

ALTAIR 8800 OPERATOR~S MANUAL

TABLE OF CONTENTS

PART ONE: Introduction . •.•........................ 2

(Logia, Electric Logia, Number Systems, The Binary
System, The Octal System, Computer Programming, A
Simple Program, Computer Languages)

PART TWO: Organization of the AZtair 19

(Central Process.ing Unit, Memory, Cloak, Input/Output)

PART THREE: Operation of the Altair•. 28

(FPont Panel Switches and LED's, Loading a Sample Pro­

gram, Using the Memory, Memory Addressing, Operating

Hints)

PART FOUR: Altair 8800 Instruction Set•.•• 42

(Corrunand Instructions, Single Register Instructions,
Register Pair Instructions, Rotate Aaaumulator In­
struations)

APPENDIX: Instruction List• 87

c:MITS, Inc., 1975

PRINTED IN U.S.A.

6328 LINN, N.E., P.O. BOX 8636., ALBUQUERQUE, N.M. 87108 U.S.A.

505/265-7553

2

PART 1 INTRODUCTION

Remarkable advances in semiconductor technology have made
possible the development of the ALTAIR 8800, the most eco­
nomical computer ever and the first available in both kit
and assembled form. The heart of the ALTAIR 8800 is Intel
Corporation 1 s Model 8080 Microcomputer, a complete Central
Processing Unit on a single silicon chip. Fabricated with
N-channel large scale integrated circuit (LSI) metal-oxide­
semiconductor (MOS) technology, Intel 1 s 8080 Microcomputer
on a chip represents a major technological breakthrough.

This operating manual has been prepared to acquaint both the
novice and the experienced computer user in the operation
of the ALTAIR 8800. The computer has 78 machine language
instructions and is capable of performing several important
operations not normally available with conventional mini­
computers. After reading this manual, even a novice will
be able to load a program into the ALTAIR 8800.

Users of the ALTAIR 8800 include persons with a strong elec­
tronics background and little or no computer experience
and persons with considerable programming experience and
little or no electronics background. Accordingly, this
manual has been prepared with all types of users in mind.
Part 1 of the manual prepares the user for better under­
standing computer terminology, technology, and operation
with an introduction to conventional and electronic logic,
a description of several important number systems, a discus­
sion of basic programming, and a discourse on computer lan­
guages.

Parts 2 and 3 in the manual describe the organization and
operation of the ALTAIR 8800. Emphasis is placed on those
portions of the computer most frequently utilized by the
user. Finally, Part 4 of the manual presents a detailed
listing of the ALTAIR 8BOO's 78 instructions. An Appendix
condenses the instructions into a quick reference listing.

Even if you have little or no experience in computer oper­
ation and organization, a careful reading of this manual
will prepare you for operating the ALTAIR 8800. As you
gain experience with the machine, you will soon come to un­
derstand its truly incredible versatility and data proces­
sing capability. Don't be discouraged if the manual seems
too complicated in places. Just remember that a computer
does only what its programmer instructs it to do.

A· LOGIC

George Boole, a ninteenth century British mathematician,
made a detailed study of the relationship between certain
fundamental logical expressions and their arithmetic coun­
terparts. Boole did not equate mathematics with. logic, but
he did show how any logical statement can be analyzed with
simple arithmetic relationships. In 1847, Boole published
a booklet entitled Mathematical Analysis of Logic and in
1854 he published a much more detailed work on the subject.
To this day, all practical digital computers and many other
electronic circuits are based upon the logic concepts ex­
plained by Boole.

Boole's system of logic, which is frequently called Boolean
algebra, assumes that a logic condition or statement is
either true or false. It cannot be both true and false,
and it cannot be partially true or partially false. For­
tunately, electronic circuits are admirably suited for this
type of dual-state operation. If a circuit in the ON state
is said to be true and a circuit in the OFF state is said
to be false, an electronic analogy of _a logical statement
can be readily synthesized.

With this in mind, it is possible to devise electronic equi­
valents for the three basic logic statements: AND, OR and
NOT. The AND statement is true if and only if either or all
of its logic conditions are true. A NOT statement merely
reverses the meaning of a logic statement so that a true
statement is false and a false statement is true.

It's easy to generate a simple equivalent of these three
logic statements by using on-off switches. A switch which
is ON is said to be true while a switch which is OFF is
said to be false. Since a switch which is OFF will not
pass an electrical current, it can be assigned a numerical
value of 0. Similarly, a switch which is ON does pass an
electrical current and can be assigned a numerical value of 1.

We can now devise an electronic equivalent of the logical
AND statement by examining the various permutations for a
two condition AND statement:

3

4

CONDITIONS

(Inputs)

1. True AND True

2. True AND False

3. False AND True

4. False AND False

CONCLUSION

(Output)

True

False

False

False

The electronic ON-OFF switch equivalent of these permuta­
tions is simply:

CONDITIONS

(ON-OFF)

1. ---oo--.~,__----~o_..)o>----

2.

3. ~oo-----~o~)o~--

4. ~o~----v~~o---

CONCLUSION

(OUTPUT)

1

0

0

0

Similarly, the numerical equivalents of these permutations
is:

CONDITIONS

(Inputs)

1. AND 1

2. AND 0

3. 0 AND 1

4. 0 AND 0

CONCLUSION

(Output)

0

0

0

Digital design engineers refer to these table of permuta­
tions as truth tables. The truth table for the AND statement
with two conditions is usually presented thusly:

A B OUT

1 1 1

0 1 0

1 0 0

0 0 0

FIGURE 1-1. AND Function Truth Table

It is now possible to derive the truth tables for the OR
and NOT statements, and each is shown in Figures 1-2 and
1-3 respectively.

A B OUT

1 1 l

0 1 1

1 0 1

0 0 0

FIGURE 1-2. OR Function Truth Table

A OUT

1 0

0 1

FIGURE 1-3. NOT Function Truth Table

5

6

B. ELECTRONIC LOGIC

All three of the basic logic functions can be implemented
by relatively simple transistor circuits. By convention,
each circuit has been assigned a symbol to assist in design­
ing logic systems. The three symbols along with their re­
spective truth tables are shown in Figure 1-4.

:~OUT

A
0
0
l
l

B
0
1
0
1

OUT
0
0
0
l

A
0
0
1
l

B
0
1
0
1

OUT
0
1
l
l

A~OUT

A
0
1

OUT
1
0

FIGURE 1-4. The Three Main Logic Symbols

The three basic loqic circuits can be combined with one an­
other to produce still more logic statement analogies. Two
of these circuit combinations are used so frequently that
they are considered basic logic circuits and have been assign­
ed their own logic symbols and truth tables. These circuits
are the NANO (NOT-AND) and the NOR (NOT-OR). Figure 1-5
shows the logic symbols and truth tables for these circuits.

A
OUT OUT

B

A B OUT A B OUT
0 0 l 0 0 l
0 1 1 0 1 0
1 0 1 1 0 0
l 1 0 1 1 0

FIGURE 1-5. The NANO and NOR Circuits

Three or more logic circuits make a logic system. One of
the most basic logic systems is the EXCLUSIVE-OR circuit
shown in Figure 1-6.

FIGURE 1-6. The EXCLUSIVE-OR Circuit

The EXCLUSIVE-OR circuit can be used to implement logical
functions, but it can also be used to add two input condi­
tions. Since electronic logic circuits utilize only two
numerical units, 0 and 1, they are compatible with the bi­
nary number system, a number system which has only two digits.
For this reason, the EXCLUSIVE-OR circuit is often called a
binary adder.

Various combinations of logic circuits can be used to imple­
ment numerous electronic functions. For example, two NANO
circuits can be connected to form a bistable circuit called
a flip-flop. Since the flip-f)op changes state only when
an incoming signal in the form of a pulse arrives, it acts
as a short term memory element. Several flip-flops can be
cascaded together to form electronic counters and memory
registers.

Other logic circuits can be connected together to form mono­
stable and astable circuits. Monostable circuits occupy
one of two states unless an incoming pulse is received.
They then occupy an opposite state for a brief time and then
resume their normal state. Astable circuits continually
switch back and forth between two states.

7

8

(. NUMBER SYSTEMS

Probably because he found it convenient to count with his
fingers, early man devised a number system which consisted
of ten digits. Number systems, however, can be based on any
number of digits. As we have already seen, dual-state e­
lectronic circuits are highly compatible with a two digit
number system, and its digits are termed bits (binary digits).
Systems based upon eight and sixteen are also compatible wlth
complex electronic logic systems such as computers since
they provide a convenient shorthand method for expressing
lengthy binary numbers.

D. THE BINARY SYSTEM

Like virtually all digital computers, the ALTAIR 8800 per­
forms nearly all operations in binary. A typical binary
number processed by the computer incorporates 8-bits and may
appear as: 10111010. A fixed length binary number such as
this is usually ca 11 ed a word or byte, and computers are us­
ually designed to process and store a fixed number of words
(or bytes).

A binary word like 10111010 appears totally meaningless to
the novice. But since binary utilizes only two digits (bits),
it is actually much simpler than the familiar and tradition­
al decimal system. To see why, let's derive the binary e­
quivalents for the decimal numbers from 0 to 20. We will
do this by simply adding 1 to each successive number until
all the numbers have been derived. Counting in any number
system is governed by one basic rule: Record successive
digits for each count in a column. When the total number
of available digits has been used, begin a new column to
the left of the first and resume counting.

Counting from 0 to 20 in binary is very easy since there
are only two digits (bits). The binary equivalent of the de­
cimal O is 0. Similarly, the binary equivalent of the deci­
mal 1 is 1. Since both available bits have now been used,
the binary count must i ncorpo.rate a new co 1 umn to form the
binary equivalent for the decimal 2. The result is 10. (In­
cidentally, ignore any resemblance between binary and deci­
mal numbers. Binary 10 is not decimal 10!) The binary e­
quivalent of the decimal number 3 is 11. Both bits have been
used again, so a third column must be started to obtain the
binary equivalent for the decimal number 4 (100). You should
now be able to continue counting and derive all the remain­
ing binary equivalents for the decimal numbers 0 to 20:

DECIMAL

0

1

2

3

BINARY

0

1

10

11

9

DECIMAL BINARY

4 100

5 101

6 110

7 111

8 1000

9 l 001

10 l 010

11 1011

12 1100

13 1101

14 1110
10

15 1111

16 l 0000

17 10001

18 10010

19 l 0011

20 10100

A simple procedure can be used to convert a binary number
into its decimal equivalent. Each bit in a binary number
indicates by which power of two the number is to be raised.
The sum of the powers of two gives the decimal equivalent
for the number. For example, consider the binary number
10011:

= [(16) + (0) + (0) + (2) + (l)]

19

11

12

E. THE OCTAL SYSTEM

Since the binary system has only two bits, it doesn't take
long to accumulate a long string of Os and ls. For ex­
ample, a six-digit decimal number requires 19 bits.

Lengthy binary numbers can be simplified by dividing them
into groups of three bits and assigning a decimal equiva-
1 ent to each 3-bit group. Since the highest 3-bit binary
number corresponds to the decimal 7, eight combinations of
Os and ls are possible (0-7).

The basic ALTAIR 8800 accepts a binary input, and any bi­
nary number loaded into the machine can be simplified into
octal format. Of course the octal numbers must be changed
back to binary for entry into the computer, but since only
eight bit patterns are involved the procedure is both sim­
ple and fast. A typical binary instruction for the ALTAIR
8800 is: 11101010. This instruction can be converted to
octal by first dividing the number into groups of three
bits beginning with the least significant bit: 11 101 010.
Next, assign the decimal equivalent to each of the three
bit patterns:

11

3

101

5

010

2

Therefore, 11 101 010 in binary corresponds to 352 in oc­
tal. To permit rapid binary to octal conversion throughout
the remainder of this manual, most binary numbers will be
presented as groups of three bits.

f. COMPUTER PROGRAMMING

As will become apparent in Part 2, the Central Processing
Unit (CPU) of a computer is essentially a network of logic
circuits and systems whJse interconnections or organization
can be changed by the user. The computer can therefore be
thought of as a piece of variable hardware. Implementation
of variations in a computer's hardware...,-S-achieved with a
set of programmed instructions called software.

The software instructions for the ALTAIR 8800 must be load­
ed into the machine in the form of sequential 8-bit words
called machine lanfuage. This and other more advanced com­
puter languages wi 1 e discussed later.

The basics of computer programming are quite simple. In
fact, often the most difficult part of programming is de­
fining the problem you wish to solve with the computer.
8elow are listed the three main steps in generating a pro­
gram:

1. Defining the Problem

2. Establishing an Approach

3. Writing the Program

Once the problem has been defined, an approach to its so­
lution can be developed. This step is simplified by making
a diagram which shows the orderly, step-by-step solution
of the problem. Such a diagram is called a flow diagram.
After a flow diagram has been made, the various steps can
be translated into the computer's language. This is the
easiest of the three steps since all you need is a general
understanding of the instructions and a list showing each
instruction and its machine language equivalent.

The ~L1~1R 8800 has an extensive programming capability.
For example, a program can cause data to be transferred be­
tween the computer's memory and the CPU. The program can
even cause the computer to make logical decisions. For
example, if a specified condition is met, the computer can
jump from one place in the program to any other place and
continue program execution at the new place. Frequently
used special purpose programs can be stored in the compu­
ter's memory for later retrieval and use by the main pro­
gram. Such a special purpose program is called a

13

14

subroutine. The ALTAIR 8800 instructions are described in
detail in Part 4 of this manual.

