
' " X J / l i . t S f r v t s

Customer Order Number 424410284-001
NSC Publication Number 424410284-001A

February 1985

COPS™

The COPS Programming Manual

1985 National Semiconductor Corporation
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, California 95052-8090

CONTENTS

Chapter 1 INTRODUCHON TO COPS MICROCONTROLLERS............................... 1-1

1.1 SCOPE AND PURPOSE OF TfflS M A N U A L 1-1

1.2 THE COPS MICROCONTROLLER F A M IL Y 1-2
1.2.1 General D escrip tion... 1-2
1.2.2 COPS ROMless Microcontrollers.. 1-2
1.2.3 COPS Single-Chip Microcontrollers 1-2
1.2.4 C onclusion.. 1-7

Chapter 2 ARCHI TECTURE OF COPS MICROCONTROLLERS............................... 2-1

2.1 INTRODUCTION......................... 2-1

2.2 COPS MEMORY S T R U C T U R E ... 2-1
2.2.1 Program Memory — R O M ... 2-1
2.2.2 Data Memory — R A M .. 2-8
2.2.3 Subroutine S ta c k .. 2-8

2.3 THE ARITHMETIC LOGIC U N I T ... 2-9

2.4 IN PU T/O U TPU T.. 2-9
2.4.1 I n p u t s ... 2-9
2.4.2 Bidirectional Tri-State I/O ... 2-10
2.4.3 Bidirectional I / O .. 2-10
2.4.4 O u tp u ts ... 2-10
2.4.5 The SIO R eg is te r.. 2-11
2.4.6 Microbus™ .. 2-12

2.5 THE ENABLE REGISTER ... 2-12
2^.1 E N 0 through E N 3 .. 2-12
2-5.2 E N 4 through E N , .. 2-13

2.6 INTERNAL T I M E R ... 2-15
2.6.1 Access to the T im e r ... 2-15
2.6.2 External Event C o u n t e r ... 2-15

2.7 OSCILLATOR AND BASIC TIMING 2-16
2.7.1 Clock Generator and D iv id e r... 2-16
2.7.2 The Instruction C y c l e .. 2-16

Z8 INITIALIZATION... 2-16

Chapter 3 THE COPS INSTRUCTION S E T ... 3-1

3.1 BASIC CHARACTERISTICS.. 3-1

3.2 DETAILED INSTRUCTION D ESC R IPTIO N 3-1
3.2.1 Arithmetic/Logic I n s t r u c t io n s ... 3-3
3.2.2 Transfer of Control Instructions ... 3-9
3.2.3 Memory Reference In struc tions... 3-15
3.2.4 Register Reference In s tru c tio n s ... 3-25
3 ^ 5 Test In stru c tio n s ... 3-30
3.2.6 Input/Output Instructions... 3-34

3.3 NOTES ON ADDRESSING M O D E S ... 3-41

v

4.1 INTRODUCTION.. 4-1

4.2 BOUNDARY CONDITIONS 4-1
4.2.1 Page B o u n d aries .. 4-1
4.2.2 Block Boundaries.. 4-2
4.2.3 Chapter B oundaries... 4-3

4.3 SKIP C O N D IT IO N S... 4-4
4.3.1 Effect of Skips on Timing Loops.. 4-5
4.3.2 Instructions That Generate a S k i p ... 4-5

4.4 C A R R Y ... 4-6

4.5 IN PU T/O U TPU T................................... 4-6
4.5.1 Unidirectional P o r ts ... 4-7
4.5.2 Bidirectional P o r t s ... 4-7
4.5.3 The Serial I/O Port - MICROWIRE... 4-8

4.6 INTERRUPT.. 4-9
4.6.1 Conditions for Interrupt R ecognition 4-9
4.6.2 Effects of Interrupt A ck now ledge... 4-9
4.6.3 Interrupt H a n d lin g ... 4-10
4.6.4 Interrupt D isable.. 4-10
4.6.5 Interrupt in the COP440/COP2440 S e r i e s 4-11

4.7 PROGRAM E F F IC IE N C Y ... 4-11

4.8 RULES AND T E C H N IQ U E S.. 4-12
4.8.1 Absolute Requirements.. 4-12
4.8.2 General G u id e lin e s ... 4-12

4.9 STRUCTURED PROGRAMMING T E C H N IQ U E S 4-16

Chapter 5 STANDARD PROGRAMS... 5-1

5.1 INTRODUCTION.. 5-1

5.2 MATH P A C K ... 5-1
5.2.1 Basic Increment R o u tin e s ... 5-1
5.2.2 Basic Decrement Routines ... 5-3
5.2.3 Integer A d d itio n .. 5-5
5.2.4 A Doubling R outine... 5-7
5.2-5 Integer S u b tr a c t ... 5-8
5.2.6 Up-Down C o u n te rs 5-9
5.2.7 Binary M u ltip ly .. 5-13
5.2.8 Basic Arithmetic P a c k a g e ... 5-15
5.2.9 Square R o o t ... 5-40
5.2.10 Binary to BCD C o n v e r s io n 5-53
5.2.11 BCD to Binary C o n v e r s io n .. 5-69

5.3 TIMEKEEPING ROUTINES... 5-80
5.3.1 Basic Clock Routines - External I n p u t 5-80
5.3.2 Clock Routines Based on Internal T i m e r 5-87

5.4 DATA MANIPULATION AND STRING OPERATIONS 5-90
5.4.1 Register T r a n s f e r s 5-90

Chapter 4 PROGRAMMING COPS MICROCONTROLLERS.................................... 4-1

vx

5.4.2 Shift Routines... 5-93
5.4.3 Data/String C o m p a r e .. 5-96
5.4.4 String S e a r c h ... 5-97
5.4.5 RAM Clear R o u t i n e s .. 5-98

5.5 IN PU T/O U TPU T............................... 1 ... 5-99
5.5.1 Table Look U p .. 5-99
5.5.2 Microbus I / O ... 5-100
5.5.3 Serial I/O - MICROW IRE...5-102
5.5.4 SI as a General Purpose Input ...5-105

5.6 DISPLAY CONTROL... 5-106
5.6.1 A Four-Digit Multiplexed D isp la y ... 5-106
5.6.2 Peripheral Display D r i v e r s 5-111

5.7 KEYBOARD S C A N ... 5-122

Appendix A DATA RAM IN COP410L/411L/413L AND COP410C/411C
D E V I C E S .. A -l

A. 1 DATA RAM D ESC R IPT IO N .. A-l

Appendix B DEVICES WITH SUBROUTINE STACK IN R A M B-l

B. 1 SUBROUTINE STACK IN RAM DESCRIPTION AND
LO C A TIO N ... B-l

FIGURES

Figure 1-1. Pinouts for 20-Pin COPS M icrocontro llers.. 1-5

Figure 1-2. Pinout for 24-Pin COPS M ic ro co n tro lle rs .. 1-6

Figure 1-3. Pinout for 28-Pin COPS M ic ro co n tro lle rs .. 1-6

Figure 1-4. Pinout for 40-Pin COPS Single-Chip M icrocon tro lle rs......................... 1-7

Figure 2-1. Basic Block Diagram for COPS M icrocon tro lle rs................................... 2-2

Figure 2-2. COP410L/411L/413L and COP410C/411C Block D iagram 2-3

Figure 2-3. COP440/411/442 Microcontrollers Block D i a g r a m 2-4

Figure 2-4. COP2440/2411/2442 Dual CPU Microcontrollers - Block
D i a g r a m .. 2-5

Figure 4-1. C O P420R A M M ap.. 4-15

Figure 5-1. Basic Flow for Up-Down Counter R o u tin e .. 5-10

Figure 5-2. Binary M u ltip ly ... 5-14

Figure 5-3. BCD Arithmetic Package (Sheet 1 of 9) .. 5-16

Figure 5-3. BCD Arithmetic Package (Sheet 2 of 9) .. 5-17

Figure 5-3. BCD Arithmetic Package (Sheet 3 of 9) .. 5-18

Figure 5-3. BCD Arithmetic Package (Sheet 4 of 9) .. 5-19

vu

Figure 5-3. BCD Arithmetic Package (Sheet 5 of 9) ... 5-20

Figure 5-3. BCD Arithmetic Package (Sheet 6 of 9) ... 5-21

Figure 5-3. BCD Arithmetic Package (Sheet 7 of 9) ... 5-22

Figure 5-3. BCD Arithmetic Package (Sheet 8 of 9) ... 5-23

Figure 5-3. BCD Arithmetic Package (Sheet 9 of 9) ... 5-24

Figure 5-4. RAM Map - Basic Arithmetic R o u t in e s ... 5-25

Figure 5-5. Align Routine for A d d /S u b t r a c t ... 5-26

Figure 5-6. Fully Algebraic A d d /S u b tra c t.. 5-27

Figure 5-7. Multiply/Divide (Sheet 1 of 3) .. 5-28

Figure 5-7. Multiply/Divide (Sheet 2 of 3) .. 5-29

Figure 5-7. Multiply/Divide (Sheet 3 of 3) .. 5-30

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 1 of 9) 5-31

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 2 of 9) 5-32

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 3 of 9) 5-33

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 4 of 9) 5-34

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 5 of 9) 5-35

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 6 of 9) 5-36

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 7 of 9) 5-37

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 8 of 9) 5-38

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 9 of 9) 5-39

Figure 5-9. Integer Square R o o t.. 5-41

Figure 5-10. Square Root - General Flow C h a r t .. 5-44

Figure 5-lOa. Square Root - Detailed Flow Chart (Sheet 1 of 2) 5-45

Figure 5-lOa. Square Root - Detailed Flow Chart (Sheet 2 of 2) 5-46

Figure 5-11. Square Root Routine (Sheet 1 of 6) 5-47

Figure 5-11. Square Root Routine (Sheet 2 of 6) 5-48

Figure 5-11. Square Root Routine (Sheet 3 of 6) 5-49

Figure 5-11. Square Root Routine (Sheet 4 of 6) 5-50

Figure 5-11. Square Root Routine (Sheet 5 of 6) 5-51

Figure 5-11. Square Root Routine (Sheet 6 of 6) 5-52

Figure 5-12. Eight-Bit Binary to BCD C o n v e rs io n ... 5-54

Figure 5-13. Binary to BCD Conversion — Basic Doubling A lg o r i t h m 5-61

Figure 5-14. RAM Map for Doubling Algorithm Straight-Forward
Im plem en tation ... 5-62

Figure 5-15. Flow Chart for Variation 1 ... 5-64

viii

Figure 5-16. RAM Map for Variation 1 on the Doubling A lg o rith m 5-65

Figure 5-17. RAM Map for Binary to BCD C o n v e rs io n ... 5-66

Figure 5-18. Binary to BCD Conversion — Shifting A lgorithm 5-67

Figure 5-19. Two-Digit BCD to Binary Conversion... 5-70

Figure 5-20. BCD to Binary Conversion - Multiply by 1 0 .. 5-72

Figure 5-21. BCD to Binary Conversion — Multiply by 10 — the Shifting
A p p ro a c h ... 5-74

Figure 5-22. BCD to Binary Conversion by Successive Divide by T w o 5-77

Figure 5-23. Basic Block Flow C h a r t .. 5-81

Figure 5-24. Clock Based on 50- or 60-Hz Input ... 5-85

Figure 5-25. Flow Chart for Internal Time Base Clock (Oscillator Frequency =
3.579545 M H z) ... 5-88

Figure 5-26. Interconnect for Sample and Multiplexed Display C o d e5-107

Figure 5-27. Multiplexed Display Flow C h a r t ..5-108

Figure 5-28. Dual COP470/472 S y s te m s .. 5-116

Figure 5-29. Keyboard Scan Flow C h a r t .. 5-123

Figure 5-30. Interconnect for Key Scan R o u t i n e ...5-124

Figure A -l. RAM M a p p in g ... A-2

Figure B-l. Stack Structure in R A M .. B-2

TABLES

TABLE 1-1. COPS ROMLESS MICROCONTROLLERS - GENERAL SOFTWARE
OVERVIEW .. 1-3

TABLE 1-2. COPS MICROCONTROLLERS - GENERAL SOFTWARE
OVERVIEW ... 1-4

TABLE 2-1. ADDRESS-PAGE-BLOCK-CHAPTER M A P P I N G ... 2-6

TABLE 2-2. EFFECTS OF EN3, ENq, ON SIO, SI, SO, AND S K ... 2-14

TABLE 2-3. INTERRUPT SOURCE SELECTION... 2-14

TABLE 4-1. EFFECTS OF BLOCK BOUNDARIES ON JID
D E S T I N A T I O N ... 4-4

TABLE 5-1. CONTROL B I T S ... 5-112

TABLE 5-2. CONTROL C O D E S 5-113

TABLE 5-3. MM54XX SERIES D E V IC E S ...5-118

IX

Chapter 1

INTRODUCTION TO COPS MICROCONTROLLERS

1.1 SCOPE A N D PURPOSE OF THIS M ANUAL

How is an efficient COPS program written? The answer to this question begins w ith dividing
the broad category of microcomputer into two areas: microcontrollers and microprocessors.
This distinction is made because these are really two different types or classes of devices.
Microcontrollers generally have a dual-bus architecture rather than the memory-mapped von
Neumann architecture common in most microprocessors. For control applications,
microcontrollers are generally more memory efficient than microprocessors. The
microcontroller instruction set is quite different in nature than the microprocessor instruction
set. Microcontrollers are invariably single-chip devices and microprocessors are, generally,
multi-chip devices. Microcontrollers dominate the microcomputer marketplace in terms of
volume. To be sure, the division between microcontroller and microprocessor is sometimes
blurred but the distinction is real nonetheless.

COPS devices are microcontrollers. It is the intent of this manual to provide the
user/programmer of COPS microcontrollers the requisite information to write an efficient
COPS program — to take fu ll advantage of the characteristics of the devices. To achieve that
end, this manual is written from the programmer’s perspective. The various characteristics of
COPS microcontrollers are described in the context of the effect of those characteristics on the
programming of the devices. The COPS architecture is discussed; the instruction set is
described in detail; general techniques of COPS programming are explained; and standard
programs are provided. The standard programs are commonly used as vehicles to illustrate
various programming techniques. The user or reader would be w ell advised to carefully read
the explanations associated with routines showing multiple implementations. The intent of
providing multiple implementations is not to show how many different ways a routine can be
written but rather to show techniques, “tricks’’, tradeoffs, considerations, etc. Therefore, a
great deal of useful information is included in those explanations.

This manual does not attempt to explain the detailed physical or electrical characteristics of
COPS microcontrollers. To the extent any such information is provided here, it is to explain
some software effect or characteristic. Therefore, the physical details may be simplified to
clarify the software explanation.

1-1

1.2 THE COPS MICROCONTROLLER FAMILY

1.2.1 General Description

COPS devices are general purpose, single-chip microcontrollers. These microcontrollers are
complete microcomputers containing all system timing, internal logic, ROM, RAM, and I/O
necessary to implement dedicated control functions in a wide variety of applications. The
COP400 family presently consists of a large number of devices enabling the user to select the
device best suited to his application. The software is upward compatible — programs written
on one device may be transferred to the next larger device (in terms of memory capacity)
w ith little or no change. The package pin configurations have also been selected so that
movement up or down (using memory size as the variable parameter) within the family can
be accomplished easily. All COPS microcontrollers, regardless of memory size or number of
pins, have the same basic architectural structure. In addition to the large number and wide
range of devices, all COPS microcontrollers have a number of I/O options, specified at the same
time as the program, which allow the user to tailor, within limits, the I/O characteristics of
the microcontroller to the system. Thus, the user can optimize the microcontroller for the
system, thereby achieving maximum capability and minimum cost

This manual deals with the basic functionality of COPS microcontrollers. It does not address
electrical differences among the various devices. Thus, this manual does not distinguish
between the COP400 and the COP300 series. These two series differ only in electrical
characteristics and not in function. This manual further does not distinguish the high-speed
devices from the low-power devices or from the CMOS devices except to the extent that some
of the devices may have features that affect programming.

1.2.2 COPS ROMless Microcontrollers

Several COPS microcontrollers are designed to use external program memory. Basically, these
devices have been created by removing the ROM from their single-chip counterparts. These
devices are primarily intended to be used in program development and debug, device
emulation, and low-volume production. Table 1-1 provides a list of COP400 ROMless devices
currently available or in design. The devices are designed so that each COPS microcontroller
has at least one ROMless device that can be used for accurate emulation. Since these devices
are functionally equivalent to the single-chip microcontrollers, this manual does not generally
distinguish the ROMless device from its single-chip counterpart

1.2.3 OOPS Single-Chip Microcontrollers

Table 1-2 provides a list of COPS single-chip microcontrollers currently available or in design.
It is readily apparent that the list is quite extensive. Many of the variations are simply
different packagings of the same device, e.g, the COP441 is the COP440 in a 28-lead package;
the COP442 is the COP440 in a 24-lead package; the COP440 is a 40-pin device. Another
important characteristic is the commonality of the pinouts of the single-chip devices: all 40-
pin devices have the same pinout; all 24-pin devices have the same pinout; the COP411L and
COP411C have the same pinout; the COP422 and COP422L have the same pinout. See Figures
1-1 through 1-4.

1-2

TABLE 1-1. COPS ROMLESS MICROCONTROLLERS - GENERAL SOFTWARE OVERVIEW

^ ^ \ C O P 401L 402 402M 4G4C 404L 404 2404 409

External ROM x 8 Up to
512

Up to 1024 Up to 2048 Up to
32768

RAM x 4 32 64 128 160 512

Inputs 0 4 4 4 4

Bidirectional TRI­
STATE® I/O

8 8 8 16 8

Bidirectional I/O 4 4 4 8 4

Outputs 4 4 4 4 4

Serial I/O and
External Event
Counter

Yes Yes Yes Yes Yes

Internal Time
Base Counter

No Yes Yes Yes Yes

Time Base
Counter
Programmable

No No Yes No Yes Yes

Interrupt No Yes No Yes Yes - 4 sources Yes

Stack Levels 2 3 3 4 4 per CPU 8

Microbus™ Option No No Yes Yes No Yes No

Instruction Cycle
C/zs) min - max

15-40 4-10 4-DC 15-40 4-10 4-25

Package Size (pins) 40 40 48 40 48 40

Availability Now Now Now Now Now Future*

* These devices are NOT available as of this writing. The information on these
devices is preliminary and subject to change. Advance information has been
provided for completeness and as an aid to the user. Announcements w ill be made
by National Semiconductor at the appropriate times regarding the availability and
ultimate characteristics of these devices

1-3

TABLE 1-2. OOPS MICROCONTROLLERS - GENERAL SOFTWARE OVERVIEW

410L 410C 411L 411C 4131. 420 420L 424C 421 421L 425C 422 422L 426C 444L 444C 445L 44 5C 440 441 442 2440 2441 2442 484 485

ROM X 8 512 1024 2048 4096

RAM x 4 32 64 128 160 256

INPUTS 0 4 0 4 0 4 0 4 0 4 0

BIDIRECTIONAL
TRI-STATE I/O 8 8 8 16 8 16 8 8

BIDIRECTIONAL
I/O 4 3 4 4 4 2 4 8 4 8 4 4

OUTPUTS 4 2 4 4 2 4 4 4

SERIAL I/O AND
EXTERNAL EVENT
COUNTER

YES YES ’ YES YES YES

INTERNAL TIME
BASE COUNTER NO YES YES YES YES

TIME BASE
COUNTER
PROGRAMMABLE

NO NO YES NO YES NO YES NO YES NO YES YES

INTERRUPT NO YES NO YES NO YES
4- SOURCES

YES
2

SOURCES

YES
4 SOURCES 2

50URCES
YES NO

STACK LEVELS 2 3 3 4 4 PER CPU 4

MICROBUS
OPTION NO YES NO YES NO NO YES NO YES NO YES NO NO

INSTRUCTION
CYCLE (MS)
MIN-MAX

16-40 4-DC 16-40 4-DC 16-40 4-10 16-40 4-DC 4-10 16-40 4-DC 4-10 16-40
4MSEC
TO
DC

16-40 4-DC 16-40 4-DC 4-10 4-25

PACKAGE SRE
(PINS) 24 20 28 24 20 28 24 40 28 24 40 28 24 28 24

AVAILABILITY NOW NOW NOW NOW NOW NOW NOW FUTURE*

* THESE DEVICES ARE NOT AVAILABLE AS OF THIS WRITING.THE INFORMATION ON THESE DEVICES IS PRELIMINARY AND SUBJECT TO CHANGE.ADVANCE
INFORMATION HAS BEEN PROVIDED FOR COMPLETENESS AND AS AN AID TO THE USER. ANNOUNCEMENTS WILL BE MADE BY NATIONAL SEMICONDUCTOR BA-37-C
AT THE APPROPRIATE TIME REGARDING THE AVAILABILITY AND ULTIMATE CHARACTERISTICS OF THESE DEVICES.

L 4 - 1 20
Vcc—2 19
L3—3 COP411L 18
L2—4 COP411C 17
L l - 5 16
L 0 - 6 15
s i - 7 14
s o - 8 13
SK - 9 12

GND—10 11

-L5

-GO

A.

CKO—1 20
CKI—2 19

RESET- 3 COP422 18
L 7 - 4 COP422L 17
L6—5 COP426C 16
L 5- 6 15
L4—7 14

Vcc—8 13
L3—9 12
L 2- 10 11

-GND

-LO

B.

Figure 1-1. Pinouts for 20-Pin COPS Microcontrollers

1-5

GND—1 COP410L 24
CKO—2 COP410C 23
CKI—3 COP421 22

RESET- 4 COP421L 21
L 7- 5 COP425C 20
L 6- 6 COP445L 19
L5—7 COP445C 18
L 4- 8 COP485 17

Vcc—9 COP442 16
L 3 - 10 COP2442 15
L 2 - 11 14
L l - 12 13

-DO

-GO

Figure 1-2. Pinout for 24-Pin COPS Microcontrollers

GND—1 28 -DO
CKO—2 27 —D1
CKI—3 26 —D2

RESET- 4 COP420 25 -D 3
L 7- 5 COP420L 24 -G 3
L 6 - 6 COP424C 23 -G2
L 5 - 7 COP444L 22 -G l
L 4- 8 COP444C 21 -GO

IN1—9 COP484 20 -IN 3
IN2—10 COP441 19 -INO
Vcc—11 COP2441 18 -SK
L 3- 12 17 -SO
L 2- 13 16
L l—14 15 -L 0

Figure 1-3. Pinout for 28-Pin COPS Microcontrollers

1-6

Figure 1-4. Pinout for 40-Pin COPS Single-Chip Microcontrollers

1.2.4 Conclusion

COPS microcontrollers comprise a broad, general purpose, powerful, and flexible family of
devices. The hardware and software compatibility of the devices allow the user to move
easily w ithin the family as the need arises or the application dictates. Many ROMless devices
are available to aid in emulation and development. The applications of COPS devices are
unlimited. COPS microcontrollers have been used in automotive (trip computer, seat position
controller, electronic instrument cluster, ignition systems, diagnostic systems), appliance
(ovens, microwave ovens, vacuum cleaners, sewing machines, washers, driers, food processors),
home electronic (electronically timed radios, cassette recorders, video cassette recorders, stereo
systems), security system, timekeeping, energy management, industrial/commercial (utility
meters, keyboard encoders, cash registers, dictation equipment, coin changers, vending
machines, jukeboxes), telephone (repertory dialers, simple phone dialers, call timers), exercise
equipment (exercise bicycle, jogging machine), miscellaneous home (garage door openers, lawn
sprinklers, Christmas ornaments, cable television), toy, game, and many other applications.

1-7

Chapter 2

ARCHITECTURE OF COPS MICROCONTROLLERS

2.1 INTRODUCTION

This section deals with the architecture of COPS microcontrollers. Figure 2-1 is the generic
block diagram for COPS microcontrollers. The diagram is accurate as is for the
COP420/421/422, COP420L/421L/422L, COP424C/425C/426C, COP444L/445L,
COP444C/445C, and COP484/485 devices. The addition or deletion of certain elements creates
the other microcontrollers in the COPS family. Figure 2-2, the block diagram of the
COP410L/41117413L and COP410C/411C, Figure 2-3, the block diagram of the
COP440/441/442, and Figure 2-4, the block diagram of the COP2440/2441/2442, illustrate
this fact. It is clear, even from a cursory examination, that all COPS microcontrollers possess
the fundamental architecture that is indicated in Figure 2-1. Therefore, Figure 2-1 is the
focal point for the discussion of the COPS architecture. The additions or deletions that lead to
the other block diagrams are discussed where appropriate.

2.2 COPS MEMORY STRUCTURE

2.2.1 Program Memory — ROM

The program memory in COPS microcontrollers is a read-only memory (ROM) organized as a
number of eight-bit words. COPS microcontrollers w ith ROM capacities of 512, 1024, and
2048 words are presently available. Devices with ROM capacity of 3072 and 4096 words are
currently in design. The ROM words are addressed sequentially by a binary program counter
(in ROMless devices, the program counter is brought out to pins to address external memory).
The program counter starts at zero and, if there are no jumps or subroutines or table lookups,
w ill increment to the maximum value possible for the device and rolls over to zero and begins
again.

Internally, COPS microcontrollers have a semi-transparent page, block, and chapter structure
to the ROM. A page is composed of 64 contiguous ROM words. The lower six bits of the
program counter are zeroes at the first address of a page and ones at the last address of a page.
A block, which is significant only in the table lookup and indirect jump operations, is
composed of four contiguous pages (256 contiguous ROM words). The lower eight bits of the
program counter are zeroes at the first address of a block and ones at the last address of a
block. The first address of a block is also the first address of a page and the last address of a
block is also the last address of a page. The chapter division is relevant only in COPS devices
w ith more than 2048 ROM words or ROMless devices capable of addressing more than 2048
ROM words. The lower 11 bits of the program are zeroes at the first address of a chapter and
ones at the last address of a chapter. The first address of a chapter is also the first address of a
block and the last address of a chapter is also the last address of a block. Table 2-1 lists the
hexadecimal address and the corresponding page/chapter/block divisions.

2-1

H:C GND

_ J___ L_
CKl

RESET
i hIE
PROGRAM COUNTER

(PC)

\ y
SA
SB
SC
SD

SUBROUTINE
STACK

TIMER__
OVERFLOW

PROGRAM MEMORY

(ROM)
1024 X 8
2046 X 8
4096 X 8

++ TIME BASE

CKO RCSLf

-{7 ^ —

TIMER
OVERFLOW

V

DIVIDER
CLOCK

GENERATOR

CKO

FUNCTION

Vrl FT

HALT

RESET

CONTROL LOGIC
RESET?

INSTRUCTION
CLOCK

DATA MEMORY Til GI T
ADD.

(RAM) REGISTER
64 X 4

188 X 4
856 X 4

ADD.

Br Bd

7TTS
REGISTER __

AND

BUFFER

INSTRUCTION

DECODE/CONTROL

SKIP LOGIC

INSTRUCTION
CLOCK

i

. t 1
A

IL

LATCHES

IN3 I NO
IN2 INI

D
SERIAL I/O REGISTER
sio3 sio2 sio1 S10Q

-DO**
►Dl**
'D2
- D3

-SK\

•SI1

*$0/1/0

L0L1L2 L3 L 4 L 5 L 6 L 7 PATHS IN DASHED LINES NOT PRESENT ON
ALL DEVICES.

fSD REGISTER AVAILABLE ONLY ON 36- AND
48-LEAD DEVICES.

* THESE PINS NOT AVAILABLE ON 24- AND 28-
LEAD DEVICES.

**THESE PINS NOT AVAILABLE ON 20-LEAD
DEVICES.

+ONLY CMOS COPS EXCEPT 411C.

++NOT AVAILABLE ON iK DEVICES.
BA-01-0

Figure 2-1. Basic Block Diagram for COPS Microcontrollers

'fcc GND

_i___ L_
CKI

i
CKO* RESET

PROGRAM COUNTER

(PC)

SA
SB

SUBROUTINE
STACK

(ROM)

512 X 8

i t

(SYNC) VrT

n ++
INSTRUCTION CLOCK CKO HALT RESET

CLOCK DIVIDER
GENERATOR FUNCTION " CONTROL LOGIC

RESET?

$
DATA MEMORY blGIT

» . ADD.
(RAM) r e g i s t e r

32 X 4
ADO.

Br
M
Bd D

REGISTEI

AND

BUFFER

-DO +
*D1 +
D2+
► D3*+

G

REGISTER

AND

BUFFER

I T
INSTRUCTION

DECODE/CONTROL

SKIP LOGIC

^ C O N T R O L LOGIC

ACCUMULATOR
INSTRUCTION

CLOCK

CARRY
CONTROLf

*[, j ■

^ f t _ Q '

r
SEf
SIO

3 L DRIVERS 1

2

w
m

LOGIC
**SK1

AL I/O REGISTER
3 S102 S1Q1 S10Q *-sr

M
I
C
R
0
W
I
R
E

TfHTnLOL1L2 L3 L4 L5 L6 L'7

“■soy i/o

♦THESE PINS NOT AVAILABLE ON C0P410L AND 411C.

+THESE PINS NOT AVAILABLE NO THE COP413L.

++ONLY CMOS COPS EXCEPT 411C

BA-02-0

Figure 2-2. COP410L/411IV413L and COP410C/411C Block Diagram

CKO\c GND CKI

r
M
I
C
R
0
W
I
R
E

I/O

*THESE PINS NOT AVAILABLE ON 28-
OR 24- LEAD DEVICES.

**THESE PINS NOT AVAILABLE ON 24-
LEAD DEVICES.

BA-03-0

Figure 2-3. COP440/411/442 Microcontrollers Block Diagram

**IN3
**IN2
**IN1
**IN0

N3 N2 N1 NO R7 R6 R5 R4 R3 R2 R1RO L7L6 L5L4 L3 L2L1L0
*THESE PINS NOT AVAILABLE ON 28-
OR 24- LEAD DEVICES.
**THESE PINS NOT AVAILABLE ON 24-
LEAD DEVICES.

