
..
,- .~

' -

MI'fS Prog r amrn i ng System I I
---· ·· -- (Rev -- 3 ·: 0)

TABLE OF CONTENTS

I. Glossary

II . System Monitor

Monitor Commands
Program Monitor Calls

III. Assembler Operations

IV.

v.

VI.

Appendix:

Introduction
Options

Assembly Programming

Constants
Statement Structure
Statement Options
Programming Tricks
Example Program

Editor

Debug

A. Absolute load tape format
8. Assembly memory map
C. Error codes
D. I/O port assignments
E. Loading the Monitor
F. Miscellaneous

MITS, Inc. © JUNE 1976
2450 Alamo S.E. Albuquerque, N.M. 87106

Page 2

I. Glossary

Machine instruction - Binary byte(s) that execute to perform a defined
computer function.

Assembly (source) code - Symbolic labels, opcodes, and operands that are
ordered in succession to define a logical procedure which can be
assembled to produce executable machine instructions.

Opcodes
machine
~achine

- Defined symbols that assemble directly as 1 to 3 bytes of
instruction. The symbols are meaningful descriptors of the

function to be performed during program execution.
~

!abel - A user defined symbol that corresponds to the storage address of
the following opcode. Labels are used to define points for transfer of
program execution which normally proceeds in a sequential manner.

' Operands - Symbolic references to registers, labels or constants that
are used to completely define the function specified by the opcode.

Pseudo-opcodes - Mnemonics that direct the assembly of the source code.
They can allocate memory, define constants or affect control of the
assembly procedure.

Execution storage - The physical memory space where an assembled program
can execute. Absolute assembly generates machine instructions that will
only execute correctly in memory space that was defined during assembly
(defined by ORG pseudo op) .

Program storage - The physical memory where program machine code is
stored during assembly. The program will not necessarily execute
correctly at this location unless assembly defined the program storage
to be the same as execution storage (no ORR psuedo op given) •

Debug - The process of testing a program to remove logic errors (bugs)
by analyzing the program's execution (performance).

Patch - Correct a program by changing machine instructions during
debugging.

Symbols used in Manual

<CR> - Type a carriage return.
<LF> - Type a line feed.
<Control Z> - Type a Control z not the individual characters.
<Escape> - Type an escape (TTY key usually has ESC on it).
<Tab> - Type a tab (Control I) .

Anything enclosed in square brackets (i.e. []) is optional.
A Q following a number indicates the number is octal.

Page 3

II. System Monitor

The system monitor has been designed to load and execute
absolute programs, have a flexible I/O system for supporting all MITS
peripherals, allow handlers for non-standard peripherals to be added,
and have limited debugging capability.

There are three tables within the monitor that make this
flexibility possible. The names of all programs that have been read in
are stored in the program name table {PTL). All open I/O symbolic
names, flags, and other information are contained in the I/O table. The
hardware table contains the addresses of the device handlers.

(Jg F
Hardware Table 0

This table has room for 5 entries, 4 of which are defined for
standard MITS I/O devices. The four default device names and uses are:

TY - Console terminal
AC - Audio cassette 7~~
EB - Edit buffer read t:
TR - MITS high speed paper tape i;-ead~er 6 d J../

The exact structure of this table and instructions on how to modify it
are given in Appendix o._ 9 ~

)(/<' ~~ i? ;. ih

I/O Table

The I/O table has room for 7 symbolic
simultanEously. The five names used
automatically open, leaving room for 2 names
programs if needed.

device names
by PKG II
to be set

to be
programs
up for

open
are

user

TTY - Monitor, Editor and Assembler command I/O device name 9g
Open for echoing, tabbing, and ASCII mode

LST - Editor, Debug, and Assembler list on LST A'
Open for tabbing and ASCII mode.

FIL - file I/O for Editor and Assembler 9F
Open for echoing and ASCII mode.

ABS - program loading and file searching /3 6
No options

ALT - used by Edi tor 1 s alter command A ,.g
Open for tabbing

I/O DRIVERS
These drivers
perform all monitor
input/output
(CHECK STATUS AND
INPUT OR OUTPUT A
CHARACTER) .

HARDWARE TABLE

* *
* TTY *
* DRIVER *
* *
* *

A
A
A
A
A<<<<<<<

A
A
A

This table contains the hardware
driver names and pointers to the
proper device drivers.

A
A
A
A
A
A
A
A
A
A
A

Page 4

********** ********** **********
* *
* HSR *
* DRIVER *

* * *
* ACR * *
* DRIVER * *
* * *
* * *

*
EDIT *

BUFFER *
DRIVER *

*
*
*

*
*

********** ********** **********
A A A
A A A
A A A
A >>>>>>>>>A A
A A A
A A >>>>>>>>>>>>>>>>>A
A A A
A A A **************
A A A * *
A A A<<<<* "TR" *
A A * * ___ .. ______ _
A A * *
A A * *
A A<<<<<<<<<* "EB 11 *
A * * -------------
A * *
A * *
A<<<<<<<<<<<<<<* ''AC" *

* * ---------
A * *

I/O TABLE

This table contains symbolic
device names along with their
flags and hardware table pointers,
set by an OPN command. In the
table shown at left the default
flags and pointers are shown.

A *
A<<<<<<<<<<<<<<<<<<<* ''TY''

*
*

* *

A
>>>>>>>>>>A
A
A ****************
A * *
A<<<<* TTY - E,A,T *
A * * -------------
A * *
A * *
A<<<<* LST - T,A *
A * * -------------
A * *
A *
A<<<<* FIL - E,A
A * ---------·-----

*
*
*

A * *
A * *
A<<<<* ABS - *
A * * ------·------
A * *
A *
A<<<<* ALT - T

*

*
*
*

Page 5

'l'he block di<Jqram ol tt1e 1/0 table shows ull pointers from th1·
:_;ymL>olic dc~vice names goinq to the '''l'Y" entry oI the Hardware' L1l>I(·.
Tlli~_; is because all are open to "TY" when the monitor first comes up tJ11d

can be changed at any time by giving an OPN command.

In order to support a non-standard I/O device, a driver would need to be
written and the address of it patched into the hardware table as
explained in appendix D. The device could then be used by all PKG II as
well as user programs.

Monitor Command Format

1. Execute a program

The Monitor signals that it is ready for a command by
printing 2 blanks and a question mark. A program is
executed by typing its 3 character name followed by a
carriage return. If the program has already been
loaded, it will start execution immediately. If it
hasn't, it will be searched for and loaded from
symbolic device ABS. When the program finishes loading
it will automatically start executing.
Example:
If you want to load the Editor from your TTY type:

?OPN ABS,TY<CR>
?EDT< CR>

The OPN command would only be needed if ABS was not
open to the TY.
To load the Editor from the ACR make sure the last OPN
ABS command was as follows:

?OPN ABS,AC<CR>

2. Execution time options

user programs can be passed execution options by the
monitor if the options are enclosed in parentheses.

?EDT(R)<CR>
When the program requested is branched to the D&E
register pair contain the address of the first
cnaracter following the monitor command. In the above
example D&E would point at the open parenthesis. The
B&C register pair contains the address of the monitor
status word, which contains the length of the command
line. In the above example the status word contains
the number 6.

Page 6

3. File searching

By typing a f 1le name followed by a comma and a type
designator, the monitor will search for the file on the
device ABS is open to, and return after the file is
skipped.

S - ASCII file
A - Absolute file

The main use of this command is to search for the last
file on an audio cassette in order to write out a new
one. All files on the the cassette should be of the
same type as the file you are searching for.

?OPN ABS,AC<CR>
?AM2,A<CR>

This example would search eor the absolute file ''AM2'1

on the ACR. After finding the. file, it would be
skipped and control returned to the monitor.

Page 7

Utility Programs

The monitor includes 9 utility programs:
CLR - Deletes a program name from the PTL.
OPN - Opens a symbolic device name to a physical device.
CLS - Removes a symbolic device name from the I/O table.
DEP - used to change contents of memory locations.
EXM - used to print in octal the contents of memory.
JMP - Causes the machine to start executing at any location.
DMP - Dumps out memory in the checksum format.
NUL - Sets the number of nulls to output after a <CR>.
CNS - Console command

All numbers typed as parameters to these programs should be octal.

1. OPN

2. CLS

This program is used to assign different physical
devices to a symbolic name making programs device
independent.

?OPN ABS,TY<CR>
This command opens the symbolic name ··ABS" to the
Teletype. In this type of OPN the mode default would
be assumed. These are:

No echo - Don't echo input.
Absolute All 8 bits of every read are
transmitted.
Tabs - A Control I is output.

The options are:
E - Echo all input on TTY
A - ASCII mode, high order bit of characters
masked to 0 and the line format described in
Appendix F is recognized. Even parity is
generated on output.
T - Tab control. Spaces are printed to force
cursor into a column that is an even multiple
of 8 from the left margin. The tab character
is Control I (llQ).

The options are specified at the end of the command and
are separated by commas. The order in which they occur
is irrelevent. If the symbolic name is already open
when another command to open it is given, the symbolic
name is reopened according to the new command.

Closing a symbolic name removes .the name from the I/O
table making the name unavailable until it is reopened.

?CLS ABS<CR>
In this example "ABS'' is now closed meaning that no
program should be executed that reads or writes on
''ABS 11

• If an I/0 operation is attempted the program
will abort, causing the monitor to print an error
message.

3. CLR

4. DEP

5. EXM

This command deletes a program name from the PTL.
?CLR EDT<CR>

After giving the above command
?EDT< CR>

Page 8

will cause the monitor to try to reload the EDITOR.

This command lets the programmer modify memory
locations directly from the monitur. The format is:

?DEP ADDRESS<CR>
All octal numbers typed after this command will be
deposited starting at the address given. Typing a
Control z returns control to the Monitor.
Example:

?DEP 5000<CR>
25<CR>
50<CR>
175<CR>
<CONTROL Z>

?
Location 5000 would now contain an octal 25, 5001 a 50
and 5002 a 175.

The format of the examine command is as follows:
?EXM ADDR1[,ADDR2]<CR>

The contents of memory locations are dumped out in
octal starting at the location specified by ADDRl,
through ADDR2. If ADDR2 is not given or is = ADDRl
only the location at ADDRl is printed.
Example:

?EXM 100<CR>
303

?EXM 100,10l<CR>
303
153

?EXM 100,0<CR>
303

?

