MicroDaSys

POST OFFICE BOX 36051 ¢ LOS ANGELES, CA 90036 U.S.A. = (213) 935-4555

6809 ADAPTER ASSEMBLY INSTRUCTIONS
Follow Carefully

Insert the 40 pin socket in the holes marked 6809 (toward the center of the board) FROM THE
UN-PRINTED SIDE. Is it the right spot? If so, solder it in place.

Similarly install the 14 pin socket from the un-printed side and solder in place.

Install a wire on the unprinted side of the board between the two separate round holes, and
solder.

The larger pins of the double-sided carrier will now be soldered
to the printed side of the adapter socket board.

Install the carrier from the printed side of the board, in the holes marked 6802. Do not press it
all the way in. Solder from the sides, being careful not to bridge connections or traces.

With the 14 pin socket to the right side, install the 74LS32 and the 6809 with pin one to the
upper left.

OSCILLATOR DAMPING

To improve crystal oscillator response and prevent ringing, connect the two
enclosed 25pF capacitators from either side of Y1 to ground, as shown. A convenient
ground point is the upper left lead of C4 (with the edge connector toward the bottom
of the board as viewed from the component side). Solder both capacitors to this
point on the rear side of the board and insulate them with tape if necessary.

u13
6802/6809
pin 38 pin 39
Y1)
c2r L - c22

25pF ;; jv" 25pF

o~

JUMPER SELECTION

)

J1

J2
J4

J5

J8

J9

Cut the existing trace between the middie hole and the upper hole and then
jumper the middle hole to the lower hole if your keyboard has a positive active
strobe. If using the MicroDaSys keyboard, no alteration is needed.

Connect the middle hole of each triplet to the lower hole of each triplet.

For the 2 MHz processor and slower than 250 - 300 ns PROMs, jumper J4 to
implement a wait state throughout the top 16K of memory.

If an external RAM card is being used from $§AO00O to $AFFF, cut J5 and
remove U17 and U18. Do not do this until checkout of the board is completed.
RAM must be located at $AOOO0O for MONBUG to function.

If U19 is a 2716, jumper the following pins:

AtoB CtoD A B C D E
It U19 is a 2708, jumper the following pins: [‘ o o o of
Bto C Dto E

Connect the middle hole to the right hole.

Install a small insulated wire jumpef from pin 9 of U27 to pin 8 of U24.

For 6809 processors:

(

)

J7

Ji1

J6,
J10

Install R17 (2.2K) on the MD690a board. Be sure you are using the 6809
monitor PROM for U19.

BS (Interrupt Acknowledge) Jumper the middle hole of J7 to the upper hole
only. ©

DMA/BREQ (D.M.A. Request) If you do not plan to use this input (this is very
likely) connect the middle hole of J11 to +5v at pin 20 of U31. Also
jumper the left hole to the right hole. If you do plan to use it, it
must be pulled up.

If you intend the use FIRQ (fast interrupt request) make the following change.
Cut the trace that goes to the middie hole of the triplets at J10 on the side
toward U26 and jumper this hole to the upper hole of J6. This is the FIRQ,
and as with IRQ and NMI it may be jumpered to any of the interrupt lines from
the bus. These are the eight holes across the bottom of J10 and also pin 73 of
the S100 bus.

CASSETTE CALIBRATION USING MONBUG IL

«)

A fully functional processor is assumed. Refer to the User’'s Manual and execute the
following program, recording a 2-3 minute tape.

$A100 PO LDAA #$FF 86 FF
JSR CASOUT BD FFé&2

P1 LDAA #$CA 86 CA
JSR CASOUT BD FF &L

BRA P1 20 F9

Play back the tape running this program:

$A200 LO LDX #SCNTOP 8E FO OO
L1 JSR CASIN BD FF C3

STAA X A7 84

LEAX LX 20 Ol
CPX #SCNBOT 8C F4 OO

BE L1 26 FY4

BRA LO 20 EF

Adjust R9 to the middle of the range for which the screen is filled with reverse field J's

Some cassette recorders invert the phase of the playback data. This makes recovery
of the valid data from your cassette impossible. AS A LAST RESORT, if it becomes
apparent that your casette inverts phase, cut the connection between the middle hole -
and the right hole of J3 on the back of the board and jumper the middle hole to the
left hole. If this does not help, phase inversion was not the problem. Remove the new
jumper and re-jumper as before.

ENROLL ME FREE OF CHARGE IN THE MICRO-
DASYS USERS’ GROUP. THE USERS’ GROUP
OFFERS A NEWSLETTER, GENERAL INTEREST
SOFTWARE, AND PERIODIC BULLETINS OF INTER-
EST TO MICRODASYS OWNERS. SOFTWARE
CONTRIBUTIONS ARE WELCOMED.

NAME SEND TO
ADDRESS MICRODASYS
USERS’ GROUP EDITOR
CITY, STATE P.O. BOX 36051
ZIP CODE LOS ANGELES, CA 9003¢

3

MONBUG II - USER'S GUIDE PAGE 1

8/21/79

Copyright 1979 MicroDaSys
all rights reserved

1.0 INTRODUCTION MONBUG II is a simple, interactive monitor with a
sophisticated Input/Qutput structure designed to be upwards expandable for use
with disk operating systems and multiple interrupt-driven I/0 devices. MONBUG
II is designed specifically for use with the MicroDaSys MD-690b 6809 CPU card.
The minimal I/0 configuration consists of an interrupt-driven keyboard (through
PIA located at $FU400), memory mapped video board (64x16 located at $F000), and
high-speed cassette interface (also through PIA). RSBUG II provides the similar
features via an RS-232 serial device, instead of a parallel keyboard and
memory-mapped video card. RAM is required from $A000-$A3FF. MONBUG II itself is
located at $FCO0-$FFFF, although it is position independent with the exception

of the interrupt vectors from $FFF2-$FFFF. Control a s be transferred to
MONBUG II by hitting RESET,
2.0 COMMANDS MONBUG II has four basic commands. They are:

M -~ memory examine and change

J = Jjump to user's program

R - read cassette into RAM

¥ - write to cassette from memory.

Commands are entered in upper case following the prompt symbol (>). Commands
are accompanied by trailing hexadecimal (base 16) numbers. Legal digits are 0-9
and A-F. Hexadecimal numbers are separated by spaces, and command lines are
terminated by carriage returns. Leading zeroes may be omitted. Only the last

four digits of addresses and the last two digits of data are significant, all
else is ignored.

The following characters, obtained by simultaneously depressing the CONTROL key
and specified alphabetic operate on command lines:

“H (backspace) - deletes last character entered
“U (cancel line) - deletes current user-typed line.

The all-purpose error message is a question mark (?).

The following terminology is used throughout this documentation:

(=3

MOHBUG II - USER'S GUIDE PAGE 2

<addr> =z hexadecimal address.

{return> = carriage return.

<{data> = hexadecimal data.

<{space> = space bar.

{comma> = ,

[1 = contents of brackets are optional.
$ hexadecimal number follows.

~

control key depressed sumultaneously.
etc.

Computer-typed information is shown in bold face, while user-typed information
is not.

>M<addr><return>
The <data> at location <addr> is displayed as follows:
{addr> <data><command>

The user may now type one of the following <command>s:

<{command>:=

<{space> - display next location

<comma> - display previous location

{return> = return to command input mode
{data><command> = enter data at displayed location.

2.2 JUMP The JUMP command is entered as follows:
>Jd<addr><return>

Code beginning at location <addr> is executed.

223 READ CASSEYTE The READ command is entered as follows:

>R{<addr>]<return>

Data in MONBUG format will be loaded from tape to RAM. If <addr> is specified it
will be added to the original location of the data on tape as an offset. The
cassette should be in the playback mode before <return> is typed. A checksum
error will produce a guestion mark. A good read will return to the monitor.

MONBUG II - USER'S GUIDE PAGE 3

The WRITE command is entered as follows:
JW<addri><space><addr2><{returnd>

Data from RAM starting at address <addri1> and ending at address <addr2> is
recorded on cassette.

Hecording begins .5 sec after <return> is hit, in case it is desired for the
Reader Control line (RC) to start the recorder. Otherwise, the cassette should
be running in the record mode before <return> is typed.

3.0 CALLING MONBUG II's I/0 ROUTIRES The 6809 is an extremely powerful
processor, which enables the generation of fully-relocatable object code. This
means that absolute addresses are pever specified when calling MONBUG II's I/0
routines. Instead, all routines are invoked via Software Interrupt number 2
(SWI2). The machine code for SWI2 is $103F. When the processor encounters this
instruction, control is transferred to the software interrupt handler in MONBUG
ITI. MONBUG II then looks at the byte following the SWI2 (called the operation
postbyte, or "op") to determine the operation desired by the caller. After the
specified routine is completed, control returns to the instruction following the
operation postbyte (op) except in the case of op2 (see below). MONBUG II

currently implements I/0 operation codes 0 through 5, although others may easily
be added by the user.

The function of the codes are as follows:

op=

- Input character from keyboard into A.

- Qutput character from A to video board.

- Input a sequence of characters from keyboard.
Convert ASCii hexadecimal string to binary.

- Output hexadecimal byte from B to video board.
- Qutput hexadecimal word from D to video board.

U W N O
[}

A detailed description of each operation follows:

3.0.0

Op0 - Input character froam keyboard into A. Whenever interrupts are enabled
and a character is typed on the keyboard, that character is impmediately read and
entered into a dynamically allocated buffer area in RAM called a "circular
queue™. When a character is needed (i.e. SWI2,0p0 is called) it is extracted
from the queue. The first characters into the queue are the first extracted.
This technique enables the user to type while the system is otherwise occupied
(calculating the last digit of pi, for example). Calling SWI2,op0Q extracts one
character from the queue. If no characters are in the queue, the processor
waits until one is available. Whenever the special character control V ("V) is

MONBUG IX - USER'S GUIDE PAGE 3

The WRITE command is entered as follows:

JW<addr1><space><addr2><return>

Data from RAM starting at address <addr1> and ending at address <addr2> is
recorded on cassette.

Recording begins .5 sec after <return> is hit, in case it is desired for the
Reader Control line (RC) to start the recorder. Otherwise, the cassette should
be running in the record mode before <return> is typed.

3.0 CALIING MOEBUG II's I/0 ROUTINES The 6809 is an extremely powerful
processor, which enables the generation of fully-relocatable object code. This
means that absolute addresses are pever specified when calling MONBUG II's I/0
routines. Instead, all routines are invoked via Software Interrupt number 2
(SWI2). The machine code for SWI2 is $103F. When the processor encounters this
instruction, control is transferred to the software interrupt handler in MONBUG
II. MONBUG II then looks at the byte following the SWI2 (called the operation
postbyte, or "op") to determine the operation desired by the caller. After the
specified routine is completed, control returns to the instruction following the
operation postbyte (op) except in the case of op2 (see below). MONBUG II

currently implements I/0 operation codes 0 through 5, although others may easily
be added by the user.

The function of the codes are as follows:

op=

- Input character from keyboard into A.

- Output character from A to video board.

- Input a sequence of characters from keyboard.
Convert ASCii hexadecimal string to binary.

- Output hexadecimal byte from B to video board.
- Qutput hexadecimal word from D to video board.

Ul W N - O
i

A detailed description of each operation follows:

3.0.0

Op0 - Input character from keyboard into A. Whenever interrupts are enabled
and a character is typed on the keyboard, that character is immediately read and
entered into a dynamically allocated buffer area in RAM called a "circular
queue". When a character is needed (i.e. SWI2,op0 is called) it is extracted
from the queue. The first characters into the queue are the first extracted.
This technique enables the user to type while the system is otherwise occupied
(calculating the last digit of pi, for example). Calling SWI2,op0 extracts one
character from the queue. If no characters are in the queue, the processor
waits until one is available. Whenever the special character control V (7V) is

MONWBUG II - USER'S GUIDE PAGE 4

typed, all unprocessed characters are cleared from the queue. The I/0 status
byte (IOSTAT) is located in scratchpad RAM and affects the echoing of characters
to the video board. The bits of IOSTAT are numbered from MSB to LSB as B7Y
through BO. When bit 6 is set, characters typed will be immediately echoed to
the screen by the keyboard interrupt service routine. Since the characters are
not echoed by op0 itself, unless bit 6 is set, op1 must be called next if the
character is to be displayed. Op 0 does not affect any registers except A.

3.0.1

Op1 - Output character from A to video board. The ASCii character in
accumulator A is output to the video board. No registers are changed following

execution of this routine. The following control characters are recognized by
the output routine:

“D - Cursor Down (non-destructive)
“E - Erase to End of Screen

“F - Cursor Left (non-destructive)
“H - Backspace (destructive)

“d = Line Feed

“K - Cursor Up (non-destructive)
“L ~ Cursor Right (non-destructive)
“M ~ Carriage Return

N - Erase to End of Line

- Home and Erase

The console switch (CONSW) is a single byte located in scratchpad memory which
affects the way the video output routine interprets control characters. The
bits of CONSW are numbered from MSB to LSB as BT through BO. They are defined
as follows:

BT - If set, ignore all control characters.
Bl - If set, clear screen after home ("7).
BO - If set, auto line feed after all <return>s.

In addition, the escape key <esc> may be typed, followed by two characters to
position the cursor at any x,y location on the screen. Columns (x) are numbered
0 through 63, left to right. Rows (y) are numbered 0 through 15, top to bottom.
The coordinates in terms of their character equivalents are as follows:

character x (column) v (row) character x (column) y (row)
<{space> 0 0 hd 10 10
! 1 1 + 11 11
n 2 2 ’ 12 12
3 3 - 13 13
$ 4 il . 14 14
% 5 5 / 15 15
& 6 6 0 16

! T T 1 17

(8 8 2 18

) 9 9 3 19

PAGE 5

char X char X
4 J 42
5 20 K 43
6 22 L 4y
7 23 M 45
8 2y N 46
9 25 0 47
: 26 P 48
; 27 Q 4o
< 28 R 50
= 29 S 51
3 30 T 52
; 31 Y 53
e 32 v 54
A 33 W 55
B 34 X 56
¢ 35 Y 57
D 36 z 58
E 37 [59
F 38 \ 60
G 39] 61
H 40 ~ 62
I 41 - 63

For example, to position the cursor in column 31, row 2 type:

<esco 2"
3.0.2
Op2 - Input a sequence of characters from keyboard. On entry to this
routine, the Y register should contain the starting address of the buffer area

into which text is to be placed. The calling sequence is as follows:

SWI2 10

3F

op=2 02
<bufsize=1> <data>
<delimeter1> <del1>
: [< :>]
<delimeterN> [<delN>]

0 00

where bufsize is a byte representing the maximum length of characters that can

MOMBOUG II - USER'S GUIDE PAGE 6

be placed into the buffer. Obviously this cannot be greater than 255. If the
number of characters entered exceeds the size of the buffer, the excess will be
ignored until a delimeter is reached. Delimeters 1 through N are ASCii
characters that, when input from the keyboard, will force a return to the
calling routine As many delimeters as desired may be listed before the zero
byte.] , . . d » At
this tlme, the ex1t1ng dellmeter wlll be in A, and B w1ll contaln the number of
characters typed not counting the exiting delimeter. The string typed will be
placed into the buffer area terminated by a carriage return ($0D) rather than by
the exiting delimeter. CC, X, ¥, U and S remain unchanged.

The I/0 status byte (IOSTAT) is located in scratchpad RAM and affects the
echoing of characters to the video board. When bit 6 is set, characters typed
will be immediately echoed to the screen by the keyboard interrupt service
routine. When bit 7 is set characters input using the buffer input routine
(op2) are echoed to the screen. Setting both bits 6 and 7 results in a double

echo when the buffer input routine is called. This routine recognizes control U
and control H,

3.0.3

Op3 -~ Convert ASCii hexadecimal string to bimary. On entry, Y points to an
ASCii hexadecimal string terminated by a non-hex character. On return, X
contains the binary value of the string, A contains the non-hex terminating
character, and the carry will be set if and only if at least one hex character
was encountered. Leading zeroes are ignored, and if more than four hex
characters are entered, only the last four are significant.

3.0.5

Ops - Output hexadecimal byte from B to video board. The binary value of B
is output to the video board as two ASCii hexadecimal characters. A is
destroyed. All other registers are unchanged.

3.0.5

Op5 - Output hexadecimal word from D to video board. The binary value of D
is output to the video board as four ASCii hexadecimal characters. A is
destroyed. All other registers are unchanged.

4.0 HOWITOR EXPAWSION MONBUG II is upward expandable simply by installing
additional PROMs with supplemental features. After initialization and before
issuing its prompt, MONBUG II checks address $C000 for the expansion code $69.
If it is found execution will be transferred to $C003.

MOWBUG II - USER'S GUIDE PAGE 7

8.1 VECTIOR REASSIGHMENT Although all interrupt vectors are located at the
top of MONBUG II, interrupt service (with the exception of RESET) is
"re~vectored® through scratchpad RAM locations to enable the user to change the
service routines. The start of these locations is pointed to by the first two
bytes of MONBUG II ($FC00). This vector points to the interrupt vector table,
which consists of all interrupt vectors in the following order:

SWIV Sof tware Interrupt

SWIz2V Software Interrupt 2

SWI3V Software Interrupt 3

IRQV Interrupt Request

FIRQV Fast Interrupt Request

NMIV Non=Maskable Interrupt

SCR MONBUG II scratchpad RAM pointer

All MONBUG II scratchpad RAM locations are specified relative to the contents of
SCR, with locations both above and below this pointer being used.

