A :,-";

780 DEVELOPMENT SYSTEM

Distributed by:

Lifeboat Associates
1651 Third Avenue
New ‘York
. N.Y. 10028
(212) 860-0300

ipa

MR A ROl Sl it R A SR,

VIR RENN

3o

A Ye " . sk

oL

st A

Ky AR
Bl i e B, S B0 s S

G

L O e
Rty Soipa b idCuitingibory oigdde 4 e
ot st Kot A B 0525 L i it

FARAN

L1feboat Associates 280 Development

5.0 EXAMPLE OF LINK COMMAN

CONTENTS
TEXT EDITOR * e % s s e e e L eai e e e e e e
1.0 INTRODUCTION Ce e e W e e e
2.0 DEFINITIONS | ;
3.0 USING THE EDITOR - CONSOLE INTERACTION .
4.0 USING THE EDITOR - ENTERING COMMANDS e
5.0 USING THE EDITOR - FIRST STEPS R T
- 6.0 EDITOR COMMANDS P v e e e
6.1 An - ADVANCE o u < ' e e e de e e 6 e
6.3 Cn /strlngl/str1n92/ - CHANGE STRING .
6.4 Dn = DBLETE + v v 4 v v s v ovoe e
6.5 En = EXCHANGE P T ’kn‘ o ¥ e @ & e ‘g
6.6 Fn - PRINT FLAG . . . T S T
6.7 G file - GET FILE COMMAND e w e e
6.8 I - INSERT COMMAND L I R
6.9 Ln - GO TO LINE NUMBER N . v + v w 4 .
6.10 Pn file - PUT ,Y; e e el e
6.11 Q - QUIT~ . ¢ e e e w
6.12 Sn /string/ = SEARCH FOR STRINth “ .
6 13 T - INSERT AT TOP L T S e T I PO
6 .14 vn - VIEW L T I L i S e S S A T
7.0 EDITING LARGE FILES . « & o o o . PR
8.0 EDITOR MESSAGES . v v v 4 v w o o o o o .
9.0 SAMPLE EDITING SESSION ., . . R
10.0 EDITOR COMMAND SUMMARY . . « + o & o o« .
RELOCATING 280 ASSEMBLER 4 & v 4 o o o o o » .
1.0 INTRODUCTION . « e a ’c s e e e e e .8 e @
2.0 COMMAND SUMMARY . v v v v v v v v . voe e
- 3.0 DEFINITIONS . . s e e e e W e e e
4 0 USING THE ASSEMBLER . ". L] . . . ¢ » L “
4.1 ASSEMBLER OPTIONS . . w & o v o & .+ . .
4.2 ERROR MESSAGES s e le e e e e e ‘d" ¢« e
4.3 OBJECT OUTPUT & v v v 4 o o s o o o o s
4.4 ASSEMBLY LISTING OUTPUT s s e e
5.0 ADVANCED OPERATIONS . v 4 & & o o o o o 4
5.1 PASS 2 OPERATION (SINGLE PASS OPERATION)
5.2 ASSEMBLING SEVERAL SOURCE. MODULES TOGETH
6.0 280 ASSEMBLY LANGUAGE &+ 4+ « o v & o o o .
' 6.1 DELIMITERS . . . L) . “ e . & 8 8 ‘e @ e
6 . 2 LABELS . * . (] - ’ . e '. L k"' . » - L) . -
6.3 OPCODES e e i s ae e e w e
6.4 PSEUDO"OPS * @ e e ¢ & .8 8 ® e s s
6.4.1 ASSEMBLER DIRECTIVES * s 4 e s ee
6.5 OPERANDS S s 8 e e s e e s et el e e s
6.6 COMMENTS S0 & e wie e a
6.7 ABSOLUTE MODULE RULES e e e e e e e
6.8 RELOCATABLE MODULE RULES e e e e e
6.9 GLOBAL SYMBOL HANDLING . 4 4 o 2 o &
6.10 GLOBAL SYMBOL RULES . &+ . ¢ o o o o .
7.0 TECHNICAL INFORMATION e e
LINKING LOADBR e s 8 B s e e e bo * e e e @ #
1 0 INTRODUCTION * B e B s e e e e 6 & & 8 ®
‘2.0 COMMAND SUMMARY . . . e sl e s e o & e s &
3.0DEPINITI°NS e % 88 & B 8 8. s 8 e 4 # e .
4 .0 LINKER OPERATION 2 s e 8 s 8 e s a8 8 ®
D . o« s .0 s o & @

t
x

¢ o S & B & & 8 5 T e s 6 6 € o & ® @

Systéin
e & &
1] L] .
L 2 - 2]
4 - .
- . L
« 8
. .“ .
* L] .
v e .
. . .
. e e
. §« &
- i 2 -
* L] L]
- - *
L] ‘. .
* . .
. . .)
. P
e & e
v e e
" TR
. . ’,/o'
‘e el
LI Y “o
e e e
. L] .
LR SHNEH
e . »
o . o s
« 0 e
o e e
¢ e e
- - L]
* 8. -8
s e
s . e &
s e 8
PR -
L] *
L U .
s e e ‘
LR 3 [
. e
' e e
& o e
o 8 e
* e e
L Y
* & e
. (] L
* e @
e o &”
s &
Ly o" ®

..0.00&00.'..’.o-o‘oo.acao.totrouo.o-ooaooz-o.,‘oo‘Onuntot..

‘...."...‘......'._Ill_'..o_....'.'l...l.l‘.'.'A.....k.-

- [] .. » . [] . s . - ..

, . . ~ . .
¢ 6 O S @ ¢ & 6.6 8 & o s e 6 ® 0. » & o & & ¢ e 8 6 e B e B S e e S8 S e W e e. .8 5 ¢ . 8 ‘& o 6 w e
o e - .. . R 3 o« B . . B .

mmmw?mwwww‘

L T S)

| SN T T VA e B
DWANNRANT NNV U

' u:wtvqrwtnu:m

K35 o e 3R B 4 b S Soblng sem e i

et

PRI PP RENOF DAY

s w2 R Em

280 Development System - Text Editor
SD SYSTEMS TEXT EDITOR V3.0
' OPERATIONS MANUAL

COPYRIGHT 1978 SD SYSTEMS
NOVEMBER, 1978

~ ALL RIGHTS RESERVED

 NOTE: THIS DOCUMENT AND ASSOCIATED SOFTWARE IS COPYRIGHTED BY AND

PROTECTED = BY LICENSE AGREEMENT WITH SD SYSTEMS. UNAUTHORIZED
DUPLICATION BY ANY MEANS IS PROHIBITED

1.0 INTRODUCTION

The SD SYSTEMS Text ‘Editor assists the user in origination and
modification of assembly 1language source programs and English text

documentation. The Editor resides on a 32K system diskette, It -

permits random access editing of ASCII diskette files. The Editor is

designed for usage with any CP/M(*) compat1b1e disk operating’ system
(DOS) using a 280 microprocessor. : : :

The Text ~Editor permits random access editing of ASCII diskette files
on a line basis or character basis. Whole lines and character strings
embedded within lines can be easily accessed, changed, deleted, or

added to an existing or new diskette file. The size of the file to be

edited is limited only by diskette capacity. All I/0 operations to the

: dxskette are transparent to the user.,

The Editor is resident on diskette. Whén loaded, it starts at RAM

address 100H. Editor buffers and variables are placed in RAM between
the top of the Editor and the bottom of the Opetat1ng System. All 1/0
is done with the console device and the disk. .

2.0 DEFINITIONS
‘some other text.

SOURCE - ASCII characters comprising a 280 assembly language program or

FILE - a dxskette file which contaihs the SOURCE.

LINE =~ a sxngle source statement wh1ch ends with a carriage teturn.

LINE POINTER - the posztxon in the source where the next action of the;f;

Editor will be initiated.

%) CP/M is a tegzstered ttademark of Digital Research of Pacific~Gtove;~'
- California. : 7 ;

A;l‘

Lifeboat Associates 280 Development Systenm Version 3.2

N

‘ (:/,\\

280 Development System - Text Editor

CURRENT LINE - the line in the source pointed to by the LINE POINTER.

