
--------- ----- - -- - ---- - - -----------·-
TSO Extensions Version 2
REXX Reference

SC28-1883-0

I ' \..._...;/

I .
_,.J

--------- ----- - -- - ---- -------------·-
TSO Extensions Version 2
REXX Reference

SC28-1883-0

First Edition (December 1988)

This edition applies to the TSO Extensions (TSO/E) Version 2 Licensed Program, Program Number
5685-025, and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters.
Changes are made periodically to the information herein; before using this publication with the operation of
IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM's product may be used. Any functionally equivalent product may
be used instead. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building 921,
PO Box 950, Poughkeepsie, New York 12602. IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988
All Rights Reserved

(~
J

Before Using the Information in This Book -------------~

Before you use the information in this book, please read "Changes for Version
2" on page 425. This topic lists the instructions, functions, and services
described in this book that support various AP ARs.

iii

iv TSO/E Version 2 REXX Reference

!~
I

!~
' !

/~
')

Contents

Chapter 1. Introduction 1
Who This Book Is For 1
What Systems Application Architecture Is 2

Supported Environments 2
Common Programming Interface 3

How to Use This Book 4
How to Read the Syntax Diagrams 5

For Further REXX Information 6

Chapter 2. General Concepts 7
Brief Description of the Restructured Extended Executor Language 7
Where to Find More Information 8
Structure and General Syntax 8

Tokens 9
Implied Semicolons 12
Continuations 12

Expressions and Operators 13
Expressions 13
Operators 13

String Concatenation 13
Arithmetic 14
Comparison 14
Logical (Boolean) 15

i
_; Parentheses and Operator Precedence 16

Examples 17
Clauses and Instructions 17

Null Clauses 1 7
Labels 17
Assignments 18
Keyword Instructions 18
Commands 18

Assignments and Symbols 18
Constant Symbols 19
Simple Symbols 19
Compound Symbols 19
Stems 20

Notes 21
Commands to External Environments 22

Environment 22
Commands 22
Host Commands and Host Command Environments 23

The TSO Environment 24
The ISPEXEC and ISREDIT Environments 24
The MVS Environment 24
The LINK and ATTACH Environments 25

Chapter 3. Keyword Instructions 27
ADDRESS 28
ARG 30
CALL 32
DO 35

Simple DO Group 35

Contents V

Simple Repetitive Loops 36
Controlled Repetitive Loops 36
Conditional Phrases (WHILE and UNTIL) 38

DROP 39
EXIT 40
IF 41
INTERPRET 42
ITERATE 44
LEAVE 45
NOP 46
NUMERIC 47
OPTIONS 49
PARSE 50
PROCEDURE 53
PULL 55
PUSH 56
QUEUE 57
RETURN 58
SAY 59
SELECT 60
SIGNAL 62
TRACE 64

Alphabetic Character (Word) Options 65
Prefix Options 65
Numeric Options 66
Tracing Tips 66

A Typical Example 67
Format of TRACE Output 67

UPPER 69

Chapter 4. Functions 71
Syntax 71
Calls to Functions and Subroutines 72

SearchOrder 73
Errors during Execution 76

Built-in Functions 77
ABBREV 78
ABS 78

/~
' !

ADDRESS 78
ARG 79
BITAND 80
BITOR 80
BITXOR 81
CENTRE/CENTER 81
COMPARE 82
CONDITION 82
COPIES 83
C2D 83
C2X 84
DATATYPE 84
DATE 85
DBCS 86
DELSTR 87
DELWORD 87
DIGITS 87
D2C 88

vi TSO/E Version 2 REXX Reference

D2X 88

__) ERROR TEXT 89
EXTERNALS 89
FIND 90
FORM 90
FORMAT 90
FUZZ 91
INDEX 92
INSERT 92
JUSTIFY 93
LASTPOS 93
LEFT 94
LENGTH 94
LINE SIZE 94
LI STD SI 95
MAX 95
MIN 95

u MSG 95
OUTTRAP 95
OVERLAY 96
POS 96
PROMPT 96
QUEUED 97
RANDOM 97
REVERSE 98
RIGHT 98
SIGN 98 u SOUR CELINE 99
SPACE 99
STORAGE 99
STRIP 100
SUBS TR 100
SUBWORD 101
SYMBOL 101
SYSDSN 101
SYSVAR 102
TIME 102 _;! TRACE 103
TRANSLATE 104
TRUNC 104
USE RID 105
VALUE 105
VERIFY 106
WORD 106
WORDINDEX 107
WORD LENGTH 107
WORDPOS 107
WORDS 108
XRANGE 108
X2C 108
X2D 109

TSO /E Functions 110
r LIS TD SI 110 I '
\._/1

Specifying Data Set Names 112
Variables Set by LISTDSI 113
Messages 115

Contents vii

Function Codes 115
Reason Codes 116
Error Codes 117
Examples 117

MSG 118
Example 119

OUTTRAP 119
Additional Variables Available 121
Examples 122

PROMPT 123
Interaction of Three Ways to Affect Prompting 124
Examples 125

STORAGE 126
Examples 126

SYSDSN 127
Examples 128

SYSVAR 128
Control Variables Not Supported by SYSVAR 130
Examples 130

Chapter 5. Parsing for PARSE, ARG, and PULL
Introduction 131

Parsing Words 131
Parsing Using String Patterns
Parsing Using Numeric Patterns
Parsing Arguments 133

Definition 133

132
132

Parsing with Literal Patterns 134
Parsing with Variable Patterns 135
Use of the Period as a Placeholder 136

131

Parsing with Positional Patterns and Relative Patterns 136
Parsing Multiple Strings 138

Chapter 6. Numerics and Arithmetic 139
Introduction 139
Definition 140

Numbers 140
Precision 140
Arithmetic Operators 141
Arithmetic Operation Rules Basic Operators 141

Addition and Subtraction 142
Multiplication 142
Division 142

Arithmetic Operators Additional Operators 143
Power 143
Integer Division 144
Remainder 144

Comparison Operators 145
Exponential Notation 146
Numeric Information 147
Whole Numbers 147
Numbers Used Directly by REXX 147
Errors 148

Chapter 7. Conditions and Condition Traps 149
Action Taken When a Condition is Trapped 150

viii TSO/E Version 2 REXX Reference

/~

/'-..\
I I

{~
" ; I

/~
,I

Condition Information 152
/

~) Chapter 8. Using REXX in Different Address Spaces 155
Additional TSO/E REXX Support 155

TSO/E REXX Programming Services 155
TSO/E REXX Customizing Services 156

Writing Execs That Execute in Non-TSO/E Address Spaces 157
Executing an Exec in a Non-TSO/E Address Space 158

Writing Execs That Execute in the TSO/E Address Space 159
Executing an Exec in the TSO/E Address Space 161

Chapter 9. Reserved Keywords, Special Variables, and Command Names 163
Reserved Keywords 163
Special Variables 164
Reserved Command Names 165

Chapter 10. TSO /E REXX Commands 167
DELST ACK 168
DROPBUF 169
EXECIO 171
EXECUTIL 178
HI 185
HT 186
Immediate Commands 187
MAKEBUF 188
NEWSTACK 190

/ QBUF 192
\._,,J QELEM 194

QSTACK 196
RT 198
SUBCOM 199
TE 201
TS 202

Chapter 11. Debug Aids 203
Interactive Debugging of Programs 203
Interrupting Execution and Controlling Tracing 206

Chapter 12. TSO /E REXX Programming Services 209
General Considerations for Calling TSO/E REXX Routines 212
IRXJCL and IRXEXEC Routines 214

The IRXJCL Routine 214
Using IRXJCL to Execute a REXX Exec in MVS Batch 214
Invoking IRXJCL From a REXX Exec or a Program 215
Return Codes 21 7

The IRXEXEC Routine 217
Entry Specifications 218
Parameters 218
The Exec Block (EXECBLK) 220
Format of Argument List 222
The In-Storage Control Block (INSTBLK) 222
The Evaluation Block (EV ALBLOCK) 225
Return Specifications 227
Return Codes 227

Function Packages 229
Interface for Writing Function and Subroutine Code 231

Contents ix

Entry Specifications 231
Parameters 231
Argument List 232
Evaluation Block 232

Directory for Function Packages 234
Format of Entries in the Directory 235
Example of a Function Package Directory 236

Specifying Directory Names in the Function Package Table 238
Variable Access (IRXEXCOM) 240

Entry Specifications 241
Parameters 241

The Shared Variable (Request) Block - SHVBLOCK 241
Function Codes (SHVCODE) 243

Return Specifications 245
Return Codes 246

Maintain Entries in the Host Command Environment Table (IRXSUBCM) 247
Entry Specifications 248
Parameters 248

Functions 248
Format of a Host Command Environment Table Entry 249

Return Specifications 249
Return Codes 250

Trace and Execution Control Routine (IRXIC) 251
Entry Specifications 251
Parameters 251
Return Specifications 252
Return Codes 252

The IRXRLT (Get Result) Routine 253
Entry Specifications 253
Parameters 254
Return Specifications 256
Return Codes 256

Chapter 13. TSO /E REXX Customizing Services 259
Flow of REXX Exec Processing 260

Initialization and Termination of a Language Processor Environment 260
Types Of Language Processor Environments 263

Loading and Freeing a REXX Exec 263
Processing of the REXX Exec 263

Overview of Replaceable Routines 264
Exit Routines 265

Chapter 14. Language Processor Environments 267
Overview of Language Processor Environments 268
Using the Environment Block 271
When Environments are Automatically Initialized in TSO/E 272
When Environments are Automatically Initialized in MVS 273
Types of Environments - Integrated and Not Integrated Into TSO/E 274
Characteristics of a Language Processor Environment 275
Flags and Corresponding Masks 281
Module Name Table 286
Host Command Environment Table 291
Function Package Table 295
Values Provided in the Three Default Parameters Modules 299
How IRXINIT Determines What Values to Use for the Environment 302

Values IRXINIT Uses to Initialize Environments 302

X TSO/E Version 2 REXX Reference

I~
I

!~
I

'~
!

'~
' I

Chains of Environments and How Environments Are Located 304
Locating a Language Processor Environment 307

Changing the Default Values for Initializing an Environment 310
Providing Your Own Parameters Modules 311

Changing Values for ISPF 311
Changing Values for TSO/E 311
Changing Values for TSO/E and ISPF 312
Changing Values for Non-TSO/E 313

Considerations for Providing Parameters Modules 314
Specifying Values for Different Environments 315

Parameters You Cannot Change 315
Parameters You Can Use in Any Language Processor Environment 315
Parameters You Can Use for Environments That Are Integrated Into

TSO/E 318
Parameters You Can Use in Environments That Are Not Integrated Into

TSO/E 318
Flag Settings for Environments Initialized for TSO/E and ISPF 320
Using SYSPROC and SYSEXEC for REXX Execs 321

Control Blocks Created for a Language Processor Environment 323
Format of the Environment Block (ENVBLOCK) 323
Format of the Parameter Block (PARMBLOCK) 324
Format of the Work Block Extension 326
Format of the REXX Vector of External Entry Points 328

Changing the Maximum Number of Environments in an Address Space 332
Using the Data Stack in Different Environments 334

Chapter 15. Initialization and Termination Routines 339
Initialization Routine - IRXINIT 340 ~I

Entry Specifications 340
Parameters 341
How IRXINIT Determines What Values to Use for the Environment 342
Parameters Module and In-Storage Parameter List 343
Specifying Values for the New Environment 345
Return Specifications 346
Output Parameters 347
Return Codes 350

/ Termination Routine - IRXTERM 352

u Entry Specifications 353
Parameters 353
Return Specifications 353
Return Codes 354

Chapter 16. Replaceable Routines and Exits 355
Replaceable Routines 356

General Considerations 356
Installing Replaceable Routines 357

Exec Load Routine 358
Entry Specifications 359
Parameters 3 59
Format of the Exec Block 361
Format of the In-Storage Control Block 363
Return Specifications 365

('
I :
~

Return Codes 365
Input/Output Routine 366

Entry Specifications 367
Parameters 367

Contents xi

Functions Supported for the I/O Routine 368
Buffer and Buffer Length Parameters 370
Line Number Parameter 372
Data Set Information Block 372
Return Specifications 375
Return Codes 3 7 5

Host Command Environment Routine 377
Entry Specifications 377
Parameters 377
Error Recovery 3 79
Return Specifications 379
Return Codes 380

Data Stack Routine 381
Entry Specifications 382
Parameters 382
Functions Supported for the Data Stack Routine 383
Return Specifications 385
Return Codes 385

Storage Management Routine 386
Entry Specifications 386
Parameters 386
Return Specifications 388
Return Codes 388

User ID Routine 389
Entry Specifications 389
Parameters 389
Return Specifications 390
Return Codes 390

Message Identifier Routine 391
Entry Specifications 391
Parameters 391
Return Specifications 391
Return Codes 391

REXX Exit Routines 392
Exits for Language Processor Environment Initialization and Termination 392
Exec Initialization and Termination Exits 393
IRXEXEC Exit Routine 393
Attention Handling Exit Routine · 394

Appendix A. Error Numbers and Messages 395

Appendix B. Double Byte Character Set (DBCS) 405
General Description 405

DBCS Enabling Data 406
Mixed String Validation 406
Instruction Examples 407

PARSE 407
PUSH and QUEUE 408
SAY and TRACE 408

DBCS Function Handling 408
Built-in Function Examples 410

ABBREV 410
COMPARE 410
COPIES 410
DATATYPE 411
FIND 411

xii TSO/E Version 2 REXX Reference

/~
' l

/

(!

\.,_)

_)

INDEX, POS, and LASTPOS 411
INSERT and OVERLAY 411
JUSTIFY 411
LEFT, RIGHT, and CENTER 412
LENGTH 412
REVERSE 412
SPACE 412
STRIP 412
SUBSTR and DELSTR 412
SUBWORD and DELWORD 413
TRANSLATE 413
VERIFY 413
WORD, WORDINDEX, and WORDLENGTH 413
WORDS 413
WORDPOS 414

External Functions 414
Counting Option 414
Function Descriptions 414
DBADJUST 414
DBBRACKET 415
D BCENTER 415
DBCJUSTIFY 416
DBLEFT 416
DBRIGHT 417
DBRLEFT 417
DBRRIGHT 418
DBTODBCS 418
DBTOSBCS 419
DBUNBRACKET 419
DBVALIDATE 419
DBWIDTH 420

Appendix C. IRXTERMA and RXSECT 421
RXSECT Environment Control Macro 421
IRXTERMA Routine 422

Parameters 423
Return Specifications 423
Return Codes 424

Changes for Version 2 425
APAR Information 425

Bibliography 427
Related Publications 427

Index 431

Contents xiii

xiv TSO/E Version 2 REXX Reference

I~
' l

/..-....
{ ')

(v

I ' , I \..._,.,

Introduction

Chapter 1. Introduction

This introductory section:

• Identifies the book's purpose and audience
• Gives a brief overview of Systems Application Architecture™ (SAA)
• Explains how to use the book.

Who This Book Is For
This book describes the support that TSO/E Version 2 provides for the Restructured
EXtended eXecutor (REXX) language. TSO/E REXX is the implementation of the
SAA Procedures Language on the MVS system. Although TSO/E Version 2
provides support for REXX, you can execute REXX programs (called REXX execs)
in any MVS address space. That is, you can execute a REXX exec in TSO/E and
non-TSO/E address spaces.

Descriptions include use and syntax of the language and explain how the language
processor "interprets" the language as a program is executing. The book also
describes TSO/E functions and REXX commands you can use in a REXX exec,
programming services that let you interface with REXX and the language processor,
and customizing services that let you customize REXX processing and how the
language processor accesses and uses system services, such as storage and I/O
requests.

The book is designed for experienced programmers, particularly those who have used
a block structured high level language (for example, PL/I, Algol, or Pascal).

For ease of reference, the material in this book is arranged in chapters:

1. Introduction

2. General Concepts

3. Keyword Instructions (in alphabetical order)

4. Functions (in alphabetical order)

5. Parsing (a method of dividing character strings, such as commands)

6. Numerics and Arithmetic

7. Conditions and Condition Traps

8. Using REXX in Different Address Spaces

9. Reserved Keywords, Special Variables, and Command Names

10. TSO/E REXX Commands

11. Debug Aids

12. TSO/E REXX Programming Services

13. TSO/E REXX Customizing Services

14. Language Processor Environments

Systems Application Architecture is a trademark of the International Business Machines Corporation.

Chapter 1. Introduction 1

Introduction

15. Initialization and Termination Routines

16. Replaceable Routines and Exits

There are several appendixes covering:

• Error Numbers and Messages

• Double Byte Character Set (DBCS)

• IRXTERMA and RXSECT

What Systems Application Architecture Is
Systems Application Architecture is a definition -- a set of software interfaces,
conventions, and protocols that provide a framework for designing and developing
applications with cross-system consistency.

The SAA Procedures Language has been defined as a subset of Virtual
Machine/System Product (VM/SP) REXX. Its purpose is to define a common subset
of the language that can be used on several environments. TSO/E REXX is the
implementation of the SAA Procedures Language on the MVS system. If you plan
on running your REXX programs on other enviromnents, however, some restrictions
may apply and you should review the publication SAA Common Programming
Interface Procedures Language Reference.

Systems Application Architecture:

• Defines a common programming interface you can use to develop applications
that can be integrated with each other and transported to run in multiple SAA
environments.

• Defines common communications support that you can use to connect
applications, systems, networks, and devices.

• Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques.

• Offers some common applications written by IBM using the common
programming interface, the common communications support and the common
user access.

Supported Environments
SAA provides a framework across these IBM computing environments:

• TSO/E in the Enterprise Systems Architecture/370™

• CMS in the VM/System Product or VM/Extended Architecture

• Operating System/400™ (OS/40QTM)

• Operating System/2™ (OS/2™) Extended Edition.

Operating System/2, Operating System/400, Enterprise Systems Architecture/370, OS/2, and OS/400 are trademarks
of the International Business Machines Corporation.

2 TSO/E Version 2 REXX Reference

(~
')

r-\
)

I !

~

Introduction

Common Programming Interface
As its name implies, the Common Programming Interface (CPI) provides languages,
commands, and calls that programmers can use to develop applications which take
advantage of the consistency offered by SAA. These applications can easily be
integrated and transported across the supported environments.

The components of the interface currently fall into two general categories:

• Languages

Application Generator
c
COBOL
FORTRAN
Procedures Language
RPG

• Services

Communications Interface
Database Interface
Dialog Interface
Presentation Interface
Query Interface.

The CPI is not in itself a product or a piece of code. But as a definition it does
establish and control how IBM products are being implemented, and it establishes a
common base across the SAA environments.

Thus, when you want to create an application that can be used in more than one
environment, you can stay within the boundaries of the CPI and obtain easier
portability. (Naturally, the design of such applications should be done with
portability in mind as well.) In addition to the CPI, you may also want to consider
the other aspects of Systems Application Architecture - for example, the common
user access when creating your applications.

Chapter 1. Introduction 3

Introduction

How to Use This Book
This introduction and Chapter 2, "General Concepts" provide general information
about the REXX programming language. The two chapters describe the SAA
Procedures Language and its relationship to TSO/E REXX, the structure and syntax
of the REXX language, the different types of clauses and instructions, the use of
expressions, operators, assignments, and symbols, and issuing commands from a
REXX exec.

Other chapters in the book provide reference information about the syntax of the
keyword instructions and built-in functions in the REXX language, and the external
functions TSO/E provides for REXX programming. The keyword instructions,
built-in functions, and TSO/E functions are described in Chapter 3, "Keyword
Instructions" and Chapter 4, "Functions."

Other chapters provide information that will help you use the different features of
REXX and debug any problems you have in your REXX execs. These chapters
include:

• Chapter 5, "Parsing for PARSE, ARG, and PULL"
• Chapter 6, "Numerics and Arithmetic"
• Chapter 7, '"Conditions and Condition Traps"
• Chapter 9, "Reserved Keywords, Special Variables, and Command Names"
• Chapter 11, "Debug Aids."

TSO/E provides several REXX commands you can use for REXX processing. The
syntax of these commands is described in Chapter 10, "TSO/E REXX Commands."

Although TSO/E provides support for the RE.XX language, you can execute REXX
execs in any MVS address space (TSO/E and non-TSO/E). Chapter 8, "Using
REXX in Different Address Spaces" describes various aspects of using REXX in
TSO/E and non-TSO/E address spaces and any restrictions.

In addition to REXX language support, TSO/E provides programming services you
can use to interface with REXX and the language processor, and customizing
services that let you customize REXX processing and how the language processor
accesses and uses system services, such as I/O and storage. The programming
services are described in Chapter 12, "TSO/E REXX Programming Services." The
customizing services are introduced in Chapter 13, "TSO/E REXX Customizing
Services" and are described in more detail in the following chapters:

• Chapter 14, "Language Processor Environments"
• Chapter 15, "Initialization and Termination Routines"
• Chapter 16, "Replaceable Routines and Exits."

Throughout the book, examples are provided that include data set names. When an
example includes a data set name that is enclosed in single quotes, the prefix is
added to the data set name. In the examples, the user ID is the prefix.

4 TSO /E Version 2 REXX Reference

/~
I

I~
i

Introduction

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The,...____ symbol indicates the beginning of a statement.

The ---+ symbol indicates that the statement syntax is continued.

The.,.._____ symbol indicates that a line is continued from
the previous line.

The~ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start
with the..,.______ symbol and end with the~-+ symbol.

• Required items appear on the horizontal line (the main path) .

....,.__STATEMENT---requ i red-i te,in-----------

• Optional items appear below the main path .

.,._STATEMENT--....... -------...---------•-•
~ptional-item-l

• When you can choose from two or more items, they are stacked vertically.

If you must choose one of the items, an item of the stack appears on the main
path .

......,.___STATEMENT---i==required-choicel~
required-choice2

....

If choosing one of the items is optional, the entire stack appears below the main
path .

......,.___STATEMENT--.---------..-------••
l-nptional-choicel=J
~ptional-choice2

• An arrow returning to the left above the main line indicates an item that can be
repeated.

i
11+-STATEMENT--repeatable-itemin---'--------• ,.

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

• Keywords appear in uppercase (for example, PARMl). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example, parmx).
They represent user~supplied names or values.

Chapter 1. Introduction 5

Introduction

• If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

For Further REXX Information
The following publications are useful for programming in REX:X:

• The SAA Common Programming Interface Procedures Language Reference,
SC26-4358 may be useful to more experienced REXX users who may wish to
code portable programs. This book defines the SAA Procedures Language,
which is a subset of VM/SP REXX. Descriptions include use and syntax of the
language as well as explanations on how the language processor interprets the
language as a program is executing.

• The VM/SP System Product Interpreter Reference, SC24-5239, is a
comprehensive reference for use with the System Product Interpreter on VM/SP.

• TSO/E Version 2 REXX User's Guide, SC28-1882 introduces the instructions and
functions the REXX language provides and how to write a REXX exec. It
describes how you can execute a REXX exec in TSO/E foreground and
background, in MVS batch using JCL, or in any address space. This book also
highlights the major differences between the TSO/E CLIST language and the
REXX language.

• TSO/E Version 2 Quick Reference, GX23-0026 is a reference summary that
includes the syntax of the REXX keyword instructions, built-in functions,
TSO/E external functions, and TSO/E REXX commands in a summary form.

6 TSO/E Version 2 REXX Reference

f~
I

~)

/~
)

General Concepts

Chapter 2. General Concepts

Brief Description of the Restructured Extended Executor Language
The Restructured Extended Executor (REXX) language is a language particularly
suitable for:

• Command procedures

• Application front ends

• User defined macros (such as: Dialog Manager, editor subcommands, ...)

• Prototyping

• Application programs intended for use in different environments.

It is a general purpose, programming language like PL/I. RE.XX has the usual
"structured programming" instructions IF, SELECT, DO WHILE, LEAVE and
so on -- and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be more
than one clause on a line or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a fom1at that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables fit
into the storage available. Symbols (variable names) are limited to a length of 250
characters.

Compound symbols, such as

NAME.X.Y

(where X and Y can be the names of variables) may be used for constructing arrays
and for other purposes.

Issuing host commands from within a REXX program is an integral part of the
REXX language. For example, in the TSO/E address space, you can use TSO/E
commands in a REXX exec. In execs that execute in both the TSO/E and
non-TSO/E address spaces, you can use the TSO/E REXX commands, such as
MAKEBUF, DROPBUF, and NEWSTACK. You can also link to and attach
programs. "Host Commands and Host Command Environments" on page 23
describes the different environments for using host services.

TSO/E REXX execs can reside in a sequential data set or in a member of a
partitioned data set (PDS). Partitioned data sets containing RE:X:X execs can be
allocated to either the system file SYSEXEC or SYSPROC (TSO/E address space
only).

In TSO/E, you can execute an exec explicitly using the EXEC command followed by
the data set name and the "exec" keyword operand of the EXEC command. The
"exec" keyword operand is used to distinguish the REXX exec from a TSO/E
CLIST, which is also executed with the EXEC command. You can also execute an
exec implicitly by entering the member name of the exec. An exec can be executed

Chapter 2. General Concepts 7

General Concepts

implicitly only if the PDS in which it is stored has been allocated to a system file
(SYSPROC or SYSEXEC). SYSPROC is a system file whose data sets can contain
both CLISTs and REXX execs. If an exec is stored in a data set that is allocated to
SYSPROC, the exec must start with a comment and the comment must contain the
word REXX. See "Structure and General Syntax" for more information.
SYSEXEC is a system file whose data sets can contain only REXX execs.

In the TSO/E address space, you can also use the TSO/E ALTLIB command
(MVS/ESA ™ feature of TSO/E Version 2 only) to define alternate exec libraries.
For more information about allocating exec data sets, see TSO/E Version 2 REXX
User's Guide.

In non-TSO/E address spaces, SYSEXEC is the default load ddname from which
REXX execs are loaded. By default, in the TSO/E address space, only SYSPROC is
searched for REXX execs, not SYSEXEC. You can change the defaults TSO/E
provides so that SYSEXEC is searched. If your installation plans to use REXX, it is
recommended that you store your REXX execs in data sets that are allocated to
SYSEXEC. This makes them easier to maintain. For more information about the
load ddname and searching SYSPROC or SYSEXEC, see "Using SYSPROC and
SYSEXEC for REXX Execs" on page 321.

REXX programs are executed by a language processor (interpreter). That is, the
program is executed line-by-line and word-by-word, without first being translated to
another form (compiled). The advantage of this to the user is that if the program
fails with a syntax error of some kind, the point of failure is clearly indicated;
usually, it will not take long to understand the difficulty and make a correction.

Where to Find More Information
This is the reference manual. Reference information is also available in a convenient
summary form in the TSO/E Version 2 Quick Reference.

You can find useful information in the TSO/E Version 2 REXX User's Guide. For
any program written in the Restructured Extended Executor (REXX) language, you
can get information on how the language processor interprets the program or a
particular instruction by using the REXX TRACE instruction.

Structure and General Syntax
If you write a REXX exec that will be stored in a data set that is allocated to
SYSPROC (TSO/E address space only), the exec must start with a comment and the
comment must contain the characters REXX. This is known as the "REXX exec
identifier" and is required in order for the TSO/E EXEC command processor to
distinguish REXX programs from TSO/E CLISTs, which are also stored in data sets
that are allocated to SYSPROC.

If the exec is in a data set that is not allocated to SYSPROC, the exec does not have
to start with a comment. Programming standards, however, recommend that
programs start with a comment that identifies the program and its purpose. In
VM/SP (CMS), REXX programs must also start with a comment. Therefore, it is

MVS/ESA is a trademark of the International Business Machines Corporation.

8 TSO/E Version 2 REXX Reference

'~ , I

Tokens

_;'

General Concepts

recommended that you start all REXX execs with a comment regardless of where
they are stored. Including the word "REXX" in the first comment helps users
identify that the program is a REXX program and also distinguishes it from a
CLIST.

A REXX program is built from a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (see below); zero or more
blanks (again ignored); and a semicolon(;) delimiter that may be implied by
line-end, certain keywords, or the colon (:)if it follows a single symbol.
Conceptually, each clause is scanned from left to right before execution, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to special characters (including
operators, see page 11) are also removed.

Programs written in REXX are composed of tokens (of any length, up to an
implementation restricted maximum) that are separated by blanks or by the nature
of the tokens themselves. The classes of tokens are:

Comments:
A sequence of characters (on one or more lines) that are delimited by/*
and*/. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. Comments can be written
anywhere in a program. They are ignored by the language processor
(and hence may be of any length), but they do act as separators.

/*This is an example of a valid comment */

Literal Strings:
A sequence including any characters and delimited by the single quote (1)

or the double quote ('1). Use two consecutive double quotes (1111
) to

represent a 11 character within a string delimited by double quotes.
Similarly, use two consecutive single quotes (' 1

) to represent a 1

character within a string delimited by single quotes. A literal string is a
constant and its contents are never modified when it is processed. A
literal string with no characters (that is, a string of length 0) is called a
null string.

These are valid strings:
1 Fred 1

"Don't Panic! 11

1 You shouldn 11 t 1 /* Same as "You shouldn 1 t" */

Implementation maximum: A literal string may contain up to 250
characters. (But note that the length of computed results is limited only
by the amount of storage available.)

Note that if followed immediately by a (, the string is considered to be
the name of a function. Or, if followed immediately by the symbol X, it
is considered to be a hexadecimal string.

Hexadecimal Strings:
Any sequence of zero or more hexadecimal digits (0-9, a-f, A-F),
optionally separated by blanks, delimited by single or double quotes and
immediately followed by the symbol x or X (the X cannot be part of a
longer symbol). A single leading 0 is added, if necessary, at the front of
the string to make an even number of hexadecimal digits, which represent

Chapter 2. General Concepts 9

General Concepts

Symbols:

Numbers:

a character string constant formed by packing the hexadecimal codes
given. The blanks, which may only be present at byte boundaries (and
not at the beginning or end of the string), are to aid readability. They
are ignored by the language processor.

These are valid hexadecimal strings:
1 ABCD 1 x
11 ld ec f8 11 X
11 1 d8 11 x

Implementation maximum: The packed length of a hexadecimal string
may not exceed 250 bytes.

Symbols are groups of characters, selected from the English alphabetic
and numeric characters (A-Z, a-z, 0-9) and/or from the characters
@#$¢. ! ? and underscore. Any lowercase alphabetic character in a symbol
is translated to uppercase (i.e., a lowercase a-z to an uppercase A-Z).

These are valid symbols:

Fred
A 1 be rt. Ha 11
WHERE?

A symbol can be a label (see page 17) or a REXX keyword (see page
163). Symbols that do not begin with a digit or a period can be used as
variables and can be assigned a value. If it has not been assigned a
value, its value is the characters of the symbol itself, translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Symbols that
begin with a number or a period are constant symbols and can not be
assigned a value. There is one other type of symbol. If the first part of
a symbol starts with a digit (0-9) or a period, it may end with the
sequence 11 E 11 or 11 e 11

, followed immediately by an optional sign (11
-

11 or
11 + 11

), followed immediately by one or more digits (which can not be
followed by any other symbol characters). This type of symbol is
assumed to be a number in exponential notation. The sign in this
context is part of the symbol and is not an operator.

These are valid exponential symbols:

17.3E-12
.03e+9

Implementation maximum: A symbol may consist of up to 250
characters. (But note that its value, if it is a variable, is limited only by
the amount of storage available).

These are character strings consisting of one or more decimal digits
optionally prefixed by a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number can also have
a power of ten suffixed in conventional exponential notation: an E
(uppercase or lowercase) followed optional1y by a plus or minus sign then
followed by one or more decimal digits defining the power of ten.
Whenever a character string is used as a number, it is possible that
rounding will occur to a precision specified by the NUMERIC DIGITS
instruction (default nine digits). See pages 139-148 for a full definition of
numbers.

10 TSO/E Version 2 REXX Reference

!~
i

! "-"/

Operators:

General Concepts

Numbers may have leading blanks (before and after the sign, if any) and
may have trailing blanks. Embedded blanks are not permitted. Note
that a symbol (see above) may be a number and so may a literal string.
A number cannot be the name of a variable.

These are valid numbers:

12
-17.9
127.0650
73e+l28
I + 7.9E5 I

A whole number is a number that has a zero (or no) decimal part and
that would not normally be expressed by the language processor in
exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

The special characters: + - \ I % * I & = ..., > < and the sequences >=

<= \> --p \< 1< \= 1= >< <> \== 1== 11 && **
» << »= \» » <<= I l I= \« 1<< are operator
tokens (see page 13), with or without embedded blanks or comments.
One or more blank(s), where they occur in expressions but are not
adjacent to another operator, also act as an operator.

Some of these characters may not be available in all character sets, and if
this is the case, appropriate translations may be used. In particular, the
not operator symbol often appears as caret, and the vertical bar or
symbol is often shown as a split vertical bar.

Note that throughout the language, the not symbol, "1", is synonymous
with the backslash ("\"). The two symbols may be used interchangeably
according to availability and personal preference.

Special Characters:
The characters , ; :) (together with the individual characters from
the operators have special significance when found outside of strings. All
these characters constitute the set of "special" characters. They all act as
token delimiters, and blanks adjacent to any of these are removed, with
the exception that a blank adjacent to the outside of a parenthesis is only
deleted if it is also adjacent to another special character (unless this is a
parenthesis and the blank is outside it, too).

For example, the clause:
1 REPEAT 1 B + 3;

is composed of six tokens a string(' REPEAT 1
), a blank operator, a symbol (B,

which may have a value), an operator (+), a second symbol (3, which is a number
and a symbol), and the clause delimiter(;). The blanks between the B and the +
and between the + and the 3 are removed. However, one of the blanks between the
REPEAT and the B remains as an operator. Thus, this is treated as though it were
written:

I REPEAT I B + 3;

Implementation maximum: During parsing of a clause, the internal form of a clause
(which is approximately the same length as the visible form, except that extra blanks

Chapter 2. General Concepts 11

General Concepts

and comments are removed) may not exceed 500 characters. Note that this does not
limit in any way the length of data that can be manipulated, which is dependent
upon the amount of storage (memory) available.

Implied Semicolons

Continuations

The last element in a clause is the semicolon delimiter. The semicolon is implied by
the language processor in three cases: by a line-end, by certain keywords and by a
colon if it follows a single symbol. This means that semicolons need only be
included when there are more than one clause on a line.

A line-end usually marks the end of a clause and thus, a semicolon is implied at
most end of lines. However, there are a few exceptions:

• The line ends in the middle of a string

• The line ends in the middle of a comment

• The last noncomment token was the continuation character (denoted by a
comma).

If any of the cases listed previously are true, then it is not considered the end of a
clause and a semicolon is not implied.

Semicolons are also implied automatically after certain keywords when they are used
in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Note: If the two character combination, /*, is split by a line-end (that is, /and *
appear on different lines), then an implied semicolon would be added and it would
not be correctly recognized as the beginning of a comment. Similarly, the two
character combination indicating the end of a comment, */, should not be split. The
two characters forming a double quote within a string are also subject to this
line-end ruling.

One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by a
blank, and thus, no semicolon is implied. The continuation character can not be
used in the middle of a string or it will be processed as part of the string itself. The
same situation holds true for comments. Note that the comma remains in execution
traces.

The following example shows how the continuation character can be used to
continue a clause.

say 'You can use a comma',
'to continue this clause. 1

This would display:

12 TSO/E Version 2 REXX Reference

('
~I

General Concepts

Expressions and Operators

Expressions

Operators

Clauses can include expressions consisting of terms {strings, symbols, and function
calls) interspersed with operators and parentheses.

Terms include:

• Literal Strings (delimited by quotes), which are literal constants

• Symbols (no quotes), which are translated to uppercase. Those that do not
begin with a digit or a period may be the name of a variable, in which case they
are replaced by the value of that variable as soon as they are needed during
evaluation. Otherwise they are treated as a literal string. A symbol can also be
compound.

• Function invocations, see page 71, which are of the form:

Lsymbo1(]
string(

I f I I
[expression]

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see below). Expressions are always wholly
evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings, {typeless because it is not - as
in some other languages of a particular declared type, such as Binary,
Hexadecimal, Array, etc.). Consequently, the result of evaluating any expression is
itself a character string. All terms and results may be the null string {a string of
length 0). Note that REXX imposes no restriction on the maximum length of
results, but there is usually some practical limitation dependent upon the amount of
storage available to the language processor.

The following pages describe how each operator (except for the prefix operators) acts
on two terms, which may be symbols, strings, function calls, intermediate results, or
subexpressions in parentheses. Each prefix operator acts on the term or
subexpression that follows it. There are four types of operators:

String Concatenation
The concatenation operators are used to combine two strings to form one string.
The combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between

11 Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

Concatenation without a blank may be forced by using the 11 operator, but it is
useful to know that when dissimilar terms (such as a literal string and a symbol) are
abutted, they will be concatenated in the same way. This is the abuttal operator.

Chapter 2. General Concepts 13

General Concepts

Arithmetic

Comparison

Example:

If the variable FRED had the value 37. 4, then Fred 11 %11 would evaluate to 37. 4%.

Character strings that are valid numbers (see above) may be combined using the
arithmetic opera tors:

+

*

I
%

II

**

Prefix -

Prefix +

Add

Subtract

Multiply

Divide

Divide and return the integer part of the result

Divide and return the remainder (not modulo, since the result
may be negative)

Power (raise a number to a whole-number power)

Negate the following term. Same as 10-term'.

Take following term as if it was '0 +term'.

See the section Chapter 6, "Numerics and Arithmetic" on page 139 for details of
accuracy, the format of valid numbers, and the combination rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.

The comparison operators return the value 1 if the result of the comparison is true,
or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator
doubled. The " = ", "\ = = ", ''-, = ", and "/ " operators test for strict
equality or inequality between two strings. Two strings must be identical before they
are considered strictly equal. Similarly, the strict comparison operators such as
"> >" or"< <"carry out a simple character-by-character comparison, with no
padding of either of the strings being compared. The comparison of the two strings
is from left to right. The strict comparison operators also do not attempt to perform
a numeric comparison on the two operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, etc.) is effected; otherwise,
both terms are treated as character strings (leading and trailing blanks are ignored,
and then the shorter string is padded with blanks on the right). The character
comparison operation is case sensitive, and (as for strict comparisons) the exact
collating order may depend on the character set used for the implementation. For
example, in an EBCDIC environment, lowercase alphabetics precede uppercase, and
the digits 0-9 are higher than all alphabetics. In an ASCII environment, the digits
are lower than the alphabetics, and lowercase alphabetics are higher than uppercase
alphabetics.

True if terms are strictly equal (identical)

True if the terms are equal (numerically or when padded,
etc.)

14 TSO/E Version 2 REXX Reference

.r"\
}

:~

,~
)

_,)

I
l
\ !

~

Logical (Boolean)

General Concepts

\==,-,==,/==

\=,-, =, /=
True if the terms are NOT strictly equal (inverse of = =)

Not equal (inverse of =)

>

<

>>

<<

><

<>

>=

\<,-,<

>>=

\<<,-,<<

<=

\>,-, >

<<=

\>>,-,>>

Greater than

Less than

Strictly greater than

Strictly less than

Greater than or less than (same as not equal)

Greater than or less than (same as not equal)

Greater than or equal to

Not less than

Strictly greater than or equal to

Strictly NOT less than

Less than or equal to

Not greater than

Strictly less than or equal to

Strictly NOT greater than

Note: Throughout the language, the not symbol, "1 ", is synonymous with the
backslash ("\"). The two symbols may be used interchangeably according to
availability and personal preference. The backslash can appear in the following
operators: \(prefix not), \=, \==, \<, \>, \<<, and\>>.

A character string is taken to have the value "false" if it is 0, and "true" if it is a l.
The logical operators take one or two such values (values other than 0 or 1 are not
allowed) and return 0 or 1 as appropriate:

& AND
Returns 1 if both terms are true.

Inclusive OR
Returns 1 if either term is true.

&& Exclusive OR
Returns 1 if either (but not both) is true.

Prefix\, 1 Logical NOT
Negates; 1 becomes 0 and vice-versa.

Chapter 2. General Concepts 15

General Concepts

Parentheses and Operator Precedence
Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

• When parentheses are encountered (other than those that identify function calls),
the entire sub-expression between the parentheses is evaluated immediately when
the term is required.

• When the sequence:

terml operatorl term2 operator2 term3 ..•

is encountered, and operator2 has a higher precedence than operatorl, the
expression (term2 operator2 term3 ...) is evaluated first, applying the same rule
repeatedly as necessary.

Note, however, that individual terms ar.e evaluated from left to right in the
expression (that is, as soon as they are encountered). It is only the order of
operations that is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 3 + 2*5 will evaluate
to 13 (rather than the 25 that would result if strict left to right evaluation occurred).
Likewise, the expression -3**2 will evaluate to 9 (instead of -9) since the prefix
minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

\I - +

**
* I % II
+ -

" " 11 (abuttal)

= > <
>> <<

\= I=
>< <>
\> 1>

\< 1<

\= = I==
\> > 1>>

\< < 1<<
>= >>=
<= <<=
/= /= =

&

I &&

16 TSO/E Version 2 REXX Reference

(prefix operators)

(power)

(multiply and divide)

(add and subtract)

(concatenation with/without blank)

(comparison operators)

(and)

(or, exclusive or)
(or, exclusive or)

\._,)

I ,
_,I

Examples

General Concepts

Suppose that the following symbols represent variables; with values as shown:

A has the value '3' and DAY has the value 'Monday'

Then:

A+5 -> ·a·
A-4*2 -> I -5'
A/2 -> '1.5'
0.5**2 -> 10.25 1

{A+l)>7 -> '0' /* that is, False */
I ·=·' -> • 1 • /* that is, True */
I 1==11 -> •0• /* that is, False */
I '1=='' -> • 1 • /* that is, True */
(A+l)*3=12 -> '1' /* that is, True */
Today is Day -> 1TODAY IS Monday 1

'If it is 1 day -> I If it is Monday'
Substr(Day,2,3) -> 1 ond 1 /* Substr is a function */
1 ! 1xxx 1 ! 1 -> I !XXX! I

1abc 1 << 1 abd 1 -> • 1 • /* that is' True */
I 077 1 >> '11' -> '0' /* that is, False*/
1 abc 1 >> 'ab' -> • 1 • /* that is, True */
'ab I << 1abd 1 -> I 11 /* that is, True */
· eeeeee ' >> '0E0000' -> 'l' /* that is, True */

Note: The last example would give a different answer if the ">" operator had been
used rather than"> > ". Since 1 0E0000 1 is a valid number in exponential notation,
a numeric comparison is done, thus 10EOOOO 1 and 1000000 1 evaluate as equal.

Clauses and Instructions

Null Clauses

Labels

Clauses can be subdivided into five types.

A clause consisting only of blanks and/or comments is a null clause and is
completely ignored (except that if it includes a comment it will be traced, if
appropriate).

Note: A null clause is not an instruction; putting an extra sem.icolon after the
THEN or ELSE in an IF instruction (for example) is not equivalent to using a
dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

A clause that consists of a single symbol followed by a colon is a label. The colon
acts as an implicit clause terminator, so no semicolon is required. Labels are used to
identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. They can be traced selectively to aid debugging.

Any number of successive clauses may be labels, so permitting multiple labels before
another type of clause. Duplicate labels are permitted, but since the search
effectively starts at the top of the program, the control, following a CALL or
SIGNAL instruction, will always be passed to the first occurrence of the label. The
duplicate labels occurring later can be traced, but cannot be used as a target of a
CALL, SIGNAL, or function invocation.

Chapter 2. General Concepts 17

General Concepts

Assignments
Single clauses of the form symbol =expression are instructions known as assignments.
An assignment gives a variable a (new) value.

Keyword Instructions

Commands

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. These control the external interfaces, the flow of
control, etc. Some instructions can include other (nested) instructions. In this
example, the DO construct (DO, the group of instructions that follow it, and its
associated END keyword) is considered a single keyword instruction.

DO

END

instruction
instruction
instruction

Single clauses consisting of just an expression are instructions known as commands.
The expression is evaluated and passed as a command string to some external
environment.

Assignments and Symbols
A variable is an object whose value may be changed during the course of execution
of a RE.XX program. The process of changing the value of a variable is called
assigning a new value to it. The value of a variable is a single character string, of
any length, that may contain any characters.

Variables can be assigned a new value by the ARG, PARSE, or PULL instructions,
but the most common way of changing the value of a variable is the assignment
instruction itself. Any clause of the form:

11+-symbol= I ~ ;___......
L-expression

is taken to be an assignment. The result of expression becomes the new value of the
variable named by the symbol to the left of the equal sign. If expression is not
given, the variable is set to the null string.

Example:

/* Next line gives "FRED" the value "Frederic" */
Fred= 1 Frederic 1

The symbol naming the variable cannot begin with a digit (0-9) or a period.
(Without the restriction on the first character of a variable name, it would be
possible to redefine a number; for example 3=4; would give a variable called 3 the
value 4.)

Symbols can be used in an expression even if they have not been assigned a value,
since they have a defined value at all times. When a variable has not been assigned
a value it is uninitialized, and its value is the character(s) of the symbol itself,
translated to uppercase (i.e., a lowercase a-z to an uppercase A-Z). However, if it is
a compound symbol, described below, its value is the derived name of the symbol.

18 TSO/E Version 2 REXX Reference

!~

~.
}

I

(:
\....._)

u

Example:

/* If "Freda" has not yet been assigned a value~ */
/* then next line gives 11 FRED" the value 11 FREOA 11 */
Fred= Freda

General Concepts

Symbols can be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols can be used for variables where the
name corresponds to a single value. Compound symbols and stems are used for
more complex collections of variables, such as arrays and lists.

Constant Symbols

Simple Symbols

A constant symbol starts with a digit (0-9) or a period.

The value of a constant symbol cannot be changed. It is simply the string consisting
of the characters of the symbol (that is, with any alphabetic characters translated to
uppercase).

These are constant symbols:

77
827.53
.12345
12e5 /* Same as 12E5 */
30

A simple symbol does not contain any periods, an,d does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase).
If the symbol has been used as the target of an assignment, it names a variable and
its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea?
?12

/* Same as WHATAGOODIDEA? */

Compound Symbols
A compound symbol contains at least one period, and at least one other character. It
can not start with a digit or a period, and if there is only one period, the period can
not be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period), which is followed by parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null.

These are compound symbols:

FRED.3
Array. I.J
AMESSY •• One.2.

Before the symbol is used (that is, at the time of reference), the values of any simple
symbols (I, J, and One in the example) are substituted into the symbol, thus
generating a new derived name. This derived name is then used just like a simple

Chapter 2. General Concepts 19

General Concepts

Stems

symbol. That is, its value is by default the derived name, or (if it has been used as
the target of an assignment) its value is the value of the variable named by the
derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted can contain any characters (including periods). Substitution is
only done once.

To summarize: the derived name of a compound variable that is referred to by the
symbol

s0.sl.s2. --- .sn

is given by

d0.vl.v2. --- .vn

where df) is the uppercase form of the symbol se, and vl to vn are the values of the
constant or simple symbols sl through sn. Any of the symbols sl-sn can be null.
The values vl-vn can also be null and can contain any characters (in particular,
lowercase characters will not be translated to uppercase, blanks will not be removed,
and periods have no special significance).

Compound symbols can be used to set up arrays and lists of variables, in which the
subscript is not necessarily numeric, and thus offer great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, so effecting a form of associative
memory ("content addressable").

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable 'A' */
b=4 /* 1 41 to 'B' */
c= 1 Fred 1 /* 'Fred' to 'C' */
a.b= 1 Fred 1 /* 'Fred' to 'A.4 1 */
a.fred=5 /* '5' to 'A.FRED' */
a.c='Bill' /* 'Bill' to 'A.Fred' */
c.c=a.fred /* 1 51 to 'C.Fred' */
x.a.b='Annie' /* 1 Annie 1 to 'X.3.4 1 */
say a b c a.a a.b a.c c.a a.fred x.a.4
/* will display the string: */
/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */

Implementation maximum: The length of a variable name, before and after
substitution, may not exceed 250 characters.

A stem contains just one period, which is the last character. It can not start with a
digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and jts
value is the value of that variable.

20 TSO/E Version 2 REXX Reference

(~

/~
I

{~
j

I

Notes

General Concepts

Further, when a stem is used as the target of an assignment, all possible compound
variables whose names begin with that stem are given the new value, whether they
had a previous value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

For example:

hole. 11 empty 11

ho l e. 9 = 11 fu l l 11

say hole.I hole.mouse hole.9

/* says 11 empty empty ful P * /

Thus a whole collection of variables may be given the same value. For example,

total.= 0
do forever

say 11 Enter an amount and a name:"
pull amount name
if datatype(amount)= 1 CHAR 1 then leave
total.name= total.name+ amount
end

Note: The value that has been assigned to the whole collection of variables can
always be obtained by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total.= 0
null = 1111

total.null= total.null+ 5
say total. total.null /* says 110 511 */
Collections of variables, referred to by their stem, can also be manipulated by the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 39), and PROCEDURE EXPOSE FRED. exposes all possible
variables with that stem (see page 53).

1. When a variable is changed by the ARG, PARSE, or PULL instructions, the
effect is identical to an assignment. A stem used in a parsing template therefore
sets an entire collection of variables.

2. Since an expression may include the operator =,and an instruction may consist
purely of an expression (see next section), there would be a possible ambiguity
which is resolved by the following rule: any clause that starts with a symbol and
whose second token is (or starts with) an "=" is an assignment, rather than an
expression (or an instruction). This is not a restriction, since the clause may be
executed as a command in several ways, such as by putting a null string before
the first name, or by enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the variable
name in an assignment, this should not cause confusion. For example, the
clause:

Address='l0 Downing Street';

would be an assignment, not an ADDRESS instruction.

Chapter 2. General Concepts 21

General Concepts

Commands to External Environments

Environment

Commands

The host system for the language processor is assunied to include at least one active
environment for executing commands. One of these is selected by default on entry
to a REXX program. The environment can be changed using the ADDRESS
instruction. It can be inspected using the ADDRESS built-in function.

The environment so selected will depend on the caller; for example, if a REXX
program is invoked from the TSO/E address space, the default environment that
TSO/E provides for executing host commands is TSO. If invoked from a
non-TSO/E address space, the default environment that TSO/E provides is MVS.

TSO/E provides several host command environments for non-TSO/E address spaces
and the TSO/E address space (TSO/E and ISPF):

• Non-TSO/E address spaces - MVS, LINK, and ATTACH
• TSO/E address space (TSO/E) - TSO, MVS, LINK, and ATTACH
• TSO/E address space (ISPF) - TSO, MVS, LINK, ATTACH, ISPEXEC, and

ISREDIT.

"Host Commands and Host Command Environments" on page 23 explains the
different types of host commands you can use in a REXX exec and the different
environments TSO/E provides for the execution of host commands.

The environments are provided in the host command environment table, which
specifies the environment name and the routine that is invoked to handle the
command execution for that environment. You can provide your own environment
and corresponding routine and define them to the host command environment table.
"Host Command Environment Table" on page 291 describes the table in more
detail. "Changing the Default Values for Initializing an Environment" on page 310
describes how to change the defaults TSO/E provides in order to define your own
environments. You can also use the IRXSUBCM routine to maintain entries in the
environment table (see page 247).

Executing commands using the current environment may be achieved using a clause
of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string) which is then prepared as appropriate and submitted to the host environment.

The environment then executes the command (which may have side-effects). It
eventually returns control to the language processor, after setting a return code. The
language processor places this return code in the REXX special variable RC. For
example, if the host environment were TSO, the sequence:

mydata = 11 PROGA.LOA0 11

11 FREE OATASET(11 mydata 11
)

11

would result in the string FREE DATASET (PROGA. LOAD) being submitted to TSO/E. Of
course, the simpler expression:
11 FREE DATASET(PROGA.LOAD) 11

22 TSO/E Version 2 REXX Reference

/~
)

/~
I

I

_;

f

v

General Concepts

would have the same effect in this case.

Note: Whenever you issue a host command from a REXX program, it is
recommended that you enclose the entire command in double quotation marks. See
TSO/E Version 2 REXX User's Guide for a description of using single and double
quotation marks in commands.

On return, the return code would be placed in RC that will have the value 'O' if the
FREE command processor successfully freed the data set or '12' if it did not.
Whenever a host command is executed, the return code from the command is placed
in the REXX special variable RC.

Errors and failures in commands can directly affect REXX execution if a condition
trap for ERROR or FAILURE is ON (see Chapter 7, "Conditions and Condition
Traps" on page 149). They may also cause the command to be traced if "TRACE
E" or "TRACE F" respectively are set. "TRACE Normal" is the same as "TRACE
F", and is the default - see page 64.

Note: Remember that the expression is evaluated before it is passed to the
environment. Any part of the expression that is not to be evaluated should be
written in quotes.

Host Commands and Host Command Environments
You can issue host commands from a REXX program. In REXX processing, a host
command is not only a TSO/E command processor, such as ALLOCATE and
FREE. When the language processor executes a clause that it does not recognize as
a REXX instruction or an assignment instruction, it considers the clause to be a host
command and routes the command to the current host command environment. The
host command environment executes the command and then returns control to the
language processor.

For example, if a REXX exec contains

routine-name varl var2

the language processor considers the clause to be a command and passes it to the
current host command environment for execution. The host command environment
executes the command, sets a return code in the REXX special variable RC, and
returns control to the language processor. The return code set in RC may be the
return code from a TSO/E command or from a routine that was invoked. The
return code may also be a ·3, which indicates that the host command environment
could not locate the specified host command (TSO/E command, CLIST, exec,
program, etc.). Note that a return code of -3 is always returned if a host command is
issued in an exec and the command could not be found.

Note: If you include a host command in a REXX program, it is recommended that
you enclose the entire command in double quotation marks. For example:

"routine-name varl var2 11

TSO/E provides several host command environments that execute different types of
host commands. The following topics describe the different host command
environments TSO/E provides for non-TSO/E address spaces and for the TSO/E
address space (TSO/E and ISPF).

Chapter 2. General Concepts 23

General Concepts

The TSO Environment
The TSO host command environment is only available to REXX execs that execute
in the TSO/E address space. Use the TSO environment to invoke TSO/E commands
and services. You can also invoke the TSO/E REXX commands, such as
MAKEBUF and NEWST ACK, and invoke other REXX execs and CLISTs from
ADDRESS TSO. When you invoke a REXX exec in the TSO/E address space, the
default initial host command environment is TSO.

The ISPEXEC and ISREDIT Environments
The ISPEXEC and ISREDIT host command environments are only available to
REXX execs that execute in ISPF. Use the environments to invoke ISPF commands
and services.

When you invoke a REXX exec from ISPF, the default initial host command
enviromnent is TSO. You can use the ADDRESS instruction to use an ISPF
service. For example, to use the ISPF SELECT service, use the following
instruction:

ADDRESS ISPEXEC 'SELECT service•

The MVS Environment
The MVS host command environment is available in any MVS address space. When
you execute a REXX exec in a non-TSO/E address space, the default initial host
command environment is MVS.

Note: When you invoke an exec in the TSO/E address space, TSO is the initial
environment.

In ADDRESS MVS, you can use the following TSO/E REXX commands:

• DELSTACK
• NEWSTACK
• QSTACK
• QBUF
• QELEM
• EXECIO
• MAKEBUF
• DROPBUF
• SUBCOM
• TS
• TE.

Chapter 10, "TSO/E REXX Commands" describes the commands.

In ADDRESS MVS, you can also invoke another RE.XX exec using one of the
following instructions (the instructions assume that the current host command
environment is not MVS).

ADDRESS MVS 11 execname pl p2 ..• 11

ADDRESS MVS 11 EX execname pl p2 .•• 11

ADDRESS MVS 11 EXEC execname pl p2 ••• 11

If you want to invoke a program from an exec, use the ADDRESS LINK or
ADDRESS ATTACH instructions. The LINK and ATTACH environments are
described in the next topic.

24 TSO/E Version 2 REXX Reference

/~
}

(_)

General Concepts

All of the services that are available in ADDRESS MVS are also available in
ADDRESS TSO. For example, if you execute a REXX exec in TSO/E, you can use
the TSO/E REXX commands (for example, MAKEBUF, NEWSTACK, QSTACK)
in ADDRESS TSO.

The LINK and ATTACH Environments
Use the LINK host command environment to link to routines using the following
instruction:

ADDRESS LINK "routine pl p2 ..• "

Use the ATTACH host command environment to attach routines using the following
instruction:

ADDRESS ATTACH 11 routine pl p2

The routine that handles "commands" for the LINK and ATTACH environments
uses the following search order to locate the module:

• ISPLLIB and its alternate library, ifISPF is active
• Task and job step libraries
• Linklist.

Figure 1 shows the parameters the routine (as specified on the ADDRESS LINK or
ADDRESS ATTACH instruction) that gets invoked receives.

Address parml

Address parm2

Figure l. Parameters Passed to Routines that are Linked or Attached

If you use one of the following instructions, the module that is invoked does not
receive any parameters. The pointer and length fields will be 0.

ADDRESS LINK 11 routi ne 11

ADDRESS ATTACH 11 routine 11

After you link to or attach the routine, the REXX special variable RC will be set to
one of the following values:

• The return code that is set by the linked or attached routine

• A return code of -3, if the routine specified on the ADDRESS LINK or
ADDRESS ATTACH instruction could not be found.

Chapter 2. General Concepts 25

General Concepts

Any non-zero return code traps the ERROR condition. If a system abend occurs,
the FAILURE condition is trapped and the return code for the abend is converted
from hexadecimal to a negative decimal number. If a user abend occurs, the
FAILURE condition is trapped and the return code for the abend is converted from
hexadecimal to a positive decimal num her. The return codes are set in the REXX
special variable RC.

26 TSO/E Version 2 REXX Ref ere nee

(\
i J

!~
i

Keyword Instructions

Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. Some keyword instructions affect the flow of control,
while others provide services to the programmer. Some keyword instructions, like
DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote
keywords, other words (such as expression) denote a collection of symbols as defined
above. Note however that the keywords are not case dependent: the symbols if, H,
and iF would all invoke the instruction IF. Note also that most of the clause
delimiters (;) shown may usually be omitted as they will be implied by the end of a
line.

As explained on page 17, a keyword instruction is recognized only if its keyword is
the first token in a clause, and if the second token neither starts with an = character
(implying an assignment) nor a colon (implying a label). The keywords ELSE,
END, OTHERWISE, THEN, and WHEN are recognized in the same situation.
Note that any clause that starts with a keyword defined by REXX cannot be a
command. A syntax error will result if the keywords are not in their correct
position(s) in a DO, IF, or SELECT instruction. (The keyword THEN will also be
recognized in the body of an IF or WHEN clause.) In other contexts, keywords are
not reserved and can be used as labels or as the names of variables (though this is
generally not recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of
individual instructions. For example, the symbols VALUE and WITH are
subkeywords in the ADDRESS and PARSE instructions respectively. For details,
refer to the description of the respective instruction. For a general discussion on
reserved keywords, see page 163.

Blanks adjacent to keywords have no effect other than that of separating the
keyword from the subsequent token. One or more blanks following VALUE are
required to separate the expression from the subkeyword in the example following:

ADDRESS VALUE command

However, no blanks would be required after the VALUE subkeyword in the
following example, but it would add to the readability:

ADDRESS VALUE 1 ENVIR 1 I !number

Chapter 3. Keyword Instructions 27

ADDRESS

ADDRESS

Where:

environment
is a literal string or a single symbol, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the destination
of commands.

How to issue commands to the host and the different host command environments
TSO/E provides are described in "Commands to External Environments" on
page 22.

To send a single command to a specified environment, an environment name
followed by an expression is given. The expression is evaluated, and the resulting
command string is routed to environment. After execution of the command,
environment will be set back to whatever it was before, thus giving a temporary
change of destination for a single command.

Example:

Address LINK 11 routine pl p2 11 /* TSO/E */
If only environment is specified, a lasting change of destination occurs: all following
commands (clauses that are neither RE.XX instructions nor assignment instructions)
will be routed to the given command environment, until the next ADDRESS
instruction is executed. The previously selected environment is saved.

Example:

Address MVS
11 QBUF 11

11 MAKEBUF"

Similarly, the VALUE form may be used to make a lasting change to the
environment. Here expression] (which may be just a variable name) is evaluated,
and the result forms the name of the environment. The subkeyword VALUE may
be omitted as long as expression] starts with a special character (so that it cannot be
mistaken for a symbol or string).

Example:

ADDRESS (1 ENVIR 1 I !number)

If no arguments are given, commands will be routed back to the environment that
was selected before the previous lasting change of environment was made, and the
current environment name is saved. Repeated execution of just ADDRESS will
therefore switch the command destination between two environments alternately.

28 TSO/E Version 2 REXX Reference

'~ I I

(~
I

I~
J

/~.

u

ADDRESS

The two environment names are automatically saved across subroutine and internal
function calls. See under the CALL instruction (page 32) for more details.

The current ADDRESS setting may be retrieved using the ADDRESS built-in
function, described on page 78.

TSO/E REXX provides the following host command environments that you can use
with the ADDRESS instruction:

• TSO
• MVS
• LINK
• ATTACH
• ISPEXEC
• ISREDIT

"Host Commands and Host Command Environments" on page 23 describes these
environments in detail.

You can provide your own environments and/or routines that handle command
execution in each environment. For more information, see "Host Command
Environment Table" on page 291.

Chapter 3. Keyword Instructions 29

ARG

ARG

Where:

template
is a list of symbols separated by blanks and/or patterns.

ARG is used to retrieve the argument strings provided to a program or internal
routine and assign them to variables. It is just a short form of the instruction

....,_PARSE UPPER ARG·--.--c----~---.--;____.....
template----1

Unless a subroutine or internal function is being executed, the arguments given on
the program invocation will be read, translated to uppercase (i.e. a lowercase a-z to
an uppercase A-Z), and then parsed into variables according to the rules described in
the section on parsing (page 131). Use the PARSE ARG instruction if uppercase
translation is not desired.

If a subroutine or internal function is being executed, the data used will be the
argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions can be executed as often as desired
(typically with different templates) and will always parse the same current input
string(s). There are no restrictions on the length or content of the data parsed
except those imposed by the caller.

Example:

/* String passed is "Easy Rider" */

Arg adjective noun .

/* Now: "ADJECTIVE" contains 1 EASY 1

/* "NOUN" contains 'RIDER'
*/
*/

If more than one string is expected to be available to the program or routine, each
may be selected in turn by using a comma in the parsing template.

Example:

/*function is invoked by FRED(1data X',1,5) */

Fred: Arg string, numl, num2

/* Now: "STRING 11 contains 1 DATA X 1

/* 11 NUMl" contains 1 11

/* "NUM2" contains 1 51

*/
*/
*/

30 TSO /E Version 2 REXX Reference

!~

/~
)

!~
)

I~
1)

Notes:

1. The argument string(s) to a REXX program or internal routine can also be
retrieved or checked by using the ARG built Nin function. See page 79.

ARG

2. The source of the data being processed is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 51 for details.

Chapter 3. Keyword Instructions 31

CALL

CALL

Where:

name
is a symbol treated as a literal or a string.

OFF
turns off the specified condition trap.

ON
turns on the specified condition trap.

Note: For information on condition traps see Chapter 7, "Conditions and
Condition Traps" on page 149.

CALL is used to invoke a routine, or (if ON or OFF is specified) can be used to
control the trapping of certain conditions.

When name is specified, CALL invokes a subroutine which can be:

• .An internal routine
• An external routine
• A built-in function.

It can optionally return a result, and is functionally identical to the clause:

.....,_result=name(--.-1-t ---

1

--.-1)-;___.

[expression]

except that the variable RESULT becomes uninitialized if no result is returned by
the routine invoked.

The name given in the CALL instruction must be a valid symbol. If a string is used
for name (that is, name is specified in quotes) the search for internal labels is
bypassed, and only a built-in function or an external routine is invoked. Note that
the names of built-in functions (and generally the names of external routines too) are
in uppercase, and hence the name in the literal string should be in uppercase.

32 TSO/E Version 2 REXX Reference

/~
)

111

CALL

TSO/E supports specifying up to 20 expressions, separated by commas. The
expressions are evaluated in order from left to right, and form the argument string(s)
during execution of the routine. Any ARG or PARSE ARO instructions, or ARG
built-in function in the called routine will access these strings, rather than those
previously active in the calling program. Expressions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions (page 71), but briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If the routine
name is specified in quotes, then an internal routine will not be
considered for that search order.

Built-in routines:
These are routines built in to the language processor for providing
various functions. They always return a string containing the result of
the function. (See page 77.)

External routines:
Users can write or make use of routines that are external to the language
processor and the calling program. An external routine can be written in
any language, including REXX, which supports the system dependent
interfaces. A REXX program can be invoked as a subroutine by the
CALL instruction, and in this case may be passed more than one
argument string. These can be retrieved using the ARG or PARSE ARG
instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction may be used to set up a local
variables environment to protect the subroutine and caller from each other. The
EXPOSE option on the PROCEDURE instruction can be used to expose selected
variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden and the status of internal values (NUMERIC settings,
etc.) start with their defaults (rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL instruction
is available in the variable SIGL (in the caller's variable environment). This may be
used as a debug aid, as it is therefore possible to find out how control reached a
routine. Note that if the internal routine uses the PROCEDURE instruction, then it
will need to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should execute a RETURN instruction, and at that point
control will return to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT will be set to the value of
that expression. Otherwise, the variable RESULT is dropped (becomes
uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

Chapter 3. Keyword Instructions 33

CALL

Example:

/*Recursive subroutine execution ... */
arg x
call factorial x
say x1 ! = 1 result
exit

factorial: procedure
arg n
if n=e then return 1
call factorial n-1
return result * n

/*calculate factorial by •. */
/* .. recursive invocation. */

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are: -

• The status of DO loops and other structures Executing a SIGNAL while within
a subroutine is "safe" in that DO loops, etc., that were active when the
subroutine was called are not deactivated (but those currently active within the
subroutine will be deactivated).

• Trace action - Once a subroutine is debugged, you can insert a TRACE Off at
the beginning of it, and this will not affect the tracing of the caller. Conversely,
if you only wish to debug a subroutine, you can insert a TRACE Results at tt"ie
start and tracing will automatically be restored to the conditions at entry (for
example, "Off') upon return. Similarly, ? (interactive debug) and ! (command
inhibition) are saved across routines.

• NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations,
described on page 47) are saved and are then restored on RETURN. A
subroutine can therefore set the precision, etc., that it needs to use without
affecting the caller.

• ADDRESS settings (the current and secondary destinations for commands - see
the ADDRESS instruction on page 28) are saved and are then restored on
RETURN.

• Condition traps (CALL ON and SIGNAL ON) are saved and then restored on
RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set
up by the caller.

• Condition information - This is the information returned by the CONDITION
built-in function (see "CONDITION" on page 82).

• Elapsed-time clocks A subroutine inherits the elapsed-time clock from its caller
(see the TIME function on page 102), but since the time clock is saved across
routine calls, a subroutine or internal function can independently restart and use
the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

• OPTIONS ETMODE/EXMODE are saved and are then restored on RETURN.
For more information - see the OPTIONS instruction on page 49.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

34 TSO /E Version 2 REXX Reference

u

(i

\._/

u

DO

DO is used to group instructions together and optionally to execute them
repetitively. During repetitive execution, a control variable (name) can be stepped
through some range of values.

Syntax Notes:

• The exprr, expri, exprb, exprt, and exprf options (if any are present) are any
expressions that evaluate to a number. The exprr and exprf options are further
restricted to result in a nonnegative whole number. If necessary, the numbers
will be rounded according to the setting of NUMERIC DIGITS.

• The exprw or expru options (if present) can be any expression that evaluates to l
or 0.

• The TO, BY, and FOR phrases can be in any order, if used.

• The instruction(s) can include assignments, commands, and keyword instructions
(including any of the more complex constructs such as IF, SELECT, and the
DO instruction itself).

• The subkeywords TO, BY, FOR, WHILE, and UNTIL are reserved within a
DO instruction, in that they cannot name variables in the expression(s) but they
can be used as the name of the control variable. FOREVER is similarly
reserved, but only if it immediately follows the keyword DO.

• The exprb option defaults to 1, if relevant.

Simple DO Group
If neither repetitor nor conditional is given, the construct merely groups a number of
instructions together. These are executed once. Otherwise, the group of instructions
is a repetitive DO loop, and they are executed according to the repetitor phrase,
optionally modified by the conditional phrase.

In the following example, the instructions are executed once.

Chapter 3. Keyword Instructions 35

DO

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2
Say 1 Sm i 1 e ! 1

End

Simple Repetitive Loops
If repetitor is not given or the repetitor is FOREVER" the group of instructions will
nominally be executed "forever"; that is, until the condition is satisfied or a REXX
instruction is executed that will end the loop (for example, LEA VE).

Note: For a discussion on conditional phrases, see "Conditional Phrases (WHILE
and UNTIL)" on page 38.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a nonnegative whole number), and the loop is then executed that many
times:

Example:

/*This displays "Hello" five times */
Do 5

say 1 Hell0 1

end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is an " ", the controlled form
of repetitor will be expected.

Controlled Repetitive Loops
The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri, formatted as though 'O' had been added). The variable is
then stepped (by adding the result of exprb, at the bottom of the loop) each time the
group of instructions is executed. The group is executed repeatedly while the end
condition (determined by the result of exprt) is not met. If exprb is positive or zero,
the loop will be terminated when name is greater than exprt. If negative, the loop
will be terminated when name is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
once only, before the loop begins and before the control variable is set to its initial
value. The default value for exprb is 1. If exprt is not given, the loop will execute
indefinitely unless some other condition terminates it.

Example:

Do 1=3 to -2 by -1
say
end

36 TSO/E Version 2 REXX Reference

/* Would display: */
/* 3 */
/* 2 */
/* 1 */
/* 0 */
/* -1 *I
/* -2 */

!~

I~
!)

(~
)

The numbers do not have to be whole numbers:

Example:

X=0.3
Do Y=X to X+4 by 0.7

say Y
end

/* Would display: */
/* 0. 3 * /
/*' 1.0 */
/* 1.7 */
/* 2.4 */
/* 3.1 */
/* 3.8 */

DO

The control variable can be altered within the loop, and this may affect the iteration
of the loop. Altering the value of the control variable is not normally considered
good programming practice, though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). It is therefore
possible for the group of instructions to be skipped entirely if the end condition is
met immediately. Note also that the control variable is referred to by name. If (for
example) the compound name "A.I" was used for the control variable, altering "I"
within the loop will cause a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In
this case, exprf must be given and must evaluate to a nonnegative whole number.
This acts just like the repetition count in a simple repetitive loop, and sets a limit to
the number of iterations around the loop if no other condition terminates it. Like
the TO and BY expressions, it is evaluated once only when the DO instruction is
first executed and before the control variable is given its initial value. Like the TO
condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Would display: */
say Y /* 0.3 */
end /* 1.0 * /

/* 1.7 */
In a controlled loop, the symbol describing the control variable can be specified on
the END clause. This symbol must match name in the DO clause in all respects
except case (note that no substitution for compound variables is carried out); a
syntax error will result if it does not. This enables the nesting of loops to be checked
automatically, with minimal overhead.

Example:

Do K=l to 10

End k /* Checks that this is the END for K loop */

Note: The values taken by the control variable may be affected by the NUMERIC
settings, since normal RE.XX arithmetic rules apply to the computation of stepping
the control variable.

Chapter 3. Keyword Instructions 37

DO

Conditional Phrases (WHILE and UNTIL)
Any of the forms of repetitor (none, FOREVER, simple, or controlled) can be
followed by a conditional phrase, which may cause termination of the loop. If
WHILE or UNTIL is specified, exprw or expru, respectively, is evaluated each time
around the loop using the latest values of all variables (and must evaluate to either 0
or 1), and the group of instructions will be repeatedly executed either while the result
is I, or until the result is I.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and for an UNTIL loop the condition is evaluated at the bottom -
before the control variable has been stepped.

Example:

Do I=l to 10 by 2 until i>6
say i
end

/*Will display: 1, 3, 5, 7 */

Note: The execution of repetitive loops can also be modified by using the LEAVE
or !TERA TE instructions.

Start value assigned to control
variable

---------------., Discontinue execution of DO
FOR value (exprf) used to test '--~ group if FOR value (number of
for termination ... --v iterations through the loop) is

------------" exceeded .

WHILE expression (exprw)
used to test for termination ----------

..... _ .!' Discontinue execution of DO
-=~ group if WHILE condition is

,,.., not met.

...... _ :/ Discontinue execution of DO
UNTIL expression (expru) - group if UNTIL condition is
used to test for termination , .. -- met.

BY value (exprb) used to
update control variable

Figure 2. How a Typical DO Loop Is Executed

38 TSO/E Version 2 REXX Reference

/~,

/-..\
' ;

I

DROP

\ !

~

DROP

Where:

name
is a symbol, and valid variable symbol, separated from any other names by one
or more blanks or comments.

DROP is used to "'unassign" variables; that is, to restore them to their original
uninitialized state.

Each variable specified will be dropped from the list of known variables. The
variables are dropped in sequence from left to right. It is not an error to specify a
name more than once, or to DROP a variable that is not known. If an EXPOSEd
variable is named (see the PROCEDURE instruction), the variable itself in the older
generation will be dropped.

Example:

j=4
Drop a x.3 x.j
/*would reset the variables<; 11 A11

,
11 X.3 11

, and "X.4 11 */
/* so that reference to them returns their name. */

If a stem is specified (that is, a symbol that contains only one period, as the last
character), all variables starting with that stem are dropped.

Example:

Drop x.
/* would reset all variables with names starting with 11 X. 11 */

Chapter 3. Keyword Instructions 39

EXIT

EXIT

EXIT is used to leave a program unconditionally. Optionally EXIT returns a data
string to the caller. The program is terminated immediately, even if an internal
routine is currently being executed. If no internal routine is active, RETURN (see
page 58) and EXIT are identical in their effect on the program that is being
executed.

If expression is given~ it is evaluated and the string resulting from the evaluation is
then passed back to the caller when the program terminates.

Example:

j=3
Exit j*4
/*Would exit with the string 1 12 1 */

If expression is not given, no data is passed back to the caller. If the program was
called as an external function, this will be detected as an error either immediately
(if RETURN was used), or on return to the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT,
in that it terminates the whole program and returns no result string.

Note: The language processor does not distinguish between invocation as a
command on the one hand, and invocation as a subroutine or function on the other.
If in fact the program was invoked via a command interface, an attempt is made to
convert the returned value to a return code acceptable by the host. The returned
string must be a whole number whose value will fit in a S/370 register (that is, must
be in the range -2**31 through 2**31-1). If the conversion fails, it is deemed to be a
failure of the host interface and is thus not subject to trapping by SIGNAL ON
SYNTAX.

40 TSO/E Version 2 REXX Reference

~\ . I

IF

The IF construct is used to conditionally execute an instruction or group of
instructions depending on the evaluation of the expression. The expression must
evaluate to 10 1 or 1 l 1.

IF

The instruction after the THEN is executed only if the result of the evaluation was 1.
If an ELSE was given, the instruction after the ELSE is executed only if the result of
the evaluation was 0.

Example:

if answer= 1 YES 1 then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon to terminate that clause.

Example:

if answer= 1 YES' then say 1 0K! 1
; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. The NOP instruction can be
used to eliminate errors and possible confusion when IF constructs are nested, as in
the following example.

Example:

If answer 1 YES' Then
If name= 1 FRED 1 Then

say 1 OK, Fred. 1

Else
nop

Else
say 'Why not?'

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, SELECT, or the IF
instruction itself. A null clause is not an instruction; so putting an extra
semicolon after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this
purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be terminated by the THEN, without a ";" being
required. Were this not so, people used to other computer languages would
experience considerable difficulties.

Chapter 3. Keyword Instructions 41

INTERPRET

INTERPRET

INTERPRET is used to execute instructions that have been built dynamically by
evaluating expression.

The expression is evaluated, and will then be executed (interpreted) just as though
the resulting string were a line inserted into the input file (and bracketed by a DO;
and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO ... END and SELECT ... END must be complete. For
example, a string of instructions being INTERPRETed cannot contain a LEA VE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains
the whole repetitive DO ... END construct.

A semicolon is implied at the end of the expression during execution, as a service to
the user.

Example:

data= 1 FRED 1

interpret data ' 4 1

/* Will a) build the string 11 FRED 411 */
/* b) execute FRED = 4; */

set to 11 411 */ /* Thus the variable 11 FRED 11 will be

Example:

data='do 3; say
interpret data

Notes:

11 Hello there! 11
; end 1

/* Would display:
/* He 11 o there!
/* He 11 o there!
/* Hello there!

*/
*/
*/
*/

1. Labels within the interpreted string are not permanent and are therefore ignored.
Hence, executing a SIGNAL instruction from within an interpreted string will
cause immediate exit from that string before the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE
R or TRACE I set is helpful.

42 TSO/E Version 2 REXX Reference

/~ . I

/~
j

u

Example:

/* Here we have a small program. */
Trace Int
name= 1 Kitty 1

indirect= 1 name 1

interpret 1 say 11 Hello 111 indirect 111 ! 111

when run gives the trace:

kitty
3 *-* name='Kitty'

>L> 11 Kitty"
4 *-* indirect= 1 name 1

>L> "name"
5 *-*interpret 'say "Hello"' indirect' 11 ! 111

>L> "say "Hello'rn
>V> "name"
>O> "say "He 110 11 name"
>L> Utt !Ill!

>O> "say "Hello" namen!""
- say "Hello" name"!u
>L> "Hello"
>V> "Kitty"
>O> "Hello Kitty"
>L> II!"
>O> "Hello Kitty!"

Hello Kitty!

INTERPRET

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Since it is a new clause, it is traced as such (the second *-*
trace flag under line 5) and is then executed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the
final result (He 11 o Ki tty!) is then displayed.

3. For many purposes, the VALUE function (see page 105) can be used instead of
the INTERPRET instruction. Line 5 in the last example could therefore have
been replaced by:

say 11 Hello 11 value(indirect) 11 ! 11

INTERPRET is usually only required in special cases, such as when more than
one statement is to be interpreted at once.

Chapter 3. Keyword Instructions 43

ITERATE

ITERATE

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct
other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the bottom of the group of instructions had been reached.
The UNTIL expression (if any) is tested, the control variable (if any) is incremented
and tested, and the WHILE expression (if any) is tested. If these tests indicate that
conditions of the loop have not yet been satisfied, the group of instructions is
executed again (iterated), beginning at the top.

If name is not specified, ITERATE will step the innermost active repetitive loop. If
name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active
loops inside the one selected for iteration are terminated (as though by a LEAVE
instruction).

Example:

do i=l to 4
if i=2 then iterate
say i
end

/* Would display the numbers: 1, 3, 4 */

Notes:

l. If specified, name must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, the innermost loop
will be the one selected by the ITERATE.

44 TSO/E Version 2 REXX Reference

.r"\
J

'~
')

!~
' j

I

/~
I

LEAVE

~

LEAVE

LEAVE causes immediate exit from one or more repetitive DO loops (that is, any
DO construct other than that with a simple DO).

Execution of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met normally. However, on
exit? the control variable (if any) will contain the value it had when the LEAVE
instruction was executed.

If name is not specified, LEA VE will terminate the innermost active repetitive loop.
If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and that loop (and any active loops inside it) is
then terminated. Control then passes to the clause following the END that matches
the DO clause of the selected loop.

Example:

do i=l to 5
say i
if i=3 then leave
end

/* Would display the numbers: 1, 2, 3 */

Notes:

1. If specified, name must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEAVE cannot be used to terminate an inactive
loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the LEA VE.

Chapter 3. Keyword Instructions 45

NOP

NOP

NOP is a dummy instruction that has no effect. It can be useful as the target of a
THEN or ELSE clause:

Example:

Select
when a=b then nop /* Do nothing */
when a>b then say 1A > B'
otherwise say 'A< 81

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would be ignored. The second WHEN clause would be seen as the
first instruction expected after the THEN, and hence would be treated as a syntax
error. NOP is a true instruction, however, and is a valid target for the THEN
clause.

46 TSO/E Version 2 REXX Reference

~
(\

}

I~

/~
)

(
_;'

u

NUMERIC

NUMERIC

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described in detail on
pages 139-148, but in summary:

NUMERIC DIGITS

controls the precision to which arithmetic operations and arithmetic built-in
functions will be evaluated. If no expression is given, then the default value of 9
is used. Otherwise the result of the expression is rounded, if necessary,
according to the current setting of NUMERIC DIGITS before it is used. The
value used must be a positive whole number that is larger than the current
NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but note that high precisions are likely to be very expensive in CPU
time. It is recommended that the default value be used wherever possible.

NUMERIC FORM

controls which form of exponential notation will be used by REXX for the result
of arithmetic operations and arithmetic built-in functions. This may be either
SCIENTIFIC (in which case only one, nonzero digit will appear before the
decimal point), or ENGINEERING (in which case the power of ten will always
be a multiple of three). The default is SCIENTIFIC. The FORM is set either
directly by the subkeywords SCIENTIFIC or ENGINEERING or is taken from
the result of evaluating the expression following VALUE. The result in this case
must be either 'SCIENTIFIC' or 'ENGINEERING'. The subkeyword VALUE
may be omitted if the expression does not begin with a symbol or a literal string
(i.e., if it starts with a special character, such as an operator or parenthesis).

NUMERIC FUZZ

controls how many digits, at full precision, will be ignored during a numeric
comparison operation. If no expression is given, then the default value of 0 is
used. Otherwise the result of expression is rounded, if necessary, according to
the current setting of NUMERIC DIGITS before it is used. The value used
must be zero or a positive whole number that is smaller than the current
NUMERIC DIGITS setting.

Chapter 3. Keyword Instructions 47

NUMERIC

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value before every comparison operation, so that the numbers are subtracted
under a precision of DIGITS-FUZZ digits during the comparison and are then
compared with 0.

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 32) for more details.

48 TSO /E Version 2 REXX Reference

(~
/

/~
I

i ';
_/I

I '
~;

OPTIONS

OPTIONS

The OPTIONS instruction is used to pass special requests or parameters to the
language processor. For example, they may be language processor options, or
perhaps be defining a special character set.

The expression is evaluated, and the result is examined one word at a time. If the
words are recognized by the language processor, then they are obeyed. Words that
are not recognized are ignored and assumed to be instructions to a different
processor.

The following words are recognized by the language processors:

ETMODE specifies that literal strings containing DBCS characters may be
used in the program.

NOETMODE specifies that literal strings do not contain DBCS characters.
NOETMODE is the default.

EXMODE specifies that DBCS data operations capability is enabled.

NOEXMODE specifies that DBCS data operations capability is disabled.

Notes:

L Because of the language processor's scanning procedures, you are advised to
place an OPTIONS "ETMODE" instruction near the beginning of a program
containing DBCS literal strings.

2. In order to assure proper scanning of a program containing DBCS literals, the
words ETMODE, NOETMODE, EXMODE, and NOEXMODE should be
themselves entered as literal strings (i.e., enclosed in quotes) in the OPTIONS
instruction.

3. The OPTIONS ETMODE and OPTIONS EXMODE settings will be saved and
restored across subroutine and function calls.

4. To distinguish DBCS characters from one-byte EBCDIC characters, sequences
of DBCS characters are enclosed with a shift-out (SO) character and a shift-in
(SI) character. The hexadecimal values of the SO and SI characters are X 1OE 1

and X 1 0F 1
' respectively.

DBCS fields within a literal string, which are delimited by SO-SI characters, are
excluded from the search for a closing quote in literal strings.

5. The words ETMODE, EXMODE, NOEXMODE, and NOETMODE can
appear several times within the result. The last valid word specified takes effect.

Chapter 3. Keyword Instructions 49

PARSE

PARSE

Where:

template
is a list of symbols separated by blanks and/or patterns.

The PARSE instruction is used to assign data (from various sources) to one or more
variables according to the rules and templates described in the section on parsing
(page 131).

If the UPPER option is specified, the data to be parsed is first translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Otherwise, no uppercase
translation takes place during the parsing.

If template is not specified, no variables will be set but action will be taken to get the
data ready for parsing if necessary. Thus for PARSE PULL, a data string will be
removed from the queue; and for PARSE VALUE, expression will be evaluated.
For PARSE VAR, the specified variable will be accessed. If it does not have a value,
the NOV ALUE condition will be raised, if it is enabled.

The data used for each variant of the PARSE instruction is:

PARSEARG

The string(s) passed to the program, subroutine, or function as the inpiit
argument list are parsed. (See the ARG instruction for details and examples.)

Note: The argument string(s) to a REXX program or internal routine can also
be retrieved or checked by using the ARG built-in function, described on page
79.

PARSE EXTERNAL

In the TSO/E address space, PARSE EXTERNAL reads from the user's
terminal.

In non-TSO/E address spaces, PARSE EXTERNAL reads from the input stream
as defined by the file name in the INDD field. The INDD field (see page 286) is
in the module name table. The default is SYSTSIN. PARSE EXTERNAL
returns a field based on the record that is read from the INDD file.

50 TSO /E Version 2 REXX Reference

/~
I :

I~
')

u

(v

PARSE

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction, see page 47)
are made available. These controls are in the order DIGITS FUZZ FORM.

Example:

After: Parse Numeric Varl
Varl would be equal to: 9 0 SCIENTIFIC

See Numeric instruction on page 47. Also refer to the built-in functions
DIGITS, FORM, and FUZZ found on pages 87, 90, 91, respectively.

PARSE PULL

The next string from the queue is parsed. If the queue is empty, lines will be
read from the default input (typically the user's terminal). Data can be added to
the head or tail of the queue by using the PUSH and QUEUE instructions
respectively. The number of lines currently in the queue can be found by using
the QUEUED built-in function, described on page 97. The queue will remain
active as long as the language processor is active. The queue can be altered by
other programs in the system and can be used as a means of communication
between these programs and programs written in REXX.

Note: PULL and PARSE PULL read from the data stack. If that is empty,
they read from the terminal (TSO/E address space) or from the data set that
represents the input stream (non-TSO/E address space). See the PULL
instruction on page 55 for further details.

PARSE SOURCE

The data parsed describes the source of the program being executed.

The source string contains the following tokens:

1. The characters TSO

2. The string COMMAND, FUNCTION, or SUBROUTINE depending on
whether the program was invoked as some kind of host command (for
example, as an exec from TSO/E READY mode), or from a function call in
an expression, or via the CALL instruction.

3. Name of the exec in uppercase. If the name is not known, this token is a
question mark (?).

4. Name of the DD from which the exec was loaded. If the name is not
known, this token is a question mark (?).

5. Name of the data set from which the exec was loaded. If the name is not
known, this token is a question mark (?).

6. Name of the exec as it was invoked, that is, the name is not folded to
uppercase. If the name is not known, this token is a question mark (?).

7. Initial (default) host command environment in uppercase. For example, this
token may be TSO, MVS, or ISPEXEC.

8. Name of the address space in uppercase. For example, the value may be
MVS (non-TSO/E) or TSO/E or ISPF. If the exec was invoked from ISPF,
the address space name is ISPF.

The value is taken from the parameter block (see page 280). Note that the
initialization exit routines may change the name specified in the parameters
module. If the name of the address space is not known, this token is a
question mark(?).

Chapter 3. Keyword Instructions 51

PARSE

9. Eight character user token. This is the token that is specified in the
PARSETOK field in the parameters module (see page 277).

For example, the string parsed might look like one of the following:

TSO COMMAND PROGA SYSXR07 EGGERS.ECE.EXEC ? TSO TSO/E ?

TSO SUBROUTINE PROGSUB SYSEXEC ? ? TSO ISPF ?

PARSE VALUE

expression is evaluated, and the result is the data that is parsed. Note that
WITH is a subkeyword in this context and so cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours 1
:

1 mins 1
:

1 secs

will get the current time and split it up into its constituent parts.

PARSE VAR name

The value of the variable specified by name is parsed. name must be a symbol
that is valid as a variable name (that is, it can not start with a period or a digit).
Note that the variable name may be included in the template, so that for
example:

PARSE VAR string wordl string

will remove the first word from string and put it in the variable wordl, and

PARSE UPPER VAR string wordl string

will also translate the data from string to uppercase before it is parsed.

PARSE VERSION

Information describing the language level and the date of the language processor
is parsed. This consists of five words: first the string "REXX370", then the
language level description (for example, "3.45"), and finally the interpreter
release date (for example, "20 Oct 1987").

Note: PARSE VERSION information should be parsed on a word basis rather
than on an absolute column position.

52 TSO/E Version 2 REXX Reference

I~
;)

/

u PROCEDURE

PROCEDURE

Where:

name
is a symbol, separated from any other names by one or more blanks.

The PROCEDURE instruction can be used within an internal routine (subroutine or
function) to protect all the existing variables by making them unknown to the
following instructions. On executing a RETURN instruction, the original variables
environment is restored and any variables used in the routine (which were not
exposed) are dropped.

The EXPOSE option modifies this, in that the variables specified by names are
exposed, so that any references to them (including setting them and dropping them)
refer to the variables' environment owned by the caller. If the EXPOSE option is
used, at least one name must be specified. Any variables not specified by name on a
PROCEDURE EXPOSE instruction are still protected. Hence, some limited set of
the caller's variables can be made accessible, and these variables can be changed (or
new variables in this set can be created). All these changes will be visible to the
caller upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error to specify
a name more than once, or to specify a name that has not been used as a variable by
the caller.

Example:

/* This is the main program*/
j=l; x.l='a'
call toft
say j k m
exit

/* would display 11 1 7 M" */

toft: procedure expose j k x.j
say j k x.j /* would display "I K a 11 */
k=7; m=3 /* note 11 M11 is not exposed */
return

Note that if X.J in the EXPOSE list had been placed before J, the caller's value of J
would not have been visible at that time, so X.1 would not have been exposed.

If a stem is declared in names, all possible compound variables whose names begin
with that stem are exposed. (A stem is a symbol containing just one period, which is
the last character. See page 20.)

Chapter 3. Keyword Instructions 53

PROCEDURE

Example:

Procedure Expose i j a. b.
/* This exposes 11 !", 11 J 11

, and all variables whose */
/* names start with 11 A. II or 11 8. II *I
A.1= 1 7 1 /* This will set 11 A.l11 in the caller 1 s */

/* environment, even if it did not */
/* previously exist. */

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed; all
others (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in which case
the variables it is manipulating are those "owned" by the caller.

2. The PROCEDURE instruction must be the first instruction executed after the
CALL or function invocation - that is, it must be the first instruction following
the label.

See the CALL instruction and function descriptions on pages 32 and 71 for details
and examples of how routines are invoked.

54 TSO/E Version 2 REXX Reference

11)
I

PULL

u

PULL

Where:

template
is a list of symbols separated by blanks and/or "patterns."

PULL is used to read a string from the head of the queue. It is just a short form of
the instruction:

....,..._PARSE UPPER PULL---.-----,......___.....
Ltemplate_J '

The current head-of-queue will be read as one string. If no template is specified, no
further action is taken (and the data is thus effectively discarded). Otherwise, the
data is translated to uppercase (i.e .. a lowercase a-z to an uppercase A-Z) and then
parsed into variables according to the rules described in the section on parsing (page
131). Use the PARSE PULL instruction if uppercase translation is not desired.

Note: The TSO/E implementation of the queue is the data stack. REXX execs that
execute in both the TSO/E and non-TSO/E address spaces can use the data stack.
By default, in the TSO/E address space, if the data stack is empty, the PULL
instruction reads from the terminal. In non-TSO/E address spaces, if the data stack
is empty, PULL goes to the input stream as defined by the INDD field in the
module name table (see page 286). The system default is SYSTSIN. The ddname
may be changed on an application basis or on a system basis. If SYSTSIN has no
data, the PULL instruction returns a null.