G. A ~IMPLE PROGRAM

Assume you wish to use the ALTAIR 8800 to add two numbers
located at two different memory locations and store the
result elsewhere in the memory. Of course this is a very
simple problem, but it can be used to illustrate several
basic programming techniques. Here are the steps used in
qenerating a program to solve this problem:

1. Define the Problem--Add two numbers located in
memory and store the result elsewhere in memory.

2. Establish an Approach--A flow diagram can now be
generated:

Retrieve Number from

First Memory Location

' ,
Retrieve Number from

Second Memory Location

,,
Add the Two Numbers

, I

Store the Result in

a New Memory Location

15

16

3. Write the Program--Translating the flow diagram
into a language or format suitable for use by the compu­
ter may seem complicated at first. However, a general
knowledge of the computer's organization and operation
makes the job simple. In this case, the four part flow
diagram translates into five separate instructions:

Retrieve Number from
LOA

First Memory Location !
MOV

'/

Retrieve Number from !
LOA

Second Memory Location

\/

Add the Two Numbers ADD

'IJ
Store the Result in

STA
a New Memory Location

These instructions may seem meaningless now, but their
meaning and application will become much clearer as you
proceed through this manual. For example, the need for
the extra instruction (MOV) will become more obvious after
you learn that the computer must temporarily store the first
number retrieved from memory in a special CPU memory cal­
led a register. The first number is stored in the regis­
ter until it can be added to the second number.

H. COMPUTER LANGUAGES

The software for any computer must be entered into the
machine in the form of binary words called machine lan­
~· Machine language programs are generally written
~the help of mnemonics which correspond to the bit pat­
terns for various instructions. For example, 10 000 111
is an add instruction for the ALTAIR 8800 and the corre­
sponding mnemonic is ADD A. Obviously the mnemonic ADD A
is much more convenient to remember than its corresponding
machine language bit pattern.

Ultimately, however, the machine language bit pattern for
each instruction must be entered into the computer one
step at a time. Some instructions may require more than
one binary word. For example, an ALTAIR RBOO instruction
which references a memory address such as JMP requires
one word for the actual instruction and two subsequent words
for the memory address.

Machine language programs are normally entered into the
ALTAIR 8800 by means of the front panel switches. A com­
puter terminal can be used to send the mnemonics signal
to the computer where it is converted into machine language
by a special set of instructions (software) called an
assembler.

Even more flexibility is offered by a highly complex soft­
ware package called a compiler which converts higher order
mnemonics into machine language. Higher order mnemonics
are a type of computer language shorthand which automati­
cally replace as many as a dozen or more machine language
instructions with a single, easily recognized mnemonic.
Advanced computer languages such as FORTRAN, BASIC, COBAL,
and others make use of a compiler.

The higher computer languages provide a great deal of sim­
plification when writing computer programs, particularly
those that are lengthy. They are also very easy to remem­
ber. The potential versatility of machine language pro-

17

18

gramming should not be underestimated, however, and an
excellent way to realize the full potential of a higher
language is to learn to apply machine language.

PART 2 ORGANIZATION OF THE ALTAIR 8800

A block diagram showing the organization of the ALTAIR
8800 is shown in Figure 2-1. It is not necessary to un­
derstand the detailed electronic operation of each part of
the computer to make effective use of the machine. How­
ever, a general understanding of each of the various opera­
ting sections is important.

CLOCK

~ I

CPU ADDRESS BUS '\... , MEMORY

'f DATA BUS 1'
n.

'I

INPUT
,.,,

' OUTPUT
"

.,

FIGURE 2-1

19

11
1-1
Ci)
c:
;;:i::J
rn
N
I

N

n
-a
c:
CJ
...a.
Pl

<.O
-s
Pl
3

Ir

I

-

....__

-

FLAG (5)1
j

INTE HLDA OBIN SYNC W'R
0 0 ((> Q

• ' I

DECIMAL
ARITHMETIC

ACCUMULATOR
(8)

'

ACCUMULATOR
LATCH

(8)

'

ALU -
(8)

TEMPORARY
'

REGISTER
(8)

W~T
I

- -

'~

0

~
c::::>

•1 .2 READY INT RESET HOLD

t 1
(t 1 1 ,.

'

TIMING AND

CONTROL
i---

Ir

INSTRUCTION
DECODE

AND CONTROL

A,

INSTRUCTION
REGISTER

i

1

110 BUFFER
-

AND LATCH

j.
I . I I I

0 C) .) c))) C)

07 06 D5 04 03 02 DI 0¢

l
READ I WRITE

I
AND

MULTIPLEXER

~ TEMPORARY REGISTER -
z 18) I w<8l I-

()
w

REGISTER ...I
w
Cf) L I H

er E I D
llJ

I B I- c
Cf)

0 STACK POINTER
- llJ

I er PROGRAM COUNTER

READ I WRITE ~

I

INCREMENTER

DECREMENTER

ADDRESS LATCH ~

(16)

- ADDRESS DRIVERS

(16)

• ' Ir Ir • I •
1.,) 0 0 I)) I) n I) 1) D I) CJ I) I) c 0

Al5 Al4 Al3 Al2 All AIO A9 AS A7 A6 A5 A4 A3 A2 Al A~

A· CENTRAL PROCESSING UNIT (CPU)

The Central Processing Unit (CPU) performs all arithmetic
calculations, makes all logical decisions, controls access
to the computer by input and output devices, stores and
retrieves data from the memory, and coordinates the order­
ly execution of a program. The CPU is quite literally
the heart of the computer.

Of course it is important to remember that the CPU is only
as intelligent as the programmer, for the CPU must be in­
structed in precise terms just how to perform a particular
operation. But since the CPU in the ALTAIR 8800 can exe­
cute a complete instruction cycle in only 2 microseconds*,
the c0mputer can solve a highly complex problem in an in­
credibly brief time. In fact, the !lUTAIR 8800 can execute
a six instruction addition program approximately 30,000
times in one second.

The compact size and economy of the !WI1AIR BB oo is in 1 a rge
part due to the CPU. Thanks to large scale integrated cir­
cuit techniques (LSI), the CPU used in the ALTAIR 8800 is
fabricated on a tiny silicon chip having a surface area
of only a fraction of an inch. This chip, the Intel 8080,
is installed in a protective dual-in-line mounting package
having 40 pins.

The CPU is by far the most complex portion of the ALTAIR

8800. A complete block diagram of the CPU is shown in
. Figure 2-2, and while it is not necessary to possess a de­

tailed understanding of this diagram it is important to un­
derstand the role of some of the CPU's more important sys­
tems. The interrelationship of each of these systems and
their contribution to the operation of the CPU will then
become more obvious.

1. TIMING AND CONTROL--The timing and Control System re­
ceives timing signals from the clock and distributes them
to the appropriate portions of the CPU in order to insure
coordinated instruction execution. The Timing and Control
System also activates several front panel status indicators
(HOLD, WAIT, INTE, STACK, OUT, IN, INP, MI MENR, HLTA, WO,
INT).

*A microsecond is one millionth of a second.

21

22

2. INSTRUCTION REGISTER--Binary machine language instruc­
tions are temporarily stored in the Instruction Register
for decoding and execution by the CPU.

3. ARITHMETIC--The Arithmetic System performs both binary
and decimal arithmetic. All arithmetic operations are
performed by addition. Multiplication is implemented by
repetitive addition. Subtraction and division are imple­
mented by inverse addition.

4. WORKING REGISTERS--The CPU contains seven 8-bit Working
Registers. The most important of these is the Accumulator,
the register into which the results of many operations are
eventually loaded. In addition to acting as a primary
storage point for results of many program operations, nu­
merous arithmetic and logical operations can be performed
with the Accumulator and any specified register or memory
address.

The six remaining registers, which are arranged in pairs
to permit 16-bit operation when necessary, are "scratch­
pad" registers. This simply means they are used to store
temporary data or addresses on a regular basis and are a­
vailable for numerous program operations.

Figure 2-3 shows the arrangement and classification of the
seven Working Registers. The additional register adjacent
to the Accumolator, the Status Bit Register, is a special
purpose register used to store the status of certain oper­
ations.

Register Pair B) B c

Register Pair D) D E

Register Pair H) H L

Register Pair PSW-+ * A

*Status Bit Register (See Text)

FIGURE 2-3. The Working Registers

5. STATUS BIT REGISTER--The Status Bit Register is a spe­
cial purpose register which stores the status of five con­
ditions which may or may not be affected by the result of
a data operation. This register contains 8-bit positions,
but only 5-bits are used to store the status information.
The five status bits are:

a. Carry Bit--This bit is set to 1 if a carry has
occurred. The Carry Bit is usually affected by such opera­
tions as addition, subtraction, rotation, and some logical
decisions. The bit is set to 0 if no carry occurs.

b. Auxiliary Carry Bit--If set to 1, this bit indi­
cates a carry out of bit 3 of a result. 0 indicates no
carry. This status bit is affected by only one instruc­
tion (DAA).

c. Sign Bit--This bit is set to show the sign of a
result. If set to 1, the result is minus; if set to 0 the
result is plus. The Sign Bit reflects the condition of
the most significant bit in the result (bit 7). This is
because an 8-bit byte can contain up to the decimal equiv­
alent of from -128 to +127 if the most significant bit is
used to indicate the polarity of the result.

d. Zero Bit--This bit is set to 1 if the result of
certain instructions is zero and reset to 0 if the result
is greater than zero.

e. Parity Bit--Certain operations check the parity
of the result. Parity indicates the odd or even status of
the l bits in the result. Thus if there is an even num­
ber of 1 bits, the Parity Bit is set.to 1, and if there
is an odd number of 1 bits, the Parity Bit is set to 0.

6. PROGRAM COUNTER--The Program Counter is a special 16-
bit register which stores the address of the next program
step to be executed. The Program Counter is automatically
advanced to the next sequential program address upon com­
pletion of a step execution. Sometimes called the P-Coun­
ter, the Program Counter is directly accessible to the
programmer via machine language instructions which imple­
ment JUMP, CALL, and RETURN instructions.

7. STACK POINTER--The Stack Pointer is another special
16-bit register. A section of memory reserved for the tem­
porary storaqe of data or addresses is called the sta~~·

23

24

Data can be pushed onto the stack for temporary storage
and popped out of the stack via several instructions.

The Stack Pointer is used to store the contents of the
Program Counter during the execution of subroutines. A
RETURN instruction transfers the contents of the Stack
Pointer to the Program Counter and sequential execution
of the main program continues. The programmer selects the
location of the stack in memory by loading the Stack Point­
er with the desired memory address via a special instru­
tion (LXI).

The interrelationship of the Working Registers, Program
Counter, Stack Pointer, Arithmetic System~ Instruction
Register, and Timing and Control System should now be more
meaningful. The Working Registers incorporate six scratch­
pad registers and an Accumulator into which numerous oper­
ation results are temporarily stored. The Program Counter
causes sequential execution of a program by keeping track
of the memory address of the next instruction to be exe­
cuted. The Timing and Control System supplies timing pul­
ses which coordinate orderly program execution. The Stack
Pointer is used for temporary storage of the data contained
in any register pair. The Stack Pointer also saves the
address in the Program Counter for retrieval after a sub­
routine has been executed. All these operations combine
to provide an enormously flexible and versatile CPU.

8. MEMORY

Though the Working Registers, Program Counter, and Stack
Pointer certainly perform memory roles, the CPU does not
contain memory as it is normally defined in a computer
application. The primary memory in a computer is external
to the CPU.

Simple programs can be implemented with a few dozen words
of memory or even less, but more complex applications such
as video processing require more memory. The ALTAIR 8800
is expandable to 65,536 8-bit words of memory.

Access to the memory is always controlled by the CPU.*
16 address lines called the Address Bus connect the CPU
to the Memory. These lines permit the CPU to input or
output data to or from any memory address. The addresses
are specified by two 8-bit bytes. The CPU processes each
address as two sequential (serial) cycles, each containing
8-parallel bits. Data stored in the Memory is exchanged
between the Memory and CPU via 8 data lines called the
Data Bus. This interconnection format permits parallel
operation. Thus, when data is inputted or outputted in
or from Memory by the CPU, it is transmitted as a complete
8-bit word.

The basic Memory in the ALTAIR 8800 contains up to eight
256 x 4 bit random access memories (RAMs). However, any
conventional memory can be used in the computer if input
loading on the buss does not exceed 50 TTL loads and if
the buss is driven by standard TTL loads.

*An exception to this is when the computer is connected to a
Direct Memory Access Controller. OMA takes control of the
address and data lines from the CPU for direct transfers of
blocks of data. These transfers can take place internally
(from one memory location to another) or externally (from
memory to an external device).

25

26

C. CLOCK

Orderly execution of a program by the CPU is controlled by a 2-MHz crystal controlled clock. Crystal control is used to permit the clock to operate at the maximum permissible CPU speed. A clock without crystal regulation might occas­sional ly speed up beyond the CPU's capability and program execution errors would result.

D. INPUT/OUTPUT

The ALTAIR 8800 can be interfaced with a great many external
devices. Generally, these devices provide input informa­
tion to the computer and accept output information from
the computer. The CPU monitors the status of program exe­
cution and Input/Output devices and provides the necessary
siqnals for servicing external devices. The programmer
can instruct the CPU to either ignore or respond to inter­
rupt signals provided by an external device. These inter­
rupt signals, when accepted by the CPU, cause the program
execution to be temporarily halted while the external de­
vice is serviced by the computer. When the external device
has been serviced, the program resumes normal execution.
The ALTAIR 8800 will service up to 256 Input and 256 Output
devices.

This concludes the description of the organization of the
ALTAIR 8800. The overall operation of the computer as a
powerful and efficient data processing system will become
more apparent in Part 3, a discussion of the operation of
the AL1~IR 8800.

27

28

PART 3. OPERATION OF THE ALTAIR 8800

Access to the basic ALTAIR 8800 is achieved via the front
panel, and at first glance the array of 25 toggle switches and 36 indicator and status LEDs may appear confusing.
Actually, operation of the ALTAIR 8800 is very straight­
forward and most users learn to load a program into the machine and run it in less than an hour. If you are a ty­
pical user, you will spend far more time developing and
writing programs than actually operating the machine.

Th1s part of the ALTAIR 8800 Operating Manual explains the
purpose and application of the front panel switches and in­
dicator and status LEDs. A sample program is then loaded into the machine and run. A detailed discussion of the role and efficient use of memory is included next. Finally,
several operating hints which will help you edit and 11 debug 11

programs are included.