LINE NUMBER - the decimal number of a line, beginning at one (0001) for

the first line in a file and increasing sequentially ‘for each 1line.,
The maximum line number allowed is 9999 (decimal) . Line numbers are
assigned dynamically as editing of the file progresses. This means

~that when 1lines are added to or deleted from a file, all 1lines are

automatically renumbered.

INSERT - installation of one or more .lines in a file immediately

following the current line. 1Inserted lines are assigned sequentially

‘increasing line numbers.

DELETE - removal of one or more lines from a file.
3.0 USING THE EDITOR - CONSOLE INTERACTION

All user interaction with the Editor is via the user consolé. The
Editor issues prompts and messages to direct the user. The user
responds by entering commands or data via the console keyboard. Each
command or data line is terminated by a carriage return. :

The following conventions are used in this manual:
(CR) stands for carriage return.
All user input is underlined. , :
User input which must be entered exactly as shown

is 'in upper case letters.
User input which is variable is shown in lower case.

4.0 USING THE EDITOR - ENTERING COMMANDS s

The Editor prompts for a command with an -asterisk (*). The user may

- then enter commands via the console keyboard. Modification of the

input, such as rubout, backspace, and line delete. is supported by the
operating system. entered in lower case as well as upper case.
Several commands may be entered on one line. Blanks and commas are
ignored on input. A command line is terminated by a carriage return.
A command line may have up to 80 characters in it, including the
carriage return. ' , : : : A

All commands consist of one character followed by an optional operand.
The operand may be separated :from the command by zero or more blanks or

~ commas. The operand may be a decimal number in the range 0-9999,. This

'specifies the number of lines upon which the command is to operate. |
Alternatively, the operand may be two decimal numbers separated by a

- minus sign (-). In this case, the command takes effect on lines :

numbered from the first number in the operand through and including the

~ second number. If the operand is not entered, it assumes - a value of

A-2

LifeboatWAssociateé 280 Developmént System Version 3.2

Z80 Development System ~ Text Editor

one (exceptkfor the 'F' command).

EXAMPLE
v , ; : :
-VIEW command wlth no opetand The operand
: value assumes the value of one. L
V5 or V5 or - V,5

~one operand shown'whlch acts on the next S
‘lines in the source file.
V42-45 or V 42-45 or V,42-45

- ~two operands entered. The VIEW command acts
on lines numbered 42 through 45,

5.0 USING THE EDITOR - FIRST STEPS

After bootlng up DOS the Text EditOr‘may be executed by the'folléwing
command: , , SRR

AA>EDIT3filehame(CR) e o e o

-where filename is the name of the d1skette file
to be edited on the currently selected disk.

The file may not have an exten51on of COM, BAK,
or S$S§S. :

The Editor responds with the following message:
SD SYSTEMS EDITOR = |

EXAMPLE | | ,
A>EDIT MYFILE (CR)

i —— - =

~user selects to run the Editor to edit the file
named ‘MYFILE®' on the currently selected disk.
" SD SYSTEMS EDITOR :

If the~file does NOT exist‘on the diskette, then the Editor outputs the
following message on the console: , \

 ***NEW FILE | :
-Editor 1ndlcates that a new file is being created.

The Editor then enters the 'DATA MODE' and waxts for lines of data to
be entered by the user:

***DATA MODB

0001
-Ed1tor prompts for data 11nes starting with
- line number 0001 (see I-INSERT command).

At the end of ed1t1ng. the new file will automat1ca11y be created

Lifeboat Associates 280 Development System Version 3.2

280 Development System - Text Editor.

If the file does exist on the disk, then editing of that file will be
~done, and the Editor prompts for a command: g '

* - : :
- -Editor prompts for a command (see below).

At the end‘of'editing. the original file will be renamed with an
extension of 'BAK'. The file which was edited will have all the
changes in it. : : ‘

The following pages describe each of the Editor commanas?in detail.

6.0 EDITOR COMMANDS

- - - - -

6.1 An - ADVANCE

Format:
An
or
an
-where n is a decimal number.

This command is used to advance the line pointer (toward the end of the
file) a specified number of lines. If the operand n is not entered or
it is zero, then the pointer will be position to the next 1line in the
file. The line which is accessed is printed on the console after this
command. ‘ '

'EXAMPLE

, -user advances to next line.
0015 ANY STATEMENT. ‘ | L
- -the next line with its line number is printed on
the console. : : :
*AS (CR)
-user advances 5 lines from current pointer.
0020 SOME STATEMENT o :
-gditor prints line number and the line.
* : , \ ;
' ‘-Editor prompts for a command.
If tbe user attempts to advance the line pointer beyond the end of the
- file, then an end-of-file indicator message wi’l‘be printed on the user
“console. The line pointer will be on the last line of the file.

- EXAMPLE

A-4

P Bl et d Bmsmimt mbmes BONA Bavvelmmimantd Cuabtam Yaretan 9%

i I ; ’4 ' ' , \ ﬁgs
. 280 : L

Development System - Téxt’Editor

e *A9999 (CR)

-user advances over a large number of lines.
& ' 0438 LAST LINE OF FILE :

***EOF :
f# ~Editor prints last line of file and end-of-file
. : : , indicator. ‘ ‘

PECE R R

-Editor prompts for a command.

N bt ko rag i

6.2 Bn - BACKUP

P

Format:
/Bn
or
bn

-where n is a decimal number.

This command is used to backup the line pointer (toward the, béginning
of the file) a specified number of lines. If the operand n is zero or
it is not entered, then the pointer is positioned to the previous line
in the file, The line which is accessed is printed on the console.

T T Lo i
Resbinl g uy it it ddsi el SRR IR £
AR st i o b N 0 K 6 2 ” LA st 5 845 s 41D M AAR-

2 EXAMPLE L
s *B (CR)

- e i -

~user backs up over one line in the file.
0019 A LINE OF INFORMATION

~Editor prints the line number and the line.

~user backs'up 4 lines from current bosition,
0015 SOME LINE :

~-Editor prints the line number and the line.
*

b R i it S
s (g e e i i J "

-Editor prompts for a command.

'If the user attempts to back up the line pointer past the start of the
file, then a top-of-file indicator will be printed on the user console.
The line pointer will be on line number 0001.

i *
& 3
S 1
- ¢
&
4

1

!

“EXAMPLE
: *B9999 (CR)

-user backs up over a large number of lines.
* x4 TOF : , ,

0001 FIRST LINE OF FILE »

-Editor prints top-of-file indicator and first
line of the file. :

 -Editor prompts for a command.

A-S

Lifeboat Associates 280 Development System Version 3.2

o

280 Development System ~ Text Editor

6.3 Cn /stringl/string2/ - CHANGE STRING

Format: . , ; \ | :
Cn/stringl/string2/

or .
¢n/stringl/string2/

-where n indicates the number of occurrences to change, °

stringl represents the characters to be changed,

'string2 represents the substitute or new characters,

and / represents a delimiter character which does
‘not appear in either string.

This command changes the next n occurrences of character stringl

to

character string2 starting with the current line. Any character which

does not appear in either stringl or string2 may be used as o
- delimiter. All three delimiters must be identical, with the exception

a

that the last delimiter may be a carriage return, If the operand ig
zero or if it is not entered, then only one occurrence of stringl will

‘be changed. In this case, only the current line will be searched in

order to locate stringl. If stringl is not found in the current line,
then the Editor issues a warning prompt ('?') and a new command prompt

(*). The line pointer will stay on the same line.

If the operand n is greater than 1, then the search for occurrences of
stringl occurs in a sequential manner starting with the current line,.
Each line which is changed is printed on the user console. After all
changes are done, the line pointer will be on the last line that was
changed. If the nth occurrence of stringl is not found before the end -
of the file is encountered, then the last line of the file is printed
by the Editor, as well as an end of file indicator (***EQF), The line

pointer will be on the last line of the file, . , :

If string2 has no characters in it, then character stringl will
deleted each time it is encountered by the change command.

EXAMPLES :
~ *V(CR)
-user views current line.
0009 THIS IS A RECORD | ,
 =Editor prints line number and line.
*C /THIS/THAT/ (CR)
-user enters change command,
0009 THAT IS A RECORD
. -Editor prints it.
*C/IS/WAS (CR)

- N ave S - - - -

~note that a carriage'téturn for the last delimiter :

is allowed.

