

Instrument
. Communication

Handbook

.
lOtech

Copyright Notice

ADC488, ADC488/16, ADC488/8S, Analyst488, Analyzer488, Chrono488, COM488, Control488/16,
DAC488, DAC488HR, Digital232, Digita1488, Digital488/80A, Digital488HS/32, Driver488,
Driver488/D, Expander488, Extender488, Extender488/F, Extender488/HS, Filter488, GP488Bplus,
lsolator488, LAN488, Library488, Mac488B, Macll488, MacSCS1488, Micro488, Micro4B8/EX,
Modem488, Monitor488, Mux488/16SC, Mux488/64, Parallel488, Personal488, Personal488/2plus,
Personal488/AT, Personal488/G, Personal488/0EM-P, Personal488/UX, Personal488plus, Power488,
Power488CT, RTLib488, SB488, SCS1488, SCS1488/D, SCS1488/N, SCS1488/S, Serial488/4,
Serial488A, and Wave488 are trademarks of IOtech, Inc.

All other product names are trademarks or registered trademarks of their respective holders.

Copyright© IOtech, Inc., 1991. All rights reserved.

IOtech, Inc. 25971 Cannon Road, Cleveland, Ohio 44146

Printed in the United States of America

Contents

Introduction .. 1.1
1.1 Purpose of IOtech Instrument Communication Handbook 1.1
1.2 Overview of IEEE 488, Serial, VXI, and Local Area Network.. 1.1
1.3 Overview of Serial RS-232, RS-422, and RS-423 1.3
1.4 Overview of SCSI 1.3
1.5 Overview of VXlbus 1.4
1.6 Overview of Local Area Networking (LAN) via Ethernet l.5

IEEE 488 ... 2.1
2.l General ..
2.2 Mechanical Specifications of IEEE 488 ..

2.2.1 Connector ..
2.2.2 Hardware ...
2.2.3 Interconnection Cabling ..

2.3 Electrical Specifications of IEEE 488
2.3.1 Bus Lines .
2.3.2 Electrical Requirements ..
2.3.3 Handshaking .

2.4 IEEE 488 Functions ..
2.4.1 Addressing ..
2.4.2 The System Controller ..
2.4.3 Bus Management Lines ..

2.4.3.1 Attention (ATN) ..
2.4.3.2 Interface Clear (IFC) ..
2.4.3.3 Remote Enable (REN) ..
2.4.3.4 End or Identify (EOI) ..
2.4.3.5 Service Request (SRQ) ..

2.4.4 Multiline Commands .
2.4.4.1 Listen Address Group (LAG) (&H20-3F) ..

...... 2.1
. 2.2

..2.2
. 2.3

. 2.3
. 2.6

. 2.6
.. 2.7

. 2.7
. 2.9
. 2.9

. ... 2.10
. .. 2.10

. 2.10
. 2.11

. 2.11
. ... 2.1 l

. 2.11
................. 2.12

. 2.12
2.4.4.2 Talk Address Group (TAG) (&H40-5F) 2.12
2.4.4.3 Secondary Command Group (SCG) (&H60-7r') 2.12
2.4.4.4 Addressed and Universal Command Groups (ACG, &HOO-OF and UCG, &HlO-lF) 2.13

2.5 Addressing 2. 14
2.6 Serial Poll 2.14
2.7 Parallel Poll .. ·------------------2M
2.8 IEEE 488.2 2.15
2.9 IEEE 488 Driver Software for the IBM PC ... 2.17

2.9.1 DOS Device Driver.. 2.17
2.9.1.1 Controlling IEEE 488 Instruments Directly from DOS.. 2.18
2.9.1.2 Controlling IEEE 488 Instruments from Spreadsheets 2.20
2.9.1.3 Controlling IEEE 488 Instruments from Any Language ... 2.22

2.9.2 Subroutine IEEE 488 Driver Interface ... 2.23
2.9.3 IEEE 488 Subroutine Control Libraries.. . .. 2.23
2.9.4 Microsoft Windows Compatibility 2.25
2.9.5 Troubleshooting the IEEE 488 Bus 2.25

2.9.5.l Analyzing the IEEE 488 Bus... 2.26

2.9.5.2 Common Problems and Solutions 2.26
2.9.6. New IEEE 488.2 Standards Simplify Programming 2.31

SCP!. ... 3.1
3.1 General .
3.2 Commands ..
3.3 SCP! Required Commands
3.4 Parameters ..
3.5 Command Tree ..
3.6 Example Program Using SCPI Commands ..

·· 3.1
. 3.3
. 3.4
. 3.6

·· 3.7
·· 3.7

Serial Communication ... 4.1
4.1 Introduction.. 4.1
4.2 RS-232-C Interface Standard 4.2
4.3 Electrical Signal Characteristics ..
4.4 Interface Mechanical Characteristics (Connectors) .

4.4.1 Ground Pins ..
4.4.2 Data Transmission Pins .
4.4.3 Baud Rate ..
4.4.4 Start and Stop Bits .
4.4.5 Data Bits ..
4.4.6 Parity Bit ..
4.4.7 Control Pins ..
4.4.8 Timing Pins ...

. 4.3

······························ ... 4.3

··· 4.7
.4.7

.4.7
.4.7

. .. 4.8

. .. 4.8
. ... 4.9
. 4.10

4.5 Standard Interfaces for Selected Communication System Configurations 4.10
4.6 Connecting RS-232 Devices .

4.6.1 Handshaking ...
4.6.2 Software Handshaking

. 4.11
. ... 4.11

. 4.12
4.6.3 Hardware Handshaking ··· 4.12

4.7 Cable Connections ..
4.7.1 DTE to DCE
4.7.2 DTE to DTE

4.8 Establishing the Connection
4.9 Other Serial Communication Standards ..

4.9.1 RS-422-A Interface Standard ..

. 4.13
....................... .4.13

.4.14

.4.15
. ... 4.16

.......... 4.16
4.9.2 RS-423-A Interface Standard.. 4.16
4.9.3 ASCII Interface Standard.. 4.17
4.9.4 Binary Encoding Scheme ... 4.17

4.10 Serial Communication. IEEE 488, and Instrument Control.. 4.17
4.11 Language Interfacing ..

4.11.1 Enhancements to Serial Instrument Control ..
4.11.2 IEEE488/Serial Conversion ..

4.12 Summary .

......... .4.18

.4.19

.4.19

. 4.20

SCSI.. ... 5.1
5.1 General ...
5 .2 Mechanical .
5.3 Electrical ..

5.3.1 Single-ended Mode ..
5.3.2 Differential Mode ..

5.4 SCSI Bus Lines .

ii

............ 5.1
. 5.2
. 5.5

. 5.5

. 5.5

. 5.6

5.5 Handshake Lines
5.6 SCSI Communication Protocol ..
5.7 SCSI Bus Phases .

5.7.1 Bus Free Phase ..
5.7.2 Arbitration Phase ..
5.7.3 Selection Phase ..
5.7.4 Command Phase.
5.7.5 DataPhase ..
5.7.6 Status Phase .
5.7.7 "Message In" Phase ..
5.7.8 "Message Out" Phase ..

5.8 Reconnection ..
5.9 Command Descriptor Blocks
5.10 The Future of SCSI ...

. .. 5.6
. .. 5.7

................................. 5.8
. 5.8

................................. 5.8
. 5.9

. .. 5.9
. .. 5.9

. .. 5.9
. ... 5.10

. .. 5.10
. ... 5.11

. ... 5.13
. .. 5.16

Ethernet .. 6.1
6.1 Introduction

6.2 The Ethernet Standard ..
6.2.1 History .
6.2.2 The IEEE 802.3 Standard
6.2.3 802.3 Type 10BASE5 ..
6.2.4 802.3 Type 10BASE2 ..
6.2.5 802.3 Type 10BASET ..
6.2.6 Data Encoding ..
6.2.7 CSMA/CD .
6.2.8 Frame Format ..

6.3 The OSI Model ..

. ... 6.1
. .. 6.1

. .. 6.1
. ... 6.1

. 6.2
. ... 6.3

. .. 6.3
. .. 6.4

. 6.4
. ... 6.5

. ... 6.6
6.3.1 Overview 6.6
6.3.2 Commonly Used Protocols.. 6.7

6.3.2.1 Unix and TCP/IP.. 6.7
6.3.2.2 Novell Net Ware.. 6.7

6.4 Ethernet and Data Acquisition 6.8

IOtech Product Selection Guide ... 7.1
IBM PC IEEE Controllers ..
Macintosh IEEE Controllers .

. .. 7.2
. .. 7.4

Workstation IEEE Controllers ... 7.5
Platform-Independent Controllers ... 7.6
IEEE Bus Enhancers 7.7
IEEE Bus Analyzer and Monitor... . .. 7.9
IEEE Data Acquisition Instruments.... 7.10

iii

Introduction
1.1 Purpose of I0tech Instrument Communication Handbook

The IOtech Instrument Communication Handbook is intended to be a reference source
providing valuable background information in the area of data communications with special
emphasis on the IEEE 488 bus. You will find substantial detail on the design and use of the
IEEE 488 standard, as well as in-depth discussions of other data communications methods.
We hope to give you a working knowledge of IEEE 488, as well as to relate it to other means
of data communication.

We welcome any comments, suggestions, or contributions you might have to enhance this
publication. You may fax such changes to IOtech' s Publications Department at (216) 439-4093,
or mail them to us at 25971 Cannon Road, Cleveland, Ohio 44146.

1.2 Overview of IEEE 488, Serial, VXI, and Local Area Network

IEEE 488 refers to the Institute of Electrical and Electronics Engineers (IEEE) Standard number
488. 1bis standard was first established in 1978, 13 years after Hewlett-Packard (HP) of Palo
Alto, California, began work to enable its broad range of instruments to communicate with one
another and with "host" computers.

The growing complexity of test instruments and test protocols, as well as the emerging need to
capture, store, and analyze data, had begun to create a need for coordination among instruments
and for data communication to a central storage device. In response, Hewlett-Packard developed
a parallel communications method that provided higher transmission rates than existing methods.
This new method, originally termed the Hew Jett-Packard Interface Bus (HP-IB), was adopted by
HP for communications between its computers and a variety of peripheral devices, including
plotters, printers, and disk drives. Today, HP-IB is still used by HP for these purposes.

At the time of its development, IEEE488 was particularly well-suited for instrument applications
when compared with the alternatives. In essence, IEEE 488 comprises a "bus on a cable,"
providing both a parallel data transfer path on eight lines as well as eight dedicated control lines.
Given the demands of the times, its nominal I Mbyte/sec maximum data transfer rate seemed
quite adequate; even today IEEE 488 is sufficiently powerful for many highly sophisticated and
demanding applications.

1.1

Chapter 1 Introduction

However, IEEE 488, as originally defined by the 1978 standard, left some ambiguities in the
specifics of controller-instrument interaction and communication. While these open issues were
likely intended to give instrument and controller designers some latitude, the result was confusion
and compatibility problems among instruments from different manufacturers.

The lEEE 488 committee began working on these issues during the 1980s; its efforts culminated
in a new layer to the lEEE 488 standard, lEEE 488.2. The original standard was redesignated
lEEE 488.1. Section 2 will discuss "488.2" in detail. Fornow, suffice it to say that ".2" provides
for a minimum set ofcapabilities among "controllers" and "devices," as well as for more specific
content and structure of messages and communications protocols.

As a refinement of the enhancements incorporated in "488.2," HP initiated an effort to explicitly
simplify instrument control. The resulting metalanguage, originally termed Test & Measurement
Systems Language (TMSL) and now called Standard Commands for Progranunable Instruments
(SCPI), provides a uniform command syntax to enforce a common command protocol.

lEEE 488.2 is fully backward compatible with lEEE 488.1; the use of a "488.2"-compliant
controller affords the ability to use the new protocols available with "488.2" instruments while
retaining the ability to communicate with and control "488.1"-compliant instruments and
associated vendor idiosyncrasies. Further, SCPI is independent of the data communications
method. It is a standard for instrument commands; SCPI commands may be transmitted with
lEEE 488, RS-232, VXI, or others. In essence, SCPI is a language, not a communications
modality.

Today, lEEE 488 is the most widely recognized and used method for communication among
scientific and engineering instruments and enjoys substantial applications in process monitoring
and control. Major stand-alone general-purpose instrument vendors such as Gould, Keithley,
Fluke, and Tektronix include lEEE 488 interfaces in their products as a matter of course. Many
vertical market instrument makers also rely on lEEE 488 for data communications and control.

lEEE 488 controllers are available for a vast array of computer platforms, as well as for platform
independent configurations. Personal computers from a variety of vendors are supported, from
the IBM PC/XT/AT and PS/2 and compatibles to the multifaceted Macintosh family. Worksta
tions from Sun, DEC, NeXT, Apollo, and IBM are supported, as are DEC, AT&T, and VMEbus
minicomputers. Some of these controllers are plug-in cards; others are protocol converters (e.g.,
SCSI-to-lEEE 488). All provide at least lEEE 488.1 compliance, and a growing number adhere
to the newer lEEE 488.2 standard.

1.2

Chapter I Introduction

What will the future bring? The IEEE 488 conunittee is currently working on a 1992 version of
the standard. This update will likely be just that - a refining and clarifying of IEEE 488.1 and
IEEE 488.2 that corrects the minor errors, omissions, and ambiguities found in the present
standard. IEEE 488 is a well-accepted data communications technology with a large installed
base. Future developments must respect that installed base to retain backward compatibility.
Likewise, the wide acceptance of IEEE 488 means that improvements and enhancements will
likely receive wide acclaim. Thus the future of IEEE 488 will be a balance between the stability
of an installed base and the potential for widespread adoption of further evolutions.

1.3 Overview of Serial RS-232, RS-422, and RS-423

Serial communication methods were among the earliest means of connecting computers to
peripherals and to other computers, and they substantially predate IEEE 488. Serial communi
cation methods are "bit-serial" communication, wherein one bit follows another down the
communications line. IEEE 488 is a parallel communication method, wherein the components
of an eight-bit word are sent simultaneously, using the eight data lines of the IEEE 488 bus. Thus
we may term IEEE 488 either "bit-parallel" or "byte-serial." While the serial standards support
up to 57.6 Kbits/sec, the typical speed found with any of the common serial methods in the IBM
PC environment is 9.6 Kbits/sec, which is equivalent to 960 bytes/sec (with an eight-bit word,
one stop bit and one start bit). This compares with the I Mbyte/sec of theIEEE488 standard. Thus
IEEE 488 provides a 1000 fold increase in potential data rate.

The "RS" in RS-232, RS-422, and RS-423 refers to a "Recommended Standard" of the
Electronics Industries Association (EIA). Each of these serial standards has its own cabling,
pinout, electrical specification, and communications protocol, which are detailed in Chapter 3 of
this book.

1.4 Overview of SCSI

The Small Computer Systems Interface, or SCSI, a system level interface standardized by the
American National Standards Institute (ANSI), is designed to allow communication between a
computer and its peripherals. It is a version of an interface originally developed by Shugart
Associates as a controller for the company's hard disk products. With nine data lines (eight bits
parallel, plus one parity bit) and nine control lines, SCSI physically resembles IEEE 488. SCSI
cables are terminated, contributing to the 1.5 Mbyte/sec (asynchronous) and 5 Mbyte/sec
(synchronous) data transfer rates of the original SCSI I standard and to the 5 Mbyte/sec
(asynchronous) and IO Mbyte/sec (synchronous) data transfer rates of the newer SCSI 2 standard.

1.3

Chapter I Introduction

With wider transfer rates, SCSI2 is capable of data transfer rates of up to 40 Mbytes/sec.

SCSI has become a common means of connecting disk drives to personal computers. It is also
widely employed as a general peripheral interface for popular workstations and nrinicomputers.
It has not been popular as an instrument data communications method. However, SCSI-to-IEEE
488 converters are a common means of providing IEEE 488 controller capability to these
computer systems.

1.5 Overview of VXIbns

VXlbus is the response to the need of the U.S. Air Force fora unified standard for "instruments
on a card." VXIbus, or VXI, stands for VMEbus with eXtensions for Instruments. The VME
standard was originally developed to permit easy configuration of minicomputers using standard
modules in a standard card cage with a standard backplane, or bus. This bus permits high-speed
communication among the various elements of the minicomputer system, but lacks any
accommodation for analog signals. Further, VME was not designed with instrument control in
mind; thus its high speed communication is controlled by low-level register programming.

The original VXI consortium-Hewlett-Packard, Tektronix, Colorado Data Systems, Racal-Dana,
and W avetek - sought to enhance the VME bus with optional extended bus lines and connectors.
The base VXI bus - implemented with the so-called "Pl" connector- is simply that of its parent,
VME; it provides 16-bit data transfer and arbitration and prioritized interrupt lines. VXI systems
provide for two additional bus structures, implemented with the VXI bus's "P2" and "P3"
connectors. The P2 connector provides increased data transfer bus width plus a 12 line local bus
(for instrument-to-instrument communications), TTL and ECL trigger buses, a 10 MHz clock
bus, and a power distribution bus. The P3 connector adds more lines to the local bus, ECL trigger
bus, and power distribution bus, as well as a I 00 MHz clock bus.

In addition to bringing these electrical enhancements to the VME standard, VXI added a higher level
of module communication and control with its IEEE 488-like "Message-Based-Devices." These
devices communicate using ASCII-based message protocols much as IEEE488 devices do. To retain
the speed of the VME approach, VXI also defines "Register-Based-Devices." These communicate at

a low level and thus do not suffer the overhead of ASCII message parsing and interpretation.

The use of the VME-style backplane significantly enhances the data communication rate
potential of the VXIbus. The theoretical maximum is 40 Mbytes/sec. However, this speed is only
rarely found-or even needed-in practice. One reason is that this speed requires register-based

1.4

Chapter 1 Introduction

programming, i.e., programming at a low level using binary information. This improves device
speed by minimizing control overhead. The trade-off is that instrument control requires a
complex series of non-intuitive commands, increasing the difficulty and reducing the flexibility
of configuring test systems and protocols.

The alternative is to program VXI devices with the IEEE 488-style "Word Serial Protocol." This
method for message-based devices provides the kind of high-level ASCII character control of
instruments with which IEEE 488 users are familiar. This sort of control makes system
configuration and programming simpler and easier. But, the overhead required to implement this
protocol slows data transfer rates down to those of the IEEE 488 bus 1 Thus the performance
improvements promised by VXI require diligence and care to achieve in practice, and may prove
to have specific rather than general applicability to the broad world of instrumentation.

1.6 Overview of Local Area Networking (LAN) via Ethernet

Computer local area networks (LANs)-most notably, the Ethernet hardware protocol-are
increasingly being used to transfer data from one test area to another, or from a test system or test
system complex to a central computer for storage and analysis. Ethernet is now one of the most
popular methods for interconnecting heterogeneous computer systems, particularly on campuses
and in research labs worldwide. Because Ethernet has become an international LAN standard,
many vendors sell Ethernet hardware and software - keeping costs down and innovation up.

Ethernet originated at Xerox's Palo Alto Research Center in response to the need to flexibly
interconnect a large number of dissimilar computers to share data and programs. It was made an
open standard by Xerox, Intel, and Digital Equipment Corporation in 1980, became an IEEE
standard in 1985 (IEEE 802.3 CSMA/CD [Carrier Sense Multiple Access/Collision Detection])
and became an international standard later (ISO/IEC 8802-3: 1990). While there are differences
between the Digital/Intel/Xerox (now DIX 2.0) and the IEEE 802.3 standards, they are similar
at the hardware level. The major difference is in the definition of the "frame," or bit stream, that
constitutes a packet ofinformation being transferred between computers; most Ethernet software
complies with DIX 2.0, whereas most Ethernet hardware complies with IEEE 802.3 ! All of these
variations are simply referred to as "Ethernet."

Ethernet's physical connectivity has evolved over the years. The original arrangement is based
on a 12.5mm coaxial cable and a bus topology. This topology includes an Ethernet transceiver
between the computer and the network proper; the transceiver is connected to the computer via
a special cable and is directly connected to the Ethernet cable.

1.5

Chapter 1 Introduction

A newer variation of Ethernet uses RG58C/U coax, a thinner, more flexible and less costly
alternative to the standard Ethernet coax. This cable permits the direct inclusion of the Ethernet
transceiver on computer network cards or on the computer itself, reducing the cost and
complexity of network installation. The "down side" is that thinwire Ethernet does not permit
as long a network segment (I 85m) as thickwire Ethernet (500m).

Newer still are twisted-pair (standardized as lOBASE-T) and fiber optic Ethernet cabling,
typically employed in Star topologies. Twisted-pair is used to connect computers and worksta
tions to a concentrator or hub, which in tum can be part of a coax or fiber optic network. The
concentrators can be no further than 100m from the twisted-pair-connected computer. Fiber optic
connections permit the longest point-to-point distance, 2 Km, but are point-to-point only. They
cannot be tapped or daisy chained.

All these cabling alternatives provide the same maximum data transfer rate: IO Mbits/sec. The
distinction among them is the maximum distance permitted for each network segment.

Ethernet hardware connectivity can be used by a wide variety of computers and associated
networking software. Common among IBM PCs is Novell NetW are. UNIX systems such as Sun
and NeXT workstations provide TCP/IP. Digital Equipment provides DECNet for its minicom
puters and workstations. All are designed to take advantage of Ethernet's proven performance
and reliability.

1.6

IEEE488

2.1 General

The IEEE 488 interface, sometimes called the General Purpose Interface Bus (GPIB). is a general
purpose digital interface system that can be used to transfer data between two or more devices
and is particularly well suited for interconnecting computers and instruments (Figure 2.1). Some
of the key features of the IEEE 488 interface are:

* Up to 15 devices may be connected to one bus
* Total bus length may be up to 20m and the distance between devices may be up to 2m
* Communication is digital (as opposed to analog) and messages are sent one byte (8 bits) at a time
* Message transactions are hardware handshaked
* Data rates may be up to 1 Mbyte/sec

Figure 2.1-An IEEE 488 interface connects devices such as computers and instruments

2.1

Chapter 2 IEEE 488

The specification of the IEEE 488 interface falls into four areas:

1. MECHANICAL - connectors, cabling, and related physical characteristics
2. ELECTRICAL - signal levels, source drive requirements, timing, etc.
3. FUNCTIONAL - interface functions
4. OPERATIONAL - device functions

The first three areas noted above are addressed in IEEE 488.1-1987 "Digital Interface for
Programmable Instrumentation," and the fourth area, operational specifications, is covered in
IEEE 488.2-1987 "Codes, Formats, Protocols, and Common Commands for Use with IEEE
488.1-1987 ." Note that the IEEE 488.2 standard builds on the IEEE 488.1 standard to provide
a more complete interface specification (Figure 2.2). IEEE 488.2 does not preclude any of the
specifications set forth in IEEE 488.1, and in fact, the authors of both standards gave particular
attention to ensuring that devices implemented under IEEE 488.1 will still operate within the
constraints of the second part of the overall IEEE 488.2 standard.