You can customize the environment in which REXX execs execute. If you initialize
a new environment in the TSO/E address space and the environment is not
integrated with TSO/E, PULL goes to the input stream rather than to the terminal.
See "Types of Environments - Integrated and Not Integrated Into TSO/E" on
page 273 for more information.

The length of each element you can queue onto the data stack can be up to one byte
less than 16 megabytes.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer=' NO' then Say 'The file will not be erased.'

Here the dummy placeholder"." is used on the template so as to isolate the first
word entered by the user.

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 97.

Chapter 3. Keyword Instructions 55

PUSH

PUSH

The string resulting from evaluating expression will be stacked LIFO (Last In, First
Out) onto the queue. If expression is not specified, a null string is stacked.

Note: The TSO/E implementation of the queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data
stack contains one buffer initially, but additional buffers can be created using the
TSO/E REXX command MAKEBUF.

Example:

a= 1 Fred 1

push
push a 2

/* Puts a null line onto the stack */
/* Puts "Fred 2" onto the stack */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 97.

56 TSO/E Version 2 REXX Reference

(~
)

.~\
i

QUEUE

u

{

_/

QUEUE

The string resulting from expression will be appended to the tail of the queue. That
is, it will be added FIFO (First In, First Out). If expression is not specified, a null
string is queued.

Note: The TSO/E implementation of the queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data
stack contains one buffer initially, but additional buffers can be created using the
TSO/E REXX command MAKEBUF.

Example:

a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */
The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 97.

Chapter 3. Keyword Instructions 57

RETURN

RETURN

RETURN is used to return control (and possibly a result) from a REXX program or
internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is being executed. (See page 40.)

If a subroutine is being executed (see the CALL instruction), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is not specified, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, etc.) are also restored. (See page 32.)

If a function is being executed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then used
in the original expression at the point where the function was invoked. See the
description of functions on page 71 for more details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

58 TSO /E Version 2 REXX Reference

/'..-..\
)

!~
I

I \

!_)
SAY

SAY

The result of evaluating expression is written to the output stream. This typically
means displayed to the user, but the output destination can be dependent on the
implementation. The result of expression 'may be of any length.

If a REXX exec executes in the TSO/E address space, SAY displays the expression
on the terminal. The result from the SAY instruction will be formatted to the width
of the terminal screen as defined by the TSO/E TERMINAL command.

If an exec executes in a non-TSO/E address space, SAY writes the expression to the
output stream as defined by the OUTDO field in the module name table (see page
287). The system default is SYSTSPRT. The ddname may be changed on an
application basis or on a system basis.

Example:

data=100
Say data 'divided by 4 => 1 data/4
/* Would display: "100 divided by 4 => 25" */

Chapter 3. Keyword Instructions 59

SELECT

SELECT

SELECT is used to conditionally execute one of several ;alternative instructions.

Each expression following a WHEN is evaluated in turn and must result in 0 or 1.
If the result is 1, the instruction following the THEN (which may be a complex
instruction such as IF, DO, or SELECT) is executed and control will then pass to
the END. If the result is 0, control will pass to the next WHEN clause.

If none of the WHEN expressions evaluate to 1, control will pass to the
instruction(s), if any, following OTHERWISE. In this situation, the absence of an
OTHERWISE will cause an error.

Example:

balance = balance - check
Select

when balance > 8 then
say 'Congratulations! You still have' balance 'dollars left.'

when balance = 8 then do
say 'Warning, Balance is now zero! STOP all spending. 1

say "You cut it close this month! Hope you don't have any"
say "checks left outstanding."
end

Otherwise
say 11 You have just overdrawn your account. 11

say 11 Your balance now shows 11 balance 11 dollars. 11

say 11 0ops! Hope the bank doesn't close your account."
end /* Select */

60 TSO/E Version 2 REXX Reference

I~
I
I

i~,
!

SELECT

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, IF, or the SELECT
instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction. The NOP instruction is
provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be terminated by the THEN without a ;
(delimiter) being required.

Chapter 3. Keyword Instructions 61

SIGNAL

SIGNAL

Where:

labelname
is a symbol or literal string that is taken as a constant.

OFF
turns off the specified condition trap.

ON
turns on the specified condition trap.

Note: For information on condition traps see Chapter 7, "Conditions and
Condition Traps" on page 149.

The SIGNAL instruction causes an abnormal change in the flow of control, or (if
ON or OFF is specified) controls the trapping of certain conditions

When neither ON nor OFF is specified, a label name is derived from labelname or
taken from the result of evaluating the expression following VALUE. This must be
a symbol, which is treated literally, or a literal string. The subkeyword VALUE may
be omitted if expression does not begin with a symbol or literal string (i.e. if it starts
with a special character, such as an operator or parentheses). All active pending
DO, IF, SELECT, and INTERPRET instructions in the current routine are then
terminated (that is, they cannot be reactivated). Control then passes to the first label
in the program that matches the required string, as though the search had started
from the top of the program. If labelname is a symbol, the match is done
independently of alphabetic case, but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

Fred: say 1 Hi!'

Because the search effectively starts at the top of the program, control will always
pass to the first occurrence of the label in the program if duplicates are present.

62 TSO/E Version 2 REXX Reference

j~
J

!~
'

I
I !

~

SIGNAL

When control reaches the specified label, the line number of the SIGNAL instruction
is assigned to the special variable SIGL. This can be used to aid debugging, as it
can be used to determine the source of a jump to a label.

Using SIGNAL with the INTERPRET Instruction

If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a
trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored.

Chapter 3. Keyword Instructions 63

TRACE

TRACE

Where:

number is a whole number.

string or expression evaluates to:

• A number option
• One of the valid prefix and/or alphabetic character (word) options shown above
• Null.

symbo 1 is taken as a constant, and is, therefore:

• A number option
• One of the valid prefix and/or alphabetic character (word) options shown above.

TRACE is primarily used for debugging. It controls the tracing action taken (that
is, how much will be displayed to the user) during execution of a REXX program.
The syntax of TRACE is more concise than other REXX instructions. The economy
of ;key strokes for this instruction is especially convenient since TRACE is usually
entered manually during interactive debugging.

The tracing action is determined from the option specified following TRACE, or
from the result of evaluating expression. If the expression form is used, the
subkeyword VALUE preceding it may be omitted as long as expression starts with a
special character or operator (so it cannot be mistaken for a symbol or string).

64 TSO/E Version 2 REXX Reference

/~

(~
}

!

TRACE

Alphabetic Character (Word) Options

Prefix Options

Although it is acceptable to enter the word in full, only the capitalized character is
significant, all other letters are ignored. That is why these are referred to as
alphabetic character options.

TRACE actions taken correspond to the alphabetic character options as follows:

All

Commands

Error

Fa i1 ure

Intermediates

Labels

Normal

Off

Results

Scan

all clauses are traced (that is, displayed) before execution.

all host commands are traced before execution, and any error
return code is displayed.

any host command resulting in an error return code is traced
after execution.

any host command resulting in a negative return code is traced
after execution. This is the same as the Norma 1 option.

all clauses are traced before execution. Intermediate results
during evaluation of expressions and substituted names are also
traced.

labels passed during execution are traced. This is especially
useful with debug mode, when the language processor will pause
after each label. It is also convenient for the user to make note
of all subroutine calls and signals.

(Normal or Negative); any host command resulting in a negative
return code is traced after execution. This is the default setting.

nothing is traced, and the special prefix actions (see below) are
reset to 0 FF.

all clauses are traced before execution. Final results (contrast
with Intermediates, above) of evaluating an expression are
traced. Values assigned during PULL, ARG, and PARSE
instructions are also displayed. This setting is recommended for
general debugging.

all remaining clauses in the data will be traced without being
executed. Basic checking (for missing ENDs etc.) is carried out,
and the trace is formatted as usual. This is only valid if the
TRACE S clause itself is not nested in any other instruction
(including INTERPRET or interactive debug) or in an internal
routine.

The prefixes! and? are valid either alone or with one of the alphabetic character
options. Both prefixes may be specified, in any order, on one TRACE instruction.
A prefix may be specified more than once, if desired. Each occurrence of a prefix on
an instruction reverses the action of the previous prefix. The prefix(es) must
immediately precede the option (no intervening blanks).

Chapter 3. Keyword Instructions 65

TRACE

Numeric Options

Tracing Tips

The prefixes ? and ? modify tracing and execution as follows:

? is used to control interactive debug. During normal execution, a TRACE
instruction prefixed with ? will cause interactive debug to be switched on. (See
the separate section on page 203 for full details of this facility). While interactive
debug is on, interpretation will pause after most clauses that are traced. As an
example, the instruction TRACE ?E will make the language processor pause for
input after executing any host command that returns an Error (that is, a nonzero
return code).

Any TRACE instructions in the file being traced are ignored. (This is so that
you are not taken out of interactive debug unexpectedly.)

When it is in effect, Interactive debug can be switched off by issuing a TRACE
instruction with a prefix ?. Repeated use of the ? prefix will, therefore, switch
you alternately in and out of interactive debug. Or, interactive debug can be
turned off at any time by issuing TRACE 0 or TRACE with no options.

Note: The TSO/E REXX immediate command TS and the EXECUTIL TS
command can also be used to enter interactive debug. See Chapter 10, "TSO/E
REXX Commands" on page 167.

is used to inhibit host command execution. During normal execution, a TRACE
instruction prefixed with ! will cause execution of all subsequent host commands
to be suspended. As an example, TRACE ! C will cause commands to be traced but
not executed. As each command is bypassed, the REXX special variable RC is
set to 0. This action may be used for debugging potentially destructive
programs. (Note that this does not inhibit any commands issued manually while
in interactive debug, which are always executed.)

Command inhibition can be switched off, when it is in effect, by issuing a
TRACE instruction with a prefix !. Repeated use of the ! prefix will, therefore,
switch you alternately in and out of command inhibition mode. Or, command
inhibition can be turned off at any time by issuing TRACE 0 or TRACE with no
options.

If interactive debug is active and if the option specified is a positive whole number
(or an expression that evaluates to a positive whole number), that number indicates
the number of debug pauses to be skipped over. (See separate section on page 203,
for further information.) However, if the option is a negative whole number (or an
expression that evaluates to a negative whole number), all tracing, including debug
pauses, is temporarily inhibited for the specified number of clauses. For example,
TRACE -100 means that the next 100 clauses that would normally be traced will not,
in fact, be displayed. After that, tracing will resume as before.

If interactive debug is not active, numeric options are ignored.

1. If no option is specified on a TRACE instruction, or if the result of evaluating
the expression is null, the default tracing actions are restored. The defaults are
TRACE N , command inhibition (!) off, and interactive debug (?) off.

2. The trace actions currently in effect can be retrieved by using the TRACE
built-in function, described on page 103.

3. Comments associated with a traced clause are included in the trace, as are
comments in a null clause, if TRACE A, R, I, or S is specified.

66 TSO/E Version 2 REXX Reference

.~
i /

TRACE

4. Commands traced before execution always have the final value of the command
(that is, the string passed to the environment), and the clause generating it
produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls. See
under the CALL instruction (page 32) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */
Note: Tracing may be switched on, without requiring modification to a program, by
using the EXECUTIL TS command. Tracing may also be turned on or off
asynchronously, (that is, while an exec is running) using the TS and TE immediate
commands from attention mode. See page 206 for the description of these facilities.

Format of TRACE Output
Every clause traced will be displayed with automatic formatting (indentation)
according to its logical depth of nesting etc., and results (if requested) are indented
an extra two spaces and are enclosed in double quotes so that leading and trailing
blanks are apparent.

Terminal control codes (for example, EBCDIC values less than X' 40 ') are replaced
by a question mark(?) to avoid terminal interference.

The first clause traced on any line will be preceded by its line number. If the line
number is greater than 99999, it is truncated on the left and the truncation is
indicated by a prefix of?. For example, the line number 100354 would be shown as
?00354.

All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

- identifies the source of a single clause, that is, the data actually in the
program.

+++ identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program {see below).

>» identifies the Result of an expression (for TRACE R) or the value assigned
to a variable during parsing, or the value returned from a subroutine call.

>.> identifies the value "assigned" to a placeholder during parsing (see page
136).

The following prefixes are only used if Intermediates (TRACE I) are being traced:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

Chapter 3. Keyword Instructions 67

TRACE

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Following a syntax error that is not trapped by SIGNAL ON SYNTAX, the clause
in error will always be traced, as will any CALL or INTERPRET or function
invocation clauses active at the time of the error. If the error was caused by an
attempt to transfer control to a label that could not be found, that label is also
traced. These traceback lines are identified by the special trace prefix+++.

68 TSO/E Version 2 REXX Reference

f~
\
J

~
' }

UPPER

UPPER

Where:

variable
is a symbol, separated from any other variables by one or more blanks or
comments.

UPPER may be used to translate the contents of one or more variables to uppercase.
The variables are translated in sequence from left to right.

It is more convenient than using repeated invocations of the TRANSLATE built-in
function.

Example:

a= 1 Hello 1
; b= 1 there 1

Upper a b
say a b /* would display "HELLO THERE" */
Only simple symbols and compound symbols may be specified (see page 19). An
error is signalled if a constant symbol or a stem is encountered. Using an
uninitialized variable is not an error, and has no effect, except that it will be trapped
if the NOVALUE condition (SIGNAL ON NOVALUE) is enabled.

Chapter 3. Keyword Instructions 69

70 TSO/E Version 2 REXX Reference

/~
J

~
I \

i

i~
I

Functions

Chapter 4. Functions

Syntax
Function calls to internal and external routines can be included in an expression
anywhere that a data term (such as a string) would be valid, using the notation:

.,....._function-name (--.l-t-----
1

-..--I l­

[expres s ion]

function-name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation maximum of expressions, separated by
commas, between the parentheses. In TSO/E, the implementation maximum is up to
20 expressions. These expressions are called the arguments to the function. Each
argument expression may include further function calls.

Note that the"(", must be adjacent to the name of the function, with no blank in
between, or the construct will not be recognized as a function call. (A blank
operator will be assumed at this point instead.)

The arguments are evaluated in turn from left to right and they are all then passed
to the function. This then executes some operation (usually dependent on the
argument strings passed, though arguments are not mandatory) and will eventually
return a single character string. This string is then included in the original
expression just as though the entire function reference had been replaced by the
name of a variable that contained that data.

For example, the function SUBSTR is built-in to the language processor (see page
100) and could be used as:

Nl= 1 abcdefghijk 1

Zl= 1 Part of Nl is: 1Substr(Nl,2,7)
/*would set Zl to 'Part of Nl is: bcdefgh 1 */

A function call without any arguments must always include the parentheses,
otherwise it would not be recognized as a function call.

date() /* returns the date in the default format dd man yyyy */

Chapter 4. Functions 71

Functions

Calls to Functions and Subroutines
The function calling mechanism is identical to that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not. The following types of routines can be called as
functions:

Internal

Built-in

If the routine name exists as a label in the program, the current
processing status is saved, so that it will later be possible to return to the
point of invocation to resume execution. Control is then passed to the
first label in the program that matches the name. As with a routine
invoked by the CALL instruction, various other status information
(TRACE and NUMERIC settings, etc.) is saved too. See the CALL
instruction (page 32) for details of this. If an internal routine is to be
called as a function, any RETURN instruction executed to return from it
must have an expression specified. This is not necessary if it is called
only as a subroutine.

Example:

/*Recursive internal function execution ... */
arg x
say x1 ! =1 factorial(x)
exit

factorial: procedure
arg n

/*calculate factorial by .. */
/* recursive invocation. */

if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it invokes itself (this is known as
"recursive invocation"). The PROCEDURE instruction ensures that a
new variable n is created for each invocation).

These functions are always available and are defined in the next section
of this manual. (See pages 77-109.)

External You can write or make use of functions that are external to your
program and to the language processor. An external function can be
written in any language, including REXX, that supports the system
dependent interfaces used by the language processor to invoke it. Again,
when called as a function it must return data to the caller.

Notes:

l. Calling an external REXX program as a function is similar to calling
an internal routine. The external routine is, however, an implicit
PROCEDURE in that all the caller1 s variables are always hidden
and the status of internal values (NUMERIC settings, etc.) start with
their defaults (rather than inheriting those of the caller).

2. Other REXX programs can be called as functions. Either EXIT or
RETURN can be used to leave the invoked REXX program, and in
either case an expression must be specified.

72 TSO/E Version 2 REXX Reference

I~ . ')

Search Order

I

_,J

I
_.)

Functions

The search order for functions is the same as in the list above. That is, internal
labels take precedence, then built-in functions, and finally external functions.

Internal labels are not used if the function name is given as a string (that is, is
specified in quotes); in this case the function must be built-in or external. This lets
you usurp the name of, say, a built-in function to extend its capabilities, yet still be
able to invoke the built-in function when needed.

Example:

/*Modified DATE to return sorted date by default */
date: procedure

arg in
if in= 1 1 then in= 1 Sorted 1

return 1 DATE 1 (in)

Built-in functions have uppercase names, and so the name in the literal string must be
in uppercase for the search to succeed, as in the example. The same is usually true
of external functions.

External functions and subroutines have a system-defined search order.

1. Check to see if it is part of the DBCS function package.

2. Check the following function packages defined for the language processor
environment:

• User function packages
• Local function packages
• System function packages.

3. If the function was not found, the function search order flag (FUNCSOFL) is
checked. The FUNCSOFL flag (see page 281) indicates whether load libraries
are searched before the search for a REXX exec.

If the flag is off, check the load libraries. If the function is not found, search for
a REXX exec.

If the flag is on, search for a REXX exec. If the function is not found, check
the load libraries.

Note: By default, the FUNCSOFL flag is off, which means that load libraries
are searched before the search for a REXX exec.

The following describes the steps used to search for a REXX exec for a function
call:

a. Search the ddname from which the exec that is calling the function was
loaded. For example, if the calling exec was loaded from the DD
MY APPL, the system searches MY APPL for the function.

Note: If the calling exec is executing in a non-TSO/E address space and the
exec (function) being searched for was not found, the search for an exec
ends. Note that depending on the setting of the FUNCSOFL flag, the load
libraries may or may not have been already searched at this point.

b. Search any exec libraries as defined by the TSO/E ALTLIB command
(MVS/ESA feature of TSO/E Version 2 only).

Chapter 4. Functions 73

Functions

c. Check the setting of the NOLOADDD flag (see page 284).

• If the NOLOADDD flag is on, search any data sets that are allocated to
SYSPROC. If the function is not found, the search for an exec ends.
Note that depending on the setting of the FUNCSOFL flag, the load
libraries may or may not have been already searched at this point.

• If the NOLOADDD flag is off, search any data sets that are allocated
to SYSEXEC. (SYSEXEC is the default ddname specified in the
LOADDD field in the module name table. See page 287).

If the function is not found, search the data sets allocated to SYSPROC.
If the function is not found, the search for an exec ends. Note that
depending on the setting of the FUNCSOFL flag, the load libraries may
or may not have been already searched at this point.

Note: By default, the NOLOADDD flag is on, which means that
SYSPROC only is searched (SYSEXEC is not searched).

Figure 3 illustrates how a call to an external function or subroutine is handled.
After the DBCS function packages, user, local, and system function packages, and
optionally, the load libraries are searched, if the function or subroutine was not
found, the system searches for a REXX exec. The search for an exec is shown in
part 2 of the figure.

74 TSO/E Version 2 REXX Reference

,1\

i~
j

\ I

~

Yes

Yes

START

Execute as a
DBCS function.

Was function found?

Search:

1. User packages
2. Local packages
3. System packages

Was function found?

Is FUNCSOFL flag
on or off?

Off

Search load libraries.

Was function found?

On

Figure 3 (Part 1 of 2). External Routine Resolution and Execution

Search for an exec.

If exec was not
found, search load
libraries.

Functions

Chapter 4. Functions 75

Functions

i
SEARCH FOR AN EXEC

i
Search DD from which
calling exec was loaded.

',

If exec was not found,
Yes Search for exec ends.

is the calling exec ,,._ ,,_ Exec not found.
executing in MVS?

"
Search any exec libraries
as defined by AL TLIB
(for example,
SYSUPROC).

'~
If exec was not On ;;. [!=ch SYSPROC.

I
found, is NOLOADDD
flag on or off?

Off

"
Search library defined
in LOADDD field (for
example, SYSEXEC).

,,
If exec was not found,
search SYSPROC.

Figure. 3 (Part 2 of 2). External Routine Resolution and Execution

Errors during Execution
If an external or built-in function detects an error of any kind, the language
processor is informed, and a syntax error results. Execution of the clause that
included the function call is therefore terminated. Similarly, if an external function
fails to return data correctly, this will be detected by the language processor and
reported as an error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, the program is terminated.

7(, TSO/E Version 2 REXX Reference

u

Functions

Built-in Functions
REXX provides a rich set of built-in functions. These include character
manipulation, conversion, and information functions. Further external functions are
generally available - see page 110.

General notes on the built-in functions:

• The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC settings,
except where stated.

• Where a string is referenced, a null string can be supplied.

• If an argument specifies a length, it must be a nonnegative whole number. If it
specifies a start character or word in a string, it must be a positive whole
number, unless otherwise stated.

• Where the last argument is optional, a comma can always be included to
indicate that it has been omitted; for example, DAT ATYPE(l ,), like
DATATYPE(l), would return NUM.

• If a pad character is specified, it must be exactly one character long.

• If a function has a suboption selected by the first character of a string, that
character can be in upper- or lowercase.

• Conversion between characters and hexadecimal involves the machine
representation of character strings, and hence will return appropriately different
results for ASCII and EBCDIC machines. The examples below assume an
EBCDIC implementation.

• A number of the functions described in this chapter support the
Double-Byte-Character-Set (DBCS). A complete list and description of these
functions is given in Appendix B, "Double Byte Character Set (DBCS)" on
page 405.

Chapter 4. Functions 77

Functions

.ABBREV

ABS

ADDRESS

returns 1 if info is equal to the leading characters of information and the length of
info is not less than length. Returns 0 if either of these conditions is not met.

length, if specified, must be a nonnegative whole number. The default for length is
the number of characters in info.

Here are some examples:

ABBREV(1 Print 1
,

1 Pri 1
) -> 1

ABBREV(1 PRINT 1
,

1 Pri 1
) -> 0

ABBREV('PRINT' ,'PRI',4) -> 0
ABBREV(1 PRINT 1

,
1 PRY 1

) -> 0
ABBREV('PRINT' ,' ') -> 1
ABBREV(1 PRINT 1

,
1

I ,1) -> 0

Note: A null string will always match if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say 'Enter option:'; pull option •
select /* keywordl is to be the default */

when abbrev(1 keyword! 1 ,option) then
when abbrev('keyword2',option) then •..

otherwise nop;
end;

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS (I 12. 3 I)

ABS (I -8. 307 I)

->
->

12.3
0.387

returns the name of the environment to which host commands are currently being
submitted. Trailing blanks are removed from the result.

78 TSO/E Version 2 REXX Reference
/

'~

/~

i~
.)

J

ARG

\ I

'-"'

Here are some examples:

ADDRESS()
ADDRESS()
ADDRESS()

->

->

->

•rso•
1 MVS 1

I ISPEXEC I

/* perhaps */
/* perhaps */
/* perhaps */

Functions

returns an argument string, or information about the argument strings to a program
or internal routine~

If no parameter is given, the number of arguments passed to the program or internal
routine is returned.

If only n is specified, the nth argument string is returned. If the argument string
does not exist, the null string is returned. n must be a positive whole number.

If option is specified, ARG tests for the existence of the nth argument string. Valid
options (of which only the capitalized letter is significant, all others are ignored) are:

Exists returns 1 if the nth argument exists; that is, if it was explicitly specified
when the routine was called. Returns 0 otherwise.

Omitted returns 1 if the nth argument was omitted; that is, if it was not explicitly
specified when the routine was called. Returns 0 otherwise.

Here are some examples:

/* following "Call name; 11 (no arguments) */
ARG() -> 0
ARG(l) -> 11

ARG(2) -> I I

ARG(l, 1 e 1
) -> 0

ARG(l, I 0 I) -> 1

/* following 11 Call name 1

a
1

''

1

b
1

;

11 */
ARG() -> 3
ARG(l) -> la I

ARG(2) -> I I

ARG(3) -> 'b'
ARG(n) -> I I /* for n>=4 */
ARG(l, 1 e 1

) -> 1
ARG(2' IE I) -> 0
ARG(2' I 0 I) -> 1
ARG(3, I 0 I) -> 0
ARG(4, I 0 I) -> 1

Notes:

1. The argument strings to a program or internal routine may be retrieved and
parsed directly using the ARG or PARSE ARG instructions - see pages 30, 50,
and 131.

Chapter 4. Functions 79

Functions

BITAND

BITOR

2. Programs called as commands can have only 0 or 1 argument strings. The
program will have 0 argument strings if it is called with the name only and will
have 1 argument string if anything else (including blanks) is included with the
command.

returns a string composed of the two input strings logically ANDed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the AND operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
stri ng2 is the zero length (null) string.

Here are some examples:

BITAND(1 73 1 x, 1 27 1 x)
BITAND(1 13 1x, 1 5555 1x)
BITAND(1 13 1x, 15555 1x, 1 74'x)
BITAND(1 pQrS',, 1 BF 1 x)

->

->

->

->

1 23 1 x
1 1155 1 x
1 1154 1 x
1 pqrs 1

returns a string composed of the two input strings logically ORed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
stri ng2 is the zero length (null) string.

Here are some examples:

BITOR(1 15 1x, 1 24 1 x) -> 1 35 1 x
BITOR('15'x, '2456'x) -> '3556'x
BITOR(1 15'x,'2456'x,'F0'x) -> '35F6'x
BITOR('llll'x,,'4D 1 x) -> '5D5D'x
BITOR(1 Fred 1

,,
140'x) -> 'FRED'

80 TSO/E Version 2 REXX Reference

~I
!

I~
: !

''\,._./

BITXOR

Functions

returns a string composed of the two input strings logically eXclusive ORed together,
bit by bit. The length of the result is the length of the longer of the two strings. If
no pad character is provided, the XOR operation terminates when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it is used to extend the shorter of
the two strings on the right, before carrying out the logical operation. The default
for stri ng2 is the zero length (null) string.

Here are some examples:

BITXOR(1 12 1 x, 1 22 1 x)
BITXOR(1 1211 1 x, 1 22 1 x)
BI TXOR (I C711 1 x' I 222222 Ix' I I)

BITXOR(1 llll 1 x, 1 444444 1 x)
BITXOR(1 llll 1x, 1 444444 1x, 1 40 1 x}
BITXOR(1 llll 1 x,, 1 4D'x)

-> 1 30 1x
-> 1 3011 1 x
-> 1 E53362 1 x
-> '555544'x
-> 1 555504 1x
-> '5C5C'x

CENTRE/CENTER

returns a string of length length with string centered in it, with pad characters
added as necessary to make up length. The default pad character is blank. If the
string is longer than 1 ength, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right-hand end loses or gains one
more character than the left-hand end.

Here are some examples:

CENTER(abc,7)
CENTER(abc,8, 1

-
1

)

CENTRE('The blue sky 1 ,8)
CENTRE('The blue sky',7)

->

->
->
->

I ABC I

1 --ABC--- 1

1 e blue s'
'e blue 1

Note: This function can be called either CENTRE or CENTER, which avoids
errors due to the difference between the British and American spellings.

Chapter 4. Functions 81

Functions

COMPARE

CONDITION

retu,ms 0 ifthe strings, stringl and string2, are identical. If they are not identical,
the returned number is the position of the first character that does not match. The
shorter string is padded on the right with pad if necessary. The default pad character
is a blank. Here are some examples:

COMPARE(1 abc 1
,

1 abc 1
) -> 0

COMPARE(1 abc 1
,

1 ak 1
) -> 2

COMPARE Cab 1
,

1 ab r) -> 0
COMPARE(1 ab ', 1 ab 1

,'
1

) -> 0
COMPARE(1 ab ', 1 ab 1

,
1 x1

) -> 3
COMPARE(1 ab-- 1

,
1 ab 1

,
1

-
1

) -> 5

returns the condition information associated with the current trapped condition (see
Chapter 7, "Conditions and Condition Traps" on page 149 for a description of
condition traps). Four pieces of information can be requested:

• The name of the current trapped condition

• Any descriptive string associated with that condition

• The instruction executed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition.

The following option can be supplied to select the requested information. Only the
first letter is significant.

Condition name

Description

Instruction

Status

returns the name of the current trapped condition

returns any descriptive string associated with the current
trapped condition. See page 152 for the list of possible strings.
If no description is available, a null string is returned.

returns the keyword for the instruction executed when the
current condition was trapped, being either CALL or SIGNAL.
This is the default if option is not specified.

returns the status of the current trapped condition. This can
change during execution, and is either:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed.

82 TSO/E Version 2 REXX Reference

!~
I

COPIES

C2D

Functions

If no condition has been trapped (that is, there is no current trapped condition) then
the CONDITION function returns a null string in all four cases.

Here are some examples:

CONDITION()
CONDITION (I c I)
CONDITION(I I I)
CONDITION (ID I)
CONDITION (Is I)

->

->

->

->
->

1 CALL 1

1 FAILURE 1

'CALL I

1 Fail ureTest 1

/* perhaps */

1 0FF 1 /* perhaps */

Note: The condition information returned by the CONDITION function is saved
and restored across subroutine calls (including those caused by a CALL ON
condition trap). Therefore, once a subroutine invoked due to a CALL ON trap has
returned, the current trapped condition reverts to the current condition before the
CALL took place. CONDITION returns the values it returned before the condition
was trapped.

returns n concatenated copies of string. n must be a nonnegative whole number.

Here are some examples:

COPIES (1 abc' , 3)
COPIES(1 abc 1 ,0)

->

->

1 abcabcabc 1

I I

Character to Decimal. Returns the decimal value of the binary representation of
string. If the result cannot be expressed as a whole number, an error results. That
is, the result must not have more digits than the current setting of NUMERIC
DIGITS.

If string is the null string, then 1 0 1 is returned.

If n is not specified, the sequence of hexadecimal digits is processed as an unsigned
binary number.

Here are some examples:

C2D(1 09 1 X)
c2D(1 s1 •x)
C2D(I FF81 'X)
C2D('a')

->

->

->

->

9
129

65409
129 /* EBCDIC */

Chapter 4. Functions 83

Functions

C2X

DATATYPE

If n is specified, the given string is padded on the left with '00 'x characters (note,
not "sign-extended"), or truncated on the left to n characters. The resulting string of
n hexadecimal digits is taken to be a signed binary number: positive if the leftmost
bit is off, and negative, in two's complement notation, if the leftmost bit is on. If n
is 0, then 0 is always returned.

Here are some examples:

C2 D (181 I x' 1) -> -127
C2D(1 81 1 X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C20(I FF7F 1 X,l) -> 127
C2D (I F081 1 X,2) -> -3967
C2D(1 F081 1 X,l) -> -127
C2D (10031 1X,0) -> 0

Implementation maximum: The input string may not have more than 250 characters
that will be significant in forming the final result. Leading sign characters ('OO'x and
'ffx) do not count towards this total.

Character to Hexadecimal. Converts a character string to its hexadecimal
representation. The data to be converted can be of any length.

Here are some examples:

C2X('72s 1)

C2X(1 0123 1 X)
->

->

1 F7F2A2'
1 0123 1

/* EBCDIC */

If only string is specified, the returned result is NUM if string is a valid REXX
number (any format), otherwise CHAR will be the returned result.

If type is specified, the returned result is 1 if string matches the type, otherwise a 0
is returned. If string is null, 0 is returned (except when type is X, which returns 1).
The following is a list of valid types. Only the capitalized and boldfaced letter is
significant (all letters following the significant letter are ignored).

Alphanumeric

Bits

returns 1 if string contains only characters from the ranges a-z,
A-Z, and 0-9.

returns 1 if string contains only the characters 0 and/or I.

84 TSO/E Version 2 REXX Reference

/~
)

l l

~

DATE

c
Db cs

lowercase

Mixed case

Number

Symbol

Uppercase

Whole number

hexadecimal

Functions

returns 1 if string is a mixed SBCS/DBCS string.

returns 1 if string is a pure DBCS string enclosed by SO and SI
bytes.

returns 1 if string contains only characters from the range a-z.

returns 1 if string contains only characters from the ranges a-z and
A-Z.

returns 1 if string is a valid REXX number.

returns 1 if string contains only characters that are valid in REXX
symbols (see page 10). Note that not only uppercase alphabetics
are permitted, but lowercase alphabetics as well.

returns 1 if string contains only characters from the range A-Z.

returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

returns 1 if string contains only characters from the ranges a-f,
A-F, 0-9, and blank (so long as blanks only appear between pairs
of hexadecimal characters). Also returns 1 if string is a null string.

Here are some examples:

DATATYPE(' 12 ') -> 1 NUM 1

DATATYPE(l I) -> 'CHAR'
DATATYPE(' 123* I) -> 'CHAR'
DATATYPE(1 12.3 1

,
1 N1

) -> 1
DATATYPE(1 12.3 1

,
1 W1

) -> 0
DATATYPE(1 Fred 1

,
1M') -> 1

DATATYPE(11
,

1 M1
) -> 0

DATATYPE(1 Fred 1
,

1 L1
) -> e

DATATYPE('?20K 1
,

1S') -> 1
DATATYPE(1 BCd3 1

,
1 X1

) -> 1
DATATYPE(1 BC d3 1

,
1 X1

) -> 1

returns the local date in the format: dd mon yyyy (for example, 27 Aug 1988), with

no leading zero or blank on the day. For man, the first three characters of the
English name of the month will be used.

The following options (of which only the capitalized letter is needed, all others are
ignored) can be used to obtain alternative formats:

Basedate returns the number of complete days (that is, not including the current
day) since and including the base date, January 1, 0001, in the format:

dddddd (no leading zeros). The expression DATE (B) //7 returns a
number in the range 0-6, where 0 is Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week
independent of the national language you're working in.

Chapter 4. Functions 85

Functions

DBCS

Note: The origin of January 1, 0001 is based on the Gregorian calendar.
Though this calendar did not exist prior to 1582, Basedate is calculated
as if it did: 365 days per year, an extra day every four years except
century years, and leap centuries if the century is divisible by 400. It
does not take into account any errors in the calendar system that created
the Gregorian calendar originally.

Century returns the number of days, including the current day, since January 1 of
the last year which is a multiple of 100 in the format: ddddd (no leading
zeros). Example: if a call is made to DATE(C) on June 30, 1988, the
number of days from January 1, 1900 to June 30, 1988 will be returned.

Days returns the number of days, including the current day, so far in this year
in the format: ddd (no leading zeros)

European returns date in the format: dd/mm/yy

Juli an returns date in the format: yyddd

Month returns full English name of the current month, for example, August

Norma 1 returns date in the default format: dd mon yyyy

Ordered returns date in the format: yy/mm/dd (suitable for sorting, etc.)

Sorted returns date in the format: yyyymmdd (suitable for sorting, etc.)

Usa returns date in the format: mm/dd/yy

Weekday returns the English name for the day of the week, in mixed case. For
example, Tuesday.

Here are some examples:

DATE() -> '27 Aug 1988' /* perhaps */
DATE(I BI) -> 725975
DATE(ID I) -> 240
DATE(1 E1

) -> 1 27/08/88 1

DATE(1M1
) -> 'August'

DATE('N') -> 1 27 Aug 1988'
DATE(I 0 I) -> 1 88/08/27 1

DATE(1 S1
) -> 1 19880827 1

DATE (I u I) -> 1 08/27/88 1

DATE(1 W1
) -> 'Saturday•

Note: The first call to DATE or TIME in one expression causes a time stamp to be
made which is then used for all calls to these functions in that expression. Hence, if
multiple calls to any of the DATE and/or TIME functions are made in a single
expression, they are guaranteed to be consistent with each other.

The following are all part of the DBCS function package. See page 405.

DBADJUST
DBBRACKET
DBCENTER
DBCJUSTIFY
DB LEFT

DBRIGHT
DBRLEFT
DBRRIGHT
DBTODBCS
DBTOSBCS

DBUNBRACKET
DBVALIDATE
DBWIDTH

86 TSO/E Version 2 REXX Reference

/'~'\
I

r-'\
!

:~
!

I~
I I

DELSTR

DEL WORD

DIGITS

Functions

deletes the substring of string that begins at the nth character, and is of length
length. If length is not specified, the rest of string is deleted. If n is greater than
the length of string, the string is returned unchanged. n must be a positive whole
number.

Here are some examples:

DELSTR(1 abcd 1 ,3)
DELSTR(1 abcde 1 ,3,2)
DELSTR(1 abcde 1 ,6)

->

->
->

'ab'
1 abe 1

1 abcde 1

deletes the substring of string that starts at the nth word. The length option refers
to the number of blank-delimited words. If length is omitted, it defaults to be the
remaining words in string. n must be a positive whole number. If n is greater than
the number of words in string, string is returned unchanged. The string deleted
includes any blanks following the final word involved.

Here are some examples:

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is
DELWORD(1 Now is the time 1 ,5) -> 'Now is the time•

returns the current setting of NUMERIC DIGITS.

Example:

DIGITS() -> 9 /* by default */

Chapter 4. Functions 87

Functions

D2C

D2X

Decimal to Character. Returns a character string that is the binary representation of
the decimal number. Length may be specified by n, or length is as needed if n is
omitted.

If n is not specified, who l en umber must be a nonnegative number or an error will
result. If n is not specified, the result is returned such that there are no leading 'OO'x
characters.

If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, then the result will be truncated on the
left.

Here are some examples:

D2C(9) -> 109 1
x

D2C(129) -> 18l 1
x

D2C(129, 1) -> 18l 1x

D2C(129,2) -> '0081 1
x

D2C(257,1) -> 10l 1x

D2C(-127,1) -> '8l 1
x

D2C(-127,2) -> I FF8l 1 x

D2C(-1,4) -> 1 FFFFFFFF 1
x

D2C(12,0) -> 11

Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters ('OO'x and 'ffx).

Decimal to Hexadecimal. Returns a string of hexadecimal characters that is the
hexadecimal representation of the decimal number.

If n is not specified, who l enumber must be a nonnegative number or an error will
result. If n is not specified, the result is returned such that there are no leading 0
characters.

If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, it will be truncated on the left.

88 TSO/E Version 2 REXX Reference

~\
I l

~
\

/~
\

L/

ERRORTEXT

EXTERNALS

Functions

Here are some examples:

D2X(9) -> 191
D2X(129) -> 181 1

D2X (129, 1) -> 'l'
D2X(129,2) -> 1 81 1

D2X(129,4) -> 10081 1

D2X(257,2) -> 1 01 1
D2X(-127,2) -> 1 81 1

D2X(-127,4) -> I FF81'
D2X (12 ,0) -> 11

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

returns the error message associated with error number n. n must be in the range
0-99, and any other value is an error. If n is in the allowed range, but is not a
defined REXX error number, the null string is returned. See Appendix A, "Error
Numbers and Messages" on page 395 for a complete description of error numbers
and messages.

Here are some examples:

ERRORTEXT (16)
ERRORTEXT(60)

->

->
'Label not found'
11

always returns a 0. For example:

EXTERNALS() -> 0 /* Always */

In the VM/SP implementation of REXX, the EXTERNALS function returns the
number of elements in the terminal input buffer (system external event queue). In
TSO/E, there is no equivalent buffer. Therefore, in the TSO/E implementation of
REXX, the EXTERNALS function always returns a 0.

Chapter 4. Functions 89

Functions

FIND

FORM

FORMAT

WORDPOS is the preferred built-in function for this type of word search. Refer to
page 107 for a complete description.

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string. Multiple
blanks between words are treated as a single blank for the comparison. Returns 0 if
phrase is not found or if there are no words in phrase.

Here are some examples:

FIND('now is the time 1
,

1 is the time')
FIND('now is the time','is the')
FIND('now is the time' ,'is time 1

)

->

->
->

returns the current setting of NUMERIC FORM.

Example:

FORM() -> 'SCIENTIFIC' /* by default */

rounds and formats number.

2
2
0

If only number is given, it will be rounded and formatted to standard REXX rules,
just as though the operation "number+ O" had been carried out. If only number is
given, the result is precisely that of this operation.

The before·and after options describe how many characters are to be used for the
integer part and decimal part of the result respectively. If either or both of these are
omitted, the number of characters used will be as many as are needed for that part.

90 TSO/E Version 2 REXX Reference

\'--/

FUZZ

Functions

If before is not large enough to contain the integer part of the number, an error
results. If before is too large, the number is padded on the left with blanks. If
after is not the same size as the decimal part of the number, the number will be
rounded (or extended with zeros) to fit. Specifying 0 will cause the number to be
rounded to an integer.

Here are some examples:

FORMAT (I 3 l ' 4) -> 31
FORMAT('l.73' ,4,0) -> 2'
FORMAT('l.73 1 ,4,3) -> 1. 730'
FORMAT('-.76 1 ,4,1) -> -0.8 1

FORMAT (I 3. 03 I '4) -> 3.03'
FORMAT(I - 12 • 73 I "4) -> I -12.7300'
FORMAT(I - 12.73 1

) -> I -12.73 1

FORMAT (I 0. 000 I) -> '0'

The first three arguments are as described above. In addition, expp and expt control
the exponent part of the result: expp sets the number of places to be used for the
exponent part, the default being to use as many as are needed. The expt sets the
trigger point for use of exponential notation. If the number of places needed for the
integer part exceeds expt, exponential notation will be used. Likewise, exponential
notation will be used if the number of places needed for the decimal part exceeds
twice expt. The default is the current setting of NUMERIC DIGITS. If 0 is
specified for expt, exponential notation is always used unless the exponent would be
0. The expp must be less than 10, but there is no limit on the other arguments. If 0
is specified for the expp field, no exponent will be supplied, and the number will be
expressed in "simple" form with added zeros as necessary (this overrides a 0 value of
expt if necessary). Otherwise, if expp is not large enough to contain the exponent,
an error results. If the exponent will be 0 in this case (a non-zero expp), then expp+2
blanks are supplied for the exponent part of the result.

Here are some examples:

FORMAT{ 1 12345.73',,,2,2)
FORMAT('l2345.73' ,,3,,0)
FORMAT('l.234573',,3,,0)
FORMAT('12345.73',,,3,6)
FORMAT(1 1234567e5 1 ,,3,0)

->
->
->

->
->

1 1.234573E+04'
1 1.235E+4 1

1 1.235 1

1 12345.73 1

1 123456700000.000 1

returns the current setting of NUMERIC FUZZ.

Example:

FUZZ() -> /* by default */

Chapter 4. Functions 91

Functions

INDEX

INSERT

POS is the preferred built-in function for obtaining the position of one string in
another. Refer to page 96 for a complete description.

returns the character position of one string, needle, in another, haystack. If the
string needle is not found, 0 is returned. By default the search starts at the first
character of haystack (start is of the value 1). This can be overridden by giving a
different start point, which must be a positive whole number.

Here are some examples:

INDEX(1 abcdef 1
,

1 cd 1
)

INDEX(1 abcdef 1
,

1 xd')
INDEX(1 abcdef 1

,
1 bc 1 ,3)

INDEX(1 abcabc 1
,

1 bc 1 ,3)
INDEX(1abcabc 1 ,'bc 1 ,6)

->
->

->
->
->

3
0
0
5
0

inserts the string new, padded to length 1 ength, into the string target after the nth
character. If specified, n must be a nonnegative whole number. If n is greater than
the length of the target string, padding is added there also. The default pad
character is a blank. The default value for n is 0, which means insert before the
beginning of the string.

Here are some examples:

INSERT(' 1
,

1 abcdef 1 ,3)
INSERT(1 123 1

,
1 abc 1 ,5,6)

INSERT(1 123 1
,

1 abc',5,6, 1 +1
)

INSERT(1 123 1
,

1 abc 1
)

INSERT(1 123 1
,

1abc',,5,'- 1
)

->
->

->
->
->

'abc def'
'abc 123
1 abc++123+++ 1

'123abc'
'123--abc'

92 TSO/E Version 2 REXX Reference

1"\
}

!~
1

JUSTIFY

LASTPOS

Functions

formats blank-delimited words in string, by adding pad characters between words to
justify to both margins. That is, to width 1 ength (1 ength must be nonnegative). The
default pad character is a blank.

The string is first normalized as though SPACE(string) had been executed (that is,
multiple blanks are converted to single blanks, and leading and trailing blanks are
removed). If 1 ength is less than the width of the normalized string, the string is then
truncated on the right and any trailing blank is removed. Extra pad characters are
then added evenly from left to right to provide the required length, and the blanks
between words are replaced with the pad character.

Here are some examples:

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY(1 The blue sky' ,8) -> 1 The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky',9, 1 + 1

) -> 'The++blue'

returns the position of the last occurrence of one string, needle, in another,
haystack. (See also POS.) If the string needle is not found, 0 is returned. By
default the search starts at the last character of haystack (that is,
start=LENGTH(string)) and scans backwards. This may be overridden by specifying
start, the point at which to start the backwards scan. start must be a positive
whole number, and defaults to LENGTH(string) iflarger than that value.

Here are some examples:

LASTPOS(1
', 'abc def ghi ')

LASTPOS (' 1
, 'abcdefghi ')

LASTPOS (' 1
,

1 abc def ghi ' , 7)

->

->

->

8
0
4

Chapter 4. Functions 93

Functions

LEFT

LENGTH

LINESIZE

returns a string of length 1 ength, containing the leftmost length characters of
string. The string returned is padded with pad characters (or truncated) on the right
as needed. The default pad character is a blank. 1 ength must be nonnegative. The
LEFT function is exactly equivalent to SUBSTR{string,1, length[,pad]).

Here are some examples:

LEFT(1 abc d 1 ,8)
LEFT{'abc d 1 ,8, 1

•
1

)

LEFT(1 abc def 1 ,7)

->

->
->

returns the length of string.

Here are some examples:

LENGTH(1 abcdefgh')
LENGTH(1 abc defg 1

)

LENGTH (I I)

->
->
->

8
8
0

1 abc d
1 abc d ••• 1

1 abc de 1

returns the current terminal line width minus 1 character (the point at which the
language processor will break lines displayed using the SAY instruction).

Note: If the REXX exec is executing in TSO/E background (that is, on the JCL
EXEC statement, the program name (PGM) is IKJEFTOl), the LINESIZE
function always returns the value 132.

If the exec is executing in a non-TSO/E address space, LINESIZE returns the logical
record length of the OUTDD file (the default file is SYSTSPRT). The OUTDD file
is specified in the module name table (see page 287).

94 TSO /E Version 2 REXX Reference

/'~\
I

/~

~\
!

LISTDSI

MAX

MIN

MSG

OUTTRAP

Functions

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page llO.

returns the largest number from the list specified, formatted according to the current
setting of NUMERIC DIGITS. Up to 20 numbers can be specified, although calls to
MAX can be nested if more arguments are needed.

Here are some examples:

MAX (12, 6, 7, 9)
MAX(17.3,19,17.03)
MAX(-7,-3,-4.3)
MAX(l,2,3,4,5,6,7,8,9,MAX(l0,11,12,13))

->

->

->
->

12
19
-3
13

returns the smallest number from the list specified, formatted according to the
current setting of NUMERIC DIGITS. Up to 20 numbers can be specified, although
calls to MIN can be nested if more arguments are needed.

Here are some examples:

MIN(12,6,7 ,9)
MIN(17.3,19,17.03)
MIN(-7,-3,-4.3)

->

->
->

6
17.03
-7

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page ll8.

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 119.

Chapter 4. Functions 95

Functions

OVERLAY

POS

PROMPT

overlays the string target, starting at the nth character with the string new, padded
or truncated to length 1 ength. If 1 ength is specified it must be positive or zero. If n
is greater than the length of the target string, padding is added before the new string.
The default pad character is a blank, and the default value for n is 1. If specified, n
must be a positive whole number.

Here are some examples:

OVERLAY(' 1
,

1 abcdef 1 ,3)
OVERLAY(1

•
1

,
1 abcdef 1 ,3,2)

OVERLAY(1 qq 1
,

1 abcd 1
)

OVERLAY(1 qq 1
,

1 abcd 1 ,4)
OVERLAY(1 123 1

,
1 abc 1 ,5,6, 1+ 1

)

->
->
->
->

->

'ab def'
1 ab. ef'
1 qqcd 1

'abcqq'
1 abc+123+++ 1

returns the position of one string, needle, in another, haystack. (See also the
INDEX and LASTPOS functions.) If the string needle is not found, 0 is returned.
By default the search starts at the first character of haystack (that is start is of the
value I). This can be overridden by specifying start (which must be a positive
whole number), the point at which to start the search.

Here are some examples:

POS(1day','Saturday 1
) -> 6

POS{ 1 x 1
,

1 abc def ghi 1
) -> 0

POS(I
1

,
1 abc def ghi 1

) -> 4
POS(I

1
,

1 abc def ghi',5) -> 8

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 123.

96 TSO/E Version 2 REXX Reference

/~
I

J

I~
I

(
_;

QUEUED

RANDOM

Functions

returns the number of lines remaining in the queue at the time when the function is
invoked.

The TSO/E implementation of the queue is the data stack. If no lines are remaining,
a PULL or PARSE PULL will read from the:

• Terminal (TSO /E address space)

• Input stream as defined by the INDD field in the module name table (see page
286). The system default is SYSTSIN (non-TSO/E address space). The ddname
can be changed on an application basis or on a system basis.

Here is an example:

QUEUED() -> 5 /* Perhaps */

returns a pseudo-random nonnegative whole number in the range min to max
inclusive. If only one argument is specified, the range will be from 0 to that number.
Otherwise, the default values for min and max are 0 and 999, respectively. A specific
seed (which must be a whole number) for the random number can be specified as the
third argument if repeatable results are desired.

The magnitude of the range (that is, max minus min) must not exceed 100000. Here
are some examples:

RANDOM()
RANDOM(5,8)
RANDOM(,,1983)
RANDOM(2)

Notes:

->
->
->
->

305
7

123 /* reproducible */
0

1. To obtain a predictable sequence of pseudo-random numbers, use RANDOM a
number of times, but only specify a seed the first time. For example, to
simulate forty throws of a six-sided, unbiased die:

sequence = RANDOM(l,6,12345) /* any number would */
/* do for a seed */

do 39
sequence = sequence RANDOM(l,6)
end

say sequence

Chapter 4. Functions 97

Functions

REVERSE

RIGHT

SIGN

The numbers are generated mathematically, using the initial seed, so that as far
as possible they appear to be random. Running the program again will produce
the same sequence; using a different initial seed will almost certainly produce a
different sequence. If you do not supply a seed, the first time RANDOM is
called, one will be randomly assigned; and hence your program will usually give
different results each time it is run.

2. The random number generator is global for an entire program; the current seed
is not saved across internal routine calls.

3. The actual random number generator used may differ from implementation to
implementation.

returns string, swapped end for end.

Here are some examples:

REVERSE (1 ABc. 1
)

REVERSE (I XYZ I)
->
->

1 .cBA 1

I ZYX 1

returns a string of length length containing the rightmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the left
as needed. The default pad character is a blank. length must be nonnegative.

Here are some examples:

RIGHT(' abc d 1 ,8)
RIGHT(1abc def 1 ,5)
RIGHT(1 12 1 ,5, 10')

->
->
->

abc d'
'c def'
1 00012 1

returns a number that indicates the sign of number. number is first rounded
according to standard RE.XX rules, just as though the operation "number+O" had
been carried out. If number is less than 0 then 1 -l 1 is returned; if it is 0 then 10' is
returned; and if it is greater than 0 then 1 11 is returned.

98 TSO/E Version 2 REXX Reference

/~
;)

SOURCELINE

SPACE

STORAGE

Here are some examples:

SIGN('l2.3 1
)

SIGNC -0.307 1
)

SIGN(0.0)

->

->
->

1
-1
0

Functions

If n is omitted, returns the line number of the final line in the source file.

If n is given, the nth line in the source file is returned. If specified, n must be a
positive whole number, and must not exceed the number of the final line in the
source file.

Here are some examples:

SOURCELINE () -> 10
SOURCELINE(l) -> 1 /* This is a 10-line program*/'

formats the blank-delimited words in string with n pad characters between each
word. The n must be nonnegative. If it is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default pad
character is a blank.

Here are some examples:

SPACE(' abc def I) -> 'abc def'
SPACE(I abc def 1 ,3) -> 'abc def'
SPACE(' abc def I '1) -> 'abc def 1

SPACE(1 abc def I ,0) -> 1 abcdef 1

SPACE ('abc def ',2,•+•) -> 'abc++def 1

This is not a built-in function. It is a TSO/E external function that is available in
any MVS address space (TSO/E and non-TSO/E). See page 126.

Chapter 4. Functions 99

Functions

STRIP

SUBS TR

removes leading and/or trailing characters from string based on the option
specified. Valid options (of which only the capitalized letter is significant, all others
are ignored) are:

Both removes both leading and trailing characters from string. This is
default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, with the default
being a blank. If given, char must be exactly one character long.

Here are some examples:

STRIP(I ab c I) -> 'ab c'
STRIP(I ab c ''IL I) -> 'ab c
STRIP(I ab c I' It I) -> ab c'
STRIP('l2.7000',,0) -> 1 12.7 1

STRIP('0012.700',,0) -> '12.7'

returns the substring of string that begins at the nth character, and is oflength
length, padded with pad if necessary. n must be a positive whole number.

If length is omitted the rest of the string will be returned. The default pad character
is a blank.

Here are some examples:

SUBSTR(1 abc' ,2)
SUBSTR('abc',2,4)
SUBSTR('abc',2,6,'. ')

->
->
->

'be'
'be
'be.••• I

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string.

100 TSO/E Version 2 REXX Reference

i~
!

I~

SUBWORD

SYMBOL

SYSDSN

Functions

returns the substring of string that starts at the nth word, and is of length length,
blank-delimited words. n must be a positive whole number. If 1 ength is omitted, it
defaults to be the remaining words in string. The returned string will never have
leading or trailing blanks, but will include all blanks between the selected words.

Here are some examples:

SUBWORD(1 Now is the time 1 ,2,2)
SUBWORD('Now is the time',3)
SUBWORD(1 Now is the time',5)

->
->

->

1 is the 1

1 the time 1

11

returns the state of the symbol named by name. If name is not a valid REXX symbol,
1 BAD 1 is returned. If it is the name of a variable (that is, a symbol that has been
assigned a value), 1 VAR 1 is returned. Otherwise 1 LIT 1 is returned, which indicates
that it is either a constant symbol or a symbol that has not yet been assigned a value
(that is, a literal).

Like for symbols appearing normally in RE.XX expressions, lowercase characters in
the name will be translated to uppercase and substitution in a compound name will
occur if possible.

Note: Normally name should be specified in quotes (or derived from an expression),
to prevent substitution by its value before it is passed to the function.

Here are some examples:

/* following: Drop A.3; J=3 */
SYMBOL(! JI) -> 1 VAR 1

SYMBOL(J) -> 'LIT' /* has tested 11 311 */
SYMBOL(1 a.j 1

) -> I LIT' /* has tested "A.3 11 */
SYMBOL(2) -> 'LIP /* a constant symbol */
SYMBOL(I* I) -> 1 BAD 1 /*not a valid symbol */

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 127.

Chapter 4. Functions 101

Functions

SYSVAR

TIME

This is not a built-in function. It is a TSO/E external function that is available in
the TSO/E address space. See page 128.

by default returns the local time in the 24-hour clock format: 1hh:mm:ss 1 (hours,
minutes, and seconds); for example, 1 04: 41 : 3 7 1

•

The following options (of which only the capitalized letter is needed) may be used to
obtain alternative formats, or to gain access to the elapsed-time calculator.

Ci vi 1 returns 1 hh:mmxx 1
, the time in Civil format, in which the hours may take

the values 1 through 12, and the minutes the values 00 through 59. The
minutes are followed immediately by the letters 11 am 11 or 11 pm 11 to
distinguish times in the morning (midnight 12:00am through 11:59am)
from noon and afternoon (noon 12:00pm through 11 :59pm). The hour
will not have a leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other TIME results.

Elapsed returns sssssssss. uuuuuu, the number of seconds.microseconds since the
elapsed-time clock was started or reset (see below). The number will
have no leading zeros, and is not affected by the setting of NUMERIC
DIGITS.

Hours returns number of hours since midnight in the format: hh (no leading
zeros).

Long returns time in the format: hh:mm:ss. uuuuuu (uuuuuu is the fraction of
seconds, in microseconds).

Minutes returns number of minutes since midnight 1n the format: mmmm (no
leading zeros).

Norma 1 returns the time in the default format 1hh:mm:ss 1
, as described above.

Reset returns sssssssss.uuuuuu, the number of seconds.microseconds since the
elapsed-time clock was started or reset (see below), and also resets the
elapsed-time clock to zero. The number will have no leading zeros, and
is not affected by the setting of NUMERIC DIGITS.

Seconds returns number of seconds since midnight in the format: sssss (no leading
zeros).

Here are some examples:

TIMEC LI) -> 1 16:54:22.123456 1 /* Perhaps */
TIME() -> 1 16:54:22 1

TIME(IHI) -> 1 16 1

TIME CM') -> '1014 1 /* 54 + 60*16 */
TIME(Is I) -> 160862 1 /* 22 + 60*(54+60*16) */
TIME(1N I) -> 116:54:22 1

TIME(1C1) -> 1 4:54pm 1

102 TSO/E Version 2 REXX Reference

/~
I

/~
)

/~
' I I

.)

TRACE

Functions

The elapsed-time clock:

The elapsed-time clock may be used for measuring real time intervals. On the first
call to the elapsed-time clock, the clock is started, and both TIME { 1 E •) and TIME (1 R 1)

will return 0.

The clock is saved across internal routine calls, which is to say that an internal
routine will inherit the time clock started by its caller, but if it should reset the clock
any timing being done by the caller will not be affected. An example of the
elapsed-time calculator:

time(1E 1
) -> 0 /*The first call */

/* pause of one second here */
time(1 E1

) -> 1.002345 /* or thereabouts */
/* pause of one second here */
time(1 R1

) -> 2.004690 /*or thereabouts */
/* pause of one second here */
time(1R1

) -> 1.002345 /*or thereabouts */

Note: See the note under DATE about consistency of times within a single
expression. The elapsed-time clock is synchronized to the other calls to TIME and
DATE, so multiple calls to the elapsed-time clock in a single expression will always
return the same result. For the same reason, the interval between two normal
TIME/DATE results may be calculated exactly using the elapsed-time clock.

Implementation maximum: Should the number of seconds in the elapsed time exceed
nine digits (equivalent to over 31.6 years), an error will result.

returns trace actions currently in effect.

If option is supplied, it must be one of the valid prefixes (? or !) and/or alphabetic
character options (i.e., starting with A, C, E, F, I, L, N, 0, R, or S) associated with
the TRACE instruction. (See the TRACE instruction, on page 64, for full details.)
The function uses option to alter the effective trace action (like, tracing Labels, etc.).
Unlike the TRACE instruction, the TRACE function alters the trace action even if
interactive debug is active.

Unlike the TRACE instruction, option cannot be a number.

Here are some examples:

TRACE()
TRACE(1 0 1

)

TRACE (I ? I I)

-> '?R' /*maybe*/
-> 1 ?R 1 /* also sets tracing off */
-> 'O' /* now in interactive debug */

Chapter 4. Functions 103

Functions

TRANSLATE

TRUNC

translates characters in string to other characters, or reorders characters in a string.
If neither translate table is given, string is simply translated to uppercase (i.e. a
lowercase a-z to an uppercase A-Z). The output table is tab 1 eo and the input
translate table is tab lei (the default is XRANGE(1 00 1 x, 'FF'x)). The output table
defaults to the null string and is padded with pad or truncated as necessary. The
default pad is a blank. The tables can be of any length: the first occurrence of a
character in the input table is the one that is used if there are duplicates.

Here are some examples:

TRANSLATE(1 abcdef 1
)

TRANSLATE(1 abbc', 1 &1
,

1 b1
)

TRANSLATE{ 1 abcdef 1
,

1 12', 'ec')
TRANSLATE(1 abcdef 1

,
1 12 1

,
1 abcd 1

,
1

•
1

)

TRANSLATE(1 4123 1 ,tabcd 1
,

1 1234 1
)

->
->
->
->
->

1ABCDEF 1

1 a&&c 1

1 ab2dlf 1

'12 .. ef'
1 dabc 1

Note: The last example shows how the TRANSLATE function can be used to
reorder the characters in a string. In the example, any four-character string could be
specified as the second argument and its last character would be moved to the
beginning of the string.

returns the integer part of number, and n decimal places. The default n is zero, and
will return an integer with no decimal point. If specified, n must be a nonnegative
whole number. The number is first rounded according to standard REXX rules, just
as though the operation "number+O" had been carried out. The number is then
truncated to n decimal places (or trailing zeros are added if needed to make up the
specified length). The result will never be in exponential form.

Here are ,,some examples:
.(

TRUNC(12.3) ->
TRUNC(127.09782,3) ->
TRUNC(127.1,3) ->
TRUNC(127,2) ->

12
127.097
127.100
127.00

Note: The number will be rounded according to the current setting of NUMERIC
DIGITS if necessary before being processed by the function.

104 TSO/E Version 2 REXX Reference

!~
)

I~
!

USER ID

I u

VALUE

Functions

returns the TSO/Euser ID, if the REXX exec is executing in the TSO/E address
space. For example:

USERID() -> 1 ARTHUR 1 /* Maybe */

If the exec is executing in a non-TSO/E address space, the USERID function returns
one of the following values:

• User ID specified
• Stepname specified
• Jo bname specified

The value that is returned is the first one that does not have a null value. For
example, if the user ID is null but the stepname is specified, the USERID function
returns the value of the stepname.

TSO/E allows you to replace the routine (module) that is called to determine the
value the USERID function returns. This is known as the user ID replaceable
routine and is described in "User ID Routine" on page 389. In general, you can
only replace the routine in non-TSO/E address spaces. Chapter 16, "Replaceable
Routines and Exits" describes replaceable routines in detail and any exceptions to
this rule.

returns the value of the symbol named by name. name must be a valid REXX
symbol, or an error results. Note the SYMBOL function can be used to test for the
validity of a symbol, and takes the same form of argument. Like symbols appearing
normally in REXX expressions, lowercase characters in name will be translated to
uppercase (i.e. a lowercase a-z to an uppercase A-Z) and substitution in a compound
name will occur if possible.

Here are some examples:

/* following:
VALUE(! fred 1)

VALUE(fred)
VALUE(! a 1 j)
VALUE(' a 1 j I U)

Drop A3; A33=7; J=3; fred= 1 J' */
-> 1 J 1 /* looks up "FRED" */
-> 1 31 /* looks up "J" */
-> 1 A3'
-> 171

Note: The VALUE function is typically used when a variable contains the name of
another variable, or a name is constructed dynamically; for example,
VALUE(' LINE' index}. It is not useful to wholly specify name as a quoted string, since
the symbol is then constant and so the whole function call could be replaced directly
by the data between the quotes. (For example, fred=VALUE (1 j 1

) is always identical
to the assigmnent fred=j).

Chapter 4. Functions 105

Functions

VERIFY

WORD

verifies that string is composed only of characters from reference, by returning the
position of the first character in string that is not also in reference. If all the
characters were found in reference, 0 is returned.

The third argument, opt ion, can be any expression that results in a string starting
with N or M that represents either Nomatch (the default) or Match. Only the first
character of option is significant and it can be in upper or lower case, as usual. If
Nomatch is specified, the position of the first character in string that is not also in
reference is returned. 0 is returned if all characters in string were found in
reference. If Match is specified, the position of the first character in string that is
in reference is returned, or 0 if none of the characters were found.

The default for start is 1, thus, the search starts at the first character of string.
This can be overridden by giving a different start point, which must be a positive
whole number.

If string is null, the function returns 0, regardless of the value of the third
argument. Similarly if start is greater than LENGTH (string), 0 is returned. If
reference is null and option Match is specified, the function will return 0. If
reference is null and option Nomatch specified, or left to default, the function will
return 1.

Here are some examples:

VERIFY(1 123 1
, '1234567890') -> 0

VERIFY(1 1Z3 1
,

1 1234567890 1
) -> 2

VERIFY('AB4T', 1 1234567890') -> 1
VERIFY(1 AB4T 1

,
1 1234567890' , 1M') -> 3

VERIFY(1 AB4T 1
,

1 1234567890','N') -> 1
VERIFY('1P3Q4 1

,
1 1234567890',,3) -> 4

VERIFY('AB3C05 1
,

1 1234567890 1
,

1M1 ,4) -> 6

returns the .nth blank-delimited word in string. n must be a positive whole number.
If there are fewer than n words in string, the null string is returned. This function is
exactly equivalent to SUBWORD (string, n, 1).

106 TSO/E Version 2 REXX Reference

/~
I J

:~
J

u
WORDINDEX

WORDLENGTH

WORDPOS

Here are some examples:

WORD(1 Now is the time 1 ,3)
WORD(1 Now is the time 1 ,5)

->
->

Functions

11

returns the position of the first character in the nth blank-delimited word in string.
n must be a positive whole number. If there are fewer than n words in the string, 0
is returned.

Here are some examples:

WORDINDEX(1 Now is the time• ,3)
WORDINDEX(1 Now is the time• ,6)

->
->

8
e

returns the length of the nth blank-delimited word in string. n must be a positive
whole number. If there are fewer than n words in the string, 0 is returned.

Here are some examples:

WORDLENGTH(1 Now is the time 1 ,2)
WORDLENGTH(1 Now comes the time',2)
WORDLENGTH(1 Now is the time 1 ,6)

->
->

->

2
5
e

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string. Multiple
blanks between words in either phrase or string are treated as a single blank for the
comparison, but otherwise the words must match exactly. Returns 0 if phrase is not
found.

By default the search starts at the first word in string. This may be overridden by
specifying start (which must be positive), the word at which to start the search.

Chapter 4. Functions 107

Functions

WORDS

XRANGE

X2C

Examples:

WORDPOS(1 the 1
,

1 now is the time')
WORDPOS(1 The 1

,
1 now is the time 1

)

WORDPOS(1 is the','now is the time')
WORDPOS(1 is the 1

,
1 now is the time')

WORDPOS('is time 1
,

1 now is the time')
WORDPOS(1 be', 1 To be or not to be')
WORDPOS{lbe 1

,
1 To be or not to be 1 ,3)

-> 3
-> 0
-> 2
-> 2
-> e
-> 2
-> 6

returns the number of blank-delimited words in string.

Here are some examples:

WORDS(1 Now is the time 1
)

WORDS(I I)
->
->

4
0

returns a string of all one-byte codes between and including the values start and
end. The default value for start is 'OO'x, and the default value for end is 'FF'x. If
start is greater than end, the values will wrap from 'FF'x to 'OO'x. If specified,
start and end must be single characters.

Here are some examples:

XRANGE(1 a 1
,

1 f 1
) ->

XRANGE(1 03 1 x, 1 87 1 x) ->
XRANGE(, 1 04 1 x) ->

XRANGE('i 1
,

1 j 1
) ->

XRANGE(1 FE'x, 182 1 x) ->

1 abcdef 1

10304058607 1 x
10801020304'x
1 898A8B8C8D8E8F9091 1 x /*EBCDIC*/
'FEFF008102'x

Hexadecimal to Character. Converts hexstring (a string of hexadecimal characters)
to character. If necessary, hexstring will be padded with a leading 0 to make an
even number of hexadecimal digits.

108 TSO/E Version 2 REXX Reference

/~
' J

!~;
.)

X2D

\._,/

I

!'-../

Functions

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

Here are some examples:

X2C (I F7 F2 A2 I)

X2C (1 F7f2a2 1
)

X2C (IF I)

->

->

->

1 725 1

1 725 1

1 0F'x

/* EBCDIC */
/* EBCDIC */

Hexadecimal to Decimal. Converts hexstri ng (a string of hexadecimal characters)
to decimal. If the result cannot be expressed as a whole number, an error results.
That is, the result must have no more than NUMERIC DIGITS digits.

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

If hexs t ring is the null string, then 10 1 is returned.

If n is not specified, hexstring is processed as an unsigned binary number.

Here are some examples:

X2DC0E 1
) -> 14

X2DC81 1) -> 129
X2D('F81 1

) -> 3969
X2D(I FF8l 1) -> 65409
X2DC c6 ftl 1 X) -> 240

If n is specified, the given sequence of hexadecimal digits is padded on the left with
zeros (note, not "sign·extended"), or truncated on the left to n characters. The
resulting string of n hexadecimal digits is taken to be a signed binary number:
positive if the leftmost bit is off, and negative, in two's complement notation, if the
leftmost bit is on. If n is 0, 0 is always returned.

Here are some examples:

X2 D (I 81 I , 2) -> -127
x2 D (• a 1 • , 4) -> 129
X2D(I F08l 1 ,4) -> -3967
X2D(I F08l 1 ,3) -> 129
X2D(I F08l 1 ,2) -> -127
X2D(I F08l 1'1) -> 1
X20(10031 1 ,0) -> 0

Implementation maximum: The input string may not have more than 500
hexadecimal characters that will be significant in forming the final result. Leading
sign characters (0 and F) do not count towards this total.

Chapter 4. Functions 109

Functions

TSO/E Functions

LISTDSI

TSO/E provides functions called TSO/E external functions. Most of the TSO/E
functions can be used only in REXX execs that execute in the TSO/E address space.
The exception is the STORAGE function. You can use the STORAGE function in
a REXX exec that executes in any address space, both TSO/E and non-TSO/E.

Examples are provided that show how to use the TSO/E functions. The examples
may include data set names. When an example includes a data set name that is
enclosed in single quotes, the prefix is added to the data set name. In the examples,
the user ID is the prefix.

Note: If you customize REXX processing and use the initialization routine
IRXINIT, you can initialize a language processor environment that is not integrated
into TSO/E (see page 273). The STORAGE function can be used in any type of
language processor environment. The other TSO/E functions can be used only if the
environment is integrated into TSO/E. Chapter 13, "TSO/E REXX Customizing
Services" describes customization and language processor environments in more
detail.

returns one of the following function codes that replace the function call, and
retrieves information about a data set's allocation, protection, and directory and
stores it in specific variables.

Function Codes

0 -- normal completion.

4 -- some data set information is unavailable. All data set information other
than directory information can be considered valid.

16 -- Error occurred. None of the variables containing information about the
data set can be considered valid.

The variables in which LISTDSI stores data set information are described in
Figure 4 on page 113. The options you can specify on the LISTDSI function are:

data-set-name the name of the data set about which you want to retrieve
information. This can be the name of a sequential data set or a
PDS. See "Specifying Data Set Names" on page 112 for more
information.

location specifies how you want the data set (as specified in data-set-name)
located. You can specify location only if you specify a data set
name, not a filename. For location, specify one of the following:

• VOLUME(serial ID)

110 TSO/E Version 2 REXX Reference

i~\
')

f~
l

i '
_.)

I

_;

filename

type

directory

recall

Functions

specifies the serial number of the volume where the data set is
located. If you do not specify either VOLUME or
PREALLOC, the system locates the data set through catalog
search.

• PREALLOC
specifies that the location of the specified data set is determined
by allocating the data set, rather than through a catalog search.
PREALLOC allows data sets that have been previously
allocated to be located without searching a catalog and allows
unmounted volumes to be mounted. If you do not specify
either VOLUME or PREALLOC, the system locates the data
set through catalog search.

the name of an allocated file (ddname) about which you want to
retrieve information.

for type, you must specify the word "FILE," if you specify
filename instead of data-set-name. If you do not specify FILE,
LISTDSI assumes that you specified a data-set-name.

indicates whether or not you want directory information for a
partitioned data set (PDS). For directory, specify one of the
following:

• DIRECTORY
indicates that you want directory information.

• NODIRECTORY
indicates that you do not want directory information. If you
do not require directory information, NODIRECTORY can
significantly speed up processing. NODIRECTORY is the
default.

indicates whether or not you want to recall a data set migrated by
Data Facility Hierarchical Storage Manager (DFHSM). For recall,
specify one of the following:

• RECALL
indicates that you want to recall a data set migrated by
DFHSM. The system recalls the data set regardless of its level
of migration or the type of device it has been migrated to.

• NORECALL
indicates that you do not want to recall a data set. If the data
set has been migrated, the system stores an error message.

If you do not specify either RECALL or NORECALL, the
system recalls the data set only if it has been migrated to a
direct access storage device (D ASD).

You can use LISTDSI to obtain information about a data set that is available on
DASD. LISTDSI does not directly support data that is on tape or in mass storage.
It supports generation data group (GDG) data sets, but does not support relative
GDG names.

The LISTDSI function can be used only in RE.XX execs that execute in the TSO/E
address space.

Chapter 4. Functions 111

Functions

Environment Customization Considerations -------------~

If you use IRXINIT to initialize language processor environments, note that
LISTDSI can be used only in environments that are integrated into TSO/E (see
page 273).

An exec can use the LISTDSI information to determine whether the data set is the
right size or has the right organization or format for a given task. It can also use
the LISTDSI information as input to the ALLOCATE command, to create a new
data set using some attributes from the old data set while modifying others.

If you use LISTDSI to retrieve information about a VSAM data set, the exec stores
only the volume serial ID (in variable SYSVOLUME), the device unit (in variable
SYSUNIT), and the data set organization (in variable SYSDSORG). All other
LISTDSI variables are set to nulls.

If you use LISTDSI to retrieve information about a multiple volume data set, the
exec stores information for the first volume only. Similarly, if you specify a file
name or the PREALLOC parameter and you have other data sets allocated to the
same file name, then the system might not retrieve information for the data set you
wanted.

Specifying Data Set Names
On the LISTDSI function, if you use data-set-name instead of filename, you can
specify the name of a sequential data set or a partitioned data set (PDS). You can
specify the data-set-name in any of the following ways:

• Fully-qualified data set name - The extra quotation marks prevent TSO/E from
adding your prefix to the data set name.

x = LISTDSI(" 1 sysl.proj.new 1
")

x = LISTDSI(111 sysl.proj.new 111
)

• Non fully-qualified data set name that follows the naming conventions - When
there is only one set of quotation marks or no quotation marks, TSO/E adds
your prefix to the data set name.

x = LISTDSI(1myrexx.exec 1
)

x = LISTDSI(myrexx.exec)

• Variable name that represents a fully-qualified or non fully-qualified data set
name - The variable name must not be enclosed in quotation marks because
quotation marks prevent variable substitution. For example:

/* REXX program for •... */

varl 1 sysl.proj.monthly 1

LISTDSI (varl)

EXIT

112 TSO/E Version 2 REXX Reference

·~
I

!~
\

I ; v

Functions

Variables Set by LISTDSI
Figure 4 describes the contents of the variables set by LISTDSI. For VSAM data
sets, only the variables SYSVOLUME, SYSUNIT, and SYSDSORG are accurate;
other variables are set to question marks.

Figure 4 (Page I of 2). Variables Set By LISTDSI

Variable Contents

SYSDSNAME Data set name

SYSVOLUME Volume serial ID

SYS UNIT Device unit on which volume resides

SYSDSORG Data set organization:

PS - Physical sequential
PSU - Physical sequential unmovable
DA - Direct organization
DAU - Direct organization unmovable
IS - Indexed sequential
ISU - Indexed sequential unmovable
PO - Partitioned organization
POU - Partitioned organization unmovable
vs -VSAM
??? - Unknown

SYSRECFM Record format; three-character combination of the
following:

u - Records of undefined length
F - Records of fixed length
v - Records of variable length
T "'. Records written with the track overflow feature of

the device (3375 and 3380 do not support track
overflow)

B - Records blocked
s - Records written as standard or spanned

variable-length blocks
A - Records contain ASCII printer control characters
M - Records contain machine code control characters
? - Unknown

SYSLRECL Logical record length

SYSBLKSIZE Block size

SYSKEYLEN Key length

SYSALLOC Allocation, in space units

SYS USED Allocation used, in space units

SYSPRIMARY Primary allocation in space units

SYSSECONDS Secondary allocation in space units

SYS UNITS Space units:

CYLINDER - Space units in cylinders
TRACK - Space units in tracks
BLOCK - Space units in blocks
???????? - Space units are unknown

SYS EXTENTS Number of extents used

SYSCREATE Creation date:
Year/day format, for example: 1985/102

Chapter 4. Functions 113

Functions

Figure 4 (Page 2 of 2). Variables Set By LISTDSI

Variable Contents

SYSREFDATE Last referenced date
Year/day format, for example: 1985/107
(Specifying DIRECTORY causes the date to be
updated)

SYSEXDATE Expiration date
Year/day format, for example: 1985/365

SYSPASSWORD Password indication:

NONE - No password protection
READ - Password required to read
WRITE - Password required to write

SYSRACFA RACF indication:

NONE - No RACF protection
GENERIC - Generic profile covers this data set
DISCRETE - Discrete profile covers this data set

7'.
I)

I

SYSUPDATED Change indicator:

YES - Data set has been updated
NO - Data set has not been updated

SYSTRKSCYL Tracks per cylinder for the unit identified in the
SYSUNIT variable

SYSBLKSTRK Blocks per track for the unit identified in the SYSDNIT
variable

SYSADIRBLK Directory blocks allocated - returned only for
I~

partitioned data sets when DIRECTORY is specified

SYSUDIRBLK Directory blocks used - returned only for partitioned
data sets when DIRECTORY is specified

SYSMEMBERS Number of members - returned only for partitioned data
sets when DIRECTORY is specified

SYSREASON LISTDSI reason code

SYSMSGLVLI First level message if an error occurred

SYSMSGLVL2 Second level message if an error occurred

114 TSO/E Version 2 REXX Reference

Messages

Function Codes

u

I i \.,_.//

Functions

All LISTDSI messages are set in the variables SYSMSGL VLl and SYSMSGL VL2.
See TSO/ E Version 2 Messages for explanations of the messages.

Function codes from LISTDSI replace the function call. Error routines do not
receive control when an exec receives a nonzero function code from LISTDSI. The
following table lists the LISTDSI function codes and their meanings.

Figure 5. LISTDSI Function Codes

Function Code Meaning

0 Normal completion

4 Some data set information is unavailable. All data set
information other than directory information can be considered
valid.

16 Severe error occurred. None of the variables can be considered
valid.

Chapter 4. Functions 115

Functions

Reason Codes
Reason codes from the LISTDSI function appear in variable SYSREASON. The
following table lists the LISTDSI reason codes and their meanings.

Figure 6. LISTDSI Reason Codes

Reason Code Meaning

0 Normal completion

1 Error parsing the function.

2 Dynamic allocation processing error (SVC 99 error).

3 The data set is a type that cannot be processed.

4 Error determining UNIT name (IEFEB4UV error).

5 Data set not cataloged (LOCATE macro error).

6 Error obtaining the data set name (OBTAIN macro error).

7 Error finding device type (DEVTYPE macro error).

8 The data set does not reside on a direct access device.

9 DFHSM migrated the data set, NORECALL prevents retrieval.

11 Directory information was requested, but you lack authority to
access the data set.

12 VSAM data sets are not supported.

13 The data set could not be opened.

14 Device type not found in unit control block (UCB) tables.

17 System or user ABEND occurred.

18 Partial data set information was obtained.

19 Data set resides on multiple volumes.

20 Device type not found in eligible device table (EDT).

21 Catalog error trying to locate the data set.

22 Volume not mounted (OBTAIN macro error).

23 Permanent I/O error on volume (OBTAIN macro error).

24 Data set not found by OBTAIN macro.

25 Data set migrated to non-DASD device.

26 Data set resides on a mass storage device.

27 No volume serial is allocated to the data set.

28 The ddname must be one to eight characters.

29 Data set name or ddname must be specified.

116 TSO/E Version 2 REXX Reference

:r\
}

(~
I

(
~

Error Codes

Examples

Functions

Error codes appear in some messages in variable SYSMSGLVL2. The following
table lists the LISTDSI error codes and the modules affected.

Error Code Meaning

04B/OOC Module IKJLDIOO passed an invalid operation code to module
IKJLDIOl; IKJLDIOl cannot proceed.

04B/014 Module IKJLDIOO passed an invalid operation code to module
IKJLDI03; IKJLDI03 cannot proceed.

441/nnn An error occurred while variables were being set in module
IKJCT441; the reason code is the return code passed from
IKJCT441 to IKJLDI03.

040/nnn An error occurred using the PUTLINE service in module
IKJLDI03. The reason code is the return code received from
the PUTLINE service.

04B/010 Module IKJLDIOO passed an invalid operation code to module
IKJLDl99; IKJLDl99 cannot proceed.

Figure 7. LISTDSI Error Codes

These error codes indicate that an ABEND has occurred. If a dump data set is
allocated, a dump will be taken.

1. To set variables with information about data set USERID.WORK.EXEC, use
the LISTDSI function as follows:

x = LISTOSI(work.exec)
SAY 'Function code from LISTDSI is: x
SAY 'The data set name is: 1 sysdsname
SAY 1 The device unit on which the volume resides is:' sysunit
SAY 'The record format is: 1 sysrecfm
SAY 'The logical record length is: 1 syslrecl
SAY 1 The block size is: 1 sysblksize
SAY 'The allocation in space units is: 1 sysalloc
SAY 'Type of RACF protection is: 1 sysracfa

Output from the example might be:

Function code from LISTOSI is: 0
The data set name is: USERID.WORK.EXEC
The device unit on which the volume resides is: 3380
The record format is: VB
The logical record length is: 255
The block size is: 6124
The allocation in space units is: 33
Type of RACF protection is: GENERIC

2. To retrieve information about the DD called APPLPAY, you can use LISTDSI
as follows:

ddi nfo LISTDSI (11 appl pay 11 11 FI LE")

3. Suppose you want to retrieve information about a PDS called
SYSLAPPL.P A YROLL, including directory information. You do not want the

Chapter 4. Functions 117

Functions

MSG

PDS to be located through a catalog search, but have the location determined by
the allocation of the data set. You can specify LISTDSI as follows:

/* REXX program for ••.• */

varl 11 sysl.appl .payroll 11

infod = 11 directory 11

pdsinfo LISTDSI(varl infod 11 prealloc 11
}

EXIT

In the example, the variable var 1 was assigned the name of the PDS
(SYS l .APPL.PAYROLL). Therefore, in the LI STD SI function call, var 1 is not
enclosed in quotes to allow for variable substitution. Similarly, the variable
infod was assigned the value "directory," so in the LISTDSI function, infod
becomes the word "directory." The PREALLOC argument is enclosed in quotes
to prevent any type of substitution. After the language processor evaluates the
LISTDSI function, it results in the following function call being executed:

LISTDSI(sysl.appl.payroll directory prealloc)

returns the previous status of message issuing, which can be on or off. That is, it
returns the previous capability of displaying messages from within an exec.

Using MSG, you can control the display of messages from commands and TSO/E
functions. The following options can be used to control the display of informational
messages issued by the PUTLINE service.

ON allows informational messages issued by the PUTLINE service to be
displayed while an exec is executing and returns the previous status of
message issuing. Informational messages are automatically displayed
unless an exec uses the MSG function to inhibit their display.

OFF inhibits the display of informational messages issued by the PUTLINE
service while an exec is executing and returns the previous status of
message issuing.

Note: The MSG function can be used only if the PTF for APAR OYI 7498 is
installed. See page 425.

Before the MSG function is used, all messages issued by the PUTLINE service are
displayed during exec execution. The MSG function can be used only in REXX
execs that execute in the TSO/E address space.

118 TSO/E Version 2 REXX Reference

.~
I

(°"'\
j

I~

/~
I

Example

OUTTRAP

Functions

Environment Customization Considerations ----------------.

If you use IRXINIT to initialize language processor environments, note that
MSG can be used only in environments that are integrated into TSO/E (see page
273).

When an exec uses MSG(OFF) to inhibit the display of messages, messages are not
issued while the exec executes and while functions and subroutines called by that
exec execute. The displaying of messages resumes if MSG(ON) is issued or when the
original exec ends. When an exec invokes another exec or CLIST using the EXEC
command, message issuing status from the invoking exec is not carried over into the
newly-invoked program. The newly-invoked program automatically displays
messages, which is the default.

Here are some examples:

MSG() -> 1 0FF 1 /* previous setting */
MSG (11 0FF 11

) -> 1 0N 1 /* returns previous setting (ON)
and inhibits message display */

The MSG function is functionally equivalent to the CLIST CONTROL MSG and
CONTROL NOMSG statements for TSO/E CLISTs.

Note: In non-TSO/E address spaces, you cannot control message output using the
MSG function. However, if you use the TRACE OFF keyword instruction,
messages will not go to the output file (for example, SYSTSPRT).

To make sure that messages associated with the TRANSMIT command will not be
displayed before including the TRANSMIT command in an exec, use the MSG
function as follows:

IF MSG() = 1 0FF 1 THEN,
11 TRANSMIT node.userid DA(myrexx.exec) 11

ELSE
DO

x = MSG(11 0FF 11
)

11 TRANSMIT node.userid DA(myrexx.exec) 11

END

returns the name of the variable in which trapped output is stored, or if trapping is
not in effect, it returns the word 'OFF'.

Chapter 4. Functions 119

Functions

You can use the following options to trap lines of command output into compound
variables or a series of numbered variables, or to turn trapping off that was previous
started.

off specify the word 'OFF' to tum trapping off.

varname the stern of the compound variables or the variable prefix assigned to
receive the command output. Compound variables contain a period and
allow for indexing, but lists of variables with the same prefix cannot be
accessed by an index in a loop. The variable must be a valid REXX
variable limited to 242 characters.

max the maximum number of lines to trap. You can specify a number, an
asterisk in quotation marks ('*'), or a blank. If you specify a blank or '*',
all the output is trapped. The default is 999,999,999.

concat indicates how output should be trapped. For concat, specify one of the
following:

• CONCAT
indicates that output from all commands be trapped in consecutive
order until the maximum number of lines is reached. For example, if
the first command has three lines of output, they are stored in
variables ending in 1, 2, and 3. If the second command has two lines
of output, they are stored in variables ending in 4 and 5. The default
order for trapping is CONCAT.

• NOCONCAT
indicates that output from each command be trapped starting at the
variable ending in 1. For example, if the first command has three lines
of output, they are stored in variables ending in 1, 2, and 3. If another
command has two lines of output, they replace the first command's
output in variables 1 and 2.

Lines of output are stored in successive variable names (as specified by varname)
concatenated with integers starting with 1. All unused variables display their own
names. The number of lines that were trapped is stored in the variable name
followed by 0. For example, if you specify cmdout. as the varname, the number of
lines stored is in:

cmdout.0

If you specify cmdout as the varname, the number of lines stored is in:

cmdout0

An exec can use these variables to display or process command output. Error
messages from commands are trapped, but other types of error messages are routed
to the terminal. Trapping, once begun, continues from one exec to other invoked
execs or CLISTs. Trapping ends when the original exec ends or when trapping is
turned off.

The OUTTRAP function can be used only in REXX execs that execute in the
TSO /E address space.

120 TSO/E Version 2 REXX Reference

\._)

Functions

Environment Customization Considerations ---------------

If you use IRXINIT to initialize language processor environments, note that
OUTTRAP can be used only in environments that are integrated into TSO/E
(see page 273).

To trap the output of TSO/E commands under ISPF, you must invoke an exec with
command output after ISPF or one of its services has been invoked.

OUTTRAP does not save command output sent to the terminal by a TPUT or
WTO macro. However, it does save output from the PUTLINE macro with DATA
or INFOR keywords.

Additional Variables Available
In addition to the variables that store the lines of output, OUTTRAP stores
information in the following variables:

varnameO
contains the largest index into which output was trapped. The number in this
variable cannot be larger than varnameMAX or varnameTRAPPED.

varnameMAX
contains the maximum number of output lines that can be trapped.

varnameTRAPPED
contains the total number of lines of command output. The number in this
variable can be larger than varnameO or varnameMAX.

varnameCON
contains the status of the concat argument, which is either CONCAT or
NOCONCAT.

The following examples are of two OUTTRAP function calls and the resulting
values in variables.

Example 1

x OUTTRAP(11 ABC 11 ,4, 11 CONCAT 11
)

Command 1 has three lines of output.

ABCO --> 3
ABCl --> output line 1
ABC2 --> output line 2
ABC3 --> output line 3
ABC4 --> ABC4
ABCMAX --> 4
ABCTRAPPED --> 3
ABC CON --> CONCAT

Command 2 has two lines of output. The second line is not trapped.

Chapter 4. Functions 121

Functions

Examples

ABC0 --> 4
ABCl --> command 1 output 1 i ne 1
ABC2 --> command 1 output line 2
ABC3 --> command 1 output line 3
ABC4 --> command 2 output 1 i ne 1
ABCMAX --> 4
Al3CTRAPPED --> 5
ABC CON --> CONCAT

Example 2

x = OUTTRAP(11 XYZ. 11 ,4, 11 NOCONCAT11
)

Command I has three lines of output.

XYZ.0 --> 3
XYZ.l --> output 1 i ne 1
XYZ.2 --> output 1 ine 2
XYZ.3 --> output line 3
XYZ.4 --> XYZ.4
XYZ.MAX --> 4
XYZ.TRAPPED --> 3
XYZ.CON --> NOCONCAT

Command 2 has two lines of output.

XYZ.0 --> 2
XYZ.l --> command 2 output 1 i ne 1
XYZ.2 --> command 2 output 1 ine 2
XYZ.3 --> command 1 output line 3
XYZ.4 --> XYZ.4
XYZ.MAX --> 4
XYZ.TRAPPED --> 2
XYZ.CON --> NOCONCAT

1. To determine if outtrapping is in effect:

x = OUTTRAP()
SAY x /* If the exec is trapping output, displays the */

/* variable name; if it is not trapping output, */
/* displays OFF */

2. To trap all output from commands in consecutive order into the stem

output.

use one of the following:

x = OUTTRAP(11 output. 11
,

1 * 1
,

11 CONCAP)

x = OUTTRAPC'output. 11
)

x = OUTTRAP(11 output. 11
,,

11 CONCAP)

3. To trap 6 lines of output into the variable prefix 1 i ne and not concatenate the
output:

x = OUTTRAP(line,6, 11 NOCONCAP)

4. To suppress all command output:

x = OUTTRAP(11 outout 11 ,0)

122 TSO/E Version 2 REXX Reference

!~

/~
!)

·~
!

u

u PROMPT

I
\..._./'

Functions

5. Allocate a new data set like an existing one and if the allocation was successful,
delete the existing one. If the allocation is not successful, display the trapped
output from the ALLOCATE command.

x = OUTTRAP(i'var. 11
)

"ALLOC DA(new.data) LIKE(old.data) NEW"
IF RC = 0 THEN

"DELETE old.data"
ELSE

DO i = 1 TO var.0
SAY var. i

END

If the ALLOCATE command is not successful, error messages are trapped in the
fol1owing compound variables.

VAR.1 =error message
VAR.2 = error message
VAR.3 error message

returns the previous setting of prompt for the exec, which can be on or off.

The following options can be used to set prompting on or off for interactive TSO/E
commands, provided your profile allows for prompting. Only when your profile
specifies PROMPT, can prompting be made available to commands issued in an
exec.

ON sets prompting on for TSO/E commands issued within an exec and returns
the previous setting of prompt.

OFF sets prompting off for TSO/E commands issued within an exec and returns
the previous setting of prompt.

Here are some examples:

PROMPT() -> 1 0FF 1

PROMPT(11 0N 11
) -> 1 0FF 1

/* previous setting */
/* returns previous setting (OFF)

and sets prompting on */

The PROMPT function can be used only in REXX execs that execute in the TSO/E
address space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that
PROMPT can be used only in environments that are integrated into TSO/E (see
page 273).