A-6

Lifeboat Associates z80 Development System Version 3.2‘

‘be

280 Development System - Text Editor

0009 THAT WAS A RECORD

*C /WAS //(CR)
_=this is the method used to delete characters,

0009 THAT A RECORD K

*C 2 /T/V/(CR)
~—note that blanks can be inserted between the command
and operand and string definition to make the command

: ‘more readable. : :

0009 VHAV A RECORD

*C4/VHAV/THAT/ (CR)
-this is a multiple change request which will search
'forward in the file starting with the current line.

0009 THAT A RECORD ‘ :

0024 SOME TIMES THAT 1S . T ’

, ~Editor prints out each line that is changed.

0043 LAST LINE OF FIL

*kxEOF L ’ , L

' -Editor reached the end of the file before any more

changes could be done. An end-of-file indicator .
message is printed. The line pointer is on the last
line in the file. ‘ :

sk

i BRI KL e A bl et SRETRAIV e 50 Bttt 3t 1 s v, s 40 L s .

i s A

'#Edi§0t prompts for a command.

_# |
| 6.4 Dn - DELETE

Format:

Dn
or D)
dn
or :
Dn-m
or
dn-m

-where n and m are decimal numbers.

.This~command is‘used to delete, or remove. the specified lines from the

- renumbered each time one or more lines are deleted from the file.

EXAMPLE
*D(CR)

~-user deletes the current line from the file. .
- The line pointer is on the next line in the file.

(>

A-7

Lifeboat Associates 280 bevelbpment System Version 3.2

file. 1If the operand is not entered or is zero, then only the current
‘line is deleted. Note that line numbers are assigned dynamically as
editing progresses. This means that lines in a file essentially get

6.6 Fn - PRINT FLAG

280 Development System s Text Editor

*D4 (CR)
-user selects to desete 4 Jines starting with
‘ the current line from the file, :

*D4~-15(CR) :

e - e v - !

-user deletes lines numbered 0004 through and including
- 0015 from the current file. f s

-Editor prompts for a command.

6.5 En - EXCHANGE

Format:

, En
or
en
or ;
: : En=m
or
: en=m

-where n and m are decimal. numbers,

This command exchanges the ‘specified lines with newklines ktb be
inserted via the DATA MODE. 1It is exactly eguivalent to the commang -

sequence:
bn -delete lines *
B : =backup one line
1 S | -go to DATA MODE

Format:
Fn

or

fn ‘ : : : «
-where n=0 will inhibit Printing after all but
the V-VIEW command, and n not = 0 will allow
Printing after all change or access commands.

The Editor normally prints on the console device any iines which are
accessed or changed, Thus, . the;following commands print out a line:

‘,An. Bn, Cn, Ln, Sn, Vn. 1In order to reduce the Print out time on a
slower device (such as a teletype), this command can be used to inhibit
~ Print out on all of the commands except V-VIEW, '

A-8

* Litebbat Associates 280 Development System Version 3.2

=

~

(>

e ERCHE RS 1+ L Ll

s DR S G R H R
A TEE L

G 2 b o1 e h G T

N e T

5

é

(N : :

Sl VealgA R e R

280 Development System - Text Editor

6.7 G file - GET FILE COMMAND

Format:

G filename
or

g fxlename

-where filename is the name of a £11e on the
selected disk.

This command -+ is used to obtain lines from a given file on disk and .
insert them in seguence following the current line., All lines in the
‘file regquested are read. The file which is read is not altered in any
way. This command can be used with the P - PUT command to move blocks

of text around w1th1n a file being edited (See P - PUT command for -
example)

6.8 T - INSERT COMMAND

Format:

1
or

i

This command is used to insert data lines into the file‘being edited or
to build new files. The inserted lines always FOLLOW the current line.
After the command is entered, the Editor responds with the message:

***DATA MODE

The user then enters data 1lines ending with carriage returns. The
Editor prompts with the line number for each line to be inserted. To
‘terminate the insertions, the user enters a single carriage return.
Note that blank lines must be entered as ‘'space carriage return'
because a single carriage return terminates the DATA MODE. - After the
user terminates the DATA MODE, the Editor prompts for a new command

{(*). Lines can be inserted before the first 1line of a file by us1ngi

the T - INSERT AT TOP command. Note that line numbers are assigned
dynamically while editing progresses. This means that the lines of a
file essentlally get renumbered whenever new lines are inserted.

EXAMPLE

- - -

-user selects data mode to insert lines into the f11e~
being edlted.
***DATA MODE

~ -Editor responds with message
0004 THIS IS AN INSERTED LINE.(CR)

- e G . A S S G W G G U Y T T G W I . S

-the line number being entered is‘printediby the

A-9

Lifeboat Associates 280 Development System Version 3.2

—
3

v

“or

o A S S A .

280 Development SyStem - Text Bditdt

; Editor. Thé‘user then'énters'the line of data.
0005 (CR) o :

~user terminates DATA MODE with a carriage return.

~Editor prompts for another command.

~ Note that modification of entered data lines can be done while they are

being typed just as in the DOS system. 1Inserted lines can be up to 128
Characters long. . ~ , e

6.9 Ln - GO TO LINE NUMBER n
Format:

Ln
1n

This command positions the line pointer to line number n.' If the
operand is zero or it js. not entered, then line number 0001 jis

accessed. Any line number can be accessed from any position in the
file. ~ The 1line which is accessed is printed on the console. 1f the
line number cannot be found because -it is larger than the last line
number in the file, then the pointer will be positioned at the last
line in the file ang an end-of-file indicator message will be printed.

EXAMPLE S
*L10(CR)
: _~-user accesses line‘numberVOOIO.f
0010 THIS 1S a LINE OF DATA , : ‘ '
, -line number 0010 is Printed with its line number.

*L2001(CR) o S ;

L -~user selects line number 2001,
0943 LAST LINE OF FILE - -
-Editor prints last line of file,

***gop ‘ Dol :
=Editor prints an end-of-file indication.

*L1(CR) : ‘ .
-user selects line number 1.

** & TOF

0001 FIRST LINE OF FILE |
: ~Editor responds with top of file indicator
and first line of fijle and its line number,

~Editor prompts for a command.

‘ A-10
Lifeboat Associates 280 Development System Version 3.2

(O

by ki e o Ee s ARSI RN RPN o T ok 5 26 S i T I s il
Biis s 12 v .

Zodi Lo i e
I U Yo b PR 25

. 6.11 Q - QUIT

280 Development System - Text Editor

6.10 Pn file - PUT

Format: :

Pn filename
or

pn filename
or

Pn-m filename
.or

pn-m filename

-where n and m are dec1ma1 numbers and fllename
- is the name of a file on the selected disk.

This command is wused to output one or more lines to a file on disk.
- This can be used to break up a given source module. It can also be

used with the G - GET command to move blocks of text around in a file
being edited. 1If the operand is not entered or it is zero, then only
one line will be output. Lines of text which are output by the PUT
command are not deleted. They may be deleted wvia the D - DELETE
command after the PUT command is used. The filename specified must not

be the same as the current file being edited. 1If the file already
exists on disk, it is erased before any lines are output to it. After

the PUT command is used, the file output to the disk remains on the
disk. ; e

EXAMPLE |
o *p25-30 TEMP(CR)
~-user outputs lines 25 through 30 to a flle
called TEMP. The space between the number and

' the filename is not requ1red
f*D25 =30(CR) :

-user deletes 11nes 25 through 30 from file
being edited.

‘~*L1(CR)

, -user accesses line number one.

*G TEMP(CR) : /
-user reads lines from file TEMP and places them
after line number one. This effectively moves
lines 25-30 to just after line 1. The space
between the command and the filename is not
o required.

-
-Editor prompts for a command

Formats:
Q
A-11

Lifeboat Associates zBO;DeVelopment System Version 3.2

o

280 Development System - Text Editor

or
g

This command returns control to the Operating System. The original
file will be backed up on the same primary filename with a secondary
filename of BAK. All of the editing will be saved in the file under
the original file name. QUIT can be done at any time during the course
of editing. . , o ,

6.12 Sn /string/ - SEARCH FOR STRING

Format: ~
' Sn /string/
or
sn /string/ ‘ : ' ,
: -where n is the number of occurrences to be found,
string represents any set of characters which is to
be searched for, and / represents a delimiter character
~which does not appear in the string.