BA-04-0

Figure 2-4. COP2440/2411/2442 Dual CPU Microcontrollers - Block Diagram

TABLE 2-1. ADDRESS-PAGE-BLOCK-CHAPTER MAPPING

HEX ADDRESS PAGE BLOCK CHAPTER

000-03F 0
040-07F 1 0
080-0BF 2
OCO-OFF 3

100-13F 4
140-17F 5 1
180-1BF 6
1C0-1FF 7

200-23F 8
240-27F 9 2
280-2BF 10
2C0-2FF 11

300-33F 12
340-37F 13 3 0
380-3BF 14
3C0-3FF 15

400-43F 16
I : 4

4C0-4FF 19

500-53F 20
: l 5

5C0-5FF 23

600-63F 24
l : 6

6C0-6FF 27

700-73F 28
: : 7

7C0-7FF 31

2-6

«

TABLE 2-1. (Cont)

HEX ADDRESS PAGE BLOCK CHAPTER

800-83F 32
: : 8

8C0-8FF 35

900-93F 36
I : 9

9C0-9FF 39

AOO-ACF 40
: : 10

ACO-AFF 43

B00-B3F 44
l l 11

BCO-BFF 47

C00-C3F 48
: l 12 1

CCO-CFF 51

DOO-D3F 52
: : 13

DCO-DFF 55

EOO-E3F 56
• I 14

ECO-EFF 59

FOO-F3F 60
: : 15

FCO-FFF 63

1000-103F 64

• •

This internal structure is semi-transparent. Only some jumps, some subroutine calls, and table
lookups are affected by this structure. As indicated earlier, the block divisions come into play
only in the table lookups and indirect jumps. The page and chapter divisions affect some
direct jumps and subroutine calls. Chapter 4 explains the effects of these divisions on the

2-7

pertinent instructions. Complete operational programs can be written without consideration
of this internal structure. Such a program, however, w ill use more code, and therefore
require larger ROM capacity, than a program written w ith this structure in mind. Chapter 4
w ill address this in greater detail. This page/block/chapter structure has no effect on the
program counter. The b in a ry program counter w ill f re e ly increm en t th ro u g h page,
block, o r chap te r boundaries.

2.2.2 D ata M em ory — RAM

The data memory (RAM) in COPS microcontrollers is organized as a matrix. Each row in the
matrix is called a register; each column in the matrix is called a digit. A digit is 4 bits wide.
As shall be seen, this particular structure contributes to the general efficiency of COPS
microcontroller. All RAM addressing is based on this register-digit Cor row-column)
organization. The RAM address register identifies a specific digit in the RAM matrix. COPS
devices with RAM sizes of 32 digits (4 registers by 8 digits, 128 bits), 64 digits (4 registers by
16 digits, 256 bits), 128 digits (8 registers by 16 digits), and 160 digits (10 registers by 16
digits) are presently available. A device with RAM sizes 256 digits (16 registers by 16 digits)
is in design. A ROMless device w ith 512 digits (32 registers by 16 digits) of RAM is also in
design.

The RAM in COPS microcontrollers is not in the program memory space. The RAM is not
addressed by the program counter but has its own address register, the B register. The B
register can be loaded directly or through the accumulator. Since the RAM has its own
address register, most COPS instructions which access RAM do not contain an address field.
This tends to promote ROM code efficiency. The B register is divided into two distinct parts:
Br — the row or register address and Bd — the column or digit address. Bd is 4 bits wide in all
COPS microcontrollers. Br is between 2 and 5 bits wide depending on the particular device.
Bd, in addition to being the digit address, is the source for the D output register. On software
command, the contents of Bd can be transferred to the D port where the information is
latched.

The data memory digit addressed by the B register is normally accessed through the
accumulator. The contents of the RAM digit may be directed, under software command, to
one of several output ports as well as used in the normal program flow. Two instructions,
LDD and XAD, carry a RAM address w ith them. These instructions operate (load or
exchange) on the specified RAM digit without modifying the B register.

2.2.3 Subroutine Stack

COPS microcontrollers have a subroutine stack of two, three, or four (eight on the CQP409)
save registers. On all COPS microcontrollers w ith two or three save registers in the
subroutine stack, a physical transfer of register contents within the stack occurs on all
operations affecting the stack, primarily calls and returns. On these devices, the stack is
physically and logically separate from data RAM. The user does not have access to the stack
and, therefore, may not read or write the stack in these devices.

On COPS devices w ith four or more stack levels, the stack is located in data RAM. Four stack
levels use up one data register. The user has access to the stack since the data RAM contains

2-8

the stack. However, in no case does the stack expand beyond its assigned area into the rest of
the data memory. These devices contain a stack pointer which is incremented or decremented
on operations affecting the stack. Overflowing the stack merely causes the stack pointer to
wrap around from its maximum value back to zero. On the COP440 and COP2440 series,
on ly the user also has access to the stack pointer and may read or write the pointer. In all of
these devices which permit stack access, the programmer has increased versatility. However,
caution is recommended. Increased power brings with it increased risk, and the programmer
should exercise care that the stack is not accidentally accessed in these devices.

2.3 THE ARITHMETIC LOGIC UNIT

The arithmetic logic unit (ALU) in COPS microcontrollers is a 4-bit parallel binary adder. It
performs all the arithmetic and logic functions in the microcontrollers. The destination for
all such operations is the 4-bit accumulator, and one input to the ALU is always the
accumulator. The other input is either an immediate operand as specified by an instruction or,
more commonly, the data RAM digit addressed by the B register. The one-bit C register
sometimes is a third input to the ALU. The ALU outputs a carry bit which, depending on the
instruction being executed, can be loaded into the C register. See the instruction set
description and Section 4.4 for more details on carry and the C register.

2.4 INPUT/OUTPUT

2.4.1 Inputs

Only one input port, the IN port, is available on COPS microcontrollers. This port is available
only on devices w ith 28 or more leads. On software command, the four IN lines are read, as a
group, into the accumulator. In addition to the the direct inputs, INO and IN3 have latches
associated w ith them. These latches capture a high to low transition on the particular line.
The status of the latches is read into the accumulator on software command. Thus, the
programmer can read the present status of the IN lines directly or can read the status of the
latches associated with INO and IN 3.

The INI input can, under software control, serve as an interrupt input. The enabling or
disabling of interrupts is a software decision. As such, in a given program, interrupts may be
always enabled, never enabled, or sometimes enabled. On the COP440/441 and
COP2440/2441 devices only, INI may be mask programmed to be a zero crossing input. As
such, interrupts may be generated at each zero crossing. Note that the zero crossing option is a
mask, hardware option and not a software option.

On the new COP424C, the COP444C, and the COP484, IN2 may be mask programmed to be
an input to the time base counter. Again, this is a hardware option and is not software
alterable. On the COP440/441 and COP2440/2441 devices, IN2 may also be selected as an
input to the time base counter. On these devices, however, the choice is controlled in software
by the programmer.

2-9

2.4.2 Bidirectional Tri-State I/O

A ll COPS microcontrollers have at least one eight-bit bidirectional I/O port. This is the L
port. In output operations, the L lines output the contents of the eight-bit Q register. The
input path is from the pins to the accumulator and RAM. Note that the L lines are drives
only: they do not retain any data. Output data for the L port is stored in the Q register. The
L drivers can be placed in the high impedance, or TRI-STATE mode for ease in interface to a
system bus.

The COP440 and COP2440 have and additional eight-bit bidirectional I/O port, the R port.
The R port contains latches and drivers. Data to be output is latched into the R register. The
input path is from the pins to the accumulator and RAM. Input data at the R pins is not, and
cannot be, latched into the R register by any external signal. This must be done indirectly by
the program. The R drivers, like the L drivers, can be put into a high impedance, or TRI­
STATE, condition for simple bus interface.

Both the L port and the R port can be inputs. There is no input state per se. If used as inputs,
either port may be put into a high impedance, or TRI-STATE, condition. In this case, the
external signal must drive the line both high and low and guarantee the valid “O” and “1”
logic levels. Alternatively, for both ports, the Q register or the R register can serve as a
pullup for the L and R lines respectively. The programmer may write “l’s” to the input
positions and enable the drivers. La this case, the external signal need only pull the line down
to a valid low level.

2.4.3 Bidirectional I/O

The G port is a four-bit bidirectional I/O port. The G outputs are latches and drivers.
Therefore, data can be saved in the G port. The input path is from the pins to the
accumulator. In addition to reading the port, the G lines can be directly tested, either
individually or as a four-bit group, in software. Note, the latches on G are for output only;
input signals are not latched into the G port

The COP440 and C0P2440 devices have an additional bidirectional four-bit port, the H port
The H port is essentially a duplicate of the G port except that H cannot be directly tested.

There is no restriction on H or G as to which lines may be inputs or outputs. All G lines may
be inputs; all G lines may be outputs; any G line, or group of G lines, may be outputs w ith the
remaining G lines inputs. The same is true of the H lines.

2.4.4 Outputs

The D port is an output-only port. The outputs are latched. On software command, the
contents of Bd, the digit address portion of the RAM address register, are copied to the D port.
These outputs w ill remain in that state until the next write to D. The D port is loaded only
from Bd.

2-10

2.4.5 The SIO Register

The SIO register is a dual-purpose four-bit register. Depending on the status of the EN
register, whose contents are user alterable, this register may be a four-bit binary down counter
or a four-bit serial shift register. When SIO is a down counter, SI is the counter input, the
counter decrements on the high to low transition, provided that the input remains low for
two instruction cycles of the signal at the SI output. SO and SK are logic level outputs which
can be directly controlled by the program. When SIO is a shift register, SI is the input to the
4-bit shift register and SO is the shift register output. SK is a serial clock running at the
instruction cycle rate. By means of the EN register, and while SIO remains enabled as a shift
register, SO can be disabled, i.e, forced to zero. Similarly SK can also be forced to zero in this
mode. Note that when SIO is enabled as a shift register and SO enabled as a shift register
output, whatever is at SI w ill appear at SO four instruction cycles later unless the program
alters the contents of SIO. When enabled as a shift register, SIO is always shifting at the
instruction cycle rate regardless of the status of SO or SK.

MICRO WIRE™ I/O

The MICROWIRE concept provides a simple, easy to use serial interface between COPS
microcontrollers and various peripheral devices. The MICROWIRE interface is, essentially,
the serial I/O port on COPS microcontrollers; the SIO register in the shift register mode. SI is
the shift register input, the serial input line to the microcontroller. SO is the shift register
output, the serial output line to the peripherals. SK is the serial clock, data is clocked into or
out of peripheral devices w ith this clock. MICROWIRE is available on all COPS
microcontrollers.

MICROWIRE Peripherals

For MICROWIRE interface, a peripheral device requires some or all of the following:

DI Data Input. This is the serial input to the peripheral. This is connected to SO on the
microcontroller. All MICROWIRE peripherals m ust have this pin.

SK Serial Clock. This is the serial clock connected to SK of the microcontroller. All
MICROWIRE peripherals m ust have this pin.

CS Chip Select. This merely selects a particular device. It may be connected to any
convenient microcontroller output. Chip Select is required in any multiple peripheral
systems. In a single peripheral system, whether or not Chip Select must be connected to
a microcontroller output depends on the peripheral itself and its design.

DO Data Output. This is the serial output from the peripheral. It is connected to SI of the
microcontroller. DO is required only on peripherals that communicate back to the
microcontroller.

2-11

2.4.6 Microbus™

Microbus is a universal eight-bit parallel system bus. Certain COPS microcontrollers have a
mask option permitting them to be used as Microbus-compatible peripheral devices. As far as
the COPS device is concerened, the Microbus is composed of the following elements:

• An eight-bit bidirectional data bus

• Data Strobes - a read strobe and a write strobe

• Chip Select - to identify the device

• Interrupt/Acknowledge - return line to main CPU

In COPS microcontrollers, the data bus is the Q register-L drivers combination. If the device is
selected and a write strobe occurs, data is transferred from the bus-L directly into the Q
register. Similarly, if the device is selected and a read strobe occurs, data is copied from the Q
register onto the bus-L. Input INi becomes RD, the read strobe. Input IN2 becomes CS, the
chip select. Input IN3 becomes WR, the write strobe. Note that these three inputs _are all
active low. A logical “0” on CS (IN2) selects the COPS device and enables operation of RD and
WR. A logical “0” on RD (INi) or WR GN3) when CS is also a logical “0” w ill cause the data
read or write as described above. I/O pin GO serves as an interruppt/acknowledge or ready
pin back to the main CPU. GO is normally high-ready. It is set high by the user program.
The occurrence of a write strobe while the device is selected automatically sets GO to the low
or busy state. The user program sets GO high again.

The Microbus option on COPS microcontrollers is completely compatible w ith the Microbus
standard. The t iming and t iming relationships are those defined by that standard.

The Microbus option is a mask option, i.e, a hardware option. The functions of INi, IN^ IN^
GO, and L drivers and the Q register are physically altered by this option. The Microbus
option is available on the following COPS microcontrollers only: COP420, COP424C,
COP444C, COP440, COP441, COP2440, and COP2441.

2J5 THE ENABLE REGISTER

The ENABLE (EN) register is an internal four- or eight-bit register loaded tinder program
controL The state of the individual bits of this register selects or deselects certain features in
the microcontroller.

2.5.1 EN0 through EN3

These four bits of the EN register are present on all COPS microcontrollers. Their function is
as follows:

ENo, the least significant bit of the enable register, controls the status of the SIO register..
W ith ENo set* a logical “1”, the SIO register is a four-bit asynchronous binary down counter
decrementing its value by one upon each low going pulse at the SI input. The pulse must be
low at least two instruction cycles. W ith EN0 equal to “1”, SO and SK are logic signals. SK
outputs the value of SKL. SO outputs the value of EN3. W ith EN0 reset (low), the SIO
register is a four-bit serial shift register that shifts left, from SI toward SO, one bit each

2-12

instruction cycle time. Data is shifted into the least significant bit of SIO from SL SO can be
enabled to output the most significant bit of SIO. W ith ENo reset, SK becomes a logic
controlled clock whose period is the instruction cycle time.

ENj controls the in terrup t W ith ENX set, the interrupt is enabled. If a signal meeting the
timing requirements appears at the interrupt input when ENX is set, the interrupt w ill be
recognized. W ith ENX reset, the interrupt is disabled, the signal at the interrupt input is
ignored. Obviously, the status of ENX is significant only in those COPS microcontrollers
having interrupt capability.

EN2 controls the L drivers. W ith EN2 set, the L drivers output the data in the Q register to
the L I/O port. With EN2 reset, the L drivers are disabled thereby placing the L I/O port into
a high impedance, or TRI-STATE, condition. EN2 has no effect on the L drivers in devices that
have the Microbus option implemented.

On the COP440, COP441, COP2440, and COP2441 devices which have the Microbus option
selected, EN2 serves a different function. In this case, EN2 set w ill disable any writing, by the
program, into GO which is the ready signal back to the main CPU.

EN3, in conjunction w ith ENo, controls the SO output. As stated above, if EN0 is set, SO
outputs the value of EN3. If ENo is reset and EN3 is set, SO is the output of the SIO serial
shift register. If ENo is reset and EN3 is reset SO is set to logical “0”. SIO remains a shift
register shifting data in from SI; SO is merely held low by internal logic. Table 2-2 provides
a summary of the SIO modes associated with EN0 and EN3.

2.5.2 EN4 through EN7

These “extra” four bits of the enable register are present only in the following devices:
COP440, COP441, COP442 COP2440, COP2441, and COP2442. Obviously, therefore, the
information in this section applies to those devices only.

EN4 - In conjunction w ith EN5, EN4 selects the interrupt source. See Table 2-3.

EN5 - In conjunction w ith EN4, EN5 selects the interrupt source. See Table 2-3.

EN6 - W ith EN6 set (high), IN2 becomes the input to the internal eight-bit T counter. W ith
EN6 reset (low), the input to the eight-bit T counter is the output of a divide by 4 prescaler
from the instruction cycle frequency, thus providing a ten-bit time base counter.

On the COP442 and COP2442, IN2 is not available as an input. Therefore, on these devices,
ENfc functions as a T counter disable: EN$ set disables further counting, and ENg reset
produces the ten-bit time base counter.

EN7 controls the R I/O port. W ith EN7 set, the contents of the R register are output to the R
I/O port. W ith EN7 reset, the R I/O port is placed into a TRI-STATE, or high impedance,
condition. The contents of the R register are not affected.

2-13

TABLE 2-2. EFFECTS OF EN3, ENQ, ON SIO, SI, SO, AND SK

EN3 ENq SKL SIO SI SO SK

0 0 0 Shift Register Input to Shift Register 0 0

0 0 1 Shift Register Input to Shift Register 0 Clock

1 0 0 Shift Register Input to Shift Register Serial Out 0

1 0 1 Shift Register Input to Shift Register Serial Out
•

Clock

0 1 0 Binary Down Counter Input to Binary Counter 0 0

0 1 1 Binary Down Counter Input to Binary Counter 0 1

1 1 0 Binary Down Counter Input to Binary Counter 1 0

.1 1 1 Binary Down Counter Input to Binary Counter 1 1

NOTE: SKL not affected by EN^ or ENq, but SKL does affect SK status.

TABLE 2-3. INTERRUPT SOURCE SELECTION

e n 5 e n 4 INTERRUPT SOURCE

0 0 INj - low going pulse

0 1 CKO input (if CKO input option mask programmed)

1 0 Zero Crossing on IN j (or INj level transition)

1 1 T counter overflows

2-14

2.6 INTERNAL TIMER

A ll COPS microcontrollers except the COP410L, COP411L, COP413L, COP410C, and COP411C
have an internal time base counter. This counter is in the form of a ten-bit counter with the
input being the instruction cycle frequency. Thus, this counter divides the instruction cycle
frequency by 1024 or overflows once every 1024 instruction cycle times. A timer latch is set
every time the counter overflows. This latch may be tested and reset (a single instruction) by
the user’s program.

2.6.1 Access to the Timer

All COPS microcontrollers that have the time base counter have the ability to test and reset
the timer latch. Some devices, however, also have the ability to read and write the upper
eight bits (the T counter) of the timer. The devices w ith this capability are as follows: The
COP424C, COP425C, COP426C, COP444C/445C, COP440/441/442, COP2440/2441/2442, and
COP484/485, and their associated ROMless devices. The timer overflow latch is still present
and is still set when the counter overflows. These devices allow the user to modify, under
program control, the overflow rate of the time base counter.

2.6.2 External Event Counter

On some devices, the COP424C, COP444C, COP440/441, COP2440/2441, and COP484, the
upper eight bits or the T counter of the time base counter may be disconnected from the
instruction cycle clock and connected to input IN* In this mode, the T counter counts
external pulses. The timer overflow latch is set whenever the T counter overflows. The latch
is tested in the normal manner. This characteristic is a mask option on the COP424C,
COP444C, and COP484 devices. Thus, on these devices, the T counter may be connected to
form the ten-bit time base counter or the T counter may be connected to IN2 to count external
events. On the COP440/441 and COP2440/2441 devices, this characteristic is a software
option. The user’s program controls the connection of the T counter via EN&. There is no
restriction, in these devices, on changing the T counter connection during program execution.
The user is free to alternate between a time base counter and an external event counter if
doing so is useful in his or her application.

2-15

2.7 OSCILLATOR AND BASIC TIMING

2.7.1 Clock Generator and Divider

The clock generator on COPS microcontrollers is extremely versatile and, by means of mask
options, w ill work w ith a variety of oscillators: crystal, external, simple RC, or more involved
RC, RLC, or LC networks. Furthermore, the clock generator w ill usually operate over a fairly
large range in order to give the user maximum flexibility in selecting the oscillator frequency.
Several divider (prescaler) options are available, as mask options, to insure that the COPS
microcontroller is operating within its valid range with the oscillator frequency being used.
See the various device data sheets for precise details regarding the oscillator frequency, clock
generator, and divider.

2.7.2 The Instruction Cycle

The instruction cycle frequency is the frequency after the divider or prescaler. The period of
this frequency, or the instruction cycle time, is the basic t iming reference in COPS
microcontrollers. Minimum pulse widths, for counter inputs, interrupt, etc, are expressed in
terms of instruction cycle times. The highest degree of resolution w ith which a COPS
microcontroller can read input pulses or generate output pulses is the instruction cycle time.

The instruction cycle time or frequency can be measured by the user. The period of the SK
output when the microcontroller is reset (RESET low) or when SK is enabled as a clock
output is the instruction cycle time.

2.8 INITIALIZATION

On power up, providing the timing parameters in the data sheets are met, the following
registers are cleared on all COPS microcontrollers: A, B, C, D, EN, G, and the program counter
PC The SK latch, SKL, is set on all devices. In addition the T counter is cleared on the
COP440/COP2440 series, the COP424C series, the COP444C series, and the COP484 series
devices. In the COP440/COP2440, and COP484 series devices, the EL register and the Q
register are also cleared. (Note that these two registers are not cleared on other devices.) The
R, H, and N registers are also cleared on reset in the COP440/COP2440 series devices.

Reset, or initialization, occurs on power up and whenever a logical “0” at least three
instruction cycles wide appears at the RESET input. On the COP440/COP2440 series, the
COP484 series, and the COP424C/COP444C series devices, the T counter is cleared within
these three instruction cycle times. On other COPS microcontrollers, the logical “0” at the
RESET input must be ten cycles wide to clear the time base counter. In this situation, the
timer overflow latch is set.

The reset condition of COPS microcontrollers is as follows:

• The program counter, PC, is set to 0.

• The accumulator, A, is 0.

2-16

• The RAM address register, B, is set to 0,0.

• The carry, C, is set to 0.

• The D register and D output port are set to 0.

• The enable register is set to 0 and SKL set to 1.

1. SIO is a shift register.

2. SI is shift register input.

3. SO is 0.

4. SK is clock output.

5. Interrupts are disabled.

6. The L port is put into a high impedance, or TRI-STATE condition.

• The G output port is set to 0.

• On the COP440/COP2440 series, the following is also true:

1. The Q register is set to 0.

2. The H register and I/O port are set to 0.

3. The R register is set to 0.

4. The R I/O port is put into a high impedance, or TRI-STATE condition.

5. The interrupt source is IN!, low-going pulse.

6. The T counter is cleared and connected to form the time base counter.

7. The IL register is set to 0.

• The Q register and IL register are also cleared in COP464/COP484 series devices.

2-17

Chapter 3

THE COPS INSTRUCTION SET

3.1 BASIC CHARACTERISTICS

The instruction set of COPS microcontrollers is designed to take maximum advantage of the
COPS dual-bus architecture. The COPS instruction set, merged with the COPS architecture,
provides the user with the power, versatility, and efficiency to achieve the maximum function
and capability in minimum memory.

Since COPS microcontrollers are not memory-mapped devices, most instructions do not have
the burden of carrying some form of address field. Therefore, most instructions are one byte
in length. This, in turn, increases program efficiency. ROM space is devoted to performing a
function rather than pointing to the locations of various items.

It is quite common for a COPS instruction to contain a multiplicity of function. This
obviously creates program efficiency by performing in a single instruction a number of
functions that would otherwise require several instructions.

The test instructions, like most COPS instructions, do not contain an address. Therefore, a
successful test causes the next instruction to be skipped. It is quite common for one or both of
the instructions following the test to be jumps. More importantly, however, this skipping
characteristic allows the programmer to do a number of “unusual” things. Tests without
following jumps are common. B or A or other parameters can be altered in line without
jumping by judicious use of the test instructions. Examples of this, and further details, are
provided in Section 4. Furthermore, the skip feature has been “built into” a number of
arithmetic functions thereby eliminating the need to make separate tests.

3.2 DETAILED INSTRUCTION DESCRIPTION

For purposes of discussion and explanation, the COPS instructions are loosely grouped into the
following six categories:

1. Arithmetic/Logic Instructions

2. Transfer of Control Instructions

3. Memory Reference Instructions

4. Register Reference Instructions

5. Test Instructions

6. Input/Output Instructions

3-1

This section provides a detailed description of all COPS instructions. This description includes
the following information:

• The instruction mnemonic.

• A written description of the instruction.

• The data or program flow associated w ith the instruction.

• The instruction opcode in hex and binary.

0 The instruction execution time - expressed in instruction cycles.

0 Skip conditions associated with the instruction.

0 Any restrictions on the instruction or its use; any “special effects” of the instruction.

0 The COPS microcontrollers which have or do not have the instruction.

For ease and simplicity of description, the COPS microcontrollers are divided into the
following four groups:

Group 1 devices:

Group 2 devices:

Group 3 devices:

Group 4 devices:

COP401L, COP410L, COP411L, COP413L, COP410C, COP411C

COP402, COP402M, COP404L, COP404C, COP420, COP421, COP422,
COP420L, COP421L, COP422L, COP424C, COP425C, COP444L,
COP445L, COP444C, COP445C

COP404, COP440, COP441, COP442, COP2404, COP2440, COP2442

COP408, COP484, COP485, C0P409

The following list defines the symbols used in the descriptions of the instructions.

A 4-bit accumulator

B RAM address register

Br Upper bits of B, register address

Bd Lower 4 bits of B, digit address

C 1-bit carry register

D 4-bit data output port

EN Enable register

G 4-bit register to latch data for G I/O port

H 4-bit register to latch data for H I/O port

IL Two 1-bit latches associated w ith IN 3 and INO inputs

IN 4-bit input port

INi Z Zero crossing input

L 8-bit TRI-STATE I/O port

M 4-bit contents of RAM addressed by B

3-2

N

PC

Q
R

SIO

SK

T

RAM(B)

RAMn

ROM(t)

PC**

Subroutine stack pointer

ROM address register, program counter

8-bit register to latch data for L I/O port

8-bit register to latch data for R I/O port

4-bit shift register and counter

Logic controlled clock output

8-bit binary counter register

4-bit contents of RAM addressed by B

Contents of RAM location addressed by stack pointer N

Contents of ROM location addressed by t

Bits a through b of program counter PC

3.2.1 Arithm etic/Logic Instructions

ASC

Binary add, w ith cany, the accumulator w ith the memory location specified by the B register.
The result is placed in the accumulator. If result > 1510, generate a skip.

A < — A+C+RAM(B) C: Set or reset according to carry from bit three

Hex Code

30

7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

If 1 -> C , skip

None

All COPS microcontrollers

3-3

ADD

Binary add the accumulator w ith the memory location specified by the B register. Result is
placed in the accumulator.

A < — A+RAM(B) C: Not used or affected

Hex Code 7 6 5 4 3 2 1 0

31 0 0 1 1 0 0 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

A ll COPS microcontrollers

ADT

Binary add 10 to the accumulator. Instruction used for decimal adjust

A < —A+1010 C: Not used or affected

Hex Code

4A

7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

N ot available on: Group 1 and Group 4 devices

AISC y

Binary add the immediate value y to the accumulator and place the result in the accumulator.
Generate a skip if there is a carry out of bit 3.

A < — A+y. G Not used or affected

3-4

Hex Code

5y

7 6 5 4 3 2 1 0

0 1 0 1 7s 72 7i 7o

Execution Time:

Skip Conditions

Restrictions

Availability:

1 Instruction Cycle

If carry from bit 3, skip

y r*0, 0 < y ^ FH

All COPS microcontrollers

CASC

Binary add, w ith carry, of the one’s complement of the accumulator w ith the data in the
memory location specified by the B register. Generate a skip if result > 15io. This is the basic
subtract instruction.

A < — A+RAM(B)+C C: Set or reset according to carry from bit three

Hex Code

10

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0

Execution Time:

Skip Conditions

Restrictions

Availability:

1 Instruction Cycle

If 1 -> C , skip

None

N ot available on; Group 1 devices

CLRA

Clear the accumulator.

A < — 0 C: Not affected

Hex Code 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

3-5

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

COMP

Replace the value in A w ith its one’s complement.

A < — A C: Not affected

Hex Code

40

7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

A ll COPS microcontrollers

NOP

No operation. C: Not affected

Hex Code 7 6 5 4 3 2 1 0

44 0 1 0 0 0 1 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

A ll COPS microcontrollers

3-6

OR

Logical OR of accumulator with contents of memory location specified by the B register.
Result in accumulator.

A < — A v Ram(R) C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

1A

0 0 1 1 0 0 1 1

0 0 0 1 1 0 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

RC

Reset/clear the one-bit carry register

C < — 0 A: Not affected

Hex Code

32

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

3-7

sc
Set the one-bit carry register.

C < — 1 A: Not affected

Hex Code

22

7 6 5 4 3 2 1 0

0 0 0 0 0 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

XOR

Exclusive OR, bit by bit, of accumulator with contents of memory location specified by the B
register. Result placed in accumulator.

A < — A © RAM(R) C Not affected

Hex Code 7 6 5 4 3 2 1 0

02 0 0 0 0 0 0 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

3-8

3.2.2 Transfer of Control Instructions

JID

Jump Indirect This involves a two-step modification of the program counter. First, load the
lower eight bits of the program counter w ith the contents of the accumulator (upper four
bits) and the memory location specified by the B register. The data addressed by this modified
program counter is then loaded into the lower eight bits of the program counter. Execution
continues at this second address.

(1) PC < —PC+1 C: Not affected
(2) PC7.0 < —AJIAM(B) A: Not affected
(3) PC C -PC +l
(4) PC™ < —ROM (PClft8ARAM(B))

Hex Code

FF

7 6 5 4 3 2 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

JID at last word of block looks to next block for vector addresses
(step one above). Vector address at last word of block points into
next block (Step 3, 4 above).

All COPS microcontrollers

JMP a

Jump Direct. Load the program counter (lower 11 bits) w ith the address specified in the
instruction. Continue program execution at this address.