Figure 2.2-Layering the IEEE 488.1 and 488.2 standards

2.2 Mechanical Specifications of IEEE 488

2.2.1 Connector

The IEEE 488 connector is a 24 pin connector with contact pin designation as shown in Figure
2.3. These connectors are commercially available from AMP as the CHAMP series and from
Cinch and Amphenol as Series 57. Devices on the IEEE 488 bus have female receptacles. and
interconnecting cables have the mating male connectors. Connecting cables will typically have
male and female receptacles wired in parallel at each connecting head to allow parallel connection
of cables at a device and/or to allow daisy chaining between devices.

2.2

Chapter 2

PI01-TEOPAIRWITH11

P/OlWISTEOPAIRwrnt10

PIOTW1ST!DPAIRWITH9

PIOTW1STEDPMRWITH8

PIOTWISTEDPAIRWITH7

Figure 2.3-Connector pin assignments

2.2.2 Hardware

IEEE488

Figure 2.4-IEEE 488 connector

Connectors (Figure 2.4) are attached using metric thread (ISO M3.9 x 0.6) jackscrews; though

the jackscrews have screwdriver slots, the screws should be hand tightened. The screwdriver slots

are provided for removal only.

2.2.3 Interconnection Cabling

Twenty-four conductor cable is specified and configured with 11 single conductors, six twisted
pairs, and an overall shield. The maximum resistance (in ohms/meter) for the cable conductors
shall be:

I. Each signal line (for example Dl01, ATN): 0.14Q/m
2. Each individual signal line ground return: O. l 4Q/m
3. Common logic ground return: 0.085Q/m
4. Overall shield: 0.0085Q/m

The maximum capacitance (measured at 1 kHz) between any signal line and all other lines
(signals, grounds, and shields) connected to ground shall be 150 pF/m. The shield shall contain
a braid of 36 A WG wire or equivalent with at least 85 percent coverage.

2.3

Chapter 2 IEEE488

Any individual IEEE 488 bus is limited to 15 devices including the controller; this means that 14
interdevice connections are possible on the bus. However, the IEEE 488 specification limits the
total length of all cabling used to interconnect devices on a common bus to 20m, or 2m times the
numberof interconnected devices (up to 20m). Cable lengths between devices may vary but the
total cable length must not exceed the restrictions mentioned above. Devices may be intercon
nected in a star or linear topology or in a combination of star and linear, as long as the distance
limits are observed (Figure 2.5). For maximum data transfer rates, the total cable length should
be reduced to 15m and the average interdevice cable should be Im or less.

Figure 2.5-Alternate IEEE 488 bus
cabling configurations

(A) Star
(B) Linear
(C) Combination

2.4

Chapter2 IEEE488

Bus length limitations may be avoided using bus extenders such as the IOtech Extender488 series
(Figure 2.6) or the Extender488/HS to allow separations of up to 1000m between devices. The
I0techExtender488 is a moderate speed extension device that uses inexpensive twisted pair cable
between bus devices; the Extender488/HS is a high speed extender that supports rates over 800
Kbytes/sec. Extenders using fiber optic cable, such as the IOtech Extender488/F, can be used in
applications requiring high noise immunity or dielectric isolation between devices on the IEEE
488 bus.

IEEE controller

Upto 13
IEEE devices .. Upto 14

IEEE devices .. • •

Upto1000m. •

I, .. • · ,1 m
Figure 2.6-Bus extenders circumvent the IEEE 488 standard

20m length limitation

Extenders also expand the maximum allowable number of devices by adding 14 IEEE 488
addresses on the remote end of the extender pair. The extender is the 15th device.

2.5

Chapter 2

2.3 Electrical Specifications of IEEE 488

2.3.1 Bus Lines

The IEEE 488 bus is a multidrop interface in which
all connected devices have access to the bus lines.
The 24 bus lines group into four categories (Figure
2.7):

* Data lines-Eight lines (DIO I through DI08),
used to transfer information (data and commands)
between devices on the bus, one byte at a time

* Handshake lines-Three lines, used to handshake
the transfer of information across the data lines:

DAV-Data Valid
ND AC-Not Data Accepted
NRFD-Not Ready for Data

* Bus management lines: Five lines, used for
general control and coordination of bus activities:

A TN-Attention
IFC-Interface Clear
REN-Remote Enable
SRQ-Service Request
EOI-End or Identify

* Ground lines: Eight lines, used for shielding and
signal returns:

One Shield
One General Signal Ground
Six logic ground lines paired off
with ATN, SRQ, IFC, NDAC,
NRFD, and DAV

