
_-:: -----".
j·o,~

t .

I

I
~ ..

l ©Intel Corp. 1974, 1975, 1976

tJ. ZoL-NElro vIC fl

98-004C Rev. C

'vJ. Z. o_L-NERo_y IC fl

l

.. ~
il (0'
!I
II
!I

!I
I!
" tl .,
!;

1
:. l

i!
:!

. l

I

-- _j

-U

(_)

-,.,

u

l

··; t:/

This manual describes the assembly language format, and how to write assembly language

programs for the lntef!>8080 microprocessor. Detailed information on the operation of

specific assemblers is available in the Operator's Manual and Installation Guide fqr: each
. . -.. . ' '

specific assembler. '

.,,
'·

98-004C Rev. C

------ ··-- -~

TERMS

Address

Bit

Byte

Instruction

Object Program

Program

Source Program

System Program

User Program

Word

nnnnB

nnnnD

nnnnO

nnnnO

nnnnH

DESCRIPTION

A 16-bit number assigned to a memory location corresponding to its sequen­
tial position.

The smallest unit of information which can be represented. (A bit may be in
one of two states, represented by the binary digits 0 or 1).

A group of 8 contiguous bits occupying a single memory location.

The· smallest single operation that the computer can be directed to execute.

A program which can be loaded directly into the computer's memory and
which requires no alteration before execution. An object program is usually

on paper tape, and is produced by assembling (or compiling) a source pro­

gram. Instructions are represented by binary machine code in an object
program.

A sequence of instructions which, taken as a group, allow the computer to
accomplish a desired task.

A program which is readable by a programmer but which must be transformed

into object program format before it can be loaded into the computer and

executed. Instructions in an assembly language source program. are represented
by their assembly language mnemonic.

A program written to help in the process of creating user programs.

A program written by the user to make the computer perform any desired task.

A group of 16 contiguous bits occupying two successive memory locations.

nnnn repr-esents a number in binary format.

nnnn represents a number in decimal format.

nnnn repres":!nts a number in octal format.

nnnn represents a number in octal format.

nnnn represents a number in hexadecimal format.

A representation of a byte in memory. Bits which are fixed as 0 or 1 are in­

dicated by 0 or 1; bits which may be either 0 or 1 in different circumstances
are represented by letters; thus rp represents a three-bit field which contains
one of the eight possible combinations of zeroes and ones.

ii

0

(_)

I
h___.

INTRODUCTION

CHAPTER 1
COMPUTER ORGANIZATION

WORKING REGISTERS
MEMORY
PROGRAM COUNTER
STACK POINTER
INPUT /OUTPUT
COMPUTER PROGRAM REPRESENTATION

·IN MEMORY
MEMORY ADDRESSING

Direct Addressing
Register Pair Addressing
Stack Pointer Addressing
Immediate Addressing
Subroutines and Use of the Stack
for Addressing

CONDITION BITS
Carry Bit
Auxiliary Carry Bit
Sign Bit
Zero Bit
Parity Bit

CHAPTER 2
JHE 8080 INSTRUCTION SET
;

ASSEMBLY LANGUAGE
How Assembly Language is Used
Statement Syntax
Label Field

Code Field
Operand Field
Comment Field

TWO'S COMPLEMENT REPRESENTATION

OF DATA
DATA STATEMENTS

DB Define Byte(s) of Data
DW Define Word (Two Bytes) of Data
DS Define Storage (Bytes)

CARRY BIT INSTRUCTIONS
STC Set Carry

v

1

2
2
2
2

2
3
3
3
3
4

4
5
5
6
6

.6
6

7
7

7
8
8
9
9
12
12

13
13
14
14
14
14

iii

Z OLNEtroti-IC f/

n·

CMC Complement Carry
SINGLE REGISTER INSTRUCTIONS

IN R Increment Register or Memory
OCR Decrement Register or Memory
CMA Complement Accumulator
DAA Decimal Adjust Accumulator

NOP INSTRUCTION
DATA TRANSFER INSTRUCTIONS

MOV Instruction
ST AX Store Accumulator
LDAX Load Accumulator

REGISTER OR MEMORY TO ACCUMULATOR

INSTRUCTIONS
ADD Add Register or Memory to Accumulator
ADC Add Register or' Memory to Accumulator
With Carry

SUB Subtract Register or Memory
From Accumulator
SBB Subtract Register or Memory Fr·om
Accumulator With Borrow
ANA Logical And Register or Memory

With Accumulator
XRA Logical Exclusive-Or Register or Memory
With Accumulator (Zero Accumulator)
ORA Logical Or Register Or Memory With
Accumulator
CMP Compare Register or Memory With
Accumulator

ROTATE ACCUMULATOR INSTRUCTIONS
R LC Rotate Accumulator Left
ARC Rotate Accumulator Right
RAL Rotate Accumulator Left Through Carry
RAR Rotate Accumulator Right Thr.ough Carry

REGISTER PAIR INSTRUCTIONS :,
PUSH Push Data Onto Stack
POP Pop Data Off Stack
DAD Double Add
INX Increment Register 'Pair
DCX Decrement Register Pair

14
14
15

15

15
15
16
16
16
17
17

17
17

18

18

19

19

19

20

20

21
21
21
22
22

22
22
23
24
24
24

Rev. C

II
XCHG Exchange Registers 24 HL T HALT INSTRUCTION 39
XTH L Exchange Stack 25 PSEUDO-INSTRUCTIONS 39
SPH L Load SP From H and L 25 ORG Origin 39

IMMEDIATE INSTRUCTIONS 25 EOU Equate 40
LXI Load Register Pair Immediate 26 SET 40 u MVI Move Immediate Data 26 END End of Assembly 41
ADI Add Immediate to Accumulator 27 IF AND ENOl F Conditional Assembly 41
ACI Add Immediate to Accumulator With Carry 27 MACRO AND ENDM Macro Definition 41
SUI Subtract Immediate From Accumulator 27 TITLE Page Title 41
SBI Subtract Immediate From Accumulator

CHAPTER 3
With Borrow 28

PROGRAMMING WITH MACROS 43
ANI And Immediate With Accumulator 28
XRI Exclusive-Or Immediate With Accumulator 29

WHAT ARE MACROS? 43
MACRO TERMS AND USE 44

ORI Or Immediate With Accumulator 29
Macro Definition 44

CPI Compare Immediate With Accumulator 29
Macro Reference or Call 45

DIRECT ADDRESSING INSTRUCTIONS 30
Macro Expansion 45

STA Store Accumulator Direct 30
LOA Load Accumulator Direct 30

Scope of Labels and Names Within Macros 46

SHLD Store Hand L Direct 30
Macro Parameter Substitution 46

REASONS FOR USING MACROS 47
LHLD Load Hand L Direct 31

USEFUL MACROS 47
JUMP INSTRUCTIONS 31

PCHL Load Program Counter 31
Load Indirect Macro 47

JMP Jump 32
Other Indirect Addressing Macros 48

JC Jump If Carry 32
Create Indexed Address Macro 48

JNC Jump If No Carry 32 CHAPTER 4

JZ Jump If Zero 32 PROGRAMMING TECHNIQUES 49

JNZ Jump If Not Zero 33 BRANCH TABLES PSEUDO-SUBROUTINE 49

JM Jump If Minus 33 SUBROUTINES 50

JP Jump If Positive 33 Transferring Data to Subroutines 51

JPE Jump If Parity Even 33 SOFTWARE MULTIPLY AND DIVIDE 53

JPO Jump If Parity Odd 33 MULTIBYTE ADDITION AND SUBTRACTION 55 u CALL SUBROUTINE INSTRUCTIONS 34 DECIMAL ADDITION 56

CALL Call 34 DECIMAL SUBTRACTION 57

cc Call If Carry 34 ALTERING MACRO EXPANSIONS 58

CNC Call If No Carry 34 CHAPTER 5
cz Call If Zero 35 INTERRUPTS 59
CNZ Call If Not Zero 35 WRITING INTERRUPT SUBROUTINES 60
CM Call If Minus 35 APPENDIX A
CP Call If Plus 35 INSTRUCTION SUMMARY VI
CPE Call If Parity Even 35
CPO Call If Parity Odd 35 APPENDIX B

RETURN FROM SUB,ROUTINE INSTRUCTIONS 35 INSTRUCTION EXECUTION TIMES, BIT

RET Return 36 PATTERNS, AND OPERATION CODES XVI

RC Return If Carry 36 APPENDIX C
RNC Return If No Carry 36 ASCII TABLE XX
RZ Return If Zero 36

APPENDIX D
RNZ Return If Not Zero 36

BINARY-DECIMAL-HEXADECIMAL
RM Return If Minus 37

CONVERSION TABLES
RP Return If Plus 37 XXII

APE Ret~rn If Parity Even 37
RPO Return If Parity Odd 37

RST INSTRUCTION 37 LIST OF FIGURES
INTERRUPT FLIP-FLOP INSTRUCTIONS 38

El Enable Interrupts 38 Automatic Advance of the Program

01 0 isable Interrupts 38 Counter as Instructions are Executed 2
INPUT/OUTPUT INSTRUCTIONS 38 Assembler Program Converts Assembly .\J IN Input 38 Language Source Program to Hexadecimal

OUT Output 39 Object Program 8

iv Rev. C

u

u

u
'·
·~·· '.
I

This manual has been written to help the reader pro-
®

gram the INTE[8080 microcomputer in assembly language.

Accordingly: this manual assumes that the reader has a good
understanding of logic, but may be completely unfamiliar
with programming concepts.

For those readers who do understand programming

concepts, several features of the INTEL 8080 microcom­
puter are described below. They include:

• 8-bit parallel CPU on a single chip

• 78 instructions, including extensive memory refer­
encing, flexible jump-on-condition capability, and
binary and decimal arithmetic modes

• Direct addressing for 65,536 bytes of memory

• Fully programmable stacks, allowing unlimited

v

subroutine nesting and full interrupt handling
capability

• Seven 8-bit registers

There are two ways in which programs for the 8080
may be assembled; either via the resident assembler or the

cross assembler. The resident assembler is one of several sys­

tem programs available to the user which run on the 8080.
The cross assembler runs on any computer having a FOR­

TRAN compiler whose word size is 32 bits or greater, and
generates programs which run on the 8080.

The experienced programmer should note that the

assembly language has a macro capability which allows users
to tailor the assembly language to individual needs.

I l ·t
I
I
I

0

(_j

~-)

u

()

l

This section provides the programmer with a func­

tional overview of the 8080. Information is presented in this

section at a level that provides a programmer with necessary
background in order to write efficient programs.

To the programmer, the computer is represented as
consisting of the following parts:

(1 l Seven working registers in which all data operations
occur, and which provide one means for addressing

memory.

(2) Memory, which may hold program instructions or data
and which must be addressed location by location in
order to access stored information.

(3) The program counter, whose contents indicate the

next program instruction to be executed.

(4) The stack pointer, a register which enables various

portions of memory to be used as stacks. These in
turn facilitate execution of subroutines and handling

of interrupts as described later.

(5) Input/Output, which is the interface between a pro­

gram and the outside world.

WORKING REGISTERS

The 8080 provides the programmer with an 8-bit ac­

cumulator and six additional 8-bit "scratchpad" registers.

These seven working registers are numbered and ref­

erenced via the integers 0, 1, 2, 3, 4, 5, and 7; by convention,

these registers may also be accessed via the letters B, C, D,
E, H, L, and A (for the accumulator), respectively.

Some 8080 operations reference the working registers
in pairs referenced by the letters B, D, Hand PSIN. These

correspondences are shown as follows:

Register Pair

B
D
H

PSW

Registers Referenced

Band C (0 and 1)
D and E (2 and 3)
H and L (4 and 5)

A and Flags (see below)

Register pair PSW (Program Status Word) refers to register
A (7) and a special byte which reflects the current status of

the machine flags. This byte is described in detail in

Chapter 2.

MEMORY

The 8080 can be used with read only memory, pro­
gramm<!ble read only memory and read/write memory. A
program can cause data to be read from any type of memory,
but can only cause data to be written' into read/write

memory.

The programmer visualizes memory as a sequence of

bytes, each of which may store 8 bits (represented by two
hexadecimal digits). Up to 65,536 bytes of· memory may be

Rev. C

present, and an individual memory byte is addressed by its
sequential number from 0 to 65,535D=FFFFH, the largest
number which can be represented by 16 bits.

The bits stored in a memory byte may represent the

encoded form of an instruction or may be data, as described
in Chapter 2 in the section on Data Statements.

PROGRAM COUNTER

The program counter is a 16 bit register which is ac·
cessible to the programmer and whose contents indicate the

address of the next instruction to be executed as described
in this chapter under Computer Program Representation in
Memory.

STACK POINTER

A stack is an area of memory set aside by the pro­
grammer in which data or addresses are stored and retrieved
by stack operations. Stack operations are performed by
several of the 8080 instructions, and facilitate execution of
subroutines and handling of program interrupts. The pro­
grammer specifies which addresses the stack operations will

operate upon via a special accessible 16-bit register called
the stack pointer.

INPUT/OUTPUT

To the 8080, the outside world consists of up to 256
input devices and 256 output devices. Each device commu­

nicates with the 8080 via data bytes sent to or received

from the accumulator, and each device is assigned a number
from 0 to 255 which is not under control of the programmer.

The instructions which perform these data transmissions are

described in Chapter 2 under Input/Output Instructions.

COMPUTER .PROGRAM REPRESENTATION
IN MEMORY

A computer program consists of a sequence of instruc­
tions. Each instruction enables an elementary operation such

as the movement of a data byte, an arithmetic or logical
operation on a data byte, or a change in instruction execu­

tion sequence. Instructions are described individually in
Chapter 2.

A program will be stored in memory as a sequence of
bits which represent the instructions of the program, and
which we will represent via hexadecimal digits. The memory
address of the next instruction to be executed ·is held in the
program counter. Just before each instruction is executed,
the program counter is advanced to the address of the next
sequential instruction. Program execution proceeds sequen­

tially unless a transfer-of-control instruction (jump, call, or
return) is executed, which causes the program counter to be

set to a specified address. Execution then continues sequen­
tially from this new address in memory.

Upon examining the contents of a memory byte, there
is no way of telling whether the byte contains an encoded

instruction or data. For example, the hexadecimal code 1 FH

2

has been selected to represent the instruction RAR (rotate

the contents of the accumulator right through carry); thus,

the value 1 FH stored in a memory byte could either repre,­

sent the instruction RAR, or it could represent the data

value 1 FH. It is up to the logic of a program to insure that

data is not misinterpreted as an instruction code, but this is

simply done as follows:

Every program has a starting memory address, which
is the memory address of the byte holding the first instruc­

tion to be executed. Before the first instruction is executed,
the program counter will automatically be advanced to ad­

dress the next instruction to be executed, and this procedure
will be repeated for every instruction in the program. 8080

instructions may require 1, 2, or 3 bytes to encode an in­

struction; ·in each case the program counter is automatically

advanced to the start of the next instruction, as illustrated
inFigure1-1.

Memory Instruction Program Counter

Address Number Contents

0212 0213

0213 j 2
0215

0214

0215 3 0216

0216

}
0219

0217 4

0218
0219 5 021A

021A

I,
6 021C

0218
021 F

021C

0210 7

021E

021F 8 0220

0220 9 0221

0221 10 0222

Figure 1-1. Automatic Advance of the Program Counter

as Instructions Are Executed

In order to avoid errors, the programmer must be sure

that a data byte does not follow a'n instruction when another

instruction is expected. Referring to Figure 1-1, an instruc­
tion is expected in byte 021 FH, since instruction 8 is to be
executed after instruction 7. If byte 021 FH held data, th

1e
program would not execute correctly. Therefore, when
writing a program, do not store data in between adjac·ent

instructions that are to be executed consecutively.

NOTE: If a program stores data into a location, that loca­

tion should not normally appear among any pr9:
gram instructions. This is because user programs
are (normally) executed from read-only memory,

into which data cannot be stored.

A class of instructions (referred to as transfer-of-co~­
trol instructions) c~use program execution to branch to an
instruction that may be anywhere in memory. The memory

. '

Rev. C

0

r-·

\)

()

0

0

address specified by the transfer of control instruction must
be the address of another instruction; if it is~ the address of a
memory byte holding data, the program will not execute
correctly. For example, referring to Figure 1-1, say instruc·
tion 4 specifies a jump to memory byte 021 FH, and say
instructions 5, 6, and 7 are replaced by data; then following
execution of instruction 4, the program would execute cor·
rectly. But if, in error, instruction 4 specifies a jump to
memory byte 021 EH, an error would result, since this byte
now holds data. Even if instructions 5, 6, and 7 were not
replaced by data, a jump to memory byte 021 EH would
cause an error, since this is not the first byte of the
instruction.

Upon reading Chapter 2, you will see that it is easy to
avoid writing an assembly language program with jump in·
stru'ctions that have erroneous memory addresses. lnforma·
tion on this subject is given rather to help the programmer
who is debugging programs by entering hexadecimal codes
directly into memory.

MEMORY ADDRESSING

By now it will have become apparent that addressing
specific memory bytes constitutes an important part of any
computer program; there are a number of ways in which this
can be done, as described in the following subsections.

Direct Addressing·

With direct addressing, an instruction sup pi ies an exact
memory address.

The instruction:

"Load the contents of memory address 1 F2A into
the accumulator"

is an example of an instruction using direct addressing, 1 F2A
being the direct address.

This would appear in memory as follows:

Memory Address Memory

any

any+ 1

any+ 2

instruction
being executed

The instruction occupies three memory bytes, the
second and third of which hold the direct address.

Register ~air Addressing

·A memory address may be specified by the contents
of a register pair. For almost all 8080 instructions, the H and
L registers must be used. The H register contains the most
significant 8 bits of the referenced address, and the L register
contains the least significant 8 bits. A one byte instruction

3

which will load the accumulator with the contents of mem·
ory byte 1 F2A would appear as follows:

Memory

Instruction
7E being executed ~

f----1

Registers

i

''

!

I
·1 F
I

"2A

I

B

c

D

E

H

L

A

In addition, there are two 8080 instructions which
use either the B and C registers or the D and E registers to
address memory. As above, the first register of the pair holds
the most significant 8 bits of the address, while the second
register holds the least significant 8 bits. These instructions,
STAX and LDAX, are described in Chapter 2 under Data
Transfer Instructions.

Stack Pointer Addressing

Memory locations may be addressee via the 16-bit
stack pointer register, as described below.

There are only two stack operations which may be
performed; putting data into a stack is called a push, while
retrieving data from a stack is called a pop. ·

NOTE: In order for stack push operations to operate,
stacks must be located in read/write memory.

STACK PUSH OPERATION

16 bits of data are transferred to 'a memory area
(called a stack) from a register pair or the 16 bit program
counter during any stack push operation. The addresses of
the memory area which is to be accessed during a stack push
operation are determined by using the stack pointer as
follows:

(1) The most significant 8 bits of data are stored at the
memory address one less than the contents ·of the
stack pointer.

(2) The least significant 8 bits of data are stored at the
memory address two less than the contents of the
stack pointer.

(3) The stack pointer is automatically decremented by
two.

For example, suppose that the stack pointer contains
the address 13A6H, register B contains 6AH, and register C
contains 30H. Then a stack push of register pair B would
operate as follows:

Before Push Memory Address After Push

13A3

13A4 +- SP

13A5

SP ~ 13A6

B c B c

0 0 0 0

STACK POP OPERATION

16 bits of data are transferred from a memory area
(called a stack) to a register pair or the 16-bit program
counter during any stack pop operation. The addresses of
the memory area which is to be .accessed during a stack pop
operation are determined by using the stack pointer as
follows:

(1) The second r.egister of the pair, or the least significant
8 bits of the program counter, are loaded from the
memory address held in the stack pointer.

(2) The first register of the pair .. or the most significant
8 bits of the program counter, are loaded from the
memory address one greater than the address held in
the stack pointer.

(3) The stack pointer is automatically incremented by
two.

For example, suppose that the stack pointer contains
the address 1508H, memory location 1508H contains 33H,
and memory location 1509H contains OBH. Then a stack
pop into register pair H would operate as follows:

_4

I
I

Before Pop Memory Address After Pop

-
1507 FF

-
SP -+ 1508 33

-
1509 OB

----:-
150A FF +- SP

----:-

H l H l

EJ 0 0 0
'I

The programmer loads the stack pointer with any 9e-
sired value by using the LXI instruction· described in Chap~er
2 under load Register Pair-Immediate. The programmer
must initialize the stack pointer before performing a stack
operation, or erroneous results will occur.

Immediate Addressing

An immediate instruction· is one -that,contains data.
The following is an example of immediate addressing:

"load the accumulator with the value 2AH." ..

The above instruction would be coded in memory as
follows:

_Memory

. '

+- load accumulator immediate

+- Value to be lo.aded into accumulator

Immediate _instructions do not reference memory;
rather they contain data in the m_e(Tiory byte following the
instruction code byte.

Subroutines and Use of the Stack for Addressing

Before understanding the purpose or effectiveness _of
the stack, it is necessary to understand the concept of: a
subroutine.

Consider a frequently used operation such as mufti­
plication. The 8080 provides instructions to add one byte
of data to another byte of data, but what if you wish l~o
multiply these numbers? This will require a number of in­
structions to be executed in sequence. It is quite possiole
that this routine may be required many times within one
program; to repeat the identical code every time it is need~d
is possible, but very wasteful-of memory:

Rev. B

0

..--
/ \

_)

I

I

u

-----------------------------~---------~.,.-..,..,.,.~.,\~~

Program

Routine
I
1 Program

Routine

Program

Routine

etc

A more efficient means of accessing the routine would
be to store it once, and find a way of accessing it when
needed:

Program

-~--Program
Routine _ _,f---~

Program I
A frequently accessed routine such as the above is

called a subroutine, and the 8080 provides instructions that
call and return from subroutines.

When a subr·outine is executed, the sequence of events
may be depicted as follows:

Main Program

Call instruction-.....__

--......_ Subroutine

Next instruction -------
-1-

The arrows indicate the execution sequence.

When the "Call" instruction is executed, the address
of the "next" instruction (that is, the address held in the
program counter). is pushed onto the stack, and the sub­
routine is executed. The last executed instruction of a sub­
routine will usually be a "Return Instruction," which pops
an address off the stack into the program counter, and thus
causes program execution to continue at the "Next" in­
struction as illustrated below:

5

Memory
Address

OC02
OC03
OC04
OC05
OC06

OFOO
OF01
OF02

OF03

OF4E
OF4F

Instruction

CALL SUBROUTINE
02
OF
NEXT INSTRUCTION

FIRST SUBROUTINE
INSTRUCTION +-

Body of subroutine

RETURN

Push address of
next instruction
(OC06H) onto
the stack and
branch to
subroutine
starting at
OF02H

Pop r~turn address
(OC06H) off
stack imd return
to next instruction

Subroutines may be nested up to any depth limited
only by the amount of memory available fo'r the stack. For
example, the first subroutine could itself call some other
subroutine and so on. An examination of the sequence of
stack pushes and pops will show that the return path will
always be identical to the call path, even if the same sub·
routine is called at more than one level.

CONDITION BITS

Five condition (<?r status) bits are provided by the
8080 to reflect the results of data operations. All but one
of these bits (the auxiliary carry bit) may be tested by pro­
gram instructions which affect subsequent program execu·
tion. The descriptions of individual instructions in Chapter
2 specify which condition bits are affected by the execution
of the instruction, and whether the execution of the in­
struction is dependent in any way on prior status of con­
dition bits.

In the following discussion of condition bits, "setting"
a bit causes its value to be 1, while "resetting" a bit causes
its value to be 0.

Carry Bit

The Carry bit is set and reset by cert,ain data opera­
tions, and its status can be directly tested by a program.
The operations which affect the Carry bit are addition, sub­
traction, rotate, and logical operations. For example, ad­
dition of two one-byte numbers can produce a carry out of
the high-order bit:

Bit No. 7 6 5 4 3 2 0

AE= 1 0 0 1 1 0
+ 74= 0 1 1 0 1 0 0

122[0 0 0 0 0 1 0

carry-out = 1, sets Carry Bit = 1

Rev. C

An addition operation that results in a carry out of

the high-order bit will set the Carry bit; an addition opera­

tion that could have resulted in a carry out but did not will
reset the Carry bit.

NOTE: Addition, subtraction, rotate, and logical opera­
tions follow different rules for setting and resetting
the Carry bit. See Chapter 2 under Two's Comple­

ment Representation and the individual instruction
descriptions in Chapter 2 for details. The 8080

instructions which use the addition operation are

ADD, ADC, AD I, ACI, and DAD. The instructions
which use the subtraction operation are SUB, SBB,

SUI, SBI, CMP, and CPl. Rotate operations are

RAL, RAR, RLC, and RRC. Logical operations
are ANA, ORA, XRA, ANI, OR I, and XRI.

Auxiliary Carry Bit

The Auxiliary Carry bit indicates carry out of bit 3.
The state of the Auxiliary Carry bit cannot be directly tested
by a program instruction and is present only to enable one

. instruction (DAA, described in Chapter 2) to perform its

function. The following addition will reset the Carry bit and

set the Auxiliary Carry bit:

Bit No. 7 6 5 4 3 2 0

2E= 0 0 0 1 1 0

+ 74= o 1 1 o 1 o o·
A2 ---o-~o=--o:........,o...........::'----C..o

Lcarry=O L Auxiliary Carr'y=1

The Auxiliary Carry bit will be affected by all ad­
dition, subtraction, increment, decrement, and compare
instructions.

6

Sign Bit

As described in Chapter 2 under Two's Complement
Representation, it is possible to treat a byte of data as having
the numerical range -128 10 to +127 10 . In this case, by

1
--..... ,

·convention, the 7 bit will always represent the sign of the \.._.)

number; that is, if the 7 bit is 1, the number is in the range
-128 10 to -1. If bit 7 is 0, the number isintherangeOto

+12710·

At the conclusion of certain instructions (as specified
in the instruction description sections of Chapter 2}, the

Sign bit will be set to the condition of the most significant
bit of the answer (bit 7).

Zero Bit

This condition bit is set if the result generated by the
execution of certain instructions is zero. The Zero bit is

reset if the result is not zero.

A result that has a carry but a zero answer byte, as
illustrated below, will also set the Zero bit:

Bit No. 7 6 5 4 3 2 0

1 0 1 0 0 1 1
+ 0 1 0 1 1 0 0 1

]] 0 0 0 0 0 0 0 0
J

Zero answer Carry ouy
of bit 7.

Zero bit set to 1.

Parity Bit

Byte "parity" is checked after certain operations. The

number of 1 bits in a byte are counted, and if the total is

odd, "odd" parity is flagged; if the total is even, "even"
parity is flagged.

The Parity bit is set to for even parity, and is reset
to 0 for odd parity.

Rev. B

G

(j

0

This section describes the 8080 assembly language
instruction set.

For the reader who understands assembly language
pro'gramming, Appendix A provides a complete summary
of the 8080 instructions.

For the reader who is not completely familiar with
assembly language, Chapter 2 describes individual" instruc­
tions with examples and machine code equivalents.

ASSEMBLY LANGUAGE
How Assembly Language is Used

Upon. examining the contents of computer memory,
a program would appear as a sequence of hexadecimal digits,
which are interpreted by the CPU as instruction codes, ad­
dresses, or data. It is possible to write a program as a se­
quence of digits (just as they appear in memory), but that
is slow and expensive. For example, many instructions

L, ' • '

reference .memory to address either a data byte or another
ins~ruction:

Hexadecimal
Memory Address

1432
1433
1434
1435
1436

14C3
14C4
14C5
14C6

7

Assuming that registers H and L contain 14H and
C3H respectively, the program operates as follows:

Byte 1432 specifies that the accumulator is to be
loaded with the contents of byte 14C3.