6. JMP

7. DMP

8. NUL

9. CNS

Page 9

The format of the jump command is as follows:
?JMP ADDRESS<CR>

The jump command causes the machine to start executing
at the address given in the command. All registers are
loaded from the save area prior to jumping.
Caution: Make sure SP register will be loaded with a
valid memory address that can be used for a stack. For
a further explanation of the save area see section 8 of
the Program Monitor Calls.

The format of the dump command is as follows:
?DMP [NAME,]ADDR1,ADDR2[,START ADDRESS]<CR>

The name field of the command should contain the 3
character name of the program followed by any comments.
The only restriction is this field should not contain a
comma. ADDRl is the address of the first location to
be dumped and ADDR2 is the address of the last to be.
dumped. If a start address is not specified the
monitor will automatically be returned to when the tape
is loaded.
Example:
You want to dump a program located at 5100Q 53520,
name it TST, put in a comment indicating it is the
first draft of the program and have it start executing
at location 5100Q.

?DMP TST REVISION 0,5100,5352,5100<CR>

The format of the NUL command is as follows:
?NUL NUMBER<CR>

this command causes the number of nulls specified to be
output after every carriage return written in the ASCII
mode. It is advisable to use this command before
saving long program 'files on cassette or paper tape,
thus insuring no characters will be missed during
assembly.
Example:
Before saving a program on audio cassette, give the
following command:

?NUL 4<CR>

The console command is used to switch between terminals
connected to your Altair. Before giving a console
command, set the sense switches to indicate the type of
I/O board to switch to (See Appendix E) . If the I/O
port address is not the same as the default listed in
the terminal options chart, flip sense switch 8 up and
nonncir rho T/~ nnrr ~nnrocc ~r ln~~r;~~ ~~~n

Page 10

Program Monitor Calls

The following section decribes how a user written program
implements the features of the Monitor, thus freeing the programmer of
the need to write I/O handlers for each program .

Before any call to the monitor is performed the B&C register pair
must contain the address of a monitor control block. A monitor control
block is used to specify the operation to be performed, symbolic device
to use, etc. The monitor is called by executing a CALL IO. All
registers are restored before returning to the calling program, and the
monitor control block is left unchanged. The example program at the end
of the assembler programming section uses monitor I/O.

1. READ
LXI B,RDPKT ;LOAD B&C WITH ADDRESS OF THE

;MONITOR CONTROL BLOCK
CALL IO ;CALL THE MONITOR

- DONT PUT MONITOR CONTROL BLOCK NEXT IN YOUR PROGRAM -

2. WRITE

3. OPEN

RDPKT: DB 20Q ;OPERATION CODE FOR READ
DB II SDN" ; SYMBOLIC DEVICE NAME
DW INBUF ;ADDRESS OF THE BEGINNING OF

;THE INPUT BUFFER
DW 80 ;MAXIMUM NUMBER OF CHARACTERS

;TO BE READ IN
DW STAT ;ADDRESS OF STATUS WORD
DW END ;END OF FILE RETURN ADDRESS

After the read has been completed, the status word
contains the number of byte~ read in.

LXI B,WRPKT ;LOAD B&C WITH ADDRESS OF THE
;MONITOR CONTROL BLOCK

CALL IO ;CALL THE MONITOR
WRPKT: DB 22Q ;OPERATION CODE FOR WRITE

DB "SDN" ; SYMBOLIC DEVICE NAME
DW OUTBUF ;ADDRESS OF THE OUTPUT BUFFER
DW 80 ;NUMBER OF BYTES TO WRITE OUT
DW STAT ;ADDRESS OF STATU$ WORD

When the monitor returns, the status word contains the
number of bytes output.

LXI B,OPNPKT ;LOAD B&C WITH ADDRESS OF THE
;MONITOR CONTROL BLOCK

CALL
OPNPKT: DB

DB

IO
63Q
''SDN"

;CALL THE MONITOR
;OPERATION CODE FOR OPEN
;SYMBOLIC DEVICE NAMED TO BE
;OPENED

The
and
Bit
Bit
Bit

DB "TY" ; DEVICE TO BE OPENED TO
DB XXX ;HARDWARE CONTROL BYTE

hardware control byte specifies echo control and
ASCII or absolute read mode.
1 - 1 for ASCII read mode, 0 for absolute
2 - 1 for input echo, 0 for no echo
3 - 1 for tabs to be expanded, 0 for no expansion

Page 11

4-. CLOSE
LXI

CALL
CLSPKT: DB

DB

B,CLSPKT ;LOAD B&C WITH THE ADDRESS OF

IO
62Q
''SDN''

;THE MONITOR CONTROL BLOCK
;CALL THE MONITOR
;OPERATION CODE -FOR CLOSE
;SYMBOLIC NAME TO BE CLOSED

5. ERROR

6 .

LXI

CALL
ERRPKT: DB

DB

B,ERRPKT ;LOAD B&C WITH ADDRESS OF THE

IO
60Q

"X"

;MONITOR CONTROL BLOCK
;CALL THE MONITOR
;OPERATION CODE FOR ERROR
;HANDLING ROUTINE
;ONE CHARACTER TO BE OUTPUT AS
;ERROR MESSAGE

The character specified followed by a # sign will be
echoed by the monitor instead of the next 2 characters
that would normally be echoed.

PASS PROGRAM NAME
LXI

CALL
PASPKT: DB

B,PASPKT ;LOAD B&C WITH ADDRESS OF THE

IO
61Q

;MONITOR CONTROL BLOCK
;CALL THE MONITOR
;OPERATION CODE FOR PASS NAME
;NAME ROUTINE

DB ''PRG" ;3 CHARACTER PROGRAM NAME
DW PRG ;START ADDRESS OF PROGRAM

The 5 bytes of name and address are copied into the PTL
and the program jumped to.

7. FIND ASCII FILE
LXI B,FFPKT ;LOAD B&C WITH ADDRESS OF THE

;MONITOR CONTROL BLOCK
CALL IO ;CALL THE MONITOR

FFPKT: DB 65Q ;OPERATION CODE FOR A FIND FILE
DB '' SDN 11

; SYMBOLIC DEVICE TO SEARCH ON
DB "FIL'' ; FILE TO BE SEARCHED FOR

This call causes the monitor to search for the named
program on the physical device that the symbolic device
name is open to and return to the calling program as
soon as the named program is found.

8. Returning to the Monitor
When a program has finished its job and wishes to
return to the Monitor, a JMP MON will be needed. All
registers are saved in the register save area and the
stack pointer is reloaded to delete anything left on
the stack. The address of the monitor is on the stack
when a program is executed by the monitor, so if your
program has left nothing on the stack, a return
instruction can be used to return to the monitor.

Page 12

The symbols MON and IO are permanent equates .within the
assembler. The actual locations are MON-100Q,
I0-103Q

When a program returns to the monitor either by jumping
to location 100Q, examining location 100Q and pressing
RUN , or by typing a Control C all registers are stored
in the register save area. The order in which they are
saved is given below.

571 FLAGS
572 A - REGISTER
573 c - REGISTER
574 B - REGISTER
575 E - REGISTER
576 D - REGISTER
577 L - REGISTER
600 H - REGISTER
601 SP - REGISTER (LOW BYTE)
•602 SP - REGISTER (HIGH BYTE)
603 PC - REGISTER (LOW BYTE)
604 PC - REGISTER (HIGH BYTE)

If a program is waiting for input from the TY and a
Control C is typed, the PC stored in the save area is
the address of the inst~uction following the monitor
call.

Note - 30 octal bytes of stack have been allocated for
user program use. If more stack space is needed, a LXI
SP instruction will be needed in your program to set up
its own stack.

Page 13

III. Assembler Operation

Introduction

Typical assemblers process source code by reading the same source
code 2,3, or 4 times to produce a load tape that must then be loaded
before executing the program. An assembler that requires that type of
procedure is extremely cumbersome for users with paper tape or cassette
magnetic tape input. Off-line storage is always required for assemblies
of this type. Further, high speed storage is desireable due to the '
e~tensive I/O required during processing.
1 The MITS loading assembler was designed to process source code
directly into memory for immediate execution or to produce an absolute
load tape for later execution in the space occupied by the assembler.
The source code is processed only once, thereby producing executable
code in a minimum amount of time. Significant improvement in program
development time is achieved, especially for users with program input
rates under 100 characters/second. Furthermore, the assembler is still
resident in memory with the user program, so it can be used to patch
program errors during debugging. Since the patches can be entered in
symbolic source code and labels can still be assigned to correct
execution sequences, fewer errors are introduced in the debug process.
Thus complete programs can be input and developed with input from only
~p ASCII keyboard and a minimal amount of memory (the Monitor and

sembler require approximately 5k bytes) .
The loading assembler allows two types of assembly: 1) direct

assembly, which loads programs into any unused memory space and 2)
indirect assembly, which generates a load tape for programs that will
reside in memory space that is being used during the assembling process.
Program modules(parts) can be developed and debugged separately, then
assembled with all sourca errors corrected for off-line loading to other
program space. The modules can be linked during assembly using the
preserved symbols from previous assemblies or by defining names for
referenced locations in other modules. source programs are input from a
Monitor-defined device called "TTY" and all selected output is to device
~LSTa. Input can be selected from a source file that was created by the
Editor. The files can be assembled in any sequence selected.

j

Page 14

Assembler Options

The assembler was designed as a module of the MITS operating system
to be loaded by the system monitor. The assembler is loaded from the
device ABS is open to when the assembler is executed for the first time.
The following execution options are possible whenever starting the
assembler.

Where:

ASM(A,S,P)
[I) 1'1

P=Preserve symbols entered during previous assembly(s).
used for symbolic patches and program additions

S=Symbol table listing wanted at end. All defined
names and label symbols with corresponding program
addresses and the next program address($) are output

A=Absolute tape dump wanted at end. Binary output for
Monitor loading is output to "ABS''

All output begins at the first storage address that was defined by
the first ORG(or ORR when used) and continues to the current address.
Program addresses are used for the absolute tape dump and defined symbol
listings.
warning*** If assembly is begun without the P option the symbol table is
cleared and is not recoverable.