2.6

System Controller

Listen, and Control

~~~!t~~~ § 
Able to Talk 
andlisten 

Printer § 
Only Able to listen 

Frequency Counter 

Only Able to Talk 

( 

IEEE488 

Data Byte 
Transfer 

~ 

General 
Interface 
Management 

--=}0101-8 
L,--D,V 

'----------NRFD 
~NDAC 

'-----IFC 
'------ATN 
'-----sso 

l':::=====~;~ 

Figure 2.7-IEEE 488 bus lines 



Chapter 2 IEEE 488 

2.3.2 Electrical Requirements 

The signal lines are low TRUE logic levels so that a signal voltage greater than +2V is defined 
as Logic FALSE and a signal voltage less than +.8V is defined as Logic TRUE. 

Signal drivers must be open collector logic ( allowing multidrop device connection on the bus with 
low TRUE logic, although tristate drivers are permitted on A TN, IFC, REN, EOI, DAV, and the 
eight data lines). The use of tristate drivers is recommended for data rates higher than 250 
Kbytes/sec. All signal drivers must be able to sink 48 mA continuously and tristate drivers must 
also source 5.2 mA continuously. 

Since the IEEE 488 standards do not provide for electrical isolation, the bus, its devices and the 
controlling computer may be vulnerable to high voltages present on a bus device. A bus isolator 
can protect the balance of the bus from a device with such voltages. IOtech' s Isolator488 (Figure 
2.8) provides 1500V of isolation as well as an additional 14 bus addresses on its isolated side. 

Computer with 
IEEE interface 

Upto 13 
IEEE devices 

-• 41 10 Q I> 
volts 

Figure 2.8--Electrically isolate (to 1500V) and expand the nnmber of 
instrnments on the IEEE 488 bus with lsolator488 

2.3.3 Handshaking 

The IEEE 488 bus uses three handshake lines in a "We' re ready - Here's the data - We've got it" 
sequence to transfer information across the data bus. This handshake protocol assures reliable 
data transfer at the rate determined by the slowest Listener. One line (DAV) is controlled by the 
Talker, while the other two (NRFD and NDAC) are wired-or lines shared by all Active 
Listeners. The handshake lines, like all other IEEE 488 lines, are active low. 

2.7 



Chapter 2 IEEE488 

DAV is controlled by the Active Talker. Before sending any data, the Talker verifies that NDAC 
is asserted (low) which indicates that all Listeners have accepted the previous data byte. The 
Talker then places a byte onto the data lines and waits until NRFD is unasserted (high) indicating 
that all Addressed Listeners are ready to accept the information. When NRFD and NDAC are 
in the proper state, the Talker asserts DAV ( active low) to indicate that the data on the bus is valid. 

NRFD is used by the Listeners to inform the Talker that they are ready to accept new data. The 
Talker must wait for each Listener to unassert this line (high), which they do at their own rates, 
when they are ready for more data. This assures that all devices accepting the information are 
ready to receive it. 

NDAC is also controlled by the Listeners and indicates to the Talker that each device addressed 
to listen has accepted the information. Each device releases NDAC (high) at its own rate, but 
NDAC does not go high until the slowest Listener has accepted the data byte (Figure 2.9). This 
type of handshaking permits multiple devices to receive data from a single data transmitteron the 
bus. All active receiving devices will participate in the data handshaking on a byte-by-byte basis 
and operate the NDAC and NRFD lines in a "wired-or" scheme so that the slowest active device 
will determine the rate at which the data transfers take place. In other words, data transfers are 
asynchronous and occur at the rate of the slowest participating device. 

D101-8 
(composite) 

DAV 
Source 

NFRD 
Accepter 

NDAC 
Accepter 

1st Data Byte 2nd Data Byte 

Figure 2.9-IEEE 488 bus handshaking 

2.8 



Chapter 2 IEEE488 

2.4 IEEE 488 Functions 

When information is placed on the data lines (DIO 1-DI08), it can represent either a data byte or 
a command. If the Attention bus management line (A TN) is asserted while the data is transferred, 
then the data lines are carrying a multiline command to be received by every bus device. If A TN 
is not asserted, then a data byte is being transferred, and only the Active Listeners receive that byte. 

TheIEEE488 bus also has anumberof uniline (single line) commands that, as theirname implies, 
are carried on a single bus management line. For example, the Interface Clear (IFC) line, when 
asserted, sends the Interface Clear command to every bus device, causing each to reset its IEEE 
488 bus interface. 

2.4.1 Addressing 

The IEEE 488 standard normally pemlits up to 15 devices to be configured within one system. 
Each of these devices has an IEEE 488 bus address, a number from Oto 30, that must be unique 
to avoid conflicts and confusion. The method by which a specific device's address is set is 
designated by the manufacturer. Some device addresses are set by DIP switches in hardware, 
others by software or by front panel controls. The manufacturer's instructions should describe 
how to set the bus address. Address limit~ can be circumvented directly by the use of bus 
expanders such as IOtech's Expander488 (Figure 2.10), or indirectly through the use of an 
isolator or an extender. 

Computer with 
an IEEE interface 

Upto 13 
IEEE devices 

. . .. . . . . . . . -. - . .. ·"'' ///// . 
40 '..l clO~'COO .,;'/// 

Upto 14 
IEEE devices 

. - . .. . ...... .. 
·-- // ,,.,,,.,., -. - . 
• ''"' :)"('"' :y ,,.,.,,,., • • -~ 

Figure 2.10--Expander488 provides an effortless method of expanding 
an IEEE system beyond 15 devices 

2.9 



Chapter 2 IEEE488 

A device becomes Addressed to Talk when it receives a Tall<c Address Group (TAG) multiline 
command (a byte transferred with A TN asserted) specifying its own address from the Active 
Controller. Similarly, it becomes Addressed to Listen when it receives a Listen Address Group 
(LAG) multiline command. Other address commands include My Talk Address (MTA) and My 
Listen Address (MLA), which are the TAG and LAG commands of the Active Controller. The 
Secondary Command Group (SCG) is used to refer to subaddresses or subfunctions within a 
particular device. This pennits direct access and control of the subdevices or subinstruments 
embedded within complex devices or instruments. 

2.4.2 The System Controller 

The System Controller, usually a computer with an IEEE 488 board installed, is a device that 
always retains ultimate control of the bus. When the system is first powered up, the System 
Controller is the Active Controller and controls all bus transactions. It is possible for the System 
Controller to Pass Control to a device, making it the new Active Controller, which may, in tum, 
Pass Control to yet another device. Even ifit is not the Active Controller, the System Controller 
maintains exclusive control of the Interface Clear (IFC) and Remote Enable (REN) bus 
management lines and can thus take control of the bus whenever it desires. 

2A.3 Bus Management Lines 

Five hardware lines on the IEEE 488 bus are used for bus management. Signals on these lines 
are often referred to as uniline commands. The signals are active low, i.e., a low voltage represents 
a logic TRUE (asserted), and a high voltage represents a logic FALSE (unasserted). Some of 
these lines are connected in a wired-or configuration. These lines can be asserted by any bus 
device, and the signal on that line is asserted if any device is driving it. Conversely, the signal 
is unasserted only if no devices are driving that line. 

2.4.3.1 Attention (ATN) 

A TN is one of the most important lines for bus management. When Attention is asserted, the 
information contained on the data lines is to be interpreted as a multiline command. When it is 
not, that information is to be interpreted as data for the Active Listeners. A TN can only be driven 
by the Active Controller. 

2.10 



Chapter2 IEEE 488 

2.4.3.2 Interface Clear (IFC) 

The System Controller uses the IFC line to place all bus device interfaces in a known, quiescent 
state. IFC places the devices in the Talk and Listen Idle states (neither Active Talkernor Active 
Listener) and makes the System Controller the Active Controller. 

2.4.3.3 Remote Enable (REN) 

The System Controller asserts REN to allow bus devices to respond to remote (bus) commands. 
When REN is asserted, all listeners capable of remote operation enter remote operation when 
addressed to listen. If REN is unasserted, then the bus devices may ignore the bus and remain 
in local operation. All devices capable of both remote and local operation must monitor REN and 
respond within 100 µsec. 

2.4.3.4 End or Identify (EOI) 

EOI is used to signal the last byte of a multi byte data transfer. The device that is sending the data 
asserts EOI during the last data byte. EOI is not always necessary; instead, the last data byte might 
be a special character, such as cartiage-retum or line feed. EOI is also used by the Active 
Controller to perform a Parallel Poll by simultaneously asserting EOI and A TN. 

The new IEEE488.2 standard specifies that a488.2-compliant peripheral accept either a line feed 
or EOI asserted as the end of a transfer. Further, as a peripheral, it must signal the end ofa transfer 
by asserting EOI while sending a line feed. 

2.4.3.5 Service Request (SRQ) 

SRQ is a wired-or line that is asserted by any device that desires the attention of the Active 
Controller; it can be used to interrupt the current sequence of events. The device may be reporting 
that it has data to send, an error condition to report or both. The Controller can determine which 
device requested service using Serial Poll or Parallel Poll. A Serial Poll will clear the SRQ line 
unless some other device is requesting service. SRQ is the IEEE 488 bus equivalent of the 
hardware interrupt found in computer systems. 

2.11 



Chapter 2 IEEE488 

2.4.4 Multiline Commands 

Multiline commands are bytes sent by the Active Controller over the data bus with A TN asserted. 
These commands are divided into five groups: Listen Address Group (LAG), Talk Address 
Group (TAG), Secondary Command Group (SCG), Addressed Command Group (ACG), and 
Universal Command Group (UCG). These commands are sent to all devices and serve several 
purposes: 

1. Talk or listen addresses inform the devices on the bus who will provide and who will accept 
data. These multiline messages, sent over the data bus, are sent to all devices. 

2. Secondary commands are multiline messages used in conjunction with an address, 
multiline universal command, or addressed command. These commands are used to 
expand the code space when necessary. For example, a Controller may address a subdevice 
within a complex device by using secondary addresses. 

3. Addressed commands affect only those devices which have previously been addressed to 
be a listener. 

4. Universal commands cause every instrument on the bus to carry out the bus function 
specified (if the instrument is capable of it). There are five multiline and four uniline 
universal commands: 

2.4.4.1 Listen Address Group (LAG) (&H20-3F) 

These commands Address to Listen specified bus devices ( &H20-3E for device addresses O through 
30) or Address to Unlisten (UNL) all bus devices (&H3F). The addressed device then becomes a 
Listener. 

2.4.4.2 Talk Address Group (TAG) (&H40-SF) 

These commands Address to Talk specified bus devices ( &H40-5E for device addresses 0 
through 30) or Address to Untalk (UNT) all bus devices (&H5F). The addressed device then 

becomes a Talker. 

2.4.4.3 Secondary Command Group (SCG) (&H60-7F) 

These commands are used to specify a subaddress or subfunction within a given bus devices. 
They are also used in the Parallel Poll Configure sequence. 

2.12 



Chapter 2 IEEE488 

2.4.4.4 Addressed and Universal Command Groups (ACG, &HOO-OF and UCG, &HlO-lF) 

These commands perform various bus functions described in Table 2.1. Addressed Commands 
affect only the Active Listeners, whereas Universal Commands affect all bus devices. The 
Addressed and Universal multiline commands are shown in Table 2.1 below. 

Addressed/ Multiline 
Universal Commands 

A Go To Local 

u Local Lockout 

u Device Clear 

A 
Selected Device 

Clear 

u Serial Poll 
Enable 

u Serial Poll 
Disable 

A 
Group Execute 

Trigger 

A Take Control 

A 
Parallel Poll 

Configure 

A Parallel Poll 
Unconfigure 

Acronym Code 

GTL ACGOJ 

LLO UCG 11 

DCL UCG 14 

soc ACG04 

SPE UCG 18 

SPD UCO 19 

GET ACG08 

TCT ACG09 

PPC ACGOS 

PPU UCG15 

Description 

GTL allows the manual or front panel control of the 
selected devices. 

LLO prevents manual or front panel control of all bus 
devices. 

The command causes all bus devices to be initialized to a 
power-up or pre-defined state. 

These commands cause addressed bus devices to be 
initialized to a power-up or pre-defined state. 

SPE enables em.:h bus device to output its serial poll status 
byte instead of its normal data when it is an Active Talker. 

SPD disables all devices from sending their Serial Poll 
~tatus byte and restores normal data output. 

This conunand usually signals a group of devices to begin 
executing a triggered action. This allows actions of 
different devices to begin simultaneously. 

TCT passes bus control from the current Active 
Controller to another device, which then becomes the 
Active Controller. 

PPC configures devices as to which hit they are to assert 
in response to a Parallel Poll when they require service. 

This command disables all devices from responding to a 
Parallel Poll. 

Table 2.1-Addressed and universal command groups 

Multiline commands: 
Device Clear(DCL )-<:a uses all devices to be initialized to their power-on orto a predefined 

state 
Local Lockout (LLO)- prevents manual or front panel control of all bus devices 
Serial Poll Enable (SPE)--enables all bus devices to output their serial poll status byte 

(instead of their normal data) when they are Active Talker 

2.13 



Chapter 2 IEEE488 

Serial Poll Disable (SPD )--<lisables all devices from sending their serial poll status byte and 
restores normal data output 

Parallel Poll Unconfigure (PPU)--<lisables all devices from responding to a parallel poll 

Uniline commands: 
Interface Clear (IFC)-initializes the bus to an Idle state 
Remote Enable (REN)---enables devices to respond to remote program control when 

addressed to listen 
Attention ( A TN)-puts the bus in command mode 
Identify (IDY)-the simultaneous assertion of A TN and EOJ signals a parallel poll demand 

2.5 Addressing 

A device becomes Addressed to Talk when it receives a Talk Address Group (TAG) multiline 
command (a byte transferred with A TN asserted) specifying its own address from the Active 
Controller. Similarly, it becomes Addressed to Listen when it receives a Listen Address Group 
(LAG) multiline command. Other address commands include My Talk Address (MTA) and My 
Listen Address (MLA), the TAG and LAG commands of the Active Controller, and the 
Secondary Command Group (SCG) used to refer to subaddresses or subfunctions within a 
particular device. 

2.6 Serial Poll 

When a device is Serial Polled, it responds to the Controller with an 8-bit status byte, one bit 
(DJ07) of which is set if the polled device is requesting service (RQS), with the remaining bits 
containing device-specific status. If the polled device is not requesting service, then the 
Controller can Serial Poll the other devices until itfinds the one needing attention. The Controller 
can then examine the other bits in the status byte to detennine the cause of the request. In this 
way, repeated Serial Polls can determine which device is requesting service and its status. IEEE 
488.2 provides a standard format for the status byte beyond the RQS bit. 

2. 7 Parallel Poll 

When the Controller performs a Parallel Poll, each device that desires service asserts exactly one 
of the data (DIO) lines. The specific line asserted by a given device may be set under software 
control (with Parallel Poll Configure) or by switches or other controls within the device. By 
examining the 8-bit parallel poll response, the Controller can determine which devices require 

2.14 



Chapter 2 IEEE488 

service. However, the Controller receives no other status infonnation about that device and often 
follows the Parallel Poll with a Serial Poll of the requesting device. 

Because Parallel Poll is much faster than Serial Poll, it is the preferred method of detennining 
which device(s) require service. Once the devices are identified, Serial Poll, along with other 
device-dependent commands, is used to detennine the cause of the SRQ and the appropriate 
actions. However, the Serial Poll and Parallel Poll response capabilities vary greatly among 
devices, and a given bus device might not support them. The Controller must be aware of these 
limitations when responding to an SRQ. 

2.8 IEEE 488.2 

IEEE 488.2 expands on the IEEE 488.1 specification by detailing a preferred implementation of 
manyoftheissuesthatwereeitheroptionalorunspecifiedinthefirststandard. lEEE488.lcovers 
the key physical issues ( connector type, bus length, maximum number of instruments, etc.) and 
electrical issues ( open collector TIL, tristate), as well as low-level protocols ( device addressing, 
control passing, and data handshaking/timing). Four basic device functions (Talker, Listener, 
Controller,andSystemController)arespecified,asarecapabilitysubsetsforeachtypeofdevice. 

A number of items not covered by 488.1 can cause problems for the test engineer, particnlarly 
regarding equipment compatibility and data corruption. For example, 488.1 does not cover these 
specifications: 

• Minimnm Device Capability Requirements 

NominimumsetofrequirementsismandatedinlEEE488.lforTalkers,Listeners,Controllers, 
or System Controllers. Hence, a device may implement all, or only some of the capability sets 
set forth in 488.1, giving rise to systems containing devices with varying levels of abilities. 

The Controller in such a situation has no guarantee of a basic communication subset among 
system devices. This can lead to confusion for the system operator and miscommunication 
between devices. 

• Data Coding, Fonnats, and Message Protocol 

Under 488.1, the messages transferred between the Controller and a device are entirely at the 
discretion of the device manufacturer. The use of ASCII, binary, or some other form of data 

2.15 



Chapter 2 IEEE 488 

code and the choice of tenninators such as carriage-return or EOI is arbitrary. Also, the 
sequence of the sending of conunands and the reading of their responses is unspecified and 
varies from instrument to instrument. 

• Definition of the Status Byte 

488.1 defines a status byte and one bit within, but the meaning of the other seven bits is at the 
discretion of the device designer. This forces the user to provide a unique interpretation of each 
bit of the status byte. Also, the relationship between the status byte and the device's other 
internal status registers is unspecified. 

In spite of the omissions in the 488.1 standard, thousands of systems have been successfully 
configured using the IEEE 488 bus. This is a testament to the ability of designers to wotk toward 
reasonable interpretations of the specification where it is incomplete and also evidences the intuition 
of users in working around inconsistencies and incompatibilities. However, it has forced users 
to expend effort on low-level instrument-conununication operations which might better have 
been directed toward obtaining the desired results. 

The IEEE 488.2 standard was developed to simplify the basic process of conununicating with 
instruments. IEEE 488.2 extends the 488 standard with code, format, and protocol standard
ization and serves to resolve issues left open in 488.1, such as the examples noted. It also 
addresses these issues: 

• 488.2 Required User Documentation 

Minimum device documentation is specified, i.e., all of the capabilities of the device must be 
presented in the manual. 

• 488.2 Precise Talking/Forgiving Listening 

When an instrument is talking (sending responses), it must use a well-defined and exacting 
syntax that can easily be understood by the user's program. When an instrument is listening 
(receiving conunands and data), it must be able to accept a reasonable variety of formats that 
might be generated by the user's program. In both cases, the instrument is required to perform 
so as to simplify the user's programming burden. 

2.16 



Chapter 2 IEEE 488 

• 488.2 Common Commands 

Many common commands such as Device Reset and Read Status Byte have been defined by 
the IEEE 488.2 standard. Many of these are required in every IEEE 488.2 instrument, while 
some are optional. These common commands ensure some uniformity among instruments and 
further simplify the user's task. Device-specific commands are not strictly specified by 488.2, 
but 488.2 confines their syntax to simple, easily generated text strings. It also specifies the 
formats to be used for numeric data, including engineering units, as well as for blocks of binary 
data. 

• 488.2 Hardware Implementation 

The IEEE interface hardware has become a de facto standard based on the NEC µPD72 l O or 
TI9914 interface chips. These chips are the basis fornearly all IEEE 488 controllers available 
today for the IBM PC and most other platforms as well. Although the introduction of the IEEE 
488.2 standard has required some minor additions to the logic found in these chips, they still 
remain a viable method for implementing IEEE 488.2 in equipment. 

2.9 IEEE 488 Driver Software for the IBM PC 

Great variety is found in the software required to complete the interface between the user's 
program and the IEEE instruments. Two fundamental techniques are used: the DOS device driver 
and the subroutine library. These are not mutually exclusive, as subroutine libraries can be 
implemented via a DOS device driver. 

2.9.1 DOS Device Driver 

A popular form of device driver pioneered by IOtech and used by several IEEE 488 controller 
providers is the Terminate and Stay Resident (TSR) DOS device driver approach. In this method, 
thedrivercode is stored in memory as a TS Rand waits for access by an application program, much 
as Borland's Sidekick waits for user "hot key" input. IOtech's Driver488, for example, 
establishes a file I/0 link with DOS,just as DOS provides file I/0 links for system devices such 
as the keyboard/screen (CON), printer (PRN), or serial port (COM). Driver488, while resident 
in memory, establishes "files" called "IEEE" (for input and output), "IEEEIN" (for input) and 
"IEEEOUT'' (foroutput). Actually, all three of these device names provide both input and output 
to the IEEE 488 bus; IEEEIN and IEEEOUT are provided as a convenience to the user to help 
him or her avoid confusion between input and output. 

2.17 



Chapter 2 IEEE488 

These DOS 1/0 files may be accessed directly from DOS, from programs with file 1/0 capability, 
including spreadsheets such as Lotus 1-2-3 and Borland' s Quattro, and from most programming 
languages. These files provide a direct link to the IEEE 488 bus using IOtech' s HP-style English 
language commands. This style of Applications Program Interface (API) is often referred to as 
Character Command Language (CCL), as the IEEE commands are sent as ASCII strings to the 
driver via the API's file 1/0 links through DOS. 

2.9.1.1 Controlling IEEE 488 Instruments Directly from DOS 

With a DOS device driver such as Driver488 installed into the DOS operating system, IEEE 488 
devices can be controlled directly from the DOS prompt without the need to write a program. The 
first step is to use Driver488' s installation/configuration utility to configure each IEEE488 device 
attached to the bus. This procedure includes specifying the addresses and terminators for each 
device, and allows the device to be designated by an alphanumeric name such as "DMMI." 

The following examples using an I0tech ADC488 (which we have named with Driver488's 
install/configuration utility, DMM I) illustrate how users can establish IEEE control directly from 
the keyboard under DOS (the">" is the "pipe" or redirection convention in DOS, sending the 
output of the device on the left of the ">" to the input of the device on the right of the ">"). 
"ERROR ON," "FILL," "CLEAR," "OUTPUT," "SPOLL," and "ENTER" are Driver488 HP
style commands that the user will send to Driver488 for execution via the "file" IEEE. 

To send the message "ERROR ON" from the keyboard to the driver and enable errors to be 
displayed, the user must, upon the DOS prompt C:>, type: 

C:> ECHO ERROR ON> IEEE <return> 

To instruct the driver to append a carriage return ( <cntrl-Z>) to all input data, the user must type: 

C:> ECHO FILL $26> IEEE <return> 

To clear the DMM to its power-on condition, the user must type: 

C:> ECHO CLEAR DMMl >IEEE <return> 

2.18 



Chapter 2 

To program the DMM for the 2 VDC range, the user must type: 

C:> ECHO OUTPUT DMMl; C1T6X> IEEE <return> 

To serial poll the DMM and display the result, the user must type: 

C:> ECHO SPOLL DMMl > IEEE <return> 
C:> TYPE IEEE <return> 

IEEE488 

Note that the DOS command "TYPE" is used to view the "file" IEEE, just as it would be with 
any DOS file. 

To input and display a single reading from the DMM, the user must type: 

C:> ECHO ENTER DMMl> IEEE <return> 
C:> TYPE IEEE <return> 

To view continuous readings from the DMM, the user must type: 

C:> TYPE DMMl <return> 

The screen will scroll with readings from the DMM until the user presses <cntrl-break>. Since 
the <cntrl-break> may interrupt the driver in the middle of a transaction, the first attempt at 
another transaction may result in a SEQUENCE ERROR message from the driver. Simply 
retrying the subsequent transaction will clear the error. 

To save data from the DMM directly into a file called "DATA.DAT," the user must type: 

C:> TYPE DMMl > DATA.DAT <return> 

Here the DOS pipe is used to redirect the TYPE command output to the file DAT A.DAT instead 
of allowing itto defaultto the screen. To halt the flow of data to the file, the user must press <cntrl
break> as before. The user may employ the TYPE command to view the file: 

C:> TYPE DATA.DAT 

2.19 



Chapter 2 IEEE488 

or may copy it to a printer 

C:> COPY DATA.DAT PRN 

or to import it into an application program. 

2.9.1.2 Controlling IEEE 488 Instruments from Spreadsheets 

The previous section showed how the DOS device technique, exemplified by Driver488, makes 
instrument control from DOS as simple as working with DOS files. Since almost any operation 
permitted with a file is also possible with a DOS device, any application program that permits file 
1/0 will also permit IEEE 488 control via Driver488. A typical example is controlling IEEE 488 
instruments via spreadsheets such as Lotusl-2-3 and Quattro. 

While most spreadsheet commands are performed by choosing items from a menu system, 
spreadsheets typically include a macro facility to record and save menu selections and keystrokes. 