5.0 SAMPLE PROGRAM The following program demonstrates some of the powerful
capabilities of MONBUG II. While the processor is engaged in a relatively large
task (in this case counting to 131,072) the user's rapid typing is automatically
serviced. However, in this example we have programmed the processor to accept a
character from the queue only once every second. The result is a fast input
process supporting a slow output process. In short, multi-tasking. :

Here is the program:

A0OQC 86 02 START LDA #2

AGO2 8E 00 00 FUBAR LDX #0

A005 30 1F FUD LEAX -1,X

A0OT 26 FC ‘ BNE FUD

A009 4a DEC A

AQOA 26 F6 BNE FUBAR

Ao0C 10 3F SWI2

AQOE 00 FCB 0 this calls op O
AQOF 10 3F SWIi2

A011 01 FCB 1 this calls op 1
AD12 20 EC BRA START

To enter the program type:
>MAQ00<return>
A00D xzx 86<space>
A001 xx 02<space>
A013 xx EC<return>

Where xx is some random byte from memory. Save the program on cassette by

MOWBUG IX - USER'S GUIDE PAGE 8
running the cassette in the record mode and typing:

JWAD00<space>A013<return>

When the prompt returns, stop the cassette and execute the program by typing:
>JA000<return>

Now type anything as fast as you want. The processor will respond to each
character typed, but will not immediately display them. It will, however,
eventually display them, unless you exceed the 80 character default buffer
length,

While this program may not be very useful, it demonstrates some of the

versatility which can be achieved with the amazing 6809 micro-processor and
MONBUG I1I.

SEXRERREXRKRRRKARKAKK KRS MEMORY MAP RHKXKEXRERKRRKERKRRKKKEX

SUPPLEMENTAL INFORMATION

THE FOLLOWING IS AN ITEMTIZATION OF THE

MEMORY USAGE FOR THE /4K ADDRESS SPACE OF THE MD=690B:

$0000=89FFF

$£A000~SA3FF

40K USER RAM

1K, SCRATCHPAD RAM (SUPPLIED ON MD=690B)

$A400=SBFFF 7K USER RAM

$§C000=-$DFFF 8K USER PROM SPACE (ON MD=690B) (MAY BE USED FOR RAM)
SEC00=SE3FF }DupucA\'e oF F800-EFEF

$E400~SETFF

SEB00=SEFFF I/3 SIGNALS GENERATED HERE INSTEAD OF MEMORY
$F000~-$F3FF MEMORY MAPPFD VIDEND GRAPHICS BOARD

$F400=SF403 PIA (XBD, CASSETTE, SPARE 1/0 PORTS)

SF404=SFTFF NoT USED :

SFB00=SFFF7 MONBUG T in 2708 or 2nd Ya of 2710
SFFF8=SFFFI INTERRUPT AND RESTART SERVICE VECTORS

EEEERRRAREFRRRRRERRKREK PTA BIT USAGE ¥Rk ki ¥ KXk kkREk%

PAO=PA7

Cal
Ch2

PBO
P81=PB6
PB7

a1
cs82

KEYBOARD DATA

KEYBOARD STROBE
READFER CONTRIL

CASSETTE OUTPUT DATA
AVAILABLF 1/23
CASSETTE INPUT OATA

CASSETTE TRANSMIT CLOCK
CASSETTE RECEIVE CLOGCK

/2

kkdkkkkk CASSETTE FORMAT *&kksid

WHEN THE COMMAND W IS HIT TWO HEXADECIMAL ADDRESSES MUST BE INPUT. FoR.
EXAMPLE: DY IILE <Lreturnd>
A CASSETTE TAPE SHOULD BE RUNNING IN THE RECORD MODE REFORE Lo
RETURN [S TYPED, ALL THE DATA WILL BE RECORDED FROM (IN THIS EXAMPLE)
$004C TO $3B2E, KEACH RECORD EXCEPT THE LAST WILL RE
70 BYTES LONG AND IN THE FOLLOWING FORMATS
SFF (FOR PLAYBACK SYNCRONIZATION)
AABCCDDDDDD.,.DONDDDDDDDNDE
WHERE ¢ AR 1S THE START CODE SECY9D (2 BYTES)
B IS THE NJMBER OF BYTES IN THIS RECNHED
CC IS THE STARTING ADDRESS UF THIS RECORD
D IS A DATA BYTE (UP TO 64 BYTES PER RECORD)
E IS A CHECKSUM,

THIS DATA MAY BE RELOJADED AT ANY TIME USING THE READ COMMAND.

WHEN R TS TYPED THE PROCESSOR wILL WAIT FOR A CASSEITE TAPE TO BF PLAYKD
FROM THE TAPE RECORDER THROUGH THE 2400 RBAUD CASSETTE INTERFACE. IF 1THE
PROPER FORMAT IS ENCIOUNTERED 0ON THE TAPF, DATA WILL ®E LOADFO INTQ ™MEMORY,
THIS DATA CUULD BE A PRUGRAM WHICH THE USER COULD THEN EXECUTE. THIS IS
HO¥W BASIC COULD BE LJADED, WwHEN THE TAPE IS FINISHED THE PROCESSOR
ATLL COME QUT NDF THE LOAD MUDE BECAUSE SPECTIAT, CHARACTERS (SECB9)
HAVE BEEN RECORDFD AT THE ERD,

ALSO, CTONTROL CAN RE REGATINED BY HITTING RESET., REMEMBER=-
NO MATTER WHAT HAPPENS, CONTROL wILL ALWAYS S8E RETURNED TO THE MONITOR
BY HITTING RESET. JF THERE IS AN KERROR ON THE TAPE A QUESTION MARK (?)
WILL BE PRINTED ON THE SCREFN AND CONTROL WILL RETURN TO THE MONITOR.
USING THE MICRODASYS 2400 BAUD CASSETTE IMTERFACE AND MONBUG FORMATTED
TAPE, IT REQUIRES ONLY 19 SECONDS TO LOAD 4096 (4K) BYTES OF MEMORY,

| EESREREERERROABRRRRRO0E SUMMARY SEERKERS AR RASE RN KRR K &

FOR FURTHER INFORMATION ON THE OPERATIUN OF THE 6800 MICROPROCESSORS

IN PARTICULAR, OR MICROCOMPUTEFRS IN GENERAL, WE RECOMMEND THE FOLLOWING
REFERENCES, AVAILABLE FROM MICRODASYS OR YOUR LOCAL COMPUTER STORE:

AN INTRODUCTION TO MICROCOMPUTING, VOLUME 0 = THE BEGINNER®S BNOK

BY ADAM OSBORNE, PUBLISHED RY ADAM OUSBORNE & ASSOCIATES, 1677
SOFTCOVER, $7.50

USING THE 6800 MICROPRDCESSOR

BY ELMER POE, PUBLISHED BY HOWARD W, SAMS & CO.,, 1978
SOFTCOVER, $6.95

M6809 MICROPROGRAMMING MANUAL
PUBLISHED BY MOTOROUA INC,, 1975
SOFTCOVER

AN INTRODUCTION TO MICROCOMPUTING, VOLUME 1 = BASIC CONCEPTS

BY ADAM OSBURNE, PUBLISHED RY ADAM OSBURNE & ASSOCILATES, 1974
SOFTCOVER, $7.50

THE INFORMATION PRESENTED 1IN THIS GUIDE IS OF TWO TYPES:
BASIC INFORMATION TO GET YOU STARTED AND ADVANCED
INFORMATION ABOUT THE INTERNAL OPERATION OF THE MONITOR,

IT WILL ENABLE YOU T) USE YOUR MICROCOMPUTER AND BEGIN
-LEARNING ABOUT ITS OPERATION AND PROGRAMMING, SOON YOU’LL
3E WRITING PROGRAMS FAR MORE COMPLEX THAN YOU’VE DREAMED OF,
REMEMBER <= THE MORE YJU USE YOUR MICROCOMPUTER THE MORE
YOU®LL LEARN ABOUT IT. THE CAPABILITIES OF A COMPUTER

ARE ENDLESS. OUITE LITERALLY, THEY DEPEND ONLY ON

VNLID DRNACDAMMYAS TMATZTTINATTYNAN .

/2

PAGE 001 MICRODAS. SA: 1

00001

[elslsle i B 338 3 6 36 1 3 B B0 B0 36 U B B B0 B0 B 0 U6 B B R B B S B 3

00003 # #

00004 # MONBUG TT 3%

00005 # INTERACTIVE MONITOR & 1/0 %

00004 # PACKAGE FOR THE 4309 #*

00007 # #

00003 X222 LT -2 TS L-LT-LLET-L-T-T-L-L-X L XX -3

0000Y %

00010 % WRITTEN BY ROBERT ALKIRE

00011 # COPYRIGHT — MICRODASYS

000172 % &/79 rev LLO

00013 #

00014 OPT LLEN=30

oO01Ls ’ &

00014 # COMMAND LIST:

00017 # MIADRD = MODIFY MEMORY

COO1LB ¥ JCADRD> = JUMP TO ADR

00019 ¥ RCADR> = READ FROM CASSETTE

00020 * W<ADR ADR> = WRITE TO CASSETTE

00021 3

00022 # MONITOR EQUATES

0002 2

00024 FOOO A SCRN B $FO00 TOP OF CRT MEMORY
00025 F400 A FIADA EQU $F 400 KEYECOARD FIA DATA
00024 F401 A PIASA Eal $F401 KEYBOARD PIA STATUS
00027 Fa0z A FIADE EGU $F40Z CASSETTE F1A DATA
GOO2S F402 A PIASB EoJ $F403 CASSETTE FPIA STATUS
00029 # CURSOR CONTROL CHARACTERS

QQO30 0O0B a up ERy $B CTL~K

00031 0004 A DIOWN EGu $4 CTL-D

00032 0004 A LEFT i Hh CTL—F

00053 000C A RIGHT E@u $C CTL-L

00034 000D A CR B :31]

000z O00A A LF EGiU $6

00034 0009 A TAB EQu $9

00027 OO1E A ESC EGu $1E ESCAPE

000338 OGOE A EEOL Efid $E CTL-N

0003 0005 A FF EGU $5 CTL~E

00040 001E A HOME Ei $1E

00041 0015 A CTLU EGQU $15 ERASE CURRENT LINE
Q0042 0016 A CTLY EQu $16 ERASE QUEUE BUFFER
00043 0008 A BS Ecu $6 BACK SPACE

00044 # MEMORY ALLOCATION

00045 AO00 A RAM EGU $A000 START OF SCRATCH RAM
00044 A3FF A MAXRAM EaLu $ARFF END OF SCRATCH RAM
00047A FCOO ORG $FCO0

00043 # RAM INTERUPT VELTORS

0004w AZFZ A SWIV EGu MAXRAM—13

00050 A3F 4 A SWIZV EQuU MAXRAM=-11

00051 ASF6 A SWIZV EGU MAXRAM-%

QOS2 A3FS A IRQY B MAXRAM=7

00053 AZFA A FIRGY EGu MOX RAM=S

00054 A3FC A NMIV £y MAXRAM=-3

00055 3FE A SCR EGiL MAXKAM=1 SCRATCH FPAD MEMORY FTR
00054 FFF3 A OFS . EQuU -13 SCRATCH PTR OFFSET
00057 0050 A GLIM G €0 GUEUE SIZE

00053 0043 A BUFLIM EQuU 72 INPUT BUFFER LIMIT

PAGE

0005
DO0L0
OC0LT
00062
O00&3
00044
O00LE
O00OLL
OC0&T
OO0LS
QOGEY
00070
00071
Q0072
0007z
Q0074
00075
oO076
00077
GO0O73A
00079
COOB0
00081
00032A
O00EZ4
COO34A
O00ES
Q00344
00087A
Qo033
00089
00090
Q00914
000924
000%2A
Q00944
00095
OQOY4A
O00%7A
000734
000994
Q100
00101
Q0102
D0 103A
Q0104A
CO10%A
O0104&A
Q0107A
QO108A
OQ109A
00110A
QO111A
00112
Q013
00114n
Q01154
00114A

*

002 MICRODAS. BA: 1

FCOO

FCO2
FCo4
FIZO&
Foog
FCOA
Fcoc

FCOE AE

FCio
FC1z
Foi4
FCi7
FoLs
FC1A
FCio
FC1E

FC20
FCz&
Fio2

FGz&

FCZa .

Fozo
FC2E
FCZ0
FC32

Fi33
FCas
FCaz
FCa@

ES
AF

30 -

sa
AE
EE
213

ot =
Qoo |

R&
FE

-
o

1
EF
&F
¢F

3B

E4
El
24
&G

FFF1
FFF3
FFFa
FFFS
FFFé&
FFF3
FFFe
FFFA
FFFE
FFFLC
FFFI
FFFE
0000
0050

A33?

A3BF2

FE9O0
Fovs
FEAD
Fhze

FD&3
FDSE

LA
80
&h
3C

&5

68
BF

EB

F400
AZFE
7E
1é&
07
A
5B
aSC

5A
an
Fe
oA

T TPPDDDDTDITDBPDDDIDP

> D D> D D

D

-
<3
w
>0 2>2DID

STACK EGQU

I0DEV EQY

102TAT EQU

CONSW B

CPTR EGu

LIZHR Enil

XYF EGu

IQCNT EGU

IGPTK EGU

IRPTE B

I6LIM EGU

IGBEG EGU

GUELE EcU

INBUF EQU

ECRATCH

SCRPD EQU

#

SCRATCH PAD

%
FOB

#

SWIZ

#*

SWCMD FDB
For
FDB
FOE
FDB
FOR

#

GWI 2z

#

SWIzC LOX
L.DB
STX
LEAX
LELE
LDX
LDV
STA
FULS

#*

#INFUT

#

INPLT LDA
Lo
ANDA
CMFA
BNE
CLR
CLR
CLR

OVFLW RTI

#

ENTER LDB
CMPE
BHS
ING

COMMAND VECTORS

FAal

~Z+0FS SYSTEM STACK

O+0F3 170 DEVICE FLAGS

1+0FG I70 STATUS FLAGS
2+0F3 CONSOLE SWITCHES
S+0FS CUREOR FOINTER (COUT)
B4+0OF3 LAST CHARACTER (COUT) .
EAHOFS XY FLAG (COuUT)
7+0FS INPUT GUEUE COUNTER
e+0Fs INFUT GUEUE KED PTR
D+OFS INPUT GUEUE OUT PTR
10+0F & INFUT QUELE LIMIT
11+0F3 INPUT QUELUE PTR
18+0FS INFUT GUEUE
13+0FS+QLIM INPUT BUFFER (INBF)
LOCATION

MAXRAM~-27-0L IM-BUFLIM-0FS
POINTER

SWIV POINT TO VECTORS

INCH
couT
INBF
HEXIN
OHX3
OHX 16

COMMAND
COMMAND
COMMAND
COMMANL
COMMAND
COMMAND

hé Wk O

COMMAND HANDLER

INTERUFT VECTOR

10, &
0, A+
10, &

GET FCR :
GET COMMAND VALLE
REETORE RETURN ADR

SWCMD, PCR POINT TO SWIZ LIST

B.X.
&5
8,8

PIADA
SCR
#E7F
$CTLY
ENTER
IQCNT, U
IGPTE, U
IGPTE, U

TQOENT, U

IGLIM, U
OVFLW
TQCNT, U

MAKE WORD OFFSET
GET ROUTINE ADR

GO TO COMMAND ROUTINE

A, BOPRAYREXIT SWIZ

GET KYBD DATA FM PIA
GET SCRATCH FOINTER
PARITY OFF

CTRL V7

CLEAR CURRENT QUEUE CTR
RESET KBD QUEUE PTR
RECET QUEUE PTR

GET QUEUE COUNT

TEST IF LIMIT EXCEDED
IGNORE EXTRA

UFPDIATE COUNT

15

PAGE 003 MICRODAS. 3A: 1

0011768 FC3B AE S5E A LDX INBEG, U GET BEGINNING OF QUEUE
001184 FCZD EG Sk A LDE IGPTEK, U GET KEYEOARD FOINTER
001194 FC3F A7 35 A S5Th B, X SAVE CHARACTER

001206 FC41 SC INCE NEXT GQUEUE LOCATION
Q0121iA FC42 EL 50 A CMPB IQLIM. LU TEST POINTER . GT. LIMIT
00122/ FC44 23 01 Fca7 ELS CIRCLE CIRCULAR GUELUE

001234 FC4h 5SF CLRB RESET QUEUE POINTER
001244 FCAT ET ok A CIRCLE STE IGFTE, U SAVE KED PTR

001254 FC49 Eb o4 & LD IODSTAT, U GET I/0 STATUS

0012866 FO4AR SE ‘ . LELE ' TEST EIT & SET

001276 FC40 17 02B1 FFOO LBSR DUTX2 OUTPUT CHAR IF & SET
00128A FC4F ZE RTI

00129 *

001320 # START OF MAIM ROUTINE

00131 #

001328 FO50 CE A35Y
00133A FCSE FF AZFE
001346 FCS46 22 51
00135A FCSE =0 et €3

RESET LDU #SCRPD SET SCRATCH PTR
&Tu SCR SET CURRENT FOINTER
LEAS STACK, U SET MONITOR STACK
LEAX INFUT, FOCR POINT TO INFUT ROLITINE

00136/ FOSB BF ABF3 BTX IRGV SET INPUT ROUTINE VECTOR
0013768 FCEE 20 e AD LEAX SWIZC, PCR POINT TO SWIZ COMMAND
001384 FC61 BF A3F4 STX SWIZV SET SWIZ2 COMMAND PTR
001329A FC&4 CE 0000 LDX #0 CLEAR WORKSFACE
001404 FCLT7 AF 5% 8TX XYF, U CLEAR XY FLASG % IRQCNT

- 00141A FULY AF Sk &TX IGFPTK, U CLEAR IGPTK & IGFTH
801428 FCAB BE 8007 LDX #$3007 SET I[O3TAT=30, CONSW=7
GO142A FCEE AF S4 STX I0STAT, U

001444 FC70 36 50
o014Sh FCT72Z &7 sh
001446A FO74 30 C4
00147/ FCT& AF SE
0014848 FC73 36 iE
001490 FC7H €D 4F FCC
G0150a FC7L 86 335
00151Aa FCTE E7 F401
Q01524 FC21 7C Fa02

LDA H#ALIM GET RUEUE SIZE

&ETA IGLIM, U SET LIMIT

LEAX RUELE, U GET START OF QUELE
STX IGEEG, U SET START OF GQUEUE
LDA #HOME OUTPUT CLEAR SCREEN
RER auTz
-LDA #4$35 SET FOR KYBD PIA
STA FIAGA

INC PIADD FOR CASSETTE

PDPP>2>R2>2DPDDPTPIPDOPDIBD > DD

00152A FCeqd 1C EF ANDCC #$EF CLEAR IRG FOR KED
0015448 FOB3L BS CO00 LDA $CO00 TEST PROM
O01SE5A FCES 81 &9 CHMPA #3469 EXECUTARLEYY
GO156A FU3B 26 03 FC20 BNE EXEC
0015748 FCED 7E Cooz A JMP $CO0Z GO EXECUTE AUX. FROM
Q01584 FCY0 FE ABFE & EXEC LD SCR RENEW SCRATCH POINTER
00159A FC92 32 S A LEAS STACK, U RENEW ETACK FTR
00160a FC93 36 oD a LDA #CR CARRAIGE RETURN
001&1A FCO7 &N 32z FCCR BER ouTZ
QOL62A FCPD 36 3E A LA . #72
001&2A FCYE 8D ZE FCCE BER ouTz auTPUT FROMPT
0014648 FCOD 31 c3 30 a LEAY INBUF, 1 POINT TO INPUT BUFFER
GO1465A FCAO 17 020/ FEAD LESR INEF GET BUFFER FM KRD
001646A FCAS3 43 A FCB BUFLIM, CR, 0 PARAMETERS FOR INBF
001670 FCAG A& AO A LDA 0, Y+ GET COMMANL CHARACTER
00168A FIAZ 81 4n A CMPA #°M MODIFY?
0016%A FCAN 27 aC FCE® BE® INEP
00170A FCAC 31 4A A CMPA #7J JUMP?
00171A FCAE 27 18 FCCS EE® JUMP
QO172A FCBO 381 57 A CHMPA #W WRITE?