Bytes 1433 through .1435 specify tha! execution is to
continue with the instruction starting at byte 14C4.

Bytes 14C4 and 14C5 specify that the L register is to
be loaded with the number 36H.

Byte 14C6 specifies that the contents of the accumu­
lator are to be stored in byte 1436.

Now suppose that an error discovered in the program
logic necessitates placing an extra instruction after byte
1432. Program code would have to change as follows:

Hexadecimal
Memory Address

1432
1433
1434
1435
1436
1437
14C3
14C4
14C5
14C6
14C7

Old Code

7E

C3
C4
14 .
.

FF
2E
36
77

New Code

tJd
New Instruction

C3
C5
14 .
.

FF
2E
37
77'

Most instructions have been moved and as a result
many must be changed to reflect the new memory ad­
dresses of instructions or data. The potential for making
mistakes is very high and is aggravated by the complete un­
readability of the program.

Writing programs in assembly language is the first and
most significant step towards economical programming; it

provides a readable notation for instructions, and separates
the programmer from a need to know or specify •bsolute
memory addresses.

Assembly language programs are written as a sequence
of instructions which are converted to executable hexadeci·
mal code by a special program called an ASSEMBLER. Use

of the 8080 assembler is described in its operator's man­
ual.

Assembly
language
program
written by
programmer

SOURCE
PROGRAM

ASSEMBLER
PROGRAM ~

Executable
machine
code

OBJECT
PROGRAM

Figure 2-1. Assembler Program Converts Assembly
Language Source Program to Object Program

As illustrated in Figure 2-1, the assembly language
program generated by a programmer is called a SOURCE
PROGRAM. The assembler converts the SOURCE PRO­
GRAM into an equivalent OBJECT PROGRAM, which con·

sists of a sequence of binary codes that can be loaded into
memory and executed.

For example:

Source Program

NOW: MOV A,B
CPI
JZ

'C' ~ is converted
LER by the

Assembler

LER: MOV M,A to

One Possible
Version of the
Object Program

78

~ FE43
CA7C3D

77

NOTE: In this and subsequent examples, it is not necessary
to understand the operations of the individual in­
structions. They are presented only to illustrate
typical assembly language statements. Individual
instructions are described later in this chapter.

Now if a new instruction must be added, only one
change is required. Even the reader who is not yet familiar
with assembly language will see how simple the addition is:

NOW: MOV A,B
(New instruction inserted here)

CPI 'C'

JZ LER

LER MOV M,A

L_ __ _
8

The assembler takes care of the fact that a new in·
struction will shift the rest of the program in memory.

Statement Syntax
Assembly language instructions must adhere to a fix:ed

set of rules as described in this section. An instruction has
four separate and distinct parts or fields.

Field 1 is the LABEL field. It is a name used to

reference the instruction's address.

Field 2 is the CODE field. It specifies the operation

that is to be performed.

Field 3 is the OPERAND field. It provides any ad·
dress or data information needed by the CODE field.

Field 4 is the COMMENT field. It is present for the
programmer's convenience and is ignored by the assembler.

The programmer uses comment fields to describe the ope,ra·
tion and thus make the program more readable.

The assembler uses free fields; that is, any number of
blanks may separate fields.

Before describing each field in detail, here are some
general examples:

Label Code Operand

HERE: MVI c.o ; Load the C register with o·
THERE: DB 3AH ; Create a.one-byte data

; constant

LOOP: ADD E ; Add contents of E register·

to the accumulator

RLC ; Rotate the accumulator left

NOTE: These examples and the ones which follow are in­
tended to illustrate how the various fields appear
in complete assembly language statements. It is not
necessary at this point to understand the operations
which the statements perform.

Label Field

This is an optional field, which, if present, may be

from 1 to 5 characters long. The first character of the label
must be a letter of the alphabet or one of the special
characters@ (at sign) or ? (question mark). A colon (:) must
follow the last character. (The opera~ion codes, pseudo·
instruction names, and register names are specially defined
within the assembler and may not be used as labels. Opera·
tion codes and pseudo-instructions are given later in this
chapter and Appendix A.

Here are some examples of valid label fields:

LABEL:

F14F:

@HERE:

?ZERO:

0

0

0

(j

lu

Here are some invalid label fields:

123: begins with a decimal digit

LABEL is not followed by a colon

ADD: is an operation code

END: is a pseudo-instruction

The following label has more than five characters;
only the first five will be recognized:

INSTRUCTION: will be read as INSTR:

Since labels serve as instruction addresses, they cannot
be duplicated. For example, the sequence:

HERE: JMP THERE

THERE: MOV C,D

THERE: CALL SUB

is ambiguous; the. assel"(lbler cannot determine which ad·
dress is to be referenced by the JMP instruction.

One instruction may have more than one label, how·
ever. The folloWing sequence is valid:

LOOP1: ; First label

LOOP2: MOV C,D ; Second label

JMP LOOP1

JMP LOOP2

Each JMP instruction will cause program control to
be transferred to the same MOV instruction.

Code Field

This field contains a code which identifies the ma·

chine operation (add, subtract, jump, etc.) to be performed:

h~nce the term operation code or op code. The instructions
described later in this chapter are each identified by a
mnemonic label which must appear in ·the code field. For

example, since the "jump" instruction is identified by the

letters "JMP," these letters must appear in the code field to
identify the instruction as. "jump."

There must be at least one space following the code
field. Thus,

HERE: JMP THERE

is legal, but:

HERE: JMPTHERE

is illegal.

Operand Field·

This field contains information used iri conjunction

with the code field to define precisely the operation tci be

performed by the instruction. Depending upon the code

field, the operand field may be absent or may consist of one
item or two items separated by a comma.

9

There are four types of information [(a) through (d)
below I ·that may be requested as items· of an operand field,
and the information may be specified in nine ways [(11
through (9) below), as summarized in the following table,
and described in detail in the subsequent examples.

OPERAND FIELD INFORMATION

Information required

(a) Register

(b).Register Pair

(c) Immediate Data
(d) 16-bit Memory Address

Ways of specifying

(1) Hexadecimal Data
(2) Decimal Data

(3) Octal Data

(4) Binary Data
(5) Location Counter ($)

(6) ASCII Constant
(7) Labels assigned values

(8) Labels of instructions

(9) Expressions

The nine ways of specifying information are as follows:

(1) Hexadecimal data. Each hexadecimal number must
be followed by a letter 'H' and must begin with a

numeric digit (0-9),

Example:

Comment Label

HERE:

Code

MVI C,OBAH ; Load register C with the
; hexadecimal number BA

(2) Decimal data. Each decimal number may optionally

be followed by the letter 'D,' or may stand alone.

Example:

Label

ABC:

Code Operand

MVI E,105

Comment

; Load register E with 1 05

(3) Octal data. Each octal number must be followed by

one of the letters '0' or 'Q.'

Example:

Label Code Operand

LABEL: MVI A,720

· Comment

; Load the accumulator with

; the octal number 72

(4) Binary data. Each binary number must be followed
by the letter 'B.'

Example.: ..

Rev. C

t

I

I

Label Code Operand Comment

NOW: MVI 108,111101108 ; Load register two
; (the D register) with
;OF6H

JUMP: JMP 00101110111110108 ; Jump to
; memory
; address 2EFA

(5) The current location counter. This is specified as the
character '$' and is equal to the address of the current
instruction.

Example:

Label

GO:

Code

JMP

Operand

$+6

The instruction above causes program control to be
transferred to the address 6 bytes beyond the first
byte of the current instruction.

(6) An ASCII constant. This is one or more ASCII char­
acters enclosed in single quotes. Two successive single
quotes must be used to represent one single quote
within an ASCII constant. Appendix C contains a list
of legal ASCII characters and their hexadecimal
representations.

Example:·

Label Code Operand Comment

CHAR: MVI E,'*' ; Load theE register with the
; eight-bit ASCII representa-
; tion of an asterisk

(7) Labels that have been assigned a numeric value by the
assembler. The following assignments are built into
the assembler and are therefore always active:

8 assigned to 0 representing register 8
c " 1 c
D " 2 D
E " 3 E
H " 4 H
L " 5 L
M " 6 a memory reference
A " 7 register A

Example:

Suppose VALUE has been equated to the hexa­
decimal number.9FH. Then the following instruc­
tions all load the D register with 9FH:

10

Label Code Operand -- --
A1: MVI D, VALUE
A2: MVI 2, 9FH
A3: MVI 2, VALUE

(8) Labels that appear in the label field of another
instruction.

Example:

Label Code Operand Comment -- --
HERE: JMP THERE ; Jump to instruction

; at THERE
- - -
-- -

THERE: MVI D,9FH

(9) Arithmetic and logical expressions involving data types
(1) to (8) above connected by the arithmetic opera­
tors (+) (addition). - (unary minus and subtraction),
* (multiplication). I (division), MOD (modulo), the

logical operators NOT, AND, OR, XOR, SHR (shit~

right). SHL (shift left), and left and right parentheses.

All operators treat their arguments as 16-bit unsigned
quantities, and generate 16-bit quantities as their result.

The operator + produces the arithmetic sum of its
operands.

The operator - produces the arithmetic difference of
its operands when used as subtraction, or the arithmetic
negative of its operand when used as unary minus.

The operator • produces the arithmetic product of its
operands.

The operator I produces the arithmetic integer quo­
tient of its operands, discarding any remainder;

The operator MOD produces the integer remainder
obtained by dividing the first operand by the second.

The operator NOT complements each bit of its
operand.

The operator AND produces the bit-by-bit logical
AND of its operands.

The operator OR produces the bit-by-bit logical ()R.

· of its operands.

The operator XOR produces the bit-by-bit logical
EXCLUSIVE-OR of its operands.

The SHR and SHL operators are linear shifts which
shift their first operands right or left, respectively, by the
number of bit positions specified by their second operands:
Zeros are shifted into the high-order or low-order bits, re-
spectively, of their first operands.

The programmer must insure that the result generate<:!,
by any operation fits the requirements of the operation:
being coded. For exampl~, th.e second operand of an MVI.

Rev. C

u

IU

instruction must be an 8-bit:value.

Therefore the instruction:

MVI H,NOTO'

is invalid, since NOT 0 produces the 16'bit hexadecimal
number FFFF. However, the inst~uction:

MVI H,NOT 0 AND OFFH

is valid, sin_ce. the most significant 8 bits of the result are
insured to be 0,. and 'the result cari' th-erefore be represented

in 8 bits.

NOTE: An instruction in parentheses is a legal expression

in an operand field. Its value is the leftmost byte

of t~e encoding of J;he .instruction. The same syn­

tax rules for instructio.ns apply when the instr~c­
tions are parenthesized.

Examples:

Arbitrary

Label Code Operand Memory Address

H_ERE: ,MVI C, HERE SHR 8 2E1 A

The above instruction loads the hexadecimal number
2EH (16-bit address qf HERE shifted right 8 bits) into the
C register.

Label

NEXT:

.Code

·MVI

Operand

D, 34+4 OH/2

The above instruction will load the value 34+ (64/2)

= 34+32 = 66 into the D register.-

Label

INS:

Code

DB

Qperand

(ADDC)

The above instruction defines a byte of value 81 H
(the encoding of an' ADD C instruction) at focation INS.

Operators cause expressions to be evaluated in the

following order:

1. Parenthesized expressions

2. *./MOD, SHL, SHR
3. +, -(unary and binary)

4. NOT
5.AND

6. OR, XOR

In the case of parenthesized expressions, the most
deeply parenthesized expressions are evaluated first:

Example:

The instruction:

MVI D. (34+40H)l2

will load the value

11

(34+64)/2=49 into the D register.

The operator~ Moo: 'SHL, SHR, NOT, AND, OR,

and XOR must b~ 'separated from their operands by at least
one blank. Thus the instruction:

MVI C, VALUE ANDOFH

is invalid.

Using some or all of the above nine data specifications,
' the following four types of information may be requested:

(a) A register (or code indicating memory reference) to

serve as the source or destination in a data operation­
methods 1, 2; 3, 4, 7. or 9may be used to specify the

register or ·memory reference, but the ·specifications

must finally evaluate to one of the numbers 0-7 as
follows:

Value

0
1

2
3
4
5
6
7

Register

·B
c

·'·o
E
H
L
Memory Reference

A (accumulator)

Example:

Label

INS1:

INS2:
INS3:

Code

MVI

MVI
MVI

Opera~d
I

REG4; 2EH

4H, 2EH
8/2, 2EH

Assuming REG4 has been equated to 4, all the above
instructions will load the value 2EH into register 4 (the H
register).

(b) A register pair to serve as the source or destination in

a data operation. Register pairs are specified as follows:

Specification Register Pair

B Registers B and C

D Registers D and E
H Registers H and. L

PSW

SP

Two bytes containing R~gister A
and the state of the condition bits
The 16-bit stack pointer register

Rev. C

NOTE: The binary value representing each register pair
varies from instruction to instruction. Therefore,
the programmer should always specify a register
pair by its· alphabetic designation.

Example:

Label Code Operand Comment

PUSH D ; Push registers D and

L
; E onto stack

INX SP ; Increment 16-bit
; number in the stack
; pointer

(c) Immediate data, to be used directly as a data item.

Example:

~el Code

LRE: MVI

Operand Comment

H, DATA ; Load the H register with
; the value of DATA

take:
Here are some examples of the form OAT A could

ADDR AND OFFH (where ADDR is a 16-bit address)
127 ...
VALUE (where VALUE has been equated to a

number)
3EH=10/2 (2 AND 2)

(d) A 16-bit address, or the label of another instruction in
memory.

Example:

\ Label Code

L
HERE: .JMP

JMP

Operand Comment

THERE ; Jump to the instruction
; at THERE

2EADH ; Jump to address 2EAD

Comment Field

The only rule governing this field is that it must begin
with a semicolon (;).

HERE: MVI C, OADH ; This is a comment

A comment field may appear alone on a I i ne:

; Begin loop here

12

TWO'S COMPLEMENT REPRESENTATION·
OF DATA

This section describes ways in which data can qe
SJiecified in and interpreted by a program. Any B-bit byte
contains one of the 256 possible combinations of zeros an'd
ones. Any particular combination may be interpreted in
various ways. For instance, the code 1 FH may be interpreted
as a machine instruction (Rotate Accumulator, Rig~t
Through Carry), as a hexadecimal value 1 FH=31 D, or berejy
as the bit pattern 00011111. ·

Arithmetic operations performed by the ass~mbler
and hardware are done on a modular basis. That is:) arith­
metic performed on 1-byte quantities is done modulo 256
and arithmetic performed on 2-byte quantities is done mod­
ulo 65,536. Neither run-time arithmetic (performediby the
8080 hardware instructions) nor assembly-time arithmetic
generates overflow indications.

Arithmetic instructions assume that the data bytes up­
on which they operate are in a special format called '"two's
complement," and the operations performed on these bytes
are called "two's complement arithmetic."

Using two's complement notation for binary numbers,
any subtraction operation becomes a sequence of bit com­
plementations and additions. Therefore, fewer circuits need
be built to perform subtraction.

When a byte is interpreted as a signed two's compl~­
ment number, the low-order 7 bits supply the magnitude of
the number, while the high-order bit is interpreted as the
sign of the number (0 for positive numbers, 1 for negative).

The range of positive numbers that can be represented
in signed two's complement notation is, therefore, from 0
to 127:

0 = 000000008 = OH_

1 = 00000001 B = 1 H

1260 = 011111108 = 7EH

1270 = 01111111 B = 7 FH

To change the sign of a number represented in two's
complement, the following rules are applied:

(a) Complement each bit of the number (producing the
so-called one's complement.

(b) Add one to the result, ignoring any carry out of the
high-order bit position.

Example: Produce the two's complement representation
of -100. Following the rules above:

+100 = 000010108

Complement each
bit: 111101018

Add one : 111101108

Therefore, the two's complemen~ representation of
-100 is F6H. (Note that the sign bit is set, indicating a nega­
tive number).

Rev.C

u

u .

0

0

Example: What is the value of 86H interpreted as a signed

two's complement number? The high-order bit
is set, indicating that .this is a negative numt?er.
To obtain its value, again complement each bit
and add one.

86H = 1 0 0 0 0 1 1 0 B

Complement each bit : 0 1 1 1 1 0 0 1 B
Add one : 0' 1 1 1 1 0 1 0-8

Thus, the value of 86H is -7 AH = -122D

The range of negative num~ers that can be represented
in signed two's complement notation is from -1 to -128.

-1 = 1 1 1 1 1 1 1 1 B = FFH
-2 = 1 1 1 1 1 1 1 0. B = F EH

'-127 D =; 1 0 0 0 0 0 0 1 B = 81 H
-128D = 1 0 0 0 0 0 0 0 B = 801-;1

To perform t.he subtraction 1 AH-OCH, the following
operations are performed:

Take the two's complement of OCH=F4H

Add the result to the minuend:

1 AH = 0 0 0 1 1 0 1 0
+(-OCH) = F4H = 1 1 1 1 0 1 0 0

0000111,0=0EHtt)ecorrestansw!!r

When a byte is interpr~ted as an unsigned two's com­

plement number, its value is considered positive and in the
range 0 to 255 1 0 :

0 = 0 0 0 0 0 0 0 0 B = OH
1 =00000001 B=1H

127D=01111111 B=7FH
128D = 1 0 0 0 0 0 0 0 B = SOH

255D = 1 1 1 1 1 1 1 1 B = FFH

Two's complement arithmetic is still valid. When per­
forming an addition operation, the Carry bit is set when the
result is greater than 255D. When performing subtraction,
the Carry bit is reset when the result is positi~e. If the Carry
bit is set, the result is negative and present in its two's com­
plement form. Thus, the Carry bit when set indicates the

occurrence of a "borrow."

Example: Subtract 98D from 197D using unsigned two's
complement arithmetic.

19.7[>,; 1 1 0 0 0 1 0 1 = C5H
-98D = 1 0 0 1 1 1 1 0 = 9EH

carry out ~]] 0 1 1 0 0 0 1 1 = 63H = 99D

Since the carry out of bit 7 = 1, indicating that the
answer is correct and positive, the subtract operation will re­
set the Carry bit to 0.

Example: Subtract 15D from 12D using unsigned two's

complement arithmetic.

13

12D = 0 0 0 0 1 1 0 0 = OCH

-15D = 1 1 1 1 0 0 0 1 = OF1 H
carry out ~ 0 1 1 1 1 1 1 0 1 = -3D

Since the carry out of bit 7 = 0, indicating that the
answer is negative and in its two's complement form, the
subtract operation will set the Carry bit indicating that a

·"borrow" occurred.

NOTE: The 8080 instructions which perform the subtrac­
tion operation are SUB, SUI, SBB, SBI, CMP, a·nd
CMI. Although the same result will be obtained by
addition of a complemented number or subtrac­

tion of an uncomplemented number, the resulting

Carry bit will be different.
EXAMPLE: If the result -3 is produced by performing an

"ADD" operation on the numbers +12D and
-15D, the Carry bit will be reset; if the same
result is produced by performing a "SUB"

operation ~>n the numbers :+-12D and +15D,
the Carry bit will be set. Both operations in·
dicate that the result is negative; the pro­
grammer must be aware which operations set

or reset the Carry bit:
"ADD" +12D and -15D

+12D = 0 0 0 0 1 1 .0 0
+(-: 15D) = !__!__!__l_ 0 0 0 1

(] 1 1 1 1 1 1 0 1 = -3D
causes car'ry to be reset . . :

"SUB" +15D from +12D.

+12D =0000 1100
-(+15D) = 1 1 1 1 0 0 0 1

jJ 1 1 1 1 1 1 0, 1 =' -3D
causes carry to. be s'et

All assembly-time arithmetic is performed assuming
unsigned 16-bit operands (that is, signed arithmetic is. not
implemented). In a user's assembly-language program·, the

program logic may be written to interpret numbers as either
signed or unsigned quantities depending on the application.

DATA STATEMENTS
The operands of data statements that reserve a vari­

able number of bytes (DB and DS) must be defined before

the data statement is encountered. These operands may not

make forward references.
DB Define Byte(s) of Data

Label Code

oplab: DB

"list" is a list of either:

Operand

I ist

(1) Arithmetic and logical expressions involving any of
the arithmetic and logical operators, which evaluate

to eight-bit data quantities

(2) Strings of ASCII characters enclosed:·in quotes

Description: The eight-bit value of each expression, or
the eight-bit ASCII representation of ~ach character is
stored in the next available byte of memory starting with
the byte addressed by "oplab." (The most significant bit of
each ASCII character is always = 0).

Rev. C

1·-

Example:

Instruction Assembled Data (hex)

HERE: DB OA3H A3
WORD1: DB 5*2, 2FH-OAH OA25
WORD2: DB 5ABCH SHR 8 5A
STR: DB 'STRINGSpl' 535452494 E4 7 2031
MINUS: DB -03H FD

NOTE: In the first example above, the hexadecimal value
A3 must be written as OA3 since hexadecimal num­
bers must start with a decimal digit.

OW Define Word (Two Bytes) of Data

Format:

Label

oplab:

Code

DW

Operand

list

"list" is a list of expressions which evaluate to 16 bit data
quantities.

Description: The least significant 8 bits of the expres­
sion are stored in the lower address memory byte (oplab),
and the most significant 8 bits are stored in the next higher
addressed byte (oplab +1). This reverse order of the high and
low address bytes is normally the case when storing addres­
ses in memory. This statement is usually used to create ad­
dress constants for the transfer-of-control instructions; thus
LIST is usually a list of one or more statement labels appear­
ing elsewhere in the program.

Examples:

Assume COMP addresses memory location 3B 1 CH
and FILL addresses memory location 3EB4H.

Assembled
Instruction Data (hex)

ADD1: DW COMP 1C3B
ADD2: DW FILL B43E
ADD3: DW 3C01 H, 3CAEH 013CAE3C

Note that in each case, the data are stored with the
least significant 8 bits first.

OS Define Storage (Bytes)

Format:

Label

oplab:

Code

DS

Operand

exp

"exp" is a single arithmetic or logical expression that can be
evaluated at assembly time. Its value can range from OH to
OFFFFH.

Description: The value of EXP specifies the number
of memory bytes to be reserved for data storage. No data
values are assembled into these bytP.s: in particular the pro­
grammer should not assume that they will be zero, or any
other value. The next instruction will be assembled at mem­
ory location oplab+EXP (oplab+10 or oplab+16 in the
example below).

14

Examples:

HERE: DS
DS

10 ; Reserve the next 10 by,tes
10H ; Reserve the next 16 bytes

CARRY BIT INSTRUCTIONS

This section describes the instructions which operate
directly upon the Carry bit. I n~tructions in this class occupy
one byte as follows:

!o 1o 11 1,jxj1l1l1j

tL.. ____ o for STC

1 for CMC
The general assembly language format is:

Label

LABEL:

Code

OP
t_

L .1 ·sTCorCMC

Optional instruction label

CMC Complement Carry

Format:

Label

oplab:

Code

CMC

Operand

not used

Description: If the Carry bit = 0, it is set to 1. If the Carry
bit = 1, it is reset to 0.

Condition bits affected: Carry

STC Set Carry

Format:

Label Code Operand

oplab: STC

lolol1j1j01111111

Description: The Carry bit is set to one.

Condition bits affected: Carry

SINGLE REGISTER INSTRUCTIONS

This section describes instructions which opera'te on a
single register or memory location. If a memory reference is
specified, the memory byte addressed by the H and L regi,~­
ters is operated upon. The H register holds the most signi~i­
cant 8 bits of the address while the L register holds the lea~t
significant 8 bits of the address. '

Rev. C

ol
I

u
INR Increment Register or Memory

Format:

Label Code Operan~

oplab: INR reg
'i B,C,D,E,H,L,M orA

Ia Ia I reg
!1 lo lo I
~000 for register B

001 for register C
010 for register D
011 for_ register E
100 for register H
101 for-register L
110 for memory ref. M
111 for register A

Description: The specified register or memory byte i~
incremented by one.

Condition bits affected: Zero, Sign, Parity, Auxiliary
Carry (Carry not affected)

Example:

If register C contains 99H, the instruction:

INR C
will cause register C to contain 9AH

OCR Decrement Register or. Memory

Format:

Label

oplab:

Code

DCR · reg . -
~,

reg 11 I 0 11 I.

B,C,D,E,H,L,M or A

tL ___ 000 for Register B ·

001 for register C
01 0 for register D
011 for register E
100 for register H
101 for register L
110 for memory ref. M
111 for register A

Description: The specified register or memory byte is
decremented by one.

Condition bits affected: Zero, Sign, Parity, Auxiliary
Carry (Carry not affected)

Example:

If the H register contains 3AH, the L register contains
7CH, and· memory location 3A7CH contains 40H, the
instruction:

OCR M

illustrate: .

DC R M references
registers

H and L
Memory before

[i;J"GU OCR M

.;nd~§g
memory location 3A7C

CIVIA. Complem~nt Accumul~tor

Format:':

Label

oplab:

Code

CMA

Memory after
.DCR·M

Operand
i' ..

Description: Each bit of the contents o'f' the accumula-
tor is complemented (producing the one's complement).

Condition bits affected: None

Example:

If the accumulator contains 51 H. the instructionCMA
will cause the accumulator to contain OAEH.

Accumulator= 0 1 0 1 0 0 0 1 =51 H

Accumulator = 1 0 1 0 1 1 1 0 = AEH

DAA Decimal Adjust Accumulator

Format:

Label

oplab:

Code

DAA

Operand

_ Description: The eight-bit hexadecimal number in the
accumulator is adjusted to form two four-bit binary-coded­
decimal digits by the following two step process:

(1) If the least significant four bits of the accumulator
represents a number greater than 9, or if the Auxiliary
Carry bit is equal to one, the accumulator is incre­

mented by six. Otherwise, no increm~nting occurs.

(2) If the most significant four bits of the accumulator
now represent a number greater than-9, or if the nor­
mal carry bit is equal to one; the mos~,significant four
bits of the accumulator are incremented by six. Other­
wise, no incrementing occurs.

If a carry out of the least significant' four bits occurs

during Step (1 l, the Auxiliary Carry bit is set; otherwise it is
will cause memory location 3A7CH to contain 3FH. To reset. Likewise, if a carry out of the most significant four

15 Rev_ C

I

!

!j

1:

t

bits occurs during Step (2), the normal Carry bit is set;
otherwise, it is unaffected:

NOTE: This instruction is used when adding decimal num­
bers_ It is the only instruction whose operation is
affected by the Auxiliary Carry bit.

'Condition bits affected: -Zero, Sign, Parity, Carry,
Auxiliary Carry

- Example:

Suppose the accumulator contains 9BH, and both
carry bits= 0. The DAA instruction will operate as follows:

(1) Since bits 0-3 are greater than 9, add 6 to the accumu­
lator. This addition will generate a carry out of the
lower four bits, setting the Auxiliary Carry bit.

Bit No. 7 6 54 3 2 1 0

Accumulator= 1 0 0 _1 1 0 1 1 = 9BH
+6 0 1 1 0

1010 0001=A1H

\ -
Auxiliary Carry = 1

(2) Since bits 4-7 now are greater than 9, add 6 to these
bits. This addition will generate a carry out of the
upper four bits, setting the Carry bit.

Bit No. 76543210

Accumulator= 1 0 1 0 0 0 0 1 =A 1 H
+6=0110

Il 00000001

~Carry= 1

Thus, the accumulator will now contain 1, and both
Carry bits will be = 1.

For an example of decimal addition using the DAA

instruction, see Chapter 4.

