAME=PVTPROG,DISP=SHR,UNIT=3380,

VOLUME=SER=PVT002

DD DSNAME=TAXROUT,DISP=OLD, ...
DD *
* (CITYTAX)

As a result, when program T AXROUT is link-edited, the external reference to
CITYTAX is not resolved by automatic library call.

When the NCAL option is specified, no automatic library call occurs to resolve
external references that are unresolved after input processing. The NCAL
option is similar to the restricted no-call function on the LIBRARY statement,
except that the NCAL option negates automatic library call for all unresolved
external references and restricted no-call negates automatic library call for
selected unresolved external references. With NCAL, all external references
that are unresolved after input processing is finished, remain unresolved. The
module is, however, marked executable.

The NCAL option is a special processing parameter that is speeified on the
EXEC statement as described in "No Automatic Library-Call Option" on
page 50.

Included Data Sets
The INCLUDE control statement requests the linkage editor to use additional
data sets as input. These can be sequential data sets containing object
modules and/or control statements, or members of partitioned data sets con-
taining object modules and/or control statements, or load modules. 1r)
The INCLUDE statement specifies the ddname of a DD statement that describes
the data set to be used as additional input. If the DD statement describes a
partitioned data set, the INCLUDE statement also contains the name of each
member to be used. See "INCLUDE Statement" on page 84 for a detailed
description of the format of the INCLUDE statement.

When an INCLUDE control statement is encountered, the linkage editor proc­
esses the module or modules indicated. Figure 11 on page 39 shows the proc­
essing of an INCLUDE statement. In the illustration, the primary input data set
is a sequential data set named OBJMOD which contains an INCLUDE state­
ment. After processing the included data set, the linkage editor processes the
next primary input item. The arrows indicate the flow of processing.

If an included data set also contains an INCLUDE statement, this specified
module is also processed. However, any data following the INCLUDE statement
is not processed.

38 MVS/ESA linkage Editor and Loader User's Guide

{ i
_)

('-)

/ \ u

u

Primary Input
Data Set SYSLIN

Include OBJMOD

' '7

' '7

If the OBJ MOD data set shown in Figure 11 is itself included, the data following

the INCLUDE statement for OBJLIB is not processed. Figure 12 shows the flow

of processing for this example.

Primary Input
Data Set OBJMOD

Include OBJLIB (MODA)
'

'

'
r-V

'7

7

Figure_ 11. Processing of One INCLUDE Control Statement

Sequential
Data Set OBJMOD

Include OBJLIB (MODA) I

a- :> not processed

Library OBJLIB
Member MODA

·~

~/

Library OBJLIB
Member MODA

~

Figure 12. Processing of More than One INCLUDE Control Statement

Chapter 3. Defining Input to the Linkage Editor 39

~

Including Sequential Data Sets
Sequential data sets containing object modules and/or control statements can r-'\
be specified by an INCLUDE control statement. In the following example, an
INCLUDE statement specifies the ddnames of two sequential data sets to be
used as additional input:

//ACCOUNTS DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), .. .
//INVENTRY DD DSNAME=INVENTRY,DISP=(OLD,KEEP), .. .
//SYSLIN DD DSNAME=QTREND, ...
II DD *

INCLUDE ACCOUNTS,INVENTRY
/*

Each ddname could also have been specified on a separate INCLUDE state-
. ment; with either method, a DD statement must be specified for each ddname.

Another method of doing the preceding example is given in "Including Concat­
enated Data Sets" on page 41.

Including Library Members
One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE statement; no member name should appear on the DD statement
itself.

In the following example, one member name is specified on the INCLUDE state­
ment.

//PAYROLL
//SYSLIN
II

INCLUDE
/*

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
DD DSNAME=&&CHECKS,DISP=(OLD,DELETE), .. .
DD *
PAYROLL(FICA)

If more than one member of a partitioned data set is to be included, the
INCLUDE statement specifies all the members to be used from each library.
The member names appear in parentheses, following the data set name of the
library. The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members from
each of two libraries to be used as additional input:

//PAYROLL
//ATTEND
//SYSLIN

INCLUDE
/*

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), .. .
DD *
PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)

40 MVS/ESA Linkage Editor and Loader User's Guide

n
/

,r-"\
\)

(\

~

Each library could have been specified on a separate INCLUDE statement; with

either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in "Including Concatenated Data

Sets."

Including Concatenated Data Sets
Several data sets can be designated as input with one INCLUDE statement that

specifies one ddname; additional data sets are then concatenated to the data

set described on the specified DD statement. When data sets are concat­

enated, all records must have the same characteristics (that is, format, record

length, block size, and so forth).

Sequential Data Sets: In the following example, two sequential data sets are

concatenated and then specified as input with one INCLUDE statement:

llCONCAT
II
I ISYSLIN
II

INCLUDE
/*

DD
DD
DD
DD

CONCAT

DSNAME=ACCTROUT,DISP=(OLD,KEEP), .. .
DSNAME=INVENTRY,DISP=(OLD,KEEP), .. .
DSNAME=SALES,DISP=OLD, ...
*

When the INCLUDE statement is recognized, the contents of the sequential data

sets ACCTROUT and INVENTRY are processed.

Library Members: Members from more than one library can be designated as

input with one ddname on an INCLUDE statement. In this case, all the

members are listed on the INCLUDE statement; the partitioned data sets are

concatenated using the ddname from the INCLUDE statement:

llCONCAT
II
I ISYSLIN
II

INCLUDE
/*

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), .. .
DD DSNAME=REPORT,DISP=OLD, ...
DD *
CONCAT(FICA,TAX,ABSENCE,OVERTIME)

When the INCLUDE statement is recognized, the two libraries, PAYROUTS and

ATTROUTS, are searched for the four members; the members are then proc­

essed as input.

Chapter 3. Defining Input to the Linkage Editor 41

1'.)

U Chapter 4. Specifying JCL to Run a Linkage Editor Job

u

u

(\ u

/ . u

This chapter summarizes those aspects of the job control language that pertain
directly to the use of the linkage editor. The major topics covered are the EXEC
statement, DD statements, and cataloged procedures for the linkage editor.
The reader should be familiar with the job control language as described in the
publication JCL User's Guide.

EXEC Statement-Introduction
The EXEC statement is the first statement of every job step. For the linkage
editor job step, the following topics are pertinent:

• The program name of the linkage editor

• Linkage editor options passed to the job step

• Region-size requirements for the linkage editor

For an execution job step following the linkage editor job step, the linkage
editor return code is important.

The EXEC statement contains the symbolic name of the load module to be
invoked for execution. The linkage editor can be invoked with the following
program name:

HEWL

LINKEDIT is an alias name for the linkage editor and can also be used to invoke
it.

For example, the following EXEC statement causes the linkage editor to be
invoked:

//LKED EXEC PGM=HEWL

PGM = LINKEDIT could also be used.

To ensure compatibility with the operating system, the linkage editor can also
be invoked by alias names IEWL, LINKEDIT, and HEWLH096, although the use of
HEWLH096 is not recommended.

EXEC Statement-Job Step Options
The EXEC statement also contains a list of options or parameters to be passed
to the linkage editor. These options are of four types:

• Module attributes, which describe the characteristics of the output load
module

• Special processing options, which affect linkage editor processing

• Space allocation options, which affect the amount of storage used by the
linkage editor for processing and output module library buffers

Chapter 4. Specifying JCL to Run a Linkage Editor Job 43

Module Attributes

• Output options, which specify the kind of output the linkage editor is to
produce

The rest of this section describes the options in each category. All the options
for a particular linkage editor execution are listed in the PARM parameter on
the EXEC statement. They can be listed in any sequence, as long as the rules
for coding parameters are followed.

The module attributes describe the characteristics of the output module, or
modules. (If more than one load module is produced by the same linkage
editor job step, all output modules will have the attributes assigned on the
EXEC statement.) The attributes for each load module are stored in the direc­
tory of the output module library along with the member name. (The format of
the directory entry of a partitioned data set is given in JES3 Data Areas.)

Module attributes specify whether or not the module:

• Can ever be processed by the linkage editor

• Can be brought into virtual storage only by the LOAD macro instruction

• Is to be in overlay format

• Can be reused

• Can b,e placed in the link pack area; that is, is reenterable

• Can be replaced during execution by recovery management; that is, is
refreshable

• Is to be tested by the TSO TEST command

• Is to have specified control sections aligned on page boundaries

• Is or is not authorized to use the restricted system resources and functions

After the descriptions of the module attributes, the default and incompatible
attributes are discussed.

Downward Compatible Attribute
When this attribute is specified, a maximum record size of 1024 bytes is used
for the output module library.

To assign the downward compatible attribute, code DC in the PARM field as
follows:

//LKED EXEC PGM=IEWL,PARM='DC, ... I

Notes:

If the DC attribute is specified and the output load module library is a data
set created by the link-edit job step, the block size in the data set control
block (DSCB) is set to 1024. If the DC attribute is specified and the output
load module library is an existing data set, the block size in the DSCB is set
to 1024, but only if the current block size in the DSCB is less than 1024. If
the current block size in the DSCB is greater than 1024, the load module is
written using a maximum record size of 1024 bytes; the block size in the
DSCB is not changed.

44 MVS/ESA Linkage Editor and Loader User's Guide

!~

!~

u

/
I \ v

u

I u

Scatter Format Attribute
When the scatter format attribute is specified, the linkage editor produces a
load module in a format suitable for either scatter or block loading.

To assign the scatter format attribute, code SCTR in the PARM field, as follows:

//LKED EXEC PGM=IEWL,PARM='SCTR, ... I

Notes:

1. If scatter format is not specified, the block format attribute is assigned by
the linkage editor. (The programmer cannot specify block format.)

2'. If SCTR is specified, the programmer should ensure that the load module
does not contain zero-length control sections, private code sections, or
common areas. The presence of such sections in a module that is to be
scatter loaded can, under certain circumstances, cause the module to be
loaded incorrectly.

3. The SCTR attribute is intended to be used when the nucleus for a VS
system is link-edited. The SCTR attribute has no effect when it is specified
for non-nucleus load modules.

Not Editable Attribute
A load module which is marked NE (not editable) cannot be reprocessed by the
linkage editor. If a module map or a cross-reference table is requested, the
not-editable attribute is ignored.

To assign the not-editable attribute, code NE in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='NE, ... I

Note: The not-editable attribute disables the EXPAND function for the output
load module and also limits to 18 the number of consecutive iterations of
AMASPZAP. If the EXPAND function is required or more than 18 iterations of
AMASPZAP are required, the load module must be re-created.

Only-Loadable Attribute
A module with the only-loadable attribute can be brought into virtual storage
only with a LOAD macro instruction. Some subsets of the control program use
a smaller control table when the load module is invoked with a LOAD. This
reduces the overall virtual storage requirements of the module.

The module with the only-loadable attribute must be entered by means of a
branch instruction or a CALL macro instruction. If an attempt is made to enter
the module with a LINK, XCTL, or ATTACH macro instruction, the program
making the attempt is terminated abnormally by the control program.

To assign the only-loadable attribute, code OL in the PARM field as follows:

//LKED EXEC PGM=HEWL,PARM='OL, ... I

Chapter 4. Specifying JCL to Run a Linkage Editor Job 45

Overlay Attribute
A program with the overlay attribute is placed in an overlay structur~ as
directed by linkage editor OVERLAY control statements. The module is suitable
only for block loading; it cannot be refreshable, reenterable, or serially reus­
able.

If the overlay attribute is specified and no OVERLAY control statements are
found in the linkage editor input, the attribute is negated. The condition is con­
sidered a recoverable error; that is, if the LET option is specified, the module is
marked executable.

The overlay attribute must be specified for overlay processing. If this attribute
is omitted, the OVERLAY and INSERT statements are considered invalid, and
the module is not an overlay structure. This condition is also recoverable; if the
LET option is specified, the module is marked executable.

To assign the overlay attribute, code OVL Y in the PARM field as follows:

//LKED EXEC PGM=HEWL,PARM= 10VLY, ••• I

See "Appendix C. Designing and Specifying Overlay Programs" on page 177,
for information on the design and specification of an overlay structure.

~
I

Reusability Attributes
Either one of two attributes may be specified to denote the reusability of a
module. (Reusability means that the same copy of a load module can be used
by more than one task either concurrently or one at a time.) The reusability ~
attributes are reenterable and serially reusable; if neither is specified, the 1

/

module is not reusable and a fresh copy must be brought into virtual storage
before another task can use the module.

The linkage editor only stores the attribute in the directory entry; it does not
check whether the module is really reenterable or serially reusable. A reenter­
able module is automatically assigned the reusable attribute. However, a reus­
able module is not also defined as reenterable; it is reusable only.

Reenterable: A module with the reenterable attribute can be executed by more ~
than one task at a time; that is, a task may begin executing a reenterable

1

)

module before a previous task has finished executing it. This type of module
cannot be modified by itself or by any other module during execution.

If a module is to be reenterable, all the control sections within the module must
be reenterable. If the reenterable attribute is specified, and any load modules
that are not reenterable become a part of the input to the linkage editor, the
attribute is negated.

To assign the reenterable attribute, code RENT in the PARM field, as follows:
//LKED EXEC PGM=HEWL, PARM= I RENT, ••• I

Serially Reusable: A module with the serially reusable attribute can be exe­
cuted by only one task at a time; that is, a task may not begin executing a seri­
ally reusable module before a previous task has finished executing it. This type
of module must initialize itself and/or restore any instructions or data in the
module altered during execution.

46 MVS/ESA Linkage Editor and Loader User's Guide

I
I u

If a module is to be serially reusable, all its control sections must be either
serially reusab"le or reenterable. If the serially reusable attribute is specified,
and any load modules that are neither serially reusable nor reenterable
become a part of the input to the linkage editor, the serially reusable attribute
is negated.

To assign the serially reusable attribute, code REUS in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='REUS, ... I

Refreshable Attribute

U Test Attribute

Authorization Code

I

u

A module with the refreshable attribute can be replaced by a new copy during
execution by a recovery management routine without changing either the
sequence or results of processing. This type of module cannot be modified by
itself or by any other module during execution. The linkage editor only stores
the attribute in the directory entry; it does not check whether the module is
refreshable.

If a module is to be refreshable, all the control sections within it must be
refreshable. If the refreshable attribute is specified, and any load modules that
are not refreshable become a part of the input to the linkage editor, the attri­
bute is negated.

To assign the refreshable attribute, code REFR in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='REFR, ... I

A module with the test attribute is to be tested and contains the testing symbol
tables for the TSO TEST command. The linkage editor accepts these tables as
input, and places them in the output module. The module is marked as being
under test. If the test attribute is not specified, the symbol tables are ignored
by the linkage editor and are not placed in the output module. If the test attri­
bute is specified, and no symbol table input is received, the output load module
will not contain symbol tables to be used by the TSO TEST command.

To assign the test attribute, code TEST in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TEST, ... I

Note: The test attribute applies to programs using either TESTRAN or the TSO
TEST command. Do not use the 'TEST' option unless the load module is to be
executed by either TSO or TESTRAN.

The output load module is assigned an authorization code that determines
whether or not the load module may use restricted system services and
resources.

To assign an authorization code through the PARM field, code the AC param­
eter as follows:

//LKED EXEC PGM=HEWL, PARM=' AC=n, ... '

The authorization code, n, must be 1 to 3 decimal digits with a value from 0 to
255.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 47

1 AC=, ... 1 and 1 AC= 1 are equivalent to 1AC=0 1
• The authorization code

assigned in the PARM field is overridden by an authorization code assigned
through the SETCODE control statement.

Addressing Mode Attribute
To assign the addressing mode for all the entry points into the load module (the
main entry point, its true aliases, and all the alternate entry points), code the
AMODE parameter as follows:

//LKED EXEC PGM=IEWL,
PARM= 1AMODE=xxx, ... 1

The addressing mode 1xxx 1 must be either 24, 31, or ANY.

The addressing mode assigned in the PARM field overrides the separate
addressing modes found in the ESD data for the control sections or private
code where the entry points are located. The addressing mode assigned in the
PARM field is overridden by an addressing mode assigned in the MODE control /.~. . .·
statement. ·)

If the AMODE parameter occurs more than once in the PARM field of the EXEC
statement, the last valid parameter is used.

If only the AMODE value is specified in the PARM field of the EXEC statement,
an RMODE value of 24 is implied.

Note: The keyword 1AMODE 1 may also be specified as 1AMOD 1
•

Residence Mode Attribute
To assign the residence mode for the output load module, code the RMODE
parameter as follows:

//LKED EXEC PGM=IEWL,
PARM='RMODE=xxx, ... 1

The residence mode 1xxx 1 must be either 24 or ANY.

The residence mode assigned in the PARM field overrides the residence mode

()
I

accumulated from the input control sections and private code. The residence ~
mode assigned in the PARM field is overridden by a residence mode assigned 1

,)

through the MODE control statement.

If the RMODE parameter occurs more than once in the PARM field of the EXEC
statement, the last valid parameter is used.

If only an RMODE value of ANY is specified in the PARM field of the EXEC state­
ment, an AMODE value of 31 is implied.

If only an RMODE of 24 is specified, no overriding AMODE value is assigned;
instead, the AMODE value in the ESD data for the main entry point, a true alias,
or an alternate entry point is used in generating its respective directory entry.
If any control section to be linked has an RMODE = 24, then the load module is
marked RMODE = 24.

Note: The keyword •RM ODE 1 may also be specified as 1 RMOD 1 •

48 MVS/ESA Linkage Editor and Loader User 1 s Guide

in
/

(\

\.._)

(

u

(i

_)

AMODE/RMODE Combinations in the PARM Field

Default Attributes

In generating a directory entry for the main entry point, a true alias, or an alter­
nate entry point, the linkage editor validates the combination of the AMODE
value and the RMODE value, as specified by the user in the PARM field of the
EXEC statement, according to the following table:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMODE=31 valid valid

AMODE=ANY valid invalid

If the AMODE/RMODE combination resulting from the PARM field of the EXEC
statement is invalid, an error message is issued and the linkage editor ignores
the PARM field of the EXEC statement as the source of AMODE/RMODE data.

Unless specific module attributes are indicated by the programmer, the output
module is not in an overlay structure, and it is not tested. The module is in
block format, not refreshable, not reenterable, and not serially reusable. If
page boundary alignment is requested, its control sections are aligned on
4K-byte page boundaries.

One other attribute is specified by the linkage editor after processing is fin­
ished. If, during processing, severity 2 errors were found that would prevent
the output module from being executed successfully, the linkage editor assigns
the not-executable attribute. The control program will not load a module with
this attribute.

If the LET option is specified, the output module is marked executable even if
severity 2 errors occur. (The LET option is discussed later in this section.)

If the AC parameter is not specified or is coded incorrectly, the default authori­
zation code of 0 is assigned to the output load module.

Incompatible Attributes
Of the module attributes the programmer may specify, several are mutually
exclusive. When mutually exclusive attributes are specified for a load module,
the linkage editor ignores the less-significant attributes. For example, if both
OVL Y and RENT are specified, the module will be in an overlay structure and
will not be reenterable.

Certain attributes are also incompatible with other job step options. All job
step options are shown in Figure 15 on page 59 along with those options that
are incompatible.

Special Processing Options
The special processing options affect the ability to execute the output module
and the use of the automatic library-call mechanism. These options are the
exclusive call option, the let execute option, and the no automatic-call option.

Chapter 4. Specifying JCL to· Run a Linkage Editor Job '. 49

Exclusive Call Option
When the exclusive call option is specified, valid exclusive references have /~

Let Execute Option

been made between segments, and the linkage editor marks the output module
as executable. However, a warning message is given for each valid exclusive
reference.

To specify the exclusive call option, code XCAL in the PARM field as follows:

//LKED EXEC PGM=HEWL,PARM='XCAL,OVLY, ... I

The OVL Y attribute must also be specified for an overlay program.

Note: Unless the let execute option is specified, other errors may cause the
module to be marked not executable.

When the let execute option is specified, the linkage editor marks the output
module as executable even though a severity 2 error condition was found
during processing. (A severity 2 error condition could make execution of the
output load module impossible.) Some examples of severity 2 errors are:

• Unresolved external references

• Valid or invalid exclusive calls in an overlay program

• Error on a linkage editor control statement

• A library module that cannot be found

• No available space in the directory of the output module library

To specify the let-execute option, code LET in the PARM field as follows:

//LKED EXEC PGM=HEWL,PARM='LET, •.. I

Note: If LET is specified, XCAL need not be specified.

No Automatic Library-Call Option
When the no automatic library-call option is specified, the linkage editor library­
call mechanism does not call library members to resolve external references.

n

The output module is marked executable even though unresolved external ref- n
erences are present. If this option is specified, the LIBRARY statement need , /
not be used to negate the automatic library call for selected external refer-
ences. Also, with this option, a SYSLIB DD statement need not be supplied.

To specify the no automatic library-call option, code NCAL in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='NCAL, ... I

Note: Unless the LET option is also specified, other errors may cause the
module to be marked not executable.

Space Allocation Options
These options allow the programmer to specify the storage available to the
linkage editor, and to specify the block size for the output module. For large
modules and SMP, see SMP System Programmers Guide; for SMP/E, see
SMPIE Users Guide.

50 MVS/ESA Linkage Editor and Loader User's Guide

,n
' '

SIZE Option

u

/'
I ' u

u

u

The programmer can specify, through the SIZE option, the amount of virtual
storage to be used by the linkage editor and the portion of that storage to be
used as the load module buffer.

The linkage editor provides default values for the SIZE option. The default
values are used if one or both of the values are not specified correctly by the
user or are not specified at all. These defaults should be adequate for most
link-edits, relieving the programmer from specifying the SIZE option for each
link-edit. The default values are: value1 is 384K bytes and value2 is 96K bytes.

Format: The format of the SIZE option is:

SIZE= (value1 ,value2)

SIZE=(va/ue1)

SIZE=(va/ue1,)

SIZE= (,va/ue2)

SIZE=(,)

When coded in the PARM field, value1 and va/ue2 parameters are enclosed in
parentheses as follows:

llLKED
II

EXEC PGM=HEWL,
PARM='SIZE=(valuel,value2), ... '

Both value1 and value2 may be expressed as integers specifying the number of
bytes of virtual storage or as nK, where n represents the number of 1 K (1024)
bytes of virtual storage.

When determining the values for the SIZE option, it is best to establish value2
first, then value 1.

Value2: Va/ue2 specifies the number of bytes of storage to be allocated as the
load module buffer. The allocation specified by value2 is a part of the virtual
storage specified by value1.

The actual minimum for va/ue2 is 6144 (6K) or the length of the largest input
load module text record, whichever is larger. AMBLIST may be used to find the
size of the load module text records. If a value less than 6144 (6K) is specified,
the default value of 96K for value2 is used.

The space allocated by value2 is used for: the buffer into which the input load
module text is read, the buffer from which load module text is written to the
intermediate data set, the buffer into which the load module text is read from
the intermediate data set, and the buffers from which the load module text is
written to the output data set. Therefore, the determination of value2 requires
that the programmer consider the record sizes of the data sets from which any
load module text records are to be read (SYSLIB, any data set referenced by an
INCLUDE, any library data set), the record size for the intermediate data set
(SYSUT1), and the record size for the output load module data set (SYSLMOD).

Chapter 4. Specifying JCL to Run a Linkage Editor Job 51

Figure 13 lists the direct access devices that may contain data sets that are the
source of input load module text, the intermediate data set, and the output load r(),
module data set, and lists the maximum record size used for each device by
the linkage editor. These maximum record sizes may always be used in speci...:
fying va/ue2 or, if the programmer can determine them, exact sizes can be
used.

Figure 13. SYSUT1 and SYSLMOD Device Types and Their Maximum Record Sizes

Device Maximum SYSUT1 or SYSLMOD
Record Size Maximum Record Size

Device (Bytes) (Bytes)

2305-2 14660 13312

3330-1 13030 12288

3330-11 13030 12288

3340 8368 7680

3344 8368 7680

3350 19069 18432

3375 32760 32760

33801 32760 21504

Notes:

3380, all models.

The programmer must specify value2 so that the linkage editor has sufficient
space to allocate buffers that are compatible with the record sizes for the inter­
mediate data set and the output load module data set.

The linkage editor optimizes the record size for the device type of output load
module data set unless one of the following conditions exists.

(~
I

/

1!)

1. The programmer has specified PARM= ' ... DC, ... 1
, forcing the linkage editor

to write records with a maximum size of 1024 (1K) bytes. Although this ("')
option is supported, its use is not recommended.

2. The programmer has specified PARM= 1
••• DCBS, ... 1

, and the SYSLMOD DD
statement contains a BLKSIZE subparameter in the DCB parameter, forcing
the linkage editor to write records with a maximum length equal to the
BLKSIZE specification. Although this option is supported, its use is not
recommended.

3. The output load module data set is an existing data set with a block size
less than the optimum record size, forcing the linkage editor to write
records no longer than that block size.

4. The programmer has specified a va/ue2 less than twice the maximum
record size for the output load module data set, forcing the linkage editor to
write records with a maximum size of one-half value2.

5. The intermediate data set and the output load module data set have dissim­
ilar record sizes, forcing the linkage editor to write records with a maximum
size determined for compatibility between the two data sets.

52 MVS/ESA Linkage Editor and Loader User 1 s Guide

n

('
The linkage editor optimizes the record size of the output load module data set

u for its device type but selects a re1cord size compatible with the intermediate
data set (see restrictions above). Therefore, if the intermediate data set and
the output load module data set reside on the same device type, use of the load
module buffer is optimized. Also, if the data sets are on different units of the
same type, the performance of the linkage editor is improved.

Figure 14 shows the record sizes· used for compatibility between every com bi-
nation of device types for the intermediate and output load module data sets.

Figure 14 (Page 1 of 2). Load Module Buffer Area and SYSLMOD and SYSUT1
Record Sizes

SYSLMOD Record Size SYSUT1 Record Size

Maximum Maximum Minimum
I

Record Record Load Module u Device Size Device Size Buffer Area
Used Produced Used Produced (Value2)

IBM 2305-2 13K 2305-2 13K 26K
12K1 3330,3330-11 12K 24K
7.5K1 3340,3344 7.5K 15K
13K 3350 13K2 26K
13K 3375 26K2 26K

u 13K 33803 26K2 26K

IBM 3330 12K 2305-2 12K2 24K
IBM 3330-11 12K 3330,3330-11 12K 24K

7.5K1 3340,3344 7.5K 15K
12K 3350 12K2 24K
12K 3375 24K2 24K
12K 33803 24K2 24K

IBM 3340 7.5K 2305-2 7.5K2 15K
IBM 3344 7.5K 3330,3330-11 7.5K2 15K u 7.5K 3340 7.5K 15K

7.SK 3350 15K2 15K
7.5K 3375 30K2 15K
7.5K 33803 30K2 15K

IBM 3350 13K1 2305-2 13K 26K
12K1 3330,3330-11 12K 24K
15K1 3340,3344 7.5K 30K
18K 3350 18K 36K
18K 3375 18K2 36K
18K 33803 18K2 36K

IBM 3375 26K1 2305-2 13K 52K
24K1 3330,3330-11 12K 48K
30K1 3340,3344 7.5K 60K
18K1 3350 18K 36K

L) 32760 3375 32760 64K

32760 33803 32760 64K

Chapter 4. Specifying JCL to Run a Linkage Editor Job 53

Figure 14 (Page 2 of 2). Load Module Buffer Area and SYSLMOD and SYSUT1
Record Sizes

SYSLMOD Record Size SYSUT1 Record Size

Maximum Maximum Minimum
Record Record Load Module

Device Size Device Size Buffer Area
Used Produced Used Produced (Value2)

IBM 33803 13K1 2305-2 13K 26K
12K1 3330,3330-11 12K 24K
15K1 3340,3344 7.SK 30K
18K1 3350 18K 36K
21K 3375 21K2 42K
21K 33803 21K2 42K

Notes:

2

The SYSLMOD record size is reduced to less than the maximum to make
it compatible with the SYSUT1 record size.

The SYSUT1 record size is reduced to less than the maximum to make it
compatible with the SYSLMOD record size.

3380, all models.

Value2 should be, minimally, twice the record size for the output load module
data set. If value2 can be made larger than twice the record size for the output
load module data set, the increase should be the larger of the record sizes for
the intermediate and output load module data sets.

The practical maximum for value2 is the length of the load module to be built,
plus 4K bytes if the length of the load module to be built is equal to or greater
than 40960 (40K). Any space allocated to the load module buffer above this
amount is not used and does not need be· allocated to va/ue2.

If a va/ue2 is specified that cannot be accommodated in the available storage,
value2 is reduced to the next lower 2K-byte multiple of storage that is available.
This reduction, however, never decreases value2 to less than the minimum,
6144 (6K).

The optimal value2 is the practical maximum, as explained above. If the entire
load module is contained in storage, the performance of the linkage editor is
improved and the use of the intermediate data set may be eliminated.

Examples of Value2 Determination

1. A load module of between 21 K and 22K bytes is to be built. The load
module data set is a new data set on an IBM 3330 Disk Storage device.
The intermediate data set is allocated to an IBM 3340 Direct Access Storage
device. A SYSLIB data set is to be used, residing on a 3330. The entire
load module could be contained in the load module buffer if va/ue2 were
22K bytes (the load module size). The practical minimum for value2 would
be 12K bytes (the size of the largest possible input load module text record
from the SYSLIB data set). However, va/ue2 should be at least as large as

54 MVS/ESA Linkage Editor and Loader User 1 s Guide

~I
\ I

/

/ I ·,

u

0

u

two records to be written to the load module data set (that is, 24K bytes).
There is a reconciliation necessary in this case between the two dissimilar
device types for the intermediate and output load module data sets; but the
record size of the output load module data set is an even multiple of the
record size of the intermediate data set so no adjustment of the record
sizes is made. Therefore, the practical minimum, as well as the practical
maximum and optimal value2 in this case is 24K bytes.

2. A load module of more than SOK bytes is to be relink-edited; however, a
maximum of 40K bytes is available to be allocated to value2. The output
load module data set is an old data set residing on a 3340, written with
maximum record size. The intermediate data set is allocated to an IBM
2305-2 Fixed Head Storage device. The link-edit involves a control section
in the SYSLIN data set that will replace a control section in the old load
module, followed by an INCLUDE statement naming the old load module on
the SYSLMOD data set. The maximum for va/ue2 cannot be satisfied, since
only 40K bytes is available. The size of two maximum records written to a
3340 would be 14K bytes. However, the size of one record to be written or
to be read from the intermediate data set is 14K bytes. Therefore, the
minimum for value2 in this case is 14K bytes. This is sufficient space for
one input load module text record or one record written to or to be read
from the intermediate data set or two records written to the output load
module data set.

3. The output load module data set resides on a 2305-2. The intermediate
data set is allocated to a 3330. All load module input comes from a 3330.
Va/ue2 in this case is 24K bytes, because the input load module text records
are, at most, 12K bytes, the records written to and read from the interme­
diate data set are 12K bytes, and the records written to the output load
module data set are 12K bytes. The maximum record size of 14K bytes for
the 2305-2 is reduced to 12K bytes for this link-edit in order to be compat­
ible with the intermediate data set.

An alternative for va/ue2 in the above example is 12K bytes. This 12K bytes
value is adequate for the input load module text records and the records
written to and read from the intermediate data set. The 12K value forces a
maximum record size of 6K bytes to be written to the output load module
data set. At 6K bytes each, two records can be written on a 2305-2 track
while, as in the above example, only one record of 12K bytes can be written
on a 2305-2 track.

4. A load module of 10K is to be link-edited. The output load module data set
resides on a 2305 track. The input load module libraries all reside on 2314
tracks. The intermediate data set is allocated to a 2314 track. The pro­
grammer has specified the linkage editor parameter DC. The minimum of
BK for value2 is adequate in this case, since 6K is sufficient for input and
intermediate data set records and the output load module data set records
have a maximum size of 1 K.

5. The output load module data set is a new data set allocated to a 3330 track.
The programmer has specified the linkage editor parameter DCBS, and the
SYSLMOD DD statement contains 1

••• DCB= { ... BLKSIZE = 3072, ...), ... 1
• The

only load module input comes from a data set created previously in a
similar manner. The intermediate data set is allocated to a 3340. The
minimum for va/ue2 in this case is 6K bytes; the input load module records
are 3K bytes at most, the intermediate data set records are 7K bytes at
most, and, as directed by the programmer, the linkage editor produces

Chapter 4. Specifying JCL to Run a Linkage Editor Job 55

records having a maximum size of 3K bytes on the output load module data
set.

Value1: Value1 specifies the maximum number of bytes of virtual storage avail­
able to the linkage editor regardless of the private area size. The storage spec­
ified by value1 includes the allocation specified by value2.

The absolute minimum for value1 is the design point of the linkage editor, 96K
bytes. If a value less than the minimum for value1 is specified, the default
options for both value1 and value2 are used.

The practical minimum for value1 is 98304 (96K) bytes plus any excess in value2
over 6144 (6K) bytes, plus any additional space required to support the blocking
factor for the SYSLIN, object module library, and SYSPRINT data sets.

The design point of the linkage editor provides for the minimum load module
buffer-6144 (6K) bytes of virtual storage. If a load module buffer larger than
6144 (6K) bytes is specified in value2, value1 must be increased by the excess
of that value2 over 6144 (6K) bytes.

The linkage editor supports three different blocking facfors for the SYSLIN,
object module library, and SYSPRINT data sets; they are 5, 10, and 40 to 1. The
requirement for additional space depends upon the blocking factor that is to be
supported.

The following table shows the additional space required to support each
blocking factor.

Blocking Space
Factor Required

5 to 1 0 or OK

10 to 1 18432 or 18K

40 to 1 28672 or 28K

Blocking factors of 1 through 4, 6 through 9, and 11 through 39 are treated as
blocking factors of 5, 10, and 40, respectively. Blocking factors greater than 40
are invalid.

The additional space requirement is determined by the largest blocking factor
among the affected data sets.

The blocking factor supported is dependent upon space available after value2
has been allocated to the load module buffer out of value1. Therefore, if the
space provided in value1 is insufficient, the next smallest blocking factor is
used.

The performance of the linkage editor can be improved by the allocation of
additional storage by value1, especially in providing for the optimal value2.

The maximum value that can be specified for valuet is 9999999 or 9999K.
However, the amount of virtual storage actually allocated for valuet is the
smaller of:

56 MVS/ESA Linkage Editor and Loader User 1 s Guide

,!)
J

n
I

~ I J
/

(v
DCBS Option

u

• The region size

• The amount specified for value1

Examples of Value1 Determination

1. Assume that an optimum value2 of 36K bytes has already been determined
for the link-edit. An appropriate value1 is 126K bytes, because an additional
30K bytes, above the minimum of 96K bytes, is needed to support the allo­
cation of 36K bytes to value2 and no additional storage is required to
support the blocking factors for SYSLIN, SYSPRINT, and any object module
libraries.

2. The minimum for value2 (6K bytes) is used. All the object module libraries
are blocked 5-to-1, except one that is blocked 10-to-1. The SYSLIN and
SYSPRINT data sets are assigned blocking factors of 5. An appropriate
va/ue1 for this link-edit is 114K bytes, the minimum plus the 18K bytes
needed to support the blocking factor of 10-to-1 on the object module
library.

The DCBS option allows the programmer to specify the block size for the
SYSLMOD data set in the DCB parameter of SYSLMOD DD statement.

If the DCBS option is specified, the block size value in the DSCB for the
SYSLMOD data set may_be overridden. If the DCBS option is not specified, the
block size value in the DSCB for the SYSLMOD data set may not be overridden.

If the DCBS option is specified and no block size value is provided in the DCB
parameter of the SYSLMOD DD statement, the linkage editor uses the
maximum record size for the device. If the DCBS option is not specified and a
block size value is provided in the DCB parameter of the SYSLMOD DD state­
ment, the block size value in the DCB parameter of the SYSLMOD DD state­
ment is ignored by the linkage editor.

Even though the DCBS option is specified, the linkage editor will not allow the
programmer to set the block size for the SYSLMOD data set to a value less
than the minimum; that is, 256, or 1024 if the SCTR option is specified, or a
value less than the block size in the DSCB for an existing data set.

The block size specified by the programmer will be used unless (1) it is larger
than the maximum record size for the device, in which case the maximum
record size is used, or (2) it is less than the minimum block size, in which case
the minimum block size is used.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 57

The following example shows the use of the DCBS option for an IBM 3380 Direct
Access Storage device: 1)

Output Options

llLKED

l/SYSLMOD
II

EXEC PGM=HEWL,PARM='XREF,DCBS'

DD DSNAME=LOADMOD(TEST),DISP=(NEW,KEEP),
DCB=(BLKSIZE=23440), ...

As a result, the linkage editor uses a 23440 block size for the output module
library.

These options control the optional diagnostic output produced by the linkage
editor. The programmer can request that the linkage editor produce a list of all
control statements and a module map or cross-reference table to help in testing
a program. The format of each is described in "Chapter 7. Interpreting Linkage
Editor Output" on page 119.

In addition, the programmer can request that the numbered error/warning mes­
sages generated by the linkage editor appear on the SYSTERM data set as well
as on the SYSPRINT data set.

/~
)

Control Statement Listing Option n
To request a control statement listing, code LIST in the PARM field, as follows:
llLKED EXEC PGM=HEWL,PARM= 1 LIST, ... 1

When the LIST option is specified, all control statements processed by the
linkage editor are listed in card-image format on the diagnostic output data set.

Module Map Option
To request a module map, code MAP in the PARM field, as follows:

I /LKED EXEC PGM=HEWL,PARM='MAP, ... I

When the MAP option is specified, the linkage editor produces a module map of
the output module on the diagnostic output data set.