PC10r0 < — a C: Not affected
A: Not affected

Hex Code 7 6 5 4 3 2 1 0

& 0 1 1 0 0 a10 &9 a8
— a7 a* as »4 a3 a2 al ao

3-9

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

a10=0, ag=0 Group 1 devices
a10=0 in IK devices
JMP in last two words of chapter jumps to next chapter

All COPS microcontrollers

JMPL a

Long Jump Direct. Load the program counter w ith the address as specified in the instruction.
Continue program execution at this address.

PC < — a C: Not affected
A: Not affected

Hex Code 7 6 5 4 3 2 1 0

4A 0 1 0 0 1 0 1 0

— 1 a14 a13 a12 aii aio . a. a8

— a7 36 a5 a4 a3 a2 al ao

Execution Time: 3 Instruction Cycles

Skip Conditions: None

Restrictions: a14= 0, a13= 0, a12= 0 in COP484, COP485

Availability: Group 4 devices

JP a

Jump within Page.

(1) PC < — PC+1 C: Not affected
(2) PCfco < — a - pages 2, 3 only A: not affected
or
(2) PC^o < — a - all other pages

3-10

Hex Code 7 6 5 4 3 2 1 0

1 a* a5 a4 &3 a2 al a0

(above for pages 2,3 only)

1 1 a5 a4 a3 a2 aj ao

Execution Time:

Skip Conditions:

Restrictions:

Availability:

(all other pages)

1 Instruction Cycle

None

May not JP to last word of a page. JP in last word of a page jumps
to next page (Step 1 above).

All COPS microcontrollers

JSRP a

Jump to subroutine within Page 2.

1) PC < - PC+1
2) SB < - SA < - PC
or
2) SC < - SB < - SA < -P C
or
2) RAMn < - PC

N < - N+l
3) PCao < - a

PCg* < - 010
PCajj other ^ 0

Group 1 devices

Group 2 devices

Group 3 and Group 4 devices

address within Page 2
load Page 2

Hex Code 7 6 5 4 3 2 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

May not be used within Pages 2 and 3
May not JSRP to last word of Page 2

A ll COPS microcontrollers

3-11

JSR a

Jump to subroutine direct. Load lower 11 bits of the program counter with the address a.
Push the subroutine stack. Continue execution at the address specified by the instruction.

1) PC < - PC+2
2) SB < — SA < — PC Group 1 devices
or
2) SC < — SB < — SA < — PC Group 2 devices
or
2) RAMn < — PC; N < — N+l Group 3 and Group 4 devices
3) PCiofl < — a

Hex Code 7 6 5 4 3 2 1 0

6- 0 1 1 0 1 a10 39 a8

— a? a5 34 a3 a2 al ao

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

a10= 0, ag= 0 in Group 1 devices
a10= 0 in IK devices
JSR in last two words of chapter calls subroutine in next chapter.

All COPS microcontrollers

JSRL a

Long jump to subroutine direct. Load the program counter w ith the address a. Continue
execution at this address. Push the subroutine stack.

1) PC < - PC+3
2) RAMn < - PC, N < - N+l
3) PC < - a

Hex Code 7 6 5 4 3 2 1 0

4A 0 1 0 0 1 0 1 0

— 1 a14 a13 a12 ail a10 39 a8

— a7 36 35 34 a3 a2 al 3o

3-12

Execution Time:

Skip Conditions:

Restrictions:

Availability:

3 Instruction Cycle

None

aM= 0, a13= 0, a12= 0 in C0P484 and COP485

Group 4 devices

RET

Return from subroutine and return control to the main program at the instruction following
the JSR, or JSRP, or JSRL.

PC < — SA < — SB Group 1 devices

or

PC < — SA < — SB < —SC Group 2 devices

or

N < — N -l Group 3 and Group 4 devices
PC < -R A M N

Hex Code

48

7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

A ll COPS microcontrollers

3-13

RETSK

Return from subroutine. Return control to the main program and always skip the instruction
following the JSR, JSRP, or JSRL.

PC < — SA < — SB Group 1 devices

or

PC < — SA < — SB < — SC Group 2 devices

or

N < — N-l, PC < — RAMn Group 3 and Group 4 devices

Hex Code

49

7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Always skip on return

None

A ll COPS microcontrollers

HALT

Stop a ll internal operation of the device. Retain all internal status. Resume operation as
result of external stimulus.

A B, C, PC, G, L, Q, EN, RAM, T: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

38

0 0 1 1 0 0 1 1

0 0 1 1 1 0 0 0

3-14

Execution Time:

Skip Conditions

Restrictions

Availability:

2 Instruction Cycles

None

Requires Hardware external restart

COP410C, COP411C, COP424C, COP425C, COP426C, COP444C,
COP445C, and COP404C

NOTE: This instruction places the eight microcontrollers mentioned above in their
minimum power dissipation state.

IT

Stop all internal operation, except the timer, of the device. Resume operation at the
instruction following IT when the timer overflows

PC < — PC A, B, C, G, L, Q, EN, PC, RAM Not affected

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

39 0 0 1 1 1 0 0 1

Execution Time:

Skip Conditions

Restrictions

Availability:

2 Instruction Cycles

None

None

COP424C, COP425C, COP426C, COP444C, COP445C, COP404C

3.2.3 Memory Reference Instructions

CAME

Copy the eight-bit contents of A and the memory location addressed by the B register to the
eight-bit enable register (Note: the enable register is eight bits long in C0P440 and COP2440
series only). This is the inverse of the CEMA instruction in function and w ith respect to the
four bits of the enable register with which A and RAM(B) communicate.

EN7.4 < — A3*) A: Not affected

ENa*, < — RAM(B)3*) C Not affected

3-15

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

IF 0 0 0 1 1 1 1 1

Execution Time:

Skip Conditions

Restrictions

Availability:

2 Instruction Cycles

None

None

Group 3 devices

CAMQ

Copy the eight-bit contents of the accumulator and the memory location addressed by the B
register to the eight-bit Q register. This is the inverse of the CQMA instruction in function
and w ith respect to the four bits of Q w ith which A and RAM(B) communicate.

Q™ < — A3K) A: Not affected

Qio < — RAM(B)3..o C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

3C

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0

Execution Time:

Skip Conditions

Restrictions

Availability:

2 Instruction Cycles

None

None

A ll COPS microcontrollers

3-16

CAMT

Copy the eight-bit contents of the accumulator and the memory location addressed by the B
register to the eight-bit timer register (T). This is the inverse of the CTMA instruction in
function and w ith respect to the four bits of T with which A and M communicated.

T7-A A3*) A: Not affected

T3*) < — RAM(B)3*> C: Not affected

Hex Code

33

3F

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

0 0 1 1 1 1 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices, COP424C, COP425C, COP426C, COP444C,
COP445C, COP404C, Group 4 devices

CEMA

Copy the contents of the eight-bit enable register (C0P440 and COP2440 series only) to the
memory location addressed by the B register and to the accumulator. This is the inverse of
the CAME instruction in function and w ith respect to the four bits of the enable register
w ith which A and RAM(B) communicate.

A3*) < —EN3*) G Not affected

RAM(B)3*3

Hex Code

33

OF

< - e n 7;4

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

3-17

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

CQMA

Copy the contents of the eight-bit Q register to the memory location addressed by the B
register and to the accumulator. This is the inverse of the CAMQ instruction in function and
w ith respect to the four bits of the Q register w ith which A and RAM(B) communicate.

Am < — Q30 C: Not affected

RAMCB)^ <' — Q7:4

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

2C 0 0 1 0 1 1 0 0

Execution Time: ' 2 Instruction Cycles

Skip Conditions: None

Restrictions: None

Availability: Not available on C0P410L, COP411L, COP401L, COP410C,
COP411C

CTMA

Copy the eight-bit contents of the timer register to the memory location addressed by the B
register and to the accumulator. This is the inverse of the CAMT instruction in function and
w ith respect to the four bits of T w ith which A and RAM(B) communicate.

A3.0 < — T3.0 Q Not affected

RAMCB)^ < -- T7;4

3-18

Hex Code 7 6 5 4 3 2 1 0

33

2F

0 0 1 1 0 0 1 1

0 0 1 0 1 1 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices, COP424C, COP425C, COP426C COP444C,
COP445C, COP404C, Group 4 devices

LD n

Load the accumulator w ith the contents of the memory location addressed by the B register.
Also, exclusive-OR the upper part of the B register (Br) w ith the n value.

A < — RAMCB) C: Not affected
Br < — Br © n

Hex Code 7 6 5 4 3 2 1 0

n5 0 0 n x n0 0 1 0 1

n = 0,1, 2, or 3

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

n = 0,1, 2, 3 only

All COPS microcontrollers

LDD r,d

Load the accumulator w ith the contents of the memory addressed by the operand field r,d.
The B register is not used or altered.

A < — RAM(r,d) B: Not affected
G Not affected

3-19

Hex Code 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 1

0 r2 i i TO d 3 d 2 d i do

r = 0:7; d = 0:15

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

r = 0 , 1, 2, 3, 4, 5, 6, or 7 on ly

Not available in Group 1 devices

LID

Load the accumulator and the memory location addressed by the R register w ith the eight-bit
ROM word addressed by the upper bits of the program counter, A and RAM(B).

PC < — PC+2 C: Not affected

RAM(B) < - ROM(PC1(h8 ARAM(B)>7:4

A < - ROM(PClft8ARAM(B))io

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

19 0 0 0 1 1 0 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

3 Instruction Cycles

None

LID in last word of block w ill access next block (#1 above)

Group 3 devices

3-20

LQID

Load the Q register w ith the eight-bit ROM word addressed by the upper bits of the program
counter, the accumulator and the memory location addressed by the B register.

PC < — PC+1 A: Not affected

Q7:4 < — ROM(PC1Ch8A^RAM(B))7:4 C: Not afFected

Q3« < - ROM(PClft8ARAM(B))3K)

Hex Code

RF

7 6 5 4 3 2 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

LQID in last word of a block accesses next block (#1 above). One
level of subroutine stack is used by this instruction in Group 1 and
Group 2 devices.

All COPS microcontrollers

RMB 0, SMB 1, SMB 2, SMB 3

Reset the bit specified in the instruction in the memory location addressed by the B register.

RAM(B) n < — 0 G Not afFected

n = n,l,2,3 A: Not affected

Hex Code 7 6 5 4 3 2 1 0

RMB 0 4C 0 1 0 0 1 1 0 0

RMB 1 45 0 1 0 0 0 1 0 1

RMB 2 42 0 1 0 0 0 0 1 0

RMB 3 43 0 1 0 0 0 0 1 1

3-21

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

SMB 0, SMB 1, SMB 2, SMB 3

Set the bit specified in the instruction in the memory location addressed by the B register.

RAM(B)n < — 1 C: Not affected

n = 0,1,2,3 A: Not affected

Hex Code 7 6 5 4 3 2 1 0

SMB 0 4D

SMB 1 47

SMB 2 46

SMB 3 4B

Execution Time:

Skip Conditions:

Restrictions:

Availability:

STH y

Store the immediate value y into the memory location addressed by the B register. Then
increment the lower four bits of the B register (Bd). The upper portion of the B register (Br)
is not affected.

RAM(B) < — y A: Not affected

Bd < — Bd + 1 C: Not affected

0 1 0 0 1 1 0 1

0 1 0 0 0 1 1 1

0 1 0 0 0 1 1 0

0 1 0 0 1 0 1 1

1 Instruction Cycle

None

None

All COPS microcontrollers

3-22

7y

Hex Code 7 6 5 4 3 2 1 0

0 1 1 1 y3 y 2 y i yo

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

X n

Exchange the contents of the accumulator w ith the contents of the memory location addressed
by the B register. Then replace Br with the exclusive OR of Br and n. Bd is not affected.

A < —>RAM(B) C: Not affected
Br < — Br © n

Hex Code 7 6 5 4 3 2 1 0

n6 0 0 n^ no 0 1 1 0

n =0,1,2,3

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

n = 0,1,2, or 3 o n ly

A ll COPS microcontrollers

XAD r,d

Exchange the contents of the accumulator w ith the contents of the memory location addressed
by r,d. The B register is not affected.

A < —>RAM(r,d) B: Not affected
C: Not affected

3-23

Hex Code 7 6 5 4 3 2 1 0

Group 1 devices 23

BF

All Others 23

r,d

0 0 1 0 0 0 1 1

1 0 1 1 1 1 1 1

0 0 1 0 0 0 1 1

1 T2 r l ro d3 d2 di do

r = 0:7; d = 0:15

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

On Group 1 devices; r=3, d = 15 o n ly
All other COPS microcontrollers:
r = 0,1,2,3,4,5,6, or 7 o n ly

All COPS microcontrollers

XDS n

Exchange the contents of the accumulator w ith the contents of the memory location addressed
by the B register. Replace Br w ith the exclusive OR of Br and n. Decrement Bd by 1.
Generate a skip if Bd decrements from 0 to 15.

A < —>RAM(B) C: Not affected
Br < — Br © n
Bd < - Bd - 1

Hex Code

n7

7 6 5 4 3 2 1 0

n = 0,1,2, or 3

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Generate a skip if Bd-1 = 15

n = 0,1,2, or 3 o n ly

A ll COPS microcontrollers

3-24

XIS n

Exchange the contents of the accumulator w ith the contents of the memory location addressed
by the B register. Replace Br w ith the exclusive OR of Br and n. Increment Bd by one.
Generate a skip if Bd increments from 15 to 0.

A < —>RAM(B) C: Not affected
Br < — Br © n
Bd < - Bd + 1

Hex Code 7 6 5 4 3 2 1 0

n4 0 0 ni n0 0 1 0 0

n = 0,1,2,3

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Generate a skip if Bd+1 = 0

n = 0,1,2, or 3 on ly

All COPS microcontrollers

3.2.4 R egister Reference Instructions

CAB

Copy the contents of the accumulator to the lower four bits of the B register.

Bd < — A A: Not affected
C: Not affected
Br: Not affected

Hex Code

50

7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

3-25

CBA

Copy the lower four bits of the B register to the accumulator.

A < — Bd C: Not affected
B: Not affected

Hex Code

4E

7 6 5 4 3 2 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

None

All COPS microcontrollers

LBI r,d

Load the B register immediate with the values r (to the upper portion of the B register). Skip
all subsequent LBI instructions until an instruction that is not an LBI is encountered.

Br < — r A: Not affected

Bd < — d C: Not affected

3-26

Hex Code 7 6 5 4 3 2 1 0

K d-l) 0 0 r i ro (d - 1)

r == 0:3; d = 0, 9:15

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

rd 1 r2 r l rO d3 d2 d l dO

r = 0:7; d = 0:15

33 0 0 i 1 0 0 1 1

7- 0 1 i 1 0 0 0 U

rd r3 r2 r l rO d3 d2 d l dO

r - 0:31; d - 0:15

Execution Time: 1 Instruction Cycle (One-byte form)
2 Instruction Cycles (Two-byte form)
3 Instruction Cycles (Three-byte form)

Skip Conditions: Skip until not an LBI

Restrictions: One-byte form:
r = 0,1,2,3 only
d = 0,9,10,11,12,13,14,15 on ly

Two-byte form: r = 04,2,3,4,5,6,7 only
Three-byte form: None

Availability: One-byte form: All COPS microcontrollers
Two-byte form: Not available on Group 1 devices
Three-byte form: Available on Group 4 devices o n ly

LEI y

Load the enable register (lower four bits on COP440 and COP2440 series) w ith the immediate
value y.

ENi-o < — y A: Not affected
G Not affected

3-27

Hex Code 7 6 5 4 3 2 1 0

33

6y

Execution Time: 2 Instruction Cycles

Skip Conditions: None

Restrictions: In COP2440, 2441, 2442, processor Y loads EN2 on ly

Availability: A ll COPS microcontrollers

0 0 1 1 0 0 1 l

0 1 1 0 ys Y2 yi y<>

XABR

Exchange the contents of the accumulator w ith the contents of the upper part of the B
register (Br). If Br is less than four bits wide, zeroes are placed in the corresponding bits of
the accumulator.

Br < —> A, A3 < — 0, A2 < — 0 Devices w ith 64 or 32 RAM digits

Br < - > A, A3 < — 0 COP404L, COP404C, COP444L, COP445L, COP444C,
COP445C

Br < —> A Group 3 and Group 4 devices

Hex Code

12

7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0

Execution Time: 1 Instruction Cycle

Skip Conditions: None

Restrictions: None

Availability: Not available on Group 1 devices

3-28

XABX

Exchange the contents of the accumulator w ith the contents of the upper part of the Br
register. Zeroes are placed in the upper bits of the accumulator.

Brupper < - > A, A3 < - 0, A2 < - 0, A x < - 0

C: Not affected
Brlower: Not affected
Bd: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

I D

0 0 1 1 0 0 1 1

0 0 0 1 1 1 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

COP409 only

XAN

Exchange the contents of the accumulator w ith the contents of the two-bit subroutine stack
pointer. The lower two bits of A go into the stack pointer and the same two bits of A are
loaded w ith the pointer value. The upper two bits of A are cleared.

Alo < —> N G Not affected

A2 < - 0, A3 < - 0

Hex Code 7 6 5 4 3 2 1 0

33

OB

0 0 1 1 0 0 1 1

0 0 0 0 1 0 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

3-29

3.2.5 Test Instructions

SKC

If the one-bit carry register (C) is equal to “1”, skip the next program instruction.

A: Not affected
C: Not affected

Hex Code

20

7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Skip if C = 1

None

All COPS microcontrollers

SKE

If the contents of the accumulator are equal to the contents of the memory location addressed
by the B register, skip the next program instruction.

A: Not affected
G Not affected

Hex Code

21

7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Skip if A = RAM(B)

None

All COPS microcontrollers

3-30

SKGZ

If all four G lines are low (“0”), skip the next program instruction.

A: Not affected
C: Not affected
G: Not affected

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

21 0 0 1 0 0 0 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

Skip if G30 = 0

None

All COPS microcontrollers

SKGBZ n, 7 = 0,1,2,3

If GN is zero, skip the next program instruction.

A,C,G: Not affected

3-31

Hex Code 7 6 5 4 3 2 1 0

SKGBZ 0 33

01

SKGBZ 1 33

11

SKGBZ 2 33

03

SKGBZ 3 33

13

0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 1

0 0 0 0 0 O i l

0 0 1 1 0 0 1 1

0 0 0 1 0 0 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

Skip if specified G bit is zero

None

All COPS microcontrollers

SKMBZ n n = 0,1,2,3

If the specified bit in the memory location addressed by the B register is “0”, skip the next
program instruction.

AQRAMCB): Not affected

3-32

Hex Code 7 6 5 4 3 2 1 0

SKMBZ 0 01

SKMBZ 1 11

SKMBZ 2 03

SKMBZ 3 13

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Skip if RAM(B)n = 0

None

All COPS microcontrollers

SKSZ

If the four-bit serial input/output register is “0”, skip the next program instruction.

A,G Not affected

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 O i l

1C 0 0 0 1 1 1 0 0

Execution Time: 2 Instruction Cycles

Skip Conditions: Skip if SIO = 0

Restrictions: None

Availability: Group 3 devices

3-33

SKT

If T counter carry (overflow) lias occurred since the last test (last SKT), skip the next program
instruction. Reset the SKT latch. (Timer carry/overflow sets SKT latch. SKT instruction
tests and resets this latch).

SKTL < - 0 A,C,T: Not affected

Hex Code

41

7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

Skip if SKTL = 1

None

Not available on Group 1 devices

3.2.6 Input/Output Instructions

CAMS

Copy the contents of the accumulator and the memory location addressed by the B register to
the eight-bit R port. This is the inverse of the INR instruction in function and with respect to
the four bits of R which are accessed by A and RAM(B).

R7:4 < — A A: Not affected

Rjo < — RAM(B) C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

3D

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

NOTE: On COP2441, COP2442, COP441, and COP442, R as I/O port is not present,
but R as eight-bit internal register is available.

3-34

ING

Copy the status of the G I/O port into the accumulator.

A < — G C: Not affected
G: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

2A

0 0 1 1 0 0 1 1

0 0 1 0 1 0 1 0

Execution Time: 2 Instruction Cycles

Skip Conditions: None

Restrictions: None

Availability: All COPS microcontrollers

INH

Copy the status of the H I/O port to the accumulator.

A < — H C: Not affected
H: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

2B

0 0 1 1 0 0 1 1

0 0 1 0 1 0 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

NOTE: On COP2441, COP2442, COP441, and COP442, H as I/O port is not present,
but H as four-bit internal register is available.

3-35

ININ

Copy the status of the four IN lines to the accumulator.

A < — IN C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

28 0 0 1 0 1 0 0 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

COP420, COP420L, COP444L, COP484, COP2440, COP2441,
COP440, COP441, COP424C, COP444C

INIL

Copy the status of the IL latches and CKO input and zero cross input (COP440, 441, COP2440,
2441) to the accumulator. Reset the EL latches.

la) A 3:0 < - IL 3, CKO, IN 1Z, IL 0 COP440, COP441, COP2440, COP2441

or

lb) A 3:0 < — EL 3, CKO, “0”, IL 0 COP420, COP420L, COP444L, COP484, COP424C,
COP444C

or

lc) A 3:0 < - “0”, CKO, “0”, “0” COP442, COP2442, COP421, COP422, COP421L,
COP422L, COP445C, COP485, COP425C, COP426C

2) IL3 < - 0, ELo < - 0

Hex Code 7 6 5 4 3 2 1 0

33

29

0 0 1 1 0 0 1 1

0 0 1 0 1 0 0 1

3-36

Execution Time:

Skip Conditions:

Restrictions:

Availability:

INL

Copy the status of the eight-bit L port to the memory location addressed by the B register and
the accumulator.

RAM(B) < — 1q.A G Not affected

A < — L3..0

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

2E 0 0 1 0 1 1 1 0

Execution Time: 2 Instruction Cycles

Skip Conditions: None

Restrictions: None

Availability: All COPS microcontrollers

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

0 0 1 0 1 1 1 0

2 Instruction Cycles

None

If CKO is not selected as general input, “1” is loaded into A 2. IL
latches are reset at power on in Group 3 and Group 4 devices only.
On other devices, the latches are undefined until first INIL

Not available on Group 1 devices

INR

Copy the status of the eight-bit R port to the memory location addressed by the B register and
the accumulator. This is the inverse of the CAMR instruction in function and w ith respect to
the four bits of R which are accessed by A and RAM(B).

RAM(B) < — R7;4 G Not affected

A < — Rio

3-37

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

2D 0 0 1 0 1 1 0 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

NOTE: On COP2441, COP2442, COP441, and COP442, R as an I/O port is not
present but R as eight-bit internal register is available.

OBD

Copy the contents of the lower four bits of the B register (Bd) to the D output port.

D < — Bd A: Not affected
B: Not affected
C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

3E

0 0 1 1 0 0 1 1

0 0 1 1 1 1 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

All COPS microcontrollers

OGI y

Output the immediate value y to the four-bit G port.

G < — y A: Not affected
C: Not affected

3-38

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

5y 0 1 0 1 Y3 Y2 Yi Yo

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Not available on Group 1 devices

OMG

Copy the contents of the memory location addressed by the B register to the four-bit G port.

G < — RAM(B) A: Not affected
C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33

3A

0 0 1 1 0 0 1 1

0 0 1 1 1 0 1 0

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

All COPS microcontrollers

3-39

OMH

Copy the contents of the memory location addressed by the B register to the four bit H port

H < — RAM(B) A: Not affected
C: Not affected

Hex Code 7 6 5 4 3 2 1 0

33 0 0 1 1 0 0 1 1

3B 0 0 1 1 1 0 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

2 Instruction Cycles

None

None

Group 3 devices

XAS

Exchange the contents of the accumulator w ith the contents of the SIO register. Copy the
contents of the one-bit C register to the SK latch. This is the basic MICROWIRE interface
instruction and is the primary control over the serial port.

A < — >SIO C: Not affected

SKL < - C

Hex Code

4F

7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 1

Execution Time:

Skip Conditions:

Restrictions:

Availability:

1 Instruction Cycle

None

On COP2440, COP2441, COP2442, processor X only may use XAS.
Processor Y treats XAS as NOP.

A ll OOPS microcontrollers.

3-40

3.3 NOTES ON ADDRESSING MODES

COPS microcontrollers do not have addressing modes in the sense of most popular
microprocessors. To be sure, every instruction can be said to have some form of addressing
mode associated with it. For example, a jump can be direct (JMP or JMPL), indirect (JID), or
“modified relative” (JP); and adds can be immediate (AISC) or inherent/implied (ASC,ADD).
A classification of this kind can be made, but it is awkward and forced; it is an attempt to
impose the structure of one type of microcomputer on another type of microcomputer.
Because of the difference in kind between these microcomputers, a comparison on the basis of
number of addressing modes between COPS and some other microcomputer is not valid. One
may be able to find six or seven kinds of addressing modes in the COPS instruction set, but
such an effort is more an exercise of the imagination than a meaningful evaluation of the
instruction set. Comparisons should be made on what the instruction set really requires, in
terms of the relevant parameters, memory usage, and speed, to perform a given function.

3-41

Chapter 4

PROGRAMMING COPS MICROCONTROLLERS

4.1 INTRODUCTION

This section deals w ith all aspects of programming COPS devices. The concepts, structures,
rules, suggestions, and tricks for COPS programming are discussed. The detailed effects of
various instructions are also discussed.

4.2 BOUNDARY CONDITIONS

Although the program counter in COPS microcontrollers w ill increment linearly throughout
the address space, three types of boundaries exist in the program space that the user should
remember

• Page boundaries

• Block boundaries

• Chapter boundaries

Even though these boundaries exist, their impact on the actual programming is minimal. This
is true because these boundaries are important in only a few instructions and even there the
primary effect, in most cases, is to allow the user to use a more code efficient instruction.

4.2.1 Page Boundaries

A page is composed of 64 contiguous ROM words. Page 0 is the group of ROM words located
at hex addresses 000 through 03F; Page 1 is the group of ROM words located at hex addresses
040 through 07F; etc. (See Table 2-1.) The page boundary saves code by allowing the use of
the single-byte jump (JP) and the single-byte subroutine call (JSRP).

Furthermore, Pages 2 and 3 are the special subroutine pages. Page 2 is the destination page for
subroutines called by JSRP instruction.

The JP Instruction

The JP instruction is the single-byte jump. It loads the lower six bits of the program counter
only; therefore, it causes a jump within a page only. There is an exception to this, however.
A JP instruction located at the last word of a page (hex addresses 03F, 07F, OBF, OFF, etc.)
w ill cause a jump into the next page. In all COPS microcontrollers, the program counter is
incremented before the execution of the instruction. Thus, the program counter w ill
increment from hex address 13F, the last word of a page, to hex address 140, the first word of
the next page; then the JP w ill load the lower six bits of the PC. The effect is to cause a jump
from one page to the next page w ith the single-byte JP.

4-1

The JP instruction cannot be used to jump to the last word of a page. The reason for this is
evident from an examination of the instruction OP codes. The two most significant bits of the
JP instruction are 11. The lower six bits of the address of the last word of a page are all ones.
Thus, the OP code of a JP to the last word of a page would be hex FF. This, however, is the
opcode for the JID instruction. Therefore, JP cannot be used to jump to the last word of a
page because the opcode that would otherwise implement that jump has been used to create
the JID instruction.

The JP instruction has an expanded range within the subroutine pages — Pages 2 and 3. In
these two pages only, the JP instruction loads the lower 7 bits of the program counter. Thus,
a JP within Pages 2 and 3 may jump anywhere, except the last word of Page 2 or last word of
Page 3, w ithin Pages 2 and 3.

The JSRP Instruction

The JSRP instruction is the single-byte subroutine call. Page 2 is the destination page for the
subroutine jump. The instruction indicates the address w ithin Page 2 where the subroutine
begins. The two restrictions on the use of JSRP are as follows:

1. JSRP to the last word of Page 2 is not allowed

2. JSRP may not be used within Page 2 or 3

The reason for both restrictions is evident from the opcodes. The most significant two bits of
JSRP are 10. The lower six bits are the address within Page 2. Thus, JSRP to the last word of
Page 2 would have the opcode hex BF. This opcode, however, has been used to implement the
LQID instruction. Thus, a JSRP to hex address OBF, the last word of Page 2, is not allowed.
JSRP may not be used w ithin Pages 2 and 3 simply because the opcodes have been used to
expand the range of the JP instruction as explained in Section 4.2. The sacrifice of the JSRP to
expand JP in the subroutine pages helps to create more entry points in Page 2 which tends to
increase program efficiency.

4.2.2 Block Boundaries

A block is composed of four contiguous pages or 256 contiguous ROM words. Block 0 consists
of Pages 0 through 3; Block 1 consists of Pages 4 through 7; etc. (See Table 2-1.) The block
boundary is significant only w ith respect to the indirect instructions: JID, LQID, and LID.
These instructions operate w ithin a block and do not normally cross block boundaries.

4-2

LQID and LID

These are the table look-up instructions. LQID looks up data identified by A and RAM(B) and
puts the value in Q. LID does the same but returns the value to A and RAM(B). Hence, the
look up is based on an eight-bit value. The lower eight bits of the program counter are
temporarily replaced by the contents of A and RAM(B). The remaining bits of the PC are not
affected by the instruction. Thus, these instructions work within a block.

Just as w ith the JP instruction, a special situation exists if the LQID is at the last word of a
block of LID is at the last two words of a block. In this situation, the look up is performed in
the next block. The reason is, as explained before, the program counter is incremented before
the instruction is executed. Thus, the program counter w ill be in the next block before the
look-up operation is performed.

The JID Instruction

The JID instruction looks up an address on the basis of A and RAM(B), then loads the lower
eight bits of the program counter w ith that address. Again, since eight-bit values are being
used, block boundaries sire respected.

Since the program counter is incremented prior to instruction execution, a JID at the last word
of a block w ill look up its address in the next block and execute the jump in that block. An
additional related special case exists w ith the JID instruction. If the look-up address for the
JID is at the last word of a block (»\e, A = 1510 and RAM(B) = 15i0), then the jump w ill be in
the next block. A final combination case exists: If JID is at the last word of a block and A =
1510 and B = 1510, then the jump w ill be in the second block from the present block (see
Table 4-1).