A. THE FRONT PANEL SWITCHES AND LEDs

Though the front panel contains 25 toggle switches and 36
indicator and status LEDs, most routine operations of the
basic ALTAIR 8800 (256 words of memory) can be performed
with only 15 switches and by monitoring only 16 LEDs. The
function of all the switches and LEDs is explained below:

ON-OFF Switch--The ON position applies power to the com­
puter. The OFF position cuts off power and also erases the
contents of the memory.

STOP-RUN Switch--The STOP position stops program execution.
The RUN position implements program execution.

SINGLE STEP Switch--This switch implements a single machine
language instruction each time it is actuated. A single
machine language instruction may require as many as 5 machine
cycles.

EXAMINE-EXAMINE NEXT Switch--The EXAMINE position displays
the contents of any specified memory address previously
loaded into the DATA/ADDRESS Switches (see below) on the
8 data LEDs~ The EXAMINE NEXT position displays the con­
tents of the next sequential memory address. Each time
EXAMINE NEXT is actuated, the contents of the next sequen­
tial memory address are displayed.

DEPOSIT-DEPOSIT NEXT Switch--The DEPOSIT position causes
the data byte loaded into the 8 DATA Switches to be load­
ed into the memory address which has been previously desig­
nated. The DEPOSIT NEXT position loads the data byte load­
ed into the 8 DATA Switches into the next sequential memory
address. Each time DEPOSIT NEXT is actuated, the data byte
loaded into the 8 DATA Switches is loaded into the next
sequential memory address. The data byte loaded into the
8 DATA Switches can be changed before actuating DEPOSIT
or DEPOSIT NEXT.

RESET-CLR Switch--The RESET position sets the Program Counter
to the first memory address (0 000 000 000 000 000). RE-
SET provides a rapid and efficient way to get back to the
first step of a program which begins at the first memory
address. CLR is a CLEAR command for external input/out-
_put equipment.

PROTECT-UNPROTECT Switch--The PROTECT position prevents
memory contents from being changed. The UNPROTECT position

29

30

permits the contents of the memory to be altered.

AUX Switches--The basic ALTAIR 8800 includes two auxiliary
switches which are not yet connected to the computer. These
switches will be used in conjunction with peripherals add­
ed to the basic machine.

DATA/ADDRESS Switches--The DATA Switches are those desig­
nated 1~0. The ADDRESS Switc~es are those desianated 15-0.
A switch whose toggle is in the UP position denotes a 1
bit. A switch whose toggle is in the DOWN position denotes
a 0 bit. In the basic ALTAIR 8800 (256 word memory), the
ADDRESS Switches designated 8-15 are not used and should
be set to 0 when an address is being entered.

2. INDICATOR LEDs

(NOTE: When machine is stopped, a glowing LED denotes a
1 bit or an active status of a specified condition; and a
non-glowing LED denotes a 0 bit or inactive status.
While running a program, however, LEDs may appear to give
erroneous indications.)

ADDRESS--The ADDRESS LEDs are those designated Al5-AO.
The bit pattern shown on the ADDRESS LEDs denotes the
memory address being examined or loaded with data.

DATA--The DATA LEDs are those designated D7-DO. The bit
pattern shown on the DATA LEDs denotes the data in the
specified memory address.

INTE--An interrupt has been enabled when this LED is
glowing.

PROT--The memory is protected when this LED is glowing.

WAIT--The CPU is in a WAIT state when this LED is glowing.

HLDA--A HOLD has been acknowledged when this LED is
glowing.

31

32

3. STATUS LEDs

(NOTE: A glowing LED denotes an active status for the
designated condition.)

LED DEFINITION

MEMR The memory bus will be used for memory read data.

INP The address bus containing the address of an
input device. The input data should be placed
on the data bus when the data bus is in the
input mode.

Ml The CPU is processing the first machine cycle
of an instruction.

OUT The address contains the address of an output
device and the data bus will contain the out­
put data when the CPU is ready.

HLTA

STACK

WO

INT

A HALT instruction has been executed and ac­
knowledged.

The address bus holds the Stack Pointer's push­
down stack address.

Opera ti on in the current machine cycle wi 11 be
a WRITE memory or OUTPUT function. Otherwise,
a READ memory or INPUT operation will occur.

An interrupt request has been acknowledged.

B. LOADING A SAMPLE PROGRAM

In Section G of Part 1, a simple addition program in ma­
chine language mnemonics is presented. The program is de­
signed to retrieve two numbers from memory, add them to­
gether, and store the result in memory. The exact program
in mnemonic form can be written thusly:

O. LDA

1. MOV (A~B)

2. LnA

3. ADD (AtB)

4. STA

5. JMP

The mnemonics for all 78 of the ALTAIR 8800 instructions
are explained in detail in Part 4 of this manual. For now,
the following definitions will suffice:

1. LDA--Load the accumulator with the contents of
a specified memory address.

2. MOV (A B)--Move the contents of the accumulator
into register B.

3. ADD (B+A)--Add the contents of register B to the
contents of the accumulator and store the result in the
accumulator.

4. STA--Store the contents of the accumulator in· a
specified memory address.

5. JMP--Jump to the first step in the program.*

*Once the computer has executed the program it will search
its memory for something else to do. To maintain control
of the CPU, we can end our sample program with a JMP instruc­
tion (followed by the memory address of the first instruc­
tion). The computer will 11 jump 11 back to the first instruc­
tion in the sample program and execute the program over
and over again.

33

34

Notice how precise and specific each of these instructions
is. The computer is instructed exactly how to solve the
problem and where to place the result. Each of these ma­
chine language instructions requires a single byte bit pat­
tern to implement the basic instruction. LOA and STA re­
quire two additional bytes to provide the necessary memory
addresses.

To load this program into the ALTAIR 8800, you must first
determine the memory addresses for the two numbers to be
added, the result, and the program itself. In most cases,
it's more convenient to store a new program by beginning
at the first memory address (0). Therefore, the memory
addresses for the data (the two numbers to be added and the
result) should be placed at any arbitrary addresses higher
in memory. Since the basic ALTAIR 8800 has 256 words of
memory, let's select a location for data addresses begin­
ning at memory address 128. The first number to be added
will be located at memory address 128 (10 000 000), the
second at memory address 129 (10 000 001), and the result
at memory address 130 (10 000 010). Now that the memory
addresses have been specified, the program can be converted
into its machine language bit patterns:

MNEMONIC

0. LDA

BIT PATTERN.

00 111 010

10 000 000

00 000 000

1. MOV (A~B) 01 000 111

2. LDA 00 111 010

10 000 001

00 000 000

3. ADD (B+A) 10 000 000

EXPLANATION

Load Accumulator with contents

of: Memory address 128 (2 bytes

required for memory addresses)

Move Accumulator to Register B

Load Accumulator with contents

of: Memory address 129

Add Register B to Accumulator

MNEMONIC

4. STA

5. JMP

BIT PATTERN

00 110 010

10 000 010

00 000 000

11 000 011

00 000 000

00 000 000

EXPLANATION

Store Accumulator contents

at: Memory address 130

Jump to Memory location O.

Usually the individual bit patterns of a machine language
program are sequentially numbered to reduce the chance for
error when entering them into the computer. Also, the octal
equivalents of each bit pattern are frequently included
since it is very ·easy to load octal numbers into the front
panel switches. All that is necessary is to remember the
binary/ octal equivalents for the decimal numbers 0-7.

The resulting program may appear thusly:

STEP MNEMONIC

0. LDA

1. (address)

2 . (address)

BIT PATTERN

00 111 010

10 000 000

00 000 000

3.

4.

MOV (A-+B) 01 000 111

LDA 00 111 010

5. (address)

6. (address)

7.

8. STA

10 000 001

00 000 000

10 000 000

00 110 010

OCTAL EQUIVALENT

0 7 2

2 0 0

0 0 0

1 0 7

0 7 2

2 0 1

0 0 0

2 0 0

0 6 2

35

36

STEP MNEMONIC BIT PATTERN OCTAL EQUIVALENT

9. (address) 10 000 010 2 0 2

10. (address) 00 000 000 0 0 0

11. JMP 11 000 Cll 3 0 3

12. (address) 00 000 000 0 0 0

13. (address) 00 000 000 0 0 0

The program can now be entered into the computer by means
of the front panel switches. To begin loading the pro­
gram at the first memory address (0), actuate the RESET
switch. The Program Counter is now loaded with the first
memory address. The program is then entered into the
DATA/ADDRESS switches 7~0 one step at a time. After
the first step is entered, actuate the DEPOSIT switch to
load the bit pattern into the memory. Then enter the se­
cond step into the DATA/ADDRESS switches and actuate the
DEPOSIT NEXT switch. The bit pattern will be automatically
loaded into the next sequential memory address (1). Con­
tinue loading the steps into the front panel switches and
actuating DEPOSIT NEXT. The complete program loading pro­
cedure can be summarized as follows:

STEP

0

1

2

3

SWITCHES 0-7

0 ..., ~

00 111 010

~ 0 0
10 000 000

0 0 0
00 000 000

,.. 0 "\
01 000 111

CONTROL SWITCH

RESET

DEPOSIT

DEPOSIT NEXT

0 ...

DEPOSIT NEXT ~~'(.. ~.It (',

STEP Sl1JITCHES 0-7 CONTROL SWITCH

DEPOSIT NEXT
b 'l l.

4 00 111 010 Lo11tr06.

DEPOSIT NEXT
2. 0 I

5 10 000 001 *' ,.,.,
DEPOSIT NEXT

II II#

6 00 000 000 c,). 411'

DEPOSIT NEXT
l. 0 u AOo ~.,•J

7 10 000 000

DEPOSIT NEXT
0 c. z. ~ TolC- t.:C '4 .

8 00 110 010

DEPOSIT NEXT 37
t. 0 z. 128 9 10 000 010

DEPOSIT NEXT
u e "' 10 00 000 000

DEPOSIT NEXT
3 0 ~

11 11 000 011 Sk.P-

DEPOSIT NEXT
0 0 ""' 12 00 000 000

DEPOSIT NEXT

" o~ 13 00 000 000

DEPOSIT NEXT

38

The program is now ready to be run, but first it is neces­
sary to store data at each of the two memory addresses which
are to be added together. To load the first address, set
the DATA/ADDRESS switches to 10 000 000 and actuate EXAMINE.
You can now load any desired number into this address by
loading the DATA/ADDRESS switches as appropriate. When the
number has been loaded into the switches, actu~te DEPOSIT
to load it into the memory. To load the next address, enter
the second number on the DATA/ADDRESS switches and actuate
DEPOSIT NEXT. Since sequential memory addresses were selec­
ted, the number will be automatically loaded into the pro­
per address (10 000 001). If non-sequential memory addres­
ses had been selected, the procedure for finding the first
address would have to be followed (load the address.into the
DATA/ADDRESS switches and actuate EXAMINE; then load the
number into the DATA/ADDRESS switches and actuate DEPOSIT).

Now that the two memory addresses referenced in the program
have been loaded with two numbers to be added together, the
program can be run. This is accomplished by simply actuating
the RESET switch and then the RUN switch. Wait a moment and
then actuate the STOP switch. To see the result stored in
memory, actuate the appropriate DATA/ADDRESS switches with
the bit pattern for the address into which the result was
stored (10 000 010) and then actuate the EXAMINE switch.
The result will then be displayed on the DATA LEDs.

To test your ability to load and run this program, try
changing the memory addresses for the numbers to be added
and the result and then load and run the program again.

SAMPLE PROGRAM FOR BINARY MULTIPLY

OCTAL
MNEMONIC ADDRESS CODE EXPLANATION

t1VA- 000 076 Multiplier to A Register
001 002

MVID 002 026 Multiplicand to D,E Registers -003 003

MVIE 004 036
005 000

LXIH 006 041 ""-- Clear H,L Registers to initialize
007 000 Partial Product
010 000

MVIB 011 006 Iteration Count to B Register
012 010

DADH 013 051 Shift Partial Product left into Carry
38a

RAL 014 027 Rotate Multiplier Bit to Carry

JNC 015 322 Test Multiplier at Carry
016 023
017 000

DADD 020 031 Add Multiplicand to Partial Product
if Carry = 1

ACI 021 316
022 000

DCRB 023 005 Decrement Iteration Counter

JNZ 024 302 Check Iterations
025 013
026 000

SHLD 027 042 Store Answer in Locations 100,101
030 100
031 000

JMP 032 303 Restart
033 000
034 000

C. USING THE MEMORY

By now it is probably apparent that the memory plays a vi­
tal role in the efficient operation of a computer. Higher
language compilers generally include a software package
which automatically keeps track of the various memory ad­
dresses. Machine language operation, however, requires the
programmer to keep track of the memory. Otherwise, valuable
data or program instructions might be accidentally erased
or replaced by other data or instructions.

You can keep track of what is stored in the ALTAIR 8800 1 s
memory by means of a simple technique called memory mapping.
This techmique merely assigns various types of data to cer­
tain blocks of memory reserved for a specific purpose. The
technique effectively organizes the available memory into an
efficient and readily accessible storage medium.

A typical memory map for the ALTAIR 8800 with 256 words of
memory might assign programs to the first 100 words, sub­
routines to the second 100 words, and data to the remaining
56 words. Of course the various blocks of memory can be
modified at will, and the main purpose of memory mapping
is to provide a cohesive organization of the available
memory.

You can make a memory map each time you change the program
in the ALTAIR 8800. After the program is written, decide
how much memory space should be reserved for the program
itself, the subroutines (if any), and the data. Then make
a table or chart to record where various items are stored
in the memory. Be sure to update the table when the memory
organization is modified.·

39

40

D. MEMORY ADDRESSING

The machine language instruction set for the ALTAIR 8800
provides several methods for addressing the memory. They
include direct addressing, register pair addressing, Stack
Pointer addressing, immediate addressing, and stack addres­
sing of subroutines. Each of these addressing methods
will be described below.

o'L..,,...l. Direct Addressing--The instruction supplies the speci­
fied memory address in the form of two bytes immediately
following the actual instruction byte.