Cross Reference Table Option
To request a cross-reference table, code XREF in the PARM field, as follows:
llLKED EXEC PGM=HEWL,PARM= 1XREF, ... 1

When the XREF option is specified, the linkage editor produces a cross­
reference table of the output module on the diagnostic output data set. The
cross-reference table includes a module map; therefore, both XREF and MAP
need not be specified for one linkage editor job step.

58 MVS/ESA Linkage Editor and Loader User's Guide

~
{)

(~
/

u

u

u

Alternate Output (SYSTERIVD Option
To request that the numbered linkage editor error/warning messages be gener­
ated on the data set defined by a SYSTERM DD statement, code TERM in the
PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TERM, ... I

When the TERM option is specified, a SYSTERM DD statement must be pro­
vided. If it is not, the TERM option is negated.

Output specified by the TERM option supplements printed diagnostic informa­
tion; when TERM is used, linkage editor error/warning messages appear in both
output data sets.

Incompatible Job Step Options
When mutually exclusive job step options are specified for a linkage editor exe­
cution, the linkage editor ignores the less significant options. Figure 15 illus­
trates the significance of those options that are incompatible. When an X
appears at an intersection, the options are incompatible. The option that
appears higher in the list is selected.

-I_
~'v

0 :'\

'----- -<~
~

~- +~
~ x ~ (' /

'v ~
~

[>(~ ,J:>

I>< x <(--~
~~

IX '<' <(-

ei'°'
IX rx 0

~< x rx ~<v
~/ +0

·<--{>
'v

~
~0

o'v

<::?
q-~<v/

0<(-
[>(~ 0

00
<J ~

~<v<?!

'?"-0 ~

~ ~ <>~
/ ~o {<,

IX "' o<J

IX I «-~
lf:!Jc2i:i: An X indicates incompatible attributes; the attribute that appears lower on the list is
ignored. For example, to check the compatibility of XREF and NE, follow the XREF column
down and the NE row across until they intersect. Because an X appears where they intersect,
they are incompatible attributes. XREF is selected, and NE is ignored.

Figure 15. Incompatible Job Step Options for the Linkage Editor

Chapter 4. Specifying JCL to Run a Linkage Editor Job 59

For example, to check the compatibility of XREF and NE, follow the XREF
column down and the NE row across until they intersect. Because an X
appears where they intersect, they are incompatible; XREF is selected; NE is
negated.

If incorrect values are specified for the SIZE parameter, the default values are
used. If incompatible options are detected, the message

*** OPTIONS INCOMPATIBLE ***

is printed. This message follows the standard module disposition message.

If the incompatible options OVL Y and AMODE or RMODE are specified, a diag­
nostic message is issued.

:~

EXEC Statement-Region Parameter
The REGION parameter specifies the maximum amount of storage that can be
allocated to satisfy a request for storage that the linkage editor makes. In its r-"\
minimal situation, the linkage editor requires a REGION parameter of not less •..)
than 96K bytes; in its default situation, not less than 512K bytes; and, in its
maximal situation (see "Size Parameter Guidelines" on page 66), not less than
1 SOOK bytes.

EXEC Statement-Return Code

DD Statements

The linkage editor passes a return code to the control program upon com­
pletion of the job step. The return code reflects the highest severity code
recorded in any iteration of the linkage editor within that job step. The highest ,r-\
severity_ code encountered during processing is multiplied by 4 to create the ')
return code; this code is placed into register 15 at the end of linkage editor
processing. "Appendix F. Linkage Editor and Loader Return Codes" lists the
linkage editor return codes, their descriptions, and the corresponding severity
codes.

The programmer may use a return code to determine whether or not the load
module is to be executed by using the condition parameter (COND) on the EXEC
statement for the load module. The control program compares the return code
with the values specified in the COND parameter, and the results of the com- n
parisons are used to determine subsequent action. The COND parameter may ·
be specified either in the JOB statement or the EXEC statement (see the publi-
cation JCL Users Guide).

Every data set used by the linkage editor must be described with a DD state­
ment. Each DD statement must have a name, unless data sets are concat­
enated .. The DD statements for data sets required by the linkage editor have
preassigned names; those for additional input data sets have user-assigned
names; those for concatenated data sets (after the first) have no names.

In addition to the name, the DD statement provides the control program with
information about the input/output device on which the data set resides, and a
description of the data set itself. All of the job control language facilities for
device description are available to the users of the linkage editor.

1
rJ

60 MVS/ESA Linkage Editor and Loader User 1 s Guide

u

u

I u

/~' \

u

Besides information about the device, the DD statement also contains a data
set description which includes the data set name and its disposition. Informa­
tion for the data control block (DCB) may also be given.

General information pertinent to the linkage editor on the data set name and
DCB information follows; information on disposition is given in the discussion
for each data set.

Data Set Name: The linkage editor uses either sequential or partitioned data
sets. For sequential data sets, only the name of the data set is specified; for
partitioned data sets, the member name must also be specified either on the
DD statement or with a control statement.

When input data sets are passed from a previous job step, or when the output
load module is being tested, a recommended practice is to use temporary data
set names (that is, &&dsname). Use of temporary names ensures that there
are no duplicate data sets with out-of-date modules. A data set with a tempo­
rary name is automatically deleted at the end of the job. When a module is to
be stored permanently, a data set name without ampersands is used.

DCB Information: Before a data set can be used for input, information
describing the data set must be placed in the DCB. If this information does not
exist in the DCB or header label, or if no labels are used (magnetic tape does
not require labels), the programmer must specify it in the DCB parameter on
the DD statement.

Record format (RECFM), logical record size (LRECL), and block size (BLKSIZE)
subparameters of the DCB parameter are discussed as they apply to the
linkage editor. Specific information on each as it applies to the linkage editor
data sets is given in the description of the data set later in this section. Other
DCB information (tape recording technique, density, and so forth) is described
in the publication JCL User's Guide.

Record Format: The following record formats are used with the linkage editor:

F

FB

FBA

FBS

FA

FS

u
UA

The records are fixed length.

The records are fixed length and blocked.

The records are fixed length, blocked, and contain American National
Standards Institute (ANSI) control characters.

The records are fixed length, blocked, and written in standard blocks.

The records are fixed length and contain ANSI control characters.

The records are fixed length and written in standard blocks.

The records are undefined length.

The records are undefined length and contain ANSI control characters.

A record format of FS or FBS must be used with caution. All blocks in the data
set must be the same size. This size must be equal to the specified block size.
A truncated block can occur only as the last block in the data set.

Note: Track overflow is never used by the linkage editor. When moving or
copying load modules, it is recommended that the track overflow feature not be

Chapter 4. Specifying JCL to Run a Linkage Editor Job 61

used on the target data set, as errors may occur in fetching the load modules
for execution.

Logical Record and Block Size: Blocking is allowed for input object module
data sets and the diagnostic output data set. The blocking factors used to
determine buffer allocations are 5, 10, and 40. The BLKSIZE must therefore be
a multiple of LRECL. See the description of blocking factors in the discussion of
the SIZE option.

When the DCBS option is specified, a block size should be specified for the
output load module library (see "SYSLMOD DD Statement" on page 64).

Linkage Editor DD Statements
The linkage editor uses six data sets; of these, four are required. The DD state­
ments for these data sets must use the preassigned ddnames given in
Figure 16. The descriptions that follow give pertinent device and data set infor­
mation for each linkage editor data set.

Figure 16. Linkage Editor ddnames

Data Set ddname Required

Primary input data set SYSLIN Yes

Automatic call library SYSLIB Only if the automatic library
call mechanism is used

Intermediate data set SYSUT1 Yes

Diagnostic output data SYS PRINT Yes
set

Output module library SYSLMOD Yes

Alternate output data set SYS TERM Only if the TERM option is
specified

SYSLIN DD Statement

/'\
I

1)

The SYSLIN DD statement is always required; it describes the primary input n
data set that can be assigned to a direct access device, a magnetic tape unit, 1 .

or the card reader. The data set may be either sequential or partitioned; in the
latter case, a member name must be specified.

If SYSLIN is assigned to a card reader, input records must be unblocked and
80 bytes long.

This data set must contain object modules and/or control statements. Load
modules used in the primary input data set are considered a severity 4 error.

The recommended disposition for the primary input data set is SHR or OLD.

The DCB requirements are shown in Figure 17.

62 MVS/ESA Linkage Editor and Loader User's Guide

u

u

Figure 17. DCB Requirements for Object Module and Control Statement Input

LRECL

80

80

Note:

BLKSIZE

80

400,800,32001

REC FM

F,FS

FB,FBS

These are the maximum block sizes allowed for each of the optimal blocking
factors (5, 10, and 40). Which maximum is applicable depends on the value
given to value1 and value2 of the SIZE option.

SYSLIB DD Statement
The SYSLIB DD statement is required when the automatic library-call mech­
anism is to be used. This DD statement describes the automatic call library,
which must be assigned to a direct access device. The data set must be parti­
tioned, but member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and load module libraries must
not be mixed. If only object modules are used, the call library may also contain
control statements.

The DCB requirements for object module call libraries are given in Figure 17 on
page 62. The DCB requirement for load module call libraries. is a record format
of U; the block size used for storage allocation is equal to the maximum for the
device used, not the record read. Note that the linkage editor recognizes object
and load module call libraries solely from their record format, and not from the
data within them.

This data set must not be assigned to SYSOUT.

SYSUT1 DD Statement
The SYSUT1 DD statement is always required; it describes the intermediate
data set, which is a sequential data set assigned to a single direct access
device. (Note that message IEW0294, which indicates an 1/0 error on the
SYSUT1 data set, may be issued if more than one volume is specified.) Space
must be allocated for this data set, but the DCB requirements are supplied by
the linkage editor.

SYSPRINT DD Statement
The SYSPRINT DD statement is always required; it describes the diagnostic
output data set, which is a sequential data set assigned to a printer or to an
intermediate storage device. If an intermediate storage device is used, the
data records contain a carriage control character as the first byte.

The usual specification for this data set is SYSOUT =A. The programmer may
assign a block size. The record format assigned by the linkage editor depends
on whether blocking is used or not.

Figure 18 shows the DCB requirements for SYSPRINT. The only information
that can be supplied by the programmer is the block size.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 63

Figure 18. DCB Requirements for SYSPRINT

LRECL BLKSIZE REC FM
121 121 FA

121 n x 121 where n is less FSA
than or equal to 40

Note: The value specified for BLKSIZE, either on the DCB parameter of the
SYSPRINT DD statement or in the DSCB (data set control block) of an existing
data set, must be a multiple of 121; if it is not, the linkage editor issues a
message to the operator's console and terminates processing.

SYSLMOD DD Statement
The SYSLMOD DD statement is always required; it describes the output module
library, which must be a partitioned data set assigned to a direct access device.

(~

A member name may be specified on the SYSLMOD DD statement. If a (-.)
member name is specified, it is used only if a name was not specified on a
NAME control statement. This member name must conform to the rules for the
name on the NAME control statement. This would imply the replacement of an
identically named member in the output load module library, if one exists.

If SYSLMOD is to be referenced by an INCLUDE statement, the member name
on the DD statement, if present, must be the name of an existing member.

If the member is to replace an identically named member in an existing library,
the disposition should be OLD or SHR. If the member is to be added to an
existing library, the disposition should be MOD, OLD, or SHR. If no library
exists and the member is the first to be added to a new library, the disposition
should be NEW or MOD. If the member is to be added to an existing library
that may be used concurrently in another region or partition, the disposition
should be SHR.

The record format U is assigned by the linkage editor. See "Appendix D.
Loader Storage Considerations" on page 205.

Procedures used by the linkage editor to assign block size are:

1. If the data set is new:

a. Without the DCBS option specified:

• The DSCB (data set control block) reflects the maximum block size
available for the device type if it is not restricted by va/ue2 of the
size parameter.

• 1024, if the DC option was specified.

b. With the DCBS option specified, the DSCB block size is the smaller of:

• The maximum track size for the device.

• The value of the BLKSIZE subparameter on the DCB parameter of
the SYSLMOD DD statement.

• The actual output buffer length (half the number specified for va/ue2
if the size option was utilized).

64 MVS/ESA Linkage Editor and Loader User 1 s Guide

n

~;

u

u

c. The minimum DSCB block size is 256 without the SCTR option specified
and 1024 with the SCTR option.

2. When the DSCB block size already exists (not a new data set) and the
SCT.R option is specified, 1024 is used.

3. When the DSCB block size already exists and the DCBS or SCTR option is

not specified, the larger of the existing block sizes or 256 is used.

4. See "DCBS Option" on page 57 for the procedure when the DSCB block
size exists and the DCBS option is specified.

Note: When a new data set is created at linkage editor time without the DCBS

option specified, the DSCB reflects the maximum block size available for the
· device type.

If the SYSLMOD_ DD statement is used as a source of load module input, the

SYSLMOD data set is read with a record format of U in all cases.

In the following example, the SYSLMOD DD statement specifies a permanent

library on an IBM 3380 Disk Storage Device:

llSYSLMOD
II

DD DSNAME=USERLIB(TAXES),DISP=MOD,
UNIT=3380, ...

The linkage editor assigns a record format of U, and a maximum logical record

and block size of 32760 bytes, the ma?<imum for the sequential access method.
However, consider the following example:

llLKED

llSYSLMOD
II

EXEC PGM=HEWL,PARM='XREF,DCBS'

DD DSNAME=USERLIB(TAXES),DISP=MOD,
UNIT=3380,DCB=(BLKSIZE=13030), ...

The linkage editor still assigns a record format of U, but the logical record and

block size are now 13030 bytes rather than 32760 bytes, because of the use of

the DCBS option.

SYSTERM DD Statement
The SYSTERM DD statement is optional; it describes a data set that is used

only for numbered error/warning messages. Although intended to define the

terminal data set when the linkage editor is being used under the Time Sharing

Option (TSO) of MVS, the SYSTERM DD statement can be used in any environ­

ment to define a data set consisting of numbered error/warning messages that

supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement and speci­

fying TERM in the PARM field of the EXEC statement. When SYSTERM output is

defined, numbered messages are then written to both the SYSTERM and

SYSPRINT data sets.

The following example shows how the SYSTERM DD statement could be used to

specify the system output unit:

//SYSTERM DD. SYSOUT=A

Chapter 4. Specifying JCL to Run a Linkage Editor Job 65

The DCB requirements for SYSTERM (LRECL = 121,BLKSIZE = 121, and
RECFM =FSA) are supplied by the linkage editor. If necessary, the linkage n
editor will modify the DSCB (data set control block) of an existing data set to .
reflect these values.

Additional DD Statements
Each ddname specified on an INCLUDE or a LIBRARY control statement must
also be described with a DD statement. These DD statements describe sequen­
tial or partitioned data sets, assigned to magnetic tape units or direct access
devices (not pseudo card readers).

The ddnames are specified by the user with any other necessary information.
The DCB requirements for these data sets are shown in Figure 19.

Figure 19. DCB Requirements Used by Include and Library Control Statement

LRECL BLKSIZE REC FM
Object modules and/or control 80 80 F,FS
stateme,nts 80 400,800,3200 1 FB,FBS
Load Modules Ignored Maximum for device, u

or one-half of value2,
whichever is smaller

Note:

These are the maximum block sizes allowed for each of the optimal blocking
factors (5, 10, 40). Which maximum is applicable depends on the values n
givern to value1 and va/ue2 of the SIZE option.

Note to Figure 19:

When concatenated data sets are included, each data set must contain records
of the same format, record size, and block size. If the data sets reside on mag­
netic tape, the tape recording technique and density must also be identical.

If the SYSLMOD DD statement is used as a source of load module input, the
SYSLMOD data set is read with a record format of U in all cases.

Size Parameter Guidelines
This section gives guidelines for determining appropriate SIZE parameter
values for a linkage editor job step.

First-determine Value2 of the SIZE parameter.

Value2=[6Kj6144jfjgj (a+b) j(c*d) I (c*e)]

where:

a is the length of the load module to be built.

b is 0, if the length of the load module to be built is < 40K bytes.

is 4K, if the length of the load module to be built is ::?::: 40K bytes.

66 MVS/ESA Linkage Editor and Loader User's Guide

(')

(_)

(.

~

u

c

d

e

f

g

is an integer equal to or greater than 2, such that c*d or c*e is ~ 999999

or 9999K bytes {c is the integer that represents the number of buffers to

be reserved for SYSLMOD).

is the track capacity of the SYSLMOD device, or 32760, whichever is

larger.

is the block size of the SYSLMOD data set.

is the length of the largest text record in load module input.

is the track capacity of the SYSUT1 device, or 32760, whichever is larger.

Selecting the largest of the above parameters provides optimal results.

Second-determine Value1 of the SIZE parameter.

Valuel = h + j + k

Valuel must range between h and 9999K or 9999999

where:

h = 96K

is the excess of Value2 over 6K

k is the additional storage required to support the blocking factor for

SYSLIN, object module libraries, and SYSPRINT:

Blocking Factor K (Bytes)

5 to 1 0

10 to 1 18

40 to 1 28

Third-determine the REGION parameter.

REGION= Equal to or greater than Valuel

Cataloged Procedures
To facilitate the operation of the system, the control program allows the pro­

grammer to store EXEC and DD statements under a unique member name in a

procedure library. Such a series of job control language statements is called a

cataloged procedure. These job control language statements can be recalled at

any time to specify the requirements for a job. To request this procedure, the

programmer places an EXEC statement in the input stream. This EXEC state­

~ent specifies the unique member name of the procedure desired.

The specifications in a cataloged procedure can be temporarily overridden, and

DD statements can be added. The information altered by the programmer is in

effect only for the duration of the job step; the cataloged procedures themselves

are not altered permanently. Any additional DD statements supplied by the

programmer must follow those that override the cataloged procedure.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 67

Linkage Editor Cataloged Procedures

Procedure LKED

Two linkage editor cataloged procedures are provided: a single-step procedure
that link-edits the input and produces a load module (procedure LKED), and a
two-step procedure that link-edits the input, produces a. load module, and exe­
cutes that module (procedure LKEDG). Many of the cataloged procedures pro­
vided for language translators also contain linkage editor steps. The EXEC and
DD statement specifications in these steps are similar to the specifications in
the cataloged procedures described in the following paragraphs.

The cataloged procedure named LKED is a single-step procedure that link-edits
the input, produces a load module, and passes the load module to another step
in the same job. The statements in this procedure are shown in Figure 20; the
following text describes these statements.

llLKED
I ISYSPRINT
I ISYSLIN
llSYSLMOD
II
llSYSUTl
II

EXEC PGM=HEWL,PARM='XREF,LIST,LET,NCAL',REGION=512K
DD SYSOUT=A
DD DDNAME=SYSIN ,
DD DSNAME=&&GOSET(GO),SPACE=(1024,(50,20,1)),

UNIT=SYSDA,DISP=(MOD,PASS)
DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

SPACE=(1024,(200,20))

Figure 20. Statements in the LKED Cataloged Procedure

Statement Numbers: The 8-digit numbers on the right side of each statement
(not shown in Figure 20) are used to identify each statement and would be
used, for example, when permanently modifying the cataloged procedure with
the system utility program IEBUPDTE. For a description of this utility program,
see Utilities.

EXEC Statement: The PARM field specifies the XREF, LIST, LET, and NCAL
options. If the automatic library-call mechanism is to be used, the NCAL option
must be overridden, and a SYSLIB DD statement must be added. Overriding
and adding DD statements is discussed later in this section.

SYSPRINT Statement: The SYSPRINT DD statement specifies the SYSOUT
class A, which is either a printer or an intermediate storage device. If an inter­
mediate storage device is used, American National Standard Institute control
characters accompany the data to be printed.

SYSLIN Statement: The s·pecification of DDNAME = SYSIN allows the pro­
grammer to specify any input data set as long as it fulfills the requirements for
linkage editor input. The input data set must be defined with a DD statement
with the ddname SYSIN. This data set may be either in the input stream or
reside on a separate volume.

If the data set is in the input stream, the following SYSIN statement is used:
l/LKED.SYSIN DD *

If this SYSIN statement is used, it may be anywhere in the job step DD state­
ments as long as it follows all overriding DD statements. The object module

68 MVS/ESA Linkage Editor and Loader User 1 s Guide

!~
J

u

u

u

u

decks and/or control statements should follow the SYSIN statement, with a

delimiter statement (/*) at the end of the input.

If the data set resides on a separate volume, the following SYSIN statement is
used:

//LKED. SYS IN DD (parameters describing the input data set)

If this SYSIN statement is used, it may be anywhere in the job step DD state­

ments as. long as it follows all overriding DD statements. Several data sets
may be coneatenated, as described in "Chapter 3. Defining Input to the
Linkage Editor" on page 27.

SYSLMOD Statement: The SYSLMOD DD statement specifies a temporary data
set and a general space allocation. The disposition allows the next job step to
execute the load module. If the load module is to reside permanently in a
library, these general specifications must be overridden.

SYSUT1 Statement: The SYSUT1 DD statement specifies that the intermediate
data set is to reside on a direct access device, but not the same device as
either the SYSLMOD or the SYSLIN data sets. Again, a general space allo­

cation is given.

SYSLIB Statement: Note that there is no SYSLIB DD statement. If the auto­
matic library-call mechanism is to be used with a cataloged procedure, a
SYSLIB DD statement must be added; also, the NCAL option in the PARM field
of the EXEC statement must be negated.

Invoking the LKED Procedure: To invoke the LKED procedure, code the fol­
lowing EXEC statement:

//stepname EXEC LKED

where stepname is optional and is the name of the job step.

The following example shows a sample JCL sequence for using the LKED pro­
cedure in one step to link-edit object modules to produce a load module, then
execute the load module in a subsequent step.

//LESTEP EXEC LKED

(Overriding and additional DD statements for the LKED step)

//LKED.SYSIN DD *

(Object module decks and/or control statements)

//EXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD

(DD statements and data for load module execution)

/* (If data is supplied for the execution step)

Note: LESTEP invokes the LKED procedure and EXSTEP executes the load

module produced by LESTEP.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 69

Procedure LKEDG
The cataloged procedure named LKEDG is a two-step procedure that link-edits
the input, produces a load module, and executes that load module. The state- ,r)
ments in this procedure are shown in Figure 21. The two steps are named
LKED and GO. The specifications in the statements in the LKED step are iden-
tical to the specifications in the LKED procedure.

//LKED
//SYSPRINT
//SYSLIN
//SYSLMOD
II
//SYSUTl
II
//GO

EXEC PGM=HEWL,PARM= 1XREF,LIST,NCAL 1 ,REGION=512K
DD SYSOUT=A
DD DDNAME=SYSIN
DD DSNAME=&&GOSET(GO),SPACE=(1024,(50,20,1)),

UNIT=(SYSDA,DISP=(MOD,PASS)
DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

SPACE=(1024,(200,20))
EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED)

Figure 21. Statements in the LKEDG Cataloged Procedure

GO Step: The EXEC statement specifies that the program to be executed is the
load module produced in the LKED step of this job. This module was stored in
the data set described on the SYSLMOD DD statement in that step. (If a NAME
statement was used to specify a member name other than that used on the
SYSLMOD statement, use the LKED procedure.)

The condition parameter specifies that the execution step is to be bypassed if
the return code issued by the LKED step is greater than 4.

Invoking the LKEDG Procedure: To invoke the LKEDG procedure, code the fol­
lowing EXEC statement:

//stepname EXEC LKEDG

where stepname is optional and is the name of the job step.

The following example shows a sample JCL sequence for using the LKEDG pro­
cedure to link-edit object modules, produce a load module, and execute that
load module.

70 MVS/ESA Linkage Editor and Loader User's Guide

~\
j

u

(. '

\._)

u

//TWOSTEP EXEC LKEDG.

(Overriding and additional DD statements for the LKED step)

//LKED. SYS IN DD *

(Object module decks and/or control statements)

/*

(DD statements for the GO step)

//GO.SYSIN DD *

(Data for the GO step)

/*

Overriding Cataloged Procedures
The programmer may override any of the EXEC or DD statement specifications
in a cataloged procedure. These new specifications remain in effect only for
the duration of the job step. For a detailed description of overriding cataloged
procedures, see the publication JCL User's Guide.

Overriding the EXEC Statement
The EXEC statement in a cataloged procedure is overridden by specifying the
changes and additions on the EXEC statement that invokes the cataloged proce­
dure. The stepname should be specified when overriding the EXEC statement
parameters.

For example, the REGION parameter can be increased as follows:

//LESTEP EXEC LKED,REGION.LKED=l36K

The rest of the specifications on the EXEC statement of procedure LKED remain
in effect.

If the PARM field is to be overridden, all the options specified in the cataloged
procedure are negated. That is, if XREF, LIST, or NCAL is desired when over­
riding the PARM field, it must be respecified. In the following example, the
OVL Y option is added and the NCAL option is negated:

//LESTEP EXEC LKED,PARM.LKED='OVLY,XREF,LIST'

As a result, the XREF and LIST options are retained, but the NCAL option is
negated; when NCAL is negated, a SYSLIB DD statement must be added.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 71

If you use the LKEDG procedure and want to execute the load module just built,
an efficient way is to specify the parameter LET in the LKED step and invoke r-"\
the LKEDG procedure with the following EXEC statement: '. J

llstepname EXEC LKEDG,PARM.LKED='XREF,LIST,NCAL,LET',
II COND.G0=(8,LT,LKED)

Overriding DD Statements
Each DD statement that is used to override a DD statement in the LKED step of
either the LKED procedure or the LKEDG procedure must begin with
llLKED.ddname

Any of the DD statements in the cataloged procedures can be overridden as
long as the overriding DD statements are in the same order as they appear in (~

1 the procedure. If any DD statements are not overridden, or overriding DD state- . l
ments are included but are not in sequence, the specifications in the cataloged
procedure are used.

Only those parameters specified on the overriding DD statement are affected;
the rest of the parameters remain as specified in the procedure. In the fol­
lowing example, the output load module is to be placed in a permanent library:

//LIBUPDTE EXEC
//LKED.SYSLMOD DD
//LKED.SYSIN DD

LKED
DSNAME=LOADLIB(PAYROLL),DISP=OLD
DSNAME=OBJMOD,DISP=(OLD,DELETE)

Unit and volume information should be given if these data sets are not cata­
loged.

As a result of the statements in the example, the LKED procedure is used to

n

process the object module in the OBJMOD data set. The output load module is r-"\
stored in the data set LOADLIB with the name PAYROLL. The SPACE param- 1

)
eter on the SYSLMOD DD statement and the other specifications in the proce-
dure remain in effect.

n
72 MVS/ESA Linkage Editor and Loader User's Guide

/ '\ u

Adding DD Statements
DD statements for additional data sets can be supplied when using cataloged
procedures. These additional DD statements must follow any overriding DD
statements.

Each additional DD statement for the LKED step must begin with
llLKED.ddname ... ; for the GO step, it must begin with /IGO.ddname

In the following example, the automatic library-call mechanism is to be used
along with the LKEDG procedure:

//CPSTEP EXEC LKEDG,PARM.LKED='XREF,LIST'
//LKED.SYSLMOD DD DSNAME=LOADLIB(TESTER),DISP=OLD, ...
//LKED.SYSLIB DD DSNAME=SYLl.PLlLIB,DISP=SHR
//LKED.SYSIN DD *

(Object module decks and/or control statements).

/*
//GO.SYSIN DD *

(Data for execution step)

/*

The NCAL option is negated, and a SYSLIB DD statement is added between the
overriding SYSLMOD DD statement and the SYSIN DD statement.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 73

n

()

n

_,;i Chapter 5. Specifying an Operation with Control Statements

u

I
I \ u

(_)

General Format

This chapter summarizes the linkage editor control statements. The description
of each statement includes:

• What the statement does

• The format of the statement

• Placement of the statement in the input

• Notes on use, if any

• One or more examples that include job control language statements, when
necessary

The control statements are described in alphabetic order. Before using this
chapter, the user should be familiar with the following information on general
format, format conventions, and placement.

Each linkage editor control statement specifies an operation and one or more
operands. Nothing must be written preceding the operation, which must begin
in or after column 2. The operation must be separated from the operand by
one or more blanks.

A control statement can be continued on as many cards as necessary by termi­
nating the operand at a comma, and by placing a nonblank character in column
72 of the card. Continuation must begin in column 16 of the next card. A
symbol cannot be split; that is, it cannot begin on one card and be continued on
the next.

For more information on format and notational conventions, see "Notational
Conventions" on page 1.

Rules for Comments
You can write comments in a utility statement, but they must be separated from
the last parameter of the operand field by one or more blanks.

Placement Information
Linkage editor control statements are placed before, between, or after modules.
They can be grouped, but they cannot be placed within a module. However,
specific placement restrictions may be imposed by the nature of the functions
being requested by the control statement. Any placement restrictions are
noted.

Chapter 5. Specifying an Operation with Control Statements 75

ALIAS Statement
The ALIAS statement specifies additional names for the output library member,
and can also specify names of alternative entry points. Up to 64 names can be
specified on one ALIAS statement (continuation may be necessary), or separate
ALIAS statements for one library member. The names are entered in the direc­
tory of the partitioned data set in addition to the member name.

Format: The format of the ALIAS statement is:

ALIAS {symbolfexternal name} [,{symbollexternal name}]. ..

symbol
specifies an alternate name for the load module. When the module is exe­
cuted, the main entry point is used as the starting point for execution.

external name
specifies a name that is defined as a control section name or entry name in
the output module. When the module is called for execution, execution
begins at the external name referred to.

Placement: An ALIAS statement can be placed before, between, or after object
modules or other control statements. It must precede a NAME statement used
to specify the member name, if one is present.

Notes:

1. In an overlay program, an external name specified by the ALIAS statement
must be in the root segment.

2. No more than 64 alias names can be assigned to one output module.

3. Each alias specified for a load module is retained in the directory entry for
the module; the linkage editor does not delete an old alias. Therefore, each
alias that is specified must be unique; assigning the same alias to more
than one load module can cause incorrect module references.

4. Obsolete alias names should be deleted from the PDS directory using a
system utility such as IEHPROGM, to avoid future name conflicts.

5. If the replace option is in effect for the output load module {that is, the load
module built in this link-edit does or may replace an identically named load
module in the output module library), the replace option is in effect for each
ALIAS name for the load module as well as for the primary name.

Example: An output module, ROUT1, is to be assigned two alternate entry
points, CODE1 and CODE2. In addition, calling modules have been written
using both ROUT1 and ROUTONE to refer to the output module. Rather than
correct the calling modules, an alternative library member name is also
assigned.

ALIAS
NAME

CODE1 ,CODE2,ROUTONE
ROUT1

76 MVS/ESA Linkcige Editor and Loader User 1 s Guide

(~
' j

(j
• I

~
. '\

I

/~
I)

/
~/

/ u

u

u

Because CODE1 and CODE2 are entry names in the output module, execution
begins at the point referred to when these names are used to call the module.
The modules that call the output module with the name ROUTONE now cor­
rectly refer to ROUT1 at its main entry point. The names CODE1, CODE2, and
ROUTONE appear in the library directory along with ROUT1.

Chapter 5. Specifying an Operation with Control Statements 77

CHANGE Statement
The CHANGE statement causes an external symbol to be replaced by the
symbol in parentheses following the external symbol. The external symbol to
be changed can be a control section name, an entry name, or an external refer­
ence. More than one such substitution may be specified in one CHANGE state­
ment.

Format: The format of the CHANGE statement is:

CHANGE

external symbol

externalsymbol(newsymbol)
[,e">!ternalsymbol(newsymbol)] ...

is the control section name, entry name, or external reference that is to be
changed.

newsymbol
is the name to which the external symbol is to be changed.

Placement: .The CHANGE control statement must be placed immediately before
either the module containing the external symbol to be changed, or the
INCLUDE control statement specifying the module. The scope of the CHANGE
statement is across the immediately following module (object module or load
module); the END record in the immediately following object module or the end­
of-module indication in the immediately following load module delimits the
scope of the CHANGE statement.

Notes:

1. External references from other modules to a changed control section name
or entry name remain unresolved unless further action is taken.

2. If the external symbol specified on the CHANGE statement is misspelled,
the symbol will not be changed. Linkage editor output, such as the cross­
reference listing or module map, can be used to verify each change.

(~
J

3. When a REPLACE statement that deletes a control section is followed by a (~
CHANGE statement with the same control section name, unpredictable
results will occur.

Example 1: Two control sections in different modules have the name
TAXROUT. Because both modules are to be link-edited together, one of the
control section names must be changed. The module to be changed is defined
with a DD statement named OBJMOD. The control section name could be
changed as follows:

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,KEEP) , ...
//SYSLIN DD *

/*

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD

78 MVS/ESA linkage Editor and Loader User's Guide

n
/

_;'

/ u

/I ' u

As a result, the name of control section TAXROUT in module TAXES is changed
to ST A TET AX.

Example 2: A load module contains references to TAXROUT that must now be
changed to STATETAX. This module is defined with a DD statement named
LOADMOD. The external references could be changed at the same time the
control section name is changed, as follows:

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,DELETE), ...
//LOADMOD DD DSNAME=LOADLIB,DISP=OLD, ...
//SYSLIN DD *

/*

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD
CHANGE TAXROUT(STATETAX)
INCLUDE LOADMOD(INVENTRY)

As a result, control section name TAXROUT in module TAXES and external ref­
erence TAXROUT in module INVENTRY are both changed to STATETAX.

Chapter 5. Specifying an Operation with Contrql Statements 79

ENTRY Statement
The ENTRY statement specifies the symbolic name of the first instruction to be
executed when the program is called by its module name for execution. An
ENTRY statement should be used whenever a module is reprocessed by the
linkage editor. If more than one ENTRY statement is encountered, the first
statement specifies the main entry point; all other ENTRY statements are
ignored.

Format: The format of the ENTRY statement is:

I ENTRY j externa/name

externalname
is defined as either a control section name or an entry name in a linkage
editor input module.

Placement: An ENTRY statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME state­
ment for the module, if one is present.

Notes:

1. In an overlay program, the first instruction to be executed must be in the
root segment.

.!)
/

,!'\
/

2. The ex~ef rhnal name specified must be the name of an instruction, not a data n
name, 1 t e module is to be executed. ' ;

Example: In the following example, the main entry point is INIT1:

I /LOAD LIB DD DSNAME=LOADLIB,DISP=OLD, ...
//SYSLIN DD *

ENTRY INITl
INCLUDE LOADLIB(READ,WRITE)

ENTRY READIN
/*

INIT1 must be either a control section name or an entry name in the linkage
editor input. The entry point specification of READIN is ignored.

rt)

()
/

80 MVS/ESA Linkage Editor and Loader User's Guide

EXPAND Statement

(_j

u

u

The EXPAND statement lengthens control sections or named common sections
by a specified number of bytes.

Format: The format of an EXPAND statement is

I EXPAND name(xxxx) [,name(xxxx)] ...

name
is the symbolic name of a common section or control section whose length
is to be increased.

xx xx
is the decimal number of bytes to be added to the length of a common
section. The maximum is 4095 for each section indicated. Binary zeros will
be added for an expanded control section.

The EXPAND statement is followed by a message, IEW0740, that indicates the
number of bytes added to the control section and the offset, relative to the start
of the control section, at which the expansion begins. The effective length of
the expansion is given in hexadecimal and may be greater than the specified
length if, after the specified expansion, padding bytes must be added for align­
ment of the next control section or named common section.

Placement: An EXPAND statement can be placed before, between, or after
other control statements or object modules. However, the statement must
follow the module containing the control or named common section to which it
refers. If the control section or named common section is entered as the result
of an INCLUDE statement, the EXPAND statement must immediately follow the
INCLUDE statement.

Note: EXPAND should be used with caution so as not to increase the length of
a program beyond its own design limitations. For example, if space is added to
a control section beyond the range of its base register addressability, that
space is unusable.

Example: In the following example, EXPAND statements add a 250-byte patch
area (initialized to zeros) at the end of control section CSECT1 and increase the
length of named common section COM1 by 400 bytes.

llLKED
llSYSPRINT
llSYSUTl
llSYSLMOD
I ISYSLIN
II
II

EXPAND
EXPAND
NAME

I *

EXEC
DD
DD
DD
DD

DD

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,4))
DSNAME=PDSX,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS),
UNIT=SYSDA
*
CSECTl (250)
COMl (400)
MODl (R)

Chapter 5. Specifying an Operation with Control Statements 81

IDENTIFY Statement
The IDENTIFY statement specifies any data supplied by the user to be entered ;)
into the CSECT identification (IDR) records for a particular control section. The /
statement can be used either to supply descriptive data for a control s.ection or
to provide a means of associating system-supplied data with executable code.

Format: The format of the IDENTIFY statement is:

IDENTIFY csectname(' data')[,csectname('data')] ...

csectname
is the symbolic name of the control section to be identified.

data
specifies up to 40 EBCDIC characters of identifying information. The user
may supply any information desired for identification purposes.

The rules of syntax for the operand field are:

1. No blanks or characters may appear between the left parenthesis and the
leading single quotation mark nor between the trailing single quotation
mark and the right parenthesis.

2. The data field consists of from 1 to 40 characters; therefore, a null entry
must be represented, minimally, by a single blank.

3. Blanks may appear between the leading single quotation mark and the
trailing single quotation mark. Each blank counts as 1 character toward the
40-character limit.

4. A single quotation mark between the leading quotation mark and the
trailing quotation mark is represented by 2 consecutive quotation marks.
The pair of quotation marks counts as 1 character toward the 40-character
limit.

5. Any EBCDIC character may appear between the leading quotation mark and
the trailing quotation mark. Each character counts as 1 character toward
the 40-character limit.

