—
= TSO Extensions Version 2 502818830
REXX Reference

4—
TSO Extensions Version 2 5C28-1883-0
REXX Reference

First Edition (December 1988)

This edition applies to the TSO Extensions (TSO/E) Version 2 Licensed Program, Program Number

5685-025, and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters. ,/’«"\
Changes are made periodically to the information herein; before using this publication with the operation of :
IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are applicable

and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM’s product may be used. Any functionally equivalent product may
be used instead. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,

comments may be addressed to IBM Corporation, Information Development, Department D58, Building 921, N
PO Box 950, Poughkeepsie, New York 12602. IBM may use or distribute whatever information you supply { /
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988
All Rights Reserved

—— Before Using the Information in This Book

Before you use the information in this book, please read “Changes for Version
2” on page 425. This topic lists the instructions, functions, and services
described in this book that support various APARs.

IV TSOJE Version 2 REXX Reference

C

Contents

Chapter 1. Introduction 1

Who This Book Is For 1

What Systems Application Architecture Is 2
Supported Environments 2
Common Programming Interface 3

How to Use This Book 4

How to Read the Syntax Diagrams 5

For Further REXX Information 6

Chapter 2. General Concepts 7
Brief Description of the Restructured Extended Executor Language
Where to Find More Information 8
Structure and General Syntax 8
Tokens 9
Implied Semicolons 12
Continuations 12
Expressions and Operators 13
Expressions 13
Operators 13
String Concatenation 13
Arithmetic 14
Comparison 14
Logical (Boolean) 15
Parentheses and Operator Precedence 16
Examples 17
Clauses and Instructions 17
Null Clauses 17
Labels 17
Assignments 18
Keyword Instructions 18
Commands 18
Assignments and Symbols 18
Constant Symbols 19
Simple Symbols 19
Compound Symbols 19
Stems 20
Notes 21
Commands to External Environments 22
Environment 22
Commands 22
Host Commands and Host Command Environments 23
The TSO Environment 24
The ISPEXEC and ISREDIT Environments 24
The MVS Environment 24
The LINK and ATTACH Environments 25

Chapter 3. Keyword Instructions 27
ADDRESS 28

ARG 30
CALL 32
DO 35

Simple DO Group 35

Contents

A4

Simple Repetitive Loops 36
Controlled Repetitive Loops 36
Conditional Phrases (WHILE and UNTIL) 38

DROP 39

EXIT 40

IF 41

INTERPRET 42

ITERATE 44

LEAVE 45

NOP 46

NUMERIC 47

OPTIONS 49

PARSE 50

PROCEDURE 53

PULL 55

PUSH 56

QUEUE 57

RETURN 58

SAY 59

SELECT 60

SIGNAL 62

TRACE 64
Alphabetic Character (Word) Options 65
Prefix Options 65
Numeric Options 66
Tracing Tips 66

A Typical Example 67
Format of TRACE Output 67

UPPER 69

Chapter 4. Functions 71
Syntax 71

Calls to Functions and Subroutines 72
Search Order 73
Errors during Execution 76
Built-in Functions 77
ABBREV 78

ABS 78

ADDRESS 78

ARG 79

BITAND 80
BITOR 80

BITXOR 81
CENTRE/CENTER 81
COMPARE 82
CONDITION 82
COPIES 83

C2D 83

C2X 84
DATATYPE 84
DATE 85

DBCS 86

DELSTR 87
DELWORD 87
DIGITS 87

D2C 88

vi TSO/E Version 2 REXX Reference

_

- D2X 88

ERRORTEXT 89
EXTERNALS 89

FIND 90
FORM 90
FORMAT 90
FUZzZ 91
INDEX 92
INSERT 92
JUSTIFY 93
LASTPOS 93
LEFT 94
LENGTH %4
LINESIZE 94
LISTDSI 95
MAX 95
MIN 95
MSG 95

OUTTRAP 95
OVERLAY 96
POS 96

PROMPT 96
QUEUED 97
RANDOM 97
REVERSE 98
RIGHT 98

SIGN 98
SOURCELINE 99
SPACE 99
STORAGE 99
STRIP 100
SUBSTR 100
SUBWORD 101
SYMBOL 101
SYSDSN 101
SYSVAR 102
TIME 102
TRACE 103
TRANSLATE 104
TRUNC 104
USERID 105
VALUE 105
VERIFY 106
WORD 106
WORDINDEX 107
WORDLENGTH 107
WORDPOS 107
WORDS 108
XRANGE 108
X2C 108

X2D 109

TSO/E Functions 110

LISTDSI 110
Specifying Data Set Names
Variables Set by LISTDSI
Messages 115

112
113

Contents

vii

Function Codes 115
Reason Codes 116
Error Codes 117
Examples 117
MSG 118
Example 119
OUTTRAP 119
Additional Variables Available 121
Examples 122
PROMPT 123
Interaction of Three Ways to Affect Prompting 124
Examples 125
STORAGE 126
Examples 126

SYSDSN 127
Examples 128
SYSVAR 128

Control Variables Not Supported by SYSVAR 130
Examples 130

Chapter 5. Parsing for PARSE, ARG, and PULL 131
Introduction 131
Parsing Words 131
Parsing Using String Patterns 132
Parsing Using Numeric Patterns 132
Parsing Arguments 133
Definition 133
Parsing with Literal Patterns 134
Parsing with Variable Patterns 135
Use of the Period as a Placeholder 136
Parsing with Positional Patterns and Relative Patterns 136
Parsing Multiple Strings 138

Chapter 6. Numerics and Arithmetic 139
Introduction 139
Definition 140
Numbers 140
Precision 140
Arithmetic Operators 141
Arithmetic Operation Rules — Basic Operators 141
Addition and Subtraction 142
Multiplication 142
Division 142
Arithmetic Operators — Additional Operators 143
Power 143
Integer Division 144
Remainder 144
Comparison Operators 145
Exponential Notation 146
Numeric Information 147
Whole Numbers 147
Numbers Used Directly by REXX 147
Errors 148

Chapter 7. Conditions and Condition Traps 149
Action Taken When a Condition is Trapped 150

viii TSO/E Version 2 REXX Reference

Condition Information 152

Chapter 8. Using REXX in Different Address Spaces 155
Additional TSO/E REXX Support 155
TSO/E REXX Programming Services 155
TSO/E REXX Customizing Services 156
Writing Execs That Execute in Non-TSO/E Address Spaces 157
Executing an Exec in a Non-TSO/E Address Space 158
Writing Execs That Execute in the TSO/E Address Space 159
Executing an Exec in the TSO/E Address Space 161

Chapter 9. Reserved Keywords, Special Variables, and Command Names 163
Reserved Keywords 163

Special Variables 164

Reserved Command Names 165

Chapter 10. TSO/E REXX Commands 167
DELSTACK 168
DROPBUF 169
EXECIO 171
EXECUTIL 178

HI 185

HT 186 ,
Immediate Commands - 187
MAKEBUF 188
NEWSTACK 190
QBUF 192

QELEM 194

QSTACK 196

RT 198

SUBCOM 199

TE 201

TS 202

Chapter 11. Debug Aids 203
Interactive Debugging of Programs 203
Interrupting Execution and Controlling Tracing 206

Chapter 12. TSO/E REXX Programming Services 209
General Considerations for Calling TSO/E REXX Routines 212
IRXJCL and IRXEXEC Routines 214
The IRXJCL Routine 214
Using IRXJCL to Execute a REXX Exec in MVS Batch 214
Invoking IRXJCL From a REXX Exec or a Program 215
Return Codes 217
The IRXEXEC Routine 217
Entry Specifications 218
Parameters 218
The Exec Block (EXECBLK) 220
Format of Argument List 222
The In-Storage Control Block INSTBLK) 222
The Evaluation Block (EVALBLOCK) 225
Return Specifications 227
Return Codes 227
Function Packages 229
Interface for Writing Function and Subroutine Code 231

Contents

ix

Entry Specifications 231
Parameters 231
Argument List 232
Evaluation Block 232
Directory for Function Packages 234
Format of Entries in the Directory 235
Example of a Function Package Directory 236
Specifying Directory Names in the Function Package Table 238
Variable Access (IRXEXCOM) 240
Entry Specifications 241
Parameters 241
The Shared Variable (Request) Block - SHVBLOCK 241
Function Codes (SHVCODE) 243
Return Specifications 245
Return Codes 246
Maintain Entries in the Host Command Environment Table IRXSUBCM) 247
Entry Specifications 248
Parameters 248
Functions 248
Format of a Host Command Environment Table Entry 249
Return Specifications 249
Return Codes 250
Trace and Execution Control Routine (IRXIC) 251
Entry Specifications 251
Parameters 251
Return Specifications 252
Return Codes 252
The IRXRLT (Get Result) Routine 253
Entry Specifications 253
Parameters 254
Return Specifications 256
Return Codes 256

Chapter 13. TSO/E REXX Customizing Services 259
Flow of REXX Exec Processing 260

Initialization and Termination of a Language Processor Environment 260

Types Of Language Processor Environments 263
~Loading and Freeing a REXX Exec 263

Processing of the REXX Exec 263
Overview of Replaceable Routines 264
Exit Routines 265

Chapter 14. Language Processor Environments 267

Overview of Language Processor Environments 268

Using the Environment Block 271

When Environments are Automatically Initialized in TSO/E 272

When Environments are Automatically Initialized in MVS 273

Types of Environments - Integrated and Not Integrated Into TSO/E 274

Characteristics of a Language Processor Environment 275

Flags and Corresponding Masks 281

Module Name Table 286

Host Command Environment Table 291

Function Package Table 295

Values Provided in the Three Default Parameters Modules 299

How IRXINIT Determines What Values to Use for the Environment 302
Values IRXINIT Uses to Initialize Environments 302

TSO/E Version 2 REXX Reference

Chains of Environments and How Environments Are Located 304
Locating a Language Processor Environment 307
Changing the Default Values for Initializing an Environment 310
Providing Your Own Parameters Modules 311
Changing Values for ISPF 311
Changing Values for TSO/E 311
Changing Values for TSO/E and ISPF 312
Changing Values for Non-TSO/E 313
Considerations for Providing Parameters Modules 314
Specifying Values for Different Environments 315
Parameters You Cannot Change 315
Parameters You Can Use in Any Language Processor Environment 315
Parameters You Can Use for Environments That Are Integrated Into
TSO/E 318 .
Parameters You Can Use in Environments That Are Not Integrated Into
TSO/E 318
Flag Settings for Environments Initialized for TSO/E and ISPF 320
Using SYSPROC and SYSEXEC for REXX Execs 321
Control Blocks Created for a Language Processor Environment 323
Format of the Environment Block (ENVBLOCK) 323
Format of the Parameter Block (PARMBLOCK) 324
Format of the Work Block Extension 326
Format of the REXX Vector of External Entry Points 328
Changing the Maximum Number of Environments in an Address Space 332
Using the Data Stack in Different Environments 334

Chapter 15. Initialization and Termination Routines 339
Initialization Routine - IRXINIT 340
Entry Specifications 340
Parameters 341
How IRXINIT Determines What Values to Use for the Environment 342
Parameters Module and In-Storage Parameter List 343
Specifying Values for the New Environment 345
Return Specifications 346
Output Parameters 347
Return Codes 350
Termination Routine - IRXTERM 352
Entry Specifications 353
Parameters 353
Return Specifications 353
Return Codes 354

Chapter 16. Replaceable Routines and Exits 355
Replaceable Routines 356
General Considerations 356
Installing Replaceable Routines 357
Exec Load Routine 358
Entry Specifications 359
Parameters 359
Format of the Exec Block 361
Format of the In-Storage Control Block 363 -
Return Specifications 365
Return Codes 365
Input/Output Routine 366
Entry Specifications 367
Parameters 367

Contents

xi

xii

Functions Supported for the I/O Routine 368
Buffer and Buffer Length Parameters 370
Line Number Parameter 372
Data Set Information Block 372
Return Specifications 375
Return Codes 375
Host Command Environment Routine 377
Entry Specifications 377
Parameters 377
Error Recovery 379
Return Specifications 379
Return Codes 380
Data Stack Routine 381
Entry Specifications 382
Parameters 382
Functions Supported for the Data Stack Routine 383
Return Specifications 385
Return Codes 385
Storage Management Routine 386
Entry Specifications 386
Parameters 386
Return Specifications 388
Return Codes 388
User ID Routine 389
Entry Specifications 389
Parameters 389
Return Specifications 390
Return Codes 390
Message Identifier Routine 391
Entry Specifications 391
Parameters 391
Return Specifications 391
Return Codes 391
REXX Exit Routines 392
Exits for Language Processor Environment Initialization and Termination
Exec Initialization and Termination Exits 393
IRXEXEC Exit Routine 393
Attention Handling Exit Routine - 394

Appendix A. Error Numbers and Messages 395

Appendix B. Double Byte Character Set (DBCS) 405
General Description 405
DBCS Enabling Data 406
Mixed String Validation 406
Instruction Examples 407
PARSE 407
PUSH and QUEUE 408
SAY and TRACE 408
DBCS Function Handling 408
Built-in Function Examples 410
ABBREV 410
COMPARE 410
COPIES 410
DATATYPE 411
FIND 411

TSO/E Version 2 REXX Reference

392

INDEX, POS, and LASTPOS 411
INSERT and OVERLAY 411
JUSTIFY 411

LEFT, RIGHT, and CENTER 412
LENGTH 412

REVERSE 412

SPACE 412

STRIP 412

SUBSTR and DELSTR 412
SUBWORD and DELWORD 413
TRANSLATE 413

VERIFY 413
WORD, WORDINDEX, and WORDLENGTH
WORDS 413

WORDPOS 414
External Functions 414
Counting Option 414
Function Descriptions 414
DBADJUST 414
DBBRACKET 415
DBCENTER 415
DBCJUSTIFY 416
DBLEFT 416
DBRIGHT 417
DBRLEFT 417
DBRRIGHT 418
DBTODBCS 418
DBTOSBCS 419
DBUNBRACKET 419
DBVALIDATE 419
DBWIDTH 420

Appendix C. IRXTERMA and RXSECT 421
RXSECT Environment Control Macro 421
IRXTERMA Routine 422

Parameters 423

Return Specifications 423

Return Codes 424

Changes for Version 2 425
APAR Information 425

Bibliography 427
Related Publications 427

Index 431

413

Contents

xiii

Xiv TSO/E Version 2 REXX Reference

Introduction

Chapter 1. Introduction

This introductory section:

¢ Identifies the book’s purpose and audience
* Gives a brief overview of Systems Application Architecture™ (SAA)
* Explains how to use the book.

Who This Book Is For

This book describes the support that TSO/E Version 2 provides for the Restructured
EXtended eXecutor (REXX) language. TSO/E REXX is the implementation of the
SAA Procedures Language on the MVS system. Although TSO/E Version 2
provides support for REXX, you can execute REXX programs (called REXX execs)
in any MVS address space. That is, you can execute a REXX exec in TSO/E and
non-TSO/E address spaces.

Descriptions include use and syntax of the language and explain how the language
processor “interprets” the language as a program is executing. The book also
describes TSO/E functions.and REXX commands you can use in a REXX exec,
programming services that let you interface with REXX and the language processor,
and customizing services that let you customize REXX processing and how the
language processor accesses and uses system services, such as storage and 1/O
requests.

The book is designed for experienced programmers, particularly those who have used
a block structured high level language (for example, PL/I, Algol, or Pascal).
For ease of reference, the material in this book is arranged in chapters:
1. Introduction
. General Concepts
Keyword Instructions (in alphabetical order)
Functions (in alphabetical order)
Parsing (a method of dividing character strings, such as commands)
Numerics and Arithmetic
Conditions and Condition Traps

Using REXX in Different Address Spaces

e I R T

Reserved Keywords, Special Variables, and Command Names
. TSO/E REXX Commands

. Debug Aids

. TSO/E REXX Programming Services

. TSO/E REXX Customizing Services

— bt e = e
B W N = O

. Language Processor Environments

Systems Application Architecture is a trademark of the International Business Machines Corporation.

Chapter 1. Introduction 1

Introduction

15. Initialization and Termination Routines
16. Replaceable Routines and Exits
There are several appendixes covering:

¢ Error Numbers and Messages

e Double Byte Character Set (DBCS)

e IRXTERMA and RXSECT

What Systems Application Architecture Is

Systems Application Architecture is a definition — a set of software interfaces,
conventions, and protocols that provide a framework for designing and developing
applications with cross-system consistency.

The SAA Procedures Language has been defined as a subset of Virtual
Machine/System Product (VM/SP) REXX. Its purpose is to define a common subset
of the language that can be used on several environments. TSO/E REXX is the
implementation of the SAA Procedures Language on the MVS system. If you plan
on running your REXX programs on other environments, however, some restrictions
may apply and you should review the publication SA4 Common Programming
Interface Procedures Language Reference.

Systems Application Architecture:

* Defines a common programming interface you can use to develop applications
that can be integrated with each other and transported to run in multiple SAA
environments,

¢ Defines common communications support that you can use to connect
applications, systems, networks, and devices.

¢ Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques.

* Offers soime common applications written by IBM using the common
programming interface, the common communications support and the common
user access.

Supported Environments
SAA provides a framework across these IBM computing environments:

* TSOJE in the Enterprise Systems Architecture/370™

¢ CMS in the VM/System Product or VM/Extended Architecture
¢ Operating System/400™ (0S/400™1)

e Operating System/2™ (0OS/2™) Extended Edition.

Operating System/2, Operating System/400, Enterprise Systems Architecture/370, OS/2, and OS/400 are trademarks
of the International Business Machines Corporation.

2 TSOJE Version 2 REXX Reference

Introduction

Common Programming Interface

As its name implies, the Common Programming Interface (CPI) provides languages,
commands, and calls that programmers can use to develop applications which take
advantage of the consistency offered by SAA. These applications can easily be
integrated and transported across the supported environments.

The components of the interface currently fall into two general categories:
¢ Languages

Application Generator
C

COBOL

FORTRAN
Procedures Language
RPG

e Services

Communications Interface
Database Interface
Dialog Interface
Presentation Interface
Query Interface.

The CP1 is not in itself a product or a piece of code, But — as a definition — it does
establish and control how IBM products are being implemented, and it establishes a
common base across the SAA environments.

Thus, when you want to create an application that can be used in more than one
environment, you can stay within the boundaries of the CPI and obtain easier
portability. (Naturally, the design of such applications should be done with
portability in mind as well.) In addition to the CPI, you may also want to consider
the other aspects of Systems Application Architecture — for example, the common
user access — when creating your applications.

Chapter 1. Introduction 3

Introduction

How to Use This Book

This introduction and Chapter 2, “General Concepts™ provide general information
about the REXX programming language. The two chapters describe the SAA
Procedures Language and its relationship to TSO/E REXX, the structure and syntax
of the REXX language, the different types of clauses and instructions, the use of
expressions, operators, assignments, and symbols, and issuing commands from a
REXX exec.

Other chapters in the book provide reference information about the syntax of the
keyword instructions and built-in functions in the REXX language, and the external
functions TSO/E provides for REXX programming. The keyword instructions,
built-in functions, and TSO/E functions are described in Chapter 3, “Keyword
Instructions” and Chapter 4, “Functions.”

Other chapters provide information that will help you use the different features of
REXX and debug any problems you have in your REXX execs. These chapters
include:

¢ Chapter 35, “Parsing for PARSE, ARG, and PULL”

¢ Chapter 6, “Numerics and Arithmetic”

¢ Chapter 7, “Conditions and Condition Traps”

¢ Chapter 9, “Reserved Keywords, Special Variables, and Command Names”
* Chapter 11, “Debug Aids.”

TSO/E provides several REXX commands you can use for REXX processing. The
syntax of these commands is described in Chapter 10, “TSO/E REXX Commands.”

Although TSO/E provides support for the REXX language, you can execute REXX
execs in any MVS address space (TSO/E and non-TSO/E). Chapter 8, “Using
REXX in Different Address Spaces” describes various aspects of using REXX in
TSO/E and non-TSO/E address spaces and any restrictions.

In addition to REXX language support, TSO/E provides programming services you
can use to interface with REXX and the language processor, and customizing
services that let you customize REXX processing and how the language processor
accesses and uses system services, such as I/O and storage. The programming
services are described in Chapter 12, “TSO/E REXX Programming Services.” The
customizing services are introduced in Chapter 13, “TSO/E REXX Customizing
Services” and are described in more detail in the following chapters:

¢ Chapter 14, “Language Processor Environments”
¢ Chapter 15, “Initialization and Termination Routines”
¢ Chapter 16, “Replaceable Routines and Exits.”

Throughout the book, examples are provided that include data set names. When an

example includes a data set name that is enclosed in single quotes, the prefix is
added to the data set name. In the examples, the user ID is the prefix.

4 TSO/E Version 2 REXX Reference

Introduction

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

¢ Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.
The »»—— symbol indicates the beginning of a statement.
The — symbol indicates that the statement syntax is continued.

The »—— symbol indicates that a line is continued from
the previous line.

The —>< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start
with the »—— symbol and end with the — symbol.

* Required items appear on the horizontal line (the main path).

»>——STATEMENT

Y
A

required—item-

¢ Optional items appear below the main path.

A

»»——STATEMENT >
Loptiona]-—i tem—l

* When you can choose from two or more items, they are stacked vertically.

If you must choose one of the items, an item of the stack appears on the main
path.

»——STATEMENT——Er‘equi red—choicel >
required—choi ce2—]

If choosing one of the items is optional, the entire stack appears below the main

path.
»>——STATEMENT —>
‘:(;ptional—choicel:l
ptional—choice2
¢ An arrow returning to the left above the main line indicates an item that can be
repeated.
»»——STATEMENT repeatable—item —>

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example, parmx).
They represent user-supplied names or values.

Chapter 1. Introduction 5

Introduction

* If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax. N

For Further REXX Information

The following publications are useful for programming in REXX:

o The S4A4 Common Programming Interface Procedures Language Reference,
SC26-4358 may be useful to more experienced REXX users who may wish to
code portable programs. This book defines the SAA Procedures Language,
which is a subset of VM/SP REXX. Descriptions include use and syntax of the
language as well as explanations on how the language processor interprets the
language as a program is executing.

o The VM/SP System Product Interpreter Reference, SC24-5239, is a
comprehensive reference for use with the System Product Interpreter on VM/SP.

e TSO/E Version 2 REXX User's Guide, SC28-1882 introduces the instructions and
functions the REXX language provides and how to write a REXX exec. It
describes how you can execute a REXX exec in TSO/E foreground and)
background, in MVS batch using JCL, or in any address space. This book also
highlights the major differences between the TSO/E CLIST language and the
REXX language.

* TSO/E Version 2 Quick Reference, GX23-0026 is a reference summary that
includes the syntax of the REXX keyword instructions, built-in functions,
TSO/E external functions, and TSO/E REXX commands in a summary form.

6 TSO/E Version 2 REXX Reference

_//1

General Concepts

Chapter 2. General Concepts

Brief Description of the Restructured Extended Executor Language

The Restructured Extended Executor (REXX) language is a language particularly
suitable for:

* Command procedures

* Application front ends

» User defined macros (such as: Dialog Manager, editor subcommands,...)
* Prototyping

* Application programs intended for use in different environments.

It is a general purpose, programming language like PL/I. REXX has the usual
“structured programming” instructions — IF, SELECT, DO WHILE, LEAVE and
so on — and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be more
than one clause on a line or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a format that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables fit
into the storage available. Symbols (variable names) are limited to a length of 250
characters.

Compound symbols, such as
NAME.X.Y

(where X and Y can be the names of variables) may be used for constructing arrays
and for other purposes.

Issuing host commands from within a REXX program is an integral part of the
REXX language. For example, in the TSO/E address space, you can use TSO/E
commands in a REXX exec. In execs that execute in both the TSO/E and
non-TSO/E address spaces, you can use the TSO/E REXX commands, such as
MAKEBUF, DROPBUF, and NEWSTACK. You can also link to and attach
programs. “Host Commands and Host Command Environments” on page 23
describes the different environments for using host services.

TSO/E REXX execs can reside in a sequential data set or in a member of a
partitioned data set (PDS). Partitioned data sets containing REXX execs can be
allocated to either the system file SYSEXEC or SYSPROC (TSO/E address space
only).

In TSO/E, you can execute an exec explicitly using the EXEC command followed by
the data set name and the “exec” keyword operand of the EXEC command. The
“exec” keyword operand is used to distinguish the REXX exec from a TSO/E
CLIST. which is also executed with the EXEC command. You can also execute an
exec implicitly by entering the member name of the exec. An exec can be executed

Chapter 2. General Concepts = 7

General Concepts

implicitly only if the PDS in which it is stored has been allocated to a system file
(SYSPROC or SYSEXEC). SYSPROC is a system file whose data sets can contain
both CLISTs and REXX execs. If an exec is stored in a data set that is allocated to
SYSPROC, the exec must start with a comment and the comment must contain the
word REXX. See “Structure and General Syntax” for more information.
SYSEXEC is a system file whose data sets can contain only REXX execs.

In the TSO/E address space, you can also use the TSO/E ALTLIB command
(MVS/ESA™ feature of TSO/E Version 2 only) to define alternate exec libraries.
For more information about allocating exec data sets, see TSO/E Version 2 REXX
User's Guide.

In non-TSO/E address spaces, SYSEXEC is the default load ddname from which
REXX execs are loaded. By default, in the TSO/E address space, only SYSPROC is
searched for REXX execs, not SYSEXEC. You can change the defaults TSO/E
provides so that SYSEXEC is searched. If your installation plans to use REXX, it is
recommended that you store your REXX execs in data sets that are allocated to
SYSEXEC. This makes them easier to maintain. For more information about the
load ddname and searching SYSPROC or SYSEXEC, see “Using SYSPROC and
SYSEXEC for REXX Execs” on page 321.

REXX programs are executed by a language processor (interpreter). That is, the
program is executed line-by-line and word-by-word, without first being translated to
another form (compiled). The advantage of this to the user is that if the program
fails with a syntax error of some kind, the point of failure is clearly indicated;
usually, it will not take long to understand the difficulty and make a correction.

Where to Find More Information

This is the reference manual. Reference information is also available in a convenient
summary form in the TSO/E Version 2 Quick Reference.

You can find useful information in the TSO/E Version 2 REXX User’s Guide. For
any program written in the Restructured Extended Executor (REXX) language, you
can get information on how the language processor interprets the program or a
particular instruction by using the REXX TRACE instruction.

Structure and General Syntax

If you write a REXX exec that will be stored in a data set that is allocated to
SYSPROC (TSO/E address space only), the exec must start with a comment and the
comment must contain the characters REXX. This is known as the “REXX exec
identifier” and is required in order for the TSO/E EXEC command processor to
distinguish REXX programs from TSO/E CLISTs, which are also stored in data sets
that are allocated to SYSPROC.

If the exec is in a data set that is not allocated to SYSPROC, the exec does not have
to start with a comment. Programming standards, however, recommend that
programs start with a comment that identifies the program and its purpose. In
VM/SP (CMS), REXX programs must also start with a comment. Therefore, it is

MVS/ESA is a trademark of the International Business Machines Corporation.

8 TSO/E Version 2 REXX Reference

Tokens

General Concepts

recommended that you start all REXX execs with a comment regardless of where
they are stored. Including the word “REXX” in the first comment helps users
identify that the program is a REXX program and also distinguishes it from a
CLIST.

A REXX program is built from a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (see below); zero or more
blanks (again ignored); and a semicolon (;) delimiter that may be implied by
line-end, certain keywords, or the colon (¢) if it follows a single symbol.
Conceptually, each clause is scanned from left to right before execution, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to special characters (including
operators, see page 11) are also removed.

Programs written in REXX are composed of tokens (of any length, up to an
implementation restricted maximum) that are separated by blanks or by the nature
of the tokens themselves. The classes of tokens are:

Comments:
A sequence of characters (on one or more lines) that are delimited by /*
and */. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. Comments can be written
anywhere in a program. They are ignored by the language processor
(and hence may be of any length), but they do act as separators.

/* This is an example of a valid comment */

Literal Strings:
A sequence including any characters and delimited by the single quote (*)
or the double quote (). Use two consecutive double quotes ("") to
represent a " character within a string delimited by double quotes.
Similarly, use two consecutive single quotes (' ') to represent a '
character within a string delimited by single quotes. A literal string is a
constant and its contents are never modified when it is processed. A
literal string with no characters (that is, a string of length 0) is called a
null string.

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t’ /* Same as "You shouldn't" */

Implementation maximum: A literal string may contain up to 250
characters. (But note that the length of computed results is limited only
by the amount of storage available.)

Note that if followed immediately by a (, the string is considered to be
the name of a function. Or, if followed immediately by the symbol X, it
is considered to be a hexadecimal string.

Hexadecimal Strings:
Any sequence of zero or more hexadecimal digits (6-9, a-f, A-F),
optionally separated by blanks, delimited by single or double quotes and
immediately followed by the symbol x or X (the X cannot be part of a
longer symbol). A single leading 0 is added, if necessary, at the front of
the string to make an even number of hexadecimal digits, which represent

Chapter 2. General Concepts 9

General Concepts

a character string constant formed by packing the hexadecimal codes
given. The blanks, which may only be present at byte boundaries (and
not at the beginning or end of the string), are to aid readability. They
are ignored by the language processor.

These are valid hexadecimal strings:

"ABCD ' x
"1d ec f8"X
"1 d8"x

Implementation maximum: The packed length of a hexadecimal string
may not exceed 250 bytes.

Symbols:
Symbols are groups of characters, selected from the English alphabetic
and numeric characters (A-Z, a-z, 0-9) and/or from the characters
@#$¢.17 and underscore. Any lowercase alphabetic character in a symbol
is translated to uppercase (i.e., a lowercase a-z to an uppercase A-Z).

These are valid symbols:

Fred
Albert.Hall
WHERE?

A symbol can be a label (see page 17) or a REXX keyword (see page
163). Symbols that do not begin with a digit or a period can be used as
variables and can be assigned a value. If it has not been assigned a
value, its value is the characters of the symbol itself, translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Symbols that
begin with a number or a period are constant symbols and can not be
assigned a value. There is one other type of symbol. If the first part of
a symbol starts with a digit (0-9) or a period, it may end with the
sequence "E" or "e¢", followed immediately by an optional sign ("-" or
"+ "), followed immediately by one or more digits (which can not be
followed by any other symbol characters). This type of symbol is
assumed to be a number in exponential notation. The sign in this
context is part of the symbol and is not an operator.

These are valid exponential symbols:

17.3E-12
.03e+9

Implementation maximum: A symbol may consist of up to 250
characters. (But note that its value, if it is a variable, is limited only by
the amount of storage available).

Numbers:
These are character strings consisting of one or more decimal digits
optionally prefixed by a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number can also have
a power of ten suffixed in conventional exponential notation: an E
(uppercase or lowercase) followed optionally by a plus or minus sign then
followed by one or more decimal digits defining the power of ten.
Whenever a character string is used as a number, it is possible that
rounding will occur to a precision specified by the NUMERIC DIGITS
instruction (default nine digits). See pages 139-148 for a full definition of
numbers.

10 TSOJE Version 2 REXX Reference

General Concepts

Numbers may have leading blanks (before and after the sign, if any) and
may have trailing blanks. Embedded blanks are not permitted. Note
that a symbol (see above) may be a number and so may a literal string.
A number cannot be the name of a variable.

These are valid numbers:

12

-17.9
127.0650
73e+128

"'+ 7.9E5 '

A whole number is a number that has a zero (or no) decimal part and
that would not normally be expressed by the language processor in
exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

Operators:
The special characters: + -\ / % * | & = = > < and the sequences >=
<= \> 71> \< < \= 1= >< < == \== = [/ @& **
>> << >>= \>> —>> <<= || /= /= \<< —1<< are operator

tokens (see page 13), with or without embedded blanks or comments.
One or more blank(s), where they occur in expressions but are not
adjacent to another operator, also act as an operator.

Some of these characters may not be available in all character sets, and if
this is the case, appropriate translations may be used. In particular, the
not operator symbol often appears as caret, and the vertical bar or
symbol is often shown as a split vertical bar.

Note that throughout the language, the not symbol, “—1”, is synonymous
with the backslash (“\”). The two symbols may be used interchangeably
according to availability and personal preference.

Special Characters:
The characters , ; :) (together with the individual characters from
the operators have special significance when found outside of strings. All
these characters constitute the set of “special” characters. They all act as
token delimiters, and blanks adjacent to any of these are removed, with
the exception that a blank adjacent to the outside of a parenthesis is only
deleted if it is also adjacent to another special character (unless this is a
parenthesis and the blank is outside it, too).

For example, the clause:
'REPEAT' B + 3;

is composed of six tokens — a string (' REPEAT'), a blank operator, a symbol (B,
which may have a value), an operator (+), a second symbol (3, which is a number
and a symbol), and the clause delimiter (;). The blanks between the B and the +
and between the + and the 3 are removed. However, one of the blanks between the
REPEAT and the B remains as an operator. Thus, this is treated as though it were
written:

'REPEAT' B+3;

Implementation maximum: During parsing of a clause, the internal form of a clause
(which is approximately the same length as the visible form, except that extra blanks

Chapter 2. General Concepts 11

General Concepts

and comments are removed) may not exceed 500 characters. Note that this does not
limit in any way the length of data that can be manipulated, which is dependent
upon the amount of storage (memory) available.

Implied Semicolons
The last element in a clause is the semicolon delimiter. The semicolon is implied by
the language processor in three cases: by a line-end, by certain keywords and by a
colon if it follows a single symbol. This means that semicolons need only be
included when there are more than one clause on a line.

A line-end usually marks the end of a clause and thus, a semicolon is implied at
most end of lines. However, there are a few exceptions:

¢ The line ends in the middle of a string
¢ The line ends in the middle of a comment

¢ The last noncomment token was the continuation character (denoted by a
comma).

If any of the cases listed previously are true, then it is not considered the end of a
clause and a semicolon is not implied.

Semicolons are also implied automatically after certain keywords when they are used
in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Note: If the two character combination, /*, is split by a line-end (that is, / and *
appear on different lines), then an implied semicolon would be added and it would
not be correctly recognized as the beginning of a comment. Similarly, the two
character combination indicating the end of a comment, */, should not be split. The
two characters forming a double quote within a string are also subject to this
line-end ruling.

Continuations
One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by a
blank, and thus, no semicolon is implied. The continuation character can not be
used in the middle of a string or it will be processed as part of the string itself. The
same situation holds true for comments. Note that the comma remains in execution
traces.

The following example shows how the continuation character can be used to
continue a clause.

say 'You can use a comma',
'to continue this clause.'

This would display:

12 TSOJE Version 2 REXX Reference

General Concepts

Expressions and Operators

Expressions

Operators

Clauses can include expressions consisting of terms (strings, symbols, and function
calls) interspersed with operators and parentheses.

Terms include:
* Literal Strings (delimited by quotes), which are literal constants

s Symbols (no quotes), which are translated to uppercase. Those that do not
begin with a digit or a period may be the name of a variable, in which case they
are replaced by the value of that variable as soon as they are needed during
evaluation. Otherwise they are treated as a literal string. A symbol can also be
compound.

* Function invocations, see page 71, which are of the form:

»——[symbo] (_] J——>«

string{ .
Y
Evaluation of an expression is left to right, modified by parentheses and by operator

precedence in the usual algebraic manner (see below). Expressions are always wholly
evaluated, unless an error occurs during evaluation.

expressionJ

All data is in the form of “typeless” character strings, (typeless because it is not — as
in some other languages — of a particular declared type, such as Binary,
Hexadecimal, Array, etc.). Consequently, the result of evaluating any expression is
itself a character string. All terms and results may be the null string (a string of
length 0). Note that REXX imposes no restriction on the maximum length of
results, but there is usually some practical limitation dependent upon the amount of
storage available to the language processor.

The following pages describe how each operator (except for the prefix operators) acts
on two terms, which may be symbols, strings, function calls, intermediate results, or
subexpressions in parentheses. Each prefix operator acts on the term or
subexpression that follows it. There are four types of operators:

String Concatenation

The concatenation operators are used to combine two strings to form one string.
The combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between
1l Concatenate without an intervening blank
(abuttal) Concatenate without an intervening blank

Concatenation without a blank may be forced by using the || operator, but it is
useful to know that when dissimilar terms (such as a literal string and a symbol) are
abutted, they will be concatenated in the same way. This is the abuttal operator.

Chapter 2. General Concepts 13

General Concepts

Example:

If the variable FRED had the value 37.4, then Fred"%" would evaluate to 37.4%.

Arithmetic
Character strings that are valid numbers (see above) may be combined using the
arithmetic operators:
+ Add
- Subtract
* Multiply
/ Divide
% Divide and return the integer part of the result
/] Divide and return the remainder (not modulo, since the result
may be negative)
*x Power (raise a number to a whole-number power)
Prefix - Negate the following term. Same as 'O-term’.
Prefix + Take following term as if it was 'O+term’.
See the section Chapter 6, “Numerics and Arithmetic” on page 139 for details of
accuracy, the format of valid numbers, and the combination rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.
Comparison

The comparison operators return the value 1 if the result of the comparison is true,
or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator
doubled. The “==", “\==7 “—3=="_and “/= =" operators test for strict
equality or inequality between two strings. Two strings must be identical before they
are considered strictly equal. Similarly, the strict comparison operators such as
“>>” or “< <” carry out a simple character-by-character comparison, with no
padding of either of the strings being compared. The comparison of the two strings
is from left to right. The strict comparison operators also do not attempt to perform
a numeric comparison on the two operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, etc.) is effected; otherwise,
both terms are treated as character strings (leading and trailing blanks are ignored,
and then the shorter string is padded with blanks on the right). The character
comparison operation is case sensitive, and (as for strict comparisons) the exact
collating order may depend on the character set used for the implementation. For
example, in an EBCDIC environment, lowercase alphabetics precede uppercase, and
the digits 0-9 are higher than all alphabetics. In an ASCII environment, the digits
are lower than the alphabetics, and lowercase alphabetics are higher than uppercase
alphabetics.

== True if terms are strictly equal (identical)

True if the terms are equal (numerically or when padded,
etc.)

14 TSOJE Version 2 REXX Reference

Logical (Boolean)

General Concepts

\==,1==, [== True if the terms are NOT strictly equal (inverse of = =
1_/\ \=, 1=, /= Not equal (inverse of =) ‘

> Greater than

< Less than

> > Strictly greater than

<< Strictly less than

> < Greater than or less than (same as not equal)

<> Greater than or less than (same as not equal)

>= Greater than or equal to

\<, < Not less than

>>= Strictly greater than or equal to
RN \<<,1<< Strictly NOT less than
\../J <= Less than or equal to

\>, 1> Not greater than

<<= Strictly less than or equal to

\>>,1>> Strictly NOT greater than

Note: Throughout the language, the not symbol, “—1”, is synonymous with the

backslash (*\”). The two symbols may be used interchangeably according to
. availability and personal preference. The backslash can appear in the following
‘_/‘ operators: \(prefix not), \=, \==, \<, \>, \<<, and \>>.

A character string is taken to have the value “false” if it is 0, and “true” if it is a 1.
The logical operators take one or two such values (values other than 0 or 1 are not
allowed) and return 0 or 1 as appropriate:

&

&&

Prefix \,—

AND
Returns 1 if both terms are true.

Inclusive OR
Returns 1 if either term is true.

Exclusive OR
Returns 1 if either (but not both) is true.

Logical NOT
Negates; 1 becomes 0 and vice-versa.

Chapter 2. General Concepts 15

General Concepts

Parentheses and Operator Precedence
Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

¢ When parentheses are encountered (other than those that identify function calls),
the entire sub-expression between the parentheses is evaluated immediately when
the term is required.

* When the sequence:

terml operatorl term2 operator2 term3 ...

is encountered, and operator2 has a higher precedence than operatorl, the
expression (term2 operator2 term3 ...) is evaluated first, applying the same rule
repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). It is only the order of
operations that is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 will evaluate
to 13 (rather than the 25 that would result if strict left to right evaluation occurred).
Likewise, the expression -3**2 will evaluate to 9 (instead of -9) since the prefix
minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

\—1 - + (prefix operators)

*% (power)

* [% [/ (multiply and divide)
+ - (add and subtract)

“ 1| (abuttal) (concatenation with/without blank)
= > < (comparison operators)
== > > < <

\= - =

>< <>

\> >

\< 1<

>= >>=
<= <<=

|= ==

& (and)

| && (or, exclusive or)

(or, exclusive or)

16 TSO/E Version 2 REXX Reference

Examples

General Concepts

Suppose that the following symbols represent variables; with values as shown:

A has the value '3' and DAY has the value 'Monday"'
Then:

A+5 -> '8!

A-4%2 -> '-5!

A/2 > 1.5

0.5%*%2 -> '9.25"

(A+1)>7 -> '0 /* that is, False */
Corat > /* that is, True */
fot==tt -> 0 /* that is, False */
Pl=stt -> "1 /* that is, True */
(A+1)*3=12 -> "t /* that is, True */
Today 1is Day -> '"TODAY IS Monday'

'If it is' day -> "If it is Monday'

Substr(Day,2,3) -> ‘ond' /* Substr is a function */
ixxx 't -> PIXXXTS

‘abc' << 'abd' -> ' /* that is, True */
'e77' >> '11! -> ‘9! /* that is, False */
‘abc' >> 'ab' -> 1 /* that is, True */
'ab ' << 'ahd' -> 1 /* that is, True */
'000000' >> '0OEO00O' -> 1! /* that is, True */

Note: The last example would give a different answer if the “>" operator had been
used rather than “> >”. Since '0E0000' is a valid number in exponential notation,
a numeric comparison is done, thus '0E0000' and '000000' evaluate as equal.

Clauses and Instructions

Null Clauses

Labels

Clauses can be subdivided into five types.

A clause consisting only of blanks and/or comments is a null clause and is
completely ignored (except that if it includes a comment it will be traced, if
appropriate).

Note: A null clause is not an instruction; putting an extra semicolon after the
THEN or ELSE in an IF instruction (for example) is not equivalent to using a
dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

A clause that consists of a single symbol followed by a colon is a label. The colon
acts as an implicit clause terminator, so no semicolon is required. Labels are used to
identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. They can be traced selectively to aid debugging.

Any number of successive clauses may be labels, so permitting multiple labels before
another type of clause. Duplicate labels are permitted, but since the search
effectively starts at the top of the program, the control, following a CALL or
SIGNAL instruction, will always be passed to the first occurrence of the label. The
duplicate labels occurring later can be traced, but cannot be used as a target of a
CALL, SIGNAL, or function invocation.

Chapter 2. General Concepts 17

General Concepts

Assignments

Single clauses of the form symbol =expression are instructions known as assignments.
An assignment gives a variable a (new) value.

Keyword Instructions

Commands

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. These control the external interfaces, the flow of
control, etc. Some instructions can include other (nested) instructions. In this
example, the DO construct (DO, the group of instructions that follow it, and its
associated END keyword) is considered a single keyword instruction.

DO
instruction
instruction
instruction
END

Single clauses consisting of just an expression are instructions known as commands.
The expression is evaluated and passed as a command string to some external
environment.

Assignments and Symbols

A variable is an object whose value may be changed during the course of execution
of a REXX program. The process of changing the value of a variable is called
assigning a new value to it. The value of a variable is a single character string, of
any length, that may contain any characters.

Variables can be assigned a new value by the ARG, PARSE, or PULL instructions,
but the most common way of changing the value of a variable is the assignment
instruction itself. Any clause of the form:

»»—symbol= ;>
l—expression——l

is taken to be an assignment. The result of expression becomes the new value of the

variable named by the symbol to the left of the equal sign. If expression is not
given, the variable is set to the null string.

Example:

/* Next Tine gives “FRED" the value "Frederic" */
Fred='frederic'

The symbol naming the variable cannot begin with a digit (0-9) or a period.
(Without the restriction on the first character of a variable name, it would be
possible to redefine a number; for example 3=4; would give a variable called 3 the
value 4.)

Symbols can be used in an expression even if they have not been assigned a value,
since they have a defined value at all times. When a variable has not been assigned
a value it is uninitialized, and its value is the character(s) of the symbol itself,
translated to uppercase (i.e., a lowercase a-z to an uppercase A-Z). However, if it is
a compound symbol, described below, its value is the derived name of the symbol.

18 TSOJE Version 2 REXX Reference

General Concepts

Example:

/* If "Freda" has not yet been assigned a value, */
/* then next Tine gives "FRED" the value "FREDA" */
Fred=Freda

Symbols can be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols can be used for variables where the
name corresponds to a single value. Compound symbols and stems are used for
more complex collections of variables, such as arrays and lists.

Constant Symbols

Simple Symbols

A constant symbol starts with a digit (0-9) or a period.

The value of a constant symbol cannot be changed. It is simply the string consisting
of the characters of the symbol (that is, with any alphabetic characters translated to
uppercase).

These are constant symbols:

77

827.53

.12345

12e5 /* Same as 12E5 */
3D

A simple symbol does not contain any periods, and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that ts, translated to uppercase).
If the symbol has been used as the target of an assignment, it names a variable and
its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
712

Compound Symbols

A compound symbol contains at least one period, and at least one other character. It
can not start with a digit or a period, and if there is only one period, the period can
not be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period), which is followed by parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null.

" These are compound symbols:

FRED.3
Array.I.J
AMESSY..0One.2.

Before the symbol is used (that is, at the time of reference), the values of any simple
symbols (I, J, and One in the example) are substituted into the symbol, thus
generating a new derived name. This derived name is then used just like a simple

Chapter 2. General Concepts 19

General Concepts

symbol. That is, its value is by default the derived name, or (if it has been used as
the target of an assignment) its value is the value of the variable named by the
derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted can contain any characters (including periods). Substitution is
only done once.

To summarize: the derived name of a compound variable that is referred to by the

symbol

sO.sl.s2. --- .sn
is given by
d0.vl.v2. --- .vn

where dO is the uppercase form of the symbol s0, and v1 to vn are the values of the
constant or simple symbols s1 through sn. Any of the symbols s1-sn can be null.
The values v1-vn can also be null and can contain any characters (in particular,
lowercase characters will not be translated to uppercase, blanks will not be removed,
and periods have no special significance).

Compound symbols can be used to set up arrays and lists of variables, in which the
subscript is not necessarily numeric, and thus offer great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, so effecting a form of associative
memory (“content addressable”™).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable 'A* */

b=4 JARNRYY to 'B’ */
c='Fred’ /* ‘Fred' to 'C' */
a.b="'Fred’ /* ‘Fred' to 'A.4' */
a.fred=5 /* 5 to 'A.FRED' */
a.c='Bill' /* 'Bill' to 'A.Fred’ */
c.c=a.fred /* 5! to 'C.Fred' */
x.a.b="Annie' /* ‘'Annie' to 'X.3.4' */
say a b ¢ a.a a.b a.c c.a a.fred x.a.4
/* will display the string: */

/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */

Implementation maximum: The length of a variable name, before and after
substitution, may not exceed 250 characters.

Stems
A stem contains just one period, which is the last character. It can not start with a
digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

20 TSOJE Version 2 REXX Reference

Notes

General Concepts

Further, when a stem is used as the target of an assignment, all possible compound
variables whose names begin with that stem are given the new value, whether they
had a previous value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

For example:

hole. = "empty"
hole.9 = "full"

say hole.l hole.mouse hole.9

/* says "empty empty full" */
Thus a whole collection of variables may be given the same value. For example,

total. = 0

do forever
say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR' then leave
total.name = total.name + amount
end

Note: The value that has been assigned to the whole collection of variables can
always be obtained by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total. = 0

null = "*

total.null = total.null + 5

say total. total.null /* says "@ 5" */

Collections of variables, referred to by their stem, can also be manipulated by the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 39), and PROCEDURE EXPOSE FRED. exposes all possible
variables with that stem (see page 53).

1. When a variable is changed by the ARG, PARSE, or PULL instructions, the
effect is identical to an assignment. A stem used in a parsing template therefore
sets an entire collection of variables.

2. Since an expression may include the operator =, and an instruction may consist
purely of an expression (see next section), there would be a possible ambiguity
which is resolved by the following rule: any clause that starts with a symbol and
whose second token is (or starts with) an “=" is an assignment, rather than an
expression (or an instruction). This is not a restriction, since the clause may be
executed as a command in several ways, such as by putting a null string before
the first name, or by enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the variable
name in an assignment, this should not cause confusion. For example, the
clause:

Address='10 Downing Street';

would be an assignment, not an ADDRESS instruction.

Chapter 2. General Concepts 21

General Concepts

Commands to External Environments

Environment

Commands

The host system for the language processor is assumed to include at least one active
environment for executing commands. One of these is selected by default on entry
to a REXX program. The environment can be changed using the ADDRESS
instruction. It can be inspected using the ADDRESS built-in function.

The environment so selected will depend on the caller; for example, if a REXX
program is invoked from the TSO/E address space, the default environment that
TSO/E provides for executing host commands is TSO. If invoked from a
non-TSO/E address space, the default environment that TSO/E provides is MVS.

TSO/E provides several host command environments for non-TSO/E address spaces
and the TSO/E address space (TSO/E and ISPF):

* Non-TSG/E address spaces - MVS, LINK, and ATTACH

* TSO/E address space (TSO/E) - TSO, MVS, LINK, and ATTACH

¢ TSO/E address space (ISPF) - TSO, MVS, LINK, ATTACH, ISPEXEC, and
ISREDIT.

“Host Commands and Host Command Environments” on page 23 explains the
different types of host commands you can use in a REXX exec and the different
environments TSO/E provides for the execution of host commands.

The environments are provided in the host command environment table, which
specifies the environment name and the routine that is invoked to handle the
command execution for that environment. You can provide your own environment
and corresponding routine and define them to the host command environment table.
“Host Command Environment Table” on page 291 describes the table in more
detail. “Changing the Default Values for Initializing an Environment” on page 310
describes how to change the defaults TSO/E provides in order to define your own
environments. You can also use the IRXSUBCM routine to maintain entries in the
environment table (see page 247).

Executing commands using the current environment may be achieved using a clause
of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null

string) which is then prepared as appropriate and submitted to the host environment.

The environment then executes the command (which may have side-effects). It
eventually returns control to the language processor, after setting a return code. The
language processor places this return code in the REXX special variable RC. For
example, if the host environment were TSO, the sequence:

mydata = "PROGA.LOAD"
"FREE DATASET("mydata")"
would result in the string FREE DATASET (PROGA.LOAD) being submitted to TSO/E. Of

course, the simpler expression:

"FREE DATASET(PROGA.LOAD)"

22 TSOJE Version 2 REXX Reference

™

General Concepts

would have the same effect in this case.

Note: Whenever you issue a host command from a REXX program, it is
recommended that you enclose the entire command in double quotation marks. See
TSO|E Version 2 REXX User’s Guide for a description of using single and double
quotation marks in commands.

On return, the return code would be placed in RC that will have the value ‘0’ if the
FREE command processor successfully freed the data set or ‘12’ if it did not.
Whenever a host command is executed, the return code from the command is placed
in the REXX special variable RC.

Errors and failures in commands can directly affect REXX execution if a condition
trap for ERROR or FAILURE is ON (see Chapter 7, “Conditions and Condition
Traps” on page 149). They may also cause the command to be traced if “TRACE
E” or “TRACE F” respectively are set. “TRACE Normal” is the same as “TRACE
F”, and is the default — see page 64.

Note: Remember that the expression is evaluated before it is passed to the
environment. Any part of the expression that is not to be evaluated should be
written in quotes.

Host Commands and Host Command Environments

You can issue host commands from a REXX program. In REXX processing, a host
command is not only a TSO/E command processor, such as ALLOCATE and
FREE. When the language processor executes a clause that it does not recognize as
a REXX instruction or an assignment instruction, it considers the clause to be a host
command and routes the command to the current host command environment. The
host command environment executes the command and then returns control to the
language processor.

For example, if a REXX exec contains

routine-name varl var2

the language processor considers the clause to be a command and passes it to the
current host command environment for execution. The host command environment
executes the command, sets a return code in the REXX special variable RC, and
returns control to the language processor. The return code set in RC may be the
return code from a TSO/E command or from a routine that was invoked. The
return code may also be a -3, which indicates that the host command environment
could not locate the specified host command (TSO/E command, CLIST, exec,
program, etc.). Note that a return code of -3 is always returned if a host command is
issued in an exec and the command could not be found.

Note: If you include a host command in a REXX program, it is recommended that
you enclose the entire command in double quotation marks. For example:

"routine-name varl var2"

TSO/E provides several host command environments that execute different types of
host commands. The following topics describe the different host command
environments TSO/E provides for non-TSO/E address spaces and for the TSO/E
address space (TSO/E and ISPF).

Chapter 2. General Concepts 23

General Concepts

The TSO Environment
The TSO host command environment is only available to REXX execs that execute
in the TSO/E address space. Use the TSO environment to invoke TSO/E commands
and services. You can also invoke the TSO/E REXX commands, such as
MAKEBUF and NEWSTACK, and invoke other REXX execs and CLISTs from
ADDRESS TSO. When you invoke a REXX exec in the TSO/E address space, the
default initial host command environment is TSO.

The ISPEXEC and ISREDIT Environments
The ISPEXEC and ISREDIT host command environments are only available to
REXX execs that execute in ISPF. Use the environments to invoke ISPF commands
and services.