2. Register Pair Addressing--The contents of a register
pQir can contain a memory address. The H and L registers
must be used for this purpose in most instructions. The H
r i contains mosts· · icant8bitsand heL­
te.Q.is._ter the least significant 8 bits ~ 1s 1gh an 1s
low). Two instructions (STAX and LDAX) permit the Band
C or D and E register pairs to contain memory addresses.

3. Stack Pointer Addressing--There are only two stack oper­
ations: PUSH and POP. PUSHing data onto the stack causes
two bytes (16 bits) of data to be stored in a special block
of memory reserved by the programmer and called the stack.
POPing data from the stack causes this data to be retrieved.
The PUSH and POP instructions are explained in detail in
Part 4 of this manual. For now it is important to know
that the programmer must reserve the stack location in
memory by loading a memory address into the Stack Pointer.
This is accomplished by means of the LXI instruction (see
Part 4). The programmer should always make note of the
stack's address on his memory map.

4. Immediate Addressing--Immediate instructions contain
data which is loaded into memory during program loading.
Since the data is loaded along with the program in a se­
quential fashion, it is stored in the block of memory
reserved for programming by the operator. There is no need
to make any changes to the memory map when loading immedi­
ate data.

5. Stack Addressing of Subroutines--When a subroutine is
CALLed by a program, the address of the next sequential
instruction in the main program is automatically saved by
being PUSHed onto the stack. When the subroutine has been
executed, a RETURN instruction POPs the address from the
stack and the main program continues execution.

[. OPERATING HINTS

As you gain experience in the operation of the ALTAIR 8800,
you will devise methods for improving both the efficiency
of your programs and the operation of the computer. Listed
below are several helpful hints which you will find quite
useful as you learn to operate the machine.

1. Proofreading Programs--To be safe, always proofread a
program after it has been entered into the computer. This
is done by returning to the first address in memory at which
the program begins (actuate RESET if the program begins at
memory location O; otherwise, set the address on the ADDRESS
switches and actuate EXAMINE). Check the DATA LEDs to make
sure the first program step has been correctly entered.
Then actuate EXAMINE NEXT and check the second step against
the DATA LEDs. Continue proofreading in this fashion until
the entire program has been checked. If an error is found,
simply reenter the correct bit pattern on the DATA switches,
actuate DEPOSIT, and continue proofreading by means of the
EXAMINE NEXT switch.

2. Using NOPs--NOP is an instruction which specifies "No
Operation" and is seemingly of little value. However, by
scattering NOP instructions throughout a complicated pro­
gram, considerable time can be saved if a program error
requiring the addition of a new step or steps is found.
The new instruction or data is simply entered into the pro­
gram in place of the NOP instruction during the program
proofreading. Always be sure to use the appropriate num­
ber of NOPs if it is felt a particular new instruction might
be necessary. For example, if you think it might be ne­
cessary to add an LOA instruction to the program if it fails
to execute properly, use 3 NOPs in a row at the required
location. Three NOPs are required since the LOA instruc­
tion requires three separate bytes.

3. Debugging Programs--Occassionally it will be neccessary
to "debug" a program. The need for debugging occurs when a
program fails to execute properly because of errors (bugs).
Debugging can be enhanced by use of the SINGLE STEP switch.
This switch steps the computer through the program in machine
cycles rather than complete program steps and permits you
to observe the condition of the eight STATUS LEDs. This
procedure will permit you to detect illegal entries, im­
proper program organization, and other programming errors.

41

42

PART 4. ALTAIR 8800 INSTRUCTION SET

The ALTAIR 8800 has 78 basic machine language instruc­
tions. Since many of the instructions can be modified to
affect different registers or register pairs, more than
200 variances of the basic instructions are possible.

A detailed description of the ALTAIR 8800 instruction set
is provided in the remainder of this operating manual.
For the purpose of this description, the 78 basic machine
language instructions have been grouped into seven major
subdivisions:

A. Command Instructions

B. Single Register Instructions

c. Register Pair Instructions

D. Accumulator Instructions

E. Data Transfer Instructions

F. Immediate Instructions

G. Branching Instructions

Each instruction is presented as a standardized mnemonic
or machine language code. Instructions may occupy from
one to three sequential (serial) bytes, and the appropriate
bit patterns are included. A condensed summary of the com­
plete instruction set showing the mnemonics and instruc­
tions in both binary and octal is included as an Appendix.

A. COMMAND INSTRUCTIONS

The ALTAIR 8800 has nine special purpose c:ommand instruc­
tions which are used to service tne remaining instructions.
These special purpose instructions occupy four catagories:
Input/Output Instructions (IN, OUT), Interrupt Instructions
(EI, DI, HLT, RST), Carry Bit Instructions (STC, CMC), and
the No Operation Instruction (NOP).

o "-' _....., 1. INPUT /OUTPUT INSTRUCTIONS

There are two Input/Output Instructions and each occupies
two bytes. The first byte is the instruction, and the se­
cond byte is the Input/Output device number.

3 , J

IN (INPUT) 11 011 011 (Byte 1)

(Device No.) (Byte 2)

Operation: An 8-bit data byte is loaded from the specified
external device into the Accumulator.

Status Bits: Unaffected.

Example: Assume an input device contains the following
data byte: 00 001 000. Implementation of the IM instruc­
tion (including device number) will cause the data byte
to replace the contents of the Accumulator.

OUT (OUTPUT) 11 010 011

(Device No.)

(Byte l)

(Byte 2)

Operation: An 8-bit data byte is loaded from the Accumu­
lator into the specified output device.

Status Bits: Unaffected.

Example: Assume the Accumulator contains the following
data byte: 00 001 000. Implementation of the OUT instruc­
tion (plus device number) will cause the data byte to be sent
to the specified external device.

43

/I

44

ll
of'/ 2. INTERRUPT INSTRUCTIONS

There are two specific Interrupt instructions (EI and DI)
and two auxiliary Interrupt instructions. Interrupt in­
structions permit implementation of a program by a compu­
ter to be temporarily interrupted so that input/output in­
terfacing may take place. For example, jnterrupts may be
ut i 1 i zed ,.bY a computer's output device while an· input devi cs,
1s entering data or a program.

EI (ENABLE INTERRUPTS) 11 111 011 (Byte 1)

Operation: Implementation of the EI instruction sets the
interrupt flip-flop. This alerts the computer to the pre­
sence of interrupts and causes it to respond accordingly.

Status Bits: Unaffected.

DI (DISABLE INTERRUPTS) 11 110 011 (Byte 1)

Operation: Implementation of the DI instruction resets the
interrupt flip-flop. This causes the computer to ignore
any subsequent interrupt signals.

Status Bits: Unaffected.

HLT (HALT INSTRUCTION) 01 110 110 (Byte 1)

Operation: Implementation of the HLT instruction steps the
Program Counter to the next instruction address and stops
the computer until an interrupt occurs. The HLT instruc­
tion should not normally be implemented when a DI instruc­
tion has been executed. Since the DI instruction causes the
computer to ignore interrupts, the computer will not oper­
ate again until the main power switch is turned off and then
back on.

Status Bits: Unaffected.

RST (RESTART INSTRUCTION) 11 (esp) 111 (Byte 1)

Operation: The data byte in the Program Counter is pushed
onto the stack. This provides an address for subsequent
use by a RETURN instruction. Program execution then con­
tinues at memory address: 00 000 000 00 (exp) 000 where
exp ranges -from 000 to 111.

The RST instruction is normally used to service interrupts.
The external device may cause a RST instruction to be ex­
ecuted during an interrupt. Implementation of RST then
calls a special purpose subroutine which is stored in up
to eight 8-bit bytes in the lower 64 words of memory. A
RETURN instruction is included to return the computer to
the original program.

Status Bits: Unaffected.

Example: Assume the following RST instruction is present:
11 001 111. Implementation of the instruction will cause
the Program Counter data byte to be pushed onto the stack.
The program will then continue execution at the subroutine
located at memory address: 00 000 000 00 001 000. Upon
completion of the subroutine, a RETURN instruction will
return the computer to the next step in the main program.

o""-
3. CARRY BIT INSTRUCTIONS

There are two instructions which can be used to directly
modify the status of the Carry Bit. Each instruction re­
quires one 8-bit byte.

CMC (COMPLEMENT CARRY) 00 111 111 (Byte 1)

Operation: The Carry Bit is complemented. If it is ini­
tially 0, it is set to 1. If it is initially 1, it is re­
set to O.

Status Bit Affected: Carry.

STC (SET CARRY) 00 110 111 (Byte l)

Operation: The Carry Bit is set to 1.

Status Bit Affected: Carry.

4. NO OPERATION INSTRUCTION

There is one NO OPERATION instruction. It occupies a single
8-bit byte.

NOP (NO OPERATION) 00 000 000 (Byte 1)

Operation: No operation occurs, and the Program Counter

45

46

proceeds to the next sequential instruction. Program exe­
cution then continues.

Status Bits: Unaffected.

o"°
B. SINGLE REGISTER INSTRUCTIONS

The ALTAIR 8800 has four single register instructions.
Each instruction occupies a single byte. Two of the in­
structions, INR and OCR, have eight variances each. The
variances are specified according to any desired regis­
ter, and the following reqister bit patterns apply:

Register Bit Pattern

B 000

c 001

D 010

E 011

H "'......, "~ 100

L tt~ 'W' 101

Memory Reference M 110

A 111

If Memory Reference M i.llO) is specified in the instruc­
tion byte, the memory byte addressed by the contents of the
H and L registers is processed. The H register contains
the most significant 8 bits of the memory address and the
L register contains the least significant 8 bits of the
address.

INR (INCREMENT REGISTER OR MEMORY) 00 (reg) 100 {Byte 1)

Operation: The specified byte is incremented by one.

Status Bits Affected: Zero, Sign, Parity, and Auxiliary Carry.

Example: Assume the following instruction is present:
00 000 100. According to the table of register bit pat-
terns qiven above, the byte in register B is to be incre­
mented by l. If the initial byte is 00 000 000, the incre­
mented byte will be 00 000 001.

DCR (DECREMENT REGISTER OR MEMORY) 00 (reg) 101 {Byte 1)

47

48

Operation: The specified byte is decremented by one.

Status Bits Affected: Zero, Sign, Parity, and Auxiliary
Carry.

Example: Assume the following instruction is present:
00 001 101. According to the table of register bit pat­
terns given above, the byte in register C is to be decre­
mented by 1. If the initial byte is 00 000 001, the decre­
mented byte will be 00 000 000.

CMA (COMPLEMENT ACCUMULATOR) 00 101 111 (Byte l)

Operation: Each bit in the accumulator is complemented
(ls become Os and Os become ls).

Status Bits: Unaffected.

Example: Assume the accumulator byte is 11 001 100. The
instruction CMA will complement each bit in the accumula­
tor byte as shown below:

DAA

11 001 100

00 110 011

(DECIMAL ADJUST ACCUMULATOR)

Accumulator

Complemented Accumulator

00 100 111 (Byte 1)

Operation: The 8-bit accumulator byte is converted into
two 4-bit BCD (binary-coded-decimal) numbers. The instruc­
tion affected by the Auxiliary Carry Bit.

The DAA instruction performs two operations:

l. If the least significant 4 bits in the accumula­
tor byte (bits 0-3) represent a BCD digit greater than 9
or if the Auxiliary Carry Bit is set to 1, the four bits are
automatically incremented by 6. If not, the accumulator
is unaffected.

2. If the most significant 4 bits in the accumulator
byte (bits 4-7) represent a BCD digit greater than 9 or if
the Carry Bit is set to 1 after the previous operation,
the four bits are automatically incremented by 6. If not,
the accumulator is unaffected.

Status Bits Affected: Zero, Sign, Parity, Carry, and Aux­
iliary Carry.

Example: Assume the accumulator byte is 10 100 100. The
DAA instruction will automatically consider the byte as two
4-bit bytes: 1010 0100. Since the value of the least
significant 4 bits is less than 9, the accumulator is ini­
tially unaffected. The value of the most significant 4 bits
is greater than 9, however, so the 4 bits are incremented
by 6 to give l 0000. The most significant bit sets the
Carry Bit to 1, and the accumulator now contains: 00 000 100.

49

50

C. REG[STER PAIR INSTRUCTIONS

The ALTAIR 8800 has eight register pair instructions.
Each instruction occupies a single byte. Five of the in­
structions, PUSH, POP, DAD, INX, and DCX, have four varian­
ces each. The variances are specified according to any
desired register pair, and the following register pair bit
patterns apply:

Register Pair Bit Pattern

B and c 00

D and E 01

H and L 10

Flags and A 11

PUSH (PUSH DATA ONTO STACK) 11 (rp)O 101 (Byte 1)

Operation: The contents of the specified register pair
(rp) are stored in two bytes of memory at an address indi­
cated by the Stack Pointer. The contents of the first re­
gister are PUSHed into the address one less than the address
in the Stack Pointer. The contents of the second register
are PUSHed into the address two less than the address in­
the Stack Pointer.

If the Status Bit Register and Accumulator (register pair
PSW) pair is specified, the first byte PUSHed into memory
is the Status Bit Register. This byte has the following
format:

Bit Position Contents

7 Sign Bit

6 Zero Bit

5 0

4 Auxiliary Carry Bit

3 c
2 Parity Bit

1

Bit Position Contents

0 Carry Bit

For example, if the Carry Bit is set to 1 and all remain­
ing status bits are reset to O, the Status Bit Register
will contain the following byte: 00 000 011.

After the PUSH instruction is implemented, the Stack Pointer
ts automatically decremented by two.

Status Bits: Unaffected.

Example: Assume PUSH BC is implemented. The instruction
byte will have the following format: 11 000 101. The
contents of register pair BC will be stored in memory thusly:
B will be stored at the address in the Stack Pointer less
one; C will be stored at the address in the Stack Pointer
less two. The Stack Pointer will then be decremented by two.