- 00173A FCRZ 27 21 FCDG BEG CeTaT

Q017448 FCB4 381 352 A CHMPA #°R READ?

¥

PAGE 004 MICRODAS. 5A: 1

001758 FCRG& 27 ié FCCE
001740 FCB3 34 3F A
001776 FCEA &0 OF FCCE
001784 FOBC 20 Dz Fioo
00179A FCERE €D L& FOz&
Q0is0aA FCTO 31 o0 A
001€1A FCCZ 26 F4 FCR&
001828 FC4 39
001854 FOUS &0 F7 FCEE
O0iB4A8 FOO7 4E 34 fa
00185/ FOLY 86 20 A
0013468 FCCB 14 00Aa7 FD75
00187
GOIBBA FOCE 2D EE FCBE
001894 FCOOD 1F 12 A
001908 FCDZ 14 0ZBA FFB8F
00191 ’
0019224 FCDS 3D S1 FD23
DOIYZA FCO7 24 oF FCRE
0C194A FCD9 231 20 A
001958 FCUER 26 DE FCES&
001946A FCDD 34 10 A
001978 FCOF &0 oo FCEE
001934 FCEL 30 01 A
001998 FCEZ 24 10 A
002006 FCES 16 0Z1D FFOS
00201
002020 FCES 8D D4 FCBE
00Z0=A FCEA 1F 10 A
002Z04A FCED 3D 46D FDSB
007058 FCEE €D 0o Fcco
0020568 FCFO Eb 34 A
o0Z0O7A FCFZ €D &F FLGS
O0OZ08R FCF4 3D D3 FCoo
oOZ098 FOF6& =1 cE S0 A
QUR2104 FCF? 17 01B1 FEAD
00Z11A FCFC 4€ A
OU212A FDOL 24 12 A
00Z13A FLOZ &0 pAC) Foze
002144 FROS 24 09 FD10O
00Z1SA FLRO7 &1 on A
Q02146A FROT 26 AD FCBS
007178 FLOR 1F i0 A
o02i8Aa FDOD E7 F3S O1 A
Q0Z19A FDIIO &5 1z 0
. QUZ20A FD12 21 oD A
L 00ZZ1A FDl4 27 A6 FCRC
L 00222A FD14 31 20 A
CQ0ZIZ3N FDig 27 O& FLzo
FOO2240 FDIA 31 2¢ A
002250 FRIC 2Z& o FCE&
L Q02264 FDIE 30 i1E A
002278 FDZO 20 01 A
002237 FD22 36 oD A
L Q02EYA FLDZ4A €0 AS FCCR
Q02308 FD26 20 c2 FCEA
00231
Q0232

ERROR

EXECZ
HEXCR

UM

SFACE
nuTZ2
#*
C3TIN

3 %
2

TOT

+#
INSP
INSF1

INSFZ

INSPE

¥#*

BEG
LDA
ESR
BRA
ESR
CHPA
ENE
RTS
BER
JMP
Lo
LBRA

BSK
TFR
LBRA

B3R
BCC
CMPA
ENE
PSHS
BEER
LEAX
PoHE
LBRA

B3R
TFR
B3R
BER
LDB
BER
BSR
LEAY
LBSR
FCE
PSHS
BSR
BCC
CHMPA
BNE
TFR
STR
PULS
CHMPA
BEG
CHMPA
BER
CMPA
ENE
LEAX
LEAX
LDA
PSR
BRA

CETIN
#?
auTZ
EXEC
HEXIN .
#OR
ERROR

HEXCR
O, %
#%20
CouT

HEXCR
X0 Y
CREAD

HEXIN
ERROR
HE20
ERROR
X
HEXCR
1, X

X
cToT

HEXCR
X, D

OHX 16
SFACE
0, X
OHX&
SPACE
INEUF, U
INBF

GET JuMP

ERROR MESSAGE

GET HEX VALUE
TEST EOL
ERROR IF NOT

ADDR
GO TO ROUTINE
SFACE

GET OFFSET ADDR
G0 READ CASSETTE
GET START ADDR

TEST SPACE DELIMITER

GET END ADR

GO DUTPUT CASSETTE

GET INSPECT ADDR
QUTFUT ADDR

auUTFUT SPACE

GET MEMORY VALLUE
QUTFUT VALUE
OQUTPUTTSPACE

FOINT TO INFUT BUFFER
READ BUFFER FM KBD

EUFLLIM, CR, $20, $2C, O

s X
HEXIN
INSPZ
#CR
ERRIOR
X, I
£1.353
A, X
#HIR
EXECZ
#4620
INESRGE
#,
ERROR
~2;X
1, X
#HCR
ouTz
INSPY

GET VALUE
SKIP IF NO VALUE
TEST IF ECLN

GET VALUE
POINTER ON STACK
RESTORE FOINTER
TEST RETURN SBCMD

TEST SPACE

NEXT LOCATION

TEST COMMA
IMFROFER DELIMITER
BACK P DONE

AHEAD ONE
CARRAIGE RETURN
OUTFUT IT

CONTINUE INSPECT

HEXADECIMAL INPUT ROUTINE

/177

PAGE

00233

00234

00235

00234

00237

00233A
00Z2%4
002404
002414
002424
00z424
002444
00Z454
OOZ46A
0024760
002434
002494
0O250A
00z51A
00252A
O0ZEZA
00254A
00ZSEA
DOZ56A
00Z57A
Q0Z53A
00z59A
00260A
00Z&1A
00262A
00Z&E2A
00264A
00265A
002466A
002&74A
0263

00249

00270

00z71

00272

00Z7=A
002744
00Z73hA
002744
00Z77A
00273A
0027%A
002804
o0z&1A
Q02824
002834
Q02344
00285A
00234A
002Z87A
00288

- 00289
. 00290

003 MICRODAS.

FDz3
Foize
FOze
FLOZE
FD30
Frizz
Fo24
FRzé
FO33
FOza
FOso
FLiZE
FD40
Fligz
FD44
Fri4é
Fn47
Frag
Fog2
Fr4n
FD4B
Fo4c
FD4D
FL4E
FOSO
FSz
FDS54
FOSss
FD57
FLS®

FDSB
FLSn
FDSF
FDeéd
FU43
FLies
FD&LA
FRe7
FD43
FhDe9
FD&B
Fhe&h
FD&F
FD71
FD72
Fru7z4

4F
o4
SE
YA
21
75,

Z3
a1
s
31

sy
Lo

31

v

8B
o4
iE
bS]
49
=6
4%
S
49
1]
49
iE
30

Pt~
st

43
24
20

g
atat

34
iF
3D

Lot 3
wiat

1F
44
44
44
44
&0
1F
&4
AR
19
a9
19

S5A: 1
01 A
0000 A
AD A
30 A
Z5 FrnGse
44 A
z1 FLse
39 A
06 Frnqaz
41 A
19 Fosy
09 &
OF A
10 A
i0 A
346 A
01 ()
01 A
DS FDZE
&1 (4
04 A
&9 [4)
02 FD&3
04 £
98 A
0z Fhen
93 A
OF A
20 A
40 A

Y FOINTS TCO CHARACTER IN HEX

% EXIT: A CONTAINS DELIMITER, X CONTAINS VALLE
% CY SET INDICATES AT LEAST ONE VALID HEX

% CHARACTER ENCOLNTERED
4
H

EXIN CLRA RESET LCARRY
FSHE cc
LDX #0O - CLEAR FOR HEX VALUE
HEX I LDA 0, Y+ GET CHARACTER
CMPA #70 <0
ELC HXTIL. EXIT
CMPA #F > F
EHI HX DL EXIT
CHMPA #2 <= 9
ELE HMEZK SKIP ALFHA MASK
CMPA #7°A < A
EBLO HXDL EXIT
ADDA # ALPHA OFFSET
HMEK ANDA #3F MASK LOWER EBITS
EXG X, D DO 4 PLACE 16 BIT SHIFT
LELE
ROLA
LELE
ROLA
LELE
ROLA
LELE
ROLA
EXG X, In
LEAX A, X ADD CURRENT NUMBER
FULS cC SET CARRY
ComMA INDICATE NOT NIL
PEHE cc
BRA HEXI CONTINUE
HXDL FULS cC, FC
%

QUTFUT HEXADECIMAL ROUTINE
QUTPUTS VALUE IN D
#
OHX16 P3SHS B
TFR AR OUTFUT UFPFER BYTE
BSR OHX3 OUTPUT 3 BITS
FULS E RESTORE LOWER EYTE
OHX3 TFR B, A OUTPUT UPFER NYBBLE

LSRA MQVE
LSRA UPPER NYBBLE
LSRA TO
LSRA LOWER NYBBLE
ESR OHX
TFR B, A OUTPUT LOWER NYBBLE
QHX ANDA HSF MASK LOWER NYEBBLE
ADDA #ED0 CONVERT BINARY TO ASCII
DAA : '
ADCA #5640
DAA
3%) .
¥ MAIN QUTPUT ROUTINE
¥*

17

PAGE 004 MICRODAS. 541

00291 # QUTFUT CHARACTER IN A

00292 %

002z92A FD7% 24 77 A COUT FEHE CoAE X YU
002940 FD77 FE ABFE A : LDuU SCR GET SCRATCH POINTER
00295~ FO7A EC a6 A Lon CFTR, U GET CURSOR FOINTER
002964 FD7C 34 03 A ANDA #3 50 ITS ALWAYS DN SCREEN
0029764 FLTE 2B FO A ADDA #HECRN/ZG6
00293/ FD30O 1F 01 A TFR D, X
00299A FDEZ E6 S8 A LD LCHR, U GET THE LAST CHARACTER
003004 FD34 E7 84 A .5TB 0, X REPLACE CURSOR

00Z01A FIEL AL &1 A LA 1, & GET CHARACTER

00302A FDB3 EbL 55 £ LDB CONSW, U GET CRT SWITCHES

00Z0ZA FLEA 10ZE OODZ FE&I LEMI LSFLY

003044 FD3E 34 7F A ANDA HE7F PARITY OFF

00Z05A FISO &0 59 A TST XYF, U TEST IF XY COORDINATES
0030468 FD?Z 2A 04 FD93 BPL. NSETX NOT X

00207/ FL94 A7 =% A STXYF STA XYF, U SET XY COOR. FLAG
0030384 FD96 20 3% FDC9 BRA VFIN3

00Z20%9A FOYE 27 iF FDE® NSETX EE@® MVUF NOT ¥ EITHER
00310A FD%A 30 20 A SUBA #5520 ADJUST BIAS
00Z11A FDO9C ZE 17 FDES EBMI XYER

00312A FDYE 31 10 A CMPA #146 SCREEN HEIGHT
002128 FOAO Z4 12 FDES EHS XYER

00314A FDAZ E& 59 a LDB XYF, U GET X COOR.
00315A FOA4 CO 20 A SURE #3220 ADJUST BIAS
00314A FDAL 2B 0D FDBS BMI XYER

0032176 FOAE Ci 40 A CMFE #64 SCREEN WIDTH
00318A FDAA 24 0% FDBS BHS XYER OUT OF BOUNDS
00319A FOAC SE FOOO A LI #SCRN POINT TO CRT
00320A FDAF 3A ABX COOR: =64#Y+X
002Z1A FORO C& 40 A LDE #64 .

Q0322A FOB2 3D MUL

O0ZZZA FOEZ 30 &R A LEAX o X

00324A FDBS 6F 59 A XYER CLR XYF, U RESET XY FLAG
00225/ FOE7 Z0 10 FDC® EBRA VFING

00324A FDBY 31 OB A MVUP CMPA #LP

002276 FDER Z& OE FOCE ENE MVIIN

Q0323A FDED 30 33 CO A LEAX -44, X MOVE CURSOR UP
0032Z9A FOCO &C FOOO A CMFPX #SCRN TOF OF SCREEN
003304 FDC3 24 4B FE30 BHS VF INZ

O0XZ1A FOCS 20 €9 0400 A LEAX 1024, X GO TO EBOTTOM
QG3324 FDC? 20 65 FE30 VFINR BRA VFINZ

00233A FDCE &1 04 - A MVON CMFA #DOWN TEST IF DOWN
00334A FDCD 264 OE FDDD BNE MVRT

0033SA FOCF 20 €8 40 A LEAX &4, X MOVE CURSOR LOWN
_00334A FDD2 3C F400 A CMPX #3CRN+1024 BOTTOM OF SCREEN
O0327A FONS 25 SS9 FEZO BLO VFINZ ,

Q0333A FDO7 30 89 FCOO A LEAX -1024, X GO0 TO TOP'QF SCREEN
C00339A FIDE 20 S2 FEZ0 BRA VFINZ

Q0340A FDDD S1i oc A MVRT CMPA #RIGHT TEST IF RIGHT

- 00341A FOIF 26 OO FLDEE ENE MVLT

003424 FDEL 30 Ot [} LEAX 1, X MOVE CURSOR RIGHT
002427 FDEZ 1F 10 A TFR X, I

Q03444 FDES 04 3F A ANDB #E3F

00345A FLE7 26 47 FEXO ENE VFINZ IF NOT EOQLN
003446A FDED 3 a3 co A LEAX -b4, X MOVE TO BEGINNING
- 00347A FREC 20 4z FE=2 ' ERA VFINZ
» 00348A FDEE 21 0b A MVLT CMPA HLEFT TEST IF LEFT

/7

PAGE

DOZ49H
Oﬁ“”ﬂﬁ
D0z

@@.~”ﬁ
QO3EEA
QO33540
OOZERS
Q03544

OO=ET6
DO3534
0025964
Q03O
OOZ6LIA
QO3LZA
003636
OO3644
DOZ6EA
OOELLA
DOZETH
OO362AR
COZESH
OO3708
COE71h
OO372/
OOBTEN
DO3744
o073

OO3766
O0OZ77A
QO3734
DOBTOH
GO3B0A
O0zZE1L
OO3824
OOZEZA
0033440
ODEES

OO3346A
OOZE7H
003834
0ozESh
Q03904
GO=%1A
QORP2A
OOZ924
0039447
00395
QO3TALA
O0Z97A
QO3IP24A
O039%9A
QO4G0A
0O401A
OO402A
OO40%A
QC404A
004054
- Q0404A

FOFO
FOFZ
FoF4
FOF&
FOF7
FOF®
FOFDR

FOFD &

FLFF
FEOL
FEO4
FEOA
FEOR
FEOA
FEOC
FEOE
FEL10
FEL1L
FE1=
FELS
FE17
FEL?
FEIR
FELE
FEZO
FEZZ

FEZ4
FEZ2&
FEz&
FE24
FEZC
FEZE
FEZO
FE3Z
FE=4
FE34
FEZE
FEZ2A
FEZD
FESF
FE41
FE43
FEAS
FE47
FE4H
FEA4AC
FE4E
FESO
FESZ
FESS
FEST
FESS
FESER
FESD

FEGEF

FE&L
FE&E
FE&S

26
30
1F
53
C4
24
20
=1
zé!
20
Z0
21
26
iE
C4
i1E
Sé
25
Z0
g1
s
34
14
81

i(_‘
34
&é
a7
iF
C4
ZL
35
20
81
z7

21

726
3E
s
27
=4
3A
=7

-
EEUN

5
20
&1
26
ec
23
€6
a7
20
51
25
Ab
A7

3C

OF
iF
10

L)
“l

35
04
OR
0%

33 40

SF
oD
OB
10
o
i0

EE
ik
iB
05
80
FF7¢&
OF
16
10
Z0
20
10
3F
Fé&
10
4
05
O
1E
14
FOGO
0z
43
10
20
a0
F400
Fo
EC
o8
OB
FOOO0
20
Z0
82
27
20
23
b1
20
F400

007 MIIRDDA” SA: L

FOFD
A
&)

)
FE30
FEOL

A
FEO&

A
FE&S

&
FEIS

A

EAY

f4)

FEOL
FEZO

FEL1E

-0
=
0
D

-
U
£

”
M
N

DT IPIIRND

iy
in
an
B

A

LINEF

LNEF

CARET

SETXY

EREOL

EREL

EREX
VFINZ
EREOS

ERASE

CLREC

BUP

NCONT

ODSPLY

"SCRL.

ENE
LE&AX
TFR
CoMB
ANDE
BNE
ERG
i1 24 41
[ENE
LEAX
BRA
oMPA
EBNE
EXG
ANDE
EXG
RORE
BCS
BRA
CHMPA
ENE
DA
LERA
ZHMPA
BNE
P3HS
LA
STA
TFR
ANDE
ENE

PULS

ERA
CHPa
BEG
CMPA
BNE
LOX
BITE
BE®R
PSHS
L.0A
STA
CMPX
BLO
BRA
CHMPA
BNE
CHMPX
BLS
LA
STA
ERA
CHPA
BELO
LDA
&TA
CMPY

LINEF
-3, X
X, I

HeT
VFINZ
LNEF
#LF
CARET
&4, X
SCRL
#CR
SETHY
%, D
#500
XD

LNEF
VFINZ
HESC
EREQL
#$30
STAYF
#EEOL
EREQS
X
#%$20
O, X+
X, 0
#$3F
EREL
X
VFIN
#HFF
ERASE
#HOME
EUFE
#5CRN
#2
VFIN
X
#$H20
O, X+

MOVE CURSOR LEFT

TEST REGINNING OF LINE

TO END OF LINE
TEST IF LINE FEED

TEST CARRAIGE RETURN

CLEAR LOWER & BITS

OF CURSOR POINTER

TEST AUTO LF

DO LINE FEED

SET XY?