6. The IDENTIFY statement may be continued; however, a whole operand must
appear on a single card image and at least 1 whole operand must appear
on each card image of the continued statement.

7. If a leading quotation mark is found, all characters are absorbed until a
trailing quotation mark is found or the 40-character limit is exhausted.

8. Blanks may not appear between the CSECT name and the left parenthesis.

9. A blank following a left parenthesis terminates the operand field; a blank
following a comma that terminates an operand also terminates the operand
field of that card image.

Placement: An IDENTIFY statement can be placed before, between, or after
other control statements or object modules. The IDENTIFY statement must
follow the module containing the control section to be identified or the INCLUDE

n

n
j

statement specifying the module.
1
tj

Note: When two or more IDENTIFY statements specify the same CSECT name,
only the last statement is effective.

82 MVS/ESA Linkage Editor and Loader User's Guide

i

I'-.)

u

(. u

Example: In the following example, IDENTIFY statements are used to identify
the source level of a control section, a PTF application to a control section, and
the functions of several control sections.

//LKED
//SYSPRINT
//SYSUTl
//SYSLMOD
//OLDMOD
//PTFMOD
//SYSLIN

EXEC
DD
DD
DD
DD
DD
DD

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=LOADSET,DISP=OLD
DSNAME=OLD.LOADSET,DISP=OLD
DSNAME=PTF.OBJECT,DISP=OLD
*

(input object deck for a control section named FORT)

/*

IDENTIFY
INCLUDE
IDENTIFY
INCLUDE
IDENTIFY

FORT (I LEVEL 03 I)
PTFMOD (CSECT4)
CSECT4('PTF99999')
OLDMOD(PROGl)
CSECTl('I/O ROUTINE'),
CSECT2('SORT ROUTINE'),
CSECT3('SCAN ROUTINE')

Execution of this example produces IDR records containing the following iden­
tification data:

• The name of the linkage editor that produced the load module, the linkage
editor version and modification level, and the date of the current linkage
editor processing of the module. This information is provided automatically.

• User-supplied data describing the functions of several control sections in
the module, as indicated on the third IDENTIFY statement.

• If the language translator used supports IDR, the identification records
produced by the linkage editor also contain the name of the translator that
produced the object module, its version and modification level, and the data
of compilation._

The IDR records created by the linkage editor can be referenced by using the
LISTIDR function of the service aid program AMBLIST. For instructions on how
to use AMBLIST, see Service Aids.

Chapter 5. Specifying an Operation with Control Statements 83

INCLUDE Statement
The INCLUDE statement specifies sequential data sets and/or libraries that are
to be sources of additional input for the linkage editor. INCLUDE statements
are processed in the order in which they appear in the input. However, the
sequence of data sets and modules within the output load module does not nec­
essarily follow the order of the INCLUDE statements. If the order of the CSECTs
within the module is significant, the user must specify the desired sequence by
using order cards.

Format: The format of the INCLUDE statement is:

INCLUDE ddname[(membername[, ...])]
[,ddname[(membername[, ...])]] ...

ddname
is the name of a .OD statement that describes either a sequential or a parti- ,fl')
tioned data set to be used as additional input to the linkage editor. For a '· I/
sequential data set, ddname is all that must be specified. For a partitioned
data set, at least one member name must also be specified.

membemame
is the name of or an alias for a member of the library defined in the speci­
fied DD statement. The membername must not be specified again on the
DD statement.

Placement: An INCLUDE statement can usually be placed before, between, or fl\/)
after obJect modules or other control statements. However, when link-editing , I;
the nucleus, any ORDER statements used should precede the INCLUDE state-
ments.

Note: A NAME statement in any data set specified in an INCLUDE statement is
invalid; the NAME statement is ignored. All other control statements are proc­
essed.

Example 1: In the following example, an INCLUDE statement specifies two data
sets to be the input to the linkage editor: n

//OBJMOD
//LOADMOD

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DSNAME=LOADLIB,DISP=SHR, ...

//SYSLIN DD *
INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)

I*

Note that a DD statement must be supplied for every ddname specified in an
INCLUDE statement.

84 MVS/ESA Linkage Editor and Loader User's Guide

u

u

Example 2: Two separate INCLUDE statements could have been used in the
preceding example, as follows:

INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

Chapter 5. Specifying an Operation with Control Statements 85

INSERT Statement
Use of the INSERT statement and the OVERLAY statement are not recom­
mended. They are shown here for compatibility. For more information on the
use oMhe OVERLAY statement, see "Appendix C. Designing and Specifying
Overlay Programs" on page 177.

The INSERT statement repositions a control section from its position in the input
sequence to a segment in an overlay structure. However, the sequence of
control sections within a segment is not necessarily the order of the INSERT
statements.

If a symbol specified in the operand field of an INSERT statement is not present
in the external symbol dictionary, it is entered as an external reference. If the
reference has not been resolved at the end of primary input processing, the
automatic library-call mechanism attempts to resolve it.

Format: The format of the INSERT statement is:

I INSERT csectname [,csectname] ...

csectname
is the name of the control section to be repositioned. A particular control
section can appear only once within a load module.

Placement: The INSERT statement must be placed in the input sequence fol­
lowing the OVERLAY statement that specifies the origin of the segment in which
the control section is to be positioned. If the control section is to be positioned
in the root segment, the INSERT statement must be placed before the first
OVERLAY statement.

Note: Control sections that are positioned in a segment must contain all
address constants to be used during execution unless:

• The A-type address constants are located in a segment in the path.

/~
!)

'~
;'

• The V-type address constants used to pass control to another segment are
located in the path. If an exclusive reference is made, the V-type address n
constant must be in a common segment.

• The V-type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

86 MVS/ESA Linkage Editor and Loader User's Guide

Example: The following INSERT (and OVERLAY) statements specify the overlay
structure shown in Figure 22:

II EXEC PGM=HEWL,PARM='OVLY,XREF,LIST'

llSYSLIN DD

/*

I
csc

+ CSD

1

INSERT CSA
INSERT CSB
OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

*

T
CSA

+ CSB

I
ALPHA

Figure 22. Overlay Structure for INSERT Statement Example

I
CSE

l

Chapter 5. Specifying an Operation with Control Statements 87

LIBRARY Statement
The LIBRARY statement can be used to specify:

• Additional automatic call libraries, which contain modules used to resolve
external references found in the program.

• Restricted no-call function: External references that are not to be resolved
by the automatic library call mechanism during the current linkage editor
job step.

• Never-call function: External references that are not to be resolved by the
automatic library call mechanism during any linkage editor job step.

Combinations of these functions can be written in the same LIBRARY state­
ment.

Format: The format of the LIBRARY statement is:

LIBRARY { ddname(membername[, ...])I
(externalreference[, ...])I
*(externalreference[, ...])}, ...

ddname
is the name of a DD statement that defines a library.

membername

(~

· is the name of or an alias for a member of the specified library. Only those ~
members specified are used to resolve references. ' 1)

external reference

*

is an external reference that may be unresolved after primary input proc­
essing. The external reference is not to be resolved by automatic library
call.

indicates that the external reference is never to be resolved; if the *
(asterisk) is missing, the reference is left unresolved only during the current
linkage editor run. n

Placement: A LIBRARY statement can be placed before, between, or after
object modules or other control statements.

Notes:

1. If the unresolved external symbol is not a member name in the library spec­
ified, the external reference remains unresolved unless defined in another
input module.

2. If the NCAL option is specified, the LIBRARY statement cannot be used to
specify additional call libraries.

3. Members called by automatic library call are placed in the root segment of
an overlay program, unless they are repositioned with an INSERT state­
ment.

88 MVS/ESA Linkage Editor and Loader User's Guide

rl . '
''--.)

u

u

4. Specifying an external reference for restricted no-call or never-call by
means of the LIBRARY statement prevents the external reference from
being r~solved by automatic inclusion of the necessary module from an
automatic call library; it does not prevent the external reference from being
resolved if the module necessary to resolve the reference is specifically
included or is included as part of an input module.

Example: The following example shows all three uses of the LIBRARY state­
ment:

II
I ITESTLIB

EXEC
DD

PGM=HEWL,PARM= 1 LET,XREF,LIST 1

DSNAME=TEST,DISP=SHR, ...

llSYSLIN DD *
LIBRARY TESTLIB(DATE,TIME),(FICACOMP),*(STATETAX)

I*

As a result, members DATE and TIME from the additional library TESTLIB are
used to resolve external references. FICACOMP and STATETAX are not
resolved; however, because the references remain unresolved, the LET option
must be specified on the EXEC statement if the module is to be marked execut­
able. In addition, STATETAX will not be resolved in any subsequent reproc­
essing by the linkage editor.

Chapter 5. Specifying an Operation with Control Statements 89

MODE Statement
The MODE statement specifies the residence mode for the output load module
and/or the addressing mode for all the entry points into the load module (the
main entry point, its true aliases, and all the alternate entry points).

FORMAT: The format of the MODE statement is as follows:

I MODE modespec[,modespec]

modespec
is either of the following:

• The designation of an addressing mode for the output load module by one
of the following:

AMODE(24)

AMODE(31)

AMODE(ANY)

• The designation of residence mode for the output load module by one of the
following:

RMODE(24)

RMODE(ANY)

Placement: The MODE control statement can be placed before, between, or
after object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Notes:

n

n
,/

1. The residence mode assigned by the MODE control statement overrides the
residence mode accumulated from the input control sections and private
code. The residence mode assigned by the MODE control statement also
overrides the residence mode assigned by the RMODE parameter in the
PARM field of the EXEC statement. 1~

2. The addressing mode assigned by the MODE control statement overrides
the separate addressing modes found in the ESD data for the control
sections within which the entry points are located. The addressing mode
assigned by the MODE control statement overrides the addressing mode
assigned by the AMODE parameter in the PARM field of the EXEC state­
ment.

3. If more than one MODE control statement is encountered in the link-edit of
a load module, the last valid mode specification is used. Likewise, if a
mode specification occurs more than once within a MODE statement, the
last valid mode specification is used.

90 MVS/ESA Linkage Editor and Loader User's Guide

u

4. If only one value, either AMODE or RMODE, is specified in the MODE
control statement, the other value is implied according to the following
table:

Value Specified Value Implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see below

RMODE=ANY AMODE=31

If only an RMODE of 24 is specified, no overriding AMODE value is
·assigned; instead, the AMODE value in the ESD data for the main entry
point, a true alias, or an alternate entry point is used in generating its
respective directory entry.

5. In generating a directory entry for either the main entry point, a true alias,
or an alternate entry point, the linkage editor validates the combination of
the AMODE value and the RMODE value, as specified by the user in the
MODE control statement(s), according to the table below:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMODE=31 valid valid

AMODE=ANY valid invalid

6. If the AMODE/RMODE combination resulting from the MODE control
statement(s) is invalid, an error message is issued and the linkage editor
ignores the MODE control statement(s) as the source of AMODE/RMODE
data.

Example: In the following example, an output load module, named NEWMOD, is
created; it is given a true alias of TESTMOD; the residence mode for the load
module is ANY; the addressing mode for both the main entry point, NEWMOD,
and the true alias, TESTMOD, is 31.

//SYSLMOD DD DSN=TESTLOAD, DISP=MOD, ...
//SYSLIN DD *

/*

MODE AMODE(31),RMODE(ANY)
ALIAS TESTMOD
NAME NEWMOD

Chapter 5. Specifying an Operation with Control Statements 91

NAME Statement
The NAME statement specifies the name of the load module created from the ~
preceding input modules, and serves as a delimiter for input to the load ')
module. As a delimiter, the NAME statement allows multiple load module proc-
essing in one linkage editor job step. The NAME statement can also indicate
that the load module replaces an identically named module in the output
module library.

Format: The format of the NAME statement is:

j NAME j membemame[(R)]

membername
is the name to be assigned to the load module that is created from the pre­
ceding input modules.

(R)
indicates that this load module replaces an identically named module in the
output module library. If the module is not a replacement, the parenthe­
sized value (R) should not be specified.

Placement: The NAME statement is placed after the last input module or
control statement that is to be used for the output module.

Notes:

1. Any ALIAS statement used must precede the NAME statement.

2. A NAME statement found in a data set other than the primary input data set
is invalid. The statement is ignored.

Example: In the following example, two load modules, RDMOD and WRTMOD,
are produced by the linkage editor in one job step:

llSYSLMOD DD
llNEWMOD DD
I ISYSLIN DD
II DD

I*

NAME RDMOD (R)
INCLUDE NEWMOD
NAME WRTMOD

DSNAME=AUXMODS,DISP=MOD, ...
DSNAME=&&WRTMOD,DISP=OLD
DSNAME=&&RDMOD,DISP=OLD
*

As a result, the first module is named RDMOD and replaces an identically
named module in the output module library AUXMODS; the second module is
named WRTMOD and is added to the library.

11)

92 MVS/ESA Linkage Editor and Loader User's Guide

ORDER Statement

(_)

/'

u

The ORDER statement indicates the sequence in which control sections or
named common areas appear in the output load module. The control sections
or named common areas appear in the sequence in which they are specified on
the ORDER statement. When multiple ORDER statements are used, their
sequence further determines the sequence of the control sections or named
common areas in the output load module; those named on the first statement
appear first, and so forth.

Format: The format of the ORDER statement is:

ORDER {common area name[(P)]lcsectname[(P)]}, ...

common area name
is the name of the common area to be sequenced.

csectname

(P)

is the name of the control section to be sequenced.

indicates that the starting address of the control section or named common
area is to be on a page boundary within the load module. The control
sections or common areas are aligned on 4K-byte page boundaries.

Placement: An ORDER statement can usually be placed before, between, or
after object modules or other control statements. However, when link-editing
the nucleus, any ORDER statements used should precede the INCLUDE state­
ments.

Notes:

1. A control section or common area can be named on only one ORDER state­
ment. If the same name is used more than once, except when it is the last
operand on one ORDER statement and the first operand on the next, the
name is ignored, as is the balance of the control statement on which it
appears.

2. The control sections and common areas named as operands can appear in
either the primary input or the automatic call library, or both.

3. If a control section or a named common area is changed by a CHANGE or
REPLACE control statement and sequencing is desired, specify the new
name on the ORDER statement. The ORDER statement refers to the control
section by its new name.

Example: In this example, the control sections in the load module LDMOD are
arranged by the linkage editor according to the sequence specified on ORDER
statements. The page boundary alignments and the control section sequence
made as a result of these statements are shown in Figure 23 on page 94.
Assume each control section is 1K byte in length.

Chapter 5. Specifying an Operation with Control Statements 93

Figure 23. Output Load Module for ORDER Statement Example. The control section name PART1 is changed by
a CHANGE statement to FSTPART. The ORDER statement refers to the control section by its new
name.

94 MVS/ESA Linkage Editor and Loader User 1 s Guide

n

u

u

1(\ v

OVERLAY Statement
Use of the INSERT statement and the OVERLAY statement are not recom­
mended. They are shown here for compatibility. For more information on the
use of the OVERLAY statement, see "Appendix C. Designing and Specifying
Overlay Programs" on page 177.

The OVERLAY statement indicates either the beginning of an overlay segment,
or of an overlay region. Because a segment or a region is not named, the pro­
grammer identifies it by giving its origin (or load point) a symbolic name. This
name is then used on an OVERLAY statement to signify the start of a new
segment or region.

Format: The format of the OVERLAY statement is:

I OVERLAY symbo/(REGION)

symbol
is the symbolic name assigned to the origin of a segment. This symbol is
not related to external symbols in a module.

(REGION)
specifies the origin of a new region.

Placement: The OVERLAY statement must precede the first module of the next
segment, the INCLUDE statement specifying the first module of the segment, or
the INSERT statement specifying the control sections to be positioned in the
segment.

Notes:

1. The OVL Y option must be specified on the EXEC statement when OVERLAY
statements are to be used.

2. The sequence of OVERLAY statements should reflect the order of the seg­
ments in the overlay structure from top to bottom, left to right, and region
by region.

3. No OVERLAY statement should precede the root segment.

Example: The following OVERLAY and INSERT statements specify the overlay
structure in Figure 24 on page 96.

Chapter 5. Specifying an Operation with Control Statements 95

REGION 1

I
csc

1

II EXEC PGM=HEWL,PARM='OVLY,XREF,LIST'

llSYSLIN DD DSNAME=&&OBJ, ...
II DD *

INSERT CSA
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE,CSF
OVERLAY THREE(REGION)
INSERT CSH
OVERLAY THREE
INSERT CSI

I*

T
CSA

I
I ONE

CSB

I
TWO I

CSD

1

CSE

t
CSF

J_
---1---r--------------------------

THREE I
REGION 2 CSH CSI

1 1
Figure 24. Overlay Structure for OVERLAY Statement Example

96 MVS/ESA Linkage Editor and Loader User 1 s Guide

r1'J

PAGE Statement

(_)

u

The PAGE statement aligns a control section or named common area on a
4K-byte page boundary in the load module.

Format: ·The format of the PAGE statement is:

I PAGE j {common area namelcsectname}, ...

common area name
is the name of the common area to be aligned on a page boundary.

csectname
is the name of the control section to be aligned on a page boundary.

Placement: The PAGE statement can be placed before, between, or after object
modules or other control statements.

Notes:

1. If a control section or a named common area is changed by a CHANGE or
REPLACE control statement, and page alignment is wanted, specify the new
name in the PAGE statement.

2. The control sections and common areas named as operands can appear in
either the primary input or the automatic call library, or both.

Example: In this example, the control sections in the load module LDMOD are
aligned on page boundaries as specified in the following PAGE statement:

PAGE ALIGN,BNDRY4K,EIGHTK

The job control statements and linkage editor control statements as well as the
output load module are shown in Figure 25 on page 98. Assume each control
section is 3K bytes in length.

Chapter 5. Specifying an Operation with Control Statements 97

JCL and Control Statements

//LKED

//SYSLMOD
//SYSLIN

PAGE
INCLUDE

EXEC PGM=HEWL,PARM=, ...

DD DSNAME= PVTLIB,DISP=OLD, ...
DD *
ALIGN, BNDRY 4K,EIGHTK
SYSLMOD (LDMOD)

Figure 25. Output Load Module for PAGE Statement Example

98 MVS/ESA Linkage Editor and Loader User's Guide

Output Load Module

LDMOD

OK ,..e:_ _______ _,.

ALIGN

Empty Space
Due to Boundary
Alignment

4K 1-------'-----......-
BNDRY4K

Empty Space
Due to Boundary
Alignment 8K ,____ _______

EIGHTK

(~
}

/~
f)

ii)

n

/'
I. I

_.,)

u

/' u

I \ u

u

REPLACE Statement
The REPLACE statement specifies one or more of the following:

• The replacement of one control section with another

• The deletion of a control section

• The deletion of an entry name

When a control section is replaced, all references within the input module to the
old control section are changed to the new control section. Any external refer­
ences to the old control section from other modules are unresolved unless
changed.

When a control section is deleted, the control section name is also deleted from
the external symbol dictionary, unless references are made to the control
seetion from within the input module. If there are any such references, the
control section name is changed to an external reference. External references

from other modules to a deleted control section also remain unresolved.

When deleting an entry name, if there are any references to it within the same
input module, the entry name is changed to an external reference.

Format: The format of the REPLACE statement is:

REPLACE { csectname-1 [(csectname-2)],entryname}

csectname
is the name of a control section. If only csectname-1 is used, the control
section is deleted; if csectname-2 is also used, the first control section is
replaced with the second.

entryname
is the entry name to be deleted.

Placement: The REPLACE statement must immediately precede either (1) the
module containing the control section or entry name to be replaced or deleted,

or (2) the INCLUDE statement specifying the module. The scope of the
REPLACE statement is across the immediately following module (object mod~le
or load module). The END record in the immediately following object module or
the end-of-module indication in the load module terminates the action of the

REPLACE statement. If the REPLACE statement is the last control statement in
the SYSLIN data set, and there are unresolved external references to be
resolved from SYSLIB, the REPLACE function operates on the first module from

SYSLIB by an AUTO CALL.

Notes:

1. Unresolved external references are not deleted from the output module

even though a deleted control section contains the only reference to a

symbol.

2. When some but not all control sections of a separately assembled module

are to be replaced, A-type address constants that refer to a deleted symbol

will be incorrectly resolved, unless the entry name is at the same displace­

ment from the origin in both the old and the new control sections.

Chapter 5. Specifying an Operation with Control Statements 99

3. If no INCLUDE statement follows the REPLACE statement, one module may
be left out of AUTO CALL. Message 1EW0132 is issued.

4. If the control section identified as csectname-1 (specified on the REPLACE
statement) is misspelled, the control section will not be replaced or deleted.
Linkage editor output, such as the cross-reference listing and module map,
can be used to verify each change.

5. Restrictions apply whenever both CHANGE and REPLACE operations are
performed on the same included object or load module. At times you may
need to delete one of several control sections and, at the same time,
rename references to that control section (all within the scope of the same
INCLUDE) to some other external symbol. To change more than one entry
name within the "to be deleted" control section to a single new external
symbol, you must specifically include the control section that resolves the
new external symbol, prior to the change operation.

Example: In the following example, assume that control section INT? is in
member LOANCOMP and that control section INT8, which is to replace INT?, is
in data set &&NEWINT. Also assume that control section PRIME in member
LOANCOMP is to be deleted.

//NEWMOD DD
//OLDMOD DD
//SYSLIN DD

ENTRY MAINENT
INCLUDE NEWMOD

DSNAME=&&NEWINT,DISP=(OLD,DELETE)
DSNAME=PVTLIB,DISP=OLD, ...
*

REPLACE INT7(INT8),PRIME
INCLUDE OLDMOD(LOANCOMP)

/*

As a result, INT? is removed from the input module described by the OLDMOD
DD statement, and INT8 replaces INT?. All references to INT? in the input
module now refer. to INT8. Any references to INT? from other modules remain
unresolved. If there are no references to PRIME in LOANCOMP, control section
PRIME is deleted; the control section name is also deleted from the external
symbol dictionary.

100 MVS/ESA Linkage Editor and Loader User's Guide

i~
I

~
\ /

/
!'.

~)

u

u

u

SETCODE Statement
The SETCODE statement assigns the specified authorization code to the output
load module. The authorization code is placed in the directory entry for the
output load module.

Format: The format of the SETCODE statement is as follows:

I SETCODE I AC(authorizationcode)

authorizationcode
is 1 to 3 decimal digits specifying a value from 0 to 255.

Placement: A SETCODE statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME state­
ment for the module, if one is present.

Notes:

1. The authorization code assigned by the SETCODE statement overrides the
authorization code assigned by the AC parameter in the PARM field of the
EXEC statement.

2. If more than one SETCODE statement is encountered in the link-edit of a
load module, the last valid authorization code assigned is used.

3. The operand 1 AC() 1 results in an authorization code of zero.

Example: In the following example, an authorization code of 1 is assigned to
the output load module MOD1.

llLKED
llSYSPRINT
llSYSUTl
llSYSLMOD
I ISYSLIN
II
II

SET CODE
NAME

/*

EXEC
DD
DD
DD
DD

DD

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=SYSl.LINKLIB,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS)
UNIT=SYSDA
*
AC(l)
MODl (R)

Chapter 5. Specifying an Operation with Control Statements 101

SETSSI Statement
The SETSSI statement specifies hexadecimal information to be placed in the
system status index of the directory entry for the output module.

Format: The format of the SETSSI statement is:

I SETSSI xxxxxxxx

xxxxxxxx
represents 8 hexadecimal characters (0 through 9 and A through F) to be
placed in the 4-byte system status index of the output module library direc­
tory entry.

Placement: The SETSSI statement can be placed before, between, or after
object modules or other control statements. If one is present, it must precede
the NAME statement for the module.

Note: A SETSSI statement must be provided whenever an IBM-supplied load
module is reprocessed by the linkage editor. If the statement is omitted, no
system status index information is present.

102 MVS/ESA Linkage Editor and Loader User's Guide

,n

n . J

n
/

u

(\ u

u

Chapter 6. Editing a Control Section

Input Modules

The linkage editor performs editing functions either automatically or as directed
by control statements. These editing functions provide for program modification
on a control section basis. That is, they make it possible to modify a control
section within an object or load module, without recompiling the entire source
program.

The editing functions can modify .either an entire control section or external
symbols within a control section. Control sections can be deleted, replaced, or
arranged in sequence; external symbols can be deleted or changed. (External
symbols are control section names, entry names, external references, named
common areas, or pseudoregisters.)

Whatever function is used, it is requested in reference to an input module. The
resulting output load module reflects the request. That is, no actual change,
deletion, or replacement is made to an input module. The requested alterations
are used to control linkage editor processing (Figure 26).

JCL and Control Statements Output Load Module

MODA1 MODA1A2

l~TA 1J1 " //SYSLMOD . . j\ "- //MODATWO
.___ ______ _,.. • //SYSLIN

CSECT1

DD DSNAME= NEWLIB(MODA1A2), ...
DD DSNAME=MODA2, .. .

MODA2

CSECT1

CSECT2

CSECT3

II
ENTRY

/" REPLACE
/ INCLUDE

DD DSNAME=MODA1, .. .
DD *
CSECT3
CSECT2(CSECT A)
MODATWO

CSECTA

CSECT3

Figure 26. Editing a Module

Editing Conventions
In requesting editing functions, certain conventions should be followed to
ehsure that the specified modification is processed correctly. These con­
ventions concern the following items:

• Entry points for the new module

• Placement of control statements

• Identical old and new symbols

Chapter 6. Editing a Control Section 103

Entry Points: Each time the linkage editor reprocesses a load module, the
entry point for the output module should be specified in one of two ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of an input object module,
if one is present. If the entry point specified in the assembler-produced
END statement is not defined in the object module, the entry name must be
defined as an external reference.

The entry point assigned must be defined as an external name within the
resulting load module.

Placement of Control Statements: The control statement (such as CHANGE or
REPLACE) used to specify an editing function must precede either the module
to be modified, or the INCLUDE statement that specifies the module. If an
INCLUDE statement specifies several modules, the CHANGE or REPLACE state­
ment applies only to the first module included.

Identical Old and New Symbols: The same symbol should not appear as both
an old external symbol and a new external symbol in one linkage editor run. If
a control section is to be replaced by another control section with the same
name, the linkage editor handles this automatically (see "Automatic
Replacement" on page 107).

104 MVS/ESA Linkage Editor and Loader User's Guide

Ir-\
)

:tj
I

,!)

u

u

Changing External Symbols
The linkage editor can be directed to change an external symbol to a new
symbol while processing an input module. External references and address
constants within the module automatically refer to the new symbol. External
references from other modules to a changed external symbol must be changed
with separate control statements.

Both the old and the new symbols are specified on either a CHANGE control
statement or a REPLACE control statement. The use of the old symbol within
the module determines whether the new symbol becomes a control section
name, an entry name, or an external reference. The old symbol appears first,
followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or deletes
an entry name; if the symbols on a REPLACE statement are control section
names, the entire control section is replaced or deleted (see "Replacing Control
Sections" on page 107).

The CHANGE statement must immediately precede either the input module that
contains the external symbol to be changed, or the INCLUDE statement that
specifies the input module. The scope of the CHANGE statement is across the
immediately following module (object module or load module). The END record
in the immediately following object module or the end-of-module indication in
the load module terminates the action of the CHANGE statement.

In the following example, assume that SUBONE is defined as an external refer­
ence in the input load module. A CHANGE statement is used to change the
external reference to NEWMOD (Figure 27 on page. 106).

llSYSLMOD
II
I ISYSLIN

ENTRY
CHANGE
INCLUDE
NAME

I*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=3380,
VOLUME=SER=PVT002

DD *
BEGIN
SUBONE(NEWMOD)
SYSLMOD(MAINROUT)
MAI NROUT (R)

Chapter 6. Editing a Control Section 105

Input Module

MAIN ROUT

BEGIN ENTRY

CALL SUBONE

CALL SUBONE

CALL SUBONE

JCL and Control Statements

//SYSLMOD
//SYSLIN

ENTRY
CHANGE

.. INCLUDE
NAME

I*

DD DSNAME= PVTLIB, ...
DD
MAINEP
SUBONE(NEWMOD), BEGIN(MAINEP)
SYSLMOD(MAINROUT)
MAINROUT(R)

Output Load Module

1'\
MAINROUT

I

MAI NEP ENTRY

CALL NEWMOD

CALL NEWMOD

CALL NEWMOD

(~
Figurn 27. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is changed to
NEWMOD. Note also that the INCLUDE statement specifies a ddname of
SYSLMOD. This allows a library to be used both as input and as the output
module library.

More than one change can be specified on the same control statement. If, in ~
the same example, the entry point is also to be changed, the two changes can /
be specified at once (see Figure 27).

llSYSLMOD
II
I ISYSLIN

ENTRY
CHANGE
INCLUDE
NAME

I*

DD DSNAME=PVTLIB,DISP~OLD,UNIT=3380,
VOLUME=SER=PVT002

DD *
MAINEP
SUBONE(NEWMOD),BEGIN(MAINEP)
SYSLMOD(MAINROUT)
MAINROUT(R)

The main entry point is now MAINEP instead of BEGIN. The ENTRY control
statement specifies the new entry point, because this is the source of the name
that is entered in the library directory entry for the load module's entry point.

106 MVS/ESA Linkage Editor and Loader User's Guide

,()
\)

U Replacing Control Sections

u

An entire control section can be replaced with a new control section. Control
sections can be replaced either automatically or with a REPLACE control state­
ment. Automatic replacement acts upon all input modules; the REPLACE state­
ment acts only upon the module that follows it.

Notes:

1. Any CSECT identification (IDR) records associated with a particular control
section are also replaced.

2. For Assembler language programmers only: When some but not all control
sections of a separately assembled module are to be replaced, A-type
address constants that refer to a deleted symbol will be incorrectly resolved
unless the entry name is at the same displacement from the origin in both
the old and the new control section. If all control sections of a separately
assembled module are replaced, no restrictions apply.

3. A restriction applies when both a CHANGE operation and a REPLACE oper­
ation are performed on the same included object or load module. This situ­
ation occurs when you must delete one or more control sections and
rename references to symbols within the removed control section to some
other external symbol (all within the scope of a single INCLUDE). When you
must change more than one entry name within the '·'to be deleted" control
section to a single new external symbol, you must specifically include the
control section that resolves the new external symbol, prior to the CHANGE
operation.

Automatic Replacement
Control sections are automatically replaced if both the old and the new control
section have the same name. The first of the identically named control sections
processed by the linkage editor is made a part of the output module. All subse­
quent identically named control sections are ignored; external references to
identically nar:ned control sections are resolved with respect to the first one
processed. Therefore, to cause automatic replacement, the new control section
must have the same name as the control section to be replaced, and must be
processed before the old control section.

Caution: Automatic replacement applies to duplicate control section names
only; if duplicate entry points exist in control sections with different names, a
REPLACE control statement must be used to specify the entry point name. If a
control section being automatically replaced contains unresolved external refer­
ences and the control section replacing it does not, the parameter NCAL must
be specified or the unresolved external references must be explicitly deleted
using the REPLACE statement or marked for restricted no-call or never-call
using the LIBRARY statement; otherwise, the unresolved external reference is
retained.

Note on Overlay Programs: When identically named control sections appear in
modules being placed in an overlay structure, the second and any subsequent
control sections with that name are ignored. This occurs whether the modules
are in segments in the same path or in exclusive segments. Resolution of
external references may therefore cause invalid exclusive references. Invalid
exclusive references cause the linkage editor to mark the output module not

Chapter 6. Editing a Control Section 107

executable unless the exclusive call (XCAL) option is specified on the EXEC
statement (see "Chapter 4. Specifying JCL to Run a Linkage Editor Job" on
page 43).

108 MVS/ESA Linkage Editor and Loader User's Guide

!~
. i/

n

Example 1

u

Example 2

u

u

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

llSYSLMOD
II

DD DSNAME=PVTLIB,DISP=OLD,UNIT=3380,
VOLUME=SER=PVT002

I ISYSLIN DD *

Object Deck for READ
Object Deck for WRITE

I*

ENTRY
INCLUDE
NAME

READ IN
SYSLMOD(INOUT)
INOUT (R)

The output load module contains the new READ control section, the new WRITE
control section (replacing the old WRITE control section in member INOUT), and
all remaining control sections from INOUT.

A large load module named PAYROLL, originally written in COBOL, contains
many control sections. Two control sections, FICA and STATETAX, were recom­
piled and passed to the linkage editor job step in the &&OBJECT data set.
Then, by including the load module PAYROLL (a member of the partitioned data
set LIB001) as well as the output of the language translator, the modified
control sections automatically replace the identically named control sections
(Figure 28 on page 110).

llSYSLMOD DD DSNAME=LIB002(PAYROLL),DISP=OLD,
II UNIT=3380,VOLUME=SER=LIB002
llSYSLIB DD DSNAME=SYSl.COBLIB,DISP=SHR
llOLDLOAD DD DSNAME=LIB001,DISP=(OLD,DELETE),
II UNIT=3380,VOLUME=SER=LIB001
llSYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
II DD *

/*

INCLUDE OLDLOAD(PAYROLL)
ENTRY INITl

Chapter 6. Editing a Control Section 109

Input Modules

&&OBJECT

FICA
(new)

STATETAX
(new)

LIB001
(Payroll)

MAINROUT

OVERTIME

FICA
(old)

STATETAX
(old)

FEDTAX

ILLACC

VAKTION

JCL and Control Statements

//SYSLMOD
//OLDLOAD
//SYSLIN
II

INCLUDE
ENTRY

l•

DD DSNAME= LIB002(PAYROLL), ...
DD DSNAME= LIB001,. _.
DD DSNAME =&&OBJECT, _ . _
DD *
OLDLOAD(PAYROLL)
INIT1

Output Load Module

LIB002
(Payroll)

FICA
(new)

STATETAX
(new)

MAINROUT

OVERTIME

FEDTAX

ILLACC

VAKTION

Figure 28. Automatic Replacement of Control Sections

The output module contains the modified FICA and STATETAX control sections
and the rest of the control sections from the old PAYROLL module. The main
entry point is INIT1, and the output module is placed in a library named LIB002.
The COBOL automatic call library is used to resolve any external references
that may be unresolved after the SYSLIN data sets are processed.

110 MVS/ESA Linkage Editor and Loader User 1 s Guide

r-j)
I I

I~

:'.)

u

u

REPLACE Statement
The REPLACE statement is used to replace control sections when the old and
the new control sections have different names. The name of the old control
section appears first, followed by the name of the new control section in paren­
theses. The REPLACE statement must precede either the input module that
contains the control section to be replaced, or the INCLUDE statement that
specifies the input module. The scope of the REPLACE statement is across the
immediately following module (object module or load module). The END record
in the immediately following object module or the end-of-module indication in
the load module terminates the action of the REPLACE statement.

An external reference to the old control section from within the same input
module is resolved to the new control section. An external reference to the old
control section from any other module becomes an unresolved external refer­
ence unless one of the following occurs:

• The external reference to the old control section is changed to the new
control section with a separate CHANGE control statement.

• The same entry name appears in the new control section or in some other
control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace one control
section with another of a different. name. Assume that the old control section
SEARCH is in library member TBLESRCH, and that the new control section
BINSRCH is in the data set &&OBJECT, which was passed from a previous step
(Figure 29 on page 112).

llSYSLMOD
II
I ISYSLIN
II

/*

ENTRY
REPLACE
INCLUDE
NAME

DD

DD
DD
READ IN

DSNAME=SRCHRTN,DISP=OLD,UNIT=3380,
VOLUME=SER=SRCHLIB
DSNAME=&&OBJECT,DISP=(OLD,DELETE)
*

SEARCH (BI NSRCH)
SYSLMOD(TBLESRCH)
TBLESRCH (R)

Chapter 6. · Editing a Control Section 111

Input Modules

&&OBJECT

BINSRCH

TBLESRCH

READIN ENTRY

CALL SEARCH

SEARCH

JCL and Control Statements

}

//SYSLMOD

,---· //SYSLIN II
ENTRY
REPLACE
INCLUDE
NAME

'*

DD DSNAME = SRCHRTN
DD DSNAME =&&OBJECT
DD *
READ IN
SEARCH(BINSEARCH)
SYSLMOD(TBLESRCH)
TBLESRCH(R)

Output Load Module

TBLESRCH

READIN ENTRY

CALL BINSRCH

BINSRCH

Figure 29. Replacing a Control Section with the REPLACE Control Statement

The output module contains BINSRCH instead of SEARCH; any references to
SEARCH within the module refer to BINSRCH. Any external references to
SEARCH from other modules will not be resolved to BINSRCH.

Deleting a Control Section or Entry Name
The REPLACE statement can be used to delete a control section or an entry
name. The REPLACE statement must immediately precede either the module
that contains the control section or entry name to be deleted or the INCLUDE
statement that specifies the module. Only one symbol appears on the
REPLACE statement; the appropriate deletion is made depending on how the
symbol is defined in the module.

If the symbol is a control section name, the entire control section is deleted.
The control section name is deleted from the external symbol dictionary only if
no address constants refer to the name from within the same input module. If
an address constant does refer to it, the control section name is changed to an
external record.

The preceding is also true of an entry name to be deleted. Any references to it
from within the input module cause the entry name to be changed to an
external reference.

These editor-supplied external references, unless resolved with other input
modules, cause the automatic library call mechanism to attempt to resolve
them. Also, the deletion of a control section or an entry name may cause
external references from other input modules to be unresolved. Either condi- r-'\
tion can cause the output load module to be marked not executable.

1

Y

112 MVS/ESA Linkage Editor and Loader User's Guide

u

(_)

u

u

u

Input Module

CODEROUT

ENCODE

CODER

DECODE

If a deleted control section contains an unresolved external reference, the refer­
ence remains.