Assembler Pseudo Op's

FILE Pseudo Op •
The file input pseudo op forces source input

symbolic device "FIL''. If a file name is given as
with that header is searched for before processing
source file must end with a Control z or EOA pseudo
is restored to the Monitor at the end of file.
continued by entering the Assembler with the P-option.
Example:

to be read from
an operand, a file

any input. The
op so that control

Assembly can be

FILE TWO ;INPUT FILE "TWO" FROM CASSETTE

END Pseudo Op

All of the entry options in the group(S,A) are performed each time
an END pseudo op is encountered. The END statement will also produce a
listing of all undefined symbol names with program storage locations
that reference the symbol. If the A-option was selected, the first 3
letters of the operand define the program name when loaded by the
Monitor. Up to 77 characters following can be used to document the
program(Revision, Date, etc.)

i .

'

1mple:
END PRG

EOA Pseudo Op

;IF THE A OPTION WAS SPECIFIED
;THE PROGRAM WOULD BE DUMPED
;WITH NAME PRG

Page 15

The Assembler will return control to the Monitor when an End Of
Assembly (EOA) pseudo op is encountered. The Monitor prints a prompt to
indicate it is in control.

Memory Allocation

The user must understand the way that memory is used during the
assembly process to avoid errors and to use available memory in an
efficient way. The diagram in Appendix B illustrates the relative
storage used during assembly.

The user must estimate the symbol space needed for each assembly
before defining the first storage location. It should be apparent that
shorter symbols and few.er . labels or names will increase the space
available for user program storage. A rule of thumb for estimating
symbol table space is to reserve 1 byte of symbol table space for each
statement in the prog~am.

ORG Pseudo Op

This pseudo op is required to be the first statement of all
programs. It defines the memory your program will run in and and where
the Assembler should store it while the Assembler is running.

ORR Pseudo Op

If the address of the start of the program given by the ORG
statement does not allow enough space for the symbol table, an ORR
statement will be needed to set the address at which the program should
be stored during assembly. Since the symbol table is built from the end
of the Assembler to this address, its maximum size can be set with this
pseudo op.
Example:

?ASM<CR>

ASM

ORG
ORR

5100Q
17000Q

;WANT PROG TO LOAD AT 5100Q
;SINCE ASSEMBLER IS AT 5100Q
;A PLACE TO SAVE THE PROGRAM
;DURING ASSEMBLY MUST BE SET UP

Page 16

OS Pseudo Op

Storage is allocated with the ds pseudo op. The contents of the
storage space is not changed and should normally be preset during
execution prior to use. The operand must be a defined symbol(EQU or SET
to a constant) or a constant value. A label symbol defines an address
which should not generally be used for a storage operand. A DS psuedo
op is generally preceded by a label used to reference the storage
allocated during program execution.
Example:
LABEL: DS 20 ;THIS RESERVES 20 BYTES OF MEMORY

DW Pseudo Op

An address word or byte quantity is preset (assigned during
assembly) by using the DW pseudo op. The 2-byte value is stored with
the least significant byte in the first memory address and the most
significant byte in the next higher memory location. This feature is
the same as all 2-byte operands for machine opcodes(i.e. JMP, LXI,
etc). This arrangement is convenient because it allows byte references
to the least significant byte using the same label as a word reference.
Multiple operands are allowed and must be separated with a space or
comma.
Example:
LABEL: DW LOC ;THIS STORES THE 2 BYTE ADDRESS OF LOC

DB Pseudo Op

All byte constants are defined by using the DB pseudo op Multiple
operands can be used. All operands define one byte of storage except
string or literal constants which are stored as one ASCII character per
byte. Each operand must be separated by a space or comma.
Example:

DB 0 ;STORES THE CONSTANT 0 IN 1 LOCATION
DB "THIS IS A STRING CONSTANT 11

DC Pseudo Op

The define character
of determinable length.
order bit masked to zero,
last character can then
high order bit on.
Example:

DC "AB"

;THE ABOVE STRING WOULD BE STORED 1 CHARACTER
;TO A BYTE, SO IT WOULD TAKE 25 MEMORY
;LOCATIONS

pseudo op is used to define literal constants
All characters except the last have their high
but the last character has it set to one. The
be found by searching for a character with its

;STORES THE CHARACTERS IN 2 CONSECUTIVE
;MEMORY LOCATIONS WITH THE HIGH ORDER BIT OF
;THE LAST CHARACTER TURNED ON.

Page 17

~QU Pseudo Op

A symbol can be defined prior to use by assigning it a value equal
to a specified constant or another label that has already been defined.
A symbolic name(not a label) is defined by using the EQU pseudo op and a
defined operand. The EQU pseudo op cannot be used to change the value
assigned to a name.· Refer to the SET pseudo op.
Example:
ONE EQU

MVI
1
A,ONE

SET Pseudo Op

;THIS SETS THE VALUE OF ONE
;THIS WOULD NOW BE THE SAME
;AS MVI A,l

= TO 1

A name can be changed or reassigned by using the SET pseudo op in
the same manner as the EQU pseudo op. THE SET PSEUDO OP CAN ALSO BE
USED TO ASSIGN A VALUE THE FIRST TIME A NAME IS DEFINED.

BEG PSEUDO OP

THE OPERAND OF THE BEG PSEUDO OP IN A PROGRAM SETS THE BEGIN
EXECUTION ADDRESS, OUTPUT BY THE ASSEMBLER DURING AN ABSOLUTE DUMP. IF
THE BEG PSEUDO OP IS NOT FOUND, A START ADDRESS OF 100Q WILL BE ASSUMED,
CAUSING A RETURN TO THE MONITOR AFTER THE PROGRAM LOADS.

RUN PSEUDO OP

THE OPERAND OF A RUN command should be a 3 character program name.
it will be entered along with the most recent BEG address into the PTL
and the BEG address branched to. once a RUN command has been given, the
program can be reexecuted from the monitor. Example:

RUN NEW PROGRAM OUTPUT> ?NEW CR>

IV. Assembler Programming

Assembly programs include symbolic names,constants, opcodes and
comments in sequential statements that are converted by the Assembler to
produce executable machine instructions. Each line or program statement
of source code must follow certain rules that govern the acceptable
structure of the program. If they are not observed, assembly or
execution errors will occur. This section will define the form that is
acceptable to the MITS Loading Assembler.

Character Set

The entire 128-character ASCII character set is acceptable but all
opcodes are defined in capital letters. Any combination of characters
beginning with a non-numeric character can be used for statement labels

symbolic names. The maximum length for these symbols is 255
aracters, but to minimize symbol table length, they should be kept as

short as possible.

Page 18

Constants

Constants can be used whenever an operand is required. All
constants begin with a numeric character and can end with an alphabetic
character that defines the radix of conversion. If the last character
is numeric, the conversion defaults to decimal. Legal conversions are
as follows:

12340 OCTAL
5678Q OCTAL(S CONVERTS AS 0)
12345D DECIMAL
0ABCD DECIMAL(A CONVERTS AS l,ETC.)
057EFH HEXIDECIMAL

NOTE: Values are first masked leaving only the significant binary
quantities, thus alphabetic conversions are legal. Byte values are set
equal to the converted value using modulus 256 arithmetic. Similarly,
overflow of 16-bit constants(words) during conversion is ignored.

String or literal constants are defined by enclosing all characters
in " symbols. The ·· symbol cannot be defined in a string constant.
Example:

DB "THIS IS A MESSAGE" ;THIS IS A CONVENIENT
;WAY TO STORE A M~SSAGE FOR OUTPUT
;DURING PROGRAM EXECUTION

WARNING****** Only one character should be used if a single byte operand
is required(i.e. MVI A,''ABC" will store 4 bytes).

Statement Structure

The assembly source statements may include any of the following in
the order given:

1. Symbolic label of any length terminated by a colon(:). The
symbol can include any ASCII character except delimiters(Space, TAB, or
Comma) in any combination including instruction opcodes. The following
symbols are predefined values.

$=current location counter
The following are only valid byte(not word)values.
B,C,D,E,H,L,M,A=0,l,2,3,4,5,6,7 respectively
SP and PSW=6

2. A name is the same as a label except that a terminating colon
is not used. A name is used in place of a label and remains undefined
until a defining pseudo opcode is encountered (i.e. Equ, SET).

Page 19

3. Opcode(s) or pseudo opcode(s) with required operands. All
opcodes that are defined in the Altair 8800 Operators Manual and All
pseudo-op 1 s defined in section III are acceptable to the Assembler.

4. Comments are used to document the source code but are not
required by any statement. Comments begin with a semi-colon(;) which
terminates assembly of all following ASCII characters on the . line.
Lines that begin with a semi-colon contain only comments.

Statement Options

All register pair instruction operands can reference either of the
two 8-bit registers in the pair.

Thus--
POP A is the same as POP PSW
LXI L is the same as LXI H
DCX C is the same as DCX B

Multiple instructions can appear on the same line of source code.
This feature can be used to minimize the number of characters on a
source tape and in some cases will improve the program readability.

MOV B,H MOV C,L
RAR,RAR

The delimiters SPACE, TAB, or COMMA can be used anywhere in the
line to improve readability.

Statement Formats

**
* *
[LABEL:] MNEMONIC [OPERAND FIELD] [;COMMENTS]
* { THIS FORMAT IS USED FOR ALL STATEMENTS EXCEPT EQU AND SET) *
*
*NAME
*
*

*
MNEMONIC OPERAND FIELD [;COMMENTS]*

(THIS FORMAT IS USED FOR EQU AND SET STATEMENTS) *
*

~~******

Programming Tricks

The choice of opcode(s) used to achieve a specific result is based
on the generally accepted criteria that a program should use a minimal
amount of space and should execute as rapidly as possible. The
fo~lowing practices are recommended:

1. Avoid the instruction sequence
CALL Subroutine

Page 20

in favor of
JMP Subroutine

The JMP statement will return to the same place without need for
the RET thus saving one byte of program storage.

2. Avo-id CPI 0

in favor of
ORA A

which requires two bytes of storage

which requires one byte of storage
All flag bits are affected in the same manner without changing

the contents of the A-register.

3. Avoid PUSH B,POP H
or similar register contents transfer

in favor of
MOV H,B MOV L,C

which executes in less time.

4. If a series of MVI 2-byte instructions is used followed by a
jump to the same address, use LXI B (db 1) to replace the jumps, thus
saving two bytes.

AERR:

BERR:

For Example:

MVI
DB 1
MVI
DB 1

etc.

ERR:

A, "A" AERR: MVI A' II A''
JMP ERR

A, ''B" BERR: MVI A, 11 B"
JMP ERR

A JMP to any MVI to set the "ERR" code will load the A-reg with the
character to be output and will skip over the rest by executing the DB 1
as LXI B,XXXX where XXXX is the two-byte MVI instruction. The contents
of B&C will change. Other register pairs can be used similarly.