NOP INSTRUCTION

The NOP instruction occupies one byte.

Format:

Label

oplab

Code

NOP

Ia 10 10 10 10 10 10 10 I _

Operand

Description: No operation occurs. Execution proceeds
with the next sequential instruction.

Condition bits affected: None

DATA TRANSFER INSTRUCTIONS

This section describes instructions which transfer data
between registers or between memory and registers.

Instructions in this class occupy one byte as follows:

(a) For the MOV instruction:

16

src

t.__OOO for register B
001 for register C
010 fo_r register D
011 for register E
100 for register' H
101 for register L
110 for memory reference M
111 for register A

NOTE: dst and src cannot both = 11 OB

(_b) For the reni
1

aining instructions:

t "" 0 for register pair B 0 for ST AX
1 for register pair D 1 for LDAX

When a memory reference is specified in the MOV in­
struction, the addressed location is specified by the- H and L
registers. The L register holds the least significant 8 bits of

the address; the H register holds the most significant 8 bits.

The general assembly language format is:-

Label Code Operan~

oplab: MOV dst, src

A,B,C,D,E,H,L, or M
(dst and src not
both= M) L

tL-----1---t

Optional instruction label

Label Code

oplab: OP

Operand

rp

-or-

\

\ _ "-Bor D

STAX or LDAX

Optional instruction label

MOV Move Instruction

Format:

Label

oplab:

Code Operand

MOV __ _,dst, src c---- JC" .

dst I src

Description: One byte of data is moved from the

register specified by src (the source register) to the register
specified by dst (the destination register). The data re- • . \
places the contents of the destination register; the source \...../
remains unchanged.

Rev. C

(j

C~ndition bits ~tfected: None

Example 1:

Label Code Operand Comment

MOV A,E ; Move contents of the E
; register to the A register

MOV D;D · ; Move contents of the
; D register to the D

; register, i.e., this is a
; null operation

NOTE: Any of the null operation.instructions MOV X,X

can also be specified as NOP (no-operation). MOV

M,M is not permitted, however.

Example 2:

Assuming that the H register contains 2BH and th(! L
register contains E9H, the instruction:

MOV .M,A

will store. the contents of the accumulator at memory loca­

tion 2BE9H.

ST AX Store Accumulator

Format:

Label Code Operand

·oplab: ·:S~.rp

-.

·Description: The contents of the accumulator are

stored in the memory location addressed by registers B ·and

C, or by registers D and E.

Condition bits affected: None

Example:

If register B contains 3FH and register C contains
16H, the instruction:

STAX B

will store the contents of the accumulator at memory loca­

tion 3F16H.

LDAX Load Accumulator

Format:

Label

oplab:

Code Operand ..

LDAX ./ rp k'----

Description: The contents of the memory location

addressed by registers B and C, or by registers D and E, re­
place the contents of the accumulator.

17

·Condition bits affected: None

Example:

If register D contains 93H and register E contains
8BH, the instruction:

LDAX D

will load the accumulator from memory location 938BH.

REGISTER OR MEMORY TO·
ACCUMULATOR INSTRUCTION_S

This section describes the instructions which operate
on the accumulator using a byte fetched from another regis­
ter or memory. Instructions in this class occupy one byte as
follows:

000 for ADD -----'

001 for ADC

010 for SUB

01 1 for SBB

100 for ,A.NA

101 for XRA

110for0RA

1 1 1 for CMP

t 000 for register B

001 for register C

01 0 for register D

01 1 for register E

1 OO.for register. H.

101 for register L.

1 10 for memory
reference M

1 1 1 for: register A

Instructions in this class operate on the accumulator
using the byte in the register specified by REG. If a memory
reference is specified, the instructions use the byte in the
memory location addressed by registers H and L. The H reg­

ister holds the most significant 8 bits of the address, while
the L register holds the least significant 8 b,its of the address.
The specified byte will remain unchanged by any of the in·

structions in this class; the result will replace the contents of
the accumulator.

The general assembly language instruction format is:

Label Code Operand

reg oplab: . op

\
\ "'- A,B,C,D,E,H,L, or M

ADD, ADC, SUB, SBB, ANA, XRA, ORA

or CMP

Optional instruction label

ADD Add Register or Memory to Accumulator

Format:

Label

oplab:

Code

ADD
+

reg
. I

Rev. C

Description: The specified byte is added to the con­
tents of the accumulator using two's complement arithmetic.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example 1:

Assume that the D register contains 2EH and the ac­
cumulator contains 6CH. Then the instruction:

ADD D

will perform the addition as follows:

2EH = 00101110
6CH = 01101100
9AH = 1001.1010

The Zero and Carry bits are reset; the Parity and Sign
bits are set. Since there is a carry out of bit A3 , the Auxiliary
Carry bit is set. The accumulator now contains 9AH.

Example 2:

The instruction:

ADD A

will double the accumulator.

ADC Add Register or Memory to Accumulator
With Carry

Format:

Label Code Operand

oplab: ACD ~reg +

1
1 1°,0 1°1 1

1
reg
I I

Description: The specified byte plus the content of
the Carry bit is added to the contents of the accumulator.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assume that register C contains 3DH, the accumulator
contains 42H, and the Carry bit= 0. The instruction:

ADC C

will perform the addition as follows:·

3DH = 0 0 1 1 1 1 0 1
42H = 0 1 0 0 0 0 1 0

CARRY= 0
RESULT=01111111 =7FH

The results can be summarized as follows:

Accumulator 7FH
Carry 0
Sign 0
Zero 0
Parity 0
Aux. Carry 0

L ____ .
18

If the Carry bit had been one at the beginning of the
example, the following would have occurred:

3DH = 0 0 1 1 1 1 0 1
42H = 0 1 0 0 0 0 1 0

CARRY= 1
RESULT= 1 0000000=80H

Accumulator SOH
Carry 0
Sign 1
Zero 0
Parity 0
Aux. Carry '1

SUB Subtract Register or_ Memory
From Accumulator

Format:

Label Code Operand

oplab: S~B ~reg

1
1 I 0 I 0 11 I 0 I ~egl I

' -

Description: The specified byte is subtracted from the
accumulator using two's complement arithmetic.

If there is no carry out of the high-order bit position,
indicating that a borrow occurred, the Carry bit i~ set;
otherwise it is reset. (Note that this differs from an add op­
eration, which resets the carry if no overflow occurs).

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assume that the accumulator contains 3EH. Then the
instruction:

SUB A

will subtract the accumulator from itself producing a result
of zero as follows:

3EH = 0 0 1 1 1 1 1 0
+(-3EH) = 1 1 0 0 0 0 0 1 negatear:~d add one

. li '
+ 1 to produce two's

_____ complement·
carry __.]) 0 0 0 0 0 0 0 0 Result = 0

Since there was a carry out of the high-order bit
position, and this is a subtraction operation, the Carry bit
will be reset.

Since there was a carry out of bit A 3 , the Auxiliary
Carry bit will be set.

The Parity and Zero bits will also be set, and the Sign
bit will be reset.

Thus the SUB A instruction can be used to reset th~,
Carry bit (and zero the accumulator).

Rev. C

0

0

u

u

(J

l
'-

SBB Subtract Register or Memo,.Y From
Accumulator With Borrow

Format:

Label Code . Operand

oplab: SBB ~reg +

.1
1

1°1°1
1
1

1
1

reg I I I

Description: The Carry bit is internally added to the
contents of. the specified byte. This value is then subtracted
from the accumulator using two's complement arithmetic.

This instruction is most useful when performing sub­
tractions. It adjusts the result of subtracting two bytes when
a previous subtraction has produced a negative result (a bor·
row). For an example of this, see the section on Multibyte
Addition and Subtraction in Chapter 4 ..

Condition .bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry (see last section for details),

Example:

Assume that register L contains 2, the accumulator
contains 4, and the Carry bit= 1. Then the instru!=tion SBB
L will act as follows:

02H + Carry = 03H
Two's Complement of 03H = 11111101

Adding this to the accumulator procedures:

Accumulator = 04H = 0 0 0 0 0 1 0 0
11111101

TI 0 0 0 0 0 0 0 1 = 01 H = Result
iC

·carry out = 1 causing the Carry bit to be reset

The final result stored in the accumulator is·one, caus:
ing. the Zero bit to be reset; The Car!y bit is reset since this
is a subtract operation and there was a carry out of the high·
order bit positio!l. The Auxiliary Carry bit is set since there
wa~ a carry out of bit A3 . The Parity and the Sign bits are
reset.

ANA Logical And Register or Memory With
Accumulator

Format:

Label

oplab:

Code Operand

ANA reg
~ ~

..--T==;==,

1
1 1°, 1 1°1°1 reg

I

Description: The specified byte is logically ANDed bit
by 'bit with the contents of the accumulator. The Carry bit
is reset to zero.

The logical AND function of two bits is 1 if and only
if both the bits equal 1.

Condition bits affected: Carry, Zero, Sign, Parity,

Example:

Since any bit ANDed with a zero produces a zero and
any bit ANDed with a one remains unchanged, the AND
function is often .used to zero groups of bits .

Assuming that the accumulator contains OFCH and
the C register contains OFH, the instruction:

ANA C

will act as follows:

Accumulator = 1 1 1 1 1 1 0 0 = OFCH
C Register =0 0 0 0 1 1 1 1 = OFH
Result in

. Accumulator =0 0 0 0 1 1 0 0 = dCH

This particular example guarantees that the high-order
four bits of the accumulator are zero, and the low-order four

. bits are unchanged.

XRA Logical Exclusive-Or Register or Memory
With Accumulator (Zero Accumulator)

Format:

Label Code Operand

oplab: XRA reg
-¥ --

11 1°1rl0 11 1 reg· r·
Description: The specified byte is EXCLUSiVE-ORed

bit by bit with the contents of the accumu,iator. The Carry
bit is reset to zero. ·

The EXCLUSIVE-OR function of two bits equals 1 if
and only if the values of the bits are different.

Condition bits affected: Carry, Zero, Sign, Parity,
Auxiliary Carry

Example 1:

Since any bit EXCLUSIVE·ORed with itself pro­
duces zero, the EXCLUSIVE-OR can be used to zero the
accumulator.

Label Code

XRA
MOV
MOV

Operand

A
B,A

.C,A

These instructions zero the A, B, and C registers:

Example 2:

Any bit EXCLUSIVE-ORed with a one is comple·
mented (0 XOR 1 = 1, 1 XOR 1 = 0).

Therefore if the accumulator contains all ones (OFFH),
the instruction:

XRA B

will produce the one's complement of the B register in the
Auxiliary Carry. accumulator.

19 Rev. C

Example 3:

Testing for change of status.

Many times a byte is used to hold the status of several
(up to eight) conditions within a program, each bit signify­
ing whether a condition is true or false, enabled or disabled,
etc.

The EXCLUSIVE-OR function provides a quick means
of determining which bits of a word have c,hanged from one
time to another.

Label Code Operand

LA: MOV A,M ; STAT2 to accumulator
INX H ; Address next location

LB: MOV B,M ; ST AT1 to 8 register
CHNG: XRA 8 ; EXCLUSIVE-OR

; STAT1 and STAT2
STAT:· ANA 8 ; AND result with STAT1

STAT2: OS
STAT1: OS

Assume that logic elsewhere in the program has read
the status of eight conditions and stored the corresponding
string of eight zeros and ones at ST AT1 and at some later
time has read the same conditions and stored the new status
at ST AT2. Also assume that the H and L registers have been
initialized to address location STAT2. The EXCLUSIVE-OR
at CHNG produces a one bit in the accumulator wherever a
condition has changed between ST AT1 and ST AT2.

For example:

Bit Number

STAT1 = 5CH =
STAT2 = 78H =

76543210

01011100
01111000

EXCLUSIVE-OR, 0 0 1 0 0 1 0 0

This shows that the conditions associated with bits 2
and 5 have changed between STAT1 and STAT2. Knowing
this, the program can tell whether these bits were set or re­
set by ANDing the result with STAT1.

Result 0 0 1 0 0 1 0 0
STAT1 = 0 1 0 1 1 1 0 0
AND = 0 0 0 0 0 1 0 0

· Since bit 2 is now one, it was .set between ST AT1 and
STAT2; since bit 5 is zero it is reset.

ORA Logical Or Register or Memory With
Accumulator

Format:

Label Code Operand

oplab: ORA /reg
{- K'

1
1

1°1
1

1
1

1°1
reg
I I

20

Description: The specified byte is logically ORed bit
by bit with the contents of the accumulator. The carry bit
is reset to zero.

The logical OR function of two bits equals zero if and
only if both the bits equal zero.

Condition bits affected: Carry, Zero, Sign, Parity,

Example: Auxiliary Carry.

Since any bit ORed with a one produces a one, and
any bit ORed with a zero remains unchanged, the OR func­
tion is often used to set groups of bits to one.

Assuming that register C contains OFH and the accu­
mulator contains 33H, the instruction:

ORA C
acts as follows:

Result=

Accumulator = 0 0 1 1 0 0 1 1 = 33H
C Register = 0 0 0 0 1 1 1 1 = OFH
Accumulator= 0 0 1 1 1 1 1 1 = 3FH·

This particular example guarantees that the low-order
four bits of the accumulator are one, and the high-order four
bits are unchanged.

CMP Compare Register or Memory
With Accumulator

Format:

Label

oplab:

Code Operand

CMP reg

,...----r={-=;:=::::::::::~=,
11101111111 reg

I I

Description: The specified byte is compared to the
contents of the accumulator. The comparison is performed
by. internally subtracting the contents of REG from the ac­
cumulator (leaving both unchanged) and setting the condi­
tion bits according to the result. In particular, the Zero bit is
set if the quantities are equal, and reset if they are unequal.
Since a subtract operation is performed, the Carry bit will be

set if there is no carry out of bit 7, indicating that the
contents of A EG are greater than the contents of the accu­
mulator, and reset otherwise.

NOTE: If the two quantities to be compared differ in sign,
the sense of the Carry bit is reversed.

Condition bits affected: Carry, Zero, Sign, Parity,
Auxiliary Carry

Example 1:

Assume that the accumulator contains the number
OAH and the E register contains the number 05H. Then
the instruction CMP E performs the following internal
subtractions:

Accumulator OAH 0 0 0 0 1 0 1 0
+ (-E Register) -5H 1 1 1 1 1 0 1 1

.-----Il 0 0 0 0 0 1 0 1 =result

L carry = 1, causing the Carry bit to be reset

Rev. C

0

u

(_)

I

u

u

The accumulator still contains OAH and the E register

still contains 05H; h_owever, the Carry bit is reset and the

zero bit reset, indicating E le~s than A.

Example- 2: · ·

If the acc~mulator had contained the number 2H, the

interna} subtr;ac~ion would have produced the following:

Accurn'ulator: - .02H o6 o 0 0 0 1 o
+ .. (-E .Register) -5H 11 1 1 1 0 1 1

01 1 1 1 1 1 1 0 1 = result

' F c-arry ; 0, Carry bit = 1

The Zero bit would be reset and the Carry bit set,

indicating E greater than A.

Example 3:

Assume that the accumulator contains -1 BH. The in­

ternal subtraction now produces the following:

Accumulator
+ (-E Register)

--1BH = 11·100101

-5H =· · 1 1 1 1 1 0 l 1

.----Il 1 1 1 0 0 0 0 0

L carry= 1, causing_ carry to be reset

Since the two numbers to be compared differed in

sign, the resetting of the Carry bit now indicates E greater

than A.

ROTAT.E ACCUMULATOR INSTRUCTIONS . . . ' . ' . .

· · · This section destribes the instructions which rotate .

the contents :of the accumulator. No memory locations or

other registers are referenced.

Instructions in this class occupy one byte as follows:

L---------OOfprRLC
01 for RRC
10 for RAL
11 for RAR

The general assembly language instru~tion format is:

Label Code Operand

label: op

\
~ · · not used

RLC, RRC, RAL, or RAR

Optional instruction label

RLC Rotate Accumulator Left

Format:

Label

oplab:

Code

RLC

"'·

Operand

21

Description: The .Carry bit is set equal:to tile high·

order bit of the accumulator. The contents of the accumu·

lator are rotated one bit position to the left, with the high·

order bit being transferred to the low-order bit ·position of

the accumulator.

Condition bits affected: Carry .

Example: ;-,I

Assume that· the accumulator· contains OF2H. Then

the instruction:

RLC

acts as follows:

Before R LC is executed: .Carry Accumulator

After RLC is executed:

Carry = 1 A= OE5H

RRC Rotate Accumulator Right

, .. Format:
' '

Label

oplab:

Code·

RRC

Operand

I o, lo I o l'o 11 11 ll 11 I

Description: The carry bit is set equal to the l~w-order

bit of the accumulator. The contents of the accumulator are

rotated one bit position to the right, with the low-order bit

being transferred to the high-order bit position of the

accumulator.

Condition bits affected: Carry

Example:

Assume that the accumulator contains OF2H. Then

the instruction:

RRC

acts as follows:

Before RRC is executed: Accumulator Carry

After R RC is executed:

A= 79H Carry,=O

I
I

I
i
I
I

I

RAL Rotate Accumulator Left .Through Carry

Format:

Label

oplab:

Code

RAL
i-

Operand_

Description: The contents of the accumulator are ro­
tated one bit position to the left.

The high-order bit of the accumulator replaces the
Carry bit, whi_le the Carry bit replaces the low-order bit of
the accumulator.

·condition bits affect~d: Carry

Example:

Assume that the accumulator contains OB5H. Then
the instruction:

RAL

acts as follows:

Before RAL is executed: Carry Accumulator _

After RAL is-executed: r.1,

~ lol111lol1lol1lol

· Carry=1 A= 6AH

RAR Rotate Accumulator Right Through Carry
Format:

Label

oplab:

. Code

RAR
+

Operand

Description: The contents of the accumulator are ro­
tated one bit position to the right.

The low-order bit of the accumulator replaces the
carry bit, while the carry bit replaces the high-order bit of
the accumulator.

Condition bits affected: Carry

Example:

Assume that the accumulator contains 6AH. Then the
instruction:

RAR

acts as follows:

22

Before RAR is executed: :Accumulator . Carry

After RAR is executed:

11 1°1 1 11 1°1 1 1°1 1 1
- A= OB5H Carry=O

REGISTER PAl R INSTRUCTIONS

This section describes instructions which operate on
pairs of registers.

PUSH Push Data Onto Stack

Format:

Label

oplab:

Code Operand

PUSH rp

~-----B,D,H,orPSW

11 ~ 11 I rp I 0 11 I 0 11 I

~00 fqr registers B and C
01 for registers D and E
10 for registers H and L ·
11 for registerA and flags

Description: The contents of the specified register pair
are saved in two bytes of memory indicated by the stack
pointer SP.

The contents of the first register are saved at the mem­
ory address one less than the address indicated by the stack
pointer; the contents of the second reg!stcr are saved at the
address two less than the address indicated by the stack
pointer. If register pair PSW is specified, the first byte of in­
formation saved holds the contents of the A register; the
second byte holds the settings of the five condition bits,
i.e., Carry, Zero, Sign, Parity, and Auxiliary Carry. The for­
mat of this byte is:

7 6 5 4 3 2 1 0

Is lz Ia ~~~o IP l1lc I
State of Sign bit/ J l

State of Zero bit
always 0

\ \ • ate of Carry bit L ways 1
State of Parity
bit

State of auxiliary
Carry bit '------ always 0

.
In any case, after the data has been saved, the stack

pointer is decremented by two.

Condition bits affected: None

Example 1:

Rev.C

(j

(J

Assume .that register D contains BFH, register E con­

tains 9DH, and the stack pointer contains ·3A2CH: Then the
instruction:

PUSH D

stores the. D register at memory address 3A2BH, stores the

E register at memory address 3A2AH, and then decrements

the stack pointer by two, leaving the stack pointer equal to
3A2AH.

Before PUSH After PUSH
HEX.

MEMORY ADDRESS MEMORY

SP ~

D E

~ ~
Example 2:

3A29

3A2A

3A2B

3A2C

D

[EJ

+-- SP

E

~

'··Assume that the accumulator contains 1 F H, the stack
pointer contains 502AH, the Carry, Zero and Parity bits all

equal 1, and the Sign and Auxiliary Carry bits all equal 0.

Then the instruction:

PUSH PSW '

stores the accumulator (1 FH) at locatio~ 5o29H. stores the

value 47H, corresponding to the flag settings, at location

5028H, and decrements the stack pointer to the value
5028H.

POP Pop Data Off Stack

Format:

Label

oplab:

Code Operand

. ~ bOtor registers B and C

01 for registers D and E

10 for registers H.and L

11 for·flags and register A

Description: The contents of the specified register pair

are restored from two bytes of memory indicated by the

stack pointer SP. The byte of data at .the memory address

23

indicated by the stack pointer is loaded· into' the se~onci
register of the register pair; the byte of data aqhe.address

one greater than the address indicatec:1 by the stack pointer
is loaded into the·'first register of: th-e pair. If register pair

PSW is specified, the byte of data indicated by the contents

of the stack pointer· is. used to restore the values of the five

condition bits (Carry, Zero, Sign, Parity, and Auxiliary

Carry), using the format described-in the· last section.

In any case, after the datahas been restored, the stack
pointer is incremented by two.

Conditio-n bits affected: If register pair PSW is speci­

fied, Carry, Sign, Zero, Parity, and Auxiliary Carry may be

changed. Otherwise, none are affected.

. Example 1:

Assume that memory 'locations 1239H and -123AH

contain 3DH and' 93H, respectively, and· that the stack

pointer contains 1239H. Then tbe.-instr.uctipn:

POP H

loads register L with tbe va_l_ue .3DH frqm,,loc(!tio.n: l239H,

loads. ,register H with the ·value 931:1 from .. location 123AH.
and increments the stack pointer by twQ .. I,f!av_i.ng .it !!qual to
123BH.

Before POP · . After POP

HEX "' '· ·
MEMORY: :ADDRESS MEMORY

SP ~

L

[ill

Example 2:

1238

1239

123A

1238

L

[][]

Assume that memory .locations 2COOH and 2C01 H
contain C3H and FFH respectively, and that the stacl<.
pointer contains 2COOH. Then the instruction:

POP PSW - I
. I

will load the accumulator with FFH and set the condition . . I

bits as follows:

. C3H= 1 1 0 0 0 0 1 1

. s;gn b;t " 1 : . • I I I I I : C.ny b; t " 1
· Zero bit = 1 Parity bit = 0
Aux. Carry bit= 0

Rev. C

li
I

I!
I

DAD. Double. Add

Format:

Label

oplab:

Code. Operand

DAD- ...!:£.._

~ "'- B,D,H, or SP

~ 00 f~r registers B and C
01 for registers D and E
1 0 for registers H and L
11 for register SP

Description: The 16-bit number in the specified regis­
ter pair is added to the 16-bit number held in the H and L
registers using two's complement arithmetic. The result re­
places the contents of the H and L registers.

Condition bits affected: Carry

Example 1:

Assume that register B contains 33H, register C con­
tains 9FH, ·register H contains A 1 H, and register L contains
7BH. Then the instruction:

DAD B

performs the following addition:

Registers B and C = 339F
+ Registers Hand L = A17B

New contents of H and L = D51 A

Register H ·now contains D5H and register L now con­
tains 1 AH. Since no carry out was produced, the Carry bit
is reset = 0. ·

Example 2:

The instruction:

DAD H

will double the 16-bit number in the H and L registers
(which is· equivalent to shifting the 16 bits one position to
the left).

INX Increment Register Pair

Format:

Label Code Operand

oplab: INX ·!:£__

/ ""-- B,D,H, or SP

"'___ 00 for registers B and C

01 for registers D and· E
10 for registers H and L
11 for register SP

24

Description: The 16-bit number held in the specified
register pair is incremented by one.

Condition Bits affected: None

Example:

If registers D and E contain 38H and FFH respectively,
the instruction:

INX D

will cause register D to contain 39H and register E to con­
tain OOH.

If the stack pointer SP contains FFFFH, the
instruction:

INX SP

will cause register SP to contain OOOOH.

DCX Decrement Register Pair

Format:

Label

oplab:

Code

DCX

Operand

,.____ 00 for registers B and C

01 for. registers D ~nd E
10 for register~ H and l;.
11 for register SP

Description: The 16-bit number held in the specified
register pair is decremented by one.

Condition bits affected: None

Example:

If register H contains 98H and register L contains OOH,
the instruction:

DCX H

will cause register H to contain 97 H and register L to con­
tain FFH.

XCHG Exchange Registers

·Format:

Label Code

oplab: XCHG

Operand

Description.: The 16 bits of data held in the H and L
registers are exchanged with the 16. bits of. data held in the
Dand E registers.

Condition bits affected: ·None

-.. I

01

c~

0

Example:

If register H contains OOH, register L contains FFH,

register D .contains 33H and register E contains 55H, the
instruction· XCHG will perform the following operation:

Before XCHG I After XCHG

D '£ I D

[lL] ~ I ~
I

.H L I
H

[QQJ [ffJ I [liJ

XTH L Exchange Stack

Format:

Label

oplab:

Code

XTHL

E

[ill

L

~

Operand

Description: The contents of the L register are ex­
changed with the contents of the memory byte whose ad­
dress is held in the stack pointer SP. The contents of the H
register are exchanged with . the cc;>ntents of the memory
byte whose address is one greater than that held in the stack
pointer.

Condition bits affected: None

Example:

If register SP contains lOADH, registers Hand L con­
tain OBH and 3CH respectively, and memory locations
lOADH and lOAEH contain FOH and ODH respectively, the
instruction XTHL will perform the following operation:

Before XTHL

MEMORY

SP -+

L

[]U

I

HEX
ADDRESS

lOAC
lOAD
lOAE
lOAF

After XTHL

MEMORY

L

@]

25

SPH L Load SP From H And L

Format:

Label

oplab:

Code

SPHL

:; Operand

Description: The 16 bits of data held in the Hand L
registers replace the contents of the stack pointer SP. The
contents of the H and L registers are unchanged.

Condition bits affected: None

Example:

If registers Hand L contain 50H and 6CH respectively,
the instruction SPH L will load the stack ~pointer with the
value 506CH. '

IMMEDIATE INSTRUCTIONS

This section describes instructions which perform op­
erations using a byte or bytes of data which are part of the
instruction itself.

Instructions in this class occupy two or three bytes as
follows:

(a) For the LXI data instruction (3 bytes):

lo 10 I rp lo 101011 I .~~~'d'a;a, I 1h1i~h.~a1t~ I
.,.___00 for registers B and C

01 for registers D and E
10 for registers Hand L
11 for register SP

(b) For the MVI data instruction (2 bytes):

"'---- 000 for register B
001 for register C
01 0 for register D
011 for register E
100 for register H
101 for register L
110 for memory ref. M
111 for register A

Rev. B

I:
I!

(c) For the remaini~g instructions (2 bytes)~

"'--ooo for ADI
'001'for ACI

010 for SUI
01 1for'SBI

. 100 for ANI
. 1 0.1 for X R I ..
110 for ORI
111 for CPI

The LXI instruction operates on the register pair
specified by RP using two bytes of immediate data.

The MVI instructipn operates on the register specified
by. REG using one byte of immediate data. If a memory
refer~nce is specified, ttie instruction operates-~n the me~­
ory location addressed by registers H and L. The H register
holds the most significant 8 bits of the address, while the L
register holds the least significant 8 bits of the address.

The remaining instructions in this class operate on the
accumulator using one byte of immediate di!ta. The _result
replaces the contents of the accumulator.