If a REPLACE statement, used to delete a CSECT, is the last control statement
and there are external references to be resolved from SYSLIB, the delete
request operates on the first module from SYSLIB and deletes it. The external
reference remains unresolved.

Note: When a control section is deleted, any CSECT identification data associ­
ated with that control section is also deleted.

In the following example, control section CODER is to be deleted (Figure 30).

llSYSLMOD
II
llSYSLIN

DD DSNAME=PVTLIB,DISP=OLD,UNIT=3380,
VOLUME=SER=PVT002

DD *

I*

ENTRY
REPLACE
INCLUDE
NAME

STARTl
CODER
SYSLMOD(CODEROUT)
COD ERO UT (R)

JCL and Control Statements

//SYSLMOD
//SYSLIN

ENTRY
REPLACE
INCLUDE

DD DSNAME=PVTLIB, ...
DD
START1
CODER

>---~ NAME
/l

SYSLMOD(CODEROUT)
CODEROUT(R)

Output Load Module

CODE ROUT

ENCODE

DECODE

Figure 30. Deleting a Control Section

The control section CODER is deleted. If no address constants refer to CODER
from other control sections in the module, the control section name is also
deleted. If address constants refer to CODER, the name is retained as an
external reference.

Chapter 6. Editing a Control Section 113

Ordering Control Sections or Named Common Areas
The sequence of control sections or named common areas in an output load
module can be specified by using the ORDER control statement.

Individual control sections or named common areas are arranged in the output
load module according to the sequence in which they appear on the ORDER
control statement. Multiple ORDER control statements can be used in a job
step. The sequence of the ORDER statements determines the sequence of the
control sections or named common areas in the load module.

Any control sections or named common areas that are not specified on ORDER
statements appear last in the output load module. If a control section or named
common area is changed by a CHANGE or REPLACE control statement, the new
name must be used on the ORDER statement.

:~
I I

In the following example, ORDER statements are used to specify the sequence (IJ, j,
of five of the six control sections in an output load module. A REPLACE state-
ment is used to replace the old control section, SESECTA, with the new control
section, CSECTA, from the data set &&OBJECT, which was passed from a pre-
vious step. Assume that the control sections to be ordered are found in library
member MAINROOT (Figure 31 on page 115).

llSYSLMOD
II
I ISYSLIN
II

/*

ORDER
REPLACE
ORDER
INCLUDE
NAME

DD

DD
DD

DSNAME=PVTLIB,DISP=OLD,
UNIT=3380,VOLUME=SER=PVT002
DSNAME=&&OBJECT,DISP=(OLD,DELETE)
*
MAINEP,SEGMT1,SEG2
SESECTA(CSECTA)
CSECTA,CSECTB
SYSLMOD(MAINROOT)
MAIN ROOT

114 MVS/ESA Linkage Editor and Loader User• s Guide

u

u

u

u

Input Module• JCL and Control Statements Output Load Module

&&OBJECT MAIN ROOT / J l~csEcrA ~I MA!NEP

MAIN ROOT

CSECTB

SESECTA

MAINEP

LASTEP

SEGMT1

SEG2

I I

//SYSLMOD
//SYSLIN
II

/f

ORDER
REPLACE
ORDER
INCLUDE
NAME

EXEC PGM = HEWL

DD DSNAME= PVTLIB, ...
DD DSNAME=&&OBJECT, ...
DD '*

MAINEP(P) ,SEGMT1,SEG2
SESECT A(CSE CT A)
CSE CT A, CSE CT A,CSECTB (P)
SYSLMOD(MAINROOT)
MAINROOT

SEGMT1

SEG2

CSECTA

CSECTB

LASTEP

Figure 31. Ordering Control Sections

In the load module MAINROOT, the control sections MAINEP, SEGMT1, SEG2,
CSECTA, and CSECTB are rearranged in the output load module according to
the sequence specified in the ORDER statements. A REPLACE statement is
used to replace control section SESECT A with control section CSE CT A from
data set &&OBJECT, which was passed from a previous step. The ORDER
statement refers to the new control section CSECTA. Control section LASTEP
appears after the other control sections in the output load module, because it
was not included in the ORDER statement operands.

Chapter 6. Editing a Control Section 115

Aligning Control Sections or Named Common Areas on Page
Boundaries

A control section or named common area can be placed on a page boundary
(to effect a lower paging rate and thus make more efficient use of real storage)
by using either the ORDER statement or the PAGE statement.

The control section or common area to be aligned is named on either the PAGE
statement or the ORDER statement with the P operand. Either the PAGE state­
ment or the ORDER statement (with the P operand) causes the linkage editor to
locate the starting address of the control section or common area on a page
boundary within the load module.

In the fol.lowing example, the control sections RAREUSE and MAINRT are
aligned on page boundaries by PAGE and ORDER control statements. Control
sections MAIN RT, CSECT A, and SESECT1 are sequenced by the ORDER control
statement. Assume that each control section, except for SESECT1 and
RAREUSE, is 4K bytes in length (Figure 32 on page 117).

llLKED

llSYSLMOD
II
I ISYSLIN

I*

EXEC PGM=HEWL,PARM=' ... I

DD DSNAME=OWNLIB,DISP=OLD,UNIT=3380,
VOLUME=SER=OWN002

DD *
PAGE RAREUSE
ORDER MAINRT(P),CSECTA,SESECTl
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT

116 MVS/ESA Linkage Editor and Loader User 1 s Guide

i~

(
_.,,)

(__)

Input Module

MAIN ROOT

CSECTA

RARE USE

SESECT1

BOTTOM

MAIN RT

JCL and Control Statements Output Load Module

MAIN ROOT

//LKED EXEC
MAIN RT

PGM=HEWL

//SYSLMOD DD DSNAME=OWNLIB, ...
//SYSLIN DD * CSECTA

PAGE RARE USE
ORDER MAINRT(P) ,CSE CT A,SESECT1
INCLUDE SYSLMOD(MAINROOT)
NAME MAIN ROOT

'* SESECT1

RA REUSE

BOTTOM

U Figure 32. Aligning Control Sections on Page Boundaries

/ \ u

u

The linkage editor places the control sections MAINRT and RAREUSE on page

boundaries. Control sections MAINRT, CSECTA, and SESECT1 are sequenced

as specified in the ORDER statement. RAREUSE, while placed on a page

boundary, appears after the control sections specified in the ORDER statement

because it was not included. The control section BOTTOM comes after

RAREUSE because it appeared after RAREUSE in the input module.

Chapter 6. Editing a Control Section 117

n
J

I~
I

I~
i)

n

() Chapter 7. Interpreting Linkage Editor Output
'...._..;

u

I u

/ u

The linkage editor produces two types of output: a load module and diagnostic
information. The principal output of the linkage editor is the output load
module. The linkage editor always places this load module in a partitioned
data set. In addition, the linkage editor issues diagnostic information. Error
and/or warning messages, module disposition ·data, and optional diagnostic
output are stored in the diagnostic output data set.

Output Load Module
The linkage editor produces one or more load modules from the input proc­
essed. When more than one load module is produced, the process is called
multiple load module processing.

Whether or not the linkage editor produces one or more load modules, the fol­
lowing apply:

• The load module is stored in a partitioned data set called the output module
library.

• The load module must have an entry point; if the programmer has not
assigned one, the linkage editor does.

• The output load module is assigned an authorization code.

• During processing, the linkage editor reserves and collects common areas,
as specified in the source language program.

• During processing, the linkage editor accumulates total length and indi­
vidual displacements for each pseudoregister (external dummy section).

• During processing, the linkage editor collects and records identification data
in the CSECT identification (IDR) records.

• During the processing of a load module, the linkage editor deletes any
private code (unnamed control section) having a length of zero and any
identification data associated with it.

• The main entry point, each true alias, and each alternate entry point are
assigned an addressing mode (AMODE).

• The output load module is assigned a residence mode (RMODE).

Output Module Library
The linkage editor stores every load module it produces in the output module
library. This library is a partitioned data set that must be described by a DD
statement with the name SYSLMOD. The data set name of the library is also
specified on this DD statement. The data set can be either temporary (defined
with a double ampersand), or permanent (defined with a single or no amper­
sand). If the data set name is either SYS1.LINKLIB or SYS1.SVCLIB, it would be
advisable to re-IPL the system after linkage editor processing is complete. This
ensures that the corresponding data extent block (DEB) is updated to reflect
additional extents if secondary allocation of direct-access space was required.

Chapter 7. Interpreting Linkage Editor Output 119

Member Name

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the member name, to distinguish one load
module from another. The output module can be assigned aliases if the pro­
grammer wants the module either identified by more than one name or entered
for execution at several different points. Each member name and alias in a
load module library must be unique. The library member name and aliases for
each load module appear as separate entries in the library directory, along with
the module attributes. (Some module attributes can be assigned on the EXEC
statement for each linkage editor job step; see "Module Attributes" on
page 44.)

The member name of the output load module may be specified on the
SYSLMOD DD statement, in a NAME statement, or both. If the member name is
not specified, the default is TEMPNAME. If this default name has been previ­
ously assigned to a load module, using it again will cause a failure.

Assigned on SYSLMOD DD Statement: If the member name is assigned on the
SYSLMOD DD statement, the name is written in parentheses following the data
set name of the library. For example:

llSYSLMOD
II
II

DD DSNAME=MATHLIB(SQDEV) ,DISP=(NE~J,KEEP),
UNIT=3380,SPACE=(TRK,(100,10,1)),
VOLUME=SER=LIB002

The member name SQDEV is assigned to the load module, which is placed in
the new library named MATHUS.

Assigned on NAME Control Statement: If the member name is not specified on
the SYSLMOD DD statement, it may be assigned in a NAME control statement.
For example:

llSYSLMOD
I ISYSLIN
II

NAME
/*

DD
DD
DD
SQ DEV

DSNAME=MATHLIB,DISP=(NEW,KEEP), ...
DSNAME=&&OBJECT,DISP=(OLD,DELETE), •..
*

The member name SQDEV is assigned to the load module, which is placed in
the library named MATHUS.

Assigned on Both: If both the SYSLMOD DD statement and the NAME control
statement specify a member name, the names should be identical. If the
names are different, the name on the NAME control statement is used as the
member name.

Note: If a "link-edit and go" sequence of job steps is performed and the
program name in the EXEC statement of the "go" step contains a backward ref­
erence to the SYSLMOD DD statement in the "link-edit" step, the user must
ensure that the member name specified in the SYSLMOD DD statement is valid
and is not overridden by a NAME control statement.

120 MVS/ESA Linkage Editor and Loader User 1 s Guide

:!)

u

u

Alias Names

u

An example of an error:

//LKED

//SYSLMOD
II
//SYSLIN
II

NAME
/*
//GO

EXEC PGM=HD·JL

DD DSNAME=&&LOADST(GO),DISP=(NEW,
PASS), ...

DD DSNAME=&&OBJECT,DISP=(OLD,DELETE), ...
DD *
READ

EXEC PGM=*.LKED.SYSLMOD

Remember, this example is incorrect!

The EXEC statement of the GO step specifies that the module to be executed is
described in the LKED step in the SYSLMOD statement. The system tries to
locate a member named GO; however, the output module was assigned the
name READ.

Replacing an Identically Named Library Member: The output module can
replace an identically named member in the library in either of two ways. The
SYSLMOD DD statement names an existing data set, as follows:

//SYSLMOD
II

DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,
KEEP), ...

Or, the NAME control statement specifies the replace function, as follows:

NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new module of the
same name.

An output module can be assigned a maximum of 64 aliases, specified with the
ALIAS control statement. The aliases exist in addition to the member name of
the output module. When a module is referred to by an alias, execution begins
at the external name specified by the alias. If the name specified by the ALIAS
statement is not an external symbol within the module, the main entry point is
used.

For example, an output module is to be assigned two additional entry points,
CODE1 and CODE2. In addition, because of a misunderstanding, calling
modules have been written and tested using both ROUTONE and ROUT1 to

Chapter 7. Interpreting Linkage Editor Output 121

Entry Point

refer to the output module. Rather than correct the calling modules, an alter­
nate library member name (alias) is also assigned.

llSYSLMOD
II
I ISYSLIN
II

ALIAS
NAME

I*

DD

DD
DD

DSNAME=PVTLIB,DISP=OLD,UNIT=3380,
VOLUME=SER=LIB001
DSNAME=&&OBJECT,DISP=(OLD,DELETE)
*

CODE1,CODE2,ROUTONE
ROUTl

The names CODE1, CODE2, and ROUTONE appear in the library directory along
with ROUT1, the member name. Because CODE1 and CODE2 are defined as
external symbols within the output module, when these names are used, exe­
cution begins at these points. Control may be passed to the main entry point
by using either the member name ROUT1 or the alias ROUTONE.

Every load module must have a main entry point. The programmer may specify
the entry point in one of two ways:

• On a linkage editor ENTRY control statement.

• On an Assembler language END statement, which is the last statement in
the source program. The assembler produces an object module and an
END statement for the module. The assembler-produced END statement
contains an entry point only if the source language END statement con­
tained one.

From its input, the linkage editor selects the entry point for the load module as
follows:

1. From the first ENTRY control statement in the input.

2. If there is no ENTRY control statement in the input, from the first assembler-
produced END statement that specifies an entry point. fl

3. If no ENTRY control statement or no assembler-produced END statement
specifies an entry point, the first byte of the first control section of the load
module is used as the entry point.

In general, the entry point should be explicitly specified, because it is not
always possible to predict which control section will be first in the output
module.

When a load module is reprocessed by the linkage editor, it has no END state­
ment. Therefore, if the first byte of the first control section of the load module
is not a su.itable entry point, the entry point must be specified in one of two
ways:

• Through an ENTRY control statement.

;

• Through the assembler-produced END statement of another input module, n
which is being processed for the first time. This object module must be the
first such module to be processed by the linkage editor.

122 MVS/ESA Linkage Editor and Loader User's Guide

u

u

u

Authorization Code

An entry point other than the main entry point may be specified with an ALIAS
control statement. The symbol specified on the ALIAS statement must be
defined as an external symbol in the load module. Any reference to that
symbol causes execution of the module to begin at that point instead of at the
main entry point.

In the following example, assume that CDCHECK, CODE1, and CODE2 are
defined as external symbols in the output module:

I ISYSLIN DD
II DD

ENTRY CDCHECK

DSNAME=&&OBJECT,DISP=(OLD,DELETE)
*

ALIAS CODE1,CODE2,ROUTONE
NAME ROUTl

I*

As a result of the preceding control statements, CDCHECK is the main entry
point; CODE1 and CODE2 are alternate entry points. Any reference to
ROUTONE or ROUT1 causes execution to begin at CDCHECK; any reference to
CODE1 and CODE2 causes execution to begin at these points.

Each load module link-edited is assigned an authorization code that determines
whether or not the module is allowed to use restricted system services and
resources. A nonzero code allows the module to use restricted services and
resources; a zero code disallows that usage. The authorization code becomes
part of the directory entry for the module in the library containing the module.

Residence and Addressing Modes
Each entry in the library directory for the output load module (one for the main
entry point and one for each true alias or alternate entry point) contains an indi­
cation of the residence mode for the load module and an indication of the
addressing mode for that entry point. The entries for true aliases and alternate
entry points also contain an indication of the addressing mode for the main
entry point.

Reserving Storage in the Output Load Module
In FORTRAN, Assembler language, and PL/I, the programmer can create
control sections that reserve virtual storage areas that contain no data or
instructions. These control sections are called "common" or "static external"
areas, and are produced in the object modules by the language translators.
These common areas are used, for example, as communication regions for dif­
ferent parts of a program or to reserve virtual storage areas for data supplied
at execution time. These common areas are either named or unnamed (blank).

Collection of Common Areas: During processing, the linkage editor collects
common areas. That is, if two or more blank common areas are found in the
input, the largest blank common area is used in the output module; all refer­
ences to a blank common area refer to the one retained. If two or more named
common areas have the same name, the largest of the identically named
common areas is used in the output module; all references to the named
common areas refer to the one area retained.

Chapter 7. Interpreting Unkage Editor Output 123

Identically Named Common Areas and Control Sections: If a control section (as
is generated from a BLOCK DATA subprogram in FORTRAN, for example) and a :~
named common area have the same name, the length of the control section l
must be greater than or equal to the length of the named common area. If the
control section is smaller in length than the named common area, a diagnostic
message is issued. The control section is regarded as the largest of the
common areas processed with that name. All subsequent control sections
and/or common areas with the same name are ignored.

Processing Pseudoregisters
In PL/I, programmers can use pseudoregisters to define storage that will not be
reserved in the load module but can be allocated dynamically during execution.
The external dummy sections generated by Assembler H Versio"n 2 correspond
to the pseudoregisters of PL/I.

The linkage editor accumulates the total length of all pseudoregisters in the
input and records the displacement of each. If two or more pseudoregisters
have the same name, the one with the longest length and the most restrictive
alignment will be retained. All other pseudoregisters with the same name will
be ignored; all references to the identically named pseudoregisters will refer to
the one retained.

Multiple Load Module Processing
The linkage editor can produce more than one load module in a single job step.
A NAME control statement in the input stream is used as a delimiter for input to
a load module. If additional input modules follow the NAME statement in the
input stream, they are used in the formation of the next load module.

Each load module that is formed has a unique name and is placed in the same
library as a separate member. When processing multiple load modules in a
single job step, the options and attributes specified in the EXEC statement for
that job step apply to all load modules created. If the linkage editor terminates
abnormally during processing of any of the output modules, neither that module
nor any of the modules yet to be processed in the job step is processed or
placed in the library. Load modules processed before abnormal termination
have already been placed in the library.

124 MVS/ESA Linkage Editor and Loader User's Guide

'~
I

I
i '
~

i i

~

~)

In the following example, two load modules are produced in one linkage editor
job step:

llLKED

llSYSLMOD
II

llMODTWO
I ISYSLIN
II

I*

ENTRY
NAME
INCLUDE
ENTRY
NAME

EXEC PGM=HEWL,PARM= 1MAP,LIST 1

DD DSNAME=PAYROLL(OVERTIME),DISP=OLD,

DD
DD
DD

UNIT=3380,VOLUME=SER=LIB002

DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DSNAME=&&OBJECT(A),DISP=(OLD,DELETE)
*

INIT
OVERTIME
MODTWO(B)
HS KEEP
VACATION

The first load module is produced from the object module in the data set
defined on the SYSLIN DD statement. The main entry point is INIT and the
member name is OVERTIME.

The second load module is produced from the object module specified by the
INCLUDE statement. The main entry point is HSKEEP and the member name is
VACATION.

If an INCLUDE statement specifies a member name that is different from the
member name on the DD statement, the member specified on the DD statement
must exist even though it is not to be included.

Both load modules are placed in the library PAYROLL, defined on the
SYSLMOD statement.

The parameters on the EXEC card specify that a module map and a control
statement listing are produced for each load module. The map and listing are
discussed in detail in the next section.

Diagnostic Output
Diagnostic information is written to the diagnostic output data set, which must
be defined by a SYSPRINT DD statement. This output is the means by which
the linkage editor communicates to the programmer the results of the actions
taken by the linkage editor.

The diagnostic output consists of a header and linkage editor messages. There
are two types of messages: module disposition messages, and error/warning
messages. Descriptions of the error/warning messages are contained in
System Messages.

Chapter 7. Interpreting Linkage Editor Output 125

Output Listing Header
The output listing header includes:

• The time, day of the week, and date that the link-edit job was run.

• The programmer-specified job name (from the job card) and step name
(from the EXEC statement).

• The invocation parameters specified by the programmer.

• The amount of working storage used, and the output buffer size. These two
values are shown as:

ACTUAL SIZE=(va/ue1,va/ue2)

where:

value1 = the actual amount of working storage that the linkage editor
used, and not the value requested by the programmer.

value2 = the actual output buffer size, and not the value requested by f'1
the programmer.

• The name of the SYSLMOD data set and its volume.

Invalid options and attributes are replaced by INVALID ·in the output listing
header. If incompatible attributes are specified,· additional messages are gen­
erated to inform the programmer.

Module Disposition Messages
Module disposition messages are generated for each load module produced.
There are two groups of messages. The first group of disposition messages
describes the handling of the load module. These messages are:

• member name ADDED AND HAS AMODE addressing mode

• member name REPLACED AND HAS AMODE addressing mode

• member name DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS
AMODE addressing mode

In this case, the replacement function was specified, but the member did
not exist in the data set; the module is added to the data set using the
member name given.

• alias name IS AN ALIAS AND HAS AMODE addressing mode

• MODULE HAS BEEN MARKED NOT EXECUTABLE.

• LOAD MODULE HAS RM ODE residence mode

• AUTHORIZATION CODE IS authorization code.

r'\
I I
I J

The second group of module disposition messages is generated when reenter­
able (RENT), reusable (REUS), and/or refreshable (REFR) linkage editor options
have been specified for the module. When one or more of these module attri­
butes has been requested, a message informs the user what attribute(s) have
been assigned to the module. This message indicates whether the load module
has been marked reenterable or not reenterable, reusable or not reusable,
refreshable or not refreshable, depending on the option or options used. (See n
"Reusability Attributes" on page 46 and "Refreshable Attribute" on page 47 for
more information on these options.)

126 MVS/ESA Linkage Editor and Loader User 1 s Guide

I

~)

f I
\\._..)

u

L'

The RENT/REUS/REFR mess.age consists of MODULE HAS BEEN MARKED, fol­
lowed by the attribute(s) assigned as a result of the linkage editor options spec­
ified. The programmer is responsible for verifying that the module actually is
reenterable, reusable, and/or refreshable. The following messages are e~am­
ples of some possible combinations:

• MODULE HAS BEEN MARKED REFRESHABLE.

• MODULE HAS BEEN MARKED NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable, only
the MODULE HAS BEEN MARKED NOT EXECUTABLE message appears; no
attribute messages are generated.

Error/Warning Messages
Certain conditions that are present when a module is being processed can
cause error or warning messages to be printed. These messages contain a
message code and message text. If an error is encountered during processing,
the message code for that error is printed with the applicable symbol or record
in error. After processing is completed, the diagnostic message associated
with that code is printed. The error warning messages have the following
format:

IEWOmms message text

where:

IEWO indicates a linkage editor message

mm is the message number

s is the severity code, and may be one of the following values:

1 lndi.cates a condition that may cause an error during execution of the
output module. A module map or cross-reference table is produced if
specified by the programmer. The output module is marked execut­
able.

2 Indicates an error that could make execution of the output module
impossible. Processing continues. When possible, a module map or
a cross-reference table is produced if specified by the programmer.
The output module is marked not executable, unless the LET option is
specified on the EXEC statement.

3 Indicates an error that will make execution of the output module
impossible. Processing continues. When possible, a module map or
a cross-reference table is produced if specified by the programmer.
The output module is marked not executable.

4 Indicates an error condition from which no recovery is possible.
Processing terminates. The only output is diagnostic messages.

Note: A special severity code of zero is generated for each control statement
printed as a result of the LIST option. Severity zero does not indicate an error

warning condition.

Chapter 7. Interpreting Linkage Editor Output 127

The highest severity code encountered during processing is multiplied by 4 to
create a return code that is placed in register 15 at the end of processing. This ~
return code can be tested to determine whether or not processing is to continue
(see "EXEC Statement-Return Code" on page 60).

message text contains combinations of the following:

• The message classification (either error or warning)

• Cause of error

• Identification of the symbol, segment number (when in overlay), or input
item to which the message applies

• Instructions to the programmer

• Action taken by the linkage editor

Optionally, error/warning messages can be sent to a separate output data set,
which is defined by specifying TERM in the PARM field of the EXEC statement
and including a SYSTERM DD statement. This separate SYSTERM data set con­
sists of only numbered error/warning messages. It supplements the SYSPRINT
output data set, which can also include module disposition messages and
optional diagnostic output. When SYSTERM is used, the numbered
error/warning messages appear in both data sets.

System Messages contains a complete list of error/warning messages.

Sample Diagnostic Output
Figure 33 on page 129 shows the format of the diagnostic output for th.e linkage
editor. No optional output was requested other than the list of control state­
ments.

The letters indicate the portion of the diagnostic output being described.

A Is the output listing header. It contains a time and date stamp, invocation
parameters specified by the programmer, storage and buffer sizes, and the
name of the SYSLMOD data set and its volume. In this example, MAINRUN
and LINKEDIT are the programmer-specified job name and step name,
respectively.

B Is a list of control statements used (IEWOOOO) and the message codes
(IEW0201 and IEW0461) for error/warning conditions discovered during proc­
essing. For error/warning message codes, the symbol in error, if necessary,
is also listed {CCCCCCCC and BASEDUMP).

C Is a module disposition message (****) that indicates that the output module
(BBBBBBBB) has been added to the output module data set.

D Is the diagnostic message directory that contains the text of the error codes
listed in item B.

128 MVS/ESA Linkage Editor and Loader User's Guide

(~
I)

I

~/

A MVS/DFP VER 3 LINKAGE EDITOR 08:12:40 WED JUN 15, 1988
JOB MAINRUN STEP LINKEDIT
INVOCATION PARAMETERS - LET,NCAL,XREF,OVLY,LIST
ACTUAL SIZE=(317440,86016)
OUTPUT DATA SET USER_01.LOADLIB IS ON VOLUME SYS086

8 IEWOOOO NAME BBBBBBBB
IEW0201
IEW0461 CCCCCCCC
IEW0461 BASEDUMP

C **BBBBBBBB ADDED AND HAS AMODE 24
LOAD MODULE HAS RMODE 24
AUTHORIZATION CODE IS 0.

DIAGNOSTIC MESSAGE DIRECTORY

D IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION
CANCELLED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

Figure 33. Diagnostic Messages Issued by the Linkage Editor

Optional Output
In addition to error/warning and disposition messages, the linkage editor can
produce diagnostic output as requested by the programmer. This optional
output includes a control statement listing, a module map, and a cross­
reference table.

Control Statement Listing

Module Map

If the LIST option is specified on the EXEC statement, a listing of all linkage
editor control statements is produced. For each control statement, the listing
contains a special message code, IEWOOOO, followed by the control statement.
Item B in Figure 33 contains an example of a control statement listing.

If the MAP option is specified on the EXEC statement, a module map of the
output load module is produced. The module map shows all control sections in
the output module and all entry names in each control section. Named
common areas are listed as control sections.

For each control section, the module map indicates its origin (relative to zero)
and length in bytes (in hexadecimal notation). For each entry name in each
control section, the module map indicates the location at which the name is
defined. These locations are also relative to zero.

If the module is not in an overlay structure, the control sections are arranged in
ascending order according to their origins. An entry name is listed with the
control section in which it is defined.

If the module is an overlay structure, the control sections are arranged by
segment. The segments are listed as they appear in the overlay structure, top
to bottom, left to right, and region by region. Within each segment, the control
sections and their corresponding entry names are listed in ascending order
according to their assigned origins. The number of the segment in which they
appear is also listed.

Chapter 7. Interpreting Linkage Editor Output 129

In any module map, the following are identified by a dollar sign:

• Blank common area
• Private code (unnamed control section)
• For overlay programs, the segment table and each entry table

When the load module processed by the linkage editor does not have an origin
of zero, the linkage editor generates a one-byte private code (unnamed control
section) as the first text record. This private code is deleted in any subsequent
reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic library
call is identified by an asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address
of the main entry point. The entry address is followed by the total length of the
module in bytes; in the case of an overlay module, the length is that of the
longest path. Pseudoregisters, if used, also appear at the end of the module 1~ map; the name, length, and displacement of each pseudoregister are given. /

CONTROL SECTION

:NAME ORIGIN

COB SUB
$PRIVATE

00
340

Figure 34 contains a module map with five control sections. There are two
named control sections (COBSUB and MAINMOD), one unnamed control section
(designated by $PRIVATE), and two control sections obtained from a call library
(ILBODSPO and ILBOSTPO). In addition, two entry names are defined: SUB1 in
the unnamed control section and ILBOSTP1 in control section ILBOSTPO.

LENGTH

33A
EF

ENTRY

NAHE LOCATION NANE LOCATION NANE LOCATION NAME LOCATION

SU81 340 MAHIMOD 4 30 166
IL80DSPO* 598 5E2
ILBOSTPO* 880 35

IL80STP1 896
ENTRY ADDRESS 430
TOTAL LENGTH 888

HGO DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS AMODE 24 LOAD MODULE HAS RMODE 24
AUTHORIZATION CODE IS 0.

Figure 34. Module Map

Cross-Reference Table
If the XREF option is specified on the EXEC statement, a cross-reference table is
produced. The cross-reference table consists of a module map and a list of
cross-references for each control section. Each address constant that refers to
a symbol defined in another control section is listed with its assigned location,
the symbol referred to, and the name of the control section in which the symbol
is defined. When control sections are compiled together, and simple address
constants are used to refer from one control section to another (instead of
using external symbols and entry names), the control section name is listed as
the symbol referred to.

For overlay programs, this information is provided for each segment; in addi­
tion, the number of the segment in which the symbol is defined, is provided.

130 MVS/ESA Linkage Editor and Loader User 1 s Guide

!,,,..-...\
')

if)

n

u

u

u

CONTROL SECTION

NAME ORIGIN

COB SUB 00
$PRIVATE 340

I1AINMOD 430
ILBODSPO* 598
ILBOSTPO* 880

If a symbol is unresolved after processing by the linkage editor, it is identified
by $UNRESOLVED in the list. However, if an unresolved symbol is marked by
the never-call function (as specified on a LIBRARY control statement), it is iden­
tified by $NEVER-CALL. If an unresolved symbol is a weak external reference,
it is identified by $UNRESOLVED(W).

Figure 35 contains a cross-reference table for the same program whose module
map is shown in Figure 34 on page 130. All the information from the module
map is present, plus a list of cross-references for each control section.

CROSS-REFERENCE TABLE

ENTRY

LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

33A
EF

SUB1 340
166
5E2

35
ILBOSTP1 896

LOCATION REFERS TO SYMBOL IN CONTROL SECT ION

ILBOSTPO
ILBOSTPO
COB SUB

LOCATION REFERS TO SYNBOL IN CONTROL SECTION

250
258
478

ENTRY ADDRESS
TOTAL LENGTH

ILBOSTPO
ILBOSTP1
COBSUB

430
888

Figure 35. Cross-Reference Table

254
450

ILBODSPO
SUB1

ILBODSPO

Chapter 7. Interpreting Linkage Editor Output 131

,.,..-..\
I I

If)

Part II. Loader

/

_;J

u

u
Part II. Loader 133

.~\

~I (/

rlj

I '
_)

{ I
'...._)

u

u

Chapter 8. Overview and Uses of the Loader

The Loader is a processing program that combines basic editing and loading
functions of the linkage editor and program fetch into one job step. Therefore,
the load function is equivalent to the link-edit-go function. The loader can be
used for compile-load and load jobs.

The loader will load object modules produced by a language processor and
load modules produced by the linkage editor into virtual storage for execution.
Optionally, it will search a call library (SYSLIB) or a resident link pack area, or
both, to resolve external references. The loader does not produce load
modules for program libraries.

The functional characteristics, compatibility and restrictions, performance con­
siderations, and storage considerations.of the loader are described in the fol­
lowing sections.

Functional Characteristics

Addressing Mode

The loader is reenterable and, therefore, can reside in the resident link pack
area.

The loader combines the following basic functions of the linkage editor and
program fetch:

1. Resolution of external references between program modules.

2. Optional inclusion of modules from SYSLIB or from a link pack area, or from
both (Figure 36 on page 139 and Figure 37 on page 139). (Inclusion of
modules from a call library or the link pack area is performed, if requested,
when external references remain unresolved after processing the primary
input to the loader. If both are requested, the link pack area is searched
first.)

3. Automatic deletion of duplicate copies of program modules (Figure 38 on
page 140). (The first copy is loaded and all following requests use that
copy.)

4. Relocation of all address constants so that control may be passed directly
to the assigned entry point in virtual storag.e.

5. The loader can load programs and relocate address constants both above
and below the 16-megabyte virtual storage line, as specified by the resi­
dence mode for the loaded program. The loader can also provide for entry
into the loaded program according to a specified addressing mode.

The addressing mode (AMODE) is the attribute of the entry point into the loaded
module that specifies the addressing mode that will be in effect when the
module is entered at that entry point.

Chapter 8. Overview and Uses of the Loader 135

Residence Mode

The valid addressing modes are:

24 Indicating that 24-bit addressing will be in effect

31 Indicating that 31-bit addressing will be in effect

ANY Indicating that either 24-bit or 31-bit addressing may be in effect

The loader determines the addressing mode for the entry point as follows:

The default AMODE of 24 is assumed.

If the AMODE is specified in the ESD data for the entry point, that specifica­
tion replaces the default, AMODE. (This AMODE value was specified by the
user as an assembler statement.) The loader assigns the AMODE value
from the control section or private code that contributes to the loaded
module, ignoring identically named control sections and private code, which
are replaced.

If AMODE is specified as a parameter in the PARM field of the EXEC state- (~
ment, that specification replaces the previously determined AMODE. · /

The residence mode (RMODE) is the attribute of the loaded module that speci­
fies where in virtual storage the module is to be loaded.

The valid residence modes are:

24 Indicating that the module must be loaded within 24-bit addressable
virtual storage (below the 16-megabyte virtual storage line)

ANY Indicating that the module may be loaded anywhere in virtual storage
(either above or below the 16-megabyte virtual storage line)

The loader determines the residence mode for the loaded program as follows:

The defaultRMODE of 24 is assumed.

If the RMODE is specified in the ESD data for the first control section or
private code which contributes to the loaded module, that specification
replaces the default RMODE. (This RMODE value was specified by the user
as an assembler statement.)

If the RMODE is specified as a parameter in the PARM field of the EXEC
statement, that specification replaces the previously determined RMODE.

If the ESD data for any subsequent control section or private code which
contributes to the loaded module specifies an RMODE of 24, the RMODE for
the entire module is reset to 24. If loading begins above the 16-megabyte
virtual storage line on the basis of an early determination of RM ODE= ANY,
and the RMODE is later reset to 24, an error message is issued and loading
is restarted below the 16-megabyte virtual storage line.

136 MVS/ESA Linkage Editor and Loader User's Guide

('

\...._)

AMODE/RMODE Combinations from the ESD
When AMODE and RMODE data have not been specified in the PARM field of
the EXEC statement,. the loader determines the AMODE for the entry point and
the RMODE for the load module based on ESD data. The loader validates the
six possible AMODE/RMODE combinations from the ESD as follows:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMOOE=31 valid valid

AMODE=ANY valid valid

The load module entry point may be either a control section name external
symbol or an entry name external symbol.2 (See "External Symbol Dictionary,"
the section on Control section name on page 10.) When the entry point is a
control section name, the loader acquires AMODE and RMODE data directly
from the control section name ESD entry. When the entry point is an entry
name external symbol, the loader acquires AMODE and RMODE data from the
associated control section name ESD entry.

Based on the AMODE and RMODE data acquired from the ESD, the loader
determines a load module RMODE (see "Residence Mode" on page ·136), and
assigns an AMODE to the entry point as outlined below:

• If the entry point external symbol is marked with an AMODE of either 24 or
ANY and an RMODE of 24, the loader assigns an entry point AMODE attri­
bute of 24.

• If the AMODE 24/RMODE ANY combination is used, it is invalid, as it could
allow 24-bit addressing above the 16Mb line. The loader should never find
this combination in the ESD since it is flagged by IBM compilers and
assemblers as an error condition.

• . If the entry point external symbol is marked AMODE 31, regardless which
RMODE is specified, the loader assigns an AMODE of 31 to the entry point.

• If the entry point external symbol is marked AMODE ANY/RMODE ANY, the
loader assigns an AMODE of 31 to the entry point, depending on the fol~
lowing module residence at load completion:

If the module resides below 16Mb, an AMODE of 24 is assigned.

If the module resides above 16Mb, an AMODE of 31 is assigned.

L) 2 The main entry point to a load module is usually an external symbol, although when specified on an assembler
language END statement, it may be a displacement into the CSECT. Alternate entry points must always be
external symbols.

Chapter 8. Overview and Uses of the Loader 137

AMODE/RMODE Combinations in the PARM Field
The loader validates the combination of the AMODE value and the RMODE
value, as specified by the user in the PARM field of the EXEC statement,
according to the following table:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMODE=31 valid valid

AMODE=ANY valid invalid

If the AMODE/RMODE combination resulting from the PARM field of the EXEC
statement is invalid, an error message is issued and the loader ignores the
PARM field as the source of AMODE/RMODE data.

Implied AMODE or RMODE
1

!')
If only one value, either AMODE or RMODE, is specified in the PARM field of the /
EXEC statement, the other value is implied according to the following table:

Value Specified Value Implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see note

RMODE=ANY AMODE=31

Note: If only an RMODE of 24 is specified, no overriding AMODE value is
assigned; instead, the AMODE value in the ESD data for the entry point into the
loaded module is used.

The diagnostics produced by the loader are similar to those of the linkage
editor.

138 MVS/ESA Linkage Editor and Loader User's Guide

I~

n
/

("-..)

' ' u

u

u

' "-...

Object and/or

"'
Load Modules

A

B

c

""' SYSLIN

Object and/or

/
/ 7\

Load Modules \) \ Loader
I/

A \ /1
//

B "
c

SYSLIN

Object or
Load Modules

D

E

F

G

SYSLIB- called automatically when references
were unresolved at the end of input
from SYSLIN.

Figure 36. Loader Processing-SYSLIB Resolution

.. ..

H

SYSLIB- Called automatically when
references remain unresolved
at the end of input from
SYSLIN and a~er searching
the link pack area.

..