Page 21

Example Program

A sample program and assembly are given to illustrate the .operation
of the assembler and use of the monitor calls for output. ~~

The sample program will dump out any section of memory in octal as
shown later in the example. This type of memory dump can be very useful
in debugging programs. In order to use this program, change the
addresses at locations FIRST and LAST to the address of the first and
last memory location you want dumped.

?ASM(A,S)

ASM

DUMP:

NEWLN:

ORG

LHLD
XCHG
LXI
PUSH
LHLD
MOV
SUB
MOV
SBB
POP
JC
MOV
RAL
MVI
RAL
ORI
MOV
INX
MOV
RAR
RAR
RAR
RAR
ANI
ORI
MOV
INX
MOV
RAR
ANI
ORI
MOV
INX
MOV
RAR
MOV
r" 7' TT

200000

FIRST

H,BUF
H
LAST
A,L
E
A,H
D
H
MON
A,D

A,0

60Q
M,A
H
A,D

7
60Q
M,A
H
A,D

7
60Q
M,A
H
A,D

A,E
r 7' rm'i

;SET LOCATION COUNTER
;WILL NEED TO BE CHANGED IF ONLY 8K MACHINE
;GET ADDRESS OF FIRST BYTE TO BE DUMPED
;PUT ADDRESS IN D&E
;GET ADDDRESS OF OUTPUT BUFFER
;SAVE ADDRESS
;LOAD ADDRESS OF LAST BYTE TO BE DUMPED
;SUBTRACT LOW ORDER BYTES

;SUBTRACT HIGH ORDER BYTE

;RESTORE H&L
;JUMPS OUT IF NO MORE BYTES TO BE DUMPED
;START CONVERSION OF ADDRESS TO ASCII
;ROTATE HIGH BIT INTO C
;ZERO OUT REST OF A BUT DONT CHANGE FLAGS
;ROTATE HIGH BIT INTO LOW ORDER POSITION
;OR IN ASCII 0
;STORE IN OUTPUT BUFFER
;INCREMENT BUFFER POINTER
;PICK UP HIGH ORDER BITE AGAIN
;ROTATE BITS 4,5,6 INTO LOW ORDER POSITIONS

;MASK OFF ALL BITS EXCEPT LOW THREE
;OR IN ASCII 0
;STORE IN OUTPUT BUFFER
;INCREMENT POINTER INTO OUTPUT BUFFER
;PICK UP HIGH BYTE OF ADDRESS
;ROTATE BITS 1,2,3 INTO LOW ORDER POSITION
;MASK OFF ALL BITS EXCEPT LOW THREE
;OR IN ASCII 0
;STORE IN OUTPUT BUFFER
;INCREMENT POINTER INTO OUTPUT BUFFER
;PICK UP HIGH BYTE OF ADDRESS
;SAVE LOW BIT IN THE CARRY FLAG
;PICK UP LOW BYTE OF ADDRESS
.07\TT cr1onnr1mT~TT:' mn71m l'"'l"l'l\'H"T"'"TI,...., ,....,..,..,.......,..rn,....

MVI
NXTNUM: PUSH

LHLD
MOV
SUB
MOV
SBB
POP
JC
MVI
CALL
XRA
LDAX
CALL
INX

CHKLN: DCR
JNZ
LXI
CALL
JMP

LNDN: MVI
CALL
DCR
JNZ
LXI
JMP

BLANK: MVI
BL: MOV

INX
DCR
JNZ
RET

LAST3: PUSH
RAL
RAL
RAL
ANI
ORI
MOV
INX
POP
PUSH
RAR
RAR
RAR
ANI
ORI
MOV
INX
POP
ANI
ORI
MOV
INX
RET

B,8
H
LAST
A,L
E
A,H
D
H
LNDN
C,5
BLANK
A
D
LAST3
D
B
NXTNUM
B,OUT
IO
NEWLN
C,8
BLANK
B
LNDN
B,OUT
IO
A,40Q
M,A
H
c
BL

PSW

7
60Q
M,A
H
PSW
PSW

7
6'0Q
M,A
H
PSW
7
60Q
M,A
H

Page 22

;LOAD B WITH NO OF BYTES TO DUMP PER LINE
;SAVE H&L
;LOAD ADDRESS OF LAST BYTE TO DUMP
;DO THE DOUBLE WORD COMPARE AGAIN

;RESTORE THE H&L REGISTERS
;JUMP TO ROUTINE TO FINISH UP IF DONE
;IF ANOTHER TO COME SEPARATE THEM BY 5 BLANKS

;SET THE CARRY FLAG TO 0
;GET BYTE TO DUMP
;CALL ROUTINE TO CONVERT 3 DIGITS
;INCREMENT POINTER TO DUMP NEXT BYTE
;DECREMENT LINE BYTE COUNTER
;CONVERT NEXT NUMBER IF IT WILL FIT ON LINE
;GET ADDRESS OF MONITOR CONTROL BLOCK
;WRITE OUT LINE
;JUMP TO WRITE OUT NEXT LINE
;PAD LINE WITH 8 BLANKS FOR EACH NUMBER THAT
;WOULD FIT
;DECREMENT NUMBERS THAT COULD FIT IN LINE
;LOOP UNTIL LINE FILLED WITH BLANKS
;GET ADDRESS OF MONITOR CONTROL BLOCK
;WRITE OUT LINE
;PUT A ASCII BLANK IN A
;STORE IT IN THE OUTPUT BUFFER
;INCREMENT THE OUTPUT BUFFER POINTER
;DECREMENT THE NUMBER OF BLANKS TO STORE
;LOOP UNTIL ALL STORED
;RETURN TO CALLER
;SAVE BYTE TO CONVERT
;ROTATE CARRY AND HIGH 2 BITS TO LOW ORDER
;POSITION

;MASK OFF ALL BUT LOW ORDER THREE BITS
;OR IN A ASCII 0
;STORE DIGIT IN OUTPUT BUFFER
;INCREMENT THE OUTPUT BUFFER POINTER
;POP BYTE TO CONVERT
;SAVE FOR LATER ALSO
;ROTATE BITS 3,4,5 INTO LOW ORDER POSITION

;MASK OFF ALL BUT LOW THREE BITS
;OR IN AN ASCII 0
;STORE DIGIT IN OUTPUT BUFFER
;~NCREMENT OUTPUT BUFFER POINTER
;POP BYTE TO CONVERT
;MASK OFF ALL BUT LOW THREE BYTES
;OR IN ASCII 0
;STORE DIGIT IN OUTPUT BUFFER
;INCREMENT OUTPUT BUFFER POINTER
;RETURN TO CALLER

Page
b

()UT: DB 22Q ;MONITOR WRITE OPERATION CODE
DB "LST 11 ;SYMBOLIC DEVICE TO WRITE ON
DW BUF ;ADDRESS OF OUTPUT BUFFER
ow 72 ;WRITE OUT 72 CHARATERS
DW STAT ;ADDRESS OF STATUS WORD

S'rAT: ow 0
FIRST: ow 15100Q
LAST: ow 15272Q
BUF: OS 70 ;RESERVE 70 MEMORY LOCATIONS

DB 15Q ;ASCII CARRIAGE RETURN
DB 12Q ;ASCII LINE FEED
BEG DUMP ;SETS ADDRESS OF PLACE TO START EXECUTING

;PROGRAM
END DMP

SENSE SWITCH 15 FOR DUMP
NOTE: AT THIS POINT THE PUNCH OR OUTPUT TAPE IS READIED FOR
OUTPUT OF THE PROGRAM IN ABSOLUTE BINARY FORMAT(APPENDIX A).
OUTPUT DONE

UNDEFINED SYMBOLS

SYMBOL TABLE
IlUMP 020000

:RST 020234
NEWLN 020004
BUF 020240
LAST 020236
LAST3 020165
NXTNUM 020067
LNDN 020133
BLANK 020154
CHKLN 020116
OUT 020222
BL 020156
STAT 020232
RUN DMP
015100 104 040 002 007 001 105 040
015110 007 001 110 040 004 007 001
015120 eJ 4 0 005 007 001 115 040 006
015130 002 123 120 040 006 007 003
015140 123 127 040 006 007 001 044
015150 000 000 000 000 000 000 000
015160 377 377 377 377 377 377 377
015170 377 377 377 377 377 377 377
015200 000 000 000 000 000 000 000
015210 000 022 114 123 124 272 032
015220 000 073 033 022 115 101 107
015230 000 016 000 073 033 061 104

5240 120 000 040 020 115 101 107
.1..5250 032 110 000 073 033 335 017

015260 115 101 107 377 377 377 060
·015 270 043 007 122

003
114
007
120
040
000
377
377
000
016
000
115
272
065
000

23

Page 24

v. Text Editor

The editor via its four editing commands can create and modify source
program files. The alter command is used to make corrections within a
line, thus eliminating the need to replace all mistyped lines. The
insert, delete, and replace commands have been improved to ease the job
of modifying a program.

F

Symbolic device names used by the Editor

All symbolic device names used by the editor are open to the TY before a
run, and should be changed only if the device is not correct. The
symbolic device names are listed below along with mode information
needed for proper operation.

FIL - File I/O devic~ name
A - ASCII read mode should be specified
T - Tabs should not be specified
E - Can be speif ied if the user wants a listing

Tabs will not be expanded
ALT - Alter command I/O

A - ASCII mode should not be scecif ied
T - Tabs should be specified
E - Echoing should not be specified

LST - Write and print command I/O
A - ASCII mode should be specified
T - Tabs should be specified
E - Echoing is not used during writing

Buff er Area

The first 2 K of memory following the editor is allocated as a
buffer to store the lines of text to be edited • If the size or
location of this buffer area needs to be altered, two addresses within
the editor must be changed. The address of the beginning of the buffer
starts at location~l24Q:· the address of the end of the buffer starts
at location 5530Q. f.

Loading the Editor

Open symbolic device ABS to the AC if the
audio cassette or TY if it is on paper tape.
EDT and is loaded by typing EDT<CR> .
Example:
To load the Editor from paper tape type:

?OPN ABS,TY<CR>
?EDT< CR>

(TURN ON PAPER TAPE READER)
START INPUT

copy of the editor is on
The editors file name is

Page 25

(The asterisk is printed whenever the editor is ready for a
.nmand)

If after completing an edit and returning to the monitor you want
to use the editor again, type:

?EDT< CR>
START INPUT
*
If you need to continue editing lines left in the buffer area when you
last exited from the editor, use the R execution option.
Example.