Chapter 4. Functions 123

Functions

Prompting for an exec can be set by the PROMPT option of the EXEC command as
well as by the PROMPT function. The PROMPT function overrides the PROMPT
option of the EXEC command. For more information about situations when one
option overrides the other, see "Interaction of Three Ways to Affect Prompting" on
page 124.

When an exec sets prompting on, prompting continues in other functions and
subroutines called by the exec. Prompting ends when the PROMPT(OFF) function
is used or when the original exec ends. When an exec invokes another exec or
CLIST with the EXEC command, prompting in the new exec or CLIST depends on
the setting in the profile and the use of the PROMPT keyword on the EXEC
command.

If the data stack is not empty, commands that prompt will retrieve information from
the data stack before prompting a user at the terminal. To prevent a prompt from
retrieving information from the data stack, issue a NEWSTACK command to create
a new data stack for the exec.

Note: When your TSO/E profile specifies NOPROMPT, no prompting is allowed in
your terminal session even though the prompt function returns ON.

Interaction of Three Ways to Affect Prompting
You can control prompting within an exec in three ways:

1. TSO /E profile

The PROFILE command controls whether prompting is allowed for TSO/E
commands in your terminal session. The PROMPT operand of the PROFILE
command sets prompting on and the NOPROMPT operand sets prompting off.

2. EXEC command

When you invoke an exec with the EXEC command, you can specify the
PROMPT operand to set prompting on for the commands issued within the
exec. The default is NOPROMPT.

3. PROMPT function

You can use the PROMPT function to set prompting on or off within an exec.

The following table shows how the three ways to affect prompting interact and the
final outcome of various interactions.

Interaction Prompting No Prompting

PRO FI LE PROMPT x
EXEC PROMPT
PROMPT(ON)

PROFILE PROMPT x
EXEC NOPROMPT
PROMPT(ON)

PROFILE PROMPT x
EXEC NOPROMPT
PROMPT()

PRO FI LE PROMPT x
EXEC NOPROMPT
PROMPT (OFF)

124 TSO/E Version 2 REXX Reference

!~
I

:~

!~

Examples

Functions

Interaction Prompting No Prompting

PRO FI LE PROMPT x
EXEC PROMPT
PROMPT()

PRO FI LE PROMPT x
EXEC PROMPT
PROMPT (OFF)

PROFILE NOPROMPT x
EXEC PROMPT
PROMPT(ON)

PROFILE NOPROMPT x
EXEC NOPROMPT
PROMPT(ON)

PROFILE NOPROMPT x
EXEC PROMPT
PROMPT (OFF)

PROFILE NOPROMPT x
EXEC NOPROMPT
PROMPT (OFF)

PROFILE NOPROMPT x
EXEC PROMPT
PROMPT()

PROFILE NOPROMPT x
EXEC NOPROMPT
PROMPT()

l. To check if prompting is available before issuing the interactive TRANSMIT
command, use the PROMPT function as follows:

"PRO FI LE PROMPT"
IF PROMPT() = 1 0N 1 THEN,

11 TRANSMIT 11

ELSE
DO

x = PROMPT(1 0N')
"TRANSMIT"

END

2. Suppose you want to use the LISTDS command in an exec and want to ensure
that prompting is done to the terminal. You can check whether the data stack
is empty and specify the PROMPT function before issuing the LISTDS
command.

IF QUEUED() > 0 THEN
11 NEWSTACK 11

ELSE NOP
x PROMPTC ON')
11 LISTDS 11

Chapter 4. Functions 125

Functions

STORAGE

Examples

returns one byte of data from the specified address in storage. The address is the
hexadecimal representation of the storage address from which data is retrieved.

Optionally, you can specify length, which is the decimal number of bytes to be
retrieved from address. When length is 0, a null character string is returned.

If data is specified, the information from address is returned and then the storage
starting at address is overwritten with data specified on the function call. The data is
the character string to be stored at address. The length argument has no effect on
how much storage is overwritten; the entire data is written.

The STORAGE function can be used by REXX execs that execute in any MVS
address space (TSO/E and non-TSO/E).

If the STORAGE function tries to retrieve or change data beyond the storage limit,
only the storage up to the limit is retrieved or changed.

Note: Virtual storage addresses may be fetch protected, update protected, or may
not be defined as valid addresses to the system. Any particular invocation of the
STORAGE function may fail if it references a non-existent address, attempts to
retrieve the contents of fetch protected storage, or attempts to update non-existent
storage or is attempting to modify store protected storage. In all cases, a null string
will be returned to the REXX exec.

The STORAGE function will return a null string, if any part of the request fails.
Since the STORAGE function can both retrieve and update virtual storage at the
same time, it will not be evident whether the retrieve or update caused the null string
to be returned. In addition, a request for retrieving or updating storage of a shorter
length might have be successful. When part of a request fails, the failure point will
be on a decimal 2048 boundary.

1. To retrieve 25 bytes of data from address OOOAAE35, use the STORAGE
function as follows:

storret = STORAGE(000AAE35,25)

2. To replace the data at address 0035D41F with 'TSO/E REXX', use the following
STORAGE function:

storrep = STORAGE(0035041F,, 1 TSO/E REXX 1
)

This example first returns one byte of information found at address 0035D41F
and then replaces the data beginning at address 0035D41F with the characters
'TSO/E REXX'.

Note: Information is retrieved before it is replaced.

126 TSO/E Version 2 REXX Reference

/\

!~

SYSDSN

~i

Functions

returns one of the following messages that indicates whether the specified dsname
exists and is available for use. The dsname can be the name of a sequential or
partitioned data set or a data set member.

OK /* data set or member is available */
MEMBER NOT FOUND
MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED
DATASET NOT FOUND
ERROR PROCESSING REQUESTED DATASET
PROTECTED DATASET /* data set is RACF-protected */
VOLUME NOT ON SYSTEM
INVALID DATASET NAME, dsname
MISSING DATA SET NAME
UNAVAILABLE DATASET /* another user has an exclusive ENQ

on the specified data set */

The SYSDSN function can be used only in REXX execs that execute in the TSO/E
address space.

Environment Customization Considerations -------------____,

If you use IRXINIT to initialize language processor environments, note that
SYSDSN can be used only in environments that are integrated into TSO/E (see
page 273).

The dsname can be specified in any of the following ways:

• Fully-qualified data set name - The extra quotation marks prevent TSO/E from
adding your prefix to the data set name.

x = SYSDSN("'sysl.proj.new'")
or

x = SYSDSN(11 'sysl.proj.new' 1
')

• Non fully-qualified data set name that follows the naming conventions When
there is only one set of quotation marks or no quotation marks, TSO/E adds
your prefix to the data set name.

x = SYSDSN(1myrexx.exec 1
)

or
x = SYSDSN(myrexx.exec)

• Variable name that represents a fully-qualified or non fully-qualified data set
name - The variable name must not be enclosed in quotation marks because
quotation marks prevent variable substitution.

x = SYSDSN(variable)

If the specified data set has been migrated, SYSDSN attempts to recall it.

Chapter 4. Functions 127

Functions

Examples

SVSVAR

I. To determine the availability of PROJ.EXEC(MEMI):

x = SYSDSNC1proj .exec(meml) 11
)

IF x = 10K 1 THEN
CALL routinel

ELSE
CALL routine2

2. To determine the availability of DEPT.REXX.EXEC:

s = SYSDSN("'dept.rexx.exec 1
")

say s

returns information about MVS, TSO/E, and the current session~ such as levels of
software available, your logon procedure, and your user ID. The information
returned depends on the arg_ name value specified on the functiob call. The
arg name values are divided into four categories: user informatibn, terminal
inf~rmation, exec information, and system information. The foJr categories are
described below. I

User Information

SY SP REF

SYSPROC

SYSUID

I

prefix as defined in the user profile and as prefixed to non
fully~qualified data set names. I

name of the logon procedure for the current sdssion.

user ID under which the current session is logJed.

Terminal Information

SYSLTERM number of lines available on the temiinal scree~ (returns 0 in the
background).

SYSWTERM

Exec Information

SYSENV

SYSICMD

SYSISPF

SYSNEST

SYSPCMD

width of the terminal screen.

whether the exec is running in the foreground br the background
(returns FORE or BACK). I

name by which the exec was implicitly invoked. (returns a null if
the exec was invoked explicitly). \

whether ISPF dialog manager services are available for the exec
(returns ACTIVE or NOT ACTIVE).

1

whether the exec was invoked from another prhgram, such as an
exec or CLIST (returns YES or NO). The inv6cation could be
implicit or explicit.

1

name or abbreviation of the most recently exe~uted command.

128 TSO/E Version 2 REXX Reference

/~
l
J

Functions

SYSSCMD name or abbreviation of the most recently executed subcommand.

System Information

SYS CPU

SYSHSM

SYSLRACF

SYSRACF

SYSSRV

SYSTSOE

number of seconds of central processing unit (CPU) time used
during the session in the form: seconds.hundreths-of-seconds

status of the Data Facility Hierarchical Storage Manager
(DFHSM). If DFHSM is not active, returns null. If level of
DFHSM is:

• Before Version 1 Release 3, returns AVAILABLE
• Version 1 Release 3 or later, returns a 4-digit number in the

following format:
2 0 2 0 (OFHSM Version 2 Release 2.0)

111 modification number
release number

...__ ___ version number

level of RACF installed. If RACF is not installed, returns a null.
If RACF is installed, returns a 4-digit number in the following
format:

1 0 8 0 (RACF Version 1 Release 8.0)

modification number
..____._ __ rel ease number

.___ ___ version number

status of RACF (returns AVAILABLE, NOT AVAILABLE, or
NOT INSTALLED).

number of system resource manager (SRM) service units used
during the session.

level of TSO/E installed in the following format:

The SYSVAR function can be used only in REXX execs that execute in the TSO/E
address space.

Environment Customization Considerations ---------------.

If you use IRXINIT to initialize language processor environments, note that
SYSVAR can be used only in environments that are integrated into TSO/E (see
page 273).

Chapter 4. Functions 129

Functions

Control Variables Not Supported by SYSVAR

Examples

The information that SYSV AR returns is similar to the information stored in CLIST
control variables. Some CLIST control variables do not apply to REXX or
duplicate other REXX functions and are therefore not supported by SYSV AR. The
following shows the CLIST control variables that are not supported by the SYSV AR
function. If there is an equivalent function in REXX, that function appears next to
the control variable.

SYSDATE ---> DATE(usa)
SYSDLM
SYSJDATE ---> DATE(julian)
SYSSDATE ---> DATE(ordered)
SYSSTIME ---> SUBSTR(TIME(normal),1,5)
SYSTIME ---> TIME(normal) or TIME()

1. To display whether the exec is running in the foreground or background:

SAY SYSVAR(11 sysenv 11
) /* Displays FORE or BACK */

2. To find out the level of RACF installed:

level = SYSVAR(11 syslracf 11
) /* Returns RACF level */

3. To determine if the prefix is the same as the user ID:

IF SYSVAR(11 syspref11
) = SYSVAR(11 sysuid 11

) THEN

ELSE

EXIT

130 TSO /E Version 2 REXX Reference

I~

/~

/~
)

!

Parsing

Chapter 5. Parsing for PARSE, ARG, and PULL

Introduction

Parsing Words

PARSE, ARG, and PULL allow a selected string to be parsed (split up) into
variables, under the control of a template. The various mechanisms in the template
allow a string to be split up into words (delimited by blanks), or by explicit matching
of patterns, or by selecting absolute columns with numeric patterns for example to
extract data from particular columns of a record read from a file.

This section first gives some informal examples of how the parsing template can be
used, then describes the mechanisms used.

Here are some examples that illustrate how parsing works.

The simplest form of a parsing template consists of a list of variable names. The
data being parsed is split up into words (characters delimited by blanks), and each
word from the data is assigned to a variable in sequence. The final variable is
treated differently in that it will be assigned whatever is left of the original data and
may therefore contain several words, and possibly leading and trailing blanks.

Parse value 'This is a sentence.' with vl v2 v3
/* is equivalent to: */
vl = 11 This 11

; v2 11 is 11
; v3 = 11 a sentence. 11

In this example, vl would get the value This, v2 would get the value is, and v3
would get a sentence.

Leading blanks and trailing blanks are removed from each word in the string before
the word is assigned to a variable, except for the word or group of words assigned to
the last variable. Variables set in this manner (vl and v2 in the example above) will
never have leading or trailing blanks. But the last variable (v3 in the example) could
have both leading and trailing blanks, if extra blanks were specified before a or after
sentence.

For example,

Parse value 'This is a sentence.• with vl v2 v3
/* is equivalent to: */
vl = 11 This 11

; v2 = 11 is 11
; v3 = 11 a sentence."

In this example, vl would get the value This, v2 would get the value is, and v3
would get a sentence.

In addition, if PARSE UPPER (or the ARG or PULL instruction) is used, the
whole string is translated into uppercase (i.e. a lowercase a-z to an uppercase A-Z)
before parsing begins.

Note that all variables mentioned in a template are always given a new value; if
there are fewer words in the data than variables in the template, the unused variables
will be set to null.

Chapter 5. Parsing for PARSE, ARG, and PULL 131

Parsing

Parsing Using String Patterns
A string can be used in a template to split up the data:

Parse value 'To be, or not to be? 1 with wl 1
,

1 w2
/*would cause the data to be scanned for the comma, */
/*then split at that point, thus: */
wl = "To be"; w2 = " or not to be?"

wl would be set to To be, and w2 is set to or not to be?. A string used in this way
is called a pattern. Note that the pattern itself (and only the pattern) is removed
from the data. In fact each section is treated in just the same way as the whole
string was in the previous example, and so either section can be split up into words.

Parse value 'To be, or not to be? 1 with wl 1
,

1 w2 w3 w4
/* is equivalent to: */
wl = 11 To be 11

; w2 = "or 11
; w3 = "not 11

; w4 = 11 to be? 11

w2 and w3 get the values or and not, and w4 would get the remainder: to be?. If
UPPER were specified on the instruction, all the variables would be translated to
uppercase.

If the string in these examples did not contain a comma, the pattern would
effectively "match" the end of the string: so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to null.
Note that a null string will never be found; it will always match the end of the
string.

The pattern can be specified as a variable by putting the variable name in
parentheses. The following instructions therefore have the same effect as the last
example:

comma=', 1

Parse value 'To be, or not to be? 1 with wl (comma) w2 w3 w4

Parsing Using Numeric Patterns
The third type of parsing mechanism is the numeric pattern. This works in the same
way as the string pattern except that it specifies a column number. So:

Parse value 'Flying pigs have wings' with xl 5 x2
/* splits the data at column 5. Equivalent to */
xl 11 Flyi 11

; x2 11 ng pigs have wings"

splits the data at column 5, and xl becomes Flyi and x2 starts at column 5 and
becomes ng pigs have wings.

More than one pattern is allowed, so for example:

Parse value 'Flying pigs have wings' with xl 5 x2 10 x3
/* splits the data at columns 5 and 10. Equivalent to*/
xl = 11 Flyi 11

; x2 = 11 ng pi"; x3 = 11 gs have wings 11

splits the data at columns 5 and 10, and x2 becomes ng pi and x3 becomes gs have
wings.

The numbers can be relative to the last number used, so

Parse value 'Flying pigs have wings' with xl 5 x2 +5 x3

has exactly the same effect as the last example: here the + 5 can be thought of as
specifying the length of the data to be assigned to x2.

132 TSO/E Version 2 REXX Reference

I~ .)

u

Parsing

String patterns and numeric patterns can be mixed (in effect the beginning of a string
pattern just specifies a variable column number) and some very powerful things can
be done with templates. The "Definition" section (below) describes in more detail
how the various mechanisms interact.

Parsing Arguments

Definition

Finally, it is possible to parse more than one string. For example, an internal
function can have more than one argument string. To get at each string in turn, you
just put a comma in the parsing template. For example, if the invocation of the
function "FRED" was:

fred(1This is the first string',2)

the instruction

PARSE ARG first, second
/* is equivalent to */
first = "This is the first string"; second "2"

The variable first contains the string "This is the first string". The variable second
contains the string "2". Between the commas you can put a normal template, with
patterns, etc., to do more complex parsing on each of the argument strings.

This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern specifications and
variable names. The pattern specifications and variable names are used strictly in
sequence from left to right, and are used once only. In practice, various simpler
forms are used in which either variable names or patterns can be omitted: we can
therefore have variable names without patterns in between, and patterns without
intervening variable names.

In general, the value assigned to a variable is that sequence of characters in the input
string between the point that is matched by the pattern on its left and the point that
is matched by the pattern on its right.

If the first item in a template is a variable, there is an implicit pattern on the left
that matches the start of the string, and similarly if the last item in a template is a
variable, there is an implicit pattern on the right that matches the end of the string.
Hence the simplest template consists of a single variable name which in this case is
assigned the entire input string.

Setting a variable during parsing is identical to setting a variable in an assignment.
It is therefore possible to set an entire collection of compound variables during
parsing. (See pages 19 and 20.)

The constructs that appear as patterns fall into two categories:

• Patterns that act by searching for a matching string
- Literal patterns
- Variable patterns.

• Numeric patterns that specify a position in the data
Positional patterns
Relative patterns.

Chapter 5. Parsing for PARSE, ARG, and PULL 133

Parsing

For the following examples, assume that the following string is being parsed (note
that all blanks are significant):

'This is the data which, I think, is scanned. 1

Parsing with Literal Patterns
Literal patterns cause scanning of the input data string to find a sequence that
matches the value of the literal. Literals are expressed as a quoted string.

When the template:

wl 1
,

1 w2 ',' rest

is used to parse the example string, the result is:

wl "This is the data which"
w2 =" I think"
rest = " is scanned."

Here the string is parsed using a template that asks that each of the variables receive
a value corresponding to a portion of the original string between commas; the
commas are given as quoted strings. Note that the patterns (in this example, the
commas) themselves are removed from the data being parsed.

A different parse would result with the template:

wl 1
,

1 w2 1
,

1 w3 1
,

1 rest

which would result in:

wl = "This is the data which"
w2 = " I th i n k"

w3 =" is scanned."
rest = " " (null)

This illustrates an important rule. When a match for a pattern cannot be found in
the input string, it instead "matches" the end of the string. Thus, no match was
found for the third',' in the template, and so w3 was assigned the rest of the string.
REST was assigned a null value because the pattern on its left had already reached
the end of the string.

A null pattern (a string of length 0) can be used to match the end of the data
explicitly. This is mainly useful with positional patterns (see below).

Note that all variables that appear in a template are assigned a new value.

If a variable is followed by another variable, a special action is taken. This is similar
to there being the pattern' ' (a single blank) between them, except that leading
blanks at the current position in the input data are skipped over before the search
for the next blank takes place. This means that the value assigned to the left-hand
variable will be the next word in the string and will have neither leading nor trailing
blanks.

134 TSO/E Version 2 REXX Reference

(~
I

/~
(,J

~
I

'~
j

Thus the template:

wl w2 w3 rest ','

results in:

wl = "This"
w2 = "is"
w3 = "the"
rest = "data which"

Parsing

Note that the final variable (rest in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous word is
removed from the data.

Also observe that this example is not the same as specifying explicit blanks as
patterns, as the template:

wl I I w2 I I w3 I I rest I' I

(in fact) results in:

wl ="This"
w2 = "is"
w3 = " " (null)
rest ="the data which"

since the third pattern would match the third blank in the data.

Note: Quotes are not part of the value. They are shown here and in following
examples only to indicate leading or trailing blanks.

In general then, when a variable is followed by another variable, parsing of the input
by tokenization into words is implied.

Parsing with Variable Patterns
It is sometimes desirable to be able to specify a matching pattern by using a variable
instead of a literal string. This can be achieved by placing the name of the variable
to be used as the pattern in parentheses. The variable can be one that has been set
earlier in the parsing process, so for example:

input="L/look for/1 10"
parse var input verb 2 delim +1 string (delim) rest

will set:

verb "L"
delim "/"
string = "look for"
rest "1 10"

Chapter 5. Parsing for PARSE, ARG, and PULL 135

Parsing

Use of the Period as a Placeholder
The symbol consisting of a single period acts as a placeholder in a template. It has
exactly the same effect as a variable name, except that no variable is set. It is
especially useful as a "dummy variable" in a list of variables or to collect unwanted
information at the end of a string. Thus, when the template:

..• word4 •

is used to parse the same example string:

'This is the data which, I think, is scanned.'

the result is:

word4 = "data"

That is, the fourth word (data) is extracted from the string and placed in the variable
word4.

Parsing with Positional Patterns and Relative Patterns
Positional patterns can be used to cause the parsing to occur on the basis of position
within the string, rather than on its contents. They take the form of signed or
unsigned whole numbers and can cause the matching operation to "back up" to an
earlier position in the data string. "Backing up" can only occur when positional
pa ttems are used.

Unsigned numbers in a template refer to a particular character column in the input.
For example, the template

sl 10 s2 20 s3

results in

sl "This is
s2 = '~the data w"
s3 = "hich, I think, is scanned."

Here sl is assigned characters from input through the ninth character, and s2
receives input characters 10 through 19. The final variable, s3, is assigned the
remainder of the input.

Signed numbers can be used as patterns to indicate movement relative to the
character position at which the previous pattern match occurred.

If a signed number is specified, the position used for the next match is calculated by
adding or subtracting the number given to the last matched position. The last
matched position is the position of the first character of the last match, whether
specified numerically or by a string. For example, the instructions:

a= '123456789 1

parse var a 3 wl +3 w2 3 w3

result in:

wl = "345"
w2 = "6789"
w3 = "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same position and
specifies the length of the data to be assigned to the variable wl.

136 TSO/E Version 2 REXX Reference

f~
I

\.._)

Parsing

This example also illustrates the effects of a pattern that implies movement to a
character position to the left of, or to the point where matching has already
occurred. Movement is from column 6, the starting position for w2, to column 3,
the starting position for w3. The variable on the left is assigned characters through
the end of the input, and the variable on the right is, as usual, assigned characters
starting at the position dictated by the pattern.

The following PARSE instruction assigns the same values to wl, w2, and w3 as
above:

a= '123456789'
parse var a 3 wl +3 w2 -3 w3

3 specifies the starting position for wl, column 3. +3 tells you to move 3 positions to
the right of the starting position of wl. This is the starting position of w2, column 6.
-3 tells you to move 3 positions to the left of the starting position of w2. This is the
starting position of w3, column 3.

A useful effect of this is that multiple assignments can be made:

parse var x 1 wl 1 w2 I w3

results in assigning the (entire) value of x to wl, w2, and w3. (The first "I" here could
be omitted as it is effectively the same as the implicit starting pattern described at
the beginning of this section.)

If a positional pattern specifies a column that is greater than the length of the data,
it is equivalent to specifying the end of the data (that is, no padding takes place).
Similarly, if a pattern specifies a column to the left of the first column of the data,
this is not an error but instead is taken to specify the first column of the data.

Any pattern match sets the "last position" in a string to which a relative positional
pattern can refer. The "last position" set by a literal pattern is the position at which
the match occurred; that is, the position in the data of the first character in the
pattern. The first character in this case is not removed from the parsed data. Thus
the template:
1

,
1 -1 x +I

will:

1. Find the first comma in the input (or the end of the string ifthere is no comma).

2. Back up one position.

3. Assign one character (the character immediately preceding the comma or end of
string) to the variable x.

A possible application of this is looking for abbreviations in a string. Thus the
instruction:

/* Ensure options have leading blank and are uppercase */
parse upper value ' 'opts with 1 PR' +1 prword 1

'

will set the variable prword to the first word in opts that starts with PR or will set it
to null if no such word exists. Note that +O is a valid positional pattern.

Chapter 5. Parsing for PARSE, ARG, and PULL 137

Parsing

When a literal pattern is followed by a signed(+/-) positional pattern the literal
string WILL NOT BE REMOVED from the data being parsed. Instead it will be
parsed into the first variable following the literal pattern. Thus the following two
cases:

a= 1 This is the data which, I think, is scanned. 1

CASE 1:
CASE 2:

parse var a 1 which 1 +5 y
parse var a 1 which 1 x +5 y

would result in:

CASE 1: y = ", I think is scanned"
CASE 2: x = "which"

y = ", I think is scanned."

Note: If a number in a template is preceded by a "+" or a "-," this is taken to be a
signed positional pattern. There can be blanks between the sign and the number,
since initial scanning removes blanks adjacent to special characters.

Parsing Multiple Strings
A parsing template can parse multiple strings. This is effected by using the special
pattern comma(,) in the template. Each comma is an instruction to the parser to
move on to the next string. Other patterns and variables can be specified for each
string parsed, as usual. The only time multiple strings are available is in the ARG
(or PARSE ARG) instruction. When an internal function or subroutine is invoked
it can have several argument strings, and a comma is used to access each in turn.
Thus the template:

wordl stringl, string2, num

would put the first word of the first argument string into wordl, the rest of that
string into stri ngl, and the next two strings into stri ng2 and num. If insufficient
strings were specified in the invocation, unused variables are set to null. Similarly, if
only one string was available (as on the other PARSE variations), then any variables
that follow a comma pattern are set to null.

138 TSO/E Version 2 REXX Reference

I~
)

u

Numerics and Arithmetic

Chapter 6. Numerics and Arithmetic

Introduction

REXX defines the usual arithmetic operations (addition, subtraction, multiplication,
and division) in as "natural" a way as possible. What this really means is the rules
followed are those that are conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the
rules used vary considerably (indeed much more than generally appreciated) from
person to person and from application to application and in ways that are not
always predictable. The arithmetic described here is therefore a compromise that
(although not the simplest) should provide acceptable results in most applications.

Numbers (that is, character strings used as input to REXX arithmetic operations) can
be expressed very flexibly. Leading and trailing blanks are permitted, and
exponential notation can be used. Some valid numbers are:

12
-76
12.76

I + 0.003 I

17.
.5

4E9
0.73e-7

/* an integer */
/* signed integer */
/* decimal places */
/* blanks around the sign etc */
/* same as "17" */
/* same as "0.5" */
/* exponential notation */
/* exponential notation */

(Exponential notation means that the number includes a power of ten following an E
that indicates how the decimal point should be shifted. Thus 4E9 above is just a
short way of writing 4000000000, and 0. 73e-7 is short for 0.000000073.)

The arithmetic operators include addition (+), subtraction (-), multiplication (*),
power (**), division (/), and prefix (+ or -). In addition, there are two further
division operators: integer divide (%)that divides and returns the integer part, and
remainder (/ /) that divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the Definition
section for full details):

• Results will be calculated with up to some maximum number of significant digits
(the default is 9, but this can be altered with the NUMERIC DIGITS
instruction to give whatever accuracy you need). Thus if a result requires more
than 9 digits, it would normally be rounded to 9 digits. For example, the
division of 2 by 3 would result in 0.666666667 (it would require an infinite
number of digits for perfect accuracy).

• Except for division and power, trailing zeros are preserved (this is in contrast to
most popular calculators, which remove all trailing zeros). So, for example:

2.40 + 1
2.40 - 2
2.5 * 2

->
->
->

3.40
0.40
5.0

This behavior is desirable for most calculations (especially financial calculations).

Chapter 6. Numerics and Arithmetic 139

Numerics and Arithmetic

Definition

Numbers

Precision

If necessary, trailing zeros can be easily removed with the STRIP function (see
page 100), or by division by 1.

• A zero result is always expressed as the single digit 0.

• Exponential form is used for a result depending on the setting of NUMERIC
DIGITS (the default is 9). If the number of places needed before the decimal
point exceeds the NUMERIC DIGITS setting, or the number of places after the
point exceeds twice the NUMERIC DIGITS setting, the number will be
expressed in exponential notation:

le6 * le6 -> 1E+12
/* not 1000000000000 */

1 I 3E10 -> 3.33333333E-11
/* not 0.0000000000333333333 */

A precise definition of the arithmetic facilities of the REXX language is given here.

A number in REXX is a character string that includes one or more decimal digits,
with an optional decimal point. The decimal point may be embedded in the number,
or may be prefixed or suffixed to it. The group of digits (and optional decimal
point) constructed this way can have leading or trailing blanks and an optional sign
(+ or -) that must come before any digits or decimal point. The sign can also have
leading or trailing blanks.

Therefore, number is defined as:

Where:
sign is either '+' or 1

-
1

blanks are one or more spaces

8
digits
igits.digits

. di gits----l
igits.---......

digits are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

blanks

The maximum number of significant digits that can result from an operation is
controlled by the instruction:

.....,_NUMERIC OIGITS---.1-----j....---;--i-i
Lexpression

expression is evaluated and must result in a positive whole number. This defines the
precision (number of significant digits) to which calculations are carried out. Results
are rounded to that precision, if necessary.

If expression is not specified in this instruction, or if no NUMERIC DIGITS
instruction has been executed since the start of a program, the default precision is
used. The REXX standard for the default precision is 9.

140 TSO/E Version 2 REXX Reference

/~
I /

!~
J

Numerics and Arithmetic

Note that NUMERIC DIGITS can set values below the default of nine. Small
values, however, should be used with care the loss of precision and rounding thus
requested will affect all RE.XX computations, including (for example) the
computation of new values for the control variable in DO loops.

Arithmetic Operators
RE.XX arithmetic is affected by the operators + , - , * , /, % , //,and** (add,
subtract, multiply, divide, integer divide, remainder, and power) which all act on two
terms, together with the prefix plus and minus operators which both act on a single
term. This section describes the way in which these operations are carried out.

Before every arithmetic operation, the term or terms being operated upon have
leading zeros removed (noting the position of any decimal point, and leaving just
one zero if all the digits in the number are zeros) and are then truncated to DIGITS
+ 1 significant digits, one extra "guard" digit (if necessary) before being used in the
computation. The operation is then carried out under up to double that precision,
as described under the individual operations below. When the operation is
completed, the result is rounded if necessary to the precision specified by the
NUMERIC DIGITS instruction.

Every operation is carried out in such a way that no errors will be introduced except
during the final rounding of the result to the specified significance. (That is, input
data is first truncated to the appropriate significance (NUMERIC DIGITS+ 1)
before being used in the computation, and then divisions and multiplications are
carried out to double that precision, as needed.)

Rounding is done in the "traditional" manner, in that the digit to the right of the
least significant digit in the result (the "guard digit") is inspected and values of 5
through 9 are rounded up, and values of 0 through 4 are rounded down. Even/odd
rounding would require the ability to calculate to arbitrary precision at all times and
is therefore not the mechanism defined for RE.XX.

A conventional zero is supplied in front of the decimal point, otherwise there would
be no digit preceding it. Significant trailing zeros are retained for addition,
subtraction, and multiplication, according to the rules given below, except that a
result of zero is always expressed as the single digit 0. For division, trailing zeros are
removed after rounding.

The FORMAT built-in function is supplied (see page 90) to allow a number to be
represented in a particular format if the standard result provided does not meet your
requirements.

The precise rules for the operations are described below, but the following examples
illustrate the main implications of the rules:

Arithmetic Operation Rules - Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on
numbers as follows. All numbers have insignificant leading zeros removed before
being used in computation.

Chapter 6. Numerics and Arithmetic 141

Numerics and Arithmetic

Addition and Subtraction

Multiplication

Division

If either number is zero, the other number, rounded to NUMERIC DIGITS digits if
necessary, is used as the result (with sign adjustment as appropriate). Otherwise, the
two numbers are extended on the right and left as necessary up to a total maximum
of DIGITS + 1 digits (the number with the smaller absolute value may therefore
lose some or all of its digits on the right) and are then added or subtracted as
appropriate.

Example:

becomes:

xxx.xxx + yy.yyyyy

xxx.xxx00
+ 0yy.yyyyy

zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary
(taking into account any extra 'carry 1 digit on the left after addition, but otherwise
counting from the position corresponding to the most significant digit of the terms
being added or subtracted), and any insignificant leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations
"+number" and "-number" are calculated as "O +number" and "0-number",
respectively.

The numbers are multiplied together ("long multiplication") resulting in a number
that may be as long as the sum of the lengths of the two operands.

Example:

xxx.xxx * yy.yyyyy

becomes: zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to
the current setting of NUMERIC DIGITS.

For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended with zeros on the
right until it is larger than the number xxxxx (with note being taken of the change in
the power of ten that this implies). Thus in this example, yyy might become yyy00.
Traditional long division then takes place, which might be written:

zzzz

xxxxx yyy00

The length of the result (zzzz) is such that the rightmost z will be at least as far right
as the rightmost digit of the (extended) y number in the example. During the
division, they number will be extended further as necessary, and the z number may
increase up to NUMERIC DIGITS+ I digits at which point the division stops and
the result is rounded. Following completion of the division (and rounding if
necessary), insignificant trailing zeros are removed.

142 TSO/E Version 2 REXX Reference

!~
\

/~
)

Numerics and Arithmetic

Example:

/* With: Numeric digits 5 */
12+1.ee -> 19.ee
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.s -> e.n
1/3 -> 0.33333
2/3 -> e.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4

Notes:

1. With all the basic operators, the position of the decimal point in the terms being
operated upon is arbitrary. The operations may be carried out as integer
operations with the exponent being calculated and applied afterwards. Therefore
the significant digits of a result are not in any way dependent on the position of
the decimal point in either of the terms involved in the operation.

2. In the above examples, the position of the decimal point is arbitrary. In fact the
operations may be carried out as integer operations with the exponent being
calculated and applied after. Therefore none of the operations are in any way
dependent on the position of the decimal point and hence results are completely
independent of the number of decimal places.

Arithmetic Operators - Additional Operators

Power

The power (**), integer divide (%), and remainder (//) operators rules are as follows:

The ** (power) operator raises a number to a whole power, which may be positive or
negative. If negative, the absolute value of the power is used, and then the result is
inverted (divided into 1). For calculating the result, the number is effectively
multiplied by itself for the number of times expressed by the power, and finally
trailing zeros are removed (as though the result were divided by one). In practice
(see note below for rationale), the result is calculated by the process ofleft-to-right
binary reduction. For x**n: n is converted to binary, and a temporary accumulator
is set to 1. If n = 0 the calculation is complete. Thus, x**O = 1 for all x, including
0**0. Otherwise each bit (starting at the first nonzero bit) is inspected from left to
right. If the current bit is 1, the accumulator is multiplied by x. If all bits have now
been inspected the calculation is complete, otherwise the accumulator is squared and
the next bit is inspected for multiplication. When the calculation is complete, the
temporary result is ready for division by or into 1 to provide the final answer. The
multiplications and division are done under the normal REXX arithmetic
combination rules, detailed below, with the initial calculation (the multiplications)
using precision of DIGITS + L + 1 digits (where L is the length in digits of the
whole number n) and the final division using the usual NUMERIC DIGITS digits.
The precision specified for the intermediate calculations ensures that the final result
will differ by at most 1, in the least significant position, from the "true" result. Half
of this maximum error comes from the intermediate calculation, and half from the
final rounding.

Chapter 6. Numerics and Arithmetic 143

Numerics and Arithmetic

Integer Division

Remainder

The % (integer divide) operator divides two numbers and returns the integer part of
the result, which will not be rounded unless the integer has more digits than the
current DIGITS setting. The result returned is defined to be that which would result
from repeatedly subtracting the divisor from the dividend while the dividend is larger
than the divisor. During this subtraction, the absolute values of both the dividend
and the divisor are used: the sign of the final result is the same as that which would
result if normal division were used. Note that this operator may not give the same
result as truncating normal division (which could be affected by rounding).

The result returned will have no fractional part (that is, no decimal point or zeros
following it). If the result cannot be expressed simply by digits within the precision
set by the NUMERIC DIGITS instruction, the operation is in error and will fail.
For example, 10000000000%3 requires 10 digits for the result (3333333333) and
would therefore fail if NUMERIC DIGITS 9 were in effect.

The // (remainder) operator will return the remainder from integer division, and is
defined as being the residue of the dividend after the operation of calculating integer
division as just described. The sign of the remainder, if non-zero, is the same as that
of the original dividend.

This operation will fail under the same conditions as integer division (that is, if
integer division on the same two terms would fail, the remainder cannot be
calculated). Thus:

/* Again with: Numeric digits 5 */
2**3 -> 8
2**-3 -> 0.125
1. 7**8 -> 69.758
2%3 -> o
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1

Notes:

1. A particular algorithm for calculating powers is used, since it is efficient (though
not optimal) and considerably reduces the number of actual multiplications
performed. It therefore gives better performance and can give higher accuracy
than the simpler definition of repeated multiplication. Since results may differ
from those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be
calculated as a by-product of the standard division operation. The division
process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

144 TSO/E Version 2 REXX Reference

~\
I

/~
!

/~
!)

Numerics and Arithmetic

Comparison Operators
The comparison operators are listed on page 14. Any of these can be used for
comparing numeric strings. However, =, \ =, 1 = =, > >, \ > >, 1 > >,
< <, \ < <, and 1 < <, should not be used to compare numeric values because
leading/trailing blanks and leading zeroes are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers
(calculating the difference) and then comparing the result with 0. For example, the
operation:

A ? B

where ? is any numeric comparison operator, is identical to:

(A - B) ? 1 8 1

It is therefore the difference between two numbers, when subtracted under REXX
subtraction rules, that determines their equality.

Comparison of two numbers is affected by a quantity called "fuzz," which is set by
the instruction:

.+-NUMERIC FUZZ-~-----..--;__,_.
lexpressionj

Here expression must result in a whole number that is zero or positive. This FUZZ
number controls the amount by which two numbers may differ before being
considered equal for the purpose of comparison. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value for each comparison operation. That is, the numbers are subtracted under a
precision of DIGITS-FUZZ digits during the comparison. Clearly FUZZ must be
less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison will be carried out to 8
significant digits, just as though NUMERIC DIGITS 8 had been put in effect for
the duration of the operation.

Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5
say 4.9999 < 5
Numeric fuzz 1
say 4.9999 5
say 4.9999 < 5

/* would display Q
/* would display 1

/* would display 1
/* would display Q

*/
*/

*/
*/

Chapter 6. Numerics and Arithmetic · 145

Numerics and Arithmetic

Exponential Notation
The description above describes "pure" numbers, in the sense that the character
strings that describe numbers could be very long. For example:

10000000000 * 10000000000
would give 100000000000000000000

and

.00008000001 * .00000000001
would give 0.000000000000000000001

For both large and small numbers some form of exponential notation is useful, both
to make numbers more readable, and to reduce execution time storage requirements.
In addition, exponential notation is used whenever the "simple" form would give
misleading information. For example:

numeric digits 5
say 54321*54321

would display 2950800000 if long form were to be used. This is clearly misleading,
and so the result is expressed as 2.9508E + 9 instead.

The definition of "numbers" (see above) is therefore extended as (note that blanks
are shown below only for readability):

13~~~~~.digits
dig its-------1
igits.-----~

....

The integer following the E represents a power of ten that is to be applied to the
number; and the E can be in uppercase or lowercase.

Here are some examples:

12Ell 1200000000000
12E-5 = 0.00012
-12e4 = -120000

The above numbers are valid for input data at all times. The results of calculations
will be returned in either conventional or exponential form depending on the setting
of DIGITS. If the number of places needed before the decimal point exceeds
DIGITS, or the number of places after the point exceeds twice DIGITS, exponential
form will be used. The exponential form generated by REXX always has a sign
following the E in order to improve readability. An exponential part of E + 0 will
never be generated.

Numbers can be explicitly converted to exponential form, or forced to be displayed
in "long" form, by using the FORMAT built-in function, described on page 90.

The user can control whether Scientific or Engineering notation is to be used by
using the instruction:

....._NUMERIC FQRm--,..----------.---;___........
SCI ENTI FI C------1
ENGINEERING,-----1

.__,.. __ __,,___,exp res s ion
VALUE

The default setting of FORM is SCIENTIFIC.

146 TSO/E Version 2 REXX Reference

/~
I

/~
J

\~

Numerics and Arithmetic

Scientific notation adjusts the power of ten so there is a single nonzero digit to the
left of the decimal point. Engineering notation causes powers of ten to always be
expressed as a multiple of 3: the integer part may therefore range from 1 through
999.

/* after the instruction */
Numeric form scientific

123.45 * lell -> 1.2345E+l3

/* after the instruction */
Numeric form engineering

123. 45 * lell -> 12.345E+12

Numeric Information

Whole Numbers

The current settings of the NUMERIC options can be found by using the built-in
functions DIGITS, FORM, and FUZZ. These functions return the current settings
of NUMERIC DIGITS, NUMERIC FORM, and NUMERIC FUZZ, respectively.

Within the set of numbers understood by REXX it is useful to distinguish the subset
defined as who 1 e numbers. A who 1 e number in RE.XX is a number that has a decimal
part which is all zeros (or that has no decimal part). In addition, it must be possible
to express its integer part simply as digits within ihe precision set by the NUMERIC
DIGITS instruction. Larger numbers would be expressed by REXX in exponential
notation, after rounding, and hence could :rio ldnger be safely described or used as
"whole numbers".

Numbers Used Directly by REXX
As discussed, numbers are always rounded (if necessary) according to the setting of
NUMERIC DIGITS during any arithmetic operation. Similarly, when a number
(which has not necessarily been involved in an arithmetic operation) is used directly
by REXX, the same rounding is also applied.

In the following cases, the number used must be a whole number and an
implementation restriction on the largest number that can be used may apply:

• The positional patterns in parsing templates

• The power value (right hand operand) of the power operator

• The values of exprr and exprf in the DO instruction

• The values given for DIGITS or FUZZ in the NUMERIC instruction

• Any number used in the option in the TRACE instruction.

Chapter 6. Numerics and Arithmetic 147

Numerics and Arithmetic

Errors
Two types of errors may occur during arithmetic:

• Overflow /Underflow

This error will occur if the exponential part of a result would exceed the range
that may be handled by the language processor, when the result is formatted
according to the current settings of NUMERIC DIGITS and NUMERIC
FORM. The language defines a minimum capability for the exponential part,
namely the largest number that can be expressed as an exact integer in default
precision. Since the default precision is 9, implementations must support
exponents at least as large as 999999999.

Since this allows for (very) large exponents, overflow or underflow is treated as a
terminating "syntax" error.

• Storage exception

Storage is needed for calculations and intermediate results, and on occasion an
arithmetic operation may fail due to lack of storage. This is considered a
terminating error as usual, rather than an arithmetical error.

148 TSO/E Version 2 REXX Reference

'~
I

I

i

u

Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps

CALL and SIGNAL modify the flow of execution in a REXX program by using
condition traps. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see "CALL" on page 32 and
"SIGNAL" on page 62).

~CALL
LsIGNALJ

tOFF-condi t ion---------...--;__.....
YN--condi ti on·--.-----------.--'

L_NAME~trapname__I

where condition and trapname are single symbols which are taken as constants.

Following one of these instructions, a condition trap is set to either ON (enabled) or
OFF (disabled). The initial setting for all condition traps is OFF.

If a condition trap is enabled and the corresponding event occurs, control passes to
the routine or label trapname. SIGNAL or CALL is used, depending on whether the
most recent trap for the condition was set using SIGNAL ON or CALL ON
respectively.

Note: The use of CALL ON and CALL OFF to enable and disable condition traps
and the use of SIGNAL ON and SIGNAL OFF with NAME trapname supports
AP AR OYl 7590. See page 425 for more information.

The conditions and their corresponding events, which can be trapped are:

ERROR
raised if any host command indicates an error condition upon return. It is also
raised if any command indicates failure and CALL ON FAILURE or SIGNAL
ON FAILURE is not set.

In TSO/E, SIGNAL ON ERROR will trap all positive return codes, and
negative return codes only if CALL ON FAILURE and SIGNAL ON
FAIL URE are not set.

Note: In TSO/E, a host command is not only a TSO/E command processor.
See "Host Commands and Host Command Environments" on page 23 for a
definition of host commands.

FAILURE
raised if any host command indicates a failure condition upon return.

In TSO/E, SIGNAL ON FAILURE will trap all negative return codes from
commands.

Chapter 7. Conditions and Condition Traps 149

Conditions and Condition Traps

HALT
raised if an external attempt is made to interrupt execution of the program.
For example, the TSO/E REXX immediate command HI (Halt Interpretation)
or EXECUTIL HI command will create a halt condition. Refer to "Interrupting
Execution and Controlling Tracing" on page 206.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression
• As the name following the VAR subkeyword of the PARSE instruction
• As a unassigned variable pattern in a parsing template.

This condition may only be specified for SIGNAL ON.

SYNTAX
raised if an interpretation error is detected. This condition may only be specified
for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON or
OFF, and any trap name) of that condition trap. Thus, a SIGNAL ON HALT
replaces any current CALL ON HALT, and so on.

Action Taken When a Condition is Trapped
When a condition trap is currently enabled (ON has been specified), the trap is in
effect. So, when the corresponding event occurs, instead of the usual action at that
point, execution of the current instruction immediately stops. A CALL trapname or
SIGNAL trapname is then automatically executed. The trap name can be specified
following the NAME subkeyword of the CALL ON or SIGNAL ON instruction
that enabled the condition trap. If no explicit trap name is given, then the name of
the condition itself (ERROR, FAILURE, HALT, NOVALUE, or SYNTAX) is used
as trapname. This (if not trapped itself) causes control to pass to the first label in
the program that matches the condition trap name.

The sequence of events, once a condition has been trapped, varies depending on
whether a SIGNAL or CALL is executed:

• If the action taken is a SIGNAL, execution of the current instruction ceases
immediately, the condition is disabled (set to OFF), and the SIGNAL takes
place in exactly the same way as usual (see page 62).

If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it once the
label is reached. For example, if SIGNAL ON SYNTAX is enabled when a
SYNTAX condition occurs, then if the SIGNAL ON SYNTAX label name is
not found a normal syntax error termination will occur.

• If the action taken is a CALL, the CALL is made in the usual way (see page 32)
except that the special variable RESULT is not affected by the call. If the
routine should RETURN any data, then the returned character string is ignored.

Note that CALL ON can only occur at clause boundaries. Because these
conditions (ERROR, FAILURE, and HALT) can arise during execution of an
INTERPRET instruction, execution of the INTERPRET may be interrupted
and later resumed if CALL ON was used.

150 TSO/E Version 2 REXX Reference

/~

Conditions and Condition Traps

Before the CALL is made, the condition trap is put into a delayed state. This
state persists until the RETURN from the CALL, or until an explicit CALL (or
SIGNAL) ON (or OFF) is made for the condition. This delayed state prevents
a premature condition trap at the start of the routine called to process a
condition trap. When a condition trap is in the delayed state it remains enabled,
but if the condition is trapped again any action (including the updating of the
condition information) will be delayed until one of the following events:

1. A CALL ON or SIGNAL ON, for the delayed condition, is executed. In
this case a CALL or SIGNAL will take place immediately after the new
CALL ON or SIGNAL ON instruction has been executed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is executed. In
this case the condition trap is disabled and the default action for the
condition will occur at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is
no longer delayed and the subroutine will be called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is,
the flow is not affected by the CALL).

Notes:

1. In all cases, the condition will be raised (and the current instruction
terminated) immediately upon detection of the error. Therefore, the
instruction during which an event occurs may be only partly executed. For
example, if SYNTAX is raised during the evaluation of the expression in an
assignment, the assignment will not take place. Note that ERROR,
FAILURE, and HALT can only occur at clause boundaries, but could arise
in the middle of an INTERPRET instruction.

2. While user input is executed during interactive tracing, all conditions are set
OFF so that unexpected transfer of control does not occur should (for
example) the user accidentally use an uninitialized variable while SIGNAL
ON NOVALUE is active. For the same reason, a syntax error during
interactive tracing will not cause exit from the program, but is trapped
specially and then ignored after a message is given.

3. Certain execution errors are detected by the host interface either before
execution of the program starts or after the program has exited. These
errors cannot be trapped by SIGNAL ON SYNTAX.

Note that labels are clauses consisting of a single symbol followed by a colon.
Any number of successive clauses can be labels; therefore, multiple labels are
allowed before another type of clause.

Chapter 7. Conditions and Condition Traps 151

Lonamons and Londition Traps

Condition Information
When any condition is trapped and causes a SIGNAL (or CALL), this becomes the
current trapped condition, and certain condition information associated with it is
recorded. This information can be inspected by using the CONDITION built-in
function (see "CONDITION" on page 82).

Note: The CONDITION built-in function supports APAR OY17590 (see page 425).

The condition information includes:

• The name of the current trapped condition

• Any descriptive string associated with that condition

• The instruction executed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition.

The descriptive string varies, depending on the condition trapped. In the case of
SIGNAL, the descriptive string that is passed to the external environment as
command results in one of the following:

ERROR The string that was processed and resulted in the error condition.

FAILURE The string that was processed and resulted in the failure condition.

HALT Any string associated with the halt request. This can be the null string
if no string was provided.

NOV ALUE The derived name of the variable whose attempted reference caused the
NOVALUE condition.

SYNTAX Any string associated with the error by the language processor. This
can be the null string if no specific string is provided. Note that the
special variable RC and SIGL provide information on the nature and
position of the processing error.

The current condition information is replaced when control is passed to a label as
the result of a condition trap (CALL ON or SIGNAL ON). Condition information
is saved and restored across subroutine or function calls, including one due to a
CALL ON trap. A routine invoked by a CALL ON, therefore, can access the
appropriate condition information. Any previous condition information is still
available after the routine returns.

The Special Variable SIGL

When any transfer of control due to a SIGNAL (or CALL) takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX when the number of the
line in error can be used, for example, to control an editor. Typically, code
following the SYNTAX label may PARSE SOURCE to find the source of the data,
then invoke an editor to edit the source file positioned at the line in error. Note that
in this case the program has to be reinvoked before any changes made in the editor
can take effect.

152 TSO/E Version 2 REXX Reference

f~.
J

L
, l

/

Conditions and Condition Traps

Alternatively, SIGL can be used to help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:

/* Standard handler for SIGNAL ON SYNTAX */
syntax:

errormsg= 1 REXX error' re 'in line• sigl 1
:

1 errortext(rc)
say errormsg
say sourceline(sigl)
trace 1 ?r 1

; nop

This code first displays the error code, line number, and message text. It then
displays the line in error, and finally drops into debug mode to let you to inspect the
values of the variables used at the line in error.

The Special Variable RC

For ERROR and FAILURE, the REXX special variable RC is set to the command
return code error number before control is transferred to the condition label. For
SYNTAX, RC is set to the syntax error number.

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF can be used in a
subroutine without affecting the conditions set up by the caller. See "CALL" on
page 32 for more details.

Chapter 7. Conditions and Condition Traps 153

154 TSO/E Version 2 REXX Reference

(~

~\
!

I\._/

\ / .._,,

Using REXX in Different Address Spaces

Chapter 8. Using REXX in Different Address Spaces

TSO/E Version 2 provides support for the REXX programming language in any
MVS address space. That is, you can execute REXX execs in TSO/E and
non-TSO/E address spaces. The REXX language consists of keyword instructions
and built-in functions that you use in a REXX exec. The keyword instructions and
built-in functions are described in Chapter 3, "Keyword Instructions" and
Chapter 4, "Functions," respectively. TSO/E also provides TSO/E functions and
REXX commands you can use in a REXX exec. The TSO/E functions are
LISTDSI, MSG, OUTTRAP, PROMPT, STORAGE, SYSDSN, and SYSVAR.
They are described in "TSO/E Functions" on page 110. The TSO/E REXX
commands provide additional services that let you:

• Control I/O processing to and from data sets
• Perform data stack requests
• Change characteristics that control how a REXX exec executes
• Check for the existence of a specific host command environment.

Chapter 10, "TSO/E REXX Commands" describes the commands.

In an exec, you can use any of the REXX language keyword instructions and
built-in functions regardless of whether the exec will execute in a TSO/E or
non-TSO/E address space. If the exec will execute in the TSO/E address space, there
are several TSO/E functions, commands, and services you can use that are not
available for execs that execute in non-TSO/E address spaces. The following topics
in this chapter describe writing execs for different address spaces:

• "Writing Execs That Execute in Non-TSO/E Address Spaces" on page 157
• "Writing Execs That Execute in the TSO/E Address Space" on page 159.

TSO/E REXX is the implementation of the SAA Procedures Language on the MVS
system. By using the keyword instructions and functions that are defined for the
SAA Procedures Language, you can write REXX programs that will execute in any
of the supported SAA environments, such as VM/SP (CMS). See SAA Common
Programming Interface Procedures Language Reference for more information.

Additional TSO/E REXX Support
In addition to the keyword instructions, built-in functions, and TSO/E functions and
REXX commands, TSO /E Version 2 provides programming services you can use to
interface with REXX and the language processor and customizing services that let
you customize REXX processing and how system services are accessed and used.

TSO/E REXX Programming Services
The programming services TSO/E provides in addition to REXX language support
are:

IRXEXCOM - Variable Access
The variable access routine IRXEXCOM lets you access and manipulate the
current generation of REXX variables. Unauthorized commands and programs
can call IRXEXCOM to inspect, set, and drop REXX variables. "Variable
Access (IRXEXCOM)" on page 240 describes IRXEXCOM.

Chapter 8. Using REXX in Different Address Spaces 155

Using REXX in Different Address Spaces

IRXSUBCM - Maintain Host Command Environments
The IRXSUBCM routine is a programming interface to the host command
environment table. The table contains the names of the environments and
routines that handle the execution of host commands. You can use
IRXSUBCM to add, change, and delete entries in the table and to query entries.
"Maintain Entries in the Host Command Environment Table (IRXSUBCM)" on
page 24 7 describes the IRXSUBCM routine.

IRXIC - Trace and Execution Control
The trace and execution control routine IRXIC is an interface to the immediate
commands HI, HT, RT, TS, and TE. A program can call IRXIC in order to
use one of these commands to affect the execution and tracing of REXX execs.
"Trace and Execution Control Routine (IRXIC)" on page 251 describes the
routine.

IRXRL T - Get Result
The IRXRLT routine is known as the get result routine. You can use IRXRLT
to obtain a larger area of storage to store the result from a REXX exec. You
use IRXRL T if you either call the IRXEXEC routine to execute an exec or if
you write functions or subroutines that are in a function package. IRXEXEC
and function packages are described below. "The IRXRLT (Get Result)
Routine" on page 253 describes the IRXRL T routine.

IRXJCL and IRXEXEC - Exec Processing
You can use the IRXJCL and IRXEXEC routines to execute a REXX exec in
any address space. The two routines are programming interfaces to the REXX
language processor. You can execute an exec in MVS batch by specifying
IRXJCL as the program name on the JCL EXEC statement. You can call either
IRXJCL or IRXEXEC from an application program, including a REXX exec, in
any address space to execute a REXX exec. "IRXJCL and IRXEXEC
Routines" on page 214 describes the IRXJCL and IRXEXEC programming
interfaces.

Function Packages
You can write your own external functions and subroutines to extend the
programming capabilities of the REXX language. You can also group
frequently used external functions and subroutines into a package, which allows
for quick access to the packaged functions and subroutines. If you write
external functions or subroutines that you want to include in a function package,
you must write them in a programming language that supports the system
interfaces for function packages. "Function Packages" on page 229 describes
function packages in more detail and the system interfaces.

TSO/E REXX Customizing Services
In addition to the programming support to write REXX execs and programming
services that allow you to interface with REXX and the language processor, TSO/E
also provides services you can use to customize REXX processing. Many services let
you change how an exec is processed and how the language processor interfaces with
the system to access and use system services, such as storage and 1/0.
Customization services for REXX processing include the following:

Environment Characteristics
TSO/E provides various routines and services that allow you to customize the
environment in which the language processor executes a REXX exec. This
environment is known as the language processor environment and defines various
characteristics relating to how execs are processed and how system services are
accessed and used. TSO/E provides default environment characteristics that you

156 TSO/E Version 2 REXX Reference

/~

-~
)

!~
l

Using REXX in Different Address Spaces

can change and also provides a routine you can use to define your own
environment.

Replaceable Routines
When a REXX exec executes, various system services are used, such as services
for loading and freeing an exec, I/O, obtaining and freeing storage, and data
stack requests. TSO/E provides routines that handle these types of system
services. The routines are known as replaceable routines because you can
provide your own routine that either replaces the system routine or that
performs pre-processing and then calls the system routine.

Exit Routines
You can provide exit routines to customize various aspects of REXX processing.

Information about the different ways in which you can customize REXX processing
are described in chapters 13 - 16.

Writing Execs That Execute in Non-TSO/E Address Spaces
As described above, you can execute a REXX exec in any MVS address space (both
TSO/E and non-TSO/E). Execs that execute in TSO/E can use some TSO/E
functions, commands, and services that are not available to execs that execute in a
non-TSO/E address space. "Writing Execs That Execute in the TSO/E Address
Space" on page 159 describes writing execs for TSO/E.

If you write a REXX exec that will execute in a non-TSO/E address space, you can
use the following instructions, functions, commands, and services:

• All REXX keyword instructions that are described in Chapter 3, "Keyword
Instructions"

• All REXX built-in functions that are described in Chapter 4, "Functions."

• The TSO/E external function STORAGE

You can use the STORAGE function to obtain information from or change
information in a specified address. For more information, see page 126.

• The following TSO/E REXX commands:

MAKEBUF - to create a buffer on the data stack

DROPBUF - to drop (discard) a buffer that was previously created on the
data stack with the MAKEBUF command

NEWSTACK - to create a new data stack and effectively isolate the current
data stack that the exec is using

DELST ACK - to delete the most current data stack that was created with
the NEWST ACK command

QBUF - to query how many buffers are currently on the active data stack

QELEM - to query how many elements are on the data stack above the
most recently created buffer

QSTACK - to query the number of data stacks that are currently in
existence

EXECIO - to read data from and write data to data sets. Using EXECIO,
you can read data from and write data to the data stack or stem variables.

Chapter 8. Using REXX in Different Address Spaces 157

Using REXX in Different Address Spaces

TS (Trace Start) - to start tracing REXX execs. Tracing lets you control
exec execution and debug problems.

TE (Trace End) - to end tracing of REXX execs that was started using the
TS command

SUBCOM - to determine whether a particular host command environment is
available for the execution of host commands.

The commands are described in Chapter 10, "TSO/E REXX Commands."

• Invoking an exec. You can invoke another REXX exec from an exec using the
following instructions (the examples assume that the current host command
environment is MVS):
11 execname pl p2

11 EX execname pl p2 ... 11

11 EXEC execname pl p2 •.. 11

See "Commands to External Environments" on page 22 about using host
commands in a REXX exec.

• Linking and attaching programs. You can invoke a program from a REXX
exec using the ADDRESS LINK and ADDRESS ATTACH instructions, for
example:

ADDRESS LINK 11 routine pl p2 •.• 11

ADDRESS ATTACH 11 routine pl p2 ... 11

For more information about linking to and attaching programs, see "The LINK
and ATTACH Environments" on page 25.

Executing an Exec in a Non ... TSO/E Address Space
You can execute a REXX exec in a non-TSO/E address space using the IRXJCL
and IRXEXEC routines, which are programming interfaces to the REXX language
processor. To execute an exec in MVS batch, use the IRXJCL routine. In the JCL,
specify IRXJCL as the program name (PGM =) on the JCL EXEC statement. On
the EXEC statement, you specify the member name of the exec and the argument in
the PARM field, for example:

//STEPl EXEC PGM=IRXJCL,PARM='PAYEXEC week hours'

You can call IRXJCL from a program (for example, a PL/I program) to execute a
REXX exec. You can also execute a REXX exec from a program by calling the
IRXEXEC routine. "IRXJCL and IRXEXEC Routines" on page 214 describes
IRXJ CL and IRXEXEC in more detail and provides several examples.

If you want to invoke an exec from another exec that is executing in a non-TSO/E
address space, you can use one of the following instructions (the examples assume
that the current host command environment is not MVS):

ADDRESS MYS 11 execname pl p2

ADDRESS MYS 11 EX execname pl p2 .•• 11

ADDRESS MVS 11 EXEC execname pl p2 ... 11

158 TSO/E Version 2 REXX Reference

(~
I

!~
i

(]

~

u

Using REXX in Different Address Spaces

See "Host Commands and Host Command Environments" on page 23 for more
information about the different environments for issuing host commands.

Writing Execs That Execute in the TSO/E Address Space
If you write a RE.XX exec that will execute in the TSO/E address space, there are
additional TSO/E functions, commands, and services you can use that are not
available to execs that execute in a non-TSO/E address space. For execs that
execute in the TSO/E address space, you can use the following instructions,
functions, commands, and services:

• All RE.XX keyword instructions that are described in Chapter 3, "Keyword
Instructions"

• All REXX built-in functions that are described in Chapter 4, "Functions."

• The TSO/E external functions STORAGE, LISTDSI, MSG, OUTTRAP,
PROMPT, SYSDSN, and SYSVAR. The functions are described in "TSO/E
Functions" on page 110.

• The following TSO/E REXX commands:

MAKEBUF - to create a buffer on the data stack

DROPBUF - to drop (discard) a buffer that was previously created on the
data stack with the MAKEBUF command

NEWSTACK - to create a new data stack and effectively isolate the current
data stack that the exec is using

DELSTACK - to delete the most current data stack that was created with
the NEWSTACK command

QBUF - to query how many buffers are currently on the active data stack

QELEM - to query how many elements are on the data stack above the
most recently created buffer

QSTACK - to query the number of data stacks that are currently in
existence

EXECIO - to read data from and write data to data sets. Using EXECIO,
·you can read data from and write data to the data stack or stem variables.

SUBCOM - to determine whether a particular host command environment is
available for the execution of host commands

EXECUTIL - to change various characteristics that control how a REXX
exec executes. You can use EXECUTIL in an exec or CLIST, and from
TSO/E READY mode and ISPF.

Immediate commands, which are:

HI (Halt Interpretation) - stop execution of the exec

TS (Trace Start) - start tracing of the exec

TE (Trace End) - end tracing of the exec

HT (Halt Typing) - suppress terminal output that the exec generates

RT (Resume Typing) - resume terminal output that was previously
suppressed.

Chapter 8. Using REXX in Different Address Spaces 159

Using REXX in Different Address Spaces

You can use the TS and TE immediate commands in a REXX exec to start
and end tracing. You can use any of the immediate commands if an exec is
executing in TSO/E and you press the attention interruption key. When you
enter attention mode, you can enter an immediate command.

The commands are described in Chapter 10, "TSO/E REXX Commands."

• Invoking another exec. You can invoke another REXX exec using the following
instructions (the examples assume that the current host command environment is
TSO):
11 execname pl p2

nEX execname pl p2 .•• 11

11 EXEC execname pl p2 ••• "

• Linking and attaching programs. You can invoke a program from a REXX
exec using the ADDRESS LINK and ADDRESS ATTACH instructions, for
example:

ADDRESS LINK "routine pl p2 .•. 11

ADDRESS ATTACH "routine pl p2 ... 11

For more information about linking to and attaching programs, see "The LINK
and ATTACH Environments" on page 25.

• Interactive System Productivity Facility (ISPF)

You can invoke REXX execs from ISPF. You can also write ISPF dialogs in
the REXX programming language. If an exec executes in ISPF, it can use ISPF
services that are not available to execs that are executed from TSO/E READY
mode. In an exec, you can use the ISPEXEC and ISREDIT host command
environments to use ISPF services. You can only use ISPF services after ISPF
has been invoked. For example, to use the ISPF SELECT service, use:

ADDRESS ISPEXEC 'SELECT service•

• TSO /E commands and services

You can use anyTSO/E command in a REXX exec that executes in the TSO/E
address space. This includes both unauthorized and authorized TSO/E
commands. You can also use TSO/E services, such as the programming services
that are documented in TSO/E Version 2 Programming Services.

• Interaction with CLISTs.

In TSO/E, REXX execs can call CLISTs and can also be called by CLISTs.
CLIST is a command procedures language and is described in TSO/E Version 2
CLISTs.

160 TSO/E Version 2 REXX Reference

I~
')

\._;'

I I

~/

Using REXX in Different Address Spaces

Executing an Exec in the TSO/E Address Space
You can execute a REXX exec in the TSO/E address space in several ways. To
execute an exec in TSO/E foreground, you use the TSO/E EXEC command
processor to either implicitly or explicitly invoke the exec; TSO/E Version 2 REXX
User's Guide describes how to execute an exec in TSO/E foreground.

You can execute a REXX exec in TSO/E background. In the JCL, specify
IKJEFTOl as the program name (PGM on the JCL EXEC statement. On the
EXEC statement, you specify the member name of the exec and any arguments in
the PARM field. For example, to execute an exec called TEST4 that is in data set
USERID.MYREXX.EXEC, use the following JCL:

llTSOBATCH EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K,PARM='TEST4'
llSYSPROC DD DSN=USERID.MYREXX.EXEC,DISP=SHR

You can also invoke an exec implicitly or explicitly in the input stream of the
SYSTSIN DD statement.

llTSOBATCH EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
llSYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
llSYSTSPRT DD SYSOUT=A
llSYSTSIN DD *

I*
II

EXECUTIL SEARCHDD(YES)
%TEST4

See TSO/E Version 2 REXX User's Guide for more information about invoking
execs.

From a program that is written in a high level programming language, you can use
the TSO service facility to invoke the TSO/E EXEC command in order to execute a
RE.XX exec. TSO/E Version 2 Programming Services describes the TSO service
facility in detail.

You can also invoke a RE.XX exec from an application program using the exec
processing routines IRXJCL and IRXEXEC. Although IRXJCL and IRXEXEC are
primarily used in non-TSO/E address spaces, they are programming interfaces to the
RE.XX language processor that you can use to execute an exec in any address space,
including TSO/E. For example, in an assembler or PL/I program, you could invoke
IRXJCL or IRXEXEC to execute a REXX exec.

The IRXEXEC routine gives you more flexibility in executing an exec. For example,
if you want to preload an exec in storage and then execute the preloaded exec, you
can use IRXEXEC. "IRXJCL and IRXEXEC Routines" on page 214 describes the
IRXJCL and IRXEXEC interfaces in detail.

Chapter 8. Using REXX in Different Address Spaces 161

,r-"\
I

162 TSO/E Version 2 REXX Reference

l i

'--"'

Keywords, Variables, and Command Nam es

Chapter 9. Reserved Keywords, Special Variables, and
Command Names

Keywords may be used as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT and SIGL.

TSO/E provides several TSO/E REXX commands whose names are reserved.

Reserved Keywords
The free syntax of REXX implies that some symbols are reserved for use by the
language processor in certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts
of the instruction. These symbols are referred to as keywords. Examples of REXX
keywords are the WHILE in a DO instruction, and the THEN (which acts as a
clause terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and
that are not followed by an 11 = 11 or 11

:
11 are checked to see if they are instruction

keywords; the symbols may be freely used elsewhere in clauses without being taken
to be keywords.

It is not, however, recommended for users to execute host commands or
subcommands with the same name as REXX keywords (QUEUE, for example).
This can create problems for any programmer whose REXX programs might be used
for some time and in circumstances outside his or her control, and who wishes to
make the program absolutely 11watertight. 11

In this case, a REXX program may be written with (at least) the first words in
command lines enclosed in quotes.

Example:
1 LISTDS 1 ds_name

This also has an advantage in that it is more efficient; and with this style, the
SIGNAL ON NOV ALUE condition may be used to check the integrity of an exec.

In TSO/E, single quotes are often used in TSO/E commands, for example, to enclose
the name of a fully qualified data set. In any REXX execs that execute in TSO/E,
you may want to enclose an entire host command in double quotes. This ensures
that the language processor processes the expression as a host command. For
example:
11 ALLOCATE DA('prefix.proga.exec') FILE(SYSEXEC) SHR REUSE 11

Chapter 9. Reserved Keywords, Special Variables, and Command Names 163

Special Variables
There are three special variables that may be set automatically by the language
processor:

RC is set to the return code from any executed host command (or
subcommand). Following the SYNTAX, ERROR, and FAILURE
conditions, RC is set to the code appropriate to the event: the syntax
error number (see appendix on error messages, page 395) or the
command return code. RC is unchanged following a NOVALUE or
HALT event.

Note: Host commands executed manually from debug mode do not
cause the value of RC to change.

The TSO/E REXX commands also return a value in the special variable
RC. Some of the commands return the result from the command. For
example, the QBUF command returns the number of buffers currently on
the data stack in the special variable RC. The commands are described
in Chapter 10, "TSO/E REXX Commands."

RESULT is set by a RETURN instruction in a subroutine that has been CALLed
if the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
uninitialized.)

SIGL contains the line number of the clause currently executing when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL, a CALL, an internal function invocation, or a trapped error
condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable, and they may be accessed using the variable access routine
IRXEXCOM. The PROCEDURE and DROP instructions also affect these
variables in the usual way.

Certain other information is always available to a REXX program. This includes
the name by which the program was invoked and the source of the program (which
is available using the PARSE SOURCE instruction, see page 51). The data that
PARSE SOURCE returns is as follows:

1. The character string TSO

2. The call type (command, function, or subroutine)

3. Name of the exec in uppercase

4. Name of the DD from which the exec was loaded, if known

5. Name of the data set from which the exec was loaded, if known

6. Name of the exec as invoked (that is, not folded to uppercase)

7. Initial (default) host command environment

8. Name of the address space in uppercase

9. Eight character user token

164 TSO/E Version 2 REXX Reference

1)

Keywords, Variables, and Command

In addition, PARSE VERSION (see page 52) makes available the version and date
of the language processor code that is running. The built-in functions TRACE and
ADDRESS return the current trace setting and environment name respectively.

Finally, the current settings of the NUMERIC function can be obtained using the
DIGITS, FORM, and FUZZ built-in functions.

Reserved Command Names
TSO/E provides TSO/E REXX commands that you can use for REXX processing.
The commands are described in Chapter 10, "TSO/E REXX Commands." The
names of these commands are reserved for use by TSO/E and it is recommended that
you do not use these names for names of your REXX execs, CLISTs, or load
modules. The names are:

• DELSTACK
• DROPBUF
• EXECIO
• EXECUTIL
• HI
• HT
• MAKEBUF
• NEWSTACK
• QBUF
• QELEM
• QSTACK
• RT
• SUBCOM
• TE
• TS

Chapter 9. Reserved Keywords, Special Variables, and Command Names 165

166 TSO/E Version 2 REXX Reference

f~
')

~I
;

TSO/E REXX Commands

Chapter 10. TSO/E REXX Commands

TSO/E Version 2 provides TSO/E REXX commands to perform services such as I/O
and data stack requests. The TSO/E REXX commands are not the same as TSO/E
command processors, such as ALLOCATE and PRINTDS. In general, you can
only use these commands in REXX execs (in any address space), not in CLISTs or
from TSO/E READY mode. The exceptions are the EXECUTIL command and the
immediate commands TS, TE, HI, HT, and RT.

You can use the EXECUTIL command in the TSO/E address space only. In
general, you can use EXECUTIL in an exec or a CLIST, from TSO/E READY
mode, or from ISPF. The description of the EXECUTIL command on page 178
describes the different operands and any exceptions about using them.

You can use the TS (Trace Start) and TE (Trace End) immediate commands in an
exec that executes in any address space. In the TSO/E address space, you can use
any of the immediate commands (TS, TE, HI, HT, and RT) if you are executing a
REXX exec and press the attention interrupt key. When you enter attention mode,
you can enter one of the immediate commands.

The TSO/E REXX commands perform services such as:

• Controlling 1/0 processing of information to and from data sets (EXECIO)

• Performing data stack services (MAKEBUF, DROPBUF, QBUF, QELEM,
NEWSTACK, DELSTACK, QSTACK)

• Changing characteristics that control the execution of an exec (EXECUTIL and
the immediate commands)

• Checking for the existence of a host command environment (SUBCOM).

Note: The names of the TSO/E REXX commands are reserved for use by TSO/E.
It is recommended that you do not use these names for names of your REXX execs,
CLISTs, or load modules.

Environment Customization Considerations -------------~

If you customize REXX processing using the initialization routine IRXINIT, you
can initialize a language processor environment that is not integrated into TSO/E
(see page 273). Most of the TSO/E REXX commands can be used in any type of
language processor environment. The EXECUTIL command can be used only if
the environment is integrated into TSO/E. You can use the immediate
commands from attention mode only if the environment is integrated into
TSO/E. You can use the TS and TE immediate commands in a REXX exec that
executes in any type of language processor environment (integrated or not
integrated into TSO/E). Chapter 13, ''TSO/E REXX Customizing Services"
describes customization and language processor environments in more detail.

Examples are provided that show how to use the TSO/E REXX commands. The
examples may include data set names. When an example includes a data set name
that is enclosed in single quotes, the prefix is added to the data set name. In the
examples, the user ID is the prefix.

Chapter 10. TSO/E REXX Commands 167

DELSTACK

DELSTACK

deletes the most recently created data stack that was created by the NEWST ACK
command, and all elements on it. If a new data stack was not created, DELSTACK
removes all the elements from the original data stack.

The DELSTACK command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

The exec that creates a new data stack with the NEWST ACK command can delete
the data stack with the DELSTACK command, or an external function or
subroutine that is written in RE:XX and that is called by that exec can issue a
DELST ACK command to delete the data stack.

Examples

1. To create a new data stack for a called routine and delete it when the routine
returns, use the NEWST ACK and DELSTACK commands as follows:

11 NEWSTACK 11

CALL subl
11 DELSTACK 11

EXIT

subl:
PUSH .••
QUEUE ..•
PULL •••
RETURN

/* data stack 2 created */

/* data stack 2 deleted */

2. After creating multiple new data stacks, to find out how many data stacks were
created and delete all but the original data stack, use the NEWST ACK,
QSTACK, and DELSTACK commands as follows:

11 NEWSTACK 11 /* data stack 2 created */

11 NEWSTACK 11 /* data stack 3 created */

11 NEWSTACK 11 /* data stack 4 created */
11 QSTACK 11

times = RC - 1 /* set times to the number of new data stacks created */
DO times /*delete all but the original data stack */

11 DELSTACK 11 /* delete one data stack */
END

168 TSO/E Version 2 REXX Reference

.~
\
j

DROPBUF

removes the most recently created data stack buffer that was created with the
MAKEBUF command, and all elements on the data stack in the buffer. To remove
a specific data stack buffer and all buffers created after it, issue the DROPBUF
command with the number (n) of the buffer.

The DROPBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Operand: The operand for the DROPBUF command is:

n
specifies the number of the first data stack buffer you want to drop.
DROPBUF removes the specified buffer and all buffers created after\it. If n is
not specified, only the most recently created buffer is removed. If you issue
DROPBUF 0, all buffers that were created on the data stack with the
MAKEBUF command and all elements that were put on the data stack are
removed. DROPBUF 0 effectively clears the data stack.

Note: The data stack initially contains one buffer. You can create additional
buffers using the MAKEBUF command. The DROPBUF command removes
only buffers (and elements within a buffer) that were explicitly created with
MAKEBUF.

If processing was not successful, the DROPBUF command sets one of the following
return codes in the REXX special variable RC.

Return Meaning
Code

1 An invalid number n was specified. For example, n was Al.

2 The specified buff er does not exist. For example, you will get a return
code of 2 if QBUF = 4 and you specify DROPBUF 6.

Chapter 10. TSO /E REXX Commands 169

DROPBUF

Example

A subroutine, sub2, in exec C used the MAKEBUF command to create four buffers.
Remove buffers two and above and all elements within them before returning
control from sub2 to exec C.

exec C:

CALL sub2

sub2:
11 MAKEBUF"
QUEUE A
11 MAKEBUF 11

QUEUE B
QUEUE C
11 MAKEBUF1'
QUEUE D
11 MAKEBUP'
QUEUE E
QUEUE F
11 DROPBUF 211

RETURN

/* buffer 1 created */

/* buffer 2 created */

/* buffer 3 created */

/* buffer 4 created */

/* buffers 2 and above deleted */

170 TSO/E Version2 REXX Reference

,!'\
i

/~.

~' .)

EXECIO
\._/

controls the input and output (I/O) of information to and from a data set.
Information can be read from a data set to the data stack for serialized processing or
to a list of variables for random processing. Information from the data stack or a
list of variables can be written to a data set.

The EXECIO command can be used in REXX execs that execute in both the TSO/E
address space and non~ TSO/E address spaces.

You can use the EXECIO command to do various types of I/O tasks, such as copy
information to and from a data set in order to add, delete, or update the
information.

An I/0 data set must be either sequential or a single member of a PDS. Before the
EXECIO command can perform I/Oto or from the data,.set, the data set must be
allocated to a file that is specified in the EXECIO command. The EXECIO
command does not perform the allocation.

When performing I/O with a system data set that is available to multiple users,
allocate it as OLD before issuing the EXECIO command, in order to have exclusive
use of the data set.

When you use EXECIO, you must ensure that you use quotes around any operands,
such as DISKW, STEM, FINIS, or LIFO. Using quotes prevents the possibility of
the operands being substituted as variables. For example, if you assign the variable
stem to a value in the exec and then issue EXECIO with the STEM option, if STEM
is not enclosed in quotes, it will be substituted with its assigned value.

Chapter 10. TSO/E REXX Commands 171

EXECIO

Operands for Reading from a Data Set: The operands for the EXECIO command
to read from a data set are as follows:

lines
the number of lines to be processed. This operand can be a specific decimal
number or an arbitrary number indicated by*. When the operand is* and
EXECIO is reading from a data set, input is read until EXECIO reaches the end
of the data set.

DIS KR
opens a data set for input (if it is not already open) and reads the specified
number of lines from the data set and places them on the data stack. If the
STEM operand is specified, the lines are placed in a list of variables instead of
on the data stack.

When a data set is open for input, you cannot write information back to the
same data set.

The data set is not automatically closed unless:

• The task, under which the data set was opened, ends

• The last language processor environment associated with the task, under
which the data set was opened, is terminated (see page 260 for information
about language processor environments).

DISKRU
opens a data set for update (if it is not already open) and reads the specified
number of lines from the data set and places them on the data stack. If the
STEM operand is specified, the lines are placed in a list of variables instead of
on the data stack.

When a data set is open for update, the last record read can be changed and
then written back to the data set one line at a time with a corresponding
EXECIO DISKW command. Typically a data set is open for update when
information within the data set is to be modified.

The data set is not automatically closed unless:

• The task, under which the data set was opened, ends

• The last language processor environment associated with the task, under
which the data set was opened, is terminated.

Note: Once a data set is open for update (by issuing a DISKRU as the first
operation against the data set), either DISKR or DISKRU may be used to fetch
subsequent records for update.

ddname
the name of the file to which the sequential data set or member of the PDS was
allocated. The file must be allocated before you can issue EXECIO.

linenum
the line number in the data set at which EXECIO is to begin reading.

Note: When a data set is open for input or update, the current record number
is the number of the next record to be read. When linenum specifies a record
number earlier than the current record number in an open data set, the data set
must be closed and reopened to reposition the current record number at linenum.
When this situation occurs and the data set was not opened at the same task
level as that of the executing exec, attempting to close the data set at a different
task level results in an EXECIO error. The linenum operand must not be used
in this case.

172 TSO/E Version 2 REXX Reference

~/

EXECIO

FINIS
close the data set after the EXECIO command completes. A data set can be
closed only if it was opened at the same task level as the exec issuing the
EXECIO command.

Because the EXEC command, (when issued from the TSO/E READY
prompt) is attached by the TMP, data sets opened by an EXEC will
typically be closed automatically when the top level exec ends. Good
programming practice, however, would be to explicitly close all data sets
when finished with them.

STEM var-name
the stem of the list of variables into which information is to be placed. To
place information in compound variables, which allow for indexing, the
var-name should end with a period, for example myvar. When three lines are
read from the data set, they are placed in myvar.1, myvar.2, myvar.3. The
number of variables in the list is stored in myvar.e.

When var-name doesn't end with a period, the variable names are appended
with numbers but they cannot be accessed by an index in a loop.

SKIP
reads the specified number of lines but does not place them on the data
stack or in variables. When the number of lines is *, EXECIO skips to the
end of the data set.

LIFO
places information on the data stack in LIFO (last in first out) order.

FIFO
places information on the data stack in FIFO (first in first out) order.
FIFO is the default when neither LIFO or FIFO is specified.

Operands for Writing to a Data Set: The operands for the EXECIO command that
write to a data set are as follows:

lines
the number of lines to be written. This operand can be a specific decimal
number or an arbitrary number indicated by *. When EXECIO writes an
arbitrary number of lines from the data stack, it stops only when it reaches a
null line. If there is no null line on the data stack in an interactive TSO/E
address space, EXECIO waits for input from the terminal and stops only when it
receives a null line. See note below.

When EXECIO writes an arbitrary number of lines from a list of compound
variables, it stops when it reaches a null value or an uninitialized variable (one
that displays its own name).

The 0th variable has no effect on controlling the number of lines written from
variables.

Note: EXECIO running in the TSO/E background or MVS batch has the same
use of the data stack as an exec that runs in the TSO/E foreground. If an
EXECIO * DISKW ... command is executing in the background or batch and
the data stack becomes empty before a null line is found (which would terminate
EXECIO), EXECIO goes to the input stream as defined by the INDD field in
the module name table (see page 286). The system default is SYSTSIN. When
end-of-file is reached, EXECIO ends.

Chapter 10. TSO/E REXX Commands 173

DISKW
opens a data set for output (if it was not already open) and writes the specified
number of lines to the data set. The lines can be written from the data stack or,
if the STEM operand is specified, from a list of variables.

You can use the DISKW operand to write information to a different data set
from the one opened for input, or to update, one line at a time, the same data
set opened for update. When a data set is opened for update, DISKW may be
used to rewrite the last record read. The lines value must be 1 when doing an
update.

The data set is not automatically closed unless:

• The task, under which the data set was opened, ends.

• The last RE.XX environment associated with the task, under which the data
set was opened, is terminated.

Notes:

1. The length of an updated line is set to the length of the line it replaces.
When an updated line is longer than the line it replaces, information that
extends beyond the replaced line is truncated. When information is shorter
than the replaced line, it is padded with blanks to attain the original line
length.

2. When using EXECIO to write to more than one member of the same PDS,
only one member of the PDS should be open at a time for output.

3. Do not use the MOD attribute when allocating a member of a PDS to
which you want to append information. You can use MOD only when
appending information to a sequential data set. To append information to a
member of a PDS, rewrite the member with the additional records added.

ddname
the name of the file to which the sequential data set or member of the PDS was
allocated. The file must be allocated before you issue the EXECIO command.

FINIS
close the data set after the EXECIO command completes. A data set can be
closed only if it was opened at the same task level as the exec issuing the
EXECIO command.

Because the EXEC command, (when issued from the TSO/E READY
prompt) is attached by the TMP, data sets opened by an EXEC will
typically be closed automatically when the top level exec ends. Good
programming practice, however, would be to explicitly close all data sets
when finished with them.

STEM var-name
the stem of the list of variables from which information is to be written. To
write information from compound variables, which allow for indexing, the
var-name should end with a period, for example myvar. . When three lines
are written to the data set, they are taken from myvar. l, myvar.2, myvar.3.
When * is specified as the number of lines to write, the EXECIO command
stops writing information to the data set when it finds a null line or an
uninitialized compound variable. In this case, if the list contained 10
compound variables, the EXECIO command stops at myvar .11.

17 4 TSO /E Version 2 REXX Reference

!~
I

,~,
I

/~
i

TheOth variable has no effect on controlling the number of lines written
from variables.

When var-name doesn't end with a period, the variable names must be
appended with consecutive numbers, such as myvarl, myvar2, myvar3.

Return Codes: After the EXECIO command runs, it sets the REXX special variable
RC to a return code.

Return Meaning
Code

0 Normal completion of requested operation

1 Data was truncated during DISKW operation

2 End-of-file reached before the specified number of lines were read during
a DISKR or DISKRU operation. This does not occur if* is used for
number of lines because the remainder of the file is always read.

20 Severe error. EXECIO completed unsuccessfully and a message is issued.

Examples

1. This example copies an entire existing sequential data set named
USERID.MY.INPUT into a member of an existing PDS named
DEPT5.MEMO(MAR22), and uses the ddnames DATAIN and DATAOUT
respectively.

"ALLOC DA(my.input) F(datain) SHR REUSE"
11 ALLOC DA(1 dept5.memo(mar22) 1

) F(dataout) OLD"
11 NEWSTACK 11 /* Create a new data stack for input only */

11 EXECIO * DISKR datain (FINIS"
QUEUE 1 1 /* Add a null line to indicate the end of information */
11 EXECIO * DISKW dataout (FINIS"

11 DELSTACK 11 /* Delete the new data stack */
"FREE F(datain dataout) 11

2. This example copies an arbitrary number of lines from existing sequential data
set USERID.TOTAL.DATA into a list of compound variables with the stem
DATA., and uses the ddname INDD:

ARG lines
11 ALLOC DA(total.data) F(indd) SHR REUSE 11

11 EXECI0 11 lines 11 DISKR indd (STEM data. 11

SAY data.0 'records were read. 1

3. To update the second line in data set DEPT5.EMPLOYEE.LIST in file
UPDATEDD, allocate the data set as OLD to guarantee exclusive update.

11 ALLOC DA(1dept5.employee.list 1
) F(updatedd) OLD 11

11 EXECIO 1 DISKRU updatedd 211

PULL line
PUSH 1 Crandall, Amy AMY 5500 1

11 EXECIO 1 DISKW updatedd (FINIS 11

11 FREE F(updatedd) 11

Chapter 10. TSO/E REXX Commands 175

EXECIO

4. The following example scans each line of a data set whose name and size is
specified by the user. The user is given the option of changing each line as it
appears. If there is no change to the line, the user presses the ENTER key to
indicate that there is no change. If there is a change to the line, the user types
the entire line with the change and the new line is returned to the data set.

PARSE ARG name numlines /*Get data set name and size from user*/

11 ALLOC DA(11 name 11
) F(updatedd) OLD 11

eof = 'NO' /* Initialize end-of-file flag*/

DO i = 1 to numlines WHILE eof =no
'EXECIO 1 DISKRU updatedd ' /* Queue the next line on the stack*/
IF RC = 2 THEN /* Return code indicates end-of-file */

eof = 'YES'
ELSE

END

DO
PARSE PULL line
SAY 'Please make changes to the following line.'
SAY 'If you have no changes, press ENTER.'
SAY line
PARSE PULL newline
IF newline= 11 THEN NOP
ELSE

DO
PUSH newline
11 EXECIO 1 DISKW updatedd 11

END
END

5. This example reads from the data set allocated to INDD to find the first
occurrence of the string "Jones". Upper and lowercase distinctions are ignored.
The example demonstrates how to read and search one record at a time. For
better performance, you can read all records to the data stack or to a list of
variables, search them, and then return the updated records.

done = 1 no'

DO WHILE done = 1 no 1

11 EXECIO 1 DISKR indd 11

IF RC = 0 THEN
DO

PULL record

/* Record was read */

lineno = lineno + 1 /* Count the record */
IF INDEX(record,'JONES') ,= 0 THEN

DO
SAY 'Found in record' lineno
done= 1yes 1

SAY 'Record
END

ELSE NOP
END

ELSE
done= 1yes 1

END
EXIT 0

' record

176 TSO/E Version 2 REXX Reference

/~
i
j

EXECIO

6. This exec copies records from data set USERID.MY.INPUT to the end of data
set USERID.MY.OUTPUT. Neither data set has been allocated to a ddname. It
assumes that the input data set has no null lines.
11 ALLOC DA(my.input) F(indd) SHR REUSE"
11 ALLOC DA(my.output) F(outdd) MOD REUSP

SAY 'Copying ..• '

11 EXECIO * DISKR indd (FINIS"
QUEUE 11 /* Insert a null line at the end to indicate end of file*/
11 EXECIO * DISKW outdd (FINIS"

SAY 'Copy complete.'
11 FREE F(indd outdd) 11

EXIT 0

7. This exec reads five records from the data set allocated to MYINDD starting
with the third record. It strips trailing blanks from the records, and then writes
any record that is longer than 20 characters. The file is not closed when the exec
is finished.
11 EXECIO 5 DISKR myindd 311

DO i = 1 to 5
PARSE PULL line
stripline = STRIP(line,t)
len = LENGTH(stripline)

IF len > 20 THEN
SAY 1 Line 1 stripline 'is long.'

ELSE NOP
END

/* The file is still open for processing */

EXIT 0

8. This exec reads the first 100 records (or until EOF) of the data set allocated to
INVNTORY. Records are placed on the data stack in LIFO order. Iffewer
than 100 records are read, a message is issued.

eofflag = 2 /* Return code to indicate end of file */

11 EXECIO 100 DISKR invntory (LIFO"
return_code = RC

IF return_code ~= eofflag THEN
SAY 'Premature end of file.•

ELSE
SAY 1 100 Records read. 1

EXIT return_code

Chapter 10. TSO/E REXX Commands 177

EXECUTIL

lets you change various characteristics that control how an exec executes in the
TSO/E address space. You can use EXECUTIL:

• In a REXX exec

• From TSO/E READY mode

• From ISPF - the ISPF command line or ISPF option 6 (enter a TSO/E
command or CLIST)

• In a CLIST. You can use EXECUTIL in a CLIST to affect exec prqcessing.
However, it has no effect on CLIST processing

You can also use EXECUTIL with the HI, HT, RT, TS, and TE operands from a
program that is written in a high-level programming language by using the TSO
service facility. From READY mode or ISPF, the HI, HT, and RT operands are
not applicable because an exec is not currently executing.

Use EXECUTIL to:

• Specify whether the system exec library, whose default name is SYSEXEC, is to
be closed after the exec is located or is to remain open

• Start and stop tracing of an exec

• Stop the execution of an exec

• Suppress and resume terminal output from an exec

• Change entries in a function package directory

• Specify whether or not the system exec library (the default is SYSEXEC) is to be
searched in addition to SYSPROC.

Additional Considerations for Using EXECUTIL

• All of the EXECUTIL operands are mutually exclusive, that is, you can only
specify one of the operands on the command.

• The HI, HT, RT, TS, and TE operands on the EXECUTIL command are also,
by themselves, immediate commands. Immediate commands are commands that
can be issued from the terminal if an exec is executing and you press the
attention interrupt key and enter attention mode. These commands are
processed immediately.

178 TSO/E Version 2 REXX Reference

EXECUTIL

Note: You can also use the immediate commands TS (Trace Start) and TE
(Trace End) in a REXX exec that executes in any address space (TSO/E and
non-TSO/E). For information about the TS command, see page 202. For
information about the TE command, see page 201.

• In general, EXECUTIL works on a language processor environment basis. That
is, EXECUTIL affects only the current environment in which EXECUTIL is
issued. For example, if you are in split screen in ISPF and issue EXECUTIL TS
from the second ISPF screen to start tracing, only execs that are invoked from
that ISPF screen are traced. If you invoke an exec from the first ISPF screen,
the exec is not traced.

Using the EXECDD and SEARCHDD operands may affect subsequent
language processor environments that are created. For example, if you issue
EXECUTIL SEARCHDD from TSO/E READY mode and then invoke ISPF,
the new search order defined by EXECUTIL SEARCHDD may be in effect for
the ISPF session also. This depends on whether your installation has provided
its own parameters modules IRXTSPRM and IRXISPRM and the values
specified in the load module.

EXECDD(CLOSE) or EXECDD(NOCLOSE)

TS

Specifies whether or not the system exec library is to be closed after the system
locates the exec but before the exec executes.

CLOSE causes the system exec library, whose default name is SYSEXEC, to be
closed after the exec is located but before the exec executes. This condition can
be changed by issuing the EXECUTIL EXECDD(NOCLOSE) command.

NOCLOSE causes the system exec library to remain open. This is the default
condition and can be changed by issuing the EXECUTIL EXECDD(CLOSE)
command. The selected option remains in effect until it is changed by the
appropriate EXECUTIL command, or until the current environment is
terminated.