· The general assembly language instruction format is:

Label Code Operand

rp, data oplab: LXI ·L \ ""'--ts-b;t dot• quont;ty

B,D,H,orSP

Optional instruction label

. -or-

Label Code . Operand

oplab: MVI reg, data ----

L
\ ' B-b;t doto quont;ty

A,B,C,D,E,H,L, or M

Optional' instruction label

-or-

Label ·Code Operand

oplab: OP data

I L "'-...,.._B-bit data quantity

ADI,ACI,SUI,SBI,ANI,XRI,ORI,
or CPI

.__ ____ Optional 'instruction label

26

LXI Load Register Pair Immediate

Format:

Label . Code . Operand
oplab: ~ _ rp;..data \

I 0 I 0 I rr I 0 I 0 I 0 11 I II ~~t~ II I. : ~a.t~ II I
Description: The third byte of the instruction (the

most significant 8 bits of the 16-bit immediate datal· is
loaded into the first register of the specified pair, while the
second byte_of the instruction (the least sigl"!ificant 8 hits of
the 16-bit immediate data) is loaded into the second. register
of the specified pair. If SP is specified as the register pair, the
second byte of the instruction replaces the least significant
8 bits of the stack pointer, while- the third byte of the in:
struction replaces the most significant 8 bits of the. stack
pointer.

Condition bits affected: None

NOTE: The immediate data for this instruction is a 16-bit
quantity. All other immediate instructions require
an 8-bit data value. _.

Example 1: · <

Assume that instruction label STAT refers to memory
location 103H (=259). Then the following instructions
will each load the .H register with .OlH and the L register

. with 03H:

Example 2:

LXI H,103H
LXI H,259 '
LXI H,STRT·

.. ,,

The following instruction lo-ads the stack ·pointer with
the value 3ABCH:

LXI SP,3ABCH

MV-1 Move Immediate Qata

Format:

Label Code O(!erand

oplab: MVI/reg, dita
+-

Ia 1°1
reg 11 11 I 0 I .. data

,.
I I I I

Description: The byte of immediate data is stored in
the specified register or memory byte.

Condition· bits affected: None

Example

Label Code Operand

M1: MVI. H,3CH
M2: MVI L, OF4H
M3: MVI M,OFFH

Assembled Data

· 26EC
·•

2EF4
36FF

Rev.C

(j

The instructions at Ml loads the H register with the
byte of data at M1 + 1, i.e .• 3CH.

Likewise,. the instruction· at M2 loads the -L register
with OF4H. The instruction at M3 causes the data at M3 + 1
(OF FH) to be stored at memory location 3CF4H. The mem­
ory location is obtained. by concatenating the contents of
the H and L registers into a 16-bit address.

NOTE: The instructions at M1 and M2 above could be re­
placed by the single instruction:

LXI H, 3CF4H

ADI Add Immediate To Accumulator

Format:

Label Code

oplab: ----ADI

Operand

~data

! 1-

Description: The byte of immediate data is added to
the contents of the accumulator using two's complement
arithmetic.

Condition bits affected> Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Label Code Operand Assembled Data

·ADL MVI- A, 20· 3E14
AD2: ADI 66 C642

,AD3:_ ADI -66 C6BE

The instruction at AD1 loads the accumulator with
14H. The instruction at AD2 performs the following
addition:

Accumulator = 14H = 00010100
AD2 Immediate Data= 42H = 01000010

Result = 01010110 = 56H = New
accumulator

The parity bit is set. Other status bits are reset.

· The instruction at AD3 restores the original contents
of the accumulator by performing the following addition:

Accumulator= 56H = 01010110
AD3 lmmedi,ate Data = OBEH = 1011-1110

Result= 00010100 = 14H

The Carry, Auxiliary Carry, and Parity bits are set.
The Zero and Sigri bits are reset.

27

ACI Add Immediate To Accumulator With. Carry

Format: ·•

Label

oplab:

Code

ACI

Operand·

..t"data

L.I1..J.I 1 .L.I 0...JI_0 ..._11.....JIL....1..J...I_1
L..' a...LI ~..J.-.L.d_.a_ta..._'/-.....J·· L......J........JT,

Description:)he by_te of immedi~te,_data is _added to

the contents o! the accumulator.plus, the_c.pntent~ p~Jh!!
carry bit.

Condition bits affected: ~arry,, Sign, ~erq, _eariw.
Auxiliary Carry

Label code

C1: MVI
C2: ACI
C3: ACI

Operand·
. , I,,

A, 56H
-66
66
. ··.: ~ ~ .

Assembled bata
. fi,. . .

3E56
CEBE
CE4Z

·J -:-··-::.-·- ·.:.

Assuming that the Carry bit = 0 just before the in­
structionat C2 is executed, this-instruction will p~oduce the
same result as instruction AD3 in the example of Section
3.10.3. Ill. ,:,,~'!

That is·: ..
' :~cu~ulat~r' ;= _1:41-·(

Carry = 1

{ i ; ' ~ I (

-~ .;,,(. - -~

The instruction at C3 then performs the following
<!ddition:. -. -· . ' ~ ;· ... ' . . . ' -~

.Accumulator '7 141-i_= 009.1010()
C3 Immediate Data =.42H = 01000010

Carry bit =: 1
Resuft =

. '

1
01 0Hl11 ,-,;, 57 H

,, , .. ;.;'

SUI Subtract Immediate From ACcuh,lJiator

Format: .. ;;

Label Code ·Operand.

oplab: .,... S_UI ;.data._ j

data· ..

.. .. ·

:

·' ·.

Description: The byte of immediate data is subtracted
from the co~tEmi:s of the ac~umulator usi~g· iwo·~ ~orhple-
ment arithme~ic.

Since this is a subtraction operation: the carry bit is
set, indicating a borrow, if there is no car~y out of the high­
order bit position, and reset if there is a ca~ry out.

Condition bits affecte~: Carry. Sigr:', Zero, Parity.
Auxiliary Carry

I
I

II

Example:

This instruction can be used as the equivalent of the

DCA instruction.

Label _ - Code

MVI
51: SUI

Operand

A,O
1

Assembled Data

3EOO

D601

The MVI instruction loads the accumulator with zero.

The SUI instruction performs the following subtraction:

Accumulator = OH = 00000000

-51 Immediate Data= -1 H = 11111111 two's complement

Result = 11111111 = -1 H

Since there was no carry, and this is a subtract opera­

~ion, the Carry bit is set, indicating a borrow.

The Zero _and Auxiliary Carry bits are also reset,

while the Sign and Parity bits are set.

SBI Subtract Immediate from Accumulator
With Borrow

-Format:

Label

oplab:

-Code

~SBI

Operand

...,...data

d~ta
I ~ I

Description: The Carry bit is internally added to the

byte of immediate data. This·value is then subtracted from

the accumulator using two's complement arithmetic.

This instruction and the SBB instruction are most use­

ful when performing multibyte subtractions. For an ex­

ample of this, see the section on Multi byte Addition and

Subtraction _in Chapt_er4.

Since this is a subtraction operation, the carry bit is

set if there is no earry out of the high-order position, and

reset if there is a carry out.

Condition bits affected: Carrv., Sign, Zero, Parity,

Auxiliary Carry·

Example:

Label Code

XRA
SBI

Operand

A

Assembled Data

AF
DE01

The X RA instruction will zero the accumulator (see

example earlier in this chapter). If the Carry bit is zero, the

SBI instruction will then perform the following operation:

- 28

·Immediate Data + Carry = 01 H

·Two's Complement of 01 H = 11111111

Adding this to the accumulator produces:

Accumulator= OH = 00000000
11111111

.-------11111111 = -1H =Result

C: carry out= 0 causing the Carry bit to be set

The Carry bit is set, indicating a borrow. The ZeFo arld

Auxiliary Carry bits are reset, while the Sign and Parity bits

are set.

l_f, however, the Carry bit is one, the SBI instructio'n

will perform the following operation:

Immediate Data+ Carry= 02H

Two's Complement of 02H = 11111110

Adding this to the accumulator produces:

Accumulator = OH = 00000000
11111111
11111110=-2H =Result

lcarry out= 0 ~ausing the Carry bit t~'be set

This time the Carry and sign .. bits are set, while the

zero, parity, and auxiliary Carry bits are reset.

ANI And Immediate With Accumulator

Format:

Label Code Operand

oplab: ~ANI II' data I
h".

l111l1 1o
1
oj1

1
1

1
oj data . I

Description: The byte of immediate data is logically

ANDed with the contents of the accumulator; The Carry bit

is reset to ·zero.

Condition bits affected: Carry, Zero, Sign, Parity,
Auxiliary Carry.

Example:

Label Code

MOV
A1: ANI

Operand

A,C
OFH

Assembled Data

79
E60F

The contents of the C register are moved to the accu­

mulator. The AN I instruction then zeroes the high-order

four bits, leaving the low-order four bits unchanged. The

Zero bit will be set if and only if the low-order four bits

were originally zero.

If the C register contained 3AH, the ANI would per­

form the following:

Accumulator= 3AH = 00111010
AND (A1 Immediate Data)= OFH = 00001111 .

Result = 00001010 = OAH

0

0

0

(_)

XRI Exclusive-Or Immediate With Accumulator

Format:

Label Code . ·

oplab:----X A I

Operand

data
.. J

data
L I.

Description: The byte of immediate data is EXCLU­
SI'V E-OR.ed with the contents of the accumulator .,The carry
bit is set to zero.

Condition bits affected: .Carry, Zero, Sign, Parity,

Example:
Auxiliary Carry.

_ , Since any bit _EXCLUSIVE-ORed with a one is com­
plemented, a~d any bit EXCLUSIVE-OAed with a zero is
unchanged, this instruction can be used to complement spe­
cific bits of the accumulator. For instance; the instruction:

''

. XRI 81H

will complement the least and most significant bits of the
accumulator, leaving the rest unchanged. If the accumulator
contained 3BH, the process would work as follows:

Accumulator = 3BH = 00111011
XRI Immediate data= 81 H = 1000000.!_

Result= 10111010

OR I Or Immediate With Accumulator . ·- .

'F:ormat:

label Code

oplab: ORI

Ope ran~

1
data

d:t~
e· I ~ I

Description: The byte of immediate data is logically
ORed with the contents of the accumulator.

The result is stored in the accumulator. The Carry bit
is reset to zero, while the Zero, Sign, and Parity bi~sare set'
according to the result.

Condition bits affected: Garry, Zero, Sign, Parity,
Auxiliary Carry.

Example:

Label ·Code Operand Assembly Data

MOV A,C 79
OR1: ORI OFH F60F

The contents of the C register are moved to the accu­
mulator. The ORI instruction then sets the low-order four
bits to one, leaving the high-order four bits unchanged.

29

If the C register contained OB5H, the ORI would per­
form the following:

.. · · k~~~ulator= OB5H = 10.ll01 01

OR (OR1 Immediate da~a) = OFH = OOp<lJ11l
. Result= 10111111 = OBFH

CPI Com·pare Immediate With_ Accumulator

Format:

Label Code Operanq

oplab: CPI data
.Y)/ --- d~~

I

,,,11111111111101
I I I I

Description: The byte of immediate data is compared
to the contents of the accumulator.

The comparison is performed by internally subtract­
ing the data from the accumulator using two~s complement
arithmetic, leaving the accumulator unchanged· but setting
the condition bits by the result.

In particular, the zero bit is set if the quantities are
equal, and reset if they a·re unequal.

Since a subtract operation is performed,. the Carry bit
will be set if there is no carry out of bit 7, indicating the

immediate data is greater than the contents of the accumu·
lator, and reset otherwise.

NOTE: If the two quantities to be compared dit.fer in sign,
the sense of the Carry bit is reversed.

Condition bits affected: Carry, Zero, Sign, Parity,
Auxiliary Carry

Example:

Label Code Operand

A,4AH
40H

Assembled Data

MVI
CPI , ,

1
FE40

The CPI instruction performs the following operation:

Accumulator= 4AH= 01001010,[
+(-Immediate data)= -40H= 11000000 ·

- . IJ 00001010 ',;, Res.ult

carry out= 1 causing ·the Carry bit to be reset

The accufT!ulator still contains 4AH, but the zero bit
is reset indicating that the quantities were• unequal, and the
carry bit is reset indicating DATA .is less than the
accumulator.

Rev. C

DIRECTADORESSING INSTRUCTIONS

This . section describes instructions which reference
memory by a 'two-byte ·address which is part of the instruc­
tion itself. ·l~structions 'in this class occupy three bytes as
follows:

first.

Ia I0-11,.C?IP,01110,1owadd _, hi i!dq I
I I I I I I I I I I I I I I

t t
most.significant 8
bits.of _a memory
address

.least significant 8 bits of a
memory address .

10 for STA
11 for LOA
00 for.SHLD

01 _f()r LH Lp
'

Note that the addre.ss' is. held least· si~)n ificant byte

The general assembly languag~ format is:

Label code Operand

exp label: op
', ~ .

·L_ .L _.. -~ A 16. -bit _mem_.ory,.ad_dress

. S~A, LOA, SHLD·, or LHLD

_ Optional instruction label,

STA Store Accumulator Direct

Format:

Label Operand

oplab: STA. adr'
.., i/ ,..

: ., ~.

Description: The ~onte!1~s of the. accumulator replace
the byte at the 'memory addr~ss formed by concatenating
HI ADd with LOW Am(

. Cor;~ditjon bi~s af.fected: None

Example:

The following instructions will each store the contents
.of the accumulator at' memory address 5B3H:

SAC: ST A 5B3H
STA 1459

LAB: STA 01!)1101J0011B ..

30

LOA Load Accunn.ilator Direct

Format:

Label

oplab:

Code ·

LOA'

Operand·

i/ adr '>I ·

Description: The byte at the-memorv address formed
by concatenating HI ADD with LOW ADD replaces the cori-
tents of the accumulator.

Condition bits affected: None

Example:

The following instructio~s Will. eacti'rej:>lace the accu­
mulator contents with the· data held at location 300H:

GET:

LOA 300H
LOA _ 3*(16*16)
LOA · . 200H+256

SH LD Store H and L Direct

Format:·

Label

oplab:

~-·

Code

SHLD

Operand

i/ adr '>I ...
··'

. . -
·Description: The contents of the L register are.stored

at the memory address. formed. by C()ll.catenati~_g HI ADD
with LOW ADD. The contents of the H register are stored at
the next higher memory address:

Condition bits affected: None ..

,·,.·.
If the H and L registers contain AEH and 29H respec­

tively, the-instruction:·

SHLD 10AH

will perform the following operation:
I

Memory HEX .: Memory
Before SHLD ADDRESS After SHLD

; 109

I~~ lOA
10B
10t

.

0

v

u

u

LHLD Load H And L Direct

Formaf ·

Label

·oplab:

Code

LHLD

.. - .. :. -·------"rl'---·~·- .. --~ .. -~ ··-·
Operand

k!' adr '>I ..

Description; The byte at th~ memory address formed

by concatenating HI ADD with LOW ADD replaces the con­

tents of the L register. The byte at the next higher memory

address replaces the contents of the H register ..

Condition bits affected: None

Example:.

If memory locations 25BH and 25CH contain FFH

and 03H respectively, the instruction:

LHLD 25BH

will load· the .L register with F FH, and.~will load the H. regis­

ter with 03H.

JUMP INSTRUCTIONS

This section describes instructions which alter the nor­

m~i execution sequence of instructions. Instructions in this

class occupy one or three bytes as follows:

(a) For the PCH L instruction (one byte):

(b) For the remaining instructions (three bytes):

1111lxl~·lxlo11lxllowadd I hi add .I
• I I I I I I I I I I I I I I •

1) most significant 8
bits of a memory
address.

least signific'ant8'bits of a

memory address·

1 for JMP, 0 otherwise

L 000 for JMP or JNZ

.001 for JZ
010 for JNC
011 for JC
100 for JPO
101 for JPE
110forJP
111 for JM

Note that, just as addresses are normally stored in

memory with the low-order byte fi r'st, so are the addresses

31

represented in the Jump instructions.

The three-byte instructions in this class cause a trans­

fer of program control depending upon certain specified con­

ditions. If the specified condition is true, program execution

will' continue at the memory address formed by concatenat­

ing the 8 bits of HI ADD (the third. byte cit. the instruction)

yvith the 8 bits of LOW ADD (the second byte of the instruc­

tion). If the specified condition is false, program execution

will continue with the next sequential instruction.

The general assembly language format is:

Label

oplab:

Code

PCHL

Operand .

L '--not used

. Optic>nal i~struction label

Label · ·Code

label: op

-or-

Operand

EXP

!:· ·'''··

tL~ ~A 16-bit address

JMP,JC,JNC,JZ,JNZ,JM,JP,JPE,JPO

Optional instruction label

PCHL. Load Program Counter

Format:

·Label

oplab:

Code·

PCHL

·operand

!' .' .. -!':

Description: The contents of the H register replace the

most significant 8 bits of the program counter, and the con­

: tents of the L register replace the least significant 8 bits of

the program counter. This causes program execution to con­

tinue at the address contained in the Hand L registers.

Condition bits affected: None

Example 1:

If the H register contains 41 H and the L register con-

tains 3EH, the instruction:

PCHL

will cause program execution to continue with the instruc-

tion at memory address413EH. 1.

I

I

II

I

Example 2:

Arbitrary
Memo,ry

Address Label

40CO. c ADR: ·

4100 STRT:

4200 LOC:

.... ,,

Code. . Operand

DW LOC.

LHLD ADR
PCHL

NOP

Assembled
Data ..

'0042 .. :

2AC040
E9

'00

Program execution begins at.STRT. The LHLCf in­
struction loads registers H and L from locations 40C1 H
and 40COH; that is, with 42H and OOH, respectively. The
PCH L instruction then loads the pr,ogram counter with
4200H, causing program execution to continue at location
LOC.

JMP Jump··

Format:

Label

oplab:

Code

JMP

'operand

adr
~ ">>

Description: Program execution -continues uncondi·
tionally at memory ,address· adr. ·

Condition bits· a'ffect.ec!:' None

Example:

:;

'
. ·, ,.

Arbitrary.
, Memory. Assembled·

Address. Label. C.ode · O~erand ,. Data· ·.,

3COO JMP CLR C3003E
3C03 AD: ADJ. .2 C602

3DOO LOAD: MVI A, 3 3E03 .,
3D02 JMP 3C03H c3o33c
3EOO CLR: XRA A AF
3E01 JMP $-101 H C3003D

The execution sequence ol this example is as follow.s:

32

The JMP instruction·pt 3COQH replaceqhe·cqf\ten~s
of the program counter with 3EOOH. The next instruction .. · ,_.,
executed is the XRA at CLR, clearing the accumulator. The
JMP at 3E01 H is then executed::

The program counter is set'to-·3DOOH, and the MVI at
this address loads the. accumulator with 3. The JMP at 'I
3D02H sets the program counter to 3C03H, causing tli~ ADI

· instruc!ion to tle.executel
. . ·'f'-

From here, normal program execution continu11s with
the inst.ri.icti~n at 3C05H. ·. . . .

JC Jump If Carry

Format:

Label

oplab:

Code

JC

Operand

adr
~ .· ">~.,·

~ ,!.

. Description:_lf .the Carry. bit i.s one,. program execu,
tion continues at the memory add~ess adr.

Condition bits affected: None

For .a programming example, see the. section on JPO
later in this chapter.

JNC Jump If No Carry .

Format:

Label

oplab:

Code

'JNC

Operand.

· · adr
~ ">>

Description·: If the Carry bit is zero, program execu- ,
tion continues at the memory address adr.

Condi.tiori bits affected: ·None

For a pwgr&mming example see the section on JPO
later in this chapter.

JZ Jump If Zero

Format:

Label

oplab:

. . . ~
.· Operand

adr
~ ~

Description: If the zer~ bit' is one, program execution
continues at the memory (ldd~ess ad_r ..

Condition bits affected: None

0

JNZ Jump If Not Zero

Format:

Label

oplab:

Code.

JNZ

, Operand

adr
tl \

Description: If the Zero bit is zero, program execu­
tion continues at the memory address adr.

Condition bits affected: None

JM Jump If Minus

Format:

Label

oplab:

Code

JM

·Operand

adr

IE \

Description: If the Sign bit is one (indicating a nega­
tive result), program execution continues at the memory
address adr.

Condition bits affected: None

JP Jump If Positive

Format:

Label

oplab:

Code

JP

. Operand

adr

I \i

Description: If the sign bit is zero (indicating a posi­
tive or zero result). program execution continues at the
memory address adr.

Condition bits affected: None

JPE Jump If Parity Even

Format:

oplab: JPE

Operand

adr

IE ~

1.1 1.1 11 1011 I o 1·1 1-o I ~ow-add I hi add ~-
- .•.....• I I I I I I I. I I I I I I I.

Description: It the parity bit is one (indicating a result
with even parity), program executioncontinues at the mem­
ory address adr.

33

Condition bits affected:· None

JPO Ju!Iut I(Parity Odd
Format:

Label

oplab:

Code

JPO

Operand·

adr
~::.

Description: If the Parity bit is zero (indicating a re­
sult with odd parity). program execution -~oritinues at the
memory address adr. .:~ .

Condition bits affected: None ·

·Examples of jump instructions:

This example shows three different. but equivalent
methods for jumping _to one of two points in. a program
based upon whether or not the.Sign bit of a number. is set.
Assume that the byte to be tested is in the C register.

Label

ONE:

TWO:

THREE:

PLUS:

MINUS:

Code

MOV
ANI
JZ
JNZ

MOV
RLC
JNC
JMP

MOV
ADI
JM

Assembled
Operand Data

A,C 79
SOH E680
PLUS CAXXXX
MINUS C2XXXX

A,C 79
07

.PLUS D2XXXX
.MINUS C3XXXX

A,C 79
0 C600
MINUS FAXXXX
SIGN BIT

RESET

SIGN BIT SET

· II" • .

The AND immediate instruction in block ONE zeroes
all bits of the data byte except the Sign bit, which remains
unchanged. If the Sign bit was zero, the Zero condition bit
will be set, and the JZ instruction _will cause program con­
trol to be transferred to the instruction at PLUS. Otherwise,
the JZ instruction will merEly update the program counter
by three, and the JNZ instruction will be executed, causing
control to ·ba transferred to the instruction at MINUS. (The
Zero bit is unaffected by all jump instructiqns).

The RLC instruction in block TWO causes the Carry
bit to be set equal to the Sign bit of the 9,ata byte. If the
Sign bit was reset, the JNC instruction causes a jump to
PLUS. Otherwise the JMP instruction is executed, uncondi­
tionally transferring control to MINUS. (Note that, in this
instance, a JC instruction could be substiWted for the un­
conditional jump with identical results).

Rev. C

ll
The add immediate instruction· ih "block THREE:

causes the condition bits to be set. If the sign bit was set;
the JM instruction causes program control to be transferred
to MINUS. Otherwise, program control flows automatically
into the PLUS routine;

CALL SUBROUTINE INSTRUCTIONS

This section describes the instructions which call sub·
routines. These instructions operate like the jump instruc·
tions, causing a transfer ofprogram control. In addition, a
return address is pushed onto the stack for use by the
RETURN instructions (see Return From Subroutine In·
structions later in this chapter).

Instructions in this class occupy three bytes as follows:

t

I
t

most significant 8
bits of a memory
address

least significant 8 bits of a
·memory address

1 for CALL, 0 otherwise

000 for CNZ
001 for CZ or CALL
010 for CNC
011 for CC
100 for CPO
101 for CPE
110 for CP
111 for CM

Note that, just as addresses are normally stored in
memory with the low-order byte first, so are the addresses
represented in the call instructions.

The general assembly language instruction format is:

Label Code Operand

\label: ~ sub

\

\ . ~ A 16-b;t momo'y odd'"'

CALL,CC,CNC,CZ,CNZ,CM,CP,CPE,CPO

Optional instruction label

Instructions in this class call subroutines upon certain
specified conditions. If the specified condition is true, a re·
turn address is pushed onto the stack and program execution

34

continues at memory address SUB, formed by concatel")atirig
the 8 bits of HI ADD with the 8 bits of LOW .ADD . .If the
specified condition is false, program execution continues
with the next sequential instruction.

CALL -Call.

Format:

Label

oplab:

Code

CALL

·Operand

sub

Description: A call operation is unconditionally per·
formed to subroutine sub.

Condition bits affected: None

For programming examples see Chapt~r 4.

CC Call If Carry

Format:

Label

oplab:

Code

cc
Operand

sub

Description: If the Carry bit is one, a call operation is
performed to subroutine sub.

Condition bits affected: None

For programming examples- using subroutines, see
Chapter 4.

CNC Call If No Carry

Format:

Label

oplab:

Code

CNC

Operand

sub

Description: If the Carry bit is zero, a call operation :i's
performed to subroutine sub.

Rev. B

0

u

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CZ Call If Zero

Format:

Label

oplab:

Code

cz
Operand

sub

Description:. If the Zero bit is set (= 1). a call opera­
tion is performed to subroutine sub.

· Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CNZ Call If Not Zero

Format:

Label

oplab:

Code

CNZ

Operand

sub

,, 11 I 0 1 0 1 0 ,, 10 I 0 I, l~f, a1d~ 1
I, ~i, ~~d,

1
I

Description: .If the Zero bit is reset (=0), a call opera­
tion is performed to subroutine sub;

Condition bits affected: None

For programming examples using .subroutines, see
Chapter 4.

CM Call If Minus

Format:

Label

oplab:·

Code

CM

Operand

sub

~ ~

I, I 1 I 1 I 1 I 1 I, 1010 l.'~:v.•,d~.l. ~::~~'I
Description: If the Sign bit. is one (indicating a minus

result), a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

35

CP Call l_f Plus

Format':

Label

oplab:

Code

CP

Operand

sub

Description: ff the Sign bit is zero (indicating a posi­
tive result), a call operati~n; is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

C~E Call If Parity Even

Format:

Label

oplab:

Code Operand

CPE sub

,, 11 ,, I 0 11 ,, I 0 I 0 I I ~~~~ aldld I L I?~; a~d~ I I
Descriptio.n: If the Parity bit is one'' (indicating even

Parity), a call operation is performed to subroutine sub .

. Condition bits affected:. None

For programming examples using subroutines, see
Chapter 4.

CPO Call If Parity Odd

Format:

Label

oplab:

Code

CPO

Operand

sub

Description: If the Parity bit is zero (indicating odd
parity), a call operation is performed to subroutine sub ··-·

Condition bits affected: None .,

For programming examples using subroutines, see
Chapter 4.

RETURN FROM SUBROUTINE INSTRUCTIONS

This section describes the instructions used to return
from subroutines. These instructions pop the last address
saved on the stack into the program counter, causing a trans­
fer of program contr.<~l. to that address ..

Rev. C

Instructions in this class occupy one byte as follows:

. '·

XXX
I I

\ ~ 1 for RET,
0 otherwise

000 for RNZ
001 for RZ or RET

. 010 for RNC
.. Ol1 for RC .

100 forRPO
101 for APE
110 for RP
111forRM

The general assembly language instruction format is:·

Label

oplab:

Code Operand

op

~ \ '-__ not u,.d

\. . .ET,RC!RNC,RZ,RNZ,RM,RP,RPE,RPO

_Optional ,sta~einent label

Instructions in this class perform RETU AN operations
upon certain s~ecif,ied conditions'. If the specified condition
is true, a return operation i.s performed. Otherwise, program
execution continues with the next sequential instruction.

RET Return'

Format:

Label Code Operand

oplab: RET

~

Description: A return operation is unconditionally
performed.

Thus, execution proceeds with the instruction immedi­
ately following the last call instruction.

Condition bits affected: None

RC Return If Carry

Format:

Label

oplab:

Cod_e··

RC
~

Operand

36

Description: If the carry bit is one, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RNC Return If No Carry

Format:

Label

oplab:

Code

RNC

t
Operand

" t!'