This command searches the file, starting with "the NEXT line, for n

~occurrences of the character string between the delimiters. Each line

which contains the string will be printed on the console. The pointer
is positioned on the line of the nth occurrence of the string. If the
nth occurrence of the string cannot be found before the end of the file
being edited, then the Editor issues an end-of-file indicator (***EOF).
This command always searches forward (toward increasing line numbers)
in the file. :

Any character which does not exist in the string to be searched for may
be used as a delimiter. The second delimiter may be a carriage return.
If the operand n is zero or it is not entered, then only the first
occurrence of the string will be sought. ‘

EXAMPLE ;
*S /ORD/(CR)
-user selects to search forward in the file, beginning
with the next line, for the string 'ORD'. Only the
first occurrence of the string is sought. The blank
' between the command and the string is not required.
" 0021 SOME ORDERLY DATA o
-Editor prints the line number and line when the ,
- string is found. The line pointer is on line 0021,
*S10/9AH/ (CR) , - ,
-~user selects to search for and view the next
o 10 occurrences of the string '9AR'.
L REEFOF , ; : ’ ’ [N
' , ~Editor encountered the end of the file and found
no occurrences of the string. The end-of-file

A-12

 Lifeboat Associateé 280 Development System Version 3.2

B R S T iAol

W aie
kb

Ay P T

s M
5 St o At r b R PR 3 1 3G

280 Development System - Text Editor

indicator is printed.
~Editor prompts for a command.

6.13 T - INSERT AT TOP

Format:

T
or

i

This command inserts data lines at the top (start) of the:fiiek BEFORE
the first line in the file. See the I-INSERT command for proper usage.

6.14 Vvn - VIEW

Format:
vn s
or i 7
: vh :
or ~
vn-m
or :
vn=-m

. -where n and m are decimal numbers.

This command prints the specified 1lines on the console device,
line pointer is updated to the last line printed. If the operand
zero or is not entered, then only the current line is printed.

EXAMPLE

/

*V{CR)

C=user v1ews current line on the console.
0009 THIS IS A LINE
-Editor prints 11ne number and line.
*V3(CR)
, -user views current line plus two more.
0009 THIS 1S A LINE
0010 THIS IS NEXT LINE
~0011 THIS 1S ANOTHER LINE pa
: -Editor prints 3 lines on the console. The
line poxnter now points to line 0011. -
*V3-4 (CR) :
-user selects to view lines 3 through 4.
0003 SOME LINE OF DATA
0004 NEXT LINE OF DATA
-Editor prints lines 3 through 4.

A-13

The
nis

C

280 Development System - Text Editor

*

-Editor prompts for a command.
7.0 EDITING LARGE EILES ’

o - — i - - - - - -

Editing of large files is no‘different than editing small files. &all
commands are fully functional. However. diskette access may - be

required for certain operations and a slight delay may be apparent
before the Editor responds.

If the user enters an unrécognizablekfile name, a syntax error will be

indicated and the Editor will return to DOS. If the user enters an

unrecognizable command, then the Editor will print a question mark anrd
another command prompt: , o ,

EXAMPLE
*R20 (CR)

All I/0 errors to and from disk result in apprbpriatef error messages.
The original file should be backed up on another disk before using the
Editor. ‘ : : ,

The Editor prompts with several other messages as editing progresses:

***NEW FILE - indicates that a new file is being created rather than
editing of an already existing file. .

*EXDATA MODE - indicates that lines of data are to be entered rather
than Editor commands. , : «

***TOF - indicates that the top of file (beginning of file)‘ﬁhas been
encountered. . : ; : ,
***EOF - indicates that the end of file has been encountered.

***END OF EDITING - indicates that the Editor has sucCessfully
completed. Control is then returned to the DOS Operating System.

***END OF WINDOW. USE 'ADVANCE' TO SEE NEXT LINE - occurs only with
the VIEW command.. Follow the directions. S

A-14

Lifeboat Associates 280 Development Sjstem Version 3.2

280 Development System - Text Editot

9.0 SAMPLE EDITING SESSION

- - = -

The user is urged to follow the steps given here to become acquainted
with the Editor.

>EDIT NEWFILE (CR)

- - ——— - - —— -

- user selects to run the Editor to create a new f11e.
SD SYSTEMS: EDITOR Vl 0
'***NEW FILE

-Editor indicates that a new file is belng Created.
***DATA MODE
- Editor prompts for data lines to be 1nput-from
the console device. User becins keying in a
: : program, ' '
0001 ; A SIMPLE SAMPLE PROGRAM (CR)

e e e . S — - o~ - - " -

0002 LD A, (LAB1l) (CR) | , ; ‘ .

- - - -

0003 LD E,O(CR) '

- o o

0004 CALL SUB1 ;SOME COMMENT(CR)

.--—‘-—-‘---——-“-—-_----—--

0005 LOOP LD (HL),0 ;STUFF ZEROS (CR)

..--.--——--——-----——-—-‘-—n—-—-——

0006 INC HL(CR)

——— - ;"

0007 DNZ LOOP-$ LOOP FOR ALL(CR)

——-——--——---—----—-—--—-——--—-—

0008 END(CR)

0009 (CR) ‘ oy .

. ~-user terminates DATA MODE.
*899V20(CR)

-user backs up to beglnnlng of file and
views all lines.

a*#EOF | e | |
o -Editor indicates end of file encountered.
“*L7 (CR) '

0007 DNZ LOOP-$;LOOP FOR ALL

~user views line 7 and observes an error.
*C /DN/DJN/(CR)

‘ -user modifies the 11ne.
0007 DJINZ LOOP-$;LOOP FOR ALL

A-15

Lifebbét Associates 280 Development System Version 3;2

SRRy O

)

280'Development'sy5tem - Text Bditor

-Editor prints the changed line
*Q(CR) :

-user terminates the editing session.

-10. 0 'EDITOR COMMAND SUMMARY

————————--——---—-——----

“An advance n lines
Bn backup n lines
Cn/sl/s2/ . change n occurrences of sl to 52
Dn delete n lines
En exchange n lines '
Fn “turn on or turn off print flag
G file get file and insert into current file
I insert lines of data
Ln go to line number n

Pn file put n lines out to file
quit, save all editing and return to DOS
sn/sl/ search for n occurrences of sl

T insert lines at top of file before first l1ne
vr view n lines on the console
-~ A-16

e e i e el wmaf Navalarsant Custam Vearasion 22

28U Development System - Relocating Assembler

SD SYSTEMS RELOCATING 280 ASSEMBLER VERSION 3.2
OPERATIONS MANUAL

'COPYRIGHT SD SYSTEMS
 NOVEMBER 1978
ALL RIGHTS RESERVED

NOTE: THIS DOCUMENT AND ASSOCIATED SOFTWARE' IS COPYRIGHTED’ BY AND
PROTECTED BY LICENSE AGREEMENT WITH SD SYSTEMS UNAUTHORIZED
DUPLICATION BY -ANY MEANS IS PROHIBITED.

1.0 INTRODUCTION

AP PR Ty ST oK
PR IRA A TR TN R S e

" The SD SYSTEMS 280 ASSEMBLER is prov1ded on a standard CP/M compatible
diskette. 1t prov1des the means for assembling 280 programs. The
Assembler (ZASM) reads standard 280 source language (Mostek and 2Zilog

The object code is in industry standard hexadecimal format extended for
relocatable and linkable programs. The Assembler supports conditional’
assembly, a printed symbol table, and a printed cross reference table.

symbol table size which is based on available memory and available disk
space. Typically over 300 symbols are:allowed in one assembly.

Any 280 Dbased System which is running 32K CP/M compatible disk
operating system (DOS) can use the 280 Assembler.