"Playing back" such macros allows frequently used operations to be performed with a simple 
two-keystroke input. These macro systems also include sophisticated programming facilities, 
such as user prompts, branching and looping, trapping errors, and file 1/0. This last capability 
can be exploited to connect the spreadsheet with the IEEE 488 bus. 

For example, in Lotus 1-2-3 and Driver488, a direct channel of communications from 1-2-3 to 
the IEEE 488 bus can be opened by using the macro OPEN command. Subsequent WRITELN 
and READLN macro commands will write and read data directly from the driver. To establish 
the link between 1-2-3 and Driver488, users must employ the macro command: 

{OPEN IEEE,W} 

where the "W'' indicates that writing to the "file" IEEE will be permitted. As data from a file of 
any type is read into a spreadsheet, the spreadsheet expects a carriage return (<CR>) after every 
data point. Without the proper terminator, the spreadsheet cannot distinguish one data point from 
another. Thus during the setup of Driver488 (using the install/configuration utility) the end-of
line terminator sent by Driver488 to applications programs must be set to "CR." During this 
configuration process the user can assign alphanumeric names to the devices attached to the bus 
and specify their terminators as well. These steps eliminate the need to define data termination 
using macro commands that send CCL messages to Driver488. 

2.20 



Chapter 2 IEEE488 

After the driver has been opened with the OPEN macro command, the user can build a macro 
command sequence to begin to acquire data and place it in the spreadsheet. The following simple 
example employs a combination ofDriver488 commands (OUTPUT, TRIGGER, and ENTER) 
and spreadsheet macro commands (WRITELN and READLN). Every driver command that 
brings in data (i.e., SPOLL, ENTER) must be followed by a spreadsheet command that accepts 
that data (READLN). Using the same ADC488 DMM example as in the previous section, the 
following macro sequence is employed to collect one data point and store it in the spreadsheet. 
To set the DMM for the 2 VDC range, the user must employ the macro sequence: 

(WRITELN"OUTPUT DMM;ClT7X"} 

To trigger the DMM, the user must employ the sequence: 

{WRITELN"TRIGGER DMM"} 

To read one data point and store it in cell E24, the user must employ: 

(WRITELN"ENTER DMM"} 

{READLN E24} 

After all the desired values have been read, the spreadsheet must be updated with the macro 
command: 

{CALC} 

At this point the spreadsheet cells contain ASCII data, but not numerical data, which will lead the 
spreadsheet to treat the data as labels rather than numbers. To avoid this, each data point must 
be converted from an ASCII string to a numerical value. Usually this is done in a single operation 
with the @VALUE function. Unfortunately, here each data point will have a CR appended to 
it. Thus the user must employ the following sequence of commands to apply the @VALUE 
function to all the characters of the string in cell E24, save the last: 

(LET F24, (@VALUE(@LEFT(E24,@LENGIH(E24)-1)))} 

This performs the @VALUE function on all but the last byte of the string in E24 and puts the 
resulting value in F24. 

2.21 



Chapter 2 IEEE488 

By using the extensive branching, looping, and user input capabilities of the spreadsheet' s macro 
language, the user can perform complex data acquisition, analysis, and graphical displays thanks 
to Driver488' s device driver techniques. Any of Driver488' s commands can be sent from the 
spreadsheet using the {WRITELN} macro command. IOtech Application Note (#3), Control 
IEEE 488 Instruments with Lotus 1-2-3, Lotus Symphony, and Borland's Quattro, provides 
detailed macro listings for acquiring, manipulating, and displaying data directly from the IEEE 
488 bus. 

2.9.1.3 Controlling IEEE 488 Instruments from Any Language 

Just as DOS and spreadsheets can access IEEE instruments directly using the file I/0 services 
provided by DOS for device drivers, most programming languages also can use file I/0 to quickly 
and easily access the IEEE 488 bus. As was mentioned earlier, IEEEIN and IEEEOUT are 
provided as a convenience to the user to aid in distinguishing between the use of the Driver488 
device as an input or an output port. 

In BASIC, files are opened using OPEN FOR OUTPUT and OPEN FOR INPUT commands: 

OPEN "IEEEOUT" FOR OUTPUT AS #1 
OPEN "IEEEIN" FOR INPUT AS #2 

Communication with Driver488 is achieved using PRINT and INPUT commands, as in: 

PRINT# 1, "HELLO" 
INPUT#2, A$ 
PRINT A$ 

which will send the Driver488 command HELLO to the driver, which will respond with the 
Driver488sign-onmessage,i.e.,"Driver488 Rev. 3 .2 (C) Copyright 1990 IOtech, 
Inc." Any Driver488 command may be sent using the same method, and data can likewise be 
retrieved from the bus. 

For other languages, the principles are the same. For example, in Turbo Pascal, the required files 
are opened with these statements: 

VAR IeeeOut, Ieeein: TEXT; 
Assign (IeeeOut, 'IeeeOut'); Rewrite(IeeeOut); 
Assign ( Ieeein, 'Ieeein' ) ; Reset ( Ieeein) ; 

2.22 



Chapter 2 IEEE488 

In Microsoft C, the statement is: 

ieee=open ( 'ieee' , O_RDWR I O_BINARY) ; 

Building and completing IEEE control programs is discussed in detail in the IOtech Personal488 
and Power488 series manuals. 

2.9.2 Subroutine IEEE 488 Driver Interface 

An alternative means of controlling the IEEE 488 hardware is via subroutine calls from high level 
languages. This method has the advantage of mirrimizing the overhead of DOS' device driver 
services and the ASCII message (Character Command Language) parser and interpreter. The 
disadvantages include the loss of the convenience and effectiveness of accessing the IEEE 488 
bus from a wide variety of applications programs such as spreadsheets, as well as directly from 
DOS itself. Also, the use of subroutines, even those with easy-to-use HP-style commands such 
as IOtech' s Driver488, typically requires compiling and linkmg to run even simple test code. 

Some IEEE controller implementations on the IBM PC, notably IOtech' s Driver488, give the 
user the choice of subroutine calls or character command language. 

2.9.3 IEEE 488 Subroutine Control Libraries 

The logical complement of subroutine interfaces for a TSR DOS device driver are subroutine 
libraries that directly access the IEEE 488 hardware from a high-level language with code that 
is compiled and linked directly into the user's program. This approach eliminates the DOS device 
driver, integrating the IEEE 488 control functions directly into the applications program code. 
Of all the alternatives, this approach has the potential for the highest performance, as it eliminates 
possible DOS effects on the speed of commands and data. 

For those in need of small, tight IEEE 488.2 control code to embed in their applications programs, 
IOtech provides two libraries of IEEE 488 control subroutines. For those requiring IEEE 488 
controller routines, Library488 provides full IEEE 488.2 controller functions in a suite of routines 
that encompasses the functionality of Driver488 (Figure 2.11 ), including "on SRQ" vectoring, 
OMA transfers, and automatic error checking, as well as low-level commands such as "send 
Unlisten." In contrast, the Personal488/0EM-P is a suite of IEEE 488.2 peripheral routines 
intended for the designer of instrumentation with an embedded PC architecture, who requires 
compact code with low overhead for an IEEE interface (Figure 2.12 ). Using the peripherals-

2.23 



Chapter2 IEEE488 

routine approach can significantly reduce time-to-market by eliminating the need to develop, test, 
and debug IEEE 488.2 peripheral code in-house. 

TES1PROG.EXE 
(User application program) 

r················ 
: Library488 
1 (Linked functions from library) 

Operating System 

- . . . .... . - . - // //,',;'/ .. . . .. //,//,' .. 

Figure 2.11-Library488 is ideal for applications where 
speed and compactness are required 

Instrument 
Hardware 
Functions 
AID, DIA, 

Display, Cale etc. 

Instrument 
Software 
Functions 

Personal48810EM-P 
C Libraries: 

Message 
Exchange 
Interface 

Status Reporting 

Buffer 
Management 

IEEE 1/0 Control 

RS-2321/0 
Control 

Figure 2.12-Peripheral device using I0tech's Personal488/0EM-P 

2.24 



Chapter 2 IEEE488 

2.9.4 Microsoft Windows Compatibility 

The growing popularity of the Windows 3.0 Graphical User Interface (GUI) is rapidly spreading 
to test and measurement (T&M) applications. Until 1991, few tools were available for the end 
user to build Windows applications. Microsoft's Windows Software Development Kit was 
difficult even for full-time, professional Windows application developers. Now, however, new 
tools such as Microsoft's Visual Basic and Borland' s C++, provide GUI development interfaces 
that allow users to draw windows and fill them with buttons, scroll bars, and dialog boxes. Soon, 
these tools (and the tools, libraries, and utilities that will follow) will be widely used by developers 
of IEEE 488 test programs. IEEE 488 controller package vendors will adapt their offerings to 
be compatible with Windows, so users will be able to apply Windows solutions to their 
measurement problems. 

As these new Windows-oriented drivers and packages debut, there will undoubtedly be a broad 
range of solutions offered to the end user. It is important to know and understand what makes 
Windows and Windows applications different from DOS, and what features an IEEE 488 driver 
should have in order to make the most of the Windows environment. Users should keep the 
following issues in mind when reviewing new offerings: 

• Is the software written as a Windows application, or is it merely a port of DOS software? 
- Windows performs its own memory management functions; typical DOS ports to Windows 

do not permit Windows to dynamically allocate memory use, which can lead to "Unrecov
erable Application Errors." 

-As Windows is an event-based system, it provides extensive event handling facilities; 
Windows applications should take advantage of them. 

- Windows has no equivalent of the TSR concept used with DOS; although some DOS TS Rs 
will function while Windows is running, their operation can be erratic and unpredictable. 

• Will the driver support concurrent access of different peripherals on a single interface by 
multiple Windows applications? Windows' pseudomultitasking is one of its reasons for 
being. 

• Will the driver service multiple bus adapter boards? 
• Is the driver IEEE 488.2 compliant? 

2.9.5 Troubleshooting the IEEE 488 Bus 

To efficiently diagnose, troubleshoot, and verify IEEE 488 systems, it is necessary to have some 
basic knowledge of the IEEE 488 bus. Since the hardware portion of the IEEE 488 standard is 

2.25 



Chapter 2 IEEE488 

rigorous and stable, most problems encountered during the system integration process will lie in 
the application software. 

2.9.5.1 Analyzing the IEEE 488 Bus 

Without a doubt, the simplest way to decipher the Controller's operations and the response of the 
instruments, regardless of the software or hardware used, is through an IEEE analyzer or bus 
monitor. Analyzer488, from IOtech, will allow the programmer to view all of the transactions 
on the bus in real-time or record them into its 32K non-volatile transaction buffer for later 
inspection. IOtech's smaller, lower cost Monitor488 captures up to lOK transactions in its 
circular buffer; it can single step or slow the bus. Each product's printer port allows concurrent 
hard copy print out of bus transactions. 

Analyzer488 can be operated as a portable bench-top analyzer from its keypad or from the 
included Analyst488 PC and PS/2 software. Analyzer488 allows the events on the IEEE 488 bus 
to be monitored and analyzed. The analyzer can also be used to control devices on the bus for 
exercising and verifying instrument operation. The analyzer will automatically translate the state 
of the data bus and control lines into easy to read IEEE 488 messages or ASCII equivalents such 
as SPE, TAG16, CR, and LF. Along with its large capture buffer, Analyzer488 contains a 
comprehensive set of trigger features that allows the desired group of transactions to be easily 
pinpointed and identified. 

2.9.S.2 Common Problems and Solutions 

While individua!IEEE488 bus devices all have their idiosyncrasies, some systems will encounter 
problems as a result of the interaction of several devices in the system. Such problems are among 
the most difficult to debug. An effective strategy is to connect an IEEE 488 bus analyzer and let 
it run while the application is processing. Recording the bus transactions as they occur will 
usually allow the user to diagnose these types of problems rather quickly. The following 
problems were all diagnosed using Analyzer488. 

Often the problems encountered in a system result from the interaction between one device and 
the Controller. Here is a list of common symptoms and their suggested solutions: 

2.26 



Chapter 2 IEEE488 

"A time-out error occurs when a device-dependent command is sent to an instrument." 

The user should first check the setting of the address of the instrument. Every device on the bus 
must have a unique address between O and 30. When sending device-dependent commands 
(DDCs) to an instrument to change its state or operating mode, the device will first be addressed 
to listen; only then will the DOC be sent. If the device has Talk and Listen indicators on its front 
panel, the user can tell immediately if the address used by the Controller matches the actual 
address of the instrument, because the lights will illuminate. If the Listen indicator does not come 
on when commands are being sent to the device, the user is employing the wrong address for that 
device; the device is not listening for the DDCs. 

As previously discussed, when the ATN line is asserted by the Controller, all the instruments 
on the bus will handshake with and accept commands from the Controller. After the time
out is received, the transactions recorded by Analyzer488 should be stepped through. If no 
instrument addressing command such as Listen Address Group 16 (LAG 16) was recorded, 
the instrument is probably turned off or broken or the cable is disconnected. Regardless of 
the present state of the instrument, it should handshake (accept data) when the A TN line is 
asserted. If the addressing commands were successfully recorded on the analyzer, the user 
must step though the transactions until the ATN line is unasserted. If there are no more 
recorded transactions, no instrument was placed in the Listen mode, i.e., the Controller had 
no device to handshake with and so it timed out. Since the instrument is responding to A TN 
but not to LAG, it is probably set to the wrong address. 

"At certain points in the program, the system stops and a time-out error is received. " 

If portions of a program are operating correctly, the user can be certain that the addresses are set 
correctly. If time-out errors occasionally occur or occur at the same place in a program after other 
instrument tasks have been completed successfully, this may indicate an instrument-readiness 
problem. IEEE 488 interfaces such as IOtech' s Personal488/ AT operate very rapidly and can 
sometimes outrun the instrument they are controlling. 

For most instruments, requesting data is performed in two steps: the user sends the necessary set 
up or inquiry commands via DDCs, then addresses the device to Talk. It is possible to issue the 
necessary commands to request the data from the instrument and then address it to Talk long 
before it is prepared to supply the requested data. Most instruments will simply pause the bus until 
the data has been prepared to send. Other instruments react poorly by "hanging up." 

2.27 



Chapter 2 IEEE488 

To check for this "race" condition, place the analyzer in the Slow Handshake mode. lnis will 
effectively slow the transaction speed of the bus to a rate set by Analyzer488. If the data request 
takes place successfully, it is probably a race condition. 

"The instrument seems unqffected by the commands sent to it. " 

Given that the commands are being sent to the correct instrument address, an instrument may 
seem unaffected by commands if the user has omitted the tenninator, a crucial piece of 
information that instructs the instrument to process the commands. 

IEEE systems usually use data delimiters called tenninators. A Talker will inform a Listener that 
the data string has ended by appending a predefined terminator to the end of its data string. 
Although terminators are issued solely by the talking device, the listening device(s) must know 
which tenninator to expect. Most commonly, IEEE 488 instruments will issue a carriage return 
(CR) and a line feed (LF) as their terminator. Some instruments will not process the incoming 
command string until they detect the proper terminator. The user should step through the 
transactions captured by the analyzer to verify the transmission of the terminator, then make 
certain that it agrees with the terminator expected by the instrument. 

Some instruments have a DDC that instructs the instrument to process all of the previously 
received commands. This EXECUTE command (typically a character such as "X") allows a 
programmer to send several commands to an instrument in any order over any length of time and 
then execute them all simultaneously within the instrument. If EXECUTE DDC is not sent, the 
state of the instrument will not change. It will be as though the commands were never received. 

"When asking for data, nothing is returned." 

Such a situation could result from an address or tenninator problem such as those discussed 
above. See the previous sections to diagnose such problems. 

Not all instruments are ready to supply data whenever asked. Some instruments have nothing to 
say until they are commanded to acquire or generate data. Some data acquisitioninstruments have 
triggering features that allow them to collect and transmit data only after a specified event has 
occurred. A typical multimeter might have a default trigger of TRIGGER ONT ALK that would 
enable the multimeter to take a reading every time the controller addressed it to Talk. If the same 
multimeter were set to TRIGGER ON GET, no reading would be available until the Controller 
issued a Group Execute Trigger. 

2.28 



Chapter 2 IEEE488 

If the device has no data available, the analyzer will show that the Controller was addressed to 
Listen, the device was addressed to Talk, and then the process stopped. The handshake indicators 
will show that Not Ready For Data (NRFD) has been unasserted by the Controller, but that the 
instrnrnent never asserted Data Valid (DAV). The user should be certain that the device has data 
to transmit before asking it for some. 

IOtech' s Driver488 has the capability of assigning a time out value to the system. If an instrument 
does not respond within the specified time out, the process is aborted. In some instances, an 
instrnrnent may be nnable to respond within the specified time out period, and the time out will 
have to be increased. 

"When asking for data, bad data is returned." 

Many times, the variability of data formats of an instrument will cause problems. Devices can 
transmit data in binary, ASCII, BCD, packed BCD, or anything else that will fit into 8 bits. Data 
terminators can be EOI, a byte count, or embedded characters like CR LF. Data can be sent with 
prefixes, suffixes, or full headers. In the case of the IOtech' s Driver488, all of these parameters 
can be accounted for, but other drivers may not allow such flexibility. 

When using higher level software packages, the problem of data formats may be impossible to 
overcome. Usually. menu-driven and turnkey packages go to great lengths to hide the IEEE 488 
bus from the operator. The documentation, therefore, makes no attempt to inform the operator 
of what is actually happening on the bus. 

Users may encounter problems if their instrnrnents transmit data in formats not recognized by 
their software packages. Users should check their instrnrnent manual for data format character
istics. Does the instrnrnent transmit non-numeric prefixes or suffixes; is the data in binary or 
ASCII? Some software drivers automatically throw away nonnumerics, others do not. Even if 
the software throws the nonnumerics away, users may encounter problems with instruments that 
transmit numbers such as channel tags in their data prefix. 

Most instruments, including IOtech' s ADC488 analog to digital converter, can be programmed 
to adjust their data format for software compatibility. IOtech's Analyzer488 allows quick 
inspection of the data being transmitted by an instrument, enabling the programmer to make the 
proper adjustments in his or her software. 

2.29 



Chapter 2 IEEE 488 

"An SRQfrom an instrument sometimes causes a catastrophe." 

The asynchronous nature of instrument interrupts can sometimes cause elusive problems. The 
best way to attack this sort of problem is to start the analyzer recording while the system is running. 
Analyzer488 has a large 32K transaction buffer that is configured in a circular fashion. After 32K 
transactions have been recorded, new transactions will overwrite the oldest transactions. There 
is a very high probability that the events leading up to the system "crash" will still be in the 
recorded memory (i.e., will not have been overwritten) after the system has locked-up. Stepping 
backwards in memory can usually uncover the sequence of operations that caused the problem. 
The analyzer can also be set to trigger on the occurrence of several SRQs with both a post- and 
pre-trigger assigned. In this way a specified number of events can be captured before and after 
the occurrence of an SRQ. The analyzer also has comprehensive search features allowing the 
capture buffer to be scanned for all of the occurrences of any event, including an SRQ. 

Some instruments have the capability of generating an SRQ for any of several internal events. 
Usually an SRQ mask is sentto the instrument to instruct it to generate an SRQ for only a selected 
subset of those events. Some instruments, by default, will interrupt the controller with an SRQ 
when an internal error is encountered and will not respond to any further bus transactions until 
the interrupt is serviced. In such instances, the next time the application program requests data 
from the instrument, the system will fail. Inspection of the transaction recording in the analyzer, 
working backward from the end, will reveal that an SRQ was asserted by a device on the bus and 
that it remained unserviced. 

"The system occasionally locks up." 

This is the sort of intermittent problem that can take a long time to troubleshoot, especially if the 
mean time between failures is several hours, days, or months. As in other situations, the best 
approach to the problem is to allow the analyzer to record all of the transactions occuning on the 
bus. When the numberof transactions goes beyond 32,767, the capture pointer will wrap around 
and continue to record. The last 32,767 transactions will always be stored in memory. When the 
system crashes, the processing ofIEEE488 bus transactions will probably end also. With the last 
32K transactions captured in memory, the progranuner can easily step back through the capture 
buffer and decipher the sequence of operations that caused the crash. 

One possible cause for an intermittent crash problem is the asynchronous occurrences of SRQs 
as discussed previously. There may be areas in an application program that do not react well to 
interruption. SincetheSRQcanhappenatanytime,itmayormaynotoccurduringtheprocessing 

2.30 



Chapter 2 IEEE 488 

of such a sensitive area. But the longer the system runs, the probability that the SRQ will happen 
at exactly the wrong time increases. A sensitive area may be a part of the programming code that 
uses a group of closely related variables modified by the SRQ handler. For example, three IEEE 
488 counters are used to take readings from three motion encoders. Each counter is programmed 
to generate an SRQ when its count reaches 256. The SRQ handler reads all three counters and 
stores them in three separate variables later used by the main program. The main program has 
a loop that reads the three variables, combines them with some calculation, and sends commands 
to a motor controller. If an SRQ occurs when the main program is in the process ofusing the 
variables, all three variables are consequently modified and the main program may end up using 
one old value and two new ones in its calculation. 

One way to avoid this kind of problem is to disarm the automatic SRQ vectoring during the 
processing of sensitive program areas. Driver488 has several means by which to arm, disarm, 
and synchronize the servicing of SRQs to a program. 

Another source of system malfunctions are the instruments themselves. Most of today's complex 
instruments are microprocessor controlled. Their internal processors handle the collection of 
data, the changing of programmable states, the monitoring of trigger events, and the communi
cation on the IEEE interface. Such instruments are actually computers, prone to the same 
problems as any other computer. 

An instrument may react improperly to a perfectly good application program. The transaction 
report that Analyzer488 prints out can be used to communicate instrument problems to the 
manufacturer. The report is easy to read and concisely describes the operation of the controller 
and the response of the instrument. 

2.9.6. New IEEE 488.2 Standards Simplify Programming 

Many of the difficulties encountered during the development of IEEE software result from the 
non-standard elements of operating the IEEE 488 bus. Terminators, common command syntax, 
and SRQ handling, among other things, were not standardized in IEEE 488.1, but rather were 
left to the ingenuity of instrument and controller designers to reconcile. IEEE 488.2 covers 
previously non-standard elements of bus communication, such as terminators and data types. The 
standards it provides will eliminate some of the variables encountered when integrating 
instrumentation systems, making debugging simpler. 

2.31 





SCPI 
3.1 General 

In 197 5, the Institute ofElectrical and Electronic Engineers standardized system interconnections and 
communications by instituting a protocol, IEEE 488-1975. A dozen years later, the IEEE updated 
it with IEEE488.l -1987. These protocols defined how hardware should behave and how data should 
flow. Although these standards allowed instruments to communicate and pass data, they did not 
define the meaning of the information. IEEE 488.2-1987 grew out of an attempt to formulate a 
common language for commands and responses. It described in detail how to talk and how to listen, 
but allowed different instruments to continue to speak in different languages. So, in 1990, the 
Standard Commands for Programmable Instruments (SCPI) Consortium developed a consistent 