POP (POP DATA OFF STACK) 11 (rp)O 001 (Byte 1)

Operation: The contents of the specified register pair
(rp) are retrieved from the two bytes of memory at an address
indicated by the Stack Pointer., Th~nt~nts~_oJ Jh~ ni~mory
byte at the Stack Pointer address ar~_loaded int~ th~- se~ond

~~~Q~~:i~~~~t~~;c~~ff~!rl~ {~~ob{~: ~{r;~e 
register of the .. lJarr. 

If the Status Bit Register and Accumulator (register pair 
PSW) pair is specified, the contents of the byte at the 
Stack Pointer address plus one are used to set or reset the 
status bits according to the format provided in the des­
cription of the PUSH instruction. 

After the POP instruction is implemented, the Stack Pointer 
is automatically incremented by two. 

Status Bits Affected: None unless register pair PSW is 
specified. 

Example: The inverse of the example provided under the PUSH 
instruction will illustrate operation of the POP instruc­
tion. 

51 



52 

DAD (DOUBLE ADD) 00 (rp)l 001 (Byte 1) 

Operation: The 16-bit number formed by the two bytes in the 
specified register pair (rp) is added to the 16-bit num-
ber formed by the two bytes in the H and L registers. The 
result is stored in the H and L register pair. 

Status Bits Affected: Carry. 

Example: Assume the 16-bit number formed by the two bytes 
in register pair BC is 00 101 111 01 111 111. Assume the 
contents of the H and L register pair form the 16-bit num­
ber 01 100 000 00 100 101. The instruction DAD BC (00 
001 001) will add the two numbers and store the result in 
the H and L register pair. The result of the addition is: 
10 001 111 10 100 100. Since no carry occurred, the Carry 
Bit is reset to O. 

INX (INCREMENT REGISTER PAIR) 00 ( rp) 0 011 (Byte 1 ) 

Operation: The 16-bit number formed by the two bytes in the 
specified register pair (rp) is incremented by one. 

Status Bits: Unaffected. 

Example: Assume the INX instruction 00 100 011 is present. 
According to the table of register pair bit patterns, the 
16-bit number formed by the two bytes in the H and L regis­
ter pair will be incremented by one. If the initial 16-
bit number is 10 001 111 10 100 100, the new 16-bit number 
wi 11 be 1 0 001 111 1 O 100 1 01 . 

DCX (DECREMENT REGISTER PAIR) 00 (rp)l 011 {Byte 1) 

Operation: The 16-bit number formed by the two bytes in 
the specified register pair is decremented by one. 

Status Bits: Unaffected. 

Example: Assume the DCX instruction 00 101 011 is present. 
According to the table of register pair bit patterns, the 
16-bit number formed by the two bytes in the H and L re­
gister pair will be decrem~nted by one. If the initial 
16-bit number is 10 001 111 10 100 101, the new 16-bit number 
wi i 1 be 1 O 001 111 10 100 1 00. 



XCHG (EXCHANGE REGISTERS) 11 101 011 (Byte 1) 

Operation: The 16-bit number formed by the contents of 
the H and L registers is exchanged with the 16-bit number 
formed by the contents of the D and E registers. 

Status Bits: Unaffected. 

Example: Assume the H register byte is 10 001 111 and 
the L register byte is 10 000 011. Assume the D and E 
register bytes are both GO OGO 000. Implementation of the 
XCHG instruction will exchange the contents of the two re­
gister pairs so that the H and L register bytes are both 
00 000 000 and the D and E register bytes are, respectively, 
1 0 001 111 and 10 000 011 . 

XTHL (EXCHANGE STACK) 11 100 011 (Byte 1) 

Operation: The byte stored in the L register is exchanged 
with the memory byte addressed by the Stack Pointer. The 
byte stored in the H register is exchanged with the memory 
byte at the address one greater than that addressed by the 
Stack Pointer. 

Status Bits: Unaffected. 

Example: The example provided under the XCHG instruction 
is similar to the operation which occurs when the XTHL in­
struction is implemented. 

SPHL (LOAD SP FROM H AND L) 11 111 001 (Byte 1) 

Operation: The 16-bit contents of the H and L registers 
replace the contents of the Stack Pointer without affect­
ing the contents of the H and L reqisters. 

Example: Assume the H register byte is 10 001 111 and the 
L register byte is 10 000 011. Assume the Stack Pointer 
address is 00 001 100 01 111 111. Implementation of the 
SPHL instruction will load the Stack Pointer with: 10 001 
111 10 000 011. The contents of the Hand L registers will 
remain unchanged. 

53 



54 

. r 

D. ROTATE ACCUMULATOR INSTRUCTIONS 

This is a special set of-four instructions which apply only 
to the ALTAIR BB00 1 s accumulator. Only one byte of instruc­
tion is required, and no memory or register variances apply. 

RLC (ROTATE ACCUMULATOR LEFT) 00 000 111 (Byte 1) 

Operation: The accumulator byte is rotated one bit posi­
tion to the left. The 7 bit position now occupies the 0 
bit position and the Carry Bit is set with the value of 
the 7 bit before rotation. 

Status Bits Affected: Carry. 

Example: Assume the accumulator byte is 10 001 000 and the 
RLC instruction is present. The Carry Bit is set to equal 
the value of the accumulator byte's 7 bit (1), and the con­
tents of the accumulator are rotated one bit position to 
the left. The 7 bit now occupies the 0 bit: 00 010 001. 

RRC (ROTATE ACCUMULATOR RIGHT) 00 001 111 (Byte 1) 

Operation: The accumulator byte is rotated one bit posi­
tion to the right. The 0 bit position now occupies the 7 
bit position and the Carry Bit is set with the value of the 
0 bit before rotation. 

Status Bits Affected: Carry. 

Example: Assume the accumulator byte is 10 001 000 and the 
RRC instruction is present. The Carry Bit is set equal 
to the value of the accumulator byte's 0 bit (0), and the 
contents of the accumulator are rotated one bit position 
to the right. The 0 bit now occupies the 7 bit: 01 000 100. 

RAL (ROTATE ACCUMULATOR LEFT THROUGH CARRY) 00 010 111 

Operation: The accumulator byte is rotated one bit posi­
tion to the left through the Carry Bit. The 7 bit posi­
tion then occupies the Carry Bit and the Carry Bit occupies 
the 0 bit position. 

Status Bits Affected: Carry. 

Example: Assume the accumulator byte is 10 001 000, the 
Carry Bit is 1, and the RAL instruction is present. The 
contents of the accumulator are rotated one bit left through 



the Carry Bit. The 7 bit now occupies the Carry Bit (1) 
and the Carry Bit now occupies the O bit: 00 010 001. 

RAR (ROTATE ACCUMULATOR RIGHT THROUGH CARRY) 00 011 111 

Operation: The accumulator byte is rotated one bit position 
to the right through the Carry Bit. The 0 bit position 
now occupies the Carry Bit and the Carry Bit occupies the 
7 bit position. 

Status Bits Affected: Carry. 

Example: Assume the accumulator byte is 10 001 000, the 
Carry Bit is 1, and the RAR instruction is present. The 
contents of the accumulator are rotated one bit position 
right through the Carry Bit. The 0 bit now occupies the 
Carry Bit, and the Carry ~it now occupies the 7 bit: 
11 000 100. 

55 



56 

E. DATA TRANSFER INSTRUCTIONS 

Data can be conveniently transferred between registers or 
between the memory and registers of the ALTAIR 8800. Cer­
tain of these operations are direct data transfers and no 
other operation is involved. For example, the MOV instruc­
tion causes a byte of data to be transferred from one regis­
ter (the source register) to another register (the destin­
ation register). Other data transfers are accompanied by 
an arithmetic or logical operation. For example, the ADD 
instruction adds the contents of a specified register to 
the contents of the accumulator. 

Still another class of data transfer instructions concerns 
only the accumulator and the H and L register pair. For 
example, the STA instruction causes the contents of the 
accumulator to replace the byte of data stored at a speci­
fied memory address. 

This section describes fifteen separate data transfer in­
structions, but it is important to note that many other 
instructions also involve the transfer of data (e.g. PUSH, 
POP, DAD, XCHG, XTHL, SPHL, etc.). However, it is more 
appropriate to the efficient organization of this operating 
manual to describe these instructions elsewhere. 

The data transfer instructions described in this section 
are grouped into three suhdivisions. The first subdivi­
sion is Data Transfers (MOV, STAX, and LDAX). The second 
is Register/Memory to Accumulator Transfers (ADD, ADC, SUB, 
SBB, ANA, XRA, ORA, and CMP). And the third is Direct 
Addressing Transfers (STA, LOA, SHLD, and LHLD). 

l. DATA TRANSFER INSTRUCTIONS 

There are three data transfer instructions and each is un­
conditional. Each of the three instructions has at least 
two variances. The variances are determined by register or 
memory addresses which are specified by the programmer. 

MOV (MOVE DATA) 01 DOD SSS (Byte 1) 

Operation: The contents of SSS (the source register) are 
moved to DOD (the destination register). The contents of 
SSS remain unchanged. The following bit patterns for the 
source and destination registers apply: 



Register Bit Pattern 

B 000 

c 001 

D 010 

E 011 

H 100 

L 101 

Memory Reference M 110 

A 111 

The source and destination registers cannot both equal 110. 

Status Bits: Unaffected. 

Example: Assume it is necessary to transfer the contents 
of register E to the accumulator. By referring to the re­
gister bit pattern table provided above, an appropriate MOV 
instruction can be formulated: 01 111 011. 

STAX (STORE ACCUMULATOR) 00 OXO 010 (Byte 1) 

Operation: The contents of the accumulator are stored in 
a memory address specified by registers B and C or registers 
D and E. Registers B and C are specified by a O at the 
4 bit position (X). Registers D and E are specified by a 
1 at the 4 bit position (X). 

Status Bits: Unaffected. 

Example: Assume it is necessary to store the contents of 
the accumulator at a memory address specified by registers 
D and E. The appropriate STAX instruction is: 00 010 010. 

LDAX (LOAD ACCUMULATOR) 00 OXl 010 (Byte 1) 

Operation: The contents of the memory address specified by 
registers B and C or by registers D and E replace the con­
tents of the accumulator. Registers B and C are specified 
by a O at the 4 bit position (X). Registers D and E are 
specified by a l at the 4 bit position (X). 

57 



58 

Status Bits: Unaffected. 

Example: Assume ft is necessary to load the accumulator with the contents of a memory address specified by registers B and C. The appropriate LDAX instruction is: 00 001 010. 

2. REGISTER/MEMORY TO ACCUMULATOR TRANSFERS 

There are eight Register/Memory to Accumulator Transfers and each is unconditional. Each of the eight instructions has eight variances determined by registers specified by the programmer. The following bit patterns for each of the registers apply: 

Register Bit Pattern 

B 000 

c 001 

D 010 

E 011 

H 100 

L 101 

Memory Address M 110 

A 111 

Four of the instructions involve arithmetic (add or sub­tract) operations. The remaining four involve logical op­
erations. 

ADD (ADD REGISTER/ACCUMULATOR TO MEMORY) 10 OOO(reg) (Byte 1) 
Operation: The contents of the specified register (reg) are added to the contents of the accumulator. 

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxiliary Carry. 

Example: Assume it is necessary to add the contents of register B to the accumulator. Referring to the register bit pattern table given above, the appropriate instruction 



is: 10 000 000. If the data bytes at register B and the 
accumulator are ll 010 100 and Ol 100 010 respectively, the 
following addition will be performed: 

11 010 100 

Ol l 00 Ol 0 

100 110 110 

Register B Byte 

Accumulator Byte 

New Accumulator Byte 

Since the new accumulator byte has nine bits, the Carry Bit 
will be set to l to indicate a carry has occurred. 

ADC (ADD REGISTER/MEMORY AND CARRY TO ACCUMULATOR) 10 001 (reg) 

Operation: The contents of the specified register (reg) and 
the content of the Carry Bit are added to the accumulator. 

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil­
iary Carry. 

Example: Assume it is necessary to add the contents of regis­
ter C and the content of the Carry Bit to the accumulator. 
Referring to the register bit pattern table given above, the 
appropriate instruction is: 10 001 001. If the data bytes 
at register C and the accumulator are 00 100 011 and 01 011 
100 and the Carry Bit is 1, the following addition will be 
performed: 

00 100 011 

01 011 100 

1 

10 000 000 

Register C Byte 

Accumulator Byte 

Carry Bit 

New Accumulator Byte 

If the new accumulator byte had nine bits, the extra bit would 
set the Carry Bit to 1. 

SLB (SUBTRACT REGISTER/MEMORY FROM ACCUMULATOR) 10 010 (reg) 

Operation: The contents of the specified register are sub­
tracted from the contents of the accumulator. The ALTAIR 
8800 achieves subtraction py. means of a simple addition pro­
cess called two's complement arithmetic. If there are only 

59 



60 

eight bits in the result, no carry bit is present. This means 
a borrow occurred, and the Carry Bit is set to 1. Note that 
this operation is the inverse of what occurs in an ADD instruc­
tion. 

Status Bits Affected: Carry Sign, Zero, Parity, and Auxil­
iary Carry .. 

Example: Assume it is necessary to clear the accumulator 
of its contents. An efficient way to achieve this require­
ment is to implement a SUB A instruction (10 010 111) where 
A specifies the accumulator variance of the SUB instruction. 
Implementation of this instruction will cause the contents 
of the accumulator to be subtracted from itself. 

SBB (SUBTRACT REGISTER/MEMORY FROM ACCUMULATOR WITH BORROW) 

1 O 011 (reg) (Byte 1) 

Operation: The content of the Carry Bit is added to the con­
tents of the specified register and the result is then sub­
tracted from the accumulator using two's complement arith-
-meti c. 

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil­
iary Carry. 

Example: Assume that the SBB instruction is implemented for 
the B variance (SBB B). The contents of register B will be 
added to the carry bit, and the result will then be subtracted 
from the accumulator. Status bits will be set or reset as 
appropriate. 

ANA (LOGICAL AND REGISTER/MEMORY WITH ACCUMULATOR) 10 100 (reg) 

Operation: The content of the specified register is logically 
ANOed with the contents of the accumulator. The Carry Bit is 
reset to 0. 

Status Bits Affected: Carry, Zero, Sign, and Parity. 

Example: Assume the content of register L is 10 001 100 and 
the content of the accumulator is 10 000 101. An ANA instruc­
tion will then cause the contents of the two registers to be 