2.0 COMMAND SUMMARY

- - - - - —

- 2ASM file.ext(CR)
- executes assembler to assemble a f11e
- object output is on file.OBJ
- listing output is on file.PRN

print cross teference table

no listing output :
- direct assembly listing out to lxstlng dev1ce
no object output

pass 2 only

reset symbol table for pass 2 only operat1on
print symbol table

direct assembly listxng out to console device

HNYYZE RO
IR S A N T T T

3.0 DEFINITIONS

In this manual, the following symbols are uséd:‘

B-1

Lifeboat Associates 280 Development System Version 3.2

definition) and outputs an assembly listing and object code on disk.

The Assembler can assemble any length program 1limited only by the

280 Development System - Relocating Assembler

= (CR) means carriage return.

- all user input is underlined. :

- use: input which is all upper case must be entered ‘exactly
as shown. ‘

- user input which is lower case is variable.

SOURCE MODULE - the wuser's source program. Each source module is
asseitbled into one object module by the Assembler. The end of a source
module is defined by an 'END' statement or CP/M end of file code (1AH)
on .input.. ~

OBJECT MODULE - the object output of the Assembler for one source
module. The object module containsg linking information, address and .
relocating information, machine code, and checksum information for use
by the SD SYSTEMS Linker. The object module is in ASCII. The object
module is output to a disk file with extension OBJ. The SD SYSTEMS
Linker must then be used to 1link and relocate one or more object

modules into a module loadable by the DOS. See the SD SYSTEMS Linkder
Operations Manual for more details.

LOAD MODULE - the absolute machine code of one complete program. The
load module is defined on disk as an absolute object file with
extension HEX. The file may be loaded by the DOS 1loader. It is
Created by the SD SYSTEMS Linker from one or more relocatable object

modules (secondary file name OBJ) which were created by the 280
Assembler. :

LOCAL SYMBOL - a symbol in a source module which appears in the label
field of a source statement. , '

INTERNAL SYMBOL - a symbol in a source (and object) module which is to
be made known to all other modules which are linked with it by the
Linker. An internal symbol is also called global, defined, public, or
common. Internal symbols are defined by the GLOBAL pseudo-op. An
internal symbol must appear in the label field of the same source
module. 1Internal symbols are assumed to be addresses, not constants,
and they will be relocated when linked by the Linker. ,

‘EXTERNAL SYMBOL - a symbol which is used in a soutce (and object)

module but which is not a local symbol (does not appear in the label

field of a statement). External symbols are defined by the GLOBAL
pseudo-op. External symbols may not appear in an expression which uses
operators. An external symbol is a reference to a symbol that exists
and is defined as internal in another program module.

GLOBAL DEFINITION - both internal and external symbols are defined as

GLOBAL in a source module. The Assembler determines which are internal
and which are external. ‘ : - ;

 POSITION INDEPENDENT - a program which can be placed anywhere in
. memory. ‘It does not require relocating information in the object
module. , \ L '

B-2
Lifeboat Associates 280 DevéIOpment‘System Version 3.2

§ i e e e R R R e 2

. e w;, i | N ‘ “!¥

280 Development System - Relocéting Assembler

ABSOLUTE ~ a program which has no relocating information in the object
module. An absolute program which is not position independent can be
loaded only in one place in memory in order to work properly. ,

RELOCATABLE - a program which has extra information in the object
module which allows the Linker to place the program anywhere in memory.

LINKABLE - a program which has extra information in the object module
which defines internal and external symbols. The Linker uses the

@nformation to connect, resolve, or 1link, external references to
internal symbols. :

4.0 USING THE ASSEMBLER

e -y - —— A - - — - -

The SD SYSTEMS 280 ASSEMBLER is resident on a CP/M compatible system
diskette. = The user first prepares his source module using the sD

SYSTEMS Editor. To use the 280 Assembler, enter the following command:

A>ZASM file.ext /xyz(CR) | ‘

G — - — - ——-— " — -

where 'file' is the primary file name and ‘ext' is the
secondgry file name of the file to be assembled and
X,y and z are options described in paragraph 4.1. If
the slash (/) is included in the command, with or
without options, the option prompt will be skipped
by the assembler. This is a useful feature when
using the system under a SUBMIT batch skript.

The object output of the Assembler is sent to the disk on file.OBJ, and
the listing output is sent to the disk on file.PRN. One or more object
files from the Assembler may be linked and -relocated by using the SD
SYSTEMS Linker, which produces an absolute object file with extension
HEX. The absolute object file may then be loaded via the DOS loader,
and the listing file may be printed using PIP. If no options are
selected in the initiating command line, the assembler will request
them for the console with the following prompt:

SD SYSTEMS 280 ASSEMBLER V3.2. OPTIONS?
If no options are ‘to be “entered, “the user enters ‘'carriage return',
The Assembler makes two passes over the source file. At the end of the
first pass the following message is printed on the user console: '

PASS 1 DONE

At the end of the assembly, the Assembler prints the total number of
errors (in decimal) found: ' :

ERRORS=nnnn

B-3

Lifeboat Associates 280 Development System Version 3.2

280 Development System - Relocating‘Assembler

Control is then returned to the DOS console processor (d>) .

4.1 ASSEMBLER OPTIONS

- —— - — " - ———— i i

When the Assembler outputs the message:

OPTIONS?

“the user kmay enter any of the following codes, terminated with a ;

carriage return: .

C -~ cross reference tablzs - prints a cross reference table
of all the symbols a. tis end of the assembly listing.

K - no listing - this Suppresses the assembly listing. aAll
errors are output to the user console for this option.

L - list to listing device - this cotion directs the assembly
listing out to the listing device rather than to a disk
file. ’

N - no object output - this suppresses object output from

; the Assembler. : ' L

P - pass 2 only - this option selects and runs only pass 2

- of the Assembler. The symbol table is left intact from
@ previous run of the Assembler. :

R - reset the symbol table - clears the symbol table of all
pPrevious symbol references. This operation is
automatically done for pass 1. It is used primariy for
single pass operation (see paragraph 5.1).

S - symbol table - Prints a symbol table at the end of the
assembly listing. : :

T - list to console device - this option directs the assembly

~listing out to the console device rather than to a disk
file. ~

4.2 ERROR MESSAGES

"Any error which is found is denoted in the assembly listing. A message

is printed immediately after the statement in error. All messages are
self-explanatory.

'EXAMPLE H2: LC A,B

%%+ ERROR **% BAD OPCODE
Certain errors abort the Assembler when they are encountered. Abort
érror messages are output only to the user console. Control is

immediately returned to the DOS console processor (A>). Abort errors
may occur during pass 1 or pass 2. ' o

B-4

LifEboat ASSOCiates 280 DEUVE Y AT am bt oy b o e e T

B e A i A ik s et

280 Development System - Relocating Assembler

,\\ ey %
:] B

4.3 OBJECT OUTPUT

The objéct output from the Assembler is put on diskette to

_ : the same
primary file name as the source input file, with a secondary file name

~of 'OBJ'. One . or more object modules may be linked and relocated by

the SD SYSTEMS Linker to produce an absolute object file with a
secondary file name of 'HEX'. This file may then be loaded by the DOS

B s s L
P T A
CARPR I TR R ICURE IR0 R

loader.

4.4 ASSEMBLY LISTING OUTPUT

The assembly 1listing is put on diskette to the same primary file name
as the source input file, with a secondary file name of 'PRN'. The
user may insert tab characters in the source to obtain columns in the
assembly listing. The value of each equated symbol will be printed
with a pointer (>) next to it, The statement number and page number
are printed in decimal. Assembler directives (see paragraph 6.4.1.) do
not appear in the assembly listing, but they are assigned statement
numbers. If the no listing option is selected, errors will * be output

to the user console. Any addresses which are relocatable will have a
prime (') printed next to them. ~

PR O R e = e T T

REREPIT

o

i R e

P
s

" —— - —— - —— . -

5.1 PASS 2 OPERATION (SINGLE PASS OPERATION)

The '280 ‘Assembler can be used as a single pass assembler under the
following restrictions: p :

f

>

1. No forward stbol references are allowed.
2.- The NAME pseudo-op is not allowed.
3. A cross reference table is not selected.