Notes:

1. The EXECDD operand affects the ddname specified in the LOADDD field
in the module name table. The default is SYSEXEC. "Module Name
Table" on page 286 describes the table.

2. If you specify EXECDD(CLOSE), the exec library (DD specified in the
LOADDD field) is closed immediately after an exec is loaded.

Any libraries defined using the AL TLIB command are not affected by the
EXECDD operand. SYSPROC is also not affected. The ALTLIB command is
available only in the MVS/ESA feature of TSO/E Version 2.

Use TS (Trace Start) to start tracing execs. Tracing lets you interactively
control the execution of an exec and debug problems. For more information
about the interactive debug facility, see Chapter 11, "Debug Aids" on page 203.

If you issue EXECUTIL TS from READY mode or ISPF, tracing is started for
the next exec you invoke. Tracing is then in effect for that exec and any other
execs it calls. Tracing stops:

• When the original exec completes
• If one of the invoked execs specifies EXECUTIL TE
• If one of the invoked execs calls a CLIST, which specifies EXECUTIL TE
• If you enter attention mode while an exec is executing and issue the TE

immediate command.

Chapter 10. TSO/E REXX Commands 179

EXECUTIL

TE

HT

If you use EXECUTIL TS in an exec, tracing is started for all execs that are
executing. This includes the current exec that contains EXECUTIL TS, any
execs it invokes, and any execs that were executing when the current exec was
invoked. Tracing remains active until all currently executing execs complete or
an exec or CLIST contains EXECUTIL TE.

For example, suppose exec A calls exec B, which then calls exec C. If exec B
contains the EXECUTIL TS command, tracing is started for exec Band remains
in effect for both exec C and exec A. Tracing stops when exec A completes.
However, if one of the execs contains EXECUTIL TE, tracing stops for all of
the execs.

If you use EXECUTIL TS in a CLIST, tracing is started for all execs that are
executing, that is, for any exec the CLIST invokes or execs that were executing
when the CLIST was invoked. Tracing stops when the CLIST and all currently
executing execs complete or if an exec or CLIST contains EXECUTIL TE. For
example, suppose an exec calls a CLIST and the CLIST contains the
EXECUTIL TS command. When control returns to the exec that invoked the
CLIST, that exec is traced.

You can use EXECUTIL TS from a program by using the TSO service facility.
For example, suppose an exec calls a program and the program encounters an
error. The program can invoke EXECUTIL TS using the TSO service facility to
start tracing all execs that are currently executing.

You can also press the attention interrupt key, enter attention mode, and then
enter TS to start tracing or TE to stop tracing. You can also use the TS
command (see page 202) and TE command (see page 201) in an exec.

Use TE (Trace End) to stop tracing execs. The TE operand is not really
applicable in READY mode because an exec is not currently executing.
However, if you issued EXECUTIL TS to trace the next exec you invoke and
then issued EXECUTIL TE, the next exec you invoke is not traced.

If you use EXECUTIL TE in an exec or CLIST, tracing is stopped for all
currently executing execs. This includes execs that were executing when the exec
or CLIST was invoked and execs that the exec or CLIST calls. For example,
suppose exec A calls CLIST B, which then calls exec C. If tracing was on and
CLIST B contains EXECUTIL TE, tracing is stopped and execs C and A are
not traced.

You can use EXECUTIL TE from a program by using the TSO service facility.
For example, suppose tracing has been started and an exec calls a program. The
program can invoke EXECUTIL TE using the TSO service facility to stop
tracing of all execs that are currently executing.

You can also press the attention interrupt key, enter attention mode, and then
enter TE to stop tracing. You can also use the TE immediate command in an
exec (see page 201).

Use HT (Halt Typing) to suppress terminal output generated by an exec. The
exec continues executing. HT suppresses any output generated by REXX
instructions or functions (for example, the SAY instruction) and REXX
informational messages. REXX error messages are still displayed. Normal
terminal output resumes when the exec completes. You can also use
EXECUTIL RT to resume terminal output.

180 TSO/E Version 2 REXX Reference

I~
I
i

RT

HI

i_)

EXECUTIL

HT has no effect on CLISTs or commands. If an exec invokes a CLIST and the
CLIST generates terminal output, the output is displayed. If an exec invokes a
command, the command displays messages.

Use the HT operand in either an exec or CLIST. You can also use EXECUTIL
HT from a program by using the TSO service facility. If the program invokes
EXECUTIL HT, terminal output from all execs that are currently executing is
suppressed. EXECUTIL HT is not applicable from READY mode or ISPF
because no execs are currently executing.

If you use EXECUTIL HT in an exec, output is suppressed for all execs that are
executing. This includes the current exec that contains EXECUTIL HT, any
execs the exec invokes, and any execs that were executing when the current exec
was invoked. Output is suppressed until all currently executing execs complete
or an exec or CLIST contains EXECUTIL RT.

If you use EXECUTIL HT in a CLIST, output is suppressed for all execs that
are executing, that is, for any exec the CLIST invokes or execs that were
executing when the CLIST was invoked. Terminal output resumes when the
CLIST and all currently executing execs complete or if an exec or CLIST
contains EXECUTIL RT.

For example, suppose exec A calls CLIST B, which then calls exec C. If the
CLIST contains EXECUTIL HT, output is suppressed for both exec A and exec
C.

If you use EXECUTIL HT and want to display terminal output using the SAY
instruction, you must use EXECUTIL RT before the SAY instruction to resume
terminal output.

Use RT (Resume Typing) to resume terminal output that was previously
suppressed. Use the RT operand in either an exec or CLIST. You can also use
EXECUTIL RT from a program by using the TSO service facility. If the
program invokes EXECUTIL RT, terminal output from all execs that are
currently executing is resumed. EXECUTIL RT is not applicable from READY
mode or ISPF because no execs are currently executing.

If you use EXECUTIL RT in an exec or CLIST, typing is resumed for all execs
that are executing.

Use HI (Halt Interpretation) to stop execution of all currently executing execs.
From either an exec or a CLIST, EXECUTIL HI stops the execution of all
currently executing execs. If an exec calls a CLIST and the CLIST contains
EXECUTIL HI, the exec that invoked the CLIST stops executing.

EXECUTIL HI is not applicable from READY mode or ISPF because no execs
are currently executing.

You can use EXECUTIL HI from a program by using the TSO service facility.
If the program invokes EXECUTIL HI, execution of all execs that are currently
executing is stopped.

If an exec enables a HALT condition and the exec includes the EXECUTIL HI
command, EXECUTIL HI stops execution of the current exec and all execs the
current exec invokes. However, any execs that were executing when the current
exec was invoked are not stopped. These execs continue executing. For
example, suppose exec A calls exec B, which calls exec C and exec B specifies
EXECUTIL HI and also contains a SIGNAL ON HALT instruction (with a
HALT: label). When EXECUTIL HI is processed"' control is given to the

Chapter 10. TSO/E REXX Commands 181

EXECUTIL

HALT subroutine. When the subroutine completes, exec A continues executing
at the statement that follows the call to exec B. For more information, see
Chapter 7, "Conditions and Condition Traps."

RENAME
Use EXECUTIL RENAME to change entries in a function package directory.
A function package directory contains information about the functions and
subroutines that make up a function package. See "Function Packages" on
page 229 for more information.

A function package directory contains the following fields for each function and
subroutine:

• Fune-name -- the name of the external function or subroutine that is used
in an exec.

• Addr -- the address, in storage, of the entry point of the function or
subroutine code.

• Sys-name -- the name of the entry point in a load module that corresponds
to the code that is called for the function or subroutine.

• Sys-dd -- the name of the DD from which the function or subroutine code
is loaded.

You can use EXECUTIL RENAME with the SYSNAME and DD operands to
change an entry in a function package directory as follows:

• Use the SYSNAME operand to change the sys-name of the function or
subroutine in the function package directory. When an exec invokes the
function or subroutine, the routine with the new sys-name is invoked.

• Use EXECUTIL RENAME NAME(function-name) without the
SYSNAME and DD operands to flag the directory entry as null. This
causes the search for the function or subroutine to continue because a null
entry is bypassed. The system will then search for a load module and/or an
exec. See page 73 for the complete search order.

EXECUTIL RENAME clears the addr field in the function package directory to
X 100 1

• When you change an entry, the name of the external function or
subroutine is not changed, but the code that the function or subroutine invokes
is replaced.

You can use EXECUTIL RENAME to change an entry so that different code is
used and then change it back and restore the original entry.

NAME(function-name)
Specifies the name of the external function or subroutine that is used in an
exec. This is also the name in the June-name field in the directory entry.

SYSNAME(sys-name)
Specifies the name of the entry point in a load module that corresponds to
the package code that is called for the function or subroutine. If
SYSNAME is omitted, the sys-name field in the package directory is set to
blanks.

182 TSO/E Version 2 REXX Reference

u

EXECUTIL

DD(sys-dd)
Specifies the name of the DD from which the package code is loaded. If DD
is omitted, the sys-dd field in the package directory is set to blanks.

SEARCHDD(YES/NO)
Specifies whether the system exec library (the default is SYSEXEC) should be
searched when execs are implicitly invoked. YES indicates that the system exec
library (SYSEXEC) is searched, and if the exec is not found, SYSPROC is then
searched. NO indicates that SYSPROC only is searched.

EXECUTIL SEARCHDD lets you dynamically change the search order. The
new search order remains in effect until you issue EXECUTIL SEARCHDD
again, the language processor environment terminates, or you use AL TLIB.
Subsequently created environments inherit the same search order unless explicitly
changed by the invoked parameters module.

AL TLIB affects how EXECUTIL operates to determine the search order. If
you use the ALTLIB command to indicate that user-level, application-level, or
system-level libraries are to be searched, ALTLIB operates on an application
basis. For more information about the ALTLIB command, see TSO/E Version
2 Command Reference.

Note: EXECUTIL SEARCHDD generally affects the current language
processor environment in which it is invoked. For example, if you are in
split screen in ISPF and issue EXECUTIL SEARCHDD from the second
ISPF screen to change the search order, the changed search order affects
execs invoked from that ISPF screen. If you invoke an exec from the
first ISPF screen, the changed search order is not in effect.

However, if you issue EXECUTIL SEARCHDD from TSO/E READY
mode, when you invoke ISPF, the new search order may also be in effect
for ISPF. This depends on whether your installation has provided its
own parameters modules IRXTSPRM and IRXISPRM and the values
specified in the load module.

Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Examples

1. Your installation uses both SYSEXEC and SYSPROC to store REXX execs and
CLISTs. All of the execs you work with are stored in SYSEXEC and your
CLISTs are stored in SYSPROC. Currently, your system searches SYSEXEC
and SYSPROC and you do not use AL TLIB.

You want to work with CLISTs only and do not need to search SYSEXEC. To
change the search order and have the system search SYSPROC only, use the
following command:

EXECUTIL SEARCHDD(NO)

Chapter 10. TSO/E REXX Commands 183

EXECUTIL

2. You are updating a REXX exec and including a new internal subroutine. You
want to trace the subroutine to test for any problems. In your exec, include
EXECUTIL TS at the beginning of your subroutine and EXECUTIL TE when
the subroutine returns control to the main program. For example:

/* REXX program */
MAINRTN:

CALL SUBRTN
11 EXE CUTI L TE"

EXIT
/* Subroutine follows */
SUBRTN:
II EXECUTI L TS II

RETURN

3. You want to invoke an exec and trace it. The exec does not contain
EXECUTIL TS or the TRACE instruction. Instead of editing the exec and
including EXECUTIL TS or a TRACE instruction, you can enter the following
from TSO/E READY mode:

EXECUTIL TS

When you invoke the exec, the exec is traced. When the exec completes
executing, tracing is off.

4. Suppose an external function called PARTIAL is part of a function package.
You have written your own function called PARTIAL or a new version of the
external function PARTIAL and want to execute your new PARTIAL function
instead of the one in the function package. Your new PARTIAL function may
be an exec or may be stored in a load module. You must flag the entry for the
PARTIAL function in the function package directory as null in order for the
search to continue to execute your new PARTIAL function. To flag the
PARTIAL entry in the function package directory as null, use the following
command:

EXECUTIL RENAME NAME(PARTIAL)

When you execute the function PARTIAL, the null entry for PARTIAL in the
function package directory is bypassed. The system will continue to search for a
load module and/or exec that is called PARTIAL

184 TSO /E Version 2 REXX Reference

I~

I~
I

HI

/ u

HI

Use the HI (Halt Interpretation) command to stop execution of all currently
executing execs. The HI immediate command is available only in the TSO/E address
space. When you are executing an exec, you can press the attention interrupt key to
enter attention mode, type m, and press ENTER to halt interpretation.

Example

You are executing an exec that is in an infinite loop. To stop exec processing, first
press the attention interrupt key. A message is issued that asks you to enter either a
null line to continue or an immediate command. To stop interpretation, type

HI

and press ENTER. Exec processing ends or control passes to a routine or label, if
the halt condition trap has been turned on in the exec. For example, if the exec
contains a SIGNAL ON HALT instruction and exec processing is interrupted by HI,
control passes to the HALT: label in the exec. See Chapter 7, "Conditions and
Condition Traps'' for information about the halt condition.

Chapter 10. TSO/E REXX Commands 185

HT

HT

Use the HT (Halt Typing) command to suppress terminal output generated by an
exec. The HT immediate command is available only in the TSO/E address space.
When you are executing an exec, you can press the attention interrupt key to enter
attention mode, and then enter HT. The executing exec continues executing, but the
only output you see at your terminal is from TSO/E commands invoked from the
exec. All other output from the exec is suppressed.

Example

You are executing an exec that calls an internal subroutine to display a line of
output from a loop that repeats many times. Before the subroutine is called, a
message is displayed that allows you to press the attention interrupt key and then
suppress the output by typing HT. When the loop is over, the subroutine issues
EXECUTIL RT to redisplay output.

SAY 1 To surpress the output that will be displayed, 1

SAY 'press the attention interrupt key and then, 1

SAY 1 type HT. 1

CALL printout

EXIT

printout:
DO i = 1 to 10000

SAY 1 The outcome is 1
••••

END
II EXE CUTI L RP
RETURN

186 TSO/E Version 2 REXX Reference

/~
I

I

/~
I

!~
j

Immediate Commands

Immediate Commands
The immediate commands are:

• HI - Halt Interpretation
• HT - Halt Typing
• RT - Resume Typing
• TS - Trace Start
• TE - Trace End

You can issue immediate commands from the terminal in a TSO/E address space if a
REXX exec is executing and you press the attention interrupt key. When you enter
attention mode, you can enter one of the immediate commands.

You can also use the TS and TE immediate commands in a REXX exec that
executes in any address space. That is, TS and TE are available in ADDRESS MYS
and ADDRESS TSO.

From attention mode in TSO/E, the immediate commands are processed as soon as
they are entered. Program execution in progress is suspended until the immediate
command is processed. In most cases, the immediate commands are processed after
you press ENTER once. However, there are two instances when you must press
ENTER twice to process an immediate command: first, when the exec you are
executing issues a PULL that reads information from the terminal, and second, when
you enter the immediate command from an ISPF panel.

For information about the syntax of each immediate command, see the description
of the command in this chapter.

Chapter 10. TSO/E REXX Commands 187

MAKEBUF

MAKEBUF

Use the MAKEBUF command to create a new buffer on the data stack. The
MAKEBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Initially, the data stack contains one buffer, which is known as buffer 0. You create
additional buffers using the MAKEBUF command. MAKEBUF returns the
number of the buffer it creates in the REXX special variable RC. For example, the
first time an exec issues MAKEBUF, it creates the first buffer and returns a 1 in the
special variable RC. The second time MAKEBUF is used, it creates another buffer
and returns a 2 in the special variable RC.

To remove buffers from the data stack that were created with the MAKEBUF
command, use the DROPBUF command (see page 169).

After the MAKEBUF command executes, it sets the REXX special variable RC to
the number of the buffer it created.

Return Meaning
Code

1 One buffer created on the data stack (MAKEBUF issued once)

2 Two buffers created on the data stack (MAKEBUF issued twice)

3 Three buffers on the data stack (MAKEBUF issued three times)

n n buffers on the data stack (MAKEBUF issued n times)

188. TSO/E Version 2 REXX Reference

.··~

u

MAKEBUF

Example

An exec (exec A) places two elements, eleml and elem2, on the data stack. Exec A
calls a subroutine, sub3, that also places an element, elem3, on the data stack.
Create a buffer on the data stack so that exec A and sub3 do not share their data
stack information.

exec A:

"MAKEBUF" /* buffer created * /
SAY 'The number of buffers created is 1 RC /* RC= 1 */
PUSH eleml
PUSH elem2
CALL sub3

sub3:
11 MAKEBUP'
PUSH elem3

11 DROPBUF 11

/* second buffer created */

/* second buffer created is deleted */

Chapter 10. TSO/E REXX Commands 189

NEWSTACK

NEWSTACK

creates a new data stack and basically hides or isolates the current data stack.
Elements on the previous data stack cannot be accessed until a DELSTACK
command is issued to delete the new data stack and any elements remaining in it.

The NEWSTACK command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

After an exec issues the NEWSTACK command, any element that is placed on the
data stack with a PUSH or QUEUE instruction is placed on the new data stack.
When an exec calls a routine (function or subroutine), that routine will also use the
new data stack and will not be able to access elements on the previous data stack
unless it issues a DELST ACK command.

When there are no more elements on the new data stack, PULL will take
information from the terminal (TSO/E address space) or the input stream
(non-TSO/E address space) even though elements remain in the previous data stack
(in non-TSO/E address spaces, the default input stream is SYSTSIN). In order to
access elements on the previous data stack, issue a DELSTACK command. If a new
data stack was not created, DELST ACK removes all elements from the original data
stack.

Multiple new data stacks can be created, but only elements on the most recently
created data stack are accessible. To find out how many data stacks have been
created, use the QSTACK command.

If multiple language processor environments are chained together in a non-TSO/E
address space and a new data stack is created with the NEWSTACK command, the
new data stack is only available to execs that execute in the language processor
environment in which the new data stack was created. The other environments in
the chain cannot access the new data stack.

190 TSO/E Version 2 REXX Reference

(~
' }

(~
!

'~
i l

j

!~
I

NEWSTACK

Examples

1. To protect elements placed on the data stack from a subroutine that might also
use the data stack, you can use the NEWSTACK and DELSTACK commands
as follows:

PUSH elementl
PUSH element2

11 NEWSTACK 11

CALL sub
11 DELSTACK 11

I* data stack 2 created *I

I* data stack 2 deleted *I

PULL stackelem

PULL stackelem
EXIT

2. To put elements on the data stack and prevent them from being used as prompts
for a TSO/E command, use the NEWSTACK command as follows:

II PRO FI LE PROMPT II
x = PROMPT (11 0N 11

)

PUSH eleml
PUSH elem2
11 NEWSTACK 11

11 ALLOCATE"
I* data stack 2 created *I
I* Will prompt the user at the terminal for input. *I

11 DELSTACK 11 I* data stack 2 deleted *I
3. To use MVS batch to execute an exec named ABC, a member in

USERID.MYRE:XX.EXEC, use program IRXJCL and include the exec name
after the PARM parameter in the EXEC statement.

llMVSBATCH EXEC PGM=IRXJCL,
II PARM= 1 ABC 1

l/SYSTSPRT DD DSN=USERID.IRXJCL.OUTPUT,DISP=OLD
//SYSEXEC DD DSN=USERID.MYREXX.EXEC, DISP=SHR

Exec ABC creates a new data stack and then put two elements on the new data
stack for module MODULE3.

11 NEWSTACK 11

PUSH eleml
PUSH elem2
ADDRESS LINK 11 module3 11

11 DELSTACK 11

/* data stack 2 created */

/* data stack 2 deleted */

Chapter 10. TSO/E REXX Commands 191

QBUF

QBUF

queries the number of buffers that were created on the data stack with the
MAKEBUF command. The number of buffers is returned in the REXX special
variable RC. When MAKEBUF has not been used to create any buffers on the data
stack, the QBUF command sets RC to 0.

The QBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

QBUF returns the current number of data stack buffers created by an exec and by
other routines (functions and subroutines) the exec calls. QBUF can be issued from
the calling exec or from a called routine. For example, if an exec issues two
MAKEBUF commands and then calls a routine that issues another MAKEBUF
command, QBUF returns the number 3 in special variable RC.

After the QBUF command executes, it sets the REXX special variable RC to the
number of buffers that were created with the MAKEBUF command.

Return Meaning
Code

0 No buffers created on the data stack (MAKEBUF was not issued)

1 One buff er created on the data stack (MAKEBUF was issued once)

2 Two buffers created on the data stack (MAKEBUF was issued twice)

n n buffers on the data stack (MAKEBUF was issued n times)

Examples

1. If an exec creates two buffers on the data stack with the MAKEBUF command,
deletes one with the DROPBUF command, and then issues the QBUF
command, RC is set to the number 1.

11 MAKEBUF" /* buffer created */

11 MAKEBUF" /* second buffer created */

11 DROPBUF 11 /* second buffer created is deleted */
11 QBUF"
SAY 1 The number of buffers created is 1 RC /* RC = 1 */

192 TSO/E Version 2 REXX Reference

(~

(~
i)

u

u

QBUF

2. If an exec uses MAKEBUF to create a buffer, calls a routine that also issues
MAKEBUF, and that routine calls yet another routine that issues two
MAKEBUF commands to create two buffers, when the QBUF command is
issued by any of the routines or the original exec, RC is set to the number 4.

11 DROPBUF 011 /* delete any buffers created by MAKEBUF */
11 MAKEBUF 11 /* buffer created */
SAY 1 Buffers created = 1 RC /* RC = 1 */
CALL subl
11 QBUF 11

SAY 'Buffers created = 1 RC
EXIT

subl:

/* RC = 4 */

11 MAKEBUP /* second buffer created */
SAY 'Buffers created = 1 RC /* RC = 2 */
CALL sub2
11 QBUF 11

SAY 'Buffers created = ' RC
RETURN

sub2:

/* RC = 4 */

11 MAKEBUF" /* third buffer created */
SAY 'Buffers created = ' RC /* RC = 3 */

"MAKEBUP /* fourth buffer created */
SAY 'Buffers created= 1 RC /* RC= 4 */
RETURN

Chapter 10. TSO/E REXX Commands 193

QELEM

QELEM

queries the number of data stack elements that are in the most recently created data
stack buffer (that is, in the buffer that was created by the MAKEBUF command).
The number of elements is returned in the REXX special variable RC. When
MAKEBUF has not been issued to create a buffer, QELEM returns the number 0 in
the special variable RC, regardless of the number of elements on the data stack.
Thus when QBUF returns 0, QELEM also returns 0.

The QELEM command can be issued from REXX execs that execute in both the
TSO/E address space and in non-TSO/E address spaces.

QELEM only returns the number of elements in a buffer that was explicitly created
using the MAKEBUF command. You can use QELEM to coordinate the use of
MAKEBUF. Knowing how many elements are in a data stack buffer can also b€
useful before an exec issues the DROPBUF command, because DROPBUF removes
the most recently created buffer and all elements in it.

The QELEM command returns the number of elements in the most recently created
buffer. The QUEUED built-in function (see page 97) returns the total number of
elements in the data stack, not including buffers.

After the QELEM command is issued, it sets the REXX special variable RC to the
number of elements in the most recently-created data stack buffer.

Return Meaning
Code

0 Either the MAKEBUF command has not been issued or the buffer that
was most recently created by MAKEBUF contains no elements.

1 MAKEBUF has been issued and there is one element in the current
buffer.

2 MAKEBUF has been issued and there are two elements in the current
buffer.

3 MAKEBUF has been issued and there are three elements in the current
buffer.

n MAKEBUF has been issued and there are n elements in the current
buffer.

194 TSO/E Version 2 REXX Reference

!~
[I

(~
i

I

u

QELEM

Examples

1. If an exec creates a buffer on the data stack with the MAKEBUF command and
then puts three elements on the data stack, the QELEM command returns the
number 3.

11 MAKEBUP
PUSH one
PUSH two
PUSH three
11 QELEW1

/* buffer created */

SAY 'The number of elements in the buffer is' RC /* RC= 3 */

2. Suppose an exec creates a buffer on the data stack, puts two elements on the
data stack, creates another buffer, and then puts one element on the data stack.
If the exec issues the QELEM command, QELEM returns the number 1. The

·QUEUED function, however, which returns the total number of elements on the
data stack, returns the number 3.

"MAKEBUF" /* buffer created */
QUEUE one
PUSH two
11 MAKEBUF 11

PUSH one
11 QELEM"

/* second buffer created */

SAY 'The number of elements in the most recent buffer is 1 RC/* 1 */
SAY 'The total number of elements is' QUEUED() /* returns 3 */

3. To check whether a data stack buffer contains elements before removing it, use
the result from the QELEM command in an IF/THEN/ELSE instruction.

11 QELEM 11

IF RC = 0 THEN
11 DROPBUF 11

ELSE
DO RC

PULL elem
SAY elem

END

/* delete most recently created buffer */

Note: RC can be set by any host command or TSO/E REXX command, so
using RC as a control for a loop can have unexpected results when a command
is issued within the loop.

Chapter 10. TSO/E REXX Commands 195

QSTACK

QSTACK

queries the number of data stacks in existence for an exec that is executing. The
number of data stacks is returned in the REXX special variable RC. RC indicates
the total number of data stacks including the original data stack. When no
NEWST ACK commands were issued, QST ACK returns 1 in special variable RC for
the original data stack.

The QST ACK command can be issued from REXX execs that execute in both the
TSO/E address space and in non-TSO/E address spaces.

QST ACK returns the current number of data stacks created by an exec and by other
routines (functions and subroutines) the exec calls. QST ACK can be issued from the
calling exec or from a called routine. For example, when an exec issues one
NEWSTACK command and calls a routine that issues another NEWSTACK
command and none of the new data stacks are deleted with the DELSTACK
command, QSTACK returns the number 3 in special variable RC.

After the QST ACK command runs, it returns in the REXX special variable RC the
number of data stacks in existence including the original data stack.

Return Meaning
Code

1 Only the original data stack exists

2 One new data stack and the original data stack exist

3 Two new data stacks and the original data stack exist

n n - 1 new data stacks and the original data stack exist

Examples

1. If an exec creates two new data stacks with the NEWST ACK command, deletes
one with the DELSTACK command, and then issues the QSTACK command,
RC returns the number 2.

11 NEWSTACK 11 /* data stack 2 created */

11 NEWSTACK 11 /* data stack 3 created */

11 DELSTACK 11 /* data stack 3 deleted */
11 QSTACK 11

SAY 'The number of data stacks is' RC /* RC= 2 */

196 TSO/E Version 2 REXX Reference

/~
i

L,J

QSTACK

2. If an exec creates one new data stack, calls a routine that also creates a new data
stack and that routine calls yet another routine that creates two new data stacks,
when the QST ACK command is issued by any of the routines or by the original
exec, RC returns the number 5. The data stack that is active is data stack 5.

"NEWSTACK" /* data stack 2 created */
CALL subl
"QSTACK"
SAY 'Data stacks =' RC /* RC = 5 */
EXIT

subl:
11 NEWSTACK 11 /* data stack 3 created */
CALL sub2
11 QSTACK11

SAY 'Data stacks =1 RC /* RC = 5 */
RETURN

sub2:
"NEWSTACK" /* data stack 4 created */

11 NEWSTACK 11 /* data stack 5 created */
11 QSTACK 11

SAY 'Data stacks =' RC /* RC = 5 */
RETURN

Chapter 10. TSO/E REXX .Commands 197

RT

RT

Use the RT (Resume Typing) command to resume terminal output that was
previously suppressed. The RT immediate command is available only in the TSO/E
address space. When you are executing an exec, you can press the attention
interrupt key to enter attention mode, type RT, and press ENTER. Terminal output
that is generated after issuing the HT command and before issuing the RT command
is lost.

You are executing an exec and have suppressed typing with the HT command. You
now want terminal output from the exec to appear at your terminal.

To resume typing, first press the attention interrupt key. A message is issued that
asks you to enter either a null line to continue or an immediate command. Type

RT

and press ENTER.

198 TSO/E Version 2 REXX Reference

'~
!

SUBCOM

SUBCOM

queries the existence of a specified host command environment. SUBCOM searches
the host command environment table for the named environment and sets the
REXX special variable RC to 0 or 1. When RC contains 0, the environment exists.
When RC contains 1, the environment does not exist.

The SUBCOM command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Before an exec executes, a default host command environment is defined to execute
the commands that are issued by the exec. You can use the ADD RESS keyword
instruction (see page 28) to change the environment to another as long as the
environment is defined in the host command environment table. Use the SUBCOM
command to find out if the environment is defined in the host command
environment table for the current language processor environment. You can use the
ADDRESS built-in function to determine the name of the environment to which
host commands are currently being submitted (see page 78).

Operand: The one operand for the SUBCOM command is as follows:

envname
the name of the host command environment for which SUBCOM is to search.

When an exec is executed from TSO/E READY, there are four valid host command
environments:

• TSO (the default environment)
• MVS
• LINK
• ATTACH

When an exec executes in a non-TSO/E address space, there are three valid host
command environments:

• MVS (the default environment)
• LINK
• ATTACH

When an exec executes in ISPF, there are six valid host command environments:

• TSO (the default environment)
• MVS
• LINK
• ATTACH
• ISPEXEC
• ISREDIT

Chapter 10. TSO/E REXX Commands 199

SUBCOM

The SUBCOM command sets the REXX special variable RC to indicate the
existence of the specified environment.

RC Value Description

0 The host command environment exists.

1 The host command environment does not exist.

Example

To check if the ISPEXEC environment is available before using the ADDRESS
instruction to change the environment, use the SUBCOM command as follows:

11 SUBCOM ispexec 11

IF RC = 0 THEN
ADDRESS ispexec

ELSE NOP

200 TSO/E Version 2 REXX Reference

/~
l

!~
' I

I~
I

!~
J

I ,
\._/

TE

TE

Use the TE (Trace End) command to stop tracing execs.

If an exec is executing in the TSO /E address space and tracing has been started, you
can end tracing by doing the following. Press the attention interrupt key to enter
attention mode and enter TE. The exec continues processing, but tracing is off.

You can also use the TE immediate command in a REXX exec that executes in any
address space. That is, TE is available in ADDRESS MVS and ADDRESS TSO_. If
the exec issued TS to start tracing, it can then issue TE to end tracing.

Example

You are executing an exec in TSO/E and the exec is being traced. You have located
the problem in the exec and now want to end tracing.

To end tracing, first press the attention interrupt key. A message is issued that asks
you to enter either a null line to continue or an immediate command. To end
tracing and continue exec processing, enter TE.

Chapter 10. TSO/E REXX Commands 201

TS

TS

Use the TS (Trace Start) command to start tracing execs.

If an exec is executing in the TSO/E address space, you can press the attention
interrupt key to enter attention mode and then enter the TS command to start
tracing. Tracing lets you interactively control the execution of an exec and debug
problems. To stop tracing, you can enter TRACE OFF or press the attention
interrupt key again and enter the TE (Trace End) immediate command. Both
methods return to normal exec processing.

You can also use the TS immediate command in a REXX exec that executes in any
address space. That is, TS is available in ADDRESS MVS and ADDRESS TSO.
In TSO/E, the trace output is written to the terminal. In non·TSO/E, the trace
output is written to the output stream (the system default is SYSTSPRT). To end
tracing, the exec can issue the TE immediate command. In TSO/E, you can also end
tracing by entering attention mode and then entering the TE (Trace End) immediate
command.

Example

You are executing an exec in TSO/E, and the exec is not executing correctly. To
begin tracing the exec, press the attention interrupt key and enter TS.

202 TSO/E Version 2 REXX Reference

,f\
i

i v

_)

Debug Aids

Chapter 11. Debug Aids

In addition to the TRACE instruction, described on page 64, there are the following
debug aids:

• The interactive debug facility

• The TSO/E REXX immediate commands:

HI Halt Interpretation
TS Trace Start
TE Trace End

The immediate commands can be used if a REXX exec is executing in the
TSO/E address space and a user presses the attention interrupt key. In attention
mode, the user can enter HI, TS, or TE. You can also use the TS and TE
immediate commands in a REXX exec that executes in any address space. That
is, TS and TE are available from both ADDRESS MYS and ADDRESS TSO.

• The TSO/E REXX command EXECUTIL with the following operands:

HI Halt Interpretation
TS Trace Start
TE Trace End

You can use the EXECUTIL command in an exec that executes in the TSO/E
address space. You can also use EXECUTIL from TSO/E READY mode and
ISPF and in a TSO/E CLIST. You can use the EXECUTIL command with the
HI, TS, or TE operands in a program written in a high-level programming
language by using the TSO service facility. See "EXECUTIL" on page 178 for
more information.

• The trace and execution control routine IRXIC. You can invoke IRXIC from a
REXX exec or any program that executes in any address space in order to use
the following TSO/E REXX immediate commands:

HI Halt Interpretation
TS - Trace Start
TE Trace End
HT - Halt Typing
RT Resume Typing

See "Trace and Execution Control Routine (IRXIC)" on page 251 for more
information.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a REXX exec.

Changing the TRACE action to one with a prefix? (for example, TRACE ?A or the
TRACE built-in function) turns on interactive debug and indicates to the user that
interactive debug is active. You can interactively debug REXX execs in the TSO/E
address space from your terminal session.

Chapter 11. Debug Aids 203

Debug Aids

Further TRACE instructions in the exec are ignored, and the language processor
pauses after nearly all instructions that are traced at the terminal (see below for the
exceptions). When the language processor pauses, three debug actions are available:

1. Entering a null line (no blanks even) makes the language processor continue
execution until the next pause for debug input. Repeatedly entering a null line,
therefore, steps from pause point to pause point. For TRACE ? A, for example,
this is equivalent to single-stepping through the exec.

2. Entering an equal sign (=) with no blanks makes the language processor
re-execute the clause last traced. For example: if an IF clause is about to take
the wrong branch, you can change the value of the variable(s) on which it
depends, and then re-execute it.

Once the clause has been re-executed, the language processor pauses again.

3. Anything else entered is treated as a line of one or more clauses, and processed
immediately (that is, as though DO; line; END; had been inserted in the exec).
The same rules apply as in the INTERPRET instruction (for example, DO-END
constructs must be complete). If an instruction has a syntax error in it, a
standard message is displayed and you are prompted for input again. Similarly
all the other condition traps are disabled while the string is processed to prevent
unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero
return codes from host commands are displayed. Host commands are always
executed (that is, are not affected by the prefix! on TRACE instructions), but
the variable RC is not set.

Once the string has been processed, the language processor pauses again for
further debug input unless a TRACE instruction was entered. In this latter case,
the language processor immediately alters the tracing action (if necessary) and
then continues executing until the next pause point (if any). Hence to alter the
tracing action (from All to Results for example) and then re-execute the
instruction, you must use the built-in function TRACE (see page 103), For
example, CALL TRACE I changes the trace action to "I" and allows re-execution of
the statement after which the pause was made. Interactive debug is turned off
when it is in effect, if a TRACE instruction uses a prefix, or at any time, when a
TRACE 0 or TRACE with no options is entered.

The numeric form of the TRACE instruction may be used to allow sections of
the exec to be executed without pause for debug input. TRACE n (that is,
positive result) allows execution to continue, skipping the next n pauses (when
interactive debug is or becomes active). TRACE -n (that is, negative result)
allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across
subroutine calls. This means that if you are stepping through an exec (for example,
after using TRACE ?R to trace Results) and then enter a subroutine in which you have
no interest, you can enter TRACE Oto turn tracing off. No further instructions in the
subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

204 TSO /E Version 2 REXX Reference

I~
')

Debug Aids

Tracing may be switched on (without requiring modification to an exec) by using the
command EXECUTIL TS. Tracing may be also turned on or off asynchronously;
(that is, while an exec is executing) by using the TS and TE immediate commands.
See page 206 for the description of these facilities.

Since any instructions may be executed in interactive debug you have considerable
control over execution.

Some examples:

Say expr /* displays the result of evaluating the */
/* expression. */

name=expr

Trace 0

Trace ?A

Trace L

exit

/* alters the value of a variable.

/* (or Trace with no options) turns off
/* interactive debug and all tracing.

/* turns off interactive debug but continue
/*tracing all clauses.

/* makes the language processor pause at labels
/* only. This is similar to the traditional
/* "breakpoint" function, except that you
/* don't have to know the exact name and
/*spelling of the labels in the exec.

/* terminates execution of the exec.

Do i=l to 10 /* displays ten elements of the array stem.
say stem. i
end

*/

*/
*/

*/
*/

*/
*/ .

*/
*/
*/

*/

*/

Exceptions: Some clauses cannot safely be re-executed, and therefore the language
processor does not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses (not a useful place to pause in any case).

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN and EXIT clauses.

• All SIGNAL and CALL clauses (the language processor pauses after the target
label has been traced).

• Any clause that causes a syntax error. (These may be trapped by SIGNAL ON
SYNTAX, but cannot be re~executed.)

Chapter 11. Debug Aids 205

Debug Aids

Interrupting Execution and Controlling Tracing
The language processor may be interrupted during execution in several ways. You
can use the HI (Halt Interpretation) immediate command or the EXECUTIL HI
command in the TSO/E address space to cause all currently executing REXX execs
to terminate, as though there has been a syntax error. This is especially useful when
a REXX exec gets into a loop and you want to terminate execution. The HI
immediate command is available only in the TSO/E address space. If an exec is
executing and you press the attention interrupt key, after you enter attention mode,
you can enter HI to terminate execution of the exec.

The EXECUTIL command is available only in the TSO/E address space. You can
use EXECUTIL with the HI operand in a REXX exec. You can also use
EXECUTIL HI in a TSO/E CLIST or in a program that is written in a high-level
programming language by using the TSO service facility. Chapter 10, "TSO/E
REXX Commands" describes the HI immediate command and the EXECUTIL
command.

When a HI interrupt causes a REXX exec to terminate, the data stack is cleared. A
HI interrupt may be trapped by enabling the HALT condition with either the CALL
ON or SIGNAL ON instruction.

In any MVS address space, you can call the trace and execution control routine
IRXIC to invoke the HI (Halt Interpretation) immediate command and stop
execution of all currently executing REXX execs. You can invoke IRXIC from a
REXX exec or other program in both the TSO/E and non-TSO/E address spaces.
"Trace and Execution Control Routine (IRXIC)" on page 251 describes the routine.

You can start tracing REXX execs in several ways. In the TSO/E address space,
you can use the TS (Trace Start) immediate command and the EXECUTIL TS
command to start tracing. In TSO/E, you can use the TS immediate command if an
exec is executing and you press the attention interrupt key. After you enter attention
mode, you can enter TS to start tracing. You can use the EXECUTIL command
with the TS operand in a REXX exec that executes in the TSO/E address space.
You can also use EXECUTIL TS in a TSO/E CLIST or in a program that is written
in a high-level programming language by using the TSO service facility. Chapter 10,
"TSO/E REXX Commands" describes the TS immediate command and the
EXECUTIL command.

In the TSO/E address space, TS or EXECUTIL TS puts the REXX exec into normal
interactive debug and you can then execute REXX instructions etc. as normal (for
example, to display variables or EXIT). This too is useful when you suspect that a
REXX exec is looping - TS or EXECUTIL TS may be used, and the exec can be
inspected and stepped before a decision is made whether to allow it to continue or
not.

You can use the TS (Trace Start) immediate command in a REXX exec that
executes in any address space. The trace output is written to the:

• Terminal (TSO/E address space)
• Output stream, which is usually SYSTSPRT (non-TSO/E address space).

In any address space, you can call the trace and execution control routine IRXIC to
invoke the TS (Trace Start) immediate command. You can invoke IRXIC from a
REXX exec or other program in both the TSO/E and non-TSO/E address spaces.

206 TSO/E Version 2 REXX Reference

/~
)

(~
I

Debug Aids

You can end tracing in several ways. In the TSO/E address space, you can use the
TE (Trace End) immediate command and the EXECUTIL TE command to end
tracing. In TSO/E, you can use the TE immediate command if an exec is executing
and you press the attention interrupt key. After you enter attention mode, you can
enter TE to end tracing. You can use the EXECUTIL command with the TE
operand in a REXX exec that executes in the TSO/E address space. You can also
use EXECUTIL TE in a TSO/E CLIST or in a program that is written in a
high-level programming language by using the TSO service facility. Chapter 10,
"TSO/E REXX Commands" describes the TE immediate command and the
EXECUTIL command. Using the TE immediate command and the EXECUTIL TE
command has the effect of executing a TRACE 0 instruction. This can be useful to
end tracing when not in interactive debug.

You can also end tracing by using the TE (Trace End) immediate command in a
REXX exec that executes in any address space.

In any address space, you can call the trace and execution control routine IRXIC to
invoke the TE (Trace End) immediate command. You can invoke IRXIC from a
REXX exec or other program in both the TSO/E and non-TSO/E address spaces.

For more information about the HI, TS, and TE immediate commands and the
EXECUTIL command, see Chapter 10, "TSO/E REXX Commands."

For more information about the trace and execution control routine IRXIC, see
"Trace and Execution Control Routine (IRXIC)" on page 251.

Chapter 11. Debug Aids 207

208 TSO/E Version 2 REXX Reference

/~
!

;~
)

Programming Services

Chapter 12. TSO/E REXX Programming Services

In addition to the REXX language instructions and built-in functions, and the
TSO/E functions and REXX commands that are provided for writing REX:X execs,
TSO/E provides programming services for REXX processing. Some programming
services are routines that let you interface with REXX and the REXX language
processor.

In addition to the programming services that are described in this chapter, TSO/E
also provides various routines that let you customize REXX processing. These are
described beginning in Chapter 13, "TSO/E REXX Customizing Services."
Whenever you call a TSO/E REXX routine, there are general conventions relating to
registers that are passed on the call and return codes that the routines return.
"General Considerations for Calling TSO/E REXX Routines" on page 212
highlights several major considerations about calling REXX routines.

The REXX programming services TSO/E provides are summarized below and are
described in detail in the individual topics in this chapter.

IRXJCL and IRXEXEC Routines: IRXJCL and IRXEXEC are two routines that you
can invoke to execute a REXX exec in any MVS address space. Both IRXEXEC
and IRXJCL are programming interfaces to the REXX language processor.

You can use IRXJCL to execute a REXX exec in MVS batch by specifying IRXJCL
as the program name (PGM =) on the JCL EXEC statement. You can also call
IRXJCL from a REXX exec or a program in any address space to execute a REXX
exec.

You can call IRXEXEC from a REXX exec or a program in any address space to
execute a REXX exec. Using IRXEXEC instead of the IRXJCL routine or, in
TSO/E, the EXEC command processor to invoke an exec provides more flexibility in
executing an exec. For example, you can preload the exec in storage and then use
IRXEXEC to execute the exec. "IRXJCL and IRXEXEC Routines" on page 214
describes the IRXJCL and IRXEXEC programming interfaces in more detail.

Function Packages: You can extend the capabilities of the REXX programming
language by writing your own external functions and subroutines that can then be
used in REXX execs. You can write a function or subroutine in REXX. For
performance reasons, you can write external functions and subroutines in either
assembler or a high-level programming language and store them in a load library.
You can also group frequently used external functions and subroutines into a
package, which provides quick access to the packaged functions and subroutines.
When a REXX exec calls an external function or subroutine, the function packages
are searched before load libraries or exec data sets, such as SYSEXEC and
SYSPROC. The complete search order is described on page 73.

If you write external functions and subroutines that you want to include in a
function package, you must write them in a language that supports the system
interfaces for function packages. Functions or subroutines written in REXX cannot
be part of a function package. "Function Packages" on page 229 describes how to
provide function packages.

Chapter 12. TSO/E REXX Programming Services 209

Programming Services

Variable Access: TSO/E provides the IRXEXCOM variable access routine that lets
unauthorized commands and programs access and manipulate REXX variables.
Using IRXEXCOM, you can inspect, set, or drop variables. IRXEXCOM can be
called in both the TSO/E and non-TSO/E address spaces. "Variable Access
(IRXEXCOM)" on page 240 describes IRXEXCOM in detail.

Note: TSO/E also provides the IKJCT441 routine that lets authorized and
unauthorized commands and programs access REXX variables. IKJCT441 can be
used only in the TSO/E address space and is described in TSO/E Version 2
Programming Services.

Maintain Host Command Environments: When a REXX exec executes, there is at
least one host command environment available for executing host commands. When
an exec begins executing, an initial environment is defined. The host command
environment can be changed by using the ADDRESS instruction (see page 28).

When the language processor processes an instruction that is a host command, it
first evaluates the expression and then passes the command to the active host
command environment for execution. A specific routine defined for the host
command environment handles the command processing. TSO/E provides six host
command environments for execs that execute in non-TSO/E address spaces and in
the TSO/E address space (for TSO/E and ISPF). "Commands to External
Environments" on page 22 describes how you issue commands to the host and the
different environments TSO/E provides for MVS (non-TSO/E), TSO/E, and ISPF.

The valid host command environments, the routines that are invoked to handle
command execution within each environment, and the initial environment that is
available to a REXX exec when the exec begins executing are defined in a host
command environment table. You can customize REXX processing to define your
own host command environment and provide a routine that handles command
processing for that environment. Chapter 13, "TSO/E REXX Customizing
Services" on page 259 describes how to customize REXX processing in more detail.

TSO/E also provide the IRXSUBCM routine that lets you access the entries in the
host command environment table. Using IRXSUBCM, you can add, change, and
delete environment entries in the table and also query the values for a particular host
command environment entry. "Maintain Entries in the Host Command
Environment Table (IRXSUBCM)" on page 247 describes the IRXSUBCM routine
in detail.

210 TSO /E Version 2 REXX Reference

')

(_)

_;1

Programming Services

Trace and Execution Control: TSO/E provides the following immediate commands
that let you control the tracing and execution of REXX execs:

• HI (Halt Interpretation)
• HT (Halt Typing)
• RT (Resume Typing)
• TS (Trace Start)
• TE (Trace End)

In TSO/E, you can use the immediate commands if you are executing a REXX exec
and press the attention interrupt key to enter attention mode. You can also use the
TS and TE commands in a REXX exec that executes in any address space.
Chapter 10, "TSO/E REXX Commands" describes each immediate command in
more detail.

TSO/E also provides the trace and execution control routine IRXIC that lets you use
the immediate commands HI, HT, RT, TS, and TE. For example, you can invoke
IRXIC from a REXX exec that executes in a non~TSO/E address space in order to
use the commands or from another program written in assembler or a high-level
programming language to control the tracing and execution of REXX execs. "Trace
and Execution Control Routine (IRXIC)" on page 251 describes the IRXIC routine
in detail.

Get Result Routine: TSO/E provides the get result routine IRXRL T that lets you
obtain the result from a REXX exec that was invoked using the IRXEXEC routine.
You can also use the IRXRLT routine if you write external functions and
subroutines that are to be included in a function package. IRXRLT lets your
function or subroutine code obtain a large enough area of storage to return the
result to the calling exec. "The IRXRLT (Get Result) Routine" on page 253
describes the IRXRLT routine in detail.

Chapter 12. TSO/E REXX Programming Services 211

Programming Services

General Considerations for Calling TSO/E REXX Routines
Each topic in this book that describes the different REXX routines describes the
interface to the routine. This topic provides general information about calling
REXX routines.

All REXX routines, except for the initialization routine IRXINIT, cannot execute
without a language processor environment being available. A language processor
environment is the environment in which REXX operates, that is, in which the
language processor executes a REXX exec. Execs and REXX routines execute in a
language processor environment.

The system automatically initializes an environment in the TSO/E and non-TSO/E
address spaces by calling the initialization routine IRXINIT. In TSO/E, an
environment is initialized during logon processing for TSO/E READY mode.
During your TSO/E session, you can invoke an exec or use a REXX routine. The
exec or routine executes in the environment that was created during logon
processing.

If you invoke ISPF, the system initializes another language processor environment
for the ISPF screen. If you split the ISPF screen, a third environment is initialized
for that screen. In ISPF, when you invoke an exec or REXX routine, it executes in
the language processor environment from which it was invoked.

The system automatically terminates the three language processor environments it
initializes as follows:

• When you return to one screen in ISPF, the environment for the second screen is
terminated

• When you end ISPF and return to TSO/E READY mode, the environment for
the first ISPF screen is terminated

• When you log off of TSO/E, the environment for TSO/E READY mode is
terminated.

In non-TSO/E address spaces, the system does not automatically initialize a language
processor environment at a specific point, such as when the address space is
activated. When you call either the IRXJCL or IRXEXEC routine to execute an
exec, the system automatically initializes an environment, if one does not already
exist. The exec then executes in that environment. The exec can then call a REXX
routine, such as IRXIC, and the routine executes in the same environment in which
the exec is executing. Chapter 14, "Language Processor Environments" describes
environments in more detail, when they are initialized, and the different
characteristics that make up an environment.

You can explicitly call the initialization routine IRXINIT to initialize language
processor environments. Calling IRXINIT lets you customize the environment and
how execs and services are processed and used. Using IRXINIT, you can create
several different environments in an address space. IRXINIT is intended for use in
non-TSO/E address spaces, but you can also use it in TSO/E. Customization
information is described in more detail in Chapter 13, "TSO/E REXX Customizing
Services."

212 TSO/E Version 2 REXX Reference

.;j
/

!~
/

/~
)

/
\.._)

Programming Services

If you explicitly call IRXINIT to initialize environments, whenever you call a REXX
routine, you can specify in which language processor environment you want the
routine to run. During initialization, IRXINIT creates several control blocks that
contain information about the environment. The main control block is the
environment block, which represents the language processor environment and is
known as the anchor that is used by all REXX external interfaces. If you use
IRXINIT and initialize several environments and then want to call a REXX routine
to execute in a specific environment, you can pass the address of the environment
block for the environment on the call. When you call the REXX routine, you can
pass the environment block's address in register 0. By using the TSO/E REXX
customizing services and the environment block, you can customize REXX
processing and also control in which environment you want REXX routines to
execute.

The following information describes some general conventions about calling REXX
routines:

• On all calls to any REXX routine, you can pass the address of an environment
block in register 0. By passing this address, you can specify in which particular
language processor environment you want the routine to execute. For more
information, see Chapter 14, "Language Processor Environments."

• The REXX vector of external entry points is a control block that contains the
addresses of the REXX external routines. On all calls to any routine in the
REXX vector of external entry points, all of the parameters must be passed. If
a parameter is not used, either binary zeros or blanks must be passed to the
routine. See "Control Blocks Created for a Language Processor Environment"
on page 323 for information about the vector of external entry points.

• All calls are in 31 bit addressing mode.

• The high order bit of the last parameter address must be a binary 1.

• All data areas may be above 16 megabytes in virtual storage.

• Specific return codes are defined for each REXX routine. The individual topics
in this book describe the return codes for each routine. Some common return
codes are:

0 - Successful processing

20 - Error occurred. Processing was unsuccessful. The requested service
was either partially completed or was terminated. An error message is
written to the error message field in the environment block. If the
NOPMSGS flag is on for the language processor environment, the message
is also written to the output DD that is defined for the environment or to
the terminal.

For some errors, an alternate message may also be issued. Alternate
messages are only printed if the AL TMSGS flag is on for the environment.

If multiple errors occurred and multiple error messages were issued, all error
messages are written to the output DD or to the terminal. However, only
the first error message is stored in the environment block.

28 - A service was requested, but a valid language processor environment
could not be located. The requested service is not performed.

Chapter 12. TSO/E REXX Programming Services 213

IRXJ CL and IRXEXEC

IRXJCL and IRXEXEC Routines
This topic provides information about the IRXJCL and IRXEXEC routines, which
are programming interfaces to the REXX language processor. You can use IRXJCL
to execute a REXX exec in MVS batch from JCL. You can also call IRXJCL from
a REXX exec or a program that is executing in any address space to execute an
exec.

You can call the IRXEXEC routine from a REXX exec or program that is executing
in any address space to execute an exec. IRXEXEC provides more flexibility than
IRXJCL. With IRXJCL, you can pass the name of the exec and one argument on
the call. Using IRXEXEC, you can, for example, pass multiple arguments or
preload the exec in storage.

The following topics describe each routine.

Note: To permit FORTRAN programs to call IRXEXEC, TSO/E provides an
alternate entry point for the IRXEXEC routine. The alternate entry point name is
IRXEX.

The IRXJCL Routine
The IRXJCL routine is an interface to the REXX language processor. You can use
IRXJCL to execute a REXX exec in MVS batch. You can also call IRXJCL from a
REXX exec or a program in any address space to execute an exec.

Using IRXJCL to Execute a REXX Exec in MVS Batch
To execute a REXX exec in MVS batch, specify IRXJCL as the program name
(PGM =) on the JCL EXEC statement. You specify the member name of the exec
and one argument you want to pass to the exec in the PARM field on the EXEC
statement. You can specify only the name of a member of a PDS. You cannot
specify the name of a sequential data set. The PDS must be allocated to the DD
specified in the LOADDD field of the module name table. The default is
SYSEXEC. Figure 8 shows example JCL to execute the exec MYEXEC.

//STEPl EXEC PGM=IRXJCL,PARM='MYEXEC Al b2 C3 d4'
//*
//STEPLIB
//* Next DD is the data set equivalent to terminal input
//SYSTSIN DD DSN=xxx.xxx.xxx,DISP=SHR, ..•
//*
//*Next DD is the data set equivalent to.terminal output
//SYSTSPRT DD DSN=xxx.xxx.xxx,DISP=OLD, ..•
//*
//* Next DD points to a library of execs
//* that include MYEXEC
//SYSEXEC DD DSN=xxx.xxx.xxx,DISP=SHR

Figure 8. Example of Invoking an Exec from a JCL EXEC Statement Using IRXJCL

Note: If you want output to be routed to a printer, you could specify the
//SYSTSPRT DD statement as:

//SYSTSPRT DD SYSOUT=A

214 TSO/E Version 2 REXX Reference

u

~!

IRXJCL and IRXEXEC

As Figure 8 shows, the exec MYEXEC is loaded from DD SYSEXEC. SYSEXEC
is the default setting for the name of the DD from which an exec is to be loaded. In
the example, one argument is passed to the exec. The argument can consist of more
than one token. In this case, the argument is:

Al b2 C3 d4

When the PARSE ARO keyword instruction is processed in the exec (for example,
PARSE ARO EXV ARS), the value of the variable EXV ARS is set to the argument
specified on the JCL EXEC statement. The variable EXVARS is set to:

Al b2 C3 d4

The MYEXEC exec can perform any functions that any exec executing in a
non-TSO/E address space can perform. This includes all of the REXX keyword
instructions and built-in functions, the external function STORAGE, calling other
execs, using the data stack, and linking and attaching programs.

IRXJCL returns a return code as the step condition code. See "Return Codes" on
page 217.

Invoking IRXJCL From a REXX Exec or a Program
You can also call IRXJCL from an exec or a program to execute a REXX exec. On
the call to IRXJCL, you pass the address of a parameter list in register 1.

Environment Customization Considerations -------------~

If you use the initialization routine IRXINIT to initialize language processor
environments, you can specify in which environment IRXJCL executes. On the
call to IRXJCL, you can optionally pass the address of an environment block in
register 0 to specify the environment in which IRXJCL executes.

Entry Specifications: For the IRXJCL routine, the contents of the registers on
entry are:

Register 0

Register 1

Address of an environment block (optional)

Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13

Register 14

Register 15

Address of a register save area

Return address

En try point address

Parameters: In register 1, you pass the address of a parameter list, which consists
of one address. The address in the parameter list points to a buffer that must be
passed on the call. The high order bit of the address in the parameter list must be
set to 1. Figure 9 describes the parameter for IRXJCL.

Chapter 12. TSO/E REXX Programming Services 215

IRXJCL and IRXEXEC

Figure 9. Parameter for Calling the IRXJ CL Routine

Parameter Number Description
of Bytes

Parameter 1 4 A buffer, which consists of a length field followed
by a data field. The first two bytes of the buffer is
the length field that contains the length of the data
that follows. The length does not include the two
bytes that specify the length itself.

The data field contains the name of the exec,
followed by one or more blanks, followed by the
argument (if any) to be passed to the exec. Only
one argument can be passed on the call.

Figure 10 shows an example PL/I program that invokes IRXJCL to execute a
REXX exec.

JCLXMPl : Procedure Options (Main);
/* Function: Call a REXX exec from a PL/I program using IRXJCL */

DCL IRXJCL EXTERNAL OPTIONS(RETCODE, ASSEMBLER);

/*

DCL 1 PARM_STRUCT,
5 PARM_LNG BIN FIXED (15),
5 PARM_STR CHAR (30);

DCL PLIRETV BUILTIN;
PARM_LNG = LENGTH(PARM_STR);

/* Parm to be passed to IRXJCL */
/* Length of the parameter */
/* String passed to IRXJCL */
/* Defines the return code built-in*/
/* Set the length of string */

*/
PARM STR 1 JCLXMP2 This is an arg to exec 1

; /*Set string value

FETCH IRXJCL;
CALL IRXJCL (PARM_STRUCT);

In this case, call the exec named
JCLXMP2 and pass argument:
'This is an arg to exec' */

/* Load the address of entry point */
/* Call IRXJCL to execute the REXX

exec and pass the argument */
PUT SKIP EDIT ('Return code from IRXJCL was:', PLIRETV) (a, f(4));

END ;

/* Print out the return code from
exec JCLXMP2.

/* End of program

Figure 10. Example PL/I Program to Execute a REXX Exec Using IRXJCL

*/
*/

Return Specifications: For the IRXJCL routine, the contents of the registers on
return are:

Registers 0-14 Same as on entry

Register 15 Return code

216 TSO/E Version 2 REXX Reference

'~
I

u

~I

Return Codes

IRXJCL and IRXEXEC

If IRXJCL encounters an error while executing the exec, it returns a return code. If
IRXJCL is invoked from JCL to execute an exec in MVS batch, it returns the return
code as the step condition code. If you call IRXJCL from an exec or program, it
returns the return code in register 15. Figure 11 describes the return codes.

Figure 11. Return Codes for IRXJCL

Return Description
Code

0 Processing was successful. Exec processing completed.

20 Processing was not successful. The exec was not executed.

20021 An invalid parameter was specified on the JCL EXEC statement or
the parameter list passed on the call to IRXJCL was incorrect. Some
possible errors could be that a parameter was either blank or null or
the name of the exec was not valid (more than eight characters long).

Note: Because of how MVS batch processing operates, if you execute
an exec in MVS batch and a return code of 20021 is returned, only
the value '0021' is returned as the step condition code.

Other Any other return code not equal to 0, 20, or 20021 is the return code
from the REXX exec on the RETURN or EXIT keyword instruction.

Note: No distinction is made between the REXX exec returning a return code of 20
and IRXJCL returning a return code of 20.

The IRXEXEC Routine
Use the IRXEXEC routine to execute an exec in any MVS address space.

Note: To permit FORTRAN programs to call IRXEXEC, TSO/E provides an
alternate entry point for the IRXEXEC routine. The alternate entry point name is
IRXEX.

Most users do not need to use IRXEXEC to execute REXX execs. In TSO/E, you
can execute execs implicitly or explicitly using the TSO/E EXEC command. You
can also execute execs in TSO/E background. If you want to execute an exec from a
program that is written in a high level programming language, you can use the TSO
service facility to invoke the EXEC command. You can execute an exec in MVS
batch by using JCL and the IRXJCL routine.

You can also call the IRXJCL routine from a REXX exec or a program that is
execting in any address space to invoke an exec. However, the IRXEXEC routine is
a programming interface that gives you more flexibility in executing an exec. For
example, you can preload the REXX exec in storage and pass the address of the
preloaded exec to IRXEXEC. This is useful if you want to execute an exec multiple
times to avoid the exec being loaded and freed whenever it is executed. You may
also want to use your own load routine to load and free the exec.

If you use the TSO/E EXEC command, you can pass only one argument to the exec.
The argument can consist of several tokens. Similarly, if you invoke IRXJCL from
an exec or program, you can only pass one argument. By using IRXEXEC, you can
pass multiple arguments to the exec and each argument can consist of multiple
tokens.

Chapter 12. TSO/E REXX Programming Services 217

IRXJCL and IRXEXEC

If you use IRXEXEC, one parameter on the call is the user field. You can use this
field for your own processing.

Environment Customization Considerations ----------------.

If you use the initialization routine IRXINIT to initialize language processor
environments, the following information provides several considerations about
calling IRXEXEC.

When you call IRXEXEC, you can optionally pass the address of an
environment block in register 0 to specify the language processor environment in
which you want the exec to execute. If the address of the environment block is
valid, the exec executes in that environment. If you do not pass the address of
an environment block, IRXEXEC locates the current environment. The exec is
then executed in the current environment. See "Chains of Environments and
How Environments Are Located" on page 304 for information about how
environments are located.

If a current environment does not exist or the current environment was initialized
on a different task and the TSOFL flag is off in that environment, a new
language processor environment is initialized. The exec executes in the new
environment. Before IRXEXEC returns, the language processor environment
that was created is terminated.

Entry Specifications

Parameters

For the IRXEXEC routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 12 describes the parameters for IRXEXEC.

218 TSO/E Version 2 REXX Reference

/~
\

!~

(
\,_/

IRXJCL and IRXEXEC

Figure 12 (Page 1 of 2). Parameters for IRXEXEC Routine

Parameter

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Number
of Bytes

4

4

4

4

Description

Specifies the address of the exec block (EXECBLK).
The exec block is a control block that describes the exec
to be loaded. It contains information needed to process
the exec, such as the DD from which the exec is to be
loaded and the name of the initial host command
environment when the exec starts executing. "The Exec
Block (EXECBLK)" on page 220 describes the format
of the exec block.

This parameter can be 0 if the exec is preloaded and you
pass the address of the preloaded exec in parameter 4.
If this parameter and parameter 4 are both specified, the
value in parameter 4 is used and this parameter is
ignored.

Specifies the address of the arguments for the exec. The
arguments are arranged as a vector of address/length
pairs followed by X 1FFFFFFFFFFFFFFFF 1

•

"Format of Argument List" on page 222 describes the
format of the arguments.

A fullword of bits that are used as flags. Only bits 0, 1,
and 2 are used. The remaining bits are reserved. Bits 0,
1, and 2 are mutually exclusive.

PARSE SOURCE returns a token indicating how the
exec was invoked. The bit you set on is used by PARSE
SOURCE. For example, if you set bit 2 on, PARSE
SOURCE returns the token SUBROUTINE.

If you set bit 1 on, the exec must return a result. If you
set either bit 0 or 2 on, the exec can optionally return a
result.

• Bit 0 - This bit must be set on if the exec is being
invoked as a "command," that is, it is not being
invoked from another exec as an external function
or subroutine.

• Bit 1 - This bit must be set on if the exec is being
invoked as an external function (a function call).

• Bit 2 - This bit must be set on if the exec is being
invoked as a subroutine.

Specifies the address of the in-storage control block
(INSTBLK), which defines the structure of a preloaded
exec in storage. It contains pointers to each statement
in the exec and the length of each statement. "The
In-Storage Control Block (INSTBLK)" on page 222
describes the control block.

This parameter is required if the caller of IRXEXEC has
preloaded the exec. Otherwise, this parameter must be
0. If this parameter is specified, parameter 1 (address of
the exec block) is ignored.

Chapter 12. TSO/E REXX Programming Services 219

IRXJCL and IRXEXEC

Figure 12 (Page 2 of 2). Parameters for IRXEXEC Routine

Parameter Number Description
of Bytes

Parameter 5 4 Specifies the address of the CPPL, if you call IRXEXEC
from the TSO/E address space. The CPPL address is
required in the TSO/E address space.

If you call IRXEXEC from a non-TSO/E address space,
the address in the parameter list must be 0.

Parameter 6 4 Specifies the address of an evaluation block
(EV ALBLOCK). IRXEXEC uses the evaluation block
to return the result from the exec that was specified on
either the RETURN or EXIT instruction. "The
Evaluation Block (EV ALBLOCK)" on page 225
describes the format of the evaluation block, how
IRXEXEC uses the parameter, and whether or not you
should provide an EV ALBLOCK on the call.

If you do not want to provide an evaluation block,
specify an address of 0.

Parameter 7 4 Specifies the address of an eight byte field that defines a
work area for the IRXEXEC routine. In the eight byte
field, the:

• First four bytes contain the address of the work
area

• Second four bytes contain the length of the work
area.

The work area is passed to the language processor to
use for executing the exec. If the work area is too
small, IRXEXEC returns with a return code of 20 and a
message is issued that indicates an error. The minimum
length required for the work area is X 1 1800 1 bytes.

If you do not want to pass a work area, specify an
address of 0. IRXEXEC will obtain storage for its work
area or will call the replaceable storage routine specified
in the GETFREER field for the environment, if you
provided a storage routine.

Parameter 8 4 Specifies the address of a user field. IRXEXEC does
not use or check this pointer or the user field. You can
use this field for your own processing.

If you do not want to use a user field, specify an address
ofO.

The Exec Block (EXECBLK)
The exec block (EXECBLK) is a control block that describes the exec to be loaded.
If the exec is not preloaded, you must build the exec block and pass the address in
parameter 1 on the call to IRXEXEC. You need not pass an exec block if the exec
is preloaded.

Note: If you want to preload the exec, you can use the system-supplied exec load
routine IRXLOAD or your own exec load replaceable routine (see page 358).

TSO/E provides a mapping macro IRXEXECB for the exec block. The mapping
macro is in SYSLMACLIB. Figure 13 describes the format of the exec block.

220 TSO/E Version 2 REXX Reference

·~
I

IRXJCL and IRXEXEC

Figure 13. Format of the Exec Block (EXECBLK)

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ACRYN An eight character field that identifies the
exec block. It must contain the character
string 'IRXEXECB'.

8 4 LENGTH Specifies the length of the exec block in
bytes.

12 4 --- Reserved.

16 8 MEMBER Specifies the member name of the exec, if
the exec is in a partitioned data set. If the
exec is in a sequential data set, this field
must be blank.

24 8 DDNAME Specifies the name of the DD from which
the exec is loaded. An exec cannot be
loaded from a DD that has not been
allocated. The ddname specified must be
allocated to a data set containing REXX
execs or to a sequential data set that
contains an exec.

If this field is blank, the exec is loaded
from the DD specified in the LOADDD
field of the module name table (see page
287). The default is SYSEXEC.

32 8 SUBCOM Specifies the name of the initial host
command environment when the exec
starts executing.

If this field is blank, the environment
specified in the INITIAL field of the host
command environment table is used. For
TSO/E and ISPF, the default is TSO. For
a non-TSO/E address space, the default is
MVS. The table is described in "Host
Command Environment Table" on
page 291.

40 4 DSNPTR Specifies the address of a data set name
that the PARSE SOURCE instruction
returns. The name usually represents the
name of the exec load data set. The name
can be up to 54 characters long (44
characters for the fully qualified data set
name, 8 characters for the member name,
and 2 characters for the left and right
parentheses).

If you do not want to specify a data set
name, specify an address of 0.

44 4 DSNLEN Specifies the length of the data set name
that is pointed to by the address at offset
+ 40. The length can be 0-54. If no data
set name is specified, the length is 0.

An exec cannot be loaded from a data set that has not been allocated. The ddname
specified (at offset + 24) must be allocated to a data set containing REXX execs or
to a sequential data set that contains an exec.

Chapter 12. TSO/E REXX Programming Services 221

IRXJCL and IRXEXEC

The fields at offset + 40 and + 44 in the exec block are used only for input to the
PARSE SOURCE instruction and are for informational purposes only.

Loading of the exec is done as follows:

• If the exec is preloaded, loading is not performed.

• If a ddname is specified in the exec block, the exec is loaded from that DD. The
name of the member is also specified in the exec block.

• If a ddname is not passed in the exec block, the exec is loaded from the DD
specified in the LOADDD field in the module name table for the language
processor environment (see page 287). The default is SYSEXEC. If you
customize the environment values TSO/E provides or use the initialization
routine IRXINIT, the DD may be different. See Chapter 14, "Language
Processor Environments" for customizing information.

Format of Argument List
Parameter 2 points to the arguments for the exec. The arguments are arranged as a
vector of address/length pairs, one for each argument. The first four bytes is the
address of the argument string. The second four bytes is the length of the argument
string, in bytes. The vector must end in X 1 FFFFFFFFFFFFFFFF 1

• There is no
limit on the number of arguments you can pass. Figure 14 shows the format of
three arguments. TSO/E provides a mapping macro IRXARGTB for the vector.
The mapping macro is in SYSl .MACLIB.

Figure 14. Format of Three Arguments in the Argument List

Offset Number Field Name Description
(Dec) of Bytes

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING_LENGTH Length of argument 1

8 4 ARGSTRING PTR Address of argument 2

12 4 ARGSTRING_LENGTH Length of argument 2

16 4 ARGSTRING _PTR Address of argument 3

20 4 ARGSTRING_LENGTH Length of argument 3

24 8 --- X'FFFFFFFFFFFFFFFF'

The In-Storage Control Block {INSTBLK)
Parameter 3 points to the in-storage control block (INSTBLK). The in-storage
control block defines the structure of a preloaded exec in storage. It contains
pointers to each record in the exec and the length of each record.

If you preload the exec in storage, you must pass the address of the in-storage
control block (parameter 4). You must provide the storage, format the control
block, and free the storage after IRXEXEC returns. IRXEXEC only reads
information from the in-storage control block. It does not change any of the
information.

222 TSO/E Version 2 REXX Reference

,!)

!~
I

/~
')

u

I

_)

IRXJCL and IRXEXEC

To preload an exec into storage, you can use the exec load replaceable routine
IRXLOAD. If you provide your own exec load replaceable routine, you can use
your routine to preload the exec. "Exec Load Routine" on page 358 describes the
replaceable routine.

If the exec is not preloaded, you must specify an address of 0 for the in-storage
control block parameter (parameter 4).

The in-storage control block consists of a header and the records in the exec, which
'tr~ arranged as a vector of address/length pairs. Figure 15 shows the format of the
in-storage control block header. Figure 16 on page 224 shows the format of the
vector of records. TSO/E provides a mapping macro IRXINSTB for the in-storage
control block. The mapping macro is in SYS 1.MACLIB.

Figure 15 (Page 1 of 2). Format of the Header for the In-Storage Control Block

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ACRONYM An eight character field that identifies the
control block. The field must contain the
characters 'IRXINSTB'.

8 4 HDRLEN Specifies the length of the in-storage
control block header only. The value must
be 128 bytes.

12 4 --- Reserved.

16 4 ADDRESS Specifies the address of the vector of
records. See Figure 16 on page 224 for
the format of the address/length pairs.

If this field is 0, the exec contains no
records.

20 4 USED LEN Specifies the length of the address/length
vector of records in bytes. This is not the
number of records. The value is the
number of records multiplied by 8.

If this field is 0, the exec contains no
records.

24 8 MEMBER Specifies the name of the exec. This is the
name of the member in the partitioned data
set from which the exec was loaded. If the
exec was loaded from a sequential data set,
this field must be blank.

The PARSE SOURCE instruction returns
the folded member name you specify. If
this field is blank, the member name that
PARSE SOURCE returns is a question
mark(?).

32 8 DDNAME Specifies the name of the DD that
represents the exec load data set from
which the exec was loaded.

40 8 SUB COM Specifies the name of the initial host
command environment when the exec starts
executing.

48 4 --- Reserved.

Chapter 12. TSO/E REXX Programming Services 223

IRXJCL and IRXEXEC

Figure 15 (Page 2 of 2). Format of the Header for the In-Storage Control Block

Offset Number Field Name - - Description
(Decimal) of Bytes

52 4 DSNLEN Specifies the length of the data set name
that is specified at offset + 56. If a data
set name is not specified, this field must be
0.

56 72 DSNAME A 72 byte field that contains the name of
the data set, if known, from which the exec
was loaded. The name can be up to 54
characters long (44 characters for the fully
qualified data set name, 8 characters for
the member name, and 2 characters for the
left and right parentheses). The remaining
bytes of the field (2 bytes plus four
fullwords) are not used. They are reserved
for system use and contain binary zeroes.

At offset + 16 in the in-storage control block header, the field points to the vector of
records that are in the exec. The records are arranged as a vector of address/length
pairs. Figure 16 shows the format of the address/length pairs.

The addresses point to the text of the record to be processed. This can be one or
more REXX clauses, parts of a clause that are continued with the REXX
continuation character (the continuation character is a comma), or a combination of
these. The address is the actual address of the record. The length is the length of
the record in bytes.

Figure 16. Vector of Records for the In-Storage Control Block

Offset Number Field Name Description
(Decimal) of Bytes

0 4 STMT@ Address of record 1

4 4 STMTLEN Length of record 1

8 4 STMT@ Address of record 2

12 4 STMTLEN Length of record 2

16 4 STMT@ Address of record 3

20 4 STMTLEN Length of record 3

x 4 STMT@ Address of record n

y 4 STMTLEN Length of record n

224 TSO /E Version 2 REXX Reference

(~

/~
)

IRXJCL and IRXEXEC

The Evaluation Block (EVALBLOCK)
The evaluation block is a control block that IRXEXEC uses to return the result
from the exec. The exec can return a result on either the RETURN or EXIT
instruction. For example, the REXX instruction

RETURN varl

returns the value of the variable VARI. IRXEXEC returns the value of VARI in
the evaluation block.

I(the exec you are executing will return a result, specify the address of an evaluation
block when you call IRXEXEC (parameter 6). You must obtain the storage for the
control block yourself.

If the exec does not return a result or you want to ignore the result, you need not
allocate an evaluation block. On the call to IRXEXEC, you must pass all of the
parameters. Therefore, specify an address of 0 for the evaluation block.

If the result from the exec fits into the evaluation block, the data is placed into the
block (EVD AT A field) and the length of the block is updated (ENVLEN field). If
the result does not fit into the area provided in the evaluation block, IRXEXEC:

• Places as much of the result that will fit into the evaluation block in the
EVDATA field

• Sets the length of the result field (EVLEN) to the negative of the length that is
required to store the complete result.

The result is not lost. The system has its own evaluation block that it uses to s~ore
the result. If the evaluation block you passed to IRXEXEC is too small to hold the
complete result, you can then use the IRXRL T (get result) routine. You allocate
another evaluation block that is large enough to hold the result and call IRXRLT.
On the call to the IRXRL T routine, you pass the address of the new evaluation
block. IRXRLT copies the result from the exec that was stored in the system's
evaluation block into your evaluation block and returns. "The IRXRL T (Get
Result) Routine" on page 253 describes the routine in more detail.

If you call IRXEXEC and do not pass the address of an evaluation block, and the
exec returns a result, you can use the IRXRL T routine after IRXEXEC completes to
obtain the result.

To summarize, if you call IRXEXEC to execute an exec that returns a result and
you pass the address of an evaluation block that is large enough to hold the result,
IRXEXEC returns the result in the evaluation block. In this case, IRXEXEC does
not store the result in its own evaluation block.

If IRXEXEC executes an exec that returns a result, the result is stored in the
system's evaluation block if:

• The result did not fit into the evaluation block that you passed on the call to
IRXEXEC, or

• You did not specify the address of an evaluation block on the call.

Chapter 12. TSO/E REXX Programming Services 225 ·

IRXJCL and IRXEXEC

You can then obtain the result by allocating a large enough evaluation block and
calling the IRXRLT routine to get the result. The result is available until one of the
following occurs:

• IRXRLT is called and successfully obtains the result

• Another REXX exec executes in the same language processor environment, or

• The language processor environment is terminated.

Note: The language processor environment is the environment in which the
language processor executes the exec. See Chapter 14, "Language Processor
Environments'' for more information about the initialization and termination of
environments and customization services.

The evaluation block consists of a header and data, which contains the result.
Figure 17 shows the format of the evaluation block. Additional info:nnation about
each field is described after the table.

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The
mapping macro is in SYSI.MACLIB.

Figure 17. Format of the Evaluation Block

Off set Number Field Description
(Decimal) of Bytes Name

0 4 EVPADl A fullword that must contain X 1 00 1
•

This field is reserved and is not µsed.

4 4 EV SIZE Specifies the total size of the evaluation
block in doublewords.

8 4 EV LEN On entry, this field is not used and must
be set to X 1 00 1

• On return, it specifies
the length of the result, in bytes, that is
returned. The result is returned in the
EVDATA field at offset + 16.

12 4 EVPAD2 A fullword that must contain X 1 00 1
•

This field is reserved and is not used.

16 n EVDATA The field in which the result from the exec
is returned. The length of the field
depends on the total size specified for the
control block in the EVSIZE field. The
total size of the EVDAT A field is:

EVSIZE * 8 - 16

If the result does not fit into the EVDATA field, IRXEXEC stores as much of the
result as it can into the field and sets the length field (EVLEN) to the negative of the
required length for the result. You can then use the IRXRLT routine to obtain the
result. See 'The IRXRL T (Get Result) Routine" on page 253 for more
information.

On return, if the result has a length of 0, the length field (EVLEN) is 0, which means
the result is null. If no result is returned on the EXIT or RETURN instruction, the
length field contains X 1 80000000' .

226 TSO/E Version 2 REXX Reference

(/'\
)

IRXJCL and IRXEXEC

If the language processor returns with a non-zero return code, which indicates a
syntax error in the exec, a value of 20000 plus the REXX error number is returned
in the EVDATA field. The error numbers are between 3 and 99 and correspond to
the REXX message numbers. For example, error 26 corresponds to the REXX
message IRX0026I. These messages are described in Appendix A, "Error Numbers
and Messages."

If you execute the exec as a "command" (bit 0 is set on in parameter 3), the result
the exec returns must be a numeric value. The result can be from -2,147,483,648
through + 2,147,483,648. If the result is not numeric or is greater than or less than
the valid values, this indicates a syntax error and the value 20026 is returned in the
EVDATA field.

Return Specifications

Return Codes

For the IRXEXEC routine, the contents of the registers on return are:

Register 0 Address of the environment block.

If IRXEXEC returns with return code 100 or 104, register 0
contains the abend and reason code. "Return Codes" describes the
return codes and how IRXEXEC returns the abend and reason
codes for return codes 100 and 104.

Registers 1-14 Same as on entry

Register 15 Return code

IRXEXEC returns a return code in register 15. Figure 18 shows the return codes.

Chapter 12. TSO/E REXX Programming Services 227

IRXJCL and IRXEXEC

Figure 18. IRXEXEC Return Codes

Return
Code

0

Description

Processing was successful. The exec has completed executing.

If the exec returns a result, the result may or may not fit into the
evaluation block. You must check the length field (EVLEN).

20 Processing was not successful. An error occurred. The exec has not
been executed. An error message is issued that describes the error.

100 Processing was not successful. A system abend occurred during
IRXEXEC processing.

The system issues one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

104 Processing was not successful. A user abend occurred during
IRXEXEC processing.

The system issues one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

Note: The language processor environment is the environment in which the exec
executes. If IRXEXEC cannot locate an environment in which to execute the exec,
an environment is automatically initialized. If an environment was being initialized
and an error occurred during the initialization process, IRXEXEC returns with
return code 20, but an error message is not issued.

228 TSO/E Version 2 REXX Reference

;-"\
)

u

Function Packages

Function Packages
You can write your own external functions and subroutines, which allows you to
extend the capabilities of the REXX language. You can write functions that
supplement the built-in functions or TSO/E external functions that are provided.
You can also write a function to replace one of the functions that is provided. For
example, if you want a new substring function that performs differently from the
SUBSTR built-in function, you can write your own substring function and name it
STRING. Users at your installation can then use the STRING function in their
execs.

You can write functions or subroutines in any programming language, including
REXX. If an external function or subroutine is written in REXX, you can store it
m:

• The same PDS from which the calling exec was loaded

• An alternative exec library as defined by ALTLIB (for the MVS/ESA feature of
TSO/E Version 2 only)

• A data set that is allocated to SYSEXEC (SYSEXEC is the default load ddname
used for storing REXX execs)

• A data set that is allocated to SYSPROC (TSO/E address space only).

Note: External functions and subroutines that are written in REXX cannot be part
of a function package.

If you write an external function or subroutine in assembler or a high-level
programming language, you can store it in a load library. This allows for faster
access of the function or subroutine because by default, load libraries are searched
before any exec libraries, such as SYSEXEC and SYSPROC.

For faster access of a function or subroutine, and therefore better performance, you
can group frequently used external functions and subroutines injunction packages.
A function package is basically a number of external functions and subroutines that
are grouped or packaged together. When the language processor is executing an
exec and processes a function call or a call to a subroutine, it searches the function
packages before searching load libraries or exec libraries, such as SYSEXEC and
SYSPROC. "Search Order" on page 73 describes the complete search order.

TSO/E supports three types of function packages. Basically, there are no differences
between the three types, although the intent of the design is as follows:

• User packages, which are function packages that an individual user may write to
replace or supplement certain system-provided functions. When the function
packages are searched, the user packages are searched before the local and
system packages.

• Local packages, which are function packages that a system support group or
application group may write. Local packages may contain functions and
subroutines that are available to a specific group of users or to the entire
installation. Local packages are searched after the user packages and before the
system packages.

• System packages, which are function packages that an installation may write for
system-wide use or for use in a particular language processor environment.
System packages are searched after any user and local packages.

Chapter 12. TSO/E REXX Programming Services 229

Function Packages

IBM products may provide system function packages. For example, TSO/E provides
the IRXEFMVS and IRXEFPCK system function packages for the TSO/E
functions, such as LISTDSI and OUTTRAP.

"Search Order" on page 73 describes the complete search order the language
processor uses to locate a function or subroutine.

To provide function packages, there are several steps you must perform. The steps
are described below and are explained in more detail in the following topics.

I. You mustfirst write the individual functions and subroutines you want included
in a function package. The functions and subroutines must be written in a
programming language that supports the system interface for function packages
and that is capable of being called by an MVS LINK. Functions and
subroutines written in REXX cannot be included in a function package.

When a function or subroutine in a function package is invoked, it receives a
parameter list that contains the address of the parsed argument list and the
address of a fullword that contains the address of an evaluation block.
"Interface for Writing Function and Subroutine Code" on page 231 describes
the system interface for writing functions and subroutines that you want to
include in a function package.

2. After you write the individual functions and subroutines, you must write the
directory for the function package. You need a directory for each individual
function package.

The function package directory is contained in a load module. It contains a
header followed by individual entries that define the names and/or the addresses
of the entry points, which when called, execute your function or subroutine code.
"Directory for Function Packages" on page 234 describes the directory for
function packages.

3. The name of the entry point at the beginning of the directory (the function
package name) must be specified in the function package table for a language
processor environment. "Function Package Table" on page 295 describes the
format of the table. After you write the directory, you must define the directory
name in this table. There are several ways you can do this depending on the
type of function package you are defining (user, local, or system) and whether
you are providing only one or several user and local function packages.

If you are providing a local or user function package, you can name the function
package directory IRXFLOC (local package) or IRXFUSER (user package).
TSO/E provides these two "dummy" directory names in the three default
parameters modules IRXPARMS, IRXTSPRM, and IRXISPRM. By naming
your local function package directory IRXFLOC and your user function
package directory IRXFUSER, the external functions and subroutines in the
packages are automatically available to REXX execs that execute in non-TSO/E
and the TSO /E address space.

If you write your own system function package or more than one local or user
function package, you must provide a function package table containing the
name of your directory. You must also provide your own parameters module
that points to your function package table. Your parameters module then
teplaces the default parameters module that is used to initialize a default
language processor environment. "Specifying Directory Names in the Function
Package Table" on page 238 describes how to define directory names in the
function package table.

230 TSO/E Version 2 REXX Reference

~\
J

(
\._./

Function Packages

Note: If you explicitly call the IRXINIT routine, you can pass the address of a
function package table containing your directory names on the call.

Interface for Writing Function and Subroutine Code

Entry Specifications

Parameters

This topic describes the system interfaces for functions and subroutines that are to
be included in a function package. You can write the function or subroutine in
assembler or any high-level programming language that can be called by an MVS
LINK.

The interface to the code is the same whether the code is called as a function or as a
subroutine. The only difference is how the language processor handles the result
after the external code completes and returns control. Before the code gets control,
the language processor allocates a control block called the evaluation block

(EV ALBLOCK). The address of the evaluation block is passed to the function or
subroutine code. The function or subroutine code places the result into the

evaluation block, which is returned to the language processor. If the code was called
as a subroutine, the result in the evaluation block is placed into the REXX special

variable RESULT. If the code was called as a function, the result in the evaluation
block is used in the interpretation of the REXX instruction that contained the
function.

The following topics describe the contents of the registers when the function or
subroutine code gets control and the parameters the code receives.

When the code for the function or subroutine gets control, the contents of the
registers are:

Register 0 Address of the environment block

Register 1 Address of the external function parameter list (EFPL)

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

When the function or s~broutine gets control, register 1 points to the external
function parameter list, which is described in Figure 19. TSO/E provides a mapping

macro IRXEFPL for the external function parameter list. The mapping macro is in
SYSl .MACLIB.

Figure 19 (Page 1 of 2). External Function Parameter List

Offset Number Description
(Decimal) of Bytes

0 4 Reserved.

4 4 Reserved.

8 4 Reserved.

12 4 Reserved.

Chapter 12. TSO/E REXX Programming Services 231

Function Packages

Argument List

Evaluation Block

Figure 19 (Page 2 of 2). External Function Parameter List

Offset Number Description
(Decimal) of Bytes

16 4 The address of the parsed argument list. Each
argument is represented by an address/length pair. The
argument list is terminated by
X 1 FFFFFFFFFFFFFFFF' . Figure 20 on page 232
shows the format of the argument list.

20 4 The address of a fullword that contains the address of
an evaluation block (EV ALBLOCK). The evaluation
block is used to pass back the result of the function or
subroutine. Figure 21 on page 233 describes the
evaluation block.

Figure 20 shows the format of the parsed argument list the function or subroutine
code receives at offset + 16 (decimal). The figure is an example of three arguments.
TSO/E provides a mapping macro IRXARGTB for the argument list. The mapping
macro is in SYSl.MACLIB.

Figure 20. Format of the Argument List

Offset Number Field Name Description
(Dec) of Bytes

0 4 ARGSTRING_PTR Address of argument l

4 4 ARGSTRING LENGTH Length of argument l

8 4 ARGSTRING_PTR · Address of argument 2

12 4 ARGSTRING_LENGTH Length of argument 2

16 4 ARGSTRING _PTR Address of argument 3

20 4 ARGSTRING LENGTH Length of argument 3

24 8 --- X 1 FFFFFFFFFFFFFFFF 1

In the argument list, each argument consists of the address of the argument and its
length. The argument list is terminated by X 1 FFFFFFFFFFFFFFFF 1

•

Before the function or subroutine code is called, the language processor allocates a
control block called the evaluation block (EV ALBLOCK). The address of the
evaluation block is passed to the code at offset + 20. The function or subroutine
code computes the result and returns the result in the evaluation block.

The evaluation block consists of a header and data, in which you place the result
from your function or subroutine code. Figure 21 shows the format of the
evaluation block.

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The
mapping macro is in SYSl.MACLIB.

232 TSO/E Version 2 REXX Reference

.~,
I

!

(:
_,I

Function Packages

Note: The IRXEXEC routine also uses an evaluation block to return the result
from an exec that is specified on either the RETURN or EXIT instruction. The
format of the evalution block that IRXEXEC uses is identical to the format of the
evaluation block passed to your function or subroutine code. 'The Evaluation
Block (EV ALBLOCK)" on page 225 describes the control block for IRXEXEC.

Figure 21. Format of the Evaluation Block

Offset Number Field Description
(Decimal) of Bytes Name

0 4 EVPADl A fullword that contains X 100 1
• This

field is reserved and is not used.

4 4 EV SIZE Specifies the total size of the evaluation
block in doublewords.

8 4 EVLEN On entry, this field is set to X 180000000 1
,

which indicates no result" is currently
stored in the evaluation block. On return,
specify the length of the result, in bytes,
that your code is returning. The result is
returned in the EVDATA field at offset
+16.

12 4 EVPAD2 A fullword that contains X 100 1
• This

field is reserved and is not used.

16 n EVDATA The field in which you place the result
from the function or subroutine code.
The length of the field depends on the
total size specified for the control block in
the EVSIZE field. The total size of the
EVD AT A field is:

EVSIZE * 8 - 16

The function or subroutine code must compute the result, move the result into the
EVDATA field (at offset + 16), and update the EVLEN field (at offset + 8).
Because the evaluation block is passed to the function or subroutine code, the
EVDATA field in the evaluation block may be too small to hold the complete result.
If the evaluation block is too small, you can call the IRXRL T (get result) routine to
obtain a larger evaluation block. Call IRXRLT using the GETBLOCK function.
IRXRL T creates the new evaluation block and returns the address of the new block.
Your code can then place the result in the new evaluation block. You must also
change the parameter at offset + 20 in the parameter list to point to the new
evaluation block. For information about using IRXRLT, see "The IRXRLT (Get
Result) Routine" on page 253.

Functions must return a result. Subroutines may optionally return a result. If a
subroutine does not return a result, it must return a data length of X 1 80000000 1 in
the EVLEN field in the evaluation block.

Chapter 12. TSO/E REXX Programming Services 233

Function Packages

Directory for Function Packages
After you write the code for the functions and subroutines you want to group in a
function package, you must write a directory for the function package. You need a
directory for each individual function package you want defined.

The function package directory is contained in a load module. The name of the
entry point at the beginning of the directory is the function package directory name.
The name of the directory is specified only on the CSECT. In addition to the name
of the entry point, the function package directory defines each entry point for the
individual functions and subroutines that are part of the function package. The
directory consists of two parts; a header followed by individual entries for each
function and subroutine included in the function package. Figure 22 shows the
format of the directory header. Figure 23 on page 235 illustrates the rows of entries
in the function package directory. TSO/E provides a mapping macro IRXFPDIR
for the function package directory header and entries. The mapping macro is in
SYSl.MACLIB.

Figure 22. Format of the Function Package Directory Header

Offset Number Description
(Decimal) of Bytes

0 8 An eight byte character field that must contain the
character string 'IRXFP ACK'.

8 4 Specifies the length, in bytes, of the header. This is the
offset from the beginning of the header to the first
entry in the directory. This must be a fullword binary
number equivalent to decimal 24.

12 4 The number of functions and subroutines defined in the
function package (the number of rows in the directory).
The format is a fullword binary number.

16 4 A fullword of X 1 00 1
•

20 4 Specifies the length, in bytes, of an entry in the
directory (length of a row). This must be a fullword
binary number equivalent to decimal 32.

In the function package table for the three default parameter modules (IRXPARMS,
IRXTSPRM, and IRXISPRM), TSO/E provides two "dummy" function package
directory names:

• IRXFLOC for a local function package
• IRXFUSER for a user function package

If you create a local or user function package, you can name the directory
IRXFLOC and IRXFUSER respectively. By using IRXFLOC and IRXFUSER,
you need not create a new function package table containing your directory names.

If you are creating a system function package or several local or user packages, you
must define the directory names in a function package table. "Specifying Directory
Names in the Function Package Table" on page 238 describes how to do this in
more detail.

234 TSO/E Version 2 REXX Reference

(~
I

i '
~

u

Function Packages

You must link edit the external function or subroutine code and the directory for the
function package into a load module. The code and directory can be link edited into
separate load modules or into the same load module. Place the data set with the
load modules in the search sequence for an MVS LOAD. For example, the data set
can be in the data set concatenation for either a STEPLIB or JOBLIB or you can
install it in the LINKLST or LP ALIB.

In the TSO/E address space, you can use the EXECUTIL command with the
RENAME operand to dynamically change entries in a function package (see page
178 for information about EXECUTIL). If you plan to use the EXECUTIL
command to change entries in the function package you provide, you should not
install the function package in the LPALIB.