SET M5B

TEST IF ERASE END OF LINE
SAVE CURSOR POINTER

SFACE

CLEAR LINE
TEST END OF LINE

RESTORE POINTER
HOME UP?
TOP OF SCREEN

TEST IF HOME & CLEAR

SPACE CHARACTER
CLEAR SCREEN

#SCRN+1024 TEST END OF SCREEN

CLREC
EREX
#ES
NCONT
#SCRN
VFIN
#$20
Q, "'X
VFIN
#$$20
VFIN
1: <
O, X+

TEST IF BACKSFACE

TEST IF EBEGINNING SCREEN

BACK UP AND DE3TROY

- TEST IF CONTROL

SKIF IF TRUE
GET CHARACTER
ONTO THE SCREEN

#5 LRN+10’4 TEST END OF SCREEN

PAGE 003 MICRODAS. S5A: 1

004074
OOL034
004096
004104
Or411n
GO4126
Q0415
GO414A
00415A
DO4 1466
004176
004156
DO41964
QUAZ0A
C04z1h
QOL226
Q042205
GOL244
00475

DO424

00427

00423

0047568
DU430A
CO04Z1A
Q04322

0042358
OU4344
O04=54H

043464
CO4Z74H
Q4334
GOAZYA
004400
DO441A
Q4426
004424
Q0444

00445

00446

00447

00443

0044%

00450

00451a
Q04520
DO4ASZA
Q04544
0045548
O04546A
D0O4ASTA
OQ4334
QOAEIR
Q04404
004610
00446248
- DO4EEA
Q44644

FE&E
FEAA
FE&LC
FE&F
FE7Z
FE74
FE77
FE7D
FE7C
FETE
FETF
FEBL
FES4
FES4
FEG&
FESA
FEGC
FEBE

FESO
FEYZ
FE%4
FES7

FEYY Z
FEYB &

FESD
FEDF
FEAL
FEA3
FEA4
FEASL
FEAG
FEAD
FEAER

FEAD
FEAF
FERZ
FER4
FEES
FER7
FEES

FEBRB
FEED
FERF

FEC1
FEC3
FECS
FEC7

2%
LF
cE
Ab
a7
3C

75
M
A7
50
v
30
AF
Ak
A7
34
A7
35

=0

F

LY =4
poches }

b}
-t

FE
AE
SF
en
a1
7
21
z7
34
z0
Ab
z7
Al

1A FEg4
12 A
FOOO A
83 40 4
&0 &
F3C0 A
Fé FELF
2040 A
&0 A
Fi FE7C
Aag Co &
Hé& A
24 A
= &
5F £
4 4
7 A
55 A
EF)
AZFE A
DA Fal
FC FES7
5 a
aSC 4]
SE &)
8% £
an A
01 FEAD
SC A
s A
77 A
A3FE &)
&9 A
ne FESO
03 A
3= FEEE
i3S A
25 FEF4
12 A
01 &
84 A
1¢& FEDD
E4 A

SCRLM

CLRLN

VFIN

et e ¥k ko

NCH

INCHZ

CIRCE
*
#*
*
#*
%
#*
#*
1

NEF

INBF1
INEBFZ

TDOL

INPUTS

BLO
TFR
)
LDA
&Ta
CHMPX
BLO
L.0D
STH

.DECB

ENE
LEaAX
&TX
LDA
ETAH
LDA
ETA
PULS

FEHE

ANDCZ

LOuU
T5T
BEG
DEC
LDE
LDX
LOA
INCB
CMFE
BLS
CLRE
5TB
PULE

VFIN

Xs Y S5AVE CURRENT SCREEN PTR
#ECRN FOINT TO TOP OF SCREEN
64, X CHAR FM NEXT LINE DOWN
O X+ MOVE LUF ONE LINE

HECRN+DA0 TEST END 0OF SCREEN
SCRLM LOOF TIL ALL MOVED UpP
H$HZOR256+64 SPACE BOTTOM LINE OUT
O, X+ CLEAR CRT MEMORY

COUNT 44 LOCATIONS
CLRLN
~-hd, Y BACK UP LAST PTR ONE LINE
CPTR, U SET NMEW CURSOR POINTER

0, X GET LAST CHARACTER
LCHR, U SAVE LAST CHARACTER
#HSF UNDERL INE FOR CURSOR
0, X SET CURSOR

CC, Ay B, Xu Y, UL PC

INPUT KEYBOARD ROUTINE
CHARACTER IN ACC A

ce, B X U
#HEEF SET KYBD INTERUPT
SCR GET SCRATCH POINTER

IQCNT, LI TEST CHARACTERS IN QUELE
INCHZ LOOF UNTIL CHARACTER
IRCNT, U

IGFPTE, U GET GUEUE FOINTER
IABEG, U GET START OF GUEUE

E, X GET CHARACTER

IGLIM, U TEST IF END OF GQUEUE
CIRCE

CIRCULAR GUEUE
IaPTR, U SET NEW GUEUE PTR
ct, B Xo W, FC

INFUT BUFFER ROUTINE
ENTER Y POINTS TO BUFFER

&R INEF
FCB BUFFER LIMIT-1
DELIMITERS FOLLOWED BY A ZERO

FEHS
L.Du
LDOX
CLRB
EBESR
CHMPA
BEG
CHPa
BE&
PSHS
LEAX
LDA
BER®
CHMPA

CC, A B Xy Y, U

SCR GET SCRATCH POINTER

@ & GET RETURN ADDR
BYTE COUNTER

INCH GET CHARACTER

#B5 TEST IF BACK SPACE

BACK

#OTLU TEST IF CONTROL U
NEWLN

Ay X
1, X FAST COUNT
0, X TEST END OF LIST

INEF4 EXIT IF END
QS TEST IF DELIMITER

PAGE

004654
OO45L6A
O04LTH
004434
O04 L6
00417040
00471k
004720
00472A
Q047464
Q0475

Q047 6HA
004776
O0473A
004776
QO430A
WHAE1A
TO432R
004EA
004344
00485h
00434A
00487A
004334
004e9h
Q04904
BOAYIA
GDEGIZA
Q0492A
004944
C0495A
Q04964
00497

00493

00499

QO300A
O0S01A
QOS02A
QOTOZA
Q03044
00505A
QOS04A
005074
QO302A
0050%A
QOS10A
00511A
005124
005132A
005144A
O0S15A
QOS146A
O0S1I7A
QOS138A
OCS1Ien
QOS20A
OCS2Z1A
O0522A

FEC®
FECE
FECD
FECF
FED1
FED3
FEDS
FED7
FEDY
FEDE
FEDD
FEDF
FEE1
FEE?3
FEES
FEE7
FEES
FEEA
FEEC
FEEE
FEEF
FEF1
FEFZ
FEF4
FEFS
FEF7
FEFY
FEFB
FEFC
FEFE
FFOO
FFO4

FFOS
FFO7
FFOA
FFORE
FFOC
FFOF
FFL1
FF1z
FELS
FF17
FFi2
FFik
FFiD
FFiF
FF23
FFZ&
FF27
FFzs
FF2R
FFzI
FF2F
FFa1
FF33

e
35
ED
30
=3
A7
&h
24
AF
35

Ll =
ot

El
Z4
31
A
a7
SC
30
Z0
5D
z7
54
Z0
=D
z27
86
&
SA
Z0
4D
10ZE
39

34
&7
4F
SF
33
Z6
34
en
2D
€&
EC
AR
1063
25
Cé&
iF
an
A&
&n
AL
&n
AE

F(‘.t
12
61
20
Ori
AS
£0
FC
&9
F7

12

. 34

0z
20
CE
AS

12
c7

c4

Fé

" ED

03
)¢

Fé
54
FE71

3C
F401

0001
FE
FF
4n
49
on
47
E4
&2
0040
02
40
93
37
&2
&3
ZF
&2

009 MICRODAS. SA: 1

FEC1
A
A
FEFE
A
A
A
FEDS

DD

FERS

A
FERS

A
FEFE
FERES
FEES
FEEA
FEER4

A
FEFE
FEF4

A
FO7S

FF&Z

FF&2Z

FRT

INEF4

NEWLN

ouTXx
auTXZ

3

ENE
PULS
sTD
BSR
LDA
STA
TST
BNE
ETX

PULS

FULS
CMPB
EHS
CMPA
BEL.O
5TA
INCE
B3R
ERA
TSTB
BE®
DECB
ERA
T3TB
BEG
LDA
BER
DECB
ERA
T3T
LEMI
RTS

T
A, X
1,&
DUTX
#CR
B,Y
0O, X+
FRT
9, G
CCoA B, X
A X

0, X
INEFZ
HE20
INEFZ
B,Y

DUTX
INEFZ

INEFZ
INEFZ
INEF1
#B5
ouTX
NEWLN

IDSTAT., U
couT

NO KEEF LOOKING

SET DELIMITER

OUTPUT DELIMITER

SET BUFFER DELIMITER TO
SAVE DELIMITER

FIND END OF DELIMITERS

SET RETURN ADDR
Y, U, PC

TEST IF LIMIT EXCEDED
IF €0 IGNORE
NO CONTROLS IN BUFFER

S5ET CHARACTER
UFPDATE COUNTER
OUTPUT CHARACTER

TEST BEGINNING OF LINE
BACK UP

TEST IF BEGINNING

YES CONTINUE

BACK UP TO BEGINNING
QUTFUT BACKSFACE

COUNT OF # CHARALCTERS

TEST STATUS

CASSETTE DUTPUT ROUTINE

#*
CTOT

WCWT

PUNCH

LDA
&STA
CLRA
CLRE
SUBD
ENE
LDA
SER
B3R
LDA
BSR
LD
SUBD
CMPD
BL.O
LDE
TFR
EBESR
L.DA
BSR
L.DA
BSR
LDX

#H3C
FIASA

#1
WCWT
HHFF
CASOUT
SYCASD
#$9n
CASOUT
0, &
2,9
#&4
STMAX
#64
B, A
CASOUT
2,5
CAsouT
3:5
CASQUT

2,9

KBD OFF, RC ON
SET FIA STATUS
WAIT LOOP AFTER RC ON

FORCE SYNC

QUTPLIT TRAILER
OUTFUT RECORD MARK
END-BEGIN

. GT. ¢4

SET MAX RBYTES FPER RECORD
OUTPUT COLNT

QUTPUT HIGH ADDR
QUTPUT LOW ADDR

GET ADDR

CR

22

PAGE

OOTZ3A
DOS240
OOSZSA
OS2 66
DOSZTH
GOS280
005296
00530A
GOEE1A
OOS32ZA
DOSZEA
005340
00535A
Oﬂajbé
DOSETA
OO5332A
00529Q
005404
O0541A
QOS4248
00542
005444
O0545
Q054460
OOS4TA
Q05434
%O QQA
$0¢dlﬁ
005324

e
it

005544
O0ToSEA
@Gﬁzﬁﬁ
_isﬁ:rﬁ
Oﬂ SQ
00_!\“1
0oS 6UA
O0561A
COSL2H
0O5LE
Q05464
CO035465A
O0EL6A
COSL7A
COSLEA
QOS69A
00370/
005714
O0S72ZA
QU373
00574
Q0573
DOG76A
003774
00578A
QOS79A
0OSE0A

oLo

FFas
FF37
FFaye
FF3B
FFzD
FF3F
FF41
FFaz
FF44
FF44
Frag
FF44
FFAC
FF4E
FF&O
FF52
FFo4
FFS4
FFay
FF5D

FF&0

FF&62Z
FFé&q
FFé&bh
FFes
FF&S
FFGE
FF&IC
FF&D
FF&F
FF70
FF72
FF72
FF75
FFE77
FF7%2
FF7E
FF70

FF7F
FFed
FFra4
FF&é&
FF33
FF&A
Frao
FFEE

FF&F

FFEa21 ¢

FFoa
FF95
FF97

MICRODAS.

&F
AT
&n
Ab
ALk
A7
S5A
26
B30
AF
A
Z6
30
&6
30
gé
B7
1025
16

34

34
4
230
1z
AHF
1z
46
&9
5A
Z6&
13
iA
&3
Cé
E7
ic
35

iA
€E
E7
Eé
c4
E7
Ch
o9

S 1
EZ &
34 A Woas
z7 FFez
80 4]
E4 £
E4 [l
F3 FF37
)4 A
iAa FF&62
&2 &)
E4 A
Ne FF11
1G FF&60
[53%% &
CE FF&62
=5 A CEXIT
F401 A
FoaR FCRE
FO30 FC90
#
EC A SYCASD
*
i4 A& CASDUT
05 A
17 FF7F
02 A
coTLe
0z &
Fe FF&E
01 8 CAST
02 a
04 A
03 a
EE oY
P4 &
*
¥
i0 A LD3
F400 (&)
03 A
o1 &
FC &
01 [
o3 &
#*
“.
#
a2z FFCZ CREAD
EC A
FA FFeF
2C FFC3
|53 A

CLR
LA
EER
LDA
ADDA
STA
DECE
BNE
PULS

-BSR

&TX
CMPX
ENE
BSR
LD&
BSR
LA
5TA
LECS
LBRA

LDA

P5HS
LDk
B3R
SYNC
CLR
SYNC
RORA -
ROL
DECE
ENE
SYNC
ORCC
ROL
LIE
STB

ANDCC

PULS

ORCC
LI
STB
LOE
ANDB
ST
LDB
RTS

BER
oMPA
ENE
BSR
CMPA

O: ""f‘t |
0, X
CASOUT
O, X+
0, G
0,9

Weas
&)
CASOUT

7, €

0,5
FUNCH
SYCASH
$H5EY
CAROUT
#E25
PIASA
ERROR
EXEC

#EEC

B, X
#5
LD3

CaTLF

#$01
2, X

#4

3. X
#SEE
B, X, PC

#$10
#FIADA
3, X
1, X
#$FC
1, X

#3

CASIN
HEED
CREAD
CASIN
#sLe

SET UP CHECKSUM
GET VALUE

QUTPUT TO CASSETTE
UFDATE CHECKSUM
COUNT # BYTES
GET CHECKSUM
SAVE NEW FOINTER
TEST IF DONE

NG CONT INUE
QUTPUT TRAILER
END OF FILE

RC OFF, KEYEOARD ON

SYNC CHARACTER

WRITE CLOCK ENAERLE
WAIT FOR CLOCK EDGE
START BIT

WAIT FOR ANOTHER EDGE
ouTFUT BIT

8 TIMES

SET CARRY

TURN CLOCK COFF

ENABLE KEYROARD INTERUFT

DISABLE KEYBOARD INTERUPT
FOINT TO FIA
SET CLOCK INTERUPT

CLEAR KEYBOARD

GET SYNC
TEST IF SYNC
NCO LOGR

END OF FILE?
25

TOTAL ERRORS
TOTAL WARNINGS

CPAGE 011 MICRODAS. 5A: 1
- 00Se1n FFO9 27 EY FF&a
005227 FF?B 81 20 A
O05EZA FFYL 26 FO FFeaF
00524A FF9F 3D 22 FFC3
005ESA FFAL 24 0z A
005344 FFA3 3D iE FFC3
00527A FFAS IF ey A
- 00333A FFA7 3D iA FFC3
- 005E%A FFAY 1E 89 A
OOSY0A FFADR 30 AB A
- 005%1A FFAD SF
005920 FFAE 3D 13 FFC3
- 00592A FFEO L&A E4 [}
005944 FFBZ 2B Qb FFBA
00595A FFE4 AT g4 A
- 00594A FFR4A EB B0 A
00597/ FFEE ZO Fa4 FFAE
- 00593A FFRA 34 02 A
O0599A FFRC E1 E1l A
004L00A FFBE 27 CF FF8F
O0LO1A FFCO 43
- 00602/ FFC1 20 91 FF34
0040
00604
00405
Q0L06A FFC3 34 i4 A
- O0&O7A FFCE C& oc f
- 005038 FFC7 B Bb FF7F
- BOLOYA FFLCY 13
00A10A FFCA 4D 02 A
- 00611A FFCC ZE FE FFCo
00612/ FFCE 13
00&12A FFOF &% 0z A
00614A FFDL 46
00&1SA FFDZ SA
00h146A FFD3 26 F2 FFCE
00617A FFIIS 20 SC FF7&
004183
00619
00420
O0LZ1IA FFL7 &E 9F AZFZ A
0046228 FFDB 4E 9F A3F4 A
006LZ3A FFLF GE SF ASF& A
00424A FFE3 &E PF A3F3S A
004&25A FFE7 &E 9F AZFA A
00&L26A FFEB 4E 9F A3FC A
00627
Q046288 FFF2
00&2Z9A FFFZ FFDF A
004630A FFF4 FFDB A
O0&31A FFF& FFE7 A
004632A FFFR FFE3 A
00&23A FFFA FFO7 A
0046344 FFFC FFEB A
O0&35A FFFE FCSO A
L Q0636

00000~=00000

DOOCO—-00000

EEG
CMPA
ENE
BSR
FEHE
BSR
TFR
B3R
EXG
LEAX
CLRE
RLOAD B3R
LDEC
BMI
&TAH
ADDB
ERA
CkSM PSHS
CMPE
BER
COMA
BRA

#*
CASSETTE
L3
CASIN P3HS
LDE
B3R
CINZ SYNC
TS5T
BMI
CIN3 SYNC
ROL
RORA
DECE
BNE
BRA
L3
INDIRECT
4%
VEWI JME
VSWIZ2 JIMP
VEWIZ JdMF
VIRG JMP
VFIRG JMF
VNMI JMP
VECTORSG
ORG
FDOR
FORB
FoR
FDB
FoE
FDB
FoR
END

CEXIT
#4690
CREAD
CASIN
A .
CASIN
(AP E
CASIN
&, B
o,y

CASIN
0, &
CESM
0, X
O, X+
RLOAD
A

O, S
CREAD

CEXIT
INPUT

B, X
#sC
LD3

-
CINZ

Z X

CIN3
CAST

VECTORSE FOR

[EWIV]
CSWIZV]
LEWIZV]
[IRAV
[FIRGV]
CNMIVI

$FFF2
VGWIE
VSWIZ
VFIR®
VIRQ
VEWT
VNMI
RESET

VALID RECORD MARKER
READ HEADER

GET ADDRESS
CORRECT ADDRESS
CALCULATE OFF3ET

GET DATA

COUNT

GET CK3SM WHEN DONE
SAVE DATA

UPDATE CHECKSUM

CHECKSUM TO STACK
TEST CHECKESUM

SET CARRY FOR CHECKSUM ERROR

SET READ CLOCK INTERUFT

WAIT FOR CLOCK
START BIT?