When you invoke a REXX exec from ISPF, the default initial host command
environment is TSO. You can use the ADDRESS instruction to use an ISPF
service. For example, to use the ISPF SELECT service, use the following
instruction:

ADDRESS ISPEXEC 'SELECT service'

The MVS Environment
The MVS host command environment is available in any MVS address space. When
you execute a REXX exec in a non-TSO/E address space, the default initial host
command environment is MVS.

Note: When you invoke an exec in the TSO/E address space, TSO is the initial
environment.

In ADDRESS MVS, you can use the following TSO/E REXX commands:

« DELSTACK
¢ NEWSTACK
¢ QSTACK

¢ QBUF

* QELEM

* EXECIO

¢ MAKEBUF
* DROPBUF

¢ SUBCOM

e TS

 TE.

Chapter 10, “TSO/E REXX Commands” describes the commands.
In ADDRESS MVS, you can also invoke another REXX exec using one of the

following instructions (the instructions assume that the current host command
environment is not MVS).

ADDRESS MVS "execname pl p2 ..."

ADDRESS MVS "EX execname pl p2 ..."

ADDRESS MVS "EXEC execname pl p2 ..."

If you want to invoke a program from an exec, use the ADDRESS LINK or

ADDRESS ATTACH instructions. The LINK and ATTACH environments are
described in the next topic.

24 TSO/E Version 2 REXX Reference

i —

W,

W,

General Concepts

All of the services that are available in ADDRESS MVS are also available in
ADDRESS TSO. For example, if you execute a REXX exec in TSO/E, you can use

the TSO/E REXX commands (for example, MAKEBUF, NEWSTACK, QSTACK)
in ADDRESS TSO.

The LINK and ATTACH Environments

Use the LINK host command environment to link to routines using the following
instruction:

ADDRESS LINK "routine pl p2 ..."

Use the ATTACH host command environment to attach routines using the following
instruction:

ADDRESS ATTACH "routine pl p2 ..."

The routine that handles “commands” for the LINK and ATTACH environments
uses the following search order to locate the module:

o ISPLLIB and its alternate library, if ISPF is active
¢ Task and job step libraries
¢ Linklist.

Figure 1 shows the parameters the routine (as specified on the ADDRESS LINK or
ADDRESS ATTACH instruction) that gets invoked receives.

Register 1

y

Address parm! > Address of remaining text in buffer.

Address parm2

> Length of remaining text in buffer.

Figure 1. Parameters Passed to Routines that are Linked or Attached

If you use one of the following instructions, the module that is invoked does not
receive any parameters. The pointer and length fields will be 0.

ADDRESS LINK "routine”
ADDRESS ATTACH "routine”

After you link to or attach the routine, the REXX special variable RC will be set to
one of the following values:

e The return code that is set by the linked or attached routine

¢ A return code of -3, if the routine specified on the ADDRESS LINK or
ADDRESS ATTACH instruction could not be found.

Chapter 2. General Concepts 25

General Concepts

Any non-zero return code traps the ERROR condition. If a system abend occurs,
the FAILURE condition is trapped and the return code for the abend is converted
from hexadecimal to a negative decimal number. If a user abend occurs, the
FAILURE condition is trapped and the return code for the abend is converted from
hexadecimal to a positive decimal number. The return codes are set in the REXX
special variable RC.

26 TSOJ/E Version 2 REXX Reference

Keyword Instructions

Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. Some keyword instructions affect the flow of control,
while others provide services to the programmer. Some keyword instructions, like
DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote
keywords, other words (such as expression) denote a collection of symbols as defined
above. Note however that the keywords are not case dependent: the symbols if, If,
and iF would all invoke the instruction IF. Note also that most of the clause
delimiters (;) shown may usually be omitted as they will be implied by the end of a
line.

As explained on page 17, a keyword instruction is recognized only if its keyword is
the first token in a clause, and if the second token neither starts with an = character
(implying an assignment) nor a colon (implying a label). The keywords ELSE,
END, OTHERWISE, THEN, and WHEN are recognized in the same situation.
Note that any clause that starts with a keyword defined by REXX cannot be a
command. A syntax error will result if the keywords are not in their correct
position(s) in a DO, IF, or SELECT instruction. (The keyword THEN will also be
recognized in the body of an IF or WHEN clause.) In other contexts, keywords are
not reserved and can be used as labels or as the names of variables (though this is
generally not recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of
individual instructions. For example, the symbols VALUE and WITH are
subkeywords in the ADDRESS and PARSE instructions respectively. For details,
refer to the description of the respective instruction. For a general discussion on
reserved keywords, see page 163.

Blanks adjacent to keywords have no effect other than that of separating the
keyword from the subsequent token. One or more blanks following VALUE are
required to separate the expression from the subkeyword in the example following:

ADDRESS VALUE command

However, no blanks would be required after the VALUE subkeyword in the
following example, but it would add to the readability:

ADDRESS VALUE'ENVIR'||number

Chapter 3. Keyword Instructions 27

ADDRESS

ADDRESS

Where:

environment
is a literal string or a single symbol, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the destination
of commands.

How to issue commands to the host and the different host command environments
TSOJE provides are described in “Commands to External Environments” on
page 22.

To send a single command to a specified environment, an environment name
followed by an expression is given. The expression is evaluated, and the resulting
command string is routed to environment. After execution of the command,
environment will be set back to whatever it was before, thus giving a temporary
change of destination for a single command.

Example:
Address LINK "routine pl p2" /* TSO/E */

If only environment is specified, a lasting change of destination occurs: all following
commands (clauses that are neither REXX instructions nor assignment instructions)
will be routed to the given command environment, until the next ADDRESS
instruction is executed. The previously selected environment is saved.

Example:

Address MVS
IIQBUFII
"MAKEBUF"

Similarly, the VALUE form may be used to make a lasting change to the
environment. Here expressionl (which may be just a variable name) is evaluated,
and the result forms the name of the environment. The subkeyword VALUE may
be omitted as long as expressionl starts with a special character (so that it cannot be
mistaken for a symbol or string).

Example:
ADDRESS ('ENVIR']|number)

If no arguments are given, commands will be routed back to the environment that
was selected before the previous lasting change of environment was made, and the
current environment name is saved. Repeated execution of just ADDRESS will
therefore switch the command destination between iwo environments alternately.

28 TSOJ/E Version 2 REXX Reference

ADDRESS

The two environment names are automatically saved across subroutine and internal
function calls. See under the CALL instruction (page 32) for more details.

\ The current ADDRESS setting may be retrieved using the ADDRESS built-in
| function, described on page 78.

TSO/E REXX provides the following host command environments that you can use
with the ADDRESS instruction:

e TSO

i o MVS

| ¢ LINK

| e ATTACH
| * ISPEXEC
; o ISREDIT

, “Host Commands and Host Command Environments” on page 23 describes these
b environments in detail.

You can provide your own environments and/or routines that handle command

execution in each environment. For more information, see “Host Command
Environment Table” on page 291.

Chapter 3. Keyword Instructions 29

ARG

ARG

Where:

template
is a list of symbols separated by blanks and/or patterns.

ARG is used to retrieve the argument strings provided to a program or internal
routine and assign them to variables. It is just a short form of the instruction

»»—PARSE UPPER ARG >
‘—temp] ate—l

Unless a subroutine or internal function is being executed, the arguments given on
the program invocation will be read, translated to uppercase (i.e. a lowercase a-z to
an uppercase A-Z), and then parsed into variables according to the rules described in
the section on parsing (page 131). Use the PARSE ARG instruction if uppercase
translation is not desired.

If a subroutine or internal function is being executed, the data used will be the
argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions can be executed as often as desired
(typically with different templates) and will always parse the same current input
string(s). There are no restrictions on the length or content of the data parsed
except those imposed by the caller.

Example:

/* String passed is “"Easy Rider" */
Arg adjective noun .

/* Now: "ADJECTIVE" contains 'EASY' */
/* "NOUN" contains 'RIDER' */

" If more than one string is expected to be available to the program or routine, each

may be selected in turn by using a comma in the parsing template.

Example:
/* function is invoked by FRED('data X',1,5) */

Fred: Arg string, numl, num2

/* Now: “STRING" contains 'DATA X' */
/* "NUM1" contains 'l’ */
/* "NUM2" contains '5' */

30 TSOJE Version 2 REXX Reference

ARG

Notes:

1. The argument string(s) to a REXX program or internal routine can also be
retrieved or checked by using the ARG built-in function. See page 79.

2. The source of the data being processed is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 51 for details.

Chapter 3. Keyword Instructions 31

CALL

CALL

Where:

name
is a symbol treated as a literal or a string.

OFF
turns off the specified condition trap.

ON
turns on the specified condition trap.

Note: For information on condition traps see Chapter 7, “Conditions and
Condition Traps” on page 149.

CALL is used to invoke a routine, or (if ON or OFF is specified) can be used to
control the trapping of certain conditions.
When name is specified, CALL invokes a subroutine which can be:

e An internal routine
e An external routine
* A built-in function.

It can optionally return a result, and is functionally identical to the clause:

»—result=name()—;—>

Y

l-—expr'essi on—'

except that the variable RESULT becomes uninitialized if no result is returned by
the routine invoked.

The name given in the CALL instruction must be a valid symbol. If a string is used
for name (that is, name is specified in quotes) the search for internal labels is
bypassed, and only a built-in function or an external routine is invoked. Note that
the names of built-in functions (and generally the names of external routines too) are
in uppercase, and hence the name in the literal string should be in uppercase.

32 TSO/E Version 2 REXX Reference

)

CALL

TSO/E supports specifying up to 20 expressions, separated by commas. The
expressions are evaluated in order from left to right, and form the argument string(s)
during execution of the routine. Any ARG or PARSE ARG instructions, or ARG
built-in function in the called routine will access these strings, rather than those
previously active in the calling program. Expressions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions (page 71), but briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If the routine
name is specified in quotes, then an internal routine will not be
considered for that search order.

Built-in routines:
These are routines built in to the language processor for providing
various functions. They always return a string containing the result of
the function. (See page 77.)

External routines:
Users can write or make use of routines that are external to the language
processor and the calling program. An external routine can be written in
any language, including REXX, which supports the system dependent
interfaces. A REXX program can be invoked as a subroutine by the
CALL instruction, and in this case may be passed more than one
argument string. These can be retrieved using the ARG or PARSE ARG
instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction may be used to set up a local
variables environment to protect the subroutine and caller from each other. The
EXPOSE option on the PROCEDURE instruction can be used to expose selected
variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine, however, is an implicit PROCEDURE in that all the caller’s
variables are always hidden and the status of internal values NUMERIC settings,
etc.) start with their defaults (rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL instruction
is available in the variable SIGL (in the caller’s variable environment). This may be
used as a debug aid, as it is therefore possible to find out how control reached a
routine. Note that if the internal routine uses the PROCEDURE instruction, then it
will need to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should execute a RETURN instruction, and at that point
control will return to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT will be set to the value of
that expression. Otherwise, the variable RESULT is dropped (becomes
uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

Chapter 3. Keyword Instructions 33

CALL

Example:

/* Recursive subroutine execution... */

arg x

call factorial x

say x'! =' result

exit

factorial: procedure /* calculate factorial by.. */
arg n /* .. recursive invocation. */

if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

¢ The status of DO loops and other structures — Executing a SIGNAL while within
a subroutine is “safe” in that DO loops, etc., that were active when the
subroutine was called are not deactivated (but those currently active within the
subroutine will be deactivated).

¢ Trace action — Once a subroutine is debugged, you can insert a TRACE Off at
the beginning of it, and this will not affect the tracing of the caller. Conversely,
if you only wish to debug a subroutine, you can insert a TRACE Results at the
start and tracing will automatically be restored to the conditions at entry (for
example, “Off”) upon return. Similarly, ? (interactive debug) and ! (command
inhibition) are saved across routines.

¢ NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations,
described on page 47) are saved and are then restored on RETURN. A
subroutine can therefore set the precision, etc., that it needs to use without
affecting the caller.

¢ ADDRESS settings (the current and secondary destinations for commands — see
the ADDRESS instruction on page 28) are saved and are then restored on
RETURN.

¢ Condition traps (CALL ON and SIGNAL ON) are saved and then restored on
RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set
up by the caller.

* Condition information — This is the information returned by the CONDITION
built-in function (see “CONDITION” on page 82).

¢ Elapsed-time clocks — A subroutine inherits the elapsed-time clock from its caller
(see the TIME function on page 102), but since the time clock is saved across
routine calls, a subroutine or internal function can independently restart and use
the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

¢ OPTIONS ETMODE/EXMODE are saved and are then restored on RETURN.
For more information — see the OPTIONS instruction on page 49.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

34 TSOJE Version 2 REXX Reference

boO

DO

DO is used to group instructions together and optionally to execute them
repetitively. During repetitive execution, a control variable (name) can be stepped
through some range of values.

Syntax Netes:

} o The exprr, expri, exprb, exprt, and exprf options (if any are present) are any

‘ expressions that evaluate to a number. The exprr and exprf options are further
restricted to result in a nonnegative whole number. If necessary, the numbers
will be rounded according to the setting of NUMERIC DIGITS.

¢ The exprw or expru options (if present) can be any expression that evaluates to 1
or 0.

* The TO, BY, and FOR phrases can be in any order, if used.

{ j ¢ The instruction(s) can include assignments, commands, and keyword instructions
(including any of the more complex constructs such as IF, SELECT, and the
DO instruction itself).

¢ The subkeywords TO, BY, FOR, WHILE, and UNTIL are reserved within a
DO instruction, in that they cannot name variables in the expression(s) but they
can be used as the name of the control variable. FOREVER is similarly
reserved, but only if it immediately follows the keyword DO.

¢ The exprb option defaults to i, if relevant.

Simple DO Group
If neither repetitor nor conditional is given, the construct merely groups a number of
instructions together. These are executed once. Otherwise, the group of instructions
is a repetitive DO loop, and they are executed according to the repetitor phrase,
optionally modified by the conditional phrase.

In the following example, the instructions are executed once.

Chapter 3. Keyword Instructions 35

DO

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2

Say 'Smile!"

End

Simple Repetitive Loops

If repetitor is not given or the repetitor is FOREVER, the group of instructions will
nominally be executed “forever”; that is, until the condition is satisfied or a REXX
instruction is executed that will end the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see “Conditional Phrases (WHILE
and UNTIL)” on page 38.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a nonnegative whole number), and the loop is then executed that many
times:

Example;

/* This displays "Hello" five times */
Do 5

say 'Hello’

end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is an “=", the controlled form
of repetitor will be expected.

Controlled Repetitive Loops

36

The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri, formatted as though ‘0’ had been added). The variable is
then stepped (by adding the result of exprd, at the bottom of the loop) each time the
group of instructions is executed. The group is executed repeatedly while the end
condition (determined by the result of exprr) is not met. If exprbd is positive or zero,
the loop will be terminated when name is greater than exprz. If negative, the loop
will be terminated when name is less than expri.

The expri, exprt, and exprb options must result in numbers. They are evaluated
once only, before the loop begins and before the control variable is set to its initial
value. The default value for exprd is 1. If exprt is not given, the loop will execute
indefinitely unless some other condition terminates it.

Example:

Do I=3 to -2 by -1 /* Would display: */
say i /* 3 */
end /* 2 */

/* 1 */
/o “/
ro Y
/* -2 */

TSO/E Version 2 REXX Reference

DO

The numbers do not have to be whole numbers:

Example:
X=0.3 /* Would display: */
Do Y=X to X+4 by 0.7 /¥ 0.3 */
say ¥ /¥ 1.0 */
end /* 1.7 ¥/
/* 2.4 */
/* 3.1 */
/* 3.8 */

The control variable can be altered within the loop, and this may affect the iteration
of the loop. Altering the value of the control variable is not normally considered
good programming practice, though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). It is therefore
possible for the group of instructions to be skipped entirely if the end condition is
met immediately. Note also that the control variable is referred to by name. If (for
example) the compound name “A.I” was used for the control variable, altering “I”
within the loop will cause a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In
this case, exprf must be given and must evaluate to a nonnegative whole number.
This acts just like the repetition count in a simple repetitive loop, and sets a limit to
the number of iterations around the loop if no other condition terminates it. Like
the TO and BY expressions, it is evaluated once only — when the DO instruction is
first executed and before the control variable is given its initial value. Like the TO
condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Would display: */
say Y /* 0.3 */
end /* 1.0 */

/1T */

In a controlled loop, the symbol describing the control variable can be specified on
the END clause. This symbol must match name in the DO clause in all respects
except case (note that no substitution for compound variables is carried out); a
syntax error will result if it does not. This enables the nesting of loops to be checked
automatically, with minimal overhead.

Example:
Do K=1 to 10

End k /* Checks that this is the END for K loop */

Note: The values taken by the control variable may be affected by the NUMERIC
settings, since normal REXX arithmetic rules apply to the computation of stepping
the control variable.

Chapter 3. Keyword Instructions 37

DO

Conditional Phrases (WHILE and UNTIL)

Any of the forms of repetitor (none, FOREVER, simple, or controlled) can be
followed by a conditional phrase, which may cause termination of the loop. If
WHILE or UNTIL is specified, exprw or expru, respectively, is evaluated each time
around the loop using the latest values of all variables (and must evaluate to either 0
or 1), and the group of instructions will be repeatedly executed either while the result
is 1, or until the result is 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and for an UNTIL loop the condition is evaluated at the bottom -
before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6
say i
end

/* Will display: 1, 3, 5, 7 */

Note: The execution of repetitive loops can also be modified by using the LEAVE
or ITERATE instructions.

Start value assigned to control
variable

~
~

TO value (exprt) used to test =~ Discontinue execution of DO
control variable for termination| .-~ group if TO value is exceeded.

. Discontinue execution of DO
FOR value (exprf) used to test \‘~_Jl> group if FOR value (number of
for termination - iterations through the loop) is

’ exceeded .
. ~ Discontinue execution of DO
WHILE expression (exprw) == . A
N group if WHILE condition is
used to test for termination | .-- not met.
Execute instruction(s) in the
DO group
. ~ Discontinue execution of DO
UNTIL expression (expru) =~ : AP
used to test for termination | .-- g{;ﬁp if UNTIL condition is
BY value (exprb) used to
update control variable

Figure 2. How a Typical DO Loop Is Executed

38 TSO/E Version 2 REXX Reference

DROP

DROP

Where:

name

is a symbol, and valid variable symbol, separated from any other names by one
or more blanks or comments.

DROP is used to “unassign” variables; that is, to restore them to their original
uninitialized state.

Each variable specified will be dropped from the list of known variables. The
variables are dropped in sequence from left to right. It is not an error to specify a
name more than once, or to DROP a variable that is not known. If an EXPOSEd
variable is named (see the PROCEDURE instruction), the variable itself in the older
generation will be dropped.

Example:

i=4

Drop a x.3 x.J

/* would reset the variables: "A", "X.3", and "X.4" */
/* so that reference to them returns their name. */

If a stem is specified (that is, a symbol that contains only one period, as the last
character), all variables starting with that stem are dropped.

Example:

Drop x.
/* would reset all variables with names starting with "X."* */

Chapter 3. Keyword Instructions 39

EXIT

EXIT

EXIT is used to leave a program unconditionally. Optionally EXIT returns a data
string to the caller. The program is terminated immediately, even if an internal
routine is currently being executed. If no internal routine is active, RETURN (see
page 58) and EXIT are identical in their effect on the program that is being
executed.

If expression is given, it is evaluated and the string resulting from the evaluation is
then passed back to the caller when the program terminates.

Example:

j=3
Exit j*4
/* Would exit with the string '12' */

If expression is not given, no data is passed back to the caller. If the program was
called as an external function, this will be detected as an error — either immediately
(if RETURN was used), or on return to the caller (if EXIT was used).

“Running off the end” of the program is always equivalent to the instruction EXIT,
in that it terminates the whole program and returns no result string.

Note: The language processor does not distinguish between invocation as a
command on the one hand, and invocation as a subroutine or function on the other.
If in fact the program was invoked via a command interface, an attempt is made to
convert the returned value to a return code acceptable by the host. The returned
string must be a whole number whose value will fit in a S/370 register (that is, must
be in the range -2**31 through 2**31-1). If the conversion fails, it is deemed to be a
failure of the host interface and is thus not subject to trapping by SIGNAL ON
SYNTAX.

40 TSO/E Version 2 REXX Reference

IF

IF

The IF construct is used to conditionally execute an instruction or group of
instructions depending on the evaluation of the expression. The expression must
evaluate to '0' or '1'.

The instruction after the THEN is executed only if the result of the evaluation was 1.
If an ELSE was given, the instruction after the ELSE is executed only if the result of
the evaluation was 0.

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon to terminate that clause. '

Example:
if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. The NOP instruction can be
used to eliminate errors and possible confusion when IF constructs are nested, as in
the following example.

Example:

If answer = 'YES' Then
If name = 'FRED' Then
say 'OK, Fred.'
Else
nop
Else
say 'Why not?'

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, SELECT, or the IF
instruction itself. A null clause is not an instruction; so putting an extra
semicolon after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this
purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be terminated by the THEN, without a “;” being
required. Were this not so, people used to other computer languages would
experience considerable difficulties.

Chapter 3. Keyword Instructions 41

INTERPRET

INTERPRET

INTERPRET is used to execute instructions that have been built dynamically by
evaluating expression.

The expression is evaluated, and will then be executed (interpreted) just as though
the resulting string were a line inserted into the input file (and bracketed by a DO;
and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO ... END and SELECT ... END must be complete. For
example, a string of instructions being INTERPRETed cannot contain a LEAVE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains
the whole repetitive DO ... END construct.

A semicolon is implied at the end of the expression during execution, as a service to

the user.

Example:

data='FRED'

interpret data ‘= 4'

/* Will a) build the string "FRED = 4" */

/* b) execute FRED = 4; */

/* Thus the variable "FRED" will be set to "4" */

Example:

data='do 3; say "Hello there!"; end'

interpret data /* Would display: */
/* Hello there! */
/* Hello there! */
/* Hello there! */

Notes:

1. Labels within the interpreted string are not permanent and are therefore ignored.
Hence, executing a SIGNAL instruction from within an interpreted string will
cause immediate exit from that string before the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE
R or TRACE [set is helpful.

42 TSO/E Version 2 REXX Reference

INTERPRET

Example:

/* Here we have a small program. */
Trace Int

name='Kitty'

indirect="name'

interpret 'say "Hello"' indirect'"!"'

when run gives the trace:

kitty b
3 *-* name='Kitty'
>L> "Kitty"
4 *-* indirect="'name’
>L> "name"
5 *-* interpret 'say "Hello"' indirect'"i"’
>L> "Say llHe'l‘IOilll
>V> "name"
>0> "say "Hello" name"
>L> HH ! HH
>0> "say "Hello" name"!""
*-% say "Hello" name"!"
>L> "Hello"
>V> "Kitty"
>0> "Hello Kitty"
>L> u ! f
>0> "Hello Kitty!"
Hello Kitty!
_ /

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Since it is a new clause, it is traced as such (the second *-*
trace flag under line 5) and is then executed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the
final result (Hello Kitty!) is then displayed.

. For many purposes, the VALUE function (see page 105) can be used instead of

the INTERPRET instruction. Line 5 in the last example could therefore have
been replaced by:

say "Hello" value(indirect)"!"

INTERPRET is usually only required in special cases, such as when more than
one statement is to be interpreted at once.

Chapter 3. Keyword Instructions 43

ITERATE

ITERATE

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct
other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the bottom of the group of instructions had been reached.
The UNTIL expression (if any) is tested, the control variable (if any) is incremented
and tested, and the WHILE expression (if any) is tested. If these tests indicate that
conditions of the loop have not yet been satisfied, the group of instructions is
executed again (iterated), beginning at the top.

If name is not specified, ITERATE will step the innermost active repetitive loop. If
name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active
loops inside the one selected for iteration are terminated (as though by a LEAVE
instruction).

Example:

do i=1 to 4
if i=2 then iterate
say i
end
/* Would display the numbers: 1, 3, 4 */

Notes:

1. If specified, name must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, the innermost loop
will be the one selected by the ITERATE.

44 TSO/E Version 2 REXX Reference

LEAVE

LEAVE

LEAVE causes immediate exit from one or more repetitive DO loops (that is, any
DO construct other than that with a simpie DO).

Execution of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met normally. However, on
exit, the control variable (if any) will contain the value it had when the LEAVE
instruction was executed.

If name is not specified, LEAVE will terminate the innermost active repetitive loop.
If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and that loop (and any active loops inside it) is
then terminated. Control then passes to the clause following the END that matches
the DO clause of the selected loop.

Example:

do i=1 to 5
say i
if i=3 then leave
end
/* Would display the numbers: 1, 2, 3 */

Notes:

1. If specified, narme must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEAVE cannot be used to terminate an inactive
loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the LEAVE.

Chapter 3. Keyword Instructions 45

NOP

NOP

NOP is a dummy instruction that has no effect. It can be useful as the target of a
THEN or ELSE clause:

Example:

Select
when a=b then nop /* Do nothing */
when a>b then say 'A > B'
otherwise say 'A < B'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would be ignored. The second WHEN clause would be seen as the
first instruction expected after the THEN, and hence would be treated as a syntax
error. NOP is a true instruction, however, and is a valid target for the THEN
clause.

46 TSO/E Version 2 REXX Reference

)

o/

NUMERIC

NUMERIC

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described in detail on
pages 139-148, but in summary:

NUMERIC DIGITS

controls the precision to which arithmetic operations and arithmetic built-in
functions will be evaluated. If no expression is given, then the default value of 9
is used. Otherwise the result of the expression is rounded, if necessary,
according to the current setting of NUMERIC DIGITS before it is used. The
value used must be a positive whole number that is larger than the current
NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but note that high precisions are likely to be very expensive in CPU
time. It is recommended that the default value be used wherever possible.

NUMERIC FORM

controls which form of exponential notation will be used by REXX for the result
of arithmetic operations and arithmetic built-in functions. This may be either
SCIENTIFIC (in which case only one, nonzero digit will appear before the
decimal point), or ENGINEERING (in which case the power of ten will always
be a multiple of three). The default is SCIENTIFIC. The FORM is set either
directly by the subkeywords SCIENTIFIC or ENGINEERING or is taken from
the result of evaluating the expression following VALUE. The result in this case
must be either ‘SCIENTIFIC’ or ‘ENGINEERING’. The subkeyword VALUE
may be omitted if the expression does not begin with a symbol or a literal string
(i.e., if it starts with a special character, such as an operator or parenthesis).

NUMERIC FUZZ

controls how many digits, at full precision, will be ignored during a numeric
comparison operation. If no expression is given, then the default value of 0 is
used. Otherwise the result of expression is rounded, if necessary, according to
the current setting of NUMERIC DIGITS before it is used. The value used
must be zero or a positive whole number that is smaller than the current
NUMERIC DIGITS setting.

Chapter 3. Keyword Instructions 47

NUMERIC

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value before every comparison operation, so that the numbers are subtracted
under a precision of DIGITS-FUZZ digits during the comparison and are then
compared with 0.

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 32) for more details.

48 TSO/E Version 2 REXX Reference

OPTIONS

OPTIONS

The OPTIONS instruction is used to pass special requests or parameters to the
language processor. For example, they may be language processor options, or
perhaps be defining a special character set.

The expression is evaluated, and the result is examined one word at a time. If the
words are recognized by the language processor, then they are obeyed. Words that
are not recognized are ignored and assumed to be instructions to a different
processor.

The following words are recognized by the language processors:

ETMODE specifies that literal strings containing DBCS characters may be

used in the program.

NOETMODE specifies that literal strings do not contain DBCS characters.

NOETMODE is the default.

EXMODE specifies that DBCS data operations capability is enabled.
NOEXMODE specifies that DBCS data operations capability is disabled.

Notes:

1.

Because of the language processor’s scanning procedures, you are advised to
place an OPTIONS “ETMODE” instruction near the beginning of a program
containing DBCS literal strings.

In order to assure proper scanning of a program containing DBCS literals, the
words ETMODE, NOETMODE, EXMODE, and NOEXMODE should be
themselves entered as literal strings (i.e., enclosed in quotes) in the OPTIONS
instruction.

. The OPTIONS ETMODE and OPTIONS EXMODE settings will be saved and

restored across subroutine and function calls.

To distinguish DBCS characters from one-byte EBCDIC characters, sequences
of DBCS characters are enclosed with a shift-out (SO) character and a shift-in
(SI) character. The hexadecimal values of the SO and SI characters are X'0E'
and X'0OF', respectively.

DBCS fields within a literal string, which are delimited by SO-SI characters, are
excluded from the search for a closing quote in literal strings.

. The words ETMODE, EXMODE, NOEXMODE, and NOETMODE can

appear several times within the result. The last valid word specified takes effect.

Chapter 3. Keyword Instructions 49

PARSE

PARSE

Where:

template
is a list of symbols separated by blanks and/or patterns.

The PARSE instruction is used to assign data (from various sources) to one or more
variables according to the rules and templates described in the section on parsing

(page 131).

If the UPPER option is specified, the data to be parsed is first translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Otherwise, no uppercase
translation takes place during the parsing.

If template is not specified, no variables will be set but action will be taken to get the
data ready for parsing if necessary. Thus for PARSE PULL, a data string will be
removed from the queue; and for PARSE VALUE, expression will be evaluated.

For PARSE VAR, the specified variable will be accessed. If it does not have a value,
the NOVALUE condition will be raised, if it is enabled.

The data used for each variant of the PARSE instruction is:

PARSE ARG

The string(s) passed to the program, subroutine, or function as the input
argument list are parsed. (See the ARG instruction for details and examples.)

Note: The argument string(s) to a REXX program or internal routine can also
be retrieved or checked by using the ARG built-in function, described on page
79.

PARSE EXTERNAL

In the TSO/E address space, PARSE EXTERNAL reads from the user’s
terminal.

In non-TSO/E address spaces, PARSE EXTERNAL reads from the input stream
as defined by the file name in the INDD field. The INDD field (see page 286) is
in the module name table. The default is SYSTSIN. PARSE EXTERNAL
returns a field based on the record that is read from the INDD file.

50 TSO/E Version 2 REXX Reference

PARSE

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction, see page 47)
are made available. These controls are in the order DIGITS FUZZ FORM.

Example:

After: Parse Numeric Varl
Varl would be equal to: 9 0 SCIENTIFIC

See Numeric instruction on page 47. Also refer to the built-in functions
DIGITS, FORM, and FUZZ found on pages 87, 90, 91, respectively.

PARSE PULL

The next string from the queue is parsed. If the queue is empty, lines will be
read from the default input (typically the user’s terminal). Data can be added to
the head or tail of the queue by using the PUSH and QUEUE instructions
respectively. The number of lines currently in the queue can be found by using
the QUEUED built-in function, described on page 97. The queue will remain
active as long as the language processor is active. The queue can be altered by
other programs in the system and can be used as a means of communication
between these programs and programs written in REXX.

Note: PULL and PARSE PULL read from the data stack. If that is empty,
they read from the terminal (TSO/E address space) or from the data set that
represents the input stream (non-TSO/E address space). See the PULL
instruction on page 55 for further details.

PARSE SOURCE
The data parsed describes the source of the program being executed.
The source string contains the following tokens:
1. The characters TSO

2. The string COMMAND, FUNCTION, or SUBROUTINE depending on
whether the program was invoked as some kind of host command (for
example, as an exec from TSO/E READY mode), or from a function call in
an expression, or via the CALL instruction.

3. Name of the exec in uppercase. If the namnie is not known, this token is a
question mark (?).

4. Name of the DD from which the exec was loaded. If the name is not
known, this token is a question mark (?).

5. Name of the data set from which the exec was loaded. If the name is not
known, this token is a question mark (?).

6. Name of the exec as it was invoked, that is, the name is not folded to
uppercase. If the name is not known, this token is a question mark (7).

7. Initial (default) host command environment in uppercase. For example, this
token may be TSO, MVS, or ISPEXEC.

8. Name. of the address space in uppercase. For example, the value may be
MYVS (non-TSO/E) or TSO/E or ISPF. If the exec was invoked from ISPF,
the address space name is ISPF.

The value is taken from the parameter block (see page 280). Note that the
initialization exit routines may change the name specified in the parameters
module. If the name of the address space is not known, this token is a
question mark (?).

Chapter 3. Keyword Instructions 51

PARSE

9. Eight character user token. This is the token that is specified in the
PARSETOK field in the parameters module (see page 277).

For example, the string parsed might look like one of the following:
TSO COMMAND PROGA SYSXRO7 EGGERS.ECE.EXEC ? TSO TSO/E ?

TSO SUBROUTINE PROGSUB SYSEXEC ? ? TSO ISPF ?

PARSE VALUE

expression is evaluated, and the result is the data that is parsed. Note that
WITH is a subkeyword in this context and so cannot be used as a symbol within
expression.

Thus, for example:
PARSE VALUE time() WITH hours ':' mins ':' secs

will get the current time and split it up into its constituent parts.

PARSE VAR name

The value of the variable specified by name is parsed. name must be a symbol
that is valid as a variable name (that is, it can not start with a period or a digit).
Note that the variable name may be included in the template, so that for
example:

PARSE VAR string wordl string
will remove the first word from string and put it in the variable wordl, and
PARSE UPPER VAR string wordl string

will also translate the data from string to uppercase before it is parsed.

PARSE VERSION

Information describing the language level and the date of the language processor
is parsed. This consists of five words: first the string “REXX370”, then the
language level description (for example, “3.45”), and finally the interpreter
release date (for example, “20 Oct 1987”).

Note: PARSE VERSION information should be parsed on a word basis rather
than on an absolute column position.

52 TSO/E Version 2 REXX Reference

| P

PROCEDURE

PROCEDURE

Where:

name
is a symbol, separated from any other names by one or more blanks.

The PROCEDURE instruction can be used within an internal routine (subroutine or
function) to protect all the existing variables by making them unknown to the
following instructions. On executing a RETURN instruction, the original variables
environment is restored and any variables used in the routine (which were not
exposed) are dropped.

The EXPOSE option modifies this, in that the variables specified by names are
exposed, so that any references to them (including setting them and dropping them)
refer to the variables’ environment owned by the caller. If the EXPOSE option is
used, at least one name must be specified. Any variables not specified by name on a
PROCEDURE EXPOSE instruction are still protected. Hence, some limited set of
the caller’s variables can be made accessible, and these variables can be changed (or
new variables in this set can be created). All these changes will be visible to the
caller upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error to specify
a name more than once, or to specify a name that has not been used as a variable by
the caller.

Example:

/* This is the main program */

j=1; x.1='a'

call toft

say j km /* would display "1 7 M" */
exit

toft: procedure expose j k x.j
say j k x.j /* would display "1 K a" */
k=7; m=3 /* note "M" is not exposed */
return

Note that if X.J in the EXPOSE list had been placed before J, the caller’s value of J
would not have been visible at that time, so X./ would not have been exposed.

If a stem is declared in names, all possible compound variables whose names begin

with that stem are exposed. (A stem is a symbol containing just one period, which is
the last character. See page 20.)

Chapter 3. Keyword Instructions 53

PROCEDURE

Example:
Procedure Expose i j a. b. /’-\N
/* This exposes "I", "J", and all variables whose */ '
/* names start with "A." or "B." */
A.1='7" /* This will set "A.1" in the caller's */

/* environment, even if it did not */

/* previously exist. */

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed; all
others (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in which case
the variables it is manipulating are those “owned” by the caller.

2. The PROCEDURE instruction must be the first instruction executed after the L
CALL or function invocation — that is, it must be the first instruction following
the label.

See the CALL instruction and function descriptions on pages 32 and 71 for details
and examples of how routines are invoked.

54 TSO/E Version 2 REXX Reference

PULL

PULL

Where:

template
is a list of symbols separated by blanks and/or “patterns.”

PULL is used to read a string from the head of the queue. It is just a short form of
the instruction:

»»—PARSE UPPER PULL ;—>
L——temp] atte———I

The current head-of-queue will be read as one string. If no template is specified, no
further action is taken (and the data is thus effectively discarded). Otherwise, the
data is translated to uppercase (i.e. a lowercase a-z to an uppercase A-Z) and then
parsed into variables according to the rules described in the section on parsing (page
131). Use the PARSE PULL instruction if uppercase translation is not desired.

Note: The TSO/E implementation of the queue is the data stack. REXX execs that
execute in both the TSO/E and non-TSO/E address spaces can use the data stack.

By default, in the TSO/E address space, if the data stack is empty, the PULL
instruction reads from the terminal. In non-TSO/E address spaces, if the data stack
is empty, PULL goes to the input stream as defined by the INDD field in the
module name table (see page 286). The system default is SYSTSIN. The ddname
may be changed on an application basis or on a system basis. If SYSTSIN has no
data, the PULL instruction returns a null.

You can customize the environment in which REXX execs execute. If you initialize
a new environment in the TSO/E address space and the environment is not
integrated with TSO/E, PULL goes to the input stream rather than to the terminal.
See “Types of Environments - Integrated and Not Integrated Into TSO/E” on

page 273 for more information.

The length of each element you can queue onto the data stack can be up to one byte
less than 16 megabytes.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='N0O' then Say 'The file will not be erased.'

Here the dummy placeholder “.” is used on the template so as to isolate the first
word entered by the user.

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 97.

Chapter 3. Keyword Instructions 55

PUSH

PUSH ~

The string resulting from evaluating expression will be stacked LIFO (Last In, First
Out) onto the queue. If expression is not specified, a null string is stacked.

Note: The TSO/E implementation of the queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data
stack contains one buffer initially, but additional buffers can be created using the
TSO/E REXX command MAKEBUF.

4)
Example:)
a='fred’
push /* Puts a null line onto the stack */
push a 2 /* Puts "fred 2" onto the stack */
The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 97.

N

56 TSO/E Version 2 REXX Reference

QUEUE

QUEUE

The string resulting from expression will be appended to the tail of the queue. That
is, it will be added FIFO (First In, First Out). If expression is not specified, a null
string is queued.

Note: The TSO/E implementation of the queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data
stack contains one buffer initially, but additional buffers can be created using the
TSO/E REXX command MAKEBUF.

Example:

a='Toft'

queue a 2 /* Enqueues "Toft 2" */

queue /* Enqueues a null Tine behind the last */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 97.

Chapter 3. Keyword Instructions 57

RETURN

RETURN

RETURN is used to return control (and possibly a result) from a REXX program or
internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is being executed. (See page 40.)

If a subroutine is being executed (see the CALL instruction), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is not specified, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, etc.) are also restored. (See page 32.)

If a function is being executed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then used
in the original expression at the point where the function was 1nvoked See the
description of functions on page 71 for more details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

58 TSO/E Version 2 REXX Reference

L

SAY

SAY

The result of evaluating expression is written to the output stream. This typically
means displayed to the user, but the output destination can be dependent on the
implementation. The result of expression may be of any length.

If a REXX exec executes in the TSO/E address space, SAY displays the expression
on the terminal. The result from the SAY instruction will be formatted to the width
of the terminal screen as defined by the TSO/E TERMINAL command.

If an exec executes in a non-TSO/E address space, SAY writes the expression to the
output stream as defined by the OUTDD field in the module name table (see page
287). The system default is SYSTSPRT. The ddname may be changed on an
application basis or on a system basis.

Example:

data=100
Say data 'divided by 4 =>' data/4
/* Would display: "100 divided by 4 => 25" */

Chapter 3. Keyword Instructions 59

SELECT

SELECT

SELECT is used to conditionally execute one of several alternative instructions.

Each expression following a WHEN is evaluated in turn and must result in 0 or 1.
If the result is 1, the instruction following the THEN (which may be a complex
instruction such as IF, DO, or SELECT) is executed and control will then pass to
the END. If the result is 0, control will pass to the next WHEN clause.

If none of the WHEN expressions evaluate to 1, control will pass to the
instruction(s), if any, following OTHERWISE. In this situation, the absence of an
OTHERWISE will cause an error.

Example:

balance = balance - check
Select
when balance > 0 then
say 'Congratulations! You still have' balance 'dollars left.
when balance = 0 then do
say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you don't have any"
say "checks left outstanding."”
end
Otherwise
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank doesn't close your account.”
end /* Select */

60 TSO/E Version 2 REXX Reference

SELECT

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, IF, or the SELECT
instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction. The NOP instruction is
provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be terminated by the THEN without a ;
(delimiter) being required.

Chapter 3. Keyword Instructions 61

SIGNAL

SIGNAL

Where:

labelname
is a symbol or literal string that is taken as a constant.

OFF
turns off the specified condition trap. .

ON
turns on the specified condition trap.

Note: For information on condition traps see Chapter 7, “Conditions and
Condition Traps” on page 149.

The SIGNAL instruction causes an abnormal change in the flow of control, or (if
ON or OFF is specified) controls the trapping of certain conditions

When neither ON nor OFF is specified, a label name is derived from labelname or
taken from the result of evaluating the expression following VALUE. This must be
a symbol, which is treated literally, or a literal string. The subkeyword VALUE may
be omitted if expression does not begin with a symbol or literal string (i.e. if it starts
with a special character, such as an operator or parentheses). All active pending
DO, IF, SELECT, and INTERPRET instructions in the current routine are then
terminated (that is, they cannot be reactivated). Control then passes to the first label
in the program that matches the required string, as though the search had started
from the top of the program. If labelname is a symbol, the match is done
independently of alphabetic case, but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

Fred: say 'Hil'

Because the search effectively starts at the top of the program, control will always
pass to the first occurrence of the label in the program if duplicates are present.

62 TSO/E Version 2 REXX Reference

SIGNAL

When control reaches the specified label, the line number of the SIGNAL instruction
is assigned to the special variable SIGL. This can be used to aid debugging, as it
can be used to determine the source of a jump to a label.

Using SIGNAL with the INTERPRET Instruction
If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a

trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored.

Chapter 3. Keyword Instructions 63

TRACE

TRACE

Where:

number is a whole number.
string or expression evaluates to:

¢ A number option
¢ One of the valid prefix and/or alphabetic character (word) options shown above
¢ Null.

symbol is taken as a constant, and is, therefore:

¢ A number option
¢ One of the valid prefix and/or alphabetic character (word) options shown above.

TRACE is primarily used for debugging. It controls the tracing action taken (that
is, how much will be displayed to the user) during execution of a REXX program.
The syntax of TRACE is more concise than other REXX instructions. The economy
of key strokes for this instruction is especially convenient since TRACE is usually
entered manually during interactive debugging.

The tracing action is determined from the option specified following TRACE, or
from the result of evaluating expression. If the expression form is used, the
subkeyword VALUE preceding it may be omitted as long as expression starts with a
special character or operator (so it cannot be mistaken for a symbol or string).

64 TSO/E Version 2 REXX Reference

TRACE

Alphabetic Character (Word) Options

Although it is acceptable to enter the word in full, only the capitalized character is
significant, all other letters are ignored. That is why these are referred to as
alphabetic character options.

Prefix Options

TRACE actions taken correspond to the alphabetic character options as follows:

All

Commands

Error

Failure

Intermediates

Labels

Normal

off

Results

Scan

all clauses are traced (that is, displayed) before execution.

all host commands are traced before execution, and any error
return code is displayed.

any host command resulting in an error return code is traced
after execution.

any host command resulting in a negative return code is traced
after execution. This is the same as the Normal option.

all clauses are traced before execution. Intermediate results
during evaluation of expressions and substituted names are also
traced.

labels passed during execution are traced. This is especially
useful with debug mode, when the language processor will pause
after each label. It is also convenient for the user to make note
of all subroutine calls and signals.

(Normal or Negative); any host command resulting in a negative
return code is traced after execution. This is the default setting.

nothing is traced, and the special prefix actions (see below) are
reset to OFF.

all clauses are traced before execution. Final results (contrast
with Intermediates, above) of evaluating an expression are
traced. Values assigned during PULL, ARG, and PARSE
instructions are also displayed. This setting is recommended for
general debugging. '

all remaining clauses in the data will be traced without being
executed. Basic checking (for missing ENDs etc.) is carried out,
and the trace is formatted as usual. This is only valid if the
TRACE S clause itself is not nested in any other instruction
(including INTERPRET or interactive debug) or in an internal
routine.

The prefixes ! and ? are valid either alone or with one of the alphabetic character
options. Both prefixes may be specified, in any order, on one TRACE instruction.
A prefix may be specified more than once, if desired. Each occurrence of a prefix on
an instruction reverses the action of the previous prefix. The prefix(es) must
immediately precede the option (no intervening blanks).

Chapter 3. Keyword Instructions 65

TRACE

Numeric Options

Tracing Tips

The prefixes ! and ? modify tracing and execution as follows:

? is used to control interactive debug. During normal execution, a TRACE
instruction prefixed with ? will cause interactive debug to be switched on. (See
the separate section on page 203 for full details of this facility). While interactive
debug is on, interpretation will pause after most clauses that are traced. As an
example, the instruction TRACE ?E will make the language processor pause for
input after executing any host command that returns an Error (that is, a nonzero
return code).

Any TRACE instructions in the file being traced are ignored. (This is so that
you are not taken out of interactive debug unexpectedly.)

When it is in effect, Interactive debug can be switched off by issuing a TRACE
instruction with a prefix 2. Repeated use of the ? prefix will, therefore, switch
you alternately in and out of interactive debug. Or, interactive debug can be
turned off at any time by issuing TRACE 0 or TRACE with no options.

Note: The TSO/E REXX immediate command TS and the EXECUTIL TS
command can also be used to enter interactive debug. See Chapter 10, “TSO/E
REXX Commands” on page 167.

! is used to inhibit host command execution. During normal execution, a TRACE
instruction prefixed with ! will cause execution of all subsequent host commands
to be suspended. As an example, TRACE 1C will cause commands to be traced but
not executed. As each command is bypassed, the REXX special variable RC is
set to 0. This action may be used for debugging potentially destructive
programs. (Note that this does not inhibit any commands issued manually while
in interactive debug, which are always executed.)

Command inhibition can be switched off, when it is in effect, by issuing a
TRACE instruction with a prefix !. Repeated use of the ! prefix will, therefore,
switch you alternately in and out of command inhibition mode. Or, command
inhibition can be turned off at any time by issuing TRACE 0 or TRACE with no
options.

If interactive debug is active and if the option specified is a positive whole number
(or an expression that evaluates to a positive whole number), that number indicates
the number of debug pauses to be skipped over. (See separate section on page 203,
for further information.) However, if the option is a negative whole number (or an
expression that evaluates to a negative whole number), all tracing, including debug
pauses, is temporarily inhibited for the specified number of clauses. For example,
TRACE -100 means that the next 100 clauses that would normally be traced will not,
in fact, be displayed. After that, tracing will resume as before.

If interactive debug is not active, numeric options are ignored.

1. If no option is specified on a TRACE instruction, or if the result of evaluating
the expression is null, the default tracing actions are restored. The defaults are
TRACE N, command inhibition (!) off, and interactive debug (?) off.

2. The trace actions currently in effect can be retrieved by using the TRACE
built-in function, described on page 103.

3. Comments associated with a traced clause are included in the trace, as are
comments in a null clause, if TRACE A, R, I, or S is specified.

66 TSOJE Version 2 REXX Reference

TRACE

4. Commands traced before execution always have the final value of the command
(that is, the string passed to the environment), and the clause generating it
produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls. See
under the CALL instruction (page 32) for more details.

A Typical Example

One of the most common traces you will use is:

TRACE 7R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Note: Tracing may be switched on, without requiring modification to a program, by
using the EXECUTIL TS command. Tracing may also be turned on or off
asynchronously, (that is, while an exec is running) using the TS and TE immediate
commands from attention mode. See page 206 for the description of these facilities.

Format of TRACE Output

Every clause traced will be displayed with automatic formatting (indentation)
according to its logical depth of nesting etc., and results (if requested) are indented
an extra two spaces and are enclosed in double quotes so that leading and trailing
blanks are apparent.

Terminal control codes (for example, EBCDIC values less than X'40"') are replaced
by a question mark (?) to avoid terminal interference.

The first clause traced on any line will be preceded by its line number. If the line
number is greater than 99999, it is truncated on the left and the truncation is
indicated by a prefix of ?. For example, the line number 100354 would be shown as
200354.

All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

*o% identifies the source of a single clause, that is, the data actually in the
program.
++ identifies a trace message. This may be the nonzero return code from a

command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

>>> identifies the Result of an expression (for TRACE R) or the value assigned
to a variable during parsing, or the value returned from a subroutine call.

>.> identifies the value “assigned” to a placeholder during parsing (see page
136).

The following prefixes are only used if Intermediates (TRACE I) are being traced:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

Chapter 3. Keyword Instructions 67

TRACE

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>0> The data traced is the result of an operation on two terms.

>p> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Following a syntax error that is not trapped by SIGNAL ON SYNTAX, the clause
in error will always be traced, as will any CALL or INTERPRET or function
invocation clauses active at the time of the error. If the error was caused by an
attempt to transfer control to a label that could not be found, that label is also
traced. These traceback lines are identified by the special trace prefix +++.

68 TSO/E Version 2 REXX Reference

UPPER

UPPER

Where:

variable

is a symbol, separated from any other variables by one or more blanks or
comments.

UPPER may be used to translate the contents of one or more variables to uppercase.
The variables are translated in sequence from left to right.

It is more convenient than using repeated invocations of the TRANSLATE built-in
function.

Example:

a='Hello'; b='there'
Upper a b
say a b /* would display "HELLO THERE" */

Only simple symbols and compound symbols may be specified (see page 19). An
error is signalled if a constant symbol or a stem is encountered. Using an
uninitialized variable is not an error, and has no effect, except that it will be trapped
if the NOVALUE condition (SIGNAL ON NOVALUE) is enabled.

Chapter 3. Keyword Instructions 69

70 TSO/E Version 2 REXX Reference

&_’/

Functions

Chapter 4. Functions

Syntax

Function calls to internal and external routines can be included in an expression
anywhere that a data term (such as a string) would be valid, using the notation:

»»—7function—name()—>

L |

expression
function-name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation maximum of expressions, separated by
commas, between the parentheses. In TSO/E, the implementation maximum is up to
20 expressions. These expressions are called the arguments to the function. Each
argument expression may include further function calls.

Note that the “(”, must be adjacent to the name of the function, with no blank in
between, or the construct will not be recognized as a function call. (A blank
operator will be assumed at this point instead.)

The arguments are evaluated in turn from left to right and they are all then passed
to the function. This then executes some operation (usually dependent on the
argument strings passed, though arguments are not mandatory) and will eventually
return a single character string. This string is then included in the original
expression just as though the entire function reference had been replaced by the
name of a variable that contained that data.

For example, the function SUBSTR is built-in to the language processor (see page
100) and could be used as:

N1="abcdefghijk'
Z1="Part of N1 is: 'Substr(N1,2,7)
/* would set Z1 to 'Part of N1 is: bcdefgh' */

A function call without any arguments must always include the parentheses,
otherwise it would not be recognized as a function call.

date() /* returns the date in the default format dd mon yyyy */

Chapter 4. Functions 71

Functions

Calls to Functions and Subroutines

The function calling mechanism is identical to that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not. The following types of routines can be called as

functions:

Internal

Built-in

External

If the routine name exists as a label in the program, the current
processing status is saved, so that it will later be possible to return to the
point of invocation to resume execution. Control is then passed to the
first label in the program that matches the name. As with a routine
invoked by the CALL instruction, various other status information
(TRACE and NUMERIC settings, etc.) is saved too. See the CALL
instruction (page 32) for details of this. If an internal routine is to be
called as a function, any RETURN instruction executed to return from it
must have an expression specified. This is not necessary if it is called
only as a subroutine.

Example:

/* Recursive internal function execution... */
arg x

say x'! =' factorial(x)

exit

factorial: procedure /* calculate factorial by.. */
arg n /* .. recursive invocation. */
if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it invokes itself (this is known as
“recursive invocation”). The PROCEDURE instruction ensures that a
new variable n is created for each invocation).

These functions are always available and are defined in the next section
of this manual. (See pages 77-109.)

You can write or make use of functions that are external to your
program and to the language processor. An external function can be
written in any language, including REXX, that supports the system
dependent interfaces used by the language processor to invoke it. Again,
when called as a function it must return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar to calling
an internal routine. The external routine is, however, an implicit
PROCEDURE in that all the caller’s variables are always hidden
and the status of internal values NUMERIC settings, etc.) start with
their defaults (rather than inheriting those of the caller).

2. Other REXX programs can be called as functions. Either EXIT or
RETURN can be used to leave the invoked REXX program, and in
either case an expression must be specified.

72 TSO/E Version 2 REXX Reference

Search Order

Functions

The search order for functions is the same as in the list above. That is, internal
labels take precedence, then built-in functions, and finally external functions.

Internal labels are not used if the function name is given as a string (that is, is
specified in quotes); in this case the function must be built-in or external. This lets
you usurp the name of, say, a built-in function to extend its capabilities, yet still be
able to invoke the built-in function when needed.

Example:

/* Modified DATE to return sorted date by default */
date: procedure .
arg in
if in="' then in='Sorted’
return 'DATE' (in)

Built-in functions have uppercase names, and so the name in the literal string must be
in uppercase for the search to succeed, as in the example. The same is usually true
of external functions.

External functions and subroutines have a system-defined search order.
1. Check to see if it is part of the DBCS function package.