Format of Entries in the Directory
Figure 23 shows two rows (two entries) in a function package directory. The first
entry starts immediately after the directory header. Each entry defines a function or
subroutine in the function package. The individual fields are described following the
table.

Figure 23. Format of Entries in Function Package Directory

Offset Number Field Name Description
(Decimal) of Bytes

0 8 FUNC-NAME The name of the first function or
subroutine (entry) in the directory.

8 4 ADDRESS The address of the entry point of the
function or subroutine code (for the
first entry).

12 4 --- Reserved.

16 8 SYS-NAME The name of the entry point in a load
module that corresponds to the
function or subroutine code (for the
first entry).

24 8 SYS-DD The ddname from which the function
or subroutine code is loaded (for the
first entry).

32 8 FUNC-NAME The name of the second function or
subroutine (entry) in the directory.

40 4 ADDRESS The address of the entry point of the
function or subroutine code (for the
second entry).

44 4 --- Reserved.

48 8 SYS-NAME The name of the entry point in a load
module that corresponds to the
function or subroutine code (for the
second entry).

56 8 SYS-DD The ddname from which the function
or subroutine code is loaded (for the
second entry).

Chapter 12. TSO/E REXX Programming Services 235

Function Packages

The following describes each entry (row) in the directory.

FUNC-NAME
The eight character name of the external function or subroutine. This is name
that is used in the REXX exec. The name must be in uppercase and left
justified.

If this field is blank, the entry is ignored.

ADDRESS
A four byte field that contains the address, in storage, of the entry point of the
function or subroutine code. This address is used only if the code has ~lready
been loaded.

If the address is 0, the sys-name and, optionally, the sys-dd fields are used. An
MVS LOAD will be issued for sys-name from the DD sys-dd.

If the address is specified, the sys-name and sys-dd ·fields for the entry are
ignored.

Reserved
A four byte field that is reserved.

SYS-NAME
An eight byte character name of the entry point in a load module that
corresponds to the function or subroutine code to be called for the June-name.
The name must be in uppercase and left justified.

If the address is specified, this field can be blank. If an address of 0 is specified
and this field is blank, the entry is ignored.

SYS-DD
An eight byte character name of the DD from which the function or subroutine
code is loaded. The name must be in uppercase and left justified.

If the address is 0 and this field is blank, the module is loaded from the link list.

Example of a Function Package Directory
Figure 24 on page 237 shows an example of a function package directory. The
example is explained following the figure.

236 TSO/E Version 2 REXX Reference

/~
' l

I~
;

u

I I v

Function Packages

IRXFUSER CSECT
DC CLB 1IRXFPACK 1 String identifying directory
DC FL4 1 24 1 Length of header
DC FL4'4' Number of rows in directory
DC FL4 1 01 Word of zeros
DC FL4'32 1 Length of directory entry

* Start of definition of first entry
DC CL8 1 MYFl Name used in exec
DC FL4 1 01 Address of preloaded code
DC FL4 1 0' Reserved field
DC CL8'ABCFUN1 I Name of entry point
DC CL8' FUNCTDDl I DD from which to load entry point

* Start of definition of second entry
DC CL8'MYF2 Name used in exec
DC FL4'0' Address of preloaded code
DC FL4 1 B1 Reserved field
DC CL8 1 ABCFUN2 I Name of entry point
DC CL8 1 DD from which to load entry point

* Start of definition of third entry
DC CL8 1MYS3 Name used in exec
DC AL4(ABCSUB3) Address of preloaded code
DC FL4 1 01 Reserved field
DC CL8 1 ABCFUN3 I Name of entry point
DC CL8'FUNCTDD3 1 DD from which to load entry point

* Start of definition of fourth entry
DC CL8'MYF4 Name used in exec
DC VL4(ABCFUNC4) Address of preloaded code
DC FL4'0' Reserved field
DC CL8 1 Name of entry point
DC CL8 1 DD from which to load entry point
SPACE 2

ABCSUB3 EQU *
* Subroutine code for subroutine MYS3
*
* End of subroutine code

END IRXFUSER

- - - - - New Object Module - - - - -

ABCFUNC4 CSECT
* Function code for function MYF4
*
* End of function code

END ABCFUNC4

Figure 24. Example of a Function Package Directory

Chapter 12. TSO/E REXX Programming Services 237

Function Packages

In Figure 24, the name of the function package directory is IRXFUSER, which is
one of the "dummy" function package directory names TSO/E provides in the
default parameter modules. Four entries are defined in this function package:

• MYFl, which is an external function
• MYF2, which is an external function
• MYS3, which is an external subroutine
• MYF4, which is an external function

If the external function MYF l is called in an exec, the load module with entry point
ABCFUNl is loaded from DD FUNCTDDl. If MYF2 is called in an exec, the
load module with entry point ABCFUN2 is loaded from the linklist because the
sys-dd field is blank.

The load modules for MYS3 and MYF4 have been preloaded. The MYS3
subroutine has been assembled as part of the same object module as the function
package directory. The MYF4 function has been assembled in a different object
module, but has been link edited as part of the same load module as the directory.
The assembler, linkage editor, and loader have resolved the addresses.

If the name of the directory is not IRXFLOC or IRXFUSER, you must specify the
directory name in the function package table for an environment. "Specifying
Directory Names in the Function Package Table" describes how you can do this.

When a language processor environment is initialized, either by default or when
IRXINIT is explicitly called, the load modules containing the function package
directories for the environment are automatically loaded. The modules for the
external function and subroutine code are loaded when an exec calls the function or
subroutine. All modules that are loaded remain loaded until the last exec executing
under the task under which the modules were loaded finishes executing.

Specifying Directory Names in the Function Package Table
After you write the function and subroutine code and the directory, you must define
the directory name in the function package table. The function package table
contains information about the user, local, and system function packages that are
available to REXX execs executing in a specific language processor environment.
Each environment that is initialized has its own function package table. ''Function
Package Table" on page 295 describes the format of the table.

The parameter module (and the PARMBLOCK that is created) defines the
characteristics for a language processor environment and contains the address of the
function package table (in the PACKTB field). In the three default modules that
TSO/E provides (IRXPARMS, IRXTSPRM, and IRXISPRM), the function package
table contains two "dummy" function package directory names:

• IRXFLOC for a local function package
• IRXFUSER for a user function package

If you name your local function package directory IRXFLOC and your user
function package directory IRXFUSER, the external functions and subroutines in
your package are then available to execs that execute in non-TSO/E, TSO/E, and
ISPF. There is no need for you to provide a new function package table.

If you provide a system function package or several local or user packages, you must
then define the directory name in a function package table. To do this, you must
provide your own function package table. You must also provide your own

238 TSO/E Version 2 REXX Reference

r~
I

I~
' I

Function Packages

IRXP ARMS, IRXTSPRM, and/or IRXISPRM load module depending on whether
you want the function package available to execs executing in non-TSO/E, TSO/E,
or ISPF.

You first write the code for the function package table. You must include the
default entries provided by TSO/E. The IRXPARMS, IRXTSPRM, and
IRXISPRM modules contain the default directory names IRXEFMVS, IRXFLOC,
and IRXFUSER. In addition, the IRXTSPRM and IRXISPRM modules also
contain the default IRXEFPCK directory name. "Function Package Table" on
page 295 describes the format of the function package table.

You must then write the code for one or more parameter modules. The module you
provide depends on whether the function package should be made available to execs
that execute in ISPF only, TSO/E only, TSO/E and ISPF, non-TSO/E only, or any
address space. "Changing the Default Values for Initializing an Environment" on
page 310 describes how to create the code for your own parameter module and
which modules you should provide.

Chapter 12. TSO/E REXX Programming Services 239

Variable Access (IRXEXCOM)

Variable Access (IRXEXCOM)
The language processor provides an interface whereby called commands and
programs can easily access and manipulate the current generation of REXX
variables. Any variable can be inspected, set, or dropped; if required, all active
variables can be inspected in turn. Names are checked for validity by the interface
code, and optionally substitution into compound symbols is carried out according to
normal REXX rules. Certain other information about the program that is running is
also made available through the. interface.

TSO/E REXX provides two variable access routines you can call to access and
manipulate REXX exec variables:

• IRXEXCOM
• IKJCT441

The IRXEXCOM variable access routine lets unauthorized commands and programs
access and manipulate REXX variables. IRXEXCOM can be used in both the
TSO/E and non-TSO/E address spaces. IRXEXCOM can be used only if a REXX
exec has been enabled in the language processor environment. That is, an exec must
have been invoked, but is not currently being processed. For example, you can
invoke an exec that calls a routine and the routine can then invoke IRXEXCOM.
When the routine calls IRXEXCOM, the REXX exec is enabled, but it is not being
processed. If a routine calls IRXEXCOM and an exec has not been enabled,
IRXEXCOM returns with an error.

Note: To permit FORTRAN programs to call IRXEXCOM, TSO/E provides an
alternate entry point for the IRXEXCOM routine. The alternate entry point name
is IRXEXC.

A program can access IRXEXCOM using either the CALL or LINK macro
instructions, specifying IRXEXCOM as the entry point name. You can obtain the
address of the IRXEXCOM routine from the REXX vector of external entry points.
"Format of the REXX Vector of External Entry Points" on page 328 describes the
vector.

If a program uses IRXEXCOM, it must create a parameter list and pass the address
of the parameter list in register 1.

Environment Customization Considerations -------------~

If you use the initialization routine IRXINIT to initialize environments, when
you call IRXEXCOM, you can pass the address of an environment block in
register 0. If the environment block is valid, IRXEXCOM will execute in the
environment represented by that environment block.

The IKJCT441 routine lets authorized and unauthorized commands and programs
access REXX variables. IKJCT441 can be used in the TSO/E address space only.
You can use IKJCT441 to access REXX or CLIST variables depending on whether
the program that calls IKJCT441 was called by a REXX exec or a CLIST. TSO/E
Version 2 Programming Services describes IKJCT441.

240 TSO /E Version 2 REXX Ref ere nee

/~
)

.~
I

,,.,.-.,,.\
' !

Variable Access (IRXEXCOM)

Entry Specifications

Parameters

For the IRXEXCOM routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 25 describes the parameters for IRXEXCOM.

Figure 25. Parameters for IRXEXCOM

Parameter Number Description
of Bytes

Parameter 1 8 An eight byte character field that must contain the
character string 'IRXEXCOM'.

Parameter 2 4 Parameter 2 and parameter 3 must be identical, that
is, they must be at the same location in storage.
This means that in the parameter list pointed to by
register 1, the address at offset + 4 and the address
at offset + 8 must be the same. Both addresses in
the parameter list may be set to 0.

Parameter 3 4 Parameter 2 and parameter 3 must be identical, that
is, they must be at the same location in storage.
This means that in the parameter list pointed to by
register 1, the address at offset +4 and the address
at offset + 8 must be the same. Both addresses in
the parameter list may be set to 0.

Parameter 4 32 The first shared variable (request) block
(SHVBLOCK) in a chain of one or more request
blocks. The format of the SHVBLOCK is
described in "The Shared Variable (Request) Block
- SHVBLOCK."

The Shared Variable (Request) Block - SHVBLOCK
Parameter 4 is the first shared variable (request) block in a chain of one or more
blocks. Each SHVBLOCK in the chain must have the structure shown in Figure 26
on page 242.

Chapter 12. TSO/E REXX Programming Services 241

\

\

Variable Access (IRXEXCOM)

**
* SHVBLOCK: Layout of shared-variable PLIST element
**
SHVBLOCK DSECT
SHVNEXT DS A Chain pointer (0 if last block)

Available for private use, except during
"Fetch Next" when it identifies the

SHVUSER DS F
*
* length of the buffer pointed to by SHVNAMA.
SHVCODE DS CLl Individual function code indicating

the type of variable access request *
* (S,F,D,s,f,d,N, or P)
SHVRET DS XLl Individual return code flags

DS H1 81 Reserved, should be zero
SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
SHVBLEN

DS F Length of 'fetch' value buffer
DS A Address of variable name
DS F Length of variable name
DS A Address of value buffer
DS F Length of value
EQU *-SHVBLOCK (length of this block = 32)
SPACE

*
* Function Codes (Placed in SHVCODE):
*
* (Note that the symbolic name codes are lowercase)
SHVSTORE EQU C'S' Set variable from given value
SHVFETCH EQU C1 F1 Copy value of variable to buffer
SHVDROPV EQU C1 D1 Drop variable
SHVSYSET EQU C's' Symbolic name Set variable
SHVSYFET EQU C1 f 1 Symbolic name Fetch variable
SHVSYDRO EQU C1 d1 Symbolic name Drop variable
SHVNEXTV EQU C1 N1 Fetch "next" variable
SHVPRIV EQU C1 P1 Fetch private information

SPACE
*
* Return Code Flags (Stored in SHVRET):
*
SHVCLEAN EQU X1 00 1 Execution was OK
SHVNEWV EQU x·m · Variable did not exist
SHVLVAR EQU X1 02 1 Last variable transferred (for "N")
SHVTRUNC EQU X1 04 1 Truncation occurred during "Fetch"
SHVBADN EQU X188 1 Invalid variable name
SHVBADV EQU x· rn· Value too long
SHVBADF EQU X188 1 Invalid function code (SHVCODE)

Figure 26. Request Block (SHVBLOCK)

Figure 27 describes the SHVBLOCK. TSO/E provides a mapping macro IRXSHVB
for the SHVBLOCK. The mapping macro is in SYSl.MACLIB. The services you
can perform using IRXEXCOM are specified in the SHVCODE field of each
SHVBLOCK. "Function Codes (SHVCODE)" on page 243 describes the values
you can use.

"Return Codes" on page 246 describes the return codes from the IRXEXCOM
routine.

242 TSO/E Version 2 REXX Reference

·~
I)

11)

Variable Access (IRXEXCOM)

Figure 27. Format of the SHVBLOCK

Offset Number Field Name Description
(Decimal) of Bytes

0 4 SHVNEXT Specifies the address of the next
SHVBLOCK in the chain. If this is
the only SHVBLOCK in the chain or
the last one in a chain, this field is 0.

4 4 SHVUSER Specifies the length of a buffer pointed
to by the SHVNAMA field. This field
is available for the user's own use,
except for a "FETCH NEXT"
request. A FETCH NEXT request
uses this field.

8 1 SHVCODE A one byte character field that
specifies the function code, which
indicates the type of variable access
request. "Function Codes
(SHVCODE)" on page 243 describes
the valid codes.

9 1 SHVRET Specifies the return code flag, which
axe shown in Figure 26.

10 2 --- Reserved.

12 4 SHVBUFL Specifies the length of the "Fetch"
value buffer.

16 4 SHVNAMA Specifies the address of the variable
name.

20 4 SHVNAML Specifies the length of the variable
name. The maximum length of a
variable name is 250 characters.

24 4 SHVVALA Specifies the address of the value
buffer.

28 4 SHVVALL Specifies the length of the value. This
is set for a "Fetch."

Function Codes (SHVCODE)
The function code is specified in the SHVCODE field in the SHVBLOCK.

Three function codes (S, F, and D) may be given either in lowercase or in uppercase:

Lowercase (The Symbolic interface). The names must be valid REXX symbols (in
mixed case if desired), and normal REXX substitution,will occur in
compound variables.

Uppercase (The Direct interface). No substitution or case translation takes place.
Simple symbols must be valid REXX variable names (that is, in
uppercase and not starting with a digit or a period), but in compound
symbols any characters (including lowercase, blanks, etc.) are permitted
following a valid REXX stem.

Note: The Direct interface should be used in preference to the Symbolic interface
whenever generality is desired.

Chapter 12. TSO/E REXX Programming Services 243

Variable Access (IRXEXCOM)

The other function codes, N and P, must always be given in uppercase. The specific
actions for each function code are as follows:

Sands Set variable. The SHVNAMAJSHVNAML adlen describes the name of
the variable to be set, and SHVVALA/SHVVALL describes the value
which is to be assigned to it. The name is validated to ensure that it
does not contain invalid characters, and the variable is then set from the
value given. If the name is a stem, all variables with that stem are set,
just as though this was a REXX assignment. SHVNEWV is set if the
variable did not exist before the operation.

F and f Fetch variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be fetched. SHVVALA specifies the address of a
buffer into which the data is to be copied, and SHVBUFL contains the
length of the buffer. The name is validated to ensure that it does not
contain invalid characters, and the variable is then located and copied to
the buffer. The total length of the variable is put into SHVV ALL, and if
the value was truncated (because the buffer was not big enough) the
SHVTRUNC bit is set. If the variable is shorter than the length of the
buffer, no padding takes place. If the name is a stem, the initial value of
that stem (if any) is returned.

SHVNEWV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derived name of the
variable (after substitution etc.) - see page 19.

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be dropped. SHVV ALA/SHVV ALL are not used.
The name is validated to ensure that it does not contain invalid
characters, and the variable is then dropped, if it exists. If the name
given is a stem, all variables starting with that stem are dropped.

N Fetch Next variable. This function may be used to search through all the
variables known to the language processor (~hat is, all those of the
current generation, excluding those "hidden" by PROCEDURE
instructions). The order in which the variables are revealed is not
specified.

The language processor maintains a pointer to its list of variables: this is
reset to point to the first variable in the list whenever 1) a host command
is issued, or 2) any function other than "N" is executed via the
IRXEXCOM interface.

244 TSO/E Version 2 REXX Reference

')

Variable Access (IRXEXCOM)

Whenever an N (Next) function is executed, the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to
be copied, and SHVUSER contains the length of that buffer. The total
length of the name is put into SHVNAML, and if the name was
truncated (because the buffer was not big enough) the SHVTRUNC bit
is set. If the name is shorter than the length of the buffer, no padding
takes place. The value of the variable is copied to the user's buffer area
using exactly the same protocol as for the Fetch operation.

If SHVRET has SHVL VAR set, the end of the list of known variables
has been found, the internal pointers have been reset, and no valid data
has been copied to the user buffers. If SHVTRUNC is set, either the
name or the value has been truncated.

By repeatedly executing the N function (until the SHVLV AR flag is set),
a user program may locate all the REXX variables of the current
generation.

P Fetch private information. This interface is identical to the F fetch
interface, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name), and the following names are
recognized:

Return Specifications

ARG Fetch primary argument string. The first argument string
that would be parsed by the ARG instruction is copied to
the user's buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 51, is copied to the user's
buffer.

VERSION Fetch version string. The version string, as described for
PARSE VERSION on page 52, is copied to the user's
buffer.

For the IRXEXCOM routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

The output from IRXEXCOM is stored in each SHVBLOCK.

Chapter 12. TSO/E REXX Programming Services 245

Variable Access (IRXEXCOM)

Return Codes
Figure 28 shows the return codes from the IRXEXCOM routine. Figure 26 on
page 242 shows the return code flags that are stored in the SHVRET field in the
SHVBLOCK.

Figure 28. Return Codes from IRXEXCOM (In Register 15)

Return Description
Code

'.-

-2 Processing was not successful. Insufficient storage was available for a
requested SET. Processing was terminated. Some of the request
blocks (SHVBLOCKs) may not have been processed and their
SHVRET bytes will be unchanged.

-1 Processing was not successful. Entry conditions were not valid for
one of the following reasons:

Invalid entry conditions. The parameter list may have been
incorrect, for example, parameter 2 and parameter 3 may not
have been identical.

A REXX exec was not currently executing.

Another task is accessing the variable pool.

A REXX exec is currently executing, but is not enabled for
variable access.

0 Processing was successful.

28 Processing was not successful. A language processor environment
could not be located.

n Any other return code not equal to -2, -1, 0, or 28 is a composite
formed by the logical OR of SHVRETs, excluding SHVNEWV and
SHVLVAR.

246 TSO/E Version 2 REXX Reference

!~
I

·~
I

IRXSUBCM Routine

Maintain Entries in the Host Command Environment Table
(IRXSUBCM)

Use the IRXSUBCM routine to maintain entries in the host command environment
table. The table contains the names of the valid host command environments that
REXX execs can use to execute host commands. In an exec, you can use the
ADDRESS instruction to direct a host command to a specific environment for
execution. The host command environment table also contains the name of the
routine that is invoked to handle the execution of commands for each specific
environment. "Host Command Environment Table" on page 291 describes the table
in more detail.

Note: To permit FORTRAN programs to call IRXSUBCM, TSO/E provides an
alternate entry point for the IRXSUBCM routine. The alternate entry point name is
IRXSUB.

Using IRXSUBCM, you can add, delete, update, or query entries in the table. You
can also use IRXSUBCM to dynamically update the host command environment
table while a REXX exec is executing.

A program can access IRXSUBCM using either the CALL or LINK macro
instructions, specifying IRXSUBCM as the entry point name. You can obtain the
address of the IRXSUBCM routine from the REXX vector of external entry points.
"Format of the REXX Vector of External Entry Points" on page 328 describes the
vector.

If a program uses IRXSUBCM, it must create a parameter list and pass the address
of the parameter list in register 1.

IRXSUBCM changes or queries the host command environment table for the
current language processor environment, that is, for the environment in which it
executes (see "General Considerations for Calling TSO/E REXX Routines" on
page 212 for information). IRXSUBCM affects only the environment in which it
executes. Changes to the table take effect immediately and remain in effect until the
language processor environment is terminated.

Environment Customization Considerations -------------~

If you use the initialization routine to initialize environments, on the call to
IRXSUBCM, you can optionally pass the address of an environment block in
register 0. If the environment block is valid, IRXSUBCM will execute in the
environment represented by that environment block. If register 0 does not point
to a valid environment block, IRXSUBCM will locate the current environment.

If the environment in which IRXSUBCM executes is part of a chain of
environments and you use IRXSUBCM to change the host command
environment table, the following applies:

• The changes do not affect the environments that are higher in the chain or
existing environments that are lower in the chain.

• The changes are propagated to any language processor environment that is
created on the chain after IRXSUBCM updates the table.

Chapter 12. TSO/E REXX Programming Services 247

IRXSUBCM Routine

Entry Specifications

Parameters

Functions

For the IRXSUBCM routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 29 describes the parameters for IRXSUBCM.

Figure 29. Parameters for IRXSUBCM

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The name of the
function must be left justified and padded to the
right with blanks. The valid functions are:

• ADD

• DELETE

• UPDATE

• QUERY

Each function is described after the table in
"Functions."

Parameter 2 4 The address of a string. On both input and output,
the string has the same format as an entry in the
host command environment table. "Format of a
Host Command Environment Table Entry" on
page 249 describes the entry in more detail.

Parameter 3 4 The length of the string (entry) that is pointed to by
parameter 2.

Parameter 4 8 The name of the host command environment table.
The name must be left justified and padded to the
right with blanks.

Parameter 1 contains the name of the function IRXSUBCM is to perform. The
functions are:

ADD
Adds an entry to the table using the values specified on the call. IRXSUBCM
does not check for duplicate entries. If a duplicate entry is added and then
IRXSUBCM is called to delete the entry, IRXSUBCM will delete the duplicate
entry and leave the original one.

248 TSO/E Version 2 REXX Reference

(~

IRXSUBCM Routine

DELETE
Deletes the last occurrence of the specified entry from the table.

UPDATE
Updates the specified entry with the new values specified on the call. The entry
name itself (the name of the host command environment) is not changed.

QUERY
Returns the values associated with the last occurrence of the entry specified on
the call.

Format of a Host Command Environment Table Entry
Parameter 2 points to a string that has the same format as an entry (row) in the host
command environment table. Figure 30 shows the format of an entry. TSO/E
provides a mapping macro IRXSUBCT for the table entries. The mapping macro is
in SYSl .MACLIB. "Host Command Environment Table" on page 291 describes
the table in more detail.

Figure 30. Format of an Entry in the Host Command Environment Table

Offset Number Field Name Description
(Decimal) of Bytes

0 8 NAME The name of the host command
environment.

8 8 ROUTINE The name of the routine that is invoked
to handle the execution of host
commands in the specified environment.

16 16 TOKEN A user token that is passed to the
routine when it is invoked.

For the ADD, UPDATE, and QUERY functions, the length of the string
(parameter 3) must be the length of the entry.

For the DELETE function, the address of the string (parameter 2) and the length of
the string (parameter 3) must be 0.

Return Specifications
For the IRXSUBCM routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Chapter 12. TSO/E REXX Programming Services 249

IRXSUBCM Routine

Return Codes
Figure 31 shows the return codes for the IRXSUBCM routine.

Figure 31. Return Codes for IRXSUBCM

Return Description
Code

0 Processing was successful.
:

8 Processing was not successful. The specified entry was not found in
the table. A return code of 8 is used only for the DELETE,
UPDATE, and QUERY functions.

20 Processing was not successful. An error occurred. A message that
explains the error is also issued.

28 Processing was not successful. A language processor environment
could not be located.

250 TSO /E Version 2 REXX Reference

IRXIC Routine

Trace and Execution Control Routine (IRXIC)
Use the IRXIC routine to control the tracing and execution of REXX execs. A
program can call IRXIC to execute the following REXX immediate commands:

• HI (Halt Interpretation) - to stop the interpretation (execution) of REXX execs

• HT (Halt Typing) - to suppress terminal output generated by REXX execs

• RT (Resume Typing) - to restore terminal output that was previously
suppressed

• TS (Trace Start) - to start tracing of REXX execs

• TE (Trace End) - to end tracing of REXX execs.

The immediate commands are described in Chapter 10, "TSO/E REXX
Commands."

A program can access IRXIC using either the CALL or LINK macro instructions,
specifying IRXIC as the entry point name. You can obtain the address of the
IRXIC routine from the REXX vector of external entry points. "Format of the
REXX Vector of External Entry Points" on page 328 describes the vector.

If a program uses IRXIC, it must create a parameter list and pass the address of the
parameter list in register 1.

Environment Customization Considerations ---------------.

If you use the initialization routine IRXINIT to initialize environments, when
you call IRXIC, you can also optionally pass the address of an environment
block in register 0. If the environment block is valid, IRXIC will execute in the
environment represented by that environment block. If register 0 does not point
to a valid environment block, IRXIC will locate the current environment.
IRXIC affects only the language processor environment in which it executes.

Entry Specifications

Parameters

For the IRXIC routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to l. Figure 32 describes the parameters for IRXIC.

Chapter 12. TSO/E REXX Programming Services 251

IRXI C Routine

Figure 32. Parameters for IRXIC

Parameter Number Description
of Bytes

Parameter 1 4 The name of the command you want IRXIC to
execute. The valid command names are HI, HT,
RT, TS, and TE. They are described below.

Parameter 2 4 The length of the command name that is pointed to
by parameter 1.

The valid command names are:

HI (Halt Interpretation)
The Halt Interpretation condition is set. Between instructions, the language
processor checks whether it should halt the interpretation of REXX execs. If HI
has been issued, exec interpretation is stopped. HI is reset if a HALT condition
is enabled or when no execs are executing in the environment.

HT (Halt Typing)
When the Halt Typing condition is set, output generated by REXX execs is
suppressed (for example, the SAY instruction will not display its output). HT
does not affect output from any other part of the system and does not affect
error messages. HT is reset when the last exec executing in the environment
ends.

RT (Resume Typing)
Resets Halt Typing (HT). Output from REXX execs is restored.

TS (Trace Start)
Starts tracing of REXX execs.

TE (Trace End)
Ends tracing of REXX execs.

Return Specifications
For the IRXIC routine~ the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Return Codes
Figure 33 shows the return codes for the IRXIC routine.

Figure 33. Return Codes for IRXIC

Return Description
Code

0 Processing was successful.

20 Processing was not successful. An error occurred. A message that
explains the error is also issued.

28 Processing was not successful. A language processor environment
could not be located.

252 TSO/E Version 2 REXX Reference

0,
I

~!

Get Result Routine (IRXRLT)

The IRXRL T (Get Result) Routine
Use the IRXRLT (get result) routine to obtain:

• The result from an exec that was executed by calling the IRXEXEC routine, or

• A larger evaluation block to return the result from an external function or
subroutine that you write.

You can write your own external functions and subroutines and include them in a
function package. When your code is called, it receives the address of an evaluation
block that the language processor has allocated. Your code returns the result it
calculates in the evaluation block. "Function Packages" on page 229 describes how
to create your own function packages and how you use the evaluation block.

If the evaluation block that your function or subroutine code receives is too small to
store the result, you can call the IRXRL T routine to obtain a larger evaluation
block. You can then use the new evaluation block to store the result from your
function or subroutine.

You can call the IRXEXEC routine to execute a REXX exec. The exec can return a
result using the RETURN or EXIT instruction. When you call IRXEXEC, you can
optionally pass the address of an evaluation block that you have allocated. If the
exec returns a result, IRXEXEC places the result in the evaluation block. "The
IRXEXEC Routine" on page 217 describes IRXEXEC in detail.

The evaluation block that you pass to IRXEXEC may be too small to hold the
complete result. If so, IRXEXEC places as much of the result that will fit into the
evaluation block and sets the length field in the block to the negative of the length
required for the complete result. If you call IRXEXEC and the complete result
cannot be returned, you can allocate a larger evaluation block, and call the IRXRLT
routine and pass the address of the new evaluation block to obtain the complete
result. You can also call IRXEXEC and not pass the address of an evaluation
block. If the exec returns a result, you can then use the IRXRL T routine to obtain
the result.

For more information about the evaluation block and how it is used for the
IRXEXEC routine and function packages, see the following topics:

• "The IRXEXEC Routine" on page 217
• "Function Packages" on page 229.

Entry Specifications
For the IRXRLT routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Chapter 12. TSO/E REXX Programming Services 253

Get Result Routine (IRXRL T)

Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. You must pass
all parameters on the call. The high order bit of the last address in the parameter
list must be set to 1. Figure 34 describes the parameters for IRXRLT.

Figure 34. Parameters for IRXRL T

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The following
functions are valid. The two functions are
described in more detail following the table.

GETRLT
Obtain the result from the last REXX exec that
executed in the current language processor
environment. This function is only valid if a
REXX exec is not currently executing.

GETBLOCK
Obtain a larger evaluation block for the external
function or subroutine that is executing. This
function is only valid when an exec is currently
executing as a function or subroutine.

The function must be in uppercase, left justified,
and padded with blanks.

Parameter 2 4 Specifies the address of the evaluation block. On
input, this parameter is only used for the GETRL T
function. It is not used for the GETBLOCK
function. On input, specify the address of an
evaluation block that is large enough to hold the
result from the exec.

On output, this parameter is only used for the
GETBLOCK function. It is not used for the
GETRLT function. On output, it returns the
address of a larger evaluation block that the
function or subroutine code can use to return a
result.

Parameter 3 4 Specifies the length, in bytes, of the data area in the
evaluation block. This parameter is only used on
input for the GETBLOCK function. Specify the
size needed to store the result from the external
function or subroutine that is executing. The
parameter is not used for the GETRL T function.

For your external function or subroutine code~ if the value of the result does not fit
into the evaluation block your code receives, call IRXRLT with the GETBLOCK
function. You can only use the GETBLOCK function when an exec is executing in
that language processor environment. When you call IRXRLT, specify the length of
the data area that you require in parameter 3. IRXRLT will allocate a new
evaluation block with the specified data area size and return the address of the new
evaluation block in parameter 2. IRXRLT also frees the original evaluation block

254 TSO/E Version 2 REXX Reference

I~
I

Get Result Routine (IRXRLT)

that was not large enough for the complete result. Your code can then use the new
evaluation block to store the result. See "Function Packages" on page 229 for more
information about functions and subroutines in a function package and the format
of the evaluation block.

If you use the IRXEXEC routine and need to call IRXRL T to obtain the result
from the exec, call IRXRLT with the GETRLT function.

When you call IRXEXEC, you can allocate an evaluation block and pass the
address of the block to IRXEXEC. IRXEXEC returns the result from the exec in
the evaluation block. If the block is too small, IRXEXEC returns the negative
length of the area required for the result. You can allocate another evaluation block
that has a data area large enough to store the result and call IRXRL T and pass the
address of the new evaluation block in parameter 2. IRXRL T returns the result
from the exec in the evaluation block.

You can call IRXEXEC to execute an exec that returns a result and not pass the
address of an evaluation block on the call. To obtain the result, you can use
IRXRL T after IRXEXEC returns. You must allocate an evaluation block and pass
the address on the call to IRXRL T.

If you call IRXRLT to obtain the result (GETRLT function) and the evaluation
block you pass to IRXRL T is not large enough to store the result, IRXRL T:

• Places as much of the result that will fit into the evaluation block

• Sets the length of the result field in the evaluation block to the negative of the
length required for the complete result.

If IRXRLT cannot return the complete result, the result is not lost. The result is
still stored in a system evaluation block. You can then allocate a larger evaluation
block and call IRXRL T again specifying the address of the new evaluation block.
This is more likely to occur if you had called IRXEXEC without an evaluation
block and then use IRXRLT to obtain the result from the exec that executed. It can
also occur if you miscalculate the area required to store the complete result.

The result from the exec is available until one of the following occurs:

• You successfully obtain the result using the IRXRL T routine

• Another REXX exec executes in the same language processor environment

• The language processor environment is terminated.

Note: The language processor environment is the environment in which REXX
execs and routines execute. See "General Considerations for Calling TSO/E REXX
Routines" on page 212 for information. Chapter 14, "Language Processor
Environments" provides more details about environments and customization
services.

You can use the GETRLT function only if a REXX exec is not currently executing.
For example, if you use IRXEXEC to execute an exec and the result does not fit
into the evaluation block, you can call IRXRLT to obtain the result after IRXEXE~
returns. At this point, the exec is no longer executing.

For more information about executing an exec using the IRXEXEC routine and the
evaluation block, see "The IRXEXEC Routine" on page 217.

Chapter 12. TSO/E REXX Programming Services 255

Get Result Routine (IRXRL T)

Return Specifications

Return Codes

For the IRXRLT get result routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

IRXRLT returns a return code in register 15. Figl1re 35 shows the return codes if
you call IRXRL T with the GETRL T function. Additional information about each
return code is provided after the tables.

Figure 35. IRXRLT Return Codes for the GETRLT Function

Return Description
Code

0 Processing was successful. A return code of 0 indicates that IRXRL T
completed successfully. However, the complete result may not have
been returned.

20 Processing was not successful. IRXRL T could not perform the
requested function. The result is not returned.

28 Processing was not successful. A valid language processor
environment could not be located.

Figure 36 shows the return codes if you call IRXRL T with the GETBLOCK
function.

Figure 36. IRXRLT Return Codes for the GETBLOCK Function

Return Description
Code

0 Processing was successful. IRXRLT allocated a new evaluation block
and returned the address of the evaluation block.

20 Processing was not successful. A new evaluation block was not
allocated.

28 Processing was not successful. A valid language processor
environment could not be located.

If you receive a return code of 0 for the GETRL T function, IRXRL T completed
successfully but the complete result may not have been returned. IRXRL T returns a
return code of 0 if:

• The entire result was stored in the evaluation block.

• The data field (EVDATA) in the evalution block was too small. IRXRLT stores
as much of the result as it can and sets the length field (EVLEN) in the
evaluation block to the negative value of the length that is required.

• No result was available.

If you receive a return code of 20 for either the GETRL T or GETBLOCK function,
some possible errors can be that the function you requested was not valid or the
parameter list was incorrect.

256 TSQf:E-Version 2 REXX Reference

~)

!~
I

~\ .)

Get Result Routine (IRXRL T)

If you receive a return code of 20 for the GETRL T function, some possible errors
could be:

• The address of the evaluation block (parameter 2) was 0

• The evaluation block you allocated was not valid. For example, the EVLEN
field was less than 0.

If you receive a return code of 20 for the GETBLOCK function, some possible
errors could be:

• The length you requested (parameter 3) was not valid. Either the length was a
negative value or exceeded the maximum value. The maximum is 16 megabytes
minus the length of the evaluation block header.

• The system could not obtain storage.

• You called IRXRL T with the GETBLOCK function and an exec was not
executing.

Chapter 12. TSO/E REXX Programming Services 257

258 TSO/E Version 2 REXX Reference

/~ , I

Customizing Services

Chapter 13. TSO/E REXX Customizing Services

In addition to the instructions, functions, and commands for writing a REXX exec
and the programming services that interface with REXX and the language processor,
TSO /E also provides customizing services for REXX processing. The customizing
services let you change how REXX execs are processed and how system services are
accessed and used.

The REXX language itself, which consists of instructions and built-in functions, is
address space independent. The language processor, which interprets a REXX exec,
processes the REXX language instructions and functions in the same manner in any
address space. However, when a REXX exec executes, the language processor must
interface with different host services, such as 1/0 and storage. MVS address spaces
differ in how they access and use system services, for example, how they use and
manage I/O and storage. Although these differences exist, the language processor
must run in an environment that is not dependent on the address space in which it is
executing an exec. The environment must allow REXX execs to execute
independently of the way in which an address space handles system services. The
TSO/E REXX customizing routines and services provide an interface between the
language processor and underlying host services and allow you to customize the
environment in which the language processor processes REXX execs.

TSO/E REXX customizing services include the following:

Environment Characteristics
TSO/E provides various routines and services that allow you to customize the
environment in which the language processor executes a REXX exec. This
environment is known as the language processor environment and defines various
characteristics relating to how execs are processed and how system services are
accessed and used. TSO/E provides default environment characteristics that you
can change and also provides a routine you can use to define your own
environment.

Replaceable Routines
When a REXX exec executes, various system services are used, such as services
for loading and freeing an exec, 1/0, obtaining and freeing storage, and data
stack requests. TSO/E provides routines that handle these types of system
services. The routines are known as replaceable routines because you can
provide your own routine that replaces the system routine.

Exit Routines
You can provide exit routines to customize various aspects of REXX processing.

The topics in this chapter introduce the major interfaces and customizing services.
The following chapters describe the customizing services in more detail:

• Chapter 14, "Language Processor Environments" describes how you can
customize the environment in which the language processor executes a REXX
exec and accesses and uses system services.

• Chapter 15, "Initialization and Termination Routines" describes the IRXINIT
and IRXTERM routines that TSO/E provides to initialize and terminate
language processor environments.

• Chapter 16, "Replaceable Routines and Exits" describes the routines you can
provide that access system services, such as 1/0 and storage, and the exits you
can use to customize REXX processing.

Chapter 13. TSO/E REXX Customizing Services 259

Customizing Services

Flow of REXX Exec Processing

Locate environment

No environment?
Initialize a new
environment.

Load exec

Execute the exec.
(Language processor)

Free exec

Terminate environment
if one was initialized

Figure 37 shows the processing of a REXX exec in any MVS address space.

Load exec

I/O

Data stack services

Storage

User ID

Message ID

Execute host commands

Replaceable
Routines

TSO/E services

MVS services

Figure 3 7. Overview of REXX Exec Proce~sing in Any Address Space

As shown in the figure, before the language processor executes a REXX exec, a
language processor environment must exist. After an environment is located or
initialized, the exec is loaded into storage and is then executed. While an exec is
executing, the language processor may need to access different system services, for
example, to handle data stack requests or for I/O processing. The system services
are handled by routines that are known as replaceable routines. The following
topics describe the initialization and termination oflanguage processor
environments, the loading and freeing of an exec, and the replaceable routines. In
addition, there are several exits you can provide to customize REXX processing.
The exits are summarized on page 391.

Initialization and Termination of a Language Processor Environment
Before the language processor can process a REXX exec, a language processor
environment must exist. A language processor environment is the environment in
which the language processor "interprets" or processes the exec. This environment
defines characteristics relating to how the exec is processed and how the language
processor accesses system services.

A language processor environment defines various characteristics, such as:

• The search order used to locate commands and external functions and
subroutines

260 TSO /E Version 2 REXX Reference

I~

rj

Customizing Services

• The ddnames for reading and writing data and from which REXX execs are
loaded

• The host command environments you can use in an exec to execute host
commands (that is, the environments you can specify using the ADDRESS
instruction)

• The function packages (user, local, and system) that are available to execs that
execute in the environment and the entries in each package

• Whether execs that execute in the environment can use the data stack or can
perform 1/0 operations

• The names of routines that handle system services, such as I/O operations,
loading of an exec, obtaining and freeing storage, and data stack requests.
These routines are known as replaceable routines.

Note: The concept of a language processor environment is different from that of a
host command environment. The language processor environment is the
environment in which a REXX exec executes. This includes how an exec is loaded,
how commands, functions, and subroutines are located, and how requests for system
services are handled. A host command environment is the environment to which the
language processor passes commands for execution. The host command
environment handles the execution of host commands. The host command
environments that are available to a REXX exec are one characteristic of a language
processor environment. For more information about executing host commands from
a REXX exec, see "Commands to External Environments" on page 22.

TSO/E automatically initializes a language processor environment in both the TSO/E
and non-TSO/E address spaces by calling the initialization routine IRXINIT. TSO/E
terminates a language processor environment by calling the termination routine
IRXTERM.

In the TSO/E address space, IRXINIT is called to initialize a default language
processor environment when a user logs on and starts a TSO/E session. When a
user invokes ISPF, another language processor environment is initialized. The ISPF
environment is a separate environment from the one that is initialized when the
TSO/E session is started. Similarly, if you enter split screen mode in ISPF, another
language processor environment is initialized for the second ISPF screen. Therefore,
at this point, three separate language processor environments exist. If the user
invokes a REXX exec from the second ISPF screen, the exec executes within the
language processor environment that was initialized for that second screen. If the
user invokes the exec from TSO/E READY mode, it executes within the
environment that was initialized when the user first logged on.

When the user returns to a single ISPF screen, the IRXTERM routine is called to
automatically terminate the language processor environment that is associated with
the second ISPF screen. Similarly, when the user exits from ISPF and returns to
TSO/E READY mode, the system calls IRXTERM to terminate the environment
associated with the ISPF screen. When the user logs off from TSO/E, that language
processor environment is then terminated.

In non-TSO/E address spaces, a language processor environment is not automatically
initialized at a specific point, such as when the address space is activated. An
environment is initialized when either the IRXEXEC or IRXJCL routines are called
to execute a REXX exec, if an environment does not already exist.

Chapter 13. TSO/E REXX Customizing Services 261

Customizing Services

As described above, many language processor environments can exist in an address
space. A language processor environment is associated with an MVS task and
environments can be chained together. This is discussed in more detail in
Chapter 14, "Language Processor Environments" on page 267.

Whenever a REXX exec is invoked in any address space, the system first determines
whether or not a language processor environment exists. If an environment does
exist, the REXX exec executes in that environment. If an environment does not
exist, the system automatically initializes one by calling the IRXINIT routine. For
example, if you are logged on to TSO/E and issue the TSO/E EXEC command to
execute a REXX exec, the system checks whether a language processor environment
exists. An environment was initialized when you logged on to TSO/E, therefore, the
exec executes in that environment. If you execute a REXX exec in MVS batch by
specifying IRXJCL as the program name (PGM) on the JCL EXEC statement, a
language processor environment is initialized for the execution of the exec. When
the exec completes processing, the environment is terminated.

If either IRXJCL or IRXEXEC is called from a program, the system first determines
whether or not a language processor environment already exists. If an environment
exists, the exec executes in that environment. If an environment does not exist, an
environment is initialized. When the exec completes, the environment is terminated.
"Chains of Environments and How Environments Are Located" on page 304
describes how the system locates a previous environment in the TSO/E and
non-TSO/E address spaces.

TSO/E provides default values that are used to define a language processor
environment. The defaults are provided in three parameters modules that are load
modules. The load modules contain the default characteristics for initializing
language processor environments for TSO/E (READY mode), ISPF, and non-TSO/E
address spaces. The parameters modules are:

• IRXTSPRM (for TSO/E)
• IRXISPRM (for ISPF)
• IRXPARMS (for non-TSO/E)

You can provide your own parameters modules in order to change the default values
that are used to initialize a language processor environment. Your load modules are
then used instead of the default modules provided by TSO/E. The parameters
modules are described in detail in Chapter 14, "Language Processor Environments."

You can also explicitly invoke IRXINIT to initialize a language processor
environment and define the environment characteristics on the call. Although
IRXINIT is primarily intended for use in non-TSO/E address spaces, you can call it
in any address space. When you call IRXINIT, you specify any or all of the
characteristics you want defined for the language processor environment. Using
IRXINIT gives you the flexibility to define your own environment, and therefore,
customize how REXX execs execute within the environment and how system services
are handled. If you explicitly call IRXINIT, you must use the IRXTERM routine to
terminate that environment. The system does not automatically terminate an
environment that you initialized by explicitly calling IRXINIT. Chapter 15,
"Initialization and Termination Routines" on page 339 describes the IRXINIT and
IRXTERM routines.

262 TSO/E Version 2 REXX Reference

.~
)

!~
I

Customizing Services

Types Of Language Processor Environments
There are two types of language processor environments; environments that are
integrated into TSO/E and environments that are not integrated into TSO/E. If an
environment is integrated into TSO/E, REXX execs that run in the environment can
use TSO/E commands and services. If an environment is not integrated into TSO/E,
execs that run in the environment cannot use TSO/E commands and services.

When a language processor environment is automatically initialized in the TSO/E
address space, the environment is integrated into TSO/E. When an environment is
automatically initialized in a non-TSO/E address space, the environment is not
integrated into TSO/E. Environments that are initialized in non-TSO/E address
spaces cannot be integrated into TSO/E. Environments that are initialized in the
TSO/E address space may or may not be integrated into TSO/E.

Many TSO/E customizing routines and services are only available to language
processor environments that are not integrated into TSO/E. "Types of Environments
- Integrated and Not Integrated Into TSO/E" on page 273 describes the types of
language processor environments in more detail.

Loading and Freeing a REXX Exec
After a language processor environment has been located or one has been initialized,
the exec must be loaded into storage in order for the language processor to process
it. After the exec executes, it must be freed. The exec load routine loads and frees
REXX execs. The default exec load routine is IRXLOAD.

The exec load routine is one of the replaceable routines that you can provide to
customize REXX processing. You can provide your own exec load routine that
either replaces the system default or that performs pre-processing and then calls the
default routine IRXLOAD. The name of the load routine is defined for each
language processor environment. You can only provide your own load routine in
language processor environments that are not integrated into TSO/E.

Note: If you use the IRXEXEC routine to execute a REXX exec, you can preload
the exec in storage and pass the address of the preloaded exec on the call to
IRXEXEC. In this case, the exec load routine is not called to load the exec.
"IRXJCL and IRXEXEC Routines" on page 214 describes the IRXEXEC routine
and how you can preload an exec.

Processing of the REXX Exec
After the REXX exec is loaded into storage, the language processor is called to
process (interpret) the exec. During processing, the exec can issue commands, call
external functions and subroutines, and request various system services. When the
language processor processes a command, it first evaluates the expression and then
passes the command to the host for execution. The specific host command
environment handles command execution. When the exec calls an external function
or subroutine, the language processor searches for the function or subroutine. This
includes searching any function packages that are defined for the language processor
environment in which the exec is executing.

When system services are requested, specific routines are called to perform the
requested service (for example, obtaining and freeing storage, 1/0, and data stack
requests). TSO/E provides routines for these services that are known as replaceable
routines because you can provide your own routine that replaces the system routine.
"Overview of Replaceable Routines" on page 264 summarizes the routines.

Chapter 13. TSO/E REXX Customizing Services 263

Customizing Services

Overview of Replaceable Routines
When a REXX exec executes, various system services are used, such as services for
loading and freeing the exec, I/O, obtaining and freeing storage, and handling data
stack requests. TSO/E provides routines that handle these types of system services.
These routines are known as replaceable routines because you can provide your own
routine that replaces the system routine. You can only provide your own
replaceable routines in language processor environments that are not integrated into
TSO/E (see page 273).

Your routine can check the request for a system service, change the request if
needed, and then call the system-supplied routine to actually perform the service.
Your routine can also terminate the request for a system service or perform the
request itself instead of calling the system-supplied routine.

Replaceable routines are defined on a language processor environment basis and are
specified in the parameters module for an environment (see page 275).

Figure 38 provides a brief description of the functions your replaceable routine must
perform. Chapter 16, "Replaceable Routines and Exits" on page 355 describes each
replaceable routine in detail, its input and output parameters, and return codes.

Figure 38. Overview of Replaceable Routines

Replaceable Routine Description

Exec load The exec load routine is called to load a REXX exec
into storage and to free the exec when it is no longer
needed.

Read input and The I/O routine is called to read a record from or write
write output (I/O) a record to a specified ddname. For example, this

routine is called for the SAY instruction, for the PULL
instruction (when the data stack is empty), and for the
EXECIO command. The routine is also called to open
and close a data set.

Data stack This routine is called to handle any requests for data
stack services. For example, it is called for the PULL,
PUSH, and QUEUE instructions and for the
MAKEBUF and DROPBUF commands.

Storage This routine is called to obtain and free storage.
management

User ID This routine is called to obtain the user ID. The result
that it obtains is returned by the USERID built-in
function.

Message identifier This routine determines if the message identifier
(message ID) is displayed with a REXX error message.

Host command This routine is called to handle the execution of a host
environment command for a particular host command environment.

To provide your own replaceable routine, you must do the following:

• Write the code for the routine. Chapter 16, "Replaceable Routines and Exits"
on page 355 describes each routine in detail.

264 TSO/E Version 2 REXX Reference

~\
I

~\
\

Exit Routines

\..__./

Customizing Services

• Define the routine name to a language processor environment.

If you use IRXINIT to initialize a new environment, you can pass the names of
your routines on the call.

Chapter 14, "Language Processor Environments" on page 267 describes the
concepts of replaceable routines and their relationship to language processor
environments in more detail.

The replaceable routines that TSO/E provides are external interfaces that you can
call from a program in any address space. For example, a program can call the
system-supplied data stack routine to perform data stack operations. If you provide
your own replaceable data stack routine, a program can call your routine to perform
data stack operations. You can call a system-supplied or user-supplied replaceable
routine only if a language processor environment exists in which the routine can
execute.

TSO/E also provides several exit routines you can use to customize REXX
processing. Several exits have fixed names. Other exits do not have a fixed name.
You supply the name of these exits on the call to IRXINIT or by changing the
appropriate default parameters modules that TSO/E provides. Chapter 16,
"Replaceable Routines and Exits" on page 355 describes the exits in more detail. A
summary of each exit follows.

• IRXINITX -- Pre-environment initialization exit routine. The exit receives
control whenever IRXINIT is called to initialize a new language processor
environment. It gets control before IRXINIT evaluates any parameters.

• IRXITTS or IRXITMV -- Post-environment initialization exit routines.
IRXITTS is for environments that are integrated into TSO/E and IRXITMV is
for environments that are not integrated into TSO/E. The IRXITTS or
IRXITMV exit receives control whenever IRXINIT is called to initialize a new
language processor environment. It receives control after IRXINIT initializes a
new environment but before IRXINIT completes.

• IRXTERMX -- Environment termination exit routine. The exit receives
control whenever IRXTERM is called to terminate a language processor
environment. It gets control before IRXTERM starts termination processing.

• Attention handling exit routine -- The exit receives control whenever a REXX
exec is executing in the TSO /E address space (in a language processor
environment that is integrated into TSO/E) and an attention interruption occurs.

• Exec initialization -- The exit receives control after the variable pool for a
REXX exec has been initialized but before the language processor processes the
first clause in the exec.

• Exec termination -- The exit receives control after a REXX exec has completed
processing but before the variable pool has been terminated.

Chapter 13. TSO/E REXX Customizing Services 265

Customizing Services

• Exit for the IRXEXEC routine -- The exit receives control whenever the
IRXEXEC routine is called to execute a REXX exec. The IRXEXEC routine
can be explicitly called by a user or called by the system to execute an exec.
IRXEXEC is always called by the system to handle exec execution. For
example, if you use IRXJCL to execute an exec in MVS batch, IRXEXEC is
called to execute the exec. If you provide an exit for IRXEXEC, the exit will be
invoked.

266 TSO/E Version 2 REXX Reference

Language Processor Environments

Chapter 14. Language Processor Environments

As described in Chapter 13, "TSO/E REXX Customizing Services," a language
processor environment is the environment in which the language processor
"interprets" or processes a REXX exec. Such an environment must exist before an
exec can execute.

The topics in this chapter explain language processor environments and the default
parameters modules in more detail. They explain the various tasks you can perform
to customize the environment in which REXX execs execute. This chapter describes:

• Different aspects of a language processor environment and the characteristics
that make up such an environment. It explains when the initialization routine
IRXINIT is invoked to initialize an environment and the values IRXINIT uses
to define the environment. The chapter describes the values TSO/E provides in
the default parameters modules and how to change the values. It describes what
values you can and cannot specify in the TSO/E address space and in
non~ TSO/E address spaces.

• The various control blocks that are defined when a language processor
environment is initialized and how you can use the control blocks for REXX
processing.

• How language processor environments are chained together.

• How the data stack is used in different language processor environments.

Note: The control blocks created for a language processor environment provide
information about the environment. You can obtain information from the control
blocks. However, you must not change any of the control blocks. If you do,
unpredictable results may occur.

Chapter 14. Language Processor Environments 267

Language Processor Environments

Overview of Language Processor Environments
The language processor environment defines various characteristics that relate to
how execs are processed and how system services are accessed and used. Some of
the environment characteristics include the following:

• The language in which REXX messages are displayed

• The ddnames from which input is read and output is written and from which
REXX execs are fetched

• The names of several replaceable routines that you can provide for system
services. You can provide replaceable routines that handle I/O, load REXX
execs, manage storage, process data stack requests, obtain the user ID or
terminal ID for the USERID built-in function, and determine whether the
message ID is to be displayed with a message.

• The names of exit routines that are called when the IRXEXEC routine is
invoked, before exec initialization and termination, and when a user enters
attention mode in TSO/E

• The names of host command environments and the corresponding routines that
process commands for each host command environment

• The function packages that are available to execs that execute in the
environment

• The subpool used for storage allocation

• The name of the address space

• Bit settings (flags) that define many characteristics, such as:

Whether the environment is integrated into TSO/E (that is, whether execs
executing in the environment can use TSO/E commands and services)

The search order for commands and for functions and subroutines

Whether primary and alternate messages are displayed

"Characteristics of a Language Processor Environment" on page 275 describes the
environment characteristics.

The REXX language itself is address space independent. For example, if an exec
includes a DO loop, the language processor processes the DO loop in the same
manner regardless of whether the exec executes in TSO/E or in a non-TSO/E address
space. However, when the language processor processes a RE:XX exec, various host
services are used, such as I/O and storage. MVS address spaces differ in how they
access and use system services, such as I/O and storage management. Although
these differences exist, the REXX exec must execute in an environment that is not
dependent on the particular address space in which it was invoked. Therefore, a
REXX exec executes within a language processor environment, which is an
environment that can be customized to support how each address space accesses and
uses host services.

When a language processor environment is initialized, different routines can be
defined that are invoked for system services, such as obtaining and freeing storage
and handling I/O requests. The language processor environment provides for
consistency across MVS address spaces by ensuring that REXX execs execute
independent of the way in which system services are accessed. At the same time, the

268 TSO/E Version 2 REXX Reference

~)

Language Processor Environments

language processor environment provides flexibility to handle the differences between
the address spaces and also lets you customize how REXX execs are processed and
how system services are accessed and used.

Initialization of an Environment: The initialization routine IRXINIT initializes
language processor environments. The system calls IRXINIT in both TSO/E and
non-TSO/E address spaces to automatically initialize an environment. Because the
system automatically initializes language processor environments, users need not be
concerned with setting up such an environment, changing any values, or even that
the environment exists. The language processor environment allows application
programmers and system programmers to customize the system interfaces between
the language processor and host services. "When Environments are Automatically
Initialized in TSO/E" on page 272 describes when an environment is automatically
initialized in the TSO/E address space. "When Environments are Automatically
Initialized in MVS" on page 273 describes when environments are initialized in
non-TSO/E address spaces.

When IRXINIT is called to automatically initialize an environment, it uses default
values. TSO/E provides three default parameters modules (load modules) that
contain the parameter values that are used to initialize three different types of
language processor environments:

• IRXTSPRM (for a TSO/E session)
• IRXISPRM (for ISPF)
• IRXPARMS (for non-TSO/E address spaces)

4"Characteristics of a Language Processor Environment" on page 275 describes the
parameters module that contains all of the characteristics that are defined for a
language processor environment. "Values Provided in the Three Default Parameters
Modules" on page 299 describes the defaults TSO/E provides in the three
parameters modules. You can change the default parameters that TSO/E provides
by providing your own load modules. "Changing the Default Values for Initializing
an Environment" on page 310 describes how to change the parameters.

You can also explicitly call IRXINIT and pass the parameter values for IRXINIT to
use to initialize the environment. Using IRXINIT gives you the flexibility to
customize the environment in which REXX execs execute and how system services
are accessed and used.

Chains of Environments: Many language processor environments may exist in a
particular address space. A language processor environment is associated with an
MVS task. There can be multiple environments associated with one task. Language
processor environments are chained together in a hierarchical structure and form a
chain of environments where each environment on a chain is related to the other
environments on that chain. Although many environments may be associated with
one MVS task, each individual language processor environment is associated with
one and only one MVS task. Environments on a particular chain may share various
resources, such as data sets and the data stack. "Chains of Environments and How
Environments Are Located" on page 304 describes the relationship between
language processor environments and MVS tasks and how environments are chained
together.

Maximum Number of Environments: Although there can be many language
processor environments initialized in a single address space, there is a default
maximum. The load module IRXANCHR contains an environment table that
defines the maximum number of environments for one address space. The default

Chapter 14. Language Processor Environments 269

Language Processor Environments

maximum is not a specific number of environments. The maximum number of
environments depends on the number of chains of environments and the number of
environments defined on each chain. The default maximum should be sufficient for
any address space. However, if a new environment is being initialized and the
maximum has already been used, IRXINIT completes unsuccessfully and returns
wit!?- a return code of 20 and a reason code of 24. If this occurs, you can change the
maximum value by providing a new IRXANCHR load module. "Changing the
Maximum Number of Environments in an Address Space" on page 332 describes
the IRXANCHR load module and how to provide a new module.

Control Blocks: When IRXINIT initializes a new language processor environment,
it creates a number of control blocks that contain information about the
environment. The main control block created is called the environment block
(ENVBLOCK). Each language processor environment is represented by its
environment block. The environment block contains pointers to other control blocks
that contain information about the parameters that define the environment, the
resources within the environment, and the exec currently executing in the
environment. "Control Blocks Created for a Language Processor Environment" on
page 323 describes all of the control blocks that IRXINIT creates. IRXINIT creates
an environment block for each language processor environment that it creates.
Except for the initialization routine IRXINIT, all REXX execs and services cannot
operate without an environment being available.

Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

270 TSO/E Version 2 REXX Reference

/~

!~
)

I

Using the Environment Block

Using the Environment Block
The main control block that is created for a language processor environment is the
environment block. The environment block represents the language processor
environment and points to other control blocks that contain information about the
environment.

The environment block is known as the anchor that is used by all callable interfaces
to REXX. All REXX routines, except for the IRXINIT initialization routine,
cannot execute unless an environment block exists, that is, a language processor
environment must exist. When IRXINIT initializes a new language processor
environment, it always returns the address of the environment block in register 0. (If
you explicitly call IRXINIT, it also returns the address of the environment block in
the parameter list.) You can also use the IRXINIT routine to obtain the address of
the environment block for the current non-reentrant environment (see page 340).
IRXINIT returns the address in register 0 and also in a parameter in the parameter
list.

The address of the environment block is useful for calling a REXX routine or for
obtaining information from the control blocks that were created for the
environment. If you call any of the REXX routines (for example, IRXEXEC to
execute an exec or the variable access routine IRXEXCOM), you can optionally pass
the address of an environment block to the routine in register 0. By passing the
address of an environment block, you can specify in which specific environment you
want either the exec or the service to execute. This is particularly useful if you use
the IRXINIT routine to initialize several environments on a chain and then want to
execute a REXX routine in a specific environment. When you call the routine, you
can pass the address of the environment block in register 0.

If you call a REXX routine and do not pass the address of an environment block in
register 0, the routine will execute:

• In the last environment on the chain under the current task (non-TSO/E address
space)

• In the last environment on the chain under the current task or a parent task
(TSO/E address space).

If you call IRXEXEC or IRXJCL and an environment does not exist, IRXINIT is
invoked to initialize an environment in which the exec will execute. When the exec
completes processing, the newly created environment is terminated.

The environment block points to several other control blocks that contain the
parameters used to define the environment and the addresses of REXX routines,
such as IRXINIT, IRXEXEC, and IRXTERM, and replaceable routines. You can
access these control blocks to obtain this information. The control blocks are
described in "Control Blocks Created for a Language Processor Environment" on
page 323.

Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

Chapter 14. Language Processor Environments 271

Environments Initialized in TSO /E

When Environments are Automatically Initialized in TSO/E
The initialization routine IRXINIT initializes a language processor environment.
The system calls IRXINIT to automatically initialize a default environment when a
user logs on to TSO/E and when ISPF is invoked.

When a user logs on to TSO/E, IRXINIT is called as part of the logon process to
automatically initialize a language processor environment for the TSO/E session.
The initialization of a language processor environment is transparent to the user.
After users log on to TSO/E, they can simply invoke a REXX exec without
performing any other tasks.

Similarly, when a user invokes ISPF from TSO/E, the IRXINIT routine is called and
automatically initializes a language processor environment for ISPF, that is, for the
ISPF screen. The second language processor environment is separate from the
environment that was initialized for the TSO/E session. If the user enters split screen
in ISPF, IRXINIT initializes a third language processor environment for the second
ISPF screen. At this point, three separate language processor environments exist. If
the user executes a REXX exec from the second ISPF screen, the exec executes
under the third language processor environment, that is, the environment IRXINIT
initialized for the second ISPF screen. If the user executes the exec from the first
ISPF screen, it runs under the second language processor environment.

The termination routine, IRXTERM, terminates a language processor environment.
Continuing the above example, when the user returns to one screen in ISPF, the
IRXTERM routine is called. IRXTERM terminates the third language processor
environment that was initialized for the second ISPF screen. Similarly, when the
user exits from ISPF and returns to TSO/E READY mode, IRXTERM terminates
the language processor environment for the first ISPF screen. In TSO/E READY
mode, the first language processor environment still exists. At this point, if the user
executes a REXX exec from READY mode, the exec executes under the
environment that was initialized at TSO/E logon. When the user logs off,
IRXTERM terminates the language processor environment for the TSO/E session.

You can also call the IRXINIT routine to initialize a language processor
environment. On the call to IRXINIT, you specify values you want defined for the
new environment. Using IRXINIT gives you the ability to define a language
processor environment and customize how REXX execs execute and how system
services are accessed and used. This is particularly important in non-TSO/E address
spaces where you may want to provide replaceable routines to handle system
services. However, you may want to use IRXINIT in TSO/E in order to create an
environment that is similar to a non-TSO/E address space to test any replaceable
routines or REXX execs you have developed for non-TSO/E.

If you explicitly call IRXINIT to initialize a language processor environment, you
must call the IRXTERM routine to terminate the environment. The system does
not terminate language processor environments that you initialized by calling
IRXINIT. Information about IRXINIT and IRXTERM is described later in this
chapter. Chapter 15, "Initialization and Termination Routines" provides reference
information about the parameters and return codes for IRXINIT and IRXTERM.

272 TSO/E Version 2 REXX Reference

Environments Initialized in MVS

When Environments are Automatically Initialized in MVS
As described in the previous topic, a language processor environment is
automatically initialized in the TSO/E address space whenever a user logs on to
TSO/E and when ISPF is invoked. After a TSO/E session has been started, users
can simply invoke a REXX exec and the exec will execute in the language processor
environment in which it was invoked.

In non-TSO/E address spaces, language processor environments are not
automatically initialized at a specific point, such as when the address space is
activated. An environment is initialized whenever the IRXJCL or IRXEXEC
routine is called to execute a REXX exec, if an environment does not already exist
on the current task.

You can execute a REXX exec in MVS batch by specifying IRXJCL as the program
on the JCL EXEC statement. You can call either the IRXJCL or IRXEXEC
routines from a program in any address space to execute an exec. "IRXJCL and
IRXEXEC Routines" on page 214 describes the two routines in detail.

When IRXJCL or IRXEXEC is called, it determines whether a language processor
environment already exists. (As discussed previously, more than one environment
may be initialized in a single address space. The environments are chained together
in a hierarchical structure). IRXJCL or IRXEXEC will not call IRXINIT to
initialize an environment if an environment already exists. They will use the current
environment to execute the exec; "Chains of Environments and How Environments
Are Located" on page 304 describes how language processor environments are
chained together and how environments are located.

If either IRXEXEC or IRXJCL call the IRXINIT routine to initialize an
environment, after the REXX exec completes processing, the IRXTERM routine is
called to terminate the environment that was initialized.

Note: If several language processor environments already exist when you call
IRXJCL or IRXEXEC, you can pass the address of an environment block in register
0 on the call to indicate the environment in which the exec should be executed. See
"Using the Environment Block" on page 271 for more information.

Chapter 14. Language Processor Environments 273

Types of Environments

Types of Environments - Integrated and Not Integrated Into TSO/E
There are two types of language processor environments:

• Environments that are integrated into TSO /E

• Environments that are not integrated into TSO/E.

If a language processor environment is integrated into TSO/E, any REXX execs that
execute in that environment can use TSO/E commands and services. If an
environment is not integrated into TSO/E, execs that execute in the environment
cannot use TSO /E commands and services. Whether or not a language processor
environment is integrated into TSO/Eis determined by the setting of the TSOFL
flag (see page 281). The TSOFL flag is one characteristic (parameter) that is used
when a new environment is initialized. If the TSOFL flag is off, the new
environment is not integrated into TSO/E. If the flag is on, the environment is
integrated into TSO/E.

When a language proct;ssor environment is initialized in a non-TSO/E address space,
either by default or when the initialization routine IRXINIT is explicitly called, the
TSOFL flag must be off. That is, environments that are initialized in non-TSO/E
address spaces cannot be integrated into TSO/E.

When a language processor environment is initialized in the TSO/E address space,
the TSOFL flag can either be on or off. That is, the environment can or cannot be
integrated into TSO/E. When an environment is automatically initialized in the
TSO/E address space (see page 272), it is integrated into TSO/E. The default
parameters modules (IRXTSPRM and IRXISPRM) TSO/E provides for initializing
environments in the TSO/E address space have the TSOFL flag set on.

In the TSO/E address space, you can call the IRXINIT routine and initialize an
environment that is not integrated into TSO/E (the TSOFL flag is off). This lets
you initialize a language processor environment that is the same as an environment
for a non-TSO/E address space. By doing this, for example, you can test REXX
execs that you have written for a non-TSO/E address space. It also lets you test
and/or use your own replaceable routines for various system services, such as 1/0
and data stack requests. User-supplied replaceable routines can only be provided in
language processor environments that are not integrated into TSO/E.

Some TSO/E external functions and TSO/E REXX commands are available only in
TSO/E (in a language processor environment that is integrated into TSO/E). See
Chapter 8, "Using REXX in Different Address Spaces" on page 155 for more
informatipn. Some environment characteristics can only be defined for environments
that are not integrated into TSO/E. "Specifying Values for Different Environments"
on page 315 descr~s the environment characteristics you can specify for language
processor environments that are and are not integrated into TSO/E.

274 TSO/E Version 2 REXX Reference

/~

/~
)

;

Environment Characteristics

Characteristics of a Language Processor Environment
When IRXINIT initializes a language processor environment, it creates several
control blocks that contain information about the environment. One of the control
blocks is the parameter· block (P ARMBLOCK). The parameter block contains the
parameter values that were used to define the environment, that is, it contains the
characteristics that define the environment. It also contains the addresses of the
module name table, the host command environment table, and the function package
table, which contain additional characteristics for the environment.

TSO/E provides three default parameters modules, which are load modules that
contain the values for initializing language processor environments. The three
default modules are IRXPARMS (MVS), IRXTSPRM (TSO/E), and IRXISPRM
(ISPF). "Values Provided in the Three Default Parameters Modules" on page 299
shows the default values TSO/E provides in each of these modules. A parameters
module consists of the parameter block (P ARMBLOCK), the module name table,
the host command environment table, and the function package table. Figure 39
shows the format of the parameters module.

Parameters Module

Parameter Block
(PARMBLOCK)

-

1'4f-
Module Name Table

.I -Host Command
Environment Table

!_.; ...

Function Package Table

Figure 39. Overview of Parameters Module

Figure 40 shows the format of P ARMBLOCK. Each field is described in more
detail following the table. The end of the PARMBLOCK must be indicated by
X 1 FFFFFFFFFFFFFFFF 1

• The format of the module name table, host command
environment table, and function package table are described in subsequent topics.

Chapter 14. Language Processor Environments 275

Environment Characteristics

Figure 40. Format of the Parameter Block (PARMBLOCK)

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ID Identifies the parameter block
(PARMBLOCK).

8 4 VERSION Identifies the version of the parameter
block.

12 2 LANGUAGE Language code for REXX messages.

14 2 RESERVED Reserved.

16 4 MODNAMET Address of module name table.

20 4 SUBCOMTB Address of host command environment
table.

24 4 PACK TB Address of function package table.

28 8 PARSETOK Token for PARSE SOURCE
instruction.

36 4 FLAGS A fullword of bits used as flags to
define characteristics for the
environment.

40 4 MASKS A fullword of bits used as a mask for
the setting of the flag bits.

44 4 SUBPOOL Number of the subpool for storage
allocation.

48 8 ADDRSPN Name of the address space.

56 8 --- The end of the P ARMBLOCK must be
indicated by
X 1 FFFFFFFFFFFFFFFF 1

•

The following information describes each field in the P ARMBLOCK. If you change
any of the default parameters modules TSO/E provides or you use IRXINIT to
initialize a language processor environment, read "Changing the Default Values for
Initializing an Environment" on page 310, which provides information about
changing the different values that define an environment.

ID
An eight byte character field that is used only to identify the parameter block
that IRXINIT creates. The field name is ID.

The value provided in the three default parameters modules is IRXPARMS.
You must not change this field in any of the parameters modules.

Version
A four byte character field that identifies the version of the parameter block for
a particular release and level of TSO/E. The field name is VERSION.

The value provided in the three default parameters modules is 0100, which
identifies TSO/E Version 2. You must not change this field in any of the
parameters modules.

Language Code
A two byte field that contains a language code. The field name is
LANGUAGE.

276 TSO/E Version 2 REXX Reference

/~
i

.~
I

Environment Characteristics

The language code identifies the language in which REXX messages are
displayed. The default provided in all three parameters modules is AE, which is
the language code for American English. The possible values are:

• AE - American English
• BR - Brazilian
• DE - Danish
• FR - French
• GE - German
• JA - Japanese (Kanji)
• KO - Korean
• SP - Spanish
• TA - Traditional Chinese

Reserved
A two byte field that is reserved.

Module Name Table
A four byte field that contains the address of the module name table. The field
name is MODNAMET.

The table contains the ddnames for reading and writing data and for loading
REXX execs, the names of several replaceable routines, and the names of several
exit routines. "Module Name Table" on page 286 describes the table in detail.

Host Command Environment Table
A four byte field that contains the address of the host command environment
table. The field name is SUBCOMTB.

The table contains the names of the host command environments for executing
host commands. These are the environments that REXX execs can specify using
the ADDRESS instruction. For example, the default environments for execs
that are invoked from TSO/E READY are TSO, MVS, LINK, and ATTACH.
"Commands to External Environments" on page 22 describes how to issue host
commands from a REXX exec and the different environments TSO/E provides
for command processing.

The table also contains the names of the routines that are invoked to handle the
processing of commands that are issued in each host command environment.
"Host Command Environment Table" on page 291 describes the table in detail.

Function Package Table
A four byte field that contains the address of the function package table for
function packages. The field name is PACK TB. "Function Package Table" on
page 295 describes the table in detail.

Token for PARSE SOURCE
An eight byte character string that contains the value of a token to be used by
the PARSE SOURCE instruction. The field name is PARSETOK. The default
provided in all three parameters modules is a blank.

This token is the last token of the string that PARSE SOURCE returns. The
token is returned by every PARSE SOURCE instruction that is used in the
environment.

Flags
A fullword of bits used as flags. The field name is FLAGS.

The flags define certain characteristics for the new language processor
environment and how the environment and execs executing in the environment
operate.

Chapter 14. Language Processor Environments 277

Environment Characteristics

In addition to the flags field, the parameter following the flags is a mask field
that works together with the flags. The mask field is a string that has the same
length as the flags field. Each bit position in the mask field corresponds to a bit
position in the flags field. The mask field is used to determine whether the
corresponding flag bit should be used or ignored.

The description of the mask field on page 279 describes the bit settings for the
mask field and how the value for each flag is determined.

Figure 41 summarizes each flag. "Flags and Corresponding Masks" on
page 281 describes each of the flags in more detail and the bit settings for each
flag. The mapping of the parameter block (P ARMBLOCK) includes the
mapping of the flags. TSO/E provides a mapping macro IRXPARMB for the
parameter block. The mapping macro is in SYSl.MACLIB.

Figure 41 (Page 1 of 2). Summary of Each Flag Bit in the Parameters Module

Bit Flag Name Description
Position
Number

0 TSO FL Indicates whether the new environment is to be
integrated into TSO/E.

1 Reserved This bit is reserved.

2 CMDSOFL Specifies the search order used to locate a command.

3 FUNCSOFL 0pvcifies the search order used to locate functions and
subroutines.

4 NOSTKFL Prevents REXX execs executing in the environment
from using any data stack functions.

5 NO READ FL Prevents REXX execs executing in the environment
from reading any input file.

6 NOWRTFL Prevents REXX execs executing in the environment
from writing to any output file.

7 NEWSTKFL Indicates whether a new data stack is initialized for the
new environment.

8 USERPKFL Indicates whether the user function packages that are
defined for the previous language processor environment
are also available in the new environment.

9 LOCPKFL Indicates whether the local function packages that are
defined for the previous language processor environment
are also available in the new environment.

10 SYSPKFL Indicates whether the system function packages that are
defined for the previous language processor environment
are also available in the new environment.

11 NEWSCFL Indicates whether the host command environments (as
specified in the host command environment table) that
are defined for the previous language processor
environment are also available in the new environment.

12 CLOSEXFL Indicates whether the data set from which REXX execs
are obtained is closed after an exec is loaded or remains
open.

13 NOESTAE Indicates whether a recovery EST AE is permitted under
the environment.

278 TSO /E Version 2 REXX Reference

Environment Characteristics

Figure 41 (Page 2 of 2). Summary of Each Flag Bit in the Parameters Module

Bit Flag Name Description
Position
Number

14 RENTRANT Indicates whether the environment is initialized as either
reentrant or non-reentrant.

15 NOPMSGS Indicates whether primary messages are printed.

16 ALTMSGS Indicates whether alternate messages are printed.

17 SPSHARE Indicates whether the subpool specified in the
SUBPOOL field is shared across MVS tasks.

18 STORFL Indicates whether REXX execs executing in the
environment can use the STORAGE function.

19 NOLOADDD Indicates whether the DD specified in the LOADDD
field in the module name table is searched for execs.

20 NOMSGWTO Indicates whether REXX messages are processed
normally in the environment or if they should be routed
to a file.

21 NO MSG IO Indicates whether REXX messages are processed
normally in the environment or if they should be routed
to a JCL listing.

22 Reserved The remaining bits are reserved.

Mask
A fullword of bits used as a mask for the setting of the flag bits. The flags field
is described on page 277.

The field name is MASKS. The mask field is a string that has the same length
as the flags field. Each bit position in the mask field corresponds to a bit in the
same position in the flags field. The mask field is used to determine whether the
corresponding flag bit is used or ignored. For a given bit position, if the value
in the mask field is:

• 0 - the corresponding bit in the flags field is ignored (that is, the bit is
considered null)

• 1 - the corresponding bit in the flags field is used.

Subpool Number
A fullword of binary numbers that specifies the number of the subpool in which
storage is allocated for the entire language processor environment. The field
name is SUBPOOL. The, default value in the IRXP ARMS module is 0. The
value can be from 0 - 127.

In the IRXTSPRM and IRXISPRM modules, the default is 78 (in decimal).
For environments that are integrated into TSO/E (see page 273), the subpool
number must be 78.

Chapter 14. Language Processor Environments 279

Environment Characteristics

Address Space Name
An eight byte character field that specifies the name of the address space. The
field name is ADDRSPN. The following defaults are provided:

• IRXP ARMS module - MVS
• IRXTSPRM module -TSO/E
• IRXISPRM module - ISPF

X'FFFFFFFFFFFFFFFF'
The end of the parameter block is indicated by X 1 FFFFFFFFFFFFFFFF 1

•

280 TSO/E Version 2 REXX Reference

I~

Flags and Corresponding Masks
This topic describes the flags field.

TSO FL

Flags and Masks

This flag indicates whether the new language processor environment is to be
integrated into TSO/E. It indicates whether or not REXX execs that execute in
the environment can use TSO /E services and commands.

0 The environment is not integrated into TSO/E.

The environment is integrated into the TSO/E.

You can initialize an environment in the TSO/E address space and set the
TSOFL flag off. In this case, any REXX execs that execute in the environment
must not use any TSO/E commands or services. If they do, unpredictable results
can occur.

Setting the TSOFL off for an environment that is in~itialized in the TSO/E
address space lets you provide your own replaceable rOUtines for different system
services, such as I/O and data stack requests. It also lets you test REXX execs
in an environment that is similar to a language processor environment that is
initialized in a non-TSO/E address space.

If the TSOFL flag is on, there are many values that you cannot specify in the
parameter block. "Specifying Values for Different Environments" on page 315
describes the parameters you can use for environments that are integrated into
TSO/E and for environments that are not integrated into TSO/E.

Reserved
This bit is reserved.

CMDSOFL
This is the command search order flag. It specifies the search order used to
locate a command that is issued from an exec.

0 -- Search for modules first, followed by REXX execs, followed by
CLISTs (TSO/E address space only). The ddname used to search for REXX
execs is specified in the LOADDD field in the module name table.

1 -- Search for REXX execs first, followed by modules, followed by
CLISTs (TSO/E address space only). The ddname used to search for REXX
execs is specified in the LOADDD field in the module name table.

FUNCSOFL
This is the function/subroutine search order flag. It specifies the search order
used to locate functions and subroutines that are called from an exec.

0 -- Search load libraries first. If the function or subroutine is not found,
search for a REXX exec.

1 -- Search for a REXX exec. If the exec is not found, search the load
libraries.

NOSTKFL
This is the no data stack flag. It is used to prevent REXX execs executing in the
environment from using any data stack functions.

0 -- A REXX exec can use any data stack functions.

1 -- Requests for data stack functions are processed as though the data
stack were empty. Any data that is pushed (PUSH) or queued (QUEUE) is
lost. If a PULL is used, it operates as though the data stack were empty.

Chapter 14. Language Processor Environments 281

Flags and Masks

The QST ACK command returns a 0. The NEWST ACK command will
seem to work, but a new data stack will not be created and any subsequent
data stack operations will operate as if the data stack is permanently empty.

NOREADFL
This is the no read flag. It is used to prevent REXX execs from reading any
input file using either the EXECIO command or the system-supplied I/O
replaceable routine IRXINOUT.

0 Reads from any input file are permitted.

Reads from any input file are not pem1itted.

NOWRTFL
This is the no write flag. It is used to prevent REXX execs from writing to any
output file using either the EXECIO command or the system-supplied I/O
replaceable routine IRXINOUT.

0 Writes to any output file are permitted.

Writes to any output file are not permitted.

NEWSTKFL
This is the new data stack flag. It is used to specify whether a new data stack is
initialized for the language processor environment. If a new data stack is
created, any data stacks for previous environments cannot be accessed by any
REXX exec or other program that executes in the new environment. Any
subsequent environments that are initialized under this environment will access
the data stack that was most recently created by this flag. The first environment
that is initialized on any chain of environments will always be initialized as if
this flag is on, that is, a new data stack is automatically initialized.

When the environment that is initialized is terminated, the data stack that was
created at the time of initialization is deleted regardless of whether the data
stack contains any elements. All data on the data stack is lost.

0 -- A new data stack is not created. However, if this is the first
environment being initialized on a chain, a data stack is automatically
initialized.

1 -- A new data stack is created during the initialization of the new
language processor environment. This data stack will be deleted when the
environment is terminated.

"Using the Data Stack in Different Environments" on page 334 describes the
data stack in different environments.

Note: The NOSTKFL overrides the setting of the NEWSTKFL.

USERPKFL
This is the user function package flag. It determines whether the user function
packages that are defined for the previous language processor environment are
also available to the new environment.

0 -- The user function packages from the previous environment are added
to the user function packages for the new environment.

1 -- The user function packages from the previous environment are not
added to the user function packages for the new environment.

282 TSO/E Version 2 REXX Reference

(

··~'

Flags and Masks

LOCPKFL
This is the local function package flag. It determines whether the local function
packages that are defined for the previous language processor environment are
also available to the new environment.

0 -- The local function packages from the previous environment are added
to the local function packages for the new environment.

I -- The local function packages from the previous environment are not
added to the local function packages for the new environment.

SYSPKFL
This is the system function package flag. It determines whether the system
function packages that are defined for the previous language processor
environment are also available to the new environment.

0 -- The system function packages from the previous environment are
added to the system function packages for the new environment.

I -- The system function packages from the previous environment are not
added to the system function packages for the new environment.

NEWSCFL
This is the new host command environment table flag. It determines whether
the environments for issuing host commands that are defined for the previous
language processor environment are also available to execs executing in the new
environment.

0 -- The host command environments from the previous environment are
added to the host command environment table for the new environment.

I -- The host command environments from the previous environment are
not added to the host command environment table for the new environment.

CLOSEXFL
This is the close data set flag. It determines whether the data set (specified in
the LOADDD field in the module name table) from which execs are fetched is
closed after the exec is loaded or remains open.

This flag is needed if you are editing REXX execs and then executing the
changed execs under the same language processor environment. If the data set is
not closed, results may be unpredictable.

0 The data set is opened once and remains open.

The data set is opened for each load and then closed.

NOESTAE
This is the no EST AE flag. It determines whether a recovery ESTAE is
established under the environment.

0 A recovery ESTAE is established.

A recovery EST AE is not established.

When IRXINIT initializes the environment, it first temporarily establishes a
recovery EST AE regardless of the setting of this flag. However, if the flag is on,
the recovery EST AE is removed for the environment before IRXINIT finishes
processing.

Chapter 14. Language Processor Environments 283

Flags and Masks

RENT RANT
This is the initialize reentrant language processor environment flag. It
determines whether the new environment is initialized as a reentrant or a
non-reentrant environment.

0 A non-reentrant language processor environment is initialized.

A reentrant language processor environment is initialized.

NOPMSGS
This flag determines whether REXX primary messages are printed in the
environment.

0 Primary messages are printed.

1 Primary messages are not printe'd.

ALTMSGS
This flag determines whether REXX alternate messages are printed in the
environment.

0 Alternate messages are not printed.

1 Alternate messages are printed.

Note: Alternate messages are also known as secondary messages.

SPSHARE
This flag determines whether the subpool specified in the SUBPOOL field in the
module name table should be shared across MVS tasks.

0 The subpool is not shared.

The subpool is shared.

If the subpool is shared, REXX uses the same subpool for all of these tasks.

STORFL
This flag controls the STORAGE external function. It determines whether the
STORAGE function can be used by REXX execs executing in the environment.

0 -- The STORAGE function can be used.
1 -- The STORAGE function cannot be used.

NOLOADDD
This flag controls the search order for REXX execs. It indicates whether or not
the data set specified in the LOADDD field in the module name table is to be
searched.

0 -- Search the DD specified in the LOADDD field. If the exec is not
found, search SYSPROC.
1 -- Search SYSPROC only.

Note: SYSPROC is only searched if the language processor environment is
integrated into TSO/E. For more information, see "Using SYSPROC and
SYSEXEC for REXX Execs" on page 321.

284 TSO/E Version 2 REXX Reference

Flags and Masks

NOMSGWTO
This flag controls whether REXX error messages are processed normally (that is,
issued using the WTO service), or whether the messages are routed to a file in a
language processor environment that is not integrated into TSO/E. SYSTSPRT
is the default file name.

0 -- REXX error messages are processed normally.
1 -- REXX error messages are routed to the SYSTSPR T file.

NOMSGIO
This flag controls whether REXX error messages with I/O are processed
normally (that is, issued to the OUTDD), or whether the messages are routed to
the JCL listing in a language processor environment that is not integrated into
TSO/E.

0 REXX error messages are processed normally.
1 -- REXX error messages are routed to the JCL listing.

Reserved
The remaining bits are reserved.

Chapter 14. Language Processor Environments 285

Module Name Table

Module Name Table
The module name table contains the names of:

• The DDs for reading and writing data

• The DD from which to load REXX execs

• Several replaceable routines

• Several exit routines.

In the parameter block, the MODNAMET field points to the module name table
(see page 275).

Figure 42 shows the format of the module name table. Each field is described in
detail following the table. The end of the table is indicated by
x I FFFFFFFFFFFFFFFF I •

TSO/E provides a mapping macro IRXMODNT for the module name table. The
mapping macro is in SYS 1.MACLIB.

Figure 42 (Page 1 of 2). Format of the Module Name Table

Offset Number Field Name Description
(Decimal) of Bytes

0 8 INDD The DD from which the PARSE
EXTERN AL instruction reads input
data.

8 8 OUTDD The DD to which data is written for
either a SAY instruction, for REXX
error messages, or when tracing is
started.

16 8 LOAD DD The DD from which REXX execs are
fetched.

24 8 IOROUT The name of the input/output (I/O)
replaceable routine.

32 8 EXROUT The name of the exec load replaceable
routine.

40 8 GETFREER The name of the storage management
replaceable routine.

48 8 EXECINIT The name of the exec initialization exit
routine.

56 8 ATTNROUT The name of an attention handling exit
routine.

64 8 STACKRT The name of the data stack replaceable
routine.

72 8 IRXEXECX The name of the exit routine for the
IRXEXEC routine.

80 8 ID ROUT The name of the user ID replaceable
routine.

286 TSO/E Version 2 REXX Reference

.·~

/~
. '

Module Name Table

Figure 42 (Page 2 of 2). Format of the Module Name Table

Offset Number Field Name Description
(Decimal) of Bytes

88 8 MSG ID RT The name of the message identifier
replaceable routine.

96 8 EXECTERM The name of the exec termination exit
routine.

104 8 --- The end of the module name table
must be indicated by
x I FFFFFFFFFFFFFFFF I •

Each field in the module name table is described below.

INDD
Specifies the name of the DD from which the PARSE EXTERNAL instruction
reads input data (in a language processor environment that is not integrated into
TSO/E). The system default is SYSTSIN.

OUTDD
Specifies the name of the DD to which data is written for either a SAY
instruction, for REXX error messages, or when tracing is started (in a language
processor environment that is not integrated into TSO/E). The system default is
SYSTSPRT.

LOAD DD
Specifies the name of the DD from which REXX execs are to be loaded. The
default is SYSEXEC.

In TSO/E, you can store REXX execs in data sets that are allocated to either
SYSEXEC or SYSPROC. If an exec is stored in a data set that is allocated to
SYSPROC, the first clause in the exec must be a comment that contains the
word REXX. This is required in order to distinguish REXX execs from CLISTs
that are also stored in SYSPROC.

In data sets that are allocated to SYSEXEC, you can store REXX execs only,
not CLISTs. If an exec is stored in SYSEXEC, it need not have a comment as
the first clause. However, in VM/SP (CMS), REXX programs must start with a
comment. For compatibility reasons, you may want to start all REXX execs
with a comment regardless of where they are stored. SYSEXEC is useful for
REXX execs that follow the SAA Procedures Language standards and that will
be used on other SAA-defined systems, such as VM/SP (CMS).

The NOLOADDD flag (see page 284) controls whether or not the DD specified
in the LOADDD field is searched. If the NOLOADDD flag is off in the
language processor environment, the DD specified in this field is searched. If
the exec is not found, SYSPROC is then searched. If the NOLOADDD flag is
on, SYSPROC only is searched.

Chapter 14. Language Processor Environments 287

Module Name Table

In the default parameters modules that is provided for TSO/E (IRXTSPRM),
the NOLOADDD mask and flag settings indicate that only SYSPROC is
searched. In the default parameters module for ISPF (IRXISPRM), the defaults
indicate that the environment inherits the values from the previous environment,
which is the environment initialized for TSO/E. The ddname specified in the
LOADDD field (SYSEXEC) is, by default, not searched. In order to use
SYSEXEC, you must either provide your own parameters module or use the
EXECUTIL SEARCHDD command. For more information, see "Using
SYSPROC and SYSEXEC for REXX Execs" on page 321.

Note: SYSPROC is only searched if the language processor environment is
integrated into TSO/E.

IO ROUT
Specifies the name of the routine that is called for input and output operations.
The routine is called for:

• The PARSE EXTERNAL, SAY, and TRACE instructions when the exec is
executing in an environment that is not integrated into TSO/E

• The PULL instruction when the exec is executing in an environment that is
not integrated into TSO/E and the data stack is empty

• Requests from the EXECIO command

• Issuing REXX error messages

You can only specify an I/O replaceable routine in language processor
environments that are not integrated into TSO/E. For more information about
this replaceable routine, see "Input/Output Routine" on page 366.

EXROUT
Specifies the name of the routine that is called to load and free a REXX exec.
The routine returns the structure that is described in "The In-Storage Control
Block (INSTBLK)" on page 222. The specified routine is called to load and
free this structure.

You can only specify an exec load replaceable routine in language processor
environments that are not integrated into TSO/E. For more information about
this replaceable routine, see "Exec Load Routine" on page 358.

GETFREER
Specifies the name of the routine that is called when storage is to be obtained or
freed. If this field is blank, TSO/E storage routines handle storage requests and
use the GETMAIN and FREEMAIN macros when larger amounts of storage
must be handled.

You can only specify a storage management replaceable routine in language
processor environments that are not integrated into TSO/E. For more
information about this replaceable routine, see "Storage Management Routine"
on page 386.

288 TSO/E Version 2 REXX Reference

/~
i

u

Module Name Table

EXECINIT
Specifies the name of an exit routine;, that is invoked after the REXX variable
pool has been initialized for a RE}{)(exec, but before the first clause in the exec
is processed. The exit differs from other standard TSO/E exits. The exit does
not have a fixed name. You prdvide the exit and specify the routine's name in
this field. "REXX Exit Routinc#s" on page 392 describes the exec initialization
exit.

ATTNROUT
Specifies the name of an exit rolitine that is invoked if a REXX exec is
processing in the TSO/E address space (in an environment that is integrated into
TSO/E), and an attention interr¢tption occurs. The attention handling exit
differs from other standard TSO/E exits. The exit does not have a fixed name.
You provide the exit and specify the routine's name in this field. "REXX Exit
Routines" on page 392 describe,s the attention handling exit.

STACKRT
Specifies the name of the routine that is called to handle all data stack requests.

You can only specify a data stack replaceable routine in language processor
environments that are not integrated into TSO/E. For more information about
this replaceable routine, see "Data Stack Routine" on page 381.

IRXEXECX
Specifies the name of an exit routine that is invoked whenever the IRXEXEC
routine is called to execute an exec. You can use the exit to check the
parameters specified on the call to IRXEXEC, change the parameters, or decide
whether or not IRXEXEC processing *ould continue.

The exit differs from other standard TSO/E exits. The exit does not have a fixed
name. You provide the exit and specify 'the routine's name in this field.

You can provide an exit for the IRXEXEC routine in any type of language
processor environment (integrated and nof,jntegrated into TSO/E). For more
information about the exit, see "REXX Exi't. Routines" on page 392.

ID ROUT
Specifies the name of a replaceable routine that l's called to obtain the user ID.
The result it obtains is returned by the USERID built-in function.