User's Region

A

' \

Link Pack Area

\
I
\
l
I
I

I

I~\
)1\\

---------------------------- I// 1\
/I,//\

,,.. I I l

D "4------------------- , / / /
.,..,,,,.,,,/ ,// /

E ~---------------- , ,, ,/
,,,/.... ,/

F +---------------- / ___ ,

G "4-----------------

Virtual Storage

Figure 37. Loader Processing-Link Pack Area and SYSLIB Resolution

A

B

c

D

E

F

G

Virtual Storage

References made in B to
D, E, F, and Gare
resolved to the link
pack area.

Modules in link pack
area must be
reenterable.

Chapter 8. Overview and Uses of the Loader 139

Object and/or
Load Modules

SYSLIN

c

Virtual Storage

Hie first copy ~s
ioaaec

Figure 38. Loader Processing-Automatic Editing

Compatibility and Restrictions
The loader accepts the same basic input as the linkage editor:

1. All object modules that can be processed by the linkage editor can be input
to the loader.

2. All load modules produced by the linkage editor can be input to the loader
(except load modules edited with the NE option).

The loader supports the following linkage editor options: MAP, LET, NCAL, SIZE,
and TERM. All other linkage editor options and attributes are not supported,
but, if used, they will not be considered as errors. A message will be listed on
SYSLOUT indicating that they are not supported. The supported options are
specified in the PARM field of the EXEC statement, or with the LINK, ATTACH,
LOAD, or XCTL macro instruction. In addition to the supported linkage editor
options, the loader provides several other options. All loader options are
described under "EXEC Statement" on page 143.

The loader does not process linkage editor control statements (for example,
INCLUDE, NAME, and OVERLAY). If they are used, they will not be treated as
errors, and a message will be listed on SYSLOUT indicating that the control
statements are not supported.

The loader and the linkage editor are bound by the same input conventions.
(These conventions are discussed in Part 1 of this publication.) In addition, the
loader can accept load modules in the SYSLIN data set.

The loader does not use auxiliary storage space for work areas; that is, there is
no loader function corresponding to the linkage editor's creation of intermediate
work data sets or output load modules.

140 MVS/ESA Linkage Editor and Loader User 1 s Guide

(\._/

u

Time Sharing Option (TSO)
When the loader is used under TSO, it is invoked by the loader prompter, a
program that acts as an interface between the user and the operating system
and the loader. Under TSO, execution of the loader and definition of the data
sets used by the loader are described to the system through use of the
LOADGO command that causes the prompter to be executed. Operands of the
LOADGO command can also be used to specify the loader options a job
requires.

Complete procedures for using the LOADGO command to load and execute an
object module are given in TSOIE V2 Command Reference.

Chapter 8. Overview and Uses of the Loader 141

,...-....,
I

I ' i

(\,
' J

~ I
)

,fj

vi

I

\ !
~

Chapter 9. Preparing 1·nput for the Loader

This chapter discusses how to prepare an input deck for the loader and how to
invoke the loader; it also describes the output from the loader.

Input for the Loader

EXEC Statement

The input deck for the loader must contain job control language statements for
the loader and, optionally, for the loaded program (Figure 39).

//name JOB parameters
//name EXEC PGM=LOADER,

PARM=(parameters)
//SYSLIN DD parameters
//SYSLIB DD parameters
//SYSLOUT DD parameters
//SYSTERM DD parameters

// (optional DD statements and data
// required for loaded program)

(optional)

(optional)
(optional)
(optional)

Figure 39. Input Deck for the Loader-Basic Format

Only the EXEC statement and the SYSLIN DD statement are required for a
loader step. The JOB statement is required if the loader is the first step in the
job.

The EXEC statement is used to call the loader and to specify options for the
loader and the loaded program. The loader is called by specifying
PGM = HEWLDRGO or PGM =LOADER (see "Appendix E. Invoking the Linkage
Editor and Loader from a Program" on page 207).

U PARM Field Format
Loader and loaded program options are specified in the PARM field of the EXEC
statement. The PARM field must have the following format:

u

,PARM= '[loaderoption[, ...] [lprogramoption[, ...]]]

Note that the loaded program option(s), if any, must be separated from the
loader option(s) by a slash (/). If there are no loader options, the program
option must begin with a slash. The entire PARM field may be omitted if there
are no loader or loaded program options.

Parameters must be enclosed in single quotation marks when special charac­
ters(/ and =)are used.

Chapter 9. Preparing Input for the Loader 143

Loader Options
The loader options are outlined below. Fields that must be supplied by the user
are shown in italics; default options are shown in underscored BOLD.

Parameter Options

PARM= AMODE =model AMO DE= 24
CALLINOCALL
EP=name
LETINOLET
MAPINOMAP
NAME= namel NAME= **GO
PRINTINOPRINT
RESINORES
RMODE =model RMODE = 24
SIZE= sizelSIZE = 300K
TERMINOTERM

AMO DE= mode: Specifying Address Mode
Explanation: AMODE =mode is a loader option specifying the addressing mode
to be in effect when the loaded module is entered. Mode can be specified as
24, 31, or ANY.

Abbreviations: None.

Default: The default addressing mode is 24.

Restrictions: The addressing mode assigned in the PARM field overrides the
addressing mode found in the ESD data for the control section or private code
at which the entry point is located.

If the AMODE parameter occurs more than once in the PARM field of the EXEC
statement, the last valid parameter is used.

CALLINOCALL: Automatically Searching SYSLIB
Explanation: CALLINOCALL are options specifying whether an automatic
search of the SYSLIB data set is made when the loader is invoked.

CALL
Indicates that the SYSLIB data set will automatically be searched when the
loader is invoked.

NOC ALL
Indicates that no automatic search of the SYSLIB data set is to be made.

Abbreviations:

NOCALLINCAL

Default: The default is CALL.

Restrictions: If the SYSLIB DD statement is not included in the input deck, the

I~
I /

CALLI NOCALL option is ignored.
1
rJ

If the NOCALL option is specified, the NORES option is automatically set.

144 MVS/ESA Linkage Editor and Loader User's Guide

(/

~

(!

~!

u

EP =name: Specifying the Prog_ram Entry Point
Explanation: EP=name is a loader option that specifies the external name to be
assigned as the entry point of the loaded program.

Abbreviations: None.

Default: None.

Restrictions: EP =name must be specified if the entry point of the loaded
program is in an input load module.

For FORTRAN, ALGOL, and PL/I, these entry points must be named MAIN,
IHIFSAIN, and IHENTRY, respectively, unless changed by compiler options.

LETINOLET: Executing with Severity 2 Errors
Explanation: LETINOLET are loader options specifying whether the loader
should try to execute the object program if a severity 2 error condition is found.
A severity 2 error condition is one that could make execution of the loaded
program impossible.

LET
Indicates that the loader will attempt to execute the program even if a
severity 2 error is found.

NOLET
Indicates that the loader will not attempt to execute the program if a
severity 2 error is found.

Abbreviations: None.

Default: The default is NOLET.

MAP I NOMAP: Printing a Program Map
Explanation: MAPINOMAP are loader options specifying whether to produce a
map of the loaded program that lists external names and their absolute storage
addresses on the SYSLOUT data set. The module map is described in
"Chapter 10. Interpreting Loader Output" on page 155.

MAP
Indicates that a program map will be printed.

NO MAP
Indicates that a program map will not be printed.

Abbreviations: None.

Default: The default is NOMAP.

Restrictions: If the SYS LOUT DD statement is not used in the input deck, the
MAPI NOMAP option is ignored.

Chapter ·9. Preparing Input for the Loader 145

NAME= name: Identifying the Loaded Program
Explanation: NAME= name is a loader option specifying the name to be used to
identify the loaded program to the system.

Abbreviations: None.

Default: If this option is not used, the loaded program will be named **GO.

PRINTINOPRINT: Printing Messages on SYSLOUT
Explanation: PRINTINOPRINT are loader options specifying that informational
and diagnostic messages are to be produced on the SYSLOUT data set.

PRINT
Indicates that messages are printed in SYSLOUT.

NOPRINT
Indicates that no messages are printed in SYSLOUT.

Abbreviations: None.

Default: The default is PRINT.

Restrictions: If NOPRINT is specified, the SYSLOUT data set is not opened.

RES I NORES: Automatically Searching the Link Pack Area Queue
Explanation: RESINORES are loader options specifying whether an automatic
search of the link pack area queue is to be made after processing the primary
input (SYSLIN) and before searching the SYSLIB data set.

RES
Indicates that an automatic search of the link pack area queue is to be
made.

NOR ES
Indicates that no automatic search of the link pack area queue is to be
made.

Abbreviations: None.

Default: The default is RES.

Restrictions: When the RES option is specified, the CALL option is also auto­
matically set.

RMODE =mode: Specifying Residence Mode
Explanation: RMODE=mode is a loader option specifying the residence mode
that applies to the loaded module. Mode may be specified as 24, 31, or ANY.

Abbreviations: None.

Default: The default residence mode is 24.

Restrictions: The residence mode assigned in the PARM field overrides the
residence mode assigned to the first control section or private code.

146 MVS/ESA Linkage Editor and Loader Us~r 1 s Guide

~\
I I

I

u

L,J

If the RMODE parameter occurs more than once in the PARM field of the EXEC

statement, the last valid parameter is used.

SIZE= size: Specifying Virtual Storage
Explanation: SIZE= size is a loader option specifying the amount of dynamic

virtual storage, in bytes, that can be used by the loader. See "Appendix D.

Loader Storage Considerations" on page 205 for more information on size.

Abbreviations: None.

Default: If this option is not specified, the size defaults to 300K bytes.

TERMINOTERM: Sending Messages to SYSTERM
Explanation: TERMINOTERM are loader options specifying whether to send

numbered diagnostic messages to the SYSTERM data set. Although

TERMINOTERM is intended to be used when operating under the Time Sharing

Option (TSO), the SYSTERM data set can be used to replace or supplement the

SYSLOUT data set at any time.

TERM
Indicates that numbered diagnostic messages are sent to the SYSTERM

data set.

NOTE RM
Indicates that no messages are to be sent to SYSTERM.

Abbreviations: None.

Default: The default is NOTERM.

Restrictions: If the SYSTERM DD statement is not included in the input deck,

the TERM option is ignored.

EXEC Statement Example
The following are examples of the EXEC statement. In these examples, X and Y

are parameters required by the loaded program.

//LOAD
//LOAD
II
//LOAD
//LOAD
//LOAD
//LOAD
II
//LOAD
II
II

EXEC PGM=LOADER
EXEC PGM=HEWLDRGO,

PARM= 1MAP,EP=FIRST/X,Y 1

EXEC PGM=LOADER,PARM= 1/X,Y 1

EXEC PGM=LOADER,PARM=NOPRINT
EXEC PGM=LOADER,PARM=(MAP,LET)
EXEC PGM=LOADER,

PARM='NAME=NEWPROG,TERM,NOPRINT'
EXEC PGM=LOADER,

PARM='NAME=NEWMOD,EP=ENTRYZ,
AMODE=31,RMODE=ANY'

For further details in coding the EXEC statement, refer to the publication JCL

User's Guide.

Chapter 9. Preparing Input for the Loader 147

DD Statements
The loader uses four DD statements, named SYSLIN, SYSLIB, SYSLOUT, and
SYSTERM. The SYSLIN DD statement must be used in every loader job. The
others are optional.

The following considerations apply to the DCB parameter of SYSLIN, SYSLIB,
and SYSLOUT.

• For better performance, BLKSIZE and BUFNO can be specified.

• If BUFNO is omitted, BUFNO = 2 is assumed.

• Any value given to BUFNO is assumed for NCP (number of channel pro­
grams).

• If RECFM = U is specified, BUFNO =2 is assumed, and BLKSIZE and LRECL
are ignored.

• RECFM =Vis not accepted.

• RECFM = FBSA is always assumed for SYS LOUT.

• If RECFM is omitted, RECFM = F is assumed for SYSLIN and SYSLIB.

• If BLKSIZE is omitted, the value given to LRECL is assumed.

• LRECL = 121 is assumed for SYS LOUT unless the loader is operating under
TSO, when LRECL=81 is assumed.

• If LR:ECL is omitted, LRECL=80 is assumed for SYSLIN and SYSLIB.

• If OPTCD = C is used to specify chained scheduling, and if the necessary
data management routines are not resident, an additional 2K bytes (2048
bytes) of virtual storage is needed in the user's region.

Note: The SYSTERM data set will always consist of unblocked 81-character
records with BUFNO = 2 and RECFM =FSA. Because these values are fixed, the
DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD statements and
data required by the loaded program must be included in the input deck.

SYSLIN DD Statement
The SYSLIN DD statement defines the input data for the loader. This input can
be either object modules produced by a language translator, or load modules
produced by the linkage editor, or both. The data sets defined by the SYSLIN
DD statement can be either sequential data sets or members of a partitioned
data set, or both. The DSNAME parameter for a partitioned data set must indi­
cate the member name, that is,

DSNAME=dsname(membername).

Concatenation can be used to include more than one module in SYSLIN.

The following are examples of the SYSLIN DD statement. The first example
defines a member of a previously cataloged partitioned data set:

I ISYSLIN
II

DD DSNAME=OUTPUT.FORT(MOD12),
DISP=OLD,DCB=BLKSIZE=3200

148 MVS/ESA Linkage Editor and Loader User's Guide

!~

n
I

(~
J

i I \..._;

u

u

The second ex.ample defines a sequential data set on magnetic tape:

I ISYSLIN
II
II

DD DSNAME=PROG15,UNIT=3400-6,DISP=(OLD,
KEEP),VOLUME=(PRIVATE,RETAIN,
SER=MCS167)

The third example defines a data set that was the output of a previous step in
the same job:

I ISYSLIN
II

DD DSNAME=*.COBOL.SYSLIN,DISP=(OLD,
DELETE)

The fourth example shows the concatenation of three data sets. The first two
data sets are members of different partitioned data sets; the first is an object
module, and the second is a load module. The third data set is in the input
stream following a SYSLIN DD statement (see "Loaded Program Data" on
page 150).

I ISYSLIN
II
II
II
II

SYSLIB DD Statement

DD

DD

DD

DSNAME=PGMLIB.SETl(RFSl),DISP=OLD,
DCB=(BLKSIZE=3200,RECFM=FB)
DSNAME=PGMLIB.SET2(ABC5),DISP=OLD,
DCB=RECFM=U
DDNAME=SYSIN

The SYSLIB data set contains IBM-supplied or user-written library routines to
be included in the loaded program. The data set is searched when unresolved
references remain after processing SYSLIN and optionally searching the link
pack area.

The SYSLIB data set is used to resolve an external reference when the fol­
lowing conditions exist: the external reference must be (1) a member name or
an alias of a module in the data set, and (2) defined as an external name in the
external symbol dictionary of the module with that name. If the unresolved
external reference is a member name or an al:ias in the library, but is not an
external name in that member, the member is processed but the external refer­
ence remains unresolved unless subsequently defined.

The data set defined by the SYSLIB DD statement must be a partitioned data
set that contains either object modules or load modules, but not both. Concat­
enation may be used to include more partitioned data sets in SYSLIB. All con­
catenated data sets must contain the same type of modules (object or load).

The following are examples of the SYSLIB DD statement. The first example
defines a cataloged partitioned data set that can be shared by other steps:

I ISYSLIB DD DSNAME=SYSl.ALGLIB,DISP=SHR

The second example shows the concatenation of two data sets:

I ISYSLIB
II

DD
DD

DSNAME=SYSl.PLlLIB,DISP=SHR
DSNAME=LIBMOD.MATH,DISP=OLD

Chapter 9. Preparing Input for the Loader 149

SYSLOUT DD Statement
The SYSLOUT DD statement is used for error and warning messages and for an
optional map of external references (see "Chapter 10. Interpreting Loader
Output" on page 155). The data set defined by this DD statement must be a
sequential data set. The DCB parameter can be used to specify the blocking
factor (BLKSIZE) of this data set. For better performance, the number of buffers
(BUFNO) to be allocated to SYSLOUT can also be specified.

The following are examples of the SYSLOUT DD statement. The first example
specifies the system output unit:

//SYSLOUT DD SYSOUT=A

The second example defines a sequential data set on a 3800 printer:
//SYSLOUT
II

SYSTERM DD Statement

DD UNIT=3800,DCB=(BLKSIZE=121,
BUFN0=4)

The SYSTERM DD statement defines a data set that is used for numbered diag­
nostic messages only. When the loader is being used under TSO of the oper­
ating system, the SYSTERM DD statement defines the terminal output data set.
However, SYSTERM can also be used at any time to replace or supplement the
SYSLOUT data set. Because the SYSTERM data set is not opened unless the
loader must issue a diagnostic message, using SYSTERM instead of SYSLOUT
can reduce loader processing time.

When the SYSTERM data set replaces the SYSLOUT data set, the numbered
messages in the SYSTERM data set are the only diagnostic output; when
SYSTERM supplements the SYSLOUT data set, the numbered messages appear
in both data sets, and optional diagnostic and informational output, such as a
list of options or a module map, can be obtained on SYS LOUT.

The DCB parameters for SYSTERM are fixed and need not be specified. The
SYSTERM data set always consists of unblocked 81-character records with
BUFNO = 2 and RECFM =FSA.

:t\
I

/r""\
l !

,{\
I

The following example shows the SYSTERM DD statement when used to specify (-.}
the system output unit:

//SYSTERM DD SYSOUT=A

Loaded Program Data
Loaded program data and loader data can both be specified in the input reader.
Loaded program data can be defined by a DD statement following the loader
data.

Figure 40 on page 151 shows the loading of a previously compiled FORTRAN
problem program. The program to be loaded (loader data) follows the SYSLIN
DD statement. The loaded program data follows the FT05F001 DD statement.

150 MVS/ESA Linkage Editor and Loader User 1 s Guide

,!'\
;)

u

u

u

//LOAD
//LOR
//SYSLIB
//SYSLOUT
//FT06F001
//SYSLIN

/*

JOB MSGLEVEL=l
EXEC PGM=LOADER,PARM=MAP
DD DSNAME=SYSl.FORTLIB,DISP=SHR
DD SYSOUT=A
DD SYSOUT=A
DD *

(Loader data)

//FT05F001 DD *

(Loaded program data)

/*

Figure 40. Loader and Loaded Program Data Input Stream

Sample Input for the Loader
Figure 41 shows an input deck for a load job. A previously assembled
program, MASTER, is to be loaded. The SYSLOUT, SYSLIB, and SYSTERM DD
statements are not used.

//LOAD
II
//SYSLIN

JOB MSGLEVEL=l
EXEC PGM=LOADER
DD DSNAME=MASTER,DISP=OLD

(DD statements and data required for execution of MASTER)

/*

Figure 41. Input Deck for a Load Job

Chapter 9. Preparing Input for the Loader 151

Figure 42 shows an input deck for a compile-load job. The OS/VS COBOL
(IKFCBLOO) compiler is used for the compile step. The loaded program
requires the SYSOUT, TAXRATE, and SYSIN DD statements.

//JOB JOB
//COBOL EXEC
//SYSPRINT DD
//SYSPUNCH DD
//SYSUTl DD
//SYSUT2 DD
//SYSUT3 DD
//SYSUT4 DD
//SYSLIN DD
II
//SYSIN DD

(source program)

22,MCS,MSGLEVEL=l
PGM=IKFCBL00,PARM=DMAP,REGION=256K,RD=R
SYSOUT=A
SYSOUT=B
UNIT=SYSDA,SPACE=(TRK,(100,10))
UNIT=SYSDA,SPACE=(TRK,(100,10))
UNIT=SYSDA,SPACE=(TRK,(100,10))
UNIT=SYSDA,SPACE=(TRK,(100,10))
DSNAME=&&LOADSET,DISP=(MOD,PASS),
UNIT=SYSSQ,SPACE=(TRK,(30,10))
*

//LOAD EXEC PGM=LOADER,PARM= 1MAP,LET 1 ,COND=(5,LT,
II
//SYSLIN
II
//SYSLOUT
//SYSLIB
//SYSOUT
//TAXRATE
//SYS IN

COBOL)
DD DSNAME=*.COBOL.SYSLIN,DISP=(OLD,

DELETE)
DD SYSOUT=A
DD DSNAME=SYSl.COBLIB,DISP=SHR
DD SYSOUT=A
DD DSNAME=TAXRATE,DISP=OLD
DD *

(Data for Loaded Program)

/*

Figure 42. Input Deck for a Compile-Load Job

Figure 43 on page 153 shows the compilation and loading of three modules. In
the first three steps, the OS/VS FORTRAN {FORTVS) compiler is used to
compile a main program, MAIN, and two subprograms, SUB1 and SUB2. Each
of the object modules is placed in a sequential data set by the compiler and
passed to the loader job step. In addition to the FORTRAN library, a private
library, MYLIB, is used to resolve external references. In the loader job step,
MYLIB is concatenated with the SYSLIB DD statement. SUB1 and SUB2 are
included in the program to be loaded by concatenating them with the SYSLIN
DD statement. The SYSTERM statement is used to define the diagnostic output
data set. The loaded program requires the FT01 F001 and FT10F001 DD state­
ments for execution, and it does not require data in the input stream.

"152 MVS/ESA Linkage Editor and Loader User 1 s Guide

n
I

~)

I~

(I

\J

u

u

JOB llJOBX
llSTEPl EXEC PGM=FORTVS,PARM= 1 NAME=MAIN,LOAD 1

llSYSLIN DD DSNAME=&&GOFILE,DISP=(,PASS),UNIT=SYSSQ
llSYSIN DD *

(Source module for MAIN)

I*
llSTEP2 EXEC PGM=FORTVS,PARM= 1 NAME=SUBl,LOAD 1

llSYSLIN DD DSNAME=&&SUBPROGl,DISP=(,PASS),UNIT=SYSSQ
llSYSIN DD *

(Source module for SUBl)

I*
llSTEP3 EXEC PGM=FORTVS,PARM= 1 NAME=SUB2,LOAD 1

llSYSLIN DD DSNAME=&&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
llSYSIN DD *

(Source module for SUB2)

I*
llSTEP4 EXEC PGM=LOADER
llSYSTERM DD SYSOUT=A
llSYSLIB DD DSNAME=SYSl.FORTLIB,DISP=OLD
II DD DSNAME=MYLIB,DISP=OLD
llSYSLIN DD DSNAME=*.STEPl.SYSLIN,DISP=OLD
II DD DSNAME=*.STEP2.SYSLIN,DISP=OLD
II DD DSNAME=*.STEP3.SYSLIN,DISP=OLD
llFT01F001 DD DSNAME=PARAMS,DISP=OLD
llFT10F001 DD SYSOUT=A
I*

Figure 43. Input Deck for Compilation and Loading of the Three Modules

Chapter 9. Preparing Input for the Loader 153

U Chapter 10. Interpreting Loader Output

Loader output consists of a collection of diagnostic and error messages, and of
an optional storage map of the loaded program. This output is produced in the
data set defined by the SYS LOUT DD and SYSTERM DD statements. If these
are omitted, no loader output is produced.

SYSLOUT output includes a loader heading, and the list of options and defaults
requested through the PARM field of the EXEC statement. The SIZE stated is
the size obtained, and not necessarily the size requested in the PARM field.
Error messages are written when the errors are detected. After processing is
complete, an explanation of the error is written. Loader error messages are
similar to those of the linkage editor and are listed in System Messages.

SYSTERM output includes only numbered warning and error messages. These
messages are written when the errors are detected. After processing is com­
plete, an explanation of each error is written.

The storage map includes the name and absolute address of each control
section and entry point defined in the loaded program. Each map entry marked
with an asterisk(*) comes from the data set specified on the SYSLIB DD state­
ment. Two asterisks (**) indicate the entry was found in the link pack area;
three asterisks (***) indicate the entry comes from text that was preloaded by a
compiler. The TYPE column indicates what each entry on the map is used for:
SD= control section, LR= label reference, ·and PR= pseudoregister.

The map is written as the input to the loader is processed, so all map entries
appear in the same sequence in which the input ESD items are defined. The
total size and storage extent of the loaded program are also included. For PL/!
programs, a list is written showing pseudoregisters with their addresses
assigned relative to zero. Figure 44 on page 156 shows an example of a
module map. The loader issues an informational message when the loaded
program terminates abnormally.

Chapter 10. Interpreting Loader Output 155

NAME TYPE ADDR

SAMPL2B SD 161EO
SY SIN SD 17D48
IHEDIA * SD 183CO
IHEVPA * SD 18870
IHEVPCA * LR 189F8
IHEDNC * SD 18CB8
IHEDMA * SD 19010
IHEVFAA * LR 19160
IHEIOB * SD 19488
IHESARC * LR 1A9CB
IHEBEGA * LR 1AE28
IHEERRA * LR 1AE86
IHEITAZ * LR 1881E
IHEDCNB * LR 18862
IHEVT8 * SD 1BCFO

IHEQINV PR 00
SYS IN PR 14
IHEQLW3 PR 28
IHEQFVD PR 3C
IHEQEVT PR 58
IHEQSFC PR 70

IEW1001 HE UP BA
IEW1001 HE UP AA
IEW1001 HETERA
IEW1001 HEM91C
IEW1001 HEM91B
IEW1001 HE!191A
IEW1001 HEDDOD
IEW1001 HEVPFA
IEW1001 HEVPDA
IEW1001 HED8NA
IEW1001 HEVSFA
IEW1001 HEVSBA
IEW1001 HEVCAA
IEW1001 HEVSAA
IEW1001 HEDNBA
IEW1001 HEUPBB
IEW1001 HE UP AB
IEW1001 HEVSEB

TOTAL LENGTH
ENTRY ADDRESS

NAME

SAMPL2BA
IHEVQC
IHEDIAA
IHEVPAA
IHEVFE
IHED!'ICA
IHEDMAA
IHEVPB
IHEIOBA
IHESADD
IHEERR
IHEERRE
IHEITAX
IHEIOD
IHEVTBA

IHEGERR
IHEQLSA
IHEQLW4
IHEQCFL
IHEQSLA

5068
17000

*
*
*
*
*
*
*
*
*
*
*
*
*
*

TYPE ADDR NANE TYPE ADDR NAME

SD 16EG8 IHEMAIN SD 17CF8 IHENTRY
SD 17D80 IHEVQCA * LR 17D80 IHEVQB
LR 183CO IHEDIAB * LR 183C2 IHEVPE
LR 18870 IHEVFC * SD 189DO IHEVFCA SD 18BE8 IHEVFEA * LR 18BE8 IHEVSC
LR 18CB8 IHEDOA * SD 18F30 IHEDOAA LR 19010 IHEVFD * SD 19108 IHEVFDA SD 19248 IHEVPBA * LR 19248 IHEXIS LR 19488 IHEIOBB * LR 19490 IHEIOBC LR 1A9DE IHESAFF * LR 1AA18 IHEPRT SD 1AE68 IHEERRD * LR 1AE68 IHEERRC
LR 1B4E2 IHEIOF * SD 18580 IHEIOFB LR 1B82A IHEITAA * LR 1B83E IHEDCN SD 1BA50 IHEIODG * LR 1BA50 IHEIODP LR 1BCFO IHEVQA * SD 18078 IHEVQAA
PR 4 Sfl.MPL2BB PR 8 SAMPL2BC PR 18 IHEQLWO PR 1C IHEQLW1 PR 2C IHEQLWE PR 30 IHEQLCA PR 40 IHEQFOP PR 48 IHEQADC PR 60 IHEQSAR PR 64 IHEQLWF

rmv1001 WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

Figure 44. Module Map Format Example

156 MVS/ESA Linkage Editor and Loader User 1 s Guide

TYPE ADDR NAME TYPE ADDR

SD 17DOO IHESPRT SD 17D10
* SD 17FD8 IHEVQBA* LT 17FD8
* SD 18608 IHEVPEA* LR 18608
* LR 189DO IHEVPC * SD 189F8
* SD 18C08 IHEVSCA* LR 18C08
* LR 18F30 IHEDOAB* LR 18F32
* LR 19108 IHEVFA * SD 19160
* SD 193FO IHEXISO* LR 193FO
* LR 19498 IHEIOBD* LR 194AO
* SD 1AB70 IHEPRTA* LR 1AB70
* LR 1AE72 IHEERRB* LR 1AE7C
* LR 18580 IHEIOFA* LR 18582
* SD 18860 IHEDCt!A* LR 18860
* LR 1BA52 IHEIODT* LR 1BB4A
* LR 1BD78

PR c HEQSPR PR 10
PR 20 HEQLW2 PR 24
PR 34 HEQVDA PR 38
PR 4C HEQXLV PR 50
PR 68 HEQRTC PR 6C

!~
I

r/\
I

G Appendix A. Sample Linkage Editor Programs

u

This appendix contains sample linkage editor programs. The material pre­

sented for each program includes a description of the program, the job control

language necessary for the linkage editor job step, linkage editor control state­

ments (if any), and the linkage editor output. The sample programs are:

• Link-editing a COBOL and a FORTRAN object module (COBFORT)

• Replacing one control section with another by using the REPLACE state­

ment (RPLACJOB)

• Creating a multiple-region overlay program (REGNOVL Y)

• Placing the control statements for the multiple region overlay program in a

partitioned data set, and using them (PARTDS)

The output for each program includes a cross-reference table, a module map, a

control statement listing, and diagnostic messages, if any.

Sample Program COBFORT
Sample program COBFORT link-edits a COBOL object module and a FORTRAN

object module to form one load module. The source programs were compiled

in two steps previous to the linkage editor job step, and the output from each

compilation was placed in data set &&OBJMOD.

Job Control Language
The job control language for the linkage editor job step of this sample program

is:

llLKED EXEC
llSYSUTl DD
II
I ISYSLIB DD
II DD
llSYSLMOD DD
II
II
I ISYSPRINT DD
I ISYSLIN DD
/*

PGM=HEWL,PARM= 1 XREF 1

DSNAME=&&UTl,UNIT=SYSDA,SPACE=(TRK,
(100,10))
DSNAME=SYSl.COBLIB,DISP=SHR
DSNAME=SYSl.FORTLIB,DISP=SHR
DSNAME=&&LOADMD(GO),UNIT=SYSDA,
DISP=(NEW,PASS),SPACE=(TRK,
(100, 1(:), 1))
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

Appendix A. Sample Linkage Editor Programs 157

Statement

EXEC

SYSUT1

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Linkage Editor Output

Explanation

Causes the execution of the linkage editor. The PARM field
option requests a cross-reference table and a module map to be
produced on the diagnostic output data set.

Defines a temporary direct access data set to be used as the
intermediate data set.

Defines the automatic call library; the call libraries for COBOL
and FORTRAN are concatenated; both are used to resolve
external references.

Defines a temporary data set to be used as the output module
library; the load module is assigned a member name of GO, and
is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned to
output class A.

Defines the primary input data set, &&OBJMOD, which contains
both input object modules; this data set was passed from a pre­
vious job step and is to be deleted at the end of this job step.

Figure 45 on page 159 shows the linkage editor output for COBFORT. The
listing header indicates the options specified (XREF), and the SIZE option values
in decimal (317440 for value1 and 86016 for value2). Because XREF is specified,
the heading CROSS REFERENCE TABLE precedes the rest of the output.

Figure 45 also shows the module map for COBFORT. IPCT30 and TX652F are
the names of the input control sections. The rest of the control sections are
either from the COBOL automatic call library or from the FORTRAN automatic
call library. (They can be distinguished by the initial three letters; ILB indicates
a COBOL control section, IHC a FORTRAN control section.) The origin and
length (in hexadecimal) of each control section follow the name.

To the right of each control section is a list of the entry names defined in each
control section. The location (in hexadecimal) of each entry name is also given.
For example, in control section IHCCOMH2 (the asterisk is not a part of the
name; it indicates that the control section is from the automatic call library),
entry name SEQDASD is defined at location 154A.

Figure 45 on page 159 shows the cross-reference table for COBFORT. The
table contains the location of any address constant that refers to a symbol
defined in another control section. The symbol the address constant refers to is
also listed, along with the control section in which the symbol is defined. For
example, at location 1 FO in control section IPCT30 (determined by using the
module map; 1FO falls between origin 00 and origin 360), an address constant
refers to symbol IHDFDISP, defined in control section IHDFDISP.

The entry address is 00 and the total length of the load module is 4AE8. Note
that the length of the module is rounded up to a doubleword boundary.

The disposition message at the end of the output in Figure 45 indicates that the
load module GO has been added to the output module library. The library did
not contain any other module with that name. The two asterisks identify the
message.

158 MVS/ESA Linkage Editor and Loader User 1 s Guide

r:)

I !

\._,/

u

u

u

Module Map

MVS/DFP VER 3 LINKAGE EDITOR 08:30:17 WED JUN 15, 1988
JOB MAINRUN STEP LINKEDIT
INVOCATION PARAMETERS - XREF
ACTUAL SIZE=(317440,86016)
OUTPUT DATA SET USER_Ol.LOADLIB IS ON VOLUME SYS086

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATIOJ·I NAME LOCATION NAHE LOCATION NAME LOCATION

IPCT30 00 360
TX652F 360 lEO
IHCFCOMH* 540 CD9

IBCOM# 54'0 FDIOCS# SFC INTSWTCH 11FE
IHCCOMH2* 1220 434

SEQDASD 154A
IHDFDISP* 1658 626
IHCFCVTH* 1C80 119D

ADCON# 1C80 FCVAOUTP 1D2A FCVLOUTP 1DBA FCVZOUTP 1FOA
FCVIOUTP 22B8 FCVEOUTP 27BA FCVCOUTP 2904 INT6SWCH 2CBB

IHCFINTH* 2E20 38E
ARITH# 2E20 ADJSWTCH 30D8

IHCFIOSH* 31CO lOOE
FIOCS# 31CO

IHCUOPT * 4100 8
IHCTRCH * 4108 2D4

IHCERRM 4108
IHCUATBL* 4480 638

Crose-Reference Table

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYl'IBOL IN CONTROL SECTION

lFO IHDFDISP IHDFDISP
410 IBCOM# IHCFCOMH

1108 ADCON# IHCF•:VTH
llOC ARITH# IHCFINTH
1128 IHCUOPT IHCUOPT
1114 FCVLOUTP IHCF·:VTH
111C FCBCOUTP IHCFCVTH
1124 FCVZOUTP IHCFCVTH
10E4 IHCERRM IHCTRCH
14AC IHCFCOMH IHCFCOMH
1264 IBCOM# IHCFCOMH
2C78 IHCERRM IHCTRCH
3120 Il'ITSWTGH IHCF:mrn
30DO IHCUOPT IHCUOPT
3124 FICOS# IHCFIOSH
3FF8 IHCUATBL IHCUATBL
43DO IBCOM# IHCFCOMH
43D8 FIOCS# IHCFIOSH

ENTRY ADDRESS 00

1F4
5FC

1100
112C
1100
1118
1120
lOEO
14A9
1268
2C7C
311C
30D4
3128
32F8
4004
4304

TX652F
SEQDASD
FIOCS#
ADJSWTCH
FCVEOUTP
FCVIOUTP
FCVAOUTP
IHCCONH2
IHCFCOMH
IHCERRM
IBCOM#
INT6SWCH
ADCC-Ii#
IHCERRM
IBCOI'l#
ADCON#

TX652F
IHCCOHH2
IH·.:::FIOSH
IHCFINTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCCOMH2
IHCFCOI1H
IHCTRCH
IHCFCCHH
IHCFCOMH
IHCFCJTH
IHCFC~/TH

IHCTRCH
IHCFCOllH
IHCFCVTH

TOTAL LENGTH 4AE8

**GO DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS AMODE 24
LOAD MODULE HAS RMODE 24
AUTHORIZATION CODE IS 0.

Figure 45. Linkage Editor Output for Sample Program COBFORT

Sample Program RPLACJOB
Sample program RPLACJOB shows the use of the REPLACE statement to

replace one control section with another. The source program for the new

control section (NEWMOD) is processed in a previous job step and passed tC?

the linkage editor job step. The control section {SUBONE) to be replaced is in

an existing load module. Figure 46 on page 160 shows the linkage editor

output for the job step that created this load module. Note that the entry

address is FO, which is the location of the entry point MAIN MOD {specified on

the ENTRY control statement).

Appendix A. Sample Linkage Editor Programs 159

I1VS/DFP VER 3 LINKAGE EDITOR 09: 57: 12 WED JUN 15, 1988 JOB MAINRUN STEP LINKEDIT
INVOCATION PARAMETERS - XREF,LIST
ACTUAL SIZE=(317440,86016)
OUTPUT DATA SET USER_01.LOADLIB IS ON VOLUME SYS086
IEWOOOO
IEWOOOO

ENTRY MAINMOD
NAME GO(R)

CONTROL SECTION

NAME ORGIN LENGTH

SUBONE 00 EF

MAINMOD FO 146

CROSS REFERENCE TABLE

ENTRY

NAME LOCATION NAME LOCATION NAME LOCATION NA.ME LOCATION

SUB1 00

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION 11C SUBONE SUBONE ENTRY ADDRESS FO
TOTAL LENGTH 238

**GO DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAD AMODE 24 LOAD MODULE HAS RMODE 24
AUTHORIZATION CODE IS 0.

Figure 46. Linkage Editor Output for Job Step that Created SUBONE

Job Control Language
The job control language for the replacement job step of this sample program is
shown below.

llLKED
llSYSUTl
llINPUTX
II
llSYSLMOD
II
I ISYSPRINT
I ISYSLIN
II
II

EXEC
DD
DD

DD

DD
DD

DD

PGM=HEWL,PARM='XREF,LIST'
UNIT=SYSDA,SPACE=(TRK,(180,18))
DSNAME=LOADLIB,DISP=OLD,UNIT=SYSDA,
VOL=SER=SCRTCH
DSNAME=LOADLIB(GO),DISP=OLD,UNIT=SYSDA,
VOL=SER=SCRTCH
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE),
UNIT=SYSDA
*

Linkage Editor Control Statements

I*

160 MVS/ESA Linkage Editor and Loader User's Guide

(~
I

,!)
, I

fr'\
' }

I

\ I
''...,_/

u

Statement

EXEC

SYSUT1

INPUTX

SYSLMOD

SYSPRINT

SYSLIN

Explanation

Causes the execution of the linkage editor. The PARM field

options request a cross-reference table and a module map

(XREF), and a control statement listing (LIST) to be produced on

the diagnostic output data set.