?EDT (R)
*
Start input is not printed in
reinitialized. This feature is
directly from the editors buffer.

this case
especially

and the
useful

Range and Line Number Specifications

buffer is not
when assembling

When a r:ange is called for by an instruction, the following syntax
is required.
Line Number,[Line Number]

The following
Editor.

NUMBER(N)
. [+ OR - NUMBER
* [- NUMBER]

EXAMPLE.
P

Line Numbers

three types of line numbers are now recognized by the

THE N'TH LINE IN THE BUFFER .
RELATIVE ABOUT THE CURRENT LINE.
RELATIVE ABOUT THE LAST LINE IN THE BUFFER

Prints the last line in the buffer.
*Pl0
Prints the tenth line in the buffer.
*P.+10
Assuming this command was executed after the Pl0 command, line 20 would
be printed.

Editor Commands

I [Line Number] Insert Command

The insert command causes the editor to enter the insert mode at the
line specified. After all lines to be entered have been typed, type a
Control z to return to the command level of the editor. If no line
number is typed all lines are inserted before the first line.

Page 26

o Range Delete Command

Deletes all lines in the specified range.

R Range Replace Command

Deletes the lines in the range and enters the insert mode.

P [Range] Print Command

Prints all lines within the range or all lines in the buffer if no range
is given. Line numbers are printed to the left side of the lines.

W [Range Write Command

Same as print command except line numbers are not printed.

String Search Command

F[String] [<ESCAPE>[Line Number]

The find command searches the buffer area starting at the given line
number, printing the first line the string appears in. If no string is
given, the string from the last find command issued is searched for. If
no line number is typed, the editor starts searching at the current line
plus 1 (ie .+l). The escape is optional when not typing a line number.

s

Save command prints
FILENAME=

save File Command

An optional 3 character file name is typed followed by a carriage
return. The editor responds by typing CHANGE SENSE SWITCH 1.5 As soon
as this message has finished printing turn on the device that the file
is to be dumped on. Change the position of sense switch 15 to indicate
that the device is ready. When all lines have been dumped, the editor
returns to the monitor. When a file name is given, a header block is
written containing the file name. If no file name was typed, no header
block is output.

L

The load command prints
FILENAME=

Load File Command

An optional 3 character file name is typed, followed by a carriage
return. If a file name is typed, a header block containing the proper
file name is searched for and the file following it is loaded into the
buffer. If no file name is typed, all lines are loaded until an end of
file is read. This command reads files from symbolic device FIL.

Page 27

Backup Command

If an escape is typed to the editor a dollar sign is echoed and and the
current line minus l(ie .-1) is typed.

<LF> Next Line Command

If a line feed is typeq to the editor the current line plus 1$ie.+l) is
printed.

E Exit Command

Causes the editor buffer read pointer to be reset to the beginning of
the buffer, and returns to the monitor.

A Line Number Alter Command

The alter command puts the Editor into Alter mode, allowing the
programmer to change lines without replacing them. The following
command characters are recognized but not echoed, and all commands can
oe prefixed by a repetition factor of up to six digits. This repetition
factor is referred to as '1 N11 in the following description, and is
assumed to be one(l) if not given.

Alter Mode Commands

D - Deletes the next N characters in line. A slash is output
followed by all characters deleted and a closing slash.
Example:
The current line is
BLAB: MOV A,B
*A. Give Alter Command

Type 3D. The editor responds by typing /BLA/ indicating that
BLA has been deleted from the line.

I - Inserts all characters typed after the I into the line at
the current place in the line. All characters are echoed.
Typing an <ESCAPE> returns you to the alter mode.

R - Deletes the next N characters in the line and enters the
insert mode.

s - Typing an s followed by any character will cause a search
for the N'th occurance of that character.

Blank - Typing a blank will cause the next N characters in the
old line to be copied into the new line and to be printed out.

<CR> - Typing a carriage return prints out the rest of the old
line, and at the same time inserts the characters into the new
line. The old line is be replaced by the new one and control
is returned to the command level of the editor.

Page 28

Q - Causes control to return to the command level of the editor
without replacing the old line. This command is used to abort
an alter during which you made a bad mistake.

Sample Edit

In the following example characters typed as alter mode commands that
would not be echoed are enclosed in parentheses.

?EDT< CR>
START INPUT
*I<CR>
THIS IS A DEMONSTRATON
OF THE EDITOR.
<CONTROL Z>
*Al<CR>
(2ST}THIS IS A DEMONSTRA(<SPACE>)T(I)I(<ESCAPE>)<CR>
*W<CR>
THIS IS A DEMONSTRATION
OF THE EDITOR.
*A2<CR>
(3<SPACE>)OF (2D)/TH/<CR>
W2<CR>
OF E EDITOR.
A. <CR>
(SE)OF (R)/E/THE(<ESCAPE>)<CR>
*W<CR>
THIS IS A DEMONSTRATION
OF THE EDITOR.
*E<CR>

?

EDITOR ERROR MESSAGES

1) BAD CMD - Indicates that the first character of a command line was
not a valid editor command.

2) END OF BUFFER - The edit buffer is full. There is no space for any
additional text.

3) BAD LINE NUMBER - The characters following a command do not represent
a legal line number.

4) TOO MANY DIGITS - The number entered contains too many digits.

Page 29

DBG DOCUMENTATION VERSION 1.0

Package Summary:

The DEBUG package provides the user with the following capabilities:

1) Display memory locations, registers, or flags in any of
several output I/O modes (including a symbolic
instruction mode) .

2) Modify memory locatioRs, registers, or flags using
corresponding input modes.

3) Set (or display or remove) breakpoints in the code to
be debugged.

4) Enter
A)
B)

and execute user code either
at a specified location or
automatically in such a way as to proceed
properly from the most recently encountered
breakpoint.

The commands accepted by DBG are 1-character commands or combinations of
1-character commands and data. These commands will be described in the
~~mainder of this document.

Note: In the examples that follow, <CR> represents a carriage return
character, <LF> a line feed, <RUBOUT> a delete character, <TAB> a tab
(Control-I), <UPARROW>.

Numbers may be typed in either as octal (the default) or as decimal by
preceding the number with a number sign (#). Therefore #255 is equal to
377. If a single byte value is expected and a value greater than 377 is
input, only the low order eight bits (byte) of the value is used.

RUBOUT:

If an error is made while entering commands or data, a rubout character
can be typed at any time to abort user input. DBG will type a question
mark (?) and begin accepting commands on a new line.

I/O Modes:

Information is usually displayed and then re~entered in accordance with
the current I/O mode. The I/O mode can be set by typing an ESCAPE or
dollar sign (echoed $) followed by a character that specifies the I/O
mode:

$0 Specifies octal mode.
$D Specifies decimal mode.
$W Specifies double byte octal mode.
$A Specifies ASCII mode.
$S Specifies symbolic instruction mode.

Page 30

$0 Mode

In octal mode, each location is typed as an octal value between 0 and
377. The line feed or up arrow characters always advance or back up the
location counter by 1. Input is expected to be a one byte value between
0 and 377. Example:
10/ 0 55<CR>
10/ 55 #48<CR>
10/ 60

$D Mode

Decimal I/O mode is identical to $0 (octal) mode except that output is
decimal and input is always assumed to be decimal (no number sign should
precede input) •

$W Mode

In double byte octal mode ($W) the location and location plus one are
interpreted as a double byte (16 bit) quantity. Assuming location 10
contains 0 and location 11 contains 1, then:
$W 10/ 400 200
10/ 200 <LF>
12/ 0

Line feed and up arrow always add or subtract two from the location
counter.

The value re-entered in $W mode (the 200 in the above example) is
interpreted as being a 16 bit (double byte) value and is stored in
memory low order byte first, high order byte second.

$A Mode

ASCII mode is used to type out or input ASCII information. When a
·location is opened in ASCII mode, the ASCII representation of the byte
stored there is typed:
$0 10/ 0 10l<CR>
$A/
10/ A
When ASCII information is input, DBG expects the user to type a
delimiter, a string of ASCII characters, and then a terminating
delimiter which is the same as the initial delimiter.
Example:

Page 31

-10/ A "B"

.u1is enters the character B into location 10. The delimiters(") are not
stored in memory. Multi-character strings m~y be entered:

10/ B II FOO"

(Note: One should not try to use the special characters <CR>, <LF>,
<TAB>, ",<ESC OR $>, <RUBOUT>, =, ;, !, ., +,-,I as delimiters as
these characters have special meanings for DBG. Double quote and single
quote should suffice for most string entry.) Typing slash (/) after a
string has been entered will reopen the first location in the string:

10/ A "FOO"/
10/ F

·ryping <LF> after a string has been entered will open the location after
the last location stored in:

10/ A "FOO"<LF>
13/ z

The only character which may not be entered in an ASCII string is
<RUBOUT>. <RUBOUT> may be used to terminate the entry of an ASCII
string. However, any characters that had. been entered prior to the
typing of the slash are still there.
--,; A "FO<RUBOUT>

10/ F <LF-> -
11/ 0

Special note: The high order bit (07) of data entered via $A ~ode will
always be set to zero.

$S Mode

Symbolic (instruction) mode is used to type out locations as if they
were instructions, and to enter instructions into memory using their
mnemonics. Example (supposing locations 7-17 octal contained 0):

$S 5/ NOP LXI H,#8192<LF>
10/ NOP MVI B,100<LF>
12/ NOP MVI M,0<LF>
14/ NOP INX H<LF>
15/ NOP OCR B<LF>
16/ NOP JNZ 12<LF>
17/ NOP JMP 100<CR>

In this example, a short program has been entered to set the 64 decimal
oytes starting at location 8192 decimal to zero. After it finishes, the
or,:ogram returns to the monitor by jumping to location 100 octal.

~irnal numbers may be used in the address or immediate fields of an
instruction by preceding them with a number sign (#). DBG may be used
in the fashion demonstrated above to 'improvise' programs. After a

Page 32

program has been written and debugged, the monitor DMP command may be
used to store them on cassette or paper tape. The symbolic I/O mode is
often very useful in patching or changing instructions in existing
programs to fix bugs temporarily before the source code is re-assembled.