4.2.3 Chapter Boundaries

The Chapter is the largest memory division in COPS microcontrollers. A Chapter is composed
of eight contiguous blocks (32 contiguous pages, 2048 contiguous ROM words). Obviously, the
Chapter boundary has no relevance, in fact does not exist, if the microcontroller has fewer
than 2048 words of program memory. Only the two-byte JMP and two-byte JSR are affected
by the Chapter boundary. These instructions w ill jump anywhere within a Chapter or call a
subroutine anywhere within a Chapter and w ill not normally cross a Chapter boundary. The
exception is basically the same as seen before: a JMP at the last two words of a Chapter w ill
jump to the next Chapter; a JSR at the last two words of a Chapter w ill call a subroutine in
the next Chapter. The reason is the same: the program counter is incremented before the
instruction is executed.

4-3

TABLE 4-1. EFFECTS OF BLOCK BOUNDARIES ON JID DESTINATION

JID LOCATION A RAM(B) DESTINATION

Block N, anywhere
except last word 5*15 5*15 Block N

Block N, anywhere
except last word 15 5*15 Block N

Block N, anywhere
except last word 5*15 15 Block N

Block N, anywhere
except last word 15 15 Block N+l

Block N, last word 5*15 5̂ 15 Block N+l

Block N, last word 15 5*15 Block N+l

Block N, last word 5*15 15 Block N+l

Block N, last word 15 15 Block N+2

4.3 SKIP CONDITIONS

In COPS microcontrollers, program address information is contained only in the jump and
subroutine call instructions. Thus, decision instructions, or tests, do not contain a branch
address. There is no single instruction equivalent of “If condition X is true (false) branch to
address A.” Instead, in COPS devices, if the test condition is met a skip is generated. This skip
prohibits the execution of the following instruction, i\e, “skipping” that instruction. The
number of program bytes in the instruction has no bearing on the skip operation. Thus,
following a test instruction with jumps or subroutine calls produces the desired branching.
However, the skip feature allows much greater flexibility than merely branching. In many
cases, the skip feature elim inates the need for branching since almost any register or variable
parameters in COPS microcontrollers can be modified, in line, on the basis of a skip (see Section
4.7).

4-4

4 3 .1 Effect o f Skips on Tim in g Loops

Software timing loops are commonly part of a microcontroller program. In such a case, it is
usually necessary that various paths through the loop take the same amount of time. The skip
feature actually helps to achieve this goal rather than, as might be expected, conflicting w ith
it. The reason is in the operation of the skip. If an instruction is to be skipped, the internal
logic forces a NOP equal in length to the number of program bytes in the skipped instruction
in place of that instruction. Then the NOP is executed. Thus, whether or not an instruction
is skipped has no effect on the time to execute a given sequence of instructions. Note: this
“hardware NOP” is temporary; it exists for the duration of the skipped instruction only and in
no way alters the ROM contents. It therefore becomes a simple matter to compute execution
time through a given sequence. Merely count the number of bytes, not instructions, in the
path without regard to tests or skips and m ultiply by the instruction cycle time.

The Indirect Instructions - An Exception

The indirect instructions JED, LQID, and LID constitute a exception to this general rule. These
are the only COPS instructions that require more instruction cycle times than the number of
bytes in the instruction to execute. They require one more instruction cycle time than the
number of bytes to execute: JID and LQID are one-byte instructions and require two
instruction cycles to execute; LID is a two-byte instruction that requires three instruction
cycles to execute. The result is that these instructions use one more instruction cycle when
executed than when skipped because the hardware forced NOP is related to the number of
bytes in the instruction rather than the execution time of the instruction. This distinction is
significant only for these three instructions.

4 3 .2 Instructions That Generate a Skip

As would be expected, all test instructions can generate a skip. If the test condition is met, a
skip is generated. However, certain other instructions can also generate skips. The following
arithmetic instructions generate a skip if the result of a four-bit binary addition is greater
than 1510: ASC, CASC, and AISC. The advantage here is that the common test after such
instructions (testing carry or overflow) is built directly into the instruction thereby
eliminating the need for a separate test instruction.

The LBI (load B register immediate) can also generate a skip. This instruction forces a skip
until an instruction is reached that is not an LBL This permits multiple entry points to a
common routine without affecting the code. The code savings of this feature are more subtle,
but this allows the user a degree of flexibility not found in other devices. Section 4.7 w ill
explain this feature in more detail.

The XIS and XDS instructions can also generate skips. These generate a skip when one
increments or decrements “off the end” of a register (Bd incrementing from 15 to 0 or
decrementing from 0 to 15). This becomes very useful in loop operations as the need for
testing for completion of the loop is often eliminated - another test is eliminated. Section 4.7
w ill illustrate the use of these instructions.

The final instruction that generates a skip is the RETSK. When executed, this instruction
always forces a skip of the instruction located at the return address. This instruction becomes

4-5

very valuable in implementing complex tests in a subroutine, or in reversing the direction of a
frequently used test by means of a special subroutine. It is, of course, useful whenever the
user wishes to force a skip of a subroutine return address.

4.4 CARRY

The ALU in COPS microcontrollers is a four-bit parallel binary adder. The user does not have
access to the bit-to-bit carry within the ALU, but does have varying degrees of access to the
carry as a result of a four bit operation. Within this category the user should be aware of
several distinctions: the carry register, the carry out of the ALU, and simple arithmetic
overflow. These are not always the same thing and the difference can be important. The
carry register, C, may be set or reset directly by the program. Those instructions that do an
“add with carry”, ASC and CASC, use the C register in the addition. These same two
instructions are the only instructions that load the carry out of the ALU, the carry as a result
of the four-bit addition, into the C register. The SKC instruction test the status of the C
register, not the carry from the ALU.

The carry from the ALU is the controlling factor in those arithmetic instructions that can
generate a skip: ASC, CASC, AISC. If the carry from the ALU is a one as a result of any of
these instructions, a skip is generated. The C register is not used for this form of skip
generation. In fact, the AISC instruction neither uses nor affects the C register.

The ADD and ADT instructions cause an add to be performed. This add may well cause an
arithmetic overflow. This overflow, however, is not quite the same as the carry from the ALU
since no skip condition occurs. Furthermore, the C register is neither used nor affected.

This can be viewed as a hierarchy of overflows:

1. Simple arithmetic overflow; no skip; C neither used nor affected. ADD, ADT

2. Carry from the ALU (= arithmetic overflow which generates a skip); C neither
used nor affected. AISC

3. Carry from the ALU that loads C (= arithmetic overflow which generates skip, C
loaded with status of carry from ALU); C both used and affected. ASC, CASC

4. 5 INPUT/OUTPUT

All input/output operations are handled by unique instructions. The instructions may be
executed at any point in the program.

4-6

4.5.1 Unidirectional Ports

Two unidirectional ports are found in COPS microcontrollers: the IN input port and the D
output port. The IN port is read by the ININ instruction. The IL latches, associated with the
IN port, are read by the INIL instruction. Pin CKO may be configured as an input, via a mask
option, on some devices. The INIL instruction also reads the state of the CKO input in those
devices that have that option. See the descriptions of the ININ and INIL instructions for
further details.

The D output is loaded from the lower four bits of the B register (Bd) by means of the OBD
instruction. There is no path from the accumulator or RAM to the D port.

4.5.2 Bidirectional Ports

Non TRI-STATE Ports

There are two bidirectional, non TRI-STATE ports available: The G port, available, at least
partially, on all COPS microcontrollers; and the H port, available on the COP440 and
COP2440. The output function is simple; merely write the data to the port w ith the
appropriate instruction: OGI, OMG, or OMH. Data is read via the ING or INH instruction. In
addition, the G lines may be directly tested individually or as a four bit group. When using
any of the G or H lines as inputs the user must write a “1” to the lines used as inputs. This is
a requirement imposed by hardware rather than software considerations. The external
circuitry w ill pull the line to logic “0”.

On 20-pin COPS devices, only two of the four G lines are brought out. The other two lines,
however, are available for internal use as flags or storage. The same is true of the H port on
the COP441, COP442, COP2441, and COP2442.

Any G or H line, or any combination, may be used as inputs while the others are used as
outputs. There is no conflict and the user has complete flexibility.

TRI-STATE Ports

Two eight-bit bidirectional TRI-STATE ports are available: The Q register-L drivers available
on all COPS microcontrollers and the R port available on the COP440 and COP2440. The L
port is written by loading Q w ith CAMQ or LQID and enabling L, via LEI or CAME. The
application w ill determine if L should be enabled before or after loading Q or enabled all the
time. The decision is not significant in terms of software. Remember, the L outputs are
drivers only. They are not latched. When enabled, L outputs the contents of Q. L m ust be
enabled in order to output data. The R port is a latched output port. The user writes to the R
register by means of the CAMR instruction. The R drivers are enabled by means of the
CAME instruction. In terms of software alone, it is not significant when the R drivers are
enabled, but the drivers must be enabled to output the contents of the R register.

There are two ways to use these lines as inputs. The first method requires that the drivers be
disabled. In this case, the lines are truly floating and in an undefined state. The external
circuitry must provide good logic levels, both high and low, to the input pins. The inputs are

4-7

then read by the INL or INR instructions. The second method is very similar to the technique
used for G and H. The drivers are enabled. A “1” must be written to the Q or R register in
the positions of the input lines. The external circuitry w ill then be required only to pull the
line down to a logic “0”. The line will pull itself up to a logic “1”. The INL and INR
instructions are used as before to read the lines.

Any L or R line, or any combination, may be used as inputs while the others are used as
outputs. However, the L drivers are enabled or disabled as a group. The same is true of the R
drivers. The L drivers are enabled or disabled by means of the LEI or CAME instructions.
The R drivers are controlled by means of the CAME instruction only. On most devices, the Q
register can be read without affecting L. The R register can be read only through the R lines.
The data on the L lines does not affect the contents of the Q register except on devices with
the MICROBUS option selected. The data on the R lines does not affect the contents of the R
register.

The R lines are available only on the COP440 and COP2440. The R register, however, is
available and can be used in the COP441, COP442, COP2441, and COP2442.

4.5.3 The Serial I/O Port - MICROWIRE

As explained in Section 2.4.5, the serial I/O port may be configured as a serial shift register or
a four-bit binary down counter. In the shift register mode, the serial port is the MICROWIRE
interface (see Section 2.4.5). The operating mode of the serial port is controlled by the Enable
register (see Section 2.5 and Table 2-2).

In the binary counter mode, SO and SK are logic controlled outputs. The state of SO is
directly controlled by the LEI instruction. SK outputs the status of SKL, the SK latch. In the
shift register mode, SO is either “0” or serial out, and SK is either “0” or a clock output as
indicated in Table 2-2. Regardless of mode, SKL is loaded w ith the status of the C register
whenever an XAS instruction is executed. Thus, SK is controlled by setting or resetting C
and then executing an XAS. The XAS instruction, however, is also the means of reading the
SIO register. Therefore, every time the user reads SIO, C is copied to SKL. Therefore, the user
should insure the status of C before executing an XAS instruction if the status of SK is
important. Also note that if SIO is in counter mode and SKL is “1” (SK = l), and SIO changed
to shift register mode, SK w ill become a clock immediately. The converse is also true: If SIO is
shift register and SKL = 1, and SIO is changed to a counter, SK w ill go to a high state
immediately.

Regardless of mode, SI can be used as a general purpose input. In the shift register mode, data
w ill shift in at the SI pin. The user can read the status of SI w ith the XAS instruction. In
the counter mode, SIO will, in effect, capture a low-going pulse. The user can preload the
counter by setting the accumulator to some value, typically 0 or 15, and loading that value
into SIO with an XAS instruction. The user would then periodically read SIO to see if the
value had been decremented. If it had, the pulse had occurred.

W ith the SIO register in the shift register mode, continuous data streams can be sent or
received. In this mode, data is normally in multiples of four bits. To preserve proper timing,
an XAS must appear every fourth instruction cycle. As w ill be seen, this is simple to
implement. The reason for this requirement should be obvious. SIO is a four-bit shift register
which shifts a t the instruction cycle rate. Thus data must be read, or new data loaded, every

4-8

fourth instruction cycle.

4.6 INTERRUPT

The interrupt input on COPS microcontrollers is INj. In the COP440 series and COP2440
series, the CKO input may also be an interrupt input. Thus, except for the COP442 and
COP2442, interrupt is not available on any device that does not have the INi input.

4.6.1 Conditions for Interrupt Recognition

An interrupt w ill be recognized or acknowledged if and only if the following conditions are
met;

1. Interrupt has been enabled by setting bit ENi of the enable register.

2. A low-going pulse (“1” to “0”) at least two instruction cycles wide (one instruction
cycle in COP2440 series) occurs at the INi (or CKO in COP440/COP2440 series)
input. The high to low transition must occur while ENi is set.

3. A currently executing instruction is completed.

4. All successive transfers of control instructions and successive LBI instructions are
completed (e.g, if the main program is executing a jump or subroutine call which
transfers control to another jump or subroutine call, the interrupt will not be
acknowledged until the second jump or subroutine call has been executed).

4.6.2 Effects o f Interrupt Acknowledge

When an interrupt has been acknowledged as explained in Section 4.6.1, the following occurs:

1. The next sequential program counter address (PC+l) is pushed onto the program
stack.

2. On COP440, COP2440, and COP484 series devices, an interrupt status bit is stored
w ith the address in the subroutine stack.

3. On all other COPS microcontrollers, the interrupt status bit, which remembers the
status of the skip logic, is saved separately. This bit is not carried with the address
in these devices.

4. The program counter is set to address OFF hex. On all devices except the
COP440/COP2440 series, the next executable address is hex 100. In the
COP440/COP2440 series, hex 100 is the next executable address if EN4 is reset. If
EN4 is set in these devices, the program counter branches from hex address OFF to
hex address 300.

5. ENi is reset thereby disabling further interrupts.

4-9

4.6.3 Interrupt Handling

Due to hardware considerations, the instruction at hex address OFF m ust be a NOP.

The interrupt status bit remembers if a skip was generated as a result of the completed
instruction. In the COP420/COP424C/420L/444L devices, this bit is stored separate from the
return address. If set, this bit forces a skip on the first “stack pop” following the interrupt.
This means that the use of subroutines, nested interrupts, or the LQID is limited in these
devices. An unexpected skip may occur and the original skip status is lost The user may, of
course, defeat this skip by means of an artificial subroutine call, e.g, a JSRP to a RET
instruction, followed by a NOP. This w ill clear the status bit, and subroutines, etc. may be
used without restriction. Remember, however, that this procedure destroys the original skip
status. No such situation exists in the COP440/2440 series and COP484 devices. The status bit
is saved w ith the address. Subroutines may be freely used in the interrupt service routines
and nested interrupts are permitted.

Subject to the restraints mentioned above, interrupts may be re-enable at any time by means
of the LEI or CAME instructions. Typically, this re-enabling would occur immediately before
the return instruction at the end of the interrupt service routines.

4.6.4 Interrupt Disable

Interrupts are disabled by resetting ENj by any valid instruction (LEI or CAME) and by
interrupt acknowledge. While ENi is low, no interrupt processing of any kind goes on. Thus,
a high to low transition at INi which is otherwise valid is not recognized when ENj is reset.
Furthermore, when ENj is set, there is no memory of the event that occurred while ENi was
reset. The software interrupt disable w ill prohibit recognition of all interrupt signals which
occur subsequent to the disable. Obviously, the interrupt disable instruction cannot disable
interrupts which occur before the instruction is executed. More significantly, the interrupt
disable instruction also does not disable interrupts which occur during the execution of the
instruction. Thus, a valid interrupt signal may occur, and interrupt acknowledge is pending
completion of the current instruction. That current instruction may well be an interrupt
disable; nonetheless, the interrupt w ill be acknowledged and the interrupt service routine
entered.

Note that in branching to the interrupt routine, the microcontroller saves only the program
counter and the skip status. If it is necessary to save other items, the user must do so himself
in software. Similarly , the user must restore those values at the end of the interrupt service
routine.

4-10

4.6.5 Interrupt in the COP440/COP2440 Series

The COP440 and COP2440 series devices are the only COPS microcontrollers w ith more than
one possible interrupt source. The choice of interrupt is governed by bits EN4 and EN5 of the
enable register as indicated in Table 2-3. The four possible interrupt sources are as follows:

1. INi negative edge - This is the standard COPS interrupt (EN5 , EN4 = 00).

2. CKO input - If the CKO input mask option is selected, that input can be selected as
an interrupt input. Operation is the same as the INj interrupt (EN5, EN4 = 0). If
CKO is not selected as an input, selection of CKO as interrupt source has no effect.
No interrupt will occur.

3. Zero Crossing on INj - INi may be mask programmed to be a zero crossing detect
input. Interrupt can be selected to occur at each zero crossing. If the zero cross
detect option is not selected, this interrupt source selection will result in an
interrupt at every transition of INi (EN5, EN4 = 10).

4. T counter overflows - This is an internal interrupt which can be selected.
Interrupt w ill occur whenever the T counter overflows. All the conditions
required for interrupt to be acknowledged, w ith the obvious exception of input
pulse width, are still valid and must be met (EN5, EN4 = 11).

The interrupt source should not be changed while the interrupt is enabled (ENi = l). A false
interrupt may occur if the interrupt source is changed while ENX is a 1. To avoid this
problem, the interrupt must be disabled prior to, or at the same time as, the change of the
interrupt source. Do not enable the interrupt at the same time as changing the interrupt
source. A proper sequence for altering the interrupt source, then, is as follows:

1. Disable interrupt.

2. Change interrupt source (Steps 1 and 2 may be combined.)

3. Enable interrupt.

4.7 PROGRAM EFFICIENCY

Three factors are normally involved in determining program efficiency:

1. Program memory (ROM) efficiency, using the least amount of ROM.

2. Data memory (RAM) efficiency, using the least amount of RAM.

3. Execution time efficiency, executing the function in the shortest amount of time.

These three factors, unfortunately, conflict w ith one another. The most memory efficient
implementation of a function is not usually the most execution time efficient implementation.
The most RAM efficient implementation is frequently not the most ROM efficient
implementation.

Like all single-chip microcontrollers, COPS microcontrollers are memory limited. A premium
is therefore placed on general memory efficiency — getting the maximum function in the
smallest memory. The reason is simple economics: devices w ith greater memory capacity are
generally more expensive than devices w ith lesser capacity. Despite the premium on memory

4-11

efficiency, the application can easily require compromises — sacrifice a little ROM or RAM or
both in order to achieve faster execution speed.

Since these conflicting requirements exist, several versions of the standard programs in
Chapter 5 are provided. These should help the user to understand the conflict and to make
intelligent, informed decisions on any compromises.

4.8 RULES AND TECHNIQUES

4.8.1 Absolute Requirements

There are very few absolute requirements for COPS programming. The restrictions on the
instructions are described in Chapter 3. The remaining absolute rules are as follows:

1. The instruction at address 000 must be a CLRA.

2. If interrupts are used, the instruction at hex address OFF must be a NOP.

3. At least the first instruction of subroutines called w ith the single byte JSRP must
be in Page 2. Note there is no requirement that any other instructions of such
subroutines be located in Page 2.

4.8.2 General Guidelines

This section w ill provide general guidelines to help the programmer write an efficient COPS
program. Examples are provided here and in Chapter 5. Most of these guidelines w ill reduce
memory usage at the expense of execution speed. The programmer may have to make the
compromises described in Section 4.7.

Maximize the Use o f Subroutines

If a single operation is frequently performed, make that operation a subroutine. If possible,
make it a subroutine that can be called w ith the single-byte JSRP. Try to combine similar
operations into a common subroutine, even if it means that an unnecessary operation is
performed in some cases. This is “wrong” only if this unnecessary operation interferes in some
significant way w ith achieving the end result. The programmer may use pieces of existing
subroutines as new subroutines: multiple entry points are a good thing if code is saved.
Consider the following short routine:

ENTRY1: LBI 0,15
ENTRY2: LD
ENTRY 3: CAB
ENTRY4: OBD
ENTRY5: RET

It is entirely conceivable that every instruction in this routine is a subroutine entry point.
We shall assume that this routine is in Page 2 for maximum savings. A JSRP to ENTRY1 w ill
output the value in RAM (0,15) to D. A JSRP to ENTRY2 w ill output the RAM digit

4-12

addressed by B to the D port. A JSRP to ENTRY3 will output the accumulator to the D port.
A JSRP to ENTRY4 simply does an OBD. A JSRP to ENTRY5 is, effectively, a NOP but finds
usefulness in creating software delays. This is an example of maximizing subroutine usage
and sharing commonality or finding commonality where it is not obvious. Page 2 should be
filled w ith subroutine entry points. This w ill increase the memory efficiency of the program.

Any multibyte instruction can be converted into a single-byte instruction by means of a
subroutine. Entry point ENTRY4 in the preceding example illustrates this. If a given
multibyte instruction is frequently used in a program, it w ill probably be beneficial to make a
subroutine out of it. Remember, this includes any multibyte instruction. It is common that
various branches of a program will jump back to some central location in the program. These
jumps can be implemented with a JSRP; the subroutine w ill consist totally of JMP CENTER, a
jump to the central location. This is completely acceptable and w ill save code. A subroutine
does not have to have a return instruction associated w ith it.

Use the skip feature of successive LBI instructions. This is a very powerful feature that
permits code sharing and promotes commonality. It easily lends itself to multiple entry point
routines. Consider the following digit right shift routine:

RSHCfc LBI 0,15
RSH1: LBI 1,15
RSH2: LBI 2,15
RSH3: LBI 3,15

CLRA
LOOP: XDS

JP LOOP
RET

Depending on the entry point, this routine w ill right shift register 0 ,1 , 2, or 3 one digit. The
successive LBI feature finds use in this kind of routine, so the same routine can be used
regardless of data location in tests and in “non-obvious” ways. Consider the following:

G10: LBI 0,10
G9: LBI 0,9
Gl: LBI 0,1
G0= LBI 0,0

CBA
X
OMG
X
RET

Restore original RAM value

Here, the LBI instruction is being used to establish the G output value. The LBI instruction
can be used in many similar ways. The interesting thing about this usage is that the LBI is, in
itself, being used to create a value and not to point to a given RAM digit, even though the B
register is modified by the instruction.

Careful RAM allocation is essentiaL Careful placement of data in RAM can have significant
impact on the amount of program memory required. The use of a RAM map, a visualization
of the data placement in RAM, is an invaluable aid. It is nearly impossible to write an
efficient program without the use of a RAM map. Figure 4-1 is a sample RAM map for a

4-13

COP420. The basic guidelines for data placement in RAM are as follows:

1. Flags should be placed in memory locations addressable by a single-byte LBL

2. A commonality of bit position within a digit for flags is desirable. This permits the
creation of flag testing subroutines like the following:

FLAG1: LBI 3,15
FLAG2: LBI 3,14

SKMBZ 1
RET
RETSK

3. Data should be placed at the “ends” of registers to take advantage of the skip
features of the XIS and XDS instructions. It takes far less code to exit by “falling
of the end” of a register than to test Bd, or some other loop counter, for completion.

The LD, X, XIS, and XDS are associated with the exclusive OR feature whereby Br can be
modified. If RAM data and flags are intelligently placed, data manipulation and B register
modification can be accomplished in a single instruction thereby saving code. Obviously, the
effective use of these instructions goes hand in hand with an effective RAM layout. The basic
integer BCD addition below illustrates this feature. The routine is a four-digit BCD addition,
adding register 0 to register 3; result to register 0.

BCD ADD: LBI 3,12
LOOP: LD 3 jfetch data and point to RO

AISC 6 ;decimal adjust to force carry if A=9
ASC ;add
ADT jdecimal correct

: XIS 3 jplace digit in RO, increment Bd, point to R3
JP LOOP ;XIS skip indicates finish
RET

In the above routine, the B register is being continuously modified but there is no LBI
instruction other than the one required at the start of the routine.

The table look-up instructions, LQID and LID, can save both code and execution time. Tables
can be used in many ways: code conversions, arithmetic, data processing, key decoding, etc. If
some set of values is to be derived from another set of values, a table w ill frequently be more
efficient than a computation. The look up w ill also be invariably faster than a computation.
Tables greatly facilitate the handling of inputs from non-linear sources, e.gn temperature
sensors; they make creation of display a trivial task. The use of a table is not a panacea but is
frequently a possible solution worth considering.

The indirect jump instruction, JID, should be used with some care. Because of its “two-tier”
organization, this instruction does not always save code. JID permits a jump on the basis of
data. As such, it is very useful in decode situations. It is not necessarily the most code
efficient decoding scheme, but it is always the most time efficient and time uniform decoding
scheme.

4-14

DIGIT ADDRESS (Bd)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 REGISTER ADDRESS
(Br

O

e-H
C
M

C
O

BA-05-0

Figure 4-1. COP420 RAM Map

For execution speed efficiency, do not put unnecessary instructions in loops. Look for ways to
move instructions out of loops. It is frequently possible to move seemingly necessary
instructions out of program loops. This is a speed improvement that usually costs little or no
code.

4-15

4.9 STRUCTURED PROGRAMMING TECHNIQUES

The techniques of structured programming or top-down programming are excellent
organizational tools and work well on large systems. However, these techniques have a basic
implementation problem at the level of single-chip microcontrollers in general and COPS
microcontrollers in particular. Systems based on COPS devices are generally seeking
maximum function with minimum memory.

Efficient COPS programming requires the elimination or minimization of redundant or
duplicated code. Maximum sharing of common or related code is necessary. Partial sharing of
routines is also common. Most subroutines in an efficient COPS program w ill have multiple
entry points. There are branches into and out of routines that exist solely to reduce memory
usage. A ll of this is in direct conflict with the top-down modular approaches. An efficient
COPS program is not written by assembling independent blocks. That technique will use
excessive code and could require a user to use a larger device than necessary. It is difficult, in
an efficient COPS program, to extract independent modules other than the most basic
functions.

The concepts of structured programming are still useful in defining the functions that must
be performed and their inter-relationships. When the time comes to write the code within the
memory lim its of the microcontroller, the concepts fail. A t this point, the user should use the
approaches and techniques in this m anual Remember, the objective is to write an efficient
COPS program thereby obtaining maximum function in minimum memory. Rarely, if ever, is
the objective to write an easily readable program w ith modular, transportable functional
blocks that exceed the memory capacity of the device.

4-16

Chapter 5

STANDARD PROGRAMS

5.1 INTRODUCTION

This section contains a number of standard programs illustrating various techniques and the
implementation of various functions. If the user wishes to use any of these programs, he or
she should remember that maximum efficiency w ill be obtained by tailoring the program to
the application. Copying the programs “as is” generally is not efficient.

5.2 MATH PACK

This section includes a variety of arithmetic routines, including the following;

« Increment routines

0 Decrement routines

0 Integer Addition

0 Integer Subtraction

0 Binary Multiply

0 Basic Arithmetic Package: Add, Subtract, Multiply, Divide

0 Square Root

0 Binary to BCD Conversion

0 BCD to Binary Conversion

Typically, more than one implementation of a function is given.

5.2.1 Basic Increment Routines

Binary Routines

The following three routines have the same function: They perform a binary addition of 1 to
a 12-bit binary number. The number is located in register 0, digits 15 through 12.

5-1

15
Bd
14 13

M L
Br 0 S S

B B

I n n

INCR: LBI 0,13 INCR: LBI 0,13 INCR: LBI 0,13
SC INCR1: LD LD

INCR1: CLRA AISC 1 AISC 1
ASC JP INCR2 AISC 15
NOP XIS XIS
XIS JP INCR1 LD
JP INCR1 RET AISC 1
RET ENCR2: X AISC 15

RET XIS
LD
AISC 1
NOP
X
RET

ROM Words Used: 8 9 14
Execution Time: 18 Data Dependent 6-16 14
(instruction cycles)

The preceding three examples illustrate an important point: The most code efficient method of
implementing this function takes more time to execute than either of the other two
implementations. This is a fairly common characteristic. Implementation II is, on the average,
the fastest executing routine. Its main drawback is that its execution time is data dependent.
This may not be significant. Implementation I uses and modifies the C register; the other
implementations do not. A ll three routines use the accumulator.

BCD Routines

The following routines have the same function: They increment a three-digit BCD number
by one.

5-2

Bd
15 14 13

M L
Br 0 S S

D D

I n n

INCR: LB1 0,13 INCR: LBI 0,13 INCR: LBI
SC INCR1: LD LD

INCR1: CLRA AISC 7 AISC
AISC 6 JP INCR2 AISC
ASC XIS XIS
ADT JP INCR1 LD
XIS RET AISC
JP INCR1 INCR2: ADT AISC
RET X XIS

RET LD
AISC
ADT
X
RET

ROM Words Used: 9 10 14
Execution Time: 21 Data Dependent 7-17 14
(instruction cycles)

0,13

7
9

7
9

7

The same comments made for the binary routines are valid for the BCD routines.

5.2.2 Basic Decrement Routines

Binary Routines

The following routines take a 12-bit binary number and decrement it by one.

Bd
15 14 13

M L
Br 0 S S

B B

5-3

I n n

DECR: LBI 0,13 DECR: LBI 0,13 DECR: LBI 0,13
RC DECR1: LD LD

DECR1: CLRA AJSC 15 AISC 15
CASC JP DECR2 XIS
NOP X LD
XIS RET AISC 15
JP DECR1 DECR2: XIS XIS
RET JP DECR1 LD

RET ABC 15
NOP
X
RET

ROM Words Used: 8 9 12
Execution Time: 18 Data Dependent 6-17 12
(instruction cycles)

As w ith the increment routines, the routine requiring the least code takes the most time.

BCD Routines

The following routines take a three-digit decimal number and decrement it by one.