programming environment and language for instrument control and data usage. 

This new language, called SCPI, defines the structure, syntax, and commands for communication 
between controllers and instruments in automatic test equipment (ATE) enviromnents (Figure 3. I). 
SCPI is intended to give the A TE user a consistent environment for program development by defining 
controller messages, instrument responses, and message formats for all SCPI compatible equipment, 
independent of the manufacturer. For example, all SCPI compatible voltmeters, regardless of 
manufactureror model, respond to the same command forreading AC voltage, and the format of their 
responses is also the same. Commands also have the same meaning among different types of 
instruments. For example, a RANGE command is the same for all range functions in SCPI compatible 
oscilloscopes and multimeters. SCPI also allows for high level commands such as MEASURE, 
which may be used (with defined defaults) for quick control of SCPI instrumentation. This 
standardization of message communication reduces the learning period that was once required for 
every new instrument in a system, and it allows quick and easy exchanges of instruments in a system 
without extensive reprogramming. 

Response "2.19E-2" 

Measure/Control 
System 

F1gure 3.1-ATE system using SCPI 

3.1 

Instrument 
Control 

Instrument 
Rei;ponse 

Instrument 



Chapter 3 SCPI 

SCPI has roots in and embraces many of the commands and the protocols defined in the hardware 
independent portion of the IEEE 488.2 communication standard. As such, SCPI represents a 
logical evolution of the IEEE 488 standard (Figure 3.2). SCPJ is a message format that relates 
to software programming and not to specific communication hardware. SCPI is not hardware 
dependent or low level protocol dependent, and SCPI messages and responses may be 
communicated over RS-232, VXIbus, and other communication methods. 

SCPI instruments must recognize and properly interpret SCPI commands, usually through a 
parser ( message decoder), and must respond to the commands in a well-defined manner. A TE 
controllers using SCPI will pass SCPI format command messages and also recognize SCPI 
format responses from instruments. SCPI messages are generated and interpreted directly by 
user-written programs or through software drivers created by controller manufacturers. Many 
of the low level SCPI commands are defined in IEEE 488.2, but since they are defmed in a 
software portion of the overall IEEE 488 standard, the commands are not IEEE 488.1 hardware 
dependent. As mentioned earlier, SCPI messages may be communicated via RS-232 or other 
communication methods. 

Because the instrument market and technology are dynamic, SCPI is a living standard; new 
commands may be added under the auspices of the SCPI Consortium to meet future needs. New 
commands may be proposed to the Consortium by any interested party and will be considered 
annually for inclusion in the standard. 

Figure 3. 2-Evolution of the SCPI standard 

3.2 



Chapter 3 SCPI 

3.2 Commands 

There are several types of SCPI commands: commands mandated by IEEE 488.2, commands 
required by SCPI, and optional commands discussed in the SCPI standard. 

IEEE 488.2 mandated commands (i.e., commands that originated in IEEE 488.2 and are used in 
SCPI) include: 

*CLS Clear Status Command 
*ESE Standard Event Status Enable Command 
*ESE? Standard Event Status Enable Query 
*ESR? Standard Event Status Register Query 
*IDN? Identification Query 
*OPC Operation Complete Command 
*OPC? Operation Complete Query 
*RST Reset Command 
*SRE Service Request Enable Command 
*SRE? Service Request Enable Query 
*STB? Read Status Byte Query 
*TST? Self-Test Query 
*WAI Wait-to-Continue Command 

All SCPI instruments must implement (i.e., be able to understand) these commands and may 
implement other optional commands as described in IEEE 488.2. Note again, that despite the 
IEEE 488.2 origin of these commands, the communication bus between controllers and 
instruments may beotherthanIEEE488. l (e.g., RS-232, RS-422). These commands, also known 
as common commands, are identified by the leading asterisk in the command word and are 
usually not instrument dependent. 

The optional command set used by an instrument may include a subset of the optional commands 
covered in the SCPI standard and is dependent on the capabilities of the instrument. An 
instrument may also support special commands not currently covered in the SCPI standard in 
cases where no SCPI command exists to implement a particular instrument function. Unsup
ported optional commands and parameter values will generate an error message from the 
instrument. 

3.3 



Chapter 3 SCPI 

3.3 SCPI Required Commands 

These commands are known as subsystem commands and deal with measurement and other 
instrument-related functions. 

SYSTem 
ERRor? 

:STATus 
:OPERation 

[:EVENt]? 
:CONDition? 
:ENABie 
:ENABie? 

:QUEStionable 
[:EVENt]? 
:CONDition? 
:ENABie 
:ENABie? 

:PRESet 

collects functions not related to instrument performance 
requests the next entry from the instrument's error queue 
controls the SCPI-defined status reporting structures 
selects the Operation structure 
returns the contents of the Event register 
returns the contents of the Condition register 
sets the Enable mask, which allows event reporting 
reads the Enable mask 
selects the Questionable structure 
returns the contents of the Event register 
returns the contents of the Condition register 
sets the Enable mask, which allows event reporting 
reads the Enable mask 
enables all required event reporting 

The following are a few representative optional commands (the capital letters indicate the 
minimum required input for command parser recognition): 

ABORt 
ARM 
CALCulate 
CONfiguration 
DISPiay 
FETCh 
FORMat 
INITiate 
INPut 
MEASure 
TRIGger 

resets the trigger system and leaves all triggers idle 
qualifies a sequence of events before enabling trigger 
specifies post acquisition data processing 
sets up the instrument to perform a specified function 
controls selection and presentation of information 
retrieves measurements and places them in the output buffer 
sets the data format for transferring information 
initiates data acquisition 
controls the characteristics of a sensor's input ports 
acquires data using a set of high-level functions 
synchronizes device action with external events 

For further commands, consult the SCP! standard (see bibliography) or user's manuals for SCP! 
instruments of interest in a particular application. Note that a command such as TRIGger may 

3.4 



Chapter 3 SCPI 

be issued as TRIGGER or as its short-form mnemonic, TRIG, and that a SCPI instrnment will 
understand either command. The formulation of short-form mnemonics is governed by specific 
rules; normally mnemonics are three or four characters. The exact form allowed is indicated in 
a command description by the uppercase characters long. The command is not case sensitive 
(TriG and TRiggER are valid commands), but SCPI does not recognize any in-between versions 
of a command. (TRIGG is not a valid command.) 

Mostinstrnments require several commands to 
execute a specific function. For example, a 
digital voltmeter may require the MEASure, 
VOLTage, and AUTO commands to take a 
voltage reading. In order to properly interpret 
these commands, SCPI defines a hierarchical 
command structure called a command tree. 
Figure 3.3 illustrates a portion of a typical 
command tree. SENSE is the root or top level 
command; other lower level commands are on 
particular paths, at various levels. To reach 
various subcommands, a SCPI message must 

SENSE 

CURRent 

I 
VOLTage 

I 
I I I I 

RANGe RESolution RANGe RESolution 

,-1, I ,-1, I 
UPPer AUTO AUTO UPPer AUTO AUTO 

Figure 3.3--Typical command tree 

traverse down the path from the root. If the path described above were for a DVM, the SCPI 
program message for an auto ranging voltage measurement would be 
:SENSE:VOLTAGE:RANGE:AUTO 

The parser in the SCPI instrument must properly interpret this message, keep track of the current 
path, and know the meaning of each command on that path. The same command may appear 
in different paths and have a different interpretation. 

Colons were used in the example to separate each command and to instruct the instrnment parser 
to move down a level in the command tree hierarchy. In situations where two commands are 
issued without changing levels, a semicolon is used to separate the commands. Commas are used 
to separate parameters ( discussed later). Spaces are generally disregarded, save for two 
exceptions: Command words cannot be broken by spaces, and commands and parameters must 
be separated by a space. The optional colon preceding the first command in a SCPI message 
instructs the parser in the SCPI instrnment to reset itself to the root level in the hierarchy. 
Additionally, a message terminator (i.e., newline) instructs the parser to reset the root level of the 
tree for the next command. Thus the leading colon is optional, unless a preceding command in 
the same message has left the parser somewhere other than at the root. IEEE 488.2 commands 

3.5 



Chapter 3 SCPI 

that start with an asterisk can be executed regardless of the command's current level in the tree 
and do not affect its current level. 

Some commands, such as SENSE, are implied commands and are not necessary in a program 
message. A keyword enclosed in braces designates an optional keyword that will be assumed 
in the absence of any other allowed keywords at the same level. This assumption does not, 
however, change the current level in the tree for any subsequent commands. In the previous 
example, if the SENSE command were omitted, then the parser in a SCPI instrument would 
assume its existence and correctly decode the message. 

All commands, unless specifically noted, have a query form as defined in IEEE 488.2, indicated 
by a trailing question mark. When a query command is received, the current instrument settings 
associated with that command are placed in an instrument's output buffer. The query form of a 
command generates one of two responses, depending on the type of command. A command that 
takes no parameters returns a "O" (false) or a"!" (true), indicating whether the condition that 
would be established by the command is already present. For example, "CONF:INP3:ENAB?" 
will return a "O" if the unit is not enabled for input or a "I" if it is enabled for input. Commands 
that take parameters, on the other hand, return a string suitable for use in issuing the command, 
i.e., "CONF:WAVEI:HIGH?" might return "1000" if that were the current setting of the 
parameter. 

Some instruments will incorporate multiple copies of some parts of the command tree. The 
command tree expands at the level where duplicate capability exists by adding a numeric suffix 
to select the desired section. For example if the above DVM had multiple independent current 
sensing sections, the command "SENSE:CURRENTS:RANGE3:AUTO" would be interpreted 
as an order to select automatic ranging for the third such section. If the numeric suffix of such 
a command is omitted, it is assumed to be "!." For instruments with multiple capabilities at 
several levels of the tree, a suffix may appear at each level if appropriate. For example, 
"OUTP5:MOD3:FM2" would specify the second FM signal component of the third modulation 
signal on the fifth output channel. 

3.4 Parameters 

Parameters fall into several categories: numeric, extended numeric, discrete, and Boolean. 
Numeric parameters comprise any number in decimal or scientific notation and may include 
polarity signs. Where required, numeric parameters are rounded to the closest allowable value. 
Extended numeric parameters include values such as MAXimum and MINimum. Boolean 
parameters represent binary conditions and may be expressed as ON, OFF or 1, 0. Discrete 

3.6 



Chapter 3 SCPI 

parameters such as INTernal and EXTernal are used to control program settings to a finite value 
or condition. For example, INTernal might be used to specify an internal trigger source on an 
instrument (Table 3.1 ). 

Command Parameter Parameter Type Parameter Type 

:CONFigurc 

:WAVE# 

:COUNt# 

:READ 

:COUNl# 
:S'l'AR'f 

:WAVE# 

:COUNt# 
:TRIGger 

:WAVE# 

:COUNt 

: SOURce 

:LOW 

:HIGH 

: SOURce 

<divisor> 
<divisor> 

discrete 

discrete 

see below 
1 .. 65536 
1.. 65536 

*see below 

PPEVTOUS 
GA':'Eff I 

.SOURCE# I 

lMHZ 

lOOKHZ I 
1KH7, I 
10(,1HZ 

(# 1..5) 

Table 3.1-SCPI command parameters 

3.5 Command Tree 

The list in Table 3.1 is an example of a subset of the SCPI command tree that is supported by the 
driver software for the IOtech Power488CT IEEE488 board with 40 digital 1/0 lines and five 16-
bitcounter timers. It shows only those commands used in the example program on the following 
page. 

3.6 Example Program Using SCPI Commands 

The following program uses the IOtech Power488CT to create a frequency counter. This 
Power488CT board is internal to the IBM PC, but its driver software responds to SCPI 

3.7 



Chapter3 SCPI 

commands in the same manner as would an external IEEE SCPI device. This example is 
written in BASIC and assumes that the driver software has already been loaded. "CT" refers 
to the counter/timer on the Power488CT. 

10 'Open the devices 
20 OPEN "CT" FOR OUTPUT AS #1 
30 OPEN "CT" FOR INPUT AS #2 
40 
50 'Set up CTl to produce a gate pulse, 1 second wide 
60 PRINr #1, ":o:NFIGURE:WAVEl:SOOFCE lRHZ;IOl l;HIGH 1000" 
70 
BO 'Set up CT2 to count pulses during the high time of its gate 
90 PRINT #1, " :CONFIGORE: COUNT2: SOURCE S0URCE2 " 
100 
110 'Start operation of both sections 
120 PRINr #1, ":s:rARI':WAVEl;CXXN1'2; :TRI<JlER WAVEl;CXXN1'2" 
130 
140 'Read and display the frequency until a key is pressed 
150 WHILE INKEY$ - " " 
160 PRINT #1, "READ:COUNT2" 
170 INPUT #2, FREQ 
180 PRINT "Frequency in the last second was";FREQ 
190 WEND 

3.8 



Serial Communication 
4.1 Introduction 

Serial communication is the simplest possible computer communication link, transferring only 
one bit (binary digit) of information at a time. Serial communication (Figure 4.1) makes use of 
one data line, transferring data one bit at a time, serially, wherea~ parallel communication uses 
eight or more lines, transferring data eight bits at a time, in parallel. For example, the IEEE 488 
bus uses parallel communication (Chapter 2). Because serial communication transfers data a 
single bit at a time, it is the least expensive form of data communication. However, it is also one 
of the slower communication links. Since computers internally handle data in a parallel fashion, 
serial communication requires converting the internal parallel data into a bit-by-bit stream for serial 
transmission and then reconverting the serial stream into parallel data at the receiving end (Figure 4.1). 

Parallel-to-Serial 

Transmitting 
Device 

Serial-to-Parallel 

Receiving 
Device 

Figure 4.1-Serial data transfer 

Although serial communication is the simplest and most common communication link, there are 
many physical and electrical variations available, including transmission protocols (e.g., 
synchronous or asynchronous), encoding schemes (e.g., ASCII), connector types (e.g., D-shell, 
in-line, or hard wired), and electrical characteristics (e.g., voltage or current). In an effort to 

4.1 



Chapter4 Serial Communication 

overcome differences created by the variations, standards such as RS-232-C, RS-422-A, 
RS-423-A, and ASCII have been developed. 

Toe RS-232-C standard characterizes the transmission protocol, connector type, and electrical 
characteristics; the RS-422-A and RS-423-A standards characterize the electrical characteristics 
only. The American Standard Code for Information Interchange (ASCII) standardizes the 
encoding scheme used for serial communication. RS-232-C and ASCII are the standards most 
widely supported by PCs, minicomputers, and mainframes. In addition to ASCII, binary 
encoding is also widely used with RS-232-C. This section provides a detailed discussion of the 
RS-232-CstandardandabriefdiscussionoftheRS-422-Astandard,RS-423-Astandard,ASCII 
standard, and binary encoding as related to PCs. 

4.2 RS-232-C Interface Standard 

Toe Electronic Industries Association (EIA) publishes several standards for serial communica
tion between data terminal equipment (D1E; e.g., terminals, computers, etc.) and data commu
nications equipment (DCB; e.g., modems). A common example of serial communication 
between two computers (D1Es) using DCEs (in this case, modems) is shown in Figure 4.2. 

Terminal 
DTE 

Serial Communication Cables 

Computer 
DTE 

Figure 4.2-Computer-to-terminal connection using modems 

4.2 



Chapter4 Serial Communication 

One of the prevailing standards is Revised Standard #232, revision C (RS-232-C). The complete 
standard, availabM from the EIA, includes mechanical and electrical standards for the 
connectors, cables, and communication protocols. The document includes four parts: 
Electrical Signal Characteristics, Interface Mechanical Characteristics ( connectors), Functional 
Description of Interchange Circuits, and Standard Interfaces for Selected Communication 
System Configurations. The contents of each, as applied to PCs, are discussed in the following 
paragraphs, followed by guidelines for connecting RS-232-C devices. 

4.3 Electrical Signal Characteristics 

This section of the standard describes the electrical characteristics that the interface presents to 
and requires from the outside world, including the voltage levels representing logical O and!. The 
standard defines a logical '1' as a voltage within the range of -12V to-3V and a logical 'O' as+ 3V 
to + 12V. Voltages in the range from -3V to + 3V are considered to be in transition and are 
undefined. These voltages, combined with the standards for cable impedances, set the practical 
limit for RS-232-C communication at 80-lOOm (260-330 ft.). 

4.4 Interface Mechanical Characteristics (Connectors) 

This section of the standard dictates that the interface consists of a DTE configured plug 
( computer end of the interface) and a DCE configured receptacle ( on the modem end of the 
interface). The standard specifies connector configuration, including 25 pin number assign
ments, but not the exact connector. Figure 4.3 shows pinouts for a typical 25-pin D-style 
connector. Table 4.1 lists RS-232-C standard pinout connections. The IBM PC/ AT has adopted 
a 9-pin D-style connector and a modified pinout (Figure 4.3 and Table 4.2). 

4.3 



Chapter 4 Serial Communication 

Protective Ground 
Secondary Transmitted Data 14 

Transmitted Data 
DCE Transmitter Element Timing 15 

Secondary Received Data 16 
Received Data 

Receiver Signal Element Timing 17 
Request to Send 

Clear to Send 
Unassigned 18 

Secondary Request to Send 19 
Data Set Ready 

Data Terminal Ready 20 
Signal Group/Common Return 

Signal Quality Detector 21 
Received Line Signal Detector 

Ring Indicator 22 
+ Voltage 

10 - Voltage 
Data Signal Rate Selector 23 

11 Unassigned 
DTE Trans Signal Element Timing 24 

12 Secondary Received Line Signal Detector 
Unassigned 25 

13 Secondary Clear to Send 

Fignre 4.3-RS-232-C 25-pin D-subminiature pinouts 

4.4 



Chapter4 

Pin Signal Name 

Protective Ground 

2 1 Transmitted Data 

Received Data 

4 j Request To Send 

5 Clear To Send 

! [);ta Set Ready 

Signal Ground (Common Return) 

Received Linc Signal Detector 

9 , (Rc~erved for Data Sd Testing) 

10 ! (Reserved for Data Set Testing) 

11 I Unassigned 

12 i Secondary Received Line Signal Detector 

13 1 Secondary Clear To Send 

14 Secondary Trammitted Data 

15 I Timing (DCE s_~urce) _ 

16 , Secondary Received Data Receiver Signal 
Element 

l 7 Timing (DCE Source) 

18 Unassigned 

19 Secondary Request To Send Data 

20 Terminal Ready 

21 Signal Quality Detector 

Serial Communication 

Description 

AA Grounds equipment frames 

BA Transmih data to DCE 

BB Receives data from DCE 

CA I Signals DTE i~ ready for tran~mit 

CB ! Signals DCE i~ ready tu receive 

CC Signah DCE is on-line 

AB Grounds interchange circuits 

C , Signals DCE has established communication 

SCF 

SCB 

SBA 

DB 

SBB 

DD 

I Signals DCE has established communication on secondary 
, channel 

Signals DCE is ready to receive on secondary channel 

Transmits data to secondary DCE channel 

Provides transmission timing to DTE when required 

1 
Receives data from secondary DCE channel 

Provides receiver timing to DTE when rcqmred 

SCA Signals secondary DTE channel is ready to transmit 

CD Signals DTE is on-line 

CG Signals error detection in received data 

22 I Ring Indicator CE I Indicates DCE is receiving ringing signal 

23 I Data Signal Rate Selector (DTE/DCE Source) CH/Cl Selects between two data transmission rates 

24 Transmit Signal Element (DTE Source) 

25 ! Unassigned 

DA Provides transmission timing to DCE when required 

Table 4.1-Standard RS-232-C pin descriptions 

4.5 



Chapter4 Serial Communication 

Received Line Signal Detector 

Data Set Ready 

Transmitted Data 

Request to Send 

Received Data 

Clear to Send 

Data Terminal Ready 

Ring Indicator 

Signal Ground/Common Return 

Figure 4.4-Nine-pin D-subminiature style connector pinouts 

Pin Signal Name Circuit Description 

I Received Line Signal Detector CF Signals DCE has established 
communication 

2 Transmitted Data BA Transmits data to DCE 
3 Received Data BB Receives data from DCE 
4 Data Tenninal Ready CD Signals DTE is on-line 
5 Signal Ground (Common Return) AB Grounds interchange circuits 
6 Data Set Ready cc Signals DCE is on-line 
7 Request To Send CA Signals DTE is on-line 
8 Clear To Send CB Signals DCE Is ready to 

receive 
9 Ring Indicator CE Indicates DCE is receiving 

ringing signal 

Table 4.2-Nine-pin D-shell connector pin descriptions 

4.6 



Chapter4 Serial Communication 

4.4.1 Ground Pins 

The protective and signal ground pins provide chassis to chassis grounding and a common return 
path for the other interconnect signals, respectively. 

4.4.2 Data Transmission Pins 

RS-232-C specifies that data is transmitted asynchronously from the transmit (Txd) pin to the 
receive (Rxd) pin (Figure 4.5). The transmission format includes a start bit, data bits, possibly 
a parity bit, and one or more stop bits. The rate at which these bits are transmitted is referred to 
as the transmission baud rate. The transmitter and receiver must use identical formats and baud 
rates in order for communications to take place. Otherwise, the receiver may receive more or 
fewer bits than expected, resulting in format errors. 

Start Bit Parity Bit Idle Bit 

"I "I "I 
I I O I 2 3 

I 4 1 
5 6 7 I I I I I 

\ \ 
Stop Bit Start Bit 

Figure 4.5-Serial transmission format 

The secondary transmit and receive data pins are specified for data transmission using a second 
channel. 

4.4.3 Baud Rate 

The transmission baud rate determines the rate at which data bits are transmitted. The value, in 
bits per second, includes, but is not limited to, data bits, start bits, stop bits, and parity bits. 
Commonly used baud rates are listed in Table 4.3. 

4.4.4 Start and Stop Bits 

Synchronization bits allow the receiver to detect the start and completion of data transfer. When 
the transmit line is idle, the transmitternormally holds it in a logical 'l' or mark state. When data 
transfer begins, an initial start bit is sent to wake up the receiver. The start bit is a logical 'O' or 

4.7 



Chapter4 Serial Communication 

space. A fixed number of data bits is then transmitted one at a time, the least significant bit first. 
Optionally, a parity bit is sent after the data. Finally, one or two stop bits are transmitted to 
delineate the end of data transmission. The stop bit guarantees a minimum idle time (in terms of 
bits) between transmissions. 

Baud Rate Characters Per 
Second* 

110 11 
300 30 
600 60 

1200 120 
2400 240 
4800 480 
9600 960 

19200 1920 

* Approximate. Depends on number of start and stop bits and parity setting. 

Table 4.3--Cornmonly used baud rates 

4.4.5 Data Bits 

Data is transmitted as a series of five, six, seven, or eight bits, with the least significant bit sent first. 
At least seven data bits are required to transmit ASCll characters. Eight bit data transfers are used 
to transmit binary data, as the eight bits match the eight-bit byte format commonly used for binary 
data manipulation. Five and six bit data formats are used for specialized communications equipment. 

4.4.6 Parity Bit 

The parity bit is an error detection mechanism used to increase the reliability of data transmission 
over serial communication lines. It is capable of discerning a single-bit error in data 
transmission. The transmitting device sets the parity to a special value; the receiver checks the 
value to assure that an error did not occur during transport. Parity checking is important when 
the communication lines are in proximity to sources of electrical noise, such as motors, 
fluorescent lights, etc. 

4.8 



Chapter4 Serial Communication 

The most commonly used types of parity checking are Mark Parity, Space Parity, Odd Parity, and 
Even Parity. Mark and Space parity, the simplest forms of error checking, set the parity bit to a 
mark (logical 'I') or space (logical 'O'), respectively. Odd and Even parity, more sophisticated 
methods, count the number of mark bits (or logical ls) in the data and then set the parity bit to 
force an odd or even multiple, respectively. 

For example, if the transmission is specified as even parity and the data being transmitted is 31 
hexadecimal (0011000 I binary), the parity bit will be setto a mark (logical I) resulting in 3 mark 
data bits plus I mark parity bit = 4 mark bits, an even number. 

At the receiving end, the parity bit is checked against the rest of the data for validity. If no error 
is found, the byte is accepted. If an erroris found, it is discarded and the receiver must deal with 
the error in its own way, possibly by requesting that the data be transmitted again. This type of 
error is commonly referred to as a parity error. 

Note that the parity bit is able to detect errors ofone bit only. An error in two bits may cause the 
data to have a seemingly valid parity, when in fact it is incorrect. 

4.4. 7 Control Pins 

Several pins are defined to assist in the control of the transmission of data, by signaling the 
presence of connected equipment and its readiness to receive data. These pins include request 
to send (RTS), clear to send (CTS), data terminal ready (DTR), data set ready (DSR). and data 
carrier detect (DCD). 

The RS-232-C specification allows for data to be transmitted in either a half duplex or a full duplex 
configuration. A half duplex configuration allows for only one transmitter to transmit at a given 
time, much like a CB radio or walkie-talkie. A full duplex configuration allows for both sides 
to transmit data simultaneously like a telephone. 

The RTS and CTS lines were specified to assist half-duplex communication equipment in 