2. Check the following function packages defined for the language processor
environment:

¢ User function packages
¢ Local function packages
¢ System function packages.

3. If the function was not found, the function search order flag (FUNCSOFL) is
checked. The FUNCSOFL flag (see page 281) indicates whether load libraries
are searched before the search for a REXX exec.

If the flag is off, check the load libraries. If the function is not found, search for
a REXX exec.

If the flag is on, search for a REXX exec. If the function is not found, check
the load libraries.

Note: By default, the FUNCSOFL flag is off, which means that load libraries
are searched before the search for a REXX exec.

The following describes the steps used to search for a REXX exec for a function
call:

a. Search the ddname from which the exec that is calling the function was
loaded. For example, if the calling exec was loaded from the DD
MYAPPL, the system searches MYAPPL for the function.

Note: If the calling exec is executing in a non-TSO/E address space and the
exec (function) being searched for was not found, the search for an exec
ends. Note that depending on the setting of the FUNCSOFL flag, the load
libraries may or may not have been already searched at this point.

b. Search any exec libraries as defined by the TSO/E ALTLIB command
(MVS/ESA feature of TSO/E Version 2 only).

Chapter 4. Functions 73

Functions

c. Check the setting of the NOLOADDD flag (see page 284).

¢ If the NOLOADDD flag is on, search any data sets that are allocated to
SYSPROC. If the function is not found, the search for an exec ends.
Note that depending on the setting of the FUNCSOFL flag, the load
libraries may or may not have been already searched at this point.

¢ If the NOLOADDD flag is off, search any data sets that are allocated
to SYSEXEC. (SYSEXEC is the default ddname specified in the
LOADDD field in the module name table. See page 287).

If the function is not found, search the data sets allocated to SYSPROC.
If the function is not found, the search for an exec ends. Note that
depending on the setting of the FUNCSOFL flag, the load libraries may
or may not have been already searched at this point.

Note: By default, the NOLOADDD flag is on, which means that
SYSPROC only is searched (SYSEXEC is not searched).

Figure 3 illustrates how a call to an external function or subroutine is handled.
After the DBCS function packages, user, local, and system function packages, and
optionally, the load libraries are searched, if the function or subroutine was not
found, the system searches for a REXX exec. The search for an exec is shown in
part 2 of the figure.

74 TSO/E Version 2 REXX Reference

START

Execute as a
DBCS function.

Was function found?

Search:

1. User packages
2. Local packages
3. System packages

Was function found?

Is FUNCSOFL flag
on or off?

Functions

Off

Search load libraries.

Was function found?

Search for an exec.

A

Search for an exec.

If exec was not
found, search load
libraries.

Yes
\/
Yes
< Yes
- Yes
A
Finish

Figure 3 (Part 1 of 2). External Routine Resolution and Execution

Was function found?

lNo

Error

Chapter 4. Functions

75

Functions

l

SEARCH FOR AN EXEC

l

Search DD from which
calling exec was loaded.

\ 4

If exec was not found, v
is the calling exec &8 >
executing in MVS?

Search for exec ends.
Exec not found.

A

Search any exec libraries
as defined by ALTLIB
(for example,
SYSUPROC).

If exec was not
found, is NOLOADDD > Search SYSPROC.
flag on or off?

Off

-Search library defined
in LOADDD field (for
example, SYSEXEC).

If exec was not found,
search SYSPROC.

Figure 3 (Pért 2 of 2). External Routine Resolution and Execution

Errors during Execution

If an external or built-in function detects an error of any kind, the language
processor is informed, and a syntax error results. Execution of the clause that
included the function call is therefore terminated. Similarly, if an external function

fails to return data correctly, this will be detected by the language processor and
reported as an error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, the program is terminated.

76 TSOJ/E Version 2 REXX Reference

Functions

Built-in Functions

REXX provides a rich set of built-in functions. These include character
manipulation, conversion, and information functions. Further external functions are
generally available - see page 110.

General notes on the built-in functions:

The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC settings,
except where stated.

Where a string is referenced, a null string can be supplied.

If an argument specifies a length, it must be a nonnegative whole number. If it
specifies a start character or word in a string, it must be a positive whole
number, unless otherwise stated.

Where the last argument is optional, a comma can always be included to
indicate that it has been omitted; for example, DATATYPE(1,), like
DATATYPE(1), would return NUM.

If a pad character is specified, it must be exactly one character long.

If a function has a suboption selected by the first character of a string, that
character can be in upper- or lowercase.

Conversion between characters and hexadecimal involves the machine
representation of character strings, and hence will return appropriately different
results for ASCII and EBCDIC machines. The examples below assume an
EBCDIC implementation.

A number of the functions described in this chapter support the
Double-Byte-Character-Set (DBCS). A complete list and description of these
functions is given in Appendix B, “Double Byte Character Set (DBCS)” on
page 405.

Chapter 4. Functions 77

Functions

ABBREV

ABS

ADDRESS

returns 1 if info is equal to the leading characters of information and the length of
info is not less than length. Returns 0 if either of these conditions is not met.

Tength, if specified, must be a nonnegative whole number. The default for length is
the number of characters in info.

Here are some examples:

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> 0
ABBREV('PRINT','PRI',4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT','") -> 1
ABBREV ('PRINT',"'',1) -> 0

Note: A null string will always match if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say 'Enter option:'; pull option .

select /* keywordl is to be the default */
when abbrev('keywordl',option) then ...
when abbrev('keyword2',option) then ...

otherwise nop;
end;

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS('12.3") -> 12.3
ABS(' -0.307") -> 0.307

returns the name of the environment to which host commands are currently being
submitted. Trailing blanks are removed from the result.

78 TSO/E Version 2 REXX Reference

ARG

Functions

Here are some examples:
ADDRESS() -> ‘TS0 /* perhaps */

ADDRESS() -> 'MVS' /* perhaps */
ADDRESS() ~ -> 'ISPEXEC' /* perhaps */

returns an argument string, or information about the argument strings to a program
or internal routine.

If no parameter is given, the number of arguments passed to the program or internal
routine is returned.

If only n is specified, the nth argument string is returned. If the argument string
does not exist, the null string is returned. n must be a positive whole number.

If option is specified, ARG tests for the existence of the nth argument string. Valid
options (of which only the capitalized letter is significant, all others are ignored) are:

Exists returns 1 if the nth argument exists; that is, if it was explicitly specified
when the routine was called. Returns 0 otherwise.

Omitted returns 1 if the nth argument was omitted; that is, if it was not explicitly
specified when the routine was called. Returns 0 otherwise.

Here are some examples:

/* following "Call name;" (no arguments) */

ARG() -> 0
ARG(1) -> !
ARG(2) -> '

ARG(1,'e") -> 0
ARG(1,'0") -> 1

/* following "Call name ‘'a',,'b';" */

ARG() -> 3

ARG(1) -> 'a'

ARG(2) -> "

ARG(3) -> 'b!

ARG(n) -> " /* for n>=4 */

ARG(1,'e') ->
ARG(2,'E') ->
ARG(2,'0') >
ARG(3,'0') >
ARG(4,'0') >

[N . Ry

Notes:

1. The argument strings to a program or internal routine may be retrieved and
parsed directly using the ARG or PARSE ARG instructions — see pages 30, 50,
and 131.

Chapter 4. Functions 79

Functions

2. Programs called as commands can have only 0 or 1 argument strings. The
program will have 0 argument strings if it is called with the name only and will /\\
have 1 argument string if anything else (including blanks) is included with the
command.

BITAND

returns a string composed of the two input strings logically ANDed together, bit by

bit. The length of the result is the length of the longer of the two strings. If no pad

character is provided, the AND operation terminates when the shorter of the two

strings is exhausted, and the unprocessed portion of the longer string is appended to (’\J
the partial result. If pad is provided, it is used to extend the shorter of the two '
strings on the right, before carrying out the logical operation. The default for

string? is the zero length (null) string.

Here are some examples:

BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x
BITAND('13'x, '5555'x, '74'x) -> '1154'x
BITAND('pQrS',,'BF'x) -> ‘pars’ N

BITOR

/’Ah‘\
returns a string composed of the two input strings logically ORed together, bit by -
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
string?2 is the zero length (null) string.

Here are some examples:
BITOR('15'x,'24'x) - '35'%
BITOR('15'x, '2456'x) -> '3556'x
BITOR('15'x,'2456'x,'FO'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D ' x
BITOR('Fred',,'40'x) -> 'FRED'
o

80 TSO/E Version 2 REXX Reference

Functions

BITXOR
returns a string composed of the two input strings logically eXclusive ORed together,
bit by bit. The length of the result is the length of the longer of the two strings. If
no pad character is provided, the XOR operation terminates when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it is used to extend the shorter of
the two strings on the right, before carrying out the logical operation. The default
for string2 is the zero length (null) string.
Here are some examples:
BITXOR('12'x,'22'x) -> '30"'x
BITXOR('1211'x,'22'x) -> '3011'x
BITXOR('C711'x,'222222'x,"' ') -> 'E53362" x
BITXOR('1111'x, '444444'x) -> '555544 "' x
BITXOR('1111'x,'444444'x,'40"'x) -> '555504 ' x
BITXOR('1111'x,,'4D'x) -> '5C5C'x

CENTRE/CENTER

returns a string of length length with string centered in it, with pad characters
added as necessary to make up length. The default pad character is blank. If the
string is longer than length, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right-hand end loses or gains one
more character than the left-hand end.

Here are some examples:

CENTER(abc,7) -> ' ABC ‘!
CENTER(abc,8,'-") -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue ' ,

Note: This function can be called either CENTRE or CENTER, which avoids
errors due to the difference between the British and American spellings.

Chapter 4. Functions 81

Functions

RE
COMPA —

returns 0 if the strings, stringl and string2, are identical. If they are not identical,

the returned number is the position of the first character that does not match. The

shorter string is padded on the right with pad if necessary. The default pad character

is a blank. Here are some examples:

COMPARE('abc', 'abc') -> 0

COMPARE ('abc','ak') -> 2

COMPARE('ab ','ab") -> 0

COMPARE('ab ','ab',' > 0

COMPARE('ab ','ab','x") > 3

COMPARE('ab-- ','ab','-") -> 5 !)
CONDITION

N

returns the condition information associated with the current trapped condition (see
Chapter 7, “Conditions and Condition Traps” on page 149 for a description of
condition traps). Four pieces of information can be requested:

¢ The name of the current trapped condition

¢ Any descriptive string associated with that condition

¢ The instruction executed as a result of the condition trap (CALL or SIGNAL)
¢ The status of the trapped condition.

The following option can be supplied to select the requested information. Only the
first letter is significant.

Condition name returns the name of the current trapped condition

Description returns any descriptive string associated with the current
trapped condition. See page 152 for the list of possible strings.
If no description is available, a null string is returned.

Instruction returns the keyword for the instruction executed when the
current condition was trapped, being either CALL or SIGNAL.
This is the default if option is not specified.

Status returns the status of the current trapped condition. This can
change during execution, and is either:

ON - the condition is enabled S~
OFF - the condition is disabled)
DELAY - any new occurrence of the condition is delayed.

82 TSO/E Version 2 REXX Reference

W, COPIES

C2D

—

o

Functions

If no condition has been trapped (that is, there is no current trapped condition) then
the CONDITION function returns a null string in all four cases.

Here are some examples:

CONDITION() -> "CALL' /* perhaps */
CONDITION('C') -> '"FAILURE'

CONDITION('I') -> 'CALL'

CONDITION('D") -> 'FailureTest'
CONDITION('S") -> '"OFF’ /* perhaps */

Note: The condition information returned by the CONDITION function is saved
and restored across subroutine calls (including those caused by a CALL ON
condition trap). Therefore, once a subroutine invoked due to a CALL ON trap has
returned, the current trapped condition reverts to the current condition before the
CALL took place. CONDITION returns the values it returned before the condition
was trapped.

returns n concatenated copies of string. n must be a nonnegative whole number.

Here are some examples:

COPIES('abc',3) -> 'abcabcabc!
COPIES('abc',0) -> "

Character to Decimal. Returns the decimal value of the binary representation of
string. If the result cannot be expressed as a whole number, an error results. That
is, the result must not have more digits than the current setting of NUMERIC
DIGITS.

If string is the null string, then '0' is returned.

If n is not specified, the sequence of hexadecimal digits is processed as an unsigned
binary number.

Here are some examples:

C2D('09'X) -> 9
C2n('81'X) -> 129
C2D('FF81'X) -> 65409
c2D('a') -> 129 /* EBCDIC */

Chapter 4. Functions 83

Functions

07) ¢

DATATYPE

If n is specified, the given string is padded on the left with '00'x characters (note,
not “sign-extended”), or truncated on the left to n characters. The resulting string of
n hexadecimal digits is taken to be a signed binary number: positive if the leftmost
bit is off, and negative, in two’s complement notation, if the leftmost bit is on. If n
is 0, then 0 is always returned.

Here are some examples:

€2D('81'X,1) -> -127
C2D('81'X,2) - 129
C2D('FFBL'X,2) -> -127
C2D('FFBL1'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('FO81'X,2) -> -3967
C2D('FO81'X,1) -> -127
C2D('0031'X,0) -> 0

Implementation maximum: The input string may not have more than 250 characters
that will be significant in forming the final result. Leading sign characters (‘00’x and
‘ff'x) do not count towards this total.

Character to Hexadecimal. Converts a character string to its hexadecimal
representation. The data to be converted can be of any length.

Here are some examples:

C2X('72s") -> "F7F2A2' /* EBCDIC */
C2X('0123'X) -> '0123'

If only string is specified, the returned result is NUM if string is a valid REXX
number (any format), otherwise CHAR will be the returned result.

If type is specified, the returned result is 1 if string matches the type, otherwise a 0
is returned. If string is null, 0 is returned (except when type is X, which returns 1).

The following is a list of valid types. Only the capitalized and boldfaced letter is
significant (all letters following the significant letter are ignored).

Alphanumeric returns 1 if string contains only characters from the ranges a-z,
A-Z, and 0-9.

Bits returns 1 if string contains only the characters 0 and/or 1.

84 TSO/E Version 2 REXX Reference

DATE

C
Dbcs

Lowercase

Mixed case

Number

Symbol

Uppercase

Whole number

heXadecimal

Functions

returns 1 if string is a mixed SBCS/DBCS string,

returns 1 if string is a pure DBCS string enclosed by SO and SI
bytes.

returns 1 if string contains only characters from the range a-z.

returns 1 if string contains only characters from the ranges a-z and
A-Z. '

returns 1 if string is a valid REXX number.

returns 1 if string contains only characters that are valid in REXX
symbols (see page 10). Note that not only uppercase alphabetics
are permitted, but lowercase alphabetics as well.

returns 1 if string contains only characters from the range A-Z.

returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

returns 1 if string contains only characters from the ranges a-f,
A-F, 0-9, and blank (so long as blanks only appear between pairs
of hexadecimal characters). Also returns 1 if string is a null string.

Here are some examples:

DATATYPE(' 12 ') -> 'NUM'
DATATYPE("'') -> 'CHAR'
DATATYPE('123*") -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W'") -> 0
DATATYPE('Fred','M') -> 1
DATATYPE('','M") -> 0
DATATYPE('Fred','L') -> 0
DATATYPE('?20K','S") -> 1
DATATYPE('BCd3",'X") -> 1
DATATYPE('BC d3','X") -> 1

returns the local date in the format: dd mon yyyy (for example, 27 Aug 1988), with
no leading zero or blank on the day. For mon, the first three characters of the
English name of the month will be used.

The following options (of which only the capitalized letter is needed, all others are
ignored) can be used to obtain alternative formats:

Basedate returns the number of complete days (that is, not including the current
day) since and including the base date, January 1, 0001, in the format:
dddddd (no leading zeros). The expression DATE(B)//7 returns a
number in the range 0-6, where 0 is Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week
independent of the national language you're working in.

Chapter 4. Functions 85

Functions

Century

Days

European
Julian
Month
Normal
Ordered
Sorted
Usa

Weekday

Note: The origin of January 1, 0001 is based on the Gregorian calendar.
Though this calendar did not exist prior to 1582, Basedate is calculated
as if it did: 365 days per year, an extra day every four years except
century years, and leap centuries if the century is divisible by 400. It
does not take into account any errors in the calendar system that created
the Gregorian calendar originally.

returns the number of days, including the current day, since January 1 of
the last year which is a multiple of 100 in the format: ddddd (no leading
zeros). Example: if a call is made to DATE(C) on June 30, 1988, the
number of days from January 1, 1900 to June 30, 1988 will be returned.

returns the number of days, including the current day, so far in this year
in the format: ddd (no leading zeros)

returns date in the format: dd/mm/yy

returns date in the format: yyddd

returns full English name of the current month, for example, August
returns date in the default format: dd mon yyyy

returns date in the format: yy/mm/dd (suitable for sorting, etc.)
returns date in the format: yyyymmdd (suitable for sorting, etc.)
returns date in the format: mm/dd/yy

returns the English name for the day of the week, in mixed case. For
example, Tuesday.

Here are some examples:

DATE()

-> '27 Aug 1988' /* perhaps */

-> 725975

-> 240

-> 127/08/88'

-> 'August’

-> '27 Aug 1988'
-> '88/08/27"

-> 19880827

-> '08/27/88'

-> 'Saturday'

Note: The first call to DATE or TIME in one expression causes a time stamp to be
made which is then used for all calls to these functions in that expression. Hence, if
multiple calls to any of the DATE and/or TIME functions are made in a single
expression, they are guaranteed to be consistent with each other.

DBCS
The following are all part of the DBCS function package. See page 405.
DBADJUST DBRIGHT DBUNBRACKET
DBBRACKET DBRLEFT DBVALIDATE
DBCENTER DBRRIGHT DBWIDTH
DBCJUSTIFY DBTODBCS
DBLEFT DBTOSBCS

86 TSOJ/E Version 2 REXX Reference

DELSTR

DELWORD

DIGITS

Functions

deletes the substring of string that begins at the nth character, and is of length
Tength. If Tength is not specified, the rest of string is deleted. If nis greater than

the length of string, the string is returned unchanged. n must be a positive whole
number.

Here are some examples:

DELSTR('abcd',3) -> ‘ab!
DELSTR('abcde"',3,2) -> 'abe!
DELSTR('abcde"',6) -> 'abede'

deletes the substring of string that starts at the nth word. The length option refers
to the number of blank-delimited words. If length is omitted, it defaults to be the
remaining words in string. n must be a positive whole number. If n is greater than
the number of words in string, string is returned unchanged. The string deleted
includes any blanks following the final word involved.

Here are some examples:

DELWORD('Now is the time',2,2) -> ‘'Now time'
DELWORD('Now is the time ',3) -> 'Now is ‘'
DELWORD('Now is the time',5) -> 'Now is the time'

returns the current setting of NUMERIC DIGITS.

Example:
DIGITS() -> 9 /* by default */

Chapter 4. Functions 87

Functions

D2C
Decimal to Character. Returns a character string that is the binary representation of
the decimal number. Length may be specified by n, or length is as needed if n is
omitted.
If n is not specified, wholenumber must be a nonnegative number or an error will
result. If n is not specified, the result is returned such that there are no leading ‘00°x
characters.
If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, then the result will be truncated on the
left.
Here are some examples:
D2C{(9) -> '09'x
D2C(129) -> '81'x
D2C(129,1) -> '81'x
D2C(129,2) -> '0081'x
p2Cc(257,1) -> '01'x
D2C(-127,1) -> '8l'x
p2c(-127,2) -> 'FF81'x
D2C(-1,4) -> 'FFFFFFFF'x
D2C{(12,0) -> "
Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters (‘00’x and ‘ff’x).

D2X

Decimal to Hexadecimal. Returns a string of hexadecimal characters that is the
hexadecimal representation of the decimal number.

If n is not specified, wholenumber must be a nonnegative number or an error will

result. If nis not specified, the result is returned such that there are no leading 0
characters.

If n is specified, it is the length of the final result in characters; that is, after

conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, it will be truncated on the left.

88 TSO/E Version 2 REXX Reference

ERRORTEXT

EXTERNALS

Functions

Here are some examples:

D2X(9) > g
D2X(129) > 81
D2X(129,1) >
D2X(129,2) -> g1
D2X(129,4) -> 0081
D2X(257,2) -> 'l

D2X(-127,2) -> '81"
D2X(-127,4) -> 'FF81'
D2X(12,0) >

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

returns the error message associated with error number n. n must be in the range
0-99, and any other value is an error. If nis in the allowed range, but is not a
defined REXX error number, the null string is returned. See Appendix A, “Error
Numbers and Messages” on page 395 for a complete description of error numbers
and messages.

Here are some examples:

ERRORTEXT(16) -> 'Label not found'
ERRORTEXT (60) -> H

always returns a 0. For example:
EXTERNALS () -> 0 /* Always */

In the VM/SP implementation of REXX, the EXTERNALS function returns the
number of elements in the terminal input buffer (system external event queue). In
TSO/E, there is no equivalent buffer. Therefore, in the TSO/E implementation of
REXX, the EXTERNALS function always returns a Q.

Chapter 4. Functions 89

Functions

FIND

WORDPOS is the preferred built-in function for this type of word search. Refer to
page 107 for a complete description.

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string. Multiple
blanks between words are treated as a single blank for the comparison. Returns 0 if
phrase is not found or if there are no words in phrase.

Here are some examples:

FIND('now is the time','is the time') -> 2
FIND('now is the time','is the') -> 2
FIND('now is the time','is time ') -> 0

FORM

returns the current setting of NUMERIC FORM.

Example:
FORM() -> 'SCIENTIFIC' /* by default */

FORMAT

rounds and formats number.

If only number is given, it will be rounded and formatted to standard REXX rules,
just as though the operation “number +0” had been carried out. If only number is
given, the result is precisely that of this operation.

The before'and after options describe how many characters are to be used for the
integer part and decimal part of the result respectively. If either or both of these are
omitted, the number of characters used will be as many as are needed for that part.

90 TSO/E Version 2 REXX Reference

FUZZ

Functions

If before is not large enough to contain the integer part of the number, an error
results. If before is too large, the number is padded on the left with blanks. If
after is not the same size as the decimal part of the number, the number will be

rounded (or extended with zeros) to fit. Specifying 0 will cause the number to be
rounded to an integer.

Here are some examples:

FORMAT('3',4) -> o3
FORMAT('1.73',4,0) -> o2
FORMAT('1.73',4,3) -> ' 1.730'
FORMAT('-.76',4,1) -> ' -0.8
FORMAT('3.03',4) -> ' 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300'
FORMAT(' - 12.73") -> '-12.73"
FORMAT('0.000") -> 0!

The first three arguments are as described above. In addition, expp and expt control
the exponent part of the result: - expp sets the number of places to be used for the
exponent part, the default being to use as many as are needed. The expt sets the
trigger point for use of exponential notation. If the number of places needed for the
integer part exceeds expt, exponential notation will be used. Likewise, exponential
notation will be used if the number of places needed for the decimal part exceeds
twice expt. The default is the current setting of NUMERIC DIGITS. If 0 is
specified for expt, exponential notation is always used unless the exponent would be
0. The expp must be less than 10, but there is no limit on the other arguments. If 0
is specified for the expp field, no exponent will be supplied, and the number will be
expressed in “simple” form with added zeros as necessary (this overrides a 0 value of
expt if necessary). Otherwise, if expp is not large enough to contain the exponent,
an error results. If the exponent will be 0 in this case (a non-zero expp), then expp+2
blanks are supplied for the exponent part of the result.

Here are some examples:

FORMAT('12345.73',,,2,2) -> '1.234573E+04"
FORMAT('12345.73',,3,,0) -> '1.235E+4"
FORMAT('1.234573',,3,,0) -> '1.235'
FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,0) -> '123456700000.000"

returns the current setting of NUMERIC FUZZ.

Example:
FUZZ() -> 0 /* by default */

Chapter 4. Functions 91

Functions

INDEX :
POS is the preferred built-in function for obtaining the position of one string in
another. Refer to page 96 for a complete description.
returns the character position of one string, needle, in another, haystack. If the
string needle is not found, 0 is returned. By default the search starts at the first
character of haystack (start is of the value 1). This can be overridden by giving a
different start point, which must be a positive whole number.
Here are some examples:
INDEX('abcdef','cd"') -> 3
INDEX('abcdef', 'xd"') -> 0
INDEX('abcdef','bc',3) -> O
INDEX(‘abcabc', 'bc',3) -> 5
INDEX('abcabc','bc',6) -> 0

INSERT

inserts the string new, padded to length length, into the string target after the nth
character. If specified, n must be a nonnegative whole number. If n is greater than
the length of the target string, padding is added there also. The default pad

character is a blank. The default value for n is 0, which means insert before the
beginning of the string.

Here are some examples:

INSERT (" ', 'abcdef',3) -> 'abc def’
INSERT('123','abc',5,6) -> ‘abc 123 !
INSERT('123",'abc',5,6,'+"') -> 'abct++123+++!
INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-") -> '123~--abc!

92 TSO/E Version 2 REXX Reference

JUSTIFY

LASTPOS

Functions

formats blank-delimited words in string, by adding pad characters between words to
justify to both margins. That is, to width Tength (length must be nonnegative). The
default pad-character is a blank.

The string is first normalized as though SPACE(string) had been executed (that is,
multiple blanks are converted to single blanks, and leading and trailing blanks are
removed). If Tength is less than the width of the normalized string, the string is then
truncated on the right and any trailing blank is removed. Extra pad characters are
then added evenly from left to right to provide the required length, and the blanks
between words are replaced with the pad character.

Here are some examples:

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY('The blue sky',8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'

JUSTIFY('The blue sky',9,'+') -> 'The++blue'

returns the position of the last occurrence of one string, needle, in another,
haystack. (See also POS.) If the string needle is not found, 0 is returned. By
default the search starts at the last character of haystack (that is,
start=LENGTH(string)) and scans backwards. This may be overridden by specifying
start, the point at which to start the backwards scan. start must be a positive
whole number, and defaults to LENGTH(string) if larger than that value.

Here are some examples:

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> 0
LASTPOS(' ','abc def ghi',7) -> 4

Chapter 4. Functions 93

Functions

LEFT

LENGTH

LINESIZE

returns a string of length length, containing the leftmost 1ength characters of
string. The string returned is padded with pad characters (or truncated) on the right
as needed. The default pad character is a blank. Tength must be nonnegative. The
LEFT function is exactly equivalent to SUBSTR(string,1,1ength[,pad]).

Here are some examples:

LEFT('abc d',8) -> ‘abc d !
LEFT('abc d',8,'.") -> ‘abc d..."
LEFT('abc def',7) -> ‘abc de'

returns the length of string.

Here are some examples:

LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH("' ") > 0

returns the current terminal line width minus 1 character (the point at which the
language processor will break lines displayed using the SAY instruction).

Note: If the REXX exec is executing in TSO/E background (that is, on the JCL
EXEC statement, the program name (PGM =) is IKJEFTO01), the LINESIZE
function always returns the value 132.

If the exec is executing in a non-TSO/E address space, LINESIZE returns the logical
record length of the OUTDD file (the default file is SYSTSPRT). The OUTDD file
is specified in the module name table (see page 287).

94 TSO/E Version 2 REXX Reference

LISTDSI

MAX

MIN

MSG

OUTTRAP

Functions

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 110.

returns the largest number from the list specified, formatted according to the current
setting of NUMERIC DIGITS. Up to 20 numbers can be specified, although calls to
MAX can be nested if more arguments are needed.

Here are some examples:

MAX(12,6,7,9) > 12
MAX(17.3,19,17.03) > 19
MAX(-7,-3,-4.3) > -3

MAX(1,2,3,4,5,6,7,8,9,MAX(10,11,12,13)) -> 13

returns the smallest number from the list specified, formatted according to the
current setting of NUMERIC DIGITS. Up to 20 numbers can be specified, although
calls to MIN can be nested if more arguments are needed.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 118.

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 119.

Chapter 4. Functions 95

Functions

OVERLAY ~
overlays the string target, starting at the nth character with the string new, padded
or truncated to length Tength. If length is specified it must be positive or zero. If n
is greater than the length of the target string, padding is added before the new string.
The default pad character is a blank, and the default value for nis 1. If specified, n
must be a positive whole number.
Here are some examples:
: TN
OVERLAY(' ','abcdef’',3) -> 'ab def')
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abed') -> "qqcd!
OVERLAY('qq','abcd',4) -> ‘abcqq’
OVERLAY('123','abc',5,6,'+") -> 'abc+123+++'
POS
returns the position of one string, needle, in another, haystack. (See also the
INDEX and LASTPOS functions.) If the string needle is not found, 0 is returned.
By default the search starts at the first character of haystack (that is start is of the
value 1). This can be overridden by specifying start (which must be a positive
whole number), the point at which to start the search.
// “
Here are some examples: 'J
POS('day','Saturday') -> 6
POS('x','abc def ghi') -> 0
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8
PROMPT

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 123.

96 TSO/E Version 2 REXX Reference

—

QUEUED

RANDOM

Functions

returns the number of lines remaining in the queue at the time when the function is
invoked.

The TSO/E implementation of the queue is the data stack. If no lines are remaining,
a PULL or PARSE PULL will read from the:

¢ Terminal (TSO/E address space)

¢ Input stream as defined by the INDD field in the module name table (sce page
286). The system default is SYSTSIN (non-TSO/E address space). The ddname
can be changed on an application basis or on a system basis.

Here is an example:
QUEUED() -> 5 /* Perhaps */

returns a pseudo-random nonnegative whole number in the range min to max
inclusive. If only one argument is specified, the range will be from 0 to that number.
Otherwise, the default values for min and max are 0 and 999, respectively. A specific
seed (which must be a whole number) for the random number can be specified as the
third argument if repeatable results are desired.

The magnitude of the range (that is, max minus min) must not exceed 100000. Here
are some examples:

RANDOM() -> 305

RANDOM(5,8) -> 7

RANDOM(, ,1983) -> 123 /* reproducible */
RANDOM(2) -> 0

Notes:

1. To obtain a predictable sequence of pseudo-random numbers, use RANDOM a
number of times, but only specify a seed the first time. For example, to
simulate forty throws of a six-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */
/* do for a seed */
do 39
sequence = sequence RANDOM(1,6)
end
say sequence

Chapter 4. Functions 97

Functions

REVERSE

RIGHT

SIGN

The numbers are generated mathematically, using the initial seed, so that as far
as possible they appear to be random. Running the program again will produce
the same sequence; using a different initial seed will almost certainly produce a
different sequence. If you do not supply a seed, the first time RANDOM is
called, one will be randomly assigned; and hence your program will usually give
different results each time it is run.

2. The random number generator is global for an entire program; the current seed
is not saved across internal routine calls.

3. The actual random number generator used may differ from implementation to
implementation.

returns string, swapped end for end.

Here are some examples:

REVERSE('ABc."') -> ' .CBA'
REVERSE('XYZ ') -> 'ZYX!

returns a string of length length containing the rightmost 1ength characters of
string. The string returned is padded with pad characters (or truncated) on the left
as needed. The default pad character is a blank. Tength must be nonnegative.

Here are some examples:

RIGHT(‘abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'0") -> '00012'

returns a number that indicates the sign of number. number is first rounded
according to standard REXX rules, just as though the operation “number+0” had
been carried out. If number is less than 0 then '-1' is returned; if it is O then '0' is
returned; and if it is greater than 0 then '1' is returned.

98 TSO/E Version 2 REXX Reference

SOURCELINE
SPACE
_
STORAGE
z’\\/}

Functions

Here are some examples:

SIGN('12.3") -> 1
SIGN(' -0.307") -> -1
SIGN(0.0) -> 0

If n is omitted, returns the line number of the final line in the source file.

If n 1s given, the nth line in the source file is returned. If specified, n must be a
positive whole number, and must not exceed the number of the final line in the
source file.

Here are some examples:

SOURCELINE() -> 10
SOURCELINE(1) -> '/* This is a 10-Tine program */'

formats the blank-delimited words in string with n pad characters between each
word. The n must be nonnegative. If it is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default pad
character is a blank.

Here are some examples:

SPACE('abc def ') -> 'abc def’
SPACE(' abc def',3) -> ‘abc def!
SPACE('abc def ',1) -> "abc def!
SPACE('abc def ',0) -> 'abcdef!

SPACE('abc def ',2,'+') -> 'abct++def’

This is not a built-in function. It is a TSO/E external function that is available in
any MVS address space (TSO/E and non-TSO/E). See page 126.

Chapter 4. Functions 99

Functions

STRIP

SUBSTR

removes leading and/or trailing characters from string based on the option

specified. Valid options (of which only the capitalized letter is significant, all others
are ignored) are:

Both removes both leading and trailing characters from string. This is
default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, with the default
being a blank. If given, char must be exactly one character long.

Here are some examples:

STRIP(' abc ') -> 'ab ¢!
STRIP(' abc ','L") -> ‘abc
STRIP(' abc¢ ','t") -> ' ab ¢!
STRIP('12.7600',,0) -> '12.7"
STRIP('0012.700',,0) -> '12.7'

returns the substring of string that begins at the nth character, and is of length
length, padded with pad if necessary. n must be a positive whole number.

If Tength is omitted the rest of the string will be returned. The default pad character
is a blank.

Here are some examples:

SUBSTR('abc',2) -> 'be'!
SUBSTR('abc',2,4) -> 'he !
SUBSTR('abc',2,6,'.") -> 'be....'

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string.

100 TSO/E Version 2 REXX Reference

R SUBWORD
‘_/”‘
_/

SYMBOL
)
/\/

SYSDSN

Functions

returns the substring of string that starts at the nth word, and is of length length,
blank-delimited words. n must be a positive whole number. If length is omitted, it
defaults to be the remaining words in string. The returned string will never have
leading or trailing blanks, but will include all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> ‘the time’
SUBWORD('Now is the time',5) -> "

returns the state of the symbol named by name. If name is not a valid REXX symbol,
'BAD' is returned. If it is the name of a variable (that is, a symbol that has been
assigned a value), 'VAR' is returned. Otherwise 'LIT" is returned, which indicates
that it is either a constant symbol or a symbol that has not yet been assigned a value
(that is, a literal).

Like for symbols appearing normally in REXX expressions, lowercase characters in
the name will be translated to uppercase and substitution in a compound name will
occur if possible.

Note: Normally name should be specified in quotes (or derived from an expression),
to prevent substitution by its value before it is passed to the function.

Here are some examples:
/* following: Drop A.3; J=3 */

SYMBOL('Jd") -> 'VAR'

SYMBOL(J) -> LIT' /* has tested "3" */
SYMBOL('a.j"') -> 'LIT' /* has tested "A.3" */
SYMBOL(2) -> 'LIT' /* a constant symbol */
SYMBOL('*") -> 'BAD' /* not a valid symbol */

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 127.

Chapter 4. Functions 101

Functions

SYSVAR

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 128.

TIME

by default returns the local time in the 24-hour clock format: 'hh:mm:ss' (hours,
minutes, and seconds); for example, '04:41:37".

The following options (of which only the capitalized letter is needed) may be used to
obtain alternative formats, or to gain access to the elapsed-time calculator.

Civil returns 'hh:mmxx', the time in Civil format, in which the hours may take
the values 1 through 12, and the minutes the values 00 through 59. The
minutes are followed immediately by the letters "am" or "pm" to
distinguish times in the morning (midnight 12:00am through 11:59am)
from noon and afternoon (noon 12:00pm through 11:59pm). The hour
will not have a leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other TIME results.

Elapsed returns sssssssss.uuuuuu, the number of seconds.microseconds since the
elapsed-time clock was started or reset (see below). The number will
have no leading zeros, and is not affected by the setting of NUMERIC

DIGITS.

Hours returns number of hours since midnight in the format: hh (no leading
ZET10S).

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuvuu is the fraction of

seconds, in microseconds).

Minutes returns number of minutes since midnight in the format: mmmm (no
leading zeros).

Normal returns the time in the default format 'hh:mm:ss’, as described above.

Reset returns sssssssss.uuuuuy, the number of seconds.microseconds since the
elapsed-time clock was started or reset (see below), and also resets the
elapsed-time clock to zero. The number will have no leading zeros, and
is not affected by the setting of NUMERIC DIGITS.

Seconds returns number of seconds since midnight in the format: sssss (no leading
Zeros).

Here are some examples:

TIME('L') -> '16:54:22.123456' /* Perhaps */

TIME() -> '16:54:22"

TIME('H') -> ‘16"

TIME('M') -> '1014" /* 54 + 60%16 */
TIME('S') -> '60862' /* 22 + 60*(54+60%16) */
TIME('N') -> '16:54:22"

TIME('C') -> '4:54pm’

102 TSO/E Version 2 REXX Reference

TRACE

Functions

The elapsed-time ciock:

The elapsed-time clock may be used for measuring real time intervals. On the first

call to the elapsed-time clock, the clock is started, and both TIME('E') and TIME('R")
will return 0.

The clock is saved across internal routine calls, which is to say that an internal
routine will inherit the time clock started by its caller, but if it should reset the clock
any timing being done by the caller will not be affected. An example of the
elapsed-time calculator:

time('E") > 0 /* The first call */
/* pause of one second here */
time('E") -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R") -> 2.004690 /* or thereabouts */
/* pause of one second here */
time('R") -> 1.002345 /* or thereabouts */

Note: See the note under DATE about consistency of times within a single
expression. The elapsed-time clock is synchronized to the other calls to TIME and
DATE, so multiple calls to the elapsed-time clock in a single expression will always
return the same result. For the same reason, the interval between two normal
TIME/DATE results may be calculated exactly using the elapsed-time clock.

Implementation maximum: Should the number of seconds in the elapsed time exceed
nine digits (equivalent to over 31.6 years), an error will result.

returns trace actions currently in effect.

If option is supplied, it must be one of the valid prefixes (? or !) and/or alphabetic
character options (i.e., starting with A, C, E, F, I, L, N, O, R, or S) associated with
the TRACE instruction. (See the TRACE instruction, on page 64, for full details.)
The function uses option to alter the effective trace action (like, tracing Labels, etc.).
Unlike the TRACE instruction, the TRACE function alters the trace action even if
interactive debug is active.

Unlike the TRACE instruction, option cannot be a number.

Here are some examples:

TRACE() -> '?R' /* maybe */
TRACE('0") -> '?7R' /* also sets tracing off */
TRACE('?I') -> '0' /* now in interactive debug */

Chapter 4. Functions 103

Functions

TRANSLATE

TRUNC

translates characters in string to other characters, or reorders characters in a string.
If neither translate table is given, string is simply translated to uppercase (i.e. a
lowercase a-z to an uppercase A-Z). The output table is tableo and the input
translate table is tablei (the default is XRANGE('00'x, 'FF'x)). The output table
defaults to the null string and is padded with pad or truncated as necessary. The
default pad is a blank. The tables can be of any length: the first occurrence of a
character in the input table is the one that is used if there are duplicates.

Here are some examples:

TRANSLATE (' abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b") -> 'akbc’
TRANSLATE('abcdef','12','ec') -> 'ab2d1f"
TRANSLATE('abcdef','12','abed','.") -> '12. .ef!
TRANSLATE('4123', 'abcd','1234") -> 'dabc’

Note: The last example shows how the TRANSLATE function can be used to
reorder the characters in a string. In the example, any four-character string could be
specified as the second argument and its last character would be moved to the
beginning of the string.

returns the integer part of number, and n decimal places. The default n is zero, and
will return an integer with no decimal point. If specified, n must be a nonnegative
whole number. The number is first rounded according to standard REXX rules, just
as though the operation “number +0” had been carried out. The number is then

truncated to n decimal places (or trailing zeros are added if needed to make up the
specified length). The result will never be in exponential form.

Here are some examples:

TRUNC(12.3) -> 12
TRUNC(127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.1060
TRUNC(127,2) -> 127.00

Note: The number will be rounded according to the current setting of NUMERIC
DIGITS if necessary before being processed by the function.

104 TSO/E Version 2 REXX Reference

USERID
_
VALUE

Functions

returns the TSO/E user ID, if the REXX exec is executing in the TSO/E address
space. For example:

USERID() -> 'ARTHUR' /* Maybe */

If the exec is executing in a non-TSO/E address space, the USERID function returns
one of the following values:

¢ User ID specified
¢ Stepname specified
¢ Jobname specified

The value that is returned is the first one that does not have a null value. For
example, if the user ID is null but the stepname is specified, the USERID function
returns the value of the stepname.

TSO/E allows you to replace the routine (module) that is called to determine the
value the USERID function returns. This is known as the user ID replaceable
routine and is described in “User ID Routine” on page 389. In general, you can
only replace the routine in non-TSO/E address spaces. Chapter 16, “Replaceable
Routines and Exits” describes replaceable routines in detail and any exceptions to
this rule.

returns the value of the symbol named by name. name must be a valid REXX
symbol, or an error results. Note the SYMBOL function can be used to test for the
validity of a symbol, and takes the same form of argument. Like symbols appearing
normally in REXX expressions, lowercase characters in name will be translated to
uppercase (i.e. a lowercase a-z to an uppercase A-Z) and substitution in a compound
name will occur if possible.

Here are some examples:

/* following: Drop A3; A33=7; J=3; fred='J' */

VALUE(' fred') -> ‘J' /* looks up "FRED" */
VALUE(fred) C-> '3' /* Tooks up "J' */
VALUE('a'j) -> ‘A3’

VALUE('a'jll3) . -> 7!

Note: The VALUE function is typically used when a variable contains the name of
another variable, or a name is constructed dynamically; for example,

VALUE (' LINE'index). It is not useful to wholly specify name as a quoted string, since
the symbol is then constant and so the whole function call could be replaced directly
by the data between the quotes. (For example, fred=VALUE('j') is always identical
to the assignment fred=j).

Chapter 4. Functions 105

Functions

VERIFY
verifies that string is composed only of characters from reference, by returning the
position of the first character in string that is not also in reference. If all the
characters were found in reference, 0 is returned.
The third argument, option, can be any expression that results in a string starting
with N or M that represents either Nomatch (the default) or Match. Only the first
character of option is significant and it can be in upper or lower case, as usual. If
Nomatch is specified, the position of the first ¢character in string that is not also in
reference is returned. 0 is returned if all characters in string were found in
reference. If Match is specified, the position of the first character in string that is
in reference is returned, or 0 if none of the characters were found.
The default for start is 1, thus, the search starts at the first character of string.
This can be overridden by giving a different start point, which must be a positive
whole number.
If string is null, the function returns 0, regardless of the value of the third
argument. Similarly if start is greater than LENGTH{string), 0 is returned. If
reference is null and option Match is specified, the function will return 0. If
reference is null and option Nomatch specified, or left to default, the function will
return 1.
Here are some examples:
VERIFY('123','1234567890") -> 0
VERIFY('1Z3','1234567890") -> 2
VERIFY('ABAT','1234567890") -> 1
VERIFY{'ABAT','1234567890"','M") -> 3
VERIFY('ABAT','1234567890','N") ~> 1
VERIFY('1P3Q4','1234567890',,3) -> 4
VERIFY ('AB3CD5','1234567890','M',4) -> 6

WORD

returns the npth blank-delimited word in string. n must be a positive whole number.
If there are fewer than n words in string, the null string is returned. This function is
exactly equivalent to SUBWORD(string,n,1).

106 TSO/E Version 2 REXX Reference

C

WORDINDEX
 WORDLENGTH
WORDPOS

Functions

Here are some examples:

WORD('Now is the time',3) -> ‘the’
WORD('Now is the time',5) -> v

returns the position of the first character in the nth blank-delimited word in string.

n must be a positive whole number. If there are fewer than n words in the string, 0
is returned.

Here are some examples:

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> 0

returns the length of the nth blank-delimited word in string. n must be a positive
whole number. If there are fewer than n words in the string, 0 is returned.

Here are some examples:

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> 0

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string. Multiple
blanks between words in either phrase or string are treated as a single blank for the
comparison, but otherwise the words must match exactly. Returns 0 if phrase is not
found.

By default the search starts at the first word in string. This may be overridden by
specifying start (which must be positive), the word at which to start the search.

Chapter 4. Functions 107

Functions

WORDS

XRANGE

X2C

Examples:

WORDPOS('the', 'now is the time') -> 3
WORDPOS('The','now is the time') -> 0
WORDPOS ('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> 0
WORDPOS(*be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time') -> 4
WORDS (' ') > 0

returns a string of all one-byte codes between and including the values start and
end. The default value for start is ‘00’x, and the default value for end is ‘FF’x. If
start is greater than end, the values will wrap from ‘FF’x to ‘00’x. If specified,
start and end must be single characters.

Here are some examples:

XRANGE('a','f") ~> 'abcdef'

XRANGE('03'x,'07'x) -> '0304050607'x

XRANGE (, '04'x) -> '0001020304'x
XRANGE('i','j") -> '898A8BBBCBDBEBFI091'x /* EBCDIC */ ‘%%

XRANGE('FE'x,'02'x) ~-> 'FEFF000102'x

Hexadecimal to Character. Converts hexstring (a string of hexadecimal characters)

to character. - If necessary, hexstring will be padded with a leading 0 to make an
even number of hexadecimal digits.

108 TSO/E Version 2 REXX Reference

X2D

Functions

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

Here are some examples:

X2C('F7F2 A2') -> 725 /* EBCDIC */
X2C('F7f2a2') -> ‘725’ /* EBCDIC */
X2C('F') > 'OF'x

Hexadecimal to Decimal. Converts hexstring (a string of hexadecimal characters)
to decimal. If the result cannot be expressed as a whole number, an error results.
That is, the result must have no more than NUMERIC DIGITS digits.

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored. ‘

If hexstring is the null string, then '0' is returned.

If n is not specified, hexstring is processed as an unsigned binary number.

Here are some examples:

X2D('0E') > 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81*) -> 65409

X2D('c6 fO'X) -> 240

If n is specified, the given sequence of hexadecimal digits is padded on the left with
zeros (note, not “sign-extended”), or truncated on the left to n characters. The
resulting string of n hexadecimal digits is taken to be a signed binary number:
positive if the leftmost bit is off, and negative, in two’s complement notation, if the
leftmost bit is on. If n is 0, 0 is always returned.

Here are some examples:

Xx2D('81',2) > 2127
X2D('81',4) -> 129
X2D('FO81',4) -> -3967
X2D('FO81',3) -> 129
X2D('FO81',2) -> -127
X2D('FO81',1) -> 1
x2D('0031',0) -> 0

Implementation maximum: The input string may not have more than 500
hexadecimal characters that will be significant in forming the final result. Leading
sign characters (0 and F) do not count towards this total.

Chapter 4. Functions 109

Functions

TSO/E Functions

LISTDSI

TSO/E provides functions called TSO/E external functions. Most of the TSO/E
functions can be used only in REXX execs that execute in the TSO/E address space.
The exception is the STORAGE function. You can use the STORAGE function in
a REXX exec that executes in any address space, both TSO/E and non-TSO/E.

Examples are provided that show how to use the TSO/E functions. The examples
may include data set names. When an example includes a data set name that is
enclosed in single quotes, the prefix is added to the data set name. In the examples,
the user ID is the prefix.

Note: If you customize REXX processing and use the initialization routine
IRXINIT, you can initialize a language processor environment that is not integrated
into TSO/E (see page 273). The STORAGE function can be used in any type of
language processor environment. The other TSO/E functions can be used only if the
environment is integrated into TSO/E. Chapter 13, “TSO/E REXX Customizing
Services” describes customization and language processor environments in more
detail.

returns one of the following function codes that replace the function call, and
retrieves information about a data set’s allocation, protection, and directory and
stores it in specific variables.

Function Codes
0 -- normal completion.

4 -- some data set information is unavailable. All data set information other
than directory information can be considered valid.

16 -- Error occurred. None of the variables containing information about the
data set can be considered valid.

The variables in which LISTDSI stores data set information are described in
Figure 4 on page 113. The options you can specify on the LISTDSI function are:

data-set-name the name of the data set about which you want to retrieve
information. This can be the name of a sequential data set or a
PDS. See “Specifying Data Set Names” on page 112 for more
information.

location specifies how you want the data set (as specified in data-set-name)
located. You can specify Jocation only if you specify a data set
name, not a filename. For location, specify one of the following:

¢ VOLUMEC(serial ID)

110 TSO/E Version 2 REXX Reference

Functions

specifies the serial number of the volume where the data set is
located. If you do not specify either VOLUME or
PREALLOC, the system locates the data set through catalog
search.

PREALLOC

specifies that the location of the specified data set is determined
by allocating the data set, rather than through a catalog search.
PREALLOC allows data sets that have been previously
allocated to be located without searching a catalog and allows
unmounted volumes to be mounted. If you do not specify
either VOLUME or PREALLOC, the system locates the data
set through catalog search.

filename the name of an allocated file (ddname) about which you want to
retrieve information.

type for type, you must specify the word “FILE,” if you specify
filename instead of data-set-name. If you do not specify FILE,
LISTDSI assumes that you specified a data-set-name.

directory indicates whether or not you want directory information for a
partitioned data set (PDS). For directory, specify one of the
following:

¢ DIRECTORY
indicates that you want directory information.
¢ NODIRECTORY

indicates that you do not want directory information. If you
do not require directory information, NODIRECTORY can
significantly speed up processing. NODIRECTORY is the
default.

recall indicates whether or not you want to recall a data set migrated by
Data Facility Hierarchical Storage Manager (DFHSM). For recall,
specify one of the following:

*

RECALL

indicates that you want to recall a data set migrated by
DFHSM. The system recalls the data set regardless of its level
of migration or the type of device it has been migrated to.

NORECALL
indicates that you do not want to recall a data set. If the data
set has been migrated, the system stores an error message.

If you do not specify either RECALL or NORECALL, the
system recalls the data set only if it has been migrated to a
direct access storage device (DASD).

You can use LISTDSI to obtain information about a data set that is available on
DASD. LISTDSI does not directly support data that is on tape or in mass storage.
It supports generation data group (GDG) data sets, but does not support relative

GDG names.

The LISTDSI function can be used only in REXX execs that execute in the TSO/E

address space.

Chapter 4. Functions 111

Functions

—— Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
LISTDSI can be used only in environments that are integrated into TSO/E (see
page 273).

An exec can use the LISTDSI information to determine whether the data set is the
right size or has the right organization or format for a given task. It can also use

the LISTDSI information as input to the ALLOCATE command, to create a new

data set using some attributes from the old data set while modifying others.

If you use LISTDSI to retrieve information about a VSAM data set, the exec stores
only the volume serial ID (in variable SYSVOLUME), the device unit (in variable
SYSUNIT), and the data set organization (in variable SYSDSORG). All other
LISTDSI variables are set to nulls.

If you use LISTDSI to retrieve information about a multiple volume data set, the
exec stores information for the first volume only. Similarly, if you specify a file
name or the PREALLOC parameter and you have other data sets allocated to the

same file name, then the system might not retrieve information for the data set you
wanted.

Specifying Data Set Names
On the LISTDSI function, if you use data-set-name instead of filename, you can
specify the name of a sequential data set or a partitioned data set (PDS). You can
specify the data-set-name in any of the following ways:

¢ Fully-qualified data set name — The extra quotation marks prevent TSO/E from
adding your prefix to the data set name.

x = LISTDSI("'sysl.proj.new'")

x = LISTDSI('''sysl.proj.new''")

¢ Non fully-qualified data set name that follows the naming conventions — When
there is only one set of quotation marks or no quotation marks, TSO/E adds
your prefix to the data set name.

LISTDSI ('myrexx.exec')

X

x = LISTDSI{myrexx.exec)

* Variable name that represents a fully-qualified or non fully-qualified data set
name — The variable name must not be enclosed in quotation marks because
quotation marks prevent variable substitution. For example:

/* REXX program for */
varl = 'sysl.proj.monthly'
LISTDSI{varl)

EXIT

112 TSO/E Version 2 REXX Reference

Variables Set by LISTDSI

Functions

Figure 4 describes the contents of the variables set by LISTDSI. For VSAM data
sets, only the variables SYSVOLUME, SYSUNIT, and SYSDSORG are accurate;
other variables are set to question marks.