Bd
15 14 13

M L
Br 0 S S

D D

f

5-4

I n II

DECR: LBI 0,13 DECR: LBI 0,13 DECR: LBI 0,13
RC DECR1: LD LD

DECR1: CLRA AISC 15 AISC 15
CASC JP DECR2 STII 9
ADT X LD
XIS RET AISC 15
JP DECR1 DECR2: ADT STB 9
RET XIS LD

JP DECR1 AISC 15
RET ADT

X
RET

ROM Words Used: 8 10 12
Execution Time: 18 Data Dependent 6-20 12
(instruction cycles)

The same pattern is observed here as in the other similar routines.

5.2.3 Integer Addition

Binary Addition

The routine below is the basic addition routine. It illustrates the power of the exclusive OR
argument of the LD, XIS, XDS, and X instructions. It also illustrates the conciseness that can
come from intelligent data placement in RAM. As written, the routine is a 16-bit binary add,
R1 + R 0 —>R0.

Bd
15 14 13 12

M L
S Operand 1; sum S

Br 0 B B

1
_________ 1

Operand 2;
1 1|

5-5

BIN ADD: LBI
RC

LOOP: LD
ASC
NOP
XIS
JP
RET

ROM Words Used:
Execution Time:

BCD Addition

This routine is essentially the same as the binary add routine. A four-digit BCD add is
illustrated. Again, R1 + RO — > RO.

Bd
15 14 13 12

MSD Operand 1; sum LSD

________I
Operand 2;

1________________ !I

1,12 ; set-up B register
; initialize Carry to 0

1 ; fetch data from R1 and point to RO
; add RAM(B) + A + C —> A
; defeat skip

1 ; store result to RO, increment Bd, point to R1
LOOP ; Loop control

; all done, exit

8
23 instruction cycle times.

BIN ADD: LBI 1,12 ; initialize B to LSB
RC ; initialize Carry to 0

LOOP: LD 1 ; fetch data from R1 and point to RO
AISC 6 ; decimal adjust to force carry at 9 - > 10
ASC ; add
ADT ; decimal correct if no carry
XIS 1 ; store result in RO
JP LOOP
RET

ROM Words Used: 9
Execution Time: 23 instruction cycle times

Both of these addition routines can be expanded up to 64 bits or 16 digits merely by changing
the starting address, the Bd value in particular. Also note that the data could be placed at the
other end of the register and XDS used in place of XIS.

Since the routine is essentially independent of data length and the exclusive OR feature of the
LD, XIS, XDS, and X instructions permits easy transportation across data registers, a very
versatile and compact routine can be created. Consider the following variation on the BCD

5-6

addition routine:

ADD1: LBI 3,0 ; R3+R0->R0,16-digit add
ADD2: LBI 0,0 ; R3+R0-> R3,16-digit add
ADD3: LBI 1,10 ; Rl+R2-> R2, 6-digit add
ADD4: LBI 2,10 ; Rl+R2-> Rl, 6-digit add

RC
LOOP: LD 3

AISC 6
ASC
ADT
XIS 3
JP LOOP
RET

Here we have the same routine able to work on two different sets of registers w ith different
data lengths. Furthermore, either register in a given set can be the destination for the result.
The controlling factor in all of this is simply the value in the B register at the start of the
routine. The repeated LBI skip feature proves very useful in creating a multiple entry
subroutine such as this one.

Variations on these basic two register additions similar to the techniques shown in the basic
increment and decrement routines can be created. This is left as an exercise for the
programmer. The most code efficient techniques have been illustrated here.

5.2.4 A Doubling Routine

A routine to double the value in a register is a simple outgrowth from the basic addition
routine. This routine is illustrated below for a binary double. Data placement is the same as
shown earlier.

2 x RO—>R0,16-bit binary

DOUBLE: LBI 0,12
RC

LOOP: LD
ASC
NOP
XIS
JP LOOP
RET

The routine for a decimal double is derived from the BCD add routine in the same manner:
the exclusive OR argument on the LD and XIS instructions is changed to 0 so that Br is not
altered by those instructions.

; RAM(B) ->A, Br not changed

; A ->RAM(B), increment Bd, Br unchanged

5-7

An Example o f the Effect o f Data Placement in RAM

If assumed, in either of the addition routines presented earlier, that the the data is not
optimally placed at the end of registers, the following routine could be the result;

Bd
15 14 13 12

M L
Br 0 S Operand 1; sum S

B B

1 , Operand 2 i

R1+R0->R0,16-bit binary

BIN ADD: LBI 1,10
RC

LOOP: LD 1
ASC
NOP
X1S 1
CBA
AISC 2
JP LOOP
RET

; initialize B
; initialize Carry

; test for Bd > 13-if yes, done

ROM Words Used; 10
Execution Time: 31 instruction cycle times

In this example, inefficient data placement resulted in a 25 per cent code increase and a nearly
50 per cent increase in execution time. The message should be clear from this: Placement of
data in RAM can have dramatic effects on the program.

5.2.5 Integer Subtract

These routines are the counterparts of the integer addition routines in Section 5.2.3. The RAM
maps are the same as in that section.

5-8

Binary Subtraction

The routine as written below is a 16-bit binary subtraction (Rl-RO->Rl).

BINSUB: LBI 0,12 ; initialize B register
SC ; set Carry for subtract

LOOP: LD 1 ; fetch R value and point to R1
CASC ; subtract
NOP
XIS 1 ; save result in Rl, increment Bd, point to R1
JP LOOP
RET

BCD Subtraction

The BCD counterpart of the preceding is the following four-digit subtract routine
(R1-R0->R1).

BCDSUB: LBI 0,12 ; initialize B
SC ; set C for subtract

LOOP: LD 1 ; fetch RO value, point to Rl
CASC ; subtract
ADT ; decimal correct (15 -> 9)
XIS 1 ; save in R l, increment Bd, point
JP LOOP
RET

These routines are direct counterparts to the addition routines. The comments in Section 5.2.3
are equally valid for these subtract routines.

5.2.6 Up-Down Counters

The up-down counter routine is an extension or combination of the basic increment or
decrement routines. Both an increment and a decrement have, effectively, been combined.
The C register is used to distinguish between counting up or counting down. The basic flow
for the routine and the RAM map is shown below in Figure 5-1.

Bd
15 14 13 12

11
Cou

1 !
nter

1
Not 1

1_________ 1
Used
1_________

TEMP
STORE

The flow chart and RAM map are valid for both the binary and BCD versions of the routine.
Two implementations of each are given: The first is a simple combination of the increment

5-9

BA-06-0

Figure 5-1. Basic Flow for Up-Down Counter Routine

5-10

decrement routines. The second is a somewhat more sophisticated implementation which saves
a little code but uses more RAM (one extra digit which is in TEMP STORE in the RAM map).

Binary Up-Down Counter

I n

UPDOWN: LBI 2,12 UPDOWN: LBI 3,12
SKC CLRA
JP DOWN SKC

UP: CLRA COMP
ASC COUNT: X 1 ; point to 2,12
NOP
XIS COUNT1: LDD 3,12
JP UP ASC
RET NOP

DOWN: CLRA XIS
CASC JP COUNT1
NOP RET
XIS
JP DOWN
RET

Version II of this routine loads 0 or 15 into a RAM location. Then the state of the carry
controls addition or subtraction. Note that the location of the temporary data storage digit
was chosen to use the exclusive OR capability of the X instruction to eliminate an instruction.

5-11

BCD Up-Down C ounter

I n

UPDOWN: LBI 2,12 UPDOWN: LBI 3,12
SKC CLRA
JP DOWN SKC

UP: CLRA AISC 9
AISC 6 COUNT: X 1
ASC
ADT COUNT1: LDD 3,12
XIS AISC 6
JP UP ASC
RET ADT

DOWN: CLRA XIS
CASC JP COUNT1
ADT RET
XIS
JP DOWN
RET

The comparison is the same as the binary routines. Version II here also illustrates another
point. As written, Version II w ill execute (increment or decrement the four-digit counter) in
34 instruction cycle times. By merely moving the AISC 6 instruction from its present
location to after the CLRA, the execution time is improved without any penalty.

Ha

UPDOWN: LBI
CLRA

3,12

AISC 6 ; build decimal correct into the stored constant
SKC
AISC 9

COUNT: X 1
COUNT1: LDD 3,12

ASC
ADT
XIS
JP COUNT1
RET

This routine is completely equivalent in function, approach, and amount of code as Version II.
It executes faster, however, 31 instruction cycles rather than 34. The reason for the speed
improvement is that an instruction, the AISC 6, was moved out of the loop and into the “main
body” of the routine.

5-12

5.2.7 Binary M ultiply

A routine for a 16 by 16 bit binary multiply is given below. A 32-bit product is generated.
A RAM map for this routine is given below. A flow chart is in Figure 5-2.

0
Br

1

Bd
15 14 13 12 11 10 9 8 7

x<
pi
’multi

1 i
plicai

1
id)

1I i
Z
nr " BIT

COUN­
TER

__ 1
“C

1__1
r
I 1

Y (
I
’multi

I
Lpliei

u
•)
i

NOT
USED

The routine does the following:

X x Y — > XZ, previous X lost; Y unchanged

5-13

BA-07-0

Figure 5-2. Binary Multiply

5-14

BINMULT: LBI 0,7
STH 0
STB 0
s m 0
STII 0
STB 0
LBI 1,12
STB 0
STB 0
STB 0
STB 0
LBI 0,8
RC

LSH: LD
ASC
NOP

EX: XIS
JP LSH
SKC
JP BITCTR

BINADD: RC
LBI 1,8

ADD: LD 1
ASC
NOP
XIS 1
JP ADD

BITCTR: LBI 0,7
LD
AISC 1
JP EX
RET

; clear bit counter and Z

; left shift XZ 1 bit, putting XMSB into C

; Y + X Z —>XZ

; increment bit counter and test if done

5.2.8 Basic Arithm etic Package

This section includes the basic arithmetic functions, add, subtract, multiply, and divide. The
routines are written as a cohesive unit. They are for eight-digit floating-point fu lly algebraic
arithmetic. Figures 5-4 through 5-7 are the RAM map and flow chart for these routines.

Both decimal and binary (hexadecimal) versions of these routines are provided. The flow
charts and RAM map are valid for both these versions.

The routines listed in Figures 5-3 and 5-8 have an arbitrary error handling routine; the error
is merely flagged by setting the decimal point and sign position to 15. The user can modify
this to a perhaps more useful arrangement.

5-15

COP CROSS ASSEMBLER
MAINPR

PAGE 1

1
2
3
4
5
6
7
8
9

10
11
12
13
1H
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

BASIC BCD FLOATING POINT ARITHMETIC ROUTINES

REGISTER 0 = X,REGISTER 1 = Y, REGISTER 2 = Z

THE ROUTINES ARE FOR 8 DIGIT,BCD,FULLY ALGEBRAIC ADD,SUBTRACT
MULTIPLY AND DIVIDE. ALL ROUTINES ARE FULLY FLOATING POINT.
THE ROUTINES ASSUME AN 8 DIGIT MANTISSA, A SIGN DIGIT, AND A
DECIMAL POINT DIGIT.THE DECIMAL POINT DIGIT IS A DECIMAL POINT
POSITION INDICATOR,I.E.,A DEC. PT.POSITION OF 0 INDICATES
THAT THE DECIMAL POINT IS PLACED AFTER THE LSD OF THE NUMBER;
DEC.PT. POSITION OF 7 INDICATES THAT THE DECIMAL POINT IS
PLACED AFTER THE MSD OF THE NUMBER. OTHER NUMBERS CORRESPOND
IN THE SAME MANNER TO INTERMEDIATE DIGITS.

THE ROUTINES ALSO ASSUME THAT THERE IS A GUARD OR OVERFLOW
DIGIT FOR THE NUMBERS.THE MANTISSA IS 8 DIGITS PLUS THE GUARD
DIGIT FOR A TOTAL OF 9 DIGITS.THE GUARD DIGIT IS FOR INTERNAL
USE ONLY AND IS NOT AVAILABLE ON INPUT OR OUTPUT.

THE ROUTINES CAN BE MODIFIED FOR HEX OR BINARY ARITHMETIC.
AS THE ALGORITHMS ARE NOT NUMBER BASE DEPENDENT(EXCEPT FOR
OBVIOUS THINGS LIKE OVERFLOW TESTS, ETC. WHICH WOULD HAVE TO
BE MODIFIED TO ACCOMODATE THE NUMBER BASE USED).

THE CODE AS WRITTEN SHOULD WORK IN COP420 AND LARGER DEVICES.
THE ROUTINES ARE WRITTEN AS SUBROUTINES CALLED BY A MAIN
PROGRAM. ONE LEVEL OF SUBROUTINE IS USED BY THE ARITHMETIC
ROUTINES. COMPARABLE ROUTINES CAN BE WRITTEN FOR THE C0P410
BUT SOME CHANGES ARE REQUIRED. THE ALGORITHM IS STILL VALID
ALTHOUGH THE IMPLEMENTATION IS SOMEWHAT DIFFERENT.

32 0022 SAVE1 — 2,2
33 OOOF XGUARD r 0,15
34 OOOE XMSD s 0,14
35 0007 XLSD = 0,7
36 0006 ROUND = 0,6
37 0001 XSIGN z 0,1
38 0000 XDP — 0,0
39 001F YGUARD = 1,15
40 001E YMSD s 1,14
41 0017 YLSD r 1,7
42 0011 YSIGN — 1,1
43 0010 YDP s 1,0
44 002F ZGUARD — 2,15
45 002E ZMSD s 2,14
46 0027 ZLSD = 2,7
47 0021 ZSIGN s 2,1
48 0020 ZDP = 2,0
49 003F FLAGS = 3,15
50 0030 OFLOW = 3,0
51

Figure 5-3. BCD Arithmetic Package (Sheet 1 of 9)

5-16

COP CROSS
MAINPR

52
53 000
54 001
55 002
56 003
57 004
58 005
59 006
60 007
61 008
62
63
64
65
66 009
67
68
69
70
71
72 OOB
73 OOD
74 OOE
75 OOF
76 010
77 012
78 013
79 015
80 016
81 017
82 018
83 019
84 01B
85 01C
86 01D
87 01E
88 01F
89 021
90 022
91 023
92 024
93 026
94
95
96
97
98

99
100
101
102

ASSEMBLER PAGE: 2

0000 .PAGE 0
00 CLRA
OF LB I 0,0 ; CLEAR ALL THE RAM
53 AISC 3
12 RAMCLR: XABR
81 JSRP CLEAR
12 XABR
5F AISC 15
C9 JP TESTG
C3 JP RAMCLR

•***************#****#**S*«ftfttt****ftft**ft**ftSft***S****ft*****«***

•FOLLOWING CODE— TO NEXT LINE OF **— IS FOR CONTROL ONLY

335F TESTG: OGI 15 ;PUT G LINES HIGH FOR READING G

;USING G LINES FOR PRIMITIVE CONTROL TO SELECT ADD,SUb
:MULTIPLY OR DIVIDE— WILL ENTER NUMBERS IN BREAKPOINT
;MODE USING MODIFY COMMAND

3301 SKGBZ 0
D3 JP TESTG1
3E LB I FLAGS
70 STII 0 ; RESET BIT 2 FOR ADD
6840 JSRALN: JSR ALIGN
C9 JP TESTG
3311 TESTG1: SKGBZ 1
D9 JP TESTG2
3E LB I FLAGS ;SET SUBTRACT BIT
74 STII 4 ;SET BIT 2 FOR SUBTRACT
DO JP JSRALN
3303 TESTG2: SKGBZ 2
DF JP TESTG3
3E LBI FLAGS
70 STII 0 ;RESET BIT j FOR DIVIDE
E4 JP JSMD
3313 TESTG3: SKGBZ 3
C9 JP TESTG
3E LBI FLAGS
78 STII 8 ;SET BIT 3 FOR MULTIPLY
6940 JSMD: JSR MULDIV
C9 JP TESTG

PRECEEDING CODE FOR CONTROL ONLY,HAS NOTHING TO DO WITH THE
ARITHMETIC ALGORITHMS
•«»»»«#«*»#*»*#»*«»#«*»*«**##*#*##**»9*#**##*»###**

0040 .PAGE 1
; THIS IS THE ALIGN ROUTINE FOR ADD/SUBTRACT. IT MAKES THE
; DECIMAL POSITIONS OF THE TWO NUMBERS EQUAL BEFORE ADD OR
; SUBTRACT TAKES PLACE. THE ROUTINE ASSUMES THAT THE NUMBERS

Figure 5-3. BCD Arithmetic Package (Sheet 2 of 9)

5-17

COP CROSS ASSEMBLER
MAINPR

PAGE 3

103 ; ARE RIGHT JUSTIFIED ON ENTRY. DECIMAL POINT POSITION VALUES
104 : ARE RESTRICTED TO NUMBERS BETWEEN 0 - 8 (SINCE WE ARE ONLY
105 ; DOING 8 DIGIT ROUTINES). ROUTINE ONLY REQUIRED FOR FLOATING
106 ; POINT ADD/SUBTRACT ALGORITHMS
107 9

108 040 OF ALIGN: LBI XDP
109 041 15 LD 1
110 042 21 SKE ;TEST DP0=DP1(DPXzDPY)
111 043 C6 JP ALIGN2
112 044 6100 JMP ADDSUB ;IF EQUAL,PROCEED TO ADD/SUBTRACT
113 046 10 ALIGN2: CASC ;TEST DPO > DP1
114 047 D6 JP DP0GT1 ; YES
115 048 OD DP0LT1: LBI XMSD ;DP0<DP1.IF XMSD NOT 0,RIGHT SHIFT
116 049 00 CLRA ;M1,ELSE LEFT SHIFT MO
117 04A 21 SKE
118 04B D1 JP R1RSFT
119 04C 87 ROLSFT: JSRP LSFTRO
120 04D OF LBI XDP
121 04E 1F DPPL1: LBI YDP
122 04F B5 JSRP PLUS1 ;MODIFY DP AFTER SHIFT
123 050 CO JP ALIGN
124 051 8E R1RSFT: JSRP RSFTK1
125 052 1F LBI YDP
126 053 OF DPMIN1: LBI XDP
127 054 AD JSRP MINUS1
128 055 CO JP ALIGN
129 056 1D DP0GT1: LBI YMSD ;TESTING MSD OF M1 NOT 0
130 057 00 CLRA
131 058 21 SKE
132 059 DC JP RORSFT
133 05A 85 R1LSFT: JSRP LSFTR1
134 05B CE JP DPPL1
135 05C 8D RORSFT: JSRP RSFTRO
136 05D D3 JP DPMIN1
137 9

138 0080 .PAGE 2
139 :THESE .ARE THE BASIC REQUIRED SUBROUTINES FOR THE ARITHMETIC
140 : ROUTINES— COP420 AND LARGER CODE
141 9

142 080 OF CLEARO: LBI 0,0
143 081 00 CLEAR: CLRA
144 082 04 XIS
145 083 81 JP CLEAR
146 084 48 RET
147 085 3397 LSFTR1: LBI YLSD
148 087 3387 LSFTRO: LBI XLSD
149 089 00 LSFTX: CLRA
150 08A 04 LSFT: XIS
151 08B 8A JP LSFT
152 08C 48 RET
153 08D OE RSFTRO: LBI 0,15
154 08E 1E RSFTR1: LBI 1.15

Figure 5-3. BCD Arithmetic Package (Sheet 3 of 9)

5-18

COP CROSS ASSEMBLER
MAINPR

PAGE:

155 08F 00 RSFTRX: CLRA
156 090 07 RSFT: XDS
157 091 23A2 XAD SAVE 1
158 093 4E CBA
159 094 59 AISC 9
160 095 99 JP DONE
161 096 2322 LDD SAVE1
162 098 90 JP RSFT
163 099 2 322 DONE: LDD SAVE 1
164 09B 48 RET
165 09C 32 BCDADD: RC
166 09D 15 BCD1: LD 1
167 09E 56 AISC 6
168 09F 30 ASC
169 0A0 4A ADT
170 0A1 14 XIS 1
171 0A2 9D JP BCD1
172 0A3 48 RET
173 0A4 22 BCDSUB: SC
174 0A5 15 BCDS1: LD 1
175 0A6 10 CASC
176 0A7 4A ADT
177 0A8 14 XIS 1
178 0A9 A5 JP BCDS1
179 OAA 48 RET
180 OAB 2F ZDPMN1: LBI ZDP
181 OAC 3F 0FLMN1: LBI OFLOW
182 OAD 05 MINUS1: LD
183 OAE 5F AISC 15
184 OAF 44 NOP
185 OBO 06 PLUS1A: X
186 OB 1 48 RET
187 0B2 OF XDPPL1: LBI XDP
188 OB 3 3F 0FLPL1: LBI OFLOW
189 0B4 2F ZDPPL1: LBI ZDP
190 0B5 05 PLUS1: LD
191 0B6 51 AISC 1
192 0B7 BO JP PLUS1A
193 0B8 06 X
194 0B9 49 RETSK
195 OBA 25 XFER2: LD 2
196 OBB 24 XIS 2
197 OBC BA JP XFER2
198 OBD 48 RET
199 9

200 0100 .PAGE 4
201 ;THIS IS THE ADD/SUBTR,
202 sFLOATING POINT , FULLY
203 9
204 100 3E ADDSUB: LBI FLAGS
205 101 03 SKMBZ 2
206 102 DO JP CHNGMO

;SAVE VALUE TEMPORARILY
;ONLY WANT 8 DIGIT SHIFT

;FETCH SAVED VALUE

;TWO REGISTER BCD ADDITION

;TWO REGISTER BCD SUBTRACTION

;SUBTRACT 1 FROM MEMORY

;ADD 1 TO MEMORY

PLUS1A ;WILL SKIP IF GREATER THAN 15

ROUTINE IS FOR 8 DIGITS.

;TEST IF SHOULD SUBTRACT
;CHANGE SIGN RO(X) IF SUBTRACT

Figure 5-3. BCD Arithmetic Package (Sheet 4 of 9)

5-19

COP CROSS ASSEMBLER
MAINPR

PAGE: 5

207 103 3381 ADSB1: LBI XSIGN ;NOW TEST FOR SIGNS EQUAL
208 105 15 LD 1
209 106 21 SKE
210 107 D7 JP SUB ;NOT EQUAL,HENCE SUBTRACT
211 108 3387 ADD: LBI XLSD
212 10A 9C JSRP BCDADD ;R1+R0— >R1,(Y+X— >Y)
213 10B 1E ERRCHK: LBI YGUARD ;TEST FOR OVERFLOW
214 10C 00 CLRA ;IF 1, 15(YGUARD) NOT 0,UNDERFLOW
215 10D 21 SKE
216 10E ED JP UNDRFL
217 10F 48 RET
218 110 3381 CHNGMO: LBI XSIGN ;CHANGE SIGN OF RO(X)
219 112 05 LD
220 113 58 A1SC 8
221 114 44 NOP
222 115 06 X
223 116 C3 JP ADSB1
224 117 3387 SUB: LBI XLSD
225 119 A4 JSRP BCDSUB ;R1-R0— >R1 , (Y-X— >Y)
226 11A 20 SKC ;SEE IF MUST COMPLEMENT
227 11B DD JP COMPL
228 11C CB JP ERRCHK
229 11D 3397 COMPL: LBI YLSD ;NEGATIVE RESULT,COMPLEMENT
230 11F 22 SC
231 120 00 C0MPL1: CLRA
232 121 .06 X
233 122 10 CASC
234 123 4A ADT
235 124 04 XIS
236 125 EO JP C0MPL1
237 126 3391 LBI YSIGN ;NOW CHANGE SIGN OF R1(Y)
238 128 05 LD
239 129 58 AISC 8
240 12A 44 NOP
241 12B 06 X
242 12C CB JP ERRCHK
243 12D 8E UNDRFL: JSRP RSFTR1 ;DO AN UNDERFLOW
244 12E 1F LBI YDP ;ERROR IF YDP IS 0 WHEN UNDERFLOW
245 12F AD JSRP MINUS1
246 130 5F AISC 15
247 131 F3 JP ERROR
248 132 48 RET
249 133 1F ERROR: LBI YDP
250 134 7F STII 15 ;15— >YDP & 'YSIGN FOR ERROR
251 135 7F STII 15
252 136 48 RET

253 0140 .PAGE 5
254 ;MULTIPLY,DIVIDE ROUTINES. FLOATING POINT,8 DIGIT
255 1
256 140 3387 MULDIV: LBI XLSD
257 142 BA JSRP XFER2 ;M0— >M2,X— >Z, THEN CLEAR X
258 143 25 LD 2 ;TRANSFER DP AND SIGN ALSO

Figure 5-3. BCD Arithmetic Package (Sheet 5 of 9)

5-20

COP CROSS ASSEMBLER PAGE: 6
MAINPR

259 144 24 XIS 2
260 145 25 LD 2
261 146 26 X 2
262 147 80 JSRP CLEARO
263 148 3E LB I FLAGS
264 149 13 SKMBZ 3
265 14A 61C0 JMP MULPLY
266 t
267 14C 22 DIVIDE: SC
268 14D 1F LBI YDP
269 14E 35 LD 3
270 14F 10 CASC
271 150 44 NOP
272 151 06 X
273 152 3F LBI OFLOW
274 153 00 CLRA
275 154 20 SKC
276 155 40 COMP
277 156 06 X
278 157 3397 DIV1A: LBI YLSD
279 159 A4 JSRP BCDSUB
280 15A 20 SKC
281 15B E2 JP DIV3A
282 15C 33A7 DIV3: LBI ZLSD
283 15E B5 JSRP PLUS1
284 15F D7 JP DIV1A
285 160 6189 JMP DIVBYO
286 162 3397 DIV3A: LBI YLSD
287 164 9C JSRP BCDADD
288 165 OF LBI XDP
289 166 05 LD
290 167 57 AISC 7
291 168 617F JMP DIV1B
292 16A 2£ DIV4: LBI ZGUARD
293 16B 00 CLRA
294 16C 21 SKE
295 16D 61E5 JMP MDEND1
296 16F 3F LBI OFLOW
297 170 21 SKE
298 171 F8 JP DIV4A
299 172 2F LBI ZDP
300 173 05 LD
301 174 57 AISC 7
302 175 F8 JP DIV4A
303 176 61E5 JMP MDEND1
304 178 B4 DIV4A: JSRP ZDPPL1
305 179 6181 JMP DIV1B2
306 17B B3 JSRP 0FLPL1
307 17C 44 NOP
308 17D 6181 JMP DIV1B2
309 17F B2 DIV1B: JSRP XDPPL1

;CLEAR MO
;NOW TEST IF MULTIPLY OR DIVIDE

;M0/M1 ~ > M0,(X/Y-->X)
;DP2-DP0— >DP2, (DPZ-DPX— >DPZ)

;15 TO OFLOW DIGIT IF BORROW,ELSE 0

;MO - M1 TO MO,M1 SAVED
;PART OF THE REPEATED SUBTRACT FEATURE

;DIVIDE BY 0 CHECK

;ALL OK,CONTINUE

;RESTORE VALUE

;TESTING DP FOR FINISHED

;TEST OVERFLOW DIGIT

;TEST DP2(ZDP) >= 9 '

;DP2+1~ >DP2, (ZDP+1-- >ZDP)

INCREMENT OVERFLOW. DIGIT
;DEFEAT SKIP

;DPO + 1 — > DPO

310 180 44 NOP

Figure 5-3. BCD Arithmetic Package (Sheet 6 of 9)

5-21

COP CROSS ASSEMBLER
MAINPR

PAGE 7

311 181 33A7 DIV1B2: LBI ZLSD
312 183 89 JSRP LSFTX
313 184 3387 LBI XLSD
314 186 8A JSRP LSFT
315 187 6157 JMP DIV1A
316 189 621B DIVBYO: JMP MDERR

317 01C0 .PAGE 7
318 1C0 32 MULPLY: RC ;DP1+DP2— >DP2,(DPY+DPZ— >DPZ)
319 1C1 1F LBI YDP
320 1C2 35 LD 3
321 1C3 30 ASC
322 1C4 44 NOP
323 1C5 06 X
324 1C6 00 CLRA ;1 TO OFLOW IF CARRY,ELSE 0
325 1C7 20 SKC
326 1C8 CA JP MUL1A
327 1C9 51 AISC 1
328 1CA 3F MUL1A: LBI OFLOW
329 1CB 06 X
330 1CC 33A7 MUL1: LBI ZLSD
331 1CE 05 LD
332 1CF 5F AISC 15 ;LSD CONTROLLING REPEATED ADDS
333 1D0 D6 JP MUL2
334 1D1 06 X
335 1D2 3397 LBI YLSD ;M0 + M1 — > MO,(X+Y— >X)
336 1D4 9C JSRP BCDADD
337 1D5 CC JP MUL1
338 1D6 8D MUL2: JSRP RSFTRO
339 1D7 2E LBI ZGUARD
340 1D8 90 JSRP RSFT
341 1D9 B2 JSRP XDPPL1
342 1DA 58 AISC 8
343 1DB CC JP MUL1 JPRECEEDING IS DP ADJUST
344 1DC 78 MUL3: STII 8
345 1DD 3387 LBI XLSD
346 1DF 00 MUL3X: CLRA ;TEST M0=0(X=0)
347 1E0 21 SKE
348 1E1 6212 JMP MUL5
349 1E3 04 XIS
350 1E4 DF JP MUL3X
351 1E5 2E MDEND1: LBI ZGUARD
352 1E6 00 CLRA
353 1E7 21 SKE
354 1E8 ED JP MDX
355 1E9 2F LBI ZDP
356 1EA 05 LD
357 1EB 57 AISC 7 ;TEST >= 9
358 1EC F7 JP MDEND2
359 1ED 2E MDX: LBI ZGUARD
360 1EE 8F JSRP RSFTRX
361 1EF 3386 LBI ROUND ;SAVE VALUE FOR ROUNDING
362 1F1 06 X