Defines a temporary direct access data set to be used as the

intermediate data set.

Defines a permanent data set, used later as additional linkage

editor input.

Defines a permanent data set to be used as the output module

library. Note that it is the same data set that was described on

the INPUTX DD statement. The output load module is added to

the data set, under the member name GO.

Defines the diagnostic output data set, which is assigned to

output class A.

Defines the primary input data set, &&OBJMOD, which contains

the object module for the replacement control section. This data

set is temporary and was passed from a previous job step; it is

to be deleted at the end of this job. This statement also concat­

enates the input stream to the primary input data set. The input

stream contains linkage editor control statements that must be

followed by a /* statement.

Figure 47. Job Control Statements for RPLACJOB

Linkage Editor Control Statements
The input stream contains the linkage editor control statements that are neces­

sary for the replacement of SUBONE with NEWMOD. The control statements are

shown below:

ENTRY MAINMOD
REPLACE SUBONE(NEWMOD)
INCLUDE INPUTX(GO)

Statement Explanation

ENTRY Specifies that the entry point is to be MAINMOD.

REPLACE Specifies that control section SUBONE in the module that follows

the REPLACE statement is to be replaced by control section

NEWMOD.

INCLUDE Specifies additional input: member GO of the data set described

on the INPUTX DD statement. This library member contains the

control section to be replaced. Because this member name is

identical to that specified on the SYSLMOD DD statement, the

output load module replaces the existing library member.

Figure 48. Linkage Editor Control Statements for RPLACJOB

Appendix A. Sample Linkage Editor Programs 161

Linkage Editor Output
Figure 49 shows the linkage editor output for sample program RPLACJOB. The
listing header indicates the options specified (XREF and LIST), and the SIZE
option values used (317440 for value1 and 86016 for value2).

MVS/DFP VER 3 LINKAGE EDITOR 10:01:40 WED JUN 15, 1988 JOB MAINRUN STEP LINKEDIT
INVOCATION PARAMETERS - XREF,LIST ACTUAL SIZE=(317440,86016)
OUTPUT DATA SET USER_01.LOADLIB(GO) IS ON VOLUME SYS086
IEWOOOO
IEWOOOO
IEVVOOOO

CONTROL SECTION

ENTRY MAINMOD
REPLACE SUBONEtNEWMOD)
INCLUDE INPUTX\GO)

ENTRY

CROSS REFERENCE TABLE

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
NEWMOD 00 Fl
MAINMOD F8 146

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION 12 4 NEWMOD NEWMOD ENTRY ADDRESS F8

TOTAL LENGTH 240

**GO REPLACED AND·HAS AMODE 24 LO_.:'.\D MODULE HAS RMODE 24
AUTHORIZATION CODE IS O.

Figure 49. Linkage Editor Output for Sample Program RPLACJOB

Because the LIST option is specified, a control statement listing is produced.
Each control statement is preceded by a special message number, IEWOOOO.
Because XREF is specified, the heading CROSS REFERENCE TABLE precedes
the rest of the output.

The module map shows that control section NEWMOD is now part of the load
module, and that control section SUBONE has been deleted. The new entry
address is F8, because NEWMOD is longer than SUBONE. The total length of
the load module is 240 bytes.

The cross-reference table indicates that at location 124 in MAINMOD, an
address constant refers to symbol NEWMOD, defined in control section
NEWMOD. Note that before the replacement occurred, the address constant in
MAINMOD referred to SUBONE, defined in control section SUBONE (Figure 46
on page 160). When the REPLACE statement is used to replace a control
section, references to the old control section from within the same input module
are also changed.

The disposition message indicates that the output load module (GO) has been
added to the output module library.

Sample Program REGNOVL Y
Use of OVERLAY programs is not recommended. The information shown here
is for compatibility. For more information on the use of overlay programs, see
"Appendix C. Designing and Specifying Overlay Programs" on page 177.

162 MVS/ESA Linkage Editor and Loader User 1 s Guide

11)

/

(j

~

u

REGION 1

Sample program REGNOVL Y creates a multiple-region overlay structure. The

structure produced is shown in Figure 50. In this program, some of the refer­

ences between control sections are:

CSA to CSE

CSB to CSE

CSB to CSD

CSD to CSC

T
CSA Root Segment 1

Alpha

Segment 5 CSE

1
CSB Segment 2

Beta

CSC Segment 3 CSD Segment 4

___________________ J _________________________ T ______ _J ______________________________ T ___ _
REGION 2 I } Segment 6 Gamma I } Segment 7

Figure 50. Overlay Tree for Multiple-Region Sample Program REGNOVL Y

The reference from CSB to CSE is a valid exclusive call, because there is a

reference to CSE in the segment common to both CSB and CSE; the reference

from CSD to CSC is invalid, because there is no reference to CSC in the

common segment.

The source progfams for all the control sections were compiled in previous job

steps. All the object modules were placed in the same data set, which was

passed to the linkage editor job step.

Appendix A. Sample Linkage Editor Programs 163

Job Control Language
The job control language for the linkage editor job step of this sample program
is shown below.

I ILKED
llSYSUTl
II
I ISYSLIB
llSYSLMOO
II

EXEC
DD

DD
DD

PGM=HEWL,PARM='XREF,LIST,OVLY,LET 1

DSNAME=&&UTl,UNIT=SYSDA,SPACE=(TRK,
(100,10))

llSYSPRINT DD

DSNAME=SYSl.COBLIB,DISP=SHR
DSNAME=&&OVLYJB(GO),UNIT=SYSDA,
DISP=(NEW,PASS),SPACE=(TRK,(100,10,1))
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE) I ISYSLIN DD

II DD *
Linkage Editor Control statements
I*

Statement

EXEC

SYSUT1

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Explanation

Causes the execution of the linkage editor. The PARM field
options request a cross-reference table and a module map
(XREF), and a control statement listing (LIST) to be produced on
the diagnostic output data set. The module is to be assigned
the overlay attribute (OVL Y), and marked executable in spite of
severity 2 errors (LET). The LET option is specified to permit
testing of the output module, even though an invalid exclusive
call is present. The XCAL option allows only valid exclusive
calls.

Defines a temporary direct access data set to be used as the
intermediate data set.

Defines the automatic call library (SYS1 .COBLIB) to be used to
resolve external references. All control sections from this
library are placed in the root segment; they remain there unless
they are repositioned.

Defines a temporary data set to be used as the output module
library; the load module is assigned the member name GO and
is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned to
output class A.

Defines the primary input data set, &&OBJMOD, which contains
the object modules for the overlay structure. This data set is
temporary and was passed from a previous job step; it is to be
deleted at the end of this job. This statement also concatenates
the input stream to the primary input data set. The input stream
contains linkage editor control statements, which must be delim­
ited by a r statement.

Figure 51. Job Control Statements for REGNOVLY

164 MVS/ESA Linkage Editor and Loader User's Guide

(~
J

n

Linkage Editor Control Statements
(: The input stream contains the linkage editor control statements that structure

\ __ ./ the overlay program. The control statements are:

(' u

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

Linkage Editor Output
Figure 52 on page 166 shows the linkage editor output for sample program

REGNOVL Y. The list header indicates the options specified and the SIZE option

values used.

Appendix A. Sample Linkage Editor Programs 165

tvfv'S/DFP VER 3 LINKAGE EDITOR 10:27:40 WED JUN 15, 1988
JOB MA.INRUN STEP LINKEDIT
INVOCATION PARAMETERS - XREF,LlST,OVLY,LET
ACTUAL SIZE-(317440,86016)
OUTPUT DATA SET USER_01. L0/-1DL JB(GO) IS ON VOLUME SYS086

!EWOOOO
IEWOOOO
lE\NOOOO
IEWOOOO
!EWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEvVOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEW0172
IEVV0182

INSERT CSA
ENTRY CSA
OVERLAY A.LPHA
INSERT CSB
OVERLAY BETA
lt~SERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAJ\l.;tA (REG I ON)
INSERT CSF
OVERLAY GAMvtA
INSERT CSG

2 CSE
4 csc

CROSS REFERENCE TABLE
Root Segment 1:

CONTROL SECTION

NAME
$SEGTAB

CSA
JLBODSPO*
ILBOSTPO*

$ENT AB

ORIGIN LENGTH SEG. NO.
00 34 1
.38 .366 1

3AO 6F8 1
A98 35 1

ADO 30

ENTRY

NAME LOCA T I ON NAME LOCATION

ILBOSTP1 ME

NAME LOCATION NAME LOCATION

LOCATION REFERS TO SY~v180L HJ CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTlrn SEG. i'JO. 2CO I LBODSPO I LBODSPO 1 2C4 I LBOSTPO I LBOSTPO 1 2C3 CSG CSG 7 2CC CSE CSE 5 2DO CSB CSB 2 2D4 I LBOSTP 1 I LBOSTPO 1
Segment 2:

CONTROL SECT ION

NAME
CSB

$El'JTA8

ORIGIN
600
E60

LENGTH SEG. NO.
360 2

18 2

ENTRY

N.Alv1E LOCATION NAME LOCATION LOG.AT ION NAME LOCATION

LOCATION REFERS TO SYtv160L l N CONTROL SECT I ON SEG. NO. LOCATION REFERS TO SYMBOL IN cor,JTROL SECT I ON SEG' NO. D54 I LBODSPO I LBODSPO 1 050 [LBOSTPO I LBOSTPO 1 D53 CSE CSE 5 060 I LBOSTP 1 I LBOSTPO 1 D5C CSD CSO 4

Segment 3:

CONTROL SECTION

NAME
csc

ORIGIN LENGTH SEG. NO.
E78 336 3

ENTRY

NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCA.T I ON

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. i'JO. 1 OCC I LBODSPO I LBODSPO 1 1 OC8 I LBOSTPO I LBOSTPO 1 1 ODO I LBOSTP 1 I LBOSTPO 1

Segment 4:

CONTROL SECTION

NAME
CSO

ORIGIN LENGTH SEG. NO.
E78 362 4

ENTRY

NAME LOCAT[ON NAME LOCATION NAME LOCA Tl QN NA.ME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL [N CONTROL SECTION SEG, NO. 1 OCC I LBOOSPO I LBODSPO 1 1 OC8 I LBOSTPO I LBOSTPO 1 1 OD4 I LBOSTP 1 I LBOSTPO 1 1 ODO CSC CSC 3

Figure 52 (Part of 2). Linkage Editor Output for Sample Program REGNOVLY

166 MVS/ESA Linkage Editor and Loader User's Guide

111

u

CROSS REFERENCE TABLE

Segment 5:

CONTROL SECT[ON ENTRY

r-.J/>Jv1E
CSE

OR[GIN LENGTH SEG. NO. NM~E LOC.ti.,TION NAME LOCATION NAME LOCATION NAME LOCATION
BOO 336 5

LOCATION REFERS TO SYMBOL [N CONTROL SECT! ON SEC. NO. LOCATION REFERS TO SY!v180L IN CONTROL SECT I ON SEG. NO.

D54 I LBODSPO I LBODSPO D50 l LBOSTPO I LBOSTPO 1
D58 lLBOSTP1 [LBOSTPO

Segment 6:

cmnROL SECT [ON ENTRY

N.A.tv1E
CSF

OR [GIN LENGTH SEG. NO. NAlv1E LOCATION NAME LOCA Tl ON NA.~!IE LOCA.T I ON NAME LOCATION

11EO 2FA 6

LOCAT [ON REFERS TO SYMBOL IN CONTROL SECT [ON SEC. ~~o' LOCATION REFERS TO SWBOL IN CONTROL SECT! ON SEG. ~~o.

1430 ILBOSTPO ILBOSTPO 1 1434 ILBOSTP1 ILBOSTPO 1

Segment 7:

cor-.JTROL SECT I ON ENTRY

NP.ME
CSG

ORIGIN
11 EO

LENGTH SEG. NO. NAME LOCATION NAME LOCATION r-.J.A.ME LOC.AT ION NAME LOCATION

336 7

LOCATION REFERS TO SYtv1BOL IN CONTROL SECT[ON SEG. NO. LOCATION REFERS TO S~,130L IN CONTROL SECTION SEG. NO.

1434 I LBODSPO [LBODSPO 1 1430 I LBOSTPO I LBOSTPO 1

1438 I LBOSTP1 [LBOSTPO 1
ENTRY ADDRESS 38

TOTAL LENGTH 1518
**"*GO DOES NOT EX I ST BUT H.ti.,S BEEN ADDED TO DAT A SET AtvDDE 24

RMODE rs 24.
A.UTHOR l ZA Tl ON CODE IS 0.

DIA.GNOSTIC MESS.AGE DI RECTORY

IE\1¥0172 ERROR - EXCLUSIVE CA.LL FROM SEGtv1ENT r-.JIJt'IBER PRINTED TO SYMBOL PRINTED.

IEW0182 ERROR - INVALID EXCLUSIVE CALL FROM SEGMENT ~~UtvlBER PRINTED TO SYMBOL PRINTED.

Figure 52 (Part 2 of 2). Linkage Editor Output for Sample Program REGNOVLY

Because the LIST option was specified, the control statement listing is

produced. Each control statement is preceded by a special message number,

IEWOOOO.

The control statement listing is followed by two diagnostic message numbers

(IEW0172 and IEW0182). The explanation of the messages and the information

following each message are given at the end of the output in the diagnostic

message directory.

The output for each segment contains a module map and a cross-reference

table. The segments are listed as they appear in the overlay structure, top to

bottom, left to right, and region by region. (Note that this is also the sequence

in which the OVERLAY and INSERT statements must be given.)

Within each segment, a module map lists the control sections in ascending

s·equence according to their assigned origin. The origin, length, and segment

number are listed for each control section, along with any entry names and the

location at which each entry name is defined. For example, the root segment

has five control sections: $SEGTAB, which is always the first control section in

the root segment; CSA, which is from the object module input; ILBODSPO and

ILBOSTPO, which are from the automatic call library (indicated by an asterisk)

and were not repositioned; and $ENT AB, which, when present, is always the

last control section in any segment (as also in segment 2). One entry name is

defined, ILBOSTP1 at location 058 in control section ILBOSTPO.

Appendix A. Sample Linkage Editor Programs 167 ·

The cross-reference table for each segment contains all the address constants
that refer to symbofs defined in other control sections. The location of the 1~ address constant is followed by the symbol referred to, the control section in J
which the symbol is defined, and the segment in which the control section is
located. For example, in the root segment, an address constant at location
11EO refers to symbol CSG, which is defined in control section CSG in segment
7. Although the region is not given, the overlay tree in Figure 50 on page 163
shows that segment 7 is in region 2.

At the end of the output for all the segments are the entry address and total
length. The entry address is 38, which is the origin of CSA, the specified entry
point. The total length given refers to main storage used, not device storage.
The length given, therefore, is that of the longest path. The longest path is that
formed by the root segment and segments 2, 4, and 7; the length given is 1518.

However, if the given lengths of the control sections in each segment are
added, the result is 1403. The discrepancy exists because the given lengths do ',r~
not include the padding bytes necessary to make control sections begin on a)
doubleword address (multiple of 8). For example, in the root segment, the
length of $SEGTAB is 34; however, the origin of CSA which follows $SEGTAB is
38 (decimal 56). Four additional bytes are needed so that the origin of CSA is a
multiple of 8.

The disposition message indicates that the load module GO has been added to
the output module library. The library did not contain any other module by that
name. The four asterisks identify the message.

The last item in the output for this sample program is the diagnostic message
directory. The directory contains the text for the message numbers listed after
the control statement listing. The directory must be correlated to the informa­
tion following the number to interpret the message.

For example, message IEW0172 is an error message that indicates that an
exclusive call was made from the segment number printed (2) following the
message number to the sy11Jbol printed (CSE). The output for segment 2 indi­
cates that this call is at location 058 in control section CSB, and the symbol is
defined in control section CSE in segment 5. This is the valid exclusive call
from CSB to CSE described earlier. (If XCAL were specified, a warning
message would be issued instead of an error message.)

If an invalid exclusive call is detected, message IEW0182 appears as shown.
This is also an error message; it indicates that an invalid exclusive call was
made from segment 4 to symbol CSC. This call is at location E78 in control
section CSO, and the symbol is defined in control section CSC in segment 3.
This is the invalid exclusive call from CSO to CSC, also described earlier.

168 MVS/ESA Linkage Editor and Loader User 1 s Guide

~\
(1

j

u

u

Sample Program PARTDS

llPARTDS
llCTLG
llSYSUT2
II
I ISYSPRINT
I ISYSIN
·I
·I

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE

JOB
EXEC
DO

DD
DD
ADD
NUMBER

OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG
I END UP

I*

Sample program PARTDS illustrates that linkage editor control statements can

be placed in a separate data set and used as input. This sample program uses

overlay structures, which are not recommended.

The linkage editor control statements are placed in a partitioned data set.

When the member that contains the control statements is referenced, the

linkage editor uses the control statements to produce the overlay structure

shown in Figure 50 on page 163.

Figure 53 shows the input statements for the IEBUPDTE utility program used to

place the control statements in a partitioned data set.

(accounting information)
PGM=IEBUPDTE, PARM=(NEW)
DSNAME=OVLYLIB, UNIT=2314, VOL=SER=DA028,DISP=(NEW,KEEP),
SPACE=(TRK),(10,5,2)),DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
SYSOUT=A
*
NAME=OVLY,LEVEL=00,SOURCE=00,LIST=ALL

NEW1=10, INCR=5

Figure 53. Input Statements for IEBUPDTE Utility Program

The source programs for all the control sections were compiled in previous job

steps. All the object modules were placed in the same data set, which was

passed to the linkage editor job step. The input modules are those used for

sample program REGNOVL Y.

Job Control Language
The job control language for the overlay program job step of this sample

program follows:

Appendix A. Sample Linkage Editor Programs 169

llLKED
llSYSUTl
II
llOVLYCDS
II
I ISYSLIB
llSYSLMOD
II
I ISYSPRINT
I ISYSLIN
II

EXEC PGM=HEWL,PARM= 1XREF,LIST,OVLY,LET 1

DD DSNAME=&&UTl,UNIT=SYSDA,SPACE=(TRK,
(100, 10))

DD DSNAME=OVLYLIB,UNIT=SYSDA,
VOL=SER=SCRTCH,DISP=OLD

DD DSNAME=SYSl.COBLIB,DISP=SHR
DD DSNAME=&&OVLYJB(GO),UNIT=SYSDA,

DISP=(NEW,PASS),SPACE=(TRK,(108,18,1))
DD SYSOUT=A
DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)
DD *

(Linkage Editor Control Statements)

I*

Statement

EXEC

SYSUT1

OVLYCDS

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Explanation

Causes the execution of the linkage editor. The PARM field
options request a cross-reference table and a module map
(XREF), and a control statement listing (LIST) to be produced on
the diagnostic output data set. The output load module is to be
assigned the overlay attribute (OVL Y), and is to be marked exe­
cutable despite severity 2 errors (LET).

Defines a temporary direct access data set to be used as the
intermediate data set.

Defines a permanent data set to be used later as additional
input; this is the partitioned data set which was created by
IEBUPDTE and contains the control statements for structuring
the overlay program.

Defines the automatic call library (SYS1.COBLIB) to be used to
resolve external references. All control sections from this
library are placed in the root segment; they remain there unless
they are repositioned.

Defines a temporary data set to be used as the output module
library; the load module is to be assigned the member name
GO, and is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned to
output class A.

Defines the primary input data set, &&OBJMOD, which contains
the object modules for the overlay structure. This data set is
temporary and was passed from a previous job step; it is to be
deleted at the end of this job. This statement also concatenates
the input stream to the primary input data set. The input stream
contains linkage editor control statements that must be delim­
ited by a /* statement.

Figure 54. Job Control Statements for PARTDS

170 MVS/ESA Linkage Editor and Loader User 1 s Guide

I~

,r-'\
.)

()

/
~;

Linkage Editor Control Statements
The input stream contains an INCLUDE statement, as follows:

INCLUDE OVLYCDS(OVLY)

This statement causes the control statements to be read from the partitioned
data set described on the OVL YCDS DD statement. The member name of the
statements is OVL Y, the same name used in the ADD statement for the utility
program.

Linkage Editor Output
The output of this sample program is identical to the output from the
REGNOVL Y sample program, with one exception. The list of control statements
begins with the statement

IEIJJ0000 INCLUDE OVLYCDS(OVLY)

This statement is followed by a list of the control statements read from the addi­
tional input data set specified in this INCLUDE statement. The rest of the output
is identical to that shown in Figure 52 on page 166.

Appendix A. Sample Linkage Editor Programs 171

I~
I

G Appendix B. Linkage Editor Requirements and Capacities

Capacities

(·,

\.._)

This appendix describes the record-processing capacities of the linkage editor,

the types of devices that can be used for the intermediate data set (SYSUT1),

and the amount of virtual storage the linkage editor requires.

The minimum storage requirement and processing capacities of the linkage

editor program are described in Figure 55. To increase the capacity for proc­

essing external symbol dictionary records, intermediate text records, relocation

dictionary records, and identification records, increase value1 and/or decrease

va/ue2 of the SIZE option. Output text record length can be increased by
increasing the SIZE option values, but in no case may the record length ever
exceed the track length for the device or 32760 bytes, whichever is smaller.

The number of overlay segments and regions that can be processed is not
affected by increasing the storage available.

Figure 55. Linkage Editor Capacities for Minimal SIZE Values (96K bytes, GK bytes)

Capacity
Function (Bytes)

Virtual storage allocated (in bytes) 96K

Maximum number of entries in composite external symbol die- 558
tionary (CESD)

Maximum number of intermediate text records 372

Maximum number of relocation dictionary (RLD) records 192

Maximum number of segments per program 255

Maximum number of overlay regions per program 4

Maximum blocking factor for input object modules object 5
modules (number of 80-column card images per physical
record)

Maximum blocking factor for SYSPRINT output (number of 5
121-character logical records per physical record)

Output text record length (in bytes), for the devices supported 3072 1

by this system: 2305-2 Fixed Head Storage, 3330 Disk Storage,
3330-11 Disk Storage, 3340 DASO, 3344 DASO, 3350 DASO,
3375 DASO, 3380 DASD2

•

Notes:

1 The maximum output text record length is achieved when value2 of the

SIZE parameter is at least twice the record length size. For example, on
a 3330, 12288 byte records are written when value2 is at least 24576.

2 3380, all models.

Appendix B. Linkage Editor Requirements and Capacities · 173

For the composite external symbol dictionary, the number of entries permitted
can be computed by subtracting, from the maximum number given in Figure 55 1)
on page 173, one entry for each of the following:

• A data definition name (ddname) specified in LIBRARY statements

• A data definition name (ddname) specified in INCLUDE statements

• An ALIAS statement

• A symbol in REPLACE or CHANGE statements that are in the largest group
of such statements preceding a single object module in the input to the
linkage editor

• The segment table (SEGTAB) in an overlay program

• An entry table (ENT AB) in an overlay program

To compute the number of intermediate text records that will be produced
during processing of either program, add one record for each group of x bytes
within each control section, where x is the record size for the intermediate data
set. The minimum value for x is 1024; a maximu,m is chosen depending on the
amount of storage available to the linkage editor and the devices allocated for
the intermediate and output data sets.

The number of intermediate text records that can be handled by a linkage
editor program is less than the maximums given in Figure 55 on page 173 if
the text of one or more control sections is not in sequence by address in the
input to the linkage editor.

The total length of the data fields of the CSECT identification records associated
with a load module cannot exceed 32K (32768) bytes. To determine the number
of bytes of identification data contained in a particular load module, use the fol­
lowing formula:

SIZE = 269 + 16A + 31 B + 2C + l(n + 6)

where:

A = the number of compilations or assemblies by a processor supporting
CSECT identification that produced the object code for the module.

B = the number of preprocessor compiler compilations by a processor sup­
porting CSECT identification that produced the object code for the
module.

C = the number of control sections in the module with END statements that
contain identification data.

I = the number of control sections in the module that contain user-supplied
data supplied during link-editing by the optional IDENTIFY control state­
ment.

n = the average number of characters in the data specified by IDENTIFY
control statements.

174 MVS/ESA Linkage Editor and Loader User 1 s Guide

~
I)

(
~/

u

(I

~)

Notes:

1. The size computed by the formula includes space for recording up to 19

HMASPZAP modifications. When 75% of this space has been used, a new
251-byte record is created the next time the module is reprocessed by the
linkage editor.

2. To determine the approximate number of records involved, divide the com­
puted size of the identification data by 256.

Example: A module contains 100 control sections produced by 20 unique com­
pilations. Each control section is identified during link-editing by 8 characters of
user data specified by the IDENTIFY control statement. The size of the identifi­
cation data is computed as follows:

A= 20
I= 100
n = 8

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control statements is
omitted, the size can be reduced considerably, as computed below:

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to other seg­
ments lower in its path can never exceed 340. To compute the maximum
number of downward calls allowed, subtract 12 from the SYSLMOD record size
and then divide the difference by 12. Examples of maximum downward calls.
are 84 for a SYSLMOD record size of 1024 bytes and 340 for a SYSLMOD record
size of 6144 bytes.

Intermediate Data Set
The intermediate data set (SYSUT1) is used by the linkage editor to hold inter­

mediate data records during processing. The linkage editor places interme­
diate data in this data set when storage allocated for input data or certain forms

of out-of-sequence text is exhausted.

The following direct access devices, if supported by the system, can be used for
this data set:

IBM 2305-2
IBM 2314
IBM 2319
IBM 3330
IBM 3330-11
IBM 3340
IBM 3344
IBM 3350
IBM 3375
IBM 33801

Fixed Head Storage
Storage Control
Disk Storage
Disk Storage
Disk Storage
Direct Access Storage
Direct Access Storage
Direct Access Storage
Direct Access Storage
Direct Access Storage

3380, all models.

Appendix B. Linkage Editor Requirements and Capacities 175

()

I)

it)

(
\._.,/

u

Appendix C. Designing and Specifying Overlay Programs

General-Use Programming Interface

This appendix is intended to help you design and specify overlay programs. It

contains general-use programming interfaces, which allow you to write pro­
grams that use the services of MVS/DFP.

Use of overlay programs is not recommended. The information in this appendix

is shown for compatibility.

Ordinarily, when a load module produced by the linkage editor is executed, all

the control sections of the module remain in virtual storage throughout exe­

cution. The length of the load module is, therefore, the sum of the lengths of all

the control sections. When storage space is not at a premium, this is the most

efficient way to execute a program. However, if a program approaches the

limits of the virtual storage available, the programmer should consider using

the overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program to an overlay

program is the addition of control statements to structure the module. The pro­

grammer chooses the overlayable portions of the program, and the system

arranges to load the required portions when needed during execution of the
program.

When the linkage editor overlay facility is requested, the load module is struc­

tured so that, at execution time, certain control sections are loaded only when

referenced. When a reference is made from an executing control section to
another, the system determines whether or not the code required is already in

virtual storage. If it is not, the code is loaded dynamically and may overlay an

unneeded part of the module already in storage.

The rest of this chapter is divided into three sections that describe the design,

specification, and special considerations for overlay programs.

Design of an Overlay Program
The way in which an overlay module is structured depends on the relationships

among the control sections within the module. Two control sections that do not

have to be in storage at the same time can overlay each other. Such control

sections are independent; that is, they do not reference each other either

directly or indirectly. Independent control sections can be assigned the same

load addresses and are loaded only when referenced. For example, control

sections that handle error conditions or unusual data may be used infrequently,

and need not be occupying storage unless in use.

Control sections are grouped into segments. A segment is the smallest func­

tional unit (one or more control sections) that can be loaded as one logical

entity during execution. The control sections required all the time are grouped

into a special segment called the root segment. This segment remains in

storage throughout execution of an overlay program.

Appendix C. Designing and Specifying Overlay Programs 177

When a particular segment is to be executed, any segments between it and the
root segment must also be in storage. This is a path. A reference from one .r-'\
segment to another segment lower in a path is a downward reference (see)
"Control Section Dependency" on page 178). That is, the segment contains a
reference to another segment farther from the root segment. Conversely, a ref-
erence from one segment to another segment higher in a path (closer to the
root segment) is an upward reference.

Therefore, a downward reference may cause overlay, because the· necessary
segm.ent may not yet be in virtual storage. An upward reference will not cause
overlay, because all segments between a segment and the root segment must
be present in storage.

Sometimes several paths need the same control sections. This problem may
be solved by placing the control sections in another region. In an overlay struc­
ture, a region is a contiguous area of virtual storage within which segments can
be loaded independently of paths in other regions. An overlay program can be
designed in single or multiple regions.

Single Region Overlay Program
To design an overlay structure, the programmer should select those control
sections that will receive control at the beginning of execution, plus those that
should always remain in storage; these control sections form the root segment.
The rest of the structure is developed by determining the dependencies of the
remaining control sections and how they can use the same virtual storage
locations at different times during execution.

Besides control section dependency, other topics discussed in this section are
segment dependency, the length of the overlay program, segment origin, com­
munication between segments, and overlay processing.

Control Section Dependency
Control section dependency is determined by the requirements of a control
section for a given routine in another control section. A control section is
dependent upon any control section from which it receives control, or which
processes its data. For example, if control section C receives control from
control section B, then C is dependent upon B. That is, both control sections
must be in storage before execution can continue beyond a given point in the
program.

Assume that a program contains seven control sections, CSA through CSG, and
exceeds the amount of storage available for its execution. Before the program
is rewritten, it is examined to see whether or not it could be placed into an
overlay structure. Figure 56 on page 179 shows the groups of dependent
control sections in the program (the arrows indicate dependencies).

178 MVS/ESA Linkage Editor and Loader User 1 s Guide

if)

I u

(

_)

~
I

~

/

csc

.....

/

CSD

Dependent
Group 1

/

,/

7

/

/

CSA

/

CSB

.A

/

csc

...-..

/

CSF

Dependent
Group 2

/ / /

CSA
I/ I/

7 / 7

CSB
/

A

7 / /

CSG
/ /

Dependent
Group 3

/

/

Figure 56. Control Section Dependencies

Each dependent group is also a path. That is, if control section CSG is to be
executed, CSB and CSA must also be in storage. Because CSA and CSB are in
each path, they must be in the root segment. Control section CSC is in two
groups, and therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a tree struc­
ture. A tree is the graphic representation that shows how segments can use
virtual storage at different times. It does not imply the order of execution,
although the root segment is the first to receive control. Figure 57 on page 180
shows the tree structure for the dependent groups shown in Figure 56. The
structure is contained in one region, and has five segments.

Appendix C. Designing and Specifying Overlay Programs 179

T
CSA

+ Root Segment 1

CSB

csc Segment 2

CSD l t l Segment3

CSF

1 _/
Figure 57. Single-Region Overlay Tree Structure

Segment Dependency
When a segment is in virtual storage, all segments in its path are also in virtual
storage. Each time a segment is loaded, all segments in its path are loaded if
they are not already in virtual storage. In Figure 57, when segment 3 is in
virtual storage, segments 1 and 2 are also in virtual storage. However, if
segment 2 is in storage, this does not imply that segment 3 or 4 is in virtual
storage, because neither segment is in the path of segment 2.

The posi1ion of the segments in an overlay tree structure does not imply the
sequence in which the segments are executed. A segment can be loaded and
overlaid as many times as required by the logic of the program. However, a
segment will not be overlaid by itself. If a segment is modified during exe­
cution, that modification remains only until the segment is overlaid.

180 MVS/ESA Linkage Editor and Loader User's Guide

n
.)

(",
)

!~
J

I
i '
_)

I
i '
\.._.)

Length of an Overlay Program

CSD
4000
bytes

+ CSE
3000
bytes

_L

Segment3
7000 bytes

csc
6000
bytes

For purposes of illustration, assume that the control sections in the sample
program have the following lengths:

Control Section Length (in bytes)

CSA 3000

CSB 2000

csc 6000

CSD 4000

CSE 3000

CSF 6000

CSG 8000

If the program were not in overlay, it would require 32000 bytes of virtual
storage. In overlay, however, the program requires the amount of storage
needed for the longest path. In this structure, the longest path is formed by
segments 1, 2, and 3, since, when they are all in storage, they require 18000
bytes, as shown in Figure 58.

Segment 2
6000 bytes

CSF
6000
bytes

l

T \
CSA
3000
bytes

t J> :~ ~:t~~ent 1

CSB
2000
bytes

Segment 4
6000 bytes

CSG
8000
bytes

1
Segment 5
8000 bytes

Figure 58. Length of an Overlay Module

Note: The length of the longest path is not the minimum requirement for an
overlay program; when a program is in overlay, certain tables are used, and

Appendix C. Designing and Specifying Overlay Programs 181

Segment Origin

0

Root Segment 1
5000 bytes

2 3 4

their storage requirements must also be considered. The storage required by
these tables is given in the section "Special Considerations" on page 196.

The linkage editor assigns the relocatable origin of the root segment (the origin
of the program) at 0. The relative origin of each segment is determined by 0
plus the length of all segments in the path. For example, the origin of seg­
ments 3 and 4 is equal to O plus 6000 (the length of segment 2) plus 5000 (the
length of the root segment), or 11000. The origins of all the segments are as
follows:

Segment Origin

1 0

2 5000

3 11000

4 11000

5 5000

The segment origin is also called the load point, because it is the relative
location at which the segment is loaded.

Figure 59 shows the segment origin for each segment and the way storage is
used by the sample program. In the illustration, the vertical bars indicate
segment origin; any two segments with the same origin may use the same 1')

storage area. Figure 59 also shows that the longest path is that of segments 1,
2, and 3.

5 6 7

Segment 5
8000 bytes

Segment 2
6000 bytes

8 9 10 11

Segment 4
6000 bytes

Segment 3
7000 bytes

12 13 14 15 16 17 18 19 20

----------- Relative storage Location (in 1000 byte increments) --~-----------

Figure 59. Segment Origin and Use of Storage

i.182 MVS/ESA Linkage Editor and Loader User 1 s Guide

(.

_.,;

I I 1-.._;

u

Communication between Segments

I
Segment 3

1

I

Segments that can be in virtual storage simultaneously are considered to be
inclusive. Segments in the same region but not in the same path are consid­
ered to be exclusive; they cannot be in virtual storage simultaneously.
Figure 60 shows the inclusive and exclusive segments in the sample program.

T
Root
Segment 1

I

Segment 2 I
Segment 5

1 I

I
Segment4

1

Inclusive Segments

1,2,and3
1,2,and4
1and5

Exclusive Segments

2 and 5
3and 4
3and 5
4and 5

Figure 60. Inclusive and Exclusive Segments

Segments upon which two or more exclusive segments are dependent are
called common segments. A segment common to two other segments is part of
the path of each segment. Figure 60, segment 2 is common to segments 3 and
4, but not to segment 5.

An inclusive reference is a reference between inclusive segments; that is, a ref­
erence from a segment in storage to an external symbol in a segment that will
not cause overlay of the calling segment. An exclusive reference is a reference
between exclusive segments; that is, a reference from a segment in storage to
an external symbol in a segment that will cause overlay of the calling segment.

Figure 61 on page 184 shows the difference between an inclusive reference
and an exclusive reference; the arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be used
instead of exclusive references. Inclusive references between segments are
always valid and do not require special options. When inclusive references are
used, there is also less chance for error in structuring the overlay program cor­
rectly.

Exclusive References: An exclusive reference is made when the external refer­
ence in the requesting segment is to a symbol defined in a segment not in the
path of the requesting segment. Exclusive references are either valid or
invalid.

Appendix C. Designing and Specifying Overlay Programs 183

usive Incl
Refe re nee

Seg ment A

v)
,,
~

--

An exclusive reference is valid only if there is also an inclusive reference to the
requested control section in a segment common to both the segment to be
loaded and the segment to be overlaid. The same symbol must be used in both
the common segment and the exclusive reference. In Figure 61, a reference
from segment B to segment A is valid, because there is an inclusive reference
from the common segment to segment A. (An entry table in the common
segment contains the address of segment A; the overlay does not destroy this
table.)

--

.
) Common Segment

v

.

11 11

) Segment B

Exclusive
Reference --

Figure 61. Inclusive and Exclusive References

In the same illustration, a reference from segment A to segment B is invalid,
because there is no reference from the common segment to segment B. A ref­
erence from segment A to segment B can be made valid by including, in the
common segment, an external reference to the symbol used in the exclusive
reference to segment B.

Another way to eliminate exclusive references is to arrange the program so
that the references thatwill cause overlay are made in a higher segment. For
example, the programmer could eliminate the exclusive reference shown in
Figure 61 by writing a new module to be placed in the common segment; the
new module's only function would be to reference segment B. The code in
segment A could then be changed to refer to the new module instead of to
segment 8. Control then would pass from segment A to the common segment,
where the overlay of segment A by segment B would be initiated.

If either valid or invalid exclusive references appear in the program, the linkage
editor considers them errors unless one of the special options is used. These
options are described later in this section (see "Special Considerations" on
page 196).

Notes:

1. Dudng the execution of a program written in a higher level language such
as FORTRAN, COBOL, or PL/I, an exclusive call results in abnormal termi­
nation of the program if the requested segment attempts to return control
directly to the invoking segment that has been overlaid.