Figure 4 (Page 1 of 2). Variables Set By LISTDSI

Variabie

Contents

SYSDSNAME

Data set name

SYSVOLUME

Volume serial ID

SYSUNIT

Device unit on which volume resides

SYSDSORG

Data set organization:

PS - Physical sequential

PSU - Physical sequential unmovable

DA - Direct organization

DAU - Direct organization unmovable

IS - Indexed sequential

ISU - Indexed sequential unmovable

PO - Partitioned organization

POU - Partitioned organization unmovable
VS - VSAM

77?7 - Unknown

SYSRECFM

Record format; three-character combination of the
following:

U - Records of undefined length

F - Records of fixed length

V - Records of variable length

T - Records written with the track overflow feature of
the device (3375 and 3380 do not support track
overflow)

B - Records blocked

S - Records written as standard or spanned
variable-length blocks

A - Records contain ASCII printer control characters

M - Records contain machine code control characters

? - Unknown

SYSLRECL

Logical record length

SYSBLKSIZE

Block size

SYSKEYLEN

Key length

SYSALLOC

Allocation, in space units

SYSUSED

Allocation used, in space units

SYSPRIMARY

Primary allocation in space units

SYSSECONDS

Secondary allocation in space units

SYSUNITS

Space units:

CYLINDER - Space units in cylinders
TRACK - Space units in tracks
BLOCK - Space units in blocks
nnnm - Space units are unknown

SYSEXTENTS

Number of extents used

SYSCREATE

Creation date:
Year/day format, for example: 1985/102

Chapter 4. Functions

113

Functions

Figure 4 (Page 2 of 2). Variables Set By LISTDSI

Variable

Contents

SYSREFDATE

Last referenced date

Year/day format, for example: 1985/107
(Specifying DIRECTORY causes the date to be
updated)

SYSEXDATE

Expiration date
Year/day format, for example: 1985/365

SYSPASSWORD

Password indication:

NONE - No password protection
READ - Password required to read
WRITE - Password required to write

SYSRACFA

RACEF indication:

NONE - No RACF protection
GENERIC - Generic profile covers this data set
DISCRETE - Discrete profile covers this data set

SYSUPDATED

Change indicator:

YES - Data set has been updated
NO - Data set has not been updated

SYSTRKSCYL

Tracks per cylinder for the unit identified in the
SYSUNIT variable

SYSBLKSTRK

Blocks per track for the unit identified in the SYSUNIT
variable

SYSADIRBLK

Directory blocks allocated - returned only for
partitioned data sets when DIRECTORY is specified

SYSUDIRBLK

Directory blocks used - returned only for partitioned
data sets when DIRECTORY is specified

SYSMEMBERS

Number of members - returned only for partitioned data
sets when DIRECTORY is specified

SYSREASON

LISTDSI reason code

SYSMSGLVLI1

First level message if an error occurred

SYSMSGLVL2

Second level message if an error occurred

114 TSO/E Version 2 REXX Reference

~

Messages

Function Codes

Functions

All LISTDSI messages are set in the variables SYSMSGLVLI1 and SYSMSGLVL2.
See TSO/E Version 2 Messages for explanations of the messages.

Function codes from LISTDSI replace the function call. Error routines do not

receive control when an exec receives a nonzero function code from LISTDSI. The
following table lists the LISTDSI function codes and their meanings.

Figure 5. LISTDSI Function Codes

Function Code

Meaning

0 Normal completion

4 Some data set information is unavailable. All data set
information other than directory information can be considered
valid.

16 Severe error occurred. None of the variables can be considered

valid.

Chapter 4. Functions

115

Functions

Reason Codes

Reason codes from the LISTDSI function appear in variable SYSREASON. The
following table lists the LISTDSI reason codes and their meanings.

Figure 6. LISTDSI Reason Codes

Reason Code

Meaning

0

Normal completion

—

Error parsing the function.

Dynamic allocation processing error (SVC 99 error).

The data set is a type that cannot be processed.

Error determining UNIT name (IEFEB4UYV error).

Data set not cataloged (LOCATE macro error).

Error obtaining the data set name (OBTAIN macro error).

Error finding device type (DEVI'YPE macro error).

The data set does not reside on a direct access device.

DFHSM migrated the data set, NORECALL prevents retrieval.

— W || NN |n AW

Directory information was requested, but you lack authority to
access the data set.

12

VSAM data sets are not supported.

13

The data set could not be opened.

14

Device type not found in unit control block (UCB) tables.

17

System or user ABEND occurred.

18

Partial data set information was obtained.

19

Data set resides on multiple volumes.

20

Device type not found in eligible device table (EDT).

21

Catalog error trying to locate the data set.

22

Volume not mounted (OBTAIN macro error).

23

Permanent I/O error on volume (OBTAIN macro error).

24

Data set not found by OBTAIN macro.

25

Data set migrated to non-DASD device.

26

Data set resides on a mass storage device.

27

No volume serial is allocated to the data set.

28

The ddname must be one to eight characters.

29

Data set name or ddname must be specified.

116 TSO/E Version 2 REXX Reference

Error Codes

Functions

Error codes appear in some messages in variable SYSMSGLVL2. The following
table lists the LISTDSI error codes and the modules affected.

Error Code

Meaning

04B/00C

Module IKJLDIOO passed an invalid operation code to module
IKJLDIO1; IKJLDIO1 cannot proceed.

04B/014

Module IKJLDIOO passed an invalid operation code to module
IKJLDIO03; IKJLDIO3 cannot proceed.

441/nnn

An error occurred while variables were being set in module
IKJCT441; the reason code is the return code passed from
IKJCT441 to IKJLDIO3.

040/nnn

An error occurred using the PUTLINE service in module
IKJLDIO3. The reason code is the return code received from
the PUTLINE service.

04B/010

Module IKJLDIOO passed an invalid operation code to module
IKJLDI99; IKJLDI99 cannot proceed.

Figure 7. LISTDSI Error Codes

These error codes indicate that an ABEND has occurred. If a dump data set is
allocated, a dump will be taken.

Examples

1. To set variables with information about data set USERID. WORK.EXEC, use
the LISTDSI function as follows:

x = LISTDSI (work.exec)

SAY 'Function code from LISTDSI is: "X
SAY 'The data set name is: ' sysdsname
SAY 'The device unit on which the volume resides is:' sysunit
SAY 'The record format is: ' sysrecfm
SAY 'The logical record length is: ' sysirecl
SAY 'The block size is: ' sysblksize
SAY 'The allocation in space units is: ' sysalloc
SAY 'Type of RACF protection is: ' sysracfa
Output from the example might be:
Function code from LISTDSI is: 0
The data set name is: USERID.WORK. EXEC
The device unit on which the volume resides is: 3380
The record format is: VB
The logical record length is: 255
The block size is: 6124
The allocation in space units is: 33
Type of RACF protection is: GENERIC
2. To retrieve information about the DD called APPLPAY, you can use LISTDSI
as follows:
ddinfo = LISTDSI("applpay" "FILE")

3. Suppose you want to retrieve information about a PDS called
SYS1.APPL.PAYROLL, including directory information. You do not want the

Chapter 4. Functions 117

Functions

PDS to be located through a catalog search, but have the location determined by
the allocation of the data set. You can specify LISTDSI as follows:

/* REXX program for */

varl = "sysl.appl.payroll"
infod = "directory"

pdsinfo = LISTDSI(varl infod "prealloc")

EXIT

In the example, the variable var] was assigned the name of the PDS
(SYS1.APPL.PAYROLL). Therefore, in the LISTDSI function call, varl is not
enclosed in quotes to allow for variable substitution. Similarly, the variable
infod was assigned the value “directory,” so in the LISTDSI function, infod
becomes the word “directory.” The PREALLOC argument is enclosed in quotes
to prevent any type of substitution. After the language processor evaluates the
LISTDSI function, it results in the following function call being executed:

LISTDSI(sysl.appl.payroll directory preailoc)

MSG

returns the previous status of message issuing, which can be on or off. That is, it
returns the previous capability of displaying messages from within an exec.

Using MSG, you can control the display of messages from commands and TSO/E
functions. The following options can be used to control the display of informational
messages issued by the PUTLINE service.

ON allows informational messages issued by the PUTLINE service to be
displayed while an exec is executing and returns the previous status of
message issuing. Informational messages are automatically displayed
unless an exec uses the MSG function to inhibit their display.

OFF inhibits the display of informational messages issued by the PUTLINE
service while an exec is executing and returns the previous status of
message issuing.

Note: The MSG function can be used only if the PTF for APAR OY17498 is
installed. See page 425.

Before the MSG function is used, all messages issued by the PUTLINE service are
displayed during exec execution. The MSG function can be used only in REXX
execs that execute in the TSO/E address space.

118 TSO/E Version 2 REXX Reference

Example

OUTTRAP

Functions

— Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
MSG can be used only in environments that are integrated into TSO/E (see page
273).

When an exec uses MSG(OFF) to inhibit the display of messages, messages are not
issued while the exec executes and while functions and subroutines called by that
exec execute. The displaying of messages resumes if MSG(ON) is issued or when the
original exec ends. When an exec invokes another exec or CLIST using the EXEC
command, message issuing status from the invoking exec is not carried over into the
newly-invoked program. The newly-invoked program automatically displays
messages, which is the default.

Here are some examples:

MSG() -> 'OFF' /* previous setting */
MSG("OFF") -> 0N /* returns previous setting (ON)
and inhibits message display */

The MSG function is functionally equivalent to the CLIST CONTROL MSG and
CONTROL NOMSG statements for TSO/E CLISTs.

Note: In non-TSO/E address spaces, you cannot control message output using the
MSG function. However, if you use the TRACE OFF keyword instruction,
messages will not go to the output file (for example, SYSTSPRT).

To make sure that messages associated with the TRANSMIT command will not be
displayed before including the TRANSMIT command in an exec, use the MSG
function as follows:

IF MSG() = 'OFF' THEN,
“TRANSMIT node.userid DA(myrexx.exec)"

ELSE
DO
X = MSG("OFF")
"TRANSMIT node.userid DA(myrexx.exec)"
END

returns the name of the variable in which trapped output is stored, or if trapping is
not in effect, it returns the word ‘OFF’.

Chapter 4. Functions 119

Functions

You can use the following options to trap lines of command output into compound
variables or a series of numbered variables, or to turn trapping off that was previous
started.

off specify the word ‘OFF’ to turn trapping off.

varname the stem of the compound variables or the variable prefix assigned to
receive the command output. Compound variables contain a period and
allow for indexing, but lists of variables with the same prefix cannot be
accessed by an index in a loop. The variable must be a valid REXX
variable limited to 242 characters.

max the maximum number of lines to trap. You can specify a number, an
asterisk in quotation marks (‘*’), or a blank. If you specify a blank or ‘*’,
all the output is trapped. The default is 999,999,999.

concat indicates how output should be trapped. For concat, specify one of the
following:

¢ CONCAT
indicates that output from all commands be trapped in consecutive
order until the maximum number of lines is reached. For example, if
the first command has three lines of output, they are stored in
variables ending in 1, 2, and 3. If the second command has two lines
of output, they are stored in variables ending in 4 and 5. The default
order for trapping is CONCAT.

¢ NOCONCAT
indicates that output from each command be trapped starting at the
variable ending in 1. For example, if the first command has three lines
of output, they are stored in variables ending in 1, 2, and 3. If another
command has two lines of output, they replace the first command’s
output in variables 1 and 2.

Lines of output are stored in successive variable names (as specified by varname)
concatenated with integers starting with 1. All unused variables display their own
names. The number of lines that were trapped is stored in the variable name
followed by 0. For example, if you specify cmdout. as the varname, the number of
lines stored is in:

cmdout.0

If you specify cmdout as the varname, the number of lines stored is in:

cmdout®

An exec can use these variables to display or process command output. Error
messages from commands are trapped, but other types of error messages are routed
to the terminal. Trapping, once begun, continues from one exec to other invoked
execs or CLISTs. Trapping ends when the original exec ends or when trapping is
turned off.

The OUTTRAP function can be used only in REXX execs that execute in the
TSO/E address space.

120 TSO/E Version 2 REXX Reference

Functions

—— Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
OUTTRAP can be used only in environments that are integrated into TSO/E
(see page 273).

To trap the output of TSO/E commands under ISPF, you must invoke an exec with
command output after ISPF or one of its services has been invoked.

OUTTRAP does not save command output sent to the terminal by a TPUT or
WTO macro. However, it does save output from the PUTLINE macro with DATA
or INFOR keywords.

Additional Variables Available
In addition to the variables that store the lines of output, OUTTRAP stores
information in the following variables:

varname(
contains the largest index into which output was trapped. The number in this
variable cannot be larger than varnameMAX or varnameTRAPPED.

varnameMAX
contains the maximum number of output lines that can be trapped.

varnameTRAPPED
contains the total number of lines of command output. The number in this
variable can be larger than varname0 or varnameMAX.

varnameCON
contains the status of the concat argument, which is either CONCAT or
NOCONCAT.

The following examples are of two OUTTRAP function calls and the resulting
values in variables.

Example 1
x = QUTTRAP("ABC",4,"CONCAT")

Command 1 has three lines of output.

ABCO --> 3

ABC1 --> output line 1
ABC2 --> output Tine 2
ABC3 --> output line 3
ABC4 --> ABC4

ABCMAX --> 4

ABCTRAPPED --> 3

ABCCON --> CONCAT

Command 2 has two lines of output. The second line is not trapped.

Chapter 4. Functions 121

Functions

ABCO -->
ABC1 -->
ABC2 -=>
ABC3 -->
ABC4 -=>
ABCMAX -=>
ABCTRAPPED -->
ABCCON -->
Example 2

x = OUTTRAP("XYZ.

4

command 1 output line 1
command 1 output line 2
command 1 output line 3
command 2 output line 1
4

5

CONCAT

",4,"NOCONCAT")

Command 1 has three lines of output.

XYZ.0 -=>
XYZ.1 -->
XYZ.2 -->
XYZ.3 -—>
XYZ.4 -
XYZ .MAX -—
XYZ.TRAPPED ~—
XYZ.CON -

3

output line 1
output line 2
output line 3
XYZ.4

4

3

NOCONCAT

Command 2 has two lines of output.

2

command 2 output line 1
command 2 output line 2
command 1 output line 3
XYZ.4

4

2

NOCONCAT

1. To determine if outtrapping is in effect:

2. To trap all output from commands in consecutive order into the stem

3. To trap 6 lines of output into the variable prefix 1ine and not concatenate the

/* If the exec is trapping output, displays the
/* variable name; if it is not trapping output, */

/* displays OFF */

OUTTRAP("output.",'*',"CONCAT")

OUTTRAP("output.",,"CONCAT")

x = OUTTRAP(1ine,6,"NOCONCAT")

XYZ.0 -->
XYZ.1 -->
XYZ.2 -->
XYZ.3 -->
XYZ.4 -->
XYZ.MAX -->
XYZ.TRAPPED ~=>
XYZ.CON -->
Examples
x = OUTTRAP()
SAY x
output.
use one of the following:
X -
x = OUTTRAP("output.")
X =
output:
4. To suppress all command output:
x = OUTTRAP("output",0)
122 TSOJE Version 2 REXX Reference

PROMPT

Functions

5. Allocate a new data set like an existing one and if the allocation was successful,
delete the existing one. If the allocation is not successful, display the trapped
output from the ALLOCATE command.

x = OUTTRAP{("var.")
“ALLOC DA(new.data) LIKE(old.data) NEW"
IF RC = ©0 THEN

"DELETE old.data"
ELSE

DO i =1 T0 var.0

SAY var,i
END

If the ALLOCATE command is not successful, error messages are trapped in the
following compound variables.

VAR.1 = error _message
VAR.2 = error message
VAR.3 = error _message

returns the previous setting of prompt for the exec, which can be on or off.

The following options can be used to set prompting on or off for interactive TSO/E
commands, provided your profile allows for prompting. Only when your profile
specifies PROMPT, can prompting be made available to commands issued in an
exec.

ON sets prompting on for TSO/E commands issued within an exec and returns
the previous setting of prompt.

OFF sets prompting off for TSO/E commands issued within an exec and returns
the previous setting of prompt.

Here are some examples:

PROMPT () -> 'OFF' /* previous setting */
PROMPT("ON") -> 'OFF' /* returns previous setting (OFF)
and sets prompting on */

The PROMPT function can be used only in REXX execs that execute in the TSO/E
address space.

— Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
PROMPT can be used only in environments that are integrated into TSO/E (see
page 273).

Chapter 4. Functions 123

Functions

Prompting for an exec can be set by the PROMPT option of the EXEC command as
well as by the PROMPT function. The PROMPT function overrides the PROMPT
option of the EXEC command. For more information about situations when one
option overrides the other, see “Interaction of Three Ways to Affect Prompting” on
page 124.

When an exec sets prompting on, prompting continues in other functions and
subroutines called by the exec. Prompting ends when the PROMPT(OFF) function
is'used or when the original exec ends. When an exec invokes another exec or
CLIST with the EXEC command, prompting in the new exec or CLIST depends on
the setting in the profile and the use of the PROMPT keyword on the EXEC
command.

If the data stack is not empty, commands that prompt will retrieve information from
the data stack before prompting a user at the terminal. To prevent a prompt from
retrieving information from the data stack, issue a NEWSTACK command to create
a new data stack for the exec.

Note: When your TSO/E profile specifies NOPROMPT, no prompting is allowed in
your terminal session even though the prompt function returns ON.

Interaction of Three Ways to Affect Prompting

You can control prompting within an exec in three ways:
1. TSO/E profile

The PROFILE command controls whether prompting is allowed for TSO/E
commands in your terminal session. The PROMPT operand of the PROFILE
command sets prompting on and the NOPROMPT operand sets prompting off.

2. EXEC command

When you invoke an exec with the EXEC command, you can specify the
PROMPT operand to set prompting on for the commands issued within the
exec. The default is NOPROMPT.

3. PROMPT function

You can use the PROMPT function to set prompting on or off within an exec.

The following table shows how the three ways to affect prompting interact and the
final outcome of various interactions.

Interaction Prompting No Prompting

PROFILE PROMPT X
EXEC PROMPT
PROMPT (ON)

PROFILE PROMPT X
EXEC NOPROMPT
PROMPT (ON)

PROFILE PROMPT X
EXEC NOPROMPT
PROMPT ()

PROFILE PROMPT X
EXEC NOPROMPT
PROMPT (OFF)

124 TSOJE Version 2 REXX Reference

Functions

Interaction Prompting No Prompting

N PROFILE PROMPT X
EXEC PROMPT
PROMPT()

PROFILE PROMPT X
EXEC PROMPT
PROMPT (OFF)

PROFILE NOPROMPT X
EXEC PROMPT
PROMPT (ON)

PROFILE NOPROMPT X
EXEC NOPROMPT
PROMPT (ON)

PROFILE NOPROMPT X
f EXEC PROMPT
{ I

_/ PROMPT (OFF)

PROFILE NOPROMPT X
EXEC NOPROMPT
PROMPT (OFF)

PROFILE NOPROMPT X
EXEC PROMPT
PROMPT ()

, PROFILE NOPROMPT X
(EXEC NOPROMPT
— PROMPT ()

Examples
1. To check if prompting is available before issuing the interactive TRANSMIT
command, use the PROMPT function as follows:

"PROFILE PROMPT"
IF PROMPT() = 'ON' THEN,
"TRANSMIT"
i ELSE
N DO
x = PROMPT(*ON')
" TRANSMIT"
END

2. Suppose you want to use the LISTDS command in an exec and want to ensure
that prompting is done to the terminal. You can check whether the data stack
is empty and specify the PROMPT function before issuing the LISTDS
command.

IF QUEVED() > O THEN
"NEWSTACK"

ELSE NOP

x = PROMPT('ON')

"LISTDS"

N

Chapter 4. Functions 125

Functions

STORAGE

Examples

returns one byte of data from the specified address in storage. The address is the
hexadecimal representation of the storage address from which data is retrieved.

Optionally, you can specify length, which is the decimal number of bytes to be
retrieved from address. When length is 0, a null character string is returned.

If data is specified, the information from address is returned and then the storage
starting at address is overwritten with data specified on the function call. The data is
the character string to be stored at address. The length argument has no effect on
how much storage is overwritten; the entire data is written.

The STORAGE function can be used by REXX execs that execute in any MVS
address space (TSO/E and non-TSO/E).

If the STORAGE function tries to retrieve or change data beyond the storage limit,
only the storage up to the limit is retrieved or changed.

Note: Virtual storage addresses may be fetch protected, update protected, or may
not be defined as valid addresses to the system. Any particular invocation of the
STORAGE function may fail if it references a non-existent address, attempts to
retrieve the contents of fetch protected storage, or attempts to update non-existent
storage or is attempting to modify store protected storage. In all cases, a null string
will be returned to the REXX exec.

The STORAGE function will return a null string, if any part of the request fails.
Since the STORAGE function can both retrieve and update virtual storage at the
same time, it will not be evident whether the retrieve or update caused the null string
to be returned. In addition, a request for retrieving or updating storage of a shorter
length might have be successful. When part of a request fails, the failure point will
be on a decimal 2048 boundary.

1. To retrieve 25 bytes of data from address 000AAE3S, use the STORAGE
function as follows:

storret = STORAGE (0OQAAE35,25)

2. To replace the data at address 0035D41F with ‘TSO/E REXX’, use the following
STORAGE function:

storrep = STORAGE(0035D41F,, 'TSO/E REXX')

This example first returns one byte of information found at address 0035D41F
and then replaces the data beginning at address 0035D41F with the characters
‘TSO/E REXX’.

Note: Information is retrieved before it is replaced.

126 TSO/E Version 2 REXX Reference

SYSDSN

Functions

returns one of the following messages that indicates whether the specified dsname
exists and is available for use. The dsname can be the name of a sequential or
partitioned data set or a data set member.

0K /* data set or member is available */

MEMBER NOT FOUND

MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED

DATASET NOT FOUND ‘

ERROR PROCESSING REQUESTED DATASET

PROTECTED DATASET /* data set is RACF-protected */

VOLUME NOT ON SYSTEM

INVALID DATASET NAME, dsname

MISSING DATA SET NAME

UNAVAILABLE DATASET /* another user has an exclusive ENQ
on the specified data set */

The SYSDSN function can be used only in REXX execs that execute in the TSO/E
address space.

— Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
SYSDSN can be used only in environments that are integrated into TSO/E (see
page 273).

The dsname can be specified in any of the following ways:

¢ Fully-qualified data set name — The extra quotation marks prevent TSO/E from
adding your prefix to the data set name.

X = SYSDSN("'sysl.proj.new'")
or
X = SYSDSN('''sysl.proj.new''')

¢ Non fully-qualified data set name that follows the naming conventions — When
there is only one set of quotation marks or no quotation marks, TSO/E adds
your prefix to the data set name.

x = SYSDSN{'myrexx.exec"')
or
x = SYSDSN{myrexx.exec)

e Variable name that represents a fully-qualified or non fully-qualified data set
name — The variable name must not be enclosed in quotation marks because
quotation marks prevent variable substitution.

x = SYSDSN(variable)

If the specified data set has been migrated, SYSDSN attempts to recall it.

Chapter 4. Functions 127

Functions
Examples
1. To determine the availability of PROJ.EXEC(MEM1):
x = SYSDSN("proj.exec(meml)")
IF x = '0K' THEN
CALL routinel
ELSE
CALL routine2
2. To determine the availability of DEPT.REXX.EXEC:
s = SYSDSN("'dept.rexx.exec'")
say s
SYSVAR

returns information about MVS, TSO/E, and the current session, such as levels of
software available, your logon procedure, and your user ID. Th%: information
returned depends on the arg name value specified on the function call. The
arg_name values are divided into four categories: user information, terminal
information, exec information, and system information. The four categories are

described below.

User Information

SYSPREF prefix as defined in the user profile and as prefixed to non
fully-qualified data set names.

SYSPROC name of the logon procedure for the current session.

SYSUID user ID under which the current session is logged.

Terminal Information

SYSLTERM number of lines available on the terminal screen (returns O in the
background).

SYSWTERM width of the terminal screen.

Exec Information

SYSENV whether the exec is running in the foreground or the background
(returns FORE or BACK).

SYSICMD name by which the exec was implicitly invoked (returns a null if
the exec was invoked explicitly).

SYSISPF whether ISPF dialog manager services are available for the exec
(returns ACTIVE or NOT ACTIVE).

SYSNEST whether the exec was invoked from another pr;ogram, such as an
exec or CLIST (returns YES or NO). The invocation could be
implicit or explicit.

SYSPCMD name or abbreviation of the most recently executed command.

128 TSO/E Version 2 REXX Reference

SYSSCMD

Functions

name or abbreviation of the most recently executed subcommand.

System Information

SYSCPU

SYSHSM

SYSLRACF

SYSRACF

SYSSRV

SYSTSOE

number of seconds of central processing unit (CPU) time used
during the session in the form: seconds.hundreths-of-seconds

status of the Data Facility Hierarchical Storage Manager
(DFHSM). If DFHSM is not active, returns null. If level of
DFHSM is:

* Before Version 1 Release 3, returns AVAILABLE

¢ Version 1 Release 3 or later, returns a 4-digit number in the
following format:
2020 (DFHSM Version 2 Release 2.0)

|——modifi:a’rinn numher
release number
| A

version number

level of RACEF installed. If RACF is not installed, returns a null.
If RACF is installed, returns a 4-digit number in the following
format:

1080 (RACF Version 1 Release 8.0)

|~mudi fication number
retease number

version number

status of RACF (returns AVAILABLE, NOT AVAILABLE, or
NOT INSTALLED).

number of system resource manager (SRM) service units used
during the session.

level of TSO/E installed in the following format:
2010 (TSO/E Version 2 Release 1)

l——mmjifitafian number
release number

version number

The SYSVAR function can be used only in REXX execs that execute in the TSO/E

address space.

page 273).

— Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
SYSVAR can be used only in environments that are integrated into TSO/E (see

Chapter 4. Functions 129

Functions

Control Variables Not Supported by SYSVAR
The information that SYSVAR returns is similar to the information stored in CLIST
control variables. Some CLIST control variables do not apply to REXX or
duplicate other REXX functions and are therefore not supported by SYSVAR. The
following shows the CLIST control variables that are not supported by the SYSVAR
function. If there is an equivalent function in REXX, that function appears next to
the control variable.

SYSDATE --->
SYSDLM

SYSJDATE --->
SYSSDATE --->
SYSSTIME --->
SYSTIME --->

Examples

DATE (usa)

DATE (julian)

DATE (ordered)
SUBSTR(TIME (normal),1,5)
TIME (normal) or TIME()

1. To display whether the exec is running in the foreground or background:
SAY SYSVAR("sysenv") /* Displays FORE or BACK */

2. To find out the level of RACF installed:
Tevel = SYSVAR("syslracf") /* Returns RACF Tlevel */

3. To determine if the prefix is the same as the user ID:
IF SYSVAR("syspref") = SYSVAR("sysuid") THEN

ELSE

EXIT

130 TSO/E Version 2 REXX Reference

%

Parsing

Chapter 5. Parsing for PARSE, ARG, and PULL

PARSE, ARG, and PULL allow a selected string to be parsed (split up) into
variables, under the control of a template. The various mechanisms in the template
allow a string to be split up into words (delimited by blanks), or by explicit matching
of patterns, or by selecting absolute columns with numeric patterns — for example to
extract data from particular columns of a record read from a file.

This section first gives some informal examples of how the parsing template can be
used, then describes the mechanisms used.

Introduction

\\/ Parsing Words

Here are some examples that illustrate how parsing works.

The simplest form of a parsing template consists of a list of variable names. The
data being parsed is split up into words (characters delimited by blanks), and each
word from the data is assigned to a variable in sequence. The final variable is
treated differently in that it will bé assigned whatever is left of the original data and
may therefore contain several words, and possibly leading and trailing blanks.

Parse value ‘This is a sentence.' with vl v2 v3
/* is equivalent to: */
vl = "This"; v2 = "is"; v3 = "a sentence.”

In this example, vl would get the value This, v2 would get the value is, and v3
would get a sentence.

Leading blanks and trailing blanks are removed from each word in the string before

the word is assigned to a variable, except for the word or group of words assigned to
the last variable. Variables set in this manner (vl and v2 in the example above) will

never have leading or trailing blanks. But the last variable (v3 in the example) could
have both leading and trailing blanks, if extra blanks were specified before a or after
sentence.

For example,

Parse value 'This is a sentence.' with vl v2 v3
/* is equivalent to: */

vl = "This"; v2 = "is"; v3 =" a sentence."

In this example, v1 would get the value This, v2 would get the value is, and v3
would get a sentence.

In addition, if PARSE UPPER (or the ARG or PULL instruction) is used, the
whole string is translated into uppercase (i.e. a lowercase a-z to an uppercase A-Z)
before parsing begins.

Note that all variables mentioned in a template are always given a new value; if

there are fewer words in the data than variables in the template, the unused variables
will be set to null.

Chapter 5. Parsing for PARSE, ARG, and PULL 131

Parsing

Parsing Using String Patterns

A string can be used in a template to split up the data:

Parse value 'To be, or not to be?' with wl ',' w2

/* would cause the data to be scanned for the comma, */
/* then split at that point, thus: */
wl = "To be"; w2 =" or not to be?"

wl would be set to To be, and w2 is set to or not to be?. A string used in this way
is called a pattern. Note that the pattern itself (and only the pattern) is removed
from the data. In fact each section is treated in just the same way as the whole
string was in the previous example, and so either section can be split up into words.

Parse value 'To be, or not to be?' with wl ',' w2 w3 w4
/* is equivalent to: */
wl = "To be"; w2 = "or"; w3 = "not"; w4 = "to be?"

w2 and w3 get the values or and not, and w4 would get the remainder: to be?. If
UPPER were specified on the instruction, all the variables would be translated to
uppercase.

If the string in these examples did not contain a comma, the pattern would
effectively “match” the end of the string: so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to null.
Note that a null string will never be found; it will always match the end of the
string.

The pattern can be specified as a variable by putting the variable name in
parentheses. The following instructions therefore have the same effect as the last
example:

comma="',"’
Parse value 'To be, or not to be?' with wl (comma) w2 w3 wé

Parsing Using Numeric Patterns

The third type of parsing mechanism is the numeric pattern. This works in the same
way as the string pattern except that it specifies a column number. So:

Parse value 'Flying pigs have wings' with x1 5 x2
/* splits the data at column 5. Equivalent to */
x1 = "Flyi"; x2 = "ng pigs have wings"

splits the data at column 5, and x1 becomes Flyi and x2 starts at column 5 and
becomes ng pigs have wings.

More than one pattern is allowed, so for example:

Parse value 'Flying pigs have wings' with x1 5 x2 16 x3
/* splits the data at columns 5 and 10. Equivalent to */
x1 = "Flyi"; x2 = "ng pi"; x3 = "gs have wings"

splits the data at columns 5 and 10, and x2 becomes ng pi and x3 becomes gs have

wings.

The numbers can be relative to the last number used, so

Parse value 'Flying pigs have wings' with x1 5 x2 +5 x3

has exactly the same effect as the last example: here the +5 can be thought of as
specifying the length of the data to be assigned to x2.

132 TSO/E Version 2 REXX Reference

Parsing

String patterns and numeric patterns can be mixed (in effect the beginning of a string
pattern just specifies a variable column number) and some very powerful things can
be done with templates. The “Definition” section (below) describes in more detail
how the various mechanisms interact.

Parsing Arguments

Finally, it is possible to parse more than one string. For example, an internal
function can have more than one argument string. To get at each string in turn, you
just put a comma in the parsing template. For example, if the invocation of the
function “FRED” was:

fred('This is the first string',2)
the instruction

PARSE ARG first, second
/* is equivalent to */
first = "This is the first string"; second = "2"

The variable first contains the string “This is the first string”. The variable second
contains the string “2”. Between the commas you can put a normal template, with
patterns, etc., to do more complex parsing on each of the argument strings.

Definition

This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern specifications and
variable names. The pattern specifications and variable names are used strictly in
sequence from left to right, and are used once only. In practice, various simpler
forms are used in which either variable names or patterns can be omitted: we can
therefore have variable names without patterns in between, and patterns without
intervening variable names.

In general, the value assigned to a variable is that sequence of characters in the input
string between the point that is matched by the pattern on its left and the point that
is matched by the pattern on its right.

If the first item in a template is a variable, there is an implicit pattern on the left
that matches the start of the string, and similarly if the last item in a template is a
variable, there is an implicit pattern on the right that matches the end of the string.
Hence the simplest template consists of a single variable name which in this case is
assigned the entire input string.

Setting a variable during parsing is identical to setting a variable in an assignment.
It is therefore possible to set an entire collection of compound variables during
parsing. (See pages 19 and 20.)

The constructs that appear as patterns fall into two categories:

¢ Patterns that act by searching for a matching string
— Literal patterns
— Variable patterns.

¢ Numeric patterns that specify a position in the data
— Positional patterns
— Relative patterns.

Chapter 5. Parsing for PARSE, ARG, and PULL 133

Parsing

For the following examples, assume that the following string is being parsed (note
that all blanks are significant): N

'This is the data which, I think, is scanned.’'

Parsing with Literal Patterns
Literal patterns cause scanning of the input data string to find a sequence that
matches the value of the literal. Literals are expressed as a quoted string.

When the template:
wl ',' w2 ',' rest
is used to parse the example string, the result is:

wl =“This is the data which”
w2 =“1 think”
rest =“ 1is scanned.”

Here the string is parsed using a template that asks that each of the variables receive /‘\\
a value corresponding to a portion of the original string between commas; the
commas are given as quoted strings. Note that the patterns (in this example, the
commas) themselves are removed from the data being parsed.

A different parse would result with the template:
wl ',' w2 ', w3 ', rest

which would result in:

wl =“This is the data which” [
w2 =“1 think” g
w3 =% 1is scanned.”

rest =“” (null)

This illustrates an important rule. When a match for a pattern cannot be found in
the input string, it instead “matches” the end of the string. Thus, no match was
found for the third °,” in the template, and so w3 was assigned the rest of the string.
REST was assigned a null value because the pattern on its left had already reached
the end of the string.

A null pattern (a string of length 0) can be used to match the end of the data
explicitly. This is mainly useful with positional patterns (see below).

Note that all variables that appear in a template are assigned a new value.

If a variable is followed by another variable, a special action is taken. This is similar
to there being the pattern ’ (a single blank) between them, except that leading
blanks at the current position in the input data are skipped over before the search
for the next blank takes place. This means that the value assigned to the left-hand
variable will be the next word in the string and will have neither leading nor trailing
blanks.

134 TSOJE Version 2 REXX Reference

Parsing

Thus the template:
| / wl w2 w3 rest ','

results in:

wl = “This”

w2 = “is”

w3 = “the”

rest = “data which”

Note that the final variable (rest in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous word is
removed from the data.

Also observe that this example is not the same as specifying explicit blanks as
patterns, as the template:

wl ' '"w2'""w3 """ rest',’

Q_/ (in fact) results in:

wl = “This”

w2 =*is”

w3 =" (null)

rest = “the data which”

since the third pattern would match the third blank in the data.

Note: Quotes are not part of the value. They are shown here and in following
examples only to indicate leading or trailing blanks.

In general then, when a variable is followed by another variable, parsing of the input
by tokenization into words is implied.

Parsing with Variable Patterns
It is sometimes desirable to be able to specify a matching pattern by using a variable
instead of a literal string. This can be achieved by placing the name of the variable
to be used as the pattern in parentheses. The variable can be one that has been set
earlier in the parsing process, so for example:

_// input="L/look for/1 10"
parse var input verb 2 delim +1 string (delim) rest

will set:
verb = “L”
delim = /7
string = “look for”
rest = “110”

Chapter 5. Parsing for PARSE, ARG, and PULL 135

Parsing

Use of the Period as a Placeholder

The symbol consisting of a single period acts as a placeholder in a template. It has
exactly the same effect as a variable name, except that no variable is set. It is
especially useful as a “dummy variable” in a list of variables or to collect unwanted
information at the end of a string. Thus, when the template:

. word4 .
is used to parse the same example string:
'This is the data which, I think, 1is scanned.'
the result is:

word4d = "data"

That is, the fourth word (data) is extracted from the string and placed in the variable
word4.

Parsing with Positional Patterns and Relative Patterns

Positional patterns can be used to cause the parsing to occur on the basis of position
within the string, rather than on its contents. They take the form of signed or
unsigned whole numbers and can cause the matching operation to “back up” to an
earlier position in the data string. “Backing up” can only occur when positional
patterns are used.

Unsigned numbers in a template refer to a particular character column in the input.
For example, the template

sl 10 s2 20 s3
results in

sl =“This is ”
s2 = “the data w”
s3 = “hich, I think, is scanned.”

Here s1 is assigned characters from input through the ninth character, and s2

receives input characters 10 through 19. The final variable, s3, is assigned the
remainder of the input.

Signed numbers can be used as patterns to indicate movement relative to the
character position at which the previous pattern match occurred.

If a signed number is specified, the position used for the next match is calculated by
adding or subtracting the number given to the last matched position. The last
matched position is the position of the first character of the last match, whether
specified numerically or by a string. For example, the instructions:

a = '123456789'
parse var a 3 wl +3 w2 3 w3

result in:
wl = “345”
w2 = “6789”

w3 = “3456789”

The +3 in this case is equivalent to the absolute number 6 in the same position and
specifies the length of the data to be assigned to the variable wl.

136 TSO/E Version 2 REXX Reference

N

N

Parsing

This example also illustrates the effects of a pattern that implies movement to a
character position to the left of, or to the point where matching has already
occurred. Movement is from column 6, the starting position for w2, to column 3,

the starting position for w3. The variable on the left is assigned characters through
the end of the input, and the variable on the right is, as usual, assigned characters
starting at the position dictated by the pattern.

The following PARSE instruction assigns the same values to wi, w2, and w3 as
above:

a = '123456789'
parse var a 3 wl +3 w2 -3 w3

3 specifies the starting position for wl, column 3. +3 tells you to move 3 positions to
the right of the starting position of wl. This is the starting position of w2, column 6.
-3 tells you to move 3 positions to the left of the starting position of w2. This is the
starting position of w3, column 3.

A useful effect of this is that multiple assignments can be made:
parse var x 1 wl 1 w2 1 w3
results in assigning the (entire) value of x to wl, w2, and w3. (The first “1” here could

be omitted as it is effectively the same as the implicit starting pattern described at
the beginning of this section.)

If a positional pattern specifies a column that is greater than the length of the data,
it is equivalent to specifying the end of the data (that is, no padding takes place).
Similarly, if a pattern specifies a column to the left of the first column of the data,
this is not an error but instead is taken to specify the first column of the data.

Any pattern match sets the “last position” in a string to which a relative positional
pattern can refer. The “last position” set by a literal pattern is the position at which
the match occurred; that is, the position in the data of the first character in the
pattern. The first character in this case is not removed from the parsed data. Thus
the template:

-l x +1

will:
1. Find the first comma in the input (or the end of the string if there is no comma).
2. Back up one position.

3. Assign one character (the character immediately preceding the comma or end of
string) to the variable x.

A possible application of this is looking for abbreviations in a string. Thus the
instruction:

/* Ensure options have leading blank and are uppercase */
parse upper value ' 'opts with ' PR' +1 prword ' '

will set the variable prword to the first word in opts that starts with PR or will set it
to null if no such word exists. Note that +0 is a valid positional pattern.

Chapter 5. Parsing for PARSE, ARG, and PULL 137

Parsing

When a literal pattern is followed by a signed(+ /-) positional pattern the literal
string WILL NOT BE REMOVED from the data being parsed. Instead it will be
parsed into the first variable following the literal pattern. Thus the following two
cases:

a='This is the data which, I think, is scanned.'

CASE 1: parse var a 'which' +5y
CASE 2: parse var a 'which' x +5 y

would result in:

CASE 1: y =, I think is scanned”
CASE 2: x = “which”

13

y =%, I think is scanned.”

Note: If a number in a template is preceded by a “+” or a “-,” this is taken to be a
signed positional pattern. There can be blanks between the sign and the number,
since initial scanning removes blanks adjacent to special characters.

Parsing Multiple Strings
A parsing template can parse multiple strings. This is effected by using the special
pattern comma (,) in the template. Fach comma is an instruction to the parser to
move on to the next string. Other patterns and variables can be specified for each
string parsed, as usual. The only time multiple strings are available is in the ARG
(or PARSE ARG) instruction. When an internal function or subroutine is invoked
it can have several argument strings, and a comma is used to access each in turn.
Thus the template:

wordl stringl, string2, num

would put the first word of the first argument string into wordl, the rest of that
string into stringl, and the next two strings into string2 and num. If insufficient
strings were specified in the invocation, unused variables are set to null. Similarly, if
only one string was available (as on the other PARSE variations), then any variables
that follow a comma pattern are set to null.

138 TSO/E Version 2 REXX Reference

)

Numerics and Arithmetic

Chapter 6. Numerics and Arithmetic

REXX defines the usual arithmetic operations (addition, subtraction, multiplication,
and division) in as “natural” a way as possible. What this really means is the rules
followed are those that are conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the
rules used vary considerably (indeed much more than generally appreciated) from
person to person and from application to application and in ways that are not

always predictable. The arithmetic described here is therefore a compromise that
(although not the simplest) should provide acceptable results in most applications.

Introduction

Numbers (that is, character strings used as input to REXX arithmetic operations) can
be expressed very flexibly. Leading and trailing blanks are permitted, and
exponential notation can be used. Some valid numbers are:

12 /* an integer */
-76 /* signed integer */
12.76 /* decimal places */

"+ 0.003 /* blanks around the sign etc */
17. /* same as "17" */

.5 /* same as "0.5" */

4E9 /* exponential notation */
0.73e-7 /* exponential notation */

(Exponential notation means that the number includes a power of ten following an E
that indicates how the decimal point should be shifted. Thus 4E9 above is just a
short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.)

The arithmetic operators include addition (+), subtraction (-), multiplication (*),
power (**), division (/), and prefix (+ or -). In addition, there are two further
division operators: integer divide (%) that divides and returns the integer part, and
remainder (//) that divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the Definition
section for full details):

e Results will be calculated with up to some maximum number of significant digits
(the default is 9, but this can be altered with the NUMERIC DIGITS
instruction to give whatever accuracy you need). Thus if a result requires more
than 9 digits, it would normally be rounded to 9 digits. For example, the
division of 2 by 3 would result in 0.666666667 (it would require an infinite
number of digits for perfect accuracy).

* Except for division and power, trailing zeros are preserved (this is in contrast to
most popular calculators, which remove all trailing zeros). So, for example:

2.40 + 1 -> 3.40
2.40 - 2 -> 0.40
2.5 * 72 -> 5.0

This behavior is desirable for most calculations (especially financial calculations).

Chapter 6. Numerics and Arithmetic 139

Numerics and Arithmetic

If necessary, trailing zeros can be easily removed with the STRIP function (see
page 100), or by division by 1.

¢ A zero result is always expressed as the single digit 0.

¢ Exponential form is used for a result depending on the setting of NUMERIC
DIGITS (the default is 9). If the number of places needed before the decimal
point exceeds the NUMERIC DIGITS setting, or the number of places after the
point exceeds twice the NUMERIC DIGITS setting, the number will be
expressed in exponential notation:

le6 * leb -> 1E+12
/* not 1000000000000 */
1/3E106 -> 3.33333333E-11
/* not 0.0000000000333333333 */

Definition

Numbers

Precision

A precise definition of the arithmetic facilities of the REXX language is given here.

A number in REXX is a character string that includes one or more decimal digits,
with an optional decimal point. The decimal point may be embedded in the number,
or may be prefixed or suffixed to it. The group of digits (and optional decimal
point) constructed this way can have leading or trailing blanks and an optional sign
(+ or -) that must come before any digits or decimal point. The sign can also have
leading or trailing blanks.

Therefore, number is definedvas:

> digits >
Lb]anks—l L—s1'gn digits.digits— l—b]anks——I
blanks .

digits
igits.

Where:
sign is either '+' or '-!
blanks are one or more spaces
digits are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

The maximum number of significant digits that can result from an operation is
controlled by the instruction:

»—NUMERIC DIGITS

>

|—expr‘ession—-l

expression is evaluated and must result in a positive whole number. This defines the
precision (number of significant digits) to which calculations are carried out. Results
are rounded to that precision, if necessary.

If expression is not specified in this instruction, or if no NUMERIC DIGITS
instruction has been executed since the start of a program, the default precision is
used. The REXX standard for the default precision is 9.

140 TSO/E Version 2 REXX Reference

M

Numerics and Arithmetic

Note that NUMERIC DIGITS can set values below the default of nine. Small
/ \ values, however, should be used with care — the loss of precision and rounding thus
/ requested will affect all REXX computations, including (for example) the
computation of new values for the control variable in DO loops.

Arithmetic Operators
REXX arithmetic is affected by the operators + , -, *,/, %, //, and ** (add,
subtract, multiply, divide, integer divide, remainder, and power) which all act on two
terms, together with the prefix plus and minus operators which both act on a single
term. This section describes the way in which these operations are carried out.

Before every arithmetic operation, the term or terms being operated upon have

leading zeros removed (noting the position of any decimal point, and leaving just

one zero if all the digits in the number are zeros) and are then truncated to DIGITS

+ 1 significant digits, one extra “guard” digit (if necessary) before being used in the

computation. The operation is then carried out under up to double that precision,

. as described under the individual operations below. When the operation is

\\/J completed, the result is rounded if necessary to the precision specified by the
NUMERIC DIGITS instruction.

Every operation is carried out in such a way that no errors will be introduced except
during the final rounding of the result to the specified significance. (That is, input
data is first truncated to the appropriate significance (NUMERIC DIGITS+1)
before being used in the computation, and then divisions and multiplications are
carried out to double that precision, as needed.)

{9 Rounding is done in the “traditional” manner, in that the digit to the right of the

N least significant digit in the result (the “guard digit”) is inspected and values of 5
through 9 are rounded up, and values of 0 through 4 are rounded down. Even/odd
rounding would require the ability to calculate to arbitrary precision at all times and
is therefore not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point, otherwise there would

be no digit preceding it. Significant trailing zeros are retained for addition,

subtraction, and multiplication, according to the rules given below, except that a

result of zero is always expressed as the single digit 0. For division, trailing zeros are
K_/; removed after rounding.

The FORMAT built-in function is supplied (see page 90) to allow a number to be
represented in a particular format if the standard result provided does not meet your
requirements.

The precise rules for the operations are described below, but the following examples:
illustrate the main implications of the rules:

Arithmetic Operation Rules — Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on
numbers as follows. All numbers have insignificant leading zeros removed before
being used in computation.

Chapter 6. Numerics and Arithmetic 141

Numerics and Arithmetic

Addition and Subtraction

Multiplication

Division

If either number is zero, the other number, rounded to NUMERIC DIGITS digits if
necessary, is used as the result (with sign adjustment as appropriate). Otherwise, the
two numbers are extended on the right and left as necessary up to a total maximum
of DIGITS + 1 digits (the number with the smaller absolute value may therefore
lose some or all of its digits on the right) and are then added or subtracted as
appropriate.

Example:

XXX XXX+ YY.yyyyy

becomes: XXX . Xxx00
+ Oyy.yyyyy

22Z2.227272Z

The result is then rounded to the current setting of NUMERIC DIGITS if necessary
(taking into account any extra 'carry' digit on the left after addition, but otherwise
counting from the position corresponding to the most significant digit of the terms
being added or subtracted), and any insignificant leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations
“+number” and “-number” are calculated as “0+number” and “0-number”,
respectively.

The numbers are multiplied together (“long multiplication) resulting in a number
that may be as long as the sum of the lengths of the two operands.

Example:

XXX XXX * yy.yyyyy

becomes: zzzzz.zzzzz77Z

The result is then rounded, counting from the first significant digit of the result, to
the current setting of NUMERIC DIGITS.

For the division:
YYY [/ XXXXX

the following steps are taken: First the number yyy is extended with zeros on the
right until it is larger than the number xxxxx (with note being taken of the change in
the power of ten that this implies). Thus in this example, yyy might become yyy00.
Traditional long division then takes place, which might be written:

72727

XXXXX l yyyQo

The length of the result (zzzz) is such that the rightmost z will be at least as far right
as the rightmost digit of the (extended) y number in the example. During the
division, the y number will be extended further as necessary, and the z number may
increase up to NUMERIC DIGITS +1 digits at which point the division stops and
the result is rounded. Following completion of the division (and rounding if
necessary), insignificant trailing zeros are removed.

142 TSO/E Version 2 REXX Reference

Numerics and Arithmetic

Example:
/* With: Numeric digits 5 */
12+7.00 -> 19.00

1.3-1.07 -> 0.23
1.3-2.07 -> -0.77

1.20%3 -> 3.60
7*3 -> 21
0.9%0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1

8.0/2 -> 4
Notes:

1. With all the basic operators, the position of the decimal point in the terms being
operated upon is arbitrary. The operations may be carried out as integer
operations with the exponent being calculated and applied afterwards. Therefore
the significant digits of a result are not in any way dependent on the position of
the decimal point in either of the terms involved in the operation.

2. In the above examples, the position of the decimal point is arbitrary. In fact the
operations may be carried out as integer operations with the exponent being
calculated and applied after. Therefore none of the operations are in any way
dependent on the position of the decimal point and hence results are completely
independent of the number of decimal places.

Arithmetic Operators — Additional Operators

Power

The power (**), integer divide (%), and remainder (//) operators rules are as follows:

The ** (power) operator raises a number to a whole power, which may be positive or
negative. If negative, the absolute value of the power is used, and then the result is
inverted (divided into 1). For calculating the result, the number is effectively
multiplied by itself for the number of times expressed by the power, and finally
trailing zeros are removed (as though the result were divided by one). In practice
(see note below for rationale), the result is calculated by the process of left-to-right
binary reduction. For x**n: n is converted to binary, and a temporary accumulator
isset to 1. If n = 0 the calculation is complete. Thus, x**0 = 1 for all x, including
0**(). Otherwise each bit (starting at the first nonzero bit) is inspected from left to
right. If the current bit is 1, the accumulator is multiplied by x. If all bits have now
been inspected the calculation is complete, otherwise the accumulator is squared and
the next bit is inspected for multiplication. When the calculation is complete, the
temporary result is ready for division by or into 1 to provide the final answer. The
multiplications and division are done under the normal REXX arithmetic
combination rules, detailed below, with the initial calculation (the multiplications)
using precision of DIGITS + L + 1 digits (where L is the length in digits of the
whole number n) and the final division using the usual NUMERIC DIGITS digits.
The precision specified for the intermediate calculations ensures that the final result
will differ by at most 1, in the least significant position, from the “true” result. Half
of this maximum error comes from the intermediate calculation, and half from the
final rounding.

Chapter 6. Numerics and Arithmetic 143

Numerics and Arithmetic

Integer Division

Remainder

The % (integer divide) operator divides two numbers and returns the integer part of
the result, which will not be rounded unless the integer has more digits than the
current DIGITS setting. The result returned is defined to be that which would result
from repeatedly subtracting the divisor from the dividend while the dividend is larger
than the divisor. During this subtraction, the absolute values of both the dividend
and the divisor are used: the sign of the final result is the same as that which would
result if normal division were used. Note that this operator may not give the same
result as truncating normal division (which could be affected by rounding).

The result returned will have no fractional part (that is, no decimal point or zeros
following it). If the result cannot be expressed simply by digits within the precision
set by the NUMERIC DIGITS instruction, the operation is in error and will fail.
For example, 10000000000%3 requires 10 digits for the result (3333333333) and
would therefore fail if NUMERIC DIGITS 9 were in effect.

The // (remainder) operator will return the remainder from integer division, and is
defined as being the residue of the dividend after the operation of calculating integer
division as just described. The sign of the remainder, if non-zero, is the same as that
of the original dividend.

This operation will fail under the same conditions as integer division (that is, if
integer division on the same two terms would fail, the remainder cannot be
calculated). Thus:

/* Again with: Numeric digits 5 */

2%*3 -> 8
2%*-3 -> 0.125
1.7%*8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
16//0.3 -> 0.1
Notes:

1. A particular algorithm for calculating powers is used, since it is efficient (though
not optimal) and considerably reduces the number of actual multiplications
performed. It therefore gives better performance and can give higher accuracy
than the simpler definition of repeated multiplication. Since results may differ
from those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be
calculated as a by-product of the standard division operation. The division
process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

144 TSOJE Version 2 REXX Reference

Numerics and Arithmetic

Comparison Operators

The comparison operators are listed on page 14. Any of these can be used for
comparing numeric strings. However, ==, \==, == >> \>> —>>,

< <,\< <, and 71 < <, should not be used to compare numeric values because
leading/trailing blanks and leading zeroes are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers
(calculating the difference) and then comparing the result with 0. For example, the
operation:

A?B
where ? is any numeric comparison operator, is identical to:
(A -B) 20

It is therefore the difference between two numbers, when subtracted under REXX
subtraction rules, that determines their equality.

Comparison of two numbers is affected by a quantity called “fuzz,” which is set by
the instruction:

»»—NUMERIC FUZZ L-e _| ;>
Xpression

Here expression must result in a whole number that is zero or positive. This FUZZ
number controls the amount by which two numbers may differ before being
considered equal for the purpose of comparison. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value for each comparison operation. That is, the numbers are subtracted under a
precision of DIGITS-FUZZ digits during the comparison. Clearly FUZZ must be
less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison will be carried out to 8
significant digits, just as though NUMERIC DIGITS 8 had been put in effect for
the duration of the operation.

Example:

Numeric digits 5

Numeric fuzz O

say 4.9999 =5 /* would display 0 */
say 4.9999 <5 /* would display 1 */
Numeric fuzz 1

say 4.9999 =5 /* would display 1 */
say 4.9999 <5 /* would display 0 */

Chapter 6. Numerics and Arithmetic 145

Numerics and Arithmetic

Exponential Notation
The description above describes “pure” numbers, in the sense that the character
strings that describe numbers could be very long. For example:

10000000000 * 10000000000
would give 160000000000000006000

and

.00000000001 * .00000000001
would give 0.000000000000000000001

For both large and small numbers some form of exponential notation is useful, both
to make numbers more readable, and to reduce execution time storage requirements.
In addition, exponential notation is used whenever the “simple” form would give
misleading information. For example:

numeric digits 5
say 54321*54321

would display 2950800000 if long form were to be used. This is clearly misleading,
and so the result is expressed as 2.9508E +9 instead.