<LF> in symbolic mode opens the location which is the current location
plus the number of bytes of the instruction typed out (or just entered)
-1.

<UPARROW> opens the current location minus the number of bytes of the
instuction typed out (or just entered) • This may or may not be
meaningful, as the previous intruction may not be the same number of
bytes as the one just typed in or displayed.

The default mode (when DBG is first entered) is octal.

Slash:

A memory location can be displayed by typing its octal address followed
by a "/". This address may be octal or decimal and is independent of
the I/O mode. Thus

30/

or

#24/

Will cause the contents of octal location 30 to be displayed in the
current I/O mode. In the case of symbolic I/O mode, up to 3 bytes (e.
g. a JMP) may be djsplayed depending on the type of instruction found
in the first byte. Registers can also be displayed by typing a "/ ..
after their I-character .names. For example

L/

Will cause the contents of the L register to be displayed in the current
I/O mode. (The value actually displayed is not actually the L register
but a memory location used to maintain the user's L register while DBG
executes.)

The flag register (condition codes) is displayed similarly by typing

F/

Since the contents of the flag register is usually interpreted as
settings of the carry (C) zero (Z) sign (S), parity (P) and half carry
(H) flags, a special type out mode has been provided so the user can
display the flags in a meaningful fashion without having to interpret
the octal value of the flags:

Page 33

el 106 !ZP

_n this example, the flag register was opened in octal mode. In order
to display which flags were set, the character ! was typed and the
debug package typed back 'ZP' which meant that the zero and parity flags
were set. The exclamation character may be used to type out any
location in 'CONDITION CODE' format. This can prove useful when
examining condition codes that have been pushed on the stack by the
'PUSH PSW' instruction.

There is no corresponding method to enter condition codes symbolically.
The user must re-enter any change he wishes to make in the current I/O
mode (octal is suggested) . See the table below under the F register for
the nit positions of the different flags.

The stack pointer may be displayed by typing:

S/

This will display the lower 8 bits of the stack pointer in the current
I/O mode. To display the high 8 bits, type linefeed. Typing TAB
(Control I) after opening the low eight bits of a register or location
will open the location pointed to by the register pair or double byte
memory pointer. For example, to look at the byte pointed to by the H
and L registers, type:

4 <TAB>
v04/ <The contents of this location>

In this example, H would have contained 12 octal. A TAB is also useful
when the I/O mode is symbolic and a 3-byte instruction has just been
displayed. The current location pointer will be set to the address part
of the displayed instruction, and the contents at that new address will
be displayed. This f~ature permits simplified program tracing when
jumps and calls are encountered.

70/ JMP 5000 <TAB>
5000/ SHLD 4750

The user program registers are stored inside DBG when
encountered during the execution of a user program.
registers in memory is as follows:

a breakpoint is
The order of the

REGISTER
NAME

F

A
c
B
E
D
L
H
s

(CONDITION CODES)
BIT MEANING (IF = 1)

0. CARRY
2 EVEN PARITY (NUMBER OF ONES IN RESULT WAS EVEN)
4 HALF CARRY FOR BCD OPERATIONS
6 ZERO
7 SIGN (ONE MEANS MSB OF RESULT WAS 1)

(STACK LOW EIGHT BITS)
(STACK HIGH EIGHT BITS)

Page 34

Thus, once a particular register is opened, linefeeds and/or uparrows
may be used to display the register above or below the one currently
opened.

DOT:

The address of the most recently displayed location is saved in a
''CURRENT LOCATION POINTE'R". The location at that address can be
redisplayed at any time (e~en after changing I/O modes) by typing

./

or simply

I

The dot (which can be optionally omitted) can be thought of as a symbol
for the address of the current display location. This pointer can be
offset in either direction using a+ or - and a number. Thus:

.+S/

displays the contents 5 locations after the current one, and

-33/

displays the contents of the location that is 33 octal locations before
the current one. (As before, typing of the ''." is optional.)

Page 35

M"ltiple subtractions and additions may be performed to calculate
ldresses or other sixteen bit (two byte) values:

100+20-30/
70/ 25

The equal sign (=)

The equal sign may be used to type out the current value of calculation:

100+20-30=70 -#8=60

Semicolon:

In general, a slash can be typed at any time to display the current
location in accordance with the current I/O mode. A semicolon can be
typed at any time to display the current location in octal independent
of current I/O mode. The I/O mode is not changed by a semicolon, but if
location modifying information immediately follows the octal display,
the input information will be accepted in octal. Thus if the current
I/O mode were symbo~ic the octal equivalent of a symbolic instruction at
location 100 could be examined easily with a semicolon as follows:

100/ MOV A,C; 171

Line Feed and Up-Arrow:

A line feed (usually typed after some location has been displayed)
causes the current location pointer to be advanced to the next location,
and that location will be displayed. This permits rapid display of
successive memory locations. If the current I/O mode is symbolic the
current location pointer advances by the number of bytes in the
instruction just displayed. Thus a rapid symbolic display of program
segments is possible.

The up-arrow command acts similarly to a line feed except that it
decrements rather than increments the location pointer.

Location Modification:

Immediately after a location has been displayed it is subject to
modification. (Susceptability to accidental modification at this point
can be removed by typing a carriage return.) Input for modifying the
location must conform to the current I/O mode. (Exception: After a
semicolon as described above.) A failure to conform to the current I/O
mode, or entry of uninterpretable data will result in rejection of the
input data. (A question mark will be typed by DBG.) In general, spaces
are always ignored on input and can be typed or omitted with no effect
in any I/O mode.

Page 36

The following special characters:

<CR>, <LF>, /, ;, <TAB>,+,-, <ESCAPE>, !, =, <UPARROW>

Will always cause termination of data input strings as they have special
meaning to DBG.

A "/" can be used as a terminator to get an automatic feedback of the
typed input data. In the following example, the I/O mode is symbolic .

. /JMP 204 LXIB, 12 3/
200/ LXI B,123

Three bytes starting at location 200 are set by the above commands. The
second line was typed entirely by DBG in response to the "/ 11 terminator.
This sequence checks both the correctness of the entered data (which at
first looks questionable) and the previously uncertain value for the
current location pointer.

If input is purposely terminated by a line feed, up-arrow, slash, or
tab, the input will be processed and the appropriate new location will
be displayed. Thus, for example, the following sequence demonstrates
clearing of a small block of memory locations that previously all
contained 377's:
30/ 377 0<LF>
31/ 377 0<LF>
32/ 377 0<LF>
33/ 377 0<LF>

In the abo~e sequence DBG typed all but the initial H30/H and the
repeated "0 <LF>"'S.

Breakpoints:

Breakpoints are set using the X command. For example:

30X

causes the first unused breakpoint to be set at location 30. Similarly,

.x

or just

x

will cause a breakpoint to be set at the current location pointer.

There is capacity for setting 8 different breakpoints numbered
internally 0 through 7. When an X command is executed the first free
oreakpoint is allocated to the breakpoint being set. If there are no
free breakpoints, a question mark is printed, and one of the existing
breakpoints must be deleted before a new one can be set. When any
breakpoint is encountered the address of that breakpoint is always
displayed for the user by DBG:

Page 37

BREAK @1000

means that breakpoint number five was encountered at octal location
1000.

It is permissable to change the instruction at any breakpoint at anytime
while running DBG.

2 BREAK @1000
1000/ XRA A ORA A<CR>

If an RST instruction is executed which is the same RST used by DBG but
was not inserted by DBG as a breakpoint, DBG will type out the
breakpoint number as 10:

10 BREAK @205

It is possible to proceed from such breakpoints, but this kind of
conflict between user RST's and DBG RST's usually indicates that a user
RST service routine is not being executed and DBG is intercepting the
RST. Under these circumstances, the breakpoint RST should be changed so
it does not conflict with user RST's.

Changing the RST used by DBG.

~~ may become necessary to change the RST used by th~ debug package to
iother RST. To accomplish this you can use DBG itself to make a

modification which will allow you ~o set the breakpoint RST to any of
the eight possible RST's. Start looking for the first MVI instruction
in DBG by entering symbolic typeout mode and line feeding until you find
it.
$S
12722/
ETC.
13000/

13000G

CR>
SHLD 4205 <LF>

;OPEN SYMBOLIC MODE
;OR WHATEVER

MVI A,377
MVI A,317

;DISPLAY RST SETUP INSTRUCTION
<CR> ;CHANGE IT TO RST 1.

;RESTART DEBUG PACKAGE

It is important to note that when DBG is started, it always initializes
the appropriate RST location (0,10,20,30,40,50,60,70 octal) to a JMP
instruction to the breakpoint handling code inside DBG. Thus, when DBG
is started initially, it will always clobber (store into) locations
60,61 and 62 octal with a JMP instruction.

Checking Breakpoints:

The Q command causes all program set breakpoints to be displayed.

Example (assuming DBG has just been started) :
10X
20X
377X
Q
0@10
1@20
2@377

Page 38

Each breakpoint is typed out by its number, an at (@) sign, and then the
address where the breakpoint is set. Any breakpoints that are not
mentioned by a 'Q' command are not in use.

Removing Breakpoints:

Typing Y (carriage return) will remove all breakpoints.
followed by <DIGIT> will remove breakpoint DIGIT>:

Typing Y

Y5 -
y

Execution:

The 'G' or go command permits entry of user code at an arbitrary
location. The address should be followed by a G. Thus:

30G

will cause execution to begin at
situations the current location
address. Thus

.G

or simply

G

octal location 30. As in other
pointer can be used in place of an

will cause execution to begin at the user address indicated by the
current location pointer.

If a user program loops endlessly (a typical symptom is that no response
is made to input) the debug package can be re-entered by stopping the
program (either with Control-C if monitor interrupts are being used or
by manually stopping the machine) and restarting DBG from the monitor or
at its starting location.

Page 39

Proceeding from a Breakpoint:

If it is desired to proceed from the last encountered breakpoint, the
single character command ''P" can be used. Restrictions: This command
cannot be used if no break point has yet been encountered during
execution of user code. If this is tried, a question mark will be
typed.

Multiple Proceeds:

A number before a P has a different meaning than before a G. Such a
number indicates the number of times a P command should be executed (the
number of times that any encountered breakpoint should be ignored)
before control is returned to DBG. Thus the command

30P

will cause execution to proceed in the user program until breakpoints
nave been encountered 30 (octal) times. This feature is especially
useful in proceeding from a loop that contains a breakpoint.