% N%?‘Mﬁ‘ e

The Assembler will correctly assemble 280 programs under the above
restrictions using the pass 2 only option ('P'). This is useful for
assembling data tables and certain types of programs. The Assembler

symbol table should be reset to assure proper operation in this mode by
using the 'R' option.. o

W

T Y

5.2 ASSEMBLING SEVERAL SOURCE MODULES TOGETHER

Severalysource modules may be assembled togethet to form one object
module. The 'INCLUDE' pseudo-op may be used any number of times in one
module to properly sequence a set of source modules. »

EXAMPLE NAME MYFILE ;name of final object module

INCLUDE FILEl
"INCLUDE FILE2

B-5

T S FalAmt Rnmmres G ma OO PN i W e s o0 87 g g g Tl

C

280 Development System - Relocating Assembler

INCLUDE FILE
~END : : T o
= the object module named 'MYFILE' will be
built by the Assembler from FILEl 4+ FILE2
+ FILE3.

- s S S " > . - — - —— — - - —

An assembly language program (source module) consists of labels,

opcodes, pseudo-ops, and _comments in a sequence which defines the

user's program. The assembly language conventions are described in the
following pParagraphs. '

6.1 DELIMITERS

Labels, opcodes, operands, and pseudo-ops must be separated from each

other by one or more commas, spaces, or tab characters (ASCII 09H).
The label may be separated from the ~opcode by a colon, only, if
desired. ; , ‘

6.2 LABELS

A label is composed of one or more characters. If more than 6

characters are used for the label, only the first 6 are recognized by

the Assembler. The characters in the label cannot include ' () * 4+ -

/ » =< > . :; or space. 1In addition, the first character cannot be a-

number (0-9). A 1label can start in any column if immediately followed
by a colon (:). It does not require a colon }f started in column one.

EXAMPLE allowed not allowed
LAB ~ 9LAB ;STARTS WITH ILLEGAL CHARACTER
L923 L)AB ;CONTAINS ILLEGAL CHARACTER
825 L:ABC s CONTAINS ILLEGAL CHARACTER

6.3 OPCODES

The full set of 280 opcodes is documented in the 280 PROGRAMMING
MANUAL' (which is available from SD SYSTEMS) . :

6.4 PSEUDO-OPS

Pseudo-ops are used to define assembly time parameters. Peeudb-ops
appear like 280 opcodes in the source module. Several pseudo-ops

require a label. The following pseudo-ops are recognized by the
Assembler: , _ , ‘

B-6

. T;vlfnhr;-& iaaa—l-s-- A ea e

it

¢80 Development System - welocating Assembler

gw}i. ‘ DEFB n,n,n... - define byte - def1nes the contents of succe551ve byfes
- to be the expressions n. '

X label DEFL nn - define 1label - sets the value of the label to the
- expression nn; may be repeated in the program with different values for
¥ the same label. At any point in the program, the label assumes the
‘| last previously defined value.

DEFM 'aa' - define message - defines the contents of successive bytes
‘ of-memory to be the ASCII equ1va1ent code ot characters within quotes
' i Up to 63 characters may be in one message. Quote characters in the
message may be defined by two successive gquote characters ('').

FEENTE WS WY SRR P

'DEFS nn - define storage - reserves nn bytes of memory start1ng at the~
current program counter, where nn is an expre551on When loaded, these
bytes w111,conta1n what was previously in memory. This pseudo-op
cannot be used at the 'start or at the end of a program to reserve
storage. : - :

DEFW nn,nn,nn... - define word - defines the «contents of successive
two-byte words to be the value of expressions nn. " The least
significant byte is located at the current program counter address, and
the most significant byte follows it.

.
it o i phaais i ian S
it B RIS 3BT kb £ ' b hom S B T e M bt

i T B R oY
o #irdhei i, T WA

h
T

END - end statement - defines the last line of the program. The,'END?
statement is not required. , : .

.

ENDIF - end of conditional assembly —,re-enables assembly of subsequent'
statements after an IF pseudo-op.

TSRS et

R - label EQU nn - equate - sets the value of a 1abe1 to the express1on nn;
TR B can occur only once for any label.

.GLOBAL ~symbol - define global symbol - any symbol which is to be made-
known among several separately assembled modules must appear in this
type of statement. The Assembler determines if the symbol is internal
(defined as a label in the program), or external (used in the program
but not defined as a label). : : P

IF nn - cond1t10na1 assembly - 1f the expre551on nn is true (non—zero),
the IF pseudo-op is ignored. If the expression is false (zero), the
3 assembly of subsequent statements is disabled until an ENDIF pseudo-op.
NG 2 IF statements cannot be nested

INCLUDE flle.ext - xnclude source statements from another file - allows

source sStatements from another input file to be included within the
body of the given program. If the file cannot be opened properly, then

; assembly is aborted. The source module to be included must not end

ps i with an END pseudo-op (otherwise, assembly would be tetmlnated) The
ps 4 INCLUDE pseudo-op cannot be nested. ’ -

{53 NAME = symbol - module name -~ thlS pseudo-op defines the.name'of the
; program (source and object). The name is placed in the heading of the
B- 7

L1feboat Assoc1ates 280 Development System Version 3.2

i

expression nn. If more than one ORG statement is used in a source

following forms:

7280 Development System - Relocating Assemblet

-~ assembly listing and in the first record of the object output. The

module name defaults to 6 blanks.

PSECT op =~ program section - may appear only once at the start of a
source module. This pseudo-op defines the program module attributes
for the follow1ng operands:

REL - relocatable program: (default)
ABS - absolute program. No relocating
information is generated in the object

module. The module will be linked where
it is orlgxned

ORG nn —'origin - sets the program counter to the value of the

module, then the expression nn is a given ORG statement must be greater
than a previous ORG statement.

6.4.1 ASSEMBLER DIRECTIVES | ‘

Assembler d1tect1ves are pseudo- ops which are designed to format the
assembly listing. - '

EJECT - eject a page of assembly“listihg.

LIST - turn assembly listing on (default).
~ NLIST - turn assembly listing off.
TITLE s - place title of characters 's' at top

of each page of assembly listing. s can
be up to 32 characters long.

6.5 OPERANDS g e -

There may be zero, one, or more operands'in a statement dependinq‘ on
the opcode or pseudo-op used. Operands in the Assembler may take the

/

A GENERIC OPERAND, such as the letter 'A', which stands for the
accumulator. The following are 280 generic operands.

- Accumulator
register
register
register
register
‘register
register
register

HEMEOUODY
I
rEMMmUOW

AF - AF register pair
AF' - AF' register pair
‘BC - BC register pair

280 Development System - Relocating Assembler

DE - DE register pair
HL - HL register pair

 SP - stack pointer register
$ - program counter

I -1 register
R - refresh register

IX - IX index register
1Y = IY index register

NZ - not zero

Z - zero :

NC - not carry

C - carry ' \
PO - parity odd/not overflow
PE - parity even/overflow

P -~ sign positive :

M - sign negative

-

g et
E
=

!
]
=

2

A CONSTANT. The constant must be in the’iange 0 thru OFFFFH. It can
be in the following forms: '

DECIMAL : = (default); any number can be denoted as
decimal by following it with the letter D.
: - ~ 'Eg: 35, 249D =
HEXADECIMAL < must begin with a number {0-9) and end
~ ‘ with the letter H. Eg: OAF1H
‘OCTAL '~ must end with the letter Q or 0. Eg:
‘ 1 - .377Q, 2770 V . ’
BINARY - must end with the letter B. Eq: 0110110B
ASCII o - letters enclose in quote marks will be

converted to their ASCII equivalent value.
Eg: 'A? = 41H ‘

A LABEL which appears elsewhere in the program} Note that 1labels
cannot be defined by labels which have not Yet appeared in the program:

EXAMPLE allowed 4 not’allbwed'
1 EQU 7 L EQU H
H EQU I H EQU I
L EQU H 1 EQU 7

AN EXPRESSION. The Assembler accepts a wide range of expressions in
the operand field of a statement. All expressions are evaluated left
to right constrained by the hierarchies shown below. Parentheses may
be used to ensure cc.rect expression evaluation. :

B~9

Lifeboat Associates 280 Developmerit Svetem Versian 2 9

280 DeveIopment System - Relocating Assembler

operation : - - operator hierarchy
equal to , = or .EQ.

signed less than : ' <

signed greater than : >

signed less than or equal to = or =

signed greater than or equal to >= or = ;

not equal ; , : >< or <> or :NE.

unsigned less than - LT, :

unsigned greater than wGT.

unsigned less than or equal to ,LE.
unsigned greater than or equal .GE.

reset overflow ' ’}RES.
unary plus

unary minus -
logical NOT (one's complement) ,NOT.