The definition of “numbers” (see above) is therefore extended as (note that blanks
are shown below only for readability):

A

——digits.digits E I_ _I digits
—.digits———— sign

——digits.

The integer following the E represents a power of ten that is to be applied to the
number; and the E can be in uppercase or lowercase.

Here are some examples:

12E11 = 1260000000000
12E-5 = 0.00012
-12e4 = -120000

The above numbers are valid for input data at all times. The results of calculations
will be returned in either conventional or exponential form depending on the setting
of DIGITS. If the number of places needed before the decimal point exceeds
DIGITS, or the number of places after the point exceeds twice DIGITS, exponential
form will be used. The exponential form generated by REXX always has a sign
following the E in order to improve readability. An exponential part of E+0 will
never be generated.

Numbers can be explicitly converted to exponential form, or forced to be displayed
in “long” form, by using the FORMAT built-in function, described on page 90.

The user can control whether Scientific or Engineering notation is to be used by
using the instruction:

»—NUMERIC FORM HEES
—SCIENTIFIC
—ENGINEERING

'—-L———_r—expressi on—
VALUE

The default setting of FORM is SCIENTIFIC.

146 TSOJE Version 2 REXX Reference

Numerics and Arithmetic

Scientific notation adjusts the power of ten so there is a single nonzero digit to the
left of the decimal point. Engineering notation causes powers of ten to always be

expressed as a multiple of 3: the integer part may therefore range from 1 through
999.

/* after the instruction */
Numeric form scientific

123.45 * lell -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * lell -> 12.345E+12

Numeric Information

Whole Numbers

The current settings of the NUMERIC options can be found by using the built-in
functions DIGITS, FORM, and FUZZ. These functions return the current settings
of NUMERIC DIGITS, NUMERIC FORM, and NUMERIC FUZZ, respectively.

Within the set of numbers understood by REXX it is useful to distinguish the subset
defined as whole numbers. A whole number in REXX is a number that has a decimal
part which is all zeros (or that has no decimal part). In addition, it must be possible
to express its integer part simply as digits within the precision set by the NUMERIC
DIGITS instruction. Larger numbers would be expressed by REXX in exponential
notation, after rounding, and hence could no longer be safely described or used as
“whole numbers”.

Numbers Used Directly by REXX

As discussed, numbers are always rounded (if necessary) according to the setting of
NUMERIC DIGITS during any arithmetic operation. Similarly, when a number
(which has not necessarily been involved in an arithmetic operation) is used directly
by REXX, the same rounding is also applied.

In the following cases, the number used must be a whole number and an
implementation restriction on the largest number that can be used may apply:

¢ The positional patterns in parsing templates

¢ The power value (right hand operand) of the power operator

¢ The values of exprr and exprf in the DO instruction

¢ The values given for DIGITS or FUZZ in the NUMERIC instruction

¢ Any number used in the option in the TRACE instruction.

Chapter 6. Numerics and Arithmetic 147

Numerics and Arithmetic

Errors
Two types of errors may occur during arithmetic:

e Overflow/Underflow

This error will occur if the exponential part of a result would exceed the range
that may be handled by the language processor, when the result is formatted
according to the current settings of NUMERIC DIGITS and NUMERIC
FORM. The language defines a minimum capability for the exponential part,
namely the largest number that can be expressed as an exact integer in default
precision. Since the default precision is 9, implementations must support
exponents at least as large as 999999999.

Since this allows for (very) large exponents, overflow or underflow is treated as a
terminating “syntax” error.

* Storage exception

Storage is needed for calculations and intermediate results, and on occasion an
arithmetic operation may fail due to lack of storage. This is considered a
terminating error as usual, rather than an arithmetical error.

148 TSO/E Version 2 REXX Reference

Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps

CALL and SIGNAL modify the flow of execution in a REXX program by using
condition traps. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see “CALL” on page 32 and
“SIGNAL” on page 62).

CALLj—[gFP—-condi tion I >
SIGNAL N——-condition
INAME—trapname—]

where condition and trapname are single symbols which are taken as constants.

Following one of these instructions, a condition trap is set to either ON (enabled) or
OFF (disabled). The initial setting for all condition traps is OFF.

If a condition trap is enabled and the corresponding event occurs, control passes to
the routine or label trapname. SIGNAL or CALL is used, depending on whether the
most recent trap for the condition was set using SIGNAL ON or CALL ON
respectively.

Note: The use of CALL ON and CALL OFF to enable and disable condition traps
and the use of SIGNAL ON and SIGNAL OFF with NAME trapname supports
APAR OY17590. See page 425 for more information.

The conditions and their corresponding events, which can be trapped are:

ERROR
raised if any host command indicates an error condition upon return. It is also
raised if any command indicates failure and CALL ON FAILURE or SIGNAL
ON FAILURE is not set.

In TSO/E, SIGNAL ON ERROR will trap all positive return codes, and
negative return codes only if CALL ON FAILURE and SIGNAL ON
FAILURE are not set.

Note: In TSOJ/E, a host command is not only a TSO/E command processor.
See “Host Commands and Host Command Environments” on page 23 for a
definition of host commands.

FAILURE
raised if any host command indicates a failure condition upon return.

In TSO/E, SIGNAL ON FAILURE will trap all negative return codes from
commands.

Chapter 7. Conditions and Condition Traps 149

Conditions and Condition Traps

HALT
raised if an external attempt is made to interrupt execution of the program.
For example, the TSO/E REXX immediate command HI (Halt Interpretation)
or EXECUTIL HI command will create a halt condition. Refer to “Interrupting
Execution and Controlling Tracing” on page 206.

NOVALUE
raised if an uninitialized variable is used:

e As a term in an expression
¢ As the name following the VAR subkeyword of the PARSE instruction
¢ As a unassigned variable pattern in a parsing template.

This condition may only be specified for SIGNAL ON.

SYNTAX
raised if an interpretation error is detected. This condition may only be specified
for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON or
OFF, and any trap name) of that condition trap. Thus, a SIGNAL ON HALT
replaces any current CALL ON HALT, and so on.

Action Taken When a Condition is Trapped
When a condition trap is currently enabled (ON has been specified), the trap is in
effect. So, when the corresponding event occurs, instead of the usual action at that
point, execution of the current instruction immediately stops. A CALL trapname or
SIGNAL trapname is then automatically executed. The trap name can be specified
following the NAME subkeyword of the CALL ON or SIGNAL ON instruction
that enabled the condition trap. If no explicit trap name is given, then the name of
the condition itself (ERROR, FAILURE, HALT, NOVALUE, or SYNTAX) is used
as trapname. This (if not trapped itself) causes control to pass to the first label in
the program that matches the condition trap name.

The sequence of events, once a condition has been trapped, varies depending on
whether a SIGNAL or CALL is executed:

e If the action taken is a SIGNAL, execution of the current instruction ceases
immediately, the condition is disabled (set to OFF), and the SIGNAL takes
place in exactly the same way as usual (see page 62).

If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it once the
label is reached. For example, if SIGNAL ON SYNTAX is enabled when a
SYNTAX condition occurs, then if the SIGNAL ON SYNTAX label name is
not found a normal syntax error termination will occur.

o If the action taken is a CALL, the CALL is made in the usual way (see page 32)
except that the special variable RESULT is not affected by the call. If the
routine should RETURN any data, then the returned character string is ignored.

Note that CALL ON can only occur at clause boundaries. Because these
conditions (ERROR, FAILURE, and HALT) can arise during execution of an
INTERPRET instruction, execution of the INTERPRET may be interrupted
and later resumed if CALL ON was used.

150 TSO/E Version 2 REXX Reference

Conditions and Condition Traps

Before the CALL is made, the condition trap is put into a delayed state. This
state persists until the RETURN from the CALL, or until an explicit CALL (or
SIGNAL) ON (or OFF) is made for the condition. This delayed state prevents
a premature condition trap at the start of the routine called to process a
condition trap. When a condition trap is in the delayed state it remains enabled,
but if the condition is trapped again any action (including the updating of the
condition information) will be delayed until one of the following events:

1. A CALL ON or SIGNAL ON, for the delayed condition, is executed. In
this case a CALL or SIGNAL will take piace immediately after the new
CALL ON or SIGNAL ON instruction has been executed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is executed. In
this case the condition trap is disabled and the default action for the
condition will occur at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is
no longer delayed and the subroutine will be called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is,
the flow is not affected by the CALL).

Notes:

1. In all cases, the condition will be raised (and the current instruction
terminated) immediately upon detection of the error. Therefore, the
instruction during which an event occurs may be only partly executed. For
example, if SYNTAX is raised during the evaluation of the expression in an
assignment, the assignment will not take place. Note that ERROR,
FAILURE, and HALT can only occur at clause boundaries, but could arise
in the middle of an INTERPRET instruction.

2. While user input is executed during interactive tracing, all conditions are set
OFF so that unexpected transfer of control does not occur should (for
example) the user accidentally use an uninitialized variable while SIGNAL
ON NOVALUE is active. For the same reason, a syntax error during
interactive tracing will not cause exit from the program, but is trapped
specially and then ignored after a message is given.

3. Certain execution errors are detected by the host interface either before
execution of the program starts or after the program has exited. These
errors cannot be trapped by SIGNAL ON SYNTAX.

Note that labels are clauses consisting of a single symbol followed by a colon.
-Any number of successive clauses can be labels; therefore, multiple labels are
allowed before another type of clause.

Chapter 7. Conditions and Condition Traps 151

Conditions and Condition l'raps

Condition Information
When any condition is trapped and causes a SIGNAL (or CALL), this becomes the
current trapped condition, and certain condition information associated with it is
recorded. This information can be inspected by using the CONDITION built-in
function (see “CONDITION” on page 82).

Note: The CONDITION built-in function supports APAR OY17590 (see page 425).

The condition information includes:
e The name of the current trapped condition
* Any descriptive string associated with that condition
¢ The instruction executed as a result of the condition trap (CALL or SIGNAL)

* The status of the trapped condition.

The descriptive string varies, depending on the condition trapped. In the case of
SIGNAL, the descriptive string that is passed to the external environment as
command results in one of the following:

ERROR The string that was processed and resulted in the error condition.
FAILURE The string that was processed and resulted in the failure condition.

HALT Any string associated with the halt request. This can be the null string
if no string was provided.

NOVALUE The derived name of the variable whose attempted reference caused the
NOVALUE condition.

SYNTAX Any string associated with the error by the language processor. This
can be the null string if no specific string is provided. Note that the
special variable RC and SIGL provide information on the nature and
position of the processing error.

The current condition information is replaced when control is passed to a label as
the result of a condition trap (CALL ON or SIGNAL ON). Condition information
is saved and restored across subroutine or function calls, including one due to a
CALL ON trap. A routine invoked by a CALL ON, therefore, can access the
appropriate condition information. Any previous condition information is still
available after the routine returns.

The Special Variable SIGL

When any transfer of control due to a SIGNAL (or CALL) takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX when the number of the
line in error can be used, for example, to control an editor. Typically, code
following the SYNTAX label may PARSE SOURCE to find the source of the data,
then invoke an editor to edit the source file positioned at the line in error. Note that
in this case the program has to be reinvoked before any changes made in the editor
can take effect.

152 TSO/E Version 2 REXX Reference

Conditions and Condition Traps

Alternatively, SIGL can be used to help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
errormsg='REXX error' rc 'in line' sigl':' errortext(rc)
say errormsg
say sourceline(sigl)
trace '?r'; nop

This code first displays the error code, line number, and message text. It then
displays the line in error, and finally drops into debug mode to let you to inspect the
values of the variables used at the line in error.

The Special Variable RC

For ERROR and FAILURE, the REXX special variable RC is set to the command
return code error number before control is transferred to the condition label. For
SYNTAX, RC is set to the syntax error number.

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF can be used in a
subroutine without affecting the conditions set up by the caller. See “CALL” on
page 32 for more details.

Chapter 7. Conditions and Condition Traps 153

154 TSOJE Version 2 REXX Reference

Using REXX in Different Address szices

Chapter 8. Using REXX in Different Address Spaces

TSO/E Version 2 provides support for the REXX programming language in any
MYVS address space. That is, you can execute REXX execs in TSO/E and
non-TSO/E address spaces. The REXX language consists of keyword instructions
and built-in functions that you use in a REXX exec. The keyword instructions and
built-in functions are described in Chapter 3, “Keyword Instructions” and

Chapter 4, “Functions,” respectively. TSO/E also provides TSO/E functions and
REXX commands you can use in a REXX exec. The TSO/E functions are
LISTDSI, MSG, OUTTRAP, PROMPT, STORAGE, SYSDSN, and SYSVAR.
They are described in “TSO/E Functions” on page 110. The TSO/E REXX
commands provide additional services that let you:

¢ Control I/O processing to and from data sets

¢ Perform data stack requests

¢ Change characteristics that control how a REXX exec executes

¢ Check for the existence of a specific host command environment.

Chapter 10, “TSQ/E REXX Commands” describes the commands.

In an exec, you can use any of the REXX language keyword instructions and
built-in functions regardless of whether the exec will execute in a TSO/E or
non-TSO/E address space. If the exec will execute in the TSO/E address space, there
are several TSO/E functions, commands, and services you can use that are not
available for execs that execute in non-TSO/E address spaces. The following topics
in this chapter describe writing execs for different address spaces:

* “Writing Execs That Execute in Non-TSO/E Address Spaces” on page 157
¢ “Writing Execs That Execute in the TSO/E Address Space” on page 159.

TSO/E REXX is the implementation of the SAA Procedures Language on the MVS
system. By using the keyword instructions and functions that are defined for the
SAA Procedures Language, you can write REXX programs that will execute in any
of the supported SAA environments, such as VM/SP (CMS). See SA44 Common
Programming Interface Procedures Language Reference for more information.

Additional TSO/E REXX Support

In addition to the keyword instructions, built-in functions, and TSO/E functions and
REXX commands, TSO/E Version 2 provides programming services you can use to
interface with REXX and the language processor and customizing services that let
you customize REXX processing and how system services are accessed and used.

TSO/E REXX Programming Services
The programming services TSO/E provides in addition to REXX language support
are:

IRXEXCOM - Variable Access
The variable access routine IRXEXCOM lets you access and manipulate the
current generation of REXX variables. Unauthorized commands and programs
can call IRXEXCOM to inspect, set, and drop REXX variables. “Variable
Access IRXEXCOM)” on page 240 describes IRXEXCOM.

Chapter 8. Using REXX in Different Address Spaces 155

Using REXX in Different Address Spaces

IRXSUBCM - Maintain Host Command Environments
The IRXSUBCM routine is a programming interface to the host command
environment table. The table contains the names of the environments and
routines that handle the execution of host commands. You can use
IRXSUBCM to add, change, and delete entries in the table and to query entries.
“Maintain Entries in the Host Command Environment Table IRXSUBCM)” on
page 247 describes the IRXSUBCM routine.

IRXIC - Trace and Execution Control
The trace and execution control routine IRXIC is an interface to the immediate
commands HI, HT, RT, TS, and TE. A program can call IRXIC in order to
use one of these commands to affect the execution and tracing of REXX execs.
“Trace and Execution Control Routine (IRXIC)” on page 251 describes the
routine.

IRXRLT - Get Result
The IRXRLT routine is known as the get result routine. You can use IRXRLT
to obtain a larger area of storage to store the result from a REXX exec. You
use IRXRLT if you either call the IRXEXEC routine to execute an exec or if
you write functions or subroutines that are in a function package. IRXEXEC
and function packages are described below. “The IRXRLT (Get Result)
Routine” on page 253 describes the IRXRLT routine.

IRXJCL and IRXEXEC - Exec Processing
You can use the IRXJCL and IRXEXEC routines to execute a REXX exec in
any address space. The two routines are programming interfaces to the REXX
language processor. You can execute an exec in MVS batch by specifying
IRXJCL as the program name on the JCL EXEC statement. You can call either
IRXJCL or IRXEXEC from an application program, including a REXX exec, in
any address space to execute a REXX exec. “IRXJCL and IRXEXEC
Routines” on page 214 describes the IRXJCL and IRXEXEC programming
interfaces.

Function Packages
You can write your own external functions and subroutines to extend the
programming capabilities of the REXX language. You can also group
frequently used external functions and subroutines into a package, which allows
for quick access to the packaged functions and subroutines. If you write
external functions or subroutines that you want to include in a function package,
you must write them in a programming language that supports the system
interfaces for function packages. “Function Packages” on page 229 describes
function packages in more detail and the system interfaces.

TSO/E REXX Customizing Services
In addition to the programming support to write REXX execs and programming
services that allow you to interface with REXX and the language processor, TSO/E
also provides services you can use to customize REXX processing. Many services let
you change how an exec is processed and how the language processor interfaces with
the system to access and use system services, such as storage and I/O.
Customization services for REXX processing include the following:

Environment Characteristics
TSO/E provides various routines and services that allow you to customize the
environment in which the language processor executes a REXX exec. This
environment is known as the language processor environment and defines various
characteristics relating to how execs are processed and how system services are
accessed and used. TSO/E provides default environment characteristics that you

156 TSO/E Version 2 REXX Reference

Using REXX in Different Address Spaces

can change and also provides a routine you can use to define your own
environment.

Replaceable Routines
When a REXX exec executes, various system services are used, such as services
for loading and freeing an exec, I/O, obtaining and freeing storage, and data
stack requests. TSO/E provides routines that handle these types of system
services. The routines are known as replaceable routines because you can
provide your own routine that either replaces the system routine or that
performs pre-processing and then calls the system routine.

Exit Routines
You can provide exit routines to customize various aspects of REXX processing.

Information about the different ways in which you can customize REXX processing
are described in chapters 13 - 16.

Writing Execs That Execute in Non-TSO/E Address Spaces

As described above, you can execute a REXX exec in any MVS address space (both
TSO/E and non-TSO/E). Execs that execute in TSO/E can use some TSO/E
functions, commands, and services that are not available to execs that execute in a
non-TSO/E address space. “Writing Execs That Execute in the TSO/E Address
Space” on page 159 describes writing execs for TSO/E.

If you write a REXX exec that will execute in a non-TSO/E address space, you can

use the following instructions, functions, commands, and services:

¢ All REXX keyword instructions that are described in Chapter 3, “Keyword
Instructions”

¢ All REXX built-in functions that are described in Chapter 4, “Functions.”
e The TSO/E external function STORAGE .

You can use the STORAGE function to obtain information from or change
information in a specified address. For more information, see page 126.

¢ The following TSO/E REXX commands:
— MAKEBUF - to create a buffer on the data stack

— DROPBUF - to drop (discard) a buffer that was previously created on the
data stack with the MAKEBUF command

— NEWSTACK - to create a new data stack and effectively isolate the current
data stack that the exec is using

— DELSTACK - to delete the most current data stack that was created with
the NEWSTACK command

— QBUF - to query how many buffers are currently on the active data stack

— QELEM - to query how many elements are on the data stack above the
most recently created buffer

— QSTACK - to query the number of data stacks that are currently in
existence

— EXECIO - to read data from and write data to data sets. Using EXECIO,
you can read data from and write data to the data stack or stem variables.

Chapter 8. Using REXX in Different Address S}ﬁaces 157

Using REXX in Different Address Spaces

~ TS (Trace Start) - to start tracing REXX execs. Tracing lets you control
exec execution and debug problems.

— TE (Trace End) - to end tracing of REXX execs that was started using the
TS command

— SUBCOM - to determine whether a particular host command environment is
available for the execution of host commands.

The commands are described in Chapter 10, “TSO/E REXX Commands.”

¢ Invoking an exec. You can invoke another REXX exec from an exec using the
following instructions (the examples assume that the current host command
environment is MVS):

"execname pl p2 ..."
"EX execname pl p2 ..."

"EXEC execname pl p2 ..."

See “Commands to External Environments” on page 22 about using host
commands in a REXX exec.

* Linking and attaching programs. You can invoke a program from a REXX
exec using the ADDRESS LINK and ADDRESS ATTACH instructions, for
example:

ADDRESS LINK "routine pl p2 ..."

ADDRESS ATTACH "routine pl p2 ..."

For more information about linking to and attaching programs, see “The LINK
and ATTACH Environments” on page 25.

Executing an Exec in a Non-TSO/E Address Space
You can execute a REXX exec in a non-TSO/E address space using the IRXJCL
and IRXEXEC routines, which are programming interfaces to the REXX language
processor. To execute an exec in MVS batch, use the IRXJCL routine. In the JCL,
specify IRXJCL as the program name (PGM =) on the JCL EXEC statement. On
the EXEC statement, you specify the member name of the exec and the argument in
the PARM field, for example:

//STEP1 EXEC PGM=IRXJCL,PARM='PAYEXEC week hours'

You can call IRXJCL from a program (for example, a PL/I program) to execute a
REXX exec. You can also execute a REXX exec from a program by calling the
IRXEXEC routine. “IRXJCL and IRXEXEC Routines” on page 214 describes
IRXJCL and IRXEXEC in more detail and provides several examples.

If you want to invoke an exec from another exec that is executing in a non-TSO/E

address space, you can use one of the following instructions (the examples assume
that the current host command environment is not MVS):

ADDRESS MVS "execname pl p2 ..."
ADDRESS MVS "EX execname pl p2 ..."

ADDRESS MVS "EXEC execname pl p2 ..."

158 TSOJE Version 2 REXX Reference

Using REXX in Different Address Spaces

See “Host Commands and Host Command Environments” on page 23 for more
information about the different environments for issuing host commands.

Writing Execs That Execute in the TSO/E Address Space

If you write a REXX exec that will execute in the TSO/E address space, there are
additional TSO/E functions, commands, and services you can use that are not
available to execs that execute in a non-TSO/E address space. For execs that
execute in the TSO/E address space, you can use the following instructions,
functions, commands, and services:

All REXX keyword instructions that are described in Chapter 3, “Keyword
Instructions”

All REXX built-in functions that are described in Chapter 4, “Functions.”

The TSO/E external functions STORAGE, LISTDSI, MSG, OUTTRAP,
PROMPT, SYSDSN, and SYSVAR. The functions are described in “TSO/E
Functions” on page 110.

The following TSO/E REXX commands:

MAKEBUF - to create a buffer on the data stack

DROPBUF - to drop (discard) a buffer that was previously created on the
data stack with the MAKEBUF command

NEWSTACK - to create a new data stack and effectively isolate the current
data stack that the exec is using

DELSTACK - to delete the most current data stack that was created with
the NEWSTACK command

QBUF - to query how many buffers are currently on the active data stack

QELEM - to query how many elements are on the data stack above the
most recently created buffer

QSTACK - to query the number of data stacks that are currently in
existence

EXECIO - to read data from and write data to data sets. Using EXECIO,

‘you can read data from and write data to the data stack or stem variables.

SUBCOM - to determine whether a particular host command environment is
available for the execution of host commands

EXECUTIL - to change various characteristics that control how a REXX
exec executes. You can use EXECUTIL in an exec or CLIST, and from
TSO/E READY mode and ISPF.

Immediate commands, which are:

— HI (Halt Interpretation) - stop execution of the exec

— TS (Trace Start) - start tracing of the exec

— TE (Trace End) - end tracing of the exec

— HT (Halt Typing) - suppress terminal output that the exec generates

— RT (Resume Typing) - resume terminal output that was previously
suppressed.

Chapter 8. Using REXX in Different Address Spaces 159

Using REXX in Different Address Spaces

You can use the TS and TE immediate commands in a REXX exec to start
and end tracing. You can use any of the immediate commands if an exec is
executing in TSO/E and you press the attention interruption key. When you
enter attention mode, you can enter an immediate command.

The commands are described in Chapter 10, “TSO/E REXX Commands.”

¢ Invoking another exec. You can invoke another REXX exec using the following
instructions (the examples assume that the current host command environment is
TSO):

"execname pl p2 ..."
"EX execname pl p2 ..."

"EXEC execname pl p2 ..."

¢ Linking and attaching programs. You can invoke a program from a REXX
exec using the ADDRESS LINK and ADDRESS ATTACH instructions, for
example:

ADDRESS LINK "routine pl p2 ..."

ADDRESS ATTACH "routine pl p2 ..."

For more information about linking to and attaching programs, see “The LINK
and ATTACH Environments” on page 25.

* Interactive System Productivity Facility (ISPF)

You can invoke REXX execs from ISPF. You can also write ISPF dialogs in
the REXX programming language. If an exec executes in ISPF, it can use ISPF
services that are not available to execs that are executed from TSO/E READY
mode. In an exec, you can use the ISPEXEC and ISREDIT host command
environments to use ISPF services. You can only use ISPF services after ISPF
has been invoked. For example, to use the ISPF SELECT service, use:

ADDRESS ISPEXEC 'SELECT service'
¢ TSO/E commands and services

You can use any TSO/E command in a REXX exec that executes in the TSO/E
address space. This includes both unauthorized and authorized TSO/E
commands. You can also use TSO/E services, such as the programming services
that are documented in TSO/E Version 2 Programming Services.

« Tnteraction with CLISTS.

In TSO/E, REXX execs can call CLISTs and can also be called by CLISTs.
CLIST is a command procedures language and is described in TSO/E Version 2
CLISTs.

160 TSO/E Version 2 REXX Reference

Using REXX in Different Address Spaces

Executing an Exec in the TSO/E Address Space

You can execute a REXX exec in the TSO/E address space in several ways. To
execute an exec in TSO/E foreground, you use the TSO/E EXEC command
processor to either implicitly or explicitly invoke the exec. TSO/E Version 2 REXX
User's Guide describes how to execute an exec in TSO/E foreground.

You can execute a REXX exec in TSO/E background. In the JCL, specify
IKJEFTO! as the program name (PGM =) on the JCL EXEC statement. On the
EXEC statement, you specify the member name of the exec and any arguments in
the PARM field. For example, to execute an exec called TEST4 that is in data set
USERID.MYREXX.EXEC, use the following JCL:

//TSOBATCH EXEC PGM=IKJEFT@1,DYNAMNBR=30,REGION=4096K,PARM="TEST4'
//SYSPROC DD DSN=USERID.MYREXX.EXEC,DISP=SHR

You can also invoke an exec implicitly or explicitly in the input stream of the
SYSTSIN DD statement.

//TSOBATCH EXEC PGM=IKJEFTO1,DYNAMNBR=30,REGION=4096K
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *

EXECUTIL SEARCHDD(YES)

%TEST4
/*
//

See TSO/E Version 2 REXX User's Guide for more information about invoking
€Xecs.

From a program that is written in a high level programming language, you can use
the TSO service facility to invoke the TSO/E EXEC command in order to execute a
REXX exec. TSO/E Version 2 Programming Services describes the TSO service
facility in detail.

You can also invoke a REXX exec from an application program using the exec
processing routines IRXJCL and IRXEXEC. Although IRXJCL and IRXEXEC are
primarily used in non-TSO/E address spaces, they are programming interfaces to the
REXX language processor that you can use to execute an exec in any address space,
including TSO/E. For example, in an assembler or PL/I program, you could invoke
IRXIJICL or IRXEXEC to execute a REXX exec.

The IRXEXEC routine gives you more flexibility in executing an exec. For example,
if you want to preload an exec in storage and then execute the preloaded exec, you
can use IRXEXEC. “IRXJCL and IRXEXEC Routines” on page 214 describes the
IRXJCL and IRXEXEC interfaces in detail.

Chapter 8. Using REXX in Different Address Spaces 161

162 TSO/E Version 2 REXX Reference

)

Keywords, Variables, and Command Names

; Chapter 9. Reserved Keywords, Spec'i.al Variables, and
~ Command Names

Keywords may be used as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT and SIGL.

TSO/E provides several TSO/E REXX commands whose names are reserved.

Reserved Keywords

The free syntax of REXX implies that some symbols are reserved for use by the
language processor in certain contexts.

_/"‘ Within particular instructions, some symbols may be reserved to separate the parts
of the instruction. These symbols are referred to as keywords. Examples of REXX
keywords are the WHILE in a DO instruction, and the THEN (which acts as a
clause terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and
that are not followed by an "=" or ":" are checked to see if they are instruction

keywords; the symbols may be freely used elsewhere in clauses without being taken
to be keywords.

It is not, however, recommended for users to execute host commands or
subcommands with the same name as REXX keywords (QUEUE, for example).

This can create problems for any programmer whose REXX programs might be used
for some time and in circumstances outside his or her control, and who wishes to
make the program absolutely "watertight.”

In this case, a REXX program may be written with (at least) the first words in
command lines enclosed in quotes.

_/ Example:

'"LISTDS' ds_name

This also has an advantage in that it is more efficient; and with this style, the
SIGNAL ON NOVALUE condition may be used to check the integrity of an exec.

In TSOJE, single quotes are often used in TSO/E commands, for example, to enclose
the name of a fully qualified data set. In any REXX execs that execute in TSO/E,
you may want to enclose an entire host command in double quotes. This ensures
that the language processor processes the expression as a host command. For
example:

"ALLOCATE DA('prefix.proga.exec') FILE(SYSEXEC) SHR REUSE"

Chapter 9. Reserved Keywords, Special Variables, and Command Names 163

Keywords, Variables, and Command Names

Special Variables

There are three special variables that may be set automatically by the language
Processor:

RC is set to the return code from any executed host command (or
subcommand). Following the SYNTAX, ERROR, and FAILURE
conditions, RC is set to the code appropriate to the event: the syntax
error number (see appendix on error messages, page 395) or the
command return code. RC is unchanged following a NOVALUE or
HALT event.

Note: Host commands executed manually from debug mode do not
cause the value of RC to change.

The TSO/E REXX commands also return a value in the special variable
RC. Some of the commands return the result from the command. For
example, the QBUF command returns the number of buffers currently on
the data stack in the special variable RC. The commands are described
in Chapter 10, “TSO/E REXX Commands.”

RESULT is set by a RETURN instruction in a subroutine that has been CALLed
if the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
uninitialized.) '

SIGL contains the line number of the clause currently executing when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL, a CALL, an internal function invocation, or a trapped error
condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable, and they may be accessed using the variable access routine
IRXEXCOM. The PROCEDURE and DROP instructions also affect these
variables in the usual way.

Certain other information is always available to a REXX program. This includes
the name by which the program was invoked and the source of the program (which
is available using the PARSE SOURCE instruction, see page 51). The data that
PARSE SOURCE returns is as follows:

1. The character string TSO

The call type (command, function, or subroutine)

Name of the exec in uppercase

Name of the DD from which the exec was loaded, if known
Name of the data set from which the exec was loaded, if known
Name of the exec as invoked (that is, not folded to uppercase)
Initial (default) host command environment

Name of the address space in uppercase

$ ® N AW

Eight character user token

164 TSOJE Version 2 REXX Reference

Keywords, Variables, and Command Names

In addition, PARSE VERSION (see page 52) makes available the version and date
R of the language processor code that is running. The built-in functions TRACE and
‘_/ ADDRESS return the current trace setting and environment name respectively.

Finally, the current settings of the NUMERIC function can be obtained using the
DIGITS, FORM, and FUZZ built-in functions.

Reserved Command Names

TSOJE provides TSO/E REXX commands that you can use for REXX processing.
The commands are described in Chapter 10, “TSO/E REXX Commands.” The
names of these commands are reserved for use by TSO/E and it is recommended that
you do not use these names for names of your REXX execs, CLISTs, or load
modules. The names are:

« DELSTACK
« DROPBUF
{0 « EXECIO
— « EXECUTIL
e HI
e HT
e MAKEBUF
e NEWSTACK
« QBUF
e QELEM
e QSTACK
- e RT
« SUBCOM
e TE
¢ TS

Chapter 9. Reserved Keywords, Special Variables, and Command Names 165

S
<

166 TSO/E Version 2 REXX Reference

TSO/E REXX Commands

Chapter 10. TSO/E REXX Commands

TSO/E Version 2 provides TSO/E REXX commands to perform services such as I/O
and data stack requests. The TSO/E REXX commands are not the same as TSO/E
command processors, such as ALLOCATE and PRINTDS. In general, you can
only use these commands in REXX execs (in any address space), not in CLISTs or
from TSO/E READY mode. The exceptions are the EXECUTIL command and the
immediate commands TS, TE, HI, HT, and RT.

You can use the EXECUTIL command in the TSO/E address space only. In
general, you can use EXECUTIL in an exec or a CLIST, from TSO/E READY
mode, or from ISPF. The description of the EXECUTIL command on page 178
describes the different operands and any exceptions about using them.

You can use the TS (Trace Start) and TE (Trace End) immediate commands in an
exec that executes in any address space. In the TSO/E address space, you can use
any of the immediate commands (TS, TE, HI, HT, and RT) if you are executing a
REXX exec and press the attention interrupt key. When you enter attention mode,
you can enter one of the immediate commands.

The TSO/E REXX commands perform services such as:
* Controlling I/O processing of information to and from data sets (EXECIO)

* Performing data stack services MAKEBUF, DROPBUF, QBUF, QELEM,
NEWSTACK, DELSTACK, QSTACK)

¢ Changing characteristics that control the execution of an exec (EXECUTIL and
the immediate commands)

¢ Checking for the existence of a host command environment (SUBCOM).

Note: The names of the TSO/E REXX commands are reserved for use by TSO/E.
It is recommended that you do not use these names for names of your REXX execs,
CLISTs, or load modules.

— Environment Customization Considerations

If you customize REXX processing using the initialization routine IRXINIT, you
can initialize a language processor environment that is not integrated into TSO/E
(see page 273). Most of the TSO/E REXX commands can be used in any type of
language processor environment. The EXECUTIL command can be used only if
the environment is integrated into TSO/E. You can use the immediate
commands from attention mode only if the environment is integrated into
TSO/E. You can use the TS and TE immediate commands in a REXX exec that
executes in any type of language processor environment (integrated or not
integrated into TSO/E). Chapter 13, “TSO/E REXX Customizing Services”
describes customization and language processor environments in more detail.

Examples are provided that show how to use the TSO/E REXX commands. The
examples may include data set names. When an example includes a data set name
that is enclosed in single quotes, the prefix is added to the data set name. In the
examples, the user ID is the prefix.

Chapter 10. TSO/E REXX Commands 167

DELSTACK

DELSTACK

deletes the most recently created data stack that was created by the NEWSTACK
command, and all elements on it. If a new data stack was not created, DELSTACK
removes all the elements from the original data stack.

The DELSTACK command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

The exec that creates a new data stack with the NEWSTACK command can delete
the data stack with the DELSTACK command, or an external function or
subroutine that is written in REXX and that is called by that exec can issue a
DELSTACK command to delete the data stack.

Examples

1. To create a new data stack for a called routine and delete it when the routine
returns, use the NEWSTACK and DELSTACK commands as follows:

“NEWSTACK" /* data stack 2 created */
CALL subl
"DELSTACK" /* data stack 2 deleted */

EXIT

subl:
PUSH ...
QUEUE ...
PULL ...
RETURN

2. After creating multiple new data stacks, to find out how many data stacks were
created and delete all but the original data stack, use the NEWSTACK,
QSTACK, and DELSTACK commands as follows:

"NEWSTACK" /* data stack 2 created */
"NEWSTACK" /* data stack 3 created */

"NEWSTACK" /* data stack 4 created */

"QSTACK"
times = RC - 1 /* set times to the number of new data stacks created */
DO times /* delete all but the original data stack */
"DELSTACK" /* delete one data stack */
END

168 TSO/E Version 2 REXX Reference

DROPBUF

DROPBUF

removes the most recently created data stack buffer that was created with the
MAKEBUF command, and all elements on the data stack in the buffer. To remove
a specific data stack buffer and all buffers created after it, issue the DROPBUF
command with the number (n) of the buffer.

The DROPBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Operand: The operand for the DROPBUF command is:

n
specifies the number of the first data stack buffer you want to drop.
DROPBUF removes the specified buffer and all buffers created after'it. If n is
not specified, only the most recently created buffer is removed. If you issue
DROPBUF 0, all buffers that were created on the data stack with the
MAKEBUF command and all elements that were put on the data stack are
removed. DROPBUTF 0 effectively clears the data stack.

Note: The data stack initially contains one buffer. You can create additional
buffers using the MAKEBUF command. The DROPBUF command removes
only buffers (and elements within a buffer) that were explicitly created with
MAKEBUF.

If processing was not successful, the DROPBUF command sets one of the following
return codes in the REXX special variable RC.

Return Meaning
Code
1 An invalid number n was specified. For example, n was Al.
2 The specified buffer does not exist. For example, you will get a return
code of 2 if QBUF =4 and you specify DROPBUF 6.

Chapter 10. TSO/E REXX Commands 169

DROPBUF

Example —

A subroutine, sub2, in exec C used the MAKEBUF command to create four buffers.
Remove buffers two and above and all elements within them before returning
control from sub2 to exec C.

exec C:

CALL sub2

sub2:
"MAKEBUF" /* buffer 1 created */
QUEUE A
"MAKEBUF" /* buffer 2 created */ 7N
QUEUE B -
QUEUE C
"MAKEBUF" /* buffer 3 created */
QUEUE D
"MAKEBUF" /* buffer 4 created */
QUEUE E
QUEUE F
"DROPBUF 2" /* buffers 2 and above deleted */
RETURN

170 TSOJE Version 2 REXX Reference

EXECIO

controls the input and output (I/O) of information to and from a data set.
Information can be read from a data set to the data stack for serialized processing or
to a list of variables for random processing. Information from the data stack or a
list of variables can be written to a data set.

The EXECIO command can be used in REXX execs that execute in both the TSO/E
address space and non-TSO/E address spaces.

You can use the EXECIO command to do various types of I/O tasks, such as copy
information to and from a data set in order to add, delete, or update the
information.

An I/O data set must be either sequential or a single member of a PDS. Before the
EXECIO command can perform I/O to or from the data_set, the data set must be
allocated to a file that is specified in the EXECIO command. The EXECIO
command does not perform the allocation.

When performing I/O with a system data set that is available to multiple users,
allocate it as OLD before issuing the EXECIO command, in order to have exclusive
use of the data set.

When you use EXECIO, you must ensure that you use quotes around any operands,
such as DISKW, STEM, FINIS, or LIFO. Using quotes prevents the possibility of

the operands being substituted as variables. For example, if you assign the variable

stem to a value in the exec and then issue EXECIO with the STEM option, if STEM
is not enclosed in quotes, it will be substituted with its assigned value.

Chapter 10. TSO/E REXX Commands 171

EXECIO

Operands for Reading from a Data Set: The operands for the EXECIO command
to read from a data set are as follows:

lines
the number of lines to be processed. This operand can be a specific. decimal
number or an arbitrary number indicated by *. When the operand is * and
EXECIO is reading from a data set, input is read untit EXECIO reaches the end
of the data set.

DISKR
opens a data set for input (if it is not already open) and reads the specified
number of lines from the data set and places them on the data stack. If the
STEM operand is specified, the lines are placed in a list of variables instead of
on the data stack.

When a data set is open for input, you cannot write information back to the
same data set.

The data set is not automatically closed unless:
* The task, under which the data set was opened, ends

¢ The last language processor environment associated with the task, under
which the data set was opened, is terminated (see page 260 for information
about language processor environments).

DISKRU
opens a data set for update (if it is not already open) and reads the specified
number of lines from the data set and places them on the data stack. If the
STEM operand is specified, the lines are placed in a list of variables instead of
on the data stack.

When a data set is open for update, the last record read can be changed and
then written back to the data set one line at a time with a corresponding
EXECIO DISKW command. Typically a data set is open for update when
information within the data set is to be modified.

The data set is not automatically closed unless:
* The task, under which the data set was opened, ends

* The last language processor environment associated with the task, under
which the data set was opened, is terminated.

Note: Once a data set is open for update (by issuing a DISKRU as the first
operation against the data set), either DISKR or DISKRU may be used to fetch
subsequent records for update.

ddname
the name of the file to which the sequential data set or member of the PDS was
allocated. The file must be allocated before you can issue EXECIO.

linenum
the line number in the data set at which EXECIO is to begin reading.

Note: When a data set is open for input or update, the current record number
is the number of the next record to be read. When linenum specifies a record
number earlier than the current record number in an open data set, the data set
must be closed and reopened to reposition the current record number at linenum.
When this situation occurs and the data set was not opened at the same task
level as that of the executing exec, attempting to close the data set at a different
task level results in an EXECIO error. The linenum operand must not be used
in this case.

172 TSO/E Version 2 REXX Reference

EXECIO

FINIS
close the data set after the EXECIO command completes. A data set can be

closed only if it was opened at the same task level as the exec issuing the
EXECIO command.

Because the EXEC command, (when issued from the TSO/E READY
prompt) is attached by the TMP, data sets opened by an EXEC will
typically be closed automatically when the top level exec ends. Good
programming practice, however, would be to explicitly close all data sets
when finished with them.

STEM var-name
the stem of the list of variables into which information is to be placed. To
place information in compound variables, which allow for indexing, the
var-name should end with a period, for example myvar. When three lines are
read from the data set, they are placed in myvar.1, myvar.2, myvar.3. The
number of variables in the list is stored in myvar.0.

When var-name doesn’t end with a period, the variable names are appended
with numbers but they cannot be accessed by an index in a loop.

SKIP
reads the specified number of lines but does not place them on the data
stack or in variables. When the number of lines is *, EXECIO skips to the
end of the data set.

LIFO
places information on the data stack in LIFO (last in first out) order.

FIFO
places information on the data stack in FIFO (first in first out) order.
FIFO is the default when neither LIFO or FIFO is specified.

Operands for Writing to a Data Set: The operands for the EXECIO command that
write to a data set are as follows:

lines
the number of lines to be written. This operand can be a specific decimal
number or an arbitrary number indicated by *. When EXECIO writes an
arbitrary number of lines from the data stack, it stops only when it reaches a
null line. If there is no null line on the data stack in an interactive TSO/E
address space, EXECIO waits for input from the terminal and stops only when it
receives a null line. See note below.

When EXECIO writes an arbitrary number of lines from a list of compound
variables, it stops when it reaches a null value or an uninitialized variable (one
that displays its own name).

The Oth variable has no effect on controlling the number of lines written from
variables.

Note: EXECIO running in the TSO/E background or MVS batch has the same
use of the data stack as an exec that runs in the TSO/E foreground. If an
EXECIO * DISKW ... command is executing in the background or batch and
the data stack becomes empty before a null line is found (which would terminate
EXECIO), EXECIO goes to the input stream as defined by the INDD field in
the module name table (see page 286). The system default is SYSTSIN. When
end-of-file is reached, EXECIO ends.

Chapter 10. TSO/E REXX Commands 173

EXECIO

DISKW
opens a data set for output (if it was not already open) and writes the specified
number of lines to the data set. The lines can be written from the data stack or,
if the STEM operand is specified, from a list of variables.

You can use the DISKW operand to write information to a different data set
from the one opened for input, or to update, one line at a time, the same data
set opened for update. When a data set is opened for update, DISKW may be
used to rewrite the last record read. The lines value must be 1 when doing an
update.

The data set is not automatically closed unless:
* The task, under which the data set was opened, ends.

¢ The last REXX environment associated with the task, under which the data
set was opened, is terminated.

Notes:

1. The length of an updated line is set to the length of the line it replaces.
When an updated line is longer than the line it replaces, information that
extends beyond the replaced line is truncated. When information is shorter
than the replaced line, it is padded with blanks to attain the original line
length.

2. When using EXECIO to write to more than one member of the same PDS,
only one member of the PDS should be open at a time for output.

3. Do not use the MOD attribute when allocating a member of a PDS to
which you want to append information. You can use MOD only when
appending information to a sequential data set. To append information to a
member of a PDS, rewrite the member with the additional records added.

ddname
the name of the file to which the sequential data set or member of the PDS was
allocated. The file must be allocated before you issue the EXECIO command.

FINIS
close the data set after the EXECIO command completes. A data set can be

closed only if it was opened at the same task level as the exec issuing the
EXECIO command.

Because the EXEC command, (when issued from the TSO/E READY
prompt) is attached by the TMP, data sets opened by an EXEC will
typically be closed automatically when the top level exec ends. Good
programming practice, however, would be to explicitly close all data sets
when finished with them.

STEM var-name
the stem of the list of variables from which information is to be written. To
write information from compound variables, which allow for indexing, the
var-name should end with a period, for example myvar. . When three lines
are written to the data set, they are taken from myvar.1, myvar.2, myvar.3.
When * is specified as the number of lines to write, the EXECIO command
stops writing information to the data set when it finds a null line or an
uninitialized compound variable. In this case, if the list contained 10
compound variables, the EXECIO command stops at myvar.11.

174 TSOJE Version 2 REXX Reference

EXECIO

The Oth variable has no effect on controlling the number of lines written

from variables.

When var-name doesn’t end with a period, the variable names must be
appended with consecutive numbers, such as myvarl, myvar2, myvar3.

Return Codes: After the EXECIO command runs, it sets the REXX special variable

RC to a return code.
Return Meaning
Code
0 Normal completion of requested operation
1 Data was truncated during DISKW operation
2 End-of-file reached before the specified number of lines were read during
a DISKR or DISKRU operation. This does not occur if * is used for
number of lines because the remainder of the file is always read.
20 Severe error. EXECIO completed unsuccessfully and a message is issued.
Examples

1. This example copies an entire existing sequential data set named
USERID.MY.INPUT into a member of an existing PDS named

DEPT5.MEMO(MAR22), and uses the ddnames DATAIN and DATAOUT

respectively.

"ALLOC DA(my.input) F(datain) SHR REUSE"
"ALLOC DA('dept5.memo(mar22)') F(dataout) OLD"
“NEWSTACK" /* Create a new data stack for input only */

"EXECIO * DISKR datain (FINIS"
QUEVE '' /* Add a null line to indicate the end of information */
"EXECIO * DISKW dataout (FINIS"

"DELSTACK" /* Delete the new data stack */
"FREE F(datain dataout)"

2. This example copies an arbitrary number of lines from existing sequential data

set USERID.TOTAL.DATA into a list of compound variables with the stem

DATA., and uses the ddname INDD:

ARG lines

“ALLOC DA(total.data) F(indd) SHR REUSE"
"EXECIO" 1ines "DISKR indd (STEM data."
SAY data.0 'records were read.'

3. To update the second line in data set DEPT5.EMPLOYEE.LIST in file
UPDATEDD, allocate the data set as OLD to guarantee exclusive update.

"ALLOC DA('dept5.employee.iist') F(updatedd) OLD"
"EXECIO 1 DISKRU updatedd 2"

PULL line

PUSH 'Crandall, Amy AMY 5500
"EXECIO 1 DISKW updatedd (FINIS"

"FREE F(updatedd)"

Chapter 10. TSO/E REXX Commands

175

EXECIO

4. The following example scans each line of a data set whose name and size is
specified by the user. The user is given the option of changing each line as it
appears. If there is no change to the line, the user presses the ENTER key to
indicate that there is no change. If there is a change io the line, the user types
the entire line with the change and the new line is returned to the data set.

PARSE ARG name numlines /* Get data set name and size from user */

"ALLOC DA("name") F(updatedd) OLD"
eof = 'NO' /* Initialize end-of-file flag */

DO i = 1 to numlines WHILE eof = no
'EXECIO 1 DISKRU updatedd ' /* Queue the next line on the stack */

IF RC = 2 THEN /* Return code indicates end-of-file */
eof = 'YES'

ELSE
DO

PARSE PULL 1line
SAY 'Please make changes to the following Tine.'
SAY 'If you have no changes, press ENTER.'

SAY line

PARSE PULL newline

IF newline = '' THEN NOP
ELSE

DO

PUSH newline
"EXECIO 1 DISKW updatedd"
END
END
END

5. This example reads from the data set allocated to INDD to find the first
occurrence of the string “Jones”. Upper and lowercase distinctions are ignored.
The example demonstrates how to read and search one record at a time. For
better performance, you can read all records to the data stack or to a list of
variables, search them, and then return the updated records.

done = 'no’

DO WHILE done = 'no'
"EXECIO 1 DISKR indd"
IF RC = O THEN /* Record was read */
DO
PULL record
Tineno = lineno + 1 /* Count the record */
IF INDEX(record,'JONES') -= 0 THEN

DO
SAY 'Found in record' lineno
done = 'yes'
SAY 'Record = ' record
END
ELSE NOP
END
ELSE
done = ‘yes'
END
EXIT 0

176 TSO/E Version 2 REXX Reference

EXECIO

6. This exec copies records from data set USERID.MY.INPUT to the end of data

set USERID.MY.OUTPUT. Neither data set has been allocated to a ddname. It
assumes that the input data set has no null lines.

“ALLOC DA(my.input) F(indd) SHR REUSE"
“ALLOC DA(my.output) F(outdd) MOD REUSE"

SAY 'Copying ...'

"EXECIO * DISKR indd (FINIS"

QUEUE '' /* Insert a null line at the end to indicate end of file */
"EXECIO * DISKW outdd (FINIS"

SAY 'Copy complete.'
"FREE F(indd outdd)"

EXIT ©

. This exec reads five records from the data set allocated to MYINDD starting

with the third record. It strips trailing blanks from the records, and then writes
any record that is longer than 20 characters. The file is not closed when the exec
is finished.

"EXECIO 5 DISKR myindd 3"

DOi=1to5
PARSE PULL 1ine
stripline = STRIP(1line,t)
len = LENGTH(stripline)

IF len > 20 THEN
SAY 'Line' stripline 'is long.'
ELSE NOP
END

/* The file is still open for processing */

EXIT 0

. This exec reads the first 100 records (or until EOF) of the data set allocated to

INVNTORY. Records are placed on the data stack in LIFO order. If fewer
than 100 records are read, a message is issued.

eofflag = 2 /* Return code to indicate end of file */

"EXECIO 100 DISKR invntory (LIFO"
return_code = RC

IF return_code —= eofflag THEN
SAY 'Premature end of file.'
ELSE
SAY '100 Records read.'

EXIT return_code

Chapter 10. TSO/E REXX Commands 177

lets you change various characteristics that control how an exec executes in the “/"'\\
TSO/E address space. You can use EXECUTIL: /

¢ In a REXX exec
¢ From TSO/E READY mode

¢ From ISPF - the ISPF command line or ISPF option 6 (enter a TSO/E
command or CLIST)

¢ Ina CLIST. You can use EXECUTIL in a CLIST to affect exec processing.
However, it has no effect on CLIST processing ™

You can also use EXECUTIL with the HI, HT, RT, TS, and TE operands from a
program that is written in a high-level programming language by using the TSO
service facility. From READY mode or ISPF, the HI, HT, and RT operands are
not applicable because an exec is not currently executing.

Use EXECUTIL to:

¢ Specify whether the system exec library, whose default name is SYSEXEC, is to
be closed after the exec is located or is to remain open

¢ Start and stop tracing of an exec

¢ Stop the execution of an exec

* Suppress and resume terminal output from an exec
¢ Change entries in a function package directory

¢ Specify whether or not the system exec library (the default is SYSEXEC) is to be
searched in addition to SYSPROC.

Additional Considerations for Using EXECUTIL

¢ All of the EXECUTIL operands are mutually exclusive, that is, you can only
specify one of the operands on the command.

¢ The HI, HT, RT, TS, and TE operands on the EXECUTIL command are also,
by themselves, immediate commands. Immediate commands are commands that /‘.\‘
can be issued from the terminal if an exec is executing and you press the '
attention interrupt key and enter attention mode. These commands are
processed immediately.

178 TSO/E Version 2 REXX Reference

EXECUTIL

Note: You can also use the immediate commands TS (Trace Start) and TE
(Trace End) in a REXX exec that executes in any address space (TSO/E and
non-TSO/E). For information about the TS command, see page 202. For
information about the TE command, see page 201.

In general, EXECUTIL works on a language processor environment basis. That
is, EXECUTIL affects only the current environment in which EXECUTIL is
issued. For example, if you are in split screen in ISPF and issue EXECUTIL TS
from the second ISPF screen to start tracing, only execs that are invoked from
that ISPF screen are traced. If you invoke an exec from the first ISPF screen,
the exec is not traced. ’

Using the EXECDD and SEARCHDD operands may affect subsequent
language processor environments that are created. For example, if you issue
EXECUTIL SEARCHDD from TSO/E READY mode and then invoke ISPF,
the new search order defined by EXECUTIL SEARCHDD may be in effect for
the ISPF session also. This depends on whether your installation has provided
its own parameters modules IRXTSPRM and IRXISPRM and the values
specified in the load module.

EXECDD(CLOSE) or EXECDD(NOCLOSE)

TS

Specifies whether or not the system exec library is to be closed after the system
locates the exec but before the exec executes.

CLOSE causes the system exec library, whose default name is SYSEXEC, to be
closed after the exec is located but before the exec executes. This condition can
be changed by issuing the EXECUTIL EXECDD(INOCLOSE) command.

NOCLOSE causes the system exec library to remain open. This is the default
condition and can be changed by issuing the EXECUTIL EXECDD(CLOSE)
command. The selected option remains in effect until it is changed by the
appropriate EXECUTIL command, or until the current environment is
terminated.

Notes:

1. The EXECDD operand affects the ddname specified in the LOADDD field
in the module name table. The default is SYSEXEC. “Module Name
Table” on page 286 describes the table.

2. If you specify EXECDD(CLOSE), the exec library (DD specified in the
LOADDD field) is closed immediately after an exec is loaded.

Any libraries defined using the ALTLIB command are not affected by the
EXECDD operand. SYSPROC is also not affected. The ALTLIB command is
available only in the MVS/ESA feature of TSO/E Version 2.