ANDed with one another bit-by-bit. Since the logical ANDing 
of two bits is 1 only if both bits are 1, the following pro­
cedure occurs: 



10 001 100 

10 000 101 

10 000 100 

Register L 

Accumulator 

Register L AND Accumulator 

XRA (LOGICAL EXCLUSIVE-OR REGISTER/MEMORY WITH ACCUMULATOR) 

10 101 (reg) 

Operation: The content of the specified register is logically 
EXCLUSIVE ORed with the contents of the accumulator. The Carry 
Bit is reset to 0. 

Status Bits Affected: Carry, Sign, Zero, and Parity. 

Example: Since the EXCLUSIVE-ORing of two bits is 1 only 
if the values of the bits are different, the XRA instruction 
can be used to clear the accumulator to 0. This function is 
implemented by means of the instruction XRA and the variance 
A. The resulting statement is 10 101 111 (see the table of 
register bit patterns given above). 

The XRA instruction can also be used to monitor the status 
of individual bits in a byte which has been designated a con­
dition byte. For example, assume a byte has been designated 
to record eight separate true-false conditions wherein a l is 
true and a 0 is false. In order to check whether or not any 
of the conditions have changed, the original data byte can 
be moved to the accumulator and EXCLUSIVE-ORed with the updated 
data byte. Conditions which have not changed will produce a 
0 bit and conditions which have changed will produce a 1 bit. 

ORA (LOGICAL OR REGISTER/MEMORY WITH ACCUMULATOR) 10 110 (reg) 

Operation: The content of the specified register is logi­
cally ORed with the content of the accumulator. The Carry Bit 
is reset to zero. 

Status Bits Affected: Carry, Zero, Sign, and Parity. 

Example: Since the ORing of two bits is 0 only if the value 
of each bit is 0, the ORA instruction can be used to set a 
group of bits to a series of ls. 

61 



62 

CMP (COMPARE REGISfER/MEMORY WITH ACCUMULATOR) 10 111 (reg) 

Operation: The content of the specified register is compared 
with the content of the accumulator by subtracting the for­
mer from the latter. The contents of the register and accu­
mulator are unaffected by this operation, and the status bits 
are set or reset as appropriate. 

Status Bits Affected: Carry, Sign, Zero, and Parity (Note: 
The sense of the Carry Bit is reversed if one byte is plus 
and the other is minus). 

Example: The CMP instruction is useful in determining when 
the content of any particular register equals that of the 
accumulator. If the two bytes are equal, the subtraction will 
give a O result, and the Zero Status Bit will be set to 1. 
If the register contents are greater than the accumulator 
contents, the Carry Bit will be set to 1 since a subtraction 
has occurred. If the register contents are less than the ac­
cumulator contents, the Carry Bit will be reset to 0. 

3. DIRECT ADDRESSING INSTRUCTIONS 

The four instructions described in this section are used to 
store the contents of the accumulator and the H and L regis­
ters in the memory or to load the accumulator and H and L 
registers with data from the memory. All four instructions 
require three bytes. The first byte is the specific instruc­
tion, and the second and third bytes provide the memory address. 

STA (STORE ACCUMULATOR DIRECT) 00 110 010 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: The contents of the accumulator are stored in the 
memory at the address specified in bytes 2 and 3. 

Status Bits: Unaffected. 

Example: Assume the accumulator byte is 00 010 110 and a 
STA instruction is present with the following memory address: 

01 000 000 

01 000 001 

(Byte 2) 

(Byte 3) 



The accumulator byte will then be stored at this memory 
address. 

LDA (LOAD ACCUMULATOR DIRECT) 00 111 010 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: The accumulator is loaded with the contents of 
the byte at the memory address given by bytes 2 and 3 of the 
instruction. 

Status Bits: Unaffected. 

Example: The inverse of the example given in the STA instruc­
tion will illustrate operation of the LOA instruction. 

SHLD (STORE H AND L DIRECT) 00 100 010 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: The contents of the L register are stored in the 
memory at the address specified in bytes 2 and 3. The contents 
of the H register are stored in the memory at the next higher 
address. 

Status Bits: Unaffected. 

Example: Assume the L register byte is 00 101 100, the H 
register byte is 00 101 111, and an SHLD instruction is pre­
sent with the following address: 

01 000 101 

01 110 101 

(Byte 2) 

(Byte 3) 

The L register byte will then be stored at this memory address, 
and the H register byte will be stored at the next highest 
address. 

LHLD (LOAD H AND L DIRECT) 00 101 010 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

63 



64 

Operation: The L register is loaded with the contents of the byte at the memory address given by bytes 2 and 3. The H register is loaded with the contents of the byte at the next higher memory address. 

Status Bits: Unaffected. 

Example: The inverse of the example given in the SHLD in­struction will illustrate operation of the LHLD instruction. 



f. IMMEDIATE INSTRUCTIONS 

The ALTAIR 8800 has ten immediate instructions. These instruc­
tions cause the computer to process one or two bytes of data 
which form a part of the instruction. Immediate instructions 
are available to load two bytes of data into a specified re­
gister pair, move one byte of data into a specified regis-
ter or memory address, and to perform arithmetic and logical 
operations with the contents of the accumulator and one byte 
of immediate data. 

A typical byte of i·mmediate data is a mathematical constant 
such as pi. Immediate data can also be a number or quantity 
specified by the programmer such as an actual or projected 
inventory count. For example, a program utilizing one or more 
immediate instructions will permit the computer to compare 
the actual inventory of a particular product with the desired 
inventory. At any inventory count specified in the program, 
the computer can notify the programmer or operator of the 
need to reorder. 

LXI (LOAD REGISTER PAIR IMMEDIATE) 00 (rp)O 001 (Byte 1) 

(Data) 

(Data) 

Operation: Two bytes of immediate data are loaded into the 
register pair specified rp in byte 1 of the instruction. 
The first byte of data (the least significant 8 bits) is loaded 
into the second register of the specified pair, and the 
second byte of data (the most significant 8 bits) is loaded 
into the first register of the specified pair. This pro­
cedure is reversed if the Stack Pointer is the specified regis­
ter pair. The bit patterns for the register pairs are as 
follows: 

00 Registers B and C 

01 Registers D and E 

10 Registers H and L 

11 Stack Pointer 

Status Bits: Unaffected. 

(Byte 2) SS 

(Byte 3) 



66 

Example: The following LXI instruction is inputed to the computer: 

00 010 001 

01 111 111 

01 111 110 

(Byte l) 

(Byte 2) 

(Byte 3) 

Bit positions 4 and 5 of byte l specify that the data in bytes 2 and 3 is to be loaded into registers D and E. Byte 2 is loaded into D and byte 3 is loaded into E. 

MVI (MOVE IMMEDIATE DATA) 00 (reg)llO (Byte l) 

(Data) 
Operation: One byte of immediate data is moved into the spe­cified register or memory byte. The following register bit patterns apply: 

Register Bit Pattern 

B 000 

c 001 

D 010 

E 011 

H 100 

L 101 

Memory Address M 110 

A 11 l 

Status Bits: Unaffected. 

Example: The following MVI instruction is inputed to the com­puter: 

00 011 110 

11 111 111 

(Byte l) 

(Byte 2) 

(Byte 2) 



The immediate data in byte 2 is moved into register E. 

ADI (ADD IMMEDIATE TO ACCUMULATOR) 11 000 110 (Byte 1) 

(Data) 

Operation: The immediate data in byte 2 is added to the con~ 
tents of the accumulator. 

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil­
iary Carry. 

Example: Assume the accumulator byte is 11 110 000 and the 
ADI instruction is present. The immediate data in the ADI 
instruction is 10 000 000. Implementation of the ADI in­
struction will leave 01 110 000 in the accumulator and the 
Carry Bit will be set to 1. All other status bits will be 
reset. 

(Byte 2) 

ACI (ADD IMMEDIATE AND CARRY TO ACCUMULATOR) 11 001 110 (Byte 1) 

Operation: The data in byte 2 and the content of the Carry 
Bit are added to the contents of the accumulator. 

Status Bits Affected: Carry, Sign, Zero, Parity, and Aux­
; 1 i a ry Carry. 

(Data) 

Example: Assume the accumulator byte is 11 110 000, the Carry 
Bit is set to 1, and the ACI instruction is present. The 
immediate data in the ACI instruction is 00 101 100. Imple­
mentation of the ACI instruction will leave the sum 00 011 101 
in the accumulator and both the Carry and Parity Bits will be 
set to 1. The remaining status bits will be reset to 0. 

(Byte 2) 

SUI (SUBTRACT IMMEDIATE FROM ACCUMULATOR) 11 010 110 (Byte 1) 

(Data) 

Operation: The data in byte 2 is subtracted from the con­
tents of the accumulator using two's complement arithmetic. 
Since the ALTAIR 8800 implements subtraction by means of addi­
tion, the Carry Bit is set to 1 if no carry occurred since 
this means a borrow occurred. If a borrow did not occur, 
a carry did occur, and the Carry Bit is reset to 0. Note 
that this operation is the reverse of what occurs in an ADI 
or ACI instruction. 

(Byte 2) 

67 



68 

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil­
iary Carry. 

Example: Assume it is necessaD' to subtract 00 000 100 from 
the accumulator. The resulting instruction would be as fol­
lows: 

11 010 110 

00 000 100 

(Byte 1) 

(Byte 2) 

If the accumulator byte is 00 001 010, implementation of the 
SUI instruction will leave 00 000 110 in the accumulator. 
Since this is a subtraction operation and no carry is present, 
a borrow occurred and the Carry Bit is set to 1. The Parity 
Bit is also set to 1, and the remaining status bits are reset 
to 0. 

SBI (SUBTRACT IMMEDIATE PLUS CARRY FROM ACCUMULATOR) 11 011 110 

(Data) 

Operation: The data in byte 2 is added to the content of the 
Carry Bit and the result is subtracted from the accumulator 
using two's complement arithmetic. 

Status Bits Affected: Carry, Sign, Zero, Parity, and 
Auxiliary Carry. 

Example: Assume it is necessary to implement the SBI instruc­
tion. The contents of the data byte will then be added to the 
Carry Bit and the result subtracted from the accumulator. 
Since this is a subtraction operation, the Carry Bit will be 
set to 1 if no carry occurred (meaning a borrow occurred) and 
reset to 0 if a carry occurred (meaning a borrow did not occur). 

ANI (AND IMMEDIATE WITH ACCUMULATOR) 11 100 110 (Byte 1) 

(Data) 

Operation: The contents of the data byte a re 1 ogi ca 11 y ANDed 
with the contents of the accumulator. The Carry Bit is reset 
to O. 

Status Bits Affected: Carry, Sign, Zero, and Parity. 

(Byte 2) 



Example: Assume the content of the data byte is 00 111 011 
and the content of the accumulator is 11 101 110. An ANI 
instruction will then cause the contents of both bytes to be 
ANDed together bit-by-bit. Since the logical ANDing of two 
bits is 1 only if both bits are 1, the following procedure 
occurs: 

00 111 011 

11 101 110 

00 101 010 

(Data Byte) 

(Accumulator) 

Data Byte AND Accumulator 

XRI (EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR) 11 101 110 (Byte 1) 

(Data) 

Operation: The data in byte 2 of the instruction is EXCLUSIVE­
ORed with the accumulator byte. The Carry Bit is reset to 0. 

Status Bits Affected: Carry, Sign, Zero, and Parity. 

Example: A bit is unchanged when EXCLUSIVE-ORed with a 0 
and complemented when EXCLUSIVE-ORed with a 1. Therefore 
the EXCLUSIVE-ORed function can be used to complement any or 
all of the bits in the accumulator. For examplea to complement­
all but the 7 position bit in the accumulator would require 
the following data byte: 01 111 111. If the accumulator byte 
is 10 110 001, the following operation will occur upon im­
plementation of the XRI instruction: 

01 111 111 

10 110 001 

11 001 110 

(Data Byte) 

(Accumulator) 

Data Byte EXCLUSIVE-OR 
Accumulator 

(Byte 2) 

ORI (LOGICAL OR IMMEDIATE WITH ACCUMULATOR) 11 110 110 (Byte 1) 

Operation: The data in byte 2 of the instruction is logi­
cally ORed with the accumulator byte. The Carry Bit is re­
set to 0. 

(Data) (Byte 2) 

69 



70 

Status Bits Affected: Carry, Sign, Zero, and Parity. 

Example: The ORI instruction can be used to add 1 to the 
accumulator. Assume the accumulator byte is 10 000 100 and 
an ORI instruction is present. Since the ORing of two bits 
produces a 0 only if the value of the two bits is 0, the data 
byte 00 000 001 will add 1 to the accumulator if the 0 po­
sition bit is 0. Otherwise the accumulator byte will be un­
changed. 

CPI (COMPARE IMMEDIATE WITH ACCUMULATOR) 11 111 110 (Byte 1) 

(Data) 

Operation: The data in byte 2 of the instruction is compared 
with the content of the accumulator by subtracting the for­
mer from the latter. The contents of the accumulator and data 
byte are unaffected by this operation, and the Status Bits 
are set or reset as appropriate. 

Status Bits Affected: Carry, Zero, Sign, Parity, and Auxil­
iary Carry. 

Example: The CPI instruction is useful in determining when 
the content of the accumulator equals that of the data byte. 
If the two bytes are equal, the subtraction process will give 
a 0 result, and the Zero Status Bit will be set to 1. If the 
data byte contents are gre~ter than the accumulator contents, 
the Carry Bit will be set to 1 since a subtraction has occurred. 
If the Data byte contents are less than the accumulator con­
tents, the Carry Bit will be reset to 0. 

(Byte 2) 



G. BRANCHING INSTRUCTIONS 

The ALTAIR 8800 has an extensive branching capability. 
Branching permits the computer to jump from one step in the 
program to another. Branching also permits the computer to 
call a specified set of instructions from memory and insert 
it into the program. A return feature permits the computer 
to resume normal operation after the specified instruction 
set is executed. 

Branching is one of the most important capabilities of a 
comp~ter. Jumping from one point in the program to another, 
for example, saves time, and calling a special set of instruc­
tions from memory means a frequently used instruction sequence 
need be stored at only one place in memory. The result is an 
important increase in computer processing speed and efficiency. 