Figure 5-3. BCD Arithmetic Package (Sheet 7 of 9)

5-22

COP CROSS ASSEMBLER
MAINPR

PAGE: 8

363 1F2 AB JSRP ZDPMN1
364 1F3 05 LD ;TEST DP2CZDP) = 15
365 1F4 51 AISC 1
366 1F5 F7 JP MDEND2
367 1F6 AC JSRP 0FLMN1 ;SUBTRACT 1 FROM OVERFLOW DIGIT
368 1F7 2F MDEND2: LBI 2,0 ;TRANSFER R2 TO RO
369 1F8 BA JSRP XFER2
370 1F9 3391 LBI YSIGN ;ADD SIGNS AND PUT TO MO(X)
371 1FB 15 LD 1
372 1FC 31 ADD
373 1FD 06 X
374 1FE 3F LBI OFLOW ;TEST OVERFLOW DIGIT
375 IFF 05 LD

376 200 51 AISC 1
377 201 C3 JP MDEND4 ;NOT 15
378 202 DB JP MDERR ;IS 15,NUMBER TOO BIG
379 203 00 MDEND4: CLRA ;NOW TEST DIGIT > 0
380 204 21 SKE
381 205 80 JSRP CLEARO ;IS NON ZERO,CLEAR MO
382 206 3387 MDHJ: LBI XLSD ;RIGHT JUSTIFY THE RESULT
383 208 00 CLRA
384 209 21 SKE
385 20A 48 RET ;IF LSD NON ZERO,STOP
386 20B OF LBI XDP ;IF DP PSN = 0,STOP
387 20C 05 LD
388 20D 5F AISC 15
389 20E 48 RET
390 20F 06 X ;ELSE,DECREMENT BY 1 AND CONTINUE
391 210 8D JSRP RSFTRO
392 211 C6 JP MDRJ
393 212 2F MUL5: LBI ZDP ;TEST DP2(ZDP) = 0
394 213 00 CLRA
395 214 21 SKE
396 215 D8 JP MUL3A
397 216 40 COMP ;15 TO DP2CZDP)
398 217 06 X
399 218 AD MUL3A: JSRP MINUS1 ;DP2(ZDP) - 1 ~ > DP2(ZDP)
400 219 61D6 JMP MUL2
401 21B OE MDERR: LBI 0,15
402 21C 7F STII 15
403 21D 7F STII 15
404 21E 48 RET
405 .END

Figure 5-3. BCD Arithmetic Package (Sheet 8 of 9)

5-23

COP CROSS ASSEMBLER
MAINPR

PAGE: 9

ADD 0108 * ADDSUB 0100 ADSB1 0103 ALIGN 0040
ALIGN2 0046 BCD1 009D BCDADD 009C BCDS1 00A5
BCDSUB 00A4 CHNGMO 0110 CLEAR 0081 CLEARO 0080
COMPL 011D COMPL1 0120 DIV1A 0157 DIV1B 017F
DIV1B2 0181 DIV3 015C DIV3A 0162 DIV4 016A *
DIV4A 0178 DIVBYO 0189 DIVIDE 014C ft DONE 0099
DP0GT1 0056 DP0LT1 0048 ft DPMIN1 0053 DPPL1 004E
ERRCHK 01 OB ERROR 0133 FLAGS 003F JSMD 0024
JSRALN 0010 LSFT 008A LSFTRO 0087 LSFTR1 0085
LSFTX 0089 MDEND1 01E5 MDEND2 01F7 MDEND4 0203
MDERR 021B MDRJ 0206 MDX 01 ED MINUS1 OOAD
MUL1 01CC MUL1A 01CA MUL2 01D6 MUL3 01 DC *
MUL3A 0218 MUL3X 01DF MUL5 0212 MULDIV 0140
MULPLY 01C0 0FLMN1 OOAC OFLOW 0030 0FLPL1 00B3
PLUS1 00B5 PLUS1A OOBO ROLSFT 004C * RORSFT 005C
R1LSFT 005A * R1RSFT 0051 RAMCLR 0003 ROUND 0006
RSFT 0090 RSFTRO 008D RSFTR1 008E RSFTRX 008F
SAVE1 0022 SUB 0117 TESTG 0009 TESTG1 0013
TESTG2 0019 TESTG3 001F UNDRFL 012D XDP 0000
XDPPL1 00B2 XFER2 OOBA XGUARD OOOF ft XLSD 0007
XMSD 000E XSIGN 0001 YDP 0010 YGUARD 001F
YLSD 0017 YMSD 001E YSIGN 0011 ZDP 0020
ZDPMN1 OOAB ZDPPL1 00B4 ZGUARD 002F ZLSD 0027
ZMSD 002E * ZSIGN 0021 «

NO ERROR LINES

356 ROM WORDS USED

COP 420 ASSEMBLY

SOURCE CHECKSUM = FBE9
0

INPUT FILE ABDUL10:ARITH.SRC VN: 20

Figure 5-3. BCD Arithmetic Package (Sheet 9 of 9)

5-24

5-25

F igure 5-4. RAM Map - Basic Arithmetic Routines

BA-09-0

Figure 5-5. Align Routine for Add/Subtract

5-26

BA-10-0

Figure 5-6. Fully Algebraic Add/Subtract

5-27

5-28

MULDIV

0-.0VERFLOW
DIGIT
x z

o-.x

DIVIDE

ZoP -YoP
_,.ZDP

NO

15+0VERFLOW
. DIGIT

X-Y•X

NO

X·Y_.X 0IV3A
x ... v--.x

X+Y-•X

DIVlB

XoP +l XoP

DIV1B2

0IV4

DIVlA C MDENDI)NO

DIV3A

0IV3

ERROR
DIVIDE BY 0

YES

LEFT SHIFT Z
(z GUARD ---. A)

LEFT SHIFT X
(A XLso)

DIVlA

Figure 5-7. Multiply/Divide (Sheet 1 of 3)

5-28

ZoP+l
•ZoP

VERFLOW DIGI
1.0'FLOW DIG!

DIV1B2

BA-11-0

. _..,/

Figure 5-7. Multiply/DivMe (Sheet 2 of 3) BA-12-0

5-29

5-30

MDEND4

YES

MDEND2

DPx -1
..-.OPx

RIGHT SHIFT
X

MDRJ

NO

ERROR
OVERFLOW

BA-13-0

Figure 5-7. Multiply/Divide (Sheet 3 of 3)

5-30

COP CROSS ASSEMBLER PAGE: 1
HXMATH HEXADECIMAL ARITHMETIC

1
2

BASIC HEXADECIMAL(BINARY) FLOATING POINT ARITHMETIC ROUTINES

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

REGISTER 0 = X,REGISTER 1 = Y, REGISTER 2 = L

THE ROUTINES ARE FOR 8 DIGIT,HEX,FULLY ALGEBRAIC ADD,SUBTRACT
MULTIPLY AND DIVIDE. ALL ROUTINES ARE FULLY FLOATING POINT.
THE ROUTINES ASSUME AN 8 DIGIT MANTISSA, A SIGN DIGIT, AND A
HEX POINT DIGIT. THE HEX POINT DIGIT IS A HEX POINT
POSITION INDICATOR,I.E.,A HEX PT.POSITION OF 0 INDICATES
THAT THE HEX POINT IS PLACED AFTER THE LSD OF THE NUMBER;
HEX POINT POSITION OF 7 INDICATES THAT THE HEX POINT IS
PLACED AFTER THE MSD OF THE NUMBER. OTHER NUMBERS CORRESPOND
IN THE SAME MANNER TO INTERMEDIATE DIGITS.

THE ROUTINES ALSO ASSUME THAT THERE IS A GUARD OR OVERFLOW
DIGIT FOR THE NUMBERS.THE MANTISSA IS 8 DIGITS PLUS THE GUARD
DIGIT FOR A TOTAL OF 9 DIGITS.THE GUARD DIGIT IS FOR INTERNAL
USE ONLY AND IS NOT AVAILABLE ON INPUT OR OUTPUT.

20
21
22
23
24
25
26
27
28
29
30
.31

THE ROUTINES ARE USABLE AS IS FOR BINARY ARITHMETIC DUE TO
THE OBVIOUS RELATIONSHIP BETWEEN HEX AND BINARY. THE ONLY
ADVERSE EFFECT IS THAT THE RAM IS NOT OPTIMALLY USED IF
BINARY ARITHMETIC IS DESIRED. NONETHELESS THE ROUTINES
ARE FULLY FUNCTIONAL FOR BINARY ARITHMETIC.

THE CODE AS WRITTEN SHOULD WORK IN COP420 AND LARGER DEVICES.
THE ROUTINES ARE WRITTEN AS SUBROUTINES CALLED BY A MAIN
PROGRAM. ONE LEVEL OF SUBROUTINE IS USED BY THE ARITHMETIC
ROUTINES. COMPARABLE ROUTINES CAN BE WRITTEN FOR THE COP410
BUT SOME CHANGES ARE REQUIRED. THE ALGORITHM IS STILL VALID
ALTHOUGH THE IMPLEMENTATION IS SOMEWHAT DIFFERENT.

32
33
34
35
36
37
38
39
40

IT WILL BE NOTED THAT THESE HEX ROUTINES DIFFER ONLY SLIGHTLY
FROM THE EQUIVALENT DECIMAL ROUTINES. WITH THIS INFORMATION
IT WOULD BE POSSIBLE, IF IT WERE NECESSARY, TO WRITE A
COMMON ROUTINE AND DO THE ARITHMETIC IN HEX OR DECIMAL WHICH­
EVER WAS REQUIRED. THE EXTRA CODE TO DO THIS WOULD NOT BE
SIGNIFICANT IF THE APPLICATION GENUINELY REQUIRED THIS DUAL
CAPABILITY.

41
42 0022 SAVE1

.TITLE HXMATH,'HEXADECIMAL ARITHMETIC'
2,2

43 000F XGUAKD = 0,15
44 000E XMSD s 0,14
45 0007 XLSD r 0,7
46 0006 ROUND = 0,6
47 0001 XSIGN = 0,1
48 0000 XDP s 0,0
49 001F YGUARD — 1,15
50 001E YMSD s 1.1*
51 0017 YLSD — 1,7
52 0011 YSIGN = 1,1

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 1 of 9)

5-31

COP CROSS ASSEMBLER PAGE:
HXMATH HEXADECIMAL ARITHMETIC

2

53 0010 YDP = 1,0
54 002F ZGUARD s 2,15
55 002E ZMSD - 2,14
56 0027 ZLSD s 2,7
57 0021 ZSIGN s 2,1
58 0020 ZDP — 2,0
59 003F FLAGS — 3,15
60 0030 OFLOW 3,0
61 »

62 0000 .PAGE 0
63 000 00 CLRA
64 001 OF LB I 0,0 ;CLEAR ALL THE RAM
65 002 53 AISC 3
66 003 12 RAMCLR: XABR
67 004 81 JSRP CLEAR
68 005 12 XABR
69 006 5F AISC 15
70 007 C9 JP TESTG
71 008 C3 JP RAMCLR
72 i
73 •ft»*ft*fttf****tt*Sft*S*»******«ft***fttt*ft*»**#*ft*ft******»****»**»«

74 :FOLLOWING CODE— TO NEXT LINE OF **— IS FOR CONTROL ONLY
75 J
76 009 335F TESTG: OGI 15 ;PUT G LINES HIGH FOR READING G
77 »
78 iUSING g :LINES FOR PRIMITIVE CONTROL TO SELECT ADD,SUB
79 iMULTIPLY OR DIVIDE— WILL ENTER NUMBERS IN BREAKPOINT
80 1MODE USING MODIFY COMMAND
81 9

82 00B 3301 SKGBZ 0
83 00D D3 JP TESTG1
84 00E 3E LBI FLAGS
85 OOF 70 STII 0 ;RESET BIT 2 FOR ADD
86 010 6840 JSRALN: JSR ALIGN
87 012 C9 JP TESTG
88 013 3311 TESTG1: SKGBZ 1
89 015 D9 JP TESTG2
90 016 3E LBI FLAGS ;SET SUBTRACT BIT
91 017 74 STII 4 ;SET BIT 2 FOR SUBTRACT
92 018 DO JP JSRALN
93 019 3303 TESTG2: SKGBZ . 2
94 01B DF JP TESTG3
95 01C 3E LBI FLAGS
96 01D 70 STII 0 ;RESET BIT 3 FOR DIVIDE
97 01E E4 JP JSMD
98 01F 3313 TESTG3: SKGBZ 3
99 021 C9 JP TESTG
100 022 3E LBI FLAGS
101 023 78 STII 8 ;SET BIT 3 FOR MULTIPLY
102 024 6940 JSMD: JSR MULDIY
103 026 C9 JP TESTG
104 9

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 2 of 9)

5-32

COP CROSS ASSEMBLER PAGE: 3
HXMATH HEXADECIMAL ARITHMETIC

105
106
107
108

PRECEEDING CODE IS FOR CONTROL ONLY,HAS NOTHING TO DO WITH THE
ARITHMETIC ALGORITHMS
•****•**»«»•••»*»«*»•*»«*»*«»**«•«»«*•«»»*•*•»*«*•»««*»*»**»*

109 0040 .PAGE 1
110 ; THIS IS THE ALIGN ROUTINE FOR ADD/SUBTRACT. IT MAKES THE
111 ; HEX POSITIONS OF THE TWO NUMBERS EQUAL BEFORE ADD OR
112 ; SUBTRACT TAKES PLACE. THE ROUTINE ASSUMES THAT THE NUMBERS
113 ; ARE RIGHT JUSTIFIED ON ENTRY. HEX POINT POSITION VALUES
114 : ARE RESTRICTED TO NUMBERS BETWEEN 0 - 8 (SINCE WE ARE ONLY
115 ; DOING 8 DIGIT ROUTINES). ROUTINE ONLY REQUIRED FOR FLOATING
116 ; POINT ADD/SUBTRACT ALGORITHMS
117 !
118 040 OF ALIGN: LBI XDP
119 041 15 LD 1
120 042 21 SKE ;TEST DP0=DP1(DPX=DPY)
121 043 C6 JP ALIGN2
122 044 6100 JMP ADDSUB ;IF EQUAL,PROCEED TO ADD/SUBTRACT
123 046 10 ALIGN2: CASC ;T£ST DPO > DP1
124 047 D6 JP DP0GT1 ; YES
125 048 OD DP0LT1: LBI XMSD ;DP0<DP1•IF XMSD NOT 0,RIGHT SHIFT
126 049 00 CLRA ;M1,ELSE LEFT SHIFT MO
127 04A 21 SKE
128 04B D1 JP R1RSFT
129 04C 87 ROLSFT: JSRP LSFTRO
130 04D OF LBI XDP
131 04E 1F DPPL1: LBI YDP
132 04F B4 JSRP PLUS1 ;MODIFY DP AFTER SHIFT
133 050 CO JP ALIGN
134 051 8E R1RSFT: JSRP RSFTR1
135 052 1F LBI YDP
136 053 OF DPMIN1: LBI XDP
137 054 AC JSRP MINUS1
138 055 CO JP ALIGN
139 056 1D DP0GT1: LBI YMSD ;TESTING MSD OF M1 NOT 0
140 057 00 CLRA
141 058 21 SKE
142 059 DC JP . RORSFT
143 05A 85 R1LSFT: JSRP LSFTR1
144 05B CE JP DPPL1
145 05C 8D RORSFT: JSRP RSFTRO
146 05D D3 JP DPMIN1
147 i

148 0080 • PAGE 2
149 ;THESE ARE THE BASIC REQUIRED SUBROUTINES FOR THE ARITHMETIC
150 : ROUTINES— C0P420 AND LARGER CODE
151 i
152 080 OF CLEARO: LBI 0,0
153 081 00 CLEAR: CLRA
154 082 04 XIS

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 3 of 9)

5-33

COP CROSS ASSEMBLER PAGE:
HXMATH HEXADECIMAL ARITHMETIC

4

155 083 81 JP CLEAR
156 084 48 RET
157 085 3397 LSFTR1: LBI YLSD
158 087 3387 LSFTRO: LBI XLSD
159 089 00 LSFTX: CLRA
160 08A 04 LSFT: XIS
161 08B 8A JP LSFT
162 08C 48 RET
163 08D OE RSFTRO: LBI 0,15
164 08E 1E RSFTR1: LBI 1,15
165 08F 00 RSFTRX: CLRA
166 090 07 RSFT: XDS
167 091 23A2 XAD SAVE1
168 093 4E CBA
169 094 59 AISC 9
170 095 99 JP DONE
171 096 2322 LDD SAVE1
172 098 90 JP RSFT
173 099 2322 DONE: LDD SAVE1
174 09B 48 RET
175 09C 32 BINADD: RC
176 09D 15 BIN 1: LD 1
177 09E 30 ASC
178 09F 44 NOP
179 0A0 14 XIS 1
180 0A1 9D JP BIN 1
181 0A2 48 RET
182 0A3 22 BINSUB: SC
183 0A4 15 BINS1: LD 1
184 0A5 10 CASC
185 0A6 44 NOP
186 0A7 14 XIS 1
187 0A8 A4 JP BINS 1
188 0A9 48 RET
189 OAA 2F ZDPMN1: LBI ZDP
190 OAB 3F 0FLMN1: LBI OFLOW
191 OAC 05 MINUS1: LD
192 OAD 5F AISC 15
193 OAE 44 NOP
194 OAF 06 PLUS1A: X
195 OBO 48 RET
196 0B1 OF XDPPL1: LBI XDP
197 0B2 3F 0FLPL1: LBI OFLOW
198 0B3 2F ZDPPL1: LBI ZDP
199 0B4 05 PLUS1: LD
200 0B5 51 AISC 1
201 0B6 AF JP PLUS1A
202 0B7 06 X
203 0B8 49 RETSK
204 0B9 25 XFER2: LD 2
205 OBA 24 XIS 2
206 OBB B9 JP XFER2
207 OBC 48 RET
208 >

;SAVE VALUE TEMPORARILY
;ONLY WANT 8 DIGIT SHIFT

;FETCH SAVED VALUE

;TWO REGISTER BINARY ADDITION

;TWO REGISTER BINARY SUBTRACTION

;SUBTRACT 1 FROM MEMORY

;ADD 1 TO MEMORY

;WILL SKIP IF GREATER THAN 15

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 4 of 9)

5-34

COP CROSS ASSEMBLER PAGE: 5
HXMATH HEXADECIMAL ARITHMETIC

209 0100 .PAGE 4
210 ;THIS IS THE ADD/SUBTRACT ROUTINE. ROUTINE IS FOR 8 DIGITS
211 jHEXADECIMAL, FLOATING POINT, FULLY ALGEBRAIC.
212 9

213 100 3E ADDSUB: LBI FLAGS
214 101 03 SKMBZ 2 ;TEST IF SHOULD SUBTRACT
215 102 DO JP CHNGMO ;CHANGE SIGN RO(X) IF SUBTRACT
216 103 3381 ADSB1: LBI XSIGN ;NOW TEST FOR SIGNS EQUAL
217 105 15 LD 1
218 106 21 SKE
219 107 D7 JP SUB ;NOT EQUAL,HENCE SUBTRACT
220 108 3387 ADD: LBI XLSD
221 10A 9C JSRP BINADD {R1+R0— >R1, (Y+X— >Y)
222 10B 1E ERRCHK: LBI YGUARD ;TEST FOR OVERFLOW
223 10C 00 CLRA ;IF 1,15(YGUARD) NOT 0,UNDERFLOW
224 10D 21 SKE
225 10E ED JP UNDRFL
226 10F 48 RET
227 110 3381 CHNGMO: LBI XSIGN {CHANGE SIGN OF RO(X)
228 112 05 LD
229 113 58 AISC 8
230 114 44 NOP
231 115 06 X
232 116 C3 JP ADSB1
233 117 3387 SUB: LBI XLSD
234 119 A3 JSRP BINSUB ;R 1-BO— >R1, (Y-X— >Y)
235 11A 20 SKC {SEE IF MUST COMPLEMENT
236 11B DD JP COMPL
237 11C CB JP ERRCHK
238 11D 3397 CCMPL: LBI YLSD {NEGATIVE RESULT,COMPLEMENT
239 11F 22 SC
240 120 00 COMPL1: CLRA
241 121 06 X
242 122 10 CASC
243 123 4A ADT
244 124 04 XIS
245 125 EO JP COMPL1
246 126 3391 LBI YSIGN {NOW CHANGE SIGN OF R1(Y)
247 128 05 LD
248 129 58 AISC 8
249 12A 44 NOP
250 12B 06 X
251 12C CB JP ERRCHK
252 12D 8E UNDRFL: JSRP RSFTR1 ;D0 AN UNDERFLOW
253 12E 1F LBI YDP {ERROR IF YDP IS 0 WHEN UNDERFLOW
254 12F AC JSRP MINUS1
255 130 5F AISC 15
256 131 F3 JP ERROR
257 132 48 RET
258 133 1F ERROR: LBI YDP
259 134 7F STII 15 {15— >YDP & YSIGN FOR ERROR
260 135 7F STII 15

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 5 of 9)

5-35

COP CROSS ASSEMBLER PAGE:
HXMATH HEXADECIMAL ARITHMETIC

6

261 136

CO=r RET

262 0140 .PAGE 5
263 ;MULTIPLY,DIVIDE ROUTINES. FLOATING POINT,8 DIGIT
264 9
265 140 3387 MULDIV: LBI XLSD
266 142 B9 JSRP XFER2 ;M0— >M2,X— >Z, THEN CLEAR X
267 143 25 LD 2 {TRANSFER DP AND SIGN ALSO
268 144 24 XIS 2

269 145 25 LD 2

270 146 26 X 2

271 147 80 JSRP CLEARO ;CLEAR MO
272 148 3E LBI FLAGS ;NOW TEST IF MULTIPLY OR DIVIDE
273 149 13 SKMBZ 3
274 14A 61C0 JMP MULPLY
275 }
276 14C 22 DIVIDE: SC ;M0/M1 — > MO,(X/Y— >X)
277 14D 1F LBI YDP ;DP2-DP0— >DP2,(DPZ-DPX— >DPZ)
278 14E 35 LD 3
279 14F 10 CASC
260 150 44 NOP
281 151 06 X
282 152 3F LBI OFLOW ; 15 TO OFLOW DIGIT IF BORROW,ELSE 0
283 153 00 CLRA
284 154 20 SKC
285 155 40 COMP
286 156 06 X
287 157 3397 DIVU: LBI YLSD
288 159 A3 JSRP BINSUB ;M0 - M1 TO M0,M1 SAVED
289 15A 20 SKC ;PART OF THE REPEATED SUBTRACT FEATURE
290 15B E2 JP DIV3A
291 15C 33A7 DIV3: LBI ZLSD {DIVIDE BY 0 CHECK
292 15E B4 JSRP PLUS1
293 15F D7 JP DIV1A ;ALL OK,CONTINUE
294 160 6189 JMP DIVBYO
295 162 3397 DIV3A: LBI YLSD
296 164 9C JSRP BINADD ;RESTORE VALUE
297 165 OF LBI XDP
298 166 05 LD
299 167 57 AISC 7
300 168 617F JMP DIV1B {TESTING DP FOR FINISHED
301 16A 2E DIV4: LBI ZGUARD
302 16B 00 CLRA
303 16C 21 SKE
304 16D 61E5 JMP MDEND1
305 16F 3F LBI OFLOW
306 170 21 SKE ;TEST OVERFLOW DIGIT
307 171 F8 JP DIV4A
308 172 2F LBI ZDP ;TEST DP2CZDP) >= 9
309 173 05 LD
310 174 57 AISC 7
311 175 F8 JP DIV4A
312 176 61E5 JMP MDEND1

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 6 of 9)

5-36

COP CROSS ASSEMBLER PAGE:
HXMATH HEXADECIMAL ARITHMETIC

7

313 178 B3 DIV4A: JSRP ZDPPL1 ;DP2+1-->DP2,(ZDP+1— >ZDP)
31« 179 6181 JMP DIV1B2 •
315 17B B2 JSRP OFLPL1 ;INCREMENT OVERFLOW DIGIT
316 17C 44 NOP ;DEFEAT SKIP
317 17D 6181 JMP DIV1B2
318 17F B1 DIV1B: JSRP XDPPL1 ;DPO + 1 — > DPO

319 180 44 NOP
320 181 33A7 DIV1B2: LBI ZLSD
321 183 89 JSRP LSFTX
322 184 3387 LBI XLSD
323 186 8A JSRP LSFT
324 187 6157 JMP DIV1A
325 189 621B DIVBYO: JMP MDERR

326 01C0 .PAGE 7
327 1C0 32 MULPLY: RC ;DP1 + DP2— >DP2, (DPY+DPZ— >DPZ)
328 1C1 1F LBI YDP
329 1C2 35 LD 3
330 1C 3 30 ASC
331 1C4 44 NOP
332 1C5 06 X
333 1C6 00 CLRA ;1 TO OFLOW IF CARRY,ELSE 0
334 1C7 20 SKC
335 1C8 CA JP MUL1A
336 1C9 51 AISC 1
337 1CA 3F MUL1A: LBI OFLOW
338 1CB 06 X
339 1CC 33A7 MUL1 : LBI ZLSD
340 1CE 05 LD
341 1CF 5F AISC 15 ;LSD CONTROLLING REPEATED ADDS
342 1D0 D6 JP MUL2
343 1D1 06 X
344 1D2 3397 LBI YLSD ;M0 + M1 — > MO,(X+Y— >X)
345 1D4 9C JSRP BINADD
346 1D5 CC JP MUL1
347 1D6 8D MUL2: JSRP RSFTRO
348 1D7 2E LBI ZGUARD
349 1D8 90 JSRP RSFT
350 1D9 B1 JSRP XDPPL1
351 1DA 58 AISC 8
352 1DB CC JP MUL1 ;PRECEEDING IS DP ADJUST
353 1DC 78 MUL3: STII 8
354 1DD 3387 LBI XLSD
355 1DF 00 MUL3X: CLRA ;TEST M0=0(X=0)
356 1E0 21 SKE
357 1E1 6212 JMP MUL5
358 1E3 04 XIS
359 1E4 DF JP MUL3X
360 1E5 2E MDEND1: LBI ZGUARD
361 1E6 00 CLRA
362 1E7 21 SKE

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 7 of 9)

5-37

COP CROSS ASSEMBLER PAGE:
HXMATH HEXADECIMAL ARITHMETIC

8

363 1E8 ED JP MDX
364 1E9 2F LB I ZDP
365 1EA 05 LD
366 1EB 57 AISC 7
367 1EC F7 JP MDEND2
368 1ED 2E MDX: LBI ZGUARD
369 1EE 8F JSRP RSFTRX
370 1EF 3386 LBI ROUND
371 1F1 06 X
372 1F2 AA JSRP ZDPMN1
373 1F3 05 LD
374 1F4 51 AISC 1
375 1F5 F7 JP MDEND2
376 1F6 AB JSRP 0FLMN1
377 1F7 2F MDEND2: LBI 2,0
378 1F8 B9 JSRP XFER2
379 1F9 3391 LBI YSIGN
380 1FB 15 LD 1
381 1FC 31 ADD
382 1FD 06 X
383 1FE 3F LBI OFLOW
384 1FF 05 LD

385 200 51 AISC 1
386 201 C3 JP MDEND4
387 202 DB JP MDERR
388 203 00 MDEND4: CLRA
389 204 21 SKE
390 205 80 JSRP CLEARO
391 206 3387 MDRJ: LBI XLSD
392 208 00 CLRA
393 209 21 SKE
394 20A 48 RET
395 20B OF LBI XDP
396 20C 05 LD
397 20D 5F AISC 15
398 20E 48 RET
399 20F 06 X
400 210 8D JSRP RSFTRO
401 211 C6 JP MDRJ
402 212 2F MUL5: LBI ZDP
403 213 00 CLRA
404 214 21 SKE
405 215 D8 JP MUL3A
406 216 40 COMP
407 217 06 X
408 218 AC MUL3A: JSRP MINUS 1
409 219 61D6 JMP MUL2
410 21B OE MDERR: LBI 0,15
411 21C 7F STII 15
412 21D 7F STII 15
413 21E 48 RET
414 • END

;TEST >= 9

;SAVE VALUE FOR ROUNDING

;TEST DP2CZDP) = 15

;SUBTRACT 1 FROM OVERFLOW DIGIT
;TRANSFER R2 TO RO

;ADD SIGNS AND PUT TO MO(X)

;TEST OVERFLOW DIGIT

;NOT 15
;IS 15,NUMBER TOO BIG
;NOW TEST DIGIT > 0

;IS NON ZERO,CLEAR MO
;RIGHT JUSTIFY THE RESULT

;IF LSD NON ZERO,STOP
;IF DP PSN = 0,STOP

;ELSE,DECREMENT BY 1 AND CONTINUE

;TEST DP2CZDP) = 0

;15 TO DP2(ZDP)

;DP2(ZDP) - 1 — > DP2CZDP)

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 8 of 9)

5-38

COP CROSS ASSEMBLER PAGE: 9
HXMATH HEXADECIMAL ARITHMETIC

ADD 0108 * ADDSUB 0100 ADSB1 0103 ALIGN 0040
ALIGN2 0046 BIN1 009D BINADD 009C BINS 1 00A4
BINSUB 00A3 CHNGMO 0110 CLEAR 0081 CLEARO 0080
COMPL 01 ID C0MPL1 0120 DIV1A 0157 DIV1B 017F
DIV1B2 0181 DIV3 015C « DIV3A 0162 DIV4 016A «
DIV4A 0178 DIVBYO 0189 DIVIDE 014C ft DONE 0099
DP0GT1 0056 DP0LT1 0048 ft DPMIN1 0053 DPPL1 004E
ERRCHK 010B ERROR 0133 FLAGS 003F JSMD 0024
JSRALN 0010 LSFT 008A LSFTRO 0087 LSFTR1 0085
LSFTX 0089 MDEND1 01E5 MDEND2 01F7 MDEND4 0203
MDERR 021B MDRJ 0206 MDX 01ED MINUS1 OOAC
MUL1 01CC MUL1A 01CA MUL2 01D6 MUL3 01 DC *
MUL3A 0218 MUL3X 01DF MUL5 0212 MULDIV 0140
MULPLY 01C0 OFLMN1 OOAB OFLOW 0030 0FLPL1 00B2
PLUS1 00B4 PLUS 1A OOAF ROLSFT 004C ft RORSFT 005C
R1LSFT 005A ft R1RSFT 0051 RAMCLR 0003 ROUND 0006
RSFT 0090 RSFTRO 008D RSFTR1 008E RSFTRX 008F
SAVE1 0022 SUB 0117 TESTG 0009 TESTG1 0013
TESTG2 0019 TESTG3 001F UNDRFL 012D XDP 0000
XDPPL1 00B1 XFER2 00B9 XGUARD OOOF « XLSD 0007
XMSD 000E XSIGN 0001 YDP 0010 YGUARD 001F
YLSD 0017 YMSD 001E YSIGN 0011 ZDP 0020
ZDPMN1 OOAA ZDPPL1 00B3 ZGUARD 002F ZLSD 0027
ZMSD 002E ft ZSIGN 0021 «

NO ERROR LINES

355 ROM WORDS USED

COP 420 ASSEMBLY

SOURCE CHECKSUM = 7921

INPUT FILE ABDUL10:HEXARITH.SRC VN: 5

Figure 5-8. Binary (Hexadecimal) Arithmetic Package (Sheet 9 of 9)

5-39

5.2.9 Square Root

Two square root routines are provided: an integer square root and fu ll floating-point square
root. Both routines are based on the mathematical relationship:

t fe i- l I = n 2
i=l ' 1

Therefore, if sequential odd numbers were subtracted from a value, the square root of that
value is given by the number of odd numbers that must be subtracted from the original value
to reduce that original value to “0” (or at least to reduce the integer part to 0).