[3 Y ww NN b it ot o OCOoOO0COCOoO0CCOOOO

multiplication o
division /
addition +
subtraction -
logical AND ’ o +AND.
logical OR = 3 «OR.
logical XOR SR .XOR.
logical shift right - «SHR.
logical shift left P «SHL.

All operands and expressions are converted to" 16-bit values. The only
exception to this is when expressions take the form: '

‘character string 1'='character string 2°'

In this case, character string 1 and character string 2 are compared
character by character for a match. If they do not match, then the
value of the expression is false., 1If they have the same length and
match, then the value of the expression is true (OFFFFH) .

The reset operator (.RES.) unconditionally resets any overflow error in

an operand expression, The shift operators shift their first argument
right or left by the number of bit positions given in their second
argument. Zeros are shifted into the vacated bit positions. The

negative (2's complement) of an expression may be formed by preceding
it with a minus sign. The one's complement of an ~expression may be
formed by preceding it with the .NOT. operator.

The symbol § is used to represent the value of the program counter of

‘the current instruction. ° Version 3.2 of the Assembler accepts both

conventions that are used in 2-80 assembly language in regard to the

- B-10

T S Fabmomb Remomoed @b oo OR W o oo s L T

Co T T TR i P S e B o
ey ~ ! . 8
S XBARITRET . . iy e e L D . . . o K w L : 3 ! E

280 Development Systém ~ Relocating Assembler

relative jump, JR, and the decrement B, jump relative non zero, DJNZ.

In the earlier convention, the argument required that the program
councter value be subtracted from a label value. The later

, . convention
does not require the assembly source to make this calculation explicit.
EXAMPLE ~~ JR LOOP-$ |
or
: JR LOOP

- willfjump relative to label LOOP.

Note that enclosing an eipression wholly in parentheses indiéates a
memory address. The contents of the memory address equivalent to the
expression value will be used as the operand value.

The allowed'range of an expression depends on the context of its use.

For example, the limits on a relative jump instruction are -126 ang-
+129 bytes. : :

6.6 COMMENTS : : ' , : ’

A comment is defined as any characters following a semicolon (;:) in a
line. A semicolon in quotes in an operand is treated as an expression
rather than a comment starter. Comments are ignored by the Assembler
but they are printed in the assembly listing. = Comments can begin in
any column.

6.7 ABSOLUTE MODULE RULES

The pseudo-op 'PSECT ABS' defines a module to be absolute. The program
will be loaded in the exact addresses at which it is assembled. This
is useful for defining constants, a common block of global symbols, or
a software driver whose position must be known. This method can be
used to define a list of global constants as follows:

EXAMPLE ; : ‘ : ;
PSECT ABS :ABSOLUTE ASSEMBLY
GLOBAL AA
AA EQU 0E3H
GLOBAL AX
AX EQU ~OAF3H

END

o , o e Lo Rl N ok R NS i : Lo
A s RSNV v BN T E PR AR AP
i T -~ il e N AT Wy o ey e
Ao e e e AN 0 s T i o R 0 B INR dic s ABAERL

6.8 RELOCATABLE MODULE RULES |

1. Programs default to relocatable if the 'PSECT ARBS' statement is not
used or if °'PSECT REL' is used. : : '

2. Only those values which are 16-bit address values wi11 be reldcatéd;

B-11

Lifeboat,Associates 280 Develooment CSvetem Vareimm 2 9

280 Development System - Relocating Assembler

16-bit~con$tahts will,not be'relocated.

EXAMPLE :
AA EQU OA13H = ;ABSOLUTE VALUE
; LD A, (AR) ;AA NOT RELOCATED
AR EQU $ - ;RELOCATABLE VALUE
LD HL, (AR) ;AR WILL BE RELOCATED UPON LINKING

3. Relocatable quantities may not be :used as 8-bit operands. This

restriction exists because only 16-bit operands are relocated by the Sp
SYSTEMS Linker. ‘ ; : :

"EXAMPLE S o " '
LAB EQU $: RELOCATABLE VALUE
: DEFB LAB +NOT ALLOWED Nt
LD A, (IX+LAB) - sNOT ALLOWED
LD A, (LAB) ;ALLOWED : ,
LD HL,LAB ;ALLOWED

4. Labels equated to labels which are constants will be treated as
constants. Labels equated to labels which are relocatable addresses

will be relocated.

" EXAMPLE | | =
B8 EQU 20H ; CONSTANT
C8 EQU B8 :CONSTANT | |
LD - A,(C8) ;C8 WILL NOT BE RELOCATED
AR EQU $ ~ ;RELOCATABLE ADDRESS
BR - EQU AR ; RELOCATABLE
LD A,(BR) ;BR WILL BE RELOCATED

5. External symbols in a relocatable program-are marked ‘relocatable,

except for the first usage. The code for external symbols is actually
a backward link list through the object code. , ‘

6.9 GLOBAL SYMBOL HANDLING

A global symbol is a symbol which‘is kndwn by more than on module. A
global symbol has its value defined in one module. It can be used by
that module and by any other module which is linked with it by the sD

SYSTEMS Linker. A global symbol is defined as such by the GLOBAL

pseudo-op.r; o

An internal symbol is one whieh is defined as global and also appears
as a label in the same program. The symbol value is thus definegd for
all programs which use that symbol. An external symbol is one which is

defined as global but does NOT appear as a 1abe1 in the same program.

EXAMPLE | | | O e
~ GLOBAL SYM1 ;DEFINE GLOBAL SYMBOL
CALL SyM1 '

B-12

N LifEboat ASSOCiateB 280 DEVEIOM\DHF - OTTY R i'-'ﬂ“—‘ - e

X
¥
£
4
'3
L
¥

s e S e LR o G s AR A 500 e e R M 0 et s s e ned

280 Development System = Relocating Assembler

END | e
' - SYM1 is an external symbol
EXAMPLE - A
GLOBAL SYM1 ~ ;DEFINE GLOBAL SYMBOL
SYM1 - “EQU $: : :
LD A, (SYM])
END

= SYM1 is an internal symbol. 1Its value
~is the address of the LD instruction.

If these two programs were assembled and then
Linker, then all global symbol references from the first program would
be ‘resolved’'. This means that each address in which an external
symbol was used would be modified to the value of the corresponding
internal symbol. The linked programs would be e

example) to one program written as follows.

EXAMPLE el |
CALL SyMl
SYM1 EQU $
© LD A, (SYM1)
END

Global symbols are uséd to allow large programs to be broken up into
smaller modules. The smaller modules are wused to ease programming,

facilitate changes, or allow programming by different members of the
same team. , . :

6.10 GLOBAL SYMBOL RULES

linked by the SD SYSTEMS

quivalent (using our

1. An external symbol cannot appear in an expression which uses

Operators.
EXAMPLE | O :
L GLOBAL SYM1 ;EXTERNAL SYMBOL
CALL ~ SYM1 ;OK R
LD HL, (SYM142) ;NOT ALLOWED
2.

B-13

Lifeboat Associates 280 Development System Version 3.2

An external symbol is always considered to be a 164bit.‘addréss.

280 Develo,ment System = Relocating Assembler

Therefore, an external symbol cannot appear in an instruction requiring
an 8-bit operand. : ‘ :

EXAMPLE ‘ ~ Lo o
GLOBAL SYM1 sEXTERNAL SYMBOL
CALL SYM1 ;0K

LD A,SYM1 ;NOT ALLOWED

3. An extetnal“symboi cannot appear in the opetahd field of an EQU or
DEFL statement. o ;

4. An internal symbol is always marked relocatable in a relocatable

assembly. This point . is important because an internal symbol will
always be relocated even though it 1looks 1like a constant. To define

constant internal symbols, create an absolute. assembly via the PSECT
ABS pseudo-op. '

5. For a -set ,Of kmodules to be linked together, no duplication of

internal symbol names is allowed. That is, an internal symbol ‘can be
defined only once in a set of modules to be 1linked together.