You can only specify a user ID replaceable routine in language processor
environments that are not integrated into TSO/E. For more information about
this replaceable routine, see "User ID Routine" on page 389.

MSG ID RT
Specifies the name of a replaceable routine that determines whether the message
identifier (message ID) is to be displayed with a REXX error message.

You can only specify a message identifier replaceable routine in language
processor environments that are not integrated into TSO/E. For more
information about this replaceable routine, see "Message Identifier Routine" on
page 391.

Chapter 14. Language Processor Environments 289

Module Name Table

EXEC TERM
Specifies the name of an exit routine that is invoked after a REXX exec has
executed, but before the REXX variable pool has been terminated. The exit
differs from other standard TSO/E exits. The exit does not have a fixed name.
You provide the exit and specify the routine's name in this field. "REXX Exit
Routines" on page 392 describes the exit in more detail.

X'FFFFFFFFFFFFFFFF'
The end of the module name table must be indicated by
x I FFFFFFFFFFFFFFFF I •

290 TSO/E Version 2 REXX Reference

1;\
)

/~

/~\
I

)

Host Command Environment Table

Host Command Environment Table
The host command environment table contains the names of environments for
executing commands. These are the names you can specify in an exec using the
ADDRESS instruction. In the parameter block, the SUBCOMTB field points to the
host command environment table (see page 275).

The table contains the environment names (for example, TSO, MVS, LINK, and
ATTACH) that are valid for execs that execute in the language processor
environment. It also contains the names of the routines that are invoked to handle
"commands" for each host command environment.

When a RE.XX exec executes, it has at least one active host command environment
that executes host commands. When the RE.XX exec begins processing, a default
environment is available. The default is specified in the host command environment
table. In the RE.XX exec, you can use the ADDRESS instruction to change the host
command environment. When the language processor processes a command, it first
evaluates the expression and then passes the command to the host command
environment for execution. A specific routine defined for each host command
environment is invoked and handles the command processing. "Commands to
External Environments" on page 22 describes how to issue commands to the host.

In the P ARMBLOCK, the SUBCOMTB field points to the host command
environment table. The table consists of two parts; the table header and the
individual entries in the table. Figure 43 on page 292 shows the format of the host
command environment table header. The first field in the header points to the first
host command environment entry in the table. Each host command environment
entry is defined by one row in the table. Each row contains the environment name,
corresponding routine to handle the commands, and a user token. Figure 44 on
page 293 illustrates the rows of entries in the table. TSO/E provides a mapping
macro IRXSUBCT for the host command environment table. The mapping macro
is in SYSI.MACLIB.

Chapter 14. Language Processor Environments 291

Host Command Environment Table

Figure 43. Format of the Host Command Environment Table Header
i~

Offset Number Field Name Description
(Decimal) of Bytes

0 4 ADDRESS Specifies the address of the first entry
in the table. The address is a fullword
binary number. Figure 44 on
page 293 illustrates each row of
entries in the table. Each row of
entries in the table has an eight byte
field (NAME) that contains the name
of the environment, a second eight
byte field (ROUTINE) that contains
the name of the corresponding routine,
followed by a sixteen byte field
(TOKEN) that is a user token.

4 4 TOTAL Specifies the total number of entries in
the table. This number is the total of

/~ the used and unused entries in the ;
table and is a fullword binary number.

8 4 USED Specifies the number of valid entries in
the table. The number is a fullword
binary number. All valid entries begin
at the top of the table and are then
followed by any unused entries. The
unused entries must be on the bottom
of the table.

12 4 LENGTH Specifies the length of each entry in !~ the table. This is a fullword binary
number.

16 4 INITIAL Specifies the name of the initial host
command environment. This is the
default environment for any REXX
exec that is invoked and that is not
invoked as either a function or a
subroutine. This field is only used if
you call the exec processing routine
IRXEXEC to execute a REXX exec

:~ and you do not pass an initial host
command environment on the call.
"IRXJCL and IRXEXEC Routines"
on page 214 describes the IRXEXEC
routine and its parameters.

20 8 --- Reserved. The field is set to blanks.

28 8 --- The end of the table header must be
indicated by
x I FFFFFFFFFFFFFFFF I.

292 TSO/E Version 2 REXX Reference

I '
~!

Host Command Environment Table

Figure 44 shows three rows (three entries) in the host command environment table.
The NAME, ROUTINE, and TOKEN fields are described in more detail after the
table.

Figure 44. Format of Entries in Host Command Environment Table

Offset Number Field Name Description
(Decimal) of Bytes

0 8 NAME The name of the first environment (entry)
in the table.

8 8 ROUTINE The name of the routine that is invoked to
handle the execution of host commands in
the environment specified at offset + 0.

16 16 TOKEN A user token that is passed to the routine
(at offset + 8) when the routine is invoked.

32 8 NAME The name of the second environment
(entry) in the table.

40 8 ROUTINE The name of the routine that is invoked to
handle the execution of host commands in
the environment specified at offset + 32.

48 16 TOKEN A user token that is passed to the routine
(at offset + 40) when the routine is invoked.

64 8 NAME The name of the third environment (entry)
in the table.

72 8 ROUTINE The name of the routine that is invoked to
handle the execution of host commands in
the environment specified at offset + 64.

80 16 TOKEN A user token that is passed to the routine
(at offset + 72) when the routine is invoked.

The following describes each entry (row) in the table.

NAME
An eight byte field that specifies the name of the host command environment
defined by this row in the table. The string is eight characters long, left justified,
and is padded with blanks.

If the REXX exec uses the

ADDRESS name

instruction, and the value name in not in the table, no error is detected.
However, when the language processor tries to locate the entry in the table to
pass a command and no corresponding entry is found, it returns with a return
code of -3, indicating an error condition.

Chapter 14. Language Processor Environments 293

Host Command Environment Table

ROUTINE
An eight byte field that specifies the name of a routine for the entry specified in
the NAME field in the same row in the table. This is the routine to which a
string is passed for this environment. The field is eight characters long, left
justified, and is padded with blanks.

If the language processor locates the entry in the table, but finds this field blank
or cannot locate the routine specified, it returns with a return code of -3. This is
equivalent to the language processor not being able to locate the host command
environment name in the table.

TOKEN
A sixteen byte field that is stored in the table for the user's use (a user token).
The value in the field is passed to the routine specified in the ROUTINE field
when the routine is called to process a command. The field is for the user's own
use. The language processor does not use or examine this token field.

When a REXX exec is executing in the language processor environment and a host
command environment must be located, the entire host command environment table
is searched from bottom to top. The first occurance of the host command
environment in the table is used. If the name of the host command environment
that is being searched for matches the name specified in the table (in the NAME
field), the corresponding routine specified in the ROUTINE field of the table is
called.

294 TSO/E Version 2 REXX Reference

I~
)

!~
I

_,,!

\"-../

~I

Function Package Table

Function Package Table
The function package table contains information about the function packages that
are available for the language processor environment.

An individual user or an installation can write their own external functions and
subroutines. For faster access of a function or subroutine, you can group frequently
used external functions and subroutines in function packages. A function package is
a number of external functions and subroutines that are grouped together. Function
packages are searched before load libraries and execs (see page 73).

There are three types of function packages:

• User function packages
• Local function packages
• System function packages.

User function packages are searched before local packages. Local function packages
are searched before any system packages.

To provide a function package, there are several steps you must perform, including
writing the code for the external function or subroutine, providing a function
package directory for each function package, and defining the function package
directory name in the function package table. "Function Packages" on page 229
describes function packages in more detail and how you can provide user, local, and
system function packages.

In the parameter block, the PACKTB field points to the function package table (see
page 275). The table contains information about the user, local, and system function
packages that are available for the language processor environment. The function
package table consists of two parts; the table header and table entries. Figure 45
on page 296 shows the format of the function package table header. The header
contains the total number of user, local, and system packages, the number of user,
local, and system packages that are used, and the length of each function package
name, which is always 8. The header also contains three addresses that point to the
first table entry for user, local, and system function packages. The table entries
specify the individual names of the function packages.

The table entries are a series of eight character fields that are contiguous. Each eight
character field contains the name of a function package, which is the name of a load
module containing the directory for that function package. The function package
directory specifies the individual external functions and subroutines that make up
one function package. "Function Packages" on page 229 describes the format of the
function package directory in detail.

Figure 46 on page 298 illustrates the eight character fields that contain the function
package directory names for the three types of function packages (user, local, and
system).

TSO/E provides a mapping macro for the function package table. The name of the
mapping macro is IRXPACKT. The mapping macro is in SYSI.MACLIB.

Chapter 14. Language Processor Environments 295

Function Package Table

Figure 45 (Page 1 of 2).

Offset Number
(Decimal) of Bytes

0 4

4 4

8 4

12 4

16 4

296 TSO/E Version 2 REXX Reference

Function Package Table Header

Field Name Description

USER_FIRST Specifies the address of the first
user function package entry. This
points to the first field in a series
of eight character fields that
contain the names of the function
package directories for user
packages. Figure 46 shows the
series of directory names.

USER_ TOTAL Specifies the total number of user
package table entries. This is the
total number of function package
directory names that are pointed
to by the address at offset + 0.

You can use this value to specify
the maximum number of user
function packages that can be
defined for the environment. You
can then use the value at off set
+ 8 to specify the actual number
of packages that are available.

USER_ USED Specifies the total number of user
package table entries that are
used. You can specify a
maximum number (total) at off set
+ 4 and specify the actual number
of user function packages that are
used in this field.

LOCAL_FIRST Specifies the address of the first
local function package entry. This
points to the first field in a series
of eight character fields that
contain the names of the function
package directories for local
packages. Figure 46 shows the
series of directory names.

LOCAL_ TOTAL Specifies the total number of local
package table entries. This is the
total number of function package
directory names that are pointed
to by the address at off set + 12.

You can use this value to specify
the maximum number of local
function packages that can be
defined for the environment. You
can then use the value at offset
+ 20 to specify the actual number
of packages that are available.

/~

/~
l

!

\._;

Function Package Table

Figure 45 (Page 2 of 2). Function Package Table Header

Offset Number Field Name Description
(Decimal) of Bytes

20 4 LOCAL_ USED Specifies the total number of local
package table entries that are
used. You can specify a
maximum number (total) at offset
+ 16 and specify the actual
number of local function packages
that are used in this field.

24 4 SYSTEM_FIRST Specifies the address of the first
system function package entry.
This points to the first field in a
series of eight character fields that
contain the names of the function
package directories for system
packages. Figure 46 shows the
series of directory names.

28 4 SYSTEM_ TOTAL Specifies the total number of
system package table entries. This
is the total number of function
package directory names that are
pointed to by the address at offset
+24.

You can use this value to specify
the maximum number of system
function packages that can be
defined for the environment. You
can then use the value at off set
+ 32 to specify the actual number
of packages that are available.

32 4 SYSTEM_ USED Specifies the total number of
system package table entries that
are used. You can specify a
maximum number (total) at offset
+ 28 and specify the actual
number of system function
packages that are used in this
field.

36 4 LENGTH Specifies the length of each table
entry, that is, the length of each
function package directory name.
The length is always 8.

40 8 ~-- The end of the table is indicated
by x I FFFFFFFFFFFFFFFF I.

Figure 46 on page 298 shows the function package table entries that are the names
of the directories for user, local, and system function packages.

Chapter 14. Language Processor Environments 297

Function Package Table

User Function Package Entries

+o +8 + 16 +x

Function Package Function Package Function Package
Directory 1 Directory 2 Directory, 3

Local Function Package Entries

+O +8 +16 +x

Function Package Function Package Function Package
Directory 1 Directory 2 Directory 3

. . .

System Function Package Entries

+o +8 +16

Function Package Function Package
Directory 1 Directory 2

Function Package
Directory 3

+x

Function Package
Directory n

Figure 46. Function Package Table Entries - Function Package Directories

The table entries are a series of eight character fields. Each field contains the name
of a function package directory. The directory is a load module that, when loaded,
contains information about each external function and subroutine in the function
package. "Function Packages" on page 229 describes the format of the function
package directory in detail.

The function package directory names in each eight character field must be left
·justified and padded with blanks.

298 TSO /E Version 2 REXX Reference

!~

(~
)

Default Parameters Modules

Values Provided in the Three Default Parameters Modules

Field Name

ID
VERSION
LANGUAGE
PARSETOK
FLAGS (MASKS)

TSO FL
CMDSOFL
FUNCSOFL
NOSTKFL
NO READ FL
NOWRTFL
NEWSTKFL
USERPKFL
LOCPKFL
SYSPKFL
NEWSCFL
CLOSEXFL
NOESTAE
RENTRANT
NO PM SGS
ALTMSGS
SPSHARE
STOREFL
NO LOAD DD
NOMSGWTO
NO MSG IO

SUBPOOL
ADDRSPN

Figure 47 shows the default values that TSO/E provides in each of the three default
parameters modules. "Characteristics of a Language Processor Environment" on
page 275 describes the structure of the parameters module in detail.

In the figure, the LANGUAGE field contains the language code AE for American
English. The default parameters modules may contain a different language code
depending on whether one of the language features has been installed on your
system. See page 276 for information about the different language codes.

In the figure, the value of each flag setting is followed by the value of its
corresponding mask setting, in parentheses.

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

IRXPARMS IRXPARMS IRXPARMS
0100 0100 0100
AE AE AE

0 (1) 1 (1) 1 (1)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (l)' 1 (1)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
0 (1) 0 (1) 0 (0)
1 (1) 1 (1) 0 (0)
0 (1) 1 (1) 1 (1)
0 (1) 0 (1) 0 (0)
0 (1) 1 (1) 0 (0)
0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0)
0 78 78
MVS TSO/E ISPF
FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

Figure 47 (Part 1 of 3). Values TSO/E Provides in the Three Default Parameters Modules

Chapter 14. Language Processor Environments 299

Default Parameters Modules

Field Name in Module IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)
Name Table ~

I

INDD SYS TS IN SYS TS IN
OUTDD SYSTSPRT SYSTSPRT
LOAD DD SYS EXEC SYS EXEC
IO ROUT
EXROUT
GETFREER
EXECINIT
ATTNROUT
STACKRT
IRXEXECX
ID ROUT
MSG ID RT
EXECTERM

FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

~'
I

Field Name in Host IRXP ARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)
Command Environment
Table

TOTAL 3 4 6
USED 3 4 6
LENGTH 32 32 32
INITIAL MVS TSO TSO

FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Entry 1

!~ NAME MVS MVS MVS
ROUTINE IRXSTAM IRXSTAM IRXSTAM
TOKEN

Entry 2
NAME LINK TSO TSO
ROUTINE IRXSTAM IRXSTAM IRXSTAM
TOKEN

Entry 3
NAME ATTACH LINK LINK
ROUTINE IRXSTAM IRXSTAM IRXSTAM
TOKEN

Entry 4
NAME ATTACH ATTACH
ROUTINE IRXSTAM IRXSTAM
TOKEN

Entry 5
NAME ISPEXEC
ROUTINE IRXSTAM
TOKEN

Entry 6
NAME ISREDIT
ROUTINE IRXSTAM
TOKEN

Figure 47 (Part 2 of 3). Values TSO/E Provides in the Three Default Parameters Modules

/~\

300 TSO/E Version 2 REXX Reference

Default Parameters Modules

Field Name in Function IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)
I Package Table
\ '
\.._..) USER_ TOTAL

USER_ USED
LOCAL_ TOTAL
LOCAL_USED 1 1

SYSTEM_ TOTAL 2 2
SYSTEM_ USED 2 2
LENGTH 8 8 8

FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Entry 1

NAME IRXEFMVS IRXEFMVS IRXEFMVS
Entry 2

NAME IRXFLOC IRXEFPCK IRXEFPCK
Entry 3

NAME IRXFUSER IRXFLOC IRXFLOC
Entry 4

NAME IRXFUSER IRXFUSER

Figure 47 (Part 3 of 3). Values TSO/E Provides in the Three Default Parameters Modules

I \..JI

Chapter 14. Language Processor Environments 301

Environment Values Used

How IRXINIT Determines What Values to Use for the Environment
When IRXINIT is automatically called by the system to initialize a language
processor environment, it must first determine what values to use for the
environment. IRXINIT uses the values that are defined in one of the three default
parameters modules that TSO /E provides and the values that are defined for the
previous language processor environment.

IRXINIT always identifies a previous language processor environment. If an
environment has not been initialized in the address space, IRXINIT uses the values
in the default parameters module IRXP ARMS as the previous environment. The
following topics describe how IRXINIT determines the values for a new environment
when IRXINIT is called by the system to automatically initialize an environment in
the TSO/E and non-TSO/E address spaces. "Chains of Environments and How
Environments Are Located" on page 304 describes how any REXX routine locates a
previous environment.

Note: If you call IRXINIT to initialize an environment, IRXINIT evaluates the
parameters you pass on the call and the parameters defined for the previous
environment. "Initialization Routine - IRXINIT" on page 340 describes how
IRXINIT determines what values to use when it is explicitly called by a user.

Values IRXINIT Uses to Initialize Environments
When IRXINIT is automatically called to initialize an environment in the TSO/E
address space, it determines what values to use from two sources:

• The default parameters module IRXTSPRM or IRXISPRM
• The previous environment.

During logon processing, IRXINIT initializes a language processor environment for
the TSO/E session. IRXINIT first checks the values in the default parameters
module IRXTSPRM. If the value is provided (that is, the value is not null),
IRXINIT uses that value. If the value in the parameters module is null, IRXINIT
uses the value from the previous environment. In this case, an environment does not
exist, so IRXINIT uses the value from the IRXP ARMS parameters module.
IRXINIT computes each individual value using this method and then initializes the
environment.

The following types of parameter values are considered to be null:

• A character string is null if it contains only blanks or has a length of zero
• An address is null if the address is 0
• A binary number is null if it has the value X 1 80000000 1

• A bit setting is null if its corresponding mask is 0.

For example, in IRXTSPRM, the PARSETOK field is null. When IRXINIT
determines what value to use for PARSETOK, it finds a null field in IRXTSPRM.
It then checks the PARSETOK field in the previous environment. A previous
environment does not exist, so IRXINIT takes the value from the IRXPARMS
module. In this case, the PARSETOK field in IRXPARMS is null, which is the
value assigned for the environment. If an exec running in the environment contains
the PARSE SOURCE instruction, the last token returned will be a question mark.

After IRXINIT determines all of the values, it initializes the new environment.

302 TSO/E Version 2 REXX Reference

Environment V aloes Used

When a user invokes ISPF from the TSO/E session, IRXINIT is called to initialize a
new language processor environment for ISPF. IRXINIT first checks the values
provided in the IRXISPRM parameters module. If a particular parameter has a null
value, IRXINIT uses the value from the previous environment. In this case, the
previous environment is the environment that was initialized for the TSO/E session.
For example, in the IRXISPRM parameters module, the mask bit
(CMDSOFL_MASK) for the command search order flag (CMDSOFL) is 0. A
mask of 0 indicates that the corresponding flag bit is null. Therefore, IRXINIT uses
the flag setting from the previous environment, which in this case is 0.

As the previous descriptions show, the parameters defined in all three parameters
modules can have an effect on any language processor environment that is initialized
in the address space.

When IRXINIT automatically initializes a language processor environment in a
non-TSO/E address space, it uses the values in the parameters module IRXPARMS
only.

If you call the IRXINIT routine to initialize a language processor environment, you
can pass parameters on the call that define the values for the environment. See
Chapter 15, "Initialization and Termination Routines" for information about
IRXINIT.

Chapter 14. Language Processor Environments 303

Chains of Environments

Chains of Environments and How Environments Are Located
As described in previous topics, many language processor environments can be
initialized in one address space. A language processor environment is associated
with an MVS task. There can be several language processor environments associated
with a single task. This topic describes how non-reentrant environments are chained
together in an address space.

Language processor environments are chained together in a hierarchical structure to
form a chain of environments. The environments on one chain are interrelated and
share system resources. For example, several language processor environments can
share the same data stack. However, separate chains within a single address space
are independent.

Although many language processor environments can be associated with a single
MVS task, each individual environment is associated with only one task. The last
environment on a particular chain is the environment in which REXX execs will run
under that task.

Figure 48 illustrates three language processor environments that form one chain.

Environment I

Environment 2

Figure 48. Three Language Processor Environments in a Chain

The first environment initialized was environment 1. When IRXINIT was called to
initialize the second environment, the first environment is considered to be the
previous environment (the parent environment). Environment 2 is chained to
environment 1. Similarly, when IRXINIT was called to initialize the third
environment, environment 2 is considered to be the previous environment.
Environment 2 is the parent environment for environment 3.

304 TSO/E Version 2 REXX Reference

/~
I

Chains of Environments

Different chains can exist in one address space. Figure 49 illustrates two separate
tasks, task 1 and task 2. Each task has a chain of environments. For task I, the
chain consists of two language processor environments. For task 2, the chain has
only one language processor environment. The two environments on task 1 are
interrelated and share system resources. The two chains are completely separate and
independent.

Task 2

~ Environment 1 Environment 1

- Environment 2

Figure 49. Separate Chains on Two Different Tasks

As discussed previously, language processor environments are associated with an
MVS task. Under an MVS task, IRXINIT can initialize one or more language
processor environments. The task can then attach another task. IRXINIT can be
called under the second task to initialize a language processor environment. The
new environment is chained to the last environment under the first task. Figure 50
on page 306 illustrates a task that has attached another task and how the language
processor environments are chained together.

Chapter 14. Language Processor Environments 305

Chains of Environments

Task 1

Environment 2

Attach

Task 2

Environment 3

Environment 4

Figure 50. One Chain of Environments For Attached Tasks

As shown in Figure 50, task 1 is started and IRXINIT is called to initialize an
environment (environment 1). IRXINIT is invoked again to initialize a second
language processor environment under task 1 (environment 2). Environment 2 is
chained to environment 1. If a REXX exec is invoked within task 1, the exec
executes in environment 2.

Task 1 then attaches another task, task 2. IRXINIT is called to initialize an
environment. IRXINIT locates the previous environment, which is environment 2
and chains the new environment (environment 3) to its parent (environment 2).
When IRXINIT is called again, it chains the fourth environment (environment 4) to
its parent (environment 3). At this point, four language processor environments
exist on the chain.

306 TSO/E Version 2 REXX Reference

'~
}

!~
I

Chains of Environments

Locating a Language Processor Environment
Whenever a REXX exec or routine is invoked, it must execute within a language
processor environment. The one exception is the initialization routine IRXINIT,
which initializes environments.

In the TSO/E address space, a default language processor environment is always
initialized at TSO/E logon and when ISPF is invoked. If you invoke a REXX exec
from TSO/E, the exec executes in the language processor environment in which it
was invoked. Similarly, if you call a REXX programming routine from TSO/E, it
also executes in the environment in which it was called.

If you execute an exec using the IRXJCL or IRXEXEC routine, a language
processor environment may or may not already exist. If an environment does not
exist on the

Current task (non-TSO/E address space), or
Current task or a parent task (TSO/E address space)

the IRXINIT routine is called to initialize an environment before the exec executes.
Otherwise, the previous environment is located and the exec is executed in that
environment.

If IRXINIT is called, it always locates a previous language processor environment.
If an environment does not exist on the current task or on a parent task, IRXINIT
uses the values in the IRXP ARMS parameters module as the previous environment.

A language processor environment must already exist if you call the TSO/E REXX
programming routines IRXRLT, IRXSUBCM, IRXIC, IRXEXCOM, and
IKJCT441 or the replaceable routines. These routines do not invoke IRXINIT to
initialize a new environment. If an environment does not already exist and one of
these routines is called, the routine will complete unsuccessfully with a return code.
See Chapter 12, "TSO/E REXX Programming Services" for information about the
REXX programming routines and Chapter 16, "Replaceable Routines and Exits"
for information about the replaceable routines.

When a new language processor environment is initialized, IRXINIT creates a
number of control blocks that contain information about the environment and any
REXX exec currently executing in the environment. The main control block is the
environment block (ENVBLOCK), which points to other control blocks, such as the
parameter block (PARM BLOCK) and the work block extension. "Control Blocks
Created for a Language Processor Environment" on page 323 describes the control
blocks that are created for each language processor environment.

The environment block represents its language processor environment and is the
anchor that is used on calls to all REXX routines. Whenever you call a REXX
routine, you can pass the address of an environment block in register 0 on the call.
By passing the address, you can specify in which language processor environment
you want the routine to execute. For example, suppose you invoke the initialization
routine IRXINIT in a non-TSO/E address space. When IRXINIT returns, it returns
the address of the environment block for the new environment in register 0. You
can store that address for future use. Suppose you call IRXINIT several times to
initialize a total of four environments in that address space. If you then want to call
a REXX routine and have it execute in the first environment on the chain, you can
pass the address of the first environment's environment block on the call.

Chapter 14. Language Processor Environments 307

Chains of Environments

The address of the environment block is also passed in register 0 to all REXX
replaceable routines and exit routines.

When a routine is called, it must determine in which environment it executes. The
routine locates the environment as follows.

l. The routine checks register 0 to determine whether the address of an
environment block was passed on the call. If an address was passed, the routine
determines whether the address points to a valid environment block. The
environment block is valid if:

• The environment is either a reentrant or non-reentrant environment on the
current task (non-TSO/E address space)

• The environment is either a reentrant or non-reentrant environment on the
current task or on a parent task (TSO/E address space).

2. If register 0 does not contain the address of a valid environment block, the
routine that is called:

• Searches for a non-reentrant environment on the current task (non-TSO/E
address space)

• Searches for a non-reentrant environment on the current task (TSO/E
address space). If an environment is not found, the routine searches for a
non-reentrant environment on a parent task. If an environment is found on
either the current task or a parent task and the TSOFL flag is off, the
environment that was found is used. If an environment is found and the
TSOFL flag is on, the ENVBLOCK whose address is in the ECTENVBK
field in the ECT is used.

3. If an environment was not found in the previous steps, the next step depends on
what routine was called.

• If one of the REXX programming routines or the replaceable routines was
called, a language processor environment is required in order for the routine
to execute. The routine ends in error. The same occurs for the termination
routine IR.XTERM.

• If IRXEXEC or IRXJCL were called, the routine invokes IRXINIT to
initialize a new environment.

• If IRXINIT was called, it uses the IRXPARMS parameters module as the
previous environment.

The IRXINIT routine initializes a new language processor environment. Therefore,
it does not need to locate an environment in which to execute. However, IRXINIT
does locate a previous environment in order to determine what values to use when
defining the new environment. The following summarizes the steps IRXINIT takes
to locate the previous environment:

1. If register 0 contains the address of a valid environment block, that environment
is used as the previous environment.

2. If a non-reentrant environment exists on the current task, the last non-reentrant
environment on the task is used as the previous environment.

3. Otherwise, the parent task is found. If a non-reentrant environment exists on
any of the parent tasks, the last non-reentrant environment on the task is used as
the previous environment.

308 TSO/E Version 2 REXX Reference

(\
' I

/~
I \

I

'~ I •\
I

(
~/

Chains of Environments

4. If no environment has been found, the default parameters module IRXPARMS
defines the previous environment. IRXPARMS is the default module that
TSO /E provides.

"Initialization Routine - IRXINIT" on page 340 describes how IRXINIT determines
what values to use when it is explicitly called.

Chapter 14. Language Processor Environments 309

Changing Default Values

Changing the Default Values for Initializing an Environment
TSO/E provides default values in three parameters modules (load modules) for
initializing language processor environments in non-TSO/E, TSO/E, and ISPF. In
most cases, your installation probably need not change the default values. However,
if you want to change one or more parameter values, you can provide your own load
module that contains your values.

Note: You can also call the initialization routine IRXINIT to initialize a new
environment. On the call, you can pass the parameters whose values you want to be
different from the previous environment. If you do not specifically pass a
parameter, IRXINIT uses the value defined in the previous environment. See
"Initialization Routine - IRXINIT" on page 340 for more information.

This topic describes how to create a load module containing parameter values for
initializing an environment. You should also refer to "Characteristics of a Language
Processor Environment" on page 275 for information about the format of the
parameters module.

To change one or more default values that IRXINIT uses to initialize a language
processor environment, you can provide a load module containing the values you
want. You must first write the code for a parameters module. TSO/E provides
three samples in SYSl.SAMPLIB that are assembler code for the default parameters
modules. The member names of the samples are:

• TSOREXX:l (for IRXPARMS -- MVS)
• TSOREXX2 (for IRXTSPRM -- TSO/E)
• TSOREXX3 (for IRXISPRM -- ISPF)

When you write the code, be sure to include the correct default values for any
parameters you are not changing. For example, suppose you are adding several
function packages to the IRXISPRM module for ISPF. In addition to coding the
function package table, you must also provide all of the other fields in the
parameters module and their default values. "Values Provided in the Three Default
Parameters Modules" on page 299 shows the default parameter values for
IRXPARMS, IRXTSPRM, and IRXISPRM.

After you create the code, you must assemble it and then link edit the object code.
The output is a member of a partitioned data set. The member name must be either
IRXP ARMS, IRXTSPRM, or IRXISPRM depending on the load module you are
providing. You must then place the data set with the IRXPARMS, IRXTSPRM, or
IRXISPRM member in the search sequence for an MVS LOAD macro. The
parameters modules that TSO/E provides are in the LPALIB, so you could place
your data set in a logon STEPLIB, a JOBLIB, or in linklist.

If you provide an IRXP ARMS load module, your module may contain parameter
values that cannot be used in language processor environments that are integrated
into TSO/E. When IRXINIT initializes an environment for TSO/E, it uses the
IRXTSPRM parameters module. However, if a parameter value in IRXTSPRM is
null, IRXINIT uses the value from the IRXPARMS module. Therefore, if you
provide your own IRXP ARMS load module that contains parameters that cannot be
used in TSO/E, you must place the data set in either a STEPLIB or JOBLIB that is
not searched by the TSO/E session. For more information about the values you can
specify for different types of environments, see "Specifying Values for Different
Environments" on page 315.

310 TSO/E Version 2 REXX Reference

r~
!)

'~ I "i

(
~·

(

_./

Changing Default V aloes

The new values you specify in your own load module are not available until the
current language processor environment is terminated and a new environment is
initialized. For example, if you provide a load module for TSO/E (IRXTSPRM),
you must log on to TSO/E again.

Providing Your Own Parameters Modules
There are various considerations for providing your own parameters modules. The
different considerations depend on whether you want to change a parameter value
only for an environment that is initialized for !SPF, for environments that are
initialized for both the TSO/E and ISPF sessions, or for environments that are
initialized in a non-TSO/E address space., The following topics describe changing the
IRXISPRM, IRXTSPRM, and IRXP ARMS values.

TSO/E provides the following samples in SYSI.SAMPLIB that you can use to code
your own load modules:

• TSOREXXl (for IRXPARMS -- MVS)
• TSOREXX2 (for IRXTSPRM -- TSO/E)
• TSO REXX3 (for IRXISPRM -- ISPF)

Changing Values for ISPF
If you want to change a default parameter value for language processor
environments that are initialized for ISPF, you should provide your own IRXISPRM
module. IRXINIT only locates the IRXISPRM load module when a language
processor environment is initialized for ISPF. IRXISPRM is not used when
IRXINIT initializes an environment for either a TSO/E session or for a non-TSO/E
address space.

When you create the code for the load module, you must specify the new values you
want for the parameters you are changing and the default values for all of the other
fields. "Values Provided in the Three Default Parameters Modules" on page 299
shows the defaults provided in the IRXISPRM parameters module.

After you assemble and link edit the code, place the data set with the IRXISPRM
member in the search sequence for an MVS LOAD. For example, you can put the
data set in a logon STEPLIB or linklist. The new values are not available until
IRXINIT initializes a new language processor environment for ISPF. For example,
if you are currently using ISPF, you must return to TSO/E READY mode and then
invoke ISPF again. When IRXINIT is called, it will locate your load module and
initialize the environment using your values.

There are many fields in the parameters module that are intended for use only if an
environment is not being integrated into TSO/E. There are also several flag settings
that you must not change in the IRXISPRM parameters module for ISPF. See
"Specifying Values for Different Environments" on page 315 for information about
which fields you can and cannot specify.

Changing Values for TSO/E
If you want to change a default parameter value for environments that are initialized
for TSO/E only, you probably have to code both a new IRXTSPRM module (for
TSO/E) and a new IRXISPRM module (for ISPF). This is because most of the
fields in the default IRXISPRM parameters module are null, which means that
IRXINIT uses the value from the previous environment. The previous environment
is the one initialized for the TSO/E session.

Chapter 14. Language Processor Environments 311

Changing Default V aloes

For example, in the default IRXTSPRM module (for TSO/E), the USERPKFL,
LOCPKFL and SYSPKFL flags are 0. This means the user, local, and system
function packages defined for the previous environment are also available to the
environment IRXINIT initializes for the TSO/E session. In the default IRXISPRM
module (for ISPF), the masks for these three flags are 0, which means IRXINIT uses
the flag settings from the previous environment. The previous environment (TSO/E)
was initialized using the IRXTSPRM module. Suppose you do not want the
function packages from the previous environment available to an environment
initialized for TSO/E. However, when an environment is initialized for ISPF, the
function packages defined for the TSO/E environment should also be available in
ISPF. You must code a new IRXTSPRM module and specify a setting of 1 for the
USERPKFL, LOCPKFL, and SYSPKFL flags. You must code a new IRXISPRM
module and specify a setting of 1 for the following mask fields:

• USERPKFL_MASK
• LOCPKFL_MASK
• SYSPKFL_MASK

When you code the new load modules, you must include the default values for all of
the other parameters. "Values Provided in the Three Default Parameters Modules"
on page 299 shows the defaults TSO/E provides.

Changing Values for TSO/E and ISPF
If you want to change a default parameter value for language processor
environments that are initialized for TSO/E and ISPF, you may be able to simply
provide your own IRXTSPRM module for TSO/E and use the default IRXISPRM
module for ISPF. This depends on the specific parameter value you want to change
and whether that field is null in the IRXISPRM default module. If the field is null
in IRXISPRM, when IRXINIT initializes a language processor environment for
ISPF, it will use the value from the previous environment (TSO/E), which is the
value in the IRXTSPRM module.

For example, suppose you want to change the setting of the NOLOADDD flag so
that both SYSEXEC and SYSPROC are searched when an exec is invoked. The
value in the default IRXTSPRM (TSO/E) module is 1, which means search
SYSPROC only. In the default IRXISPRM (ISPF) module, the mask for the
NOLOADDD flag is 0, which means IRXINIT will use the value defined in the
previous environment. You can code a IRXTSPRM load module and specify 0 for
the NOLOADDD flag. You do not need to create a new IRXISPRM module.
When IRXINIT initializes a language processor environment for ISPF, it will use the
value from the previous environment.

You may need to code two parameters modules for IRXTSPRM and IRXISPRM
depending on the parameter you want to change and the default value in
IRXISPRM. For example, suppose you want to change the language code. You
must code two modules because the value in both default modules is AE. Code a
new IRXTSPRM module and specify the language code you want. Code a new
IRXISPRM module and specify either a null or the specific language code. If you
specify a null, IRXINIT uses the language code from the previous environment,
which is TSO/E.

You also need to code both an IRXTSPRM and IRXISPRM load module if you
want different values for TSO/E and ISPF.

312 TSO/E Version 2 REXX Reference

/'.-,,\
)

(\.._)

Changing Default V aloes

If you provide your own load modules, you must also include the default values for
all of the other fields as provided in the default modules. "Values Provided in the
Three Default Parameters Modules" on page 299 shows the defaults provided in
IRXTSPRM and IRXISPRM.

After you assemble and link edit the code, place the data set with the IRXTSPRM
member (and IRXISPRM member, if you coded both modules) in the search
sequence for an MVS LOAD. For example, you can put them in a logon STEPLIB
or linklist. The new values are not available until IRXINIT initializes a new
language processor environment for TSO/E and for ISPF. You must log on to
TSO/E again. During logon, IRXINIT will use your IRXTSPRM load module to
initialize the environment. Similarly, IRXINIT will use your IRXISPRM module
when you invoke ISPF.

There are many fields in the parameters module that you must not change for
certain parameters modules. See "Specifying Values for Different Environments" on
page 315 for information about the values you can specify.

r)

Changing Values for Non .. TSO/E
If you want to change a default parameter value for language processor
environments that are initialized in non-TSO/E address spaces, code a new
IRXP ARMS module. In the code, you must specify the new values you want for the
parameters you are changing and the default values for all of the other fields.
"Values Provided in the Three Default Parameters Modules" on page 299 shows the
defaults provided in the IRXP ARMS parameters module.

There. are many fields in the parameters module that are intended for use in
language processor environments that are not integrated into TSO/E. If you provide
IRXPARMS with values that cannot be used in TSO/E, provide the IRXPARMS
module only for non-TSO/E address spaces. When you assemble the code and link
edit the object code, the output member must be named IRXP ARMS. You must
then place the data set with IRXP ARMS in either a STEPLIB or JOB LIB that is
not searched by the TSO/E session. You can do this by using JCL. You must
ensure that the data set is not searched by the TSO/E session.

If you provide your own IRXPARMS module that contains parameters values that
must not be used by environments that are integrated into TSO/E (for example,
TSO/E and ISPF), and the module is located when IRXINIT initializes a language
processor environment in the TSO/E address space, IRXINIT may terminate or
errors may occur when TSO/E users log on to TSO/E or invoke ISPF. For example,
the replaceable routines can be used only in language processor environments that
are not integrated into TSO/E. The values for the replaceable routines in the three
default parameters modules are null. You can code your own IRXPARMS load
module and specify the names of one or more replaceable routines. However, your
module must not be in the TSO/E search order. When IRXINIT is invoked to
initialize a language processor environment for TSO/E, it finds a null value for the
replaceable routine in the IRXTSPRM parameters module. IRXINIT then uses the
value from the previous environment, which in this case is the value in IRXP ARMS.

Note: In the TSO/E address space, you can call IRXINIT and initialize an
environment that is not integrated into TSO/E. See "Types of Environments -
Integrated and Not Integrated Into TSO/E" on page 273 about the two types of
environments.

Chapter 14. Language Processor Enyironments 313

Changing Default Values

For more information about the parameters you can use in different language
processor environments, see "Specifying Values for Different Environments" on
page 315.

Considerations for Providing Parameters Modules
The previous topics describe how to change the default parameter values that are
used to initialize a language processor environment. You can provide your own
IRXISPRM, IRXTSPRM, and IRXPARMS modules for ISPF, TSO/E, and
non-TSO/E. Generally, if you want to change environment values for REXX execs
that execute from ISPF, you can simply provide your own IRXISPRM parameters
module. To change values for TSO/E only or for TSO/E and ISPF, you may have
to create only a IRXTSPRM module or both the IRXTSPRM and IRXISPRM
modules. This depends on the parameter you are changing and the value in the
IRXISPRM default module.

If you provide an IRXP ARMS module and your module contains parameter values
that cannot be used in environments that are integrated into TSO/E, you must
ensure that the module is available only to non-TSO/E address spaces, not to TSO/E
and ISPF.

Before you code your own parameters module, review the default values that are
provided by TSO/E. In your code, you must include the default values for any
parameters you are not changing. In the ISPF module IRXISPRM, many parameter
values are null, which means IRXINIT obtains the value from the previous
environment. In this case, the previous environment was defined using the
IRXTSPRM values. If you provide a IRXTSPRM module for TSO/E, check how it
will affect the definition of environments for ISPF.

TSO/E provides three samples in SYSI.SAMPLIB that are assembler code samples
for the three parameters modules. The member names of the samples are:

• TSOREX:Xl (for IRXPARMS -- MVS)
• TSOREXX2 (for IRXTSPRM -- TSO/E)
• TSOREX:X3 (for IRXISPRM -- ISPF)

314 TSO/E Version 2 REXX Reference

/~
')

/~
' \

u

Values for Different Environments

Specifying Values for Different Environments
As described in the previous topic ("Changing the Default Values for Initializing an
Environment"), you can change the default parameter values used to initialize a
language processor environment by providing your own parameters modules. You
can also call the initialization routine IRXINIT to initialize a new environment.
When you call IRXINIT, you can pass parameter values on the call. Chapter 15,
"Initialization and Termination Routines" describes IRXINIT and its parameters
and return codes.

Whether you provide your own load modules or invoke IRXINIT directly, some
parameters cannot be changed. Other parameters can be used only in language
processor environments that are not integrated into TSO/E or in environments that
are integrated into TSO/E. In addition, there are some restrictions on parameter
values depending on the values of other parameters in the same environment and on
parameter values that are defined for the previous environment. This topic describes
which parameters you can and cannot use in the two types of language processor
environments. It also describes different considerations for using the parameters.
For more information about the parameters and their descriptions, see
"Characteristics of a Language Processor Environment" on page 275.

Parameters You Cannot Change
There are two parameters that have fixed values and that you cannot change. The
parameters are:

ID The value must be IRXP ARMS.

VERSION The value must be 0100.

If you code your own load module, you must specify these values for the ID and
VERSION parameters. If you call IRXINIT, IRXINIT ignores any value you pass
and uses the defaults IRXPARMS and 0100.

Parameters You Can Use in Any Language Processor Environment
There are several parameters that you can specify in any language processor
environment. That is, you can use these parameters in environments that are
integrated into TSO/E and in environments that are not integrated into TSO/E. The
following describes the parameters and any considerations for specifying them.

LANGUAGE
The language code. The default is AE for American English.

PARSETOK
The token for the PARSE SOURCE instruction. The default is a blank.

ADDRSPN
The name of the address space. The following defaults are provided:

• IRXP ARMS - MVS
• IRXTSPRM - TSO /E
• IRXISPRM - ISPF

Note: You can change the address space name for any type of language
processor environment. If you write applications that examine the
P ARMBLOCK for an environment and perform processing based on the address
space name, you must ensure that any changes you make to the ADDRSPN field
do not affect your application programs.

Chapter 14. Language Processor Environments 315

V aloes for Different Environments

FLAGS
The FLAGS field is a fullword of bits that are used as flags. You can specify
any of the flags in any environment. However, the value you specify for each
flag depends on the purpose of the flag. In addition, there are some restrictions
for various flag settings depending on the flag setting in the previous
environment.

The following explains the different considerations for the setting of some flags.
See page 277 for details about each flag.

Note: If your installation uses ISPF, there are several considerations about the
flag settings for language processor environments that are initialized in ISPF.
See "Flag Settings for Environments Initialized for TSO/E and ISPF" on
page 320 for more information.

TSO FL
The TSOFL flag indicates whether the new environment is integrated into
TSO/E.

If the environment is being initialized in a non-TSO/E address space, the flag
must be off (set to 0). The TSOFL flag must also be off if the environment is
being initialized as a reentrant environment. Reentrant environments can
only be initialized by explicitly calling the IRXINIT routine.

If the environment is being initialized in the TSO/E address space, the
TSOFL flag can be on or off. If the flag is on, any REXX execs that execute
in the environment can use any TSO/E services and commands. If the flag is
off, REXX execs cannot use any TSO/E services or commands. If a REXX
exec tries to use a TSO/E service or command, unpredictable results can
occur.

If the TSOFL flag is on (the environment is integrated into TSO/E), then:

• The RENTRANT flag must be off (set to 0)

• The names of the replaceable routines in the module name table must be
blank

• The INDD and OUTDO fields in the module name table must be the
defaults SYSTSIN and SYSTSPRT

• The subpool number in the SUBPOOL field must be 78, in decimal.

The TSOFL flag cannot be on (set to 1) if a previous language processor
environment in the environment chain has the TSOFL flag off.

NEWSTKFL
The NEWSTKFL flag indicates whether a new data stack is initialized for the
new environment.

If you set the NEWSTKFL off for the new environment being initialized, you
must ensure that the SPSHARE flag is on in the previous environment. The
SPSHARE flag determines whether the subpool is shared across MYS tasks.
If the NEWSTKFL flag is off for the new environment and the SPSHARE
flag is off in the previous environment, an error will occur when IRXINIT
tries to initialize the new environment.

316 TSO/E Version 2 REXX Reference

(~
. I

!~
i

V aloes for Different Environments

Module Name Table
The module name table contains the ddnames for reading and writing data and
for loading REXX execs, and the names of replaceable routines and exit routines.
The fields you can specify in any address space are described below. The
replaceable routines can only be used in:

• Non-TSO/E address spaces

• The TSO/E address space only if the language processor environment is
initialized with the TSOFL flag off (the environment is not integrated with
TSO/E).

LOAD DD
The name of the DD from which REXX execs are loaded. The default
provided in all three parameters modules is SYSEXEC. (See "Using
SYSPROC and SYSEXEC for REXX Execs" on page 321 for more
information about SYSEXEC in the TSO/E address space).

The DD from which execs are loaded depends on the name specified in the
LOADDD field and on the setting of the TSOFL and NOLOADDD flags. If
the TSOFL flag is on, the language processor environment is initialized in the
TSO/E address space and is integrated into TSO/E (see page 281). In TSO/E,
you can store REXX execs in data sets that are allocated to SYSPROC or to
the DD specified in the LOADDD field (the default is SYSEXEC). The
NOLOADDD flag (see page 284) indicates whether only SYSPROC is
searched or the DD specified in the LOADDD field (SYSEXEC) is searched
first followed by SYSPROC.

If the TSOFL flag is off, REXX execs are loaded from the DD specified in
the LOADDD field.

Note: For the default parameters modules IRXTSPRM and IRXISPRM, the
NOLOADDD flag is on. Therefore, only data sets that are allocated to
SYSPROC are searched. You can provide your own parameters module to
have both SYSPROC and SYSEXEC searched. TSO/E users can also use the
EXECUTIL command to dynamically change the search order.
"EXECUTIL" on page 178 describes the EXECUTIL command.

The specified DD will be opened the first time a REXX exec is loaded. The
DD will remain open until the environment under which it was opened is
terminated. If you want the DD to be closed after each REXX exec is
fetched, you must set the CLOSEXFL flag on (see page 283). Users can also
use the EXECUTIL command to dynamically close the DD. Note that the
system may close the data set at certain points.

See "Using SYSPROC and SYSEXEC for REXX Execs" on page 321 for
more information about SYSPROC and SYSEXEC.

EXECINIT
The name of an exit routine that is invoked after the REXX variable pool has
been initialized for a REXX exec, but before the language processor starts
executing the exec.

IRXEXECX
The name of an exit routine that is invoked whenever the IRXEXEC routine
is called.

EXECTERM
The name of an exit routine that is invoked after a REXX exec has executed,
but before the REXX variable pool is terminated.

Chapter 14. Language Processor Environments 317

Values for Different Environments

Host Command Environment Table
The table contains the names of the host command environments that are valid
for the language processor environment and the names of the routines that are
called to process commands for the host command environment.

When IRXINIT creates the host command environment table for a new language
processor environment, it checks the setting of the NEWSCFL flag. The
NEWSCFL flag indicates whether or not the host command environments that
are defined for the previous language processor environment are added to the
table that is specified for the new environment. If the NEWSCFL flag is 0,
IRXINIT creates the table by copying the host command environment table from
the previous environment and concatenating the entries specified for the new
environment. If the NEWSCFL flag is I, IRXINIT creates the table using only
the entries specified for the new environment.

Function Package Table
The function package table contains information about the user, local, and
system function packages that are available in the language processor
environment. "Function Package Table" on page 295 describes the format of
the table in detail.

When IRXINIT creates the function package table for a new language processor
environment, it checks the settings of the USERPKFL, LOCPKFL, and
SYSPKFL flags. The three flags indicate whether or not the user, local, and
system function packages that are defined for the previous language processor
environment are added to the function package table that is specified for the new
environment. If a particular flag is 0, IRXINIT copies the function package
table from the previous environment and concatenates the entries specified for
the new environment. If the flag is I, IRXINIT creates the function package
table using only the entries specified for the new environment.

Parameters You Can Use for Environments That Are Integrated Into TSO/E
There is one parameter that can only be specified if a language processor
environment is being initialized in the TSO/E address space and the TSOFL flag is
on. The parameter is the ATTNROUT field in the module name table. The
ATTNROUT field specifies the name of an exit routine for attention processing.
The exit gets control if a REXX exec is executing in the TSO/E address space and an
attention interruption occurs. "REXX Exit Routines" on page 391 describes the
attention handling exit.

The ATTNROUT field must be blank if the new environment is not being integrated
into TSO/E, that is, the TSOFL flag is off.

Parameters You Can Use in Environments That Are Not Integrated Into
TSO/E

There are several parameters that you can specify only if the environment is not
integrated into TSO/E (the TSOFL flag is off). The following describes the
parameters and any considerations for specifying them.

SUBPOOL
The subpool number in which storage is allocated for the entire language
processor environment. In the parameters module IRXP ARMS, the default is 0.
You can specify a number from 0 - 127.

If the environment is initialized in the TSO/E address space and the TSOFL flag
is on, the subpool number must be 78, in decimal.

318 TSO/E Version 2 REXX Reference

!~
')

/~
l

/~
/

Values for Different Environments

Module Name Table
The module name table contains the names of DDs for reading and writing data
and for loading REXX execs, and the names of replaceable routines and exit
routines. The fields you can specify if the environment is not integrated into
TSO/E (the TSOFL flag is off) are described below.

INDD
The name of the DD from which the PARSE EXTERNAL instruction reads
input data. The default is SYSTSIN.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, the ddname is ignored.

If the specified DD is opened by a previous language processor environment,
even an environment on a higher task, and the IND D value for the new
environment is obtained from the previous environment, the new environment
uses the DCB of the previous environment. Sharing of the DCB in this way
means:

• A REXX exec executing in the new environment reads the record that
follows the record the previous environment read.

• If the previous environment runs on a higher task and that environment
is terminated, the new environment reopens the DD. However, the
original position in the DD is lost.

OUTDD
The name of the DD to which data is written for a SAY instruction, when
tracing is started, or for REXX error messages. The default is SYSTSPRT.

If the environment is initialized in the TSO/E address· space and the TSOFL
flag is on, the ddname is ignored.

If you initialize two environments by calling IRXINIT and explicitly pass the
same ddname for the two different environments, when the second
environment opens the DD, the open fails. This is because the data set can
only be opened once. The OPEN macro issues an ENQ exclusively for the
ddname.

IOROUT
The name of the input/output (I/O) replaceable routine. "Input/Output
Routine" on page 366 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, this field must be blank.

EXROUT
The name of the load exec replaceable routine. "Exec Load Routine" on
page 358 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, this field must be blank.

GETFREER
The name of the storage management replaceable routine. "Storage
Management Routine" on page 385 describes the routine in detail.

If more than one language processor environment is initialized on the same
task and the environments specify a storage management replaceable routine,
the name of the routine must be the same. If the name of the routine is
different for two environments on the same task, an error will occur when
IRXINIT tries to initialize the new environment.

Chapter 14. Language Processor Environments 319

Values for Different Environments

If the environment is initialized in the TSO/E address space and the TSOFL
is on, the GETFREER field must be blank.

STACKRT
The name of the data stack replaceable routine. "Data Stack Routine" on
page 380 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, this field must be blank.

ID ROUT
The name of the user ID replaceable routine. The routine is called whenever
the USERID built-in function is called. "User ID Routine" on page 388
describes the routine in detail.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, this field must be blank.

MSGIDRT
The name of the message identifier replaceable routine. The routine is used
to determine whether message IDs are displayed. "Message Identifier
Routine" on page 390 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, this field must be blank.

Flag Settings for Environments Initialized for TSO/E and ISPF
If your installation uses ISPF, there are several considerations about flag settings for
language processor environments that are initialized for TSO/E and ISPF. In the
default IRXISPRM parameters module for ISPF, most of the mask settings for the
flags parameters are 0, which means the values from TSO/E (IRXTSPRM module)
are used. If you provide your own IRXISPRM load module, you should not change
the mask values for the following flags. The mask values for these flags should be 0.

• CMDSO FL command search order flag
• FUNCSOFL -- function and subroutine search order flag
• NOSTKFL -- no data stack flag
• NO READ FL no read (input file) flag
• NOWRTFL -- no write (output file) flag
• NEWSTKFL -- new data stack flag
• NO EST AE -- recovery EST AE flag
• RENTRANT -- reentrant/non-reentrant flag
• SPSHARE -- subpool sharing flag

The values for these flags in ISPF should be the same as the values used when an
environment is initialized for the TSO /E session. When IRXINIT initializes an
environment for ISPF, it will use the values defined for the previous environment
(TSO/E) because the mask settings are 0. Using the same values for these flags for
both TSO/E and ISPF prevents any processing problems between the ISPF and
TSO/E sessions.

If you do want to change one of these flag values, change the value in the
IRXTSPRM parameters module for TSO/E. The change will be inherited by ISPF
when IRXINIT initializes an environment for the ISPF screen. For example,
suppose you want to change the search order used for locating external functions
and subroutines. This is controlled by the FUNCSOFL flag. You can provide a
IRXTSPRM parameters module for TSO/E and change the flag setting. ISPF will
inherit the changed flag setting when an environment is initialized.

320 TSO/E Version 2 REXX Reference

/~
)

~\
I \

Values for Different Environments

Using SVSPROC and SYSEXEC for REXX Execs
In the module name table, the LOADDD field (see page 287) contains the name of
the DD from which REXX execs are fetched. The default provided for language
processor environments that are automatically initialized for non-TSO/E, TSO/E,
and !SPF is SYSEXEC. If you customize REXX processing either by providing
your own parameters modules or explicitly calling IRXINIT to initialize an
environment, it is recommended that you use the ddname SYSEXEC. The TSO/E
REXX documentation refers to this DD as SYSEXEC.

In TSO/E, you can store REXX execs in data sets that are allocated to either
SYSPROC or SYSEXEC. The SYSPROC file is used for both TSO/E CLISTs and
REXX execs. The SYSEXEC file is for REXX execs only. The TSO/E Version 2
REXX User's Guide describes in detail how to allocate execs to SYSPROC and
SYS EXEC.

In the parameters module, the NOLOADDD flag (see page 279) controls the search
order for REXX execs. The flag indicates whether:

• The DD specified in the LOADDD field is searched (SYSEXEC), and if the exec
is not found, SYSPROC is then searched

• SYSPROC only is searched.

SYSPROC is only searched in the TSO/E address space (in a language processor
environment that is integrated into TSO/E).

If your installation plans to use REXX execs, it is recommended that you store your
execs in data sets that are allocated to SYSEXEC, rather than using SYSPROC.
Using SYSEXEC makes it easier to maintain your REXX execs. If your installation
uses many CLISTs and does not plan to have a large number of REXX execs, it is
recommended that you use SYSPROC for both your CLISTs and REXX execs.
Using SYSPROC prevents possible performance degradation when CLISTs are
executed because if both SYSEXEC and SYSPROC are used, SYSEXEC is searched
before SYSPROC.

In the default parameters modules provided for TSO/E (IRXTSPRM) and ISPF
(IRXISPRM), the settings of the NOLOADDD flag specify that SYSPROC only is
searched, that is, SYSEXEC is not searched. The default settings specify that the
TSO/E EXEC command processor searches only SYSPROC when a user implicitly
invokes either a REXX exec or a CLIST. The defaults are provided to accomodate
installations that primarily use CLISTs and allow for easier migration to TSO/E
Version 2.

If you decide to use SYSEXEC to store your REXX execs, you can either make
SYSEXEC available on a system-wide basis or make it available only to specific
users. To make SYSEXEC available on a system-wide basis, you can provide your
own IRXTSPRM parameters module. When you c_Qde IRXTSPRM, specify the
following values for the NOLOADDD mask and flag fields:

• NOLOADDD_MASK -- 1
• NOLOADDD_FLAG -- 0

You need not provide your own IRXISPRM parameters module for !SPF. This is
because the NOLOADDD mask value in the default IRXISPRM module is 0, which
means the flag setting from the previous environment is used. In this case, the
previous environment is the value from the IRXTSPRM module you provide.

Chapter 14. Language Processor Environments 321

Values for Different Environments

To make SYSEXEC available only to a specific group of users, you can provide
your own IRXTSPRM parameters module and make it available only on a logon
level. You can place your IRXTSPRM module in a data set specified in the
STEPLIB concatenation in the logon procedure. You must ensure that the data set
is higher in the concatenation than any other data set that contains IRXTSPRM.
See TSO/E Version 2 Customization for more information about logon procedures.

You can also use the EXECUTIL command with the SEARCHDD operand to
change the search order and have SYSEXEC searched. You can use EXECUTIL
SEARCHDD(YES) in a start-up CLIST or REXX exec that is part of a logon
procedure. Users can also use EXECUTIL SEARCHDD(YES) to dynamically
change the search order during their TSO/E and ISPF sessions. For more
information about the EXECUTIL command, see Chapter 10, "TSO/E REXX
Commands."

322 TSO/E Version 2 REXX Reference

I~

/~
!

/·~\
I
I

i .
_/I

Control Blocks

Control Blocks Created for a Language Processor Environment
When IRXINIT initializes a new language processor environment, it builds a number
of control blocks that contain information about the environment. The main control
block is the environment block ENVBLOCK. The environment block contains
pointers to:

• The parameter block (P ARMBLOCK), which is a control block containing the
parameters IRXINIT used to define the environment. The parameter block
IRXINIT creates has the same format as the parameters module. ,,..

• The user field that was passed on the call to IRXINIT, if IRXINIT was
explicitly invoked by a user

• The work block extension, which is a control block that contains information
about the REXX exec that is currently executing

• The REXX vector of external entry points, which contains the addresses of the
REXX routines TSO/E provides, such as IRXINIT, IRXTERM, services
routines, and replaceable routines. For replaceable routines, the vector contains
the addresses of both the system-supplied routines and any user-supplied
routines.

Note About Changing Any Control Blocks ---------------.

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

Format of the Environment Block (ENVBLOCK)

Figure 51

Offset
(Decimal)

0

8

12

Figure 51 shows the format of the environment block. TSO/E provides a mapping
macro IRXENVB for the environment block. The mapping macro is in
SYSl.MACLIB.

When IRXINIT initializes a new language processor environment, it returns the
address of the new environment block in register 0. You can use the environment
block to locate information about a specific environment. For example, the
environment block points to the REXX vector of external entry points that contains
the addresses of routines that perform system services, such as I/O, data stack, and
exec load. Using the control blocks allows you to, quickly call one of the routines.

(Page 1 of 2). Format of the Environment Block

Number Field Name Description
of Bytes

8 ID An eight character field that identifies the
environment block. The field contains the
characters 'ENVBLOCK'.

4 VERSION A four byte field that contains the version
number of the environment block. The
version number is 0100.

4 LENGTH The length of the environment block. The
number is 320 in decimal.

Chapter 14. Language Processor Environments 323

Control Blocks

Figure 51 (Page 2 of 2). Format of the Environment Block

Offset Number Field Name Description
(Decimal) of Bytes

16 4 PARMBLOCK The address of the parameter block
(PARMBLOCK). See "Format of the
Parameter Block (PARMBLOCK)" on
page 325 for more information.

20 4 USERFIELD The address of the user field that is passed
to IRXINIT, if IRXINIT is explicitly
called. The user field is passed in
parameter 5 for IRXINIT (see
"Initialization Routine - IRXINIT" on
page 340 for information about the
parameters). This field is used for your
own processing. It is not used by any
REXX services.

24 4 WORKBLOK_EXT The address of the current work block
extension. See "Format of the Work
Block Extension" on page 326 for details
about the work block extension.

28 4 IRXEXTE The address of the REXX vector of
external entry points. See "Format of the
REXX Vector of External Entry Points"
on page 328 for details about the vector.

32 4 ERROR_ CALL@ The address of the REXX routine that
encountered the first error in the language
processor environment and that issued the
first error message. The error could have
occurred while an exec was executing or a
particular service was requested in the
environment.

36 4 --- Reserved.

40 8 ERROR_MSGID An eight character field that contains the
message ID of the first error message that
was issued in the language processor
environment. The message relates to the
error encountered by the routine that is
pointed to at offset + 32.

48 80 PRIMARY_ERROR_MESSAGE An 80 character field that contains the
primary error message (the message text)
for the message ID at offset + 40.

128 160 ALTERNATE_ERROR_MESSAGE A 160 character field that contains the
alternate error message (the message text)
for the message ID at offset + 40.

The following topics describe the format of the P ARMBLOCK, the work block
extension, and the vector of external entry points.

324 TSO/E Version 2 REXX Reference

!~
)

.'~\
I I

I .
_)

Control Blocks

Format of the Parameter Block (PARMBLOCK)
The parameter block (PARMBLOCK) contains information about the parameters
that were used to define the environment. The environment block points to the
parameter block.

Figure 52 shows the format of the parameter block. TSO/E provides a mapping
macro IRXPARMB for the parameter block. The mapping macro is in
SYSl .MACLIB.

The parameter block has the same format as the parameters module. See
"Characteristics of a Language Processor Environment" on page 275 for
information about the parameters module and a complete description of each field.

Figure 52 (Page 1 of 2). Format of the Parameter Block (PARMBLOCK)

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ID An eight character field that identifies
the parameter block. The field contains
the characters 'IRXPARMS'.

8 4 VERSION A four byte field that contains the
version number of the parameter block
in EBCDIC. The version number is
0100.

12 2 LANGUAGE Language code for REXX messages.

14 2 --- Reserved.

16 4 MODNAMET Address of module name table. See
"Module Name Table" on page 286 for
a description of the table.

20 4 SUBCOMTB Address of host command environment
table. See "Host Command
Environment Table" on page 291 for a
description of the table.

24 4 PACK TB Address of function package table. See
"Function Package Table" on page 295
for a description of the table.

28 8 PARSETOK Token for PARSE SOURCE
instruction.

36 4 FLAGS A fullword of bits that represent the
flags that were used in defining the
environment. The flags in the
parameter block are in the same order
as in the parameters module. See
"Flags and Corresponding Masks" on
page 281 for a complete description of
the flags.

40 4 MASKS A fullword of bits that represent the
mask settings of the flag bits that were
used in defining the environment. The
masks are in the same order as in the
parameters module. See "Flags and
Corresponding Masks" on page 281 for
a complete description of the flags and
their corresponding masks.

Chapter 14. Language Processor Environments 325

Control Blocks

Figure 52 (Page 2 of 2). Format of the Parameter Block (PARMBLOCK)

Offset Number Field Name Description
(Decimal) of Bytes

44 4 SUB POOL Number of the subpool for storage
allocation.

48 8 ADDRSPN Name of the address space.

56 8 --- The end of the parameter block must be
indicated by
X' FFFFFFFFFFFFFFFF 1 •

Format of the Work Block Extension
The work block extension contains information about the currently executing REXX
exec. The environment block points to the work block extension.

When IRXINIT first initializes a new environment and creates the environment
block, the address of the work block extension in the environment block is 0. This is
because a REXX exec is not yet executing in the environment. At this point,
IRXINIT is only initializing the environment.

When an exec starts executing in the environment, the environment block is updated
to point to the work block extension describing the executing exec. If an exec is
executing and invokes another exec, the environment block is updated to point to
the work block extension for the second exec. The work block extension for the first
exec still exists, but it is not pointed to by the environment block. When the second
exec completes and returns control to the first exec, the environment block is
changed again to point to the work block extension for the original exec.

The work block extension contains the parameters that are passed to the IRXEXEC
routine to execute the exec. You can call IRXEXEC explicitly to execute an exec
and pass the parameters on the call. If you use IRXJCL, implicitly or explicitly
invoke an exec in TSO/E, or run an exec in TSO/E background, the IRXEXEC
always gets control to execute the exec. "IRXJCL and IRXEXEC Routines" on
page 214 describes the IRXEXEC routine in detail and each parameter that
IRXEXEC receives.

Figure 53 on page 327 shows the format of the work block extension. TSO/E
provides a mapping macro IRXWORKB for the work block extension. The
mapping macro is in SYSl.MACLIB.

326 TSO /E Version 2 REXX Reference

/~
/

f~
' \

J

Control Blocks

Figure 53 (Page 1 of 2). Format of the Work Block Extension

Offset Number Field Name Description
(Decimal) of Bytes

0 4 EXECBLK The address of the exec block
(EXECBLK). See "The Exec Block
(EXECBLK)" on page 220 for a
description of this control block.

4 4 ARGTABLE The address of the arguments for the
exec. The arguments are arranged as
a vector of address/length pairs
followed by
X 1 FFFFFFFFFFFFFFFF 1

• See
"Format of Argument List" on
page 222 for a description of the
argument list.

8 4 FLAGS A fullword of bits that are used as
flags. Only bits 0, 1, and 2 are used
to indicate how the exec was invoked.
The remaining bits are reserved. Bits
0, 1, and 2 are mutually exclusive.

• Bit 0 - If the bit is on, the exec
was invoked as a "command,"
that is, it was not invoked from
another exec as an external
function or subroutine.

• Bit 1 - If the bit is on, the exec
was invoked as an external
function (a function call).

• Bit 2 - If the bit is on, the exec
was invoked as a subroutine using
the CALL instruction.

12 4 INSTBLK The address of the in-storage control
block (INSTBLK). See "The
In-Storage Control Block
(INSTBLK)" on page 222 for a

i
description of this control block.

_,) 16 4 CPPLPTR The address of the CPPL, if the exec
was invoked from the TSO/E address
space. If the exec was invoked from
a non-TSO/E address space, this
address is 0.

20 4 EVALBLOCK The address of the evaluation block
(EV ALBLOCK). See "The
Evaluation Block (EV ALBLOCK)"
on page 225 for a description of this
control block.

24 4 WORKAREA The address of an eight byte field that
defines a work area for the
IRXEXEC routine. See Figure 12 on
page 218 for more information about
the work area.

Chapter 14. Language Processor Environments 327

Control Blocks

Figure 53 (Page 2 of 2). Format of the Work Block Extension

Offset Number Field Name Description
(Decimal) of Bytes

28 4 USERFIELD The address of the user field that is
passed to IRXEXEC, if IRXEXEC is
explicitly called. If you explicitly call
IRXEXEC, you pass the address of
the user field in parameter 8 on the
call (see "The IRXEXEC Routine"
on page 217 for information about
the parameters). This field is used for
your own processing. It is not used
by any REXX services.

You would only have a need to use the work block extension if you explicitly called
IRXEXEC and passed the address of a user field. By using the work block
extension, you can obtain the address of the user field.

Format of the REXX Vector of External Entry Points
The REXX vector of external entry points is a control block that contains the
addresses of REXX external routines and replaceable routines. The environment
block points to the vector. Figure 54 on page 329 shows the format of the vector of
external entry points. TSO/E provides a mapping macro IRXEXTE for the vector.
The mapping macro is in SYSl.MACLIB.

The vector allows you to quickly access the address of a particular REXX routine in
order to call the routine. The table contains the number of entries in the table
followed by the entry points (addresses) of the routines.

Each REXX external entry point has an alternate entry point to permit FORTRAN
programs to call the entry point. The external entry points and their alternates are
listed below.

Primary Entry Point Name

IRXINIT
IRXLOAD
IRXSUBCM
IRXEXEC
IRXINOUT
IRXJCL
IRXRLT
IRXSTK
IRXTERM
IRXIC
IRXUID
IRXTERMA
IRXMSGID
IRXEXCOM

328 TSO/E Version 2 REXX Reference

Alternate Entry Point Name

IRXINT
IRXLD
IRXSUB
IRXEX
IRXIO
IRXJ CL (same)
IRXRL T (same)
IRXSTK (same)
IRXTRM
IRXIC (same)
IRXUID (same)
IRXTMA
IRXMID
IRXEXC

:~
' l

I

rr'\
' I

f\
i)

u

\._,/

Control Blocks

For the replaceable routines, the vector provides two addresses for each routine.
The first address is the address of the replaceable routine the user supplied for the
language processor environment. If a user did not supply a replaceable routine, the
address points to the default system routine. The second address points to the
default system routine. Chapter 16, "Replaceable Routines and Exits" on page 355
describes replaceable routines in detail.

Figure 54 (Page I of 3). Format of REXX Vector of External Entry Points

Offset Number Field Name Description
(Decimal) of Bytes

0 4 ENTRY_COUNT Specifies the total number of
entry points included in the
vector. The number is 20.

4 4 IRXINIT Specifies the address of the
initialization routine IRXINIT.

8 4 LOAD_ROUTINE Specifies the address of the
user-supplied exec load
replaceable routine for the
language processor
environment. This is the
routine that was specified in the
EXROUT field of the module
name table. If a replaceable
routine was not specified, the
address points to the
system-provided exec load
routine IRXLOAD.

12 4 IRXLOAD Specifies the address of the
system-provided exec load
routine IRXLOAD.

16 4 IRXEXCOM Specifies the address of the
variable access routine
IRXEXCOM.

20 4 I RX EXEC Specifies the address of the exec
processing routine IRXEXEC.

24 4 IO_ROUTINE Specifies the addres-s of the
user-supplied input/output (I/O)
replaceable routine for the
language processor
environment. This is· the
routine that was specified in the
IOROUT field of the module
name table. If a replaceable
routine was not specified, the
address points to the
system-provided I/O routine
IRXINOUT.

28 4 IRXINOUT Specifies the address of the
system-provided I/O routine
IRXINOUT.

32 4 IRXJCL Specifies the address of the
IRXJCL routine.

36 4 IRXRLT Specifies the address of the
IRXRLT (get result) routine.

Chapter 14. Language Processor Environments 329

Control Blocks

Figure 54 (Page 2 of 3). Format of REXX Vector of External Entry Points

Offset Number Field Name Description
(Decimal) of Bytes

40 4 STACK_ROUTINE Specifies the address of the
user-supplied data stack
replaceable routine for the
language processor
environment. This is the
routine that was specified in the
STACKR T field of the module
name table. If a replaceable
routine was not specified, the
address points to the
system-provided data stack
routine IRXSTK.

44 4 IRXSTK Specifies the address of the
system-provided data stack
handling routine IRXSTK.

48 4 IRXSUBCM Specifies the address of the host
command environment routine
IRXSUBCM.

52 4 IRXTERM Specifies the address of the
termination routine
IRXTERM.

56 4 IRXIC Specifies the address of the
trace and execution control
routine IRXIC. /~

I j

60 4 MSGID_ROUTINE Specifies the address of the
user-supplied message ID
replaceable routine for the
language processor
environment. This is the
routine that was specified in the
MSG ID RT field of the module
name table. If a replaceable
routine was not specified, the
address points to the
system-provided message ID
routine IRXMSGID.

64 4 IRXMSGID Specifies the address of the
system-provided message ID
routine IRXMSGID.

68 4 USERID _ROUTINE Specifies the address of the
user-supplied user ID
replaceable routine for the
language processor
environment. This is the
routine that was specified in the
IDROUT field of the module
name table. If a replaceable
routine was not specified, the
address points to the
system-provided user ID !~
routine IRXUID. I

330 TSO/E Version 2 REXX Reference

Control Blocks

Figure 54 (Page 3 of 3). Format of REXX Vector of External Entry Points

Offset Number Field Name Description
(Decimal) of Bytes

72 4 IRXUID Specifies the address of the
system-provided user ID
routine IRXUID.

76 4 IRXTERMA Specifies the address of the
abnormal termination routine
IRXTERMA.

~/

Chapter 14. Language Processor Environments 331

Maximum Number of Environments

Changing the Maximum Number of Environments in an Address
Space

Within an address space, language processor environments are chained together to
form a chain of environments. There can be many environments on a single chain.
You can also have more than one chain of environments in a single address space.
There is a maximum number of environments that can be initialized at one time in
an address space. The maximum is not a specific number because it depends on the
number of chains in an address space and the number of environments on each
chain. The default maximum TSO/E provides should be sufficient for any address
space. However, if IRXINIT initializes a new environment and the maximum
number of environments has been reached, IRXINIT completes unsuccessfully and
returns with a return code of 20 and a reason code of 24. If this occurs, you can
change the maximum value.

The maximum number of environments that can be initialized in an address space is
defined in an environment table. The load module IRXANCHR contains the
environment table. To increase the total number of environment table entries, you
must code you own IRXANCHR load module. In the load module, you can change
only the total number of environment table entries. All other fields must be the
same as the default. After you write the code for the load module, you must
assemble and link edit it. It must be link edited as non-reentrant and reusable. It
also cannot be in the LPALIB. You can place it in a STEPqB or JOBLIB, or in
the linklist.

Figure 55 on page 333 describes the environment table. TSO/E provides a mapping
macro IRXENVT for the environment table. The mapping macro is in
SYS l .MACLIB.

The environment table consists of a table header followed by table entries. The
header contains the ID, version, total number of entries, number of used entries, and
the length of each entry. Following the header, each entry is 40 bytes long.

332 TSO/E Version 2 REXX Reference

I~
)

Maximum Number of Environments

Figure 55. Format of the Environment Table
: i v Offset Number Field Name Description

(Decimal) of Bytes

0 8 ID An eight character field that identifies
the environment table. The field
contains the characters 'IRXANCHR'.

8 4 VERSION The version of the environment table.
The value must be 0100 in EBCIDC.

12 4 TOTAL Specifies the total number of entries in
the environment table.

16 4 USED Specifies the total number of entries in
the environment table that are used.

20 4 LENGTH Specifies the length of each entry in the
environment table. The length is 40
bytes.

24 8 --- Reserved.

32 40 FIRST The first environment table entry.
Each entry is 40 bytes long. The
remaining entries follow.

Chapter 14. Language Processor Environments 333

Data Stack in Environments

Using the Data Stack in Different Environments
The data stack is a repository for storing data for use by a REXX exec. You can
place elements on the data stack using the PUSH and QUEUE instructions, and
take elements off of the data stack using the PULL instruction. You can also use
TSO/E REXX commands to manipulate the data stack. For example, you can use
the MAKEBUF command to create a buffer on the data stack and then add
elements to the data stack. You can use the QELEM command to query how many
elements are currently on the data stack above the most recently created buffer.
Chapter 10, "TSO/E REXX Commands" describes the REXX commands for
manipulating the data stack. TSO/E Version 2 REXX User's Guide describes how to
use the data stack and associated commands.

The data stack is associated with one or more language processor environments.
The data stack is shared among all REXX execs that execute within a specific
language processor environment.

A data stack may or may not be available to REXX execs that execute in a
particular language processor environment. This depends on the setting of the
NOSTKFL flag (see page 281). When an environment is initialized, if the
NOSTKFL flag is on, a data stack is not created or made available to the language
processor environment. Execs that execute in the environment cannot use a data
stack.

If the NOSTKFL flag is off, either a new data stack is initialized for the new
environment or the new environment shares a data stack that was initialized for a
previous environment. Whether a new data stack is initialized for the new
environment depends on:

• The setting of the NEWSTKFL (new data stack) flag, and

• Whether the environment is the first one being initialized on a chain.

Note: The NOSTKFL flag takes precedence over the NEWSTKFL flag. If the
NOSTKFL flag is on, a data stack is not created or made available to the new
environment regardless of the setting of the NEWSTKFL flag.

If the environment is the first environment on a chain, a new data stack is
automatically initialized regardless of the setting of the NEWSTKFL flag.

Note: If the NOSTKFL is on, a data stack is not initialized.

If the environment is not the first one on the chain, IRXINIT determines the setting
of the NEWSTKFL flag. If the NEWSTKFL flag is off, a new data stack is not
created for the new environment. The language processor environment shares the
data stack that was most recently created for one of the parent environments. If the
NEWSTKFL flag is on, a new data stack is created for the language processor
environment. Any REXX execs that execute in the new environment can only access
the new stack for this environment. They cannot access any data stacks that were
created for any parent environment on the chain.

Environments can only share data stacks that were initialized by environments that
are higher on a chain.

334 TSO /E Version 2 REXX Reference

_J

r

~;

Data Stack in Environments

If a data stack is created when an environment is initialized, the data stack is deleted
when thatenvironment is terminated. The data stack is deleted at environment
termination regardless of whether any elements are on the data stack. All elements
on the data stack are lost.

Figure 56 shows three environments that are initialized on one chain. Each
environment has its own data stack, that is, the environments do not share a data
stack.

Environment I

Environment 2

Environment 3

Data Stack for
Environment 1

Data Stack for
Environment 2

Data Stack for
Environment 3

Figure 56. Separate Data Stacks for Each Environment

When environment 1 was initialized, it was the first environment on the chain.
Therefore, a data stack was automatically created for environment 1. Any REXX
execs that execute in environment 1 access the data stack associated with
environment 1.

When environment 2 and environment 3 were initialized, the NEWSTKFL flag was
set on, indicating that a data stack was to be created for the new environment. The
data stack associated with each environment is separate from the stack for any of the
other environments. If an exec executes, it executes in the most current environment
(environment 3) and only has access to the data stack for environment 3.

Chapter 14. Language Processor Environments 335

Data Stack in Environments

Figure 57 shows two environments that are initialized on one chain. The two
environments share one data stack.

Data Stack

Figure 57. Sharing of the Data Stack Between Environments

When environment 1 was initialized, it was the first environment on the chain.
Therefore, a data stack was automatically created. When environment 2 was
initialized, the NEWSTKFL flag was off indicating that a new data stack should not
be created. Environment 2 shares the data stack that was created for environment 1.
Any REXX execs that execute in either environment use the same data stack.

· Suppose a third language processor environment were initialized and chained to
environment 2. If the NEWSTKFL flag is off for the third environment, it would
use the data stack that was most recently created on the chain. That is, it would use
the data stack that was created when environment 1 was initialized. All three
environments would share the same data stack.

As described, several language processor environments can share one data stack. On
a single chain of environments, one environment can have its own data stack and
other environments can share a data stack. Figure 58 on page 337 shows three
environments on one chain. When environment 1 was initialized, a data stack was
automatically created because it is the first environment on the chain. Environment
2 was initialized with the NEWSTKFL on, which means a new data stack was
created for environment 2. Environment 3 was initialized with the NEWSTKFL off,
so it uses the data stack that was created for environment 2.

336 TSO/E Version 2 REXX Reference

/~
;

~ Environment I

-
:--->

Environment 2

~ Environment 3

..._ ,.. u
-

..._ -

,,

Data Stack in Environments

Data Stack for
Environment I

Data Stack for
Environments 2 and 3

Figure 58. Separate Data Stack and Sharing of a Data Stack

Environments can be created without having a data stack, that is, the NOSTKFL is
on. Referring to Figure 58, suppose environment 2 was initialized with the
NOSTKFL on, which means a new data stack was not created and the environment
does not share the first environment's (environment 1) data stack. If environment 3
is initialized with the NOSTKFL off (meaning a data stack should be available to
the environment), and the NEWSTKFL is off (meaning a new data stack is not
created for the new environment), environment 3 shares the data stack created for
environment 1.

When a data stack is shared between multiple language processor environments, any
REXX execs that execute in any of the environments use the same data stack. This
sharing can be useful for applications where a parent environment needs to share
information with another environment that is lower on the environment chain. At
other times, a particular exec may need to use a data stack that is not shared with
any other execs that are executing on different language processor environments.
TSO/E REXX provides the NEWSTACK command that creates a new data stack
and that basically hides or isolates the original data stack. Suppose two language
processor environments are initialized on one chain and the second environment
shares the data stack with the first environment. If a REXX exec executes in the
second environment, it shares the data stack with any execs that are running in the
first environment. The exec in environment 2 may need to access its own data stack
that is private. In the exec, you can use the NEWST ACK command to create a new
data stack. The NEWST ACK command creates a new data stack and hides all
previous data stacks that were originally accessible and all data that is on the
original stacks. The original data stack is referred to as the primary stack. The new
data stack that was created by the NEWSTACK command is known as the
secondary stack. Secondary data stacks are private to the language processor
environment in which they were created. That is, they are not shared between two
different environments.

Chapter 14. Language Processor Environments 337

Data Stack in Environments

Environment 1

Environment 2

Figure 59 shows two language processor environments that share one primary data
stack. When environment 2 was initialized, the NEWSTKFL was off indicting that
it shares the data stack created for environment 1. When an exec was executing in
environment 2, it issued the NEWST ACK command to create a secondary data
stack. After NEWSTACK is issued., any data stack requests are only performed
against the new secondary data stack. The primary stack is isolated from any execs
executing in environment 2.

• I
I
I
I
I
I
I
I

I __________________ J

Data stack shared
with Environment 2

Data stack for
Environment 2 only
(created by
NEWSTACK
command)

Figure 59. Creating a New Data Stack with the NEWST ACK Command

If an exec executing in environment 1 issues the NEWST ACK command to create a
secondary data stack, the secondary data stack is available only to REXX execs that
execute in environment 1. Any execs that execute in environment 2 cannot access
the new data stack created for environment 1.

TSO/E REXX also provides the DELSTACK command that you use to delete any
secondary data stacks that were created using NEWST ACK. When the secondary
data stack is no longer required, the exec can issue DELST ACK to delete the
secondary stack. At this point, the primary data stack that is shared with
environment 1 is accessible.

TSO/E REXX provides several other commands you can use for data stack
functions. For example, an exec can use the QSTACK command to find out the
number of data stacks that exist for the language processor environment.
Chapter 10, "TSO/E REXX Commands" on page 167 describes the different
stack-oriented commands that are provided by TSO/E RE:XX, such as NEWSTACK
and DELSTACK.

338 TSO/E Version 2 REXX Reference

!~
!

.r"\
!

Initialization and Termination Routines

Chapter 15. Initialization and Termination Routines

This chapter provides information about how to use the initialization routine
IRXINIT and the termination routine IRXTERM. It provides reference information
about the entry specifications, parameter lists, return specifications, and return
codes.

Use the initialization routine IRXINIT to either initialize a language processor
environment or obtain the address of the environment block for the current
non-reentrant environment. Use the termination routine IRXTERM to terminate a
language processor environment. Chapter 8, "Using REXX in Different Address
Spaces" on page 155 provides general information about how the initialization and
termination of environments relates to REXX processing. Chapter 14, "Language
Processor Environments" on page 267 describes the concept of a language processor
environment in detail, the various characteristics you can specify when initializing an
environment, the default parameters modules, and information about the
environment block and the format of the environment block.

Chapter 15. Initialization and Termination Routines 339

Initialization Routine

Initialization Routine - IRXINIT
Use IRXINIT to either initialize a new, language processor environment or obtain
the address of the environment block for the current non-reentrant environment.

Note: To permit FORTRAN programs to call IRXINIT, TSO/E provides an
alternate entry point for the IRXINIT routine. The alternate entry point name is
IRXINT.

If you use IRXINIT to obtain the address of the current environment block, the
address is returned in register 0 and is also returned in the sixth parameter.

If you use IRXINIT to initialize a language processor environment, the
characteristics for the new environment are based on parameters that you pass on
the call and values that are defined for the previous environment. Generally, if a
specific parameter is not passed on the call to IRXINIT, IRXINIT uses the value
from the previous environment.

IRXINIT will always locate a previous environment as follows. On the call to
IRXINIT, you can pass the address of an environment block in register 0. This
environment is then used as the previous environment, if it is valid. If register 0
does not contain the address of an environment block, IRXINIT locates the previous
environment. If one is found, that environment is used as the previous environment.
If an environment cannot be found, the load module IRXPARMS defines the
previous environment.

"Chains of Environments and How Environments Are Located" on page 304
describes in detail how IRXINIT locates a previous environment. A previous
environment is always identified regardless of the parameters you specify on the call
to IRXINIT.

Using IRXINIT, you can initialize a reentrant or a non-reentrant environment. This
is determined by the setting of the RENTRANT flag bit. If you use IRXINIT to
initialize a reentrant environment and you want to chain the new environment to a
previous reentrant environment, you must pass the address of the environment block
for the previous reentrant environment in register 0.

If you use IRXINIT to locate a previous environment, you can only locate the
current non-reentrant environment. IRXINIT does not locate a reentrant
environment.

Entry Specifications
For the IRXINIT initialization routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

340 TSO/E Version 2 REXX Reference

Parameters
I

u

() .._,,

Initialization Routine

You can pass the address of an environment block in register 0. In register 1, you
pass the address of a parameter list, which consists of a list of addresses. Each
address in the parameter list points to a parameter. You must pass all parameters
on the call. The high order bit of the last address in the parameter list must be set
to 1. Figure 60 describes the parameters for IRXINIT.

Figure 60 (Page 1 of 2). Parameters for IRXINIT

Parameter Number Description
of Bytes

Parameter 1 8 The function IRXINIT is to perform:

INITENVB
To initialize a new environment.

FINDENVB
To obtain the address of the environment block
for the current non-reentrant environment.
FINDENVB returns the address of the
environment block in register 0 and in
parameter 6. It does not initialize a new
environment.

Parameter 2 8 The name of a parameters module that contains the
values for initializing the new environment. The
module is described in "Parameters Module and
In-Storage Parameter List" on page 343.

If the name of the parameters module is blank,
IRXINIT assumes that all fields in the parameters
module are null.

IRXINIT provides two ways in which you can pass
parameter values; the parameters module and the
address of an in-storage parameter list, which is
parameter 3. A complete description of how
IRXINIT computes each parameter value and the
flexibility of passing parameters is described in
"How IRXINIT Determines What Values to Use
for the Environment" on page 342.

Parameter 3 4 The address of an in-storage parameter list, which is
an area in storage containing parameters that are
equivalent to the parameters in the parameters
module. The format of the in-storage list is
identical to the format of the parameters module.
"Parameters Module and In-Storage Parameter
List" on page 343 describes the parameters module
and in-storage parameter list.

This parameter may be 0. If the address is 0,
IRXINIT assumes that all fields in the in-storage
parameter list are null.

Chapter 15. Initialization and Termination Routines 341

Initialization Routine

Figure 60 (Page 2 of 2). Parameters for IRXINIT

Parameter Number Description
of Bytes

Parameter 4 4 The address of a user field. The initialization
routine does not use or check this pointer or the
field. You can use this field for your own
processing.

Parameter 5 4 Reserved.

Parameter 6 4 This parameter is used for output only. It contains
the address of the environment block. If you use
the FINDENVB parameter to locate an
environment, this parameter contains the address of
the environment block for the current non-reentrant
environment. If you use INITENVB to initialize a
new environment, IRXINIT returns the address of
the environment block for the newly created
environment in this parameter.

For either FINDENVB or INITENVB, IRXINIT
also returns the address of the environment block in
register 0. This parameter lets high level languages
obtain the environment block address in order to
examine information in the environment block.

Parameter 7 4 This parameter is used for output only. IRXINIT
returns a reason code for the IRXINIT routine in
this field, which indicates why the requested
function did not complete successfully. Figure 62
on page 347 describes the reason codes that may be
returned.

How IRXINIT Determines What Values to Use for the Environment
IRXINIT first determines the values to use to initialize the environment. After all of
the values are determined, IRXINIT initializes the new environment using the
values.

On the call to IRXINIT, you can pass parameters that define the environment in
two ways. You can specify the name of a parameters module (a load module) that
contains the values IRXINIT uses to initialize the environment. In addition to the
parameters module, you can also pass an address of an area in storage that contains
the parameters. This is called an in-storage parameter list and the parameters it
contains are equivalent to the parameters in the parameters module.

The two methods of passing parameter values give you flexibility when calling
IRXINIT. You can store the values on disk or build the parameter structure in
storage dynamically. The format of the parameters module and the in-storage
parameter list is the same. You can pass a value for the same parameter in both the
parameters module and the in-storage parameter list.

342 TSO/E Version 2 REXX Reference

/~
')

Initialization Routine

When IRXINIT computes what values to use to initialize the environment, it takes
values from four sources using the following hierarchical search order:

1. The in-storage list of parameters that is passed on the call.

If you pass an in-storage parameter list and the value in the list is not null,
IRXINIT uses this value. Otherwise, IRXINIT continues.

2. The parameters module, the name of which is passed on the call.

If you pass a parameters module and the value in the module is not null,
IRXINIT uses this value. Otherwise, IRXINIT continues.

3. The previous environment.

IRXINIT copies the value from the previous environment.

4. The IRXP ARMS parameters module, if a previous environment does not exist.

If a parameter has a null value, IRXINIT continues to search until it finds a
non-null value. The following types of parameters are defined to be null:

• A character string is null if it either contains only blanks or has a length of zero
• An address is null if the address is 0
• A binary number is null if it has the value X 1 80000000 1

• A given bit is null if its corresponding mask is 0.

On the call to IRXINIT, if the address of the in-storage parameter list is 0, all values
in the list are defined as null. Similarly, if the name of the parameters module is
blank, all values in the parameters module are defined as null.

You need not specify a value for every parameter in the parameters module or the
in-storage parameter list. If you do not specify a value, the value defined for the
previous environment is used. You need only specify the parameters whose values
you want to be different from the previous environment.

Parameters Module and In-Storage Parameter List
The parameters module is a load module that contains the values you want
IRXINIT to use to initialize a new language processor environment. TSO/E
provides three default parameters modules (IRXP ARMS, IRXTSPRM, and
IRXISPRM) for initializing environments in non-TSO/E, TSO/E, and ISPF.
"Characteristics of a Language Processor Environment" on page 275 describes the
parameters modules.

On the call to the IRXINIT, you can optionally pass the name of a parameters
module that you have created. The parameters module contains the values you want
to use to initialize the new language processor environment. On the call, you can
also optionally pass the address of an in-storage parameter list. The format of the
parameters module and the in-storage parameter list is identical.

Figure 61 shows the format of a parameters module and in-storage list. The format
of the parameters module is identical to the default modules TSO/E provides.
"Characteristics of a Language Processor Environment" on page 275 describes the
parameters module and each field in detail. The end of the table must be indicated
by x I FFFFFFFFFFFFFFFF I •

Chapter 15. Initialization and Termination Routines 343

Initialization Routine

Figure 61. Parameters Module and In-Storage Parameter List

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ID Identifies the parameter block
(P ARMBLOCK).

8 4 VERSION Identifies the version of the
parameter block.

12 2 LANGUAGE Language code for REXX messages.

14 2 RESERVED Reserved.

16 4 MODNAMET Address of module name table. The
module name table contains the
names of DDs for reading and
writing data and fetching REXX
execs, the names of the replaceable
routines, and the names of several
exit routines.

20 4 SUBCOMTB Address of host command
environment table. The table
contains the names of the host
command environments that are
available and the names of the
routines that process commands for
each host command environment.

24 4 PACKTB Address of function package table.
The table defines the user, local, and
system function packages that are
available to REXX execs executing
in the .environment.

28 8 PARSETOK Token for PARSE SOURCE
instruction.

36 4 FLAGS A fullword of bits used as flags to
define characteristics for the
environment.

40 4 MASKS A fullword of bits used as a mask
for the setting of the flag bits.

44 4 SUBPOOL Number of the subpool for storage
allocation.

48 8 ADDRSPN Name of the address space.

56 8 --- The end of the parameter block
must be
x I FFFFFFFFFFFFFFFF I '

344 TSO/E Version 2 REXX Reference

Initialization Routine

Specifying Values for the New Environment
If you use IRXINIT to initialize a new language processor environment, the
parameters you can specify on the call depend on:

• Whether the environment is being initialized in a non-TSO/E address space or in
the TSO /E address space, and

• If the environment is being initialized in the TSO/E address space, whether the
environment is to be integrated into TSO/E (TSOFL flag setting).

Many parameters can only be used if the environment is initialized in a non-TSO/E
address space or if the environment is initialized in TSO/E, but is not integrated into
TSO/E (the TSOFL flag is off). Other parameters are only intended for use in the
TSO/E address space where the environment is integrated into TSO/E (the TSOFL
flag is on). The following information highlights different parameters. For more
information about the values you can and cannot specify and various considerations
for parameter values, see "Specifying Values for Different Environments" on
page 315.

When you call IRXINIT, you cannot specify the ID and VERSION. If you pass
values for the ID or VERSION parameters, IRXINIT ignores the value and uses the
default.

At offset + 36 in the parameters module, the field is a fullword of bits that are used
as flags. The flags define certain characteristics for the new language processor
environment and how the environment and execs executing in the environment
operate. In addition to the flags field, the parameter following the flags is a mask
field that works together with the flags. The mask field is a string that has the same
length as the flags field. Each bit position in the mask field corresponds to a bit in
the same position in the flags field. IRXINIT uses the mask field to determine
whether the corresponding flag bit is used or ignored.