WAIT FOR NEXT BIT
GET BIT

INTO A
npo & TIMES

LE09

Y

PAGE 012 MICRODAS. S5A: 1

FEEE
0003
0048
FE4E
FEO&
FFC3
FF&z
FF73
FFSa
FFCo
FFCE
FEAY
FC47
FFBA
FE7C
FEA4S5
FFFS
FF&4B
Fozs
FFFé&
0QOD
FFeF
FCCE
FCDs
001s
0016
FFOS
0004
FE&1
O0OE
FC33
FE41
FEZ24
FEIE
FE32
FEZE
FCB3
001k
FC0
FCEC
0003
- AZFA
FEDS
FCEE
FD2E
FLozs
FD4z2
0O01E
FDS9
FEAD
FER4
FERS
FEEA
FEDD
Q090
FEQO
FE®7
FCz0

BACK
BS
EBUFLIM
BUP
CARET
CASIN
cCasouT
CAST
CEXIT
CINZ
CING
CIRCE
CIRCLE
CKSHM
CLRLN
CLRSIZ
CONEW
COTLP
cour
CPTR
CR
CREAL
CSTIN
CceTaT
CTLU
CTLwy
cCToT
DIOWN
DSPLY
EECL
ENTER
ERASE
EREL
ERECQL
EREDS
EREX
ERROR
ESC
EXELC
EXECZ
FF
FIRGV
FRT
HEXCR
HEXI

HEXIN

HMSK
HOME
HXDL
INEF
INBF1
INEFZ
INRBF3
INEF 4
INBUF
INCH
INCH2
INFUT

00457 004c44%+
00043800395 00454
000LEHO0074 001 &G
00335 O039%5%
00257 00ZL0H#
00576 00579 00534
00507 00510 00517
0O557%00617
O0LZ9#005E1 004602
QOLOP20061 1

0061 Z#00616

Q0440 00442+
0012z 001244
0O324 QO593+%
0041500417

00321 #00393
QO0EZHO0Z0Z

QO351 00555

QO490
00z11

00336 00338 00592 0060564
00519 005Z1 O0LZE 00GZZ O0SZE 00546

000z 00184 00ZYZ#00495

Q00463%00295 00419
QO034#00160 001464

Q0130 00211 00215 00220 00223 00360 004469

00190 0057600578 00SEE 00&00

Q0175 00133%
0017% 00192
00041 00453
00042#00106

QO200 00500+
000Z1 #0022

Q0303 00404+
0002E#003272

00107 00113+
00zEs 00ZEYH
0O373%#00379

00269 0O0ZT7Z#
Q0373 OO
00ZE0%#00Z%4
0017600131 00193
000Z7#0024E

QO1L54 0O153%#00173
0017Ý
QQOIIHOOIR2
0005Z2#00625
Q047100472
00179#00162 001&&
0024100244

000EE 00179 0019z
00247 00251 %
00040#00148 00264
Q0243 00245 00249
000&4 00145 00z10
QQ454%00429
OG4LETH0O04T77 00479
QO4R[2EO0437

00463 00475
QQO72%00144 O0O20%9
000EZ 004ZYHO045S
QO432800423
0010&E3#001 2%

00125 00214 223 00541

003542

00197

O

[N
<
N

00z1x

Qo

X
)
0
*

QO2467 %
00451 #

004&2 00484

25

PAGE

FCE®
FCEA
FOio
FDZO
FFFZ
FFF4
FFFE
FFFA
FFFL
FFFB
FFFC
A3ZFE
FCCS
FFF3
FF7F LD&
0006 LEFT
000A LF
FDFD LINEF
FEO1 LNEF
A3FF MAXRAM
FOCE MVDN
FDEE MVLT
FODDT MVYRT
FDB? MVUP
FESD NCONT
FEF4 NEWLN
AZFC NMIV
FD93 NSETX
FFF3 OF3

INGF
INSP1
INSFZ
INSP3
IGDEV
[O5TAT
IGEEG
[QCNT
ICLIM
IGPTEK
IGFTG
TRuay
JUMF
LCHR

FDAD 0OHX
FLOSRE OHX1é
FD&63 OMWX3
FCCE ouTZz
FEFE 0OUJTX
FFOO QUTXZ
FC32 DVFLW
F400 FIADA
F402 PIADDB
F401 FIASA
F403 PIASBE
. FFi1 PUNCH
Q0S50 AL IM
0000 QUEUE
ACOO -RAM
FCS0 RESET
QQ0C RIGHT
FFAE RLOAD
A3FE SCR
FE&S SCRL
FE&LF SCRLM
FOQOO SCRN

A359Y SCRPD
FE1G SETXY
FCCY SPACE
FFF1 STACK
FF27 STMAX

013 MICRODAS. 5A: 1

OUL16&Y 00ZOZ
OO2034#007730
00zZ14 00Z19%
00223 00227+
O00LO*
00061%00125 00143
CO070%#00117 00147
QO0LL¥OO10Z 00113
00069400114 00121
O00L7H0O0109 00113
O00LEx00110 00455
Q0052800134 004624
00171 00182
O00AL4%00277 00421
00548 OOSLE#004LOE
QOO32#00343
O00Z5#00256
003479 00354k
O0ZEE OOZEE#00ZG4
QQO44L£D0042 OO0OS0
00ZZ7 00ZZZ%
00341 00343%
00ZZ4 00Z40%+
00309 003243
00296 00402
00452 Q0433+00493
00054400426
GO306 003094
Q0056%#00057 Q00LO
00048 0006Y 00070
00231 00233
o00e7
00036
00149

00207 00274
001461 0016Z
00443 00432 00491
00127 004%S#
00111%00115
000ZEH#00102
Q0Q27#00152
000263400151
QOQ23#
QOTOL#O0EES
QOOS7%#00072
000713#0014¢
OOO45%
001Z3Z#0065%5
QOO3I3IRQOILZ0
00SPZH0O0EY7
QOOS5+00104
O03EY 00406
00410%00413
Q002400297
C0412
QOO74%00132
00Z&1 00ZLEw
00 135#00:205 00‘03
000E2#00124 0015
Q0314 Q00516%

005EE

00501

Q0074

00133

Q0319

00z04 00z27z%

00494
004z6
00114
00145
00124
00442

00432 00434
0049
00141

00051 00032 00053 Q0054 00055 00074

000461
00071

00062 000463 00064 000465 000646 UUUb/
00072 00074

Q027 4%

00177 001&4#00229

004924+

00540

00144

00133 00294 00431 00452

00329 003346 00336 00322 00327 00406 00402

20

. #

PAGE 014 MICRODAS. SA: 1

FDo4 STXYF O0Z07#00271

FLOZ SHCMD 00032%00094

FCOE SW1zC 00091%#00137

A3F4 SWIZYV 00050%00133 Q0s22
AZFE SWITY O00S1#0062E

3FZ SUWIV 00049%00073 00s221
FFLO SYCASO 00508 O0TZL 005444

0009 TAB 000364%
FEC1 TOL CO46L1#00465
000B UP 00030%003246

FEB4 VFIN 00331 00333 00393 00401 00403 00407 00419%
FEZO VFINZ 0O0ZZ0 00222 00Z3E7 00ZE% 0024% 00347 00Z54 00267 00zl
FOCY VFIN3 003038 00323 00332+

FFE7 VFIRG: 0O0&Z5#006321

FFE3 VIRQ 006248004632

FFER VNMI 00LZEH00624

FFD7 VS3SWI QOAZL #0633

FFOE VEWIZ O0&ZZ#004LZ0

FFDF VSWI3 004623#00429

FF27 WCAS O0EZ4#00S20

FFOC WCWT 00504%#0050%

FDES XYER 00Z11 00313 00216 00218 O0ZZ4w

FFF2 XYF O0OAS®0O0140 GO303 OO307 00314 00324

e

@ MOTOROLA

SEMICONDUCTORS

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721

MC6809

(1.0 MHz)

MC68A09

(1.5 MHz)

MC68B09

(2.0 MHz)

Advance Infornmation

8-BIT MICROPROCESSING UNIT

The MC6809 is a revolutionary high performance 8-bit
microprocessor which supports modern programming techniques
such as position independence, reentrancy, and modular
programming.

This third-generation addition to the MC6800 family has major
architectural improvements which include additional registers,
instructions and addressing modes.

The basie instractions of any computer are greatly enhanced by
the presence of powerful addressing modes. The MC6809 has the
most complete set of addressing modes available on any
microprocessor today.

The MC6809 has hardware and software features which make it
an ideal processor for higher level language execution or standard
controller applications.

MC6800 COMPATIBLE
® Hardware - Interfaces with All M6800 Peripherals
® Software - Upward Source Code Compatible Instruction Set and
Addressing Modes
ARCHITECTURAL FEATURES
® Two 16-bit Index Registers
@ Two 16-bit Indexable Stack Pointers
@ Two 8-bit Accumulators can be concatenated to form one 16-bit
Accumulator
@ Direct Page Register allows Direct Addressing throughout memory
map
HARDWARE FEATURES
® On chip oscillator (4 X fo XTAL)
® DMA/BREQ allows DMA operation or memory refresh
® Fast Interrupt Request Input stacks only Condition Code Register
and Program Counter
® MRDY Input extends data access times for use with slow memory
® Interrupt Acknowledge output allows vectoring by devices
® SYNC Acknowledge output allows for synchronization to external
event.
® Single Bus-cycle RESET
® Single 5-volt operation
@ NMI blocked after RESET until after first load of Stack Pointer
@ Early address valid allows use with slower memories
SOFTWARE FEATURES
@ 10 Addressing Modes
6800 Upward compatible Addressing Modes
Direct Addressing anywhere in memory map
Long Relative Branches
Program Counter Relative
Indirection
Expanded Index Addressing
0,5,8,16-bit constant offsets
8, 16-bit accumulator offsets
Auto-increment/decrement
® Improved Stack Manipulation
@ 1464 Instructions with unique addressing modes
® 8 x 8 unsigned multiply
® 16-bit arithmetic
@ Transfer/Exchange all registers
® Push/Pull any or all registers
® Load Effective Address

MOS

(N-CHANNEL, SILICON-GATE)

8-BIT
MICROPROCESSING
UNIT

L SUFFIX
CERAMIC PACKAGE
CASE 715

P SUFFIX
! PLASTIC PACKAGE
1 CASE 711

PIN ASSIGNMENT

1 CJ Vss HALT 3 40
2 3 NMT XTAL [39
37 IR EXTAL [38
4] FIRQ RESET [37
5 C4 BS MRDY [36
6] BA Q [35
7 3 vee E 3 34
8 C} A0 DMA/BREQ [33
9 [A1 R/W 3 32
10 . A2 DO [31
11 3 A3 01 [30
12 3 Ad D2 [29
13] A5 D3 [28
14 [A6 D4 [27
15 T4 A7 D5 [26
16] A8 D6 [25
17 . A9 D7 [24
18 [A10 A15 [} 23
19 [A1 Al14 [22
20 (3 A12 A13 [3 21

This is advance information and specifications are subject to change without notice.

© MOTOROLA INC., 1979

ADI-804

MC6809 ® MC68A09 ® MC68B09

MAXIMUM RATINGS

Rating Symbol Value Unit This device contains circuitry to protect the
Supply Voltage Vce -0310+7.0 Vdc inputs against damage dueyto zigh static
Input Voltage Vin -0.3t0+7.0 Vdc voltages or electric fields; however, it is
Operating Temperature Range Ta O 1o +70 °C advised that normal precautions be taken
Storage Temperature Range Tstg -55 to +150 oC to avoid application of any voltage higher
Thormal Resistance s 70 oW .than maxmgm rgted voltages to this high
impedance circuit.
ELECTRICAL CHARACTERISTICS (vcc=5.0V 5%, Vss = 0, Ta = 0 to 70°C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
Input High Voltage Logic, EXtal ViH Vss +2.0 - VbD Vde
RESET Vsg +4.0 — Vpp
Input Low Voltage Logic, EXtal, RESET ViL Vss - 0.3 — |Vss +0.8 Vdc
Input Leakage Current Logic lin — 1.0 25 uAde
(Vin=01t05.25 V, VcC = max)
Output High Voltage VOH Vdc
(lLoad = 20b puAdc, Voo = nmun) DO-D7 . Vgg t 2.4
{{Load = -145 pyAdc, Vee = min) AO-A15, R/W, Q, E Vgg +2.4 — —
{ILoad = -100 uyAdc, VCcC = min) BA, BS Vgg +2.4 — —
Output Low Voltage VoL — — Vgg +0.5 Vdc
(ILoad = 2.0 mAdc, Vgg = min)
Power Dissipation Pp — — 1.0 wW
Capacitance # Cin pF
{(Vin =0, Ta = 25°C, f = 1.0 MHz) DO-D7 — 10 i5
Logic Inputs, EXtal — 7 10
AO-A15, R/W Cout — - 12
Frequency of Operation MC6809 f — — 4 MHz
MCGB68A09 fXTAL — — 6
(Crystal or External Input) MC68B09 fXTAL — — 8
Three-State (Off State) Input Current DO-D7 Iyl — 20 10 pAdce
Vin=041024V, Voc = max) AO-A15, R/W — — 100
READ/WRITE TIMING (Reference Figures 1 and 2)
MC8809 MCG68A09 MC68B09
Characteristic Symbol Min Typ Max Min Tvp Max Min Typ Max Unit
Cycle Time tcYc 1000 — — 667 — — 500 — — ns
Total Up Time wT 975 — — 640 — — 480 — — ns
Peripheral Read Access Time | tACC 695 — — 440 — — 320 — — ns
tac = (1AD = tDSR)
Data Setup Time (Read) iDSR 80 — — 60 — — 40 — — ns
Input Data Hold Time tDHR 10 — — 10 — — 10 — — ns
Output Data Hold Time 1DHW 30 — — 30 — — 30 — — ns
Address Hold Time tAH 30 — — 30 — — 30 — — ns
(Address, R/W)
Address Delay tAD — — 200 — — 140 — — 110 ns
Data Delay Time (Write) {DDW — — 225 — — 180 — — 145 ns
Eiow to Ghigh Time tAVS — — 250 — — 165 — — 125 ns
Address Valid to Qhigh tAQ 25 — — 25 — - 15 — - ns
Processor Clock Low IPWEL 450 — — 295 — — 210 — - ns
Processor Clock High tPWEH 450 — — 280 — — 220 — — ns
MRDY Set Up Time tPCSR 60 — — 60 — — 60 — — ns
Interrupts Set Up Time PCs 200 — . 140 — — 110 — — ns
HALT Set Up Time tpCcSH | 200 — - 140 — — 110 — — ns
RESET Set Up Time tpcsp | 200 — — 140 - — 110 | — — ns
DMA7BREQ Set Up Time tpcsp | 125 — — 125 — — 125 | — — ns
Crystal Osc Start Time tre 100 — -— 100 — — 100 — — ms
E Rise and Fall Time tER. tEF 5 — 25 5 — 25 5 — 20 ns
Processor Control Rise/Fall tPCR, — — 100 — — 100 — — 100 ns
IPLF
Q Rise and Fall Time tQR, 1QF 5 — 25 5 — 25 5 — 20 ns
Q Clock High tPWQOH 450 — —— 280 — — 220 — — ns

2

MO TOROLA Semiconductor Products Inc.

@

MC6809 ® MC68A09 ® MC68B09 _

FIGURE 1 — READ DATA FROM MEMORY OR PERIPHERALS

!aa&k\‘ NOT VALID

MOTOROLA Semiconductor Products Inc.

3

’4 tcve e
|
] 24 v’r\< (PWEL 74V TAV \
o5V o5V tPWEH —————— 8 05V
L}
< tut i
@— 'AVS —»
v 24V
Q
\
- 24V \
e AH— | @—
24V
ADDR 05V
% 1ACC ——————
@— 1AD —p> ‘tDS;:I’(@~ (1DHR
e taQ 20V
DATA m DATA VALID
e 08V
|
MRDY 20V
BMA/BREQ 0.8V
@
AN ror vato ’{' pes
FIGURE 2 — WRITE DATA TO MEMORY OR PERIPHERALS
tcye
tER e —»| |eteF
—"""=<-4 v 74V 24V X
E
0.5V 05 V4 05V
——tavs flai— PWQH
L@ 1QR —:1, tQF
24V 24V
e 0.5V 0.5V
] i
R/W \\ 05V)
@ 'AD —b>
<—8 AQ —&| @ AH
24V
ADDR
BA, BS o5V
B) {010 VIV —& - IDHW
— I~ 24V - 24V
DATA DATA VALID
___/ 05V ¥= 05V
13

MC6809 ® MC68A09 ® MC68B09

FIGURE 3 — MC6809 EXPANDED BLOCK DIAGRAM

o)
DO-D7
AO-A15
/X— — e
G—\SsS
16
/ 8
//
g PC G
IR
— U <>
G S
———— RESET
h— NMI
< Y > ! e
Interrupt <¢—FIRQ
Control
le——IRQ
<G—f X >
D{ —p l;l)ﬂvé'/BREO
e
B e "
] DP cc «—p Bus <—— HALT
Control ——8& BA
L sBs
r—XTAL
ALU —_ EXTAL
imin
i] MRDY
L—»E
0
PROGRAMMING MODEL
FIGURE 4 — BUS TIMING TEST LOAD As shown in Figure 5, the MC6809 adds three registers
to the set available in the MC6800. The added registers
275V include a direct page register, the User Stack pointer and
' a second Index Register.
RL=2.2K ACCUMULATORS (A, B, D)
The A and B registers are general purpose
Test Foimt 2/:!\20&150 accumulators which are used for arithmetic calculations
o and manipulation of data.
c R Certain instructions concatenate the A and B registers
x“gsgsoo to form a single 16-bit accumulator. This is referred to as
' the D register, and is formed with the A register as the
= e most significant byte.
DIRECT PAGE REGISTER (DP)
The Direct Page Register of the MC6809 serves to
C = 30 pF for BA, BS R = 11.7 kQ for DO-D7 enhance the Direct Addressing Mode. The content of this
130 pF for DO-D7, E, Q 16.5 ki for AO-A15, E, Q register appears at the higher address outputs (A8-A15)
90 pF for AO-A15, R/W 24 kQ for BA, BS

@ MOTOROLA Semiconductor Products Inc.