Description: If the carry bit is zero, a return ope,ration

is performed.

Condit ion bits affected: None

For programming examples, see Chapter 4.

RZ Return If Zero

Format:

Label

oplab:

Code

RZ

Operand

Description: If the Zero bit is one, a return operation
is performed. · · 1

Condition bits affected: None

For programming examples, see Chapter 4.

RNZ Return If Not Zero

Format:

Label

oplab:

Code

RNZ

~

Operand

Description: If the 2ero bit is zero, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

Rev: B

()

~-u

()

RM R.eturn lfMiiius

Fbrmat:

label

. ;}!Pial:l: .

... ·-:

'.~

Code

RM

l

Operand

· D~~dri.pt·i~n: If the Sign bit is one (indicating a minus

result). a return operation is performed.

Condition bits affected: None

For programm,ing e~amples, se.e ~hapter 4.

RP Return If Plus

Format:

label Code Operand -.-.· i·.

oplab: RP

t

Description: If the Sign bit is zero (indicating a posi­

tive result). a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4.
; ..

APE Return If. Parity Even

Format:

label.

oplab:

· •. Cod~

RPE

\·
.·1

..:
'·

Description: If the Parity bit is one (indicating even
parity). a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RPO Return If Parity Odd
·.'

Formaf:

label -:-; Code

oplab: RPO
.. ~

37

Descrip.tion:. lf:·the_.Parity:bi,t:·is.zero (indica.ti~g oeld.
parity), a return operation is performed .

Condition bits~ffected: :Non~·

For programming examples, see Cl)apter 4 .

-
RST INSTRUCTION

This section describes the RST (restart) instruction,

which is a special purpose subroutine jump. This instruction
occupies 'one byte. ·

Format:

label

oplab:

Code

RST

exp
I I

Operand

/ .. exp

11 11 11 I
NOTE: "exp" must evaluate to a number in the range

OOOB to 111 B.

Description: The contents of the· program counter·'
are pushed onto the stack, providing a return address for
later use by a RETURN instruction.

Program e·xecution continues'at memory address:

0000\0000\00 E X\P,OOO~~~
Normally, this instruction is used in conjunction with

up to eight eight-byte rputines in' the lower 64 words of

memory in order to service interrupts to the processor. The
interrupting device causes a partic.ular RST instruction to
be executed, transferring control to a subroutine which r:
deals with the situation as described in Section 5.

A RETURN instruction .then ,causf!.S the program
which was originally runni~g to resume e~ecution ~t the
instruction where the interrupt occurred.

Condition bits affected: None

Example:

Label Code Operand, Comment

RST 10 - 7·- ;Call the subroutine at

; address 24 (011000Bl,
RST E SHl1 ; Call the subroutine at

; address 48 (11 00008). E
; is equated 'to 1'18.

RST 8 ; Invalid instruction -~F>wd-&..
RST 3 ; Call the subroutine at

; address 24 (0110008)

'-----·-·--------------------'

For detailed. _e)(~!T'ples of interrupt handli~g. see
Chapter 5.

Rev. C

.{,7

l

INTERRUPT FLIP-FLOP INSTRUCTIONS

This section describes the instructions which operate
directly upon the Interrupt Enable flip-flop INTE. Instruc­
tions in this class occupy one byte as follows:

""'
. "-----1 for El .

0 for Dl

The general assembly language format is:

Label

label:

Code

op

Operand

\

\ "----- not u"d

El or Dl

Optional instruction label

El Enable Interrupts

Format:

Label Code

oplab: El

Operand

Description: This instruction sets the INTE flip-flop,
enabling the CPU to recognize and respond to interrupts.
The interrupt is acknowledged after a 1-instruction wait.

Condition bits affected: None.

Dl Disable Interrupts

Format:

Label

oplab:

Code

Dl

Operand

Descript-ion: This instruction resets the INTE flip-flop,
causing the CPU to ignore all interrupts.

Condition bits affected: None

INPUT/OUTPUT INSTRUCTIONS

This section describes the instructions which cause
data to be input to or output from the 8080. Instructions in
this class occupy two bytes as follows:

38

t
8-bit device number

The device number is a-hardware characteristic of the
input or output device, not under the programmer's COr;Jtrol.

..::: I . - . _, . . . ~.- . . ·. ~· ·•

The general assembly language format is: .• ,. '

Label

label:

Code

op

Operand

exp
.·· "',;

IN

\

\ ~ An 8-b;t d";" numb"

IN or OUT

Optional instruction label

Input

Format:

Label Code Operand

oplab: IN exp

l
exp

I I I I I

Description: An eight-bit data byte is read from input
device number exp and replaces the contents of the

accumulator.

Condition bits affected: None

Example:

Label Code Operand

IN 0

IN 10/2

Comment

; Read one byte from input
; device# 0 into the
; accumulator
; Read one byte from input

· ; device·# 5-into the

0

-~-·' ; accumulator

I__ __ ___J_~)

Rev. C

G

OUT Output

Format:

Label

oplab:

Code

OUT.

Operand

exp
I

Description: The contents of the accumulator are sent
to output devic!! nymber exp.

Condition bits affected: None

Example:
._: . . l ~·-. ;.·-

Label Code Operand Co~ment

10

OUT 1FH

; Write the contents of the
; accumulator to output

·· ;·device# 10
; Write ttie contents of the

. • ; accumulator to output
... ··;;device.# 31: ·

··.;

HL T H~_LT INSTRUCTION

This section describes the HLJ instruction, Which oc·
cupies one byte.

•·'

Format:

Label

oplab:

. -

Code

HLT

Operand

t· '
not used

Description: The program· counter is incremented to
the address of the~ next sequential. instruction. The CPU then
enters the STOPPED state and no furthe~ activity takes
place until an interrupt occurs.

PSEUDO - INSTRUCTIONS

This section describes pseudo-instructions recognized
by the assembler. A pseudo-ln~truction is written in the same
fashion as the machine' instructions describ~d earlier in this
chapter, but does not cause any object code to be generated.

39

It acts merely to provide the assembler with information to
be used subsequently while generating object code.

The general assembly language format of a pseudo­
instruction is:

Label ·code

name. op

Operand

opnd

Comment

\ \ '- Operand, may be optional

ORG,EOU,SET,END,I F ,Ef'.!D IF ,MACRO,
ENDM, TITLE

name may be required, optional, or illegal·

NOTE: Names on pseudo-instructions are not followed by
a colon, as are labels. Names are required in the
label field of MACRO, E_OU, a~d SET pseudo­
instructions. The label fields of." the remaining·
pseudo-instructions may contain 9ptional labels,
exactly like the labels on machine' instructions. In
this case, the label refers to the memory location
immed.iately .following the last previously i!Ssem­
.bled inaehine instruction: If present, names may

. II:
be 1 to 5 characters long. ·

ORG Origin

Format:

Label

oplab:·

Code

ORG

Operand

exp.

t
A 16-bit address

Description: The assembler's location counter is set to
the value of exp, which must be a valid 16-bit memory ad­
dress. The next machine instruction or data byte(s) .gener­
ated wi II be assembled at address exp, exp+ 1, etc.

If no 0 RG appears before the first machine instruc­
tion or data byte in the program, .assembly will begin at
location 0. "Exp" must be defined before the ORG state­
ment is. encountered. ·

Example 1:

Hex Memory Assembled
Address Label Code Operand Data

ORG 1000H
1000 MOV A,C 79
1001 ADI 2 C602.

1003 JMP NEXT C35010
HERE: ORG 1050H

1050 NEXT: XRA A AF

Rev. C

II

The first ORG pseudo-instruction informs the assem- ·

bier that the object program will begin at memory address

1000H. The second ORG tells the assembler to set its loca­

tion counter to 1050H and continue assembling machine in­

structions or data bytes from that point. The label HERE

refers to memory location 1 006H, since this is the address

immediately following the jump instruction. Note that the

range of memory from 1006H to 104FH is still included in

the object program, but does not contain assembled data. In

particular, the programmer should not assume that these

locations will contain zero, or any other value.

Example 2:

The ORG pseudo-instruction can perform a function

equivalent to the DS (define storage) instruction (see the

section on DS earlier in this chapter). The following two

sections of code are exactly equivalent:

Memory Assbl.
Address Label Code Operand Label Code Operand Data -- -- -- ----- --
2COO MOV A,C MOV A,C 79
2C01 JMP NEXT JMP NEXT C3102C
2C04 DS 12. ORG $+12

2C10 NEXT: XRA A NEXT: XRA A AF

Multiple ORGs need riot be listed in ascending order,

but this practice creates potential seginen.t overlapping

problems.

EQU Equate

Format:

Label Code Qperan9

name EQU exp

\
t

An expression

Required name

Description: The symbol "name" is assigned the value

by EXP by the assembler. Whenever the symbol "name" is

encountered subsequently in the assembly, this value will be

used.

NOTE: A symbol may appear in the n'ame field of only one

EQU pseudo-instruction; i.e., an EQU symbol may

not be redefined.

Example:

Label Code Operand Assembled Data

PTO EQU 8

OUT PTO D308

40

--------- ------------

The OUT instruction in this example is ~<;ll:liva_lent- to--.

the statement:

OUT 8

If at some later time the programmer wanted the

name PTO to refer to a different "ciutput port, --it would be

necessary only to change the EQU statement, not every

OUT statement.

SET

Format:

Label Code

name SET

\
t ,._ '•, _.,";

An· expression

f!eq,uired name
. '' . '~ .. '

Des~ription: The _symbol "nam~"- is assigned the value

of exp by. the ~ss~mbler, Whenever the symbol "name" is

encountered subsequently in the assembly, this value will be

used unless changep by .. another SET instruction._::

This is· identical to the EQU equation, except that

symbols may be defined more than once.

Example 1:

- .·. --- .. -
Label Code Qperand Assembled Data

IMMED SET 5 .. i .. -
ADI IMMED ·c605 .,:'

IMMED SET 10H-6

ADI IMMED C6QA· ·,

- .~' . ; ._

Example 2:

Before every assembly. the 'ass~mbler perforr~s the fol­

lowing SET statements:

Label Code Qperanc:!_

8 SET. 0

c SET : 1 -
D SET 2
E SET 3

.H SET" " 4 . - -· C;

L SET =· 5
M ·sEt

. "
6

A SET 7
PSW SET 6 . - _ _._

SET SP 6

Mov D;A'

would be invalid, forGing th_e. programr;ner to. wri_te:.

MOV 2,7

Rev. C

'

0

(j

END End Of Assembly

Format:

Label

oplab:

Code

END

Operand

exp

t
an expression

Description: The END statement signifies to the as­
sembler that the physical end of the program has been
reached, and that generation of the object program and (pos­
sibly) listing of the source program should now begin.

One and only one END statement must appear in

every assembly, and it must be the (physically) last state­

ment of the assembly.

The operand field can contain an expression repre­

senting the starting address for a loader that performs a

"load and go" function. The address field of the listing and

the end record of the object code will contain this starting

address. If the expression is omitted, zero is assumed.

IF AND END IF Conditional Assembly

Format:

Label

oplab:

oplab:

Code

IF

t
an expression

statements

END IF

Description: The assembler evaluates exp. If exp eval­

uates to zero, the statements between IF and ENDIF are

ignored. Otherwise the intervening statements are assem­
bled as if the IF and ENDIF were not present. IF-ENDIF

pseudo-instructions can be nested to eight levels.

Example:

Label Code Operand Assembled Data l
COND SET OFFH

IF COND

MOV A,C 79

END IF

COND SET 0
IF COND

MOV A,C

ENDIF

XRA c A9

41

MACRO AND ENDM Macro Definition

Format:

Label

name

J

Code

MACRO

Required name

Qperand

I ist

t
A I ist of expressions,

normally ASCII constants

statements

oplab: ENDM

Description: For a detailed explanation of the def­

inition and use of macros, together with programming

examples, see Chapter 3.

The assembler accepts the statements hetween MAC­
RO and ENDM as the definition of the macro named
"name." Upon encountering "name" in the code field of an

instruction, the assem bier substitutes the parameters speci­

fied in the operand field of the instruction for the occur­

rences of "list" in the macro definition, and assemble~ the

statements.

NOTE: The pseudo-instruction MACRO may not appear

in the list of statements between MACRO and
ENDM. That is, macro definitions may not be

nested. However, macro calls can be nested up to

five levels in resident assemblers and up to nine

levels in the cross assembler.

TITLE Page Title

Format:

Label

oplab

Code

TITLE

Operand

string
'-v-'

String ol ASCII

characters enclosed

in quotation marks

Description: The string of up to 66 characters speci­

fied in the TITLE pseudo-instruction is printed beneath the

page header on all pages following the specification of the

title Ltntil a new title is specified. The absence of this

pseudo-instruction in a program forces a blank line below

the page header on each page. The first instance of TITLE

forces the string specified to appear on page 1 and all suc­

ceeding pages until a new title request is encountered.

Rev. C

0

42

G

(j

Macros (or macro instructions) are an ·extremely im­
portant tool provided by the assembler. Properly utilized,
they will· increase the efficiency of programming and the
readability of programs. It is strongly suggested that the user
become familiar with the use of macros and utilize them to
tailor programming to suit his specific needs.

WHAT ARE MACROS?

A macro is a means of specifying to the assembler that
a symbol (the macro name) appearing in the code field of a
statement actually stands for a group of instructions. Both
the macro name and the instructions for which it stands are
chosen by the programmer.

Consider a simple macro which shifts the contents of
the accumulator one bit position to the right, while a zero is
shifted into the high-order bit position. We will call this
macro SHRT, and define it by writing the following instruc­
tions in the program:

label Code Operand

SHRT MACRO
RRC ; Rotate accumulator

; right

ANI 7FH ; Clear high-order bit

ENDM

We can now reference the macro by placing the fol­
lowing instructions later in the same program:

label Code Operand

lDA TEMP ; load accumulator
SHRT

which would be equivalent to writing:

label Code

lDA
RRC

Operand

TEMP ; load accumulator

ANI 7FH

The example above illustrates the three aspects of a
macro: ~he definition, the reference, and the expansion.

43

The definition specifies the instru~tion sequence that
is to be represented by the macro name. Thus:

label Code Operand

SHRT MACRO
RRC
ANI
ENDM

7FH

is the definition of SHRT, and specifies that SHRT stands
for the two instructions:

RRC
ANI 7FH

Every macro must be defined once and only·once in a
program before it is referenced.

The reference is the point in a program where the
macro is referenced. A macro may be referenced in any num­
ber of statements by inserting the macro name in the code
field of the statements:

label Code Operand

lDA TEMP
SHRT ; Macro expansion
STA TEMP

The expansion of a macro is the complete instruction
sequence represented by the macro reference:

label Code Operand

lDA TEMP
RRC I ; Mocm oxpon•;on
ANI 7FH ·
STA TEMP

The macro expansion will not be present in a source
program, but its machine language equivalent will be genera­
ted by the assembler in the object program.

Now consider a more complex case, a macro that shifts
the accumulator right by a variable number of bit positions
specified by the D register contents. .1 •

Rev. C

This macro is named SHV, and defined as follows:

label Code Operand

SHV,. MACRO
LOOP: RRC ; Rotate right once

ANI 7FH ; Clear the high-order bit
OCR D ; Decrement shift counter
JNZ LOOP ; Return for another shift
ENDM

The SHV mac;:ro may then be referenced as follows:

label Code Operand

LOA TEMP
MVI 0,3 ; Specify 3 right shifts
SHV
STA TEMP

The above instruction sequence is equivalent to the
expression:

label Code Operand

LOA , .. TEMP -
MVI 0,3

LOOP: RRC
ANI 7FH
DCA D
JNZ LOOP
STA TEMP

Note that the D register contents will change when­
ever the SHV macro is re.ferenced, since it is used to specify
shift count.

A better method is to write a macro which uses an
arbitrary register into which it loads its own shift amount
using macro parameters. (Such a macro is defined as fol­
lows:

label Code Operand

SHV MACRO REG,AMT

MVI REG,AMT

LOOP: RRC

ANI 7FH
DCA REG

JNZ LOOP
ENDM

; Load shift count
; into register
; specified
; by REG
; Perform right rotate
; Clear high-order bit
; Decrement shift
; counter

SHV may now be referenced as follows:

label Code

LOA

Operand

TEMP

; Assume Register Cis free, and a 5-place shift is needed

SHV C, 5

the expansion of which is given by:

44

Label Code Operand .,

MVI C,5
!r LOOP: ARC

ANI 7FH
DCA c
JNZ LOOP

Here is.another example of an SHV reference:

Label Code Operand

; Assume Register E is free, and a 2-place shift is needed

SHV E, 2

and the equivalent expansion:

Label Code Operand

MVI E,2
LOOP: ARC

ANI 7FH
DCA E
JNZ LOOP

While the preceding examples will provide a general
idea of the efficiency and capabilities of macros, a rigorous
description of each aspect of macro programming is given in
the next section.

MACRO TERMS AND USE

The previous section explains how a macro must be
defined, is then referenced, and how every reference has· an·
equivalent expansion. Each of these three aspects of a
macro will be described in the following subsections ..

Macro Definition

Format:

Label Code

name MACRO

m a c r o b 0 d y

ENDM

Operand

plist

Description: The macro definition produces no assem­
bled data in the object program. It merely indicates to the
assembler that the symbol "name" is to be considered equiv­
alent to the group of statements appearing between the
pseudo instructions MACRO and ENDM (see Chapter 2 -
MACRO and ENDM Macro Definition). This group of state­
ments, called the macro body, may consist of assembly I an·
guage instructions, pseudo-instructions (except MACRO or
ENDM). comments, or references to other macros.

"plist" is a list of unquoted character strings identify­
ing the dummy parametel'l appearing in the· body of 'the
macro definition. Subsequent macro references or calls spe­
cifying the actual parameters to be substituted for the dum­
my parameters must adhere to the positionality of the
parameters as indicated in "plist."

Example:

The following macr·o takes the memory address of the

Rev. C

-·0

G

(j

()

label specified by the macro reference, loads the most signif­

icant 8 bits of the address into the C register, and' loads the

least significant 8 bits of the address into the B register. (Th_is

is the opposite of what the instruction LXI B,ADDR would
do).

Label

LOAD

LABEL:

INST:

The reference:

Code

MACRO

MVI

MVI

ENDM

Code

LOAD

is equivalent to the expansion:

The reference:

Code

MVI

MVI

Code

LOAD

is equivalent to the expansion:

Operand

ADDR

C, ADDR SHR 8
B, ADDR AND OFFH

Operand

LABEL

Operand

C, LABEL SHR 8
B, LABEL AND OFFH

Operand

INST

Code Operand

MVI C, INST SHR 8
MVI B, INST AND OFFH

The MACRO and ENDM statements inform the assem­

bler that when the symbol LOAD appears in the code field

of a statement, the characters appearing in the operand field

of the statement are to be substituted everywhere the 'symbol

ADDR appears in the macro body, and the two MVI instruc­

tions are to be inserted into the statements at that point of

the program and assembltld.

Macro Reference Or Call

Format:

Label

oplab:

Code

name

Operand

pi ist

"oplab" is an optional label for the macro call.

.. "name" must be the name of a macro; that is, "name"

appears in the label field of a MACRO pseudo-instruction.

"plist" is a list of expressions. Each expression is sub­

stituted into the macro body as indicated by the operand

field of the MACRO pseudo-instruction. Substitution pro­

ceeds left to right; that is, the first string of "pi ist" replaces

every occurrence of the first dummy parameter in the macro
body, the second replaces the second, and so on.

If fewer parameters appear in the macro reference than

in the definition, a null string is substituted for the remain­

ing expressions in the definition.

45

If more parameters appear in the reference than the
definition, the extras are ignored.

- · Example: -

Given the macro definition:

Label

MAC1

The reference:

Code

MACRO

XRA

DCA

ENDM

Code

Operand

P1, P2, COMMENT

P2

P1 COMMENT

Operand

MAC1 C, D, ';.DECREMENT C'

is equivalent to the expansion:

Code Operand

D XRA

DCA C ; DECREMENT C

The reference:

Code

MAC1

is equivalent to the expansion:

Macro Expansion

Code

XRA

DCA

I
Operand

E,B

Operand

B
E

The result obtained by substituting the macro param­

eters into the macro body is called the macro expansion.

The assembler assembles the statements of the expansion

exactly as it assembles any other statements. In particular,

every statement produced by expanding the_ macro must be

a legal assembler statement.

Example:

Given the macro definition:

Label

MAC

the reference:

Code

MACRO

PUSH

ENDM

MAC

Operand

P1

P1

B

will produce the legal expansion:

PUSH B

but the reference:

MAC C

will produce the illegal expansion:

PUSH C

which will be flagged as an error.

Rev. C

Scope of Labels and Names Within Macros

In this section, the terms global and local are impor­

tant. For our purposes, they will be defined as follows: A

symbol is globally defined in a program if its value is known

and can be referenced by any statement in the program,

whether or not the statement was produced by the expan­

sion of a macro. A symbol is locally defined if its value is

known and can be referenced only within a particular macro

expansion.

Instruction Labels: Normally a symbol may appear in

the label field of only one instruction. If a label appears in

the body of a macro, however, it will be generated whenever

the macro is referenced. To avoid multiple-label conflicts,

the assembler treats labels within macros as local labels, ap­

plying only to a particular expansion of a macro. Thus, each

"jump to LOOP" instruction generated in the first example

of the chapter refers uniquely to the label LOOP generated

in the local macro expansion.

Conversely, if the programmer wishes to generate a

. global label from a macro expansion, he must follow the

label with two colons in the macro definition, rather than

one. Now, this global label must not be generated more than

once, since it is global and therefore must be unique in the
program.

For example, consider the macro definition:

Label

TMAC

LOOP:

Code

MACRO

JMP

ENDM

Operand

LOOP

If two references to TMAC app!!ar in a program, the

label LOOP will be a local label and each JMP LOOP instruc­

tion will refer to the label generated with in its own

expansion:

Program

TMAC
LOOP:

JMP

TMAC
LOOP:

LOOP] JMP

46

If in the macro definition, LOOP had been followed
!I

by two successive colons, LOOP would be generated a~1 a

global label by the first reference to TMAC, while the second
. l

reference would be flagged as an error.

"Equate" Names: Names on equate statements within

.a macro are always local, defined.only within the expansion

in which they are generated.

For example, consider the following macro definition:

Label Code Operand

EOMAC MACRO
VAL EOU 8

DB VAL

ENDM

The following program section is valid:

Label Code Operand Assembled Data

VAL EOU 6
DB1: DB VAL 06

EOMAC

VAL EQU 8
DB VAL 08

DB2: DB VAL 06

VAL. is first defined globally with a value of 6. There­

fore the reference to VAL at DB 1 produces a byte equal to

6. The macro reference EOMAC generates a symbol VAL

defined only within the macro expansion w_ith a ~alue or 8;

therefore the reference to VAL by the second statement of

the macro produces a byte equal to 8. Since this statement

ends the macro expansion, the reference to VAL at DB2 re:

fers to the global definition of VAL. The statement at DB2

therefore produces a byte equal to 6.

"Set" Names: Suppose that a "set" statement is gen­

erated by a macro. If its name has.already been defined glob­

ally by another set statement, the generated statement will

change the global value of the name for all subsequent ref­

erences. Otherwise, the name is defined locally, applying

only within the current macro expansion. These cases.are

illustrated as follows:

Consider the macro definition:

Label

STMAC
SYM

Code Operand

MACRO

SET 5
DB SYM

ENDM

The following program section is valid:

0

(j

(j

Label Code Operand Assembled Data

SYM SET 0
DB1: DB SYM 00

STMAC
SYM SET 5

DB SYM 05
DB2: DB SYM 05

SYM is first defined globally with a value of zero, caus­
ing the reference at DB1 to produce a byte of 0. The macro
reference STMAC resets this global value to 5, causing the
second statement of the macro to produce a value of 5. AI·
though this ends the macro expansion, the value of SYM re·
mains equal to 5, as shown by the reference at DB2.

Using the. same macro definitipn .as above, the follow·
ing program section is invalid:

Label Code Operand Assembled Data

STMAC
SYM SET 5

DB SYM 05
DB3: DB SYM **ERROR**

Since in this case SYM is first defined in a macro ex·
pansion, its value is defined locally. Therefore the second
(and final) statement of the macro expansion produces a
byte equal to 5. The statement at DB3 is invalid, however,
since SYM is unknown globally.

Macro Parameter Substitution

The ~alue qf macro parameters is determined and
passed into the macro body at the time the macro is refer·

enced, before the expansion is produced. This evaluation
may be delayed by enclosing a parameter in quotes, causing
the actual character string to be passed into the macro body.
The string will then be evaluated when the macro expansion
is produced.

Example:

Suppose that the following macro MAC4 is defined at
the beginning of the program:

Label

MAC4
ABC

Code Operand

MACRO P1
SET 14
DB P1
ENDM

Further suppose that the statement:

ABC SET 3

has been written before the first reference to MAC4, setting
the value of ABC to 3.

47.

Then the macro reference:

MAC4 ABC

will cause the assembler to evaluate ABC and to substitute
the value 3 for parameter P1, then produce the expansion:

ABC SET
DB

14
3

If, however, the user had instead written the macro
reference:

MAC4 'ABC'

the assembler would evaluate the expression 'ABC,' produc·
ing the characters ABC as the value of parameter P1. Then
the expansion is produced, and, since ABC is altered by the
first statement of the expansion, P1 will now produce the
value 14.

Expansion produced:

ABC SET 14
DB ABC ;:Assembles as 14

REASONS FOR USING MACROS

The use of macros is an importan,t.programming tech·
nique that can substantially ease the user's task in the fol·

lowing ways:

(a) Often, a small group of instructions must be repeated
many times throughout a program with only .minor
changes for each repetition.

Macros can reduce the tedium (and resultant increased
chance for error) associated with these operations.

(b) If an error in a macro definition is discovered, the pro·

gram can be corrected by changing the definition and
reassembling. If the same routine had been repeated
many times throughout the prqgram without using
macros, each qccurrence would have to be located and

changed. Thus debugging time is decreased.

(c) Duplication of effort between programmers can be re·
duced. Once the most efficient coding of a particular
function is discovered, the macro definition can be
made available to all other programmers.

(d) As has been seen with the SHRT (shift right) macro,
new and useful instructions can be easily simulated.

USEFUL MACROS

Load Indirect Macro
The following macro, LIND, loads register Rl indirect

from memory location INADD.

That is, location INADD will be assumed to hold a
two-byte memory address (least significant byte first) from

which register Rl will be loaded.

Rev. B

II

.Example:

Hex
Mamory Address

134C

1340

134E

134F

1350

50

13

FF

;

Indicates address
of data

Rl

If the address of I NAD D is 1 34CH, register R I will be
loaded from the address held in memory locations 1 34CH
and 134DH, which is 1350H.

Macro definition:

Label Code Opera~<!_ Comment

LIND MACRO Rl, INADD

LH LD I NADD ; Load indirect address

MOV Rl, M
ENDM

Macro reference:

Label Code

; into H and L registers
: Load data into R I

Operand

; Load register C indirect with the contents of memory
; location LABEL.

LIND C, LABEL

Macro expansion:

Label Code Operand

LHLD LABEL
MOV C, M

Other Indirect Addressing Macros

- Refer to the Ll NO macro definition in.the last section.
Only the MOV R I,M instruction need be altered to cre:ate
any other indirect addressing macro: For example, substi­
tuting MOV M,R I will create a "store indirect" macro. Rro­
.viding R I is the accumulator, substituting ADD M will create
an "add to accumulator indirect" macro.