Use TS (Trace Start) to start tracing execs. Tracing lets you interactively
control the execution of an exec and debug problems. For more information
about the interactive debug facility, see Chapter 11, “Debug Aids” on page 203.

If you issue EXECUTIL TS from READY mode or ISPF, tracing is started for
the next exec you invoke. Tracing is then in effect for that exec and any other
execs it calls. Tracing stops:

¢ When the original exec completes

¢ If one of the invoked execs specifies EXECUTIL TE

¢ If one of the invoked execs calls a CLIST, which specifies EXECUTIL TE

¢ If you enter attention mode while an exec is executing and issue the TE
immediate command.

Chapter 10. TSO/E REXX Commands 179

EXECUTIL

If you use EXECUTIL TS in an exec, tracing is started for all execs that are
executing. This includes the current exec that contains EXECUTIL TS, any
execs it invokes, and any execs that were executing when the current exec was
invoked. Tracing remains active until all currently executing execs complete or
an exec or CLIST contains EXECUTIL TE.

For example, suppose exec A calls exec B, which then calls exec C. If exec B
contains the EXECUTIL TS command, tracing is started for exec B and remains
in effect for both exec C and exec A. Tracing stops when exec A completes.
However, if one of the execs contains EXECUTIL TE, tracing stops for all of
the execs.

If you use EXECUTIL TS in a CLIST, tracing is started for all execs that are
executing, that is, for any exec the CLIST invokes or execs that were executing
when the CLIST was invoked. Tracing stops when the CLIST and all currently
executing execs complete or if an exec or CLIST contains EXECUTIL TE. For
example, suppose an exec calls a CLIST and the CLIST contains the
EXECUTIL TS command. When control returns to the exec that invoked the
CLIST, that exec is traced.

You can use EXECUTIL TS from a program by using the TSO service facility.
For example, suppose an exec calls a program and the program encounters an
error. The program can invoke EXECUTIL TS using the TSO service facility to
start tracing all execs that are currently executing.

You can also press the attention interrupt key, enter attention mode, and then
enter TS to start tracing or TE to stop tracing. You can also use the TS
command (see page 202) and TE command (see page 201) in an exec.

TE :
Use TE (Trace End) to stop tracing execs. The TE operand is not really
applicable in READY mode because an exec is not currently executing.
However, if you issued EXECUTIL TS to trace the next exec you invoke and
then issued EXECUTIL TE, the next exec you invoke is not traced.

If you use EXECUTIL TE in an exec or CLIST, tracing is stopped for all
currently executing execs. This includes execs that were executing when the exec
or CLIST was invoked and execs that the exec or CLIST calls. For example,
suppose exec A calls CLIST B, which then calls exec C. If tracing was on and
CLIST B contains EXECUTIL TE, tracing is stopped and execs C and A are
not traced.

You can use EXECUTIL TE from a program by using the TSO service facility.
For example, suppose tracing has been started and an exec calls a program. The
program can invoke EXECUTIL TE using the TSO service facility to stop
tracing of all execs that are currently executing.

You can also press the attention interrupt key, enter attention mode, and then
enter TE to stop tracing. You can also use the TE immediate command in an
exec (see page 201).

HT
Use HT (Halt Typing) to suppress terminal output generated by an exec. The
exec continues executing. HT suppresses any output generated by REXX
instructions or functions (for example, the SAY instruction) and REXX
informational messages. REXX error messages are still displayed. Normal
terminal output resumes when the exec completes. You can also use
EXECUTIL RT to resume terminal output.

180 TSOJE Version 2 REXX Reference

EXECUTIL

HT has no effect on CLISTs or commands. If an exec invokes a CLIST and the

CLIST generates terminal output, the output is displayed. If an exec invokes a
command, the command displays messages.

Use the HT operand in either an exec or CLIST. You can also use EXECUTIL
HT from a program by using the TSO service facility. If the program invokes
EXECUTIL HT, terminal output from all execs that are currently executing is
suppressed. EXECUTIL HT is not applicable from READY mode or ISPF
because no execs are currently executing.

If you use EXECUTIL HT in an exec, output is suppressed for all execs that are
executing. This includes the current exec that contains EXECUTIL HT, any
execs the exec invokes, and any execs that were executing when the current exec
was invoked. Output is suppressed until all currently executing execs complete
or an exec or CLIST contains EXECUTIL RT.

If you use EXECUTIL HT in a CLIST, output is suppressed for all execs that
are executing, that is, for any exec the CLIST invokes or execs that were
executing when the CLIST was invoked. Terminal output resumes when the
CLIST and all currently executing execs complete or if an exec or CLIST
contains EXECUTIL RT.

For example, suppose exec A calls CLIST B, which then calls exec C. If the
CLIST contains EXECUTIL HT, output is suppressed for both exec A and exec
C.

If you use EXECUTIL HT and want to display terminal output using the SAY
instruction, you must use EXECUTIL RT before the SAY instruction to resume
terminal cutput.

Use RT (Resume Typing) to resume terminal output that was previously
suppressed. Use the RT operand in either an exec or CLIST. You can also use
EXECUTIL RT from a program by using the TSO service facility. If the
program invokes EXECUTIL RT, terminal output from all execs that are
currently executing is resumed. EXECUTIL RT is not applicable from READY
mode or ISPF because no execs are currently executing.

If you use EXECUTIL RT in an exec or CLIST, typing is resumed for all execs
that are executing.

Use HI (Halt Interpretation) to stop execution of all currently executing execs.
From either an exec or a CLIST, EXECUTIL HI stops the execution of all
currently executing execs. If an exec calls a CLIST and the CLIST contains
EXECUTIL HI, the exec that invoked the CLIST stops executing.

EXECUTIL HI is not applicable from READY mode or ISPF because no execs
are currently executing.

You can use EXECUTIL HI from a program by using the TSO service facility.
If the program invokes EXECUTIL HI, execution of all execs that are currently
executing is stopped.

If an exec enables a HALT condition and the exec includes the EXECUTIL HI
command, EXECUTIL HI stops execution of the current exec and all execs the
current exec invokes. However, any execs that were executing when the current
exec was invoked are not stopped. These execs continue executing. For
example, suppose exec A calls exec B, which calls exec C and exec B specifies
EXECUTIL HI and also contains a SIGNAL ON HALT instruction (with a
HALT: label). When EXECUTIL HI is processed, control is given to the

Chapter 10. TSO/E REXX Commands 181

EXECUTIL

HALT subroutine. When the subroutine completes, exec A continues executing
at the statement that follows the call to exec B. For more information, see
Chapter 7, “Conditions and Condition Traps.”

RENAME
Use EXECUTIL RENAME to change entries in a function package directory.
A function package directory contains information about the functions and
subroutines that make up a function package. See “Function Packages” on
page 229 for more information.

A function package directory contains the following fields for each function and
subroutine:

* Func-name -- the name of the external function or subroutine that is used
in an exec.

¢ Addr -- the address, in storage, of the entry point of the function or
subroutine code.

* Sys-name -- the name of the entry point in a load module that corresponds
to the code that is called for the function or subroutine.

¢ Sys-dd -- the name of the DD from which the function or subroutine code
is loaded.

You can use EXECUTIL RENAME with the SYSNAME and DD operands to
change an entry in a function package directory as follows:

e Use the SYSNAME operand to change the sys-rame of the function or
subroutine in the function package directory. When an exec invokes the
function or subroutine, the routine with the new sys-name is invoked.

¢ Use EXECUTIL RENAME NAME(function-name) without the
SYSNAME and DD operands to flag the directory entry as null. This
causes the search for the function or subroutine to continue because a null
entry is bypassed. The system will then search for a load module and/or an
exec. See page 73 for the complete search order.

EXECUTIL RENAME clears the addr field in the function package directory to
X'00'. When you change an entry, the name of the external function or
subroutine is not changed, but the code that the function or subroutine invokes
is replaced.

You can use EXECUTIL RENAME to change an entry so that different code is
used and then change it back and restore the original entry.

NAME(function-name)
Specifies the name of the external function or subroutine that is used in an
exec. This is also the name in the func-name field in the directory entry.

SYSNAME(sys-name)
Specifies the name of the entry point in a load module that corresponds to
the package code that is called for the function or subroutine. If
SYSNAME is omitted, the sys-rname field in the package directory is set to
blanks.

182 TSO/E Version 2 REXX Reference

EXECUTIL

DD(sys-dd)
Specifies the name of the DD from which the package code is loaded. If DD
is omitted, the sys-dd field in the package directory is set to blanks.

SEARCHDD(YES/NO)
Specifies whether the system exec library (the default is SYSEXEC) should be
searched when execs are implicitly invoked. YES indicates that the system exec
library (SYSEXEC) is searched, and if the exec is not found, SYSPROC is then
searched. NO indicates that SYSPROC only is searched.

EXECUTIL SEARCHDD lets you dynamically change the search order. The
new search order remains in effect until you issue EXECUTIL SEARCHDD
again, the language processor environment terminates, or you use ALTLIB.
Subsequently created environments inherit the same search order unless explicitly
changed by the invoked parameters module.

ALTLIB affects how EXECUTIL operates to determine the search order. If
you use the ALTLIB command to indicate that user-level, application-level, or
system-level libraries are to be searched, ALTLIB operates on an application
basis. For more information about the ALTLIB command, see TSO/E Version
2 Command Reference.

Note: EXECUTIL SEARCHDD generally affects the current language
processor environment in which it is invoked. For example, if you are in
split screen in ISPF and issue EXECUTIL SEARCHDD from the second
ISPF screen to change the search order, the changed search order affects
execs invoked from that ISPF screen. If you invoke an exec from the
first ISPF screen, the changed search order is not in effect.

However, if you issue EXECUTIL SEARCHDD from TSO/E READY
mode, when you invoke ISPF, the new search order may also be in effect
for ISPF. This depends on whether your installation has provided its
own parameters modules IRXTSPRM and IRXISPRM and the values
specified in the load module.

Return Codes

0 Processing successful.
12 Processing unsuccessful. An error message has been issued.
Examples

1. Your installation uses both SYSEXEC and SYSPROC to store REXX execs and
CLISTs. All of the execs you work with are stored in SYSEXEC and your
CLISTs are stored in SYSPROC. Currently, your system searches SYSEXEC
and SYSPROC and you do not use ALTLIB.

You want to work with CLISTs only and do not need to search SYSEXEC. To
change the search order and have the system search SYSPROC only, use the
following command:

EXECUTIL SEARCHDD(NO)

Chapter 10. TSO/E REXX Commands 183

EXECUTIL

2. You are updating a REXX exec and including a new internal subroutine. You

want to trace the subroutine to test for any problems. In your exec, include
EXECUTIL TS at the beginning of your subroutine and EXECUTIL TE when
the subroutine returns control to the main program. For example:

/* REXX program */
MAINRTN:

CALL SUBRTN
"EXECUTIL TE"

EXIT

/* Subroutine follows */
SUBRTN:

"EXECUTIL TS"

RETURN

. You want to invoke an exec and trace it. The exec does not contain

EXECUTIL TS or the TRACE instruction. Instead of editing the exec and
including EXECUTIL TS or a TRACE instruction, you can enter the following
from TSO/E READY mode:

EXECUTIL TS

When you invoke the exec, the exec is traced. When the exec completes
executing, tracing is off.

. Suppose an external function called PARTIAL is part of a function package.

You have written your own function called PARTIAL or a new version of the
external function PARTIAL and want to execute your new PARTIAL function
instead of the one in the function package. Your new PARTIAL function may
be an exec or may be stored in a load module. You must flag the entry for the
PARTIAL function in the function package directory as null in order for the
search to continue to execute your new PARTIAL function. To flag the
PARTIAL entry in the function package directory as null, use the following
command:

EXECUTIL RENAME NAME(PARTIAL)

When you execute the function PARTIAL, the null entry for PARTIAL in the
function package directory is bypassed. The system will continue to search for a
load module and/or exec that is called PARTIAL.

184 TSO/E Version 2 REXX Reference

(

HI

HI

Use the HI (Halt Interpretation) command to stop execution of all currently
executing execs. The HI immediate command is available only in the TSO/E address
space. When you are executing an exec, you can press the attention interrupt key to
enter attention mode, type HI, and press ENTER to halt interpretation.

Example

You are executing an exec that is in an infinite loop. To stop exec processing, first
press the attention interrupt key. A message is issued that asks you to enter either a
null line to continue or an immediate command. To stop interpretation, type

HI

and press ENTER. Exec processing ends or control passes to a routine or label, if
the halt condition trap has been turned on in the exec. For example, if the exec
contains a SIGNAL ON HALT instruction and exec processing is interrupted by HI,
control passes to the HALT: label in the exec. See Chapter 7, “Conditions and
Condition Traps” for information about the halt condition.

Chapter 10. TSO/E REXX Commands 185

"HT

HT

Use the HT (Halt Typing) command to suppress terminal output generated by an
exec. The HT immediate command is available only in the TSO/E address space.
When you are executing an exec, you can press the attention interrupt key to enter
attention mode, and then enter HT. The executing exec continues executing, but the
only output you see at your terminal is from TSO/E commands invoked from the
exec. All other output from the exec is suppressed.

Example

You are executing an exec that calls an internal subroutine to display a line of
output from a loop that repeats many times. Before the subroutine is called, a
message is displayed that allows you to press the attention interrupt key and then
suppress the output by typing HT. When the loop is over, the subroutine issues
EXECUTIL RT to redisplay output.

SAY 'To surpress the output that will be displayed,'’
SAY 'press the attention interrupt key and then,'
SAY 'type HT.'

CALL printout

EXIT
printout:‘

DO i = 1 to 10000

SAY 'The outcome is' ...
END
"EXECUTIL RT"
RETURN

186 TSO/E Version 2 REXX Reference

" Immediate Commands

Immediate Commands

The immediate commands are:

¢ HI - Halt Interpretation
i ¢ HT - Halt Typing
| ¢ RT - Resume Typing

¢ TS - Trace Start

¢ TE - Trace End

You can issue immediate commands from the terminal in a TSO/E address space if a
REXX exec is executing and you press the attention interrupt key. When you enter
attention mode, you can enter one of the immediate commands.

You can also use the TS and TE immediate commands in a REXX exec that
executes in any address space. That is, TS and TE are available in ADDRESS MVS
and ADDRESS TSO.

From attention mode in TSO/E, the immediate commands are processed as soon as
they are entered. Program execution in progress is suspended until the immediate
command is processed. In most cases, the immediate commands are processed after
you press ENTER once. However, there are two instances when you must press
ENTER twice to process an immediate command: first, when the exec you are
executing issues a PULL that reads information from the terminal, and second, when
you enter the immediate command from an ISPF panel.

. For information about the syntax of each immediate command, see the description
N of the command in this chapter.

Chapter 10. TSO/E REXX Commands 187

MAKEBUF

MAKEBUF

Use the MAKEBUF command to create a new buffer on the data stack. The
MAKEBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Initially, the data stack contains one buffer, which is known as buffer 0. You create
additional buffers using the MAKEBUF command. MAKEBUF returns the
number of the buffer it creates in the REXX special variable RC. For example, the
first time an exec issues MAKEBUTF, it creates the first buffer and returns a 1 in the
special variable RC. The second time MAKEBUF is used, it creates another buffer
and returns a 2 in the special variable RC.

To remove buffers from the data stack that were created with the MAKEBUF
command, use the DROPBUF command (see page 169).

After the MAKEBUF command executes, it sets the REXX special variable RC to
the number of the buffer it created.

Return Meaning
Code

1 One buffer created on the data stack (MAKEBUF issued once)
2 Two buffers created on the data stack (MAKEBUF issued twice)
3 Three buffers on the data stack (MAKEBUF issued three times)
n n buffers on the data stack (MAKEBUF issued n times)

188 TSO/E Version 2 REXX Reference

MAKEBUF

Example

An exec (exec A) places two elements, elem] and elem2, on the data stack. Exec A
calls a subroutine, sub3, that also places an element, elem3, on the data stack.
Create a buffer on the data stack so that exec A and sub3 do not share their data
stack information.

exec A:

"MAKEBUF" /* buffer created */
SAY 'The number of buffers created is' RC /* RC =1 */
PUSH eleml

PUSH elem2
CALL sub3
sub3:
"MAKEBUF" /* second buffer created */
PUSH elem3
"DROPBUF" /* second buffer created is deleted */

Chapter 10. TSO/E REXX Commands 189

NEWSTACK

NEWSTACK

creates a new data stack and basically hides or isolates the current data stack.
Elements on the previous data stack cannot be accessed until a DELSTACK
command is issued to delete the new data stack and any elements remaining in it.

The NEWSTACK command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

After an exec issues the NEWSTACK command, any element that is placed on the
data stack with a PUSH or QUEUE instruction is placed on the new data stack.
When an exec calls a routine (function or subroutine), that routine will also use the
new data stack and will not be able to access elements on the previous data stack
unless it issues a DELSTACK command.

When there are no more elements on the new data stack, PULL will take
information from the terminal (TSO/E address space) or the input stream
(non-TSO/E address space) even though elements remain in the previous data stack
(in non-TSO/E address spaces, the default input stream is SYSTSIN). In order to
access elements on the previous data stack, issue a DELSTACK command. If a new
data stack was not created, DELSTACK removes all elements from the original data
stack.

Multiple new data stacks can be created, but only elements on the most recently
created data stack are accessible. To find out how many data stacks have been
created, use the QSTACK command.

If multiple language processor environments are chained together in a non-TSO/E
address space and a new data stack is created with the NEWSTACK command, the
new data stack is only available to execs that execute in the language processor
environment in which the new data stack was created. The other environments in
the chain cannot access the new data stack.

190 TSO/E Version 2 REXX Reference

N

NEWSTACK

Examples

1. To protect elements placed on the data stack from a subroutine that might also

us
as

e the data stack, you can use the NEWSTACK and DELSTACK commands
follows:

PUSH elementl
PUSH element2

"NEWSTACK" /* data stack 2 created */

CALL sub
"DELSTACK" /* data stack 2 deleted */

PULL stackelem

PULL stackelem

EXIT

2. To put elements on the data stack and prevent them from being used as prompts
for a TSO/E command, use the NEWSTACK command as follows:

"PROFILE PROMPT"
X = PROMPT("ON")

PUSH eleml

PUSH elem2

"NEWSTACK" /* data stack 2 created */

"ALLOCATE" /* Will prompt the user at the terminal for input. */
"DELSTACK" /* data stack 2 deleted */

3. To use MVS batch to execute an exec named ABC, a member in
USERID.MYREXX.EXEC, use program IRXJCL and include the exec name
after the PARM parameter in the EXEC statement.

/1
/1
/1
/1

MVSBATCH EXEC PGM=IRXJCL,

PARM="'ABC'
SYSTSPRT DD DSN=USERID.IRXJCL.OUTPUT,DISP=0LD
SYSEXEC DD DSN=USERID.MYREXX.EXEC, DISP=SHR

Exec ABC creates a new data stack and then put two elements on the new data
stack for module MODULES3.

"NEWSTACK" /* data stack 2 created */
PUSH eleml

PUSH elem?2

ADDRESS LINK "module3"

"DELSTACK" /* data stack 2 deleted */

Chapter 10. TSO/E REXX Commands 191

QBUF

QBUF | ~

queries the number of buffers that were created on the data stack with the
MAKEBUF command. The number of buffers is returned in the REXX special
variable RC. When MAKEBUF has not been used to create any buffers on the data
stack, the QBUF command sets RC to 0.

The QBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

QBUF returns the current number of data stack buffers created by an exec and by ’/.\)
other routines (functions and subroutines) the exec calls. QBUF can be issued from '
the calling exec or from a called routine. For example, if an exec issues two

MAKEBUF commands and then calls a routine that issues another MAKEBUF

command, QBUF returns the number 3 in special variable RC.

After the QBUF command executes, it sets the REXX special variable RC to the
number of buffers that were created with the MAKEBUF command.

(/"'\
Return Meaning L)
Code ‘
0 No buffers created on the data stack (MAKEBUF was not issued)
1 One buffer created on the data stack (MAKEBUF was issued once)
2 Two buffers created on the data stack (MAKEBUF was issued twice)
n n buffers on the data stack (MAKEBUF was issued #n times)

Examples
~

1. If an exec creates two buffers on the data stack with the MAKEBUF command, L
deletes one with the DROPBUF command, and then issues the QBUF ,
command, RC is set to the number 1.

"MAKEBUF" /* buffer created */

"MAKEBUF" /* second buffer created */

"DROPBUF" /* second buffer created is deleted */
IIQBUFII

SAY 'The number of buffers created is' RC /¥ RC=1%*/

192 TSO/E Version 2 REXX Reference

QBUF

2. If an exec uses MAKEBUF to create a buffer, calls a routine that also issues
i : MAKEBUF, and that routine calls yet another routine that issues two

MAKEBUF commands to create two buffers, when the QBUF command is

issued by any of the routines or the original exec, RC is set to the number 4.

“DROPBUF 0"
"MAKEBUF"
SAY 'Buffers
CALL subl
"QBUF"

SAY 'Buffers
EXIT

subl:
"MAKEBUF"
SAY 'Buffers
CALL sub2
HQBUFH
A SAY 'Buffers
RETURN

sub2:
"MAKEBUF"
SAY 'Buffers

"MAKEBUF"
SAY 'Buffers
/) RETURN

/* delete any buffers
/* buffer created */
created = ' RC /* RC =

created by MAKEBUF */

1*/

created = 'RC /* RC =4 */

/* second buffer created */
created = ' RC /¥ RC =2 */

created = ' RC /* RC =4 */

/* third buffer created */
created = ' RC /* RC =3 */

/* fourth buffer created */
created = ' RC /* RC =4 */

Chapter 10. TSO/E REXX Commands 193

QELEM

QELEM

queries the number of data stack elements that are in the most recently created data
stack buffer (that is, in the buffer that was created by the MAKEBUF command).
The number of elements is returned in the REXX special variable RC. When
MAKEBUF has not been issued to create a buffer, QELEM returns the number 0 in
the special variable RC, regardless of the number of elements on the data stack.
Thus when QBUF returns 0, QELEM also returns 0.

The QELEM command can be issued from REXX execs that execute in both the
TSO/E address space and in non-TSO/E address spaces.

QELEM only returns the number of elements in a buffer that was explicitly created
using the MAKEBUF command. You can use QELEM to coordinate the use of
MAKEBUF. Knowing how many elements are in a data stack buffer can also be
useful before an exec issues the DROPBUF command, because DROPBUF removes
the most recently created buffer and all elements in it.

The QELEM command returns the number of elements in the most recently created
buffer. The QUEUED built-in function (see page 97) returns the total number of
elements in the data stack, not including buffers.

After the QELEM command is issued, it sets the REXX special variable RC to the
number of elements in the most recently-created data stack buffer.

Return Meaning
Code
0 Either the MAKEBUF command has not been issued or the buffer that
was most recently created by MAKEBUF contains no elements.
1 MAKEBUF has been issued and there is one element in the current
buffer.
2 MAKEBUTF has been issued and there are two elements in the current
buffer.
3 MAKEBUF has been issued and there are three elements in the curreht
buffer.
n MAKEBUF has been issued and there are #n elements in the current
buffer.

194 TSO/E Version 2 REXX Reference

QELEM

Examples

1. If an exec creates a buffer on the data stack with the MAKEBUF command and
then puts three elements on the data stack, the QELEM command returns the
number 3.

"MAKEBUF" /* buffer created */

PUSH one

PUSH two

PUSH three

"QELEM"

SAY 'The number of elements in the buffer is' RC /* RC = 3 */

2. Suppose an exec creates a buffer on the data stack, puts two elements on the
data stack, creates another buffer, and then puts one element on the data stack.
If the exec issues the QELEM command, QELEM returns the number 1. The
"QUEUED function, however, which returns the total number of elements on the
data stack, returns the number 3.

"MAKEBUF" /* buffer created */

QUEUE one

PUSH two

"MAKEBUF" /* second buffer created */

PUSH one

"QELEM"

SAY 'The number of elements in the most recent buffer is' RC /* 1 */
SAY 'The total number of elements is' QUEUED() /* returns 3 */

3. To check whether a data stack buffer contains elements before removing it, use
the result from the QELEM command in an IF/THEN/ELSE instruction.

"QELEM"
IF RC = O THEN
"DROPBUF" /* delete most recently created buffer */
ELSE
DO RC
PULL elem
SAY elem
END

Note: RC can be set by any host command or TSO/E REXX command, so
using RC as a control for a loop can have unexpected results when a command
is issued within the loop.

Chapter 10. TSO/E REXX Commands 195

QSTACK

QSTACK

queries the number of data stacks in existence for an exec that is executing. The
number of data stacks is returned in the REXX special variable RC. RC indicates
the total number of data stacks including the original data stack. When no
NEWSTACK commands were issued, QSTACK returns 1 in special variable RC for
the original data stack.

The QSTACK command can be issued from REXX execs that execute in both the
TSO/E address space and in non-TSO/E address spaces.

QSTACK returns the current number of data stacks created by an exec and by other
routines (functions and subroutines) the exec calls. QSTACK can be issued from the
calling exec or from a called routine. For example, when an exec issues one
NEWSTACK command and calls a routine that issues another NEWSTACK
command and none of the new data stacks are deleted with the DELSTACK
command, QSTACK returns the number 3 in special variable RC.

After the QSTACK command runs, it returns in the REXX special variable RC the
number of data stacks in existence including the original data stack.

Return Meaning
Code
1 Only the original data stack exists
2 One new data stack and the original data stack exist
3 Two new data stacks and the original data stack exist
n n - I new data stacks and the original data stack exist
Examples

1. If an exec creates two new data stacks with the NEWSTACK command, deletes
one with the DELSTACK command, and then issues the QSTACK command,
RC returns the number 2.

"NEWSTACK" /* data stack 2 created */

"NEWSTACK" /* data stack 3 created */

“DELSTACK" /* data stack 3 deleted */
"QSTACK"
SAY 'The number of data stacks is' RC /* RC = 2 */

196 TSOJE Version 2 REXX Reference

QSTACK

2. If an exec creates one new data stack, calls a routine that also creates a new data
“ stack and that routine calls yet another routine that creates two new data stacks,
" when the QSTACK command is issued by any of the routines or by the original
exec, RC returns the number 5. The data stack that is active is data stack 5.

"NEWSTACK" /* data stack 2 created */
CALL subl

"QSTACK"

SAY 'Data stacks =' RC /* RC =5 */
EXIT

subl:

"NEWSTACK" /* data stack 3 created */
CALL sub2

"QSTACK"

SAY 'Data stacks =' RC /*RC =5 */
RETURN

/ : sub2:
N "NEWSTACK" /* data stack 4 created */

“NEWSTACK" /* data stack 5 created */
"(QSTACK"

SAY 'Data stacks =' RC /* RC =5 */
RETURN

Chapter 10. TSO/E REXX Commands 197

RT

RT

Use the RT (Resume Typing) command to resume terminal output that was
previously suppressed. The RT immediate command is available only in the TSO/E
address space. When you are executing an exec, you can press the attention
interrupt key to enter attention mode, type RT, and press ENTER. Terminal output
that is generated after issuing the HT command and before issuing the RT command
is lost.

Example

You are executing an exec and have suppressed typing with the HT command. You
now want terminal output from the exec to appear at your terminal.

To resume typing, first press the attention interrupt key. A message is issued that
asks you to enter either a null line to continue or an immediate command. Type

RT
and press ENTER.

198 TSO/E Version 2 REXX Reference

SUBCOM

SUBCOM

queries the existence of a specified host command environment. SUBCOM searches
the host command environment table for the named environment and sets the
REXX special variable RC to 0 or 1. When RC contains 0, the environment exists.
When RC contains 1, the environment does not exist.

The SUBCOM command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Before an exec executes, a default host command environment is defined to execute
the commands that are issued by the exec. You can use the ADDRESS keyword
instruction (see page 28) to change the environment to another as long as the
environment is defined in the host command environment table. Use the SUBCOM
command to find out if the environment is defined in the host command
environment table for the current language processor environment. You can use the
ADDRESS built-in function to determine the name of the environment to which
host commands are currently being submitted (see page 78).

Operand: The one operand for the SUBCOM command is as follows:
envname

the name of the host command environment for which SUBCOM is to search.

When an exec is executed from TSO/E READY, there are four valid host command
environments:

TSO (the default environment)
* MVS

LINK

ATTACH

When an exec executes in a non-TSO/E address space, there are three valid host
command environments:

¢ MYVS (the default environment)
e LINK
o ATTACH

When an exec executes in ISPF, there are six valid host command environments:

¢ TSO (the default environment)
e MVS

* LINK

o ATTACH

* ISPEXEC

e ISREDIT

Chapter 10. TSO/E REXX Commands 199

SUBCOM

The SUBCOM command sets the REXX special variable RC to indicate the

existence of the specified environment.

RC Value

Description

0

The host command environment exists.

1

The host command environment does not exist.

Example

To check if the ISPEXEC environment is available before using the ADDRESS
instruction to change the environment, use the SUBCOM command as follows:

"SUBCOM ispexec"
IF RC = O THEN
ADDRESS ispexec

ELSE NOP

200 TSO/E Version 2 REXX Reference

TN

TE

TE

Use the TE (Trace End) command to stop tracing execs.

If an exec is executing in the TSO/E address space and tracing has been started, you
can end tracing by doing the following. Press the attention interrupt key to enter
attention mode and enter TE. The exec continues processing, but tracing is off.

You can also use the TE immediate command in a REXX exec that executes in any
address space. That is, TE is available in ADDRESS MVS and ADDRESS TSO. If
the exec issued TS to start tracing, it can then issue TE to end tracing.

Example

You are executing an exec in TSO/E and the exec is being traced. You have located
the problem in the exec and now want to end tracing.

To end tracing, first press the attention interrupt key. A message is issued that asks

you to enter either a null line to continue or an immediate command. To end
tracing and continue exec processing, enter TE.

Chapter 10. TSO/E REXX Commands 201

TS

TS

Use the TS (Trace Start) command to start tracing execs.

If an exec is executing in the TSO/E address space, you can press the attention
interrupt key to enter attention mode and then enter the TS command to start
tracing. Tracing lets you interactively control the execution of an exec and debug
problems. To stop tracing, you can enter TRACE OFF or press the attention
interrupt key again and enter the TE (Trace End) immediate command. Both
methods return to normal exec processing.

You can also use the TS immediate command in a REXX exec that executes in any
address space. That is, TS is available in ADDRESS MVS and ADDRESS TSO.

In TSOJ/E, the trace output is written to the terminal. In non-TSO/E, the trace
output is written to the output stream (the system default is SYSTSPRT). To end
tracing, the exec can issue the TE immediate command. In TSO/E, you can also end
tracing by entering attention mode and then entering the TE (Trace End) immediate
command.

Example

You are executing an exec in TSO/E, and the exec is not executing correctly. To
begin tracing the exec, press the attention interrupt key and enter TS.

202 TSOJ/E Version 2 REXX Reference

Debug Aids

Chapter 11. Debug Aids

In addition to the TRACE instruction, described on page 64, there are the following
debug aids:

* The interactive debug facility
¢ The TSO/E REXX immediate commands:

HI — Halt Interpretation
TS — Trace Start
TE — Trace End

The immediate commands can be used if a REXX exec is executing in the
TSO/E address space and a user presses the attention interrupt key. In attention
mode, the user can enter HI, TS, or TE. You can also use the TS and TE
immediate commands in a REXX exec that executes in any address space. That
is, TS and TE are available from both ADDRESS MVS and ADDRESS TSO.

¢ The TSO/E REXX command EXECUTIL with the following operands:

HI — Halt Interpretation
TS — Trace Start
TE — Trace End

You can use the EXECUTIL command in an exec that executes in the TSO/E
address space. You can also use EXECUTIL from TSO/E READY mode and
ISPF and in a TSO/E CLIST. You can use the EXECUTIL command with the
HI, TS, or TE operands in a program written in a high-level programming
language by using the TSO service facility. See “EXECUTIL” on page 178 for
more information.

¢ The trace and execution control routine IRXIC. You can invoke IRXIC from a
REXX exec or any program that executes in any address space in order to use
the following TSO/E REXX immediate commands:

HI — Halt Interpretation
TS — Trace Start

TE — Trace End

HT — Halt Typing

RT — Resume Typing

See “Trace and Execution Control Routine (IRXIC)” on page 251 for more
information.

Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a REXX exec.
Changing the TRACE action to one with a prefix ? (for example, TRACE ?A or the
TRACE built-in function) turns on interactive debug and indicates to the user that

interactive debug is active. You can interactively debug REXX execs in the TSO/E
address space from your terminal session.

Chapter 11. Debug Aids 203

Debug Aids

Further TRACE instructions in the exec are ignored, and the language processor
pauses after nearly all instructions that are traced at the terminal (see below for the
exceptions). When the language processor pauses, three debug actions are available:

1. Entering a null line (no blanks even) makes the language processor continue
execution until the next pause for debug input. Repeatedly entering a null line,
therefore, steps from pause point to pause point. For TRACE ?A, for example,
this is equivalent to single-stepping through the exec.

2. Entering an equal sign (=) with no blanks makes the language processor
re-execute the clause last traced. For example: if an IF clause is about to take
the wrong branch, you can change the value of the variable(s) on which it
depends, and then re-execute it.

Once the clause has been re-executed, the language processor pauses again.

3. Anything else entered is treated as a line of one or more clauses, and processed
immediately (that is, as though DO; 1ine ; END; had been inserted in the exec).
The same rules apply as in the INTERPRET instruction (for example, DO-END
constructs must be complete). If an instruction has a syntax error in it, a
standard message is displayed and you are prompted for input again. Similarly
all the other condition traps are disabled while the string is processed to prevent
unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero
return codes from host commands are displayed. Host commands are always
executed (that is, are not affected by the prefix ! on TRACE instructions), but
the variable RC is not set.

Once the string has been processed, the language processor pauses again for
further debug input unless a TRACE instruction was entered. In this latter case,
the language processor immediately alters the tracing action (if necessary) and
then continues executing until the next pause point (if any). Hence to alter the
tracing action (from All to Results for example) and then re-execute the
instruction, you must use the built-in function TRACE (see page 103). For
example, CALL TRACE I changes the trace action to “I” and allows re-execution of
the statement after which the pause was made. Interactive debug is turned off
when it is in effect, if a TRACE instruction uses a prefix, or at any time, when a:
TRACE 0 or TRACE with no options is entered.

The numeric form of the TRACE instruction may be used to allow sections of
the exec to be executed without pause for debug input. TRACE n (that is,
positive result) allows execution to continue, skipping the next n pauses (when
interactive debug is or becomes active). TRACE -n (that is, negative result)
allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across
subroutine calls. This means that if you are stepping through an exec (for example,
after using TRACE ?R to trace Results) and then enter a subroutine in which you have
no interest, you can enter TRACE 0 to turn tracing off. No further instructions in the
subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

204 TSO/E Version 2 REXX Reference

-

Debug Aids

Tracing may be switched on (without requiring modification to an exec) by using the
command EXECUTIL TS. Tracing may be also turned on or off asynchronously,
(that is, while an exec is executing) by using the TS and TE immediate commands.
See page 206 for the description of these facilities.

Since any instructions may be executed in interactive debug you have considerable
control over execution.

Some examples:

Say expr /* displays the result of evaluating the */
/* expression. */
name=expr /* alters the value of a variable. */
Trace 0 /* (or Trace with no options) turns off */
/* interactive debug and all tracing. */
Trace ?A /* turns off interactive debug but continue */
/* tracing all clauses. */
Trace L /* makes the language processor pause at labels */
/* only. This is similar to the traditional */
/* "breakpoint" function, except that you */
/* don't have to know the exact name and */
/* spelling of the labels in the exec. */
exit /* terminates execution of the exec. */
Do i=1 to 18 /* displays ten elements of the array stem. */
say stem.i
end

Exceptions: Some clauses cannot safely be re-executed, and therefore the language
processor does not pause after them, even if they are traced. These are:

¢ Any repetitive DO clause, on the second or subsequent time around the loop.
¢ All END clauses (not a useful place to pause in any case).

¢ All THEN, ELSE, OTHERWISE, or null clauses.

¢ All RETURN and EXIT clauses.

* All SIGNAL and CALL clauses (the language processor pauses after the target
label has been traced).

* Any clause that causes a syntax error. (These may be trapped by SIGNAL ON
SYNTAX, but cannot be re-executed.)

Chapter 11. Debug Aids 205

Debug Aids

Interrupting Execution and Controlling Tracing

The language processor may be interrupted during execution in several ways. You
can use the HI (Halt Interpretation) immediate command or the EXECUTIL HI
command in the TSO/E address space to cause all currently executing REXX execs
to terminate, as though there has been a syntax error. This is especially useful when
a REXX exec gets into a loop and you want to terminate execution. The HI
immediate command is available only in the TSO/E address space. If an exec is
executing and you press the attention interrupt key, after you enter attention mode,
you can enter HI to terminate execution of the exec.

The EXECUTIL command is available only in the TSO/E address space. You can
use EXECUTIL with the HI operand in a REXX exec. You can also use
EXECUTIL HI in a TSO/E CLIST or in a program that is written in a high-level
programming language by using the TSO service facility. Chapter 10, “TSO/E
REXX Commands” describes the HI immediate command and the EXECUTIL
command.

When a HI interrupt causes a REXX exec to terminate, the data stack is cleared. A
HI interrupt may be trapped by enabling the HALT condition with either the CALL
ON or SIGNAL ON instruction.

In any MVS address space, you can call the trace and execution control routine
IRXIC to invoke the HI (Halt Interpretation) immediate command and stop
execution of all currently executing REXX execs. You can invoke IRXIC from a
REXX exec or other program in both the TSO/E and non-TSO/E address spaces.
“Trace and Execution Control Routine (IRXIC)” on page 251 describes the routine.

You can start tracing REXX execs in several ways. In the TSO/E address space,
you can use the TS (Trace Start) immediate command and the EXECUTIL TS
command to start tracing. In TSO/E, you can use the TS immediate command if an
exec is executing and you press the attention interrupt key. After you enter attention
mode, you can enter TS to start tracing. You can use the EXECUTIL command
with the TS operand in a REXX exec that executes in the TSO/E address space.

You can also use EXECUTIL TS in a TSO/E CLIST or in a program that is written
in a high-level programming language by using the TSO service facility. Chapter 10,
“TSO/E REXX Commands” describes the TS immediate command and the
EXECUTIL command.

In the TSO/E address space, TS or EXECUTIL TS puts the REXX exec into normal
interactive debug and you can then execute REXX instructions etc. as normal (for
example, to display variables or EXIT). This too is useful when you suspect that a
REXX exec is looping - TS or EXECUTIL TS may be used, and the exec can be
inspected and stepped before a decision is made whether to allow it to continue or
not.

You can use the TS (Trace Start) immediate command in a REXX exec that
executes in any address space. The trace output is written to the:

* Terminal (TSO/E address space)

* Output stream, which is usually SYSTSPRT (non-TSO/E address space).

In any address space, you can call the trace and execution control routine IRXIC to
invoke the TS (Trace Start) immediate command. You can invoke IRXIC from a
REXX exec or other program in both the TSO/E and non-TSO/E address spaces.

206 TSOJ/E Version 2 REXX Reference

Debug Aids

You can end tracing in several ways. In the TSO/E address space, you can use the
TE (Trace End) immediate command and the EXECUTIL TE command to end
tracing. In TSO/E, you can use the TE immediate command if an exec is executing
and you press the attention interrupt key. After you enter attention mode, you can
enter TE to end tracing. You can use the EXECUTIL command with the TE
operand in a REXX exec that executes in the TSO/E address space. You can also
use EXECUTIL TE in a TSO/E CLIST or in a program that is written in a
high-level programming language by using the TSO service facility. Chapter 10,
“TSO/E REXX Commands” describes the TE immediate command and the
EXECUTIL command. Using the TE immediate command and the EXECUTIL TE
command has the effect of executing a TRACE O instruction. This can be useful to
end tracing when not in interactive debug.

You can also end tracing by using the TE (Trace End) immediate command in a
REXX exec that executes in any address space.

In any address space, you can call the trace and execution control routine IRXIC to
invoke the TE (Trace End) immediate command. You can invoke IRXIC from a

REXX exec or other program in both the TSO/E and non-TSO/E address spaces.

For more information about the HI, TS, and TE immediate commands and the
EXECUTIL command, see Chapter 10, “TSO/E REXX Commands.”

For more information about the trace and execution control routine IRXIC, sce
“Trace and Execution Control Routine (IRXIC)” on page 251.

Chapter 11. Debug Aids 207

208 TSO/E Version 2 REXX Reference

N

Programming Services

Chapter 12. TSO/E REXX Programming Services

In addition to the REXX language instructions and built-in functions, and the
TSOJE functions and REXX commands that are provided for writing REXX execs,
TSO/E provides programming services for REXX processing. Some programming
services are routines that let you interface with REXX and the REXX language
processor.

In addition to the programming services that are described in this chapter, TSO/E
also provides various routines that let you customize REXX processing. These are
described beginning in Chapter 13, “TSO/E REXX Customizing Services.”)
Whenever you call a TSO/E REXX routine, there are general conventions relating to
registers that are passed on the call and return codes that the routines return.
“General Considerations for Calling TSO/E REXX Routines” on page 212
highlights several major considerations about calling REXX routines.

The REXX programming services TSO/E provides are summarized below and are
described in detail in the individual topics in this chapter.

IRXJCL and IRXEXEC Routines: IRXJCL and IRXEXEC are two routines that you
can invoke to execute a REXX exec in any MVS address space. Both IRXEXEC
and IRXJCL are programming interfaces to the- REXX language processor.

You can use IRXJCL to execute a REXX exec in MVS batch by specifying IRXJCL
as the program name (PGM =) on the JCL EXEC statement. You can also call
IRXJCL from a REXX exec or a program in any address space to execute a REXX
exec.

You can call IRXEXEC from a REXX exec or a program in any address space to
execute a REXX exec. Using IRXEXEC instead of the IRXJCL routine or, in
TSOJ/E, the EXEC command processor to invoke an exec provides more flexibility in
executing an exec. For example, you can preload the exec in storage and then use
IRXEXEC to execute the exec. “IRXJCL and IRXEXEC Routines” on page 214
describes the IRXJCL and IRXEXEC programming interfaces in more detail.

Function Packages: You can extend the capabilities of the REXX programming
language by writing your own external functions and subroutines that can then be
used in REXX execs. You can write a function or subroutine in REXX. For
performance reasons, you can write external functions and subroutines in either
assembler or a high-level programming language and store them in a load library.
You can also group frequently used external functions and subroutines into a
package, which provides quick access to the packaged functions and subroutines.
When a REXX exec calls an external function or subroutine, the function packages
are searched before load libraries or exec data sets, such as SYSEXEC and
SYSPROC. The complete search order is described on page 73.

If you write external functions and subroutines that you want to include in a
function package, you must write them in a language that supports the system
interfaces for function packages. Functions or subroutines written in REXX cannot
be part of a function package. “Function Packages” on page 229 describes how to
provide function packages.

Chapter 12. TSO/E REXX Programming Services 209

Programming Services

Variable Access: TSO/E provides the IRXEXCOM variable access routine that lets
unauthorized commands and programs access and manipulate REXX variables.
Using IRXEXCOM, you can inspect, set, or drop variables. IRXEXCOM can be
called in both the TSO/E and non-TSO/E address spaces. “Variable Access
(IRXEXCOM)” on page 240 describes IRXEXCOM in detail.

Note: TSO/E also provides the IKJCT441 routine that lets authorized and
unauthorized commands and programs access REXX variables. IKJCT441 can be
used only in the TSO/E address space and is described in TSO/E Version 2
Programming Services.

Maintain Host Command Environments: When a REXX exec executes, there is at
least one host command environment available for executing host commands. When
an exec begins executing, an initial environment is defined. The host command
environment can be changed by using the ADDRESS instruction (see page 28).

When the language processor processes an instruction that is a host command, it
first evaluates the expression and then passes the command to the active host
command environment for execution. A specific routine defined for the host
command environment handles the command processing. TSO/E provides six host
command environments for execs that execute in non-TSO/E address spaces and in
the TSO/E address space (for TSO/E and ISPF). “Commands to External
Environments” on page 22 describes how you issue commands to the host and the
different environments TSO/E provides for MVS (non-TSO/E), TSO/E, and ISPF.

The valid host command environments, the routines that are invoked to handle
command execution within each environment, and the initial environment that is
available to a REXX exec when the exec begins executing are defined in a host
command environment table. You can customize REXX processing to define your
own host command environment and provide a routine that handles command
processing for that environment. Chapter 13, “TSO/E REXX Customizing
Services” on page 259 describes how to customize REXX processing in more detail.

TSO/E also provide the IRXSUBCM routine that lets you access the entries in the
host command environment table. Using IRXSUBCM, you can add, change, and
delete environment entries in the table and also query the values for a particular host
command environment entry. “Maintain Entries in the Host Command
Environment Table (IRXSUBCM)” on page 247 describes the IRXSUBCM routine
in detail.

210 TSO/E Version 2 REXX Reference

Programming Services

Trace and Execution Control: TSO/E provides the following immediate commands
that let you control the tracing and execution of REXX execs:

* HI (Halt Interpretation)
e HT (Halt Typing)

* RT (Resume Typing)

¢ TS (Trace Start)

¢ TE (Trace End)

In TSOJE, you can use the immediate commands if you are executing a REXX exec
and press the attention interrupt key to enter attention mode. You can also use the
TS and TE commands in a REXX exec that executes in any address space.

Chapter 10, “TSO/E REXX Commands” describes each immediate command in
more detail.

TSOJE also provides the trace and execution control routine IRXIC that lets you use
the immediate commands HI, HT, RT, TS, and TE. For example, you can invoke
IRXIC from a REXX exec that executes in a non-TSO/E address space in order to
use the commands or from another program written in assembler or a high-level
programming language to control the tracing and execution of REXX execs. “Trace
and Execution Control Routine (IRXIC)” on page 251 describes the IRXIC routine
in detail.

Get Result Routine: TSO/E provides the get result routine IRXRLT that lets you
obtain the result from a REXX exec that was invoked using the IRXEXEC routine.
You can also use the IRXRLT routine if you write external functions and
subroutines that are to be included in a function package. IRXRLT lets your
function or subroutine code obtain a large enough area of storage to return the
result to the calling exec. “The IRXRLT (Get Result) Routine” on page 253
describes the IRXRLT routine in detail.

Chapter 12. TSO/E REXX Programming Services 211

Programming Services

General Considerations for Calling TSO/E REXX Routines —~

Each topic in this book that describes the different REXX routines describes the
interface to the routine. This topic provides general information about calling
REXX routines.

All REXX routines, except for the initialization routine IRXINIT, cannot execute
without a language processor environment being available. A language processor
environment is the environment in which REXX operates, that is, in which the
language processor executes a REXX exec. Execs and REXX routines execute in a
language processor environment.

The system automatically initializes an environment in the TSO/E and non-TSO/E

address spaces by calling the initialization routine IRXINIT. In TSO/E, an

environment is initialized during logon processing for TSO/E READY mode.

During your TSO/E session, you can invoke an exec or use a REXX routine. The

exec or routine executes in the environment that was created during logon

processing. ro

If you invoke ISPF, the system initializes another language processor environment
for the ISPF screen. If you split the ISPF screen, a third environment is initialized
for that screen. In ISPF, when you invoke an exec or REXX routine, it executes in
the language processor environment from which it was invoked.

The system automatically terminates the three language processor environments it
initializes as follows:

* When you return to one screen in ISPF, the environment for the second screen is /)
terminated

* When you end ISPF and return to TSO/E READY mode, the environment for
the first ISPF screen is terminated

* When you log off of TSO/E, the environment for TSO/E READY mode is
terminated.

In non-TSO/E address spaces, the system does not automatically initialize a language

processor environment at a specific point, such as when the address space is N
activated. When you call either the IRXJCL or IRXEXEC routine to execute an ‘)
exec, the system automatically initializes an environment, if one does not already

exist. The exec then executes in that environment. The exec can then call a REXX

routine, such as IRXIC, and the routine executes in the same environment in which

the exec is executing. Chapter 14, “Language Processor Environments” describes

environments in more detail, when they are initialized, and the different

characteristics that make up an environment.

You can explicitly call the initialization routine IRXINIT to initialize language
processor environments. Calling IRXINIT lets you customize the environment and
how execs and services are processed and used. Using IRXINIT, you can create
several different environments in an address space. IRXINIT is intended for use in
non-TSO/E address spaces, but you can also use it in TSO/E. Customization
information is described in more detail in Chapter 13, “TSO/E REXX Customizing
Services.”

212 TSOJ/E Version 2 REXX Reference

Programming Services

If you explicitly call IRXINIT to initialize environments, whenever you call a REXX
routine, you can specify in which language processor environment you want the
routine to run. During initialization, IRXINIT creates several control blocks that
contain information about the environment. The main control block is the
environment block, which represents the language processor environment and is
known as the anchor that is used by all REXX external interfaces. If you use
IRXINIT and initialize several environments and then want to call a REXX routine
to execute in a specific environment, you can pass the address of the environment
block for the environment on the call. When you call the REXX routine, you can
pass the environment block’s address in register 0. By using the TSO/E REXX
customizing services and the environment block, you can customize REXX
processing and also control in which environment you want REXX routines to
execute.

The following information describes some general conventions about calling REXX
routines:

¢ On all calls to any REXX routine, you can pass the address of an environment
block in register 0. By passing this address, you can specify in which particular
language processor environment you want the routine to execute. For more
information, see Chapter 14, “Language Processor Environments.”

¢ The REXX vector of external entry points is a control block that contains the
addresses of the REXX external routines. On all calls to any routine in the
REXX vector of external entry points, all of the parameters must be passed. If
a parameter is not used, either binary zeros or blanks must be passed to the
routine. See “Control Blocks Created for a Language Processor Environment”
on page 323 for information about the vector of external entry points.

o All calls are in 31 bit addressing mode.
e The high order bit of the last parameter address must be a binary 1.
e All data areas may be above 16 megabytes in virtual storage.

* Specific return codes are defined for each REXX routine. The individual topics
in this book describe the return codes for each routine. Some common return
codes are:

— 0 - Successful processing

— 20 - Error occurred. Processing was unsuccessful. The requested service
was either partially completed or was terminated. An error message is
written to the error message field in the environment block. If the
NOPMSGS flag is on for the language processor environment, the message
is also written to the output DD that is defined for the environment or to
the terminal.

For some errors, an alternate message may also be issued. Alternate
messages are only printed if the ALTMSGS flag is on for the environment.

If multiple errors occurred and multiple error messages were issued, all error
messages are written to the output DD or to the terminal. However, only
the first error message is stored in the environment block.

— 28 - A service was requested, but a valid language processor environment
could not be located. The requested service is not performed.

Chapter 12. TSO/E REXX Programming Services 213

IRXJCL and IRXEXEC

IRXJCL and IRXEXEC Routines

This topic provides information about the IRXJCL and IRXEXEC routines, which
are programming interfaces to the REXX language processor. You can use IRXJCL
to execute a REXX exec in MVS batch from JCL. You can also call IRXJCL from
a REXX exec or a program that is executing in any address space to execute an
exec.

You can call the IRXEXEC routine from a REXX exec or program that is executing
in any address space to execute an exec. IRXEXEC provides more flexibility than
IRXJCL. With IRXJCL, you can pass the name of the exec and one argument on
the call. Using IRXEXEC, you can, for example, pass multiple arguments or
preload the exec in storage.

The following topics describe each routine.

Note: To permit FORTRAN programs to call IRXEXEC, TSO/E provides an
alternate entry point for the IRXEXEC routine. The alternate entry point name is
IRXEX.

The IRXJCL Routine
The IRXJCL routine is an interface to the REXX language processor. You can use
IRXJCL to execute a REXX exec in MVS batch. You can also call IRXJCL from a
REXX exec or a program in any address space to execute an exec.

Using IRXJCL to Execute a REXX Exec in MVS Batch
To execute a REXX exec in MVS batch, specify IRXJCL as the program name
(PGM =) on the JCL EXEC statement. You specify the member name of the exec
and one argument you want to pass to the exec in the PARM field on the EXEC
statement. You can specify only the name of a member of a PDS. You cannot
specify the name of a sequential data set. The PDS must be allocated to the DD
specified in the LOADDD field of the module name table. The default is
SYSEXEC. Figure 8 shows example JCL to execute the exec MYEXEC.

//STEP1 EXEC PGM=IRXJCL,PARM='MYEXEC Al b2 C3 d4'
/1*
//STEPLIB
//* Next DD is the data set equivalent to terminal input
//SYSTSIN DD DSN=xxx.Xxxx.xxx,DISP=SHR,...
*
//* Next DD is the data set equivalent to:terminal output
//SYSTSPRT DD DSN=xxx.XxXxX.Xxx,DISP=0LD,...
/1*
//* Next DD points to a Tibrary of execs
//* that include MYEXEC
//SYSEXEC DD DSN=xxx.xxx.xxx,DISP=SHR

Figure 8. Example of Invoking an Exec from a JCL EXEC Statement Using IRXJCL

Note: If you want output to be routed to a printer, you could specify the
//ISYSTSPRT DD statement as:

//SYSTSPRT DD SYSOUT=A

214 TSO/E Version 2 REXX Reference

IRXJCL and IRXEXEC

As Figure 8 shows, the exec MYEXEC is loaded from DD SYSEXEC. SYSEXEC

is the default setting for the name of the DD from which an exec is to be loaded. In
the example, one argument is passed to the exec. The argument can consist of more
than one token. In this case, the argument is:

Al b2 C3 d4

When the PARSE ARG keyword instruction is processed in the exec (for example,
PARSE ARG EXVARS), the value of the variable EXVARS is set to the argument
specified on the JCL EXEC statement. The variable EXVARS is set to:

Al b2 C3 d4

The MYEXEC exec can perform any functions that any exec executing in a
non-TSO/E address space can perform. This includes all of the REXX keyword
instructions and built-in functions, the external function STORAGE, calling other
execs, using the data stack, and linking and attaching programs.