Branching also adds to the economy of a computer since less 
memory is required to accomplish complex programs. And the 
ability to call frequently used instruction sets from memory 
can save considerable programming time. 

The term subroutine is used to describe a special set of in­
structions stored in memory. Typical subroutines might in­
clude instruction sets for calculating trigonometric func­
tions and square roots or making complex logical comparisons. 
Each of these subroutines can be quite lengthy. If a program 
requires a dozen or more trigonometric operations and several 
square root extractions, it is obvious that the use of sub­
routines can save considerable programming time and memory 
space. 

Branching instructions can be either conditional or uncon­
ditional. A conditional branch means a particular branching 
operation is accomplished only if a specified condition is met. 
For example, a typical conditional branch instruction is CZ 
(CALL IF ZERO). If the zero bit is indeed zero when the CZ 
instruction is processed, the Program Counter will automati­
cally move to the address in memory specified in the two ad­
dress bytes which follow the CZ instruction in the program. 

Unconditional branching causes a branch to occur without the 
necessity for meeting certain specified conditions. 

Branching instructions require either one or three bytes per 
instruction. The first byte is the actual instruction while 
the second and third bytes are, respectively, the low and 
high memory addresses. The address bytes tell the Program 

71 



72 

Counter where to move. The instructions which require only 
one byte need no memory addresses since some of the bits in 
the byte refer the Program Counter to certain registers or 
the Stack Pointer, either of which contains the necessary 
addressing information. 

l. JUMP INSTRUCTIONS 

JUMP instructions permit the normal execution sequence of a 
program to be either conditionally or unconditionally altered. 
For example, a program might include a set of instructions 
to be executed .if the result of a previous operation is greater 
than zero. If, however, the result is zero, the set of in­
structions becomes superfluous and unnecessary. The program, 
therefore, includes a JUMP statement which instructs the com­
puter to advance to any specified address past the instruc­
tion set. Since the jump would be implemented only if the 
result of the preceeding operation were zero, this would be 
a conditional branching operation. The actual machine lan­
guage mnemonic for this particular instruction is JZ (JUMP 
IF ZERO). 

All but one of the ten JUMP instructions require three bytes. 
The first byte is the specific machine language instruction, 
while the second and third bytes are, respectively, the low 
and high memory addresses for the portion of the program to 
be selected by the Program Counter if a jump is implemented. 
The PCHL instruction requires only the initial machine lan­
guage instruction byte since the memory locations to which 
the program jumps are known by the computer. The memory lo­
cations in this case happen to be the H and L Registers, the 
contents of which are placed into the Program Counter. 

With the exception of the PCHL and JMP instructions, all JUMP 
instructions are conditional. If a specified condition is 
true, the Program Counter automatically advances to the ad­
dress specified in the instruction. If the specified con­
dition is not true, the program continues its sequential ex­
ecution and a jump does not occur. 

PCHL (LOAD PROGRAM COUNTER) 

Operation: The Program Counter jumps to the Memory address 
specified by the contents of the H and L Registers. The 
most significant 8 bits of the Program Counter are loaded with 
the contents of the H Register and the least significant 8 



bits of the Program Counter are loaded with the contents of the 
L Register. 

Status Bits: Unaffected. 

Example: Assume the contents of the H and L Registers are 
as follows: 

H: 10 111 000 

L: 11 010 110 

Instruction PCHL will automatically transfer this Memory ad­
dress to the Program Counter as shown below: 

Most Significant Least Significant 

Program Counter: 10 111 000 11 010 110 

The program will now continue to execute after having jumped 
to the new address specified in the Program Counter. 

JMP (JUMP) 11 000 011 (Byte 1 ) 
73 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: The Program Counter jumps unconditionally to the 
Memory address specified in bytes 2 and 3 and the program 
continues to execute from the new location. 

Status Bits: Unaffected. 

Example: Assume the JMP instruction and address bit pattern 
is as follows: 

11 000 011 

10 111 000 

11 010 110 

(Byte 1) 

(Byte 2) 

(Byte 3) 

The Program Counter wi 11 jump to the address in Memory spe­
cified by bytes 2 and 3 and program execution will continue 
from the new address. 



74 

JC (JUMP IF CARRY) ll 011 010 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Carry Bit isl, a carry has occurred and the Pro­
gram Counter jumps to the address specified in bytes 2 and 3. 
Program execution then continues from the new address. If 
the Carry Bit is 0, no carry has occurred and the program 
continues sequential execution. 

Status Bits: Unaffected. 

Example: Assume the Carry Bit is l and a JC instruction is 
present. The Program Counter will then jump to the address 
specified in bytes 2 and 3 and the program will continue at 
the new address. 

JNC (JUMP IF NO CARRY) 11 010 010 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Carry Bit is 0, no carry has occurred, and the 
Program Counter jumps to the address specified in bytes 2 and 
3. Program execution then continues from the new address. 
If the Carry Bit is l, a carry has occurred and the program 
continues sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the JC 
instruction will illustrate operation of the JNC instruction. 

JZ (JUMP IF ZERO) 11 001 010 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Zero Bit is l, a zero is present and the Program 
Counter jumps to the address specified in bytes 2 and 3. 



Program execution then continues from the new address. If 
the Zero Bit is 0, a zero is not present and the program con­
tinues sequential operation. 

Status Bits: Unaffected. 

Example: Assume the Zero Bit is 1 (zero present) and a JZ 
instruction is present. The Program Counter will then jump 
to the address specified in bytes 2 and 3 and the program 
will continue at the new address. 

JNZ (JUMP IF NOT ZERO) 11 000 010 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the status 
of the Zero Bit is 0 (zero not present) and a JNZ instruc­
tion is present, the Program Counter jumps to the address 
specified in bytes 2 and 3. Program execution then continues 
from the new address. If the Zero Bit is 1, a zero is pre­
sent, and the program continues sequential operation. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the JZ 
instruction will illustrate operation of the JNZ instruction. 

JM (JUMP IF MINUS) 11 111 010 {Byte 1) 

(Low Address) (Byte 2) 

(High Address) {Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Sign Bit is 1 (a negative result), the Program 
Counter jumps to the address specified in bytes 2 and 3. 
Progran1 execution then continues from the new address. If 
the Sign Bit is 0, the result is positive and the program 
continues sequential operation. 

Status Bits: Unaffected. 

Example: Assume the Sign Bit is 1 indicating a negative re­
sult and the JM instruction is present. The Program Counter 
will then jump to the address specified in bytes 2 and 3 of 

75 



76 

the instruction and the program will continue at the new ad­
dress. 

JP (JUMP IF POSITIVE) 11 110 010 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Sign Bit is 0 (a positive result), the Program 
Counter jumps to the address specified in bytes 2 and 3. 
Program execution then continues from the new address. If 
the Sign Bit is 1, the result is negative and the program con­
tinues sequential operation. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the JM in­
struction will illustrate operation of the JP instruction. 

JPE (JUMP IF PARITY IS EVEN) 11 l 01 010 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3' 

Operation: This is a conditional instruction. If the sta­
tus of the Parity Bit is l (a result with even parity), the 
Program Counter jumps to the address specified in bytes 2 and 
3. Program execution then continues from the new address. 
If the Parity Bit is 0, the parity is odd and the program 
continues sequential operation. 

Status Bits: Unaffected. 

Example: Assume the Parity Bit is l indicating the result 
has even parity and the JPE instruction is present. The Pro­
gram Counter will jump to the address specified in bytes 2 
and 3 and the program will continue at the new address. 

JPO (JUMP IF PARITY ODD) 11 100 010 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 



Operation: This is a conditional instruction. If the sta­
tus of the Parity Bit is 0 (a result with odd parity), the 
Program Counter jumps to the address specified by bytes 2 and 
3. Program execution then continues from the new address. 
If the Parity Bit is l, the parity is even and the program 
continues sequential operation. 

Status Bits: Unaffected, 

Example: The inverse of the example provided under the JPE 
instruction will illustrate operation of the JPO instruction. 

2. CALL INSTRUCTIONS 

CALL instructions cause a program to execute a subroutine 
stored at a specified location in memory. The CALL instruc­
tion may be either conditional or unconditional. Many sub­
routines are called unconditionally. For example, the cal­
culation sequence for extracting a square root is relatively 
lengthy. In a program which requires frequent square root 
extractions, considerable programming time and memory space 
can be saved by writing a single square root extraction sub­
routine. This subroutine can then be stored in memory and 
called by the program each time it is needed. 

Conditional CALL instructions are available also. They per­
mit a great deal of flexibility since the programmer can 
instruct the computer to make logical decisions about the 
status of the program at any specified point. A subroutine 
can then be called if a specified condition is met. 

When a subroutine has been executed, the Program Counter re­
turns to the next step in the main program by means of a 
special RETURN instruction. This instruction is described 
in the next section. 

All the CALL instructions require three bytes. The first 
byte is the specific machine language instruction while the 
second and third bytes are, respectively, the low and high 
Memory addresses for the first instruction of the subroutine. 

CALL (CALL) 11 001 101 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

77 



78 

Operation: The Program Counter unconditionally moves to the 
Memory address specified in bytes 2 and 3. The subroutine 
at the new location is then executed. 

Status Bits: UnaffectEd. 

Example: Assume the CALL instruction and address bit pattern 
is as follows: 

11 001 101 

l 0 101 111 

11 111 010 

(Byte 1) 

(Byte 2) 

(Byte 3) 

The Program Counter will move to the address in Memory spe­
cified by bytes 2 and 3 and the subroutine at that location 
will then be executed. 

cc (CALL IF CARRY) 11 011 l 00 (Byte l) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This a conditional instruction. If the status 
of the Carry Bit is 1, a carry has occurred and the Program 
Counter moves to the address specified in bytes 2 and 3. 
The subroutine at this location is then executed. If the 
Carry Bit is 0, no carry has occurred, and the program con­
tinues sequential execution. 

Status Bits: Unaffected. 

Example: Assume the Carry Bit is l and the CC instruction 
is present. The Program Counter will then jump to the 
address specified in bytes 2 and 3 and the subroutine at that 
location will be executed. 

CNC (CALL IF NO CARRY) 11 010 100 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Carry Bit is 0, a carry has not occurred, and the 



Program Counter moves to the address specified in bytes 2 and 3. 
The subroutine at that location is then executed. If the 
Carry Bit is l, a carry has occurred, and the Program Counter 
continues sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the CC 
instruction will illustrate operation of the CNC instruction. 

CZ (CALL IF ZERO) 11 001 100 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Zero Status Bit is 1, a zero is present, and the 
Program Counter moves to the address specified in bytes 2 and 
3. The subroutine at this location is then executed. If the 
Zero Status Bit is 0, no zero is present, and the program 
continues sequential execution. 

Status Bits: Unaffected. 

Example: Assume the Zero Status Bit is 1 and the CZ instruc­
tion is present. The Program Counter will then move to the 
address specified in bytes 2 and 3, and the subroutine at 
that location will be executed. 

CNZ (CALL IF NOT ZERO) 11 000 100 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Zero Status Bit is 0, a zero is not present, and 
the Program Counter moves to the address specified in bytes 
2 and 3. The subroutine at this location is then executed. 
If the Zero Status Bit is 1, a zero is present, and the pro­
gram continues sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the CZ 
instruction will illustrate operation of the CNZ instruction. 

79 



80 

CM (CALL IF MINUS) 11 111 100 {Byte i: 

(Low Address) {Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the 
status of the Sign Bit is 1 (a negative result), the Pro­
gram Counter moves to the address specified in bytes 2 
and 3. The subroutine at this location is then executed. 
If the Sign Bit is 0, the result is positive, and the pro­
gram continues sequential execution. 

Status Bits: Unaffected. 

Example: Assume the Sign Bit is 1 and the CM instruction is 
present. The Program Counter will then move to the address 
specified in bytes 2 and 3, and the subroutine at that loca­
tion will be executed. 

CP (CALL IF PLUS) 11 110 100 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Sign Bit is 0 (a positive result), the Program 
Counter moves to the address specified in bytes 2 and 3. 
The subroutine at this location is then executed. If the 
Sign Bit is 1, the result is negative, and the program con­
tinues sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the CM 