4

during direct Addressing Instruction execution. This
allows the direct mode to be used atany place in memory,
under program control. To allow 6800 compatibility, all
bits of this register are cleared during Processor Reset.

@

MC6809 @ MC68A09 @ MC68B09 »

FIGURE 5 — PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15 0
X — Index Register
Y — Index Register
- Pointer Registers
U — User Stack Pointer
S — Hardware Stack Pointer
PC Program Counter
A l B Accumulators
AN /
N
D
7 0
I DP j Direct Page Register
7 0

[ele]u]]n]2] v [c] cc — condition Code Register

INDEX REGISTERS (X.Y)

The Index Registers are used in indexed mode of
addressing. The 16-bit address in this register takes part
in the calculation of effective addresses. This address
may be used to point to data directly or may be modified by
an optional constant or register offset. During some
indexed modes, the contents of the index register are
incremented and decremented to point to the nextitem of
tabular type data. All four pointer registers (X,Y,U,S) may
be used as index registers.

STACK POINTERS (U,S)

The Hardware Stack Pointer (S) is used automatically by
the processor during subroutine calls and interrupts. The
stack pointers of the MC6809 point to the top of the stack,
in contrast to the MC6800 stack pointer, which pointed to
the next free location on the stack. The User Stack Pointer
(U) is controlled exclusively by the programmer thus
allowing arguments to be passed to and from subroutines
with ease. Both Stack Pointers have the same indexed
mode addressing capabilities as the X and Y registers, but
also support Push and Pull instructions. This allows the
MC6809 to be used efficiently as a stack processor,
greatly enhancing its ability to support higher level
languages and modular programming.

PROGRAM COUNTER

The Program Counter is used by the processor to point
to the address of the next instruction to be executed by the
processor. Relative Addressing is provided allowing the
Program Counter to be used like an index register in some
situations.

CONDITION CODE REGISTER
The condition code register defines the State of the
Processor at any given time, see Figure 6.

@ MOTOROLA Semiconductor Products Inc.
5

FIGURE 6 — CONDITION CODE REGISTER FORMAT

Lefefn]In]zfvic]

Carry
Overflow
Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

CONDITION CODE REGISTER
DESCRIPTION

BIT 0 (C)

Bit O is the Carry Flag, and is usually the carry from the
binary ALU. C is also used to represent a ‘borrow’ from
subtract like instructions (CMP, NEG, SUB, SBC). Here the
carry flag is the complement of the carry from the binary
ALU.

BIT 1 (V)

Bit 1 is the overflow flag, and is set to a one by an
operation which causes a signed two’'s complement
arithmetic overflow. This overflow is detected in an
operation in which the carry from the MSB in the ALU
does not match the carry from the MSB-1.

BIT 2 (2)
Bit 2 isthe zeroflag, and is set to a one if the result of the
previous operation was identically zero.

MC6809 @ MCGSA09 @ MC68B09

BIT 3 (N)

Bit 3 is the negative flag, which contains exactly the
value of the MSB of the result of the preceeding
operation. Thus, a negative two’'s-complement result will
leave N set to a one.

BIT 4 ()

Bit 4 is the IRQ mask bit. The processor will not
recognize interrupts from the IRQ line if this bitis setto a
one. NMI, FIRQ, IRQ, RESET, and SWi all set | to a one;
SWi2 AND SWI3 do not affect |

BIT 5 (H)

Bit 5 is the half-carry bit, and is used to indicate a carry
from bit 3 in the ALU as a result of an 8-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of
this flag is undefined in all subtract-like instructions.

BIT 6 (F)

Bit 6 is the FIRQ mask bit. The processor will not
recognize interrupts from the FIRQ line if this bit is a one.
NMI, FIRQ, SW, and RESET all set F to a one. IRQ, SWI2
and SWi3 do not affect F.

BIT 7 (E)

Bit 7 is the entire flag, and when set to a one indicates
that the complete machine state (all the registers) was
stacked, as opposed to the subset state (PCand CC). The E
bit of the stacked CC is used on a return from interrupt
(RTI) to determine the extent of the unstacking. Therefore,
the current E left in the Condition Code Register
represents past action.

MC6809 MPU SIGNAL
DESCRIPTION

POWER (Vss, Vcc)
Two pins are used to supply power to the part; Vgg is
ground or O volts, while Ve is +6.0 V £5%.

ADDRESS BUS (AD-A15)

Sixteen pins are used to output address information
from the MPU onto the Address Bus. When the processor
does not require the bus for a data transfer, it will output
address FFFF16, R/W =1, and BS =0. Addresses are valid
on the rising edge of Q (see Figure 1 and 2). All address
bus drivers are made high-impedance when output Bus
Available (BA) is high. Each pin will drive one Schottky
TTL load and typically 90 pF.

DATA BUS (DO0-D7)

These eight pins provide communication with the
system bi-directional data bus. Each pin will drive one
Schottky TTL load and typically 130 pF.

MOTOROLA

Semiconductor Products Inc.

6

READ/WRITE (R/W)

This signal indicates the direction of data transfer on
the data bus. A low indicates that the MPU is writing data
onto the data bus. R/Wis made high impedance when BA
is high. R/Wis valid on the rising edge of Q, refer to Figure
1 and 2.

RESET

A low level on this Schmitt-trigger input for greater
than one bus cycle will reset the MPU as shown Figure 7.
The Reset vectors are fetched from locations FFFE16 and
FFFF16 (Table 1)when Interrupt Acknowledge is true, (BA
A BS =1). During initial power-on, the Reset line should
be heid low until the clock oscillator is fully operational;
see Figure 8.

Because the MC6809 Reset pin has a Schmitt-trigger
input with a threshold voltage higher than that of
standard peripherals, a simple R/C network may be used
to reset the entire system. This higher threshold voltage
insures that all peripherals are out of the reset state
before the Processor.

HALT

A low level on this input pin will cause the MPU to stop
running at the end of the present instruction and remain
halted indefinitely without loss of data. When Halted, the
BA output is driven high indicating the buses are high-
impedance. BS is also high which indicates the processor
is in the Halt or Bus Grant state. While halted, the MPU
will not respond to external real-time requests (FIRQ, IRQ)
although DMA/BREQ will always be accepted, and NMI
or RESET will be latched for later response. During the
Halt state Q and E continue to run normally. If the MPU is
not running (RESET, DMA/BREQ), a haited state (BA and
BS = 1) can be achieved by pulling HALT low while RESET
is still low. if DMA/BREQ and HALT are both pulled low,
the processor will reach the last cycle of the instruction
(by reverse cycle stealing) where the machine will then
become halted. See Figure 9.

BUS AVAILABLE, BUS STATUS (BA, BS)

The Bus Available output is an indication of an internal
control signal which makes the MOS buses of the MPU
high-impedance. This signal does not imply that the bus
will be available for more than one cycle. When BA goes
low, an additional dead cycle will elapse before the MPU
acquires the bus.

The Bus Status output signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q):

MPU State
BA | BS
0 0 |Normal (Running)
6] 1 lInterrupt Acknowledge
1 O |SYNC Acknowledge
1 1 |HALT or Bus Grant

FIGURE 7 — RESET TIMING

{6

e
¥ 35

Je—n—sfen+1sfe-n+2-sfen +3—sfen+4—sfe-n+5—sfen+6 sfen + 7—ofe-n+ 8 |

}-—m—-*-—m+1—o+~‘m+2+m+3*m+4——{-—~~5-}*m+6+{-—m+7+m48+m+9-{-—m+10o{

I P U O U o Y Y Y Y g Y Y Y Y Y O Y O o
[N T T T e e e e T Y T T T T o T T B e B o B e B |

-—.—_‘—-—!RC :

W

a0V ad 4.0V LXY
oV 0.8V oé/v// '—-f»

EANNNNMNWED E R D € € T T /D D G S G €D €129 (D (D) G G (D i

N X XXX

v

X

X X XX XX XXX X XA A XX

5
CUANNNNNNNANNNNNYY
Data §§§F§§§S§‘“§S“S‘§\()()(
Bus\ AN X)(
i NewPC New PC VMA First
Hi Byte Lo Byte Instruction

SANARARMNAVANMARAN "

Hi Byte

Lo Byte

Instruction

*Note: Parts with date codes prefixed by 7F will come out of Reset one cycle sooner than shown.

FIGURE 8 — CRYSTAL CONNECTIONS AND OSCILLATOR START UP

L
ouj S}oNpoid 410}onpuodiwes W I1OMNOLOW

E:E'CO

VrRTRY —fs 6809 Crystal Parameters*
VDD /— 3.58 MHz | 4.00 MHz | 6.0 MHz | 8.0 MHz
RS 60 Q 50 Q 30-50 Q 20-40 Q
E l l ' Co 3.5 pF 6.5 pF 4-6 pF 4-6 pF
; C1 015 pF .025 pF .01-.02 pF | .01-.02 pF
Cin. Cout| 25 pF 25 pF 25 pF 25 pF
Q 40 K 30K =20 K =20 K
All Parameters Are =10%
RESET (}_4\,//—— *Note: These are representative AT-cut crystal parameters only.
tRC ° Crystals of other types of cut that work may also be used.
A
38 {[= 39
MC6809
Y1 Cin Cout 38 v 39 _W__.,
8 MHz 18 pF 18 pF b c Rs
6 MHz 20 pF 20 pF 38— 1 39
4 MHz 24 pF 24 pF | [
Ci 1 \
ah o

SN

=
()
-]
©
o
©
®
=
0O
®
0
P
o
©
L
<
@)
o]
0
@
o
©

FIGURE S — HALT AND SINGLE INSTRUCTION
EXECUTION FOR SYSTEM DEBUG

2nd To Last Last Cycle

Cycle Of
Czlcrreent Cu?rfent Dead Dead |nstruction Instruction Dead
| lnst L inst__| Cycle j » Halted | Cycle | Fetch | Execute | Cycle | Halted
! | « [] I i
S I i B B
| l |
50 O O s O O
L-IPCSH tPCSH
: tpCH tPCr wct
2.0 20V 20V
HALT v 08V by 0.8 V. 0.8V
! €8 1
tPCSH
Address X X >< \ 2
B Fetch Execute
m XXX I —
02 —_—
BA / ﬁ\
(’(’ fT
B8S / \
Data X AN D3
Bus / ¢

Interrupt Acknowledge is indicated during both cycles
of a hardware-vector-fetch (RESET, NMI, FIRQ, IRQ, SWI,
SWi2, SWI3). This signal, plus decoding of the lower 4
address lines can provide the user with an indication of
which interrupt level is being serviced and allow
vectoring by device, {see Table 1).

Sync Acknowledge is indicated while the MPU is
waiting for external synchronization on an interrupt line.

Halt/Bus Grantis true when the MC6809 is in a Haltor
Bus Grant condition.

TABLE 1: MEMORY MAP FOR INTERRUPT VECTORS

Memory Map For
Vector Location Interrupt Vector
Description

MS LS
FFFE FFFF RESET
FFFC FFFD NMIT
FFFA FFFB Swi
FFF8 FFF9 IRQ
FFF6 FFF7 FIRG
FFF4 FFF5 SWIi2
FFF2 FFF3 SWi3
FFFO FFF1 Reserved

*NOTE: NMI, FIRQ and IRQ requests are latched by the falling
edge of every Q except during cycle stealing operations (e.g.,
DMA) where only NMI is fatched. From this point, a delay of at
least one bus cycle will occur before the interrupt is serviced by
the MPU.

8

MO TOROLA Semiconductor Products Inc.

Instruction
Opcode

NON MASKABLE INTERRUPT (NMI)

A negative edge on this input requests that a non-
maskable interrupt sequence be generated. A non-
maskable interrupt cannot be inhibited by the program,
and also has a higher priority than FIRQ, IRQ or software
interrupts. During recognition of an NMI, the entire
machine state is saved on the hardware stack. After reset,
an NMI will not be recognized until the first program load
of the Hardware Stack Pointer (S). The pulse width of NMI
low must be at least one E cycle. If the NMI input does not
meet the minimum set up with respect to Q, the interrupt
will not be recognized until the next cycle. See Figure 10.

FAST-INTERRUPT REQUEST (FIRQ)

A low level on this input pin will initiate a fast interrupt
sequence, provided its mask bit (F) in the CC is clear. This
sequence has priority over the standard Interrupt Request
(TRQ), and is fast in the sense that it stacks only the
contents of the condition code register and the program
counter. The interrupt service routine should clear the
source of the interrupt before doing an RTI. See Figure 11.

INTERRUPT REQUEST (IRQ)

A low level input on this pin will initiate an Interrupt
Request sequence provided the mask bit (1) in the CC is
clear. Since IRO stacks the entire machine state it
provides a slower response to interrupts than FIRQ. IRQ
also has a lower priority than FIRQ. Again, the interrupt
service rouine should clear the source of the interrupt
before doing an RTIl. See Figure 10.

6

"JU| $}9Npoid 10}donpuodjwss W IOHOLOW @

FIGURE 10 — IRQ AND NMI INTERRUPT TIMING
'¢-n-——+~n+1—+n+2—+-—nv3—+~n+4-—-4e~n¢5——l-—n+6—+—n+7~4~—n+8—4-n*9—-‘*n+10-4-—n+Ix—ol-rw1201‘—n+13—-‘¢-n+14-1'4~n+15*L—'~16-—L-n+174-—n‘18-1-—-n+19—4-n+20-—1-n+21-.l

M XX XX X X X X X X X X XX

Next FFFF SP-1 SP-2 SP-3 SP-4 SP-5 SP-6 SP-7 SP-8 SP-9 SP - 10 SP-11 SP-12 SFFF FFFC (NMI) FFFD (NMI) FFFF New PC New PCH
Instruction FFF8 (IRQ) FFFS (IRQ)

tPCS \w Fetch
IRQ or
NMI 0.8 V

om XX XX XX XX X X XX X XXX X X XXX

Instruction VMA PCLO PCH! US| USHI Y-REGLO Y-REGHI X-REGLO X-REGHI DP ACCB ACCA cc VMA NewPCH| NewPCLO VMA Of Int .
nterrup’

Service
Routine

A ANNNNNY \ : / X

< TN ST\

FIGURE 11 — FIRQ INTERRUPT TIMING
m—*—m+‘l"*—m+2-—k—m+3-+-m+4—*—m+5-k~m¢6-’|‘—m+7*—m+8-"'—m+9-*m+10+-m+11-—‘¢m+'2.‘

eI J N [O B
X__X

Next FFFF SP-1 SP-2 -3 FFFF FFF6 FFF7 FFFF NewPC New °C + 1

Instruction
tPCS i.— Fetch
FIRQ 048 v

oress XX XXX X X X X X X X XX

Instruction VMA PCLO PCH| VMA NewPCH| NewPCLO VMA 1st Inst.
Of Interrupt

Service Row

NN\ \ / G

BA XQ ; R;:\\
5s AN\ /T O\

Address
Bus

2
9]
»
©
o
©
®
2
0
o
©
>
o
©
®
=
)
(-
)
@
o
©

~ MC6809 ® MC68A09 @ MC68BO09.

XTAL, EXTAL

These input pins are used to connect the on-chip
oscillator to an external parallel-resonant crystal.
Alternately, the pin EXTAL may be used as a TTL level
input for external timing by grounding XTAL. The crystal
or external frequency is 4 times the bus frequency, see
Figure 8. Proper RF layout technigues should be observed
in the layout of printed circuit boards.

E.Q

E is similar to the MC6800 bus timing signal ¢2; Qis a
quadrature clock signal which leads E. Q has no parallel
on the MC6800. Addresses from the MPU will be valid
with the leading edge of Q. Data is latched on the falling
edge of E. Timing for E and Q is shown in Figure 12.

MRDY

This input control signal allows stretching of E to extend
data-access time. When MRDY is high, E will be in
normal operation. When MRDY is low, E may be
stretched integral multiples of quarter (V4) bus cycles,
thus allowing interface to slow memories as shown in
Figure 13. A maximum stretch is 10 microseconds.
During non-valid memory accesses (VMA cycles), MRDY
has no effect on stretching E. This inhibits slowing the
processor speed during “‘don’t care’” bus accesses.

DMA/BREQ

The DMA/BREQ input provides a method of
suspending execution and acquiring the MPU bus for
another use as shown in Figure 14. Typical uses include
DMA and dynamic memory refresh.

Transition of DMA/BREQ should occur during Q. A low
level on this pin will stop instruction execution at the end
of the current cycle. The MPU will acknowledge
DMA/BREQ by setting BA and BS to a one. The
requesting device will now have up to 15 bus cycles
before the MIPU retrieves the bus for self-refresh. Self-
refresh requires one bus cycle with a leading and trailing
dead cycle, see Figure 15.

Typically, the DMA controller will request to use the bus
by asserting the DMA/BREQ pin low on the leading edge
of E. When the MPU replies with BA =BS =1, that cycle
will be a dead cycle used to transfer control to the DMA
controller.

False memory accesses should be prevented during
any dead cycles. When BA is cleared (either as a result of
DMA/BREQ = HIGH or MPU self-refresh), the DMA
device should be taken off the bus.

Another dead cycle will elapse before the MPU is
allowed a memory access to transfer control without
contention.