As an alternative to havihg load indirect, store indirect,
and other such indirect macros, we could have a "create
indirect address" macro, followed by selected instructions.
This alternative approach is illustrated for indexed address­
ing in the next section.

Create Indexed Address Macro·

The following macro, IXAD, loads registers H and L
with the base address BSADD, plus the 16-bit index-formed
by register pair REGPR (REGPR=B,D,H, or SP).

Macro definition:

Label Code Operand Comment ----
IXAD MACRO REGPR, BSADD

LXI H, BSADD ; Load the base address
DAD REGPR ; Add index to base

; address
ENDM

Macro reference:

Label Code

; The address created in Hand L by the following macro
; call will be Label+ 012EH

MVI D, 1
MVI E,2EH
IX AD D,LABEL

Macro expansion:

Label Code Opera~

MVI D, 1
MVI E,2EH
LXI H, BSADD
DAD D

Rev, C

0

u

u

This section describes some techniques other than
macros which may be of help. to the programmer.

BRANCH TABLES PSEUDO-SUBROUTINE

Suppose a program consists of several separate rou­

!ines, any of which may be executed depending upon some

·initial condition (such as a number passed in a register). One

w~~Y to code this waul d be to check each condition sequenti­

ally and branch to the routines accordingly as follows:

CONDITION= CONDITION 1?
IF YES BRANCH TO ROUTINE 1

CONDITION= CONDITION 2?

IF YES BRANCH TO ROUTINE 2

BR-ANCH TO ROUTINE N

A sequence as above is inefficient, and can be im­

proved by using a branch table.

The logic at the beginning of the branch table program

computes a pointer into the branch table. The branch table

itself consists of a list of starting addresses for the routines
to be branched to. Using the pointer, the branch table pro­

gram loads the selected routine's starting address into the

address bytes of a jump instruction, then executes the jump.

For example, consider a program that executes one of eight
routines depending on which bit of the accumulator is set:

49

Jump to routine 1 if the accumulator holds 00000001

2 00000010
3 00000100
4 00001000
5 00010000
6 00100000
7 01000000

·" , 8 10000000

A program that provides the above logic is given at the

end of this section. The program is termed a "pseudo­

-subroutine" because it is treated as a subroutine by the pro­

grammer (i.e., it appears just once in memory), but it is

entered via a regular JUMP instruction rather than via a

CALL inshu~tion. This is possible bec~use the branch rou­

tine controls subsequent execution, ·and will never return to

the instruction following the call:

~ain Program

1

Branch Table

Program

normal subroutine return

sequence not followed by

branch table program

Jump

Routines

Rev. 8

Label Code Operand

START: LXI H,BTBL ; Registers Hand L will

; point to branch table.

GTBIT: RAR
JC GET AD
INX H ; (H,L)=(H,L)+2 to

INX H ; point to.next address

; in branch table.

JMP GTBIT

GET AD: MOV E,M ; A one bit was found.

INX H ; Get address in D and

; E.

MOV D,M

XCHG ; Exchange D and E
; with Hand L.

PCHL ; Jump to routine

; address.

BTBL: DW ROUT1 ; Branch table. Each
DW ROUT2 ; entry is a two-byte

; address
DW ROUT3 ; held least significant
DW ROUT4 ; byte first.
DW ROUT5
ow ROUT6
DW ROUT7
DW ROUTS

The control routine at START uses the Hand L regis:·
ters as a pointer into the branch table (BTB L) corresponding

to the bit of the accumulator that is set. The routine at
GET AD then transfers the address held in the correspond irig

branch table entry to the H and L registers via the D and E

registers, and then uses a PCHL instruction, thus transferring
control to the selected routine.

SUBROUTINES
Frequently, a group of instructions must be repeated

many times in a program. As we have seen in Chapter 3, it is

sometimes helpful to define a macro to produce these

groups. If a macro becomes too lengthy or must be repeated
many times, however, better economy can be obtained by
using subroutines.

A subroutine is coded like any other group of assembly
language statements, and is referred to by its name, which is

the label of the first instruction. The programmer references

-a subroutine by writing its name in the operand field of a

CALL instruction. When the CALL is executed, the address
of the next sequential instruction after the CALL is pushed
onto the stack (see the section on the Stack Pointer in
Chapter 1), and program execution proceeds with the first

instruction of the subroutine. When the subroutine has com­
pleted its work, a RETURN instruction is executed, which

50

causes the top address in the stack to ,be popped into the

program counter, causing program execution to continue

with the instruction following the CALL. Thus, one copy of

a subroutine may be called from many different points in
memory, preventing duplication of code-.-

Example:

Subroutine MINC increments a 16-bit number held
least-significant-byte first in two consecutive memory loca­

tions, and then returns to the instruction following the last

CALL statement executed. The address of the number to be
incremented is passed in the Hand L registers.

Label Code Qperand Comment

MINC: INR M ; Increment low-order byte
RNZ ; If non-zero, return to

; calling routine
INX H ; Address high-order byte
INR M ; Increment high-order byte
RET ; Return unconditionally

Assume M INC appears in the following program:

Arbitrary

Memory Address

Arbitrary

Jl.:1emory Address

2COO
2C03

CALL MINC

2EFO

2EF3
CALL MINC

When the first call is executed, address 2C03H is

pushed onto the stack indicated by the stack pointer, and

control is transferred to 3COOH. Exec1,1tion qf. either R E­
TURN statement in MINC will cause the top entry to be

popped off the stack into the program counter, causing exe­

cution to continue at 2C03H (since the CALL statement is
three bytes long).

Stack Before
CALL

Low Addr

+-Stack
Pointer

High Addr

Stack While

MINC Executes

+-Stack
Pointer

Stack After

RETURN
is Performed

+-Stack
Pointer

Rev. C

.ry

I 0
I
!

()

When the second call is executed, address 2EF3H is
pushed onto the stack, and control is again transferred to

MINC. This time, either RETURN instruction will cause ex!!­
cution to resume at 2EF.3H.

Note that MINC could have called another subroutine

during its execution, causing another address to be pushed

onto the stack. This can occur as many times as necessary,
limited only by the size of memory available for the stack.

Note also that any subroutine could push data onto

the stack for temporary ssorage without affecting the call
and return sequences as long as the same amount of data is

popped off the stack before executing a RETURN statement.

Transferring Data To Subroutines

A subroutine often requires data to perform its opera­
tions. In the simplest case, this data may be transferred in
one or more registers. Subroutine MINC in the last section,
for example, receives the memory address which it requires
in the H and L registers.

Sometimes it is more convenient and economical to let

the subroutine load its own registers. One way to do this is
to place a list of the required data (called a parameter list)

in some data area of memory, and pass the address of this

list to the subroutine in the Hand L registers.
For example, the subroutine ADSUB expects the ad­

dress of a three-byte parameter list in the Hand L registers.

It adds the first and second bytes of the list, and stc;>res the

result in the third byte of the list:

Label Code Operand Comment -
LXI H, PLIST ; Load H and L with

; addresses of the param-
; eter I ist

CALL ADSUB ; Call the subroutine

RET1:

PLIST: DB 6 ; First number to be added

DB 8 ; Second number to be

;added

OS ; Result will be stored here

LXI H, LIST2; Load Hand L registers

CALL ADSUB ; for another call toADSUB
RET2:

LIST2: DB 10

DB 35
OS

ADSUB: MOV A,M ; Get first parameter

INX H ; Increment memory

; address

MOV B, M ; Get second para meter

ADD B ; Add first to second

INX H ; Increment memory

; address

L MOV M,A ; Store result at third

; parameter store

RET ; Return unconditionally

51

The first time ADSUB is called, it loads the A and B

registers from PLIST and PLIST +1 respectively, adds them,

and stores the result in PLIST+2. Return is then made to
the instruction at RET1.

First call to ADSUB:

ADSUBD
06 PLIST

08 PLIST+I

~ OEH PLIST+2

The second time ADSUB is called, the Hand L regis­
ters point to the parameter list LIST2. The A and B registers

are loaded with 10 and 35 respectively, and the sum is stored

at LIST2 + 2. Return is then made to the instruction at
RET2.

Second call to ADSUB:

H L

CJ CJ

'·, , '

OA LIST2

23 LIST2+1

20 LIST2+2

Note that the parameter lists PLIST and LIST2 could
appear anywhere in memory without altering the results pro:
duced by ADSUB.

This approach does have its limitations, however. As

coded, ADSUB must receive a list of two and only two num:

bers to be added, and they must be contiguous in memory;

Suppose we wanted a subroutine (GENAD) which would

add an arbitrary number of bytes, located anywhere in mem:

ory, and leave the sum in the accumulator.
)

This can be done by passing the subroutine a param;
eter I ist which is a I ist of addresses of parameters, rather.

than the parameters themselves, and signifying the end of

the parameter list by a number whose first byte is FFH
(assuming t~at no parameters will be stored above address
FFOOH).

I f

Call to GENAD:

H L
GENAD: ooo.

~GJ
...----.) . ~

Label

PLIST:

PARMl:
PARM4:

. PARM3:

PARM2:

GENAD:
LOOP:

BACK:

FFFF

Code

LXI

LXI
CALL

HALT

ow
ow
ow
DW
ow

DB
DB

DB

DB

XRA
MOV'

MOV

INX
MOV

CPI
JZ
MOV
LDAX

~DD
· I.NX

JMP
MOV
RET
END

~

§]

,·

PARM1

PARM4

PARM3

PARM2

Operand

SP, 1000H

H, PLIST
GENAD

. PARM1

PARM2
PARM3
PARM4
OFFFFH

6
. 16

13

82

A
C,A
E, M

H
A,M

OFFH
BACK'

D. A
D

c
H

LOOP
A,C

52

As implemented below, GENAD saves the current sum
(beginning with zero) in the C register. It then loads the ad­
dress of the first parameter into the D and E registers. If this
address is greater than or equal to FFOOH, it reloads the
accumulator with the sum held in the C register and returns
to the calling routine. Otherwise, it loads the parameter into
the accumulator and adds the sum in the C register to the
accumulator. The routine then loops back to pick up the
remaining parameters.

.,

Comment

; Assume this stack size is adequate

; Calling prograrn

; List of parameter addresSes

; Terminator

; Clear accumulator
; Save current total in C

; Get low order address byte
; of first parameter

; Get high order address byte
; of first parameter
; Compare to F F H
; If equal, routine is complete
; D and E now address parameter
; Load accumulator with parameter
; Add previous total

; Increment H and L to point
; to next parameter address
; Get next parameter
; Routine done-restore total
; Return to calling routine

Rev. C

0 v

II ~ ~ .u
I

Note that GENAO could add any combination of the
parameters with no change to the parameters themselves.

The sequence:

PLIST:

LXI
CALL

ow
ow
ow

H, PLIST
GENAO

PARM4
PARM1
OFFFFH

would cause PARM1 and PARM4 to be added, no matter
where in memory they might be located (excluding ad­
dresses above FFOOH).

Many variations of parameter passing are possible. For
example, if it was necessary to allow parameters to be stored
a"t any address, a calling program could pass the total number
of parameters as the first parameter; the subroutine would
load this first parameter into a register and use it as a count­
er to determine when all parameters had been accepted.

SOFTWARE MULTIPLY AND DIVIDE

The multiplication of two unsigned 8-bit data bytes
may be accomplished by one of two 'techniques: repetitive
addition, or use of a register shifting operation.

Repetitive addition provides the simplest, but slowest,
form of multiplication. For example, 2AH· 74H may be gen­
erated by adding 74H to the (initially zeroed) accumulator
2AH times.

Using shift operations provides faster multiplication.
Shifting a byte left one bit is equivalent to multiplying by 2,
and shifting a byte right one bit is equivalent to dividing by
2. The following process will produce the correct 2-byte
result of multiplying a one byte multiplicand by a one byte
multiplier:

(a) Test the least significant bit of the multiplier. If zero,
go to step b. If one, add the multi pi icand to the most
significant byte of the result.

(b) .~Shift the entire two-byte result right one bit position.

(c) Repeat steps a and b until all 8 bits of the multiplier
have been tested.

For example, consider the multiplication:

2AH·3CH=9D8H

HIGH-ORDER BYTE LOW-ORDER BYTE

MULTIPLIER MUL TIPLICANO OF RESULT OF RESULT

.00000000 Start 00111100 00101010 00000000
SMp1a~--------------------------------------

b 00000000
Step 2 a ---------------------------------------

b oboooooo
Step 3 a -----------------------------~--------~ 00101010

b 00010101
Step 4 a ________ _:______________________________ 001 1 1 1 1 1

b 00011111
SMp5a--------------------------------------- 01001001

b 00100100
Step 6 a--------------------~----------~------- 01001110

b 00100111
SMp7a---------------------------------------

b 00010011
SMp8a-------------------~--~--~----·-----~---

b 00001001

53

00000000

00000000
00000000
00000000
00000000
10000000
10000000
11000000 '
11000000
01100000

.10110000

1 101 1000

I

Step 1: Test multiplier O-bit; it is 0, so shift 16-binesult
right one bit.

Step 2: Test multiplier 1-bit; it is 0, so shift 16-bit result
right one bit.

Step 3: Test multiplier 2-bit; it is 1, so add 2AH to high­
order byte of result and shift 16-bit result right one
bit.

Step 4: Test multiplier 3-bit; it is 1, so add 2AH to high­
order byte of result and shift 16-bit result right one
bit.

Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high­
order byte of result and shift 16-bit result right one
bit.

Step 6: Test multi pi ier 5-bit; it is 1, so add 2 AH to high­
order byte of resu_lt and shift 16-bit resu It right one
bit.

Step 7: Test multi pi ier 6-bit; it is 0, so shift 16-bit result
right one bit.

Step 8: Test multiplier 7-bit; it is 0, so shift 16-bit result
right one bit.

The result produced is 0908.

The process works for the following reason:

The result of any multiplication may be written:

Equation 1: BIT7·MCND·27 + BIT6·MCND·26 + ...
+BITO·MCND·2°

where BITO through B ITB are the bits of the multiplier (each
equal to zero or one), and MCND is the multiplicand.

For example:

MULTIPLICAND
-00001010

MULTIPLIER
00000101

O·OAH·2 7 + O·OAH·26 + O·OAH·25 + O·OAH·24 +

O·OAH· 2J + 1· OAH· 22 + O·OAH· 21 + 1·0AH· tJ
00101000 + 00001010 = 00110010 = 5010

Adding the multi pi icand to the high-order byte of the
result is the same as adding MCND· 28 to the full 16-bit­
result; shifting the 16-bit result one position to the right is
equivalent to multiplying the result by 2·1 (dividing by 2).

Therefore, step one above produces:

(BITO • MCND • 28
) • 2- 1

Step two produces:

((BITO • MCND • 28
) • 2- 1 + (BIT1 • MCND • 28

)) • 2- 1

= BITO • MCND • 26 + BIT1 • MCND • 27

And so on, until step eight produces:

BITO • MCND • 2° + BIT1 • MCND • 2 1 + ... +BIT7 •

MCND • 27

which is equivalent to Equation 1 above, and therefore is
the correct result.

Since the multiplication routine described abo_ye uses

54

a number of important programming techniques, a sample
program is given with comments.

The program uses the B register to hold the most sig­
nificant byte of the result, and the C register to hold the
least significant byte of the result.

The 16-bit right shift of the result is performed by two
rotate-right-through -carry instructions:

Zero carry and then rotate 8

c

D
Then rotate C to complete the shift

B c

D
Register D holds the multiplicand, and register C orig­

inally holds the multiplier.

MUL T: MVI B, 0 ; Initialize most significant byte

MVI
MULTO: MOV

RAR
MOV
OCR
JZ
MOV
JNC-
ADD

MULT1: RAR

MOV
JMP

DONE:

; of result
E, 9 ; Bit counter
A, C ; Rotate least significant bit of

; multiplier to carry and shift
C, A ; low-order byte of result
E
DONE ; Exit if complete
A,B
MULT1
D ; Add multiplicand to high­

; order byte of result if bit
; was a one
; Carry=O here; shift high­
; order byte of result

B,A
MULTO

An analogous procedure is used to divide an unsigned
16-bit number by an unsigned 16-bit number. Here, the
process involves subtraction rather than addition, and
rotate-left instructions instead of rotate-right instructions.

The following reentrant program uses the B and C
registers to hold the dividend and quotient, and the D and
E registers to hold the divisor and remainder. The H and L
registers are used to store data temporarily.

Rev. C

"· u

0

lJ

u

u

DIV: MOV
CMA
MOV
MOV
CMA
MOV
INX
LXI
MVI

DVO: PUSH
DAD
JNC
XTHL

DV1: POP
PUSH
MOV
RAL
MOV
MOV
RAL
MOV
MOV
RAL
MOV
MOV
RAL
MOV
POP
OCR
JNZ

A,D
:

D,A
A,E

E,A
D

· H,O
A,17
H
D
DV1

H
PSW
A,C

C,A
· A,B

B,A
A,L

L,A _
A,H

H,A
PSW
A
DVO

; Neg~te the divisor

; For two's complement
; initial value for remainder
; initialize loop counter
; Save remainder
; subtract divisor (add negative)
; under flow, restore H L

; Save loop counter (A)
; 4 register left shift
; with carry
; CY - > C - > B - > L - > H

; Restore loop counter (A)
; decrement it
; keep looping

; Post-divide clean up
; shift remainder right and return in DE

ORA A
MOV A,H
RAR
MOV D,A
MOV A,L
RAR
MOV E,A
RET
END

MUL TIBYTE ADDITION AND
SUBTRACTION

The carry bit and the ADC (add with carry) instruc­
tions may be used to add unsigned data quantities of arbi­
trary length. Consider the following addition of two three­
byte unsigned hexadecimal numbers:

32AF8A
+ 84BA90

B76A1A
This addition may be performed on the 8080 by add­

ing the two low-order bytes of the numbers, then adding

the resulting carry to the two next-higher-order bytes, and

so on:

3n 84

B7
An BA

I 6A

carry = 1 carry = 1

SA

90

I 1A

The following routine will perform this multibyte ad­
dition, making these assumptions:

55

The E register holds the length of each number to be
added .(in this case, 3). .. : . ·... . .

The numbers to be added are stored from low-order
• • • J. l

byte to high-order .. byte beginning at memory locations . . -·~· - ' .
FIRST and SECND, respectively.

The result will be stored from low-order byte to high­
order byte beginning at memory location FIRST, replacing
the original contents of these locations.

Memory
Location before

FIRST

FIRST+1

FIRST+2

SEC NO

SECND+1

SECND+2

Label Code

MADD: LXI
LXI
XRA

Operand

after

) carry

J carry

Comment

B,FIRST ; Band C address FIRST
H,SECND; H and L address SECND
A ; Clear carry. bit

LOOP: LDAX B ; Load byte of FIRST
ADC M ; Add byte of SECND

; with carry
STAX B ; Store result at FIRST
DCA E ; Done if E = 0
JZ DONE
INX B ; Point to next byte of

; FIRST
INX H ; Point to next byte of

;SECND
JMP LOOP ; Add next two bytes

DONE:

FIRST: DB 90H
DB OBAH
DB 84H

SECND: DB BAH
DB OAFH
DB 32H

Since none of the instructions in the program loop
affect the carry bit except ADC, the addition with carry will
proceed correctly.

When location DONE is reached, bytes FIRST through.
FIRST+2 will contain 1A6AB7, which is the sum shown at
the beginning of this section arranged from low-order to
high-order byte.

I

_j

The car~y (or b~r~ow) bit a'~d th~ SBB (subtract with
borrow) instruction may be used to subtract unsigned data
quantities of arbitrary length. Consider the following sub­
ti<action of two tiivo'byte unsigned hexadecimai numbers: .

1301
-·0503

ODFE

This subtraction may be p~rformed on the 8080 by

subtracting the two low-order bytes of the numbers, then
using the resulting carry bit to adjust the difference of the

two higher-order bytes if a borrow occurred (by using the
S88 instruction) ..

Low.:order subtraction (carry bit = 0 indicating no
borrow):

00000001 = 01 H

!!_111101 = -(03H+c1my)

11111110 = OFEH, the low-order result
carry out= 0, setting the Carry b.it = 1, indicating a borrow

High-order subtraction:

00010011 = 13H
. 11111010=-(05H+carry)

00001101

carry out= 1, resetting the Carry bit indicating no borrow

Whenever a borrow has occurred, the S88 instruction

increments the subtrahend by one, which is equivalent to
borrowing pne from the minuend.

i"n order to create a ml.iltibyte subtraction routine, it
is necessary oi11y to duplicate the multi byte addition routine
of this· settion, changing the ADC instruction to an SB8 in­
struction. The program will then subtract the· number begin­

ning at SECND from the number beginning at FIRST, plac­
ing the result at FIRST.

DECIMAL ADDrTION

Any 4-bit data quantity may be treated as a decimal
number as long as it represents one of the decimal digits

from 0 through 9, and does not contain any of the bit pat­

terns representing the hexadecimal digits A through F. In
order to preserve this decimal interpretation when perform­

ing addition, the value 6 must be added to the 4-bit quantity

whenever the addition produces a result between 10 and 15.
This is because each 4-bit data quantity can hold 6 more

combinations of bits than there are decimal digits.

Decimal addition is performed on the 8080 by letting
. each 8-bit byte represent two 4-bit decimal digits. The bytes

are summed in the accumulator in standard fashion, and the
DAA (decimal adjust accumulator) instruction is then used

as in Section 3, to convert the 8-bit binary result to the cor­
rect representation of 2 ·decimal digits. The settings of the
carry and auxiliary carry bits also affect the operation of the

DAA, permitting the addition of decimal .numbers longer
than two digits.

56

. . . .
To perform the deCimal addition:

2985
+4936

7921

the process works as follows:

· (1) Clear. the Carry and addthe two lowest-order. digits of

each number (remember that each 2 decimal digits are
. represented by one byte).

85 = 100001018
36 = 001101108

carry. 0

01101110118

/ ·~ .

Carry= 0 Auxiliary Carry =:0

The accumulator now contains BBH.

(2) Perform a DAA operation. Since the rightmost four

bits are;;;;. 100, 6 will be added to the accumulator.

Accumulator = 10111011 B
6 = 01108

11000001 B

Since the leftmost 4 bits are now 910, 6 will be added
to these bits, setting the Carry bit.

Accumulator = 11000001 B

6=0110 B.

IJ 00100001 B

"" .
Carry bit = 1

The accumulator now contains 21.H. Store these two •
digits.

(3) Add the next group of two digits:

29 = 001010018
49 = 010010018

carry = 1

OJ 011100118
7f '\ .

/ "..A ·1· . C . Carry = 0 , ux1 1ary arry = 1

The accumulator now contains 73H.

(4) Perform a DAA operation. Since the Auxiliary Carry

bit is set, 6 will be added to the accumulator.

Accumulator = 011100118

6 = 01108

a 01111 oo1 s
"'
\carry bit = 0

Since the leftmost 4 bits are <1 0 and the Carry bit is
reset, no further action occurs.

Thus, the correct decimal result 7921 is generated in
two bytes.

A routine which adds decimal numbers, then, is exact­
ly analogous to the multi byte addition routine MADD of the

last section, and may be produced by inserting the instruc­

tion DAA after the ADC M instruction of. that example.

Rev. B

0

u

G

Each iteration of the program loop will add two decimal
digits (one byte) of the numbers.

DECIMAL SUBTRACTION

Each 4-bit data quantity may be treated as a decimal
number as long as it represents one of the decimal digits 0
through 9. The OAA (decimal adjust accumulator} instruc­
tion may be used to permit subtraction of one byte (repre­
senting a 2-digit decimal number) from another, generating
a 2-digit decimal result. In fact, the OAA permits subtraction
of multidigit decimal numbers.

The process consists of generating the. hundred's com­
plement of the subtrahend digit (the difference between the
subtrahend digit and 100 decimal), and adding the result to
the minuend digit. For instance, to subtract 340 from 560,
the hu~dred's complement of 340 (1 000-340=660) is
added to 560, producing 1220, which when truncated to 8
bits gives 220, the correct result. If a borrow was generated
by the previous subtraction,. the 99's complement of the
subtrahend digit is produced to compensate for the borrow.

. In detail, the procedure for subtracting one multi-digit
decimal from another is as follows:

(1) Set the Carry bit = 1 indicating no borrow.

(2) Load the accumulator with 99H, representing the
number 99 decimal.

(3) . Add zero to thq accumulator with carry, producing
either 99H or 9AH, and resetting the Carry bit.

(4) Subtract the subtrahend digits from the accumulator,
producing either the 99's or 1 OO's complement.

(5) Add the minuend digits to the accumulator.

· (6) Use the OAA instruction to make sure the result in
the accumulator is in decimal format, and to indicate
a. borrow in the Carry-bit if one occurred.

Save this result.

(7) If there are more digits to subtract, go to step 2.

Otherwise, stop·.

. · 'Example:

Perform the decimal subtraction:

43580
- 13620

29960

(1) Set carry = 1.

(2) Load accumulator with 99H.

. (3) · Add zero with carry to the accumulator, producing
9AH.

57

(4)

Accumulator = 100110018
0 = 000000008

Carry 1
100110108 = 9AH

Subtract the subtrahend digits 62H from the accumu­
lator.

Accumulator = 100110108
!)2'H = 100111108

Il 001110008 .

(5) Add the minuend digits 58H to the accumulator.

Accumulator = 001110008
58H = 010110008

D 100100008 = 90H
;< \ •.

Carry= 0 / Auxiliary Carry = 1

(6) OAA converts accumulator to 96H (since Auxiliary
Carry = 1) and leaves Carry bit = 0 indicating that' a
borrow occurred.

(7) Load accumulator with 99H .

(8) .Add zero with carry to accumulator, leaving accumu­
lator= 99H.

(9) Subtract the subtrahend digits 13H from the accuml.J­
Iator.

Accumulator = 100110018
13H = 111011018

Ill 00001108

(1 0) Add the minuend digits 43H to the accumulator.

Accumulator= 100001108
43H=010000118 ..

OJ 110010018 = c9H

Carry= 0 / \Auxiliary Carry = 0

I
(11) OAA converts accumulator to 29H and sets the carry

I
bit= 1, indicating no borrow occu~red .

Therefore, the result of subtracting 13620 from
43580 is 29960.

The following subroutine will subtract one 16·
digit decimal number from ·another' using the following
assumptions:

The minuend is stored least significant (2) digits first
beginning at location MINU. ·

The subtrahend is stored least significant (2) digits
first beginning at location SBTRA.

The result will be stored least significant (2) digits
first, replacing the minuend.

Label Code Oeerand Comment

DSUB: LXI D,MINU ; D and E address minuend
LXI H,SBTRA ; H and L address subtra-

; hend
MVI c. a ; Each loop subtracts 2

; digits (one byte),
; therefore program will
; subtract 16 digits.

STC ; Set Carry indicating
; no borrow

LOOP: MVI A, 99H ; Load accumulator

; with 99H.
ACI 0 ; Add zero with Carry
SUB M ; Produce complement

; of subtrahend
XCHG ; Switch D and E with

; Hand L
ADD M ; Add minuend
DAA ; Decimal adjust

; accumulator
MOV M,A ; Store result
XCHG ; Reswitch D and E

; with Hand L
DCA c ; Done if C = 0
JZ DONE
INX D ; Address next byte

; of minuend
INX H ; Address next byte

; of subtrahend
JMP LOOP ; Get next 2 decimal digits

DONE: NOP

ALTERING MACRO EXPANSIONS

This section describes how a macro may be written
such that identical references to the macro produce different

expansions. As a useful example of this, consider a macro
SBMAC which needs to call a subroutine SUBR to perform
its function: One way to provide the macro with the neces­
sary subroutine would be to include a separate copy of the
subroutine in any program which contains the macro. A bet­
ter method is to let the macro itself generate the subroutine
during the first macro expansion, but skip the generation of
the subroutine on any subsequent expansion. This may be
accomplished as follows:

Consider the following program section which consists
of one global set statement and the definition of SBMAC
(dashes indicate those assembly language statements neces­
sary to the program, but irrelevant to this discussion):

58

Label

FIRST

SBMAC

FIRST

SUBR::

OUT:

Code

SET
. '·

MACRO

CALL

IF

SET
JMP

RET
NOP
END IF
ENDM

Operand

OFFH

.(.