Typing out a Sequence of Locations:

The "T" command is used to type out a sequence of locations in the
current I/O mode. The format of the command is:
J(, YT

wnere X is the beginning address and Y is the ending address. For
instance:

100,500T

would type out the first 256 bytes of the monitor in the current I/O
mode.

DBG System Documentation

The debug package resides directly above the monitor. Whenever the
debug package is entered, it saves the user registers in memory inside
the debug package. It then replaces any breakpoints with the original
instruction. The RST location is then initialized to point to the DBG
breakpoint service routine.

When a 'G' or 'P' command is typed, DBG replaces all instructions which
have breakpoints set at their locations with the DBG breakpoint RST.
The original instruction is saved in a table inside DBG so that it may
be restored if DBG is restarted or a breakpoint is encountered. Then
all the original user registers are restored. If this is a 'P' command,
a complicated sequence of operations is performed to correctly execute
the instruction located at the breakpoint address. This is especially
difficult for CALL's and RST's, as the instructions are actually

xecuted inside the debug package and not at the breakpoint location.
After simulation of the breakpointed instruction is finished, DBG jumps
to the instruction after the one breakpointed. (In the case of true
conditional JMP's, CALL's or RST's DBG jumps to the p~oper location).

Page 40

When a breakpoint RST is executed, DBG saves all the user registers and
restores breakpointed instrudtions.

The debug package program name is DBG and is loaded by typing:
?DBG<CR>

{RUN THE TAPE)
DEBUG

Debug starts at 5100Q and ends at 11552Q, allowing AM2 to be in memory
at the same time. While Debug is running, the MONITOR can be re-entered
by typing an R.

f

t·-4.

Page 41

APPENDIX A

ABSOLUTE LOAD TAPE FORMAT

BEGIN/NAME RECORD

BYTE 1 125 OCTAL BEGIN SYNC

BYTES 2-4 NAME PROGRAM NAME

BYTES 5-N COMMENTS END STATEMENT DOCUMENTATION
(I.E.PROGRAM REVISION AND DATE)

BYTE N+l 15 OCTAL TERMINTATES THE PROGRAM NAME
cP RECORD

PROGRAM LOAD RECORD
I'

b
BYTE 1 74 OCTAL LOAD SYNC BYTE

BYTE 2 0-377 OCTAL NO. OF LOAD BYTES(N)

BYTE 3 L.S. BYTE LOAD ADDRESS

BYTE 4 M.S. BYTE
DATA BYTES

BYTE N+S * CHECKSUM BYTE

- * THE CHECKSUM IS GENERATED BY ADDING W/O CARRY ALL BYTES
EXCEPT THE FIRST TWO.

END-OF-FILE RECORD·

BYTE 1 170 OCTAL PAPER/AUDIO CASSETTE EOF

BYTE 2-3 BEGIN EXECUTION ADDRESS

'

MEMORY BLOCKS

USER SPACE

SYMBOL TABLE
(CHAR. LENGTH
+3 BYTES/~YMBOL)

TEMPORARY
ASSEMBLER
VARIABLES

ASSEMBLERr rY;
PROGRAM '~ (\
STORAGE _:i:L

(VERSION 1)

MONITOR
TABLES &
HANDLERS

RESTART
TRAPS

1
i?age 42

APPENDIX B

ASSEMBLY MEMORY MAP

BOUNDARIES

TOP OF-MEMORY

FIRST WORD OF PROGRAM STORAGE
(SET BY ORG OR ORR IF GIVEN)

SYMBOL TABLE BUILDS UP FROM HERE
I .' ,)

FIRST WORD OF VARIABLE STORAGE

FIRST WORD OF ASSEMBLER
(51000) l(G

BOTTOM OF MEMORY

RECOMENDED MEMORY LAYOUT WITH EDITOR AND ASSEMBLER

:1
f

MEMORY BLOCKS

EDITOR BUFFER
AREA

USER AREA

I SYMBOL TABLE
I ;

ASSEMBLER
(VERSION 2)

EDITOR

MONITOR

BOUNDARIES

TOP OF MEMORY

FIRST WORD OF BUFFER

FIRST WORD OF ASSEMBLER
(115530)

DEFAULT START OF EDIT BUFFER
;cic.;i: · 1.1 ·r . .:·

EDITOR STARTS AT 5100Q
it i ,' }~ '.,

BOTTOM OF MEMORY

Page 43

Appendix C

Assembler Errors

Error codes are the first two characters on the line following
occurance of an error. Error codes replace the characters that are
normally echoed on a TTY or Comter terminal.

B# No origin specified

iD# Double defined symbol t
.I# Illegal operand

Undefined byte symbol
String not allowed
Name value must be defined
ORR or ORG must be defined value

N# No name defined

0# Memory overflow
Program space not large enough

Q# Symbol table overflow
Program storage should begin at higher memory address

S# Symbol undefined

Monitor Errors

All monitor error messages are output in place of the 2 spaces in
the monitor prompt.
Example:

?OPN FIL,EV,A
H*?

C*

D*

*

~*

Attempt to store over monitor
No program can load before 5100Q.

Typing a Control C caused a return to the monitor.

Name already in PTL
use the CLR utility to remove the program name from the PTL.

I/O table full
use the CLS utility program to close an unused symbolic name
freeing space in the table to open the name you need.

Hardware device undefined
An attempt was made to open a symbolic name to a nonexistant

Page 44

hardware device.

L* Load error.
A checksum error occured while loading a program.

M* Memory malfunction

Nf
i.

Memory not working or nonexistant.
After storing into memory the stored byte did not compare
exactly with the value stored. This is checked when the
monitor loads a program.

I/O device name not open
Before trying to read from a symbolic device, that device
should be opened. see open command under monitor utility
programs.

O* Overflow of numeric argument in command line.

P* program table (PTL) full.
use the CLR utility to clear the name of a program

that is'nt needed any longer.

S* Syntax error in command line

U* Program name not in PTL

V* Illegal operation
An illegal operation code was given in a monitor control block.

f

Page 45

Appendix D.

If any special purpose I/O handlers are needed, the following
addresses may be useful.

is as

Console input interrupt routine - 44100
Console input non-interrupt routine - 34320
Console output routine - 34160 07 ~·
Console tab counter - 46110 O 'g.i S' ..
ACR input routine - 45160 09'-j/!!.f
ACR output routine - 45270 o ~ 5'7 H
ACR tab counter - 46140 o9Bc
Edit buffer read routine - 3370Q o_
High speed reader routine - 4474Q

The structure of the monitor table that would need to
follows:

DB
DW
DW
DW

'jDN'1 ;TWO CHARACTER DEVICE NAME
DEVIN ;ADDRESS OF DEVICE INPUT ROUTINE
DEVOUT ;ADDRESS OF DEVICE OUTPUT ROUTINE
DEVTAB ;ADDRESS OF DEVICE TAB COUNTER

;THIS IS ONE BYTE OF STORAGE USED

be

µo c.t .. '
0]

modified

;TO STORE INFORMATION ON THE CURSOR POSITION
There is room in the table for an entry to be added at location 220Q.

Example:

In order to echo the input from the_ ACR on your terminal and to
fer to it in an OPN command as ''AT 11

, add the following at location
.t:~0Q:

TABL:

DB
DW
DW
DW
DS

''AT"
4516Q
34160
TABL
1

;THIS FORCES INPUT FROM THE ACR
;THIS CAUSES OUTPUT TO BE SENT TO THE CONSOLE
;THIS ALLOWS THE TABS TO WORK CORRECTLY

To use monitor I/O with a device not supported by MITS, write your
own handler and put it in high memory. Input routines should return a
character in the A register while output routines should output the
character in the A register. The routine should check the status of the
device, loop until re~dy, and perform any character conversions if
needed{ie. BAUDOT to ASCII or ASCII to BAUDOT).

Example:

A high speed paper tape reader is connected to I/O port. 12 and 13. Its
motion is controlled by the output to port 13. A 1 turns the reader on
and a 0 turns it off.

Put the
locations in
HSRD: MVI

OUT
IN
RAR

following routine in unused memory(probably in the
your machine) .

A,l ;SET A = TO 1
13Q ;TURN ON READER
12Q

;ROTATE STATUS BIT INTO THE CARRY FLAG

highest

09 ?f.(

Page 46

JC TRMIN ;WAIT FOR INPUT READY BIT TO GO LOW
XRA A
OUT 13Q ;SHUT READER OFF
IN 13Q ;INPUT THE CHAR FROM TERMINAL
RET

AT LOCATION 220Q PUT THE FOLLOWING:
DB "PT" ;DEVICE NAME
DW HSRD ;ADDRESS OF READER INPUT ROUTINE
DW
DW ;SINCE NO OUTPUT ROUTINE TAB COUNTER NOT NEEDED

J To open ABS to the high speed reader in order to read in absolute
~program tapes, use the following open command.

?OPN ABS,PT

Page 47

Appendix E.

When the Altair is first turned on, there is random garbage in its
memory. The monitor is supplied on a paper tape or audio cassette.
Somehow the information on the paper tape or cassette must be
transferred into the computer. Programs that perform this type of
information transfer are called Loaders.

Since initially there is nothing of use in memory, you must toggle
in the bootstrap loader, using the switches on the front panel. This
loader will then load the MONITOR. So, to load the MONITOR, follow
these steps:

1) Turn the Altair ON.

2) Raise the STOP switch and RESET switch simultaneously.

3) Turn your terminal (usually a Teletype) to LINE.

Because the instructions must be- toggled in via the switches on the
front panel, it is rather inconvenient to specify the positions of each
switch as up or dowri. Therefore, the switches are arranged in groups of
3_as indicated by the broken lines below switches 0-15. To specify the

sitions of each switch we use the numbers 0-7 as shown below:

Switches

Leftmost Middle Rightmost Number
-------- ------ --------- ------
Down Down Down 0
Down Down Up 1
Down Up Down 2
Down Up Up 3
Up Down Down 4
Up Down Up 5
Up Up Down 6
Up Up Up 7

so, to put the octal number 315 in switches 0-7, the switches would have
the following positions:

7
UP

3

6 I
UP I

5
DOWN

Switches
4 3 I
DOWN UP /

1

2
UP

Note that switches 8-15 were not used.
itches labeled DATA on the front panel.

,li tches.