instruction will illustrate operation of the CP instruction. 

CPE (CALL IF PARITY EVEN) 11 101 100 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the sta­
tus of the Parity Bit is 1 (a result with even parity), the 
Program Counter moves to the address specified in bytes 2 



and 3. The subroutine at this location is then executed. 
If the Parity Bit is 0, the parity is odd, and the program 
continues sequential execution. 

Status Bits: Unaffected. 

Example: Assume the status of the Parity Bit is 1 and a 
CPE instruction is present. The Program Counter will then 
move to the address specified in bytes 2 and 3, and the sub­
routine at that location will be executed. 

CPO (CALL IF PARITY ODD) 11 100 100 (Byte 1) 

(Low Address) (Byte 2) 

(High Address) (Byte 3) 

Operation: This is a conditional instruction. If the status 
of the Parity Bit is 0 (a result with odd parity), the Pro­
gram Counter moves to the address specified in bytes 2 and 
3. The subroutine at this location is then executed. If the 
Parity Bit is 1, the parity is even, and the program continues 
sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the CPE 
instruction will illustrate operation of the CPO instruction. 

3. RETURN INSTRUCTIONS 

When a CALL subroutine instruction is executed, the address 
of the next sequential instruction in the program is auto­
matically pushed onto the stack. The subroutine may have one 
or more RETURN statements. An unconditional RETURN instruc­
tion is included at the end of most subroutines. This instruc­
tion pops the last address stored in the stack by the CALL in­
struction from the stack and onto the Program Counter. When 
the subroutine has been executed, the program resumes sequen­
tial execution at the address following the initial CALL sub­
routine instruction. 

Conditional RETURN instructions may be scattered throughout 
a subroutine. If the required condition is met, the program 
resumes sequential execution in the manner jl1st described. 

81 



82 

Since the program address to which the Program Counter re­
turns upon receiving a RETURN instruction is already stored 
on the stack, RETURN instructions require only one byte. 
Tile last bit in the byte is 1 for an unconditional RETURN 
and 0 for conditional RETURNS. 

RET (RETURN) 11 001 001 (Byte 1) 

Operation: The subroutine is completed, and the Program 
Counter automatically arid unconditionally returns to the 
next address following the initial CALL subroutine instruc­
tion. 

Status Bits: Unaffected. 

Example: Assume two of the instruction statements in an 
ALTAIR 8800 program are as follows: 

CALL 

CMA 

11 001 101 

(Low Address) 

(High Address) 

00 l 01 111 

(Byte 1) 

(Byte 2) 

(Byte 3) 

(Byte 1) 

Upon rece1v1ng the CALL instruction, the Program Counter 
moves to the address in Memory specified by bytes 2 and 3. 
Simultaneously, the address of the next sequential instruc­
tion (CMA) is pushed onto the stack. 

The final instruction in the subroutine must be an uncondi­
tional RETURN (only if you wish to return). When execution 
of the subroutine is complete and the RET instruction is 
reached, the Program Counter automatically receives the ad­
dress of the next instruction in the main program from the 
stack (CMA), and sequential execution resumes. 

RC (RETURN IF CARRY) ll 011 000 (Byte l) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of 
the Carry Bit is 1, a carry has occurred and the Program Coun­
ter automatically returns to the next sequential address in 
the main program following the initial CALL subroutine instruc­
tion. 



Status Bits: Unaffected. 

Example: Assume three of the instructions in a subroutine 
are as follows: 

RAL 

RC 

STAX 

00 10 111 

11 011 000 

00 000 010 

(Byte 1) 

(Byte 1) 

(Byte 1) 

If the status of the Carry Bit is 1 when the RC instruction 
is reached, a carry has occurred and the Program Counter 
automatically returns to the next sequential address in the 
main program following the initial CALL subroutine instruc­
tion. If the status of the Carry Bit is 0, the subroutine 
continues sequential execution by implementing the STAX 
instruction. 

RNC (RETURN IF NO CARRY) 11 010 000 {Byte 1) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of 
the Carry Bit is 0, a carry has not occurred and the Program 
Counter automatically returns to the next sequential address 
in the main program following the initial CALL subroutine 
instruction. If the status of .the Carry Bit isl, a carry 
has occurred, and the subroutine continues sequential execu­
tion. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the RC 
instruction will illustrate operation of the RNC instruction. 

RZ (RETURN IF ZERO) 11 001 000 (Byte 1) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of 
the Zero Status Bit is 1, a 0 is present and the Program 
Counter automatically returns to the next sequential address 
in the main program following the initial CALL subroutine 
instruction. If the status of the Zero Status Bit is 0, a 
zero is not present and the subroutine continues sequential 
execution~ 

Status Bits: Unaffected. 

83 



Example: Assume three of the instructions in a subroutine 
are as follows: 

ADD 

RZ 

LDAX 

10 000 101 

11 001 000 

00 011 010 

(Byte l) 

(Byte l) 

(Byte l) 

If the status of the Zero Status Bit is l when the RZ instruc­
tion is reached, a zero result is present and the Program 
Counter automatically returns to the next sequential address 
in the main program following the initial CALL instruction. 
If the status of the Zero Status Bit is 0, the subroutine 
continues execution by implementing the LDAX instruction. 

RNZ (RETURN IF NOT ZERO) 11 000 000 (Byte l) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of the 
Zero Status Bit is 0, a zero result is not present and the 
Program Counter automatically returns to the next sequential 
address in the main program following the initial CALL sub­
routine instruction. If the status of the Zero Status Bit 
is l, a zero result is present, and the subroutine continues 
sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the RZ 
instruction will illustrate operation of the RNZ instruction. 

RM (RETURN IF MINUS) 11 111 000 (Byte l) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of 
the Sign Bit is l (a negative result), the Program Counter 
automatically returns to the next sequential address in the 
main program following the initial CALL subroutine instruc­
tion. If the status of the Sign Bit is 0 (a positive result), 
the subroutine continues sequential execution. 

Status Bits: Unaffected. 

Example: Assume three of the instructions in a subroutine 
are as follows: 



SUB 

RM 

LDAX 

10 010 001 

11 111 000 

00 011 010 

(Byte 1) 

(Byte I) 

(Byte 1) 

If the status of the Sign Bit is 1 when the RM instruction 
is reached, a negative result is present, and the Program 
Counter automatically returns to the next sequential address 
in the main program following the initial CALL subroutine 
instruction. If the status of the Sign Bit is 0, the subrou­
tine continues sequential execution by implementing the 
LDAX instruction. 

RP (RETURN IF PLUS) 11 110 000 (Byte 1) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of the 
Sign Bit is 0 (a positive result), the Program Counter auto­
matically returns to the next sequential address in the pro­
gram following the initial CALL subroutine instruction. If the 
status of the Sign Bit is 1 (a negative result), the subrou­
tine continues sequential execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the RM 
instruction will illustrate operation of the RP instruction. 

RPE (RETURN IF PARITY EVEN) 11 101 000 (Byte 1) 

Operation: This is a conditional instruction which may be 
inserted before the end of a subroutine. If the status of 
the Parity Bit is 1 (a result with even parity), the Pro­
gram Counter automatically returns to the next sequential 
address in the main program following the initial CALL sub­
routine instruction. If the status of the Parity Bit is 0 
(a result with odd parity), the subroutine continues sequen­
tial execution. 

Status Bits: Unaffected. 

Example: Assume three of the instructions in a subroutine 
are as follows: 

CMP 

RPE 

10 111 001 

11 101 000 

(Byte 1) 

(Byte 1) 

85 



~6 

RLC 00 000 111 

If the status of the Parity Bit is 1 when the RPE 
instruction is reached, the parity of the result is even, 

and the Program Counter automatically returns to the next 

sequential address in the main program following the ini­

tial CALL subroutine instruction. If the status of the 

Parity Bit is odd, the subroutine continues sequential 

execution by implementing the RLC instruction. 

RPO (RETURN IF PARITY ODD) 

(Byte 1) 

11 100 000 (Byte 1) 

Operation: This is a conditional instruction which may be 

inserted before the end of a subroutine. If the status of 

the Parity Bit is 0 (a result with odd parity), the Program 

Counter automatically returns to the next sequential address 

in the main program following the initial CALL subroutine 

instruction. If the status of the Parity Bit is 1 ( a re­

sult with odd parity), the subroutine continues sequential 

execution. 

Status Bits: Unaffected. 

Example: The inverse of the example provided under the RPE 

instruction will illustrate operation of the RPO instruction. 



APPENDIX- ALTAIR 8800 INSTRUCTION SET 

Definitions: 

ODD Destination Register 

SSS Source Register 

rp Register Pair 

Register Designations: 

Register {SSS or DOD) 

B 
c 
D 
E 
H 
L 
Memory 
Accumulator 

Register Pair 

B and C 
D and E 
H and L 
SP 

Bit Pattern 

000 
001 
010 
011 
100 
101 
110 
111 

Bit Pattern 

00 
01 
10 
11 

87 



A· COMMAND INSTRUCTIONS 

1. Input/Output Instructions 

Mnemonic Bytes Cycles Bi nary Code Octal Code 

In 2 3 11 011 011 333 

Out 2 3 11 010 011 323 

2. Interrupt Instructions 

Mnemonic Bytes Cycles Bi nary Code Octal Code 

EI 1 1 11 111 011 373 

DI 1 1 11 110 011 363 

HLT 01 110 110 166 

RST l 3 11 exp 111 3(exp)7 

3. Carry Bit Instructions 

Mnemonic Bytes Cycles Binary Code Octal Code 

88 CMC 1 l 00 111 111 077 

STC l l 00 110 111 067 

4. No Operation Instruction 

Mnemonic Bytes Cycles Binary Code Octal Code 

NOP 1 00 000 000 000 

B· SINGLE REGISTER INSTRUCTIONS 

Mnemonic Bytes Cycles Binary Code Octal Code 

INR 3 00 DOD 100 0(000)4 

OCR l 3 00 ODD l 01 0(000)5 

CMA l 00 101 111 057 

DAA l 00 100 111 047 



c. REGISTER PAIR INSTRUCTIONS 

Mnemonic Bytes Cycles Binary Code 

PUSH 1 3 11 (rp)O 101 

POP 3 11 (rp)O 001 

DAD 3 00 ( rp) 1 001 

INX 1 1 00 ( rp )0 011 

DCX 1 00 ( rp) 1 011 

XCHG 1 11 101 011 

XTHL 5 11 100 011 

SPHL 11 111 001 

D. ROTATE ACCUMULATOR INSTRUCTIONS 

Mnemonic Bytes Cycles Binary Code 

RLC 1 1 00 000 111 

RRC 1 00 001 111 

RAL 1 00 010 111 

RAR 1 00 011 111 

E- DATA TRANSFER INSTRUCTIONS 

1. Data Transfer Instructions 

Mnemonic Bytes Cycles Binary Code 

MOV 1 1 or 2 01 DOD SSS 

STAX 1 2 00 OXO 01 O* 

LDAX 1 2 00 oxo 010* 

*NOTE: Register Pair B and C -- 0 at X 
Register Pair D and E -- 1 at X 

Octal Code 

3(rp)5 

3 ( rp) 1 

O(rp)l 

O(rp)3 

O(rp)3 

353 

343 

371 

Octal Code 

007 

017 89 

027 

037 

Octal Code 

1 (DOD)( SSS) 

O(X)2 

O(X)2 



2. Register/Memory to Accumulator Transfers 

Mnemonic Bytes Cycles Binary Code Octal Code 

ADD 1 1 10 000 SSS 20 (SSS) 

ADC 1 1 10 001 SSS 21 (SSS) 

SUB 1 1 10 010 SSS 22 (SSS) 

SBB 1 10 011 SSS 23 (SSS) 

ANA 1 1 10 100 SSS 24 (SSS) 

XRA 10 101 SSS 25 (SSS) 

ORA 1 1 10 110 SSS 26 (SSS) 

CMP 1 1 10 111 SSS 27 (SSS) 

3. Direct Addressing Instructions 

Mnemonic Bytes Cycles Bi nary Code Octal Code 

STA 3 4 00 110 010 062 

LOA 3 4 00 111 010 072 

90 SHLD 3 5 00 100 010 042 

LHLD 3 5 00 101 010 052 

f. IMMEDIATE INSTRUCTIONS 

Mnemonic Bytes Cycles Binary Code Octal Code 

LXI 3 3 00 (rp)O 001 O(rp)l 

MVI 2 2 or 3 00 SSS 110 O{SSS)6 

:t\DI 2 2 11 000 110 306 

ACI 2 2 11 001 110 316 

SUI 2 2 11 010 110 326 

SBI 2 2 11 011 110 336 

ANI 2 2 11 100 110 346 

XRI 2 2 11 101 110 356 

ORI 2 2 11 110 110 366 

CPI 2 2 11 111 110 376 



G. BRANCHING INSTRUCTIONS 

l. Jump Instructions 

Mnemonic Bytes Cycles Bi nary Code Octal Code 

PCHL 1 1 11 101 001 351 

JMP 3 3 11 000 011 303 

JC 3 3 11 011 010 332 

JNC 3 3 11 010 010 322 

JZ 3 3 11 001 010 312 

JNZ 3 3 11 000 010 302 

JM 3 3 11 111 010 372 

JP 3 3 11 110 010 362 

JPE 3 3 11 101 010 352 
91 

JPO 3 3 11 100 010 342 

2. Call Instructions 

Mnemonic Bytes Cycles Binary Code Octal Code 

CALL 3 5 11 001 101 315 

cc 3 3 or 5 11 011 100 334 

CNC 3 3 or 5 11 010 100 324 

CZ 3 3 or 5 11 001 100 314 

CNZ 3 3 or 5 11 000 100 304 

CM 3 3 or 5 11 111 100 374 

CP 3 3 or 5 11 110 100 364 

CPE 3 3 or 5 11 101 100 354 

CPO 3 3 or 5 11 100 100 344 



3. Return Instructions 

Mnemonic Bytes Cycles Binary Code Octal Code 

RET l 3 11 001 001 311 

RC l l or 3 11 011 000 330 

RNC l l or 3 11 010 000 320 

RZ l l or 3 11 001 000 310 

RNZ 1 l or 3 11 000 000 300 

RM l l or 3 11 111 000 370 

RP l 1 or 3 11 110 000 360 

RPE 1 1 or 3 11 101 000 350 

92 RPO 1 1 or 3 11 100 000 340 



SEFIVIC:E 
Should you have a problem with your computer, it can be returned to MITS 

for repair. If the unit is still under warranty, any defective part will 

be replaced free of charge. The purchaser is responsible for all postage. 

In no case should a unit be shipped back without the outer case fully assembled. 

If you need to return the unit to us for any reason, remove the top cover 

of your computer and secure the cards in their sockets with tape and fill 

the space between the case top and the cards with packing material. Secure 

cover and pack the unit in a sturdy cardboard container and surround it on 

all sides with a thick layer of packing material. You can use shredded 

newspaper, foamed plastic or excelsior. The packed carton should be neat­

ly sealed with gummed tape and tied with a stout cord. Be sure to tape a 

letter containing your name and address, a description of the malfunction, 

and the original invoice (if the unit is still under warranty} to the out­

side of the box. 

Mail the carton by parcel post or UPS--for extra fast service, ship by air 

parcel post. Be sure to insure the package. 

SHIP TO: MITS, Inc. 
6328 Linn Ave. N.E. 
Albuquerque, ·New Mexico 87108 

All warranties are void if any changes have been made to the basic design of 

the machine or if the internal workings have been tampered with in any way. 