IRXJCL returns a return code as the step condition code. See “Return Codes” on
page 217.

Invoking IRXJCL From a REXX Exec or a Program

You can also call IRXJCL from an exec or a program to execute a REXX exec. On
the call to IRXJCL, you pass the address of a parameter list in register 1.

— Environment Customization Considerations

If you use the initialization routine IRXINIT to initialize language processor
environments, you can specify in which environment IRXJCL executes. On the
call to IRXJCL, you can optionally pass the address of an environment block in
register 0 to specify the environment in which IRXJCL executes.

Entry Specifications: For the IRXJCL routine, the contents of the registers on

entry are:
Register 0 Address of an environment block (optional)
Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameters: In register 1, you pass the address of a parameter list, which consists
of one address. The address in the parameter list points to a buffer that must be

passed on the call. The high order bit of the address in the parameter list must be
set to 1. Figure 9 describes the parameter for IRXJCL.

Chapter 12. TSO/E REXX Programming Services 215

IRXJCL and IRXEXEC

Figure 9. Parameter for Calling the IRXJCL Routine

Parameter Number Description
of Bytes
Parameter 1 4 A buffer, which consists of a length field followed

by a data field. The first two bytes of the buffer is
the length field that contains the length of the data
that follows. The length does not include the two
bytes that specify the length itself.

The data field contains the name of the exec,
followed by one or more blanks, followed by the
argument (if any) to be passed to the exec. Only
one argument can be passed on the call.

Figure 10 shows an example PL/I program that invokes IRXJCL to execute a
REXX exec.

JCLXMP1 : Procedure Options (Main);

/* Function: Call a REXX exec from a PL/I program using IRXJCL */
DCL IRXJCL EXTERNAL OPTIONS(RETCODE, ASSEMBLER);

DCL 1 PARM_STRUCT, /* Parm to be passed to IRXJCL */

5 PARM_LNG BIN FIXED (15), /* Length of the parameter */

5 PARM_STR CHAR (30); /* String passed to IRXJCL */

DCL PLIRETV BUILTIN; /* Defines the return code built-in*/

PARM_LNG = LENGTH(PARM_STR); /* Set the length of string */

/* */

PARM_STR = 'JCLXMP2 This is an arg to exec '; /* Set string value
In this case, call the exec named
JCLXMP2 and pass argument:

'This is an arg to exec' */
FETCH IRXJCL; /* Load the address of entry point */
CALL IRXJCL (PARM_STRUCT); /* Call IRXJCL to execute the REXX

exec and pass the argument */

PUT SKIP EDIT ('Return code from IRXJCL was:', PLIRETV) (a, f(4));
/* Print out the return code from

exec JCLXMP2. */

END ; /* End of program */

Figure 10. Example PL/I Program to Execute a REXX Exec Using IRXJCL

Return Specifications: For the IRXJCL routine, the contents of the registers on
return are:

Registers 0-14 Same as on entry

Register 15 Return code

216 TSO/E Version 2 REXX Reference

Return Codes

IRXJCL and IRXEXEC

If IRXJCL encounters an error while executing the exec, it returns a return code. If
IRXJCL is invoked from JCL to execute an exec in MVS batch, it returns the return
code as the step condition code. If you call IRXJCL from an exec or program, it
returns the return code in register 15. Figure 11 describes the return codes.

Figure 11. Return Codes for IRXJCL

Return | Description

Code
0 Processing was successful. Exec processing completed.
20 Processing was not successful. The exec was not executed.

20021 An invalid parameter was specified on the JCL EXEC statement or
the parameter list passed on the call to IRXJCL was incorrect. Some
possible errors could be that a parameter was either blank or null or
the name of the exec was not valid (more than eight characters long).

Note: Because of how MVS batch processing operates, if you execute
an exec in MVS batch and a return code of 20021 is returned, only
the value ‘0021’ is returned as the step condition code.

Other Any other return code not equal to 0, 20, or 20021 is the return code
from the REXX exec on the RETURN or EXIT keyword instruction.

Note: No distinction is made between the REXX exec returning a return code of 20
and IRXJCL returning a return code of 20.

The IRXEXEC Routine

Use the IRXEXEC routine to execute an exec in any MVS address space.

Note: To permit FORTRAN programs to call IRXEXEC, TSO/E provides an
alternate entry point for the IRXEXEC routine. The alternate entry point name is
IRXEX.

Most users do not need to use IRXEXEC to execute REXX execs. In TSO/E, you
can execute execs implicitly or explicitly using the TSO/E EXEC command. You
can also execute execs in TSO/E background. If you want to execute an exec from a
program that is written in a high level programming language, you can use the TSO
service facility to invoke the EXEC command. You can execute an exec in MVS
batch by using JCL and the IRXJCL routine.

You can also call the IRXJCL routine from a REXX exec or a program that is
execting in any address space to invoke an exec. However, the IRXEXEC routine is
a programming interface that gives you more flexibility in executing an exec. For
example, you can preload the REXX exec in storage and pass the address of the
preloaded exec to IRXEXEC. This is useful if you want to execute an exec multiple
times to avoid the exec being loaded and freed whenever it is executed. You may
also want to use your own load routine to load and free the exec.

If you use the TSO/E EXEC command, you can pass only one argument to the exec.
The argument can consist of several tokens. Similarly, if you invoke IRXJCL from
an exec or program, you can only pass one argument. By using IRXEXEC, you can
pass multiple arguments to the exec and each argument can consist of multiple
tokens.

Chapter 12. TSO/E REXX Programming Services 217

IRXJCL and IRXEXEC

If you use IRXEXEC, one parameter on the call is the user field. You can use this
field for your own processing.

— Environment Customization Considerations

If you use the initialization routine IRXINIT to initialize language processor
environments, the following information provides several considerations about
calling IRXEXEC.

When you call IRXEXEC, you can optionally pass the address of an
environment block in register 0 to specify the language processor environment in
which you want the exec to execute. If the address of the environment block is
valid, the exec executes in that environment. If you do not pass the address of
an environment block, IRXEXEC locates the current environment. The exec is
then executed in the current environment. See “Chains of Environments and
How Environments Are Located” on page 304 for information about how
environments are located.

If a current environment does not exist or the current environment was initialized
on a different task and the TSOFL flag is off in that environment, a new
language processor environment is initialized. The exec executes in the new
environment. Before IRXEXEC returns, the language processor environment
that was created is terminated.

Entry Specifications
For the IRXEXEC routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)
Register 1 Address of the parameter list passed by the caller
Registers 2-12 Unpredictable
Register 13 Address of a register save area
Register 14 Return address
Register 15 Entry point address
Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass

all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 12 describes the parameters for IRXEXEC.

218 TSOJ/E Version 2 REXX Reference

IRXJCL and IRXEXEC

Figure 12 (Page 1 of 2). Parameters for IRXEXEC Routine

Parameter

Number
of Bytes

Description

Parameter 1

4

Specifies the address of the exec block (EXECBLK).
The exec block is a control block that describes the exec
to be loaded. It contains information needed to process
the exec, such as the DD from which the exec is to be
loaded and the name of the initial host command
environment when the exec starts executing. “The Exec
Block (EXECBLK)” on page 220 describes the format
of the exec block.

This parameter can be 0 if the exec is preloaded and you
pass the address of the preloaded exec in parameter 4.
If this parameter and parameter 4 are both specified, the
value in parameter 4 is used and this parameter is
ignored.

Parameter 2

Specifies the address of the arguments for the exec. The
arguments are arranged as a vector of address/length
pairs followed by X' FFFFFFFFFFFFFFFF'.

“Format of Argument List” on page 222 describes the
format of the arguments.

Parameter 3

A fullword of bits that are used as flags. Only bits 0, 1,
and 2 are used. The remaining bits are reserved. Bits 0,
1, and 2 are mutually exclusive.

PARSE SOURCE returns a token indicating how the
exec was invoked. The bit you set on is used by PARSE
SOURCE. For example, if you set bit 2 on, PARSE
SOURCE returns the token SUBROUTINE.

If you set bit 1 on, the exec must return a result. If you
set either bit 0 or 2 on, the exec can optionally return a
result.

* Bit 0 - This bit must be set on if the exec is being
invoked as a “command,” that is, it is not being
invoked from another exec as an external function
or subroutine.

e Bit 1 - This bit must be set on if the exec is being
invoked as an external function (a function call).

e Bit 2 - This bit must be set on if the exec is being
invoked as a subroutine.

Parameter 4

Specifies the address of the in-storage control block
(INSTBLK), which defines the structure of a preloaded
exec in storage. It contains pointers to each statement
in the exec and the length of each statement. “The
In-Storage Control Block (INSTBLK)” on page 222
describes the control block.

This parameter is required if the caller of IRXEXEC has
preloaded the exec. Otherwise, this parameter must be
0. If this parameter is specified, parameter 1 (address of
the exec block) is ignored.

Chapter 12. TSO/E REXX Programming Services 219

IRXJCL and IRXEXEC

Figure 12 (Page 2 of 2). Parameters for IRXEXEC Routine

Parameter

Number
of Bytes

Description

Parameter 5

4

Specifies the address of the CPPL, if you call IRXEXEC
from the TSO/E address space. The CPPL address is
required in the TSO/E address space.

If you call IRXEXEC from a non-TSO/E address space,
the address in the parameter list must be 0.

Parameter 6

Specifies the address of an evaluation block
(EVALBLOCK). IRXEXEC uses the evaluation block
to return the result from the exec that was specified on
either the RETURN or EXIT instruction. “The
Evaluation Block (EVALBLOCK)” on page 225
describes the format of the evaluation block, how
IRXEXEC uses the parameter, and whether or not you
should provide an EVALBLOCK on the call.

If you do not want to provide an evaluation block,
specify an address of 0.

Parameter 7

Specifies the address of an eight byte field that defines a
work area for the IRXEXEC routine. In the eight byte
field, the:

* First four bytes contain the address of the work
area

¢ Second four bytes contain the length of the work
area.

The work area is passed to the language processor to
use for executing the exec. If the work area is too
small, IRXEXEC returns with a return code of 20 and a
message is issued that indicates an error. The minimum
length required for the work area is X'1800' bytes.

If you do not want to pass a work area, specify an
address of 0. IRXEXEC will obtain storage for its work
area or will call the replaceable storage routine specified
in the GETFREER field for the environment, if you
provided a storage routine.

Parameter 8

Specifies the address of a user field. IRXEXEC does
not use or check this pointer or the user field. You can
use this field for your own processing.

If you do not want to use a user field, specify an address
of 0.

The Exec Block (EXECBLK)

The exec block (EXECBLK) is a control block that describes the exec to be loaded.
If the exec is not preloaded, you must build the exec block and pass the address in
parameter 1 on the call to IRXEXEC. You need not pass an exec block if the exec

is preloaded.

Note: If you want to preload the exec, you can use the system-supplied exec load
routine IRXLOAD or your own exec load replaceable routine (see page 358).

TSO/E provides a mapping macro IRXEXECB for the exec block. The mapping
macro is in SYS1.MACLIB. Figure 13 describes the format of the exec block.

220 TSOJE Version 2 REXX Reference

IRXJCL and IRXEXEC

Figure 13. Format of the Exec Block (EXECBLK)

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ACRYN An eight character field that identifies the
exec block. It must contain the character
string ‘IRXEXECB’.

8 4 LENGTH Specifies the length of the exec block in
bytes.

12 4 --- Reserved.

16 8 MEMBER Specifies the member name of the exec, if

the exec is in a partitioned data set. If the
exec is in a sequential data set, this field
must be blank.

24 8 DDNAME Specifies the name of the DD from which
the exec is loaded. An exec cannot be
loaded from a DD that has not been
allocated. The ddname specified must be
allocated to a data set containing REXX
execs or to a sequential data set that
contains an exec.

If this field is blank, the exec is loaded
from the DD specified in the LOADDD
field of the module name table (see page
287). The default is SYSEXEC.

32 8 SUBCOM Specifies the name of the initial host
command environment when the exec
starts executing.

If this field is blank, the environment
specified in the INITIAL field of the host
command environment table is used. For
TSO/E and ISPF, the default is TSO. For
a non-TSO/E address space, the default is
MYVS. The table is described in “Host
Command Environment Table” on

page 291.

40 4 DSNPTR Specifies the address of a data set name
that the PARSE SOURCE instruction
returns. The name usually represents the
name of the exec load data set. The name
can be up to 54 characters long (44
characters for the fully qualified data set
name, 8 characters for the member name,
and 2 characters for the left and right
parentheses).

If you do not want to specify a data set
name, specify an address of 0.

44 4 DSNLEN Specifies the length of the data set name
that is pointed to by the address at offset
+40. The length can be 0-54. If no data
set name is specified, the length is 0.

An exec cannot be loaded from a data set that has not been allocated. The ddname
specified (at offset +24) must be allocated to a data set containing REXX execs or
to a sequential data set that contains an exec.

Chapter 12. TSO/E REXX Programming Services 221

IRXJCL and IRXEXEC

The fields at offset +40 and +44 in the exec block are used only for input to the
PARSE SOURCE instruction and are for informational purposes only.

Loading of the exec is done as follows:
¢ If the exec is preloaded, loading is not performed.

e If a ddname is specified in the exec block, the exec is loaded from that DD. The
name of the member is also specified in the exec block.

e If a ddname is not passed in the exec block, the exec is loaded from the DD
specified in the LOADDD field in the module name table for the language
processor environment (see page 287). The default is SYSEXEC. If you
customize the environment values TSO/E provides or use the initialization
routine IRXINIT, the DD may be different. See Chapter 14, “Language
Processor Environments” for customizing information.

Format of Argument List
Parameter 2 points to the arguments for the exec. The arguments are arranged as a
vector of address/length pairs, one for each argument. The first four bytes is the
address of the argument string. The second four bytes is the length of the argument
string, in bytes. The vector must end in X' FFFFFFFFFFFFFFFF'. There is no
limit on the number of arguments you can pass. Figure 14 shows the format of
three arguments. TSO/E provides a mapping macro IRXARGTB for the vector.
The mapping macro is in SYSI.MACLIB.

Figure 14. Format of Three Arguments in the Argument List

Offset | Number | Field Name Description

(Dec) of Bytes

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING _LENGTH | Length of argument 1

8 4 ARGSTRING_PTR Address of argument 2

12 4 ARGSTRING LENGTH | Length of argument 2

16 4 ARGSTRING_PTR Address of argument 3

20 4 ARGSTRING LENGTH | Length of argument 3

24 8 X 'FFFFFFFFFFFFFFFF"

The In-Storage Control Block (INSTBLK)
Parameter 3 points to the in-storage control block (INSTBLK). The in-storage
control block defines the structure of a preloaded exec in storage. It contains
pointers to each record in the exec and the length of each record.

If you preload the exec in storage, you must pass the address of the in-storage
control block (parameter 4). You must provide the storage, format the control
block, and free the storage after IRXEXEC returns. IRXEXEC only reads
information from the in-storage control block. It does not change any of the
information.

222 TSOJ/E Version 2 REXX Reference

IRXJCL and IRXEXEC

To preload an exec into storage, you can use the exec load replaceable routine
IRXLOAD. If you provide your own exec load replaceable routine, you can use
your routine to preload the exec. “Exec Looad Routine” on page 358 describes the
replaceable routine.

If the exec is not preloaded, you must specify an address of 0 for the in-storage
control block parameter (parameter 4).

The in-storage control block consists of a header and the records in the exec, which
are arranged as a vector of address/length pairs. Figure 15 shows the format of the
in-storage control block header. Figure 16 on page 224 shows the format of the
vector of records. TSO/E provides a mapping macro IRXINSTB for the in-storage
control block. The mapping macro is in SYS1.MACLIB.

Figure 15 (Page 1 of 2). Format of the Header for the In-Storage Control Block

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ACRONYM | An eight character field that identifies the
control block. The field must contain the
characters ‘IRXINSTB’.

8 4 HDRLEN Specifies the length of the in-storage
control block header only. The value must
be 128 bytes.

12 4 - Reserved.

16 4 ADDRESS Specifies the address of the vector of
records. See Figure 16 on page 224 for
the format of the address/length pairs.

If this field is 0, the exec contains no
records.

20 4 USEDLEN Specifies the length of the address/length
vector of records in bytes. This is not the
number of records. The value is the
number of records multiplied by 8.

If this field is 0, the exec contains no
records.

24 8 MEMBER Specifies the name of the exec. This is the

name of the member in the partitioned data
set from which the exec was loaded. If the
exec was loaded from a sequential data set,
this field must be blank.

The PARSE SOURCE instruction returns
the folded member name you specify. If
this field is blank, the member name that
PARSE SOURCE returns is a question
mark (?).

32 8 DDNAME Specifies the name of the DD that
represents the exec load data set from
which the exec was loaded.

40 8 SUBCOM Specifies the name of the initial host
command environment when the exec starts
executing.

48 4 —- Reserved.

Chapter 12. TSO/E REXX Programming Services 223

IRXJCL and IRXEXEC

Figure 15 (Page 2 of 2).

Format of the Header for the In-Storage Control Block

Offset Number Field Name Description

(Decimal) of Bytes

52 4 DSNLEN Specifies the length of the data set name
that is specified at offset +56. If a data
set name is not specified, this field must be
0.

56 72 DSNAME A 72 byte field that contains the name of

the data set, if known, from which the exec
was loaded. The name can be up to 54
characters long (44 characters for the fully
qualified data set name, 8 characters for
the member name, and 2 characters for the
left and right parentheses). The remaining
bytes of the field (2 bytes plus four
fullwords) are not used. They are reserved
for system use and contain binary zeroes.

At offset +16 in the in-storage control block header, the field points to the vector of
records that are in the exec. The records are arranged as a vector of address/length

pairs. Figure 16 shows the format of the address/length pairs.

The addresses point to the text of the record to be processed. This can be one or
more REXX clauses, parts of a clause that are continued with the REXX

continuation character (the continuation character is a comma), or a combination of

these. The address is the actual address of the record. The length is the length of
the record in bytes.

Figure 16. Vector of Records for the In-Storage Control Block
Offset Number | Field Name | Description
(Decimal) | of Bytes

0 4 STMT@ Address of record 1
4 4 STMTLEN | Length of record 1
8 4 STMT@ Address of record 2
12 4 STMTLEN | Length of record 2
16 4 STMT@ Address of record 3
20 4 STMTLEN | Length of record 3
X 4 STMT@ Address of record n
y 4 STMTLEN | Length of record n

224 TSO/E Version 2 REXX Reference

)

IRXJCL and IRXEXEC

The Evaluation Block (EVALBLOCK)

The evaluation block is a control block that IRXEXEC uses to return the result
from the exec. The exec can return a result on either the RETURN or EXIT
instruction. For example, the REXX instruction

RETURN varl

returns the value of the variable VAR1. IRXEXEC returns the value of VARI in
the evaluation block.

If the exec you are executing will return a result, specify the address of an evaluation
block when you call IRXEXEC (parameter 6). You must obtain the storage for the
control block yourself.

If the exec does not return a result or you want to ignore the result, you need not
allocate an evaluation block. On the call to IRXEXEC, you must pass all of the
parameters. Therefore, specify an address of 0 for the evaluation block.

If the result from the exec fits into the evaluation block, the data is placed into the
block (EVDATA field) and the length of the block is updated (ENVLEN field). If
the result does not fit into the area provided in the evaluation block, IRXEXEC:

¢ Places as much of the result that will fit into the evaluation block in the
EVDATA field

e Sets the length of the result field (EVLEN) to the negative of the length that is
required to store the complete result.

The result is not lost. The system has its own evaluation block that it uses to store
the result. If the evaluation block you passed to IRXEXEC is too small to hold the
complete result, you can then use the IRXRLT (get result) routine. You allocate
another evaluation block that is large enough to hold the result and call IRXRLT.
On the call to the IRXRLT routine, you pass the address of the new evaluation
block. IRXRLT copies the result from the exec that was stored in the system’s
evaluation block into your evaluation block and returns. “The IRXRLT (Get
Result) Routine” on page 253 describes the routine in more detail.

If you call IRXEXEC and do not pass the address of an evaluation block, and the
exec returns a result, you can use the IRXRLT routine after IRXEXEC completes to
obtain the result.

To summarize, if you call IRXEXEC to execute an exec that returns a result and
you pass the address of an evaluation block that is large enough to hold the result,
IRXEXEC returns the result in the evaluation block. In this case, IRXEXEC does
not store the result in its own evaluation block.

If IRXEXEC executes an exec that returns a result, the result is stored in the
system’s evaluation block if:

¢ The result did not fit into the evaluation block that you passed on the call to
IRXEXEC, or

¢ You did not specify the address of an evaluation block on the call.

Chapter 12. TSO/E REXX Programmfng Services 225°

IRXJCL and IRXEXEC

You can then obtain the result by allocating a large enough evaluation block and
calling the IRXRLT routine to get the result. The result is available until one of the
following occurs:

e IRXRLT is called and successfully obtains the result
¢ Another REXX exec executes in the same language processor environment, or
¢ The language processor environment is terminated.

Note: The language processor environment is the environment in which the
language processor executes the exec. See Chapter 14, “Language Processor
Environments” for more information about the initialization and termination of
environments and customization services.

The evaluation block consists of a header and data, which contains the result.
Figure 17 shows the format of the evaluation block. Additional information about
each field is described after the table.

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The
mapping macro is in SYSI.MACLIB.

Figure 17. Format of the Evaluation Block

Offset Number | Field Description
(Decimal) of Bytes | Name

0 4 EVPADI1 | A fullword that must contain X‘OO;.
This field is reserved and is not used.

4 4 EVSIZE Specifies the total size of the evaluation
block in doublewords.

8 4 EVLEN On entry, this field is not used and must

be set to X'00'. On return, it specifies
the length of the result, in bytes, that is
returned. The result is returned in the
EVDATA field at offset +16.

12 4 EVPAD2 | A fullword that must contain X'00'.
This field is reserved and is not used.
16 n EVDATA | The field in which the result from the exec

is returned. The length of the field
depends on the total size specified for the
control block in the EVSIZE field. The
total size of the EVDATA field is:

EVSIZE * 8 - 16

If the result does not fit into the EVDATA field, IRXEXEC stores as much of the
result as it can into the field and sets the length field (EVLEN) to the negative of the
required length for the result. You can then use the IRXRLT routine to obtain the
result. See “The IRXRLT (Get Result) Routine” on page 253 for more
information.

On return, if the result has a length of 0, the length field (EVLEN) is 0, which means

the result is null. If no result is returned on the EXIT or RETURN instruction, the
length field contains X'80000000'.

226 TSO/E Version 2 REXX Reference

IRXJCL and IRXEXEC

If the language processor returns with a non-zero return code, which indicates a
syntax error in the exec, a value of 20000 plus the REXX error number is returned
in the EVDATA field. The error numbers are between 3 and 99 and correspond to
the REXX message numbers. For example, error 26 corresponds to the REXX
message IRX00261. These messages are described in Appendix A, “Error Numbers
and Messages.”

If you execute the exec as a “command” (bit 0 is set on in parameter 3), the result
the exec returns must be a numeric value. The result can be from -2,147,483,648
through +2,147,483,648. If the result is not numeric or is greater than or less than
the valid values, this indicates a syntax error and the value 20026 is returned in the
EVDATA field.

For the IRXEXEC routine, the contents of the registers on return are:
Register 0 Address of the environment block.

If IRXEXEC returns with return code 100 or 104, register 0
contains the abend and reason code. “Return Codes” describes the
return codes and how IRXEXEC returns the abend and reason
codes for return codes 100 and 104.

Registers 1-14 Same as on entry
Register 15 Return code

IRXEXEC returns a return code in register 15. Figure 18 shows the return codes.

e
Return Specifications
\ /
Return Codes
_//
e
N

Chapter 12. TSO/E REXX Programming Services 227

IRXJCL and IRXEXEC

Figure 18. IRXEXEC Return Codes

Return | Description
Code

0 Processing was successful. The exec has completed executing.

If the exec returns a result, the result may or may not fit into the
evaluation block. You must check the length field (EVLEN).

20 Processing was not successful. An error occurred. The exec has not
been executed. An error message is issued that describes the error.

100 Processing was not successful. A system abend occurred during
IRXEXEC processing.

The system issues one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS|XA Message
Library: System Codes for information about the abend codes and
reason codes.

104 Processing was not successful. A user abend occurred during
IRXEXEC processing.

The system issues one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

Note: The language processor environment is the environment in which the exec
executes. If IRXEXEC cannot locate an environment in which to execute the exec,
an environment is automatically initialized. If an environment was being initialized
and an error occurred during the initialization process, IRXEXEC returns with
return code 20, but an error message is not issued.

228 TSO/E Version 2 REXX Reference

Function Packages

() Function Packages

You can write your own external functions and subroutines, which allows you to
extend the capabilities of the REXX language. You can write functions that
supplement the built-in functions or TSO/E external functions that are provided.
You can also write a function to replace one of the functions that is provided. For
example, if you want a new substring function that performs differently from the
SUBSTR built-in function, you can write your own substring function and name it
STRING. Users at your installation can then use the STRING function in their
execs.

You can write functions or subroutines in any programming language, including
REXX. If an external function or subroutine is written in REXX, you can store it
in:

¢ The same PDS from which the calling exec was loaded

) * An alternative exec library as defined by ALTLIB (for the MVS/ESA feature of
N TSO/E Version 2 only)

e A data set that is allocated to SYSEXEC (SYSEXEC is the default load ddname
used for storing REXX execs)

¢ A data set that is allocated to SYSPROC (TSO/E address space only).

Note: External functions and subroutines that are written in REXX cannot be part
of a function package.

{) If you write an external function or subroutine in assembler or a high-level

N programming language, you can store it in a load library. This allows for faster
access of the function or subroutine because by default, load libraries are searched
before any exec libraries, such as SYSEXEC and SYSPROC.

For faster access of a function or subroutine, and therefore better performance, you
can group frequently used external functions and subroutines in function packages.
A function package is basically a number of external functions and subroutines that
are grouped or packaged together. When the language processor is executing an
exec and processes a function call or a call to a subroutine, it searches the function
packages before searching load libraries or exec libraries, such as SYSEXEC and
SYSPROC. “Search Order” on page 73 describes the complete search order.

TSOJE supports three types of function packages. Basically, there are no differences
between the three types, although the intent of the design is as follows:

e User packages, which are function packages that an individual user may write to
replace or supplement certain system-provided functions. When the function
packages are searched, the user packages are searched before the local and
system packages.

¢ Local packages, which are function packages that a system support group or
application group may write. Local packages may contain functions and
subroutines that are available to a specific group of users or to the entire
installation. Local packages are searched after the user packages and before the
system packages.

*/‘" o System packages, which are function packages that an installation may write for
system-wide use or for use in a particular language processor environment.
System packages are searched after any user and local packages.

Chapter 12. TSO/E REXX Programming Services 229

Function Packages

IBM products may provide system function packages. For example, TSO/E provides
the IRXEFMYVS and IRXEFPCK system function packages for the TSO/E
functions, such as LISTDSI and OUTTRAP.

“Search Order” on page 73 describes the complete search order the language
processor uses to locate a function or subroutine.

To provide function packages, there are several steps you must perform. The steps
are described below and are explained in more detail in the following topics.

1. You must first write the individual functions and subroutines you want included

in a function package. The functions and subroutines must be written in a
programming language that supports the system interface for function packages
and that is capable of being called by an MVS LINK. Functions and
subroutines written in REXX cannot be included in a function package.

When a function or subroutine in a function package is invoked, it receives a
parameter list that contains the address of the parsed argument list and the
address of a fullword that contains the address of an evaluation block.
“Interface for Writing Function and Subroutine Code” on page 231 describes
the system interface for writing functions and subroutines that you want to
include in a function package.

. After you write the individual functions and subroutines, you must write the

directory for the function package. You need a directory for each individual
function package.

The function package directory is contained in a load module. It contains a
header followed by individual entries that define the names and/or the addresses
of the entry points, which when called, execute your function or subroutine code.
“Directory for Function Packages” on page 234 describes the directory for
function packages.

. The name of the entry point at the beginning of the directory (the function

package name) must be specified in the function package table for a language
processor environment. “Function Package Table” on page 295 describes the
format of the table. After you write the directory, you must define the directory
name in this table. There are several ways you can do this depending on the
type of function package you are defining (user, local, or system) and whether
you are providing only one or several user and local function packages.

If you are providing a local or user function package, you can name the function
package directory IRXFLOC (local package) or IRXFUSER (user package).
TSO/E provides these two “dummy” directory names in the three default
parameters modules IRXPARMS, IRXTSPRM, and IRXISPRM. By naming
your local function package directory IRXFLOC and your user function
package directory IRXFUSER, the external functions and subroutines in the
packages are automatically available to REXX execs that execute in non-TSO/E
and the TSO/E address space.

If you write your own system function package or more than one local or user
function package, you must provide a function package table containing the
name of your directory. You must also provide your own parameters module
that points to your function package table. Your parameters module then
teplaces the default parameters module that is used to initialize a default
language processor environment. “Specifying Directory Names in the Function
Package Table” on page 238 describes how to define directory names in the
function package table.

230 TSO/E Version 2 REXX Reference

Function Packages

Note: If you explicitly call the IRXINIT routine, you can pass the address of a
function package table containing your directory names on the call.

Interface for Writing Function and Subroutine Code

Entry Specifications

~—~ Parameters

This topic describes the system interfaces for functions and subroutines that are to
be included in a function package. You can write the function or subroutine in

assembler or any high-level programming language that can be called by an MVS
LINK.

The interface to the code is the same whether the code is called as a function or as a
subroutine. The only difference is how the language processor handles the result
after the external code completes and returns control. Before the code gets control,
the language processor allocates a control block called the evaluation block
(EVALBLOCK). The address of the evaluation block is passed to the function or
subroutine code. The function or subroutine code places the result into the
evaluation block, which is returned to the language processor. If the code was called
as a subroutine, the result in the evaluation block is placed into the REXX special
variable RESULT. If the code was called as a function, the result in the evaluation
block is used in the interpretation of the REXX instruction that contained the
function.

The following topics describe the contents of the registers when the function or
subroutine code gets control and the parameters the code receives.

When the code for the function or subroutine gets control, the contents of the
registers are:

Register 0 Address of the environment block

Register 1 Address of the external function parameter list (EFPL)
Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

When the function or subroutine gets control, register 1 points to the external
function parameter list, which is described in Figure 19. TSO/E provides a mapping
macro IRXEFPL for the external function parameter list. The mapping macro is in
SYS1.MACLIB.

Figure 19 (Page 1 of 2). External Function Parameter List
Offset Number | Description

(Decimal) | of Bytes

0 4 Reserved.

4 4 Reserved.

8 4 Reserved.

12 4 Reserved.

Chapter 12. TSO/E REXX Programming Services 231

Function Packages

Figure 19 (Page 2 of 2). External Function Parameter List

Offset Number | Description
(Decimal) of Bytes

16 4 The address of the parsed argument list. Each
argument is represented by an address/length pair. The
argument list is terminated by
X'FFFFFFFFFFFFFFFF'. Figure 20 on page 232
shows the format of the argument list.

20 4 The address of a fullword that contains the address of
an evaluation block (EVALBILOCK). The evaluation
block is used to pass back the result of the function or
subroutine. Figure 21 on page 233 describes the
evaluation block.

Argument List
Figure 20 shows the format of the parsed argument list the function or subroutine
code receives at offset +16 (decimal). The figure is an example of three arguments.
TSOJ/E provides a mapping macro IRXARGTB for the argument list. The mapping
macro is in SYSI.MACLIB.

Figure 20. Format of the Argument List

Offset | Number | Field Name Description

(Dec) of Bytes

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING_LENGTH | Length of argument 1

8 4 ARGSTRING_PTR Address of argument 2

12 4 ARGSTRING_LENGTH | Length of argument 2

16 4 ARGSTRING_PTR Address of argument 3

20 4 ARGSTRING LENGTH | Length of argument 3

24 8 - X'FFFFFFFFFFFFFFFF!

In the argument list, each argument consists of the address of the argument and its
length. The argument list is terminated by X' FFFFFFFFFFFFFFFF'.

Evaluation Block
Before the function or subroutine code is called, the language processor allocates a
control block called the evaluation block (EVALBLOCK). The address of the
evaluation block is passed to the code at offset +20. The function or subroutine
code computes the result and returns the result in the evaluation block.

The evaluation block consists of a header and data, in which you place the result
from your function or subroutine code. Figure 21 shows the format of the

evaluation block.

TSOJE provides a mapping macro IRXEVALB for the evaluation block. The
mapping macro is in SYS1.MACLIB.

232 TSOJE Version 2 REXX Reference

Function Packages

Note: The IRXEXEC routine also uses an evaluation block to return the result
from an exec that is specified on either the RETURN or EXIT instruction. The
format of the evalution block that IRXEXEC uses is identical to the format of the
evaluation block passed to your function or subroutine code. “The Evaluation
Block (EVALBLOCK)” on page 225 describes the control block for IRXEXEC.

Figure 21. Format of the Evaluation Block

Offset Number | Field Description

(Decimal) | of Bytes | Name

0 4 EVPADI1 | A fullword that contains X'00'. This
field is reserved and is not used.

4 4 EVSIZE Specifies the total size of the evaluation
block in doublewords.

8 4 EVLEN On entry, this field is set to X'80000000',

which indicates no result is currently
stored in the evaluation block. On return,
specify the length of the result, in bytes,
that your code is returning. The result is
returned in the EVDATA field at offset

+16.

12 4 EVPAD2 | A fullword that contains X'00'. This
field is reserved and is not used.

16 n EVDATA | The field in which you place the result

from the function or subroutine code.

The length of the field depends on the
total size specified for the control block in
the EVSIZE field. The total size of the
EVDATA field is:

EVSIZE * 8 - 16

The function or subroutine code must compute the result, move the result into the
EVDATA field (at offset +16), and update the EVLEN field (at offset +8).
Because the evaluation block is passed to the function or subroutine code, the
EVDATA field in the evaluation block may be too small to hold the complete result.
If the evaluation block is too small, you can call the IRXRLT (get result) routine to
obtain a larger evaluation block. Call IRXRLT using the GETBLOCK function.
IRXRLT creates the new evaluation block and returns the address of the new block.
Your code can then place the result in the new evaluation block. You must also
change the parameter at offset +20 in the parameter list to point to the new
evaluation block. For information about using IRXRLT, see “The IRXRLT (Get
Result) Routine” on page 253.

Functions must return a result. Subroutines may optionally return a result. If a

subroutine does not return a result, it must return a data length of X'80000000' in
the EVLEN field in the evaluation block.

Chapter 12. TSO/E REXX Programming Services 233

Function Packages

Directory for Function Packages
After you write the code for the functions and subroutines you want to group in a //\”\
function package, you must write a directory for the function package. You need a /
directory for each individual function package you want defined.

The function package directory is contained in a load module. The name of the
entry point at the beginning of the directory is the function package directory name.
The name of the directory is specified only on the CSECT. In addition to the name
of the entry point, the function package directory defines each entry point for the
individual functions and subroutines that are part of the function package. The
directory consists of two parts; a header followed by individual entries for each
function and subroutine included in the function package. Figure 22 shows the
format of the directory header. Figure 23 on page 235 illustrates the rows of entries
in the function package directory. TSO/E provides a mapping macro IRXFPDIR
for the function package directory header and entries. The mapping macro is in
SYS1.MACLIB.

Figure 22. Format of the Function Package Directory Header

Offset Number Description
(Decimal) of Bytes
0 8 An eight byte character field that must contain the
character string ‘IRXFPACK’.
8 4 Specifies the length, in bytes, of the header. This is the
offset from the beginning of the header to the first
entry in the directory. This must be a fullword binary N

number equivalent to decimal 24.

12 4 The number of functions and subroutines defined in the
function package (the number of rows in the directory).
The format is a fullword binary number.

16 4 A fullword of X'00°'.

20 4 Specifies the length, in bytes, of an entry in the
directory (length of a row). This must be a fullword
binary number equivalent to decimal 32.

In the function package table for the three default parameter modules IRXPARMS,
IRXTSPRM, and IRXISPRM), TSO/E provides two “dummy” function package
directory names:

* IRXFLOC for a local function package
¢ IRXFUSER for a user function package

If you create a local or user function package, you can name the directory
IRXFLOC and IRXFUSER respectively. By using IRXFLOC and IRXFUSER,
you need not create a new function package table containing your directory names.

If you are creating a system function package or several local or user packages, you
must define the directory names in a function package table. “Specifying Directory
Names in the Function Package Table” on page 238 describes how to do this in

more detail. I

234 TSOJ/E Version 2 REXX Reference

Function Packages

You must link edit the external function or subroutine code and the directory for the
function package into a load module. The code and directory can be link edited into
separate load modules or into the same load module. Place the data set with the
load modules in the search sequence for an MVS LOAD. For example, the data set
can be in the data set concatenation for either a STEPLIB or JOBLIB or you can
install it in the LINKLST or LPALIB.

In the TSO/E address space, you can use the EXECUTIL command with the
RENAME operand to dynamically change entries in a function package (see page
178 for information about EXECUTIL). If you plan to use the EXECUTIL
command to change entries in the function package you provide, you should not
install the function package in the LPALIB.

Format of Entries in the Directory

Figure 23 shows two rows (two entries) in a function package directory. The first
entry starts immediately after the directory header. Each entry defines a function or
subroutine in the function package. The individual fields are described following the
table.

Figure 23. Format of Entries in Function Package Directory

Offset Number Field Name Description

(Decimal) of Bytes

0 8 FUNC-NAME The name of the first function or
subroutine (entry) in the directory.

8 4 ADDRESS The address of the entry point of the

function or subroutine code (for the
first entry).

12 4 ——— Reserved.

16 8 SYS-NAME The name of the entry point in a load
module that corresponds to the
function or subroutine code (for the
first entry).

24 8 SYS-DD The ddname from which the function
or subroutine code is loaded (for the
first entry).

32 8 FUNC-NAME The name of the second function or
subroutine (entry) in the directory.
40 4 ADDRESS The address of the entry point of the

function or subroutine code (for the
second entry).

44 4 - Reserved.

48 8 SYS-NAME The name of the entry point in a load
module that corresponds to the
function or subroutine code (for the
second entry).

56 8 SYS-DD The ddname from which the function
or subroutine code is loaded (for the
second entry).

Chapter 12. TSO/E REXX Programming Services 235

Function Packages

The following describes each entry (row) in the directory.

FUNC-NAME
The eight character name of the external function or subroutine. This is name
that is used in the REXX exec. The name must be in uppercase and left
justified.

If this field is blank, the entry is ignored.

ADDRESS
A four byte field that contains the address, in storage, of the entry point of the
function or subroutine code. This address is used only if the code has already
been loaded.

If the address is 0, the sys-name and, optionally, the sys-dd fields are used. An
MYVS LOAD will be issued for sys-name from the DD sys-dd.

If the address is specified, the sys-name and sys-dd fields for the entry are
ignored.

Reserved
A four byte field that is reserved.

SYS-NAME
An eight byte character name of the entry point in a load module that
corresponds to the function or subroutine code to be called for the func-name.
The name must be in uppercase and left justified.

If the address is specified, this field can be blank. If an address of 0 is specified
and this field is blank, the entry is ignored.

SYS-DD
An eight byte character name of the DD from which the function or subroutine
code is loaded. The name must be in uppercase and left justified.

If the address is 0 and this field is blank, the module is loaded from the link list.
Example of a Function Package Directory

Figure 24 on page 237 shows an example of a function package directory. The
example is explained following the figure.

236 TSOJE Version 2 REXX Reference

Function Packages

IRXFUSER CSECT

DC CL8' IRXFPACK' String identifying directory

DC FL4'24" Length of header

DC FL4'4' Number of rows in directory

DC FL4'O' Word of zeros

DC FL4'32' Length of directory entry
* Start of definition of first entry

DC CL8'MYF1 ! Name used in exec

DC FL4'0D' Address of preloaded code

DC FL4'Q' Reserved field

DC CL8'ABCFUN1 Name of entry point

DC CL8'FUNCTDD1' DD from which to load entry point
* Start of definition of second entry

DC CL8'MYF2 ! Name used in exec

DC FL4'0O! Address of preloaded code

DC FL4'0* Reserved field

DC CL8'ABCFUN2 Name of entry point

DC cL8' ! DD from which to load entry point
* Start of definition of third entry

DC CL8'MYS3 ! Name used in exec

DC AL4 (ABCSUB3) Address of preloaded code

DC FL4'0D' Reserved field

DC CL8'ABCFUN3 ' Name of entry point

DC CL8'FUNCTDD3' DD from which to load entry point
* Start of definition of fourth entry

DC CL8'MYF4 ! Name used in exec

DC VL4 (ABCFUNC4) Address of preloaded code

DC FL4'Q' Reserved field

DC cLs' ' Name of entry point

DC CL8' ! DD from which to load entry point

SPACE 2

ABCSUB3 EQU

* Subroutine code for subroutine MYS3

*

* End of subroutine code

END

ABCFUNC4 CSECT

IRXFUSER

* Function code for function MYF4
*

* End of function code
END ABCFUNCA

Figure 24. Example of a Function Package Directory

Chapter 12. TSO/E REXX Programming Services

237

Function Packages

In Figure 24, the name of the function package directory is IRXFUSER, which is
one of the “dummy” function package directory names TSO/E provides in the
default parameter modules. Four entries are defined in this function package:

¢ MYFI, which is an external function
» MYF2, which is an external function
¢ MYS3, which is an external subroutine
e MYF4, which is an external function

If the external function MYF1 is called in an exec, the load module with entry point
ABCFUN!I is loaded from DD FUNCTDD1. If MYF2 is called in an exec, the
load module with entry point ABCFUN2 is loaded from the linklist because the
sys-dd field is blank.

The load modules for MYS3 and MYF4 have been preloaded. The MYS3
subroutine has been assembled as part of the same object module as the function
package directory. The MYF4 function has been assembled in a different object
module, but has been link edited as part of the same load module as the directory.
The assembler, linkage editor, and loader have resolved the addresses.

If the name of the directory is not IRXFLOC or IRXFUSER, you must specify the
directory name in the function package table for an environment. “Specifying
Directory Names in the Function Package Table” describes how you can do this.

When a language processor environment is initialized, either by default or when
IRXINIT is explicitly called, the load modules containing the function package
directories for the environment are automatically loaded. The modules for the
external function and subroutine code are loaded when an exec calls the function or
subroutine. All modules that are loaded remain loaded until the last exec executing
under the task under which the modules were loaded finishes executing.

Specifying Directory Names in the Function Package Table

After you write the function and subroutine code and the directory, you must define
the directory name in the function package table. The function package table
contains information about the user, local, and system function packages that are
available to REXX execs executing in a specific language processor environment.
Each environment that is initialized has its own function package table. “Function
Package Table” on page 295 describes the format of the table.

The parameter module (and the PARMBLOCK that is created) defines the
characteristics for a language processor environment and contains the address of the
function package table (in the PACKTB field). In the three default modules that
TSO/E provides IRXPARMS, IRXTSPRM, and IRXISPRM), the function package
table contains two “dummy” function package directory names:

¢ IRXFLOC for a local function package
¢ IRXFUSER for a user function package

If you name your local function package directory IRXFLOC and your user
function package directory IRXFUSER, the external functions and subroutines in
your package are then available to execs that execute in non-TSO/E, TSO/E, and
ISPF. There is no need for you to provide a new function package table.

If you provide a system function package or several local or user packages, you must
then define the directory name in a function package table. To do this, you must
provide your own function package table. You must also provide your own

238 TSO/E Version 2 REXX Reference

Function Packages

IRXPARMS, IRXTSPRM, and/or IRXISPRM load module depending on whether
you want the function package available to execs executing in non-TSO/E, TSO/E,
or ISPF.

You first write the code for the function package table. You must include the
default entries provided by TSO/E. The IRXPARMS, IRXTSPRM, and
IRXISPRM modules contain the default directory names IRXEFMYVS, IRXFLOC,
and IRXFUSER. In addition, the IRXTSPRM and IRXISPRM modules also
contain the default IRXEFPCK directory name. “Function Package Table” on
page 295 describes the format of the function package table.

You must then write the code for one or more parameter modules. The module you
provide depends on whether the function package should be made available to execs
that execute in ISPF only, TSO/E only, TSO/E and ISPF, non-TSO/E only, or any
address space. “Changing the Default Values for Initializing an Environment” on
page 310 describes how to create the code for your own parameter module and
which modules you should provide.

Chapter 12. TSO/E REXX Programming Services 239

Variable Access IRXEXCOM)

Variable Access (IRXEXCOM)

The language processor provides an interface whereby called commands and
programs can easily access and manipulate the current generation of REXX
variables. Any variable can be inspected, set, or dropped; if required, all active
variables can be inspected in turn. Names are checked for validity by the interface
code, and optionally substitution into compound symbols is carried out according to
normal REXX rules. Certain other information about the program that is running is
also made available through the interface.

TSO/E REXX provides two variable access routines you can call to access and
manipulate REXX exec variables:

* IRXEXCOM
* IKJCT441

The IRXEXCOM variable access routine lets unauthorized commands and programs
access and manipulate REXX variables. IRXEXCOM can be used in both the
TSO/E and non-TSO/E address spaces. IRXEXCOM can be used only if a REXX
exec has been enabled in the language processor environment. That is, an exec must
have been invoked, but is not currently being processed. For example, you can
invoke an exec that calls a routine and the routine can then invoke IRXEXCOM.
When the routine calls IRXEXCOM, the REXX exec is enabled, but it is not being
processed. If a routine calls IRXEXCOM and an exec has not been enabled,
IRXEXCOM returns with an error.

Note: To permit FORTRAN programs to call IRXEXCOM, TSO/E provides an
alternate entry point for the IRXEXCOM routine. The alternate entry point name
is IRXEXC.

A program can access IRXEXCOM using either the CALL or LINK macro
instructions, specifying IRXEXCOM as the entry point name. You can obtain the
address of the IRXEXCOM routine from the REXX vector of external entry points.
“Format of the REXX Vector of External Entry Points” on page 328 describes the
vector.

If a program uses IRXEXCOM, it must create a parameter list and pass the address
of the parameter list in register 1.

Environment Customization Considerations

If you use the initialization routine IRXINIT to initialize environments, when
you call IRXEXCOM, you can pass the address of an environment block in
register 0. If the environment block is valid, IRXEXCOM will execute in the
environment represented by that environment block.

The IKJCT441 routine lets authorized and unauthorized commands and programs
access REXX variables. IKJCT441 can be used in the TSO/E address space only.
You can use IKJCT441 to access REXX or CLIST variables depending on whether
the program that calls IKJCT441 was called by a REXX exec or a CLIST. TSO/E
Version 2 Programming Services describes IKJCT441.

240 TSO/E Version 2 REXX Reference

Entry Specifications

Variable Access (IRXEXCOM)

For the IRXEXCOM routine, the contents of the registers on entry are:

Register 0
Register 1
Registers 2-12
Register 13
Register 14
Register 15

Parameters

Address of an environment block (optional)

Address of the parameter list passed by the caller

Unpredictable

Address of a register save area

Return address

Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 25 describes the parameters for IRXEXCOM.

Figure 25. Parameters for IRXEXCOM

Parameter

Number
of Bytes

Description

Parameter 1

8

An eight byte character field that must contain the
character string ‘IRXEXCOM’.

Parameter 2

Parameter 2 and parameter 3 must be identical, that
is, they must be at the same location in storage.
This means that in the parameter list pointed to by
register 1, the address at offset +4 and the address
at offset +8 must be the same. Both addresses in
the parameter list may be set to 0.

Parameter 3

Parameter 2 and parameter 3 must be identical, that
is, they must be at the same location in storage.
This means that in the parameter list pointed to by
register 1, the address at offset +4 and the address
at offset +8 must be the same. Both addresses in
the parameter list may be set to 0.

Parameter 4

32

The first shared variable (request) block
(SHVBLOCK) in a chain of one or more request
blocks. The format of the SHVBLOCK is
described in “The Shared Variable (Request) Block
- SHVBLOCK.”

The Shared Variable (Request) Block - SHVBLOCK

Parameter 4 is the first shared variable (request) block in a chain of one or more
blocks. Each SHVBLOCK in the chain must have the structure shown in Figure 26

on page 242.

Chapter 12. TSO/E REXX Programming Services 241

Variable Access (IRXEXCOM)

khkkkkkkhhkhhhhhhhhkhrkkrikdkhdkkddkkkdkhdkhdkkhkhkkkkkkk

* SHVBLOCK: Layout of shared-variable PLIST element
hkhkhkdkhkhkhkkhhkkhhkhkhkhhkhhkhhhkhhhhhkhhhhhhhhhhhhhhdhhkhhhhhhhhhhkrd
SHVBLOCK DSECT
SHVNEXT DS A Chain pointer (0 if last block)
SHVUSER DS F Available for private use, except during
* "Fetch Next" when it identifies the
* length of the buffer pointed to by SHVNAMA.
SHVCODE DS CL1 Individual function code indicating
* the type of variable access request
* (s,F,D,s,f,d,N, or P)
SHVRET DS XLl Individual return code flags

DS H'0' Reserved, should be zero

SHVBUFL DS F Length of 'fetch' value buffer

SHVNAMA DS A Address of variable name

SHVNAML DS F Length of variable name

SHVVALA DS A Address of value buffer

SHVVALL DS F Length of value

SHVBLEN EQU *-SHVBLOCK (length of this block = 32)
SPACE

*

* Function Codes (Placed in SHVCODE):

*

* (Note that the symbolic name codes are lowercase)
SHVSTORE EQU C'S' Set variable from given value
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVDROPY EQU C'D' Drop variable
SHVSYSET EQU C Symbolic name Set variable
SHVSYFET EQU C Symbolic name Fetch variable
SHVSYDRO EQU C Symbolic name Drop variable
SHVNEXTV EQU C Fetch "next" variable
SHVPRIV EQU C Fetch private information

SPACE

*

* Return Code Flags (Stored in SHVRET):

*

SHVCLEAN EQU X'00' Execution was 0K

SHVNEWV EQU X'Ol' Variable did not exist

SHVLVAR EQU X'02' Last variable transferred (for "N")
SHVTRUNC EQU X'04' Truncation occurred during "Fetch"
SHVBADN EQU X'08' Invalid variable name

SHVBADV EQU X'10' Value too long

SHVBADF EQU X'80' Invalid function code (SHVCODE)

Figure 26. Request Block (SHVBLOCK)

Figure 27 describes the SHVBLOCK. TSO/E provides a mapping macro IRXSHVB
for the SHVBLOCK. The mapping macro is in SYS1.MACLIB. The services you
can perform using IRXEXCOM are specified in the SHVCODE field of each
SHVBLOCK. “Function Codes (SHVCODE)” on page 243 describes the values
you can use.

“Return Codes” on page 246 describes the return codes from the IRXEXCOM
routine.

242 TSOJE Version 2 REXX Reference

Variable Access IRXEXCOM)

Figure 27. Format of the SHVBLOCK

Offset Number Field Name
(Decimal) | of Bytes

Description

0 4 SHVNEXT

Specifies the address of the next
SHVBLOCK in the chain. If this is
the only SHVBLOCK in the chain or
the last one in a chain, this field is 0.

SHVUSER

Specifies the length of a buffer pointed
to by the SHVNAMA field. This field
is available for the user’s own use,
except for a “FETCH NEXT”

request. A FETCH NEXT request
uses this field.

SHVCODE

A one byte character field that
specifies the function code, which
indicates the type of variable access
request. “Function Codes
(SHVCODE)” on page 243 describes
the valid codes.

SHVRET

Specifies the return code flag, which
are shown in Figure 26.

10 2 -

Reserved.

12 4 SHVBUFL

Specifies the length of the “Fetch”
value buffer.

16 4 SHVNAMA

Specifies the address of the variable
name.

20 4 SHVNAML

Specifies the length of the variable
name. The maximum length of a
variable name is 250 characters.

24 4 SHVVALA

Specifies the address of the value
buffer.

28 4 SHVVALL

Specifies the length of the value. This
is set for a “Fetch.”

Function Codes (SHVCODE)

The function code is specified in the SHVCODE field in the SHVBLOCK.

Three function codes (S, F, and D) may be given either in lowercase or in uppercase:

Lowercase

(The Symbolic interface). The names must be valid REXX symbols (in

mixed case if desired), and normal REXX substitution will occur in

compound variables.

Uppercase

(The Direct interface). No substitution or case translation takes place.

Simple symbols must be valid REXX variable names (that is, in
uppercase and not starting with a digit or a period), but in compound
symbols any characters (including lowercase, blanks, etc.) are permitted

following a valid REXX stem.