7.0 TECHNICAL INFORMATION

v - — T -~ > S

The Assembler is resident on a CP/M compatible system diskette and,
when loaded, starts at location 100H. Assembler variables are placed
in memory at the top of the Assembler. The symbol table is placed in
RAM starting at the end of the Assembler and ending at the starting

address of DOS. Typically, more than 300 symbols are allowed per
program. ~ Lo o | ;

B-14

T 2 EaTnm o e I i o e b O AN W Gyt s s Tl

“/.N.m, SN R S

[

e ey A

T Nl ad e T

oy LB TR TR SR s

&
-3
2
Z
E
&
3
&
o
N £,
g
:
4
:

R
=i

280 Development SYstem - Linking Loader

SD SYSTEMS LINKER VERSION 2.0
OPERATIONS MANUAL

COPYRIGHT SD SYSTEMS
NOVEMBER 1978
ALL RIGHTS RESERVED

1.0 INTRODUCTION

e e ———— - ——

The SD SYSTEMS Linker is provided on a standard OP/M compatible
diskette. The Linker (LINK) provides the means for linking object
modules produced by the 280 Assembler (ZASM) . The Linker concatenates
modules ' together and resolves global symbol references which provide
communication between modules. The Linker produces a load module
containing “"hex" format machine code which may be read by the DOS LOAD
commmangd. The LOAD command reads a load module (secondary filename =
HEX) and produces _.a memory image file (secondary filename = COM) which
- can be executed by the disk operating system (DOS).

2.0 COMMAND SUMMARY

—— i o - - - S - —— o

In this manual, the following symbols are used:
= (CR) means carriage return.
- all user input is underlined. : ‘
-~ user input which is all upper case must
be entered exactly as shown. .
user input which is lower case is variable.

-

A>LINK - filename l,yfilename 2,....filename N /xyz (CR)

= Links object input files (secondary filename=0BJ)

- Produces a LOAD module (secondary filename=HEX)

- As an option creates a cross reference file
(secondary filename=CRS)

OPTIONS

C - Produces an output fiie containing a global cross
reference table and a load map.
U - Lists all undefined global symbols

A - Allows the user to enter a starting link address

AR

3.0 DEFINITIONS

- it e - -

SOURCE MODULE - the wuser's source program. Each source module i
assembled into one object module by the Assembler.

C-1

Lifeboat Associates‘zao Developmeht Svstem Version 3.2

A S S R A

280 Development System - Linking Loader

OBJECT MODULE - the object output of the Assembler for one source
module. The object module contains linking - information, address and
relocating information, machine code, and checksum information for use

by the Linker. The object module is in ASCII. The object module is
output to a disk file with extension OBJ.

LOAD MODULE - the absolute machine code of one complete program. The
load module is defined on disk as an absolute object file with
secondary filename of HEX. A Load module is produced by the Linker.

GLOBAL DEFINITION - both internal and external symbols are defined as
GLOBAL in a source module. The Assembler determines which are internal

and which are external. (See 280 Assembler description of internal and
external symbols). : : '

ABSOLUTE - a ptogram which has no rélodaiing information in the object
module. An absolute program which is not position independent ~can be
loaded only in one place in memory in order to work properly. L

RELOCATABLE - a program which has extra information in the object
module which allows the Linker to place the program anywhere in memory.

4.0 LINKER OPERATION

- — - " t— it .

During Pass 1 the Linker reads one or more object input files and
places the global symbol definitions in the Linker symbol table, 1In
PASS 2 global symbol references are resolved and an output Load file is
produced. The Load file has the same primary filename as ‘the first
object input file (filename 1) and has a secondary filename of HEX. 1f
the cross reference option is specified a cross reference file is
produced. The cross reference file has the same primary filename name
the first object input file (filename 1) and has a secondary filename
of CRS. ' ~ ‘

In Pass 2 as each object input module is read its beginning and ending
-address in memory is printed on the console. The module type is also
listed as either absolute or relocatable (ABS/REL) . Absolute modules
are always positioned at their starting address in memory as defined by
the ORG pseudo-op. Relocatable modules are positioned at the next
location after the end address of the previous module. If the first
input module is relocatable, it is ‘positioned by the starting link
address. If the starting link address is not specified by the A option
it assumes a value of 0. e

It is suggested that the first object input module read by the Linker
have a starting address of 100H for operation with the DOS. This -
starting address should also serve as the entry point for the combined
Load module. A starting address of 0100H can be created either with
the ORG pseudo-op or the Linker A option. The DOS loads and begins .

~ execution of RAM image files at location 0100H. ey

‘:’C-2

T S A mt Beaomnmt abme BN e ooV e b ol T e

AL A A

7 37 e VW WA S

Lal
iy i s b - e A Lt ;
AR L ks ot s e San e

et A N BT e A e e bt ki ‘

W e el YE D

- i
s T TP LRI ;

280 Development System - Linking Loader

When absolute modules are being linked together, the files
- command must appear in sequential order according
addresses in memory. If an absolute module is encountered having
starting address lower in memory than a Previous module a module.
sequence error ‘message will be generated, Furthermore, if a source
module contains more ' than one ORG statement, the address used in any
given ORG statement must be greater than ga Previous ORG Statement.

in the LINK
to their starting

5.0 EXAMPLE OF LINK COMMAND

- —— -

T ——— v -

EXAMPLE 1. Link the relocatable object modules

+SUB2.0BJ,SUB3.0BJ together'starting at 100H produ
MAIN.HEX. Also generate

in the file MAIN.CRS.A

MAIN.OBJ, SUB1.0BJ,

cing the LOAD module
a global Cross referecne table ang a load map

"A>LINK MAIN,SUB1,SUB2,SUB3 (CR)

-—— el — - ——

ENTER STARTING LINK‘AbDRESS> 100 (CR)

. o in

a

MAIN .OBJ

SUB1 .OBJ

SUB2 .0BJ

SUB3 .0BJ

UNDEFINED SYMBOLS 00

PASS 2 | e | |

MAIN -OBJ REL BEG ADDR 0100 END ADDR 0125
SUBl .0BJ REL BEG ADDR 0126 END ADDR 01CD
SUB2 .OBJ REL BEG ADDR 01CE END ADDR 01ES8
SUB3 +OBJ REL BEG ADDR 01E9 END ADDR 0212
A>

EXAMPLE 2. Using the 1o0ad module MAIN.HEX created in

DOS LOAD command create a memory image file and b
MAIN. ;

‘Example 1 and the
egin execution of

A>LOAD MAIN.HEX (CR)

A>MAIN (CR)

i -~ v—" ——— > -

NOTE: Execution of MAIN has been started.

EXAMPLE 3. Using the DOS TypE command list the global cross

in reference
table -and the 1load map for the modules linked in Example 1. :

R>TYPE MAIN.CRS (CR)

- - — - - el

C-3

Lifeboat Associates 280 Develommens coee - o .

.SUB1

280 Development System - TL‘ihkking Loader

LOAD MAP
MAIN

SUB2 .
SUB3

GLOBAL

SYMBOL
CRLF
MAIN
MODNO
MSGBEG
MSGEND
MSGMAI
MSGMOD
MSGSB2
MSGSB3
PRINT
PTEST
SuBl
suBl123
SuB2
SUB3

.OBJ

.OBJ

.OBJ
.OBJ

CROSS

ADDR
E59C
0100
01FB
013F
0165

018A -

01C2
0195
0198
01EOQ
0138
0126

020F

01CE
01E9

REL BEG ADDR 0100
REL BEG ADDR 0126
REL BEG ADDR O01CE
REL BEG ADDR 01E9

REFERENCE TABLE

REFERENCES
020C OlE®6

END

~END

END
END

01D4 01D1 012C 0129 010C 0109

0101 -
0l1E
010F
0201
01D7
01F2

01F8 01DD
0115

0118
011B

01F5 013C 0132 0121 0112 0104

ADDR 0125
ADDR 01CD
ADDR O1E8
ADDR 0212

D e R A AR B AT gy

ERA R R TR

MR L L i D :

i AR

	Title Page

	Contents

	Text Editor

	Relocating Z80 Assembler

	Linker