MPU OPERATION

During normal operation, the MPU fetches an
instruction from memory and then executes the
requested function. This sequence begins at RESET and is
repeated indefinitely unless altered by a special
instruction or hardware occurrence. Software
instructions that alter normal MPU operation are: SWiI,
SWI2, SWIi3, CWAI, RTl and SYNC. An interrupt, HALT or

DMA/BREQ can also alter the normal execution of

instructions. Figure 16 illustrates the flow chart for the
MC6809. The left-half of the flow chart represents
normal operation; the right-half represents the flow when
an interrupt or special instruction occurs.

FIGURE 12 — E/Q RELATIONSHIP

Start of Cycle

End of Cycle (Latch Data)

24V

l Address Valid

N

FIGURE 13 — MRDY TIMING

T

MOTOROLA Semiconductor Products Inc.

MC6809 @ MC68A09 MC68B09

/N /S

FIGURE 14 — TYPICAL DMA TIMING (- 14 CYCLES)

DEAD DMA

05V

DEAD MPU

/N

G—1PCSD

/////j‘

1@~ tPCSD

\

./

DMAVMA is a signal which
is developed externally, but
is a system requirement for DMA

AN

>___,____

BA, BS
—&p tAD
DMAVMA \ /
ADDR(MPU) >
~ ADDR(DMAC)
NOTE:

FIGURE 15 — AUTO-REFRESH DMA TIMING (>14 CYCLES)

DMA/BREQ \

14 DMA CYCLES

#=|DEAD| MP

U DEAD“-—DMA —

z
|
b
|
|

BA, BS l/

N/

DMAVMA

MOTOROLA Semiconductor Products Inc.

11

¢l

U[SjINPOId 10)2NPUCILISS VITOHOLOW @

0 — DPR
1-F. i
1-R/W

CLR NMI LOGIC
DISARM NMI

FIGURE 16 — MPU FLOWCHART

FIRQF

[INTERRUPTS

<>

1 —-B8A
1 ~BS
HALT
1~ BA
1 —-BS

1 - BS RTI
Y
VECTOR — PC)] _—
RESET] FFFE UNSTACK CC |
0 - BS
A
UNSTACK
A. B. DP,
XY U PC
SYNC
©
LATCH
INTERRUPTS
) N
1~ BA
Y iy N
RO
Y FATY S
iRQ
v Y
0 - BS
1 —BS
B
HALT
SYNC

I LatcH
INTERRUPT

~
N
Q
N

. i 0 - BA
NEXT INST | 1-8S
N
(VECTOR) — PC
Swi2
NMI FFFC
N Swi FFFA
IRQ FFF8
FIRQ FFF6
SWi2 FFF4
SWI3 FFF2

[Execure]

NOTE:
Asserting RESET will result

in entering the reset sequence
from any point in the flow chart

M6809 INTERRUPT STRUCTURE

BUS STATE BA 8BS
RUNNING 0 [}
INTERRUPT ACKNOWLEDGE O 1

SYKC 1 4]
HALT/BGNT 1 1

DMAREQ)
SEQUENCE

| SAVE BA. BS

[REsTORE B4, B3]

RESUME
PROCESSING
FOR 1 E-CYCLE

. DMAREQ

HALT

<
@)
o))
©
L O
©
e
=
o
o
>
0 |
@
=
o
&
o
o
io

MC6809‘ MC63A0

ADDRESSING MODES

The basic instructions of any computer are greatly
enhanced by the presence of powerful addressing modes.
The MC6809 has the most complete set of addressing
modes available on any microcomputer today. For
example, the MC6809 has 59 basic instructions, however
it recognizes 1464 different variations of instructions and
addressing modes. The new addressing modes support
modern programming techniques. The foliowing
addressing modes are available on the MC6809:

Inherent (Includes Accumulator)
Immediate
Extended
Extended Indirect
Direct
Register
Indexed
Zero-Offset
Constant Offset
Accumulator Offset
Auto Increment/Decrement
Indexed Indirect
Relative
Short/Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction
contains all the address information necessary. Examples
of Inherent Addressing are: ABX, DAA, SWI, ASRA, and
CLRB.

IMMEDIATE ADDRESSING

In Immediate Addressing, the effective address of the
data is the location immediately following the opcode; the
data to be used in the instruction immediately foliows the
opcode of the instruction. The MC6809 uses both 8 and

16-bit immediate values depending on the size of
argument specified by the opcode. Examples of
instructions with Immediate Addressing are:

LDA #$20

LDX #$FO00

LDY HCAT

Note: # signifies Immediate addressing, $ signifies
hexadecimal value

EXTENDED ADDRESSING

In Extended Addressing the contents of the two bytes
immediately following the opcode fully specify the 16-bit
effective address used by the instruction. Note that the
address generated by an extended instruction defines an
absolute address and is not position independent.
Examples of Extended Addressing include:

LDA CAT

STX MOUSE
LDD $2000

MO TOROLA Semiconductor Products Inc.

13

EXTENDED INDIRECT

As a special case of indexed addressing (discussed
below), one level of indirection may be added to Extended
Addressing. In Extended Indirect, the two bytes following
the postbyte of an Indexed instruction contains the
address of the address of the data.

LDA [CAT]
LDX [$FFFE]
STU [DOG]

DIRECT ADDRESSING

Direct addressing is similar to extended addressing
except that only one byte of address follows the opcode.
This byte specifies the lower 8 bits of the address to be
used. The upper 8 bits of the address are supplied by the
direct page register. Since only one byte of address is
required in direct addressing, this mode requires less
memory and executes faster than extended addressing.
Of course, only 256 locations (one page) can be accessed
without redefining the contents of the DP register. Since
the DPregister is set to $00 on Reset, direct addressing on
the MC6809 is compatible with direct addressing on the
M6800. Indirection is not allowed in direct addressing.
Some examples of direct addressing are:

LDA $30

SETDP $10 (Assembler directive)
LDB $1030

LDD < CAT

Note: < is an assembler directive which forces direct
addressing.

REGISTER ADDRESSING

Some opcodes are followed by a byte that defines a
register or set of registers to be used by the instruction,
this is called a POSTBYTE. Some examples of register
addressing are:

TFR XY Transfers X into Y

EXG AB Exchanges A with B
PSHS ABXY Push onto S Y,X,B, then A
PULU X,Y,D Pull from U D X, then Y

INDEXED ADDRESSING

In all indexed addressing one of the pointer registers (X,
Y., U, S, and sometimes PC) is used in a calculation of the
effective address of the operand to be used by the
instruction. Five basic types of indexing are available and
are discussed below. The postbyte of an indexed

“instruction specifies the basic type and variation of the

addressing mode as well as the pointer register to be
used. Figure 17 lists the legal formats for the postbyte.
Table 2 gives the assembler form and the number of
cycles and bytes added to the basic values for indexed
addressing for each variation.

FIGURE 17 — INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Zero-Offset Indexed — In this mode, the selected
pointer register contains the effective address of the data
to be used by the instruction. This is the fastest indexing

Post-Byte Register Bit indexed
Addressing mode.
7|6]/865]4|3|2]1]0 Mode Examples are:
O]l R R} X| X| X] X} X} EA= R + 4 Bit Offset LDD 0,X
1 R R]OjJO} O} O} O R+ LDA 0,S
1 R] R 110010} 1 JR++
11 RrRIRlololol1lo R Constant Offset Indexed — In this mode a two's-
T TR T RI Tol ol 11 R complement offset and the contents of one of the pointer
T TR TRl T ol Tolo EA- R < 0 Offser registers are addeq to form t'he e,ffec‘tiyg address of th_e
T T RI R 7 o1 [0l 1 EA: R < ACCE Offsat operand. The pountqr_ register's initial content is
unchanged by the addition.
'JR]JRII]O] T 1] OJEA= R+ ACCA Offset Three sizes of offsets are available:
1 R| R | 1 0| 0] O| EA = R *+ 7 Bit Offset + 4-bit (-16 to +15)
1 R| R 1 1 010 1 | EA = R + 15 Bit Offset + 7-bit (-128 to +127)
1 R| R [1 0 1 1 EA = R + D Offset + 15-bit (.32768}0 +32767)
VX x| tjr)1)0) OJEA=PCZ7 Bit Offset The two's complement 5-bit offset is included in the
TyXpxjti1 11104 11EA= PC+15Bit Offset postbyte and therefore is most efficient in use of bytes and
ITJRIR]ITH 1T 111111 EA = Address cycles. The two’'s complement 8-bit offset is contained in
—— W‘M'l a single byte following the postbyte. The two's
Addressing Mode Field complement 16-bit offset is in the two bytes following the
Indirect Field postbyte. In most cases the programmer need not be
Sign bit when B7 =0 concerned with the size of this offset since the assembler
will select the optional size automatically.
Rngs(;eF; Fi)e(ld Examples of constant-offset indexing are:
01;R =y LDA 23X
10R=U LDX -2,§
11R=S LDY 300,X
X = Don’t Care LDU CAT)Y
TABLE 2 — INDEXED ADDRESSING MODES
Non Indirect Indirect
Assembler Postbyte x| + Assembler Postbyte +it
Type Forms Form OP Code ~ # Form OP Code ~| #
Constant Offset From R No Offset R 1RR0O0100 ol o LR] 1RR10100 3i0
(Signed Offsets) 5 Bit Offset n, R ORRnnnnn 10 defaults to 8-bit
8 Bit Offset n, R 1TRR0O1000 111 [n, R] 1RR11000 | 411
16 Bit Offset n R 1RR0O1001 412 [n, R} 1RR11001 712
Accumulator Offset From R A — Register Offset A R 1TRRO0110 11 0 [A, R] 1RR10110 [4]0
(Signed Offsets) B — Register Offset B, R TRRO0101 11 0 [B. R} 1RR10101 410
D — Register Offset D, R 1RR0O1011 410 [D, R] 1RR11011 710
Auto Increment/Decrement R Increment By 1 R+ TRRO0000 2{0 not allowed
Increment By 2 R++ 1RR0O0001 3|0 [,R++] | 1RR10001 610
Decrement By 1 R 1RRO0010 1210 not allowed
Decrement By 2 ,--R TRR0O0011 3,0 [--R] TRR10011 610
Constant Offset From PC 8 Bit Offset n, PCR 1XX01100 111 [n, PCR] 1XX11100 411
16 Bit Offset n, PCR TXX01101 512 [n, PCR] 1XX11101 812
Extended indirect 16 Bit Address — -] — Inj 10011111 512
R=X Y UorS X =00 =01

X = Don’t Care u=10

- and ;; Indicate the number of additional cycles and bytes for the particular variation.

14

MOTOROLA Semiconductor Products Inc.

MC6809 @ MC68A09 ® MC68B09

Accumulator-Offset Indexed — This mode is similar
to constant offset indexed except that the two’s-
complement value in one of the accumulators (A, B or D)
and the content of one of the pointer registers are added
to form the effective address of the operand. The contents
of both the accumulator and the pointer register are
unchanged by the addition. The postbyte specifies which
accumulator to use as an offset and no additional bytes
are required. The advantage of an accumulator offset is
that the value of the offset can be calculated by a program
at run-time.

Some examples are:

LDA B)Y
LDX DY
LEAX B, X

Auto Increment/Decrement Indexed — In the auto
increment addressing mode, the pointer register contains
the address of the operand. Then, after the pointer
register is used it is incremented by one or two. This
addressing mode is useful in stepping through tables,
moving data, or for the creation of software stacks. In auto
decrement, the pointer register is decremented prior to
use as the address of the data. The use of auto decrement
is similiar to that of auto increment but the tables, etc. are
scanned from the high to low addresses. The size of the
increment/decrement can be either one or two to allow
for tables of either 8 or 16-bit data to be accessed and is
selectable by the programmer. The pre-decrement, post-
increment nature of these modes allow them to be used to
create additional software stacks that behave identically
to the U and S stacks.

Some examples of the auto increment/decrement
addressing modes are:

LDA X+
STD Y++
LDB ,-Y

LDX ,--S

INDEXED INDIRECT
All of the indexing modes with the exception of auto
increment/decrement by one, or a 1 4-bit offset may
have an additional level of indirection specified. In
Indirect addressing, the effective address is contained at
the location specified by the content of the Index register
plus any offset. In the example below, the A accumulator
is loaded indirectly using an effective address calculated
from the Index register and an offset.
Before Execution
A = XX {(don't care)
X = $FO00

$0100 LDA [10, X] EA is now $FO10
$FO10 $F1 F150 is now the
$FO11 $50 new EA

$F150 SAA

After Execution
A = $AA Actual Data Loaded

MOTOROLA Semiconductor Products Inc.

15

All modes of indexed indirect are included exceptthose
which are meaningless (e.g. auto increment/decrement
by 1 indirect). Some examples of indexed indirect are:

LDA [X]

LDD [10,8]
LDA [B,Y]
LDD [X++]

RELATIVE ADDRESSING

The byte(s) following the branch opcode is (are) treated
as a signed offset which is added to the program counter,
if the branch condition is true then the calculated address
(PC + signed offset) is loaded into the program counter.
Program execution continues at the new location as
indicated by the PC; Short {1 byte offset) and long (2 bytes
offset) relative addressing modes are available. All of
memory can be reached in long relative addressing as an
effective address is interpreted modulo 2'®. Some
examples of relative addressing are:

BEQ CAT (short)
BGT DOG (short)
CAT LBEQ RAT (long)
DOG LBGT RABBIT (long)
RAT NOP
RABBIT NOP

PROGRAM COUNTER RELATIVE

The PC can be used as the pointer register with 8 or 16-
bit signed offsets. As in relative addressing the offset is
added to the current PC to create the effective address.
The effective address is then used as the address of the
operand or data. Program Counter Relative Addressing is
used for writing position independent programs. Tables
related to a particular routine will maintain the same
relationship after the routine is moved, if referenced
relative to the Program Counter. Examples are:

LDA CAT, PCR
LEAX TABLE, PCR

Since program counter relative is a type of indexing, an
additional leve! of indirection is available.

LDA [CAT, PCR]
LDU [DOG, PCR]

MC6809 @ MC68A09 ® MC68B09

MC6809 INSTRUCTION SET

The instruction set of the MC6809 is similar to that of
the MC6800 and is upward compatible at the source code
level. The number of opcodes has been reduced from 72
to 59, but because of the expanded architecture and
additional addressing modes, the number of available
opcodes (with different addressing modes) hasrisen from
197 to 1464.

Some of the new instructions and addressing modes
are described in detail below:

PSHU/PSHS

The push instructions have the capability of pushing
onto either the hardware stack (S) or user stack (U) any or
all of the MPU registers with a single instruction.

PULU/PULS

The pull instructions have the same capability of the
push instruction, in reverse order. The byte immediate
following the push or pull opcode determines which
register or registers are to be pushed or pulled. The actual
PUSH/PULL sequence is fixed; each bit defines a unique
register to push or pull as shown in Figure 16.

register, while bits O-3 represent the destination register.
These are denoted as follows:

0000 — D 0101 — PC
0001 — X 1000 — A
0010 —Y 1001 —B
0011 — U 1010 — CC
0100 — S 1011 — DP

Note: All other combinations are undefined and INVALID.

Load Effective Address

The LEA works by calculating the effective address
used in an indexed instruction and stores that address
value, rather than the data at that address, in a pointer
register. This makes all the features of the internal
addressing hardware available to the programmer. Some
of the implications of this instruction are illustrated in the
following table of examples:

The LEA instruction also allows the user to access data
in a position independent manner. For example:

LEAX MSG1, PCR

TFR/EXG LBSR PDATA (Print message routine)
Within the MC68089, any register may be transferred to
or exchanged with another of like-size, i.e. 8-bitto 8-bitor
16-bit to 16-bit. Bits 4-7 of postbyte define the source MSG1 FCC ‘MESSAGE’
FIGURE 16 — PUSH/PULL POSTBYTE
— Pull Order Push Order —
PC U Y X DP B A cC PSHS/PULS
FFFF ... — increasing memory address — 0000
PC S Y X DP B A (ol PSHU/PULU
TABLE 3 — LEA EXAMPLES
Instruction Operation Comment
LEAX 10, X X+10 - X Adds 5-bit constant 10 to X
LEAX 500, X X+500 —X Adds 16-bit constant 500 to X
LEAY AY Y+A —-Y Adds 8-bit accumulator to Y
LEAY DY Y+D —-Y Adds 16-bit D accumulator to Y
LEAU -10, U U-10 - U Subtracts 10 from U
LEAS -10, S S-10) Used to reserve area on stack
LEAS 10, S S+10 - S Used to ‘clean up’ stack
LEAX 5,8 S+5 - X Transfers as well as adds

16

MOTOROLA Semiconductor Products inc.

MC6809 ® MC68A09 @ MC68B09 |

This sample program prints “message’’. By writing
MSG1,PCR, the assembler computes the distance
between the present address and MSG1. This result is
placed as a constant into the LEAX instruction which will
be indexed from the PC value at the time of execution. No
matter where the code is located, when it is executed, the
computed offset from the PC will put the absolute address
of MSG1 into the X pointer register. This code is totally
position independent.

MUL

Multiplies the unsigned binary numbers in the A and B
accumulator and places the unsigned result into the 16-
bit D accumulator. This unsigned multiply also allows
multiple-precision multiplications.

Long And Short Relative Branches

The MC6809 has the capability of program counter
relative branching throughout the entire memory map. In
this mode, if the branch is to be taken, the 8 or 16-bit
signed offset is added to the value of the program counter
to be used as the effective address. This allows the
program to branch anywhere in the 64K memory map.
Position independent code can be easily generated
through the use of relative branching. Both short (8-bit)
and long (16-bit) branches are available.

SYNC

After encountering a Sync instruction, the MPU enters
a Sync state, stops processing instructions and waits for
an interrupt. If the pending interrupt is non-maskable
(NMI) or maskable (FIRQ, IRQ) with its mask bit (F or 1)
clear, the processor will clear the Sync state and perform
the normal interrupt stacking and service routine. Since
FIRQ and IRQ are not edge-triggered, a low level with a
minimum duration of three cycles is required to assure
that the interrupt will be taken. If the pending interrupt is
maskable (FIRQ, IRQ) with its mask bit (F or |) set, the
processor will clear the Sync state and continue
processing in sequence. Figure 18 depicts Sync timing.

Software Interrupts

A Software Interrupt is an instruction which will cause
an interrupt, and its associated vector fetch. These
Software Interrupts are useful in operating system calls,
software debugging, trace operations, memory mapping,
and software development systems. Three levels of SWI
are available on this MC6809, and are prioritized in the
following order: SWI, SWI2, SWI3.