The description of the mask field on page 279 describes the bit settings for the mask
field in detail. Figure 41 on page 278 summarizes each flag. "Flags and
Corresponding Masks" on page 281 describes each of the flags in more detail and
the bit settings for each flag.

For a given bit position, if the value in the mask field is:

• 0 - the corresponding bit in the flags field is ignored (that is, the bit is
considered null)

• 1 - the corresponding bit in the flags field is used.

When you call IRXINIT, the flag settings that IRXINIT uses depend on the:

• Bit settings in the flag and mask fields passed in the in-storage parameter list

• Bit settings in the flag and mask fields passed in the parameters module

• Flags defined for the previous environment

• Flags defined in IRXP ARMS, if a previous environment does not exist.

IRXINIT uses the following order to determine what value to use for each flag bit:

• IRXINIT first checks the mask setting in the in-storage parameter list. If the
mask is 1, it uses the flag value from the in-storage parameter list.

Chapter 15. Initialization and Termination Routines 345

Initialization Routine

• If the mask in the in-storage parameter list is 0, IRXINIT then checks the mask
setting in the parameters module. If the mask in the parameters module is 1,
IRXINIT uses the flag value from the parameters module.

• If the mask in the parameters module is 0, IRXINIT uses the flag value defined
for the previous environment.

• If a previous environment does not exist, IRXINIT uses the flag setting from
IRXPARMS.

If you call IRXINIT to initialize an environment that is not integrated into TSO/E
(the TSOFL flag is off), you can specify a subpool number (SUBPOOL field) from 0
- 127. IRXINIT does not check the number you provide. If the number is not
0-127, IRXINIT will not fail. However, when storage is used in the environment, an
error will occur.

If you call IRXINIT to initialize an environment in the TSO/E address space and
the environment is integrated into TSO/E, you must provide a subpool number of 78
(decimal). If the number is not 78, IRXINIT returns with a reason code of 7 in
parameter 7.

For detailed information about the parameters you can specify for initializing a
language processor environment, see "Specifying Values for Different Environments"
on page 315.

The end of the parameter block must be indicated by X 1 FFFFFFFFFFFFFFFF 1
•

Return Specifications
For the IRXINIT initialization routine, the contents of the registers on return are:

Register 0

Register 1

Contains the address of the new environment block, if a new
environment was initialized, or the address of the environment block
for the current non-reentrant environment that was located.

If IRXINIT was called to initialize a new environment and the new
environment could not be initialized, register 0 contains the same
value as on entry. If IRXINIT was called to find an environment
and it could not be found, register 0 will contain a 0.

If IRXINIT returns with return code 100 or 104, register 0 contains
the abend and reason code. ''Return Codes" on page 350 describes
the return codes and how IRXINIT returns the abend and reason
codes for return codes 100 and 104.

Address of the parameter list

Two parameters (parameters 6 and 7) are used for output only (see
Figure 60 on page 341). "Output Parameters" on page 347
describes the two output parameters.

Registers 2-14 Same as on entry

Register 15 Return code

346 TSO/E Version 2 REXX Reference

r)

!~
I

Initialization Routine

Output Parameters
The parameter list for IRXINIT contains two parameters that are used for output
only. Parameter 6 contains the address of the environment block. If you called
IRXINIT to locate an environment, this parameter contains the address of the
environment block for the current non-reentrant environment. If you called
IRXINIT to initialize an environment, this parameter contains the address of the
environment block for the new environment. This parameter lets high level
programming languages obtain the address of the environment block in order to "
examine information in the environment block.

Parameter 7 contains a reason code for IRXINIT processing. The reason code
indicates whether or not IRXINIT completed successfully. If IRXINIT processing
was not successful, the reason code indicates the error. Figure 62 describes the
reason codes IRXINIT returns. Note that these reason codes are not the same as
the reason codes that are returned because of a system or user abend. A system or
user abend results in a return code of 100 or 104 and an abend code and abend
reason code in register 0. See "Return Codes" on page 350 for a description of
return codes 100 and 104.

Figure 62 (Page 1 of 3). Reason Codes for IRXINIT Processing

Reason
Code

0

Description

Successful processing.

Unsuccessful processing. The type of function to be performed
(parameter 1) was not valid. The valid functions are INITENVB and
FINDENVB.

2 Unsuccessful processing. The TSOFL flag is on, but TSO/Eis not
active.

IRXINIT evaluated all of the parameters for initializing the new
environment. This reason code indicates that the environment is
being initialized in a non-TSO/E address space, but the TSOFL flag is
on. The TSOFL flag must be off for environments initialized in
non-TSO/E address spaces.

3 Unsuccessful processing. A reentrant environment was specified for
an environment that was being integrated into TSO/E. If you are
initializing an environment in TSO/E and the TSOFL flag is on, the
RENTRANT flag must be off. In this case, both the TSOFL and
RENTRANT flags were on.

4 Unsuccessful processing. The environment being initialized was to be
integrated into TSO/E (the TSOFL flag was on). However, a routine
name was specified in the module name table that cannot be specified
if the environment is being integrated into TSO/E. If the TSOFL flag
is on, you can specify only the following routines in the module name
table:

• An attention exit (ATTNROUT field)
• An exit for IRXEXEC (IRXEXECX field)
• An exec initialization exit (EXECINIT field)
• An exec termination exit (EXECTERM field)

Chapted 5. Initialization and Termination Routines 347

Initialization Routine

Figure 62 (Page 2 of 3). Reason Codes for IRXINIT Processing

Reason Description
Code

5 Unsuccessful processing. The value specified in the GETFREER
field in the module name table does not match the GETFREER value
in the current language processor environment under the current task.

If more than one environment is initialized on the same task and the
environments specify a storage management replaceable routine
(GETFREER field), the name of the routine must be the same for the
environments.

6 Unsuccessful processing. The value specified for the length of each
entry in the host command environment table is incorrect. This is the
value specified in the SUBCOMTB_LENGTH field in the table. See
"Host Command Environment Table" on page 291 for information
about the table.

7 Unsuccessful processing. An incorrect subpool number was specified
for an environment being integrated into TSO/E. The subpool
number must be 78 (decimal).

8 Unsuccessful processing. The TSOFL flag for the new environment is
on. However, the flag in the previous environment is off. The
TSOFL flag cannot be on if a previous environment in the chain has
the TSOFL flag off.

9 Unsuccessful processing. The new environment specified that the
data stack is to be shared (NEWSTKFL is off), but the SPSHARE
flag in the previous environment is off, which means that storage is
not to be shared across tasks. If you have the NEWSTKFL off for
the new environment, you must ensure that the SPSHARE flag in the
previous environment is on.

10 Unsuccessful processing. The IRXINITX exit routine returned a
non-zero return code. IRXINIT stops initialization.

11 Unsuccessful processing. The IRXITTS exit routine returned a
non-zero return code. IRXINIT stops initialization.

12 Unsuccessful processing. The IRXITMV exit routine returned a
non-zero return code. IRXINIT stops initialization.

13 Unsuccessful processing. The REXX I/O routine or the replaceable
I/O routine is called to initialize 1/0 when a new language processor
environment is being initialized. The I/O routine returned a non-zero
return code.

14 Unsuccessful processing. The REXX data stack routine or the
replaceable data stack routine is called to initialize the data stack
when a new language processor environment is being initialized. The
data stack routine returned a non-zero return code.

15 Unsuccessful processing. The REXX exec load routine or the
replaceable exec load routine is called to initialize exec loading when
a new language processor environment is being initialized. The exec
load routine returned a non-zero return code.

20 Unsuccessful processing. Storage could not be obtained.

348 TSO/E Version 2 REXX Reference

Initialization Routine

Figure 62 (Page 3 of 3). Reason Codes for IRXINIT Processing

Reason Description
Code

21 Unsuccessful processing. A module could not be loaded into storage.

22 Unsuccessful processing. The IRXINIT routine could not obtain
/

serialization for a system resource.

23 Unsuccessful processing. A recovery EST AE could not be
established.

24 Unsuccessful processing. The maximum number of environments has
already been initialized in the address space. The number of
environments is defined in the environment table. See "Changing the
Maximum Number of Environments in an Address Space" on
page 332 for more information about the environment table.

Chapter 15. Initialization and Termination Routines 349

Initialization Routine

Return Codes
IRXINIT returns a return code in register 15. Figure 63 shows the return codes if
IRXINIT was called to find an environment. Figure 64 on page 351 shows the
return codes if IRXINIT was called to initialize an environment.

Figure 63. IRXJNIT Return Codes for Finding an Environment

Return
Code

0

4

20

28

Description

Processing was successful. The current non-reentrant environment
was found. The environment was initialized under the current task.

Processing was successful. The current non-reentrant environment
was found. The environment was initialized under a previous task.

Processing was not successful. An error occurred. Check the reason
code that is returned in parameter 7.

Processing was successful. There is no current non-reentrant
environment.

100 Processing was not successful. A system abend occurred while
IRXINIT was locating the environment. The environment is not
found.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

104 Processing was not successful. A user abend occurred while IRXINIT
was locating the environment. The environment is not found.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

350 TSO/E Version 2 REXX Reference

/~
I

,!"""'"'.\
I

,r"\
)

I . '-/

V'

Initialization Routine

Figure 64. IRXINIT Return Codes for Initializing an Environment

Return
Code

0

4

20

100

104

Description

Processing was successful. A new language processor environment
was initialized. The new environment is not the first environment
under the current task.

Processing was successful. A new language processor environment
was initialized. The new environment is the first environment under
the current task.

Processing was not successful. An error occurred. Check the reason
code that is returned in the parameter list.

Processing was not successful. A system abend occurred while
IRXINIT was initializing the environment. The environment is not
initialized.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the a bend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

Processing was not successful. A user abend occurred while IRXINIT
was initializing the environment. The environment is not initialized.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

Chapter 15. Initialization and Termination Routines 351

Termination Routine

Termination Routine - IRXTERM
Use the IRXTERM routine to terminate a language processor environment.

Note: To permit FORTRAN programs to call IRXTERM, TSO/E provides an
alternate entry point for the IRXTERM routine. The alternate entry point name is
IRXTRM.

You can optionally pass the address of the environment block in register 0 that
represents the environment you want terminated. IRXTERM then terminates the
language processor environment pointed to by register 0. The environment must
have been initialized on the current task.

If you do not specify an environment block address in register 0, IRXTERM locates
the last environment that was created under the current task and terminates that
environment.

When IRXTERM terminates the environment, it closes all open data sets that were
opened under that environment. It also deletes any data stacks that were created
under the environment with the NEWST ACK command.

IRXTERM does not terminate an environment under any one of the following
conditions:

• The environment was not initialized under the current task

• An active exec is currently executing in the environment

• The environment was the first environment initialized under the task and other
environments are still initialized under the task.

The first environment initialized on a task must be the last environment terminated
on that task. The first environment is the anchor environment because all
subsequent environments that are initialized on the same task share information
from the first environment. Therefore, all other environments on a task must be
terminated before you terminate the first environment. If you use IRXTERM to
terminate the first environment and other environments on the task still exist,
IRXTERM does not terminate the environment and returns with a return code of
20.

352 TSO/E Version 2 REXX Reference

!~
' J

I~ .)
;

(

~

Termination Routine

Entry Specifications

Parameters

For the IRXTERM termination routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Registers 1-12 Unpredictable

Register 13

Register 14

Register 15

Address of a register save area

Return address

Entry point address

You can optionally pass the address of the environment block for the language
processor environment you want to terminate in register 0. There is no parameter
list for IRXTERM.

Return Specifications
For the IRXTERM termination routine, the contents of the registers on return are:

Register 0 If you passed the address of an environment block, IRXTERM
returns the address of the environment block for the previous
environment. If you did not pass an address, register 0 contains the
same value as on entry.

If IRXTERM returns with return code 100 or 104, register 0
contains the abend and reason code. "Return Codes" on page 354
describes the return codes and how IRXTERM returns the abend
and reason codes for return codes 100 and 104.

Registers 1-14 Same as on entry

Register 15 Return code

Chapter 15. Initialization and Termination Routines 353

Termination Routine

Return Codes
Figure 65 shows the return codes for the IRXTERM routine.

Figure 65. Return Codes for IRXTERM

Return
Code

0

4

20

28

100

Description

The environment was successfully terminated. The terminated
environment was not the last one on the task.

The environment was successfully terminated. The terminated
environment was the last environment on the task.

The environment could not be terminated.

The environment could not be found.

A system abend occurred while the language processor environment
was being terminated. The system tries to terminate the environment
again. If termination is still unsuccessful, the environment cannot be
used.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

104 A user abend occurred while the language processor environment was
being terminated. The system tries to terminate the environment
again. If termination is still unsuccessful, the environmtint cannot be
used.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

354 TSO/E Version 2 REXX Reference

I~

!~
}

Replaceable Routines and Exits

Chapter 16. Replaceable Routines and Exits

When a REXX exec executes, different system services are used for obtaining and
freeing storage, handling data stack requests, loading and freeing the exec, and 1/0.
TSO/E REXX provides routines for these services. The routines are called
replaceable routines because you can provide your own routines that replace the
system-supplied routines. You can provide your own routines for non-TSO/E
address spaces. In the TSO/E address space, you can provide your own replaceable
routines only if the language processor environment is initialized with the TSOFL
flag off. The TSOFL flag (see page 281) indicates whether or not the language
processor environment is integrated with TSO/E services, that is, whether REXX
execs that execute in the environment can use TSO/E commands and services. If the
TSOFL is off, execs cannot use TSO/E commands and services. If they do,
unpredictable results may occur.

If you provide a replaceable routine, your routine can perform some pre-processing
and then call the system-supplied routine to actually perform the service request. If
the replaceable routine you provide will call the system-supplied routine, your
replaceable routine must act as a filter between the call to your routine and your
routine calling the system-provided routine. Pre-processing can include checking the
request for the specific service, changing the request, or tenninating the request.
Your routine can also perform the requested service itself and not call the
system-supplied routine.

The replaceable routines that you can provide and the functions your routine must
perform if you replace the system-supplied routine are summarized below.
"Replaceable Routines" on page 356 describes each routine in more detail.

Exec Load
Called to load an exec into storage and free an exec when it completes. The
routine is also called to determine whether an exec is currently loaded and to
close a specified data set.

1/0
Called to read a record from or write a record to a specified ddname. The
routine is also called to open a specified DD. For example, this routine is called
for the SAY and PULL instructions (if the environment is not integrated into
TSO/E) and for the EXECIO command.

Data Stack
Called to handle any requests for data stack services.

Storage Management
Called to obtain and free storage.

User ID
Called to obtain the user ID. The result is returned by the USERID built-in
function.

Message Identifier
Called to determine whether the message identifier (message ID) is displayed with
a REXX error message.

Replaceable routines are defined on a language processor environment basis. They
an; defined in the module name table.

Chapter 16. Replaceable Routines and Exits 355

Replaceable Routines and Exits

To provide your own replaceable routine, you must do the following:

• Write the code for the routine. The individual topics in this chapter describe the
interfaces to each replaceable routine.

• Define the routine name to a language processor environment. For
environments that are initialized in non-TSO/E address spaces, you can provide
your own IRXPARMS parameters module that is used instead of the default
IRXPARMS module. In your module, specify the names of your replaceable
routines. You can also call IRXINIT to initialize an environment and pass the
name of your module name table that includes the names of your replaceable
routines.

In the TSO/E address space, you can call IRXINIT to initialize an environment
and pass the name of your module name table that includes the names of the
replaceable routines. When you call IRXINIT, the TSO FL flag in the
parameters module must be off, so the environment is not integrated into
TSO/E.

"Changing the Default Values for Initializing an Environment" on page 310
describes how to provide your own parameters module. "Initialization Routine -
IRXINIT" on page 340 describes IRXINIT.

In addition, there are many exit routines that you can use to customize REXX
processing. Some of the exits have fixed names. Other exits do not have a fixed
name. You provide the name of these exits in the module name table for a language
processor environment. "REXX Exit Routines" on page 391 describes the exits in
more detail.

Replaceable Routines
The following topics describe each of the TSO/E REXX replaceable routines. The
documentation describes how the system-supplied routines work, the input they
receive, and the output they return.

If you provide your own replaceable routine, your routine must handle all of the
functions that the system-supplied routine handles.

The replaceable routines that TSO/E provides are external interfaces that you can
call from a program in any address space. For example, an application program can
call the system-supplied data stack routine to perform data stack operations. If you
provide your own replaceable data stack routine, a program can call your routine to
perform data stack operations. You can call a system-supplied or user-supplied
replaceable routine only if a language processor environment exists in which the
routine can execute.

General Considerations
This topic provides general information about all of the replaceable routines.

• If you provide your own replaceable routine, your routine is called in 31 bit
addressing mode. Your routine may perform the requested service itself and not
call the system-supplied routine. Your routine can perform pre-processing, such
as checking or changing the request or parameters, and then call the
corresponding system-supplied routine. If your routine calls the system routine
to actually perform the request, it must call the system routine in 31 bit
addressing mode also.

356 TSO/E Version 2 REXX Reference

/~
;

I~
')

/'-.\ .)

·~
I

(;

\._/

Replaceable Routines and Exits

• When the system calls your replaceable routine, register 0 points to an
environment block. If your routine calls the system-supplied routine, it can
optionally pass the address of the environment block in register 0. If your
routine does not pass the address, the system routine will locate the environment
block for the current non-reentrant environment.

• When the system calls your replaceable routine, your routine can use any of the
system-supplied replaceable routines to request system services.

• The addresses of the system-supplied and any user-supplied replaceable routines
are stored in the REXX vector of external entry points (see page 328). This
allows a caller external to REXX to call any replaceable routines, either the
system-supplied or user-supplied routines. For example, if you wanted to
preload a REXX exec in storage before using the IRXEXEC routine to execute
the exec, you can call the IRXLOAD routine to load the exec. IRXLOAD is
the system-supplied exec load routine. If you provide your own replaceable exec
load routine, you can also use your routine to preload the exec. If either a
system-supplied or user-supplied replaceable routine is called by an external
caller (for example, an application program), register 0 may or may not contain
the address of an environment block. The system-supplied replaceable routine
will locate the current language processor environment. For your programming
purposes, any replaceable routines you provide must also locate the current
environment or any external caller that calls your replaceable routine must pass
the address of the current environment block in register 0 to your replaceable
routine. As described above, whenever the system (REXX) calls a replaceable
routine, it passes the address of the environment block in register 0.

Installing Replaceable Routines
If you write your own replaceable routine, you must link edit the routine as a
separate load module. You can link edit all your replaceable routines in a separate
load library or in an existing library that contains other routines. The routines can
reside in:

• The link pack area (LPA)
• Linklist (LNKLST)
• A logon STEPLIB

The replaceable routines must be reentrant, refreshable, and reusable. The
characteristics for the routines are:

• State: Problem program
• Not APF authorized
• AMODE(31), RMODE(ANY)

Chapter 16. Replaceable Routines and Exits 357

Exec Load Routine

Exec Load Routine
The exec load routine is called to load and free REXX execs. The routine is also
called:

• To close any input file from which execs are loaded
• To check whether an exec is currently loaded in storage
• When a language processor environment is initialized and terminated.

The name of the system-supplied exec load routine is IRXLOAD.

Note: To permit FORTRAN programs to call IRXLOAD, TSO/E provides an
alternate entry point for the IRXLOAD routine. The alternate entry point name is
IRXLD.

When the routine is called to load an exec, it reads the exec from the specified DD
and places it into a data structure called the in-storage control block (INSTBLK).
"Format of the In-Storage Control Block" on page 363 describes the format of the
in-storage control block. When the routine is called to free an exec, it frees the
storage the previously loaded exec occupied.

The name of the exec load routine is specified in the EXROUT field in the module
name table for a language processor environment. "Module Name Table" on
page 286 describes the fom1at of the module name table.

The exec load routine is called when:

• A language processor environment is initialized. During environment
initialization, the routine initializes the REXX exec load environment.

• The IRXEXEC routine is called and the exec is not preloaded. See "The
IRXEXEC Routine" on page 217 for information about using IRXEXEC.

• The exec that is currently executing calls an external function or subroutine and
the function or subroutine is an exec. (This is an internal call to the IRXEXEC
routine.)

• An exec that was loaded needs to be freed.

• The language processor environment that originally opened the DD from which
execs are loaded is terminating and all files associated with the environment
must be closed.

The system-supplied load routine IRXLOAD tests for numbered records in the file.
If the records of a file are numbered, the routine removes the numbers when it loads
the exec. A record is considered to be numbered if:

• The record format of the file is variable and the first eight characters of the first
record are numeric, or

• The record format of the file is fixed and the last eight characters of the first
record are numeric.

If the first record of the file is not numbered, it is loaded without any changes.

358 TSO/E Version 2 REXX Reference

'~ , I

!~
I

I
I ' "-j

('

~

l

~,

Entry Specifications

Parameters

Exec Load Routine

IRXLOAD may be called by any user-written routine to perform any of the
functions IRXLOAD supports. For example, if you call the IRXEXEC routine to
execute a REXX exec and want to preload the exec in storage before calling
IRXEXEC, you can use IRXLOAD. You can also use your own exec load
replaceable routine.

For the exec load routine, the contents of the registers on entry are described below.
For more information about register 0, see "General Considerations" on page 356.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 En try point address

Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All parameters
are passed on the call. The high order bit of the last address in the parameter list is
set to 1 to indicate the end of the parameter list. Figure 66 describes the parameters
for the exec load routine.

Figure 66 (Page I of 2). Parameters for the Exec Load Routine

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The function name
is left justified, in uppercase, and padded to the
right with blanks. The valid functions are:

• INIT

• LOAD
• FREE
• STATUS

• CLOSEDD
• TERM

The functions are described after the table.

Parameter 2 4 Specifies the address of the exec block
(EXECBLK). The exec block is a control block
that describes the exec to be loaded (LOAD), to be
checked (STATUS), or the DD to be closed
(CLOSEDD). "Format of the Exec Block" on
page 361 describes the exec block.

For the LOAD, STATUS, and CLOSEDD
functions, this parameter must contain a valid exec
block address. For the other functions, this
parameter is ignored.

Chapter 16. Replaceable Routines and Exits 359

Exec Load Routine

Figure 66 (Page 2 of 2). Parameters for the Exec Load Routine

Parameter Number Description
of Bytes

Parameter 3 4 Specifies the address of the in-storage control block
(INSTBLK), which defines the structure of a
REXX exec in storage. It contains pointers to each
record in the exec and the length of each record.
"Format of the In-Storage Control Block" on
page 363 describes the control block.

This parameter is used as an input parameter for
the FREE function only. It is used as an output
parameter for the LOAD, STATUS, and FREE
functions. It is ignored for the INIT, TERM, and
CLOSED D functions.

As an input parameter for the FREE function, it
contains the address of the in-storage control block
that represents the exec to be freed. As an output
parameter for the FREE function, it contains a 0
indicating the exec was freed. If the exec could not
be freed, the return code in register 15 indicates the
error condition. "Return Codes" on page 365
describes the return codes.

As an output parameter for the LOAD or STATUS
functions, it returns the address of the in-storage
control block that represents the exec that was:

• Just loaded (LOAD function)

• Previously loaded (ST A TUS function)

For the LOAD and STATUS functions, a value of
0 is returned if the exec is not loaded.

The functions that can be specified in parameter 1 are described below.

INIT
The routine performs any initialization that is required. During the initialization
of a language processor environment, the exec load routine is called to initialize
load processing.

LOAD
The routine loads the exec specified in the exec block from the ddname specified
in the exec block. "Format of the Exec Block" on page 361 describes the exec
block.

The routine returns the address of the in-storage control block (parameter 3)
that represents the loaded exec. "Format of the In-Storage Control Block" on
page 363 shows the format of the in-storage control block.

FREE
The routine frees the exec represented by the in-storage control block that is
pointed to by parameter 3.

360 TSO/E Version 2 REXX Reference

')

'~
}

/ u

l '
\._./'

Exec Load Routine

STATUS
The routine determines if the exec specified in the exec block is currently loaded
in storage from the ddname specified in the exec block. If the exec is loaded, the
routine returns the address of the in-storage control block in parameter 3. The
address returned is the same address that was returned for the LOAD function
when the routine originally loaded the exec into storage.

TERM
The routine performs any cleanup prior to termination of the language processor
environment. When the language processor environment that originally opened
the DD terminates, all files associated with the environment must be closed.

CLOS EDD
The routine closes the data set specified in the exec block.

The CLOSEDD function allows you to free and reallocate data sets. Only data
sets that were opened on the current task can be closed.

Format of the Exec Block
The exec block (EXECBLK) is a control block that describes:

• The exec to be loaded (LOAD function)

• The exec to be checked (STATUS function)

• The DD to be closed (CLOSEDD function)

If a user-written program calls IRXLOAD or your own replaceable load routine, the
program must build the exec block and pass the address of the exec block on the
call. TSO/E provides a mapping macro IRXEXECB for the exec block. The
mapping macro is in SYSl.MACLIB. Figure 67 describes the format of the exec
block.

Figure 67 (Page 1 of 2). Format of the Exec Block

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ACRYN An eight character field that identifies the
exec block. It must contain the character
string 'IRXEXECB'.

8 4 LENGTH Specifies the length of the exec block in
bytes.

12 4 --- Reserved.

16 8 MEMBER Specifies the member name of the exec, if
the exec is in a partitioned data set. If the
exec is in a sequential data set, this field is
blank.

Chapter 16. Replaceable Routines and Exits 361

Exec Load Routine

Figure 67 (Page 2 of 2). Format of the Exec Block

Offset Number Field Name Description
(Decimal) of Bytes

24 8 DDNAME For a LOAD request, this specifies the
ddname from which the exec is to be
loaded. For a ST A TUS request, it
specifies the ddname from which the exec
being checked was loaded. For a
CLOSEDD request, it specifies the ddname
to be closed.

An exec cannot be loaded from a DD that
has not been allocated. The ddname
specified must be allocated to a data set
containing REXX execs or to a sequential
data set that contains an exec.

For the LOAD and STATUS functions,
this field can be blank. In these cases, the
ddname in the LOAD DD field of the
module name table is used.

32 8 SUBCOM Specifies the name of the initial host
command environment when the exec
starts executing.

If this field is blank, the environment
specified in the INITIAL field of the host
command environment table is used.

40 4 DSNPTR Specifies the address of a data set name
that the PARSE SOURCE instruction
returns. The name usually represents the
name of the exec load data set. The name
can be up to 54 characters long (44
characters for the fully qualified data set
name, 8 characters for the member name,
and 2 characters for the left and right
parentheses). The field can be blank.

Note: For concatenated data sets, it may
contain the name of the first data set in the
sequence, although the exec was loaded
from a data set other than the first one in
the sequence.

44 4 DSNLEN Specifies the length of the data set name
that is pointed to by the address at offset
+ 40. The length can be 0-54. If no data
set name is specified, the length is O.

An exec cannot be loaded from a data set that has not been allocated. The ddname
specified (at offset + 24) must be allocated to a data set containing REXX execs or
to a sequential data set that contains an exec. The fields at offset + 40 and + 44 in
the exec block are used only for input to the PARSE SOURCE instruction and are
for informational purposes only.

For the LOAD and STATUS functions, if a ddname is not specified in the exec
block (at offset + 24), the routine uses the ddname in the LOAD DD field in the
module name table for the language processor environment. The environment block
(ENVBLOCK) points to the P ARMBLOCK, which contains the address of the
module name table.

362 TSO/E Version 2 REXX Reference

~
: I

Exec Load Routine

Format of the In-Storage Control Block
The in-storage control block defines the structure of an exec in storage. It contains
pointers to each record in the exec and the length of each record.

The in-storage control block consists of a header and the records in the exec, which
are arranged as a vector of address/length pairs. Figure 68 shows the format of the
in-storage control block header. Figure 69 on page 364 shows the format of the
vector of records. TSO/E provides a mapping macro IRXINSTB for the in-storage
control block. The mapping macro is in SYSl.MACLIB.

Figure 68 (Page 1 of 2). Format of the In-Storage Control Block Header

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ACRONYM An eight character field that
identifies the control block. The
field must contain the characters
'IRXINSTB'.

8 4 HDRLEN Specifies the length of the in-storage
control block header only. The
value must be 128 bytes.

12 4 --- Reserved.

16 4 ADDRESS Specifies the address of the vector of
records. See Figure 69 on page 364
for the format of the address/length
pairs.

If this field is 0, the exec contains no
statements.

20 4 USERLEN Specifies the length of the
address/length vector of records in
bytes. This is not the number of
records. The value is the number of
records multiplied by 8.

If this field is 0, the exec contains no
statements.

24 8 MEMBER Specifies the name of the exec. This
is the name of the member in the
partitioned data set from which the
exec was loaded. If the exec was
loaded from a sequential data set,
this field is blank.

The PARSE SOURCE instruction
returns the folded member name. If
this field is blank, the member name
that PARSE SOURCE returns is a
question mark (?).

32 8 DDNAME Specifies the ddname that represents
the exec load DD from which the
exec was loaded.

Chapter 16. Replaceable Routines and Exits 363

Exec Load Routine

Figure 68 (Page 2 of 2). Format of the In-Storage Control Block Header

Offset Number Field Name Description
(Decimal) of Bytes

40 8 SUBCOM Specifies the name of the initial host
command environment when the
exec starts executing.

48 4 --- Reserved.

52 4 DSNLEN Specifies the length of the data set
name that is specified at offset + 56.
If a data set name is not specified,
this field is 0.

56 72 DSNAME A 72 byte field that contains the
name of the data set, if known, from
which the exec was loaded. The
name can be up to 54 characters
long (44 characters for the fully
qualified data set name, 8 characters
for the member name, and 2
characters for the left and right
parentheses). The remaining bytes
of the field (2 bytes pl us four
fullwords) are not used. They are
reserved for system use and contain
binary zeroes.

At offset + 16 in the in-storage control block header, the field points to the vector of
records that are in the exec. The records are arranged as a vector of address/length
pairs. Figure 69 shows the format of the address/length pairs.

The addresses point to the text of the record to be processed. This can be one or
more REXX clauses, parts of a clause that are continued with the REXX
continuation character (the continuation character is a comma), or a combination of
these. The address is the actual address of the record. The length is the length of
the record in bytes.

Figure 69. Vector of Records for the In-Storage Control Block

Off set Number Field Name Description
(Decimal) of Bytes

0 4 STMT@ Address of record 1

4 4 STMTLEN Length of record 1

8 4 STMT@ Address of record 2

12 4 STMTLEN Length of record 2

16 4 STMT@ Address of record 3

20 4 STMTLEN Length of record 3

x 4 STMT@ Address of record n

y 4 STMTLEN Length of record n

364 TSO/E Version 2 REXX Reference

..~
, I

Exec Load Routine

Return Specifications
For the exec load routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Return Codes
Figure 70 shows the return codes for the exec load routine.

Figure 70. Return Codes for the Exec Load Replaceable Routine

Return Description
Code

-3 The exec could not be located. It is not loaded.

0 Processing was successful. The requested function completed.

4 The specified exec is not currently loaded. A return code of 4 is used
for the STATUS function only.

20 Processing was not successful. The requested function is not
performed. A return code of 20 occurs if a ddname was not specified,
the ddname was specified but has not been allocated, or an error
occurred during processing. An error message that describes the error
is also issued.

28 Processing was not successful. A language processor environment
could not be located.

Chapter 16. Replaceable Routines and Exits 365

1/0 Routine

Input/Output Routine
The input/output (I/O) replaceable routine is also called the read input/write output
data routine. The 1/0 routine is called to:

• Read a record from a specified DD
• Write a record to a specified DD
• Open a DD.

The DD must be allocated to either a sequential data set or a single member of a
partitioned data set. The name of the system-supplied 1/0 routine is IRXINOUT.

Note: To permit FORTRAN programs to call IRXINOUT, TSO/E provides an
alternate entry point for the IRXINOUT routine. The alternate entry point name is
IRXIO.

If a read is requested, the routine returns a pointer to the record that was read and
the length of the record. If a write is requested, the caller provides a pointer to the
record to be written and thelength of the record. If an open is requested, the
routine opens the file if it is not yet open. The routine also returns a pointer to an
area in storage containing information about the file. You can use the IRXDSIB
mapping macro to map this area. The mapping macro is in SYSI.MACLIB.

The name of the 1/0 routine is specified in the IO ROUT field in the module name
table. "Module Name Table" on page 286 describes the format of the module name
table. 1/0 processing is based on the QSAM access method.

The 1/0 routine is called for:

• Initialization. When a language processor environment is initialized, the 1/0
replaceable routine is called to initialize I/O processing.

• Open, when:

The LINESIZE built-in function is used in an exec

Before the language processor does any output.

• For input, when:

A PULL or a PARSE PULL instruction is executed, the data stack is
empty, and the language processor environment is not integrated into
TSO/E (see page 273).

A PARSE EXTERNAL instruction is executed in a language processor
environment that is not integrated into TSO/E (see page 273).

The EXECIO command is executed

A program outside of REXX calls the 1/0 replaceable routine for input of a
record.

• For output, when:

A SAY instruction is executed in a language processor environment that is
not integrated into TSO/E (see page 273).

Error messages must be written

Trace (interactive debug facility) messages must be written

A program outside of REXX calls the I/O replaceable routine for output of
a record.

366 TSO /E Version 2 REXX Reference

(~
)

r' , v
Entry Specifications

Parameters

I/O Routine

• Termination. When a language processor environment is terminated, the I/0
replaceable routine is called to cleanup I/O.

For the I/O replaceable routine, the contents of the registers on entry are described
below. For more information about register 0, see HGeneral Considerations" on
page 356.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All parameters
are passed on the call. The high order bit of the last address in the parameter list is
set to 1 to indicate the end of the parameter list. Figure 71 describes the parameters
for the I/O routine.

Figure 71 (Page 1 of 2). Input Parameters for the I/O Replaceable Routine

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The function name
is left justified, in uppercase, and padded to the
right with blanks. The valid functions are:

• INIT
• OPENR
• OPE NW
• OPENX
• READ
• READX
• WRITE
• TERM
• CLOSE

"Functions Supported for the I/O Routine" on
page 368 describes the functions in more detail.

Parameter 2 4 Specifies the address of the record read, the record
to be written, or the data set information block,
which is an area in storage that contains
information about the file (see page 371).

Parameter 3 4 Specifies the length of the data in the buffer pointed
to by parameter 2. On output for an open request,
it may contain the length of the data set
information block. "Buffer and Buffer Length
Parameters" on page 370 describes the buffer and
buff er length in more detail.

Chapter 16. Replaceable Routines and Exits 367

1/0 Routine

Figure 71 (Page 2 of 2). Input Parameters for the I/O Replaceable Routine

Parameter Number Description
of Bytes

Parameter 4 8 An eight character string that contains the name of
a preallocated input or output DD. The DD must
be either a sequential data set or a single member of
a PDS. If a member of a PDS is to be used, the
DD must be specifically allocated to the member of
the PDS.

If the input or output file is not sequential, the 1/0
routine returns a return code of 20.

Parameter 5 4 For a read operation, this parameter is used on
output and specifies the absolute record number of
the last logical record read. For a write to a DD
that is opened for update, it can be used to provide
a record number to verify the number of the record
to be updated. Verification of the record number
can be bypassed by specifying a 0.

This parameter is not used for the INIT, OPENR,
OPENW, OPENX, TERM, or CLOSE functions.
See "Line Number Parameter" on page 371 for
more information,

Functions Supported for the 1/0 Routine
The function to be performed by the 1/0 routine is specified in parameter 1. The
valid functions are described below.

INIT
The routine performs any initialization that is required. During the initialization
of a language processor environment, the 1/0 routine is called to initialize 1/0
processing.

OPENR
The routine opens the specified DD for a read operation, if the DD is not
already open. The ddname is specified in parameter 4.

The I/O routine returns the address of the data set information block in
parameter 3. "Data Set Information Block" on page 371 describes the block in
more detail.

OPENW
The routine opens the specified DD for a write operation, if the DD is not
already open. The ddname is specified in parameter 4.

The 1/0 routine returns the address of the data set information block in
parameter 3. "Data Set Information Block" on page 371 describes the block in
more detail.

OPENX
The routine opens the specified DD for an update operation, if the DD is not
already open. The ddname is specified in parameter 4.

The I/O routine returns the address of the data set information block in
parameter 3. "Data Set Information Block" on page 371 describes the block in
more detail.

368 TSO /E Version 2 REXX Reference

I~
)

1/0 Routine

READ
The routine reads data from the DD specified in parameter 4. It returns the
data in the buffer pointed to by the address in parameter 2. It also returns the
number of the record that was read in the line number parameter (parameter 5).

The READ and READX functions are equivalent, except that the data set is
opened differently. Subsequent read operations to the same data set can be done
using either the READ or READX function because they do not reopen the
data set.

If the data set to be read is closed, the routine opens it for input and then
performs the read.

READX
The routine reads data from the DD specified in parameter 4. It returns the
data in the buffer pointed to by the address in parameter 2. It also returns the
number of the record that was read in the line number parameter (parameter 5).

If the data set to be read is closed, the routine opens it for update and then
performs the read.

The READ and READX functions are equivalent, except that the data set is
opened differently. Subsequent read operations to the same data set can be done
using either the READ or READX function because they do not reopen the
data set.

WRITE
The routine writes data from the specified buffer to the specified DD. The
buff er is pointed to by the address in parameter 2 and the ddname is specified in
parameter 4.

If the data set is closed, the routine first opens it for output and then writes the
record. For sequential data sets, if the data set is allocated as OLD, the first
record that is written after the data set is opened is written as record number 1.
If a sequential data set is allocated as MOD, the record is added at the end of
the data set.

Note: MOD cannot be used to append data to a member of a PDS. You can
use MOD only when appending information to a sequential data set. To append
information to a member of a PDS, rewrite the member with the additional
records added.

When a data set is opened for update, the WRITE function is used to rewrite
the last record that was retrieved by the READ or READX function. You can
optionally use the line number parameter (parameter 5) to ensure that the
number of the record being updated agrees with the number of the last record
that was read.

TERM
The routine performs cleanup and closes any opened data sets.

CLOSE
The routine closes the DD specified in parameter 4. The CLOSE function
permits data sets to be freed and reallocated.

The CLOSE function is allowed only from the task under which the data set was
opened. If CLOSE is requested from a different task, the request is ignored and
a return code of 20 is returned.

Chapter 16. Replaceable Routines and Exits 369

1/0 Routine

Buffer and Buffer Length Parameters
Parameter 2 specifies the address of a buff er and parameter 3 specifies the buff er
length. These two parameters are not used for the INIT, TERM, and CLOSE
functions.

On input for a WRITE function, the buffer address points to a buffer that contains
the record to be written. The buffer length parameter specifies the length of the data
to be written from the buffer. The caller must provide the buffer address and length.

For the WRITE function, if data is truncated during the write operation, the 1/0
routine returns the length of the data that was actually written in the buffer length
parameter. A return code of 16 is also returned in register 15.

On output for a READ or READX function, the buffer address points to a buffer
that contains the record that was read. The buffer length parameter specifies the
length of the data being returned in the buffer.

For a READ or READX function, the I/O routine obtains the buffer needed to
store the record. The caller must copy the data that is returned into its own storage
before calling the 1/0 routine again for another request. The buffers are reused for
subsequent 1/0 requests.

On output for an OPENR, OPENW, or OPENX function, the buffer address points
to the data set information block, which is an area in storage that contains
information about the file. "Data Set Information Block" on page 371 describes the
format of this area. TSO/E provides a mapping macro IRXDSIB that can be used
to map the buffer area returned for an open request.

For an OPENR, OPENW, or OPENX function, all of the information in the data
set information block does not have to be returned. The buffer length must be large
enough for all of the information being returned about the file or unpredictable
results can occur. The data set information block buffer must be large enough to
contain the flags field and any fields that have been set, as indicated by the flags
field (see page 371).

REXX does not check the content of the buffer for valid or printable characters.
Any hexadecimal characters may be passed.

The buffers that the I/O routine returns are reserved for use by the environment
block (ENVBLOCK) under which the original I/O request was made. The buffer
should not be used again until:

• A subsequent I/O request is made for the same environment block, or

• The I/O routine is called to terminate the environment represented by the
environment block (TERM function), in which case, the I/O buffers are freed
and the storage is made available to the system.

Any replaceable I/O routine must conform to this procedure to ensure that the exec
that is currently executing will access valid data.

370 TSO/E Version 2 REXX Reference

~
. ')

/

(

_/

I/O Routine

If you provide your own replaceable I/O routines, your routine must support all of
the functions that the system-supplied I/O routine performs. All open requests must
open the specified file. However, for an open request, your replaceable I/O routine
need only fill in the data set information block fields for the logical record length
(LRECL) and its corresponding flag bit. These fields are DSIB_LRECL and
DSIB_LRECL_FLAG. The language processor needs these two fields to determine
the line length being used for its write operations. The language processor will
format all of its output lines to the width that is specified by the LRECL field.
Your routine can specify a LRECL (DSIB_LRECL field) of 0, which means that the
language processor will format its output using a width of 80 characters, which is the
default.

When the I/O routine is called with the TERM function, all buffers are freed.

Line Number Parameter
The line number parameter (parameter 5) is not used for the INIT, OPENR,
OPENW, OPENX, TERM, or CLOSE functions. It is used as an input parameter
for the WRITE function and as an output parameter for the READ and READX
functions.

If you are writing to a DD that is opened for update, you can use this parameter to
verify the record being updated. The parameter must be either:

• A non-zero number that is checked against the record number of the last record
that was read for update. This ensures that t4e correct record is updated. If the
record numbers are identical, the record is µpdated. If not, the record is not
written and a return code of 20 is returned.

• 0 -- No record verification is done. The last record that was read is
unconditionally updated.

If you are writing to a DD that is opened for output, the line number parameter is
ignored.

On output for the READ or READX functions, the parameter returns the absolute
record number of the last logical record that was read.

Data Set Information Block
The data set information block is a control block that contains information about a
file that the I/O replaceable routine opens. For an OPENR, OPENW, or OPENX
function request, the I/O routine returns the address of the data set information
block in parameter 3. TSO/E provides a mapping mllcro IRXDSIB you can use to
map the block. The mapping macro is in SYSLMACLIB.

Figure 72 on page 372 shows the format of the control block.

Chapter 16. Replaceable Routines and Exits 371

1/0 Routine

Figure 72 (Page 1 of 2). Format of the Data Set Information Block
(~

Offset Number Field Name Description
(Decimal) of Bytes

0 8 ID An eight character string that identifies
the information block. It contains the
characters 'IRXDSIB'.

8 2 LENGTH The length of the data set information
block.

10 2 --- Reserved.

12 8 DDNAME An eight character string that specifies
the ddname for which information is
being returned. This is the DD that
the I/O routine opened.

20 4 FLAGS A fullword of bits that are used as (_ .. ,,,,\
flags. Only the first nine bits are used. i

The remaining bits are reserved.

The flag bits indicate whether or not
information is returned in the fields at
offset + 24 - offset + 42. Each flag bit
corresponds to one of the remaining
fields in the control block.
Information about how to use the flag
bits and their corresponding fields is
provided after the table.

24 2 LRECL The logical record length (LRECL) of
the data set. This field is required.

Note: The LRECL field and its
corresponding flag bit (at offset + 20)
are the last required fields to be
returned in the data set information
block. The remaining fiel~s are not
required.

/~
26 2 BLKSZ The block size (BLKSIZE) of the data

set.

28 2 DSORG The data set organization (DSORG) of
the data set.

• '0200' - Data set is partitioned.

• '0300' - Data set is partitioned
and unmoveable.

• '4000' - Data set is sequential.
• '4100' - , Data set is sequential and

unmoveable.

/....-..,,.
I)

372 TSO/E Version 2 REXX Reference

1/0 Routine

Figure 72 (Page 2 of 2). Format of the Data Set Information Block

Offset Number Field Name Description
(Decimal) of Bytes

30 2 REC FM The record format (RECFM) of the
data set.

• 'F' - Fixed

• 'FB' - Fixed blocked
• 'V' - Variable
• 'VB' - Variable blocked

32 4 GET_CNT The total number of records read by
the GET macro for this DCB.

36 4 PUT_CNT The total number of records written by
the PUT or PUTX macro for this
DCB.

40 1 IO_MODE The mode in which the DCB was
opened.

• 'R' - open for READ (uses GET
macro)

• 'X' - open for READX (update
uses GET and PUTX macros)

• 'W' - open for WRITE (uses
PUT macro)

• 'L' - open for exec load (uses
READ macro)

41 1 cc Carriage control information.

• 'A' - ANSI carriage control

• 'M' - machine carriage control
• ' ' - no carriage control

42 1 TRC IBM 3800 Printing Subsystem
character set control information.

• 'Y' - character set control
characters are present

• 'N' - character set control
characters are not present

43 1 --- Reserved.

44 4 --- Reserved.

At offset + 20 in the data set information block, there is a fullword of bits that are
used as flags. Only the first nine bits are used. The remaining bits are reserved.
The bits are used to indicate whether or not information is returned in each field in
the control block starting at offset + 24. A bit must be set on if its corresponding
field is returning a value. If the bit is set off, its corresponding field is ignored.

Chapter 16. Replaceable Routines and Exits 373

1/0 Routine

The flag bits are:

• The LRECL flag. This bit must be on and the logical record length must be
returned at offset + 24. The logical record length is the only data set attribute
that is required. The remaining eight attributes starting at offset + 26 in the
control block are optional.

• The BLKSIZE flag. This bit must be set on if you are returning the block size
at offset + 26.

• The DSORG flag. This bit must be set on if you are returning the data set
organization at offset + 28.

• The RECFM flag. This bit must be set on if you are returning the record
format at offset + 30.

• The GET flag. This bit must be set on if you are returning the total number of
records read at offset + 32.

• The PUT flag. This bit must be set on if you are returning the total number of
records written at offset + 36.

• The MODE flag. This bit must be set on if you are returning the mode in which
the DCB was opened at offset + 40.

• The CC flag. This bit must be set on if you are returning carriage control
information at offset + 41.

• The TRC flag. This bit must be set on if you are returning IBM 3800 Printing
Subsystem character set control information at offset + 42.

Return Specifications
For the 1/0 routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Return Codes
Figure 73 on page 375 shows the return codes for the 1/0 routine.

374 TSO/E Version 2 REXX Reference

I u

1/0 Routine

Figure 73. Return Codes for the I/O Replaceable Routine

Return Description
Code

0 Processing was successful. The requested function completed.

For an OPENR, OPENW, or OPENX request, the DCB was
successfully opened. The I/O routine returns the address of an area of
storage that contains information about the file. The address is
returned in the buff er address parameter (parameter 2). You can use
the IRXDSIB mapping macro to map this area.

4 Processing was successful. For a READ, READX, or WRITE, the
DCB was opened.

8

12

16

20

28

For an OPENR, OPENW, or OPENX, the DCB was already open in
the requested mode. The I/O routine returns the address of an area of
storage that contains information about the file. The address is
returned in the buffer address parameter (parameter 2). You can use
the IRXDSIB mapping macro to map this area.

This return code is used only for a READ or READX function.
Processing was successful. However, no record was read because the
end-of-file (EOF) was reached.

An OPENR, OPENW, or OPENX request was issued and the DCB
was already open, but not in the requested mode. The I/O routine
returns the address of an area of storage that contains information
about the file. The address is returned in the buffer address
parameter (parameter 2). You can use the IRXDSIB mapping macro
to map this area.

Output data was truncated for a write or update operation (WRITE
function). The I/O routine returns the length of the data that was
actually written in parameter 3.

Processing was not successful. The requested function is not
performed. One possibility is that a DD name was not specified. An
error message that describes the error is also issued.

Processing was not successful. A language processor environment
could not be located.

Chapter 16. Replaceable Routines and Exits 375

Host Command Environment Routine

Host Command Environment Routine
The host command environment replaceable routine is called to process all host
commands for a specific host command environment (see page 23 for the definition
of "host commands"). A REXX exec may contain host commands to be executed.
When the language processor executes an expression that it does not recognize as a
keyword instruction or function, it evaluates the expression and then passes the
string to the active host command environment. A specific environment is in effect
when the command is executed. The host command environment table
(SUBCOMTB table) is searched for the name of the active host command
environment. The corresponding routine specified in the table is then called to
process the string. For each valid host command environment, there is a
corresponding routine that processes the command.

In an exec, you can use the ADDRESS instruction to route a command string to a
specific host command environment and therefore to a specific host command
environment replaceable routine.

The names of the routines that are called for each host command environment are
specified in the ROUTINE field of the host command environment table. "Host
Command Environment Table" on page 291 describes the table.

You can provide your own replaceable routine for any one of the default
environments provided. You can also define your own host command environment
that handles certain types of "host commands" and provide a routine that processes
the commands for that environment.

Entry Specifications

Parameters

For a host command environment routine, the contents of the registers on entry are
described below. For more information about register 0, see "General
Considerations" on page 356.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13

Register 14

Register 15

Address of a register save area

Return address

Entry point address

Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All parameters
are passed on the call. The high order bit of the last address in the parameter list is
set to 1 to indicate the end of the parameter list. Figure 74 describes the parameters
for a host command environment replaceable routine.

376 TSO/E Version 2 REXX Reference

~\
I }

(~
J

Host Command Environment Routine

Figure 74. Parameters for a Host Command Environment Routine

Parameter Number Description
of Bytes

Parameter 1 8 The name of the host command environment that is
to process the string. The name is left justified, in
uppercase, and padded to the right with blanks.

Parameter 2 4 Specifies the address of the string to be processed.
REXX does not check the contents of the string for
valid or printable characters. Any characters can
be passed to the routine. REXX obtains and frees
the storage required to contain the string.

Parameter 3 4 Specifies the length of the string to be processed.

Parameter 4 4 Specifies the address of the user token. The user
token is a sixteen byte field in the SUBCOMTB
table for the specific host command environment.
"Host Command Environment Table" on page 291
describes the user token field.

Parameter 5 4 Contains the return code of the host command that
was executed. This parameter is used only on
output. The value is a signed binary number.

After the host command environment replaceable
routine returns the value, REXX converts it into a
character representation of its equivalent decimal
number. The result of this conversion is placed into
the REXX special variable RC and is available to
the exec that invoked the command. Positive
binary numbers are represented as unsigned decimal
numbers. Negative binary numbers are represented
as signed decimal numbers. For example:

• If the command's return code is
X' FFFFFF3E', the special variable RC
contains -193.

• If the command's return code is X' OOOOOOOC',
the special variable RC contains 12.

If you provide your own host command
environment routines, you should establish a
standard for the return codes that your routine
dssues and the contents of this parameter. If a
standard is used, execs that issue commands to a
particular host command environment can check
for errors in command execution using consistent
REXX instructions.

Chapter 16. Replaceable Routines and Exits 377

Host Command Environment Routine

Error Recovery
When the host command environment routine is called, an error recovery routine
(EST AE) is in effect. The one exception is if the language processor environment
was initialized with the NO EST AE flag set on. In this case, an EST AE is not in
effect unless the host command environment replaceable routine establishes its own
ESTAE.

Unless the replaceable routine establishes its own EST AE, REXX will trap all
abends that occur. This includes abends that occur in any routines that are loaded
by the host command environment replaceable routine to process the command to
be executed. If an abend occurs and the host command environment routine has not
established a new level of EST AE, REXX will:

• Issue message IRX0250E if a system abend occurred or message lRX0251E if a
user abend occurred

• Issue message IRX025 5E

The language processor will be restarted with a FAILURE condition enabled. See
Chapter 7, "Conditions and Condition Traps" for information about conditions and
condition traps. The special variable RC will be set to the decimal equivalent of the
abend code as described in Figure 74 on page 376 for the return code parameter
(parameter 5).

Return Specifications
For a host command environment routine, the contents of the registers on return
are:

Registers 0-14 Same as on entry

Register 15 Return code

378 TSO/E Version 2 REXX Reference

(~
)

! .
~/

Return Codes

Host Command Environment Routine

Figure 75 shows the return codes for the host command environment routine. These
are the return codes from the replaceable routine itself, not from the command that
is executed. The command's return code is passed back in parameter 5. See
Chapter 7, "Conditions and Condition Traps" for information about ERROR and
FAILURE conditions and condition traps.

Figure 75. Return Codes for the Host Command Environment Routine

Return Code Description

s-13 If the value of the return code is -13 or less than -13, the
routine requested that the HOSTF AIL flag be turned on.
This is a TRACE NEGATIVE condition and a FAILURE
condition is trapped in the exec.

-1 - -12 If the value of the return code is from -1 to -12 inclusive, the
routine requested that the HOSTERR flag be turned on. This
is a TRACE ERROR condition and an ERROR condition is
trapped in the exec.

0 No error condition was indicated by the routine. No error
conditions are trapped (for example, to indicate a TRACE
condition).

1 12 If the value of the return code is 1 - 12 inclusive, the routine
requested that the HOSTERR flag be turned on. This is a
TRACE ERROR condition and an ERROR condition is
trapped in the exec.

~13 If the value of the return code is 13 or greater than 13, the
routine requested that the HOSTF AIL flag be turned on.
This is a TRACE NEGATIVE condition and a FAIL URE
condition is trapped in the exec.

Chapter 16. Replaceable Routines and Exits 379

Data Stack Routine

Data Stack Routine
The data stack routine is called to handle any requests for data stack services. The
routine is called when an exec wants to perform a data stack operation or when a
program needs to execute data stack-related operations. The routine is called for the
following:

• PUSH
• PULL
• QUEUE
• QUEUED()
• MAKEBUF
• DROPBUF
• NEWSTACK
• DELSTACK
• QSTACK
• QBUF
• QELEM
• MARKTERM
• DROPTERM

The name of the system-supplied data stack routine is IRXSTK. If you provide
your own replaceable data stack routine, your routine cannot share the data stack
with the system-supplied routine. This is because the format of the data stack is
internal to TSO/E. However, you can check the data stack request in your own
routine and then always call the system routine IRXSTK. You can also call
IRXSTK from any program to operate on the data stack. The only requirement is
that a language processor environment has been initialized.

For IRXSTK, if the routine is called to PULL an element off the data stack and the
data stack is empty, a return code is set that indicates an empty data stack. In this
case, PULL does not read from the terminal.

If the routine is called and a data stack is not available, all services operate as if the
data stack were empty. A PUSH or QUEUE instruction will seem to work, but the
pushed or queued data is lost. The QST ACK command will return a 0. The
NEWSTACK command will seem to work, but a new data stack will not be created
and any subsequent data stack functions will operate as if the data stack is
permanently empty.

The maximum string that can be placed on the data stack is one byte less than 16
megabytes. REXX does not check the content of the string, so the string can
contain any hexadecimal characters.

If multiple data stacks are associated with a single language processor environment,
all data stack operations are performed on the last data stack that was created under
the environment. If a language processor environment is initialized with the
NOSTKFL flag off, a data stack is always available to execs that execute in that
environment. The language processor environment may not have its own data stack.
It may share the data stack with its parent environment depending on the setting of
the NEWSTKFL flag when the environment is initialized.

380 TSO/E Version 2 REXX Reference

~
' 1

I

/~
\

!~
)

Entry Specifications

Parameters

Data Stack Routine

If the NEWSTKFL flag is on, a new data stack is initialized for the new
environment. If the NEWSTKFL flag is off and a previous environment on· the
chain of environments was initialized with a data stack, the new environment shares
the data stack with the previous environment on the chain. "Using the Data Stack
in Different Environments" on page 334 describes how the data stack is shared
between language processor environments.

The name of the data stack replaceable routine is specified in the STACKRT field in
the module name table. "Module Name Table" on page 286 describes the format of
the module name table.

For a data stack replaceable routine, the contents of the registers on entry are
described below. For more information about register 0, see "General
Considerations" on page 356.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All parameters
are passed on the call. The high order bit of the last address in the parameter list is
set to 1 to indicate the end of the parameter list. Figure 76 describes the parameters
for a data stack routine.

Figure 76 (Page 1 of 2). Parameters for the Data Stack Routine

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The function name
is left justified, in uppercase, and padded to the
right with blanks. The valid functions are:

PUSH PULL
QUEUE QUEUED
MAKEBUF DROPBUF
NEWSTACK DELSTACK
QSTACK QBUF
QELEM MARKT ERM
DROPTERM

"Functions Supported for the Data Stack Routine"
on page 382 describes the functions in more detail.

Chapter 16. Replaceable Routines and Exits 381.

Data Stack Routine

Figure 76 (Page 2 of 2). Parameters for the Data Stack Routine

Parameter Number Description
of Bytes

Parameter 2 4 Specifies the address of a fullword in storage that
points to a data stack element, a parameter string,
or a fullword of zeroes. The use of this parameter
depends on the function requested. If the function
is DROPBUF, it points to a character string
containing the number of the data stack buffer from
which to start deleting data stack elements.

If the function is a function that places an element
on the data stack (for example, PUSH), the address
points to a string of bytes that the caller wants to
place on the data stack. There are no restrictions
on the string. It can contain any combination of
hexadecimal characters.

For PULL, this parameter is not used on input. On
output, it specifies the address of the string that was
pulled off the data stack. The caller must
immediately copy the original string into its own
dynamic storage. The original string must not be
changed. In addition, the original string will no
longer be valid when another data stack operation
is performed.

Parameter 3 4 Specifies the length of the string pointed to by the
address in parameter 2.

Parameter 4 4 A fullword binary number into which the return
code from the call is stored. The value is the result
of the function performed and is valid only when
the return code from the routine is 0. For more
information about the return codes that can be set,
see the descriptions of the supported functions
below and the individual descriptions of the data
stack commands in this book.

Functions Supported for the Data Stack Routine
The function to be performed by the data stack routine is passed in parameter 1.
The valid functions are described below. The functions operate on the currently
active data stack.

PUSH
Adds an element to the top of the data stack.

PULL
Retrieves an element off the top of the data stack.

QUEUE
Adds an element at the logical bottom of the data stack. If there is a buffer on
the data stack, the element is placed immediately above the buffer.

QUEUED
Returns the number of elements on the data stack, not including buffers.

382 TSO/E Version 2 REXX Reference

' ' { '

~J

(

_,;'

Data Stack Routine

MAKEBUF
Places a buffer on the top of the data stack. The return code from the data
stack routine is the number of the new buffer. The data stack initially contains
one buffer (buffer 0), but MAKEBUF can be used to create additional buffers
on the data stack. The first time MAKEBUF is executed for a data stack, the
value I is returned.

DROPBUF n
Removes all elements from the data stack starting from the "n"th buffer. All
elements that are removed are lost. If n is not specified, the last buffer that was
created and all subsequent elements that were added are deleted.

For example, if MAKEBUF was issued six times (that is, the last return code
from the MAKEBUF function was 6), and the command

DROPBUF 2

is executed, five buffers are deleted. These are buffers 2, 3, 4, 5, and 6.

DROPBUF 0 removes everything from the currently active data stack.

NEWSTACK
Creates a new data stack. The previously active data stack can no longer be
accessed until a DELST ACK is executed.

DELSTACK
Deletes the currently active data stack. All elements on the data stack are lost.
If the active data stack is the primary data stack (that is, only one data stack
exists and a NEWSTACK was not issued), all elements on the data stack are
deleted, but the data stack is still operational.

QSTACK
Returns the number of data stacks that are available to the executing RE:XX
exec.

QBUF
Returns the number of buffers on the active data stack. If the data stack
contains no buffers, a 0 is returned.

QELEM
Returns the number of elements from the top of the data stack to the next
buffer. If QBUF 0, then QELEM = 0.

MARKTERM
Marks the top of the active data stack with the equivalent of a TSO/E terminal
element, which is an element for the TSO/E input stack. The data stack now
functions as if it were just initialized. The previous data stack elements cannot
be accessed until a DROPTERM is issued.

MARKTERM is available only to calling programs to put a barrier on the data
stack. It is not available to REXX execs.

DROPTERM
Removes all data stack elements that were added after a MARKTERM was
issued, including the terminal element created by MARKTERM. The data stack
status is restored to the same status prior to the MARKTERM.

Chapter 16. Replaceable Routines and Exits 383

Data Stack Routine

DROPTERM is available only to calling programs to put a barrier on the data
stack. It is not available to REXX execs.

Note: The MARKTERM and DROPTERM functions are used by TSO/E and
ISPF to coordinate access to the data stack. Installation-provided routines must not
use the MARKTERM and DROPTERM functions because it can cause problems
with the coordination of the data stack between TSO/E and ISPF.

Return Specifications

Return Codes

For the data stack routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Figure 77 shows the return codes for the data stack routine. These are the return
codes from the routine itself. They are not the return codes from any of the TSO/E
REXX commands, such as NEWST ACK, DELST ACK, and QBUF that are
executed. The command's return code is placed into the REXX special variable RC,
which the exec can retrieve.

Figure 77. Return Codes for the Data Stack Replaceable Routine

Return Description
Code

0 Processing was successful. The requested function completed.

4 The data stack is empty. A return code of 4 is used only for the
PULL function.

8 A terminal marker, created by the MARKTERM function, was not
on the active data stack. A return code of 8 is used only for the
DROPTERM function.

20 Processing was not successful. An error condition occurred. The
requested function is not performed. An error message that describes
the error is also issued.

28 Processing was not successful. A language processor environment
could not be located.

384 TSO/E Version 2 REXX Reference

/~
1
I

Storage Management Routine

Storage Management Routine
REXX storage routines handle storage and have pools of storage available to satisfy
storage requests for REXX processing. If the pools of storage available to the
REXX storage routines are depleted, the routines then call the storage management
routine to request more storage.

You can provide your own storage management routine that interfaces with the
REXX storage routines. If you provide your own storage management routine,
when the pools of storage are depleted, the REXX storage routines will call your
storage management routine for storage. If you do not provide your own storage
management routine, GETMAIN and FREEMAIN are used to handle storage
requests. Providing your own storage management routine gives you an alternative
to the system using GETMAIN and FREEMAIN.

The storage management routine is called to obtain or free storage for REXX
processing. The routine supplies storage that is then managed by the REXX storage
routines.

The storage management routine is called when:

• REXX processing requests storage and a sufficient amount of storage is not
available in the pools of storage the REXX storage routines use

• Storage needs to be freed. Storage may need to be freed when a language
processor environment is terminated or when the REXX storage routines
determine that a particular block of storage can be freed.

Specify the name of the storage management routine in the GETFREER field in the
module name table. "Module Name Table" on page 286 describes the format of the
module name table.

Entry Specifications

Parameters

For the storage management replaceable routine, the contents of the registers on
entry are described below. For more information about register 0, see "General
Considerations" on page 356.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Register I contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All parameters
are passed on the call. The high order bit of the last address in the parameter list is
set to 1 to indicate the end of the parameter list. Figure 78 describes the parameters
for the storage management routine.

Chapter 16. Replaceable Routines and Exits 385

Storage Management Routine

Figure 78. Parameters for the Storage Management Replaceable Routine

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The name is left
justified, in uppercase, and padded to the right with
blanks. The following functions are valid:

GET
Obtain storage above 16 megabytes in virtual
storage

GETLOW
Obtain storage below 16 megabytes in virtual
storage .

FREE
Free storage

Parameter 2 4 Specifies the address of storage. This parameter is
required as an input parameter for the FREE
function. It specifies the address of stora~e the
routine should free.

This parameter is used as an output parameter for
the GET and GETLOW functions. It specifies the
address of storage the routine obtained.

Parameter 3 4 Specifies the length· of storage to be freed ()r th~t
was obtained. On input for the FREE function,
this specifies the length of the storage to be freed.
This is the length of the storage pointed to by
parameter 2.

On output for the GET and GETLOW fµnctions, it
specifies the length of storage the routine obtained.

Parameter 4 4 Specifies the length of storage to be obtained. This
parameter is used as an input parameter for the
GET and GETLOW functions. It specifies the
length of storage that is being requested. The
length of storage that is actually obtained is
returned in parameter 3.

This parameter is not used for the FREE function.

The TSO/E storage routines will use the length
returned in parameter 3.

Parameter 5 4 Specifies the subpool number from which storage
should be obtained. This parameter is used as inpµt
for all functions.

386 TSO/E Version 2 REXX Reference

;~
)

(~
I

I
\ !

~

Storage Management Routine

Return Specifications

Return Codes

For the storage management replaceable routine, the contents of the registers on
return are:

Registers 0-14 Same as on entry

Register 15 Return code

Figure 79 shows the return codes for the storage management routine.

Figure 79. Return Codes for the Storage Management Replaceable Routine

Return Description
Code

0 Processing was successful. The requested function completed.

20 Processing was not successful. An error condition occurred. Storage
was not obtained or freed. An error message that describes the error
is also issued.

Chapter 16. Replaceable Routines and Exits 387

User ID Routine

User ID Routine

Entry Specifications

Parameters

The user ID replaceable routine is called to obtain the user ID. The routine is called
whenever an exec issues the USERID built-in function. The result that the routine
returns is returned by the USERID function. The name of the system-supplied user
ID routine is IRXUID.

The user ID replaceable routine is called for the USERID built-in function when:

• An exec executes in a non-TSO/E address space, or

• An exec executes in the TSO/E address space in a language processor
environment that is not integrated into TSO/E (the TSOFL flag is off).

The name of the user ID replaceable routine is specified in the IDROUT field in the
module name table. "Module Name Table" on page 286 describes the format of the
module name table.

For the user ID replaceable routine, the contents of the registers on entry are
described below. For more information about register 0, see "General
Considerations" on page 356.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All parameters
are passed on the call. The high order bit of the last address in the parameter list is
set to 1 to indicate the end of the parameter list. Figure 80 on page 389 describes
the parameters for the user ID routine.

388 TSO/E Version 2 REXX Reference

User ID Routine

Figure 80. Parameters for the User ID Replaceable Routine

Parameter Number Description
of Bytes

Parameter 1 8 The function to be performed. The name is left
justified, in uppercase, and padded to the right with
blanks. The only valid function is USERID.

Parameter 2 4 Specifies an address of storage into which the
routine places the user ID. On output, the area
that this address points to contains a character
representation of the user ID.

Parameter 3 4 Specifies the length of storage pointed to by the
address in parameter 2. On input, this value is the
maximum length of the area that is available to
contain the ID. The length supplied is 160 bytes.

The routine must change this parameter and return
the actual length of the character string it returns.
If the routine returns a 0, the USERID built-in
function returns a null value.

If the routine copies more characters into the
storage area than the storage provided, RE.XX will
probably abend and any results will be
unpredictable.

Return Specifications
For the user ID replaceable routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

Return Codes
Figure 81 shows the return codes for the user ID routine.

Figure 81. Return Codes for the User ID Replaceable Routine

Return Description
Code

0 Processing was successful. The user ID was returned or a null
character string was returned.

20 Processing was not successful. Either parameter 1 (function) was not
valid or parameter 3 (length) was less than or equal to 0. The user ID
was not obtained.

28 Processing was not successful. The language processor environment
could not be located.

!
~/

Chapter 16. Replaceable Routines and Exits 389

Message Identifier Routine

Message Identifier Routine
The message identifier replaceable routine is called to determine if the message
identifier (message ID) is to be displayed with an error message. The name of the
system-supplied message identifier routine is IRXMSGID.

Note: To permit FORTRAN programs to call IRXMSGID, TSO/E provides an
alternate entry point for the IRXMSGID routine. The alternate entry point name is
IRXMID.

The routine is called whenever a message is to be written when a RE.XX exec or
RE.XX routine (for example, IRXEXCOM or IRXIC) is executing in:

• A non-TSO/E address space, or

• The TSO/E address space in a language processor environment that was not
integrated into TSO/E (the TSOFL flag is off).

The name of the message identifier replaceable routine is specified in the MSGIDRT
field in the module name table. "Module Name Table" on page 286 describes the
format of the module name table.

Entry Specifications

Parameters

For the message identifier routine, the contents of the registers on entry are
described below. For more information about register 0, see "General
Considerations" on page 356.

Register 0 Address of the current environment block

Registers 1-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

There is no parameter list for the message identifier routine. Return codes are used
to return information to the caller.

Return Specifications

Return Codes

For the message identifier replaceable routine, the contents of the registers on return
are:

Registers 0-14 Same as on entry

Register 15 Return code

Figure 82 shows the return codes for the message identifier routine.

Figure 82. Return Codes for the Message Identifier Replaceable Routine

Return Code Description

0 Display the message identifier (message ID) with the message.

Non-zero Do not display the message identifier (message ID) with the
message.

390 TSO/E Version 2 REXX Reference

/~
)

/~
I

Exit Routines

REXX Exit Routines
There are many exit routines you can use to customize REXX processing. The exits
differ from other exit routines that TSO/E provides, such as exits for command
processors. Some of the REXX exits have fixed names while others you name
yourself. Several exits receive parameters on entry and others receive no parameters.

Generally, you use exit routines to customize a particular command or function on a
system-wide basis. You use the REXX exits to customize different aspects of REXX
processing on a language processor environment basis. The following highlights the
exits you can use for REXX. TSO/E Version 2 Customization describes the exits in
more detail. However, many of the exits receive the parameters that a caller passed
on a call to a REXX routine, such as IRXINIT and IRXEXEC. Therefore, you will
need to use both the TSO/E Version 2 Customization book and this book for
complete information.

Exits for Language Processor Environment Initialization and Termination
There are four exits you can use to customize the initialization and termination of
language processor environments in any address space. The names of these four
exits are fixed. If you provide one or more of these exits, the exit will be invoked
whenever the IRXINIT and IRXTERM routines are called. The exits are called
when IRXINIT and IRXTERM are explicitly called by a user or when the routines
are automatically called by the system to initialize and terminate a language
processor environment. The exits are briefly described below. TSO/E Version 2
Customization provides more information about each exit. Chapter 15,
"Initialization and Termination Routines" on page 339 describes the IRXINIT and
IRXTERM routines and their parameters.

IRXINITX
This is the pre-environment initialization exit routine. The exit is called
whenever the initialization routine IRXINIT is called to initialize a new
language processor environment. The exit receives control before IRXINIT
evaluates any parameters to use to initialize the environment. The exit routine
receives the same parameters that IRXINIT receives.

IRXITTS or IRXITMV
There are two post-environment initialization exit routines:

• IRXITTS for environments that are integrated into TSO/E (the TSOFL flag
is on)

• IRXITMV for environments that are not integrated into TSO/E (the TSOFL
flag is off).

The IRXITTS exit is called whenever IRXINIT is called to initialize a new
environment and the environment is to be integrated into TSO/E. The
IRXITMV exit is called whenever IRXINIT is called to initialize a new
environment and the environment is not to be integrated into TSO/E. The exits
receive control after IRXINIT has initialized the language processor
environment and has created the control blocks for the environment, such as the
environment block and the parameter block. The exits do not receive any
parameters.

IRXTERMX
This is the environment termination exit routine. The exit is called whenever the
termination routine IRXTERM is called to terminate a language processor
environment. The exit receives control before IRXTERM terminates the
environment. The exit does not receive any parameters.

Chapter 16. Replaceable Routines and Exits 391

Exit Routines

Exec Initialization and Termination Exits
You can provide exits for exec initialization and termination. The exec initialization
exit is invoked after the variable pool for a REXX exec has been initialized, but
before the language processor processes the first instruction in the exec. The exec
termination exit is invoked after a REXX exec has completed, but before the
variable pool for the exec has been terminated.

The exec initialization and termination exits do not have fixed names. You name
the exits yourself and must supply the names in the following fields in the module
name table:

• EXECINIT - for the exec initialization exit
• EXECTERM - for the exec termination exit

The two exits are used on a language processor environment basis. You can provide
the exit names in the module name table by:

• Providing your own parameters module that replaces the default module, or

• Calling IRXINIT to initialize a language processor environment and passing the
module name table on the call.

"Changing the Default Values for Initializing an Environment" on page 310
describes how to provide your own parameters module. Chapter 15, "Initialization
and Termination Routines" on page 339 describes the IRXINIT routine.

IRXEXEC Exit Routine
You can provide an exit that is invoked whenever the IRXEXEC routine is invoked
to execute a REXX exec. The IRXEXEC routine can be explicitly called by a user
or called by the system to execute an exec. IRXEXEC is always called by the system
to handle exec execution. For example, if you execute a REXX exec in TSO/E using
the EXEC command, the IRXEXEC routine is invoked to execute the exec. If you
provide an exit routine for IRXEXEC, the exit will be invoked.

The exit for the IRXEXEC routine does not have a fixed name. You name the exit
yourself and must supply the name in the IRXEXECX field in the module name
table.

The exit is used on a language processor environment basis. You can provide the
exit name in the module name table by:

• Providing your own parameters module that replaces the default module, or

• Calling IRXINIT to initialize a. language processor environment and passing the
module name table on the call.

"Changing the Default Values for Initializing an Environment" on page 310
describes how to provide your own parameters module. Chapter 15, "Initialization
and Termination Routines" on page 339 describes the IRXINIT routine.

The exit is invoked before the IRXEXEC routine loads the exec, if the exec is not
preloaded, and before IRXEXEC evaluates any parameters passed on the call.

392 TSO/E Version 2 REXX Reference

!~
I

/~
I

I

/~
J

Exit Routines

Attention Handling Exit Routine
You can provide an attention handling exit routine that is invoked whenever an exec
is executing in the TSO/E address space (in a language processor environment that is
integrated into TSO/E) and an attention interruption occurs. The exit does not have
a fixed name. You name the exit yourself and must supply the name in the
ATTNROUT field in the module name table. You can only provide an attention
handling exit in the TSO/E address space for an environment that is integrated into
TSO/E (the TSOFL flag is on).

The exit is used on a language processor environment basis. You can provide the
exit name in the module name table by:

• Providing your own parameters module that replaces the default IRXTSPRM or
IRXISPRM module, or

• Calling IRXINIT to initialize a language processor environment and passing the
module name table on the call.

"Changing the Default Values for Initializing an Environment" on page 310
describes how to provide your own parameters module. Chapter 15, "Initialization
and Termination Routines" on page 339 describes the IRXINIT routine.

The exit is invoked when a REXX exec is executing and the user presses the
attention interrupt key (usually the PAI key). The exit gets control before attention
handling issues a message that lets the user enter a null line to continue exec
execution or one of the immediate commands. The attention handling exit is useful
if your installation users basically use panels and are unfamiliar with TSO/E
READY mode. You can write an exit that contains the EXECUTIL HI command,
which halts the interpretation of the exec. The exit can then log the user off.

Chapter 16. Replaceable Routines and Exits 393

/~
I

/~
j

394 TSO/E Version 2 REXX Reference

Appendix A. Error Numbers and Messages

The error numbers produced by syntax errors during processing of REXX execs are
in the range 3-49. These error numbers correspond to the TSO/E REXX messages
IRX0003 - IRX0049. For example, error 26 corresponds to message number
IRX0026. The error number (3-49) is also the value that is placed in the REXX
special variable RC when SIGNAL ON SYNTAX event is trapped.

Three of the error messages can be generated by the external interfaces to the
language processor either before the language processor gains control or after
control has left the language processor. Therefore these errors cannot be trapped by
SIGNAL ON SYNTAX. The error numbers involved are:

• 3 (IRX0003)

• 5 (IRX0005) if the initial requirements for storage could not be met

• 26 (IRX0026) if, on exit, the returned string could not be converted to form a
valid return code.

Similarly, error 4 (IRX0004) can be trapped only by SIGNAL ON HALT.

In addition to the syntax error messages that are described in this appendix, the
system may issue other types of error messages. For information about these
messages, see one of the appropriate publications:

• TSO/E Version 2 Messages

• MVS/ESA Message Library: System Messages Volumes 1 and 2

• MVS/XA Message Library: System Messages Volumes 1 and 2

IRX0003I Error running execname, line nn: Program
is unreadable

Explanation: The exec could not be read. The
most likely reason for this error is if you called
IRXEXEC and passed a pre-loaded exec that
was in error. The language processor could
not read the format of the exec.

System Action: Exec processing terminates.

User Response: Check the format of the exec
you are passing or contact your system
programmer for assistance.

Audience: REXX user

Detected & Issued by: Language processor

IRX0004I Error running execname, line nn: Program
interrupted

Explanation: The system interrupted execution
of the exec. Usually this is due to your issuing
the HI (halt interpretation) immediate
command or EXECUTIL HI. The message
can also be issued if another error occurred
and. exec processing was terminated. In this
case, the message explaining the error is issued,

followed by this message stating that the
program was interrupted.

System Action: Exec processing terminates.

User Response: If you issued an HI command
or EXECUTIL HI, continue as planned.
Otherwise, if an error caused exec processing to
terminate, check the other error message and
correct the problem.

Audience: REXX user

Detected & Issued by: Language processor

IRX0005I Machine storage exhausted

Explanation: While attempting to process an
exec, the language processor was unable to get
the storage needed for its work areas and
variables. This may have occurred because a
program that called IRXEXEC or an exec has
already used up most of the available storage
itself, or because a program or exec did not
terminate properly, but instead, went into a
loop.

System Action: Exec processing terminates.

Appendix A. Error Numbers and Messages 395

User Response: If a program invoked
IRXEXEC, check how the program obtains
and frees storage. Also, check whether the
program or exec is looping. Contact your
system programmer for assistance.

Audience: REXX user

Detected & Issued by: Language processor

IRX0006I Error running execname, line nn:
Unmatched "/*" or quote

Explanation: The language processor reached
the end of the file (or the end of data in an
INTERPRET statement) without finding the
ending "* /" for a comment or the ending quote
for a literal string.

System Action: Exec processing terminates.

User Response: Edit the exec and add the
closing "*/".or quote. You can also insert a
TRACE SCAN statement at the top of your
program and rerun it. The resulting output
should show where the error exists.

Audience: REXX user

Detected & Issued by: Language processor

IRX0007I Error running execname, line nn: WHEN or
OTHERWISE expected

Explanation: The language processor expects a
series of WHEN s and an OTHER WISE within
a SELECT statement. This message is issued
when any other instruction is found or if all
WHEN expressions are found to be false and
an OTHER WISE is not present. The error is
often caused by forgetting the DO arid END
instructions around the list of instructions
following a WHEN. For example:

WRONG

Select
When a=b then

Say 1A equals B1

exit
Otherwise nop
end

RIGHT

Select
When a=b then DO

Say 1A equals B1

exit
end

Otherwise nop
end

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

396 TSO/E Version 2 REXX Reference

IRXOOOSI Error running execname, line nn:
Unexpected THEN or ELSE

Explanation: The language processor found a
THEN or an ELSE that does not match a
corresponding IF clause. This situation is
often caused by forgetting to put an END or
DO-END in the THEN part of a complex
IF-THEN-ELSE construction. For example:

WRONG RIGHT

If a=b then do;
Say EQUALS
exit

else
Say NOT EQUALS

If a=b then do;
Say EQUALS
exit
end

else
Say NOT EQUALS

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00091 Error running execname, line nn:
Unexpected WHEN or OTHERWISE

Explanation: The language processor found a
WHEN or OTHERWISE instruction outside of
a SELECT construction. You may have
accidentally enclosed the instruction in a
DO-END construction by leaving off an END
instruction, or you may have tried to branch to
it with a SIGNAL statement, which cannot
work because the SELECT is then terminated.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRXOOlOI Error running execname, line nn:
Unexpected or unmatched END

Explanation: The language processor found
more END statements in your exec than DO or
SELECT statements, or the ENDs were placed
so that they did not match the DOs or
SELECTs. This message can occur if you try
to signal into the middle of a loop. In this
case, the END will be unexpected because the
previous DO will not have been executed.
Remember also, that SIGNAL terminates any
current loops, so it cannot be used to jump
from one place inside a loop to another.

This message can also occur if you place an
END immediately after a THEN or ELSE
construction.

System Action: Exec processing terminates.

!~
' }

!~
' I

! I
_/

User Response: Make the necessary
corrections in the exec. It may be helpful to
use TRACE SCAN to show the structure of
the exec and make it more obvious where the
error is. Putting the name of the control
variable on END statements that close
repetitive loops can also help you locate this
kind of error.

Audience: REXX user

Detected & Issued by: Language processor

IRXOOl ll Error running execname, line nn: Control
stack full

Explanation: This message is issued if you
exceed the limit of 250 levels of nesting of
control structures (DO-END, IF-THEN-ELSE,
etc.).

This message could be caused by a looping
INTERPRET instruction, such as:

line='INTERPRET line'
INTERPRET line

These lines would loop until they exceeded the
nesting level limit and this message would be
issued. Similarly, a recursive subroutine that
does not terminate correctly could loop until it
causes this message.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00121 Error running execname, line nn: Clause >
500 characters

Explanation: You exceeded the limit of 500
characters for the length of the internal
representation of a clause.

If the cause of this message is not obvious to
you, it may be due to a missing quote that has
caused a number of lines to be included in one
long string. In this case, the error probably
occurred at the start of the data included in the
clause traceback (flagged by + + + on the
terminal).

The internal representation of a clause does not
include comments or multiple blanks that are
outside of strings. Note also that any symbol
(name) gains two characters in length in the
internal representation.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00131 Error running execname, line nn: Invalid
character in data

Explanation: The language processor found an
invalid character outside of a literal (quoted)
string. Valid characters are:

• Alphamerics

A-Z a-z 0-9

• Name Characters

@#$?.!_

• Special Characters

&*()-+ =\•"';:<,>/

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00141 Error running execname, line nn:
Incomplete DO /SELECT /IF

Explanation: The language processor reached
the end of the file (or end of data for an
INTERPRET instruction) and found that there
is a DO or SELECT without a matching END,
or an IF that is not followed by a THEN
clause.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec. You can use TRACE
SCAN to show the structure of the program,
thereby making it easier to find where the
missing END or THEN should be. Putting the
name of the control variable on ENDs that
close repetitive loops can also help you locate
this kind of error.

Audience: REXX user

Detected & Issued by: Language processor

IRX00151 Error running execname, line nn: Invalid
hex constant

Explanation: For the language processor,
hexadecimal constants cannot have leading or
trailing blanks and can have imbedded blanks
at byte boundaries only. The following are all
valid hexadecimal constants:

X1 13 1

X'A3C2 lc34'
X1 lde8 1

You may have incorrectly typed one of the
digits, for example, typing a letter o instead of
the number 0 or the letter 1 for number 1. This

Appendix A. Error Numbers and Messages 397

message can also occur if you follow a string
by the I-character symbol X (the name of the
variable X), when the string is not intended to
be taken as a hexadecimal specification. In this
case, use the explicit concatenation operator (l l)
to· concatenate the string to the value of the
symbol.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00161 Error running execname, line nn: Label not
found

Explanation: The language processor could
not find the label specified by a SIGNAL
instruction or a label matching an enabled
condition when the corresponding (trapped)
event occurred. You may have incorrectly
typed the label or forgotten to include it.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX0017I Error running execname, line nn:
Unexpected PROCEDURE

Explanation: The language processor
encountered a PROCEDURE instruction in an
invalid position. This could occur because:

• No internal routines are active

• A PROCEDURE instruction has already
been encountered in the internal routine, or

• The PROCEDURE instruction was not the
first instruction executed after the CALL
or function invocation.

This error can be caused by "dropping
through" to an internal routine, rather than
invoking it with a CALL or a function call.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

398 TSO/E Version 2 REXX Reference

IRX00181 Error running execname, line nn: THEN
expected

Explanation: All IF and WHEN clauses must
be followed by a THEN clause. Another
clause was found before a THEN statement
was found.

System Action: Exec processing terminates.

User Response: Insert a THEN clause between
the IF or WHEN clause and the following
clause.

Audience: REXX user

Detected & Issued by: Language processor

IRX00191 Error running execname, line nn: String or
symbol expected

Explanation: The language processor expected
a symbol following the keywords CALL,
SIGNAL, SIGNAL ON, or SIGNAL OFF but
none was found. You may have omitted the
string or symbol, or you may have inserted a
special character (such as a parenthesis) in it.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00201 Error running execname, line nn: Symbol
expected

Explanation: The language processor either
expected a symbol following the END,
ITERATE, LEA VE, CALL, SIGNAL,
NUMERIC, PARSE, or PROCEDURE
keywords or expected a list of symbols
following the DROP, UPPER, or
PROCEDURE (with EXPOSE option)
keywords. A symbol or list of symbols was not
found.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00211 Error running execname, line rm: Invalid
data on end of clause

Explanation: You have followed a clause, such
as SELECT or NOP, by some data other than
a comment.

System Action: Exec processing terminates.

User Response: Make the necessary
co.rrections in the exec.

/~
!

_;

Audience: REXX user

Detected & Issued by: Language processor

IRX00221 Error running execname, line nn: Invalid
character string

Explanation: A character string that has
unmatched SO-SI pairs (that is, an SO without
an SI) or an odd number of bytes between the
SO-SI characters was scanned with OPTIONS
ETMODE in effect.

System Action: Exec processing terminates.

User Response: Correct the invalid character
string in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00231 Error running execname, line nn: Invalid
SBCS/DBCS mixed string

Explanation: A character string that has
unmatched SO-SI pairs (that is, an SO without
an SI) or an odd number.of bytes between the
SO-SI characters was processed with OPTIONS
EXMODE in effect.

System Action: Exec processing terminates.

User Response: Correct the invalid character
string in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00241 Error running execname, line nn: Invalid
TRACE request

Explanation: The language processor issues
this message when:

• The action specified on a TRACE
instruction or the argument to the built-in
function starts with a letter that is not a
valid alphabetic character option. The
valid options are A, C, E, F, I, L, N, 0, R,
or S.

• An attempt is made to request TRACE
SCAN when inside any control
construction or while in interactive debug.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00251 Error running execname, line nn: Invalid
sub-keyword found

Explanation: The language processor expected
a particular sub-keyword at this position in an
instruction and something else was found. For
example, the NUMERIC instruction must be
followed by the sub-keyword DIGITS, FUZZ,
or FORM. If NUMERIC is followed by
anything else, this message is issued.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00261 Error running execname, line nn: Invalid
whole number

Explanation: The language processor found an
expression that did not evaluate to a whole
number or that was greater than the limit, for
these uses, of 999 999 999. The expression
appeared in the NUMERIC instruction, a
parsing positional pattern, or the right hand
term of the exponentiation (**) operator.

This message can also be issued if the return
code passed back from an EXIT or RETURN
instruction (when an exec is called as a
command, rather than as a function or
subroutine) is not a whole number or will not
fit in a System/370 register. You may have
incorrectly typed the name of a symbol so that
it is not the name of a variable in the
expression on any of these statements. This
might be true, for example, if you entered
"EXIT CR" instead of "EXIT RC."

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00271 Error running execname, line nn: Invalid
DO syntax

Explanation: The language processor found a
syntax error in the DO instruction. You might
have used BY or TO twice or used BY, TO, or
FOR when you did not specify a control
variable.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

Appendix A. Error Numbers and Messages 399

IRX0028I Error running execname, line nn: Invalid
LEA VE or ITERATE

Explanation: The language processor
encountered an invalid LEA VE or ITERATE
instruction. The instruction was invalid
because:

• No loop is active, or

• The. name specified on the instruction does
not match the control variable of any
active loop.

Note that internal routine calls and the
INTERPRET instruction protect DO loops by
making them inactive. Therefore, for example,
a LEA VE instruction in a subroutine cannot
affect a DO loop in the calling routine.

This message can occur if you use the SIGNAL
instruction to transfer control within or into a
loop. A SIGNAL instruction terminates all
active loops and any ITERATE or LEA VE
instruction issued then would cause this
message to be issued.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX0029I Error running execname, line nn:
Environment name too long

Explanation: The language processor
encountered an address environment name
specified on an ADDRESS instruction that is
longer than the limit of 8 characters.

System Action: Exec processing terminates.

User Response: Specify the address
environment name on the ADDRESS
instruction correctly.

Audience: REXX user

Detected & Issued by: Language processor

IRX0030I Error running execname, line nn: Name or
string > 250 characters

Explanation: The language processor found a
variable or a literal (quoted) string that is
longer than the limit.

The limit for names is 250 characters, following
any substitutions. A possible cause of this
error is the use of a period(.) in a name,
causing an unexpected substitution.

The limit for a literal string is 250 characters.
This error can be caused by leaving off an
ending quote (or putting a single quote in a
string) because several clauses can be included

400 TSO /E Version 2 REXX Reference

in the string. For example, the string 1 don 1 t 1

should be written as 1 don 1 1 t 1 or 11 don 1 t 11
•

If this is not the case, you can create a larger
string using concatenation. For example:

a 11
••• character string< 250 characters ... 11

b = 11
••• character string< 250 characters ... 11

c a 11 b

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued. by: Language processor

IRX00311 Error running execname, line nn: Name
starts with numeric or "."

Explanation: The language processor found a
symbol whose name begins with a numeric digit
or a period(.). The REXX language rules do
not allow you to assign a value to a symbol
whose name begins with a numeric digit or a
period because you could then redefine numeric
constants, which would be catastrophic.

System Action: Exec processing terminates.

User Response: Rename the variable correctly.
It is recommended to start a variable name
with an alphabetic character, but some other
characters are allowed.

Audience: REXX user

Detected & Issued by: Language processor

IRX0032I Error running execname, line nn: Invalid use
of stem

Explanation: The exec attempted to change
the value of a symbol that is a stem. (A stem
is that part of a symbol up to the first period.
You use a stem when you want to affect all
variables beginning with that stem.) This may
be in the UPPER instruction where the action
in this case is unknown, and therefore in error.

System Action: Exec processing terminates.

User Response: Change the exec so that it
does not attempt to change the value of a stem.

Audience: REXX user

Detected & Issued by: Language processor

IRX0033I Error running execname, line nn: Invalid
expression result

Explanation: The language processor
encountered an expression result that is invalid
in its particular context. The result may be
invalid because an illegal FUZZ or DIGITS
value was used in a NUMERIC instruction
(FUZZ cannot become larger that DIGITS).

I~,
j

/~

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00341 Error running execname, line nn: Logical
value not 0 or 1

Explanation: The language processor found an
expression in an IF, WHEN, DO WHILE, or
DO UNTIL phrase that did not result in a 0 or
1. Any value operated on by a logical operator
(1, \, I,&, or&&) must result in a 0 or I. For
example, the phrase If result then exit re
will fail if result has a value other than 0 or 1.
Thus, the phrase would be better written as If
result1=0 then exit re.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX0035I Error running execname, line nn: Invalid
expression

Explanation: The language processor found a
grammatical error in an expression. You might
have ended an expression with an operator,
had two adjacent operators with no data in
between, or included special characters (such as
operators) in an intended character expression
without enclosing them in quotes. For
example, the message is issued if you have the
following clause in an exec:

answer = x ++ 5

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00361 Error running execname, line nn:
Unmatched"(" in expression

Explanation: The language processor found an
unmatched parenthesis within an expression.
You will get this message if you include a
single parenthesis in a command without
enclosing it in quotes.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX0037I Error running execname, line nn:
Unexpected "," or ")"

Explanation: The language processor found a
comma (,) outside a routine invocation or too
many right parentheses in an expression. You
will get this message if you include a comma in
a character expression without enclosing it in
quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00381 Error running execname, line nn: Invalid
template or pattern

Explanation: The language processor found an
invalid special character, for example %, within
a parsing template, or the syntax of a variable
trigger was incorrect (no symbol was found
after a left parenthesis). This message is also
issued if the WITH sub-keyword is omitted in
a PARSE VALUE instruction.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00391 Error running execname, line nn: Evaluation
stack overflow

Explanation: The language processor was not
able to evaluate the expression because it is too
complex (many nested parentheses, functions,
etc.).

System Action: Exec processing terminates.