transmitting and receiving data. Before a transmission, the sender's RTS signal is asserted true 
(logical I), requesting the receiver to switch its circuitry to the receive mode. When ready to 
receive, the receiver asserts its CTS line true, allowing transmission to begin. 

The DTR and DSR lines were specified to indicate the presence and readiness of data terminal 
and data communication equipment. The DTR is asserted (logical I) by the terminal equipment 

4.9 



Chapter 4 Serial Communication 

when terminal power is on, indicating to the modem or other DCE that the terminal is ready. DSR 
is asserted (logical 1) by the modem orother DCE allowing the terminal to go on-line and receive 
data. 

The DCD ( data carrier detect or receive line signal detect) signal is asserted (logical I) by the 
modem or other DCE to indicate that it has established a communication link with the modem 
or DCE at the other end of the communication link ( e.g., phone line). It must be asserted for the 
terminal to go on-line and receive data. 

The ring indicator pin indicates that a ringing signal is being received on the communication 
equipment. On receiving this signal, the DTE equipment normally asserts the Data Terminal 
Ready signal to answer the call. 

The control signals on the data terminal equipment are specified to connect to the corresponding 
handshaking signals on the data communications equipment. 

4.4.8 Timing Pins 

The timing circuits are provided to allow communication where standard bit rates are not in use. 
Either the receiver provides a timing signal to the transmitter (DB) or the transmitter provides a 
timing signal to thereceiver(DA) to allow data synchronization. Timing circuits are not normally 

required for PC-based serial communication. 

4.5 Standard Interfaces for Selected Communication System Configurations 

This section of the RS-232-C standard describes a selected set of data transmission configura
tions. The simplest of these is a transmit only or receive only configuration; for example, a PC 
(transmit only) connected to a serial printer (receive only). The duplex primary channel/duplex 
secondary channel configuration is the most complex configuration, utilizing both primary and 
secondary channels. The most commonly used configuration is the duplex configuration; for 
example, a modem connected to a PC. The standard interface configurations are listed in Table 4.4. 

4.10 



Chapter4 

Data Transmission Configurations 

Transmit Only 
Transmit Only* 
Receive Only 
Half Duplex 
Duplex 

Duplex 
Primary Channel Transmit Only* I Secondary Channel Receive Only 
Primary Channel Transmit Only/ Secondary Channel Receive Only 
Primary Channel Receive Only I Secondary Channel Transmit Only* 
Primary Channel Receive Only/ Secondary Channel Transmit Only 

Primary Channel Transmit Only* / Half Duplex Secondary Channel 
Primary Channel Receive Only I Half Duplex Secondary Channel 
Half Duplex Primary Channel* / Half Duplex Secondary Channel 
Duplex Primary Channel*/ Duplex Secondary Channel* 
Duplex Primary Channel / Duplex Secondary Channel 

Special (Circuits specified by supplier) 

Serial Communication 

Interface 
Types 

A 
B 
C 
D 
D 

E 
F 
I 
G 
I 

K 
L 
L 
M 

z 

Note: Data Transmission Configurations identified with an asterisk (*) indicate the 
inclusion of Circuit CA (Request to Send) in a One Way Only (Transmit) or Duplex 
Configuration where it might ordinarily not be expected, but where it might be used to 
indicate a non-transmit mode to the data communication equipment to pennit it to remove 
a line signal or to send synchronizing or training signals as required. 

Table 4.4-RS-232-C standard interface configurations 

4.6 Connecting RS-232 Devices 

4.6.1 Handshaking 

RS-232-C sets standards for communicating between data tenninal equipment and data commu
nications equipment. However, it does not provide for communication between two computers 
or between a computer and other peripheral equipment (e.g., printer, plotter, or scanner). 
Additionally, as specified, its handshaking signals do not provide enough functionality to reliably 
sustain high speed full duplex communications ( e.g., computer to computer). Therefore, the 
functionality of certain handshaking pins has been modified by various manufacturers to 

4.11 



Chapter4 Serial Communication 

overcome these limitations. The manufacturers' variations have not been standardized and, 
therefore, tend to complicate the task of connecting equipment and establishing communications. 

The RS-232-C standard was defined to control data transmission at relatively slow speeds. Input 
from the terminal keyboard, at typing speeds, could be easily processed by the computer and 
outputtotheterminalscreenorprinter. Theoutputspeedwascontrolledbythecomputer,through 
the use of null characters or delays, to prevent overrunning the output device. 

Connection between two computers requires higher data transmission speeds. Often the receiver 
can only receive a limited number of characters before it must stop to process them rather than 
risk the loss of information. When the receiver can no longer receive, it must communicate this 
to the transmitter. The transmitter responds by halting data transmission. When the receiver is 
againabletoreceive,itinfonnsthetransmitter, whichthenrespondswithdatatransmission. This 
process is known as handshaking or data flow control. 

Handshaking is classified into two broad groups, hardware and software. Software handshaking 
techniques use control characters to control data flow, whereas hardware techniques utilize 
handshaking pins. 

4.6.2 Software Handshaking 

Software handshaking requires only three wires for implementation: a ground wire, a transmit 
wire, and a receive wire. I tis commonly used when communicating over telephone lines because 
the additional lines required for hardware handshaking are not present. 

A common implementation of software handshaking is theXon-Xoff scheme in which an ASCII 
DC3 (HEX 13) character is transmitted by the receiver to indicate that data transmission should 
be halted and an ASCII DC1 (HEX 11) characteris transmitted to indicate that data transmission 
may continue. This scheme wmks well with ASCII encoded data but will not work with binary 
encoded data. Binary data may contain the HEX 13 and HEX 11 values, making it impossible 
to differentiate between control characters and binary data. Another disadvantage of the Xon
Xoff scheme is its slow response time. The receiver may receive many characters after sending 
the signal to stop transmission. 

4.6.3 Hardware Handshaking 

Hardware handshaking utilizes additional signal lines, including the request to send (RTS) and 
clear to send (CTS) lines. When the receiver's RTS output signal is asserted true, the receiver 

4.12 



Chapter4 Serial Communication 

is ready for data. This signal is connected to and monitored by the transmitter" s CTS input signal, 
so that when the transmitter's CTS is asserted true, the transmitter may send data. When the 
receiver is not ready for data, it unasserts its RTS signal, which in tum unasserts the transmitter's 
signal, halting data transmission. 

Most equipment utilizes the RTS and CTS signals as described above, while the DTR/DSR lines 
operate as specified in the RS-232-C standard and described earlier in this section. However, 
many configurations exist in which the DTR/DSR signals are modified to operate as discussed 
in the above paragraph, while the RTS and CTS signal operate as specified in the RS-232-C 
standard. It is necessary to study the manufacturer's documentation to determine pin function
ality of each piece of equipment before attempting to establish communications between devices. 

4.7 Cable Connections 

The following paragraphs identify cable connections for some common RS-232-C configurations. 

4.7.1 DTE to DCE 

A DTE device directly connects to a DCE device in that the RTS connects to the RTS, the CTS 
connects to the CTS, etc. A simple transmit-only/receive-only configuration cable diagram is 
illustrated in Figure 4.6. Figure 4.7 illustrates a duplex configuration cable diagram. 

Txd ----- Txd 

Gnd Gnd 

Figure 4.6-Simple DTE to DCE cable diagram 

Txd Txd 

Rxd Rxd 

Dsr Dsr 

Dtr Dtr 

Dcd Dcd 

Rts Rts 

Cts Cts 

Gnd Gnd 

Figure 4.7-Duplex DTE to DCE cable diagram 

4.13 



Chapter 4 Serial Communication 

4.7.2 DTE to DTE 

The direct connection of two DTE configured devices or of two DCE configured devices without 
the aid of two modems and a telephone line, can be accomplished using a NULL modem cable. 
These are special cables in which the logical signals are swapped in order to guarantee that input 
pins on one machine are connected to output pins on the other. Most serial communications 
equipment uses a DTE configured arrangement. Two of the more common D1E to DTE 
configuration cable diagrams are illustrated in Figures 4.8 and 4.9. 

TxD 

RxD = TxD 

RxD 

GND 

Figure 4.8--Null modem (DTE to DTE) cable diagram 
(duplex without hardware handshaking) 

TxD = TxD 

RxD RxD 

DSR 

~ 
DSR 

DTR DTR 

DCD DCD 

RTS = RTS 

CTS CTS 

GND GND 

Figure 4.9-Null modem (DTE to DTE) cable diagram 
(duplex with hardware handshaking) 

4.14 



Chapter4 Serial Communication 

4.8 Establishing the Connection 

In order for communication to take place between two RS-232-C devices, certain basic criteria 
must be met. First, the transmit and receive signals must be properly connected, and a signal 
ground must be provided. In addition, the communication formats of both pieces of equipment 
must be configured identically. Also, if hardware handshaking is involved, other signal 
connections must be properly made. 

If communication cannot be established, several possibilities exist: 

• Data are not being transmitted. 
- Transmitter handshaking signals are not properly connected. 

(Many devices will not transmit if the CTS and/or DCD and/or 
DSR signals are not asserted true.) 

• Data are not being received, 
- Receiver handshaking signals are not properly connected. (Some 

devices will not receive if the DCD and/or DSR signals are not 
asserted true.) 

- Serial formats and/or baud rates do not match data. 

• Transmit pin is not connected to receive pin. 
- Transmit pin is connected to transmit pin, or receive pin is 

connected to receive pin, preventing data transmission. 

If communication is established, but data is incorrect or garbled, the cause is probably a format 
or baud rate mismatch. 

If communication is established, but data is sometimes lost, the cause is probably a data overrun 
error; i.e., the transmitter sent data when the receiver was not ready to receive. This condition 
indicates the need for handshaking or for the correct implementation of handshaking already in 
use, or, in the worst case, for a lowering of the baud rate. 

4.15 



Chapter4 Serial Communication 

4.9 Other Serial Communication Standards 

4.9.1 RS-422-A Interface Standard 

The RS-422-A interface standard covers the electrical characteristics of balanced voltage digital 
interface circuits. This standard specifies that a pair of signals be used to transmit data, rather than 
one signal. as specified in the RS-232-C standard. This pair consists of a non-inverted (A) and 
an inverted (B) data signal. The voltage differential between A and B is within the range of 2V 
to 6V. A is negative with respect to B for a logical I (Mark) state. A is positive with respect to 
B for a logical O (Space) state. These voltages, combined with the standards for cable impedances, 
set the practical limit for RS-422-A communication at 1200m (3960 ft.) when using data rates 
below 90 Kbits/sec and allow data rates of up to 10 Mbits on shorter cables. 

Using RS-422-A standards rather than RS-232-C standards may prove advisable if: 

• The required data rates are higher than RS-232-C will reliably support. 

• The interconnecting cable is longer than specified for RS-232-C operations. 

• The interconnecting cable is exposed to extraneous noise sources that may cause errors using 
RS-232-C standards. 

• It is necessary to minimize interference from other signals within the interconnecting cable. 

• Inversion of signals is required (RS-422-A provides for inverted and non-inverted signals.) 

4.9.2 RS-423-A Interface Standard 

The RS-423-A interface standard covers the electrical characteristics of unbalanced voltage 
digital interface circuits. This standard specifies that a single transmission line be used, as in 
RS-232-C. However, the electrical characteristics are improved, allowing transmission at higher 
data rates over longer cable lengths. The voltages are within the range of OV to 6V where OV 
is a logical I (Mark) state and 6V is a logical O (Space) state. 

Signals of the RS-232-C standard are often used to provide control signals on the same cable 
where RS-423-A signals are used for data and timing. 

4.16 



Chapter4 Serial Communication 

4.9.3 ASCII Interface Standard 

The most commonly used standard for encoding information for data transmission is prescribed 
by the American Standard Code for Information Interchange (ASCII), also known as the 
American National Standards Institute (ANSI) standard X3.4-1977. 

The ASCII code uses seven bits per character, usually stored in the least-significant seven bits 
of an eight bit byte. The ASCII code provides for 128 characters, which allows for all upper and 
lower-case letters, numerals, punctuation marks, and 32 non-printable characters (control 
characters) often used to signal special conditions for controlling serial communications devices. 
Examples of the non-printable control characters include carriage return, line feed, form feed, 
bell, and null. 

The ASCII standard is the most widely used scheme for encoding human-readable information 
(e.g., documents). 

4.9.4 Binary Encoding Scheme 

Information other than text, such as computer programs and numerical data, requires eight bits 
for the representation of a byte and cannot be efficiently expressed with the ASCII encoding 
scheme. This data is encoded in a binary format that directly transmits raw bytes of data. 

The IBM PC uses binary encoding to extend the ASCII character set from 128 to 256 characters 
to accommodate non-English alphabets and special graphic characters, the first 128 characters 
being identical to their ASCII equivalents. Other communications equipment uses the binary data 
format to transfer numerical data. 

4.10 Serial Cormnunication, IEEE 488, and Instrument Control 

Serial communication is commonly used to connect to peripherals that require neither high speed 
data transfer nor sophisticated control; thus in data acquisition applications low-end instruments 
are commonly offered with serial control. In general, serial interfacing requires the user to 
provide, in his or her program, the data flow and instrument function control inherent in the IEEE 
488 bus. 

4.17 



Chapter4 Serial Communication 

4.11 Language Interfacing 

For languages and applications that provide serial port support, such as GWBASIC or Microsoft 
QuickBASIC for the IBM PC, serial communication begins with opening the serial port: 

10 OPEN "COMl: 9600,N,8,l" as #1 

or with opening the first serial port at 9600 baud, no parity, 8 data bits, and 1 stop bit. 
Communication then consists of writing to and reading from the serial port: 

In this example the state of the IOtech Control488/16 Power Control Interface is being examined: 

20 FOR N = 1 to 10 
30 PRINT #1, "R?" 
40 LINE INPUT #1, 
50 PRINT A$ 
60 NEXT N 
70 END 

A$ 
' Request a reading 
'Get reading from Control488/16 
'Print the reading to the screen 

BASIC and FORTRAN directly support the COM or serial ports on the IBM PC; however, C and 
Pascal do not. The programmer must write or purchase low-level routines to directly access the 
COM port hardware and BIOS. An attractive alternative to the data acquisition user is IOtech' s 
Driver488, supplied with thePersonal488 andPower488 IEEE controllers. Driver488 is not only 
an IEEE 488 driver; it is also a COM port driver, allowing the user to configure and install his 
or her COM port as a DOS device, just as it pennits installation of the IEEE 488 controller as a 
DOS device. 

This approach allows the user to open, write to, and read from the COM port as if it were a DOS 
file. Thus COM port support is provided for C and Pascal compilers on the IBM PC, as well as 
for applications programs such as Lotus 1-2-3 that do not have built-in COM port support. If the 
software can read and write DOS files, Driver488 permits complete access to serial communi
cation while handling the COM port configuration chores "off-line." 

An added benefit ofDriver488's DOS device driver approach is that "mixed systems" of IEEE 
488 and serial instruments are handled very conveniently by a single driver with a uniform 
software interface. User programs can access both IEEE and serial devices using the same 
procedures and mechanisms. 

4.18 



Chapter 4 Serial Communication 

4.11.1 Enhancements to Serial Instrument Control 

Unfortunately, serial communication protocols do not provide such useful IEEE 488 control 
functions as SRQ, EOI, GET, and serial and parallel polling. Instrument designers have been 
forced to create "work-arounds" to provide some of the functionality inherent in the IEEE 488 
standard. To meet this need, I0tech has introduced Personal488/0EM-PR (for the OEM and 
instrument designer using an embedded-IBM PC approach), which includes both compact IEEE 
488 peripheral control routines and a set of enhanced serial control routines. These serial routines 
blend some of the added functionality of IEEE 488 into serial control, allowing the instrument 
designer to provide more convenient control of the final product. 

4.11.2 IEEE488/Serial Conversion 

For mixed systems with combinations of computers, IEEE 488 instruments, and serial instru
ments, as well as serial and IEEE 488 peripherals (such as printers and plotters), a wide range of 
products is available to provide interface conversion and protocol conversion capabilities. For 
example, IOtech's Mac488B allows any Macintosh with a serial port to become a full-featured 
IEEE 488 controller. The Serial488A and Serial488/4 (Figure 4.10) provide 1 channel and 4 
channels of RS-232/422 control, respectively, by converting the IEEE 488 bus to serial 
communication. For the IBM PC, the COM488 board allows a PC COM port to communicate 
with anIEEE488 printer. The result is to make the design and implementation of mixed-protocol 
systems practical and convenient. 

Computer with 
an IEEE controller 

Upto 13 
IEEE devices 

Serial488/4 

/\ /\ •••• Up to four RS-232 or RS-422 devices 

Figure 4.10--Serial488/4 serial-to-IEEE 488 converter 

4.19 



Chapter4 Serial Communication 

4.12 Summary 

Serial communication is the most basic form of computer communication. It is economical and 
widely used for communications between computers and peripheral equipment. Many serial 
communication standards exist. RS-232-C and ASCII have emerged as the most prevalent 
standards. Together they provide for electrical, mechanical, functional, and data encoding 
standards to fit most low-end communication needs. Hardware and software is now available to 
allow serial and IEEE 488 instrument control to coexist comfortably and conveniently in a single 
data acquisition system. 

4.20 



SCSI 
5.1 General 

The Small Computer System Interface (or SCSI) is a system level interface designed to allow 
communication between small computer systems and their peripherals. It was originally 
developed by Shugart Associates as the Shugart Associates System Interface (SASI) for use as 
a controller interface for a line of hard disk products. In 1979, the bus was standardized by the 
American National Standards Institute (ANSI), renamed SCSI, and expanded to allow for more 
features. 

The final version of the ANSI specification was released in 1986. This standard is generally 
referredtoasSCSI-lsinceworkwasirnmediatelystartedonanew,enhancedversionoftheSCSI 
specification, which is generally referred to as SCSI-2. 

The key features of the SCSI bus include: 

• high transfer speed- up to 5 Mbytes/sec on SCSI-I, 
up to 20 Mbytes/sec on SCSI-2 

• up to 8 devices connected to one bus 
• bus length to 6m with single-ended drivers, 

up to 25m with differential drivers 
• bus width up to 32 bits with SCSl-2 
• system level interface with standard command definitions 

As a system level interface, SCSI defines not only the signal levels and logical functions of 
electrical signals, but also describes communication protocols and command sequences. This 
promotes device independence by hiding implementation specific features of the peripherals 
attached to the SCSI bus below the system level command definitions. A host controller on the 
SCSI bus may communicate to a floppy disk drive, a hard disk drive, or an optical disk drive 
through the same sequence of system level commands on the SCSI bus without regard to the 
internal details of the specific device such as number of tracks, number of heads, or number of 
bytes per track. New technologies may also be incorporated into existing SCSI systems without 
major changes to the interfacing software or hardware as long as the new technology incorporates 
the standard SCSI system level interface. 

5.1 



Chapter 5 SCSI 

SCSI has proven to be a very popular means of connecting computers and workstations to 
peripherals. While SCSI data acquisition devices remain rare, SCSI ports on the Macintosh and 
Sun, DEC, and NeXT workstations have proven to be an effective and popular means of 
connecting slotless computers to IEEE 488 instruments and devices via SCSI-to-IEEE 488 
converters such as IOtech's MacSCSI488, SCSI488/S (for Sun), SCSI488/D (for DEC), and 
SCSI488/N (for NeXT) products. In addition, general purpose SCSI/IEEE converters such as 
IOtech's SCSI488 (Figure 5.1) are available to adapt almost any computer with a SCSI port to 
the IEEE 488 bus. 

Computer with 
a SCSI interface 

Up to 6 SCSI devices 

• 
Up to 14 

IEEE devices 

.. ~ . . . . . . . : 
·- . . // ///// . . - . . ~ ///// . 

~~.L.•-'-
Figure 5.1-IOtech SCSI488 SCSI to IEEE converter 

5.2 Mechanical 

SCSI devices are daisy-chained together on the bus (Figure 5.2), with terminators at each end of 
the bus to minimize electrical reflections of the signals from discontinuities associated with an 
unterminated bus end. 

5.2 



Chapter 5 SCSI 

Figure 5.2-SCSI device daisy chaining 

The SCSI-1 specification provides two alternatives for the cabling of the bus between units on 
thebus. ThefirstalternativewasintendedforinterconnectionofSCSideviceswithinacontrolled 
environment (i.e., interconnection of a computer and disk drives within a chassis) where noise 
and ruggedness were not a problem. For these applications, 50-pinlDC (ribbon cable) connectors 
and cables were specified (Figure 5.3). 

5.3 



Chapter 5 SCSI 

Figure 5.3--SCSI connector, alternative 1 

The second alternative was intended for interconnection of devices between different cabinets 
or chassis (i.e., interconnection of a computer and separate cabinets containing disk drives, tape 
drives, etc.) where resistance to electrical noise and mechanical ruggedness are of prime 
importance. For these applications, 50-pin, ribbon-contact, D-shell connectors with bail-locks 
were specified (Figure 5.4). 

Of course, the SCSI standard's provision of two types of connectors did not stop manufacturers 
from adopting their own. Probably the best known of these are Apple's 25-pin D-shell connector 
on the Macintosh line, and the 50-pin D-shell connector used on Sun workstations. 

The new SCSI-2 specification allows up to four times the bus width of the SCSI-I standard and 
brings in the extra data bytes with their control signals over a separate cable. The new 
specification also provides the use of high-density 50- and 68-pin subminiature D-shell 
connectors as two additional alternatives. 

5.4 



Chapter 5 SCSI 

Figure 5.4-SCSI connector, alternative 2 

5.3 Electrical 

To provide for different bus usage environments, two methods of driving/receiving the SCSI bus 
signals were specified. 

5.3.1 Single-ended Mode 

In this mode, all signal lines on the bus are driven with high-current open-collector drivers. The 
terminators provided at both ends of the SCSI bus provide a pull-up function to force the bus into 
an inactive state when not being driven. All signals on the bus are defined as low-true. 

Single-ended SCSI buses are limited to 6m in length; the minimum recommended distance 
between two devices is O.lm. Most SCSI bus implementations are single-ended. 

5.3.2 Differential Mode 

In this mode, each signal is actually driven over two wires, a true and not-true sense. Differential 
receivers sense both lines to determine the difference between them (hence the name). This 
alternative offers greater noise-immunity and signal-degradation free operation over longer 
distances than does the single-ended mode alternative. Differential driven SCSI buses are limited 
to a length of 25m. 

5.5 



Chapter 5 SCSI 

5.4 SCSI Bus Lines 

There are a total of 18 signals on the SCSI bus. Nine are used for data transfer ( eight data bits 
plus an odd parity bit) and nine are used for control. These signals are described below: 

BSY 
SEL 

CJD 

J/0 

MSG 
REQ 

ACK 

ATN 

RST 

DB0-7,P 

(Busy) an OR-tied signal that indicates the bus is in use 
(Select) used by the initiator to select a target or by a target to 
re-select an initiator 
(Command/Data) driven by the target to indicate whether control 
or data information is to be transferred on the data bus 
(Input/Output) driven by the target to control the direction of data 
transferred on the data bus 
(Message) driven by the target during the message phase 
(Request) driven by a target to indicate a request for a data 
transfer handshake. 
(Acknowledge) driven by an initiator to indicate acknowledgment 
for a REQ/ACK handshake 
(Attention) driven by an initiator to indicate an attention condition 
to the target 
(Reset) an OR-tied signal that resets the SCSI bus and all devices on 
the bus 
(Data bus) eight data bus signals, plus an associated parity bit 

Transferofalldataandcommandstakesplaceoverthedatalines. Theexact meaningofthedatabytes 
and the direction of transfer is detennined by the target via the control lines CID, I/0, and MSG. 

5.5 Handshake Lines 

The lowest level of the SCSI transfer protocol is byte handshaking. For every byte transferred 
in either direction, a handshake occurs between the Request (REQ) and Acknowledge (ACK) 
lines. 

Two different methods of handshaking on the bus are allowed, asynchronous and synchronous: 

The asynchronous handshake process (Figure 5.5) starts when the target asserts REQ. When 
the initiator senses REQ, it responds by reading or writing a byte to or from the data bus and then 
asserting the ACK line. When the target senses the ACK line, it responds by de-asserting the REQ 

5.6 