SUBR

FIRST

0
OUT

The symbol FIRST is set to FFH, then the macro
SBMAC is defined.

The first time SBMAC is referenced, the expa·nsion
produced will be the following:

Label Code Operand

SBMAC

CALL SUBR

IF FIRST
FIRST SET 0

JMP OUT
SUBR:

RET
OUT: NOP

Since FIRST is non-zero when encountered during
this expansion, the statements between the IF and END IF

·are assembled into the program. The first statement thus
assembled sets the value of FIRST to 0, while the remaining
statements are the necessary subroutine SUBR and a jump
around the subroutine. When this portion of the program is

executed, the subroutine SUBR will be called, but program
execution will not flow into the subroutine's definition.

On any subsequent reference to SBMAC in the pro:
gram, however, the following expansion will be produced:

Label Code Operand

SBMAC

CALL SUBR

IF FIRST
Since FIRST is now equal to zero, the IF statement

ends the macro expansion and does not cause the subroutine
to be generated again. The label SUBR is known during this
expansion because it was defined globally (followed by two
colons in the definition).

()

0

.U

Often, events occur external to.the central processing
unit which require immediate action by the CPU. For exam­
ple, suppose a device is receiving a string of 80 characters
from the CPU, one at a time, at fixed intervals. There are
two ways to handle such a situation:

(a) A program could be written which inputs the first
character, waits until the' next character is ready (e.g.,
executes a timeout by incrementing a sufficiently
large· counter), then inputs the next character, and
proceeds in this fashion until the entire 80 character
string has been received.

This method is referred to as programmed Input/
Output.

(b) .The device controller could interrupt the CPU when a
character is ready to be input, forcing a branch from
the executing program to a special interrupt service
routine.

The interrupt sequence may be illustrated as follows:

INTERRUPT

Normal ----------+L------------------~Pr~~~~am~+
~r<?gram Execution
!=xecution Continues

Interrupt Service
Routine

The 8080 contains a bit named INTE which may be
set or reset by the instructions E I and Dl described in
Chapter 2. Whenever INTE is equal to 0, the entire interrupt
handling system is disabled, and no interrupts will be
accepted.

. 59

When the CPU recognizes an interr~pt request from an
external device, the following actions occur:

'(1) The instruction currently being executed is completed;··

(2) The interrupt enable bit, INTE, is reset= 0.

(3) The interrupting device supplies, via hardw11re, one in­
struction which the CPU executes. This instruction
does not appear anywhere in memory. and the pro­
grammer has no control over it, since it is a function
of the interrupting device's controller design. The
program counter is not incremented before this
instruction.

The instruction supplied by the interrupting device is
normally an RST instruction (see Chapter·2), since this is an
efficient one byte call to one of 8 eight-byte subroutines lo­
cated in the first 64 words of memory. For instance,. the
teletype may supply the instruction:

RST OH

with each teletype input interrupt. T~en the subroutine
which processes data transmitted from the teletype to the
CPU will be called into execution via a~ eight-byte instruc­
tion sequence at memory locations OOOO!:f to 0007H.

,I

A digital input device may supply t,he instruction:

RST 1H

Then the subroutine that processes the ~igital input signals
will be called via a sequence of instq.Jctions occupying
memory locations 0008H to-OOOFH.

Transfers
Device "a"

control to
Supplies RST OH

Transfers
Device "b"

control to
Supplies RST 1 H

0000 l
0007;

.. , I 0008'

OOOF:
I

Beginning of
subroutine for
device "a"·

Beginning of
subroutine for
device "b"

Rev. C

\

j
I
I

I:

Device "x"

Supplies RST 7H

Transfers
control to 0038] Beginning of

subroutine for
003F device "x"

Note that any of these 8-byte subroutines may in turn
call longer subroutines to process the interrupt, if necessary.

Any device may supply an RST instruction (and in­
deed may supply any 8080 instruction).

The following is an example of an Interrupt sequence:

ARBITRARY
MEMORY ADDRESS INSTRUCTION

3COB MOV C,B

For example, suppose a program is interrupted just
prior to the instruction:

JC LOC

and the carry bit equals 1. If the interrupt subroutin11 hapc
pens to zero the carry bit just before returning to the i'nterl
rupted program, the jump to LOC which should have occurl
red will not, causing the interrupted program to produce
erroneous results.

A
3COC MOV E,A

~
llntonupt fmm D";" 1

Device 1 supplies
RST OH

Program Counter=
3COC pushed onto B
the stack.

Control transferred

~
to 0000

0000 Instruction 1
Instruction 2

RET

Device 1 signals an interrupt as the CPU is executing
the instruction at 3COB. This instruction is completed. The
program counter. remains set to 3COC, and the instruction
RST OH supplied by device 1 is executed. Since this is a call
to location zero, 3COC is pushed onto the stack and pro­
gram control is transferred to location OOOOH. (This sub­
routine may perform jumps, calls, or any other operation.)
When the RETURN is executed, address 3COC is popped
off the stack and replaces the contents of the program
counter, causing execution to continue at this point.

WRITING INTERRUPT SUBROUTINES

In general, any registers or condition bits changed by
an interrupt subroutine must be restored before returning to
the interrupted program, or errors will occur.

60

~

Stack popped into
program counter c

Like any other subroutine then, any interrupt subrou­
tine should save at least the condition bits.and restore them
before performing a RETURN operation. (The obvious and
most convenient way to do this is to save the data in the
stack, using PUSH and POP operations.)

Further, the interrupt enable system is automatically
disabled whenever an interrupt is acknowledged. Except in
special cases, therefore, an interrupt subroutine sho4.ld in­
clude an El instruction somewhere to permit detection and
handling of future interrupts. One instruction after an E I is
executed, the interrupt subroutine may itself be inter­
rupted. This process may continue to any level, but as long
as all pertinent data are saved and restored, correct program
execution will continue automatically.

A typical interrupt subroutine, then, could app~~r as.
follows:

,.

Rev. C

0

Code Operand Comment

PUSH PSW ; Save condition bits and accumulator
El ; Re-enable interrupts

u ; Perform necessary actions to service
; the interrupt

POP PSW ; Restore machine status
RET ; Return to interrupted program

(J

61

'~ ,'

62

-,

0

0

This appendix provides a summary. of 8080 assembly language instructions. Abbreviations used are as follows:

A

ADDR

Aux. carry

Carry

CODE

DATA

DATA 16

DST

EXP

INTE

LABEL:.

M

Parity

PC

PCH

PCL

REGM

The accumulator (register A)

Bit n o.f the accumulator contents, where n may have any value from 0 to 7 and 0 is the least significant
(rightmost) bit

Any memory address

The auxiliary carry bit

The carry bit

An operation code

8 bits (one byte) of data

16 bits (2 bytes) of data

Destination register or memory byte

A constant or mathematical expression
-·,

The 8080 interrupt enable flip-flop

Any instruction label

A memory byte

The parity bit

Program Counter

The most significant 8 bits of the program counter

The least significant 8 bits of the program counter

Any register or memory byte

vi

i
·I
I

REGPR A register pair. Legal register pair symbols are:
B for registers B and C
0 for registers 0 and E
H for registers H and L
SP for the 16 bit stack pointer
PSW for register A and flag bits

RP1 The first register of register pair RP

RP2 The second register of register pair R P

Sign The sign bit

SP The 16·bit stack pointer register

SRC Source register or memory byte

Zero The zero bit

XY The value obtained by concatenating the values X and Y

An optional field enclosed by brackets

() Contents of register or memory byte enclosed by parentheses

Replace value on lefthand side of arrow wit~ value on righthand side of arrow

$ Present contents of program counter

CARRY BIT INSTRUCTIONS

Format:

[LABEL:] CODE

CODE DESCRIPTION

STC (Carry) +-1 Set carry

CMC
j

(Carry) +-(Carry) Complement carry
..

Condition bits affected: Carry

SINGLE REGISTER INSTRUCTIONS

Format:

[LABEL:] INR REGM
-or-

[LABEL:] OCR REGM
-or-

[LABEL:] CMA
-or-

[LABEL:] DAA

vii Rev. C

L'

()

CODE
r-----------+------D_E_sc_R_I_P_T_Io_N __ _,I

INR

OCR

CMA

DAA

Condition bits affected:

Format:

{REGM) +- (REGM)+1 ·Increment register REGM

(REGM) +- (REGM)-1 Decrement register R EGM

(A) +- (A) Complement accumulator

If (A0 -A3) > 9 or(Aux.Carry)=1, Convert accumulator

(A) +- (A)+6 contents to form

Then if (A4 -A7) > 9 or(Carry)= two decimal

1 (A) = (A) + 6 • 24 digits

INR,DCR
CMA

Zero, sign, parity, aux. carry
None

DAA Zero, sign, parity, carry, aux. carry

NOP INSTRUCTION

[LABEL:) NOP

[CODE DESCRIPTION

L_ __ N __ o_P ______ ~ ______ N __ o_o_p_er_a_ti_o_n ____________________ ~--------------------------------~
Condition bits affected: None

DATA TRANSFER INSTRUCTIONS

Format:

[LABEL:) MOV
-or-

[LABEL:) CODE

NOTE: SRC and DST not both = M

NOTE: RP = B or D

CODE DESCRIPTION

MOV (DST) +- (SRC)

STAX ((REGPR)) +- (A)

LDAX (A) +- ((REGPR))

Condition bits affected: None

viii

DST,SRC

REGPR

Load register DST from register SRC

Store accumulator. at memory location
referenced by the specified register pair

Load accumulator from memory location
referenced by the specified register pair

Rev. C

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Format:

[LABEL:) CODE REGM

CODE DESCRIPTION

ADD (A) ~ (A)+(REGM) Add REGM to accumulator

ADC (A) ~ (A)+(R EGM)+(Carry) Add REGM to accumulator with carry

SUB (A) ~ (A)-(REGM) Subtract REGM from accumulator

SBB (A) ~ (A)-(A EGM)-(Carry) Subtract REGM from accumulator with borrow ..

ANA (A) ~ (A) AND (REGM) AND accumulator with REGM

XRA (A) ~ (A) XOR (REGM) EXCLUSIVE-ORaccumulator with REGM

ORA (A) ~ (A) OR (REGM) OR accumulator with REGM

CMP Condition bits set by (A)-(REGM) Compare REGM with accumulator

Condition bits affected:

ADD, ADC, SUB, SBB: Carry, Sign, Zero, Parity, Aux. Carry
ANA, XRA, ORA: Sign, Zero, Parity. Carry and Aux. Carry are reset.
CMP: Carry, Sign, Zero, Parity, Aux. Carry. Zero set if (A)=(REGM)

Format:

CODE .

ALC

ARC

RAL

RAR

Zero reset if (A)* (REGM)

Carry set if (A)< (REGM)
Carry reset if (A) ;;?; (A EGM)
Note: CMP treats (A) and (REGM) as unsigned

8-bit quantities.

ROTATE ACCUMULATOR INSTRUCTIONS

[LABEL:) CODE

DESCRIPTION

(Carry) ~ A7, An+ I• ~An, A 0 ~ A7 Set Carry = A7, rotate accumulator left

(Carry) ~ Ao. An ~An+!• A7 ~Ao Set Carry = A 0 , rotate accumulator right

An+ 1 ~An, (Carry)~ A7, A 0 ~(Carry) Rotate accumulator left through the Carry

An ~An+ I• (Carry)~ A 0 , A7 .,.._(Carry) Rotate accumulator right through Carry

Condition bits affected: Carry

ix Rev. C

(J

(J

REGISTER PAIR INSTRUCTIONS
Format:

[LABEL:)

[LABEL:)

CODE1
-or­
CODE2

NOTE: For PUSH and POP, R EGPR=B, D, H, or PSW
For DAD, INX, and DCX, REGPR=B, D, H, or SP

CODE1 DESCRIPTION

PUSH ((SP)-1) ~ (REGPR1), ((SP)-2)

~ (REGPR2), (SP) ~ (SP)-2

POP (REGPR1) ~ ((SP)+1). (REGPR2)

REGPR

Save REGPR on the stack

R EGPR•PSW saves accumulator and condition bits

Restore R EGPR from the stack

~ ((SP)), (SP) ~ (SP)+2 R EGPR•PSW restores accumulator and condition bits

DAD (HL) +- (HL) + (REGPR) Add REGPR to the 16-bit number in Hand L

INX (REGPR) +- (REGPR)+1 Increment REGPR by 1

DCX (REGPR) +- (REGPR)-1 .
..

Decrement REGPR by 1

CODE2 DESCRIPTION :

XCHG (H) +-+(D), (L) +-+(E) Exchange the 16 bit number in H and l with
that in D and E

XTHL (L) +--+ ((SP)), (H)+--+ ((SP)+1) Exchange the last values saved in the stack
with H and L

-
SPHL (SP) +- (H):(L) Load stack pointer from H and L

Condition bits affected:

PUSH, INX, DCX, XCHG, XTHL, SPHL: None
POP : If REGPR=PSW, all condition bits are restored from the stack, otherwise none are affected ..
DAD : Carry

IMMEDIATE INSTRUCTIONS

Format:

[LABEL:) LXI REGPR, DATA16

-or-
[LABEL:] MVI REGM, DATA

-or-
[LABEL:] CODE REGM

NOTE: REGPR=B,D,H,orSP

X

I.

Rev.C

CODE DESCRIPTION

LXI (REGPR) +-DATA 16 Move 16-bit immediate Data into REGPR

MVI (REGM) +-DATA Move immediate DATA into REGM

ADI (A) +-(A)+ DATA Add immediate data to accumulator

ACI (A) +-(A)+ DATA+ (Carry) Add immediate data to accumulator. with Carry

SUI . " (A) +-(A) -DATA , -Subtract immediate data from-accumulator

SBI (A) +-(A) -DATA- (Carry) Subtract immediate data from accumulator with
borrow

ANI (A) +-(A) AND DATA AND accumulator with immediate data

XAI (A) +-(A) XOR DATA EXCLUSIVE-OR accumulator with immediate data

ORI (A) +-(A) OR DATA OR accumulator with immediate data

CPI Condition bits set by (A)-DATA Compare immediate data with accumulator

Condition bits affected:

LXI, MVI: None
ADI, ACI, SUI, SBI: Carry, Sign, Zero, Parity, Aux. Carry
ANI, XRI, ORI: Zero, Sign, Parity. Carry and Aux. Carry are reset.
CPI: Carry, Sign, Zero, Parity, Aux. Carry. Zero set if (A) = DATA

Format:

CODE

STA

LOA

SHLD

LHLD

Zero reset if (A) * OAT A

Carry set if (A) < DATA
Carry reset if (A) ~ OAT A
Note: CPI treats (A) and OAT A as unsigned

8-bit quantities.

DIRECT ADDRESSING INSTRUCTIONS

[LABEL:) CODE ADDR

DESCRIPTION

(ADDR) +- (A) Store accumulator at location ADD A

(A) +- (ADDR) Load accumulator from location ADDR

(ADDR) +- (L). (ADDR+1) +-(H) Store Land H at ADDR and ADDR+1

(L) +- (ADDR). (H) +- (ADDR+!) Load L and H from ADDR and ADDR+1

Condition bits affected: None

Format:

[LABEL:)

[LABEL:)

JUMP-INSTRUCTIONS

PCHL
-or­
CODE ADDR

xi

0

Rev. C

c~

0

-0

CODE DESCRIPTION

PCHL (PC) +-(HLI Jump to location specified by register H and L

JMP (PC) +-ADDR Jump to location ADDR

JC If (Carry) = 1, (PC) +- ADDR
If (Carry) = 0, (PC) +- (PC)+3 Jump to ADDR if Carry set

..

JNC If (Carry) = 0, (PC) +-ADDR
If (Carry) = 1, (PC) +- (PC)+3 Jump to ADDR if Carry reset

JZ If (Zero) = 1, (PC) +- ADDR
If (Zero) = 0, (PC) +- (PC)+3 Jump to ADD R if Zero set

JNZ If (Zero) = 0, (PC) +- ADDR
If (Zero) = 1, (PCI +- (PCI-+;3 Jump to ADD R if Zero reset

JP If (Sign) = 0, (PC) +- ADDR
If (Sign)' = 1, (PC) +-(PC)+3 Jump to ADDR if plus

JM If (Sign) = 1, (PC) +-ADDR
If (Sign) = 0, (PC) +- (PCI+3 Jump to ADDR if minus

JPE If (Parity) = 1, (PC) +- ADDR
If (Parity) = 0, (PC) +- (PCI+3 Jump to ADDR if parity even

JPO If (Parity) = 0, (PC) +- ADDR
If (Parity) = 1, (PC) +-(PC)+3 Jump to ADDR if parity odd

Condition bits affected: None

Format:

CODE

CALL

cc

CNC

cz

CNZ

CP

CM

CPE

CPO

CALL INSTRUCTIONS

[LABEL: I CODE ADDR
DESCRIPTION

((SP)-1 I +- (PCH), ((SP)-2) +- (PCL), (SP) +- (SP) -2, (PC) +- ADDR
Call subroutine and push return address onto stack

If (Carry)= 1, ((SPI-11 +-(PCHI, ((SPI-21 +-(PCL), (SPI +- (SPI ...:2,(PCI +-ADDR
If (Carry) = 0, (PC) +- (PC)+3 Call·subroutine if Carry set

If (Carry) = 0, ((SP)-1 I +- (PCH). ((SPI-21 +- (PCLI, (SP) +- (SP) -2, (PC) +- ADDR
If (Carry)= 1, (PC) +- (PC)+3 Call subroutine if Carry reset

If (Zero)= 1, ((SPI-11 +- (PCH), ((SPI-21 +- (PCLI. (SP) +- (SP) -2,(PC) +- ADDR
If (Zero) = 0, (PC) +-(PC)+3 Call subroutine if Zero set

If (Zero)= 0, ((SPI-11 +- (PCHI, ((SPI-21 +- (PCLI, (SPI +- (SPI -2,(PCI +- ADDR
If (Zero)= 1, (PC) +- (PC)+3 Call subroutine if Zero reset

If (Sign)= 0, ((SPI-11 +- (PCHI. ((SPI-21 +- (PCLI, (SPI +- (SPI -2. (PC) +- ADDR ·
If (Sign)= 1, (PC) +- (PC)+3 Call subroutine if Sign plus

If (Sign) = 1, ((SPI-11 +- (PCHI, ((SP)-2) +- (PCLI, (SP) +- (SPI -2, (PC) +- ADDR
If (Sign)= 0, (PC) +- (PC)+3 Call subroutine if Sign minus

lf(Parity) = 1, ((SPI -11 +-(PCHI, ((SPI-21 +-(PCL), (SPI +-(SP)-2,(PC):+-ADDR
If (Parity) = 0, (PC) +- (PC)+3 Call subroutine if Parity even

If (Parity) = 0, ((SP)-1 I +- (PCH). ((SPI-21 +- (PCLI, (SPI +- (SP) -2,(PCI +- ADDR
If (Parity) = 1, (PC) +- (PC)+3 Call subroutine if Parity odd

Condition bits affected: None

xii Rev. C

RETURN INSTRUCTIONS
Format:

[LABEL:] CODE

CODE DESCRIPTION '
.0

RET (PCL) +-((SP)). (PCH) +-((SP)+l), (SP) +-(SP)+2

Return from subroutine

' RC If (Carry)= 1, (PCL) +-((SP)), (PCH) +-((SP)+l), (SP) +-(SP) +2
If (Carry) = 0, (PC) +- (PC)+1 Return if Carry set

RNC If (Carry) = 0, (PCL) +- ((SP)). (PCH) +- ((SP)+1), (SP) +- (SP)+2
If (Carry)= 1, (PC)+- (PC)+1 Return if Carry reset

RZ If (Zero)= 1, (PCL) +-((SP)), (PCH) +-((SP)+1), (SP) +-(SP)+2
If (Zero) = 0, (PC) +- (PC)+1 Return if Zero set

RNZ If (Zero) = 0, (PCL) +- ((SP)), (PCH) +- ((SP)+1), (SP) +- (SP) +- (SP)+2
If (Zero)= 1, (PC)+- (PC)+1 Return if Zero reset

AM If (Sign)= 1, (PCL) +-((SP)), (PCH) +-((SP)+1), (SP) +-(SP)+2
If (Sign) = 0, (PC) +- (PC)+1 Return if minus

RP If (Sign) = 0, (PCL) +- ((SP)). (PCH) +- ((SP)+1), (SP) +- (SP)+2
If (Sign) = 1, (PC) +- (PC)+ 1· Return if plus

APE If (Parity) = 1, (PCL) +-((SP)), (PCH) +-((SP)+1), (SP) +-(SP)+2
If (Parity) = 0, (PC) +- (PC)+1 Return if parity even

RPO If (Parity) = 0, (PCL) +- ((SP)). (PCH) +- ((SP)+1), (SP) +- (SP)+2
If (Parity) = 1, (PC)+- (PC)+1 Return if parity odd

Condition bits affected: None

RST INSTRUCTION 0
Format:

[LABEL:] RST EXP

NOTE: OOOB ,;;;; EXP,;;;; 111 B

CODE DESCRIPTION

RST ((SP)-1) +- (PCH), ((SP)-2) +- (PCL), (SP) +- (SP) -2
(PC) ~ OOOOOOOOOOEXPOOOB Call subroutine at address specified by EXP

Condition bits affected: None

I~TERRUPT FLIP-FLOP INSTRUCTIONS

Format:

[LABEL:] CODE

CODE DESCRIPTION

El (INTEl +-1 Enable the interrupt system

Dl (INTEl +-0 Disable the interrupt system 0
Condition bits affected: None

xiii Rev. B

0

·INPUT/OUTPUT 11\iSTRUCTIONS ·
.. c

·'
Format:

[l.ABEL:] CODE EXP ...

CODE. DESCRIPTION ..

IN (A) +- input device Read a byte from device EXP into the accumulator

OUT output device +- (A) Send the accumulator contents to device EXP

Condition bits affected: None

HL T INSTRUCTION

Format:

[LABEL:] HLT

CODE DESCRIPTION

HLT Instruction execution halts until an interrupt occurs

Condition bits affected: None

F=ormat:

CODE

ORG

Format:

CODE

EOU

Format:

ORG

NAME

PSEUDO - INSTRUCTIONS

ORG PSEUDO - INSTRUCTION

EXP

DESCRIPTION

LOCATION COUNTER +- EXP Set Assembler location counter to EXP
"-

EOU PSEUDO - INSTRUCTION

EOU EXP

DESCRIPTION

NAME +- EXP Assign the value EXP to the symbol NAME

SET PSEUDO- INSTRUCTION

NAME SET EXP

CODE DESCRIPTION

SET NAME +- EXP

xiv

Assign the value EXP to the symbol NAME, which
may have been previously SET.

I
-I

I
I
,I

END PSEUDO - INSTRUCTION
Format:

END

-
CODE DESCRIPTION

I END End the assembly
!
l

CONDITIONAL ASSEMBlY PSEUDO - INSTRUCTIONS

Format:

IF EXP
-and-

ENDIF

CODE DESCRIPTION i
:

IF If EXP = 0, ignore assembler statements until END IF is reached. Otherwise, continue
assembling statements

ENDIF End range of preceding IF

MACRO DEFINITION PSEUDO - INSTRUCTIONS

Format:

NAME MACRO LIST

-and-

ENDM

CODE DESCRIPTION

MACRO Define a macro named NAME with parameters LIST

ENDM End Macro definition

TITLE PSEUDO- INSTRUCTION

Format:
TITLE 'STRING'

CODE DESCRIPTION

TITLE Define 'title' to appear beneath page header.

XV Rev. C

/

l__)

. .

(J

This appendix summarizes the bit patterns and number of time states associated with every 8080 CPU instruction.

The instructions are listed in both mnemonic (alphabetical) and operation code (numerical) sequence.- .

When using this summary, note the following symbology:

. 1) DDD represents a destination register. SSS represents a source registeL Both DDD and SSS a·re interpreted as follows:·

DOD or SSS Interpretation

000 Register B
001 Register C
010 Register D
011 Register E
100 Register H
101 Register L
110 A memory register
111 The accumulator

2) Instruction execution time equals number of time periods multiplied by the duration of a time period.

,. ·.•

-,

·~·

A time period may vary from 480 nanosecs to 2 J1sec.

Where two numbers of time periods are shown (eq. 5/11), it means that the smaller number of time periods will be
required if a condition is not met, and the larger number of time periods will be required if the condition is met.

MNEMONIC o, 06 Ds 04 03 02 Dl Do NUMBER OF TIME PERIODS

CALL 1 1 0 0 1 1 0 1 17
cc 1 1 0 1 1 1 0 0 11/17
CNC 1 1 0 1 0 1 0 0 11/17
cz 1 1 0 0 1 1 0 0 11/17
CNZ 1 1 0 0 0 1 0 0 11/17
CP 1 1 1 1 0 1 0 0 11/17
CM 1 1 1 1 1 1 0 0 11/17
CPE 1 1 1 0 1 1 0 0 11/17
CPO 1 1 1 0 0 1 0 0 11/17
RET 1 1 0 0 1 0 0 1 10
RC 1 1 0 1 1 0 0 0 5/11
RNC 1 1 0 1 0 0 0 0 5/11
RZ 1 1 0 0 1 0 0 0 5/11
RNZ 1 1 0 0 0 0 0 0 5/11
RP 1 1 1 1 0 0 0 0 5/11
RM 1 1 1 1 1 0 0 0 5/11

' RPE 1 1 1 0 1 0 0 0- 5/11
RPO 1 1 1 0 0 0 0 ' 0 . 5/11

. -

xvi. Rev. C
• ,o;'

._ ':··· .. '

MNEMONIC 07 06 Ds 04 03 02 Dl. Do NUMBER OF TIME PERIODS

RST 1 1 A A A 1 1 1 11
IN 1 1 0 1 1 0 1 1 10 .
OUT 1 1 0 1 0 0 1 1 10" . 0
LXIB 0 0 0 0 0 0 0 1 10
LXID 0 0 0 1 0 0 0 1 10
LXIH 0 0 1 .0 0 0 0 1 10
LXI SP 0 0 1 1 0 0 0 1 10
PUSH B 1 1 0 0 0 1 0 1 11
PUSH D 1 1 0 1 0 1 0 1 11
PUSH H 1 1 1 0 0 1 0 1 11
PUSH PSW 1 1 1 1 0 0 0 1 11
POP B 1 1 0 0 0 0 0 1 10
POP D 1 1 0 1 0 0 0 1 10
POPH 1 1 1 0 0 0 0 1 10
POP PSW 1 1 1 1 0 0 0 1 10
STA 0 0 1 1 0 0 1 0 13
LOA 0 0 1 1 1 0 1 0 13
XCHG 1 1 1 0 1 0 1 1 4
XTHL 1 1 1 0 0 0 1 . 1 18
SPHL 1 1 1 1 1 0 0 1 5
PCHL 1 1 1 0 1 0 0 1 •5
DAD B 0 0 0 0 1 0 0 1 10
DADO 0 0 0 1 1 0 0 1 10
DAD H 0 0 1 0 1 0 0 1 10
DAD SP 0 0 1 1 1 0 0 1 10
STAX B 0 0 0 0 0 0 1 0 7
STAX D 0 0 0 1 0 0 1 0 7
LDAX B 0 0 0 0 1 0 1 0 7
LDAX D 0 0 0 1 1 0 1 0 7
INX B 0 0 0 0 0 0 1 1 5
INX D 0 0 0 1 0 0 1 1 5
INX H 0 0 1 0 0 0 1 1 5
INX SP 0 0 1 1 0 0 1 1 5
MOVr 1,r2 0 1 D D D s s s 5
MOV M, r 0 1 1 1 0 s s s 7
MOV r, M 0 1 D D D 1 1 0 7
HLT 0 1 1/ 1 0 1 1 0 7
MVI r 0 0 D D D 1 1 0 7
MVI M 0 0 1 1 0 1 1 0 10
INA 0 0 D D D 1 0 0 5
DCA 0 0 D D D 1 0 1 5
INA A 0 0 1 1 1 1 0 0 5
DCA A 0 0 1 1 1 1 0 1 5
INA M 0 0 1 1 0 1 0 0 10
DCA M 0 0 1 1 0 1 0 1 10
ADD r 1 0 0 0 0 s s s 4
ADCr 1 0 0 0 1 s s s 4
SUB r 1 0 0 1 0 s s s 4
SBB r 1 0 0 1 1 s s s 4
AND r 1 0 1 0 0 s s s 4
XRAr 1 0 1 0 1 s s s 4
ORAr 1 0 1 1 0 s s s 4
CMPr 1 0 1 1 1 s s s 4
ADDM 1 0 0 0 0 1 1 0 7
ADCM 1 0 0 0 I 1 1 1 0 7

·"---

xvii Rev. B

MNEMONIC D7 D6 Ds D4 . D3 D2 Dt Do NUMBER OF TIME PERIODS

SUB M 1 0 0 1 0 1 1 0 7
SBB M 1 0 0 1 1 1 1 0 7
ANDM 1 0 1 0 0 1 1 0 7
XRAM 1 0 1 0 1 1 1 0 7
ORAM. _,

0 1 1 0 1 1 0 7 .