@ MOTOROLA Semiconductor Products Inc.

17

16-Bit Operations

The MC6809 has the capability of processing 16-bit
data. These instructions include loads, stores, compares,
adds, subtracts, transfers, exchanges, pushes and pulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart
illustrates the memory-access sequence corresponding
to each possible instruction and addressing mode in the
MC6809. Each instruction begins with an opcode fetch.
While that opcode is being internally decoded, the next
program byte is always fetched. (Most instructions will
use the next byte, so this technique cnsiderably speeds
throughput). Next, the operation of each opcode will
follow the flow chart. VMA is an indication of FFFF1g on
the address bus, R/W = 1 and BS = 0. The following
examples illustrate the use of the chart; see Figure 19.

LBSR(Branch taken)
_ Cycle#
opcode Fetch
opcode +
opcode +
VA
VMA
ADDR
VMA
STACK (write)
STACK (write)

CONOOOA,WN—=

DEC (Extended)
opcode Fetch
opcode +
opcode +
VMA

ADDR (read)
VMA

ADDR (write)

NOO,WN=

MC6809 INSTRUCTION SET TABLES

The instructions of the MC6809 have been broken
down into five different categories. They are as follows:

8-Bit operation (Table 4)

16-Bit operation (Table 5)

Index register/stack pointer instructions (Table 6)
Relative branches (long and short) (Table 7)
Miscellaneous instructions (Table 8)
Hexadecimal Value instructions (Table 9)

8l

“U| S}ONpoid 10}oNpUodjWeS WIOMO.LOMW ‘

FIGURE 18 — SYNC TIMING

Last
Cycle Of Sync
Previous Opcode Dead Dead Instruct
{ Inst | Fetch , Execute | Cycle fe SYNC ACK | Cycle Fetch
| T N M [i | % =I]

|

1

l

|

|

L L L

[]
[LI L

Address X X X M X M + 1\/ {F j/ M+ 1 XSee;\loteX X
Fetch
Data X x X X > £ 5 j/ X X X
R/)()(y A\ 45 /
T G \ / \
BS X >\
45
IRQ £ B
Fm\/ﬂ { il 0.81 See Note 2
tPCS
NOTE:
1. If the mask bit is set when the interrupt is requested

processing will continue with instruction execution
fetched from previous step. However, if an NMI or an
unmasked FIRQ or IRQ caused interrupt, the address
placed on bus from previous cycle (M + 1) remains on
bus and processing continues with this cycle as
{m+1) or (n +1) of interrupt timing.

2. If mask bits are clear IRQ & FIRQ must be held low
for three cycles to guarantee interrupt to be taken,
although only one cycle is necessary to bring the
processor out of SYNC.

g‘
0
-
®
o
©
®
=
2]
o
®
>
o
©
@
=
)
o
®
@
=]
©

\

6l

"9U| $}9NpPoid 10}9NpucdWeS W ITOHOLOW

~

FIGURE 19 — ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE

|

Opcode (Fetch)

—

Opcode +

Page 2
Page 3~

Long Short
Branch Branch
Opcode +
VMA
Take Y
Branch

Direct Extended § Immediate
+
Inherent
MA

Opcode +

VN
R

A VMA

4

Indexed

ACCA Offset
ACCB Offset

DD
R
ADD + 4 Bit
* ! + 7 Bit
A PC + 7 Bit
Y
N
Operation
(Following

Pages)

1
Stalck (write)

Stack (write)

Opcode +
le—Auto —» | R = 16 Bit R = DJ PC £ 16 Bit}] Extended O Offset
Inc/Dec Indirect
By1 By2
Opcode + Opcode + Opcode + Opcode +
] [}]]
VMA Opcode + Opcode + Opcode + Opcode +
VMA VMA VMA VMA VMA
1 1 1
VMA VMA VN'K?-\ VMA VMA
L]
l

|

Indirect (H)
Indirect (L)

VMA

B

ADDR

=
)
o
)
o
©
®
=
@)
o
®
r
o
©
¢
=
@)
o
®
m
o
©

(114

‘U[S}ONPOId 40}oNpuUodjwesS VW ITOSHO LOW @

FIGURE 19 — ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE (CONT.)

Inherent Page

=
(9]
o
®
o
©
®
=
@)
]
o
>
o
©
@
=
O
)
®
w
o
©

55 55
SEX ABX RTS TFR EXG MUL PSHU PULU swi| cwal RTI
DAA PSHS PULS
NOP
VMA
VMA ADDR STACK
VMA VMA =
VMA VMA ——VN;A vrinA
VMA VMA . 12*STACK
VMA VMA STACK (WRITE) E=1
VMA VMA | | oo E?
VMA YMA STACK] 12 { UMA }1
VMA \‘mﬁ (WRITE)f O)
STACK VMA TR . E=¢
STACK ik VECTOR
VMA VA VECTOR
VMA 2*STACK
VMA
VMA
11*STACK
12
{STACK}O
P ——
STACK'’ '
STACK’

I

*ouj SjonNpoid 40)onpuodiuisS W I1OSHO.LOM (:::::)

e

FIGURE 19 — ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE (CONT.)

Non-Inherents

- b3
LEA ADCA LDD ASL TST ADDD JSR
ADCB LDS ASR CMPD!
ADDA Lbu CLR CMPS
ADDB LDX com CMPU
BITA LDY DEC CMPX
BITB STD INC CMPY
CMPA STS LSL SUBD
CcMPB STU LSR
EORA STX NEG
EORB STY ROL
LDA ROR
LDB
ORA ANDCC
ORB ORCC
STA
STB
SUBA
SuBB
VMA
STACK
VMA VNA ADDR+ STACK
ADDR+ ADDR VMA VMA
(WRITE)

END

<
)
o
o0
o
©
>
=
0
]
o
>
o
©
®
=
2]
)]
o
@
o
©

W

o

MC6809 ® MC68A09 ® MC68B09

TABLE 4 — 8-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s)

Operation

ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory left

ASR, ASRA, ASRB

Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator
CLR, CLRA, CLRB |[Clear accumulator or memory location
CMPA, CMPB Compare memory from accumulator
COM, COMA, COMB| Complement accumulator or memory location
DAA Decimal adjust A-accumulator
DEC, DECA, DECB |Decrement accumulator or memory location
EORA, EORB Exclusive or memory with accumulator
EXG R1, R2 Exchange R1 with R2 (R1, R2 = A, B, CC, DP)
INC, INCA, INCB |Increment accumulator or memory location
LDA, LDB Load accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumulator or memory location

LSR, LSRA, LSRB

Logical shift right accumulator or memory location

MUL Unsigned multiply (A x B — D)
NEG, NEGA, NEGB |Negate accumulator or memory
ORA, ORB Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA, RORB

Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator to memory
SUBA, SUBB Subtract memory from accumulator
TST, TSTA, TSTB |Test accumulator or memory location
TFR, R1, R2 Transfer R1 to R2 (R1, R2 = A, B, CC, DP)

NOTE: A, B, CC, or DP may be pushed to (pulled from) either stack with PSHS, PSHU,
(PULS, PULU) instructions.

TABLE 5 — 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS
Mnemonic(s) Operation
g ADDD Add memory to D accumulator
CMPD Compare memory from D accumulator
EXG D, R Exchange D with X, Y, S, U or PC
LDD Load D accumulator from memory
SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory
SuUBD Subtract memory from D accumulator
TFR D, R Transfer Dto X, Y, S, U or PC
TFR R, D Transfer X, Y, S, Uor PCto D

@ MOTOROLA Semiconductor Products Inc.

22

i

MC6809 ® MCE8A09 @ 1

TABLE 6 — INDEX REGISTER/STACK POINTER INSTRUCTIONS

Mnemonic(s) Operation
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y, S, U, or PCwith D, X, Y, S, U or PC
LEAS, LEAU Load effective address into stack pointer
{EAX, LEAY Load effective address into index register
LDS, LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push any register(s) onto hardware stack {except S)
PSHU Push any register(s) onto user stack {except U)
PULS Pull any register(s) from hardware stack {except S)
PULU Pull any register(s) from hardware stack (except U)
STS, STU Store stack pointer to memory
STX, §TY Store index ragister 10 memaory
TFR R1, R2 Transfer D, X, Y, S, UorPCto D, X, Y, S, Uor PC
ABX Add B accumulator to X {unsigned)

TABLE 7 — BRANCH INSTRUCTIONS

Mnemonic(s)

Operation

BCC, LBCC Branch if carry clear

BCS, LBCS Branch if carry set

BEQ, LBEQ Branch if equal

BGE, LBGE Branch if greater than or equal (signed)
BGT, LBGT Branch if greater (signed)

BHI, LBHI Branch if higher (unsigned)

BHS, LBHS Branch if higher or same (unsigned)
BLE, LBLE Branch if less than or equal (signed)
BLO, LBLO Branch if lower (unsigned)

BLS, LBLS Branch if lower or same {(unsigned)
BLT, LBLT Branch if less than (signed)

BMI, LBMI Branch if minus

BNE, LBNE Branch if not equal

BPL, LBPL Branch if plus

BRA, LBRA Branch always

BRN, LBRN Branch never

BSR, LBSR Branch to subroutine

BVC, LBVC Branch if overfiow clear

BVS, LBVS Branch if overflow set

TABLE 8 — MISCELLANEQUS INSTRUCTIONS

Mnemonic(s) Operation

ANDCC AND condition code register

CWAI AND condition code register, then wait for interrupt
NOP No operation

ORCC OR condition code register
Jmp Jump
JSR Jump to subroutine
RTI Return from interrupt
RTS Return from subroutine

SWI, SWI2, SWI3| Software interrupt {absolute indirect)

SYNC Synchronize with interrupt line

. MOTOROLA Semiconductor Products Inc.

23

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES
OP Mnem Mode ~ # OP Mnem Mode ~ # OP Mnem
00 NEG Direct 6 2 30 LEAX Indexed 4+ 2+ 60 NEG
01 - 4 31 LEAY a4 g 61 *
02 * 32 LEAS 4+ 2+ 62 *
03 COM 6 2 33 LEAU Indexed 4+ 2+ 63 COM
04 LSR 6 2 34 PSHS inherent 5+ 2 64 LSR
05 * 35 PULS A 5+ 2 65 *
06 ROR 6 2 36 PSHU 5+ 2 66 ROR
07 ASR 6 2 37 PULU 5+ 2 67 ASR
08 ASL/LSL [2 38 * 68 ASL/LSL
09 ROL 6 2 39 RTS 5 1 69 ROL
OA DEC 6 2 3A ABX 3 1 B6A DEC
oB * 3B RTi 6715 1 6B *
0C INC [¢] 2 3C CWAI 20 2 6C INC
0D TST 6 2 3D MUL 11 1 6D TST
OE JMP V 3 2 3E * v 6E JMP
OF CLR Direct 6 2 3F SWi Inherent 19 1 6F CLR
10 Page 2 — — — 40 NEGA Inherent 2 1 70 NEG
11 Page 3 — R — a1 * A 71
12 NOP Inherent 2 1 42 * 72 *
13 SYNC Inherent 2 1 43 COMA 2 1 73 COM
14 > 44 LSRA 2 1 74 LSR
15 * 45 * 75 *
16 LBRA Relative 5 3 46 RORA 2 1 76 ROR
17 LBSR Relative 9 3 47 ASRA 2 1 77 ASR
18 * 48 ASLA/LSLA 2 1 78 ASL/LSL
19 DAA Inherent 2 1 49 ROLA 2 1 79 ROL
1A ORCC Immed 3 2 4A DECA 2 1 7A DEC
iB * é 4B * 7B *
1C ANDCC tmmed 3 2 4C INCA 2 1 7C INC
1D SEX tnherent 2 1 4D TSTA 2 1 7D TST
1E EXG 8 2 4E * V 7E JMP
1F TFR Inherent 6 2 4F CLRA inherent 2 1 7F CLR
20 BRA Relative 3 2 50 NEGB Inherent 2 1 80 SUBA
21 BRN 3 2 51+ A 81 CMPA
22 BHI 3 2 52 * 82 SBCA
23 BLS 3 2 53 COMB 2 1 83 SUBD
24 BHS/BCC 3 2 54 LSRB 2 1 84 ANDA
25 BLO/BCS 3 2 55 * 85 BITA
26 BNE 3 2 56 * 86 LDA
27 BEQ 3 2 56 RORB 2 1 87 *
28 BVC 3 2 57 ASRA 2 1 88 EORA
29 BVS 3 2 58 ASLB/LSLB. 2. 1 89 ADCA
2A BPL 3 2 59 ROLB 2 1 8A ORA
2B BMI 3 2 5A DECB 2 1 8B ADDA
2C BGE 3 2 5B * 8C CMPX
2D BLT 3 2 5C INCB 2 1 8D BSR
2E BGT V 3 2 5D TSTB 2 1 8E LDX
2F BLE Relative 3 2 5E * V 8F *

5F CLRB Inherent 2 1

Legend:
~ Number of MPU cycles (less possible push/pull or indexed-mode cycles)
Number of program bytes ’
* Denotes unused opcode

@ MOTOROLA Semiconductor Products inc.

24

Mode

Indexed

A

Indexed

Extended

2

\
Extended

Immed

v

immed

Relative
Immed

6+
6+

6+
6+
6+
6+
6+

6

3+
6+

~N o~

~NOoh NN NN N NN

NN B NRNN

W N BN NN

W W Wwww w W

W W W W

NN W NN

W KN WKNNRNN

e B I B« T)

OP Mnem

90 SUBA
91 CMPA
92 SBCA
93 SuBD
94 ANDA
95 BITA
96 LDA
97 STA
98 EORA
99 ADCA
9A ORA
98 ADDA
ac CMPX
9D JSR
9E LDX
9F STX

AO SUBA
Al CMPA
A2 SBCA
A3 SUBD
A4 ANDA
A5 BITA
A6 LDA
A7 STA
A8 EORA
A9 ADCA
AA ORA
AB ADDA
AC CMPX
AD JSR
AE LDX
AF STX

BO SUBA
B1 CMPA
B2 SBCA
B3 SuBD
B4 ANDA
B5 BITA
B6 LDA
B7 STA
B8 EORA
B9 ADCA
BA ORA
BB ADDA
BC CMPX
8D JSR
BE LDX
BF STX

CO suBB
C1 CMPB
C2 SBCB
C3 ADDD
C4 ANDB
C5 BITB

TABLE 9 — HEXADECIMAL VALUES OF MECHANICAL CODES (CONTINUED)

Mode -~ #
Direct 4 2
A 4 2
4 2
6 2
4 2
4 2
4 2
4 2
4 2
4 2
4 2
4 2
6 2
7 2
v o 2
Direct 5 2
Indexed 4+ 2+
A 4+ 2+
4+ 2+
6+ 2+
4+ 2+
4+ 2+
4+ 2+
4+ 2+
4+ 2+
4+ 2+
4+ 2+
4+ 2+
6+ 2+
7+ 2+
\v 5+ 2+
Indexed 5+ 2+
Extended 5 3
A 5 3
5 3
7 3
5 3
5 3
5 3
5 3
5 3
5 3
5 3
5 3
7 3
8 3
6 3
Extended 6 3
Immed 2 2
A 2 2
2 2
4 3
2 2
Immed 2 2

OP Mnem

Ccé
c7
c8
Cc9

LDB
EORB
ADCB

CA ORB

cB
cC
CD
CE
CF

DO
D1
D2
D3
D4
D5
D6
D7
D8
D9

ADDB
LDD

*

LDU

*

SuBB
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EORB
ADCB

DA ORB
DB ADDB
DC LDD
DD STD

DE
DF

EO
E1

E2
E3
E4
E5
E6
E7
E8
ES
EA
EB
EC
ED
EE
EF

FO
Fi

F2
F3
Fa4
F5
F6
F7
F8
F9
FA
FB

NOTE: All unused opcodes are both undefined and illegal.

MOTOROLA Semiconductor Products Inc.

LDU
STU

SUBB
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EORB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

SuBB
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EORB
ADCB
ORB
ADDB

Mode

Immed

Immed

Direct

Direct

Indexed

Indexed

Extended

Extended

25

N

W N NN

oo ohs bs S DLAEDDDNEOODR SN

W N NN N

w

NN N RNENRNNRNOMNNNMNRNDNNODRNNNDNONN NN

2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+

W W Wwwwwwwwwww

OP Mnem

FC LDD
FD STD
FE LDU
FF STU

oP

1021
1022

1023

1024

1025

1026

1027
1028
1029
102A
1028
102¢
102D
102E
102F
103F
1083
108C
108E
1093
109C
109E
109F
10A3
10AC
10AE
10AF
1083
10BC
10BE
10BF
10CE
10DE
10DF
10EE
10EF

10FE

10FF

113F

1183

118C
1193

119C
11A3
11AC
1183
118C

Mnem

LBRN
LBHI
LBLS
LBHS/LBCC
LBCS/LBLO
LBNE
LBEQ
LBVC
LBVS
LBPL
Lemi
LBGE
LBLT
LBGT
LBLE
Swi/2
CMPD
CMPY
LDY
CMPD
CMPY
LDY
STY
CMPD
CMPY
LDy
STY
CMPD
CMPY
LDY
STY
LDS
LDS
STs
LDS
STS
LDS
STS
swi/3
CMPU
CMPS
CMPU
CMPS
CMPU
CMPS
CMPY
CMPS

Mode ~
Extended ¢
6
6
Extended 6
Mode ~
Relative 5
A 56
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6}
5(6)
5(6)
y o©
Relative 5(6)
Relative 5(6)
Relative 5(6)
Inherent 20

Immed

5

5
Immed 4
Direct 7
7

6

6

Direct
Indexed 7+

Indexed 6+
Extended

8
8
7
Extended 7
Immed 4
Direct 6
Direct 6
Indexed 6+

Indexed 6+

Extended 7
Extended 7
tnherent 20
Immed 5
Immed 5
Direct 7
Direct 7

Indexed 7+
Indexed 7+
Extended 8
Extended 8

W oW ww

W WwwddENLELEEPLPPEDLEDLLEDLDEDRDAEDDDSED

w
s

+

4
4
2
4
4
3
3
3
3+
4
4