Note: The Direct interface should be used in preference to the Symbolic interface

whenever generality is desired.

Chapter 12. TSO/E REXX Programming Services 243

Variable Access (IRXEXCOM)

The other function codes, N and P, must always be given in uppercase. The specific
actions for each function code are as follows:

Sands

Fandf

Dandd

Set variable. The SHVNAMA/SHVNAML adlen describes the name of
the variable to be set, and SHVVALA/SHVVALL describes the value
which is to be assigned to it. The name is validated to ensure that it
does not contain invalid characters, and the variable is then set from the
value given. If the name is a stem, all variables with that stem are set,
just as though this was a REXX assignment. SHVNEWYV is set if the
variable did not exist before the operation.

Fetch variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be fetched. SHVVALA specifies the address of a
buffer into which the data is to be copied, and SHVBUFL contains the
length of the buffer. The name is validated to ensure that it does not
contain invalid characters, and the variable is then located and copied to
the buffer. The total length of the variable is put into SHVVALL, and if
the value was truncated (because the buffer was not big enough) the
SHVTRUNC bit is set. If the variable is shorter than the length of the
buffer, no padding takes place. If the name is a stem, the initial value of
that stem (if any) is returned.

SHVNEWYV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derived name of the
variable (after substitution etc.) - see page 19.

Drop variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be dropped. SHVVALA/SHVVALL are not used.
The name is validated to ensure that it does not contain invalid
characters, and the variable is then dropped, if it exists. If the name
given is a stem, all variables starting with that stem are dropped.

Fetch Next variable. This function may be used to search through all the
variables known to the language processor (that is, all those of the
current generation, excluding those “hidden” by PROCEDURE
instructions). The order in which the variables are revealed is not
specified.

The language processor maintains a pointer to its list of variables: this is
reset to point to the first variable in the list whenever 1) a host command
is issued, or 2) any function other than “N” is executed via the
IRXEXCOM interface.

244 TSOJ/E Version 2 REXX Reference

Variable Access (IRXEXCOM)

Whenever an N (Next) function is executed, the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to

be copied, and SHVUSER contains the length of that buffer. The total

length of the name is put into SHVNAML, and if the name was

truncated (because the buffer was not big enough) the SHVTRUNC bit

is set. If the name is shorter than the length of the buffer, no padding

takes place. The value of the variable is copied to the user’s buffer area
. using exactly the same protocol as for the Fetch operation.

If SHVRET has SHVLVAR set, the end of the list of known variables
has been found, the internal pointers have been reset, and no valid data
has been copied to the user buffers. If SHVTRUNC is set, either the
name or the value has been truncated.

By repeatedly executing the N function (until the SHVLVAR flag is set),
a user program may locate all the REXX variables of the current
generation.

P Fetch private information. This interface is identical to the F fetch
interface, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name), and the following names are
recognized:

ARG Fetch primary argument string. The first argument string
that would be parsed by the ARG instruction is copied to
the user’s buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 51, is copied to the user’s
buffer.

VERSION Fetch version string. The version string, as described for
PARSE VERSION on page 52, is copied to the user’s
buffer.

Return Specifications
For the IRXEXCOM routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

The output from IRXEXCOM is stored in each SHVBLOCK.

Chapter 12. TSO/E REXX Programming Services 245

Variable Access (IRXEXCOM)

Return Codes

Figure 28 shows the return codes from the IRXEXCOM routine. Figure 26 on £
page 242 shows the return code flags that are stored in the SHVRET field in the
SHVBLOCK.
Figure 28. Return Codes from IRXEXCOM (In Register 15)
Return Description
Code .
-2 Processing was not successful. Insufficient storage was available for a
requested SET. Processing was terminated. Some of the request
blocks (SHVBLOCKSs) may not have been processed and their
SHVRET bytes will be unchanged.
-1 Processing was not successful. Entry conditions were not valid for
one of the following reasons:
Invalid entry conditions. The parameter list may have been N
incorrect, for example, parameter 2 and parameter 3 may not ’
have been identical.
A REXX exec was not currently executing.
Another task is accessing the variable pool.
A REXX exec is currently executing, but is not enabled for
variable access.
0 Processing was successful.
28 Processing was not successful. A language processor environment :
could not be located.
n Any other return code not equal to -2, -1, 0, or 28 is a composite
formed by the logical OR of SHVRETS, excluding SHVNEWYV and
SHVLVAR.

N

246 TSO/E Version 2 REXX Reference

C

IRXSUBCM Routine

Maintain Entries in the Host Command Environment Table

(IRXSUBCM)

Use the IRXSUBCM routine to maintain entries in the host command environment
table. The table contains the names of the valid host command environments that
REXX execs can use to execute host commands. In an exec, you can use the
ADDRESS instruction to direct a host command to a specific environment for
execution. The host command environment table also contains the name of the
routine that is invoked to handle the execution of commands for each specific
environment. “Host Command Environment Table” on page 291 describes the table
in more detail.

Note: To permit FORTRAN programs to call IRXSUBCM, TSO/E provides an
alternate entry point for the IRXSUBCM routine. The alternate entry point name is
IRXSUB.

Using IRXSUBCM, you can add, delete, update, or query entries in the table. You
can also use IRXSUBCM to dynamically update the host command environment
table while a REXX exec is executing.

A program can access IRXSUBCM using either the CALL or LINK macro
instructions, specifying IRXSUBCM as the entry point name. You can obtain the
address of the IRXSUBCM routine from the REXX vector of external entry points.
“Format of the REXX Vector of External Entry Points” on page 328 describes the
vector.

If a program uses IRXSUBCM, it must create a parameter list and pass the address
of the parameter list in register 1.

IRXSUBCM changes or queries the host command environment table for the
current language processor environment, that is, for the environment in which it
executes (see “General Considerations for Calling TSO/E REXX Routines” on

page 212 for information). IRXSUBCM affects only the environment in which it
executes. Changes to the table take effect immediately and remain in effect until the
language processor environment is terminated.

—— Environment Customization Considerations

If you use the initialization routine to initialize environments, on the call to
IRXSUBCM, you can optionally pass the address of an environment block in
register 0. If the environment block is valid, IRXSUBCM will execute in the
environment represented by that environment block. If register 0 does not point
to a valid environment block, IRXSUBCM will locate the current environment.

If the environment in which IRXSUBCM executes is part of a chain of
environments and you use IRXSUBCM to change the host command
environment table, the following applies:

* The changes do not affect the environments that are higher in the chain or
existing environments that are lower in the chain.

¢ The changes are propagated to any language processor environment that is
created on the chain after IRXSUBCM updates the table.

Chapter 12. TSO/E REXX Programming Services 247

IRXSUBCM Routine

Entry Specifications
For the IRXSUBCM routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)
Register 1 Address of the parameter list passed by the caller
Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 29 describes the parameters for IRXSUBCM.

Figure 29. Parameters for IRXSUBCM

Parameter Number Description

of Bytes

Parameter 1 8 The function to be performed. The name of the
function must be left justified and padded to the
right with blanks. The valid functions are:

e ADD

e DELETE

e UPDATE

e QUERY
Each function is described after the table in
“Functions.”

Parameter 2 4 The address of a string. On both input and output,
the string has the same format as an entry in the
host command environment table. “Format of a
Host Command Environment Table Entry” on
page 249 describes the entry in more detail.

Parameter 3 4 The length of the string (entry) that is pointed to by
parameter 2.

Parameter 4 8 The name of the host command environment table.
The name must be left justified and padded to the
right with blanks.

Functions

Parameter 1 contains the name of the function IRXSUBCM is to perform. The
functions are:

ADD
Adds an entry to the table using the values specified on the call. IRXSUBCM
does not check for duplicate entries. If a duplicate entry is added and then
IRXSUBCM is called to delete the entry, IRXSUBCM will delete the duplicate
entry and leave the original one.

248 TSO/E Version 2 REXX Reference

‘_/:

IRXSUBCM Routine

DELETE
Deletes the last occurrence of the specified entry from the table.

UPDATE

Updates the specified entry with the new values specified on the call. The entry
name itself (the name of the host command environment) is not changed.

QUERY

Returns the values associated with the last occurrence of the entry specified on
the call.

Format of a Host Command Environment Table Entry
Parameter 2 points to a string that has the same format as an entry (row) in the host
command environment table. Figure 30 shows the format of an entry. TSO/E
provides a mapping macro IRXSUBCT for the table entries. The mapping macro is
in SYSI.MACLIB. “Host Command Environment Table” on page 291 describes
the table in more detail.

Figure 30. Format of an Entry in the Host Command Environment Table

Offset Number | Field Name | Description

(Decimal) | of Bytes

0 8 NAME The name of the host command
environment.

8 8 ROUTINE | The name of the routine that is invoked

to handle the execution of host
commands in the specified environment.

16 16 TOKEN A user token that is passed to the
routine when it is invoked.

For the ADD, UPDATE, and QUERY functions, the length of the string
(parameter 3) must be the length of the entry.

For the DELETE function, the address of the string (parameter 2) and the length of
the string (parameter 3) must be 0.

Return Specifications ,
For the IRXSUBCM routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Chapter 12. TSO/E REXX Programming Services 249

IRXSUBCM Routine

Return Codes

Figure 31 shows the return codes for the IRXSUBCM routine.

Figure 31.

Return Codes for IRXSUBCM

Return
Code

Description

0

Processing was successful.

8

Processing was not successful. The spécified entry was not found in
the table. A return code of 8 is used only for the DELETE,
UPDATE, and QUERY functions.

20

Processing was not successful. An error occurred. A message that
explains the error is also issued.

28

Processing was not successful. A language processor environment
could not be located.

250 TSO/E Version 2 REXX Reference

IRXIC Routine

Trace and Execution Control Routine (IRXIC)

Use the IRXIC routine to control the tracing and execution of REXX execs. A
program can call IRXIC to execute the following REXX immediate commands:

* HI (Halt Interpretation) - to stop the interpretation (execution) of REXX execs
* HT (Halt Typing) - to suppress terminal output generated by REXX execs

* RT (Resume Typing) - to restore terminal output that was previously
suppressed

* TS (Trace Start) - to start tracing of REXX execs
¢ TE (Trace End) - to end tracing of REXX execs.

The immediate commands are described in Chapter 10, “TSO/E REXX
Commands.”

A program can access IRXIC using either the CALL or LINK macro instructions,
specifying IRXIC as the entry point name. You can obtain the address of the
IRXIC routine from the REXX vector of external entry points. “Format of the
REXX Vector of External Entry Points” on page 328 describes the vector.

If a program uses IRXIC, it must create a parameter list and pass the address of the
parameter list in register 1.

—— Environment Customization Considerations

If you use the initialization routine IRXINIT to initialize environments, when
you call IRXIC, you can also optionally pass the address of an environment
block in register 0. If the environment block is valid, IRXIC will execute in the
environment represented by that environment block. If register 0 does not point
to a valid environment block, IRXIC will locate the current environment.
IRXIC affects only the language processor environment in which it executes.

Entry Specifications

Parameters

For the IRXIC routine, the contents of the registers on entry are:
Register 0 Address of an environment block (optional)
Register 1 Address of the parameter list passed by the caller
Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 32 describes the parameters for IRXIC.

Chapter 12. TSO/E REXX Programming Services 251

IRXIC Routine

Figure 32. Parameters for IRXIC

Parameter Number | Description
of Bytes
Parameter 1 4 The name of the command you want IRXIC to

execute. The valid command names are HI, HT,
RT, TS, and TE. They are described below.

Parameter 2 4 The length of the command name that is pointed to
by parameter 1.

The valid command names are:

HI (Halt Interpretation)
The Halt Interpretation condition is set. Between instructions, the language
processor checks whether it should halt the interpretation of REXX execs. If HI
has been issued, exec interpretation is stopped. HI is reset if a HALT condition
is enabled or when no execs are executing in the environment.

HT (Halt Typing)
When the Halt Typing condition is set, output generated by REXX execs is
suppressed (for example, the SAY instruction will not display its output). HT
does not affect output from any other part of the system and does not affect
error messages. HT is reset when the last exec executing in the environment
ends.

RT (Resume Typing)
Resets Halt Typing (HT). Output from REXX execs is restored.

TS (Trace Start)
Starts tracing of REXX execs.

TE (Trace End)
Ends tracing of REXX execs.

Return Specifications
For the IRXIC routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Return Codes
Figure 33 shows the return codes for the IRXIC routine.

Figure 33. Return Codes for IRXIC

Return Description

Code

0 Processing was successful.

20 Processing was not successful. An error occurred. A message that
explains the error is also issued.

28 Processing was not successful. A language processor environment
could not be located.

252 TSO/E Version 2 REXX Reference

Get Result Routine (IRXRLT)

The IRXRLT (Get Result) Routine

Use the IRXRLT (get result) routine to obtain:
¢ The result from an exec that was executed by calling the IRXEXEC routine, or

* A larger evaluation block to return the result from an external function or
subroutine that you write.

You can write your own external functions and subroutines and include them in a
function package. When your code is called, it receives the address of an evaluation
block that the language processor has allocated. Your code returns the result it
calculates in the evaluation block. “Function Packages” on page 229 describes how
to create your own function packages and how you use the evaluation block.

If the evaluation block that your function or subroutine code receives is too small to
store the result, you can call the IRXRLT routine to obtain a larger evaluation
block. You can then use the new evaluation block to store the result from your
function or subroutine.

You can call the IRXEXEC routine to execute a REXX exec. The exec can return a
result using the RETURN or EXIT instruction. When you call IRXEXEC, you can
optionally pass the address of an evaluation block that you have allocated. If the
exec returns a result, IRXEXEC places the result in the evaluation block. “The
IRXEXEC Routine” on page 217 describes IRXEXEC in detail.

The evaluation block that you pass to IRXEXEC may be too small to hold the
complete result. If so, IRXEXEC places as much of the result that will fit into the
evaluation block and sets the length field in the block to the negative of the length
required for the complete result. If you call IRXEXEC and the complete result
cannot be returned, you can allocate a larger evaluation block, and call the IRXRLT
routine and pass the address of the new evaluation block to obtain the complete
result. You can also call IRXEXEC and not pass the address of an evaluation
block. If the exec returns a result, you can then use the IRXRLT routine to obtain
the result.

For more information about the evaluation block and how it is used for the
IRXEXEC routine and function packages, see the following topics:

o “The IRXEXEC Routine” on page 217
e “Function Packages” on page 229.

Entry Specifications

For the IRXRLT routine, the contents of the registers on entry are:
Register 0 Address of an environment block (optional)
Register 1 Address of the parameter list passed by the caller
Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Chapter 12. TSO/E REXX Programming Services 253

Get Result Routine (IRXRLT)

Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 34 describes the parameters for IRXRLT.

Figure 34. Parameters for IRXRLT

Parameter Number | Description
of Bytes
Parameter 1 8 The function to be performed. The following

functions are valid. The two functions are
described in more detail following the table.

GETRLT
Obtain the result from the last REXX exec that
executed in the current language processor
environment. This function is only valid if a
REXX exec is not currently executing.

GETBLOCK
Obtain a larger evaluation block for the external
function or subroutine that is executing. This
function is only valid when an exec is currently
executing as a function or subroutine.

The function must be in uppercase, left justified,
and padded with blanks.

Parameter 2 4 Specifies the address of the evaluation block. On
input, this parameter is only used for the GETRLT
function. It is not used for the GETBLOCK
function. On input, specify the address of an
evaluation block that is large enough to hold the
result from the exec.

On output, this parameter is only used for the
GETBLOCK function. It is not used for the
GETRLT function. On output, it returns the
address of a larger evaluation block that the
function or subroutine code can use to return a
result.

Parameter 3 4 Specifies the length, in bytes, of the data area in the
evaluation block. This parameter is only used on
input for the GETBLOCK function. Specify the
size needed to store the result from the external
function or subroutine that is executing. The
parameter is not used for the GETRLT function.

For your external function or subroutine code, if the value of the result does not fit
into the evaluation block your code receives, call IRXRLT with the GETBLOCK
function. You can only use the GETBLOCK function when an exec is executing in
that language processor environment. When you call IRXRLT, specify the length of
the data area that you require in parameter 3. IRXRLT will allocate a new
evaluation block with the specified data area size and return the address of the new
evaluation block in parameter 2. IRXRLT also frees the original evaluation block

254 TSOJE Version 2 REXX Reference

Get Result Routine (IRXRLT)

that was not large enough for the complete result. Your code can then use the new
evaluation block to store the result. See “Function Packages” on page 229 for more
information about functions and subroutines in a function package and the format
of the evaluation block.

If you use the IRXEXEC routine and need to call IRXRLT to obtain the result
from the exec, call IRXRLT with the GETRLT function.

When you call IRXEXEC, you can allocate an evaluation block and pass the
address of the block to IRXEXEC. IRXEXEC returns the result from the exec in
the evaluation block. If the block is too small, IRXEXEC returns the negative
length of the area required for the result. You can allocate another evaluation block
that has a data area large enough to store the result and call IRXRLT and pass the
address of the new evaluation block in parameter 2. IRXRLT returns the result
from the exec in the evaluation block.

You can call IRXEXEC to execute an exec that returns a result and not pass the
address of an evaluation block on the call. To obtain the result, you can use
IRXRLT after IRXEXEC returns. You must allocate an evaluation block and pass
the address on the call to IRXRLT.

If you call IRXRLT to obtain the result (GETRLT function) and the evaluation
block you pass to IRXRLT is not large enough to store the result, IRXRLT:

¢ Places as much of the result that will fit into the evaluation block

¢ Sets the length of the result field in the evaluation block to the negative of the
length required for the complete result.

If IRXRLT cannot return the complete result, the result is not lost. The result is
still stored in a system evaluation block. You can then allocate a larger evaluation
block and call IRXRLT again specifying the address of the new evaluation block.
This is more likely to occur if you had called IRXEXEC without an evaluation
block and then use IRXRLT to obtain the result from the exec that executed. It can
also occur if you miscalculate the area required to store the complete result.

The result from the exec is available until one of the following occurs:
* You successfully obtain the result using the IRXRLT routine
¢ Another REXX exec executes in the same language processor environment

¢ The language processor environment is terminated.

Note: The language processor environment is the environment in which REXX
execs and routines execute. See “General Considerations for Calling TSO/E REXX
Routines” on page 212 for information. Chapter 14, “Language Processor
Environments” provides more details about environments and customization
services.

You can use the GETRLT function only if a REXX exec is not currently executing.
For example, if you use IRXEXEC to execute an exec and the result does not fit
into the evaluation block, you can call IRXRLT to obtain the result after IRXEXEC
returns. At this point, the exec is no longer executing.

For more information about executing an exec using the IRXEXEC routine and the
evaluation block, see “The IRXEXEC Routine” on page 217.

Chapter 12. TSO/E REXX Programming Services 255

Get Resuit Routine (IRXRLT)

Return Specifications

Return Codes

For the IRXRLT get result routine, the contents of the registers on return are:
Registers 0-14 Same as on entry

Register 15 Return code

IRXRLT returns a return code in register 15. Figure 35 shows the return codes if
you call IRXRLT with the GETRLT function. Additional information about each
return code is provided after the tables.

Figure 35. IRXRLT Return Codes for the GETRLT Function

Return | Description

Code

0 Processing was successful. A return code of 0 indicates that IRXRLT
completed successfully. However, the complete result may not have
been returned.

20 Processing was not successful. IRXRLT could not perform the
requested function. The result is not returned.

28 Processing was not successful. A valid language processor
environment could not be located.

Figure 36 shows the return codes if you call IRXRLT with the GETBLOCK
function.

Figure 36. IRXRLT Return Codes for the GETBLOCK Function

Return | Description

Code

0 Processing was successful. IRXRLT allocated a new evaluation block
and returned the address of the evaluation block.

20 Processing was not successful. A new evaluation block was not
allocated.

28 Processing was not successful. A valid language processor
environment could not be located.

If you receive a return code of 0 for the GETRLT function, IRXRLT completed
successfully but the complete result may not have been returned. IRXRLT returns a
return code of 0 if:

¢ The entire result was stored in the evaluation block.

¢ The data field (EVDATA) in the evalution block was too small. IRXRLT stores
as much of the result as it can and sets the length field (EVLEN) in the
evaluation block to the negative value of the length that is required.

¢ No result was available.
If you receive a return code of 20 for either the GETRLT or GETBLOCK function,

some possible errors can be that the function you requested was not valid or the
parameter list was incorrect.

256 TSO/E Version 2 REXX Reference

Get Result Routine (IRXRLT)

If you receive a return code of 20 for the GETRLT function, some possible errors
could be:

¢ The address of the evaluation block (parameter 2) was 0

¢ The evaluation block you allocated was not valid. For example, the EVLEN
field was less than 0.
If you receive a return code of 20 for the GETBLOCK function, some possible

errors could be:

¢ The length you requested (parameter 3) was not valid. Either the length was a
negative value or exceeded the maximum value. The maximum is 16 megabytes
minus the length of the evaluation block header.

e The system could not obtain storage.

¢ You called IRXRLT with the GETBLOCK function and an exec was not
executing.

Chapter 12. TSO/E REXX Programming Services 257

258 TSO/E Version 2 REXX Reference

Customizing Services

Chapter 13. TSO/E REXX Customizing Services

In addition to the instructions, functions, and commands for writing a REXX exec
and the programming services that interface with REXX and the language processor,
TSO/E also provides customizing services for REXX processing. The customizing
services let you change how REXX execs are processed and how system services are
accessed and used.

The REXX language itself, which consists of instructions and built-in functions, is
address space independent. The language processor, which interprets a REXX exec,
processes the REXX language instructions and functions in the same manner in any
address space. However, when a REXX exec executes, the language processor must
interface with different host services, such as I/O and storage. MVS address spaces
differ in how they access and use system services, for example, how they use and
manage I/O and storage. Although these differences exist, the language processor
must run in an environment that is not dependent on the address space in which it is
executing an exec. The environment must allow REXX execs to execute
independently of the way in which an address space handles system services. The
TSO/E REXX customizing routines and services provide an interface between the
language processor and underlying host services and allow you to customize the
environment in which the language processor processes REXX execs.

TSO/E REXX customizing services include the following:

Environment Characteristics
TSO/E provides various routines and services that allow you to customize the
environment in which the language processor executes a REXX exec. This
environment is known as the language processor environment and defines various
characteristics relating to how execs are processed and how system services are
accessed and used. TSO/E provides default environment characteristics that you
can change and also provides a routine you can use to define your own
environment.

Replaceable Routines
When a REXX exec executes, various system services are used, such as services
for loading and freeing an exec, I/O, obtaining and freeing storage, and data
stack requests. TSO/E provides routines that handle these types of system
services. The routines are known as replaceable routines because you can
provide your own routine that replaces the system routine.

Exit Routines
You can provide exit routines to customize various aspects of REXX processing.

The topics in this chapter introduce the major interfaces and customizing services.
The following chapters describe the customizing services in more detail:

¢ Chapter 14, “Language Processor Environments” describes how you can
customize the environment in which the language processor executes a REXX
exec and accesses and uses system services.

¢ Chapter 15, “Initialization and Termination Routines” describes the IRXINIT
and IRXTERM routines that TSO/E provides to initialize and terminate
language processor environments.

¢ Chapter 16, “Replaceable Routines and Exits” describes the routines you can
provide that access system services, such as I/O and storage, and the exits you
can use to customize REXX processing.

Chapter 13. TSO/E REXX Customizing Services 259

Customizing Services

Flow of REXX Exec Processing
Figure 37 shows the processing of a REXX exec in any MVS address space.

Locate environment > Load exec Repla}ceable
Routines
> 1/0
No environment?
Initialize a new
environment.
> Data stack services
Load exec > Storage
Y
User ID
Execute the exec. -
(Language processor) -
> Message ID
TSOQJE services
Free exec
> Execute host commands
Terminate environment MVS services
if one was initialized

Figure 37. Overview of REXX Exec Processing in Any Address Space

As shown in the figure, before the language processor executes a REXX exec, a
language processor environment must exist. After an environment is located or
initialized, the exec is loaded into storage and is then executed. While an exec is
executing, the language processor may need to access different system services, for
example, to handle data stack requests or for I/O processing. The system services
are handled by routines that are known as replaceable routines. The following
topics describe the initialization and termination of language processor
environments, the loading and freeing of an exec, and the replaceable routines. In
addition, there are several exits you can provide to customize REXX processing.
The exits are summarized on page 391.

Initialization and Termination of a Language Processor Environment
Before the language processor can process a REXX exec, a language processor
environment must exist. A language processor environment is the environment in
which the language processor “interprets” or processes the exec. This environment
defines characteristics relating to how the exec is processed and how the language
processor accesses system services.

A language processor environment defines various characteristics, such as:

¢ The search order used to locate commands and external functions and
subroutines

260 TSO/E Version 2 REXX Reference

—

&

Customizing Services

¢ The ddnames for reading and writing data and from which REXX execs are
loaded

* The host command environments you can use in an exec to execute host
commands (that is, the environments you can specify using the ADDRESS
instruction)

* The function packages (user, local, and system) that are available to execs that
execute in the environment and the entries in each package

¢ Whether execs that execute in the environment can use the data stack or can
perform I/O operations

* The names of routines that handle system services, such as I/O operations,
loading of an exec, obtaining and freeing storage, and data stack requests.
These routines are known as replaceable routines.

Note: The concept of a language processor environment is different from that of a
host command environment. The language processor environment is the
environment in which a REXX exec executes. This includes how an exec is loaded,
how commands, functions, and subroutines are located, and how requests for system
services are handled. A host command environment is the environment to which the
language processor passes commands for execution. The host command
environment handles the execution of host commands. The host command
environments that are available to a REXX exec are one characteristic of a language
processor environment. For more information about executing host commands from
a REXX exec, see “Commands to External Environments” on page 22.

TSO/E automatically initializes a language processor environment in both the TSO/E
and non-TSO/E address spaces by calling the initialization routine IRXINIT. TSO/E
terminates a language processor environment by calling the termination routine
IRXTERM.

In the TSO/E address space, IRXINIT is called to initialize a default language
processor environment when a user logs on and starts a TSO/E session. When a
user invokes ISPF, another language processor environment is initialized. The ISPF
environment is a separate environment from the one that is initialized when the
TSOJ/E session is started. Similarly, if you enter split screen mode in ISPF, another
language processor environment is initialized for the second ISPF screen. Therefore,
at this point, three separate language processor environments exist. If the user
invokes a REXX exec from the second ISPF screen, the exec executes within the
language processor environment that was initialized for that second screen. If the
user invokes the exec from TSO/E READY mode, it executes within the
environment that was initialized when the user first logged on.

When the user returns to a single ISPF screen, the IRXTERM routine is called to
automatically terminate the language processor environment that is associated with
the second ISPF screen. Similarly, when the user exits from ISPF and returns to
TSO/E READY mode, the system calls IRXTERM to terminate the environment
associated with the ISPF screen. When the user logs off from TSO/E, that language
processor environment is then terminated.

In non-TSO/E address spaces, a language processor environment is not automatically
initialized at a specific point, such as when the address space is activated. An
environment is initialized when either the IRXEXEC or IRXJCL routines are called
to execute a REXX exec, if an environment does not already exist.

Chapter 13. TSO/E REXX Customizing Services 261

Customizing Services

As described above, many language processor environments can exist in an address
space. A language processor environment is associated with an MVS task and
environments can be chained together. This is discussed in more detail in

Chapter 14, “Language Processor Environments” on page 267.

Whenever a REXX exec is invoked in any address space, the system first determines
whether or not a language processor environment exists. If an environment does
exist, the REXX exec executes in that environment. If an environment does not
exist, the system automatically initializes one by calling the IRXINIT routine. For
example, if you are logged on to TSO/E and issue the TSO/E EXEC command to
execute a REXX exec, the system checks whether a language processor environment
exists. An environment was initialized when you logged on to TSO/E, therefore, the
exec executes in that environment. If you execute a REXX exec in MVS batch by
specifying IRXJCL as the program name (PGM =) on the JCL EXEC statement, a
language processor environment is initialized for the execution of the exec. When
the exec completes processing, the environment is terminated.

If either IRXJCL or IRXEXEC is called from a program, the system first determines
whether or not a language processor environment already exists. If an environment
exists, the exec executes in that environment. If an environment does not exist, an
environment is initialized. When the exec completes, the environment is terminated.
“Chains of Environments and How Environments Are Located” on page 304
describes how the system locates a previous environment in the TSO/E and
non-TSO/E address spaces.

TSO/E provides default values that are used to define a language processor
environment. The defaults are provided in three parameters modules that are load
modules. The load modules contain the default characteristics for initializing
language processor environments for TSO/E (READY mode), ISPF, and non-TSO/E
address spaces. The parameters modules are:

* IRXTSPRM (for TSO/E)
¢ IRXISPRM (for ISPF)
* IRXPARMS (for non-TSO/E)

You can provide your own parameters modules in order to change the default values
that are used to initialize a language processor environment. Your load modules are
then used instead of the default modules provided by TSO/E. The parameters

modules are described in detail in Chapter 14, “Language Processor Environments.”

You can also explicitly invoke IRXINIT to initialize a language processor
environment and define the environment characteristics on the call. Although
IRXINIT is primarily intended for use in non-TSO/E address spaces, you can call it
in any address space. When you call IRXINIT, you specify any or all of the
characteristics you want defined for the language processor environment. Using
IRXINIT gives you the flexibility to define your own environment, and therefore,
customize how REXX execs execute within the environment and how system services
are handled. If you explicitly call IRXINIT, you must use the IRXTERM routine to
terminate that environment. The system does not automatically terminate an
environment that you initialized by explicitly calling IRXINIT. Chapter 15,
“Initialization and Termination Routines” on page 339 describes the IRXINIT and
IRXTERM routines.

262 TSO/E Version 2 REXX Reference

Customizing Services

Types Of Language Processor Environments
There are two types of language processor environments; environments that are
integrated into TSO/E and environments that are not integrated into TSO/E. If an
environment is integrated into TSO/E, REXX execs that run in the environment can
use TSO/E commands and services. If an environment is not integrated into TSO/E,
execs that run in the environment cannot use TSO/E commands and services.

When a language processor environment is automatically initialized in the TSO/E
address space, the environment is integrated into TSO/E. When an environment is
automatically initialized in a non-TSO/E address space, the environment is not
integrated into TSO/E. Environments that are initialized in non-TSO/E address
spaces cannot be integrated into TSO/E. Environments that are initialized in the
TSO/E address space may or may not be integrated into TSO/E.

Many TSO/E customizing routines and services are only available to language
processor environments that are not integrated into TSO/E. “Types of Environments
- Integrated and Not Integrated Into TSO/E” on page 273 describes the types of
language processor environments in more detail.

Loading and Freeing a REXX Exec
After a language processor environment has been located or one has been initialized,
the exec must be loaded into storage in order for the language processor to process
it. After the exec executes, it must be freed. The exec load routine loads and frees
REXX execs. The default exec load routine is IRXLOAD.

The exec load routine is one of the replaceable routines that you can provide to
customize REXX processing. You can provide your own exec load routine that
either replaces the system default or that performs pre-processing and then calls the
default routine IRXLOAD. The name of the load routine is defined for each
language processor environment. You can only provide your own load routine in
language processor environments that are not integrated into TSO/E.

Note: If you use the IRXEXEC routine to execute a REXX exec, you can preload
the exec in storage and pass the address of the preloaded exec on the call to
IRXEXEC. In this case, the exec load routine is not called to load the exec.
“IRXJCL and IRXEXEC Routines” on page 214 describes the IRXEXEC routine
and how you can preload an exec.

Processing of the REXX Exec
After the REXX exec is loaded into storage, the language processor is called to
process (interpret) the exec. During processing, the exec can issue commands, call
external functions and subroutines, and request various system services. When the
language processor processes a command, it first evaluates the expression and then
passes the command to the host for execution. The specific host command
environment handles command execution. When the exec calls an external function
or subroutine, the language processor searches for the function or subroutine. This
includes searching any function packages that are defined for the language processor
environment in which the exec is executing.

When system services are requested, specific routines are called to perform the
requested service (for example, obtaining and freeing storage, I/O, and data stack
requests). TSO/E provides routines for these services that are known as replaceable
routines because you can provide your own routine that replaces the system routine.
“Overview of Replaceable Routines” on page 264 summarizes the routines.

Chapter 13. TSO/E REXX Customizing Services 263

Customizing Services

Overview of Replaceable Routines

When a REXX exec executes, various system services are used, such as services for
loading and freeing the exec, I/O, obtaining and freeing storage, and handling data
stack requests. TSO/E provides routines that handle these types of system services.
These routines are known as replaceable routines because you can provide your own
routine that replaces the system routine. You can only provide your own
replaceable routines in language processor environments that are not integrated into
TSO/E (see page 273).

Your routine can check the request for a system service, change the request if
needed, and then call the system-supplied routine to actually perform the service.
Your routine can also terminate the request for a system service or perform the
request itself instead of calling the system-supplied routine.

Replaceable routines are defined on a language processor environment basis and are
specified in the parameters module for an environment (see page 275).

Figure 38 provides a brief description of the functions your replaceable routine must
perform. Chapter 16, “Replaceable Routines and Exits” on page 355 describes each
replaceable routine in detail, its input and output parameters, and return codes.

Figure 38. Overview of Replaceable Routines

Replaceable Routine

Description

Exec load

The exec load routine is called to load a REXX exec
into storage and to free the exec when it is no longer
needed.

Read input and
write output (I/O)

The I/O routine is called to read a record from or write
a record to a specified ddname. For example, this
routine is called for the SAY instruction, for the PULL
instruction (when the data stack is empty), and for the
EXECIO command. The routine is also called to open
and close a data set.

Data stack This routine is called to handle any requests for data
stack services. For example, it is called for the PULL,
PUSH, and QUEUE instructions and for the
MAKEBUF and DROPBUF commands.

Storage This routine is called to obtain and free storage.

management

User ID This routine is called to obtain the user ID. The result

that it obtains is returned by the USERID built-in
function.

Message identifier

This routine determines if the message identifier
(message ID) is displayed with a REXX error message.

Host command
environment

This routine is called to handle the execution of a host
command for a particular host command environment.

To provide your own replaceable routine, you must do the following:

e Write the code for the routine. Chapter 16, “Replaceable Routines and Exits”
on page 355 describes each routine in detail.

264 TSO/E Version 2 REXX Reference

a

Customizing Services

¢ Define the routine name to a language processor environment.

If you use IRXINIT to initialize a new environment, you can pass the names of
your routines on the call.

Chapter 14, “Language Processor Environments” on page 267 describes the
concepts of replaceable routines and their relationship to language processor
environments in more detail.

The replaceable routines that TSO/E provides are external interfaces that you can
call from a program in any address space. For example, a program can call the
system-supplied data stack routine to perform data stack operations. If you provide
your own replaceable data stack routine, a program can call your routine to perform
data stack operations. You can call a system-supplied or user-supplied replaceable
routine only if a language processor environment exists in which the routine can
execute.

Exit Routines

TSOJE also provides several exit routines you can use to customize REXX
processing. Several exits have fixed names. Other exits do not have a fixed name.
You supply the name of these exits on the call to IRXINIT or by changing the
appropriate default parameters modules that TSO/E provides. Chapter 16,
“Replaceable Routines and Exits” on page 355 describes the exits in more detail. A
summary of each exit follows.

e JRXINITX -- Pre-environment initialization exit routine. The exit receives
control whenever IRXINIT is called to initialize a new language processor
environment. It gets control before IRXINIT evaluates any parameters.

¢ IRXITTS or IRXITMV -- Post-environment initialization exit routines.
IRXITTS is for environments that are integrated into TSO/E and IRXITMY is
for environments that are not integrated into TSO/E. The IRXITTS or
IRXITMYV exit receives control whenever IRXINIT is called to initialize a new
language processor environment. It receives control after IRXINIT initializes a
new environment but before IRXINIT completes.

¢ IRXTERMX -- Environment termination exit routine. The exit receives
control whenever IRXTERM is called to terminate a language processor
environment. It gets control before IRXTERM starts termination processing.

* Attention handling exit routine -- The exit receives control whenever a REXX
exec is executing in the TSO/E address space (in a language processor
environment that is integrated into TSO/E) and an attention interruption occurs.

* Exec initialization -- The exit receives control after the variable pool for a
REXX exec has been initialized but before the language processor processes the
first clause in the exec.

* Exec termination -- The exit receives control after a REXX exec has completed
processing but before the variable pool has been terminated.

Chapter 13. TSO/E REXX Customizing Services 2635

Customizing Services

¢ Exit for the IRXEXEC routine -- The exit receives control whenever the
IRXEXEC routine is called to execute a REXX exec. The IRXEXEC routine N
can be explicitly called by a user or called by the system to execute an exec. '
IRXEXEC is always called by the system to handle exec execution. For
example, if you use IRXJCL to execute an exec in MVS batch, IRXEXEC is
called to execute the exec. If you provide an exit for IRXEXEC, the exit will be
invoked.

266 TSO/E Version 2 REXX Reference

Language Processor Environments

Chapter 14. Language Processor Environments

As described in Chapter 13, “TSO/E REXX Customizing Services,” a language
processor environment is the environment in which the language processor
“interprets” or processes a REXX exec. Such an environment must exist before an
exec can execute.

The topics in this chapter explain language processor environments and the default
parameters modules in more detail. They explain the various tasks you can perform
to customize the environment in which REXX execs execute. This chapter describes:

Different aspects of a language processor environment and the characteristics
that make up such an environment. It explains when the initialization routine
IRXINIT is invoked to initialize an environment and the values IRXINIT uses
to define the environment. The chapter describes the values TSO/E provides in
the default parameters modules and how to change the values. It describes what
values you can and cannot specify in the TSO/E address space and in
non-TSO/E address spaces.

The various control blocks that are defined when a language processor
environment is initialized and how you can use the control blocks for REXX
processing.

How language processor environments are chained together.

How the data stack is used in different language processor environments.

Note: The control blocks created for a language processor environment provide
information about the environment. You can obtain information from the control
blocks. However, you must not change any of the control blocks. If you do,
unpredictable results may occur.

Chapter 14. Language Processor Environments 267

Language Processor Environments

Overview of Language Processor Environments

The language processor environment defines various characteristics that relate to
how execs are processed and how system services are accessed and used. Some of
the environment characteristics include the following:

¢ The language in which REXX messages are displayed

* The ddnames from which input is read and output is written and from which
REXX execs are fetched

¢ The names of several replaceable routines that you can provide for system
services. You can provide replaceable routines that handle I/O, load REXX
execs, manage storage, process data stack requests, obtain the user ID or
terminal ID for the USERID built-in function, and determine whether the
message ID is to be displayed with a message.

* The names of exit routines that are called when the IRXEXEC routine is
invoked, before exec initialization and termination, and when a user enters
attention mode in TSO/E

¢ The names of host command environments and the corresponding routines that
process commands for each host command environment

* The function packages that are available to execs that execute in the
environment

¢ The subpool used for storage allocation
¢ The name of the address space
* Bit settings (flags) that define many characteristics, such as:

— Whether the environment is integrated into TSO/E (that is, whether execs
executing in the environment can use TSO/E commands and services)

— The search order for commands and for functions and subroutines
— Whether primary and alternate messages are displayed

“Characteristics of a Language Processor Environment” on page 275 describes the
environment characteristics.

The REXX language itself is address space independent. For example, if an exec
includes a DO loop, the language processor processes the DO loop in the same

manner regardless of whether the exec executes in TSO/E or in a non-TSO/E address

space. However, when the language processor processes a REXX exec, various host
services are used, such as I/O and storage. MVS address spaces differ in how they
access and use system services, such as I/O and storage management. Although
these differences exist, the REXX exec must execute in an environment that is not
dependent on the particular address space in which it was invoked. Therefore, a
REXX exec executes within a language processor environment, which is an
environment that can be customized to support how each address space accesses and
uses host services.

When a language processor environment is initialized, different routines can be
defined that are invoked for system services, such as obtaining and freeing storage
and handling I/O requests. The language processor environment provides for
consistency across MVS address spaces by ensuring that REXX execs execute
independent of the way in which system services are accessed. At the same time, the

268 TSO/E Version 2 REXX Reference

Language Processor Environments

language processor environment provides flexibility to handle the differences between
the address spaces and also lets you customize how REXX execs are processed and
how system services are accessed and used.

Initialization of an Environment: The initialization routine IRXINIT initializes
language processor environments. The system calls IRXINIT in both TSO/E and
non-TSO/E address spaces to automatically initialize an environment. Because the
system automatically initializes language processor environments, users need not be
concerned with setting up such an environment, changing any values, or even that
the environment exists. The language processor environment allows application
programmers and system programmers to customize the system interfaces between
the language processor and host services. “When Environments are Automatically
Initialized in TSO/E” on page 272 describes when an environment is automatically
initialized in the TSO/E address space. “When Environments are Automatically
Initialized in MVS” on page 273 describes when environments are initialized in
non-TSO/E address spaces.

When IRXINIT is called to automatically initialize an environment, it uses default
values. TSO/E provides three default parameters modules (load modules) that
contain the parameter values that are used to initialize three different types of
language processor environments:

¢ IRXTSPRM (for a TSO/E session)
¢ IRXISPRM (for ISPF)
¢ IRXPARMS (for non-TSO/E address spaces)

“Characteristics of a Language Processor Environment” on page 275 describes the
parameters module that contains all of the characteristics that are defined for a
language processor environment. “Values Provided in the Three Default Parameters
Modules” on page 299 describes the defaults TSO/E provides in the three
parameters modules. You can change the default parameters that TSO/E provides
by providing your own load modules. “Changing the Default Values for Initializing
an Environment” on page 310 describes how to change the parameters.

You can also explicitly call IRXINIT and pass the parameter values for IRXINIT to
use to initialize the environment. Using IRXINIT gives you the flexibility to
customize the environment in which REXX execs execute and how system services
are accessed and used.

Chains of Environments: Many language processor environments may exist in a
particular address space. A language processor environment is associated with an
MYVS task. There can be multiple environments associated with one task. Language
processor environments are chained together in a hierarchical structure and form a
chain of environments where each environment on a chain is related to the other
environments on that chain. Although many environments may be associated with
one MVS task, each individual language processor environment is associated with
one and only one MVS task. Environments on a particular chain may share various
resources, such as data sets and the data stack. “Chains of Environments and How
Environments Are Located” on page 304 describes the relationship between
language processor environments and MVS tasks and how environments are chained
together.

Maximum Number of Environments: Although there can be many language
processor environments initialized in a single address space, there is a default
maximum. The load module IRXANCHR contains an environment table that
defines the maximum number of environments for one address space. The default

Chapter 14. Language Processor Environments 269

Langunage Processor Environments

maximum is not a specific number of environments. The maximum number of
environments depends on the number of chains of environments and the number of
environments defined on each chain. The default maximum should be sufficient for
any address space. However, if a new environment is being initialized and the
maximum has already been used, IRXINIT completes unsuccessfully and returns
with a return code of 20 and a reason code of 24. If this occurs, you can change the
maximum value by providing a new IRXANCHR load module. “Changing the
Maximum Number of Environments in an Address Space” on page 332 describes
the IRXANCHR load module and how to provide a new module.

Control Blocks: When IRXINIT initializes a new language processor environment,
it creates a number of control blocks that contain information about the
environment. The main control block created is called the environment block
(ENVBLOCK). Each language processor environment is represented by its
environment block. The environment block contains pointers to other control blocks
that contain information about the parameters that define the environment, the
resources within the environment, and the exec currently executing in the
environment. “Control Blocks Created for a Language Processor Environment” on
page 323 describes all of the control blocks that IRXINIT creates. IRXINIT creates
an environment block for each language processor environment that it creates.
Except for the initialization routine IRXINIT, all REXX execs and services cannot
operate without an environment being available.

—— Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

270 TSO/E Version 2 REXX Reference

Using the Environment Block

Using the Environment Block

The main control block that is created for a language processor environment is the
environment block. The environment block represents the language processor

environment and points to other control blocks that contain information about the
environment.

The environment block is known as the anchor that is used by all callable interfaces
to REXX. All REXX routines, except for the IRXINIT initialization routine,
cannot execute unless an environment block exists, that is, a language processor
environment must exist. When IRXINIT initializes a new language processor
environment, it always returns the address of the environment block in register 0. (If
you explicitly call IRXINIT, it also returns the address of the environment block in
the parameter list.) You can also use the IRXINIT routine to obtain the address of
the environment block for the current non-reentrant environment (see page 340).
IRXINIT returns the address in register 0 and also in a parameter in the parameter
list.

The address of the environment block is useful for calling a REXX routine or for
obtaining information from the control blocks that were created for the
environment. If you call any of the REXX routines (for example, IRXEXEC to
execute an exec or the variable access routine IRXEXCOM), you can optionally pass
the address of an environment block to the routine in register 0. By passing the
address of an environment block, you can specify in which specific environment you
want either the exec or the service to execute. This is particularly useful if you use
the IRXINIT routine to initialize several environments on a chain and then want to
execute a REXX routine in a specific environment. When you call the routine, you
can pass the address of the environment block in register 0.

If you call a REXX routine and do not pass the address of an environment block in
register 0, the routine will execute:

¢ In the last environment on the chain under the current task (non-TSO/E address
space)

¢ In the last environment on the chain under the current task or a parent task
(TSO/E address space).

If you call IRXEXEC or IRXJCL and an environment does not exist, IRXINIT is
invoked to initialize an environment in which the exec will execute. When the exec
completes processing, the newly created environment is terminated.

The environment block points to several other control blocks that contain the
parameters used to define the environment and the addresses of REXX routines,
such as IRXINIT, IRXEXEC, and IRXTERM, and replaceable routines. You can
access these control blocks to obtain this information. The control blocks are
described in “Control Blocks Created for a Language Processor Environment” on
page 323.

— Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

Chapter 14. Language Processor Environments 271

Environments Initialized in TSO/E

When Environments are Automatically Initialized in TSO/E

The initialization routine IRXINIT initializes a language processor environment.
The system calls IRXINIT to automatically initialize a default environment when a
user logs on to TSO/E and when ISPF is invoked.

When a user logs on to TSO/E, IRXINIT is called as part of the logon process to
automatically initialize a language processor environment for the TSO/E session.
The initialization of a language processor environment is transparent to the user.
After users log on to TSO/E, they can simply invoke a REXX exec without
performing any other tasks.

Similarly, when a user invokes ISPF from TSO/E, the IRXINIT routine is called and
automatically initializes a language processor environment for ISPF, that is, for the
ISPF screen. The second language processor environment is separate from the
environment that was initialized for the TSO/E session. If the user enters split screen
in ISPF, IRXINIT initializes a third language processor environment for the second
ISPF screen. At this point, three separate language processor environments exist. If
the user executes a REXX exec from the second ISPF screen, the exec executes
under the third language processor environment, that is, the environment IRXINIT
initialized for the second ISPF screen. If the user executes the exec from the first
ISPF screen, it runs under the second language processor environment.

The termination routine, IRXTERM, terminates a language processor environment.
Continuing the above example, when the user returns to one screen in ISPF, the
IRXTERM routine is called. IRXTERM terminates the third language processor
environment that was initialized for the second ISPF screen. Similarly, when the
user exits from ISPF and returns to TSO/E READY mode, IRXTERM terminates
the language processor environment for the first ISPF screen. In TSO/E READY
mode, the first language processor environment still exists. At this point, if the user
executes a REXX exec from READY mode, the exec executes under the
environment that was initialized at TSO/E logon. When the user logs off,
IRXTERM terminates the language processor environment for the TSO/E session.

You can also call the IRXINIT routine to initialize a language processor
environment. On the call to IRXINIT, you specify values you want defined for the
new environment. Using IRXINIT gives you the ability to define a language
processor environment and customize how REXX execs execute and how system
services are accessed and used. This is particularly important in non-TSO/E address
spaces where you may want to provide replaceable routines to handle system
services. However, you may want to use IRXINIT in TSO/E in order to create an
environment that is similar to a non-TSO/E address space to test any replaceable
routines or REXX execs you have developed. for non-TSO/E.

If you explicitly call IRXINIT to initialize a language processor environment, you
must call the IRXTERM routine to terminate the environment. The system does
not terminate language processor environments that you initialized by calling
IRXINIT. Information about IRXINIT and IRXTERM is described later in this
chapter. Chapter 15, “Initialization and Termination Routines” provides reference
information about the parameters and return codes for IRXINIT and IRXTERM.

272 TSO/E Version 2 REXX Reference

Environments Initialized in MVS

When Environments are Automatically Initialized in MVS

As described in the previous topic, a language processor environment is
automatically initialized in the TSO/E address space whenever a user logs on to
TSO/E and when ISPF is invoked. After a TSO/E session has been started, users
can simply invoke a REXX exec and the exec will execute in the language processor
environment in which it was invoked.

In non-TSO/E address spaces, language processor environments are not
automatically initialized at a specific point, such as when the address space is
activated. An environment is initialized whenever the IRXJCL or IRXEXEC
routine is called to execute a REXX exec, if an environment does not already exist
on the current task.

You can execute a REXX exec in MVS batch by specifying IRXJCL as the program
on the JCL EXEC statement. You can call either the IRXJCL or IRXEXEC
routines from a program in any address space to execute an exec. “IRXJCL and
IRXEXEC Routines” on page 214 describes the two routines in detail.

When IRXJCL or IRXEXEC is called, it determines whether a language processor
environment already exists. (As discussed previously, more than one environment
may be initialized in a single address space. The environments are chained together
in a hierarchical structure). IRXJCL or IRXEXEC will not call IRXINIT to
initialize an environment if an environment already exists. They will use the current
environment to execute the exec. “Chains of Environments and How Environments
Are Located” on page 304 describes how language processor environments are
chained together and how environments are located.

If either IRXEXEC or IRXJCL call the IRXINIT routine to initialize an
environment, after the REXX exec completes processing, the IRXTERM routine is
called to terminate the environment that was initialized.

Note: If several language processor environments already exist when you call
IRXJCL or IRXEXEC, you can pass the address of an environment block in register
0 on the call to indicate the environment in which the exec should be executed. See
“Using the Environment Block” on page 271 for more information.

Chapter 14. Language Processor Environments 273

Types of Environments

Types of Environments - Integrated and Not Integrated Into TSO/E
There are two types of language processor environments:
e Environments that are integrated into TSO/E

¢ Environments that are not integrated into TSO/E.

If a language processor environment is integrated into TSO/E, any REXX execs that
execute in that environment can use TSO/E commands and services. If an
environment is not integrated into TSO/E, execs that execute in the environment
cannot use TSO/E commands and services. Whether or not a language processor
environment is integrated into TSO/E is determined by the setting of the TSOFL
flag (see page 281). The TSOFL flag is one characteristic (parameter) that is used
when a new environment is initialized. If the TSOFL flag is off, the new
environment is not integrated into TSO/E. If the flag is on, the environment is
integrated into TSO/E.

When a language processor environment is initialized in a non-TSO/E address space,
either by default or when the initialization routine IRXINIT is explicitly called, the
TSOFL flag must be off. That is, environments that are initialized in non-TSO/E
address spaces cannot be integrated into TSO/E.

When a language processor environment is initialized in the TSO/E address space,
the TSOFL flag can either be on or off. That is, the environment can or cannot be
integrated into TSO/E. When an environment is automatically initialized in the
TSO/E address space (see page 272), it is integrated into TSO/E. The default
parameters modules (IRXTSPRM and IRXISPRM) TSO/E provides for initializing
environments in the TSO/E address space have the TSOFL flag set on.

In the TSO/E address space, you can call the IRXINIT routine and initialize an
environment that is not integrated into TSO/E (the TSOFL flag is off). This lets
you initialize a language processor environment that is the same as an environment
for a non-TSO/E address space. By doing this, for example, you can test REXX
execs that you have written for a non-TSO/E address space. It also lets you test
and/or use your own replaceable routines for various system services, such as I/O
and data stack requests. User-supplied replaceable routines can only be provided in
language processor environments that are not integrated into TSO/E.

Some TSOJ/E external functions and TSO/E REXX commands are available only in
TSOJE (in a language processor environment that is integrated into TSO/E). See
Chapter 8, “Using REXX in Different Address Spaces” on page 155 for more
information. Some environment characteristics can only be defined for environments
that are not integrated into TSO/E. “Specifying Values for Different Environments”
on page 315 descffb&;s the environment characteristics you can specify for language
processor environments that are and are not integrated into TSO/E.

274 TSO/E Version 2 REXX Reference

Environment Characteristics

Characteristics of a Language Processor Environment

When IRXINIT initializes a language processor environment, it creates several
control blocks that contain information about the environment. One of the control
blocks is the parameter block (PARMBLOCK). The parameter block contains the
parameter values that were used to define the environment, that is, it contains the
characteristics that define the environment. It also contains the addresses of the
module name table, the host command environment table, and the function package
table, which contain additional characteristics for the environment.

TSOJE provides three default parameters modules, which are load modules that
contain the values for initializing language processor environments. The three
default modules are IRXPARMS (MVS), IRXTSPRM (TSO/E), and IRXISPRM
(ISPF). “Values Provided in the Three Default Parameters Modules” on page 299
shows the default values TSO/E provides in each of these modules. A parameters
module consists of the parameter block (PARMBLOCK), the module name table,

, the host command environment table, and the function package table. Figure 39

{] shows the format of the para