184 MVS/ESA Linkage Editor and Loader User 1 s Guide

/~
j

~.
')

!~
/

/~
)

(

u

u

Overlay Process

CSD

+ Segment 3

CSE

1

2. If a program written in COBOL includes a segment that contains a reference
to a COBOL class test or TRANSFORM table, the segment containing the
table must be either (1) in the root segment or (2) a segment that is higher
in the same path than the segment containing the reference to the table.

The overlay process is initiated during execution of a program only if a control
section in virtual storage references a control section not in storage. The
control program determines the segment that the referenced control section is
in and, if necessary, loads the segment. When a segment is loaded, it overlays
any segment in storage with the same relative origin. Any segments in storage
that are lower in the path of the overlaid segment may also be overlaid. An
exclusive reference can also cause segments higher in the path to be overlaid.
If a control section in storage references a control section in another segment
already in storage, no overlay occurs.

The portion of the control program that determines when overlay is to occur is
the overlay supervisor, which uses special tables to determine when overlay is
necessary. These tables are generated by the linkage editor, and are part of
the output load module. The special tables are the segment table and the entry
table(s). Figur~ 62 shows the location of the segment and entry tables in the
sample program.

-I
SEGTAB

t
CSA

+ \ Root Segment 1

CSB

t
EN TAB

I

I
csc

t Segment 2 CSG Segment 5

EN TAB

I
I ~} I Segment4

Figure 62. Location of Segment and Entry Tables in an Overlay Module

Appendix C. Designing and Specifying Overlay Programs 185

Because the tables are present in every overlay module, their size must be
considered when planning the use of virtual storage. The storage requirements
for the tables are given in "Special Considerations" on page 196. A more
detailed discussion of the segment and entry tables follows.

Segment Table: Each overlay program contains one segment table (SEGTAB);
this table is the first control section in the root segment. The segment table
contains information about the relationship of the segments and regions in the
program. During execution, the table also indicates which segments are either
in storage or being loaded, and other control information.

Entry Table: Each segment that is not the last segment in a path may contain
one entry table (ENTAB); this table, when present, is the last control section in
a segment.

When overlay will be required, an entry in the table is created for a symbol to
which control is to be passed, provided (1) the symbol is used as an external
reference in the requesting segment, and (2) the symbol is defined in another
segment either lower in the path of the requesting segment, or in another
region. An ENTAB entry is not created for any symbol already present in an
entry table closer to the root segment (higher in the path), or for a symbol
defined higher in the path. (A reference to a symbol higher in the path does
not have to go through the control program because no overlay is required.)

If an external reference and the symbol to which it refers are in segments not in
the same path but in the same region, an exclusive reference was made. If the
exclusive reference is valid, an ENTAB entry for the symbol is present in the
common segment. Because the common segment is higher in the path of the
requesting segment, no ENTAB entry is created in the requesting segment.
When the reference is executed, control passes through the ENTAB entry in the
common segment. That is, a branch to the location in the ENT AB entry causes
the overlay supervisor to be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry is present in the common
segment. If the LET option is specified, an invalid exclusive reference causes
unpredictable results when the program is executed. Because no ENT AB entry
exists, control is passed directly to the relative address specified in the refer­
ence, even though the requested segment may not be in virtual storage.

Multiple Region Overlay Program
If a control section is used by several segments, it is usually desirable to place
that control section in the root segment. However, the root segment can get so
large that the benefits of overlay are lost. If some of the control sections in the
root segment could overlay each other (except for the requirement that all seg­
ments in a path must be in storage at the same time), the job may be a candi­
date for multiple region structure. Multiple region structures can also be used
to increase segment loading efficiency: Processing can continue in one region
while the next path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are not in its

I~
I }

(~
I

path. Within each region, the rules for single region overlay programs apply, '·1.~/· but the regions are independent of each other. A maximum of four regions can)
be used.

186 MVS/ESA Linkage Editor and Loader User's Guide

u

u

u

CSD

+ CSE

_I

Figure 63 shows the relationship between the control sections in the sample
program and two new control sections, CSH and CSI. The two new control
sections are each used by two other control sections in different paths. Placing
CSH and CSI in the root segment makes the segment larger than necessary,
because CSH and CSI can overlay each other. The two control sections should
not be duplicated in two paths, because the linkage editor automatically deletes
the second pair and an invalid exclusive reference may then result.

T
CSA

t
CSB

csc CSG

I
CSI

cL1

CSF

I
CSH

ll I
CSH

~

I
CSI

lL
Figure 63. Control Sections Used by Several Paths

If, however, the two control sections are placed in another region, they can be
in virtual storage when needed, regardless of the path being executed in the
first region. Figure 64 on page 188 shows all the control sections in a two­
region structure. Either path in region 2 can be in virtual storage regardless of
the path being executed in region 1; segments in region 2 can cause segments
in region 1 to be loaded without being overlaid themselves.

Appendix C. Designing and Specifying Overlay Pro~rams 187

REGION 1 T
CSA

+ Root Segment 1

CSB

I

C+SD CjF } Segment 4
Segmen13 l

CSE

11 Segments

lJ
_____________________ 1 ____________________________ r--,---
REGION

2
} CSI l Segment 7 T Segment 6 1 J

Figure 64_ Overlay Tree for Multiple-Region Program

The relative origin of a second region is determined by the length of the longest
path in th·e first region (18000 bytes). Region 2, therefore, begins at 0 plus
18000 bytes. The relative origin of a third region would be determined by the
length of the longest path in the first region plus the longest path in the second
region.

The virtual storage required for the program is determined by adding the
lengths of the longest path in each region. In Figure 64, if CSH is 4000 bytes
and CSI is 3000 bytes, the storage required is 22000 bytes, plus the storage
required by the special overlay tables.

Care should be exercised when choosing multiple regions. There may be some
system degradation caused by the overlay supervisor being unable to optimize
segment loading when multiple regions are used.

Specification of an Overlay Program
Once the programmer has designed an overlay structure, the module must be
placed in that structure by indicating to the linkage editor the relative positions
of the segments and regions, and the control sections in each segment. Posi­
tioning is accomplished as follows:

• Segments are positioned by OVERLAY statements. In addition, the overlay
statement provides a means by which to equate each load point with a
unique symbolic name. Each OVERLAY statement begins a new segment.

188 MVS/ESA Linkage Editor and Loader User 1 s Guide

I

\~

Segment Origin

/ u

u

• Regions are also positioned by OVERLAY statements. The programmer
specifies the origin of the first segment of the region, followed by the word
REGION in parentheses.

• Control sections are positioned in the segment specified by the OVERLAY
statement with which they are associated in the input sequence. However,
the sequence of the control sections within a segment is not necessarily the
order in which the control sections are specified.

The input sequence of control statements and control sections should reflect
the sequence of the segments in the overlay structure from top to bottom, left to
right, and region by region. This sequence is illustrated in later examples.

In addition, several special options are used with overlay programs. These
options are specified on the EXEC statement for the linkage editor job step, and
are described at the end of this section.

Note: If a load module in overlay structure is .to be reprocessed by the linkage
editor, the OVERLAY statements and special options (such as OVL Y) must be
respecified. If the statements and options are not provided, the output load
module will not be in overlay structure.

The symbolic origin of every segment, other than the root segment, must be
specified with an OVERLAY statement. The first time a symbolic origin is speci­
fied, a load point is created at the end of the previous segment. That load point
is logically assigned a relative address at the doubleword boundary that follows
the last byte in the preceding segment. Subsequent use of the same symbolic
origin indicates that the next segment is to have its origin at the same load
point.

In the sample single-region program, the symbolic origin names ONE and TWO
are assigned to the two necessary load points, as shown in Figure 64 on
page 188. Segments 2 and 5 are at load point ONE; segments 3 and 4 are at
load point TWO.

The following sequence of OVERLAY statements will result in the structure in
Figure 65 on page 190 (the control sections in each segment are indicated by
name):

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

Note: The sequence of OVERLAY statements reflects the order of segments in
the structure from top to bottom and left to right.

Appendix C. Designing and Specifying Overlay Programs 189

Region Origin

T
Root Segment 1

ONE

Segment2

Segment 5

TWO

Segment 4
Segment 3

1 l
Figure 65. Symbolic Segment Origin in Single-Region Program

The symbolic origin of every region, other than the first, must be specified with
an OVERLAY statement. Once a new region is specified, a segment origin from
a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is assigned
to region 2, as shown in Figure 66 on page 191. Segments 6 and 7 are at load
point THREE.

190 MVS/ESA Linkage Editor and Loader User 1 s Guide

!~
)

!~
I)

(~
)

,!')
I

11)

u

REGION 1

T
Root Segment 1

ONE

Segment 2
Segment 5

1 Segment 4

TWO

Segment3 1
____________________ _] ____________________________ 1 __ 1 __ _
REGION 2 THREE

Segment 7 SeT6 l

Figure 66. Symbolic Segment and Region Origin in Multiple-Region Program

If the following is added to the sequence for the single-region program, the
multiple-region structure will be produced:

OVERLAY THREE(REGION)
Control section CSH
OVERLAY THREE
Control section CSI

Positioning Control Sections
After each OVERLAY statement, the control sections for that segment must be
specified. The control sections for a segment can be specified in one of three
ways:

• By placing the object decks for each segment after the appropriate
OVERLAY statement

• By using INCLUDE control statements for the modules containing the control
sections for the segment

• By using INSERT control statements to reposition a control section from its
position in the input stream to a particular segment

Appendix C. Designing and Specifying Overlay Programs 191

Using Object Decks

Any control sections that precede the first OVERLAY statement are placed in
the root segment; they can be repositioned with an INSERT statement. Control
sections from the automatic call library are also placed in the root segment.
The INSERT statement can be used to place these control sections in another
specific segment. Common areas in an overlay program are described in
"Special Considerations" on page 196.

An example of each of the three methods of positioning control sections follows.
Each example results in the structure for the single-region sample program. An
example is also given of repositioning control sections from the automatic call
library.

The primary input data set for this example contains an ENTRY statement and
seven object decks, separated by OVERLAY statements:

//LKED EXEC PGM=HEWL,PARM= 1 0VLY 1

//SYSLIN DD
ENTRY BEGIN

Object deck for CSA
Object deck for CSB

OVERLAY ONE
Object deck for CSC

OVERLAY mo
Object deck for CSD
Object deck for CSE

OVERLAY mo
Object deck for CSF

OVERLAY ONE
Object deck for CSG
/*

*

The EXEC statement illustrates that the OVL Y parameter must be specified for
every overlay program to be processed by the linkage editor.

Using INCLUDE Statements
The primary input data set for this example contains a series of control state­
ments. The INCLUDE statements in the primary input data set direct the
linkage editor to library members that contain the control sections of the
program.

192 MVS/ESA Linkage Editor and Loader User 1 s Guide

·~
I

n

u

u

u

llLKED EXEC PGM=HEWL,PARM= 1 0VLY 1

llMODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
llSYSLIN DD *

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY Hi.JO
INCLUDE MODLIB(CSD,CSE)
OVERLAY mo
INCLUDE MODLIB(CSF)
OVERLAY ONE
INCLUDE MODLIB(CSG)

I*

This example differs from the previous one in that the control sections of the
program are not part of the primary input data set, but are represented in the
primary input by the INCLUDE statements. When an INCLUDE statement is
processed, the appropriate control section is retrieved from the library and
processed.

Using INSERT Statements
When INSERT statements are used, the INSERT and OVERLAY statements may
either follow or precede all the input modules. However, the order of the
control sections in a segment is not necessarily the same as the order of the
INSERT statements for each segment. An example of each is given, as well as
an example of repositioning automatically called control sections.

Following All Input: The control statements can follow all the input modules, as
shown in the following example:

llLKED EXEC PGM=HEWL,PARM= 1 0VLY 1

llSYSLIN DD
II DD

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD, CSE
OVERLAY mo
INSERT CSF
OVERLAY ONE
INSERT CSG

I*

DSNAME=OBJECT,DISP=(OLD,KEEP), ...
*

Appendix C. Designing and Specifying Overlay Programs 193

The primary input data set contains the object modules for the control sections,
and the input stream is concatenated to it.

1)

Preceding All Input: The control statements can also precede all input
modules, as shown in the following example:

//LKED
//MODULES

EXEC PGM=HEWL,PARM='OVLY'
DD DSNAME=OBJSEQ,DISP=(OLD,KEEP), ...

//SYSLIN DD

I*

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY nJO
INSERT CSD,CSE
OVERLAY nJO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

*

The primary input data set contains all the control statements for the overlay .n
structure and an INCLUDE statement. The data set specified by the INCLUDE
statement contains all the object modules for the structure, and is a sequential
data set.

Repositioning Automatically Called Control Sections: The INSERT statement
can also be used to move automatically called control sections from the root
segment to the desired segment. This is helpful when control sections from the
automatic call library are used in only one segment. By moving such control
sections, the root segment will contain only those control sections used by i .. I'\. ./·

more than one segment. : .)

When a program is written in a higher level language, special control sections
are called from the automatic call library. Assume that the sample program is
written in COBOL and that two control sections (ILBOVTRO and ILBOSCHO) are
called automatically from SYS1 .COBLIB. Ordinarily, these control sections are
placed in the root segment. However, INSERT statements are used in the fol­
lowing example to place these control sections in segments other than the root
segment.

194 MVS/ESA linkage Editor and Loader User's Guide

u
Special Options

OVLY Option

LET Option

u

//LKED
//MODLIB
//SYSLIB

EXEC PGM=HEWL,PARM='OVLY'
DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
DD DSNAME=SYSl.COBLIB,DISP=SHR

//SYSLIN DD *

/*

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
INSERT I LBOVTR0
OVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCH0
OVERLAY ONE
INCLUDE MODLIB(CSG)

As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO,
respectively.

This example also combines two of the ways of specifying the control sections
for a segment.

The linkage editor provides three special job step options (OVL Y, LET, and

XCAL) for the overlay programmer. These options are specified on the EXEC
statement for the linkage editor job step. They must be respecified each time a
load module in overlay structure is reprocessed by the linkage editor.

The OVL Y option must be specified for every overlay program. If the option is
omitted, all the OVERLAY and INSERT statements are considered invalid, and
the output module is not an overlay structure. If in addition, the LET option is

not specified, the output module is marked not executable.

With the LET option, the output module is marked executable even though

certain error conditions were found during linkage editor processing. When LET

is specified, any exclusive reference (valid or invalid) is accepted. At execution
time, a valid exclusive reference is executed correctly; an invalid exclusive ref­

erence usually causes unpredictable results.

Also with the LET option, unresolved external references do not prevent the

module from being marked executable. This could be helpful when part of a

large program is ready for testing; the segments to be tested may contain refer­

ences to segments not yet coded. If LET is specified, the program can be exe­

cuted to test those parts that are finished (as long as the references to the

absent segments are not executed). If the LET optron is not specified, these

unresolved references will cause the module to be marked not executable.

Appendix C. Designing and Specifying Overlay Programs 195

XCAL Option
With the XCAL option, a valid exclusive call is not considered an error, and the
load module is marked executable. However, unless the LET option is speci­
fied, other errors could cause the module to be marked not executable. In this
case, the XCAL option is not required.

AMODE and RMODE Options
If the OVL Y option is specified, the AMODE and RMODE options are ignored
and a diagnostic message is issued to that effect. Overlay programs are
assigned a residence mode of 24 and an addressing mode of 24.

Special Considerations

Common Areas

This section discusses several special considerations that affect overlay pro­
grams. These considerations include the handling of common areas, special
storage requirements, and overlay communication.

When common areas (blank or named) are encountered in an overlay program,
the common areas are collected as described previously (that is, the largest
blank or identically named common area is used). The final location of the
common area in the output module depends on whether INSERT statements
were used to structure the program.

If INSERT statements are used to structure the overlay program, a named
common area should either be part of the input stream in the segment to which
it belongs, or should be placed there with an INSERT statement.

Because INSERT statements cannot be used for blank common areas, a blank
common area should always be part of the input stream in the segment to
which it belongs.

If INSERT statements are not used, and the control sections for each segment
are placed or included between OVERLAY statements, the linkage editor "pro­
motes" the common area automatically. That is, the common area is placed in
the common segment of the paths that contain references to it so that the
common area is in storage when needed. The position of the promoted area in
relation to other control sections within the common segment is unpredictable.

If a common area is encountered in a module from the automatic call library,
automatic promotion places the common area in the root segment. In the case
of a named common area, this may be overridden by use of the INSERT state­
ment.

Assume that the sample program is written in FORTRAN and that common
areas are present as shown in Figure 67 on page 197. Further assume that the
overlay program is structured with INCLUDE statements between the OVERLAY
statements so that automatic promotion occurs.

196 MVS/ESA Linkage Editor and Loader User 1 s Guide

11'\
' J

u

I
Blank Common

t Segment 2

csc

I

I
Named Common A Named Common A

+ CSD t
t
CSE

1

CSF

+
Segment 3

Named Common B

1

T -,
CSA + Root Segment 1

CSB

I

Segment 4

I l Blank Common

t
CSG Segment 5

+ Named Common B
J_

Figure 67. Common Areas before Processing

Segments 2 and 5 contain blank common areas, segments 3 and 4 contain
named common area A, and segments 4 and 5 contain named common area 8.
During linkage editor processing, the blank common areas are collected and
the largest area is promoted to the root segment (the first common segment in
the two paths); the common areas named A are collected and the largest area
is promoted to segment 2; the common areas named B are collected and pro­
moted to the root segment. Figure 68 on page 198 shows the location of the
common areas after processing by the linkage editor.

Appendix C. Designing and Specifying Overlay Programs 197

T \
CSA

+ CSB + Root Segment 1

Blank Common

+ Named Common B

I

Named Common A

I

I
csc

t
I

I
CSG

l
Segment 2

Segment 5

CSD

+ Segment 3

CSE

J_

Figure 68. Common Areas after Processing

Storate Requirements
The virtual storage requirements for an overlay program include the items
placed in the module by the linkage editor and the overlay supervisor neces­
sary for execution.

Items in the Load Module: The items that the linkage editor places in an
overlay load module are the segment table, entry tables, and other control
information. Their size must be included in the minimum requirements for an
overlay program, along with the storage required by the longest path and any
control sections from the automatic call library.

Every overlay program has one segment table in the root segment. The
storage requirements are:

Length of SEGTAB = (4n + 24) bytes

where:

n = the number of segments in the program

198 MVS/ESA Linkage Editor and Loader User's Guide

!~
I

/ v

(. u

u

Some segments will have an entry table. The requirements of the entry tables
in the segments in the longest path must be added to the storage requirements
for the program. The requirements for an entry table are:

Length of ENT AB= 12(x + 1) bytes

where:

x = the number of entries in the table

Finally, a NOTE list is required to execute an overlay program. The storage
requirements are:

Length of NOTELST = (4n + 8) bytes

where:

n = the number of segments in the program

Overlay Supervisor: To the minimum requirements of the load module itself
must be added the requirements of the overlay supervisor. This system routine
is not placed in an overlay module, but, during execution of the module, the·
supervisor may be called to initiate an overlay. If called, the storage allocated
for the program must also be large enough for the supervisor.

This asynchronous overlay supervisor module is furnished with the system.
This asynchronous module also permits overlay through the SEGLD macro
instruction (see "Overlay Communication"). The _storage requirement for the
overlay supervisor module is 180 bytes.

Overlay Communication
Several ways of communicating between segments of an overlay program are
discussed in this section. A higher level or Assembler language program may
use a CALL statement or a CALL macro instruction, respectively, to cause
control to be passed to a symbol defined in another segment. The CALL may
cause the segment to be loaded if it is not already present in storage. An
Assembler language program may also use three additional ways to communi­
cate between segments:

• A branch instruction, which causes a segment to be loaded and control to
be passed to a symbol defined in that segment.

• A segment load (SEGLD) macro instruction, which requests loading of a
segment. Processing continues in the requesting segment while the
requested segment is being loaded.

• A segment load and wait (SEGWT) macro instruction, which requests
loading of a segment. Processing continues in the requesting segment only
after the requested segment is loaded.

Appendix C. Designing and Specifying Overlay Programs 199

Any of the four methods may be used to make inclusive references. Only the
CALL and branch may be used to make exclusive references. Neither the
SEGLD nor the SEGWT macro instruction should be used to make exclusive ref­
erences; because both imply that processing is to continue in the requesting
segment, an exclusive reference leads to erroneous results when the program
is executed.

CALL Statement or CALL Macro Instruction

Branch Instruction

A CALL statement or a CALL macro instruction refers to an external name in
the segment to which control is to be passed. The external name must be
defined as an external reference in the requesting segment. In Assembler lan­
guage, the name must be defined as a 4-byte V-type address constant; the high­
order bit is reserved for use by the control program, and must not be altered
during execution of the program.

When a CALL is used, the requested segment and any segments in its path are
loaded if they are not part of the path already in virtual storage. After the
segment is loaded, control is passed to the requested segment at the location
specified by the external name.

A CALL between inclusive segments is always valid. A return can be made to
the requesting segment by another source language statement, such as
RETURN. A CALL between exclusive segments is valid .if the conditions for a
valid exclusive reference are met; a return from the requested segment can be
made only by another exclusive reference, because the requesting segment has
been overlaid.

Any of the branching conventions shown in Figure 69 can be used to request
loading and branching to a segment. As a result, the requested segment and
any segments in its path are loaded if they are not part of the path already in
virtual storage. Control is then passed to the requested segment at the location
specified by the address constant placed in general register 15.

Figure 69 (Page 1 of 2). Branch Sequences for Overlay Programs

Example Name1 Operation Operand2 ,3

L R15, =V(name)
BALR Rn,R15

2 L R15,ADCON
BALR Rn,R15

AD CON DC V(name)

3 L R15, =V(name)
BAL Rn,O{O,R15) 4

4 L R15, =V(name)
BAL Rn,O{R15) 5

56 L R15, =V(name)
BCR 15,R15

200 MVS/ESA Linkage Editor and Loader User 1 s Guide

/~
I I

.11
I

,f)

u

u

Figure 69 (Page 2 of 2). Branch Sequences for Overlay Programs

Example Name1 Operation Operand2 ,3

L
BC

L
BC

R15, =V(name)
15,0(0,R15)4

R15, =V(name)
15,0(R15) 5

Notes:

2

When the name field is blank, specification of a name is optional.

R15 must hold a 4-byte address constant that is the address of an entry
name or a control section name in the requested segment. The address con­
stant must be loaded into the standard entry point register, register 15.

Rn is any other register ~nd is used to hold the return address. This register
is usually register 14,

4 This may also be written so that the index register is loaded with the
address constant; the other fields must be zero.

s

6

In this format, the base register must be loaded with the address constant;
the displacement must be zero.

This example is an unconditional branch; other conditions are also allowed.

The address constant must be a 4-byte V-type address constant. The high­
order bit is reserved for use by the control program, and must not be altered
during execution of the program.

A branch between inclusive segments is always valid; a return may be made by
means of the address stored in Rn. A branch between exclusive segments is
valid if the conditions for a valid exclusive reference are met; a return can be
made only by another exclusive reference.

Segment Load (SEGLD) Macro Instruction
The SEGLD macro instruction is used to provide overlap between segment
loading and processing within the requesting segment. As a result of using any
of the examples in Figure 70, the loading of the requested segment and any
segments in its path is initiated when they are not part of the path already in
virtual storage. Processing then resumes at the next sequential instruction in
the requesting segment while the segment or segments are being loaded.
Control may be passed to the requested segment with either a CALL or a
branch, as shown in Examples 1 and 2, respectively. A SEGWT instruction can
be used to ensure that the data in the control section specified by the external
name is in virtual storage before processing resumes, as shown in Example 3.

Appendix C. Designing and Specifying Overlay Programs 201

Figure 70. Use of the SEGLD Macro Instruction

Example Name1 Operation Operand2 , 3

1 SE GLD external name
CALL external name

2 SE GLD external name
branch external name

3 SE GLD external name

SEGWT external name
L Rn, =V(name)

Note:

When the name field is blank, specification of a name is optional.
2

3

External name is an entry name or a control section name in the requested
segment.

Rn is any other register and is used to hold the return address. This register
is usually register 14.

The external name specified in the SEGLD macro instruction is defined with a
4-byte V-type address constant. The high-order bit is reserved for use by the
control program and must not be altered during execution of the program.

Segment Wait (SEGWT) Macro lnsh'uction
The SEGWT macro instruction is used to stop processing in the requesting
segment until the requested segment is in virtual storage.

As a result of using any of the examples in Figure 71 on page 203, no further
processing takes place until the requested segment and all segments in its path
are loaded when not already in virtual storage. Processing resumes at the next
sequential instruction in the requesting segment after the requested segment
has been loaded.

202 MVS/ESA Linkage Editor and Loader User 1 s Guide

i~
I

,(\
, I

I

/ u

u

(\ u

Figure 71. Use of the SEGWT Macro Instruction

Example Name1 Operation Operand2
,
3

SE GLD external name

SEGWT external name
L Rn,ADCON

branch
ADCON DC V(name)

2 SEGWT external name
L Rn,= V(name)

Notes:

2

When the name field is blank, specification of a name is optional.

External name is an entry name or a control section name in the requested
statement.

Rn is any other register and is used to hold the return address. This reg­
ister is usually register 14.

If the SEGWT and SEGLD macro instructions are used together, overlap occurs
between processing and segment loading; use of the SEGWT macro instruction
serves as a check to see that the necessary information is in storage when it is
finally needed (see Example 1 in Figure 71). In Example 2 in Figure 71, no
overlap is provided; the SEGWT macro instruction initiates loading, and proc­
essing is stopped in the requesting segment until the requested segment is in
virtual storage.

The external name specified in the SEGWT macro instruction must be defined
with a 4-byte V-type address constant. The high-order bit is reserved for use by
the control program, and must not be altered during execution of the program.

If the contents of a virtual storage location in the requested segment are to be
processed, the entry name of the location must be referred to by an A-type
address constant.

.___ ______ End of General-Use Programming Interface ______ _....

Appendix C. Designing and Specifying Overlay Programs 203

1"\
)

G Appendix D. Loader Storage Considerations

{ .

~

u

u

The loader requires virtual storage space for the following items:

• Loader code

• Data management access methods

• Buffers and tables used by the loader (dynamic storage)

• Loaded program (dynamic storage)

Region size includes all four of the above items; the SIZE option refers to the
last two items.

For the SIZE option, the minimum required virtual storage is 4K bytes plus the
size of the loaded program. This minimum requirement grows to accommodate
the extra table entries needed by the program being loaded. For example,
FORTRAN requires at least 3K bytes plus 4K bytes plus the size of the loaded
program, and PL/I needs at least 8K bytes plus 4K bytes plus the size of the
loaded program. Buffer number (BUFNO) and b,lock size (BLKSIZE) could also
increase this minimum size. Figure 72 on page 206 shows the appropriate
storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual storage is
available up to 8192K bytes.

All or part of the storage required is obtained from user storage. If the access
methods are made resident at IPL time, they are allocated in system storage.
However, 6K bytes is always reserved for system use.

The loader code could also be made resident in the link pack area: If so, it
requires the following space: HEWLDRGO, the control/interface module (alias
LOADER), approximately 700 bytes; HEWLOADR, the loader processing
portion, approximately 13 664 bytes.

The size of the loaded program is the same as if the program had been proc­
essed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

Appendix D. Loader Storage Considerations 205

Figure 72. Virtual Storage Requirements

Approximate
Virtual Storage
Requirements

Consideration (in Bytes)

Loader Code Control 2000

Loader Code Processing 14000

Data Management 6K

Object Module Buffers and BUFNO*(BLKSIZE + 24)
DECBs

Load Module Buffer and 304
DECBs

SYSTERM DCB Buffers and 312
DECBs

SYSLOUT Buffers and DECBs BUFNO*(BLKSIZE + 24)

Size of program being loaded Program size

Each external relocation die- 8
tionary entry

Each external symbol 20

Largest ESD number 4n (n is the largest number of
ESDs in any input module)

Fixed Loader Table Size 1260

Condensed Symbol Table 12n (n is the total number of
control sections and common
areas in the loaded program)

System Requirements 4000

. 206 MVS/ESA Linkage Editor and Loader User 1 s Guide

Comments

BSAM

Concatenation of different
BLKSIZE and BUFNO must be
considered. (Minimum
BUFN0=2)

Allocated if TERM option is
specified

Buffer size rounded up to inte-
gral number of double words.
(Minimum BUFNO = 2)

Program size is restricted only
by available virtual storage, up
to 8 megabytes

Allocated in increments of 32
entries

Subtract 88 if NOPRINT is
specified

Built only if TSO is operating
and space is available

;-"\
')

u

u

u

u

Appendix E.
Program

Invoking the Linkage Editor and Loader from a
.'i ~

General-Use Programming Interface

This appendix is intended to help you invoke the linkage editor and loader from
a program. It contains general-use programming interfaces, which allow you to
write programs that use the services of MVS/DFP.

Invoking. the Linkage Editor from a Program
Control is passed to the linkage editor from a program in one of two ways:

• As a subprogram, with the execution of a CALL macro instruction (after the
execution of a LOAD macro instruction), a LINK macro instruction, or an
XCTL macro instruction.

• As a subtask, in multitasking systems, with the execution of the ATTACH
macro instruction.

The macros used to invoke the linkage editor are defined below:

[symbol] [LINK] EP = linkeditname

'PARAM = (optionlist[,ddname list]),
VL=1

[symbol] [ATTACH] EP = linkeditname

PARAM = (option/ist[,ddname list]),
VL=1

[symbol] [LOAD] EP = linkeditname

[symbol] [XCTL] EP = linkeditname

PARAM = (option/ist[,ddname list]),
VL=1

EP = linkeditname
specifies the symbolic name of the linkage editor. The entry point at which
execution is to begin is determined by the control program (from th~1Hbrary
directory entry). Any of the symbolic names that can be used as operands
of the EXEC command's PGM parameter are acceptable as the
"linkeditname".

PARAM = (optionlist[,ddname list])
specifies, as a sublist, address parameters to be passed from the problem
program to the linkage editor. The first fullword in the address parameter
list contains the address of the option and attribute list for the load module.

Appendix E. Invoking the Linkage Editor and Loader from a Program 207

The second fullword contains the address of the ddname list. If standard
ddnames are to be used, this list may be omitted.

optionlist
specifies the address of a variable-length list containing the options and
attributes. This address must be written even though no list is provided.

The option list must begin on a halfword boundary. The 2 high-order bytes
contain a count of the number of bytes in the remainder of the list. If no
options or attributes are specified, the count must be zero. The option list
is free form, with each field separated by a comma. No blanks or zeros
should appear in the list.

ddname list
specifies the address of a variable-length list containing alternative
ddnames for the data sets used during linkage editor processing. If
standard ddnames are used, this operand may be omitted.

The ddname list must begin on a halfword boundary. The 2 high-order
bytes contain a count of the number of bytes in the remainder of the list.
Each name of less than 8 bytes must be left justified and padded with
blanks. If an alternate ddname is omitted from the list, the standard name
will be assumed. If the name is omitted within the list, the 8-byte entry
must contain binary zeros. Names can be omitted from the end by merely
shortening the list.

The sequence of the 8-byte entries in the ddname list is as follows:

Entry Alternate Name For:

1 SYSLIN

2 Member name (the name under which the output load module is
stored in the SYSLMOD data set; this entry is used if the name is
not specified on the SYSLMOD DD statement or if there is no
NAME control statement)

3 SYSLMOD

4 SYSLIB

5 Not applicable

6 SYS PRINT

7 Not applicable

8 SYSUT1

9-11 Not applicable

12 SYSTERM

VL=1
specifies that the sign bit is to be set to 1 in the last flillword of the address
parameter list.

~\
j

!~

I~

When the linkage editor completes processing, a condition code is returned in
register 15 (see "Appendix F. Linkage Editor and Loader Return Codes" for a n
list of linkage editor return codes).

208 MVS/ESA Linkage Editor and Loader User 1 s Guide

u

u

u

u

Invoking the Loader from a Program
The loader can be referred to by either its program name, HEWLDRGO, or its
alias, LOADER. The loader can be invoked through the EXEC statement, as
described in "Input for the Loader" on page 143, or through one of the followi,ng
macro instructions.

[symbol] LINK EP = loadername,
PARAM = (optionlist[,ddname list]),
VL=1

[symbol] ATTACH EP = loadername,
PA RAM= (optionlist[,ddname list]),
VL=1

[symbol] LOAD EP = loadername

[symbol] XCTL EP = loadername

EP = loadername
specifies the symbolic name of the loader. The entry point at which exe­
cution is to begin is determined by the control program from the library
directory entry.

PARAM = (optionlist[,ddname list])
specifies, as a sublist, address parameters to be passed to the loader. The
first fullword in the address parameter list contains the address of the
option list for the loader and/or loaded program. The second fullword con­
tains the address of the ddname list. If standard ddnames are to be used,
ddname list may be omitted.

optionlist
specifies the address of a variable-length list containing the loader and
loaded program options. This address must be written even though no real
list is provided; for example, when the optionlist points to a halfword of
zero.

The option list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the list. If
no options are specified, the count must be zero.

The option list is free form, with the loader and loaded program options
separated by a slash (/), and with each option separated by a comma. No
blanks or zeros should appear in the list.

ddname list
specifies the address of a variable-length list containing alternative
ddnames for the data sets used during loader processing. If the standard
ddnames are used, this operand may be omitted.

The format of the ddname list is identical to the format of the ddname list
for invoking the linkage editor; the 8-byte entries in the list are as follows:

Appendix E. Invoking the Linkage Editor and Loader from a Program 209

Entry Alternate Name For:

1 SYSLIN

2 not applicable

3 not applicable

4 SYSLIB

5 not applicable

6 SYS LOUT

7-11 not applicable

12 SYSTERM

VL=1
specifies that the sign bit is to be set to 1 in the last fullword of the address :,r-"\,
parameter list.)

Figure 73 shows an Assembler language program that uses the LINK macro
instruction to refer to the loader.

SAVE

LA

(14,12)

13,SAVEAREA

Initialize save
registers and point
to new save area

LINK EP=LOADER,PARAM=(PARM),VL=l

L 13,4(13)
RETURN (14,12),T

DS OH
PARM DC AL2(LENGTH) Length of options
OPTIONS DC C1 NOPRINT,CALL/X,Y,Z 1 loader and loaded
LENGTH EQU *-OPTIONS program options
SAVEAREA OS 18F Save area

END

Figure 73. Using the LINK Macro Instruction to Refer to the Loader

210 MVS/ESA Linkage Editor and Loader User 1 s Guide

rfj

Ii)
j

i _/

(j
/

()
_../

u

u

u

u

The loader generates a return code when it completes its execution. If the
loader was invoked through a macro instruction, the return code is in register
15. If the loader was invoked through the EXEC statement, the return code can
be tested through the COND parameter of the JOB statement specified for this
job, or the COND parameter of the EXEC statement specified in any succeeding
job step. See "Appendix F. Linkage Editor and Loader Return Codes" on
page 215 for more information on return codes.

If desired, the loader may be used to process a program but not execute it. To
invoke just the portion of the loader that processes input data, specify either the
name HEWLOAD or the name HEWLOADR with. a LOAD and CALL macro
instruction.

HEWLOAD loads and identifies the program. HEWLOAD returns the address of
an 8-character name in register 1. This name can be used with an ATTACH,
LINK, LOAD, or XCTL macro instruction to invoke the loaded program. A user
program that is going to attach a loaded program should avoid specifying
SZERO=NO in its ATTACH macro. If SZERO=NO must be specified, the user
program should issue a LOAD for the loaded program before performing the
ATTACH and a DELETE for the loaded program after the ATTACH.

HEWLOADR loads the program but will not identify it. HEWLOADR returns the
entry point of the loaded program in register 0. Register 1 points to two
fullwords: the first points to the beginning of storage occupied by the loaded
program; the second contains the size of the loaded program. This location
and size can then be used in a FREEMAIN macro instruction to free the storage
occupied by the loaded program when it is no longer needed.

Figure 74 on page 212 shows an Assembler language program that uses the
LOAD and CALL macro instructions to refer to HEWLOADR. Figure 75 on
page 213 shows· an Assembler language program that uses the LOAD and
CALL macro instructions to refer to HEWLOAD.

Appendix E. Invoking the Linkage Editor and Loader from a Program 211

PARMl
OPTIONSl
LENGTHl

PARM2
OPTIONS2
LENGTH2
SAVEAREA

SAVE (14,12),T

ST 13,SAVEAREA+4
LA 13,SAVEAREA

LOAD
LR
CALL

L
RETURN
DS
DC
DC
EQU
DS
DC
DC
EQU
DS

END

EP=HEWLOADR
15,0
(15),(PARMl),VL=l

13,4(13)
(14,12),T
OH
AL2(LENGTH1)
C1 NOPRINT,CALL'
*-OPTIONSl
OH
AL2(LENGTH2)
C1X,Y,Z 1

*-OPTIONS2
18F

Initialize save registers
and point to new save area

Load the loader
Get its entry point address
Invoke the loader

Length of loader options
Loader options

Length of loaded program options
Loaded program options

Save area

Figure 74. Using the LOAD and CALL Macro Instructions to Refer to HEWLOADR (Loading without Identification)

212 MVS/ESA Linkage Editor and Loader User 1 s Guiqe

,f'\
)

1!)