CMPM 1 o· 1 1 1 1 1 0 7
ADI 1 1 0 0 0 1 . 1 0 7
ACI 1 1 0 0 1 1 1 0 7
SUI 1 1 0 1 0 1 1 0 7
SBI 1 1 0 1 1 1 1 0 7
ANI 1 1 1 0 0 1 1 0 7
XAI 1 1 . 1 0 1 1 1 0 7
ORI 1 1 1 1 0 1 1 0 7
CPI 1 1 1 1 1 1 1 0 7
RLC 0 0 0 0 0 1 1 1 4 -
ARC 0 0 0 0 1 1 1 1 4
RAL 0 0 0 1 0 1 1 1 4 -
RAR 0 0 0 1 1 1 1 1 4
JMP 1 1 0 0 0 0 1 1 10
JC 1 l 0 1 1 0 1 0 10
JNC 1 1 0 1 0 0 1 0 10
JZ 1 1 0 0 1 0 1 0 10

' .

' JNZ 1 1 0 0 0 0 1 0 10
JP 1 1 1 1 0 0 1 0 10
JM 1 1 1 1 1 0 1 0 10 '.
JPE 1 1 1 0 1 0 1 0 10

u JPO. 1 1 1 0 0 0 1 0
I

10
DCX B 0 .• 0 0 0 1 0 1 1 5
DCXD 0 0 0 1 1

·'

0 1 1 5·
D9)(H 0 0 1 0 1 0 1 1 5
DCXSP 0 0 1 1 1 0 1 1 5-
CMA 0 0 1 0 : 1 1 1 1 4
STC " 0 ·0 1 I 1 0 1 1 1 4

.. CMC " 0 0 1 1 1 1 1 1 4
DAA 0 0 1 0 0 1 1 1 4
SHLD 0 0 1 0 0 0 1 0 16

~1 LHLD 0 0 1 0 1 0 1 0 16
El . 1 1 1 1 1 0 1 1 4

~I • Dl 1 1 1 1 0 0 1 1 . 4
NOP 0 0 0 0 0 0 0 0 .4

xviii

8080 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

OP OP .OP
CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC

00 NOP 28 DCX H 56 MOV D,M
01 LXI 8,016 2C INA L 57 MOV D,A
02 STAX 8 20 OCR L 58 MOV E,B
03 INX 8 2E MVI L,DS 59 MOV E,C
04 INA 8 2F CMA SA MOV E,D
05 OCR 8 30 --- 58 MOV E,E
06 MVI 8,08 31 LXI SP,D1E 5C MOV E,H
07 RLC 32 STA Adr 50 MOV E,L
08 --- 33 INX SP 5E MOV E,M
09 DAD 8 34 INA M SF MOV E,A
OA LDAX 8 35 OCR M 60 MOV H,B
08 DCX 8 36 MVI M,DS 61 MOV H,C
oc INA c 37 STC 62 MOV H,D
OD OCR c 38 --- 63 MOV H,E
OE MVI C,DS 39 DAD SP 64 MOV H,H
OF ARC 3A LOA Adr 65 MOV H,L
10 --- 38 DCX SP 66 MOV H,M
11 LXI 0,016 3C INR A 67 MOV H,A
12 STAX D 30 OCR A 68 MOV L,B
13 INX D 3E MVI A,DS 69 MOV L,C
14 INA D 3F CMC 6A MOV L,D
15 OCR D 40 MOV 8,8 68 MOV L,E
16 MVI 0,08 41 MOV B,C 6C MOV' L,H
17 RAL 42 MOV 8,0 60 MOV L,L
18 --- 43 MOV B,E 6E MOV L,M
19 DAD D 44 MOV B,H 6F MOV L,A
1A LDAX D 45 MOV B,L 70 MOV M,B
18 DCX D 46 MOV B,M 71 MOV M,C
1C INA E 47 MOV B,A 72 MOV M,D
10 OCR E 48 MOV C,B 73 MOV M,E
1E MVI E,DS 49 MOV C,C 74 MOV M,H
1F RAR 4A MOV C,D 75 MOV M,L
20 --- 48 MOV C,E 76 HLT
21 LXI H,D16 4C MOV C,H 77 MOV M,A
22 SHLD Adr 40 MOV C,L 78 MOV A,B
23 INX H 4E MOV C,M 79 MOV A,C
24 INA H 4F MOV C,A 7A MOV A,D
25 OCR H 50 MOV 0,8 78 MOV A,E;
26 MVI H,DS 51 MOV D,C 7C MOV' A,H
27 DAA 52 MOV D,D 70 MOV A,L
28 --- 53 MOV D;E 7E MOV A,M
29 DAD H 54 MOV D,H 7F MOV A,A
2A LHLD Adr 55 MOV D,L 80 ADD 8

08 = constant, or logical/arithmetic expression that evaluates,
to an 8 bit data quantity.

Adr = 16-bit address.

x_ix

OP OP OP ! CODE MNEMONIC CODE MNEMONIC CODE MNEMONI~

81 ADD c AC XRA H 07 f3SJ: 2 I

82 ADD D AD XRA L 08 RC !

8~ ADD E AE XRA M 09 -- -
84 ADD H AF XRA A DA JC Adr
85 ADD L 80 ORA 8 DB IN oa
86 ADD M 81 ORA c DC cc Adr

ORA DO I 87 ADD A 82 D -- - I
I

88 ADC 8 83 ORA- E DE SBI D~
89 ADC c 84 ORA H OF RST 3

ORA EO RPO
;

SA ADC D 85 L l 88 ADC E 86 ORA M E1 POP H
I ac ADC H 87 ORA A E2 Jf?.0 Adr

80 ADC L 88 CMP 8 E3 XTHL l

BE ADC M 89 CMP c E4 CPO Adr
SF ADC A BA CMP D E5 PUSH H
90 SUB 8 88 CMP E E6 ANI D~
91 SUB c BC CMP H E7 RST 4
92 SUB D BD CMP L ES APE
93 SUB E BE CMP M E9 PCHL I
94 SUB H SF CMP A EA JPE Aqr
95 SUB L co RNZ EB XCHG i
96 SUB M 'C1 POP 8 EC CPE Adr
97 SUB A C2 JNZ Adr ED ·-"':.-- I

I
98 SBB 8 C3 JMP Adr EE XAI 08
99 SBB c C4 CNZ Adr EF RST 5 i

I : 9A SBB. D - C5 PUSH 8 FO RP 1
98 SBB E C6 ADI 08 F1 POP Psw;
9C SBB H C7 RST 0 F2 JP A&
90 SBB L ca RZ F3 Dl l

I 9E SBB M . C9 RET Adr F4 CP Adr
I 9F SBB A CA JZ F5 PUSH.PSW!

AO ANA 8 CB --- • F6 ORI 08
A1 ANA c cc cz Adr F7 RSJ 6

· A2 ANA D CD CALL Adr FS RM
A3 ANA E CE ACI · 08 F9 SPHL
A4 ANA H CF RST 1 FA JM Adr
AS ANA L DO RNC FB El ~

A6 ANA M 01 POP D FC CM Adr
A7 ANA A 02 JNC Adr FD
AS· XRA 8 03 OUT 08 FE CPi 08
A9 XRA c 04 CNC Adr- FF · RST 7 ..
AA XRA D 05 PUSH D
AB XRA E 06 SUI 08

016 = constant, or logical/arithmetic expression that evaluates
to a 16 bit data quantity.

Rev. C

u

l)

. '

The 8080 uses the seven-bit ASCII code, with the. high-order eighth bit (parity bit) always reset.

GRAP.HIC OR CONTROL ASCII (HEXADECIMAL) GRAPHIC OR CONTROL ASCII (HEXADECIMAL)

NUL 00 us 1F

(j
SOH 01 SP 20
STX 02 21
ETX 03 ,:

22
EOT '04 # 23
ENQ 05 $ 24
ACK 06 % 25
BEL 07 & 26
BS 08 I 27
HT 09 (28
LF OA) 29
VT OB * 2A
FF oc + 2B
CR OD 2C so OE 20
Sl OF 2E
OLE 10 I 2F
DC1 (X-ON) 11 0 30
DC2 (TAPE) 12 1 31
DC3 (X-OFF) 13 2 32
DC4 fFAP8 14 3 33
NAK 15 4 34
SYN 16 5 35
ETB 17 6 36
CAN 18 7 37
EM 19 8 38
SUB 1A 9 39
ESC 18 3A
FS 1C 3B
GS 10 < 3C
RS 1E

XX

GRAPHIC OR CONTROL ASCII (HEXADECIMAL) GRAPHIC OR CONTROL ASCII (HEXADECIMAL)

30 (+--) 5F
> 3E \ 60 0 ? 3F a 61
@ 40 b 62
A 41 c 63
B 42 d 64
c 43 e 65
D 44 f 66
E 45 g 67
F 46 h 68
G 47 69
H 48 j 6A
I 49 k 68
J 4A I 6C
K 48 m 60
L 4C n 6E
M 40 0 6F
N 4E p 70
0 4F q 71
p 50 72
0 51 s 73
R 52 74
s 53 u 75
T 54 v 76
u 55 w 77

v 56 X 78
w 57 y 79
X 58 z 7A 0 y 59 { 78
z 5A I 7C
[58 } (ALT MODE) 70
\ 5C 7E
1 50 DEL (RUB OUT) -7F
/\ (t) 5E

..

0

MJCi

(j

_, ..

(.

xxii

POWERS 0 F TWO

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000·953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 aaa 39 o.ooo ooo· ooo .oo1 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 7.47 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 1'78 419 700 125 232 3B8 905 334 4 72 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511" 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

xxiii

0

0

u

TABLE OF POWERS OF SIXTEEN 10

n

0

16 1

256 2

4 096 3

65 536. 4

1 048 576 . 5

16 777 216 6

268 . 435 456 7

4 294 967 296 8

68 719 476 736 9'

099 511 627 776 10

16-n

0.10000 00000 00000 00000 X 1 0

0.62500 00000 00000 00000 X 10-1

0.39062 50000 00000 00000 X 10-2

0.24414 06250 00000 00000 X 10-3

0.15258 78906 25000 00000 X 10-4

0.95367 43164 06250 00000 X 10-6

0.59604

0.37252

0.23283

0.14551

64477 53906 25000 X 10-7

90298 .·. 46191 40625 X 10-8

06436 - 53869 62891 X 10-9

91522 83668 51807 X 10- 1
0

17 592 ·. 186 044 416 11

0.90949, '47017 72928 23792. X 10- 12

0.56843- 41886 08080 14870 X 10- 13

0.35527 - ·13678 80050 09294 X 10-14

0.22204 '46049 25031 30808 X 10- 15

281 474 976 710 656 12

4 503 599 627 370 496- ._ 13

72 057 594 037 927 936 14 . 0.13877 78780 78144 56755 X 10- 16

1 52· 921 504 606 846 976 15 0.86736 . 17379 88403 54721 X 10-18

2

17

E8

918

5AF3

3 · 807E

23 8652

163 4578

OEO- 8683

8AC7 2304

TABLE OF POWERS OF TEN IN BASE 16

A

64

3E8

2710

1 86AO

F 4240

98 9680

5F5 E100

389A CAOO

n

0

1

2

3

4

5
6'

7

8

9

E400 10

E800 11

1.0000

0.1999

0.28F5

0.4189

0.6808

O.A7C5

0.10C6

0.1 AD7

0.2AF3

0.4488

0.60F3

O.AFE8

5408

4876

04A5

4E72

107A

A4C6

6FC1

508A

A764

89E8

1000 12 -. 0.1197·

AOOO 13 0.1C25

4000 14

8000 15

0000 16

0000 17

0000 18

0000 19

0.2009

. 0.480E •

0.734A

0.8877

0.1272

-0.1083

xxiv

10-n

0000 0000 0000

9999 .· 9999 999A

C28F 5C28 F5C3

3748

88AC

AC47

F7AO

C6A7

710C

1847

85EO

EF9E

8296

8423

8037

F29A 8CAF 4858

1DC4 6118 738F

2FAO 985A 52CC

7F67

FF08

9981

C268

3700

8E78

CA5F

AA32

5001

C94F

SEF6 EAOF

C824 AAFF

2QEA · 1119

4976 81C2

4:257

9058

6226

36A4

0243

8602

3604

5660

FOAE

8449

A8A1

AC35

X 16- 1

X 16-2

X 16-3

X 16-4

X 16-4

x 16-5

X 16-6

X 16-7

X 16-8

X 16-9

x. 16-9
-

X 16-IO

X 16- 11 ·

X 16:_ 12

X 16- 13

X 16-14

X 16- 14

X 16-15

Rev. C

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between· hexadecimal integers in the range 0-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

0 Hexadecimal Decimal Hexadecimal Decimal

01 000 4 096 20 000 131 072
02 000 8 192 30 000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05000 20 480 60 000 393 216
06 000 24 576 70 000 458 752
07 000 28 672 80 000 524 288
08 000 32 768 90 000 589 824
09 000 36 864 AO 000 655 360
OA 000 40 960 80 000 720 896

. 45 056 co 000 786 432 ~
08 000
oc 000 49 152 DO 000 851 968

OD 000 53 248 EO 000 917 504
OE 000 57 344 FO 000 983 040
OF 000 61 440 100 000 1 048 576

10 000 65 536 200 000 2 097 152
11 000 69 632 300 000 3 145 728
12 000 73 728 400 000 4 194 304
13 000 77 824 ' 500 000 5 242 880
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90 112 800 000 8 388 608
17 000 94 208 900 000 9 437 184
18 000 98 304 AOO 000 10485760 r
19 000 102 400 BOO 000 11 534 336 '0 · 1 A 000 106496· coo 000 12 582 912
18 000 110 592 DOO 000 13 631 488
1C 000 114 688 EOO 000 14 680 064
10 000 118 784 FOO 000 15 728 640

. 1 E 000 122 880 1 000 000 16 777 216
1 F 000 .126 976 2 000 000 33 554 432

0 1 2 ; 3 4 5 6 7' 8 9 A B c D E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 00 17.· . 0018. 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029; 0030 0031
020 0032 0033 0034 0035. 0036 0037 0038 0039 0040 0041 0042 0043 ·. 0044 0045 0046 0047
030 0048 0049 0050 0051 . . 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040' 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 . 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 . 0107 ·0108 0109 0110 011'1
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132. 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090· 0144 0145 0146 . 0147 0148 '0149 0150 0151 0152 0153 0154 0155 . 0156 0157 0158 0159
OAO 0160 0161 0162., 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
080 0176 0177 0178, 0179 0180 0181 OJ82 0183 0184 ' 0185 0186 0187 0188 0189 0190, 0191

oco 0192 0193 0194 0195 . 0196 0197 . 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
ODO 0208 0209 0210: 0211 0212 0213 0214 . 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227· 0228 0229 0230 0231 0232 0233 0234 . 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0.243 0244 0245 0246 0247 0248 0249 . 0250 0251 0252 02.53 0254 0255

XXV

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 c 0 E F
100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 .0270" 0271 110 0272 0273 0274

I
0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 03.14 0315 0316 ··0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 Q333 ·0334 0335 150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 i0349 0350 0351 160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 . 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 04i5 1AO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 ,0429 0430 0431 .J

180 0432 0433 0434 0435 0436 0437 0438 0439 04.40 0441 0442 0443 0444 0445 0446 0447

\

1CO 0448 0449 0450 0451' 0452 0453 0454 0455 0456 0457" 0458 0459 0460 P461 0462 0463 100. 0464 0465 0466 0467. 0468 0469 0470 0471 . 0472 0473 0474 0475 0476 ,0477 •0478 0479 lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 1 FO 0496 0497 :0498 0499. 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 .. J 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 .0526 0527 " 210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541· 0542 0543 22p 0544 0545 0546 0547 0548 0549 0550 0551 . 0552 0553 0554 0555 0556 0557. 0558 0559 230 .. 0560 0561 0562 0563 0564 0565 0566 0567 0568 . 0569 0570 0571 0~72 0573 0574 0575 ·!

24p 0576 0577 0578 0579 0580 0581 . 0582 0583 0584 0585 0586. 0587 0588 0589 0590 0591 250 0592 0593 0594 .. , 0595 0596 0597 0598 0599. . 0600 060.1 0602 0603 0604 0605 0606 0607 260 0608
I.

0609 0610 0611 0612 0613 0614 0615 0616 0617. 0618 0619 0620 0621 0622 0623 '

L 0630 0631 0632 0634 27p 0624 0625 0626 0627 0628 0629 0633 0635 0636 0637 0638 0639 '
28!J 0640 0641 0642- . 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 '0655 29p 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 ·0666 0667 0668 0669 0670 0671 2AO 0672 0673 0674 0675' 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 .286 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701· 0702 0703
2CO

!
0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719

0724 0725 0726 0727. 0728 0729 0730 0731 0733 0734
200 0720 0721 0722 0723 0732 0735 2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758

'
0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775' 0776 0777 0778 0779 _..-- 0780 0781 0782 0783 310 0784 0785 0786 0787 .0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 0832 0833 0834 0835 0836 0837 0838 0839: 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 08'73 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

()
3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 '1007
3FO 1008 1009 1010 1011 1012 1013 1014. 1015 1016 1017 1018 1019 1020 1021 1022 1023

xxvi

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'dl

0 1 2 3 4 5 6 7 8 9 A B c D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 .1055

1069
t. 420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1070 101:;1

430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 .1085 1086 1087

u
I·

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1Hl3
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

ji

1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

11

1133 1134 1135
470 1136 1137 1138 1139 1140 1141 ' 1142 1143

I
1144 1145 1146 114 7 1148 1149 1150 1151

:
480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 11~7
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

.,
1197 1198 11~9

480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 12i5
'I

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 ·' 123,1
400 1232 1233 1234 1235 1236 1237 . 1238· 1239 1240 1241 1242 1243 1244 1245 1246. 1247

I 4EO 1248 1249 1250 1251 1252 1253 '1254 1255 1256 1257 1258 1259 1260 1261 1262 12~3
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 127:~

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
'I

'1295
1309

I, 510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1310 :1311
520 1312 1313· 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355' 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403· 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 14~3
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 . 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 .1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 II
1545 1546 1547 1548 1549 1550 15~;1

610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562· 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

II
1583

630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
II

1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 161:~
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 163,1
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 164.7
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658' 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673.1674
. t!

1675 1676 1677 1678 167i~
690 1680 / 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 16~5
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 I' 1711·1
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

I!
1727

6CO 1728 1729' 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
II

1742 174'3
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 II 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769' II 1770 1771 1772 1773 1774 177-5
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

I'
179)

xxvii Rev. B

L

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 c D E F
100 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

(_) 7.10 1808 1809 1810 1811 1812 1813 . 1814 1815 1816 1817 1818 1819 1820 .1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830, 1831 1832 1833 1834 1835 1836 '1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855.

740 1856 1857 1858 1859 1860 1861 1862 ' 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 '-1879 1880 1881 1882 1883 1884 1885 1886 1887
760 ···188"8. ''1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 ·1900 . 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 ·1911

I
1912 1913 1914 1915 1916

1

1917 1918 1919
'

780 '1920 1921 1922 1923 1924 1925 1926 ;l927 1928 1929 1930 . 1931 1932 1933 1934 1935 ' 790 1936 1937 1938 1939 1940 1941 1942 1943 -1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 iao 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

~co 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
I

1996 ,1997 1998 1999 .
7.DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 :2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 ;2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039. 2040 2041" 2042 2043 2044 2045 2046 2047

. 800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 ' 2059 2060 2061 2062 :?063 .
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 ,2077 2078• 2079.
~20 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

' 830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 I

2132 2133 2134 2135 8.50 2128 2129 2130 2131 2136 2137 2138 2139. 2140 2141 2142 2143
' f¥>0 2144 2145 2146 2147 2148 2149 2150 2151 . 2152 2153 2154 2155 . 2156 2157 2158 2159

870 2160 2161 2162 2163 2164 2165 2166 2167 . 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186. 2187 2188 . 2189 2190 2191
~90 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
B'AO 2208 2209 2210 2211 2212 .2213 2214 2215 2216 2217 2.218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236· 2237 2238 2239

.,,
2244 2245 2246 2247 2248 2249 2253 8.co 2240 2241 2242 2243 2250 2251 2252 2254 2255

8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 ~269 2270 2271
BED 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

' a'FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

OOo 2304 2305 2306 2307 2308 2309 2310 2311 2312 2:313 . 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323. 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 I.

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 '2348 2349 2350 2351 920 2336 2337
2356 2357 2358 2359 I 930 2352 2353 2354 2355 2360 2361 2362 2363 2364 2365 2366 2367 .

I . '

94o 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
9.50 2384 2385 2386 2387 2388 2389 2390 2391 . 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98o 2436 2437 2438 2439 I 2432 2433 2434 2435 2440 2441 2442 2443 2444 ?445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 I

2466 2467 2468 2469 2470 9AO 2464 2465 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 ..
!Jto· .2496 2497 2498 2499 2500 2501 2502 2503' 2504 2505 2506 2507 2508 ?509 2510 2511 u 900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

I 9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9,FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

xxviii

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B c D E F

AOO 2560 2561 2562 . 2563 2564 2565 2566 2567 256.8 2569 2570 2571 2572 25p 2574 2575
A10 2576 2577 2578 2579 2580 2581 2582 2583 .2584 25.85 2586 2587 2588 2589 2590 259.1
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 26,16 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 263.9
A 50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 '· 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 267:1
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 ,.

ABO 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718. 271:9
AAO 2720 2721 2722 2723 2724 .2725 2726 2727. 2728 2729 2730 2731 2732 2733 2734 27~5
ABO 2736 2737 2738 2739 2740 2741 2742 274,3 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2183
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 279,9 ..

·2810 2811 ' AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2812 2813 2814 281-5

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826· 2827 .2828 2829 2830 283,1
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 .2844 2845 2846 2847
B20 2848 2849 2850 3851 2852· 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 28~3
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 28'77 2878 281.9

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 291,
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934. 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952. 2953 2954 295,5 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

()

,- J

I

BAO 2976. 2977 2978 2979 2980 2981 . 2982 . 2983 . 2984 2985 2986 2987. 2988 2989 2990 2991
BBO 2992 2993 2994 2995 . 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 301, 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 '3033· 30~4 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

coo 3072 3073 3074. 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 .3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 .3108 3109 3110 3111 3112 3113 31 14 3115 3116 3117 31 18 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141. 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3.162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171. 3172 3173 3174 317~ 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195: 3196 3197 3198 3199

CBO 3200 3201 3202 3203 3204 3205. 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 -3222 3223. 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 . 3245 3246 3247
CBO 3248 3249 3250 3251 . 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

ceo 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 327;9 coo 3280 3281 3282• 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 '329.5
CEO. 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

xxix Rev. B

l

/
.-··<t-

: r' :; ~-\.J_ •• ·u

I
f

I
(
I

I.
I

000
010
020
030

040
050
060
070

080
090
OAO
080

OCO
·ooo
OEO

=oFo

EOO
E10
E20
E30

E40
E50
E60

' E70
'

E80
E90
EAO
EBO

ECO
EOO
EEO
EFO

FOO
FlO
F20
F30

F40
F50
F60
F70

F80
F90
FAO
FBO

FCO

' FOO
FEO
FFO

0

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

3584
3600
3616
3632

3648
3664
3680
3696

3712
3728
3744
3760

3776
3792
3808
3824

3840
3856
3872
3888

3904
3920
3936
3952

3968
3984
4000
4016

4032
4048
4064
4080

1 2

3329 3330
3345 3346
3361 3362
3377 3378

3393 3394
3409 3410
3425 3426
3441 3442

3457 3458
3473 3474
3489 3490
3505 3506

3521 3522
3537 3538
3553 3~54
3569 3570

3585 3586
3601 3602
3617 3618
3633 3634

3649 3650
3665 3666
3681 '3682
3697 3698

3713 3714
3729 3730
3745 3746
3761 3762

3777 3778
3793 3794
3809 3810
3825 3826

3841 3842
3857 3858
3873 3874
3889 3890

3905 3906
3921 3922
3937 3938
3953 3954

3969 3970
3985 3986
4001 4002
4017 4018

4033 4034
4049 4050
4065 4066
4081 4082

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

3 4 5 6 7 8 9 A 8 c 0 E F

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

3395 3396 3397 3398 3399 3400 .3401 3402 3403 3404. 3405 3406 3407
3411 3412 3413 3414 3415 . 3416 3417 3418 3419 3420 3421 3422 3423
3427. 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454. 3455

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 .3551
3555 3556 3557 . 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580. 3581 3582 3583

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
3635 3636 3637 3638 '3639 3640 3641 3642 3643 3644 3645 3646 3647

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
3683 '3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

3779 '3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

3843 3844 3845 3846 3847 3848. 3849 3850 3851 3852 3853 3854 3855
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
3875 3876 3877 3878 3879 3880 3881 3882· 3883 3884 3885 3886 3887
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935·
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 . 4062 4063
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

XXX Rev. B

I I,
I,

I

I
I
!
' '

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA95051 (408) 246-7501

©1974, 1975,1976 Printed in U.S.A. MCS-908-0176/15K

........ --·

r

T

' ' ~ . '

.,
jl

	Cover

	Terms

	Table of Contents

	Introduction

	1. Computer Organization

	2. The 8080 Instruction Set

	3. Programming With Macros

	4. Programming Techniques

	5. Interrupts

	A. Instruction Summary

	B. Instruction Execution Times Bit Patterns and Operation Codes

	C. ASCII Table

	D. Binary-Decimal-Hexadecimal Conversion Tables

	Back Cover