Integer Square Root - BCD

A simple routine is provided that computes the integer portion of the square root of an
integer. The technique is the simple subtraction of odd numbers as described above. The flow
chart for this routine is given in Figure 5-9. The code and RAM map for a four-digit routine
is given below.

Bd
15 14 13 12

0
1

MSD
1

2
1 1
r LSD

Br 1 f

2
_________ 1

2

1_________ 1

r

[________ 11

The subroutines are assumed to be located in Page 2.

5-40

BA-17-0

Figure 5-9. Integer Square Root

5-41

SQROOT:

TSTZRO.

XMINUSY:

LBI 1,12 ;->z
STII 1 ; 1 — > Y, Bd +1 — > Bd
JSRP CLEAR
LBI 2,12 ; 0 —> Z
JSRP CLEAR
LBI 0,12 ; test X = 0, if so exit
CLRA
SKE
JP XMINUSY ; X = 0
XIS
JP TSTZRO
RET
JSRP SUB ; X-Y — > X
SKC ; test borrow, C = 0 if borrow
RET ; if borrow, exit-finished
JSRP ZPLUS1 ; Z+l — > Z
JSRP YPLUS1 ; Y+2 — > Y
JSRP YPLUS 1 f

JP XMINUSY

The following subroutines, assumed to be in Page 2, are used by the square root routine above:

CLEAR:

SUB:

SUB1:

ZPLUS:

YPLUS:

PLUS1:

CLRA
XIS
JP
RET
LBI
LD

CASC
ADT
XIS
JP
RET

LBI

LBI
SC
CLRA
AISC
ASC
ADT
XIS
JP
RET

CLEAR

1,12
1

1
SUBl

2,12

1,12

6

PLUS1

; simple register clear

; this is the basic BCD subtract routine as given
; earlier

; this is the basic BCD increment routine as
; given earlier, w ith the repeated LBI skip
; feature

5-42

Floating-Point Square Root - BCD

A fu ll floating-point BCD square root routine is provided. As written, the routine works on a
12-digit number w ith a two-digit signed exponent. Although substantially more complex
than the integer square root routine seen earlier, this routine has the same conceptual basis —
the subtraction of odd numbers.

The first part of the routine creates the exponent of the result of dividing the original
exponent by two. Note that this is accomplished by first multiplying the exponent by 5, via
repeated additions, and then dividing it by 10 by means of a right-digit shift.

Two flow charts are provided, a generalized flow chart (Figure 5-10) and a detailed flow chart
(Figure 5-10a), to help clarify the routine. The RAM map for the routine is indicated below.

Bd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
X

EXPONENT
X

SIGN GUARD

1
MSD

1 11 1
X MANTISSA

1 1 1 1

LSD

Br 1
Y

EXPONENT
Y

SIGN

iI

Y MANTISSA

2
TEMP
STORE

DIGIT
COUN­

TER
NOT USED

The routine performs Vx — > x.

5-43

5-44

ERROR

NO

NO

NO

SQ ROOT

BASED ON: J_ (2a-l)=n2
vi-1 2

:i: (2a-l)=n a:1

1) .MULTIPLY X BY 5
2) SUBTRACT 5·000

NUMBER

SQ4

o-..v
12~0IGIT

-CNTR

SQ6

YES

5· X MANTISSA
SWAP X,Y
MANTISSA

RIGHT SHIFT ADJUSTS FOR
X MANTISSA ~, ~

TYPE SITUA fION

X EXPONENT~2 CREATE EXPONENT
-..x EXPONENT OF RESULT

X EXPONENT·+! ADJUST EXPCNENT
--.x EXPONENT

SQ4

' DIGIT CNTR -1
_.DIGIT CNTR
O•Y(DIG.CNTR)

5+­
Y(DIG.CNTR -1)

SQS

---~---~~SUBTRACT
X-Y_.X ODD

---~-.-~--- NUMBERS

Y(DIG.CNTR)+l
Y(DIG.CNTR)

X+Y-•X

LEFT SHI FT
X MANTISSA

BA-14-0
Figure 5-10.. Square Root - General Flow Chart

5-44

;

Figure 5-10a. Square Root - Detailed Flow Chart (Sheet 1 of 2)

5-45

BA-16-0

Figure 5-lOa. Square Root - Detailed Flow Chart (Sheet 2 of 2)

COP CROSS ASSEMBLER PAGE: 1
SQROOT SQUARE ROOT ROUTINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

THIS PROGRAM IS A FLOATING POINT SQUARE ROOT ROUTINE. THE
ROUTINE ASSUMES THAT THE NUMBER X(REGISTER 0) IS IN
SCIENTIFIC NOTATION FORMAT, I.E., SIGNED EXPONENT AND
MANTISSA. AS WRITTEN THE ROUTINE ASSUMES A 12 DIGIT BCD
MANTISSA AND GENERATES A 12 DIGIT BCD RESULT. THE
EXPONENT IS APPROPRIATELY HANDLED. BY CHANGING ONLY THE
START VALUE IN THE DIGIT COUNTER, SMALLER MANTISSAS CAN
BE EASILY HANDLED. THE STRUCTURE OF THE ROUTINE DOES NOT
CHANGE.

THE ROUTINE ASSUMES THAT THE LSD OF THE NUMBER IS LOCATION
0. THE MSD OF THE NUMBER IS IN LOCATION 11. LOCATION 13
CONTAINS THE SIGN INFORMATION FOR BOTH THE EXPONENT AND THE
MANTISSA. BIT 0 OF LOCATION 13 IS THE EXPONENT SIGN; BIT
3 IS THE MANTISSA SIGN; BITS 1 AND 2 ARE NOT USED. A TWO
DIGIT EXPONENT IS CONTAINED IN LOCATIONS 14 AND 15 WITH
LOCATION 15 BEING THE MOST SIGNIFICANT DIGIT OF THE EXPONENT.
LOCATION 12 IS THE MANTISSA GUARD DIGIT AND IS USED IN THE
COMPUTATION BUT CONTAINS NO INFORMATION ON ENTRY TO
OR EXIT FROM THE ROUTINE.

THE ROUTINE FURTHER ASSUMES THAT THE DECIMAL POINT IS LOCATED
TO THE RIGHT OF THE MSD OF THE MANTISSA,I.E.,ALL NUMBERS ARE
OF THE FORM 1.2345 X 10**£XP0NENT.

26 0000 XLSD — 0,0
27 OOOB XMSD = 0,11
28 OOOC XGUARD = 0,12
29 OOOD XSIGN r 0,13
30 OOOE XEXPLO = 0,14
31 OOOF XEXPHI z 0,15
32 0010 YLSD r 1,0
33 001C YGUARD s 1,12
34 001E YEXPLO z 1,14
35 001F YEXPHI z 1,15
36 002E CNTR z 2,14 ;THIS IS MANTISSA DIGIT COUNTER
37 002F EXPOVF z 2,15 ;EXPONENT OVERFLOW DIGIT
38 i
39 .TITLE SQROOT,'SQUARE ROOT ROUTINE'
40 9

41 0000 .PAGE 0
42
43 ;CODE FROM HERE TO NEXT LINE OF «'S IS NOT PART OF SQUARE ROOT
44 ;ROUTINE:. IT IS FOR TEST ONLY.
45 9
46 000 00 START: CLRA
47 001 12 STRT1: XABR
48 002 00 STRT2: CLRA
49 003 04 XIS ; CLEAR ALL THE RAM FOR CONTROL
50 004 C2 JP STRT2

Figure 5-11. Square Root Routine (Sheet 1 of 6)

5-47

COP CROSS ASSEMBLER PAGE: 2
SQROOT SQUARE ROOT ROUTINE

51 005 12 XABR
52 006 5D AISC 13
53 007 C1 JP STRT1
54 TESTSQROOT:
55 008 44 NOP
56 009 44 NOP
57 00A 335F OGI 15 ;THIS JUST FOR TEST,DETECTING ERROR
58 OOC 6900 JSR SQROOT ;RETURN AND SKIP IF ERROR,SO G WILL
59 OOE 3350 OGI 0 ;SET TO 0 IF NO ERROR
60 010 44 NOP
61 011 44 NOP
62 012 C8 JP TESTSQROOT
63
64
65
66
67
68
69
70
71
72
73
74
75

NOTE THAT THE PRECEEDING CODE IS NOT PART OF THE SQUARE ROOT
ROUTINE. IT IS FOR CONTROL AND TEST ONLY
t««»»»**««»»«*»*«»«*«**«««»««»»*«s»»**»****s«»**»************

THE FOLLOWING CODE IS PART OF SQUARE ROOT ROUTINE.THE SUB­
ROUTINES ARE INCLUDED. IN A SYSTEM REQUIRING SQUARE ROOT, IT
IS HIGHLY PROBABLE THAT AT LEAST SOME OF THE OTHER BASIC
ARITHMETIC FUNCTIONS WOULD ALSO BE REQUIRED. THE SUBROUTINES
BELOW WOULD ALSO BE USABLE IN THOSE ROUTINES.

»«••»»•«*«»*••»«**••«•»•*•«*««*««»«««»***»***«««*»»«*»*»**»

76 0080 .PAGE 2
77 080 00 CLEAR: CLRA
78 081 04 XIS
79 082 80 JP CLEAR
80 083 48 RET
81 084 1F ADDXY: LBI YLSD
82 085 32 ADDXYE: RC
83 086 15 ADLOOP: LD 1
84 087 56 AISC 6
85 088 30 ASC
86 089 4A ADT
87 08A 14 XIS 1
88 08B 8D JP ADLP2
89 08C 48 RET
90 08D 4E ADLP2: CBA
91 08E 53 AISC 3
92 08F 86 JP ADLOOP
93 090 48 RET
94 7

95 091 05 PLUS1: LD
96 092 51 AISC 1
97 093 44 NOP
98 094 06 XRET: X
99 095 48 RET
100 096 2D CTRMN1: LBI CNTR
101 097 05 MINUS1: LD
102 098 5F AISC 15

;CLEAR A REGISTER

;X + Y — > X,13 DIGITS(MANTISSA AND
;GUARD DIGIT)

{DECIMAL ADJUST

{DECMAL CORRECT

{NOW TEST IF DONE
;IF BD >= 13,DONE

{MEMORY LOCATION PLUS 1

{DIGIT COUNTER MINUS 1
{MEMORY LOCATION MINUS 1

Figure 5-11. Square Root Routine (Sheet 2 of 6)

5-48

COP CROSS ASSEMBLER PAGE: 3
SQROOT SQUARE ROOT ROUTINE

103 099 94 JP XRET
104 09A 94 JP XRET
105 i
106 09B 22 SUBXY: SC
107 09C 1F LBI YLSD
108 09D 15 SUBLOOP : LD 1 ;X - Y — > X,13 DIGITS (MANTISSA
109 09E 10 CASC ;GUARD DIGIT)
110 09F 4A ADT
111 0A0 14 XIS 1
112 OA1 4E CBA
113 0A2 53 AISC 3
114 0A3 9D JP SUBLOOP
115 0A4 48 RET
116 !
117 0A5 OB RSHX: LBI XGUARD ;RIGHT SHIFT X MANTISSA
118 0A6 00 CLRA
119 0A7 07 RSHX1: XDS
120 0A8 A7 JP RSHX1
121 0A9 48 RET
122 J
123 OAA OF LSHX: LBI XLSD ;LEFT SHIFT X
124 OAB 00 CLRA
125 OAC 04 LSHX1: XIS
126 OAD AC JP LSHX1
127 OAE 48 RET
128 1
129 OAF 15 XFER1: LD 1 ; REGISTER TRANSFER
130 0B0 14 XIS 1
131 0B1 AF JP XFER1
132 0B2 48 RET
133 9

134 0100 .PAGE 4
135 9

136 ;*»***»»***«***««***«**«**************»»*««**************
137 9

138 :THE FOLLOWING IS THE BODY OF THE SQUARE ROOT ROUTINE
139 :X MUST BE NORMALIZED ON ENTRY, I.E..NO LEADING ZEROES
140 ;THUS IF XMSD IS 0,THE MANTISSA IS 0
141 9

142 100 2D SQROOT: LBI CNTR
143 101 80 JSRP CLEAR ;CLEAR DIGIT COUNTER AND EXPONENT
144 ;OVERFLOW DIGIT— CNTR & EXPOVF
145 102 OA SQ1: LBI XMSD ;TEST FOR X = 0,IF YES,RETURN
146 103 05 LD ;IF XMSD 0,X IS 0
147 104 5F AISC 15
148 105 48 RET
149 106 OC SQ2: LBI XSIGN ;ERROR IF X IS NEGATIVE
150 107 13 SKMBZ 3
151 108 49 ERROR: RETSK ; RETURN AND SKIP FOR ERROR
152 109 OF LBI XLSD
153 10A AF JSRP XFER1 f X — > Y FOR SUBSEQUENT ADDS
154

Figure 5-11. Square Root Routine (Sheet 3 of 6)

5-49

COP CROSS ASSEMBLER PAGE: 4
SQROOT SQUARE ROOT ROUTINE

155 10B 84 SQ3: JSRP ADDXY ;THIS LOOP MULTIPLIES X MANTISSA BY
156 10C 1D LBI YEXPLO ;5 AND THE X EXPONENT £Y 5
157 10 D 85 JSRP ADDXYE
158 10E 86 JSRP ADLOOP
159 10F 20 SKC
160 110 D3 JP TSTCTR
161 111 2E LBI EXPOVF ;EXTRA DIGIT FOR THE EXPONENT MULTIPLY
162 112 91 JSRP PLUS1
163 113 96 TSTCTR : JSRP CTRMN1 ;CNTR IS USED AS LOOP COUNTER HERE
164 114 05 LD
165 115 53 AISC 3 ;IF CNTR IS < 13,MULTIPLY IS COMPLETE
166 116 D8 JP SQ5CNT
167 117 CB JP SQ3
168 i
169 118 OD SQ5CNT : LBI XEXPLO ;TEST X EXPONENT EVEN(IF ORIGINAL X
170 119 05 LD {EXPONENT EVEN,5 TIMES IT WILL RESULT
171 11A 5F AISC 15 ;IN XEXPLO BEING 0)
172 11B A5 JSRP RSHX ;FOR SQRT 25,SQRT 2.5 TYPE CASE
173 I
174 11C 2E LBI EXPOVF {RIGHT SHIFT X EXP WITH O'FLOW DIGIT
175 11D 25 LD 2 {RESULTS IN NET EXPONENT DIVIDE BY 2
176 11E 07 XDS {WHICH IS DESIRED RESULT FOR SQUARE
177 11F 07 XDS {ROOT
178 120 01 SKMBZ 0 {SEE IF X < 1
179 121 E9 JP SQ4A ;YES
180 122 1F SQ4: LBI YLSD {CLEAR Y.WILL CREATE ANSWER IN Y
181 123 80 JSRP CLEAR
182 124 OC LBI XSIGN '{MOVE SIGN,EXPONENT TO Y
183 125 AF JSRP XFER1
184 126 2D LBI CNTR {LOAD DIGIT COUNTER WITH NUMBER
185 127 7C ST II 12 ;0F DIGITS
186 128 FC JP SQ6
187 129 OD SQ4A: LBI XEXPLO {TEST ORIGINAL EXPONENT ODD,5 TIMES IT
188 12A 5B AISC 11 {RESULTS IN A, AT THIS POINT,=5 IF
189 12B E2 JP SQ4 {ORIGINAL X EXPONENT ODD
190 12C 91 JSRP PLUS1 {ORIGINAL EXPONENT WAS ODD & X<1,
191 12D 57 AISC 7 {CORRECT EXPONENT BY ADDING 1
192 12E E2 JP SQ4 ;IF LSD EXPONENT WAS < 9,STOP
193 12F 70 STII 0 {WAS = 9,SO SET TO 0 AND INCREMENT
194 130 91 JSRP PLUS1 ;MSD OF EXPONENT
195 131 E2 JP SQ4
196 >
197 ;EXPONENT COMPUTATION COMPLETE AT THIS POINT.THE REST OF THE
198 { CODE COMPUTES THE MANTISSA OF THE RESULT BY THE TECHNIQUE
199 {OF SUBTRACTION[OF ODD NUMBERS. SINCE THE MANTISSA HAS BEEN
200 {MULTIPLIED BY 5, 5 TIMES THE VARIOUS ODD NUMBERS WILL BE SUB-
201 {TRACTED. THUS TO SUBTRACT 1,3,5,7,... FROM THE ORIGINAL WE
202 {SUBTRACT 5,15, 25,35,.. .FROM 5 TIMES THE ORIGINAL VALUE.
203 9
204 132 2D SQ7: LBI CNTR
205 133 35 LD 3 {INCREMENT Y(CNTR)
206 134 50 CAB
207 135 91 JSRP PLUS1
208 136 9B SQ8: JSRP SUBXY {THIS IS THE REPEATED SUBTRACT

Figure 5-11. Square Root Routine (Sheet 4 of 6)

5-50

COP CROSS ASSEMBLER PAGE: 5
SQROOT SQUARE ROOT ROUTINE

209 137 20 SKC ;IF WE BORROW,NEED TO SHIFT
210 138 FA JP SQ8A t
211 139 F2 JP SQ7
212 13A 84 SQ8A: JSRP ADDXY {RESTORE VALUE
213 13B AA JSRP LSHX
214 13C 96 SQ6: JSRP CTRMN1 {DECREMENT DIGIT COUNTER
215 13D 05 LD
216 13E 51 AISC 1 {SEE IF IT WAS 0 FOR EXIT
217 13F C3 JP SQ6A

218 140 1F DONE: LB I YLSD {DONE,TRANSFER RESULT IN Y TO X
219 141 AF JSRP XFER1
220 142 48 RET
221 143 35 SQ6A: LD 3 ;0 — > Y(CNTR)
222 144 50 CAB
223 145 00 CLRA
224 146 07 XDS
225 147 75 STII 5 ;5 — > Y(CNTR - 1)
226 148 6136 JMP SQ8
227 ;
228 .END

Figure 5-11. Square Root Routine (Sheet 5 of 6)

COP CROSS ASSEMBLER PAGE: 6
SQROOT SQUARE ROOT ROUTINE

ADDXY 0084 ADDXYE 0085 ADLOOP 0086 ADLP2 008D
CLEAR 0080 CNTR 002E CTRMN1 0096 DONE 0140 *
ERROR 0108 * EXPOVF 002F LSHX OOAA LSHX1 OOAC
MINUS1 0097 * PLUS1 0091 RSHX 00A5 RSHX1 00A7
SQ1 0102 « SQ2 0106 * SQ3 0 10B SQ4 0122
SQ4A 0129 SQ5CNT 0118 SQ6 013C SQ6A 0143
SQ7 0132 SQ8 0136 SQ8A 013A SQROOT 0100
START 0000 s STRT1 0001 STRT2 0002 SUBLOO 009D
SUBXY 009B TESTSQ 0008 TSTCTR 0113 XEXPHI OOOF *
XEXPLO 000E XFER1 OOAF XGUARD OOOC XLSD 0000
XMSD 000B XRET 0094 XSIGN OOOD YEXPHI 001F *
YEXPLO 001E YGUARD 001C » YLSD 0010

NO ERROR LINES

144 ROM WORDS USED

COP 420 ASSEMBLY

SOURCE CHECKSUM = 46ED

INPUT FILE ABDUL1 0 :SQROOT.SRC VN: 9

Figure 5- J l . Square Root Routine (Sheet 6 of 6)

5-52

5.2.10 B inary to BCD Conversion

Several methods of performing a binary to BCD conversion are illustrated. These different
approaches illustrate different algorithms and different programming techniques.

A Sim ple 8-bit B inary to BCD Routine

This is a simple routine for converting an eight-bit binary number to its three-digit BCD
equivalent. The conversion is the straight-forward scheme of adding the respective powers of
two. However, this is reduced if the eight-bit number is treated as a two-digit hex number:
then we merely expand the number by the powers of 16. Thus we have:

1110 01112 =E716=1410 »16110 + 710 *161°o = 33110
0101 IIII 2 = 5Fi(, =5io *16io +15io *16jo = 95jo

The flow chart for this routine is given in Figure 5-12. The RAM map is given below.

2

Br 1

0

Bd
15 14 13

w
1
ork Space -

1
Z

1

MSD |
BCD Result
I 11

Binary Number Not
| | Used

The routine converts the binary number in RO to the BCD number in Rl. R2 is used as work
space. The binary value is destroyed. Four implementations of this routine are presented.

5-53

^ BINBCD ^

1f

0-*-BCD

016♦ Z

BWlsd “►
BCDlsd

BIN = 8 BIT BINARY
NUMBER

BCD = 3 DIGIT DECIMAL
NUMBER

BINlsd= LEAST SIGNIFTCAN
4 BITS OF BINARY
NUMBER

BINmsd * MOST SIGNIFICANT
4 BITS OF BINARY
NUMBER

DECIMAL
ADJUST BCD

BCD+16-H3CD

BA-18-0

Figure 5-12. Eight-Bit Binary to BCD Conversion

5-54

Version I

RINBCD:

TEST:

LOOP:

LBI 0,14
XDS
XIS

1 ; BINLsd — > BCDlsd, 0 to other digits in BCD

STD 0
STD 0
LBI 2,13 ; 016 —> Z
STD 6
STB 1
STD 0
LBI
LD

0,13 ; test BCDlsd > 9, if so, decimal adjust

AISC 6
JP
XIS

TEST

STB 1
LBI 0,15 ; test BINmsd = 0, if yes exit
LD ; conversion complete
AISC 15
RET
X

; decrement BINmsd by 1

LBI
RC

2,13

LD 3 ; add BCD+16 (BCD+Z) - > BCD
AISC
ASC
ADT

6

XIS 3
JP LOOP
JP TEST

5-55

Version II

RIBCD:

TEST:

LOOP:

LBI 0,14
XDS
XIS

1 ; BINlsd — > BCDrcn, 0 to other digits in BCD

STB 0
STO 0
LBI 2,13 ; equivalent of 016 — > Z
STO 12 ; have incorporated AISC 6 into constant for subsequent BCD addition
STII 7
STD 6
LBI
LD

0,13 ; test BCDi sn — > 9, if so decimal adjust

AISC 6
JP
XIS

TEST

STB 1
LBI
LD

0,15 ; test BINmsd = 0, if yes exit - conversion complete

AISC
RET

15

X ; decrement BINmsd by 1
LBI
RC

2,13

LD
ASC
ADT

3 ; BCD+16 — >BCD

XIS 3
JP LOOP
JP TEST

5-56

Version HI

BINBCD:

TEST:

LBI 0,14 ; BINicn — > BCDicn. 0 to other digits in BCD
XDS 1
XIS
STB 0
STII 0
LBI
LD

0,13 ; test BCDicn > 9, if so decimal adjust the number

AISC 6
JP
XIS

TEST

STB 1
LBI 0,15 ; test BINmsd = 0, if yes exit
LD ; conversion complete
AISC
RET
X

15 ; else decrement BINmsd by 1

LBI
RC
CLRA

2,13 ; straight line BCD+16 -> BCD using no additional RAM

AISC
ASC
ADT
XIS
CLRA

12

AISC
ASC
ADT
XIS
CLRA

7

AISC
ASC
ADT
X

6

JP TEST ; loop back to TEST

5-57

Version IV

BINBCD: LBI 0,14
XDS 1 ; BINlsd — > BCDlsd, 0 to other digits in BCD
XIS
STII 0
STH 0
LBI 2,13
STH 0 ; clear Z
STH 0
STH 0

LOOP: JSRP BCD ADD ; decimal adjust first time, add 16 in all subsequent times
LBI 2,13
STH 6
STH 1

TEST: LBI 0,15
LD
AISC 15
RET
X
JP LOOP

The routine uses the following subroutine, assumed to be located in Page 2.

BCD ADD: LBI 2,13
RC

ADLOOP: LD 3
AISC 6
ASC
ADT
XIS 3
JP ADLOOP
RET

NOTE: By using the same kind of “trick” as was illustrated in Version H, the total
ROM count can be reduced by one word and the execution speed
improved.

Let us now consider these four programs. They all do precisely the same thing: convert an
eight-bit binary number to a three-digit BCD number using the same algorithm. The
differences are in implementation only. Version 1 takes 29 ROM words, uses 8 RAM digits
(two for input binary number, three for BCD result, and three for scratch pad), has a worst
case execution time of 409 instruction cycles, and uses no subroutines. Version II takes 28
ROM words, also uses 8 RAM digits, has a worst case execution time of 364 instruction cycles,
and also uses no subroutines. Version HI takes 34 ROM words, uses only 5 RAM digits, has a
worst case execution time of 360 instruction cycles, and uses no subroutines. Version IV uses
28 ROM words, including 9 words in a subroutine; uses 8 RAM digits; and has a worst case
execution time of 474 instruction cycles. Other variations on these routines are possible which
w ill afFect ROM, RAM, and execution time.

5-58

Version I is the straight-forward implementation of the flow chart w ith few tricks. It is
fairly representative of the amount of code required for the task; uses the maximum RAM
for the function and is about midrange in execution speed. Version II makes a very slight
change to Version L It sets up a constant w ith a decimal adjust factor built in. The result is
that Version II uses one less ROM word and the same amount of RAM as Version 1; however,
Version II executes considerably faster, about a 10 per cent speed improvement. Version III
uses the minimum RAM for the function, uses the most ROM, and has the fastest execution
time. This has been achieved by straight line coding the BCD add 16. This both maximizes
speed and reduces RAM usage but the penalty is ROM code. RAM usage is reduced by storing
the constant “16” in ROM rather than RAM. Version IV is preferable in cases where a BCD
addition subroutine already exists in the program. Not counting the subroutine Version IV
uses only 19 ROM words. However, Version IV has the slowest execution time. By the
addition of two ROM words, as shown in Version IVA, the speed of Version IV can be
significantly improved. Version IVA is the same as Version IV but achieves faster speed, by
moving some code out of the main loop, w ith a small ROM penalty.

Version IVA

BINBCD: LBI 0,14 ; BINlsD — > BCDlsq, 0 to other
XDS 1 ; digits in BCD
XIS
s m 0
STB 0
LBI 2,13 ; clear Z
STB 0
STB 0
STB 0
JSRP BCD ADD ; decimal adjust BCD
LBI 2,13 ; 1 6 - > Z
STB 6
STB 1
JP TEST

LOOP: JSRP BCD ADD ; basic loop
TEST: LBI 0,15

LD
AISC 15
RET
X
JP LOOP

Version IVA uses 21 ROM words (not counting the subroutine), uses 8 RAM digits, and
executes in 454 instruction cycle times.

5-59

Binary to BCD Conversion - Doubling Methods

If we have a binary number expressed as bnbn_1__b2b1b0 where bx is either 1 or 0, the
standard expansion to produce the decimal (BCD) number is as follows:

bn*2n + bn_1*2n_1 +_+ b2*22 + bj*2 + b0 = £^*2*
i=0

For simplicity, a six-bit binary number is used.

b5b4b3b2b1bo

The expansion for this number for its decimal equivalent, is then

b5*25 + b4* 24 + b3*23 + b2*22 + bj*2 + b0

This can be rewritten as

2 2 [2 < 2 (2 (b5 (+ b4) + b3 > + b2] + bj + b0

This expression, although apparently more complex, points out one means of conversion that is
easy to implement because it is iterative. The first step is to set the BCD number equal to the
most significant bit, here it is b5. Then the value is doubled and one is added if the next bit is
one. The value is then doubled again and one is added if the next bit is one. The cycle
continues until the LSB is added to the result. Figure 5-13 is the flow chart for this general
approach.

The Straight-Forward Implementation

This implementation is the straight-forward implementation of the flow chart of Figure 5-13.
As written, it converts a 16-bit binary number to its five-digit BCD counterpart. The routine
expands by merely changing the pertinent LBI instructions. Figure 5-14 is the RAM map for
this routine. The routine uses one subroutine level.

The routine uses the following subroutines assumed to be located in Page 2.