11)

(I

\~

u

u

ERROR

PARMl
OPTIONSl
LENGTHl

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

SAVE (14,12),T

ST 13,SAVEAREA+4
LA 13,SAVEAREA

LOAD EP=HEWLOAD
LR 15,0
CALL (15),(PARMl),VL=l
LR 7,15
MVC PGMNAM(B),0(1)
DELETE EP=HE~JLOAD

CH 7,=H 141

BH ERROR

Initialize save registers and
point to new save area

Load the 1 oader
Get its entry point address
Invoke the loader
Save the return code
Save program name
Delete the loader
Verify successful loading
Negative branch

LINK EPLOC=PGMNAM,PARM=(PARM2),VL=l

Loading successful,
invoke program

L 13,4(13)
RETURN (14, 12), T
DS 0H
DC AL2 (LENGTHl) Length of loader options
DC C1MAP 1 Loader options
EQU *-OPTIONSl
DS 0H
DC AL2(LENGTH2) Length of loaded program options
DC C1X,Y,Z 1 Loaded program options
EQU *-OPTIONS2
DS lBF Save area
DS 2F Program name

END

Figure 75. Using the LOAD and CALL Macro Instructions to Refer to HEWLOAD (Loading with Identification)

For further information on the use of these macro instructions, see SPL: Appli­
cation Development Macro Reference

.___ ______ End of General-Use Programming Interface ______ __.

Appendix E. Invoking the Linkage Editor and loader from a ProQram · 213

n

()

()
' /

u

u

u

u

Appendix F. Linkage Editor and Loader Return Codes

General-Use Programming Interface

This appendix is intended to help you interpret the linkage editor and loader
return codes. It contains general-use programming interfaces, which allow you
to write programs that use the services of MVS/DFP.

Linkage Editor Return Codes
Control is passed to the linkage editor as a job step when the linkage editor is
specified on an EXEC job control statement in the input stream. When the job
step is completed, the linkage editor passes a return code to the control
program.

The return code reflects the highest severity code recorded in any iteration of
the linkage editor within that job step. The highest severity code encountered
during processing is multiplied by 4 to create the return code; this code is
placed into register 15 at the end of linkage editor processing. Figure 76 con­
tains the return codes, the corresponding severity code, and a description of
each.

Figure 76. Linkage Editor Return Codes

Return
Code

00

04

08

oc

10

Severity
Code

0

2

3

4

Description

Normal conclusion

Warning messages have been listed; execution should
be successful. For example, if the overlay option is
specified and the overlay structure contains only one
segment, a return code of 04 is placed in register 15.

Error messages have been listed; execution may fail.
The module is marked not executable unless the LET
option is specified. For example, if the block size of a
specified library data set cannot be handled by the
linkage editor, a return code of 08 is placed in register
15.

Severe errors have occurred; execution is impossible.
For example, if an invalid entry point has been speci­
fied, a return code of OC is placed in register 15.

Terminal errors have occurred; the processing has ter-
. minated. For example, if the linkage editor cannot
handle the blocking factor requested for SYSPRINT, a
return code of 10 is placed in register 15.

Appendix F. Linkage Editor and Loader Return Codes 215

Loader Return Codes
The return code of a loader step is determined by the return codes resulting
from loader processing and from loaded program processing.

The return code indicates whether errors occurred during the execution of the
loader or of the loaded program. The return code can be tested through the
COND parameter of the JOB statement specified for this job and/or the COND
parameter of the EXEC statement specified in any succeeding job step. (For
details, see the publication JCL User's Guide). Figure 77 shows the return
codes.3

Figure 77 (Page 1 of 2). Return Codes

Code Loader Program
Returned Return Return
to Caller Code Code Conclusion or Meaning

0 0 0 Program loaded successfully, and exe-
cution of the loaded program was sue-
cessful.

0 4 0 The loader found a condition that may
cause an error during execution, but no
error occurred during execution of the
loaded program.

0 8(LET) 4 The loader found a condition that may
cause an error during execution, but no
error occurred during execution of the
loaded program.

4 0 4 Program loaded successfully, and an
error occurred during execution of the
loaded program.

4 4 4 The loader found a condition that may
cause an error during execution, and an
error did occur during execution of the
loaded program.

4 8(LET) 4 The loader found a condition that may
cause an error during execution, and an
error did occur during execution of the
loaded program.

8 0 8 Program loaded successfully, and an
error occurred during execution of the
loaded program.

8 4 8 The loader found a condition that may
cause an error during execution, and an
error did occur during execution of the
loaded program.

3 Error diagnostics (SYSOUT and/or SYSTERM data set) for the loader will show the severity of errors found by
the loader.

216 MVS/ESA Linkage Editor and Loader User's Guide

()

Figure 77 (Page 2 of 2). Return Codes u Code Loader Program
Returned Return Return
to Caller Code Code Conclusion or Meaning

8 8(LET) 8 The loader found a condition that may
cause an error during execution, and an
error did occur during execution of the
loaded program.

8 8 The loader found a condition that could
make execution impossible. The loaded
program was not executed.

12 0 12 Program loaded successfully, and an
error occurred during execution of the
loaded program.

12 4 12 The loader found a condition that may
cause an error during execution, and an
error did occur during execution of the
loaded program.

12 8(LET) 12 The loader found a condition that may
cause an error during execution, and an
error did occur during execution of the
loaded program.

12 12 The loader could not load the program
successfully; execution impossible. u

16 0 16 Program loaded successfully, and the
loaded program found a terminating error.

16 4 16 The loader found a condition that may
cause an error during execution, and a
terminating error was found during exe-
cution of the loaded program.

u 16 8(LET) 16 The loader found a condition that may
cause an error during execution, and a
terminating error was found during exe-
cution of the loaded program.

16 16 The loader could not load program; exe-
cution impossible .

.__ ______ End of General-Use Programming Interface ______ __.

Appendix F. Linkage Editor and Loader Return Codes 217

n

n

!0 Abbreviations

The following terms and abbreviations are defined as
E they are used in the MVS/DFP library. If you do not

find the term or abbreviation you are looking for, see
Dictionary of Computing, SC20-1699 (formerly pub- EOM. End of module.
lished as IBM Vocabulary for Data Processing, Tele-
communications, and Office Systems, GC20-1699). ESD. External symbol dictionary.

This list includes acronyms and abbreviations devel- K oped by the American National Standards institute
(ANSI) and the International Organization for Stand-

K. Kilobytes. ardization (ISO). This material is reproduced from the
American National Dictionary for Information Proc-
essing, copyright 1977 by the Computer and Business p
Equipment Manufacturers American National Stand-

u ards Institute, 1430 Broadway, New York, New York
PC. Private code. 10018.

PR. Pseudoregi st er.

A

ad con. Address constant.
R

RLD. Relocation dictionary.

c
CESD. Composite external symbol dictionary.

s
LJ

CSE CT. Control section.
SD. Section definition.

D w
DECB. Data event control block.

WX.. Weak external reference.

u

Abbreviations 219

(~
;

:f)

(~

C)

u

(!

~/

u

Glossary

The following terms and abbreviations are defined as
they are used in the MVS/DFP library. If you do not
find the term or abbreviation you are looking for, see
Dictionary of Computing, SC20-1699 (formerly pub­
lished as IBM Vocabulary for Data Processing, Te/~­
communications, and Office Systems, GC20-1699).

This glossary includes acronyms and abbreviations
developed by the American National Standards insti­
tute (ANSI) and the International Organization for
Standardization (ISO). This material is reproduced
from the American National Dictionary for Information
Processing, copyright 1977 by the Computer and Busi­
ness Equipment Manufacturers American National
Standards Institute, 1430 Broadway, New York, New
York 10018.

A

address. An identification, as represented by a
name, label, or number, for a register, location in
storage, or any other data source or destination such
as the location of a station in a communication
network; any part of an instruction that specifies the
location of an operand for the instruction.

address constant (adcon). A value, or an expression
representing a value, used in the calculation of
storage addresses; can be used for branching or
retrieving data.

addressing mode (AMODE). An attribute of an entry
point in a load module that identifies the addressing
range in virtual storage which the module is capable
of addressing. Below the 16-megabyte line, only
24-bit addresses can be used.

alias name. An alternate name or entry point for a
load module that is also entered in the output module
library directory entry along with the member name.

automatic library call mechanism. The process in
which control sections are processed by the linkage
editor or loader to resolve external references to
members of partitioned data sets not resolved by
primary input processing.

auxiliary storage. All addressable storage, other than
the memory of a processing unit, that can be
accessed by means of an input/output channel; for
example, storage on DASO, tape, or mass storage
system volumes.

c
common area. A control section used to reserve a
virtual storage area that can be referred to by other
modules; may be either named or unnamed (blank).

common segment. A segment upon which two exclu­
sive segments are dependent.

composite external symbol dictionary (CESD).
Control information associated with a load module
that identifies the external symbols in the module.

control section (CSECT). The part of a program spec­
ified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining
storage locations for execution.

D

demand paging. Transfer of a page from external
page storage to real storage at the time it is needed
for execution.

downward reference. A reference made from a
segment to another segment lower in the same path;
that is, farther from the root segment.

E

entry name. A unique name for each component or
object as it is identified in a catalog. The entry name
is the same as th~ dsname in a DD statement that
describes the object.

exclusive reference. A reference between exclusive
segments; that is, a reference from a segment in
storage to an external symbol in a segment that will
cause overlay of the calling segment.

exclusive segments. Segments in the same region of
an overlay program, neither of which is in the path of
the other; they cannot be in virtual storage simultane­
ously.

external name. A name that can be referred to by
any control section or separately assembled or com­
piled module; that is, a control section name or an
entry name.

external page storage. The portion of auxiliary
storage that is used to contain pages.

Glossary 221

external reference. (1) A reference to a symbol that
is defined as an external name in another module. (2)
An external symbol that is defined in another module;
that which is defined in the Assembler language by an
EXTRN statement or by a V-type address constant,
and is resolved during linkage editing. See also weak
external reference.

external symbol. A control section name, entry point
name, or external reference that is defined or
referred to in a particular module. A symbol con­
tained in the external symbol dictionary.

external symbol dictionary (ESD). See composite
external symbol dictionary.

inclusive reference. A reference between inclusive
segments; that is, a reference from a segment in
storage to an external symbol in a segment that will
not cause overlay of the calling segment.

inclusive segments. Segments in the same region of
an overlay program that are in the same path; they
can be in virtual storage simultaneously.

invalid. exclusive reference. An exclusive reference
in which a common segment does not contain a refer­
ence to the symbol used in the exclusive reference.

L
library. In this publication, a partitioned data set that
always contains named members.

load module. The output of the linkage editor; a
program in a format ready to load into virtual storage
for execution.

load module buffer. An area of virtual storage used
by the linkage editor to read input load module text
records and possibly to retain the text information in
storage for subsequent writing of the output load
module text records.

M

module. A program unit that is discrete and identifi­
able with respect to compiling, combining with other
units, and loading, for example, the input to, or output
from, an assembler, compiler, linkage editor, or exec­
utive routine.

222 MVS/ESA Linkage Editor and Loader User's Guide

multiple load module processing. A method of proc­
essing whereby two or more load modules can be
produced in a single linkage editor job step.

0
object module. A module that is the output of an
assembler or compiler and is input to a linkage editor.

overlay program. A program in which certain control
sections can use the same storage locations at dif­
ferent times during execution.

overlay supervisor. A routine that controls the
proper sequencing and positioning of segments of
computer programs in limited storage during their
execution.

overlay tree. A graphic representation showing the
relationships of segments of an overlay program and
how the segments are arranged to use the same main
storage area at different times.

p

page. (1) A fixed-length block of instructions, data, or
both, that can be transferred between real storage
and external page storage. (2) To transfer
instructions, data, or both between real storage and
external page storage.

page fault. A program interruption that occurs when
a page that is marked "not in real storage" is referred
to by an active page.

paging. A technique in which blocks of data, or
pages, are moved back and forth between main
storage and auxiliary storage. Paging is the imple­
mentation of the virtual storage concept.

path. In this publication, all of the segments in an
overlay tree between a given segment and the root
segment, inclusive.

private code. An unnamed control section.

program fetch. A program that prepares load
modules for execution by loading them at specific
storage locations; it also readjusts each address con­
stant.

pseudoregister (PR). In PUI, a location in virtual
storage that is used as a pointer to dynamically
acquired virtual storage. It enables the PUI compiler
to generate reenterable code. External dummy
sections give the programmer using Assembler F or
Assembler H the same facility.

u

u

R

read-only CSECT (RSECT). A read-only CSECT in the
nucleus. See control section.

real storage. The storage from which the central
processing unit can directly obtain instructions and
data, and to which it can directly return results.

reenterable load module. A module that can be used
concurrently by more than one task.

refreshable load module. A load module that cannot
be modified by itself or by any other module during
execution; can be replaced by a new copy during exe­
cution by a recovery management routine without
changing either the sequence or results of processing.

region. In this publication, a contiguous area of
virtual storage within which segments can be loaded
independently of paths in other regions. This applies
only to overlay structures. Only one path within a
region can be in virtual storage at any one time.

relocation. The modification of address constants
required to compensate for a change of origin of a
module, program, or control section.

residence mode (RMODE). The attribute of a load
module that identifies where in virtual storage the
program will reside (above or below 16 megabytes).

root segment. That segment of an overlay program
that remains in virtual storage at all times during the
execution of the overlay program; the first segment in
an overlay program.

s
scatter format. A load module attribute that permits
the control program to dynamically load control
sections into noncontiguous areas of virtual storage.

segment. In this publication, the smallest functional
unit (one or more control sections) that can be loaded
as one logical entity during execution of an overlay
program.

serially reusable load module. A module that cannot
be used by a second task until the first task has fin­
ished using it.

source module. A module containing the source
statements which will be provided as input to a lan­
guage translator or compiler.

u
upward reference. A reference made from a
segment to another segment higher in the same path;
that is, closer to the root segment.

v
valid exclusive reference. An exclusive reference in
which a common segment contains a reference to the
symbol used in the exclusive reference.

virtual address. An address that refers to virtual
storage and must, therefore, be translated into a real
storage address when it is used.

virtual storage. Addressable space that appears to
the user as real storage, from which instructions and
data are mapped into real storage l'ocations. The size
of virtual storage is limited by the addressing scheme
of the computing system and the amount of auxiliary
storage available, rather than by the actual number of
real storage locations.

w
weak external reference (WX). An external reference
that does ncot have to be resolved during linkage
editing. If it is not resolved, it appears as though its
value was resolved to zero.

Glossary 223

.r)
I

·~
I

1)

u

u

L)

Index

A
A-type address constant

replacing control sections 99, 107
SEGWT macro 203

abbreviations
list 219

acronyms 219
adcons

See address constant
additional call libraries 36
additional input sources

automatic call library 33-38
general description of 17, 27
included data sets 38-41
libraries 33-41
processing 33-41
specification

automatic call library 35
INCLUDE statement 40-41
LI BRA RY statement 36, 88

address
assignment 13
of main entry point

module map 130
specifications 122

sequence in object module text 11
address constant

See also A-type, V-type address constant
described 9, 12
resolution of 9-12

addressing mode
assignment

linkage editor 21
loader 135

attribute 48
combinations

loader 138
residence mode 49

control section name 10
default 21
entry point 123
implied 138
options 196
override 21
parameter

linkage editor 48
loader 144

private code 10
alias name

example 122
linkage editor 43
loader 209
specifying 121

ALIAS statement
described 76, 121

alignment, page 116
alternate output data set

See SYSTERM data set
A MODE

See addressing mode
APF (Authorized Program Facility)

described 20
assigning block size, linkage editor 64
asynchronous overlay supervisor 199
attributes, module

See module attributes
authorization code

See a/so AC
entry point 123
output load module 20, 47

Authorized Program Facility
See APF

automatic call library for loader
DD statement for 148
described 135
options 144

automatic call library mechanism
See a/so call library, linkage editor
described 130
module map 130

automatic deletion of modules 135
automatic replacement

control sections 107-110
examples 109-110
modules 121
note on overlay programs 107

automatic search

B

of link pack area queue 146
of SYSLIB 144

blank common area
collection 123, 196
defined 10
module map 130

BLKSIZE operand
described 61-66

block size
described 6·1-66

blocking factors, SIZE option 56, 67
branch instructions, in overlay programs 199-201
buffer, load module

See load module buffer
BUFNO operand

loader DD statements 148

Index 225

c
call library, linkage editor

additional libraries 36
concatenating 35
ddname 34
example 35
NCAL option 38
negating 38, 50
never-call 37
restricted no-call 37
specification 34-36

call library, loader
DD statement 148-150
described 135
options for use 144

CALL loader option 144
CALL macro

defined 200
invoking the loader 211
with only loadable attribute 45

capacities, linkage editor 173
cataloged procedure

adding DD statements 73
defined 67
linkage editor 67
LKED 67-69
LKEDG 70-71
overriding 71-72

CESD (composite external symbol dictionary)
defined 13
number of entries permitted 17 4

CHANGE statement
example 105
summary 78-79
using INCLUDE statement 114
using REPLACE statement 114

changing
external symbols 105

class test table 185
collection of common areas 123, 196-198
common area

blank 10
collection 123, 196, 198
defined 10
lengthening 20, 81
module map 129
named 10
ordering named 114-115
reserving storage for 123

common segment
defined 183
exclusive references 184
promotion of common areas 196

comparison of linkage editor and loader 1, 135
compatibility, linkage editor and loader 140
composite external symbol dictionary

See CESD

226 MVS/ESA Linkage Editor and Loader User 1 s Guide

concatenation
call libraries 35
data sets

linkage editor 41
loader 148
restrictions 66

CON D parameter
determining load module execution 60
in LKEDG 70
specified in EXEC statement 60
specified in JOB statement 60

condition parameter
See CON D parameter

constant
See address constant

control dictionaries 9
control section

aligning on page boundary 116
automatic replacement 107
defined 8
deleting 112
editing 103-117
external symbol dictionary 9
lengthening 20, 81
module map 129
name

changing 105
external symbol dictionary 9

ordering of 114-115
positioning 191
replacing 107
reserving storage 123

control statements
as input 31
concatenating object module data set 31
continuation of 75
DCB requirements 62
format conventions 75
general format 75
listing 129
listing option 58
placement information 75
summary list 75

cross-reference table
option 58
producing 130

CSECT identification records
function 20

D

object and load modules 9
storage required 174
using IDENTIFY statement 82

data control block size
See DCBS

data definition statement
See DD statement

n

()
/

L/ ',
l

I

u

(' u

data for loaded program 150
data set

concatenated
described 35, 41, 148-150

linkage editor
input 27
output 119

loader 148
DC (downard compatible attribute) 44
DCB (data control block)

DD statements, requirements 63-66
linkage editor 61
loader 148

DCBS (data control block size)
option, block size 57

DD statement
DCB requirements 63-66
general description 60
linkage editor data sets

ddnames 60-63
SYSLIB 37, 63
SYSLIN 62
SYSLMOD 64
SYSPRINT 63
SYSTERM 65
SYSUT1 63

loader data sets
ddnames 148, 209
SYSLIB 149
SYSLIN 148
SYSLOUT 150
SYSTERM 150

ddname list 208
ddnames, linkage editor

invoking 60-66
loader

automatic call library 148
diagnostic data set 150
input data set 148
specifying alternate names 208, 209

default module attributes 49
deleting

control section 112
entry name 112
modules 135

diagnostic messages
linkage editor

directory 125
format 125-128

loader
defined by SYSLOUT DD and SYSTERM

DD 155
format 155

diagnostic output
linkage editor

messages 125
optional 129
options, summary 19-20

diagnostic output (continued)
loader

data set 150
format 155
options 144

dictionaries
composite external symbol 13, 174
external symbol 10
relocation 9, 12, 173

di rectory entry
authorization code 123
changing 106

disposition messages 126-127
downward call

See downward reference
downward compatible attribute

See.DC
downward reference

defined 178
maximum number 175

E
editing

conventions 103-104
module 103-,-104

end of module indication 12
END statement

object module 9
specifying entry point 122

ENTAB (entry table) 186
entry address, module map 130
entry name

defined 10
external symbol dictionary

changing 105
deleting 112
module map 129

entry point
example 123
loaded program 145, 211
specification

END statement 122
ENTRY statement 80, 122

ENTRY statement
main entry point 122
summary 80

entry table 186
EOM (end of module indication) 12
EP loader option 145
error conditions

See severity code
error messages

See diagnostic messages
ESD (external symbol dictionary) 10
exclusive call option 50
exclusive reference

defined 183
entry table 186

Index 227

exclusive reference (continued)
restrictions 184
segment table 186
XCAL option 50

exclusive segments
note on overlay programs 107

EXEC statement
job step options

DD statements 60-66
incompatible job step 59
module attributes 44-49
output options 58-59
size parameter guidelines 66
space allocation 50-57
special processing options 49

linkage editor
introduction 43
job step options 43
program name 43
REGION parameter 60
return code 215

loader
described 143, 147
examples 147

executable module 49
EXPAND statement 20, 81
external dummy section

See also pseudoregister
defined 10
processing 18, 124

external name
defined 8
external name

See control section name, entry name
external reference

changing 105
defined 8, 10
external symbol dictionary 10
resolving 14, 33
weak

automatic library-call 33
cross-reference table 131

external symbol
changing 105
defined 8

external symbol dictionary
See ESD

F
function

H

linkage editor 15-16
loader 135

HEWL 43, 68
HEWLOAD 211, 213

228 MVS/ESA Linkage Editor and Loader User 1 s Guide

HEWLOADR 211

IDENTIFY statement summary 82
I DR (identification record)

See CSECT identification records
IEBUPDTE program

input statements 169
INCLUDE statement

requesting additional data sets as input 38
specifying ddname of DD statement 38
summary 84

included data sets
concatenated data sets 40
library members 40
linkage editor 38
sequential data sets 40

inclusive reference
when to use 183

inclusive segments
defined 183

incompatible job step options 59
incompatible module attributes 49
input data sets

linkage editor 27
loader 148

input processing 27
input sources

linkage editor 12
loader 143, 148

INSERT statement
summary 86
using 193

intermediate data set
devices supported 175
linkage editor 12
loader 140
SIZE option 51, 173
storage required 173
SYSUT1 DD statement 63

intermediate text records, number produced 174
invalid attributes or options 126
invalid exclusive reference

illustration 184
invocation of

J

linkage editor 207
loader 209

job control language summary 43
job control statements

linkage editor 43
loader processing

basic format 143
compile-load job 152
load job 216
multiple compilations 152

n
I

u

u

job step
options

EXEC statement 43

L
let execute option SO
LET option

linkage editor 50, 164
loader 140, 14S
overlay programs 19S

library call
See automatic call library for loader

library members
including 40
input to linkage editor 28
input to loader 148

LIBRARY statement
additional call libraries 36
NCAL option SO
never-call function 37
restricted no-call function 37
summary 88
using 36

LINK command 2S
LINK macro

invoking
linkage editor 207
loader 210

link pack area resolution
loader 146

linkage editor
assigning block size 64
capacities 173
cataloged procedures 68
compared to loader 1, 13S
control statement summary 7S
DD statements 62-66
function 1 S-16
input

additional data sets 27
control statements 32
object modules 32
primary data sets 27

invoking 207
output 119
processing 12
relationship to operating system 24
reserving storage 123
sample programs

COBFORT 157 t
PARTDS 169
REGNOVLY 163
RPLACJOB 159

storage requirements 173
when to use 1

LINKEDIT 43

linking modules 16
LIST option 58, 129
LKED procedure 68-69
LKEDG procedure 70-71
LOAD macro

invoking the loader 212
only loadable modules 45

load module
attribute assignment

described 19
attributes 44
buffer 51
defined 7
entry point 122
input

linkage editor 27
loader 143

linkage editor output 119
multiple processing of 124
structure 9

load module buffer
allocating storage 51

load module creation 13
load point 182, 189
load step 1, 143
loaded program

data 150
module map 155
options 144, 147
return codes 216

loader
abnormal termination message (VS2) 15S
alias name 209
compared to linkage editor 1, 135
compatibility with linkage editor 140
data sets 148
input 13S, 143
invoking 209
options 144, 147
output 15S
program name 209
restrictions 140
return codes 216
storage considerations 20S
when to use 1

LOADGO command 141
loading

with identification 213
without identification 211

logical record length
linkage editor data sets

blocking factors 62
diagnostic output 64
input 62

SIZE option 51
LRECL operand

DCB macro
described 61-62

Index 229

M
macros, linkage editor

·format 207
MAP option

linkage editor 58, 129-130
loader 140, 145

maximum record size for device types 52-53
member name

defined 120
example 120
specifying 120

member, partitioned data set
including 40
input to linkage editor 28
input to loader 148

messages
disposition 126-127
examples 128
format 127
text 128
unnumbered 127

MODE statement
example 91
specifying addressing mode 90
specifying residence mode 90
summary 90-91
values 91

modular programming 7
module attributes

default attributes 49
describing output module 44
downward compatible 44
incompatible attributes 49, 59
not editable 45
not-executable 49
only loadable 45
overlay 46
refreshable 47
reusability

reenterable 46
serially reusable 46

scatter format 45
test 47

module disposition messages 126
module editing

described 16, 103
module linking 16-17
module map

linkage editor
described 129-130
example 130
MAP option 58

loader
described 155
example 156
specifying 145

module, definition 7

230 MVS/ESA Linkage Editor and Loader User 1 s Guide

multiple load module processing
described 124

multiple region overlay program
described 186
specifying 190
using 186

N
NAME loader option 146
NAME statement

multiple load module processing 124
replace function 121
summary 92
SYSLMOD DD 120

named common area
aligning on page boundary 116
collection 123, 196
defined 10
module map 129

NCAL option
linkage editor 38, 50
loader 140, 144

NE attribute 45
negation of automatic library call

linkage editor 38
loader

diagnostic output 146
module map 146
search of link pack area 146

not editable attribute 46
not executable attribute 50
reenterable attribute 46
refreshable attribute 47
serially reusable 47

never-call function
cross-reference table 131
specifying external references 37

no automatic library call option 50
no-call function 38
node point

See load point
not editable attribute

linkage editor 45
loader 140

not-executable attribute 49
notational conventions

described 1
NOTERM loader option 147

0
object module

defined 7
input to linkage editor 32
input to loader 148
structure 9

OL attribute 45

,r"\
'·)

11)
I

n

u

u

u

u

only loadable attribute 45
optional output 129
options, incompatible 59
options, linkage editor

addressing mode 196
exclusive call 50
let execute 50
module attributes 44
no automatic library-call 50
output 58
residence mode 196
space allocation 50
special processing 49-50

option, loader
NOCALL 144
NOLET 145
NOMAP 145
NOPRINT 146
NORES 146
RES 146

ORDER statement 93, 114-115
origin

control section in module map 129
region 190
segments 182

output module library 119
output of linkage editor

diagnostic messages 125
load module 119
optional output 129
output module library 119
output options 58

output of the loader
messages 155
module map 155
specifying 143-147

output text record length 173
overlap of loading and processing

overlay segments 201
overlay attribute

specifying 46
overlay program

communication 199
design 177
module map 129
multiple region 186
processing 185-186
respecifying control statements 189
sample program 162-168
single region

dependencies 178-180
length 181
segment origin 189

special considerations 196
specification

described 188
positioning control sections 191
region origin 190
segment origin 189

overlay program (continued)
specification (continued)

special options 195
storage requirements 198-199

OVERLAY statement
specifying 188-195
summary 95

overlay supervisor, definition 185
overlay tree

positioning segments 180
overriding cataloged procedures

DD statements 72
EXEC statement 71

OVLY attribute 46

p
page boundary

aligning control sections or named common
areas 116

PAGE statement
aligning control sections 116
summary 97

parameter
addressing mode 48
combination 48
residence mode 48

partitioned data set
input

linkage editor 28
loader 148

output, linkage editor 119
path

in overlay program 178
performance

improving, linkage editor 11
placement of control statements 75
positioning

control sections 191
preloaded text 155
primary input data set

cards 28
control statements 31
job control language specifications 27
object modules 28, 32
partitioned data set member 28

PRINT loader option 146
private call libraries 35
private code

defined 10
module map 130

procedure
LKED 68
LKEDG 70
procedure LKED 69

procedure LKEDG 71
processing

special options 49

Index 231

processing· history, tracing
CSECT identification record 20

program fetch
function 14

prompter
linkage editor, function of 25
loader, function of 141

pseudoregi st er

R

defined 10
module map 130
processing 18, 124

read-only attribute, assignment 24
RECFM (record format)

linkage editor data sets
diagnostic output 66
input 61-62
load modules 61-66

loader data sets 148
record format

See RECFM
record size

maximum
device type 52

reenterable attribute 46
reenterable load module

module attribute 46
REFR attribute 47
refreshable attribute 47
refreshable load module

module attribute 49
region

virtual storage
loader 211

REGION parameter
specifying storage 60

region, overlay programs
specifying 190
using 186

region, virtual storage
linkage editor

cataloged procedures 67
SIZE option 57

virtual storage
SIZE option 57

relocating a load module 7
relocation dictionary

See RLD
RENT attribute 46
replace function 107-113, 121
REPLACE statement

deleting CSECT 113
example 111
sample program 159-162
summary 99-100
using 111

232 MVS/ESA Linkage Editor and Loader User's Guide

replacing
control sections, assembler language note 107
load modules with same name 121

replacing external symbols
See CHANGE statement, changing external

symbols
repositioning

control statements
automatic call library 194
INSERT control statement 86, 191

reprocessing load modules
entry point assignment 122
not editable attribute 45

reserving storage 123
residence mode

assignment
linkage editor 22
loader 136
output load module 119

combinations
addressing mode 49
loader 138

control section name 10
default 22
entry point 123
implied 138
options 196
override 23
parameter

linkage editor 48
loader 146

private code 10
resolving external references 14, 33
restricted no-call function 37
restrictions

virtual storage size requirements 47
return codes

linkage editor 215
loader 216
severity code 127

REUS attribute 46
reusability attributes

described 46
reenterable 46
serially reusable 46

RLD (relocation dictionary)
number of entries 173
using 12

RMODE
See residence mode

root segments
defined 177
OVERLAY 189
segment table 186

n

u

u

u

u

u

s
sample programs, linkage editor 157
scatter loading 45
SCTR attribute 45
SEGLD macro 199
segment

See also exclusive, inclusive, root segments
communication 183-185
dependency 180
load macro instruction 201-202
origin 182
table 186

segment wait macro
SEGLD 203
using 202

SEGTAB (segment table) 186
SEGWT macro

SEGLD 203
using 202

sequential data set
INCLUDE statement 40
input to linkage editor 27, 40
input to loader 148

serially reusable
attribute 46

SETCODE statement 20, 101
SETSSI statement 102
severity code

linkage editor messages 127
return codes 215
severity 0,2 errors 127

SIZE option
linkage editor 51, 66
loader 147, 205

space allocation
DCBS option 57
maximum values 50, 54
minimum values 50, 54
SIZE option 51
specifying storage 50

special processing options
affecting automatic library call mechanism 49
affecting output module 49
summary 19

static external areas 123
storage

loader, considerations 205
reserving in output loader module 123

SYSLIB DD statement
automatic call library 33
DCB requirements 34
linkage editor 63
loader 149

SYSLIN DD statement
See also automatic call library for loader
described 62
linkage editor 62, 148

SYSLMOD DD statement
See also output module library
described 64, 124, 125
function 64
NAME statement 124-125
referenced by INCLUDE statement 64

SYSLOUT DD statement 146, 150
SYSPRINT DD statement

described 63
system call library

example 35
list 34

system status index information, storage of 19
SYSTERM data set

linkage editor 59, 65, 128
loader 148, 150, 155

SYSTERM DD statement
linkage editor 59, 65, 128
loader 148, 150, 155

SYSUT1 DD statement
described 63

T
TEM PNAM E 120
temporary data set 29, 120
TERM option

linkage editor 59, 65, 128
loader 147

TEST attribute 47
text

message 128
note 11
processing out-of-order 9

time sharing option
See TSO

tracing processing history 20
TRANSFORM table 185
tree structure

positioning of segments 180
purpose of 179

TSO (time sharing option)

u

linkage editor
invoking 25
SYSTERM data set 65
TERM option 128

loader
invoking 141
SYSTERM data set 147, 150
TERM option 147

unnumbered messages 126-127
unresolved references

automatic library-call, resolving with 33
cross-reference table 131

upward reference, definition 178

Index 233

user-specified
input 12
storage 19

user-written library 35

v
V-type address constant

branch instruction, overlay 201
CALL 201
SEGLD 202
SEGWT 203

valid exclusive reference 184
virtual storage requirements

linkage editor 173
loader 205
overlay programs
restrictions 47

w

198-199

wait for segment loading 202
warning messages

described 127-128
weak external reference

automatic library-call 33
cross-reference table 131
defined 10
level F linkage editor 17

x
XCAL option 50, 196
XCTL macro

input to loader 140
invoking the loader 209

XREF option 58

Special Characters
$PRIVATE 130
*"GO 146

234 MVS/ESA Linkage Editor and Loader User's Guide

!~

/:]
I

()

u

u

u

.~
...... 0
C'<-

~.~
.e-:5
:J­
CT 0
Q) Q)

Cf)

.~ .9
t'. Q)
0 a.
Cf) 0
I..._.

:=" 0 Q)

EE
u E :g 5,
5 ~,...c
5-0
:5 0

'i ~
Cf):;:;
E'Cii
Q) c
:0 ~ e,
a.e
Q) :J
Cf) Ul
:J Cf)
0 Q)
(.) ~

§ ~
(.) :J

2~
a. 0
0 Q)

en a:
a;
0 z

MVS/ESA
Linkage Editor and Loader
User's Guide

SC26-4510-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse sicie. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name----------~--------------~ Date--------------------

CompanY------------------------~

Address---~

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4510-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

I
I
I .. ,

Fold and tape

--------- ----- - -- - ---- -------- -----·-®

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P .0. Box 49023
San Jose, CA 95161-9945

11.1 ... 1.1 11.11 111.1 .. 1.1 ... 1 .. 1.1.1 111

Please do not staple

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

I
I
I
I
I
I
I

/~
)

()

()
I

u

u

u

u

.g
-+-' 0 c,._
°' rn E·­
c._£

·--+-'
::J­
CT 0
Q) Q)

O'> rn

:§.8
..._ Q)

0 c._
rn o
I.._,

:=-o
0 Q)

EE
u E
·- ::i c; O'>
E ..._
0 Q)

.....,£
::J-+-'
0 0

..._
:5 0
·- Q)
3:: >
rn:.;::;
E·c;;
Q) c
:0 ~ e,
c..e
Q) ::i
rn rn
::i rn
0 Q)
() ..._

c._
c Q)
o rn
() ::i

rn °' ~ rn
c..o
.8~
(1)0...

Q5
0
z

MVS/ESA
Linkage Editor and Loader
User's Guide

SC26-4510-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the followili~ information:

Name ______________ ,___._ _________ ~
Date--------------------

CompanY------------------------~

Address--

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4510-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

I
I
I

... ·11· · 1· ·N~ p~~~~~E· ••.... i

NECESSARY I
IF MAILED I

INTHE I

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P .0. Box 49023
San Jose, CA 95161-9945

11.1 ••• 1.1 •••• 11.11 ••••• 111.1 •• 1.1 ••• 1 •• 1.1.1 •••• 111

UNITED ST ATES I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

... ·I
Fold and tape

--------- ----- - -- - ---- -------- --___ ,_
®

Please do not staple Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I

u

u

u

(' u

.§
+-' 0
C"­
Q.) Ul
E·­
o_..c

,_+-'
:J­
o- 0
Q.) Q.)

O> Ul

.~ .8
t:'. Q)
0 0.
Ul 0
I+-'

:= "O
0 Q)
EE
u E
·- :::J c; O>
EL
0 Q)

+-'..c
:::J+-'

0 ~
:5 0
·- Q) ;:: >
Ul:;:;

E'iii
Q) c

::a :g e, a.e
Q.) :::J
Ul Ul
:::J Ul
0 Q)
(J L

0.
c Q)
0 Ul
(J :::J

Ul Q)

~ Ul
0. 0
B~
en o..

Q.i
0
z

MVS/ESA
Linkage Editor and Loader
User's Guide

SC26-4510-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references):

If you want a reply, please complete the following information:

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4510-1

Reader's Comment Form

Fold and tape

Fold and tape

--·------- - ---- - -- - ---- - ------- --___ ,_
®

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P .0. Box 49023
San Jose, CA 95161-9945

I I

11.1 ... 1.1 11.11 111.1 .. 1.1 ... 1 .. 1.1.1 111

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

11)

I~

n

n

u

u

.§
..... 0
C'+­
Q) Cf)

E·­o....c ·-
::::l-
0-0
Q) Q)

O'ICl'l

-~ .s
t'. Q)
0 0..
en o
I-+-'

==-o
0 Q)

EE
u E
·- ::::l
(; O'I
E ..._
0 Q) .,.....c
::::i-+-'

0 ~
:5 0
·- Q) :;:; >
en'.;;
E'iii
Q) c
:a ~ e1
o..~
Q) ::::l
en en
::::l Cf)
0 Q)
()

0..
c Q)
0 Cf)
() ::::l

Cf) Q)
~Cf)
o..o
0 Q)

en a::

2
0
z

MVS/ESA
Linkage Editor and Loader
User's Guide

SC26-4510-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any

·obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate.

Note: Do not use this form to request IBM publications. If you do, your order wil!I be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name-~~~~~~-~~~--~~~-~-------~ Date--------------------

Company ________________________ _
Phone No.(~~-)-------------

Address~--------------------------------..;.__ ___________ _

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.) .

SC26-4510-1

Reader's Comment Form

Fold and tape

Fold and tape

-------·-- ----- - -- - ---- - - ------ --___ ,,_
®

Please do not staple

II I I I

BUSINESS REPL V MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P .0. Box 49023
San Jose, CA 95161-9945

11.1 ... 1.1 11.11 111.1 .. 1.1 ... 1 .. 1.1.1 111

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

n

n