Chapter 5 SCSI 

line. When the initiator senses the negation of the REQ line, it responds by de-asserting the ACK 
line. The bus is then set up for another REQ, ACK handshake to take place. This handshake 
process is very reliable, requiring verification that each end has seen the change in signal before 
initiating another change. Using asynchronous handshaking, transferrates of 1.5 Mbytes/sec are 
achievable. 

REQuest 

ACKnowledge 

Figure 5.5-Asynchronous transfer handshake 

The synchronous handshake process (Figure 5.6) starts when the target asserts REQ. Instead of 
waiting for the initiator to assert ACK, however, it de-asserts the REQ line after a minimum delay 
time which can be programmed by commands over the SCSI bus. When the initiator has 
recognized the REQ line transition, it sends an ACK pulse to signal reception of the data byte. 

REQuest 

ACKnowledge 

Figure 5.6-Synchronous transfer handshake 

The number of ACK pulses must equal the number of REQ pulses for an entire transfer sequence. 
Since cable propagation delays are ignored in synchronous handshaking, transfer rates of 5 
Mbytes/sec are achievable. 

5.6 SCSI Communication Protocol 

Communication on the SCSI bus occurs between an "initiator" and a "target." As its name 

5.7 



Chapter 5 SCSI 

suggests, an initiator on the SCSI bus originates an operation. The target performs the operation. 
Communication on the SCSI bus is allowed between only two devices at any given time. One 
acts as the originator, selecting and commanding a target, which perfonns the desired operation. 

When communication is established between an initiator and a target, commands to the target are 
passed in a standard fonnat called a Command Descriptor Block (COB). The SCSI standard 
specifies the fonnat and meaning of CDBs for each type of SCSI peripheral. 

The SCSI bus allows a maximum of 8 devices, each with a unique bus address between O and 
7. These devices can be any mixture of initiators and targets. The physical SCSI bus is chained 
from one SCSI device to another and resistively terminated at the far ends to minimize 
transmission line effects. 

5.7 SCSI Bus Phases 

Every SCSI communication transaction sequences through several distinct phases on the bus. 
The bus can never be in more than one phase at a time. After selection, phase changes are 
controlled by the target through the CID, I/0, and MSG control lines on the bus. 

5.7.1 Bus Free Phase 

In the bus free phase, no SCSI devices are using the bus, and the bus is available for another SCSI 
operation. All SCSI communications start from a bus free phase. 

5. 7 .2 Arbitration Phase 

The arbitration phase will occur only in those SCSI systems with more than one initiator or a 
reselecting target. Since multiple initiators are allowed on the bus, there will be times when two 
initiators try to access the SCSI bus at the same time. To arbitrate collisions between two SCSI 
initiators, priority is assigned with the SCSI address on the bus. Highest priority is given to 
address 7 and lowest priority given to address 0. 

A data bit is assigned to each SCSI address for use during the arbitration phase, and it corresponds 
to each device's address on the bus (i.e., DBO is used by address 0, and DB7 is used by address 
7). During the arbitration phase, each SCSI device desiring the bus asserts BSY, a wired-OR 
signal, and also asserts its data bit corresponding to the address it occupies on the SCSI bus. If, 
after 2 µsecs, there are any data bits asserted higher than its own, that device must release the bus 
and wait for another bus free phase. 

5.8 



Chapter 5 SCSI 

5. 7.3 Selection Phase 

After winning arbitration. an initiator proceeds to the selection phase. In this phase, the initiator 
asserts the SEL signal on the bus and asserts the data bits corresponding to both its own address 
and the address of the target it wishes to select. Thus, a target can determine which SCSI address 
the initiator occupies. 

5.7.4 Command Phase 

During the Command phase, the target requests command information from the initiator. The 
command information is in the form of a Command Descriptor Block. The Command Descriptor 
Block contains the information necessary to execute any of the defined operations for a particular 
class of SCSI device in a standard format. 

5.7.5 Data Phase 

During the data phase, the target transfers any data requested by the Command Descriptor Block 
loaded previously. This phase is optional. A numberof SCSicommands require no data transfer 
or will skip the data transfer phase if an error is detected. 

5. 7 .6 Status Phase 

The status phase immediately follows the data phase or. if no data transfer was required. the 
command phase. Status information about the last transfer is sent to the initiator.The status 
returned is one byte long. Bits within this byte are pre-defined with certain meanings by the 
SCSI specification. Three bits are also left undefined for vendor-unique implementations. 
The organization of the status byte along with the three most important status codes is shown 
in Table 5.1. 

5.9 



Chapter 5 SCSI 

DB? I DBS I DBS I DB4 I DB3 I DB2 I DB1 I DBO Status Codes 

R V V s s s s V ; General Definition 

R V V 0 0 0 0 V ; Good 

R V V 0 0 0 1 V ; Check Condition 

R V V 0 1 0 0 V ; Busy 

Key: R; Reserved 
S ; Predefined SCSI bit 
V ; Vendor unique 

Table 5.1-Status byte organization 

"Good" status indicates the preceding operation was successful. "Check Condition" usually 
indicates that something unusual happened during the last SCSI operation. The initiator should 
issue a "Request Sense" command to discover what the unusual event was. "Busy" indicates that 
the target cannot accept any commands and the initiator should try again later. 

5.7.7 "Message In" Phase 

The message phase is the last phase in a SCSI transfer in which a message byte is transferred from 
the target to the initiator. After the transfer of a message byte to the initiator, the target will 
disconnect from the SCSI bus and return the bus to bus free phase. At this point the SCSI bus 
is ready for another SCSI operation to be initiated. 

5.7.8 "Message Ont'' Phase 

From the moment the initiator has completed the selection phase, the target has complete control 
of the data transfers and phase changes on the bus. If the initiator has reason to regain control of 
the bus (for example the detection of a parity error in data received from the target) the only 
mechanism for doing so is the A TN line. If a target detects the assertion of A TN at anytime during 

5.10 



Chapter 5 SCSI 

a SCSI operation, it will go to a "message out" phase at its convenience. The initiator may then 
send a message byte (if the A TN line is kept asserted, several message bytes may be sent) to force 
the target to abort or retry a SCSI operation. 

There are many message bytes defined in the SCSI specification for specific meanings and 
actions on the SCSI bus. However, only one is mandatory in any SCSI implementation-a 
message byte of 00, which indicates "Command Complete." 

5.8 Reconnection 

In order to prevent slow operations from occupying the SCSI bus for long periods of time, some 
peripherals on the SCSI bus support a feature called reconnection. During slow operations (for 
example, a long seek on a disk device) the target will accept the CDB, describing the operation 
required, and then deliberately disconnect from the SCSI bus, freeing the bus forotheroperations 
between different initiators and targets or between the same initiator and another target. When 
the target is ready for the next phase of the SCSI transfer, it will act as an initiator to reselect the 
originator of the SCSI operation, then resume the role of target. The target will resume the 
operation at the next phase, either transferring any data associated with the CDB issued, or going 
into status, message phases to complete the operation. Figure 5.7 shows the state of all signals 
during one complete transaction on the SCSI bus. 

5.11 



Chapter 5 

f :::::;, &isSetlleliy 

MlU&tJonlle~j 

II r' f,&isC~arllelaypusBusSei~Delav 

lniliatir 

-BSY ··J,~1•~r ~y /\~a:e•zt BSY 7 
~.: -~',------S-----', ',---------~ 

II) 

~:~~~ 
I~ •• •• • ~7 A A j 
-MSG.·~ 

[TJ II I ' I DataAcrople</ I I I I 

REQ~~-v-1~ 
[T) I J I I DataAvailab~' ' J I OalaAo:apted I I I I I I 

ACK~~~ 
(I) ' ' ' ' 

-RST 
(T,1) 

DB[I-OP)~~~ 
(DATABUS) /,Arb.lds 1 Target& 1 FirstCommand LastComrnarxl: L ~ :s1a1usB)1e: Comrnarid: 
Letterin / : :lnil ID's : Be 8 e : DataBytes : : Complele '/ 
l)showswllo tus I ARBI· r SELEG· I yt yt I I I 

drives tile : FREE : TRATION : TION : COMMAND ' DATA IN I STATUS : MESSAGE IN :~~E 

lioo. 

Figure 5.7-0ne complete transaction on the SCSI bns 

SCSI 

This material is reproduced with permission from American National Standard X3.131-
1986, also entitled "American National Standard for Iriformation Systems-Small Com
puter System Interface (SCSI)," copyright© 1986 by the American National Standards 
Institute. Copies of this standard may be purchased from the American National 
Standards Institute at I 1 West 42nd Street, New York, NY 10036. 

5.12 



Chapter 5 SCSI 

5.9 Command Descriptor Blocks 

All requests to a peripheral device on the SCSI bus are performed by sending a "Conunand 
Descriptor Block" (COB) to the target during the conunand phase of a SCSI operation. For each 
type of device on the SCSI bus, the SCSI specification defines a minimum set of conunands and 
the exact format of the CDBs for these conunands. In order to meet compliance with the SCSI 
specifications, a device must execute at least this minimum conunand set. The pre-defined 
conunand descriptor blocks are part of what makes the SCSI bus powerful and popular. Using 
this mandatory conunand set, a software driver could be written to drive virtually any SCSI 
device. This is part of what differentiates the SCSI bus, a system interface, from device level 
interfaces. SCSI specifies not only the signal levels and timing for an electrical interface, but also 
the higher level conunands that any device on the SCSI bus must respond to by definition. 

The exact format and meaning of the bytes in a COB depend on what kind of device is being 
accessed through the SCSI bus. Currently, six different types of devices are covered in the SCSI 
specification, along with a minimum mandatory conunand set for each. These six device types 
are: 

Device type 

Direct access 
Sequential access 
Printer 
Processor 
WORM 
Direct access, read-only 

5.13 

Example 

floppy disk drive, hard disk drive 
tape drive 
dot-matrix, laser printers 
any intelligent device 
(write-once, read-multiple) optical media 
CD-ROMs 



Chapter 5 SCSI 

Command descriptor blocks (as defined by the SCSI specification) come in three sizes; 6 bytes 
long, 10 bytes long, and 12 bytes long. The first byte in any COB is an operation code, and part 
of the operation code specifies what the COB length is. The operation code byte is split up as 
shown in Figure 5.8: 

DB7 I DB6 I DBS DB4 I DB3 I DB2 I DB1 I DBO 

Group Code Command Code 

Figure 5.8----0peration code byte 

The most significant three bits are used for the group code. Currently, three group codes are 
defined: group 0, group 1, and group 5. Group O COBs are always 6 bytes long, group 1 COBs 
are always 10 bytes long, and group 5 COBs are always 12 bytes long. Groups 2 through 4 are 
reserved for future SCSI specification, and groups 6 and 7 can be used for vendor-unique COB 
implementation. 

The five-bit command code field within the opcode byte provides up to 32 commands in each 
group. The formats for 6, 10, and 12 byte COBs are shown in Figures 5.9, 5.10, and 5.11. 

Bit 

DB7 DB6 DB5 DB4 DB3 DB2 DBI DBO 

0 operation code 

I LUN I starting block# (if needed) MSB 

Byte 
2 starting block# (if needed) 

3 starting block number (if needed) LSB 

4 transfer length (if needed) 

5 Control byte 

Figure 5.9-Typical group O (6-byte) CDB 

5.14 



Chapter 5 SCSI 

Bit 

DB7 DB6 DB5 DB4 DB3 DB2 DBI DBO 

0 operation code 

1 LUN I reserved I rel 

2 starting block number (if needed) MSB 

3 starting block number (if needed) 

Byte 
4 starting block number (if needed) 

5 starting block number (if needed) LSB 

6 reserved 

7 transfer length (if needed) MSB 

8 transfer length (if needed) LSB 

9 control byte 

Figure 5.10-Typical group 1 (10-byte) COB 

Bit 

DB7 DB6 DB5 DB4 DB3 DB2 DBI DBO 

0 operation code 

1 LUN I reserved I rel 

2 starting block number (if needed) MSB 

3 starting block number (if needed) 

4 starting block number (if needed) 

Byte 
5 starting block number (if needed) LSB 

6 reserved 

7 reserved 

8 reserved 

9 transfer length (if needed) MSB 

10 transfer length (if needed) LSB 

11 control byte 

Figure 5.11-Typical group 5 (12-byte) COB 

5.15 



Chapter 5 SCSI 

5.10 The Future of SCSI 

Computer performance is continually reaching new heights. Machines are now being sold that 
execute instructions at the rate of 10 to 15 MIPS (millions of instructions per second). Newer 
processors such as the 68040 from Motorola are being released with execution rates of20 MIPS 
and promise to grow even faster with increases in clock rate. A new ECL version of the SP ARC 
processor used in Sun workstations promises execution rates of 80 MIPS. 

The only way processors can sustain such high execution rates is by careful design that couples 
the memory and processor together very tightly. This tight coupling precludes the use of a 
standard bus with card slots, which have traditionally been used to allow expansion of systems. 
Such a bus would slow down the critical path between a processor and its memory. The SCSI bus 
is a natural extension for an otherwise closed architecture which still allows relatively high 
performance for data transfer. 

Higher speed computing has given rise to another problem. Since the CPU spends a lot less time 
computing, the handling of peripherals is an increasing drain on computing resources. The trend 
has been to include more intelligence in each peripheral to off-load more of the lower level tasks 
from the main CPU. SCSI devices are by their very nature intelligent, executing higher level 
commands as defined by the SCSI bus specification. 

The SCSI bus has undergone several enhancements over the past few years. Although the original 
specification limited transfers to 1.5 Mbytes/sec, later enhancements allow up to 5 Mbytes/sec. 
With the formal adoption of SCSI-2, the data bus width will be 16or32 bits wide, allowing data 
transfer rates up to 20 Mbytes/sec, faster than many of the original computer buses allowed. 

At the same time, more peripherals are finding their way onto the SCSI bus. For example, with 
the advent of high quality graphics engines for printing and the increasing demands of desktop 
publishing on printers, it seems only natural that Apple's laser printers use the SCSI bus for 
communication. Virtually every disk technology is available with a SCSI interface as an option, 
and in some cases, such as CD-ROM, SCSI is the only interface available for computer 
applications. As noted earlier, SCSI also provides a convenient and effective means of 
connecting workstations to the IEEE bus, allowing these new technologies to be used for the data 
acquisition task. 

With its large data transfer rates, wide acceptance in the marketplace, high degree of portability among 
dissimilar systems, and ease of interface, the SCSI bus should remain viable well into the 90s. 

5.16 



Ethernet 
6.1 Introduction 

Computer networks provide a means by which many different computers and peripherals can 
communicate across a common connection. A network is essentially a system of processing units 
connected by a single communication link. A local area network (LAN) generally is a network 
that supports peer-to-peer communications over a distance of several meters to several kilome
ters. Peer-to-peer communication refers to the ability of each station (a computer, terminal, or 
peripheral device) to communicate with any other, without requiring intervention from a central 
controller. The distances involved allow the connection of systems within a building or a small 
group of buildings. 

6.2 The Ethernet Standard 

6.2.1 History 

Ethernet is one of the most commonly used LANs. The first Ethernet system was developed by 
the Xerox Corporation in the mid 1970s. DEC and Intel supported Xerox in the quest for a 
network standard, and the three companies worked together on the first version of the Ethernet 
standard, published in 1980. This was followed with version 2.0 in 1982. 

6.2.2 The IEEE 802.3 Standard 

The Institute of Electrical and Electronics Engineers (lEEE) used Ethernet as the basis for the 
1988 lEEE 802.3 standard. The 802.3 standard specifies the physical and electrical character
istics, media access method, and the data encoding and formatting methods of a IO Mb it/sec serial 
data bus. IEEE 802.3 specifies the physical and electrical characteristics of three types of media. 

Although IEEE 802.3 and Ethernet differ in the definition of their frame formats, the two can be 
made to coexist on the same network, and the term Ethernet is generally used to refer to either 
system. In the following pages, Ethernet and 802.3 are used interchangeably, except in reference 
to unique aspects of either. 

6.1 



Chapter 6 Ethernet 

6.2.3 802.3 Type lOBASES 

IEEE 802.3 Type I 0BASE5 defines the physical and electrical characteristics of a shielded 
50 ohm coaxial cable. A single segment of such a cable can be up to 500m in length, and 
repeaters can be used to extend the network to a maximum of2500m. The 10BASE5 standard 
allows I 00 nodes per segment. This standard is commonly referred to as thick Ethernet. 

In a I 0BASE5 network, the workstations, or data terminal equipment (DTE), are often far 
from the coaxial cable connection. In the case outlined in Figure 6.1, a transceiver drop cable, 
of up to 50m over twisted pair wiring, is required to connect the DTE with the coaxial 
transceiver, or medium attachment unit (MAU). This DTE/MAU interface is called the 
attachment unit interface (AUI), and thus the transceiver drop cable is often referred to as an 
AUI cable. A 15 pin male D shell connector is used at the transceiver (MAU) end of the AUI 
cable, and a 15 pin female D shell connector is used at the DTE end. 

MALE 
~15PIN 

DCONNECTOR 

TRANSCEIVER 
_..,_ DROP CABLE 

(AUi CABLE) 

FEMALE 
...,.._ CONNECTOR 

10BASE5 
NETWORK CABLE 

Figure 6.1-lOBASES network connection 

6.2 



Chapter6 Ethernet 

6.2.4 802.3 Type 10BASE2 

Because of the high cost of the cable used for the 10BASE5 standard, the IEEE also developed 
the 802.3 10BASE2 standard (Figure 6.2). 10BASE2 ( commonly called thin Ethernet, or 
Cheapernet) uses a thinner, lower performance cable (RIG 58 AIU) that is limited to a 185m 
segment length and a 925m network length. 10BASE2 does not require MA Us or transceiver 
cables. The nodes are attached with simple BNC T-connectors, but only 30 nodes per segment 
are allowed. 

DTE 
(DATA 

TERMINAL 
EQUIPMENT) 

10BASE2 
Network 

Cable 

Figure 6.2-10 BASE2 network connection 

6.2.5 802.3 Type 10BASET 

Recently, the Type lOBASET standard was established. lOBASET uses twisted pair wiring 
instead of coaxial cable. Although twisted pair wiring has higher bit error rates and can support 
the 10 Mbit/sec data rate only over shorter distances, it employs existing twisted pair telephone 
wiring to provide ease of installation. 

6.3 



Chapter 6 Ethernet 

6.2.6 Data Encoding 

Serial data on an 802.3 network is transmitted in a binary encoding scheme called Manchester 
encoding (Figure 6.3). Manchester encoding combines data and clock into "bit-symbols." A 
transition occurs in the middle of each bit symbol. Thus each bit-symbol is split into two halves, 
with the second half containing the binary inverse of the first. In the first halfof the bit-symbol, 
the encoded signal is the logical complement of the value being encoded. Thus a logical 1 is 
encoded by a bit-symbol in which the first half is a logical O and the second half is a logical I. A 
logical O is encoded by a bit symbol containing a logical one followed by a logical zero. 

1 bit period ---

bit symbol _. 

logical value _. 0 0 0 

Figure 6.3-Manchester encoded bitstream 

6.2.7 CSMA/CD 

Ethernet uses a transmission protocol called Carrier Sense Multiple Access with Collision 
Detection (CSMA/CD). The Carrier Sense (CS) portion of the protocol requires that before a 
station begins transmitting it first "listen" to the channel to make sure that the channel is idle, i.e., 
that no other station is currently transmitting. The Multiple Access (MA) portion of the protocol 
requires that every station on the network have equal access to the communications channel; there 
is no central controller allotting specific times to each station. The. Collision Detection (CD) 
portion of the protocol requires that a transmitting station listen to the line during transmission 
to make sure that no other station has also begun transmitting; two or more stations transmitting 
at the same time results in a collision. 

When a collision occurs, the stations stop transmitting and wait a random amount of time before 
retrying transmission. 

6.4 



Chapter6 Ethernet 

6.2.8 Frame Format 

Tue serial data sent across an 802.3 or Ethernet network is packaged into frames. Each frame 
has the format defined in Figure 6.4: 

?Bytes 1B 6B 6B 2B 46-1500B 4B 

Preamble SFD 
Dest SRC 

Address Address Length Data FCS 

Figure 6.4-Ethernet frame format 

Preamble-A 7 byte field of alternating Os and Is to allow network hardware to synchronize with 
the frame timing. 

Start of Frame Delimiter (SFD}-Tue I byte pattern 10101011. which indicates the end of the 
preamble and the start of the frame. 

Destination Address-A 6 byte field, which specifies the station for which the frame is intended. 

Source Address-A 6 byte field, which specifies the station sending the frame. 

Length Field (IEEE 802.3 definition}-A 2 byte field, which specifies the number of bytes 
contained in the data filed. (In Ethernet, this field is called the Type field and specifies a 2 byte 
type code.) 

Data Field-A sequence of data bytes. If the number of data bytes transmitted is less than the 
minirnumdatalengthof46bytes,thisfieldmustbepaddedtoprovidetheminirnumframelength. 
Tue maximum data field length is 1500 bytes. 

Frame Check Sequence (FCS}-A 4 byte field containing a cyclic redundancy check (CRC) 
valuecomputedfromthedatacontainedintheDestinationAddress,SourceAddress,Length,and 
Data fields, used for error detection. 

While the usual destination and source addresses are specified by the 802.3 standard to be 6 bytes, 
the standard allows for the use of 2 byte addresses, provided that 2 byte addresses are required 

6.5 



Chapter 6 Ethernet 

by every station on the network. Consequently, the 2 byte address implementation is seldom 
found. 

6.3 The OSI Model 

6.3.1 Overview 

In order to encourage network compatibility among different manufacturers, the International 
Standard Organization (ISO) developed the Open System Interconnect (OSI) reference model. 
This model consists of a recommended set of protocols for providing communications among 
multiple devices. The OSI model is comprised of seven functions, or layers (Figure 6.5). Thls 
layered model provides modularity and flexibility, since each layer can be modified without 
affecting the other layers. 

7 Application User applications 

6 Presentation Performs data reformatting and code conversion 

Manages interaction between application processes 

Provides end-to-end data integrity 

5 Session 

4 Transport 

3 Network 

2 Data Link 

1 Physical 

Provides internetwork addressing and routing 

Performs formatting and data transmission 

Defines physical media and bit characteristics 

Figure 6.5--0pen system interconnect ( OSI) model 

6.6 



Chapter 6 

6.3.2 Commonly Used Protocols 

6.3.2.1 Unix and TCP/IP 

Ethernet 

IEEE standard 802.2, Logical link control, defines a low level communications protocol. Taken 
together, the 802.2 and 802.3 standards define layers 1 and 2 of the OSI model. In order to provide 
effective and reliable communications, software must be run in the individual network nodes to 
provide the higher layers. In the Unix operating system environment, TCP/JP is the most 
commonly used network protocol. IP, or Internet Protocol, corresponds to layer 3, the network 
layer of the OSI model, and TCP, or Transport Control Protocol, corresponds to layer 4, the 
transport layer. The Unix operating system itself provides the higher layers (Figure 6.6). 

7 Application 

6 Presentation 

5 Session 

4 Transport 

3 Network 

2 Data Link 

1 Physical 

6.3.2.2 Novell NetWare 

Applications Program 

Unix 

Unix 

TCP (Transport Control Protocol) 

IP (Internet Protocol) 

IEEE 802.2 & IEEE 802.3 

IEEE 802.2 & IEEE 802.3 

Figure 6.6--Unix implementation of OSI 

} TCP/IP 

On DOS-based personal computers, the Novell NetW are Operating System is a commonly used 
network communications environment. The IPX, or Internet Packet eXchange, corresponds to 
layer 3, the Network layer of the OSI model; the SPX, or Sequenced Program eXchange, 
corresponds to layer 4, the transport layer (Figure 6. 7). The Novell Operating System provides 
the upper layers of the OSI model. 

6.7 



Chapter 6 

7 Application 

6 Presentation 

5 Session 

4 Transport 

3 Network 

2 Data Link 

1 Physical 

Applications Program 

NetWare 

NetWare 

SPX (Sequenced Program eXchange) 

IPX (Internet Packet exchange) 

IEEE 802.2 & IEEE 802.3 

IEEE 802.2 & IEEE 802.3 

Figure 6.7-Novell NetWare implementation of OSI 

6.4 Ethernet and Data Acquisition 

Ethernet 

Ethernet" s importance to data acquisition and communication has been underlined by the 
introduction of IOtech"s LAN488 Ethernet to IEEE 488 controller. Instruments attached to a 
LAN488 can be controlled by distant computers via the Ethernet connection. enabling the 
LAN488 to effectively extend the IEEE 488 bus. However. unlike most IEEE 488 extenders, 
LAN488 can be configured in a multidrop IEEE 488 system with several remote IEEE 488 buses 
accessible from one or more computers (Figure 6.8). Thus the number of instruments that can 
be controlled is essentially limitless; the distance between LAN488 nodes can be the maximum 
permitted by the specific Ethernet cabling. 

6.8 



Chapter6 

Computer with 
Ethernet interface 

• Up to 14 IEEE devices 

Ethernet 

Computer with 
Ethernet interface 

Ethernet 

Computer with 
Ethernet interface 

• Up to 14 IEEE devices 

Figure 6.8--LAN488 makes distributed data acquisition and control possible 

6.9 





IOtech Product Selection Guide 

The following is a guide to some of the products mentioned in the preceding text. A complete 
description of these and other products can be found in the current issue of the !Otech Product 
Catalog, available free of charge by calling I0tech at 216/439-4091 (fax 216/439-4093). 

7.1 



Chapter? 