User Response: Break up the expressions by
assigning sub-expressions to temporary
variables.

Audience: REXX user

Detected & Issued by: Language processor

Appendix A. Error Numbers and Messages 401

IRX0040I Error running execname, line nn: Incorrect
call to routine

Explanation: The language processor
encountered an incorrectly used call to a
built-in or external routine. You may have
passed invalid data (arguments) to the routine.
This is the most common possible cause and is
dependent on the actual routine. If a routine
returns a non-zero return code, the language
processor issues this message and passes back
its return code of 20040.

If you were not trying to invoke a routine, you
may have a symbol or a string adjacent to a
"("when you meant it to be separated by a
space or an operator. This causes it to be seen
as a function call. For example, TIME(4+ 5)
should be written as TIME* (4+5).

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00411 Error running execname, line nn: Bad
arithmetic conversion

Explanation: The language processor found a
term in an arithmetic expression that was not a
valid number or that had an exponent outside
the allowed range of -999 999 999 to + 999 999
999.

You may have incorrectly typed a variable
name, or included an arithmetic operator in a
character expression without putting it in
quotes. For example, you should write the
command EXECIO * DISKW OUTDD
(FINIS as:

'EXECIO * DISKW OUTDO (FINIS'

Otherwise, the language processor tries to
multiply "EXECIO" by "DISKW."

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00421 Error running execname, line nn: Arithmetic
overflow /underflow

Explanation: The language processor
encountered a result of an arithmetic operation
that required an exponent greater than the
limit of 9 digits (more than 999 999 999 or less
than -999 999 999).

402 TSO /E Version 2 REXX Reference

This error can occur during evaluation of an
expression (often as a result of trying to divide
a number by 0), or during the stepping of a
DO loop control variable.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00431 Error running execname, line nn: Routine
not found

Explanation: The language processor was
unable to find a routine called in your exec.
You invoked a function within an expression or
in a subroutine invoked by CALL, but the
specified label is not in the program or is not
the name of a built-in function. TSO/Eis also
unable to locate it externally.

The simplest, and probably most common,
cause of this error is typing the name
incorrectly. Another possibility may be that
one of the function packages is not available.

If you were not trying to invoke a routine, you
may have put a symbol or string adjacent to a
"(" when you meant it to be separated by a
space or operator. The language processor
would process that as a function invocation.
For example, the string 3(4 + 5) should be
written as 3*(4+5).

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX00441 Error running execname, line nn: Function
did not return data

Explanation: The language processor invoked
an external routine within an expression. The
routine seemed to end without error, but it did
not return data for use in the expression.

This may be due to using the STORAGE
function to read storage you are not allowed to
read. In this case, the STORAGE function
does not return any data.

System Action: Exec processing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

~I

IRX0045I Error running execname, line nn: No data
specified on function RETURN

Explanation: An exec has been called as a
function, but an attempt is being made to
return (by a RETURN; instruction) without
passing back any data. Similarly, an internal
routine, called as a function, must end with a
RETURN statement specifying an expression.

System Action: Exec p~ocessing terminates.

User Response: Make the necessary
corrections in the exec.

Audience: REXX user

Detected & Issued by: Language processor

IRX0048I Error running execname, line nn: Failure in
system service

Explanation: The language processor
terminates exec processing because some
system service, such as user input or output or
manipulation of the data stack has failed to
work correctly.

System Action: Exec processing terminates.

User Response: Ensure that your input is
correct and that your exec is working correctly.
Contact your system programmer for
assistance.

Audience: REXX user

Detected & Issued by: Language processor

IRX00491 Error running execname, line nn: Interpreter
failure

Explanation: The language processor carries
out numerous internal self-consistency checks.
It issues this message if it encounters a severe
error.

System Action: Exec processing terminates.

User Response: Contact your system
programmer for assistance. Report any
occurrence of this message to your IBM
representative.

Appendix A. Error Numbers and Messages 403

/~

!~

~
; \

404 TSO/E Version 2 REXX Reference

~ppendix B. Double Byte Character Set (DBCS)

Double-Byte-Character-Sets (DBCS) are used to support languages that have more
characters than can be represented by eight bits (such as Korean Hangeul and
Japanese Kanji). REXX has a full range of DBCS functions and handling
techniques.

These include:

• String handling capabilities with DBCS characters.

• OPTIONS modes that handle DBCS not only as literal strings, but also in data
operations.

• An external function package with functions that deal with DBCS.

• Defined DBCS enhancements to current instructions and functions.

General Description
The following characteristics help define the rules used by DBCS to represent the
extended character set:

• Each DBCS character consists of two bytes

• There are no DBCS control characters

• The codes are within the ranges

1st byte - X 1 41 1 to X 1 FE 1

2nd byte - X 141 1 to X 1FE 1

The DBCS Blank (X 14040 1
) is also a valid DBCS code.

• D BCS alphanumeric/special symbols

A DBCS contains double-byte representation of alphanumeric and special
symbols corresponding to those of Single-Byte-Character-Set (SBCS). The first
byte of a double-byte alphanumeric/special symbol is X' 42' and the second is
the same hex code as the corresponding EBCDIC code.

Here are some examples:

• No case translation

X1 42C1 1 is a double byte A
X1 4281 1 is a double byte a
X1 427D 1 is a double byte quote

In general, there is no concept of lowercase and uppercase in DBCS. Later we
will show how the shift-out (SO) and shift-in (SI) characters are used to
distinguish DBCS characters from SBCS characters.

Appendix B. Double Byte Character Set (DBCS) 405

• Notation conventions

Throughout this Appendix, the following notational conventions will be used:

DBCS Enabling Data

DBCS character
SBCS character
Shift-out (X 1 0E 1

)

Shift-in (X 1 0F 1
)

->
->

->

->

AA BB CC DD .. .
ab c de .. .
<

>

The OPTIONS instruction is used to control how REXX regards DBCS data.
DBCS operations are enabled using the EXMODE option. (See the OPTIONS
instruction on page 49 for more information.)

A pure DBCS string consists of only DBCS codes. The SO and SI are used to
bracket the DBCS data and distinguish it from the SBCS data. Since the SO and SI
are only needed in the mixed strings, they are not associated with the pure DBCS
strings.

Pure DBCS string
Mixed string
Mixed string

Mixed String Validation

->

->
->

AABBCC
ab<AABB>
<AABB>

The validation of mixed strings depends on the instruction, operator, or function. If
an invalid mixed string is used in one that does not allow invalid mixed strings under
DBCS enabled mode, it causes a SYNTAX ERROR.

The following rules must be followed for mixed string validation:

• SO and SI must be 'paired' in a string.

• Nesting of SO or SI is not permitted.

• Data between SO and SI must be an even byte length.

These examples show some possible misuses:
1 ab<cd 1 ->
1 <AA<BB>CC> ->
1<AABBC> 1 ->

INVALID - not paired
INVALID - nested
INVALID - odd byte length

When a variable is created/modified/referred in a REXX program under OPTIONS
EXMODE, it is validated whether it contains correct mixed string or not. Even
though a referred variable contains invalid mixed string, it depends on the
instruction/function/operator whether it causes a syntax error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER
instructions all require valid mixed strings with OPTIONS EXMODE in effect.

406 TSO/E Version 2 REXX Reference

!~
I

Instruction Examples

PARSE

Here are some examples that illustrate how instructions work with DBCS.

xl = 1 <><AABB>< ><EE><FF><> 1

PARSE VAR xl wl
wl --> '<><AABB>< ><EE><FF><> 1

PARSE VAR xl 1 wl
wl --> 1 <><AABB>< ><EE><FF><> 1

PARSE VAR xl wl .
wl --> 1 <AABB> 1

The leading and trailing SO and SI are unnecessary for word parsing
and thus they are stripped off. However, one pair is still
needed in order for a valid mixed DBCS to be returned.

PARSE VAR xl • w2
w2 --> 1< ><EE><FF><>'

Here the first blank delimited the word and the SO is added to the
string to insure the DBCS blank and the valid mixed string.

PARSE VAR xl wl w2
wl --> 1 <AABB> 1

w2 --> 1< ><EE><FF><> 1

PARSE VAR xl wl w2 .
wl --> 1 <AABB> 1

w2 --> 1 <EE><FF> 1

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <AABB><><CCDD> 1

PARSE VAR x2 wl ' 1 w2
wl -->
w2 -->

1 abc<>def <AABB><><CCDD>'
I I

PARSE VAR x2 wl 1 <> 1 w2
wl -->
w2 -->

1 abc<>def <AABB><><CCDD> 1

11

PARSE VAR x2 wl 1<><> 1 w2
wl --> 1 abc<>def <AABB><><CCDD>'
w2 --> I I

Note that for the last three examples all of 11
,

1 <> 1
, and 1 <><> 1 are

a null character (a string of length 0). When parsing, the
null character matches the end of string. For this reason,
wl is assigned the value of the entire string
and w2 is assigned the null string.

Appendix B. Double Byte Character Set (DBCS) 407

PUSH and QUEUE

SAY and TRACE

The PUSH and QUEUE instructions are used for adding entries to the data stack.
Because an element on the data stack can be up to 1 byte less than 16 megabytes,
truncation will probably never occur. However, if truncation splits a DBCS string,
REXX will insure that the integrity of the SO-SI pairing will be kept under
OPTIONS EXMODE.

The SAY and TRACE instructions write information to either the user's terminal or
the output stream (the default is SYSTSPRT). As was true for the PUSH and
QUEUE instructions, REXX will guarantee the SO-SI pairs are kept for any data
that is separated to meet the requirements of the terminal line size or the OUTDD
file.

When the data is split up in shorter lengths, again the SO and SI integrity is kept
under OPTIONS EXMODE. However, if the terminal line size is less than 4, the
string will be treated as SBCS data, as 4 is the minimum for mixed string data.

DBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word
delimiting and length determining conform with the following rules under OPTIONS
EXMODE:

1. Counting characters- When counting the length of a string, SO and SI are
considered to be transparent, and not counted, for every string operation.

2. Character extraction from a string- When extracting a DBCS character from a
string, leading SO and trailing SI are not considered as part of one DBCS
character. For instance, 1 AA' and 1BB 1 are extracted from 1 < AABB > ', and
SO and SI are added to each DBCS character when they are finally preserved as
completed DBCS characters. When multiple characters are consecutively
extracted from a string SO and/or SI that are between characters are also
extracted. For example, 'AA> <BB' is extracted from 1 <AA> <BB> ', and
when the string is finally used as a completed string, the SO will prefix and the
SI will suffix it to give 1 <AA> <BB> 1

•

408 TSO/E Version 2 REXX Reference

,r\
J

I~
]

I

\"-,/

v

Here are some examples:

Sl = 1 abc<>def 1

SUBSTR(Sl,3,1)
SUBSTR(Sl,4,1)
SUBSTR(Sl,3,2)

S2 1<><AABB><> 1

-->
-->
-->

SUBSTR(S2,1,1) -->
SUBSTR(S2,2,1) -->
SUBSTR(S2,1,2) -->
SUBSTR(S2,1,3, 1 x1

) -->

S3 = 1 abc<><AABB> 1

SUBSTR(S3,3,1) -->
SUBSTR(S3,4,1) -->
SUBSTR(S3,3,2) -->
DELSTR(S3,3,1) -->
DELSTR(S3,4,1) -->
DELSTR(S3,3,2) -->

•c•
'd'
'c<>d'

1 <AA> 1

1 <88> 1

1 <AABB> 1

1 <AABB><>x 1

'c'
1 <AA> 1

1 c<><AA> 1

1 ab<><AABB> 1

1 abc<><BB> 1

1 ab<BB> 1

3. Character concatenation- String concatenation can only be done with valid
mixed strings. Adjacent SI/SO or SO/SI which are a result of the string
concatenation are removed. Even during implicit concatenation as in the
DELSTR function, unnecessary SO and/or SI are removed.

4. Character comparison- Valid mixed strings must be used when comparing
strings on a character basis. A DBCS character is always considered greater
than a SBCS if they are compared. In all but the strict comparisons leading
and/or trailing contiguous SO/SI or SI/SO, SBCS blanks, and DBCS blanks are
removed. SBCS blanks may be added if the lengths are not identical.
Contiguous SO/SI and SI/SO between nonblank characters are also removed for
comparison. The strict comparison operators do not cause syntax errors even if
invalid mixed strings are specified.

'AA' 1 <AA> 1 --> false
1 AA 1 < '<AA>' --> true

1 <AA> 1 '<AA >' --> true
1 <><><AA> 1 1 <AA><><> 1 --> true
'<> <AA>' 1 <AA> 1 --> true

1<AA><><BB>' = 1 <AABB> 1 --> true
'abc' < 'ab< >' --> false

Appendix B. Double Byte Character Set (DBCS) 409

5. Word extraction from a string- 'Word' means that characters in a string are
delimited by a SBCS or DBCS blank. Leading and/or trailing contiguous SO/SI
and SI/SO are also removed when words are separated in a string, but
contiguous SO/SI and SI/SO in a word are not removed or separated for word
operations. Leading and/or trailing contiguous SO/SI and SI/SO of a word are
not removed if they are among words that are extracted at the same time.

Wl = 1<>< AA BB><CC DD><>'

SUBWORD(Wl,1,1) --> '<AA>'
SUBWORD(Wl,1,2) --> '<AA BB><CC>'
SUBWORD(Wl,3,1) --> 1 <DD> 1

SUBWORD(Wl,3) --> 1 <DD> 1

W2 = '<AA BB><CC><> <DD>'

SUBWORD(W2,2,l)
SUBWORD(W2,2,2)

-->
-->

1 <BB><CC> 1

'<BB><CC><> <DD>'

Built-in Function Examples

ABBREV

COMPARE

COPIES

Examples for current functions, those that support DBCS and follow the rules
defined, are given in this section. For full function descriptions and the syntax
diagrams, refer to Chapter 4, "Functions" on page 71.

ABBREV(1 <AABBCC> 1
,

1 <AABB> 1
) -->

ABBREV(1<AABBCC> 1
,

1 <AACC> 1
) -->

ABBREV(1 <AA><BBCC> 1
,

1 <AABB> 1
) -->

ABBREV(1 aa<>bbccdd 1
,

1 aabbcc 1
) -->

1
0
1
1

Applying the 'Character comparison' and 'Character extraction from a string' rules.

COMPARE(1<AABBCC> 1
,

1 <AABB><CC>'}
COMPARE(1 ab<>cde 1

,
1 abcdx 1

)

COMPARE(1 <AA><> 1
,

1<AA> 1
,

1 <> 1
)

-->
-->
-->

0
5
(:)

Applying the 'Character concatenation for padding', the 'Character extraction from
a string', and 'Character comparison' rules.

COPIES(1 <AABB> 1 ,2)
COPIES(1 <AA><BB> 1 ,2)
COPIES(1 <AABB><> 1 ,2)

--> 1 <AABBAABB> 1

--> 1 <AA><BBAA><BB> 1

--> 1 <AABB><AABB><> 1

Applying the 'Character concatenation' rule.

410 TSO/E Version 2 REXX Reference

.. "\
I

/

\.Ji

_,1

DATATYPE

FIND

DATATYPE(1 <AABB> 1
) --> 1 CHAR 1

DATATYPE(1 <AABB> 1
,

1 D1
) --> 1

DATATYPE(1 <AABB> 1
,

1 C1
) --> 1

DATATYPE(1 a<AABB>b 1
,

1 D1
) --> 0

DATATYPE(1 a<AABB>b 1
,

1 C1
) --> 1

DATATYPE(1 abcde 1
,

1 C1
) --> 0

DATATYPE(1 <AABB 1
,

1 C1
) --> 0

Note: If string is invalid mixed string and
11 C11 or 11 D11 is specified as type, 0 is returned.

FIND(1 <AA BBCC> abc 1
,

1 <BBCC> abc 1
) --> 2

FIND(1 <AA BB><CC> abc 1
,

1 <BBCC> abc 1
) --> 2

FIND(1 <AA BB> abc 1
,

1 <AA> <BB> 1
) --> 1

Applying the 'Word extraction from a string' and 'Character comparison' rules.

INDEX, POS, and LASTPOS

INDEX(1 <AA><BB><><CCDDEE> 1
,

1 <DDEE> 1
)

POS(1 <AA> 1
,

1 <AA><BB><><AADDEE> 1
)

LASTPOS(1 <AA> 1
,

1 <AA><BB><><AADDEE> 1
)

--> 4
--> 1
--> 3

Applying the 'Character extraction from a string' and 'Character comparison' rules.

INSERT and OVERLAY

JUSTIFY

INSERT(1 a1
,

1 b<><AABB> 1 ,l) --> 1 ba<><AABB> 1

INSERT(1 <AABB> 1
,

1 <CCDD><> 1 ,2) --> 1 <CCDDAABB><> 1

INSERT('<AABB> 1
,

1 <CCDD><><EE>',2) --> 1 <CCDDAABB><><EE> 1

INSERT('<AABB> 1
,

1 <CCDD><> 1 ,3,, 1<EE> 1
) --> 1 <CCDD><EEAABB> 1

OVERLAY(1 <AABB> 1
,

1 <CCDD><> 1 ,2)
OVERLAY(1 <AABB> 1

,
1 <CCDD><><EE>',2)

OVERLAY(1 <AABB> 1
,

1 <CCDD><><EE>',3)
OVERLAY(1 <AABB>' , 1 <CCDD><> 1 ,4,, 1<EE>')
OVERLAY(1 <AA> 1

,
1 <CCDD><EE> 1 ,2)

--> 1 <CCAABB> 1

--> 1 <CCAABB> 1

--> '<CCDD><><AABB> 1

--> 1 <CCDD><EEAABB> 1

--> 1 <CCAA><EE> 1

Applying the 'Character extraction from a string' and 'Character comparison' rules.

JUSTIFY(1 <>< AA BB><CC DD> 1 ,l8, 1 p1
)

--> 1 <AA>ppp<BB><CC>ppp<DD> 1

JUSTIFY(1 <>< AA BB><CC DD> 1 ,ll, 1 p1
)

--> 1 <AA>pppp<BB><CC>ppp<DD> 1

JUSTIFY(1 <>< AA BB><CC DD> 1 ,l8, 1<PP> 1
)

--> 1 <AAPPPPPPBB><CCPPPPPPDD> 1

JUSTIFY(1 <><XX AA BB><CC DD> 1 ,ll, 1 <PP> 1
)

--> 1 <XXPPPPAAPPPPBB><CCPPPPDD> 1

Applying the 'Character concatenation for padding' and 'Character extraction from
a string' rules.

Appendix B. Double Byte Character Set (DBCS) 411

LEFT, RIGHT, and CENTER

LENGTH

REVERSE

SPACE

STRIP

LEFT{'<AABBCCDDEE>',4) -->
LEFT{ 1 a<> 1 ,2) -->
LEFT{'<AA>',2, 1 *1

) -->
RIGHT{ 1 <AABBCCDDEE> 1 ,4) -->
RIGHT('a<>',2) -->
CENTER('<AABB>' ,10, 1 <EE> 1

.) -->
CENTER('<AABB> 1 ,11, 1 <EE> 1

) -->
CENTER(1 <AABB> 1 ,10,'e') -->

1 <AABBCCDD>'
'a<> I

1 <AA>* 1

1<BBCCDDEE> 1

I al

'<EEEEEEEEAABBEEEEEEEE>'
1<EEEEEEEEAABBEEEEEEEEEE> 1

1 eeee<AABB>eeee 1

Applying the 'Character concatenation' for padding and 'Character extraction from
a string' rules.

LENGTH{ 1<AABB><CCDD><> 1
) --> 4

Applying the 'Counting characters' rule.

REVERSE(1 <AABB><CCDD><> 1
) --> 1 <><DDCC><BBAA> 1

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

SPACE('a<AABB CCDD> 1 ,l) -->
SPACE{'a<AA><>< CCDD>' ,l, 1 x1

) -->
SPACE(1 a<AA>< CCDD> 1 ,l, 1 <EE> 1

) -->

'a<AABB> <CCDD>'
1 a<AA>x<CCDD>'
1 a<AAEECCDD> 1

Applying the 'Word extraction from a string' and 'Character concatenation' rules.

STRIP('<><AA><BB><AA><> 1
,,

1 <AA> 1
) --> 1<BB> 1

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

SUBSTR and DELSTR

SUBSTR(1 <><AA><><BB><CCDD> 1 ,1,2) --> '<AA><><BB>'
DELSTR(1<><AA><><BB><CCDD> 1 ,1,2) --> 1<><CCDD> 1

SUBSTR('<AA><><BB><CCDD>',2,2) --> 1 <BB><CC> 1

DELSTR(1 <AA><><BB><CCDD> 1 ,2,2) --> '<AA><><DD>'
SUBSTR('<AABB><>' ,1,2) --> '<AABB>'
SUBSTR (I <AABB><> I '1) --> 1 <AABB><> 1

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

412 TSO/E Version 2 REXX Reference

SUBWORD and DELWORD

TRANSLATE

VERIFY

SUBWORD (I<>< AA BB><CC DD> I' 1,2) --> 1 <AA BB><CC> 1

DELWORD(1<>< AA BB><CC DD> I' 1,2) --> '<>< DD> 1

SUBWORD(1<><AA BB><CC DD> 1 ,1,2) --> '<AA BB><CC> 1

DELWORD (I <><AA BB><CC DD> 1 ,l,2) --> 1 <><DD> 1

SUBWORD (I <AA BB><CC><> <DD> 1 ,1,2) --> '<AA BB><CC>'
DELWORD('<AA BB><CC><> <DD> 1 ,1,2) --> 1 <DD>'

Applying the 'Word extraction from a string' and 'Character concatenation' rules.

TRANSLATE(1 abcd 1
,

1 <AABBCC> 1
,

1 abc') --> 1 <AABBCC>d 1

TRANSLATE(1 abcd 1
,

1<><AABBCC> 1
,

1abc 1
) --> 1<AABBCC>d 1

TRANSLATE e abed I ' I <><AABBCC> I 'I ab<>c I) --> l <AABBCC>d I

TRANSLATE(1 a<>bcd 1
,

1 <><AABBCC> 1
,

1 ab<>c 1
) --> 1<AABBCC>d 1

TRANSLATE(1 a<>xcd 1
,

1 <><AABBCC> 1 ,'ab<>c 1
) --> 1 <AA>x<CC>d 1

Applying the 'Character extraction from a string', 'Character comparison', and
'Character concatenation' rules.

VERIFY(1 <><><AABB><><XX> 1
,

1 <8BAACCDDEE> 1
) --> 3

Applying the 'Character extraction from a string' and 'Character comparison' rules.

WORD, WORDINDEX, and WORDLENGTH

WORDS

x = '<>< AA BB><CC DD>'

WORD(X,1) --> 1<AA> 1

WORDINDEX(X, 1) --> 2
WORDLENGTH(X,1) --> 1

Y = '<><AA BB><CC DD>'

WORD(Y,1) --> 1 <AA> 1

WORDINDEX(Y ,1) --> 1
WORDLENGTH(Y,1) --> 1

Z '<AA BB><CC<> <DD>'

WORD(Z,2)
WORDINDEX(Z,2)
WORDLENGTH(Z,2)

-->
-->
-->

1 <BB><CC> 1

3
2

Applying the 'Word extraction from a string' and 'Counting characters'(for
WORDINDEX and WORDLENGTH) rules.

X = 1 <>< AA BB><CC DD> 1

WORDS(X) --> 3

Applying the 'Word extraction from a string' rule.

Appendix B. Double Byte Character Set (DBCS) 413

WORDPOS

WORDPOS(1 <BBCC> abc 1
,

1 <AA BBCC> abc') --> 2
WORDPOS(1 <AABB> 1

,
1 <AABB AABB>< BBCC AABB>',3) --> 4

Applying the 'Word extraction from a string' and 'Character comparison' rules.

External Functions

Counting Option

This section describes the external functions package that supports DBCS mixed
string. These functions handle mixed strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as
opposed to LENGTH(string) which is measured in characters).

When specified in the functions, the counting option can be used to control whether
or not the SO and SI are considered present when determining the length. If "Y" is
specified, SO and SI within mixed strings are counted. "N" specifies NOT to count
the SO and SI, and is the default.

Function Descriptions

DBADJUST

adjusts all contiguous SI-SO and SO-SI characters in string based on the operation
specified. Valid operations (of which only the capitalized letter is significant, all
others are ignored) are:

Blank

Remove

changes contiguous characters to blanks (X 14040 1
).

removes contiguous characters, and is the default.

Here are some examples:

DBADJUST{ 1 <AA><BB>a<>b 1
,

1 B1
)

DBADJUST(1 <AA><BB>a<>b 1
,

1 R1
)

DBADJUST(1 <><AABB>', 1 B1
)

->
->

->

1 <AA BB>a b'
1 <AABB>ab 1

1< AABB>'

414 TSO/E Version 2 REXX Reference

DBBRACKET
L:··

i DBCENTER
v

_,/

adds SO-SI brackets to a un-bracketed DBCS string. If string is not a pure DBCS
string, a SYNTAX error results. That is, the input string must be an even number
of bytes in length and each byte must be a valid DBCS value.

Here are some examples:

DBBRACKET('AABB')
DBBRACKET ('abc 1

)

DBBRACKET('<AABB> 1
)

->

->
->

1 <AABB> 1

SYNTAX error
SYNTAX error

returns a string of length length with string centered in it, with pad characters
added as necessary to make up length. The default pad character is a blank. If the
string is longer than 1 ength, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right hand end loses or gains one
more character than the left hand end.

Option is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBCENTER(1 <AABBCC> 1 ,4) -> I <BB> I

DBCENTER('<AABBCC>',3) -> I <BB>'
DBCENTER('<AABBCC>' ,10,'x') -> 'xx<AABBCC>xx'
DBCENTER(1 <AABBCC> 1 ,l0, 1x1

,
1Y1

) -> 1 x<AABBCC>x 1

DBCENTER(1 <AABBCC> 1 ,4, 1x1
,

1 Y1
) -> '<BB>'

DBCENTER{ 1 <AABBCC> 1 ,5, 1 x', 1 Y1
) -> 1 x<BB> 1

DBCENTER(1 <AABBCC> 1 ,8, 1 <PP> 1
) -> I <AABBCC> I

DBCENTER(1<AABBCC> 1 ,9, 1<PP> 1
) -> I <AABBCCPP>'

DBCENTER(1 <AABBCC> 1 ,l0, 1 <PP> 1
) -> 1 <PPAABBCCPP> 1

DBCENTER(1 <AABBCC> 1 ,12, 1<PP> 1
,

1 Y1
) -> 1<PPAABBCCPP> 1

Appendix B. Double Byte Character Set (DBCS) 415

DBCJUSTIFY

DB LEFT

formats string by adding pad characters between non blank CHARACTERs to
justify to both margins and length of bytes length (1 ength must be nonnegative).
Rules for adjustments are the same as the JUSTIFY function. The default pad
character is a blank.

Option is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBCJUSTIFY(1 <><AA BB><CC> 1 ,20,, 1 Y1
)

-> 1<AA> <BB> <CC>'

DBCJUST I FY (I<>< AA BB>< CC> I '20' I <XX> I ' I y I)

-> 1 <AAXXXXXXBBXXXXXXCC> 1

DBCJUSTI FY (I<>< AA BB>< CC> 1 ,21, 1 <XX> 1
,

1 Y1
)

-> '<AAXXXXXXBBXXXXXXCC> I

DBCJUSTI FY (I<>< AA BB>< CC> I ' 11, I <XX> I ' I y I)

-> 1 <AAXXXXBB> I

DBCJUSTI FY (I<>< AA BB>< CC> 1 ,ll, 1 <XX> 1
,

1 N')
-> 1 <AAXXBBXXCC> I

returns a string of length 1 ength containing the leftmost 1 ength characters of string.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank.

Option is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

416 TSO/E Version 2 REXX Reference

!~
j

DB RIGHT

DBRLEFT

Here are some examples:

DBLEFT('ab<AABB>',4) -> 1 ab<AA> 1

DBLEFT(1 ab<AABB> 1 ,3) -> 'ab I

DBLEFT(1 ab<AABB> 1 ,4, 1x1
,

1Y1
) -> 1abxx 1

DBLEFT(1 ab<AABB> 1 ,3, 1 x1
,

1Y1
) -> 1abx 1

DBLEFT(1 ab<AABB> 1 ,8, 1 <PP> 1
) -> 1 ab<AABBPP> 1

DBLEFT(1 ab<AABB> 1 ,9, 1<PP> 1
) -> 'ab<AABBPP> 1

DBLEFT(1 ab<AABB> 1 ,8, 1 <PP> 1
,

1Y1
) -> 1 ab<AABB> 1

DBLEFT(1 ab<AABB> 1 ,9, 1 <PP> 1
,

1Y1
) -> 'ab<AABB> '

returns a string of length length containing the rightmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated} on the left
as needed. The default pad character is a blank.

Option is used to control the counting rule. "Y'; will count SO and SI within mixed
strings as one. ''N" will not count the SO and SI and is the default.

Here are some examples:

DBRIGHT('ab<AABB>',4) -> 1 <AABB> 1

DBRIGHT(1 ab<AABB> 1 ,3) -> I <BB>'
DBRIGHT(1 ab<AABB> 1 ,5, 1 x', 1Y1

) -> 1 x<BB> 1

DBRIGHT(1 ab<AABB> 1 ,10, 1x', 1 Y') -> 1 xxab<AABB> 1

DBRIGHT(1 ab<AABB> 1 ,8, 1 <PP> 1
) -> '<PP>ab<AABB>'

DBRIGHT('ab<AABB> 1 ,9, 1<PP> 1
) -> 1 <PP>ab<AABB>'

DBRIGHT(1 ab<AABB> 1 ,8, 1 <PP> 1
,

1 Y1
) -> 'ab<AABB>'

DBRIGHT(1 ab<AABB> 1 ,ll, 1 <PP> 1
,

1Y1
) -> ab<AABB>'

DBRIGHT(1 ab<AABB> 1 ,12, 1 <PP> 1
,

1 Y1
) -> '<PP>ab<AABB>'

returns the remainder from the DBLEFT function of string. If length is greater
than the length of st ri ng, a null string is returned.

Option is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Appendix B. Double Byte Character Set (DBCS) 417

DBRRIGHT

DBTODBCS

Here are some examples:

DBRLEFT(1 ab<AABB> 1 ,4) -> 1<BB> 1

DBRLEFT(1 ab<AABB> 1 ,3) -> 1 <AABB> 1

DBRLEFT(1 ab<AABB> 1 ,4, 1 Y1
) -> 1<AABB> 1

DBRLEFT(1 ab<AABB> 1 ,3,rY 1
) -> 1 <AABB> 1

DBRLEFT(1 ab<AABB> 1 ,8) -> I I

DBRLEFT{ 1 ab<AABB> 1 ,9, 1 Y1
) -> I I

returns the remainder from the DBRIGHT function of string. If length is greater
than the length of string, a null string is returned.

Option is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBRRIGHT{ 1 ab<AABB> 1 ,4) -> 1 ab 1

DBRRIGHT(1 ab<AABB> 1 ,3) -> 1 ab<AA> 1

DBRRIGHT(1 ab<AABB> 1 ,5) -> la I

DBRRIGHT(1 ab<AABB> 1 ,4, 1 Y1
) -> 1 ab<AA> 1

DBRRIGHT(1 ab<AABB> 1 ,5, 1 Y1
) -> 1 ab<AA> 1

DBRRIGHT{ 1 ab<AABB> 1 ,8) -> I I

DBRRIGHT('ab<AABB> 1 ,8, 1 Y1
) -> I I

converts EBCDIC characters which have the range X' 41 1 -X 1 FE 1 and EBCDIC
blanks within string to DBCS characters fromX'4241 1 to X 142FE 1 and DBCS
blanks. SO and SI brackets are added where appropriate. Other EBCDIC
characters and all D BCS characters are not changed.

Here are some examples:

DBTODBCS(1 Rexx 1988 1
)

DBTODBCS(1 <AA> <BB> 1

->
->

1 <.R.e.x.x .1.9.8.8> 1

1 <AA BB> 1

where 11
•

11 = X142 1

418 TSO/E Version 2 REXX Reference

!~

DBTOSBCS

DBUNBRACKET

DBVALIDATE

converts DBCS characters which have the range X 14241 1 -X 142FE 1 and DBCS
blanks within string to SBCS characters from X 1 41 1 to X 1 FE• and X 1 40 1 for
blanks. Other DBCS characters and all SBCS characters are not changed.

Here are some examples:

DBTOSBCS(1 <.S.d>/<.2.-.1> 1
)

DBTOSBCS('<AA BB> 1
)

->

->
'Sd/2-1 1

'<AA> <BB> 1

where; 11
•

11 = X142 1

removes the SO-SI brackets from a pure DBCS string enclosed by SO and SI
brackets. If the string is not bracketed, a SYNTAX error results.

Here are some examples:

DBUNBRACKET(1 <AABB> 1
)

DBUNBRACKET(1 ab<AA> 1
)

->
->

1 AABB 1

SYNTAX error

returns 1 if the string is a valid mixed string or SBCS string which has no SO or SI.
Otherwise, 0 is returned. Mixed string validation rules are:

1. Proper SO-SI pairing

2. D BCS string is an even number of bytes in length

3. Only valid DBCS character codes between SO and SI bytes.

If C is omitted, each DBCS character is not checked.

Appendix B. Double Byte Character Set (DBCS) 419

DB WIDTH

Here are some examples:

x= 1 abc<de 1

DBVALIDATE(1 ab<AABB> 1
)

DBVALIDATE(x)

y= 1 C1C20Elll213140F 1 X

DBVALI DATE (y)
DBVALIDATE(y, 1 C1

)

->
->

->
->

1
0

1
0

returns the length of string in bytes. Option is used to control the counting rule.
"Y" will count SO and SI within mixed strings as one. 11N 1

' will not count the SO
and SI and is the default.

Here are some examples:

DBWIDTH(1 ab<AABB> 1
,

1 Y1
)

DBWIDTH(1 ab<AABB> 1
,

1 N1
)

->

->
8
6

420 TSO/E Version 2 REXX Reference

I~ . }

Appendix C. IRXTERMA and RXSECT

This appendix describes the IRXTERMA routine, which is used to terminate a
language processor environment, and the RXSECT environment control macro. The
routine and macro are mainly intended for system use. To terminate a language
processor environment, you should use the IRXTERM termination routine.
IRXTERM is described in "Termination Routine - IRXTERM" on page 352.

RXSECT Environment Control Macro
The RXSECT macro is available to any language processor environment in the
TSO/E address space and is primarily intended for system use. RX.SECT is used to
query and manipulate the contents of the ECT fields that describe the current
language processor environment. You can store the contents of the ECT fields in a
token and clear the ECT fields. You pass the 16 byte token to RXSECT. RX.SECT
is also used to replace the contents of the ECT fields with the contents in the passed
token or to obtain the contents of the fields and place them in the token. The type
of request is specified by the TYPE keyword of the macro.

Figure 83 shows the syntax of the RXSECT macro. Each of the operands is
explained following the figure.

RXSECT TYPE (INIT)
(SWAP)
(QUERY)

ECTADDR=
INTOKEN=

Figure 83. The RXSECT Macro

TYPE()
Specifies the type of request to be performed. One request type must be
specified on the macro. The valid request types are:

!NIT

SWAP

Request to initialize the fields in the ECT and ECT extension and
return the previous contents of the fields in the token provided.

Request to exchange the contents of the input token and the fields in
the ECT and ECT extension with values provided in the token.

QUERY Request to retrieve the current contents of the fields in the ECT and
ECT extension and place it in the provided token.

The request types are mutually exclusive. If more than one type is specified,
only the first type is processed.

For !NIT and SW AP, the ECT fields and the ECTENV _TOKEN fields are
modified. For QUERY, only the ECTENV_TOKEN field is changed.

ECTADDR=
Specifies the register that contains the address of the ECT. This value is
required.

Appendix C. IRXTERMA and RXSECT 421

INTOKEN=
Specifies the name of a 16 byte token, which either contains the information to
be stored in the ECT and ECT extension or will receive information from the
request. This value is required.

IRXTERMA Routine
The IRXTERMA routine terminates all active execs under an environment and,
optionally, terminates the environment. IRXTERMA is mainly used by system
services. If you want to terminate a language processor environment, use the
!RX.TERM routine, which is described in "Termination Routine - !RX.TERM" on
page 352.

Note: To permit FORTRAN programs to call IRXTERMA, TSO/E provides an
alternate entry point for the IRXTERMA routine. The alternate entry point name is
I RX TM A.

On the call to IRXTERMA, you specify whether IRXTERMA should terminate the
environment in addition to terminating all active execs that are currently running in
the environment. If you are terminating the environment, you can also pass the
address of the environment block in register 0 that represents the environment you
want terminated. If you do not specify the address of the environment block address
in register 0, IRXTERMA locates the last environment that was created under the
current task.

IRXTERMA does not terminate an environment if:

• The environment was not initialized under the current task

• The environment was the first environment initialized under the task and other
environments are still initialized under the task.

However, IRXTERMA will terminate all active execs running in the environment.

IRXTERMA invokes the load exec routine to free each exec in the environment.
The load exec routine is the routine identified by the EXROUT field in the module
name table, which is one of the parameters for the IRXINIT (initialization) routine.
All execs in the environment are freed regardless of whether or not they were
pre-loaded before the !RX.EXEC routine was called. IRXTERMA also frees the
storage for each exec in the environment.

422 TSO/E Version 2 REXX Reference

/~
I

I v

I
I

_,)

Parameters
You can pass the address of the environment block for the language processor
environment you want to terminate in register 0.

Register 1 points to a parameter list that contains either one or two pointers. The
high order bit of the last parameter in the parameter list must be set to one.
Figure 84 shows the parameters for IRXTERMA.

Figure 84. Parameters for IRXTERMA

Parameter Number Description
of Bytes

Parameter 8 A fullword field in which you specify whether you
1 want to terminate the environment in addition to

terminating all active execs under the environment.
Specify one of the following:

• 0 - terminates all execs and the environment

• x I 80000000 I - terminates all execs, but does not
terminate the environment

Parameter 8 The address of the ECTENV_TOKEN (the 16 byte
2 token) provided by the RXSECT macro. For more

information about the token and macro, see
"RXSECT Environment Control Macro" on page 421.

Return Specifications
For the IRXTERMA termination routine, the contents of the registers on return are:

Register 0

Registers 1-14

Register 15

If you passed the address of an environment block, IRXTERMA
returns the address of the environment block for the previous
environment. If you did not pass an address, register 0 contains the
same value as on entry.

If IRXTERMA returns with return code 100 or 104, register 0
contains the abend and reason code. "Return Codes" on page 424
describes the return codes and how IRXTERMA returns the abend
and reason codes for return codes 100 and 104.

Same as on entry

Return code

Appendix C. IRXTERMA and RXSECT 423

Return Codes
Figure 85 shows the return codes for the IRXTERMA routine.

Figure 85. Return Codes for IRXTERMA

Return
Code

0

4

20

28

100

Description

Processing was successful. If the environmen(was also terminated, it
was not the last environment on the task.

Processing was successful. If the environment was also terminated, it
was the last environment on the task.

Processing was not successful. The environment could not be
terminated.

Processing was not successful. The environment could not be found.

Processing was not successful. A system abend occurred while the
language processor environment was being terminated. The system
tries to terminate the environment again. If termination is still
unsuccessful, the environment cannot be used.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

104 Processing was not successful. A user abend occurred while the
language processor environment was being terminated. The system
tries to terminate the environment again. If termination is still
unsuccessful, the environment cannot be used.

The system may issue one or more messages that describe the abend.
In addition, register 0 contains the abend code and the abend reason
code. The abend code is returned in the low order two bytes of
register 0. The abend reason code is returned in the high order two
bytes of register 0. If the abend reason code is greater than two bytes,
only the low order two bytes of the abend reason code are returned.
See MVS/ESA Message Library: System Codes or MVS/XA Message
Library: System Codes for information about the abend codes and
reason codes.

424 TSO/E Version 2 REXX Reference

,"\
!

/~
)

(~

\ ! "-'/

Changes for Version 2

APAR Information

This book is a new book in the TSO/E Version 2 library. It contains reference information
about TSO/E REXX.

The following APARs provide TSO/E REXX instructions, functions, and services that are
described in this book. The instructions, functions, and services listed below can be used
only if your installation installs the PTF that supports the particular APAR.

• APAR OY17498.provides the TSO/E function MSG, which is described on page 118.

• APAR OY17590 provides the:

Ability to enable and disable condition traps using the CALL instruction (CALL
ON and CALL OFF). The CALL instruction is described on page 32. Chapter 7,
"Conditions and Condition Traps" describes how to enable and disable condition
traps.

Ability to specify NAME trapname using the SIGNAL ON instruction. The
SIGNAL instruction is described on page 62. Chapter 7, "Conditions and
Condition Traps" describes how to enable and disable condition traps.

CONDITION built-in function, which is described on page 82.

Ability to specify up to 20 expressions on the CALL instruction and on function
calls, such as MAX and MIN. If the PTF for the APAR is not installed, the
maximum number of expressions you can specify is 10.

Exit routines for exec initialization and exec termination. The exits are described in
"REXX Exit Routines" on page 392.

• APAR OY17558 provides the SYSl.SAMPLIB members for coding the parameters
modules IRXPARMS, IRXTSPRM, and IRXISPRM. The SAMPLIB members are:

TSOREXXI (for IRXPARMS)
- TSOREXX2 (for IRXTSPRM)

TSOREXX3 (for IRXISPRM)

• APAR OY17979 provides alternate entry point names for the TSO/E REXX external
entry points. The alternate entry point names are less than six characters and allow
FORTRAN programs to call the TSO/E REXX external entry points.

Changes for Version 2 425

/~
J

426 TSO/E Version 2 REXX Reference

I
_,/

i

_,,1

Bibliography

Related Publications
The reader may also need to refer to other TSO/E books. For information about the
TSO/E Version 2 library, see the pictorial following the referenced books below.

The following publications may also be useful.

For information about the SAA Procedures Language:

• SAA Common Programming Interface Procedu,res Language Reference, SC26-4358

For information about the REXX programming language in VM/SP:

• VM/SP System Product Interpreter Reference, SC24-5239

• VM/SP System Product Interpreter User's Guide, SC24-5238

For information about writing ISPF applications for TSO/E:

• !SPF Dialog Management Guide, SC34-4112

• !SPF Dialog Management Services and Examples, SC34-4113

For information about MVS system codes or messages:

• MVS/ESA Message Library: System Codes, GC28-1815

• MVS/ESA Message Library: System Messages Volume 1, GC28-1812

• MVS/ESA Message Library: System Messages Volume 2, GC28-1813

• MVS/XA Message Library: System Codes, GC28-1 l57

• MVS/XA Message Library: System Messages Volume 1, GC28-1376

• MVS/XA Message Library: System Messages Volume 2, GC28-1377

Bibliography 427

·The TSO Extensions Version 2 Library

General

Evaluation
and Planning

Installation
and Migration

Customization

Administration

TSO/E
Version 2
Library Guide

GC28-1866

Introducing
TSO Extensions
Version 2

GC28-1868

TSO/E
Version 2
Program
Directory for
MVS/System
Product
Version 3
GC28-1871

TSO/E
Version 2
Customization

SC28-1872

428 TSO/E Version 2 REXX Reference

TSO/E
Version 2
Master Index

GC28-1867

TSO/E
Version 2
General
Information

GC28-1869

TSO/E
Version 2
Program
Directory for
MVS/System
Product
Version 2
GC28-1865

TSO/E
Version 2
Quick
Reference

GX23-0026

/~
j

u

Programming

End Use
Information
Center Facility

Line Mode
TSO/E

Session
Manager

VM/PC

TSO/E
Version 2
Programming
Guide

SC28-1874

TSO/E
Version 2
REXX User's
Guide

SC28-1882

TSO/E
Version 2
Primer

GC28-1879

TSO/E
Version 2
Primer

GC28-1879

TSO/E
Version 2
User's Guide

SC28-l880

VM/PC
User's Guide
for MVS
Host
Services

SC28-1884

TSO/E
Version 2
Programming
Services

SC28-1875

TSO/E
Version 2
Quick
Reference

GX23-0026

TSO/E
Version 2
User's Guide

SC28-1880

TSO/E
Version 2
Command
Reference

SC28-1881

TSO/E
VM/PC Commands
for Host Services
(diskette)

SV23-0003

[

0

9 I

TSO/E
Version 2
CLISTs

SC28-1876

TSO/E
Version 2
Quick
Reference

GX23-0026

TSO/E
Version 2
Command
Reference

SC28-1881

TSO/E
Version 2
Quick
Reference

GX23-0026

TSO/E
Version 2
Guide to the
Server-Requester
Programming
Interface

SC28-1877

TSO/E
Version 2
Directory of
Programming
Interfaces
for Customers

GC28-1887

TSO/E
Version 2
Quick
Reference

GX23-0026

TSO/E
Version 2
System
Programming
Command
Reference

SC28-1878

Bibliography 429

System TSO/E TSO/E

Diagnosis Version 2 Version 2
Messages System

Diagnosis:
Guide and Index

GC28-1885 LY28-1886

TSO/E TSO/E
Version 2 Version 2
System System
Diagnosis: Diagnosis:
REXX and Terminal Monitor
CLIST Program and

Service Routines
LY28-1887 LY28-1890

430 TSO /E Version 2 REXX Reference

TSO/E
Version 2
System
Diagnosis:
Command
Processors,
A-L
LY28-1888

TSO/E
Version 2
Session Manager
Logic

LY28-l89l

TSO/E
Version 2
System
Diagnosis:
Command
Processors,
M-Z
LY28-1889

TSO/E
Version 2
Data Areas

L YB8-1892 or
LYB8-1893

(microfiche)

0

i~

I~
)

Index

A
ABBREV function

description 78
using to select a default 78

abbreviations
looking for one in a string 137
testing with ABBREV function 78

abnormal change in flow of control 149
ABS function 78
absolute value

finding using ABS function 78
used with power 143

abuttal 13
accessing REXX variables 240
active loops 44
addition

definition 141
operator 14

ADDRESS
function 78
instruction 28
settings saved during subroutine calls 34

address of environment block, obtaining 340
address of environment block, passing to REXX

routines 213, 271, 307
address spaces

executing execs in non-TSO/E 158
executing execs in TSO/E 161
name of for language processor environment 280
using REXX in different 155
using REXX in non-TSO/E 157
using REXX in TSO/E 159

algebraic precedence 16
allocation information

about a data set 110
retrieving with LISTDSI 110

alphabetics
checking with DATATYPE 84
used as symbols 10

alphanumeric checking with DATATYPE 84
altering

flow within a repetitive DO loop 44
REXX variables 22

alternate entry point names 328
alternate exec libraries 8
alternate messages flag 284
AL TLIB command 8
AL TMSGS flag 284
AND operator 15
AND'ing character strings together 80
AND, logical 15
ARG function 79

ARG instruction 30
ARG option of PARSE instruction 50
argument list for function package 232
arguments

checking with ARG function 79
of functions 30, 71
of subroutines 30, 32
passing to functions 71
retrieving with ARG function 79
retrieving with ARG instruction 30
retrieving with the PARSE ARG instruction 50

arithmetic
combination rules 141
comparisons 144
errors 147
NUMERIC settings 47
operators 14, 139, 141
overflow 147
precision 140
underflow 147

array
initialization of 20
setting up 19

assigning data to variables 50
assignment

description of 18
of compound variables 19, 20

assignment indicator) 18
associative storage 19
ATTACH host command environment 25
attaching programs 25
ATTNROUT field (module name table) 289
automatic initialization of language processor

environments

B

in non-TSO/E address space 273
in TSO/E address space 272

backslash, use of 15
BASEDATE option of DATE function 85
BIT AND function 80
BITOR function 80
bits checked using DATATYPE 84
BITXOR function 81
blank removal with STRIP function 100
blanks

adjacent to special character 8
as concatenation operator 13

boolean operations 15
bottom of program reached during execution 40
bracketed D BCS strings

DBBRACKET function 415
DBUNBRACKET function 419

Index 431

/

bracketed DBCS strings (continued)
distinguishing from SBCS data 406

built-in function invoking 32
built-in functions

ABBREV 78
ABS 78
ADDRESS 78
ARG 79
BITAND 80
BITOR 80
BITXOR 81
CENTER 81
CENTRE 81
COMPARE 82
CONDITION 82
COPIES 83
C2D 83
C2X 84
DATATYPE 84
DATE 85
DELSTR 87
DELWORD 87
description of 72
DIGITS 87
D2C 88
D2X 88
ERRORTEXT 89
EXTERNALS 89
FIND 90
FORM 90
FORMAT 90
FUZZ 91
INDEX 92
INSERT 92
JUSTIFY 93
LASTPOS 93
LEFT 94
LENGTH 94
LINESIZE 94
MAX 95
MIN 95
OVERLAY 96
POS 96
QUEUED 97
RANDOM 97
REVERSE 98
RIGHT 98
SIGN 98
SOURCELINE 99
SPACE 99
STRIP 100
SUBSTR 100
SUBWORD 101
SYMBOL 101
TIME 102
TRACE 103
TRANSLATE 104
TRUNC 104

432 TSO/E Version 2 REXX Reference

built-in functions (continued)
USERID 105
VALUE 105
VERIFY 106
WORD 106
WORDINDEX 107
WORDLENGTH 107
WORDPOS 107
WORDS 108
XRANGE 108
X2C 108
X2D 109

BY phrase of DO instruction 35

c
CALL instruction 32
calling REXX routines, general considerations 212
CENTER function 81
centering a string using CENTER function 81
centering a string using CENTRE function 81
CENTRE function 81
CENTURY option of DA TE function 85
chains of environments 269, 304
changing defaults for initializing language processor

environments 310
changing destination of commands 28
changing maximum number of language processor

environments 332
changing value in specific storage address 126
character position of a string 93
character position using INDEX 92
character removal with STRIP function 100
character to decimal conversion 83
character to hexadecimal conversion 84
characteristics of language processor environment 259,

275
check existence of a data set 127
clause

as labels 17
assignment 18
continuation of 12
description of 8
null 17

close data set flag 283
CLOSEXFL flag 283
CMDSOFL flag 281
collating sequence using XRANGE 108
colon

as a special character 11
in a label 17

colon as label terminators 17
combination, arithmetic 141
comma

as continuation character 12
in CALL instruction 33
in function calls 71
separator of arguments 33, 71

I \._.,,)

I

\._,,;

comma (continued)
within a parsing template 30, 132, 133, 138

command errors, trapping 149
command inhibition

See TRACE instruction
command processor parameter list

See CPPL
command search order flag 281
commands

alternative destinations 22
destination of 28
host, definition of 23
inhibiting with TRACE instruction 66
issuing to host 22
obtaining name of last command executed 128
reserved names 165
set prompting on/off 123
trap lines of output 119
TSO/E REXX 167

comments
description of 9
REXX exec identifier 8

COMPARE function 82
comparisons

of numbers 14, 144
of strings 14

using COMPARE 82
compound symbols 19
compound variable

description of 19
setting new value 20

concatenation of strings 13
concatenation operator

abuttal 13
blank 13
11 13

CONDITION function 82
condition trap info using CONDITION 82
conditional loops 35
conditions

ERROR 149
FAILURE 149
HALT 149
NOVALUE 149
saved during subroutine calls 34
SYNTAX 149

conditions, trapping of 149
considerations for calling REXX routines 212
console

See terminals
constant symbols 19
content addressable storage 19
continuation

character 12
of clauses 12
of data for display 59

control blocks
environment block (ENVBLOCK) 271, 323

control blocks (continued)
evaluation (EV ALBLOCK) 225, 232
exec block (EXECBLK) 220
for language processor environment 270, 323
in-storage (INSTBLK) 222
parameter block (PARMBLOCK) 275, 325
request (SHVBLOCK) 242
return result from exec 225
shared variable (SHVBLOCK) 242
SHVBLOCK 242
vector of external entry points 328
work block extension 326

control variable 36
controlled loops 36
controlling display of TSO/E messages 118, 119
controlling prompting from interactive commands 123
controlling search order for REXX execs 284
conversion

character to decimal 83
character to hexadecimal 84
decimal to character 88
decimal to hexadecimal 88
formatting numbers 90
hexadecimal to character 108
hexadecimal to decimal 109

conversion functions 77-109
COPIES function 83
copying a string using COPIES 83
copying information to and from data sets 171
counting words in a string 108
CPPL

in work block extension 327
passing on call to IRXEXEC 220

creating
buff er on the data stack 188
new data stack 190, 337
non-reentrant environment 340
reentrant environment 340

current non-reentrant environment, locating 340
current terminal line width 94
customizing services

description 259
environment characteristics 259
exit routines 259
general considerations for calling routines 212
language processor environments 267
replaceable routines 259, 264, 265
summary of 156

customizing TSO/E REXX
See customizing services

C2D function 83
C2X function 84

D
Data Facility Hierarchical Storage Manager (DFHSM),

status of 128

Index 433

data length 13
data set

check existence of 127
copying information to and from 171
obtain allocation, protection, directory

information 110
data stack

counting lines in 97
creating 190, 33 7
creating a buffer 188
deleting 168
DELSTACK command 168
discarding a buff er 169
DROPBUF command 169
dropping a buffer 169
MAKEBUF command 188
NEWSTACK command 190, 337
number of buffers 192
number of elements on 194
primary 337
QBUF command 192
QELEM command 194
QST ACK command 196
querying number of elements on 194
querying the number of 196
querying the number of buffers 192
reading from with PULL 55
replaceable routine 380
secondary 337
sharing between environments 334
use in different environments 334
writing to with PUSH 56
writing to with QUEUE 57

data stack flag 281
data terms 13
DATATYPE function 84
date and version of the language processor 52
DATE function 85
DBADJUST function 414
DBBRACKET function 415
D BCENTER function 415
D BCJUSTIFY function 416
DBCS functions

DBADJUST 414
DBBRACKET 415
DBCENTER 415
D BCJUSTIFY 416
DBLEFT 416
DBRIGHT 417
DBRLEFT 417

.. DBRRIGHT 418
DBTODBCS 418
D BTOSBCS 419
DBUNBRACKET 419
DBVALIDATE 419
DBWIDTH 420

DBCS handling 405

434 TSO/E Version 2 REXX Reference

D BCS strings 49, 405
DBCS (Double-Byte Character Set) characters 405
DBLEFT function 416
DBRIGHT function 417
DBRLEFT function 417
DBRRIGHT function 418
DBTODBCS function 418
DBTOSBCS function 419
DBUNBRACKET function 419
DBVALIDATE function 419
DBWIDTH function 420
DD from which execs are loaded 287
debugging programs

See interactive debug
See TRACE instruction

debug, interactiv~ 64, 203
decimal arithmetic 139-148
decimal to character conversion 88
decimal to hexadecimal conversion 88
default environment 22

See also language processor environment
defaults for initializing language processor

environments 299
defaults provided for parameters modules 299
deleting a data stack 168
deleting part of a string 87
deleting words from a string 87
delimiters in a clause

See colon
See semicolons

DELSTACK command 168
DELSTR function 87
DELWORD function 87
derived name 19
derived names of variables 19
DFHSM, status of 128
DIGITS function 87
DIGITS option of NUMERIC instruction 47, 140
direct interface to variables (IRXEXCOM) 240
directory names, function packages

IRXFLOC 230, 234
IRXFUSER 230, 234

directory, function package 234
example of 236
format 234
format of entries 235
specifying in function package table 238

discarding a buffer on the data stack 169
displaying data

See SAY instruction
displaying message IDs 390
division

definition 141
operator 14

DO instruction 35-38
See also loops

Double-Byte Character Set (DBCS) strings 49, 405
'~

J

DROP instruction 39
DROPBUF command 169
dropping a buff er on the data stack 169
dummy instruction

See NOP instruction
D2C function 88
D2X function 88

E
EFPL (external function parameter list) 231
elapsed time saved during subroutine calls 34
elapsed-time calculator 102
ELSE keyword

See IF instruction
enabled exec for variable access (IRXEXCOM) 240
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 36

engineering notation 146
entry point names 328
ENVBLOCK

See environment block
environment block

description 271, 307, 323
format 323
obtaining address of 340
overview for calling REXX routines 213
passing on call to REXX routines 213, 271, 307

environment table for number of language processor
environments 332

environments
See also host command environment
See also language processor environment
addressing of 28
default 29, 51
determining current using ADDRESS function 78
host command 22
language processor 260, 267
temporary change of 28

equal operator 14
equality, testing of 14
error codes

set by LISTDSI 117
syntax errors 395

ERROR condition of SIGNAL and CALL
instructions 149

error messages
and codes 395
control display of TSO/E messages 118, 119
displaying the message ID 390
replaceable routine for message ID 390
retrieving with ERRORTEXT 89
syntax errors 39 5

errors
during execution of functions 76
from host commands 22

errors (continued)
messages 395
syntax 395
traceback after 68

errors, trapping 149
ERRORTEXT function 89
EST AE, recovery 283
EUROPEAN option of DATE function 85
EVALBLOCK

See evaluation block
evaluation block

for function packages 231, 232
for IRXEXEC routine 225
obtaining a larger one 253

evaluation of expressions 13
exception conditions saved during subroutine calls 34
exclusive 0 R operator 15
exclusive ORing character strings together 81
exec block (EXECBLK) 220
exec identifier 8
exec information, obtaining

availability of ISPF dialog manager services 128
exec invocation 128
last command executed 128
last subcommand executed 128
name used to invoke exec 128
whether exec is running in

foreground/background 128
exec initialization exit 392
exec libraries

defining alternate using AL TLIB 7
storing REXX execs 7

exec load replaceable routine 358
exec processing routines

IRXEXEC 217
IRXJCL 214

exec termination exit 392
EXECINIT field (module name table) 289
EXECIO command 171
execs

description of 1
executing in MVS batch 158, 214
executing in non-TSO/E 158, 214
executing in TSO/E 161, 214
loading of 3 58
overview of writing 155
preloading 358
writing for non-TSO/E 157
writing for TSO/E 159

EXECTERM field (module name table) 290
EXECUTIL command 178
executing a REXX exec

from MVS batch 214
in non-TSO/E 158
in TSO/E 161
using IRXEXEC routine 217
using IRXJCL routine 214

Index 435

execution by language processor 8
execution of data 42
EXIT instruction 40
exit routines 265, 391

attention handling 393
exec initialization 392
exec termination 392
for exec processing 392
for IRXEXEC 392
IRXINITX 391
IRXITMV 391
IRXITTS 391
IRXTERMX 391
language processor environment initialization 391
language processor environment termination 391

exponential notation
definition 146
description of 139
usage 10

exponentiation
definition 143
operator 14

EXPOSE option of PROCEDURE instruction 53
expressions

evaluation 13
examples 16
parsing of 52
results of 13
tracing results of 64

EXROUT field (module name table) 288
external entry points

alternate names 328
IRXEXCOM 240
IRXEXEC 217
IRXIC 251
IRXINIT 340
IRXINOUT 366
IRXJCL 214
IRXLOAD 358
IRXMSGID 390
IRXRLT 253
IRXSTK 380
IRXSUBCM 247
IRXTERM 352
IRXUID 388

external function parameter list (EFPL) 231
external functions

description of 72
LISTDSI 110
MSG 118
OUTTRAP 119
PROMPT 123
providing in function packages 229
search order 73
STORAGE 126
SYSDSN 127
SYSVAR 128
writing 229

436 TSO/E Version 2 REXX Reference

EXTERNAL option of PARSE instruction 50
external routine invoking 32
external subroutines

description of 72
providing in function packages 229
search order 73
writing 229

EXTERNALS function 89
extracting a substring 100
extracting words from a string 101

F
FAIL URE condition of SIGNAL and CALL

instructions 149
FIFO (first-in/first-out) stacking 57
FIND function 90
finding a mismatch using COMPARE 82
finding a string in another string 92, 96
finding the length of a string 94
flags for language processor environment 277, 281

ALTMSGS 284
CLOSEXFL 283
CMDSOFL 281
defaults provided 299
FUNCSOFL 281
LOCPKFL 283
NEWSCFL 283
NEWSTKFL 282
NOESTAE 283
NOLOADDD 284
NOMSGIO 285
NOMSGWTO 285
NOPMSGS 284
NOREADFL 282
NOSTKFL 281
NOWRTFL 282
RENTRANT 284
restrictions on settings 316, 320
SPSHARE 284
STORFL 284
SYSPKFL 283
TSOFL 274, 281
USERPKFL 282

flow control
abnormal, with CALL 149
abnormal, with SIGNAL 149
with CALL/RETURN 32
with DO construct 3 5
with IF construct 41
with SELECT construct 60

flow of REXX exec processing 260
FOR phrase of DO instruction 35
FOREVER repetitor on DO instruction 35
FORM function 90
FORM option of NUMERIC instruction 47, 146
FORMAT function 90

I~

;~
I

!~
)

i~

formatting
DBCS blank adjustments 414
D BCS bracket adding 415
DBCS bracket stripping 419
DBCS DBCS strings to SBCS 419
DBCS EBCDIC to DBCS 418
DBCS string width 420
D BCS text justification 416
numbers for display 90
numbers with TRUNC 104
of output during tracing 67
text centering 81
text justification 93
text left justification 94, 416
text left remainder justification 417
text right justification 98, 415, 417
text right remainder justification 418
text spacing 99
text validation function 419

FORTRAN programs, alternate entry points for
external entry points 328

FUNCSOFL flag 281
function codes

set by LISTDSI 115
function package flags 282
function package table 238, 275, 295

defaults provided 299
function packages

add entries in directory 178, 182
change entries in directory 178, 182
description 229
directory 234
directory names 230, 234

IRXFLOC 230, 234
IRXFUSER 230, 234
specifying in function package table 238
system-supplied 230, 234

example of directory 236
external function parameter list 231
format of entries in directory 235
function package table 238
getting larger area to store result 253
getting larger evaluation block 253
interface for writing code 231
IRXFLOC 230, 234
IRXFUSER 230, 234
link editing the code 235
overview 209
parameters code receives 231
rename entries in directory 178, 182
summary of 156
system-supplied directory names 230, 234
types of

local 229
system 229
user 229

writing 229

function search order flag 281
functions

built-in 72, 78
description of 71
external 72
forcing built-in or external reference 73
internal 72
invocation of 71
numeric arguments of 147
providing in function packages 229
return from 58
search order 73
TSO/E external 110
variables in 53
writing external 229

function, built-in
See built-in functions

FUZZ
controlling numeric comparison 145
option of NUMERIC instruction 47, 145

FUZZ function 91

G
general considerations for calling REXX routines 212
get result routine (IRXRL T) 253
GETFREER field (module name table) 288
getting a larger evaluation block 253
GOTO, abnormal 149
greater than operator 14
greater than or equal operator 14
greater than or less than operator (> <) 14
grouping instructions to execute repetitively 35
group, DO 35

H
HALT condition of SIGNAL and CALL

instructions 149
Halt Interpretation (HI) immediate command 185,

203, 251
Halt Typing (HT) immediate command 186, 251
halting a looping program 206

from a program 251
HI immediate command 185
using the IRXIC routine 251
with EXECUTIL command 178

halt, trapping 149
hexadecimal

See also conversion
checking with DATATYPE 84

hexadecimal digits 9
hexadecimal strings 9
HI (Halt Interpretation) immediate command 185,

206, 251
host command environment

ATTACH 25
change entries in SUBCOMTB table 247

Index 437

host command environment (continued)
check existence of 199
description 22
IRXSUBCM routine 247
ISPEXEC 24, 160
ISREDIT 24, 160
LINK 25
MVS 24
replaceable routine 376
TSO 24

host command environment table 275, 291
defaults provided 299

host commands 22
definition of 23
TSO/E REXX 167
using in non-TSO/E 157
using in TSO/E 159, 160

hours calculated from midnight 102
HT (Halt Typing) immediate command 186, 251

identifier, exec 8
identifier, REXX exec 8
identifying users 87, 90, 91, 105
IDROUT field (module name table) 289
IF instruction 41
IKJ CT 441 240
immediate commands 187

HI (Halt Interpretation) 185, 206, 251
HT (Halt Typing) 186, 251
issuing from program 251
RT (Resume Typing) 198, 251
TE (Trace End) 201, 206, 251
TS (Trace Start) 202, 206, 251

implied semicolons 12
imprecise numeric comparison 145
in-storage control block (INSTBLK) 222
in-storage parameter list 343
inclusive OR operator 15
INDD field (module name table) 287
indefinite loops 35

See also looping program
indentation during tracing 67
INDEX function 92
indirect evaluation of data 42
inequality, testing of 14
infinite loops 35

See also looping program
inhibition of commands with TRACE instruction 66
initialization

of arrays 20
of compound variables 20
of language processor environments 269, 340

in non-TSO/E address space 273
in TSO /E address space 272

routine (IRXINIT) 272, 340

438 TSO/E Version 2 REXX Reference

initialization routine (IRXINIT)
description 340
how environment values are determined 302
how values are determined 342
in-storage parameter list 343
output parameters 347
overview 272
parameters module 343
reason codes 34 7
restrictions on values 345
specifying values 345
to initialize an environment 340
to locate an environment 340
values used to initialize environment 302

input/output
replaceable routine 366
to and from data sets 171

INSERT function 92
inserting a string into another 92
INSTBLK 222
instructions

ADDRESS 28
ARG 30
CALL 32
DO 35
DROP 39
EXIT 40
IF 41
INTERPRET 42
ITERATE 44
LEAVE 45
NOP 46
NUMERIC 47
OPTIONS 49
PARSE 50
PROCEDURE 53
PULL 55
PUSH 56
QUEUE 57
RETURN 58
SAY 59
SELECT 60
SIGNAL 62
TRACE 64
UPPER 69

integer arithmetic 139-148
integer division

definition 143
description of 139
operator 14

integrated language processor environments (into
TSO/E) 263, 274

interactive debug 64, 203
See also TRACE instruction

Interactive System Productivity Facility
See ISPF

interface for writing functions and subroutines 231

/~
}

!~

interface to variables (IRXEXCOM) 240
internal functions

description of 72
return from 58
variables in 53

internal routine invoking 32
INTERPRET instruction 42
interpretive execution of data 42
interrupting program execution 181, 185, 206, 251
invoking

built-in functions 32
REXX execs 158, 161
routines 32

IOROUT field (module name table) 288
IRXANCHR 332
IRXARGTB mapping macro 222, 232
IRXDSIB mapping macro 366, 3 71
IRXEFMVS 230
IRXEFPCK 230
IRXEFPL mapping macro 231
IRXENVB mapping macro 323
IRXENVT mapping macro 332
IRXEV ALB mapping macro 226, 232
IRXEXCOM 240
IRXEXEC

argument list 222
description 214, 217
evaluation block 225
exec block 220
getting larger area to store result 253
getting larger evaluation block 253
in-storage control block 222
overview 209
parameters 218
return codes 227
returning result from exec 225

IRXEXECB mapping macro 220, 361
IRXEXECX field (module name table) 289
IRXEXTE mapping macro 328
IRXFLOC 230, 234
IRXFPDIR mapping macro 234
IRXFUSER 230, 234
IRXIC 251
IRXINIT 272, 340
IRXINITX 391
IRXINOUT 366
IRXINSTB mapping macro 223, 363
IRXISPRM parameters module 275, 299
IRXITMV 391
IRXITTS 391
IRXJCL

description 214
invoking 215
overview 209
parameters 215
return codes 217

IRXLOAD 358

IRXMODNT mapping macro 286
IRXMSGID 390
IRXPACKT mapping macro 295
IRXPARMB mapping macro 278, 325
IRXPARMS parameters module 275, 299
IRXRLT 253
IRXSHVB mapping macro 242
IRXSTK 380
IRXSUBCM 247
IRXSUBCT mapping macro 249, 291
IRXTERM 272, 352
IRXTERMX 391
IRXTSPRM parameters module 275, 299
IRXUID 388
IRXWORKB mapping macro 326
ISPEXEC host command environment 24
ISPF

determining availability of dialog manager
services 128

host command environments 24
using ISPF services 24, 160

ISREDIT host command environment 24
issuing host commands 22
ITERATE instruction

See also DO instruction
description 44
use of variable on 44

I/O

J

replaceable routine 366
to and from data sets 171

JULIAN option of DATE function 86
JUSTIFY function 93

K
keyword instructions 27

See also instructions
keywords

L

conflict with commands 163
mixed case 27
reservation of 163

label
as targets of CALL 32
as targets of SIGNAL 62
description of 17
duplicate 62
in INTERPRET instruction 42
search algorithm 62

language code for REXX messages 276
language processor date and version 52
language processor environment

automatic initialization in non-TSO/E 273

Index 439

language processor environment (continued)
automatic initialization in TSO/E 272
chains of 269, 304
changing the defaults for initializing 310
characteristics 27 5
considerations for calling REXX routines 213
control blocks for 270, 323
data stack in 334
description 260, 267
flags and masks 281
how environments are located 307
integrated into TSO/E 274
maximum number of 269, 332
non-reentrant 340
not integrated into TSO/E 274
obtaining address of environment block 340
overview for calling REXX routines 213
reentrant 340
restrictions on values for 315
sharing data stack 334
terminating 352
types of 263, 274

language structure and syntax 8
LASTPOS function 93
leading blank removal with STRIP function 100
leading zeros

adding with the RIGHT function 98
removal with STRIP function 100

LEAVE instruction
See also DO instruction
description of 45
use of variable on 45

leaving your program 40
LEFT function 94
LENGTH function 94
less than operator 14
less than or equal operator 14
less than or greater than operator (< >) 14
level of RACF installed 128
level of TSO/E installed 128
LIFO (last-in/first-out) stacking 56
line length of terminal 94
line width of terminal 94
lines from a program retrieved with SOURCELINE 99
LINESIZE function 94
LINK host command environment 25
linking to programs 25
list 19
LISTDSI function 110

error codes 11 7
function codes 115
messages 115
reason codes 116
variables set by 113

literal patterns, parsing with 134
literal strings 9
LOADDD field (module name table) 287

440 TSO/E Version 2 REXX Reference

loading a REXX e,xec 358
local function packages 229
locating a phrase in a string 90
locating a string in another string 92, 96
locating current non-reentrant environment 340
LOCPKFL flag 283
logical bit operations

BITAND 80
BITOR 80
BITXOR 81

logical operations 15
logon procedure

obtain name of for current session 128
looping program

halting 206, 251
tracing 179, 181, 206, 251

loops
See also DO instruction
See also looping program
active 44
execution model 38
modification of 44
repetitive 3 5
termination of 45

lower case symbols 10

M
macros

See mapping macros
MAKEBUF command 188
managing storage 385
mapping macros

IRXARGTB (argument list for function
packages) 232

IRXARGTB (argument list for IRXEXEC) 222
IRXDSIB (data set information block) 366, 371
IRXEFPL (external function parameter list) 231
IRXENVB (environment block) 323
IRXENVT (environment table) 332
IRXEVALB (evaluation block) 226, 232
IRXEXECB (exec block) 220, 361
IRXEXTE (vector of external entry points) 328
IRXFPDIR (function package directory) 234
IRXINSTB (in-storage control block) 223, 363
IRXMODNT (module name table) 286
IRXPACKT (function package table) 295
IRXPARMB (parameter block) 278, 325
IRXSHVB (SHVBLOCK) 242
IRXSUBCT (host command environment

table) 249, 291
IRXWORKB (work block extension) 326

mask settings 279
masks for language processor environment 279, 281
MAX function 95
maximum number of language processor

environments 269, 332

/~ .,

/~
)

I

message identifier replaceable routine 390
message IDs, displaying 390
messages

control display of TSO/E messages 118, 119
language code for 276
set by LISTDSI function 115
syntax errors 395

MIN function 9 5
minutes calculated from midnight 102
mixed DBCS string 85, 406
module name table

ATTNROUT field 289
defaults provided 299
description 286
EXECINIT field 289
EXECTERM field 290
EXROUT field 288
format 286
GETFREER field 288
IDROUT field 289
in parameter block 27 5
INDD field 287
IOROUT field 288
IRXEXECX field 289
LOADDD field 287
MSGIDRT field 289
OUTDD field 287
part of parameters module 275
STACKRT field 289

MONTH option of DATE function 85
MSG function 118
MSGIDRT field (module name table) 289
multiple

string parsing 138
multiplication

definition 141
operator 14

MVS batch
executing exec in 214

MVS host command environment 24

N
names

of functions 72
of programs 51
of subroutines 32
of TSO/E REXX external entry points 328
of variables 10
reserved command names 165

negation
of logical values 15
of numbers 14

nesting of control structures 34
new data stack flag 282
new data stack, creating 190
new host command environment flag 283

NEWSCFL flag 283
NEWSTACK command 190, 337
NEWSTKFL flag 282
NOESTAE flag 283
NOLOADDD flag 284
NOMSGIO flag 285
NOMSGWTO flag 285
non-reentrant environment 284, 340
non-TSO/E address spaces

host command environments 23
initialization of language processor

environment 273
overview of executing an exec 158
writing execs for 157

NOP instruction 46
NOPMSGS flag 284
NOREADFL flag 282
Normal option of DATE function 86
NOSTKFL flag 281
not equal operator 14
not greater than operator 14
not less than operator 14
NOT operator 15
notation

engineering 146
scientific 146

NOVALUE condition
on SIGNAL instruction 149
use of 163

NOVALUE condition of SIGNAL instruction 149
NOWR TFL flag 282
null clauses 17
null instruction

See NOP instruction
null strings 9, 13
number of language processor environments, changing

maximum 332
numbers

arithmetic on 14, 139, 141
checking with DATATYPE 84
comparison of 14, 144
definition 140
description of 10, 139
formatting for display 90
in DO instruction 35
truncating 104
use in the language 14 7

NUMERIC
DIGITS option 47
FORM option 47
FUZZ option 4 7
instruction 47
option of PARSE instruction 50, 147
settings saved during subroutine calls 34

numeric patterns, parsing with 132

Index 441

0
obtaining a larger evaluation block 253
operation tracing results 64
operator

arithmetic 14, 139, 141
as special characters 11
comparison 14, 144
concatenation 13
logical 15
precedence (priorities) of 16

OPTIONS instruction 49
ORDERED option of DATE function 85
ORing character strings together 80
OR, logical

exclusive 15
inclusive 15

OTHERWISE clause
See SELECT instruction

OUTDD field (module name table) 287
output trapping 119
OUTTRAP function 119
overflow, arithmetic 147
OVERLAY function 96
overlaying a string onto another 96
overview of REXX processing in different address

spaces 155

p
packages, function

See function packages
packing a string with X2C 108
parameter block 275

format 275, 325
relationship to parameters modules 275

parameters modules
changing the defaults 310
default values for 299
defaults 269, 275, 299

IRXISPRM 275, 299
IRXPARMS 275, 299
IRXTSPRM 299

for IRXINIT 343
format of 27 5
providing you own 310
relationship to parameter block 275
restrictions on values for 315

parentheses
adjacent to blanks 11
in expressions 13
in function calls 71
in parsing templates 135

PARMBLOCK
See parameter block

PARSE instruction 50
PARSE SOURCE token 277

442 TSO/E Version 2 REXX Reference

parsing 131-138
definition 133
general rules 131, 133
introduction 131
literal patterns 134
multiple strings 138
patterns 134
positional patterns 136
selecting words 134
variable patterns 135

parsing templates
in ARG instruction 30
in PARSE instruction 50
in PULL instruction 55

passing address of environment block to REXX
routines 213, 307

patterns in parsing 134
period

causing substitution in variable names 19
in numbers 140

period as placeholder in parsing 136
permanent command destination change 28
POS function 96
position

last occurrence of a string 93
of character using INDEX 92

positional patterns, parsing with 136
powers of ten in numbers 10
precedence of operators 16
precision of arithmetic 140
prefix

as used in examples in book 4, 110, · 167
defined in user profile, obtaining 128

prefix operators 14, 1 5
preloading a REXX exec 358
primary data stack 337
primary messages flag 284
PROCEDURE instruction 53
profile

See user profile
programming restrictions 7
programming services

description 209
function packages 229
general considerations for calling routines 212
IKJCT441 (variable access) 240
IRXEXCOM (variable access) 240
IRXIC (trace and execution control) 251
IRXRLT (get result) 253
IRXSUBCM (host command environment

table) 247
passing address of environment block to

routines 213
summary of 155
writing external functions and subroutines 229

programs
attaching 25
linking to 25

/~
')

l. !
~/

programs (continued)
retrieving lines with SOURCELINE 99

PROMPT function 123
protecting variables 53
pseudo random number function of RANDOM 97
PULL instruction 55
PULL option of PARSE instruction 51
pure DBCS string 85, 406
PUSH instruction 56

Q
QBUF command 192
QELEM command 194
QSTACK command 196
query

data set information 110
existence of host command environment 199
number of buffers on data stack 192
number of data stacks 196
number of elements on data stack 194

queue
See also data stack
counting lines in 97
reading from with PULL 55
writing to with PUSH 56
writing to with QUEUE 57

QUEUE instruction 57
QUEUED function 97

R
RACF

level installed 128
status of 128

RANDOM function 97
random number function of RANDOM 97
RC (return code)

not set during interactive debug 204
set by host commands 22
set to 0 if commands inhibited 66
special variable 164

reading from the data stack 55
reads from input file 282
reason codes

for IRXINIT routine 347
set by LISTDSI 116

recovery EST AE 283
reentrant environment 284, 340
remainder

definition 143
description of 139
operator 14

RENTRANT flag 284
reordering data with TRANSLATE function 104
repeating a string with COPIES 83
repetitive loops

altering flow 45

repetitive 'loops (continued)
controlled repetitive loops 36
exiting 45
simple do group 36
simple repetitive loops 36

replaceable routines 259, 264, 355
data stack 380
exec load 358
host command environment 376
input/output (I/O) 366
message identifier 390
storage management 385
user ID 388

request (shared variable) block (SHVBLOCK) 242
reservation of keywords 163
reserved command names 165
restoring variables 39
restrictions

embedded blanks in numbers 11
first character of variable name 18
maximum length of results 13

restrictions in programming 7
restrictions on values for language processor

environments 315
Restructured Extended Executor language (REXX)

built-in functions 71
description 1
keyword instructions 27

RESULT
set by RETURN instruction 33, 58
special variable 164

results
length of 13

Resume Typing (RT) immediate command 198, 251
retrieving argument strings with ARG 30
return codes

as set by host commands 22
setting on exit 40

RETURN instruction 58
return string

setting on exit 40
returning control from REXX program 58
REVERSE function 98
REXX built-in functions

See built-in functions
REXX commands

See TSO/E REXX commands
REXX customizing services

See customizing services
REXX exec identifier 8
REXX exit routines

See exit routines
REXX external entry points 328

IRXEXCOM 240
IRXEXEC 217
IRXIC 251
IRXINIT 340
IRXINOUT 366

Index 443

REXX external entry points (continued)
IRXJCL 214
IRXLOAD 358
IRXMSGID 390
IRXRLT 253
IRXSTK 380
IRXSUBCM 247
IRXTERM 352
IRXUID 388

REXX instructions
See instructions

REXX processing in different address spaces 155
REXX programming services

See programming services
REXX replaceable routines

See replaceable routines
REXX vector of external entry points 328
REXX (Restructured Extended Executor) language
REXX, using in different address spaces 155
RIGHT function 98
rounding

definition 141
using a character string as a number 10

routines
See also functions
See also subroutines
exit 391
for customizing services 259
for programming services 209
general considerations for TSO/E REXX 212
replaceable 355

RT (Resume Typing) immediate command 198, 251
running off the end of a program 40

s
SAMPLIB

samples for parameters modules 310
SAY instruction 59
scientific notation 146
search order

controlling for REXX execs 284
for external functions 73
for external subroutines 73
for functions 73
for subroutines 33

searching a string for a phrase 90
secondary data stack 337
seconds calculated from midnight 102
seconds of CPU time used 128
SELECT instruction 60
semicolons

implied 12
omission of 27
within a clause 8

service units used (system resource manager) 128
shared variable (request) block (SHVBLOCK) 242

444 TSO/E Version 2 REXX Reference

sharing of data stack between environments 334
sharing subpools 284
Shift-in (SI) characters 405, 410
Shift-out (SO) characters 405, 410
SHVBLOCK 242
SIGL

set by CALL instruction 33
special variable 164

SIGN function 98
SIGNAL

execution of in subroutines 34
in INTERPRET instruction 42

SIGNAL instruction 62
significant digits in arithmetic 140
simple number

See numbers
simple symbols 19
single stepping

See interactive debug
SORTED option of DATE function 85
source of the program and retrieval of information 51
SOURCE option of PARSE instruction 51
SOURCELINE function 99
SPACE function 99
special characters 11
special variables

RC 164
RESULT 164
SIGL 164

SPSHARE flag 284
stack

See data stack
ST ACKR T field (module name table) 289
status of Data Facility Hierarchical Storage Manager

(DFHSM) 128
status of RACF 128
stem of a variable

assignment to 20
description of 19
used in DROP instmetion 39
used in PROCEDURE instruction 53

stepping through programs
See interactive debug

storage
change value in specific storage address 126
management replaceable routine 385
managing 385
obtain value in specific storage address 126

STORAGE function 126
restricting use of 284

storage management replaceable routine 385
STORFL flag 284
storing REXX execs 7, 321
strictly equal operator 14
strictly greater than operator 14, 15
strictly greater than or equal operator 15
strictly less than operator 14, 15

(~
!

/~
I

I

_,1

strictly less than or equal operator 15
strictly not equal operator 14
strictly not greater than operator 15
strictly not less than operator 15
string

as literal constants 9
as names of functions 9
as names of subroutines 34
comparison of 14
concatenation of 13
description of 9
hexadecimal specification of 9
interpretation of 42
length of 13
null 9, 13
quotes in 9
verifying contents of 106

string patterns, parsing with 132
STRIP function 100
structure and syntax 8
SUBCOM command 199
subpool number 279
subpools, sharing 284
subroutines

calling of 32
external, search order 73
forcing built-in or external reference 33
naming of 34
passing back values from 58
providing in function packages 229
return from 58
use of labels 32
variables in 53
writing external 229

substitution
in expressions 13
in variable names 19

SUBSTR function 100
subtraction

definition 141
operator 14

SUBWORD function 101
symbol

assigning values to 18
classifying 19
compound 19
constant 19
description of 10
simple 19
uppercase translation 10
use of 18
valid names 10

SYMBOL function 101
syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 149
syntax diagrams 5

syntax error
messages 395
traceback after 68
trapping with SIGNAL instruction 149

syntax, general 8
SYSDSN function 127
SYSEXEC 321

controlling search of 284
overview of storing REXX execs 7

SYSPKFL flag 283
SYSPROC 321

controlling search of 284
overview of storing REXX execs 7

system files
overview of SYSPROC and SYSEXEC 7
storing REXX execs 7
SYSEXEC 321
SYSPROC 321

system function packages 229
IRXEFMVS 230
IRXEFPCK 230
TSO/E-supplied 230

system information, obtaining
CPU time used 128
RACF level installed 128
RACF status 128
SRM service units used 128
status of DFHSM 128
TSO/E level installed 128

system resource manager (SRM), number of service
units used 128

system-supplied routines
IKJCT441 240
IRXEXCOM 240
IRXEXEC 214
IRXIC 251
IRXINIT 340
IRXINOUT 366
IRXJCL 214
IRXLOAD 358
IRXMSGID 390
IRXRLT 253
IRXSTK 380
IRXSUBCM 24 7
IRXTERM 352
IRXUID 388

Systems Application Architecture (SAA) 6
SYSTSIN 287
SYSTSPRT 287
SYSV AR function 128

T
TE (Trace End) immediate command 201, 206, 251
templates, parsing

general rules 131
in ARG instruction 30
in PARSE instruction 50

Index 445

templates, parsing (continued)
in PULL instruction 55

temporary command destination change 28
ten, powers of 146
terminal information, obtaining

lines available on terminal screen 128
width of terminal screen 128

terminals
finding number of lines with SYSVAR 128
finding width with LINESIZE 94
finding width with SYSV AR 128
reading from with PULL 55
writing to with SAY 59

terminating a language processor environment 352
termination routine (IRXTERM) 272, 352
terms and data 13
text formatting

See formatting
See word

THEN
as free standing clause 27
following IF clause 41
following WHEN clause 60

TIME function 102
TO phrase of DO instruction 3 5
token for PARSE SOURCE 277
tokens 9
trace and execution control (IRXIC routine) 251
Trace End (TE) immediate command 201, 203, 251
TRACE function 103
TRACE instruction 64

See also interactive debug
TRACE setting

altering with TRACE function 103
altering with TRACE instruction 64
querying 103

Trace Start (TS) immediate command 202, 203, 251
trace tags 67
traceback, on syntax error 68
tracing

action saved during subroutine calls 34
by interactive debug 203
data identifiers 67
execution of programs 64
external control of 206
looping programs 206

tracing flags
+ + + 67
- 67
>C> 67
>F> 67
>L> 67
>O> 68
>P> 68
>V> 68
>.> 67
> > > 67

446 TSO/E Version 2 REXX Reference

trailing blank removed using STRIP function 100
trailing zeros 141
TRANSLATE function 104
translation

See also uppercase translation
with TRANSLATE function 104
with UPPER instruction 69

trap command output 119
trap conditions 82
trapping of conditions 149
TRUNC function 104
truncating numbers 104
TS (Trace Start) immediate command 202, 206, 251
TSO host command environment 24
TSOFL flag 274, 281
TSOREXXl (sample for IRXPARMS) 310
TSOREXX2 (sample for IRXTSPRM) 310
TSOREXX3 (sample for IRXISPRM) 310
TSO /E address space

host command environments 23
initialization of language processor

environment 272
overview of executing an exec 161
writing execs for 159

TSO/E external functions
LISTDSI 110
MSG 118
OUTTRAP 119
PROMPT 123
STORAGE 126
SYSDSN 127
SYSVAR 128

TSO/E level installed, obtaining 128
TSO /E profile

See user profile
TSO/E REXX commands 167

DELSTACK 168
DROPBUF 169
EXECIO 171
EXECUTIL 178
immediate commands

HI 185
HT 186
RT 198
TE 201
TS 202

MAKEBUF 188
NEWSTACK 190
QBUF 192
QELEM 194
QSTACK 196
SUBCOM 199
valid in non-TSO/E 157
valid in TSO/E 159

TSO/E REXX customizing services
See customizing services

TSO /E REXX programming services
See programming services

TSO/E REXX replaceable routines
See replaceable routines

type of data checking with DATATYPE 84
types of function packages 229
types of language processor environments 263, 274
typing data

See SAY instruction

u
unassigning variables 39
unconditionally leaving your program 40
underflow, arithmetic 147
unpacking a string with C2X 84
UNTIL phrase of DO instruction 35
UPPER instruction 69
UPPER option of PARSE instruction 50
uppercase translation

during ARG instruction 30
during PULL instruction 55
of symbols 10
with PARSE UPPER 50
with TRANSLATE function 104
with UPPER instruction 69

USA option of DA TE function 85
user function packages 229
user ID

as used in examples in book 4, 110, 167
for current session 128
replaceable routine 388

user information, obtaining
logon procedure for session 128
prefix defined in user profile 128
user ID for session 128

user profile
obtain prefix defined in 128
prompting considerations 123
prompting from interactive commands 123

USERID function 105
USERPKFL flag 282

v
VALUE function 105
VALUE option of PARSE instruction 52
values used to initialize language processor

environment 302
VAR option of PARSE instruction 52
variable access (IRXEXCOM) 240
variable names 10
variable patterns, parsing with 135
variables

compound 19
controlling loops 36
description of 18
direct interface to 240
dropping of 39
exposing to caller 53

variables (continued)
getting value with VALUE 105
in internal functions 53
in subroutines 53
new level of 53
parsing of 52
resetting of 39
set by LISTDSI 113
setting new value 18
simple 19
special

RC 164
RESULT 164
SIGL 164

testing for initialization 101
translation to uppercase 69
valid names 18
with the LISTDSI function 113

vector of external entry points 328
VERIFY function 106
VERSION option of PARSE instruction 52

w
WEEKDAY option of DATE function 85
WHEN clause

See SELECT instruction
WHILE phrase of DO instruction 35
whole numbers

checking with DATATYPE 84
description of 11

word
counting in a string 108
deleting from a string 87
extracting from a string 101, 106
finding in a string 90
finding length of 107
in parsing 134
locating in a string 107

WORD function 106
word processing

See formatting
See word

WORDINDEX function 107
WORDLENGTH function 107
WORDPOS function 107
WORDS function 108
work block extension 326
writes to output file 282
writing external functions and subroutines 229
writing REXX execs

for non~ TSO/E 157
for TSO/E 159

writing to the stack
with PUSH 56
with QUEUE 57

Index 447

x
XORing character string together 81
XOR, logical 15
XRANGE function 108
X2C function 108
X2D function 109

z
zeros added on the left 98
zeros removal with STRIP function 100

Special Characters
(period)

as placeholder in parsing 136
causing substitution in variable names 19
in numbers 140

< (less than operator) 14
< < (strictly less than operator) 14, 15
< < = (strictly less than or equal operator) 15
< > (less than or greater than operator) 14
< = (less than or equal operator) 14
+ (addition operator) 14, 141
+ + + tracing flag 67
I (inclusive OR operator) 15
11 (concatenation operator) 13
&& (exclusive 0 R operator) 15
& (AND operator) 15
! prefix on TRACE option 66
* (multiplication operator) 14, 141
- tracing flag 67
** (power operator) 14, 143
I (division operator) 14, 141
11 (remainder operator) 14, 143
I= (not equal operator) 14
I= = (not strictly equal operator) 14
, (comma)

as continuation character 12
in CALL instruction 33
in function calls 71
separator of arguments 33, 71
within a parsing template 30, 132, 133, 138

% (integer division operator) 14, 143
> (greater than operator) 14
> C > tracing flag 67
> F > tracing flag 67
> L > tracing flag 67
> 0 > tracing flag 68
> P > tracing flag 68
> V > tracing flag 68
>. > tracing flag 67
> < (greater than or less than operator) 14
> > (strictly greater than operator) 14, 15
> > > tracing flag 67
> > = (strictly greater than or equal operator) 15

448 TSO IE Version 2 REXX Reference

> = (greater than or equal operator) 14
? prefix on TRACE option 66
: (colon)

as a special character 11
in a label 17

= (equal sign)
assignment indicator 18
equal operator 14
immediate debug command 203
in DO instruction 3 5

= = (strictly equal operator) 14
- (subtraction operator) 14, 141
\ (NOT operator) 15
\ < (not less than operator) 15
\ < < (strictly not less than operator) 15
\ > (not greater than operator) 15
\ > > (strictly not greater than operator) 15
\ = (not equal operator) 14
\ = = (strictly not equal operator) 14

/~
)

.~
1

\ '
\._.../

TSO Extensions Version 2
REXX Reference

SC28-1883-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

TSO Extensions Version 2 REXX Reference

SC28-1883-0 S370-39

Reader's Comment Form

i

~--!:~~--:~~~:-------~--~-----~---------------~~:~~-=-~~~~--~-------1-~r~-~-----..... Fo-~N·~·:·j·~-;t·L~-~-y·E---1
UNITED STATES I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 950
Poughkeepsie, New York 12602

l111ll11l1l11ll11l11l1l1l1l1l11l11l1l111l1ll11111l1I

._ _____ _.!
I
I -------' I -------, -------1 I -------1 -------1 I -------1 -------1 I -------1

-------! -------1 I I
I

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I ---1

Fold and tape Please Do Not Staple

--------- ----- - -- ----- -- -----------·-®

Fold and tape

Printed in U.S.A.

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

(~
')

1'\
J

--------- ----- - -- - ---- - - -----------·-
®

Printed in U.S.A.

SC28-1883-0

File Number
S370-39