1
DOWN

5

0
UP

Switches 0-7 correspond to the
A memory address uses all 16

Page 48

The Bootstrap Loader is the following program:

The following Bootstrap Loader is for users loading from paper tape
and using a REV 1 Serial I/O board.

Address/Data

000 041
001 256
002 017
003 061
004 022
005 000
006 333
007 000
010 017 ,_
011 330
012 333
013 001
014 275
015 310
016 055
017 167
020 300
021 351
022 003
023 000

The following 21 byte Bootstrap Loader is for users loading from paper
tape and using a REV 0 Serial I/O board on which the update changing the
flag bits has not been made. If the update has been made, use the above
Bootstrap loader.

000 041
001 256
002 017
003 061
004 023\/
005 000
006 333
007 000
010 346
011 040
012 310
013 333
014 001
015 275
016 310
017 055
020 167
021 300
022 351
023 003
024 000

Page 49

~e following Bootstrap Loader is for users with the MONITOR supplied on
ctn Audio Cassette.

000 041 i1
001 256 Af
002 017 Of
003 061 31
004 022 I l
005 000 uo
006 333 013

007 006 ·k

010 017 6F
011 330 g
012 333 5
013 007 c

014 275 13
015 310 '.~
016 055 2 I)
017 167
020 300 c ()
021 351 £9
022 00 3 v ~:,,

023 000

88-PIO BOOTSTRAP

000 041
001 256
002 017
003 061
004 023
005 000
006 333
007 000
010· 346
011 040
012 310
013 333
014 001
015 275
016 310
017 055
020 167
021 300
022 351
023 003
024 000

2 SIO BOOTSTRAP

000 076
001 003
002 323
003 020
01014 07h

Page 50

005 021 (=2 STOP BITS
006 323 025=1 STOP BIT)
007 020
010 041
011 256
012 017
013 061
014 032
015 000
016 333
017 020
020 017
021 320
022 333
023 021
024 275
025 310
026 055
027 167
030 300
031 351
032 013
033 000

4 PIO BOOTSTRAP

000 257
001 323
002 020
003 323
004 021
005 076
006 004
007 323
010 020
011 041
012 256
013 017
014 061
015 034
016 000
017 333
020 020
021 346
022 100
023 310
024 333
025 021
026 275
027 310
030 055
031 167
032 300
033 351
1/1111 ~ 1 /1

Page 51

035 000

MITS HIGH SPEED READER BOOT

000 257
001 323
002 020
003 323
004 021
005 323
006 022
007 057
010 323
011 023
012 076
013 014
014 323
CHS 020
016 076
017 004
020 323
021 022
022 076
023 012
024 323
025 023
026 041
027 256
030 017
031 061
032 051
033 000
034 333
035 020
036 346
037 100
040 310
041 333
042 021
043 275
044 310
045 055
046 167
047 300
050 351
051 031
052 000

So, to load the Bootstrap Loader:

4J Put switches 0-15 in the Down position.

J} Raise EXAMINE.

7) Raise DEPOSIT.

8) Put the data for the next address in switches 0-7
(For address 001 this is 175)

9) Depress DEPOSIT NEXT.

10) Repeat steps 8-9 until the entire Loader is toggled in.

Next check that the Bootstrap Loader is in correctly:

11) Put switches 0-15 in the Down position.

12) Raise EXAMINE.

Page 52

·13) Check that lights D0-D7 correspond with the data that should be
in address 000. A light 'on' means the switch was up; A light
'off' means the switch was Down. so for address 000, lights
Dl-D4 and D6-D7 should be off, and lights D0 and DS should be
on.

If the correct value is there, go to step 16.
If the value is wrong, go to the next step, 14.

14) Put the correct value in switches 0-7.

15) Raise DEPOSIT.

16) Depress EXAMINE NEXT.

17) If you have not checked the entire Bootstrap Loader, Repeat
steps 13-16 until you have.

18) If you found a mistake, go back to step 11 and check the
Bootstrap Loader again.

19) Put the tape of the MONITOR into the tape reader. Be sure the
TAPE is positioned at the beginning of the leader. The leader
is the section of tape at the beginning with 6 out of the 8
holes punched.
If you are loading from Audio cassette, put the cassette in the
recorder. Be sure the tape is fully rewound.

20) Put switches 0-15 in the Down position.

21) Raise EXAMINE.

Page 53

There are six different Bootstrap Loaders, one for each of the
six types of I/O boards listed in the load option chart. Be
sure that you use the correct one for your particular board.

LOAD OPTIONS

OCTAL STATUS BITS OCTAL
LOAD DEVICE SWITCHES UP CHANNELS ACTIVE MASKS

,sroA, s ,c NONE 0,1 D....-1
r..Jt 1 LOW 1/200

(NOT REV 0)

ACR Al5(AND 6,7 G-1 LOW 1,200
TERMINAL OPTS.) t-f t '(

•SIOA, B, C Al4 0,1 HIGH 40/2
(REV 0)

';

88-PIO Al3 0,1
i@P' 1f

HIGH 2/1

20,21 100/100 4PIO Al2 . /~17 x HIGH Ber C

2SIO .Al0 (AND All 20,21 HIGH 1/2) 0
UP=l STOP BIT
DOWN=2 STOP BITS)

23) If the load device is an ACR, the terminal options (see second ~
chart) can be set on the switches (along with Al5) before the
loading is done. If AlS is set, the checksum loader will ignor~e

f3 fl {

J)n I

all of the other switches and the monitor will ignore AlS. ~~

24) If the load device and the terminal device are not the same, and
the load device is not an ACR, then only the load options should
be set before the loading. When the load completes ,the MONITOR
will start-up and try to send a message to the load device.
Press STOP, EXAMINE loaction. 5121, set the terminal ~ption
switches, and then depress RUN.

Page 54

T°ERMINAL OPTIONS

TERMINAL DEVICE SWITCHES UP OCTAL CHANNEL DEFAULT

SIOA,B,C (NOT REV 0) NONE 0,1

SIOA,B,C (REV 0) Al4 0,1
(A9 WILL BE IGNORED FOR THIS BOARD

88-PIO Al3 0,1

4PIO Al2 20,21 (INPUT)
22,23 (OUTPUT)

2SIO All 20,21 (Al0 UP=lSTOP BIT
DOWN=2STOP BITS)

If sense switch A9 is raised, interrupt I/O will not be enabled. See
Appendix F for description of this feature.

CAUTION: If your I/O board is not strapped for input interrupts and
sense switch A9 is not raised, the monitor prompt will be printed but
terminal incput will be ignored.

The default channels listed above may be changed as desired by raising
AS and storing the lowest channel number (INPUT FLAG CHANNEL) in
location 7777 (OCTAL).

Note: The "INPUT FLAG CHANNEL .. may also be refered to as the "CONTROL
CHANNEL" in other Altair documentation.

The above information is useful only when the load device and the
terminal device are not the same. During the load procedure A8 will be
ignored; therefore,the board from which the monitor is loaded must be
strapped for the channels listed in the load option chart.

25) When loading paper tape from a device connected to a SIO A,B,C
or a 88-PIO board, start the tape reading and then depress run.
If the device is connected to a 2SIO or 4PIO depress RUN and
then start the tape reader. If you are loading from cassette,
turn the cassette recorder to play. Wait 15 seconds and then
depress RUN.

'

l

Page 55

~\6) The new Checksum Loader will display 7647 on the address lights
when running properly. When an error occurs (checksum "C"-bad
data, memory "M''-data won't store properly, overlay ''0"-attempt
to load over top of the checksum loader) the address lights will
then display 7637. The ASCII error code is stored in the
accumulator (A) and is being output on channels 1, 21, and 23.

27) When the tape finishes reading, the MONITOR should start up and
print the normal prompt ? If you are loading from
cassette, STOP the player immediately so other files can be
loaded.

Page 56

Appendix F.

Audio Cassette users

The following table shows the order and length of files on the
cassette of Package II.

Program
Name

MONITOR
ASM
EDT
AM2
DBG

Time from Start of Tape
(in seconds)

13 - 125
120 - 230
240 310
320 - 415
430 - 510

When recording a new file on a cassette, position the cassette
after the last file. When using either the editor or assembler to dump
out a file, start the recorder a few seconds before flipping sense
switch 15. A gap of this type should be inserted between all files on a
casette.

ASCII Line Input

The following describes the action taken for various special
characters.

<CR> - Ends a line. The monitor returns to the calling program
when ~yped. It is not counted in the line length returned. A
line feed is also written out if input is being echoed.
<LF> - ends a line. Only a line feed is echoed. See above.
<ESCAPE> - Ends a line. $ is echoed. See above.
Octal 0 - Ignored
<Control A> - rubs out complete line typed.
<RUBOUT.> - Backspaces one character for each one typed.
<Control> z - End of file, branches to address given in control
block.

Interrupt I/0

Package II now supports input interrupts from the terminal device.
One I/O card in the Altair can be wired for input interrupts directly to
the bus interrupt line(PINT), or to the lowest priority on the vectored
interrupt card. If the terminal is set for interrupts, typing a
<Control C> will stop execution of a program and return to the monitor.
All registers are saved in the register save area as described in the
monitor section of this manual.

Page 57

Assembler versions

Two copies of the assembler are supplied in Package II. version 1
loads starting at location 5100Q and the symbol table starts at 12366Q.
version 2 loads at location 11553Q and the symbol table starts at
17041Q.

Running ~ersion 1 gives maximum memory for program space but does
not allow the editor to be resident at the same time. version 2 lets
you load Debug or the editor between the monitor and the assembler, thus
allowing assembly directly from the editor's buffer using the edit
buffer read feature. When using the editor and Assembler version 2, the
editor must be patched to move the buffer area. The buffer area
normally resides immediately after the editor, and if not moved, would
destroy the assembler. See Appendix B for recommended memory layout.

version 1 - ASM
version 2 - AM2

Absolute File Names

I jj jj J_
2450 Alamo SE
Albuquerque, NM 87106

ALTAIR 8800 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

ProE!ram Name: PaE!e of --- ---- ----
! ramme r: Date:

kddress: ---
ProE!ram LenE!th in BYtes: LanE!uaE!e: Machine Assembly

Other Information:

TAG MNEMONIC ADDRESS OCTAL EXPLANATION CODE

~

-

-

I

Proeram Name: Pa~e of -- ---- ----
.. ·-

-:X:AG MNEMONIC ADDRESS OCTAL EXPLANATION CODE

o,

\

..

-

'-