Personal488plus 
• Adds IEEE 488.2 capability to IBM PC/ A Ts 
• Includes the GP488Bplus interlace board and 

enhanced Driver488 DOS device driver software 
• Easy to program HP-style commands 
• Optional RTLib488 real time graphics and 

analysis subroutine libraries for C and Pascal 
• New Personal488/0EM-P development package 

and Llbrary488 for OEMs available 

Power488 
• Adds high speed IEEE 488.2 control, digital 1/0, 

and counter-timer functions to IBM PC/ATs 
• 1 Mbyte/sec maximum DMA data transfers 
• Includes new Driver488 software with call based 

subroutines, SCPI conunands for UO functions, 
and software support for the PC's COM ports 

• Optional RTLib488 real time graphics and 
analysis subroutine libraries for C and Pascal 

IOtech Product Selection Guide 

Personal488/ AT 
• Adds high speed 488.2 capability to IBM PC/ATs 
• I Mbyte/sec maximum DMA data transfers 
• Includes the half-slot AT488 interface board and 

enhanced Driver488 DOS driver software 
• Easy to program HP-style commands 
• Subroutine calls for high speed applications 
• Optional RTLib488 real time graphics and 

analysis subroutine libraries for C and Pascal 

Personal488/2plus 
• Adds IEEE 488.2 capability to the IBM PS/2 

MicroChannel family of personal computers 
• Includes the GP488/2plus interlace board and 

enhanced Driver488 DOS device driver software 

7.2 

• Easy to program HP-style commands 
• Subroutine calls for high performance 
• Optional RTLib488 real time graphics and 

analysis subroutines for C and Pascal 



Chapter 7 TOtech Product Selection Guide 

IBM PC IEEE 488 Controllers 

i 
I 

LAN488 
• Control up to 14 IEEE 488 devices with each 

LAN488 on a Ethernet Novell NetWare network 
• Provides centralized control of distributed IEEE 

488 test systems 
• Allows any PC on the network to access IEEE 

488 devices 
• Allows control of remote IEEE 488 devices as if 

they were attached directly to the local PC 

Personal488/UX 
• Controls IEEE devices under the powerful 

XENIX environment 
• Allows multiple tasks to access the IEEE bus 

simultaneously 
• Includes GP488C IEEE board and Driver488/UX 

device driver software 

L 

7.3 

Personal488/G 
• Adds high speed 488.2 capability to the 

GRiDCASE 1500 series of laptop computers 
• Includes the GP488B/G expansion cartridge and 

Driver488 DOS driver software 
• Easy to program HP-style commands 
• Supports all popular languages, spreadsheets, and 

data analysis software 

Personal488/0EM-P 
• Develop IEEE 488.2 peripherals based on an 

embedded PC architecture 
• Includes a compact library of Microsoft C 

subroutines that provide IEEE 488.2 peripheral 
functions 

• Requires Jess than 12 Kbytes of memory 
• DMA and interrupt-driven operation supports 
• Optional RS-232 COM port support available 
• Includes an 8-bit or 16-bit IEEE 488.2 board 



Chapter 7 IOtech Product Selection Guide 

Macintosh IEEE 488 Controllers 

Macll488 
• Plugs directly into a NuBus© slot in the 

Macintosh II, IIx, Hex, or llfx 
• Supports data transfer rates of over 6(X) 

Kbytes/sec 
• Includes MacDriver488 and MacDA488 

software 
• Programmed with high-level HP-style com-

rf 
I 

Mac488B 
• Control up to 14 IEEE devices as far as 4,000 ft 

from the Macintosh using its modem or printer 
port 

• Built-in A-B-C switch allows other serial 
devices to share the same serial port 

• Built-in 32,000 character data buffer increases 
efficiency 

• Includes MacDriver488 and MacDA488 
software 

MacSCSI488 
• Attaches to the SCSI port on the Macintosh 

computer 
• Supports data transfers of over 600 Kbytes/sec 

on the Macintosh SE, and over 800 Kbytes/sec 
on the Macintosh II 

• Includes MacDriver488 andMacDA488 
software 

SuperScope 
• Convert your Macintosh into a virtual lab 

instrument capable of collecting, analyzing, and 
storing data 

• Compatible with !Otech Macintosh IEEE 
interfaces for controlling and collecting data 
from IEEE instruments 

• Collect data directly from an ADC488 digitizer 
at 100 kHz using on-screen controls. 

• Easily define instruments without programming 

7.4 



Chapter 7 

SB488 
• Control IEEE488 instruments from an SBus slot 

in the Sun SPARCstation or compatibles 
• 100 percent compatibility with IEEE 488.2 

specified controller functions 
• High-speed data transfers up to 1 Mbyte/sec 
• Includes Driver488/S UNIX device driver and 

language interface with HP-style IEEE 
commands 

SCSI488/D 
• Control IEEE 488 instruments from the external 

SCSI port on the DEC VAXstation 3100, 
MicroVAX 3100, DECstation 5000, and 
DECstation 3100 

• Includes Driver488/D command language 
interpreter, providing high-level HP-style IEEE 
488 commands for VMS and DEC IEZ-11 
device driver 

• High speed data transfers up to l Mbyte/sec 

IOtech Product Selection Guide 

SCSI488/S 
• Control IEEE 488 instruments from SCSI port on 

Sun-3, Sun-4, and SPARCstation workstations 
• High speed data transfer up to 1 Mbyte/sec 
• Enables daisy-chaining with other SCSI devices 

via two rear panel SCSI connectors 
• Includes Driver488/S UNIX device driver and 

language intetface HP-style IEEE commands 

SCSI488/N 
• Control up to 14 IEEE 488 instruments via the 

external SCSI port on members of the NeXT 
workstation family 

• High speed data transfers up to 1 Mbyte/sec 
• Includes Driver488/N software interface that can 

be called from the NeXT Object-C environment 
• Uses familiar HP-style IEEE commands 

7.5 



Chapter 7 

Micro488A 
• Enables control of up to 14 IEEE devices from 

any computer with an RS-232 or RS-422 port 
• Programmed with HP-style commands 
• Built-in 32,000 character data buffer 
• Supports baud rates up to 57 ,600 baud 
• Micro488/EX operates as a stand-alone controller 

using a 32K transaction non-volatile memory for 
program and data 

Modem488 
• 110, 300, or 1200 baud operation, with auto-

answer, auto-dial, and redial 
• Non-volatile auto-dial number storage 
• HP-style commands in the controller mode 
• Security mode to prevent unauthorized control 

of the bus 

IOtech Product Selection Guide 

SCSI488 
• Provides high-speed bidirectional communica

tion between SCSI and IEEE devices 
• Controls IEEE instruments from a computer's 

SCSI port 
• Controls SCSI devices from an IEEE port 
• Functions as a full-featured IEEE controller 

Micro488/EX 
• Operates as a stand~alone controller using a 32 

Kbyte non-volatile memory for program and data 
• Stores up to 100 different macros in non-volatile 

memory 
• Permits data retrieval by any computer serial port 
• Features a built-in real-time clock; permits 

collection and time-stamping of data at precise 
times or at regular or irregular intervals 

• Programmed with HP-style commands 

7.6 



Chapter 7 

Extender488/HS 
• Extends the length of the IEEE bus while 

maintaining data transfer rates as high as 840 
bytes/sec 

• Allows the IEEE bus to be transparently 
extended beyond the 20m cable limitation to as 
far as 1000m 

• Expands the number of devices allowed on the 
bus from 15 to 28 

Expander488 
• Doubles the maximum allowable number of 

devices on the bus 
• Operates transparently to the IEEE controller 
• No special software or bank-switching is 

necessary to access an IEEE device 

IOtech Product Selection Guide 

IEEE 488 Bus Enhancers 

.. I 

7.7 

Extender488 
• IEEE economically extends the bus up to 

1000m, via RS-422 or fiber-optic link, to 
exceed the IEEE standard 20m cable 
limitation. 

• Fiber-optic extenders electrically isolate 
instruments 

• Expands the number of devices allowed on the 
bus from 15 to 28 

Isolator488 
• Electrically isolates individual instruments or 

groups of instruments 
• Expands the number of devices allowed on the 

bus from 15to28 
• Allows the IEEE interface of instruments on 

the same IEEE bus to operate at different 
voltage reference levels 

• Operates transparently to the system, requires 
no programming 



Chapter 7 IOtech Product Selection Guide 

IEEE 488 Bus Enhancers 
~~--------------------------------~ 

Parallel488 

Buffer488 

7.8 

• Transparent link between IEEE and 
parallel devices 

• Front panel indicators for IEEE Talk 
and Listen, and parallel Send and 
Receive 

• Built-in 24,000 character data buffer 
• Switch selectable IEEE address 

• Increase the efficiency of your 
IEEE system by buffering data 
to slow IEEE plotters or 
printers 

• Provides up to 512 Kbytes of 
data buffer 

• Operates transparently to the 
system 

• Allows entire plotter docu
ments to be buffered 



Chapter 7 

Analyzer488 

IOtech Product Selection Guide 

IEEE 488 Bus AnalY.zer and Monitor 
-- --- ------------------~ 

7.9 

• Permits the monitor, capture, and 
analysis of IEEE bus transactions at the 
full lMbyte/sec IEEE data transfer speed 

• Allows anlysis of bus transactions from 
the unit's front panel, or from a computer 
connected to the unit's serial port 

• Includes Analyst488 PC control software 
• Permits set up of post-triggering for 

capturing desired transaction patterns 
• Provides search features for scanning 

the 32K transaction buffer 
• Controls up to 14 instruments in the bus 

controller mode 
• Measures efficiency of the bus opera

tions with its speed measurement feature 
• Provides external "trigger-satisfied" 

signal for triggering test equipment 

• Decodes and displays IEEE bus 
transactions in real time 

• Capable of slowing the bus for 
real time viewing 

• Allows single stepping for 
debugging system problems 

• Records and prints decoded bus 
transactions in two formats to a 
Centronics printer 

• Can be configured to continu
ously capture IEEE bus 
transactions into its circular 
capture buffer for recall and later 
printing 



Chapter 7 IOtech Product Selection Guide 

IEEE 488 Data Acquisition Instruments 
!!~···~·~··~· 

ADC488/16 ADC488/8S 
• 16-bit analog to digital conversion at up to • 16-bit analog to digital conversion up to 100,000 

100,000 samples/sec samples/sec 
• 16 single-ended or 8 differential analog inputs • 8 differential analog input..Jsimultaneously sampled 
• Continuous throughput to the IEEE bus at 200 • Continuous throughput to the IEEE bus at 

Kbytes/sec (100,000 )6.bit readings/sec) 200 Kbytes/sec (100,000 16-bit readings/sec) 
• Memory expansion to 8 Mbytes :JJ! • Memory expansion up to 8 Mbytes 
• .. ±1, ±2, ±5, and ±lOVFS programmable input • ±1, ±2, ±5, and ±10 VFS programmable input 

ranges ranges 
--- --------- ---- -- ·-----------------__j 

DAC488 
• Two or four channel 12-bit plus sign isolated 

digital to analog converters 
• Built-in 8192-point waveform buffer with 1 kHz 

update rate 
• Sequenced output based on either a periodic 

interval or trigger condition 
• Three trigger conditions: External, TRG 

command, and GET command 

DAC488HR 
• Two or four channel isolated 16-bit outputs 
• 100 kHz/channel maximum update rate 
• 480K sample data buffer per channel 
• One-shot, step, burst, wavefonn, and continuous 

output modes 
• GET, external TII, IEEE command, and time 

event trigger sources 
• Standard sine, square, triangle, and sawtooth 

waveform generation 
---- -------~ 

7.10 



Chapter 7 IOtech Product Selection Guide 

Filter488 Mux488/16SC 
• Programmable via IEEE 488 and RS-232 • Provides signal conditioning and multiplexing 
• Several filter response options: Butterworth, for 16 analog channels 

Bessel, Elliptic, and Chebychev • Two versions available: Mux488/16SC is 
• 4 or 8 channels controlled via IEEE 488 or RS-232; 
• 50 kHz maximum cut off frequency specified Mux/16SC is controlled via an 8-bit digital 

with 3 digit resolution word from a digital I/0 port or a PC parallel 
• 3dB cutoff frequency accuracy within 1 percent I port, or slaved to a Mux488/64 

«<W •-"·-~'"M' ·-·""--1 J 1 

Mux488/64 
• Multiplex 64 single ended or 32 differential 

analog channels 
• Two versions available: Mux488/64 is 

controlled via IEEE488 or RS-232; Mux/64 
is controlled via an 8-bit digital word from a 
digital 1/0 port or a PC parallel port, or 
slaved to a Mux488/64 

Control488/l 6 
• Control AC and DC power to devices using 

opto-isolated solid-state relays 
• Sense high level AC or DC voltages using opto

isolated input modules 
• Two versions available: Control488/16 is 

programmed via an IEEE 488 interface or 
RS-232 port; Control/16 is programmed via an 
8-bit digital word from a digital I/0 port or a 
PC parallel port, or slaved to a Control488/16 

7.11 



Chapter 7 

Digital488HS/32 
• Input or output digital words at rates up to 1 

Mbyte/sec; input or output 16-bit digital words 
at up to 500 Kbytes/sec 

• Complete set of I/0 handshake, control, and 
status lines 

• TfL and HCT compatible 1/0 lines 

Digital488 
• Adds TIL level digital input and output 

capability to IEEE 488 systems 
• Forty I/0 lines are software programmable as 

inputs or outputs in groups of 8 bits 
• Converts 1/0 data to one of five selectable 

formats and sends it to the controller 
• Provides five additional I/0 lines, including 

IOtech Product Selection Guide 

Digital488/80A 
• Enables an IEEE488 controller to program or 

read the state of 80 bits of TIL level signals 
• Optional 200mA of high current drive capability 

on each line when used as outputs 
• Optional support for +12,+24, and +48 volt 

logic levels 

Digital232 
• Provides TfL level digital input and output 

, capability to RS-232 based systems 
1 • Programmable for input or output of up to 40 

bits of digital data 
• Programmable in groups of 8 bits for input or 

output 
• Supports complete digital 1/0 handshaking 

trigger output, service request input, data latch I 

~-i-np_u_t,_c_Ie_ar_ou_t_pu_t_, a_n_d_in_h_ib_i_t o_u_ip_u_t _____ _ 

7.12 



Bibliography 
The following references may provide additional information on the topics addressed in 
this handbook: 

[I] ANSI Std X3.131-1986, Small Computer System Interface 

[2] ANSI/IAAA Std 488.1-1987, IEEE Standard Digital Interface for 
Programmable Instrumentation. 

[3] ANSI/IEEE Std 488.2-1987, IEEE Standard Codes, Formats, 
Protocols, and Common Commands. 

[4] Caristi, Anthony J. IEEE-488 General Purpose Instrumentation 
Bus Manual, Academic Press, San Diego, 1989. 

[5] EIA Std EIA-232-C, Interface Between Data Terminal Equipment 
Employing Serial Binary Data Interchange 

[6] Tutorial Description of the Hewlett-Packard Interface Bus, Hewlett
Packard Publication 5021-1927, 1987. 

[7] Mueller, Joseph E. "Efficient Instrument Design Using IEEE 488.2", 
IEEE Transactions on Instrumentation and Measurement, Vol. IM-39, No. I, 
February 1990, pp 146-150. 

SCPI Consortium 
8380 Hercules Drive, Suite P3 
La Mensa, CA 92042 
(619) 697-8790 

The Institute of Electrical and Electronics Engineers, Inc. 
345 East 47th Street 
New York, NY 10017 

IEEE Standatds Publication: (201) 562-3800 





Symbols 

*CLS 3.3 
'ESE 3.3 
*ESE? 3.3 
*ESR? 3.3 
*IDN? 3.3 
'OPC 3.3 
*OPC? 3.3 
*RST 3.3 
'SRE 3.3 
*SRE? 3.3 
*STB? 3.3 
*TST? 3.3 
'WAI 3.3 
@VALUE 2.21 

A 

ACG (Address Command 

Group) 2.12, 2.13 
ACK (Acknowledge) 5.6, 5.7 
Active Controller 2.10, 2.12 
ActiveListener 2.7, 2.9, 2.11, 2.13 
Active Talker 2.8, 2.11, 2.13 
ADC488 2.18, 2.29, 7.4 
ADC488/16 7.10 
ADC488/8S 7 .10 
Addressed Commands 2.13 
Addressed to Listen 2.10 
Addressed to Talk 2.10 
Addressing 2.14 
Analyst488 2.26, 7 .9 
Analyzer488 2.26, 2.27, 2.28, 2.29, 

2.30, 2.31, 7.9 
ANSI (American National Standards 

Institute) 1.3, 4.17, 5.1, 5.12 
API (Applications Program Inter-

face) 2.18 
Apollo 1.2 
Apple Computer, Inc. 5.16 
Arbitration Phase 5.8 
ASCII 1.4, 2.15, 2.18, 2.21, 2.23, 

2.26, 2.29, 4.1, 4.2, 4.8, 4.12, 
4.17, 4.20 

Index 

Asynchronous Handshake Pro-
cess 5.6 

AT&T 1.2 
AT488 7.2 
A TE (Automatic Test Equip

ment) 3.1 
ATN (Attention) 2.6, 2.7, 2.9, 2.10, 

2.14, 2.27, 5.6, 5.10, 5.11 
AUi (Attachment Unit Interface) 6.2 

B 

BASIC 2.22, 3.8, 4.18 
BCD (Binary Coded Decimal) 2.29 
Binary Encoding 4.2 
Borland Sidekick 2.17 
BSY (Busy) 5.6, 5.8 
Buffer488 7 .8 
Bus Management Lines 2.6 

C 

CID 5.6 
Cable lengths 2.4 
Cabling 2.3 
CCL (Character Command Lan

guage) 2.18, 2.20, 2.23 
CDB (Command Descriptor 

Block) 5.9, 5.13, 5.14 
Cheapemet. See IEEE 802.3 Type 

10BASE2 
CLEAR 2.18 
Colorado Data Systems 1.4 
COM488 4.19 
Common Commands 2.17 
Control Pins 4.9 
Control/16 7.11 
Control488/16 Power Control 

Interface 4.18, 7.11 
Controller 2.14, 2.15 
Controller-Instrument Communica

tion 1.2 
Controller-Instrument Interaction 1.2 
CR (Carriage Return) 2.20, 2.26, 

2.28 

CR LF (Carriage Return/Line 
Feed) 2.29 

CRC (Cyclic Redundancy 
Check) 6.5 

CSMA/CD 6.4 
CTS (Clear to Send) 4.9 

D 

DAC488 7.10 
DAC488HR 7.10 
Daisy Chain 1.6. See also Linear 

Topology 
Data Bits 4.8 
Data Lines 2.6 
Data Terminal Equipment 4.2, 6.2 
DAV (Data Valid) 2.6, 2.7, 2.8, 

2.29 
DB0-7,P 5.6 
DCD (Data Carrier Detect) 4.9 
DCE (Data Communication 

Equipment) 4.2 
DCL(DeviceClear) 2.13 
DDC (Device Dependent Com-

mand) 2.27 
DEC V AXstation 3100 7 .5 
DECNet l.6 
DECstation 3100 7.5 
DECstation 5000 7.5 
Differential Mode 5.5 
Digital Equipment Corporation 

(DEC) 1.2, 1.5, 5.2, 6.1 
Digital232 7.12 
Digital488 7 .12 
Digital488/80A 7.12 
Digita1488HS/32 7.12 
DIO 2.14 
DIX 2.0 (Digital/Intel/Xerox) 1.5 
DMM 2.19, 2.21 
DOS 2.18, 2.19, 2.25, 6.7 
DOS Device Driver 2.17 
Driver488 2.17, 2.18, 2.20, 2.22, 

2.23, 2.29, 2.31, 4.18, 7.2, 
7.3 

Driver488/D 7.5 



Driver488/N 7.5 
Driver488/S 7 .5 
Driver488/UX 7 .3 
DSR (Data Set Ready) 4.9 
DTR (Data Terminal Ready) 4.9 

E 

EIA (Electronic Industries Associa-
tion) 1.3, 4.2, 4.3 

Electrical Signal Characteristics 4.3 
ENTER 2.18, 2.21 
EOI (End Or Identify) 2.6, 2.7, 

2.11, 2.16, 2.29, 4.19 
ERRORON 2.18 
Ethernet 1.5, 1.6, 6.1, 6.5, 6.8, 7.3 
EXECUIB 2.28 
EXECUIB DDC 2.28 
Expander488 2.9, 7.7 
Extender488 2.5, 7.7 
Extender488/F 2.5 
Extender488/HS 2.5, 7.7 

F 

FILL 2.18 
Filter488 7 .11 
Fluke 1.2 
Forgiving Listening 2.16 
FORTRAN 4.18 

G 

GET (Group Execute Trigger) 2.28, 
4.19 

Gould 1.2 
GP488/2plus 7.2 
GP488B/G 7.3 
GP488Bplus 7.2 
GP488C 7.3 
GPIB (General Purpose Interface 

Bus) 2.1 
GRiDCASE 7.3 
Ground Lines 2.6 
GUI (Graphical User Interface) 2.25 
GWBASIC 4.18 

H 

Handshake Lines 2.6, 2.7, 5.6 
Handshaking 2.7, 2.8, 4.12, 5.6, 

5.7 

Hardware Handshaking 4.12 
HELLO 2.22 
Hewlett-Packard I.I, 1.4, 7.5, 

7 .6. See also HP 
HP 1.1, 2.18, 7.2, 7.3, 7.4 
HP-IB 1.1 

1/0 5.6 
IBM 1.2 
IBM PC 1.3, 1.6, 2.17, 2.23, 3.7, 

4.17, 4.18, 4.19 
IBMPC/AT 7.2 
IBM PS/2 7.2 
IDY (Identify) 2.14 
IEEE 488 1.1, 1.2, 1.3, 1.4, 1.5, 

2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 
2.9, 2.10, 2.17, 2.18, 2.20, 
2.22, 2.25, 2.31, 3.7, 4.17, 
4.18, 4.19, 6.8, 7.3, 7.5, 
7. I I. See also IEEE 488 Bus: 
IEEE 488.1: IEEE 488.2 

IEEE 488 Bus I.I, 2.4, 2.6, 2.7, 
2.9, 2.10, 2.11, 2.17, 2.18, 
2.20, 2.22, 2.23, 2.25, 2.26, 
2.29, 4.1, 4.17, 5.16, 6.8 

IEEE 488 Hardware 2.23 
IEEE 488 Standard 2.9, 3.2 
IEEE 488 Subroutine Control 

Libraries 2.23 
IEEE 488-1975 3.1 
IEEE 488.1 1.2, 2.2, 2.15, 2.16, 

2.31, 3.1, 3.2, 3.3 
IEEE 488.2 1.2, 2.2, 2.11, 2.14, 

2.16, 2.17, 2.23, 2.25, 2.31, 
3.1, 3.2, 3.3, 3.5, 3.6, 7.2, 7.3 

IEEE 802.3 6.1 
IEEE 802.3 10BASE2 

(Cheapemet) 6.3 
IEEE 802.3 10BASE5 6.2 
IEEE 802.3 10BASET 6.3 
IEEE 802.3 CSMA/CD 1.5 
IEEE Bus Address 2.9 
IEEE Bus Handshaking 2.8 
IEEE Standard 802.2 6. 7 
IEEEIN 2.17, 2.22 
IEEEOUT 2.17, 2.22 
IFC (Interface Clear) 2.6, 2.7, 2.9, 

2.10, 2.11, 2.14 
Implied Commands 3.6 

INPUT 2.22 
Institute of Electrical and Electronic 

Engineers 1.1, 3.1 
Intel 1.5, 6.1 
Interlace Mechanical Characteris

tics 4.3 
International Standard Organization 

(ISO) 6.6 
Internet Packet Exchange (IPX) 6. 7 
ISO/IEC 8802-3: 1990 1.5 
Isolator488 2.7, 7.7 

K 

Keithley Instruments 1.2 

L 

LAG (Listen Address Group) 2.10, 
2.12, 2.14, 2.27 

LAG16 2.27 
LAN (Local Area Network) 1.5, 6.1 
LAN488 6.8, 7.3 
LF (Line Feed) 2.28. See also CR LP 
Library488 2.23, 7 .2 
Linear Topology 2.4 
LISTEN 2.27 
Listener 2.15 
LLO (Local Lockout) 2.13 
Lotus 1-2-3 2.18, 2.20, 2.22, 4.18 
Lotus Symphony 2.22 

M 

Mac488B 4.19, 7.4 
MacDA488 7.4 
MacDriver488 7.4 
Macll488 7.4 
Macintosh 1.2, 4.19, 5.2, 5.4, 7.4 
MacSCSI488 5.2, 7.4 
Manchester Encoding 6.4 
MAU (Medium Attachment Unit) 6.2 
MEASURE 3.1 
MessageOutPhase 5.11 
Message-Based-Devices 1.4 
Micro488 7.6 
Micro488/EX 7 .6 
Microsoft 2.25 
Microsoft C 2.23 
Microsoft QuickBASIC 4.18 
MicroVAX3100 7.5 



MLA(MyListenAddress) 2.10, 
2.14 

Modem488 7 .6 
Monitor488 2.26, 7.9 
Motorola 5.16 
MSG 5.6 
MTA (My Talk Address) 2.10, 2.14 
Multidrop 2.6 
Multiline Commands 2.12, 2.13 
Mux/16SC 7.11 
Mux488/16SC 7 .11 
Mux488/64 7.11 

N 

NDAC (Not Data Accepted) 2.6, 
2.7, 2.8 

NeXT 1.2, 1.6, 5.2, 7.5 
Novell NetWare 1.6, 6.7 
NRFD (Not Ready For Data) 2.6, 

2.7, 2.8, 2.29 

0 

OPEN 2.21 
OPEN FOR INPUT 2.22 
OPEN FOR OUTPUT 2.22 
OSI (Open System Interconnect) 6.6 
OUTPUT 2.18, 2.21 

p 

Packed BCD 2.29 
Parallel 1.1 
Parallel Communication 4.1 
Parallel Poll 2.11, 2.14, 2.15 
Parallel488 7.8 
Parity Bit 4.8, 4.9 
Parity Checking 4.9 
Pascal 4.18 
Peer-to-Peer Communications 6.1 
Personal488 2.23, 4.18 
Personal488/2plus 7 .2 
Personal488/ AT 2.27, 7 .2 
PersonaI488/G 7 .3 
Persona1488/0EM-P 2.23, 2.24, 

4.19, 7.2, 7.3 
Personal488/UX 7 .3 
PersonaI488plus 7.2 
Power488 2.23, 4.18, 7.2 
Power488CT 3.7, 3.8 

PPC (Parallel Poll Configure) 2.12, 
2.14 

PPU (Parallel Poll Unconfigure) 2.14 
Precise Talking 2.16 
PRINT 2.22 
Protocol Converters 1.2 

Q 
Quattro 2.18, 2.20, 2.22 

R 

Racal-Dana 1.4 
RANGE 3.1 
READLN 2.20, 2.21 
Register-Based-Devices 1.4 
REN (Remote Enable) 2.6, 2.7, 

2.10, 2.11, 2.14 
REQ (Request) 5.6, 5.7 
Request To Send (RTS) 4.9 
RQS (Request for Service) 2.14 
RS-232 1.2, 1.3, 3.2, 3.3, 4.11 
RS-232-C 4.2, 4.3, 4.4, 4.7, 4.9, 

4.10, 4.11, 4.12, 4.13, 4.15, 
4.16, 4.20 

RS-422 1.3, 3.3 
RS-422-A 4.2, 4.16 
RS-423-A 4.2, 4.16 
RST 5.6 
RTLiM88 7.2 

s 
SASI (Shugart Associates System 

Interface) 5.1 
SB488 7.5 
SBus 7.5 
SCG (Secondary Command 

Group) 2.10, 2.12, 2.14 
SCPI (Standard Commands for 

Programmable Instrumen 1.2, 
3.1, 3.2, 3.3, 3.5, 3.6 

SCPI Command Parameters 3.6 
SCPI Command Tree 3.7 
SCPI Consortium 3.2 
SCPI Mandated Commands 3.3 
SCPT Required Commands 3.4 
SCSI (Small Computer Systems 

Interface) 1.3, 1.4, 5.1, 5.2, 
5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 

5.9, 5.10, 5.11, 5.13, 5.14, 
5.16, 7.5 

SCSI Bus 5.1, 5.11, 5.12, 5.16 
SCSI Bus Lines 5.6 
SCSI Connector 5.4 
SCSI Operation 5.1 l 
SCSI Specification 5.11 
SCSI Standard 5.8 
SCSI-I 5.1, 5.3, 5.4 
SCSl-2 5.1, 5.4, 5.16 
SCSI-to-IEEE 488 1.2 
SCS1488 5.2, 7.6 
SCS1488/D 5.2, 7.5 
SCS1488/N 5.2, 7.5 
SCSI488/S 5.2, 7.5 
Secondary Commands 2.12 
SEL (Select) 5.6, 5.9 
SENSE 3.6 
SEQUENCE ERROR 2.19 
Sequenced Packet Exchange 

(SPX) 6.7 
Serial Communication 4.1, 4.17 
Serial Communication Stan-

dards 4.16 
Serial Poll 2.11, 2.14, 2.15 
Serial488/4 4.19 
Serial488A 4.19 
Single-Ended Mode 5.5 
Slow Handshake Mode 2.28 
Small Computer Systems 

Interface. See SCSI 
SPD (Serial Poll Disable) 2.14 
SPE (Serial Poll Enable) 2.13, 2.26 
SPOLL (Serial Poll) 2.18, 2.21 
Spreadsheets 2.20, 2.21 
SRQ (Service Request) 2.6, 2.11, 

2.15, 2.30, 2.31, 4.19 
Start Bit 4.7 
Status Byte 2.16 
Stop Bit 4.7, 4.8 
Subroutine Calls 2.23 
Subroutine Library 2.17, 2.23 
Sun 1.2, 1.6, 5.2, 5.4, 5.16, 7.5 
Sun SPARCstation 7.5 
Sun-3 7.5 
Sun-4 7.5 
SuperScope 7.4 
Synchronous Handshake Process 5.7 
Syslem Controller 2.10, 2.11, 2.15 



T 

TAG(TalkAddressGroup) 2.10, 
2.12, 2.14, 2.26 

TALK 2.27 
Talker 2.7, 2.15 
TCP/IP 1.6, 6.7 
Tektronix 1.2, I .4 
Terminators 2.28 
TMSL (Test & Measurement Systems 

Language) 1.2 
Transmission Protocols 4.1 
TRIGGER 2.21 
TRIGGER ON GET 2.28 
TRIGGER ON TALK 2.28 
Tristate Drivers 2.7 
TSR (Terminate and Stay Resi-

dent) 2.17, 2.23, 2.25 
TTL 2.15 
Turbo Pascal 2.22 
Twisted-pair 1.6 

u 
UCG (Universal Command 

Group) 2.12, 2.13 
Uniline Commands 2.9, 2.10 
UN1X 1.6, 7.5 
UNL (Unlisten) 2.12 
UNT(Untalk) 2.12 

V 

VME bus 1.2, 1.4 
VMS 7.5 
VXI 1.2, 1.4, 1.5 
VXIbus 1.4, 3.2 

w 
Wavetek 1.4 
Windows 2.25 
Windows 3.0 2.25 
WRITELN 2.20, 2.21, 2.22 

X 

XENIX 7.3 
Xerox Corporation 1.5, 6.1 



lOtech 
CATALOG OFFER 

To obtain a free copy of IOtech's 
latest catalog, please complete 
and mail this card; for immediate 
action, fax it to (216) 439-4093 
or call (216) 439-4091. > 

lOtech 
INSTRUMENT 

COMMUN/CATION 
HANDBOOK 

OFFER 

To obtain a free copy of IOtech's 
Instrument Communication Hand
book for a friend or co-worker, 
have him or her fill out the at
tached card and fax it to a local 
IOtech representative. > 

Please completely fill out this card to receive IOtech's latest catalog 0, or have a friend or co-worker fill it 
out to obtain a free copy of the lnstn,ment Communication Handbook 0. 

mE OF FACILITY: PRODUCT INTERESTS: JOB FUNCTION: 
O Education/university O Manager 
D Research A) IEEE 488 Products D Engineer 
0 Test/measurement equipment D Scientist 

manufacturing D IEEE 488 instrument control a Technician 
O VAR/system integrator D Sertal/lEEE 488 D Professor/instructor 
O Component manufacturing converters/controllers D Student 
D Aerospace/defense a Data Acquisition Instruments 0 Graduate student 
D Utility 0 Signal conditioning D Purchaser 
D Computer/pertpheral D Graphic and analysis software D Other: 

manufacturing D UNIX IEEE 488 support 
0 Communications D IEEE 488 extenders, expanders, MY COMPUTER IS: 
0 Industrial controls manufacturing and buffers 0 IBM PC or compatible 
D Chemiral/petroleum processing D IEEE 488 bus analyzer D IBM PS/2 or compatible 
0 Hospitals D IEEE 488 plotter/prtoter interfacing D Macintosh 
D Medical equipment/services D Other: IJ Sun 
D Automotive/parts manufacturing D DEC 
D Consumer electronics B) Other Products: D NeXT 

manufacturing D HP 
D Other: D DMMs D Other 

D Oscilloscopes 
D Authorized for GSA contract D RF equipment 

D Switches PRODUCTS IN USE: 
D VXI equipment We now use IOtech model(s): 

DEPARTMENT: D Waveform generators 
D Research D Data acquisition plug-in boards 
D Design/development D Power supplies 
O Calibration lab/instrument pool D Temperature instruments 
D Production/test D Other: 
D Component test 
D Field service, installation 
D Quality assurance/control IN MY WORK, I: 
D Purchasing MY NEED IS: D Design 
D Education IJ Immediate O Purchase 

(chemistry, engineering, etc.) O Future reference D Specify 
D Other: IJ 6 months D Use 

MY APPLICATION IS: 

Please complete this information or tape your business card to this side 

Name _______________ _ 

Company _____________ _ 

Address. ______________ _ 

City/State/ZIP __________ _ 

Telephone L____), ________ _ 
Fax {______) ___________ _ 

Country _____________ _ 



fold here" 

111111 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT #4417 CLEVELAND, OH 

POSTAGE WILL BE PAID BY ADDRESSEE 

lOtech 
PO BOX 391345 
CLEVELAND OH 44139-9846 

l,l,,l,l,,l,,,ll,,ll,l,1,,l,l .. l .. l,,l,,l,ll,,,,1,11 

fold here,. 

------+-

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STA TES 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 