5-60

(B I N A R Y ^
V TO BCD J

DECIMAL
DOUBLE

O-^BCD

MSB
-►POI:nter

2-BCD
->-bcd____

BCD = BCD RESULT
b = BINARY NUMBER
b POINTER = BIT WITHIN BINARY

NUMBER ADDRESSED BY POINTER

MSBpsn = POSITION OF MSB OF
BINARY NUMBER

LSBpsn = POSITION OF LSB OF
BINARY NUMBER

BA-19-0

Figure 5-13. Binary to BCD Conversion — Basic Doubling Algorithm

5-61

Bd
15 14 13 12 11 10

1
11 1 1

BINARY NUMBER
1

NOT USED
Br MSB

TEMP
2 BCD NUMBER LSD STORE

MSD %

Figure 5-14. RAM Map for Doubling Algorithm Straight-Forward Implementation

5-62

DOUBLE: LBI 2,11 ; decimal double of BCD number
DBLA: LD ; modify the LBI for larger numbers

AISC 6
ASC
ADT
XIS ; sips on Bd increment past 15
JP DBLA

SETUP: RC ; falls into SETUP routine-which
LBI 2,10 ; is also called independently
LD 3 ; fetch digit position of binary number
CAB ; and load Bd w ith it. Br adjusted by
RET ; LD 3 instruction

The basic routine is as follows:

BINBCD: LBI 2,10 ; load pointer w ith position of binary MSB
STD 15

CLEAR: CLRA ; 0 ->BCD
XIS
JP CLEAR

BINDEC: JSRP SETUP ; point to proper digit in binary number
SKMBZ 3 t

SC ; march down the digit; set C
JSRP DOUBLE ; if addressed bit is 1. Then do
SKMBZ 2 ; double to get 2* BCD + bx -> BCD
SC ; (C is reset on exit from SETUP and DOUBLE)
JSRP DOUBLE
SKMBZ 1
SC
JSRP DOUBLE
SKMBZ 0
SC
JSRP DOUBLE
LBI 2,10 ; test for done, here finished
LD
AISC 3 ; if Bd < 12
RET
AISC 12 ; else, decrement Bd by 1 and
X
JP BINDEC ; continue

This routine uses 25 words plus 12 words in the subroutine page for a total of 37 words. The
routine executes in 690 instruction cycles. The execution time is data independent. The
routine preserves the binary number. The routine uses 10 RAM digits; 4 for the original
number, 5 for the BCD result, and 1 scratch pad.

5-63

V aria tio n I - The Doubling A lgorithm - “S h if t 1”

The straight-forward implementation can be modified in a simple way by using some left bit
shifting on the binary number. The basic flow chart is the same but a detailed modified flow
chart is shown in Figure 5-15. Figure 5-16 is the RAM map for this variation.

BA-20-0

Figure 5-15. Flow Chart for Variation 1

5-64

Bd
15 14 13 12 11 10

M
1 !I 11

L
1

1 S BINARY NUMBERS S NOT USED
Br B B

BIT
2 BCD NUMBER LSD COUN­

MSD |1____ !1_____11____ 1I____ TER

Figure 5-16. RAM Map for Variation 1 on the Doubling Algorithm

The code for this implementation is as follows:

BINBCD: LBI 2,10
CLEAR: CLRA ; 0 - > bit counter, BCD number

XIS
JP CLEAR

BINDEC: LBI 1,12 ; left-shift binary number one
RC ; bit w ith MSB going into C

LOOP1: LD
ASC ; left-shift by means of binary double
NOP
XIS
JP LOOP1

DCDBL: LBI 2,11 ; double BCD number
LOOP2: LD

AISC 6
ASC
ADT
XIS
JP LOOP2

TEST: LBI 2,10 ; test if finished
LD
AISC 1 ; done if bit counter = 15
JP XI
RET

XI: X
JP BINDEC

This routine uses no subroutines, takes 25 ROM words, and uses 10 digits of RAM — just as
the first method. The existence of a CLEAR subroutine and/or a decimal double and/or a
binary double routine in the program would further reduce the code required for this
routine. As written, the routine does not preserve the binary number. The routine executes
in 954 instruction cycles. Thus, it uses less code, overall, than the previous routine but
executes substantially slower.

5-65

V aria tio n 2 - The S h ifting A lgorithm

The left bit shift scheme shown in Section 5.2.9 is simply a binary double. The primary
algorithm still requires the add one to the doubled BCD number when the binary bit is a one.
This routine does the doubling a little differently: A binary double is performed on the BCD
number with a subsequent decimal correct The RAM map for this scheme is given in Figure
5-17. The flow chart is in Figure 5-18. The flow chart is general for the algorithm. Judicious
placement of data in RAM eliminates the need for the digit counter, DC, shown in the flow
chart

0

Br

1

Bd
15 14 13 12 11 10 9 8 7

M |1 11 11 11 I M M 1 11 L
S BCD NUMBER S S BINARY NUMBER S
D D B B

BIT
COUN­
TER

Figure 5-17. RAM Map for Binary to BCD Conversion

5-66

(BINARY \
TO BCD J

CLEAR BCD
fRESULT SPACE!

0*-BC

LEFT SHIFTBIN+
BCD MSB OF BIN
TO LSD OF BCD

BC +1-**BC

BCD BIN
MSD LSD
__i__I__l__1__ — l__i__i—
BDC = BCD NUMBER
BIN = BINARY NUMBER
BC = BIT COUNTER
DC = DIGIT COUNTER

(IDENTIFIES DIGIT IN BCD)
BCDoc= DIGIT IN BCD NUMBER

SPECIFIED BY DC

DIG PSN OF BCD
LSD-HDC

DECIMAL CORRECT
+3 BEFORE LEFT
BIT SHIFT = +6
AFTER LEFT BIT
SHIFT

BA-21-0

Figure 5-18. Binary to BCD Conversion — Shifting Algorithm

5-67

The routine as written uses no subroutines. However, the presence of a binary double routine
in the program would reduce the code required in this routine.

The code is as follows:

BINBCD: LBI 0,11 ; 0 ->BCD
CLEAR: CLRA

XIS
JP CLEAR
LBI 1,15 ; 0 - > b it counter
STII 0

SHIFT: RC ; left bit shift binary number
LBI 0,7

LOOP1: LD ; and BCD number
ASC
NOP
XIS
JP LOOP1

FINISH: LBI 1,15 ; test if done
LD
AISC 1
JP RDCADJ ; no done, BCD adjust
RET

BCDADJ: X
LBI 0,11

DECADJ: LD ; decimal adjust before left shift
AISC 11 ; number > 9 after shift is > 4 before shift
JP LESS5
AISC 8 ; number > 4; do net +3 (=+6 after shift)
NOP
X

LESS5: LD
XIS ; go through the whole number
JP DECADJ
JP SHIFT

The routine takes 31 ROM words, uses 10 RAM digits, and has a worst case execution time of
1525 instruction cycle times. Unlike the other routines, this routine is data dependent.

5-68

5.2.11 BCD to Binary Conversion

Several methods of performing a BCD to binary conversion are presented. The methods, like
the binary to BCD routines in Section 5.2.9, illustrate different algorithms and different
programming techniques.

An Efficient Two-Digit BCD to Eight-Bit Binary Routine

Figure 5-19 is the flow chart for a very efficient routine for converting a two-digit BCD
number to its binary equivalent. The routine uses only two digits of RAM, replacing the BCD
number w ith its binary representation. The simple RAM map is indicated below:

Br

Bd
15 14

0
BCD NUMBER

BINARY RESULT

The routine is as follows:

BCDBIN:

NOCARY:

LBI 0,15 ; clear MSD of BCD number, save value in A
CLRA
X

\

LBI 0,14 ; point to LSD of BCD number
AISC
RET

15 ; if MSB (saved in A) = 0, done

X ; else subtract 1 from it
AISC 10 ; add 10 to the “binary” number
JP NOCARY
XIS
X

; if carry, must add 1 to binary “MSB”

AISC 1
JP NOCARY ; loop until done. This word never

; can be skipped since max BCD number = 99

This is a simple routine implemented in an “obscure” manner. The routine takes only 13
words, uses 2 RAM digits only, and has a worst case execution time of 104 instruction cycles.
The execution time is data dependent. The minimum execution time is 6 instruction cycles.

Some attention should be given to this routine. It is a good example of code sharing, efficient
use of memory, and clever use of the instructions. The routine uses the accumulator both as
temporary storage and as work space for the arithmetic. The two RAM digits also serve
multifunctions such as accumulate the result, temporary storage, and the input number. To
be sure, a great deal of this routine’s efficiency comes from the fact that we are working with
only two digits. However, the techniques w ith the accumulator illustrated in this routine
have much broader applicability.

5-69

Figure 5-19. Two-Digit BCD to Binary Conversion

BCD to B inary Conversion—M ultip ly By 10

This routine is the counterpart to the binary to BCD conversion by the doubling technique.
As written, the routine w ill convert a five-digit decimal number 65535) to its 16-bit
binary equivalent. The routine again comes from the standard expansion

d4d3d2d1do = d4104 + d3103 + d2102 + dilO1 + do

dn = digit w ithin a decimal number.

The preceding expression can be rewritten in the following form:

d4d3d2d1d0 — 10 10[l0<10(d4) + daX -dJ+d! + do

By merely evaluating the right-hand expression above (and adding and multiplying by 10 in
binary), the conversion is accomplished. For general information, the scheme is number base
independent and can, therefore, be used to convert a decimal number to any desired number
base: merely carry out the adds and multiplies in the desired base.

5-70

Analysis of the expression above yields the following iterative procedure: Multiply MSD of
decimal number by 10, add the next MSD to that quantity, multiply the result by 10, add the
next MSD to that result, multiply the result by 10, etc. until the LSB of the decimal number
is added. The conversion is complete after this final addition.

The Straight-Forward Implementation

The flow chart of Figure 5-20 is the direct expression of the preceding math. The first
example w ill be a straight-forward implementation of that flow chart. The routine is written
to convert a five-digit BCD number (< 65536) to a 16-bit binary number. The RAM map is
shown below.

Bd
15 14 13 12 11

WORK SPACE -
1
SCRATCH PAD

Not
Used

BIN.ARY NUMBER
Digit

Counter

MSD
_________ 1

BC
1 1

ID NUMB!
I_________ 1

31
1 1

LSD
1

The routine uses the following subroutines, assumed to be located in Page 2.

CLEAR: CLRA
CLEAR2: XIS

JP CLEAR
RET

BIN ADD: RC
LBI 0,12

BIN ADI: LD 1
ASC
NOP
XIS 1
JP BIN ADI
RET

BINDBL: LBI 1,12
RC

DBL: LD
ASC
NOP
XIS
JP DBL
RET

; R1 + RO -> R 1 ,16 bit

; 2 x R1 -> R l, binary

5-71

BCD TO BINARY)

0-»BIN

BCD MSD PSN
-►DC

BCD
_!_1_1_1_

BIN
_i_i_i_

BIN + BCD
-►BIN

DC=DIGIT COUNTER WHICH
IDENTIFIES DIGIT

BINARY WIHTIN BCD NUMBER
ADD

BCD=BCD NUMBER
BIN=BINARY NUMBER

BINARY
OPERATION

BA-23-0

Figure 5-20. BCD to Binary Conversion - M ultiply by 10

5-72

The main body of the routine is as follows:

XFER:

LBI 1,11 ; load digit counter
STD 15 ; position of BCD MSD
JSRP CLEAR ; 0 - > binary number
LBI 1,11
LD 3
CAB ; point to digit in BCD number
LD
LBI 0,12 ; and put it into RO
JSRP CLEAR2 ; note call into middle of subroutine
JSRP BIN ADD ; add the digit to the rest of the number
LBI 1,11 ; now test if finished
LD
AISC 4 ; if digit counter < 12 done
RET
AISC 11 ; this results in net subtract 1
X ; save new value of digit counter
JSRP BINDBL ; now multiply by 10, first do 2 x R1 -> R1
LBI 1,12
LD 1 ; transfer R1 -> RO, could be a subroutine
XIS 1
JP XFER1
JSRP BINDBL ;2 x R l ->R1
JSRP BINDBL ; 2 x R1 ->R1
JSRP BINADD ; result after all this is 10 x R1 ->R1, binary
JP DECBIN

uses 25 ROM words, not counting the 20 words of subroutine. The routine uses
14 RAM digits and executes in 709 instruction cycles. The original number is preserved and
the routine uses one subroutine level.

The Sh ifting Approach

Consider a slightly modified version of the preceding routine. Figure 5-21 shows this
modification. The important differences are l) there is no digit counter or pointer and 2) the
original number is lost. The RAM map follows Figure 5-21.

5-73

BA-24-0

Figure 5-21. BCD to Binary Conversion — M ultiply by 10 — the Shifting Approach

J

5-74

Bd
15 14 13 12 11

WOR
1
K SPACE - SCRATCH

1
PAD

Not
Used

BINARY 1NUMBER
Not

Used

MSD
1

BC
I 1

ID NUMB!
1 1

•R
1 1

LSD

This version of the routine uses the same subroutines as given in the preceding section.

BCDBIN: LBI U 2 ; clear binary number
JSRP CLEAR

LSHBCD: CLRA ; left shift BCD number, MSD -> A;
COMP ; marker to LSD
LBI 2,11

LSH: XIS
JP LSH ; A -> RO, digit 12, 0 to rest of RO
LBI 0,12
JSRP CLEAR2
JSRP BIN ADD ; add the digit to converted value
LBI 2,15
LD ; test for done, if BCD MSD=15, finished
AISC 1
JP TIMES10
RET

TIMES10: JSRP BINDBL ; multiply by 10
LBI 1,12

XFER: LD 1
XIS 1
JP XFER1
JSRP BINDBL
JSRP BINDBL
JSRP BIN ADD
JP LSHBCD

This outline uses 24 ROM words, not counting the 20 subroutine words and 13 RAM digits. It
executes in 731 instruction cycles.

This second approach, a slightly different implementation of the same basic algorithm, uses
slightly less memory and executes slightly slower them the straight-forward approach.

5-75

A “Paper and Pencil” Method and a Common Mistake

One of the standard methods for base conversion, at least on paper, is the technique of
successively dividing the original number by the destination base. The remainders constitute
the digits of the converted number. Thus to convert from BCD to binary, simply divide the
BCD number by two repeatedly. See the simple example below:

NUMBER REMAINDER

17
8
4
2
1
0

1
0
0
0
1

LSB

MSB

Thus, 1710 = 100012- The technique is well established and useful in instruction.

A conversion scheme using this algorithm is presented. This scheme is presented for
comparison and for illustration of certain techniques, e.g, a decimal divide by two without a
divide routine. This particular scheme for BCD to binary conversion is not recommended
since it is neither more memory efficient nor faster than techniques previously shown. This
approach is simply the implementation of a well known conversion technique and serves to
illustrate the effect of the algorithm itself on the code.

The flow chart for this algorithm is given in Figure 5-22. The RAM map is given below.

15
Bd

14 13 12 11 10

0 MSD
1 1 1

BCD NUMBER
1 1 1

1
LSD

1

Scratch
Pad

Br 1 SCRATCH PAD - WORK SPACE

2 BINARY NUMBER
_________ 1_________ 1_________ 1_________

Scratch
Pad

Bit
Counter

5-76

BINARY NUMBER
BCD NUMBER
BIT COUNTER

BA-25-0

Figure 5-22. BCD to Binary Conversion by Successive Divide by Two

5-77

The routine uses the following subroutines, assumed to be located in Page 2.

RSH: XDS
RSH2: XDS

XDS
XDS
XDS
X
RET

BINDBL: RC
LBI 2,11

BDLOOP: LD
ASC
NOP
X1S
JP BDLOOP
RET

ADD: RC
LBI 1,10

ADLOOP: LD 1
AISC 6
ASC
ADT
XIS 1
JP ADLOOP
RET

; a simple 5- or 6-digit right shift

; 2 x R2 -> R2; binary

; Rl+R0-> RO, decimal

5-78

The main body of the routine follows:

BCDBIN: LBI 2,10 ; 0 -> binary number and initialize
CLEAR: CLRA

XIS ; bit counter
JP CLEAR

DIVBY2: LBI 0,15 ; divide BCD number by 2, by first
CLRA ; divide by 10 (right digit shift) and
JSRP RSH ; then multiply by 5
LBI 0,10

XFER1: LD 1 ; RO -> Rl, for subsequent adds
XIS 1
JP XFER1
JSRP ADD ; 2 x RO
JSRP ADD ; 3 x RO
JSRP ADD ; 4 x RO
JSRP ADD ; 5 x RO, therefore have net divide by 2
CLRA
LBI 0,10 ; fetch the remainder
RMB 2 ; make sure it is only 0 or 1
X
LBI 2,15 ; load remainder to binary number and
JSRP RSH2 ; shift right 4 bits
JSRP BINDBL ; now shift left 3 bits
JSRP BINDBL
JSRP BINDBL ; net effect is 1-bit right shift of

; binary number with divide remainder going into MSB
TSTFIN: LBI 2,10

LD ; test bit counter for done, if not
AISC 1 ; increment bit counter
JP TFIN2
RET

TFIN2: X
JP DIVBY2

This routine takes 31 ROM words, plus 24 words in the subroutine page; uses 18 RAM digits;
and executes in approximately 5500 instruction cycles.

There is little reason to recommend this routine over the others presented. It takes
significantly more memory and executes significantly slower. The only benefit, if it can be so
termed, is that it implements a commonly known procedure. The lesson is obvious: Do not
assume that the “standard” procedure w ill yield the most efficient implementation. The
programmer should be prepared to investigate various algorithms and approaches in the
interest of efficiency.

5-79

5.3 TIMEKEEPING ROUTINES

Several routines for keeping time are presented. These include routines for a 12- or 24-hour
clock based on internal or external timing references.

5.3.1 Basic Clock Routines - External Input

The following two routines implement a basic clock. The two routines do the same thing.
One is written as a 12-hour clock, the other as a 24-hour clock. This, however, is not the
significant difference between them. Both routines use the RAM map below, and it is assumed
that both the routines are called once per second on the basis of a 1-Hz input signal.

Bd
15 14 13 12 11 10

Br 3 Hours
MSD

Hours
LSD

Minutes
MSD

Minutes
LSD

Seconds
MSD

Seconds
LSD

The flow chart of Figure 5-23 applies to both routines. The flow chart indicates the minor
differences when implementing a 12- or 24-hour clock. Note that both routines have
implemented the same flow chart in different ways.

5-80

BA-26-0

Figure 5-23. Basic Block Flow Chart

The first implementation, Version I, uses a master increment loop which increments seconds,
minutes, and hours as required. The loop handles the overflow from 60 to 00 in the seconds
and minutes. Version I is written as a 24-hour clock.

INCTIME: LBI 3,10 ; point to seconds LSD
PLUS1: SC ; add 1

CLRA
AISC 6
ASC
ADT
XIS ; LSD incremented, point to MSD
CLRA
AISC 6 ; increment saved in C
ASC ; increment MSD of seconds, minute or hours
ADT
X 9

; test = 6, if so correct to 0 and move
LD ; to next digit If not, exit
AISC 10
JP HOURS ; w ill always escape loop here if get to hours
STII 0
JP PLUS1

HOURS: LBI 3,15 ; test if hours need to be corrected
LD ; here testing for hours ^ 24
AISC 14
RET ; hours <20
LBI 3,14
LD
AISC 12
RET ; hours < 24
STB 0 ; hours therefore set to 0
STB 0
RET

This routine takes 28 ROM words, 6 RAM digits, and has a worst case execution time of 58
instruction cycle times. The routine uses no subroutines and execution time is data dependent.
Minimum execution time is 19 instruction cycle times.

The second implementation, Version n, is a more direct implementation of the flow chart
shown in Figure 5-23. It moves sequentially through the clock data, incrementing and
adjusting as required.

5-82

INCTIME: LBI 3,10 ; point to seconds LSD
JSRP PLUS1 ; 2 digit BCD increment
LD
AISC 10 ; mod 6 correct
RET ; seconds MSD < 6, exit
XIS
JSRP PLUS1 ; increment minutes
LD ; mod 6 correct
AISC 10
RET ; minutes MSD < 6, exit
XIS
JSRP PLUS1 ; increment hours
LD ; now do hours adjust
AISC 15
RET ; exit if hours MSD = 0
LBI 3,14 ; hours MSD = 1, test hours LSD
LD
AISC 13
RET ; hours ^ 12 - exit
STII 1 ; hours = 13, set to 01 and exit
STB 0
RET

The routine uses the following subroutines, assumed to be located in Page 2.

PLUS1: SC ; 2 digit BCD increment
CLRA
AISC 6
ASC
ADT
XIS
CLRA
AISC 6
ASC
ADT
X
RET

The routine takes a total of 34 ROM words, 22 in the main routine and 12 in the subroutine;
uses 6 RAM digits; and has a worst case execution time of 58 instruction cycle times.
Execution time is data dependent w ith the minimum execution time being 17 instruction
cycles. The routine uses one subroutine level.

5-83

1-Hz Input and 50- or 60-Hz Input

The two routines provided are written assuming they are called as a result of a 1-Hz signal. It
is a simple task to modify the routines for a 50- or 60-Hz input signal. As Version I is the
more code efficient routine, the necessary modifications w ill only be illustrated for that
implementation.

60-Hz Only Input

If the signal source is a 60-Hz signal, the modification is trivial. By simply changing the first
LBI from LBI 3,10 to LBI 3,8, the routine becomes a clock increment based on a 60-Hz input.
The rest of the routine is completely unchanged. Of course, two extra RAM digits are used,
digits 3,9 and 3,8, to count the 60-Hz signal. Also, as should be expected, worst case execution
time increases.

A General 50- or 60-Hz Input

It is fairly simple to modify the routine to operate w ith either a 50-Hz or 60-Hz reference
input. The modification w ill use the characteristic described in the preceding paragraph. For
a 50-Hz input, the frequency counter is set to 10 rather than 00. Otherwise, the routine
remains the same. The routine arbitrarily selects G2 as the input line to define whether the
input is 50-Hz or 60-Hz. Figure 5-24 is the flow chart shown in Figure 5-23 modified to
indicate the specific implementation and the 50- or 60-Hz feature.

Bd
15 14 13 12 11 10 9 8

Br 3 Hours Hours Minutes Minutes Seconds Seconds Counter Counter
MSD LSD MSD LSD MSD LSD MSD LSD

5-84

BA-27-0

Figure 5-24. Clock Based on 50- or 60-Hz Input

5-85

INCTIME:
PLUS1:

LBI 3,8 ; point to counter LSD
SC
CLRA ; 2 digit BCD increment by 1
AISC 6
ASC
ADT
XIS
CLRA
AISC 6
ASC
ADT
X
CLRA
AISC 6 ; now test MSD ^ 6
SKE
JP HOURS
STTI 0
JP PLUS1 ; is ^ 6, correct to 0 and continue

HOURS: LBI 3,9 ; test counter MSD = 0
CLRA
SKE
JP HOURS2
OGI 15 ; now test 50- or 60-Hz, set G2 high
SKGBZ 2
STB 1 ; if 50-Hz, l - > counter MSD

HOURS2: LBI 3,15 ; G2 = 1 indicates 50-Hz input
LD
AISC 14
RET ; hours MSD < 2
LBI 3,14 ; hours MSD = 2, test hours LSD < 4
LD
AISC 12
RET ; hours < 24
STB 0
STB 0 ; hour ^ 24, set to 0
RET

The routine uses 39 ROM words, the extra words being used to read the input and adjust the
counter accordingly, and 8 RAM digits. Input G2 = 1 indicates a 50-Hz input signal.

5-86

12- or 24-Hour Capability

It is a trivial matter to expand the routine further to give it the option of 12- or 24-hour
capability. Figure 5-23 indicates the differences, which are minor. One need only test another
input and alter the hours digits accordingly.

5.3.2 Clock Routines Based on Internal Timer

The internal timer of COPS microcontrollers can be used as the time reference for a clock.
Routines using this feature must count timer overflows. These overflows are dependent, of
course, on the operating frequency of the microcontroller. This points out a major restriction
on this type of clock routine: It is impossible for the clock to be more accurate than the
oscillator frequency. Another difficulty is that the selection of operating frequency may give
a fractional SKT, timer overflow, frequency. This complicates the routine by requiring
compensation for this fractional frequency.

An SKT-Based Timekeeping Routine

The following routine is representative of the worst case conditions when using the internal
timer as a clock time base: A common, inexpensive crystal is used for the oscillator and
creates a fractional SKT frequency. The following information is essentially a duplication of
Section 4.9 of the COPS Family User’s Guide. It is presented here for completeness.

The routine presented here is a 12-hour clock using the SKT overflow as the time base. The
oscillator used will be based on a 3-579545 MHz-crystal, the inexpensive, readily available TV
crystal. Therefore, a high-speed part (e.g., COP420) w ith the divide by 16 option must be
used. The SKT overflow frequency is the instruction cycle frequency (here 3-579545 MHz
divided by 16) divided by 1024 or, in this case, 218.478 Hz. Therefore, the timekeeping
calling routine must execute an SKT instruction at an approximate 218-Hz rate to guarantee
detection of every SKT overflow. The routine must compensate for the non-integer SKT
overflow frequency to provide timing accuracy.

Compensation is achieved by establishing a counter for the SKT overflows. Seconds are
incremented when this counter reaches 0. This counter is preset to various values, from
which it is counted down, at various points in the routine. The details of the compensation
are as follows:

• Every odd second in the range of 0-59 seconds, the counter is set to 218.

• Every even second in the range of 0-59 seconds, the counter is set to 219.

• Every minute in the range of 0-59 minutes, the counter is set to 218.

• Every hour the counter is set to 199.

Regardless of the preset, the counter is decremented every time the SKT instruction skips, i.e,
an SKT overflow is detected. The technique previously described w ill provide accuracy at the
end of each hour. The short term inaccuracies during the hour are small. The COPS Family
User’s Guide explains why this particular compensation scheme works and the reader is
referred to the manual for explanation.

5-87

Figure 5-25 is the flow chart and RAM map for this routine. Note that the counter for SKT
overflows is binary. Also note that the hours portion of the clock is binary, to save RAM, and
that the minutes and seconds portions of the clock are BCD. The routine is located outside
Page 2 and uses a subroutine located in Page 2.

Bd
15 14 13 12 11 10 9

COUNTER HOURS MINS MINS SECS SECS
FOR SKT MSD LSD MSD LSD

Br 2 OVERFLOWS (BIN­ (BCD) (BCD) (BCD) (BCD)
ARY)

MSD LSD

BA-28-0

Figure 5-25. Flow Chart for Internal Time Base Clock (Oscillator Frequency = 3.579545
MHz)

5-88

TIMEKP:
DECR:

NEXTDIG:

SECONDS:

Cl 99:

TSEC:

C219:

C21X:

C218:

LBI 2,14 ; point to low-order digit of counter
LD ; decrement the counter by 1
AISC 15
JP NEXTDIG
X ; counter = 0 return to main routine
RET
XIS ; if skip executed, counter is 0
JP DECR
LBI 2,9 ; points to seconds LSD
JSRP INC2 ; 2 digit BCD increment with MOD6 adjust
JP TSEC ; seconds < 60, test ODD or EVEN
STII 0 ; seconds = 60, 0 - > seconds, increment mins.
JSRP INC2
JP C218 ; minutes <60, set counter = 218
STII 0 ; 0 - > minutes, increment hours
LD
AISC 1
X
AISC 4 ; test hours > 12
JP C l 99 ; no, set counter to 199
STB 1 ; yes, set hours to 1 and counter to 199
LBI 2,14
STB 7 ; set counter = 199 (binary 12,7)
STB 12
RET
LBI 2,9 ; point to seconds LSD to test ODD/EVEN
SKMBZ 0
JP C218 ; seconds ODD, set counter to 218
LBI 2,14 ; seconds EVEN, set counter to 219
STB 11 ; 219 = binary 13,11
STB 13
RET
LBI 2,14 ; 218 = binary 13,10
STB 10
JP C21X

5-89

This routine uses the following subroutine:

SC
CLRA
ASC
ADT
XIS
CLRA

; 2-digit BCD increment

AISC 6
ASC
ADT
X ; now test if reached 60
LD
AISC 10
RET ; 2 digits < 60
RETSK ; 2 digits = 60

It should be clear that a more convenient choice of oscillator frequency would significantly
reduce the code in this routine. An integer SKT overflow frequency would reduce the
routine to, essentially, one of the routines shown initially.

5.4 DATA MANIPULATION AND STRING OPERATIONS

5.4.1 Register Transfers

Several routines are provided for transferring data between registers. Some more or less
specialized routines are presented along w ith a completely general routine.

Four Register Blocks

The LD, XIS, XDS, and X instructions have an exclusive OR argument which permits easy
data transfer among the registers w ithin a four register block, registers 0-3, 4-7, etc. Moving
data across a register block boundary is less efficient and the general purpose routines have to
be used. W ithin the register block, the following routines can be used:

LD 1 XFER2: LD 2 XFER3: LD 3
XIS 1 XIS 2 XIS 3
JP XFER1 JP XFER2 JP XFER3
RET RET RET

NOTE: XDS can be used in place of XIS in any of these routines.

Routine XFER1 w ill transfer data from RO to R l, R1 to RO, R2 to R3, or R3 to R2. Routine
XFER2 w ill transfer data from RO to R2, R2 to RO, Rl to R3, R3 to R l. Routine XFER3 w ill
transfer data from RO to R3, R3 to RO, R l to R2, or R2 to R l. The direction of the transfer
depends only on the status of the B register when the routine is executed. In fact, the
routines are commonly preceded by one or more LBI instructions. The successive skip feature

5-90

of the LBI instruction is very powerful when used in conjunction w ith these routines.

Register exchanges within the four register blocks are written in much the same way as the
following routine indicates.

SWAP1: LD 1
X 1
XIS 1
JP SWAP1
RET

This routine will exchange the contents of the RO and R1 or R2 and R3. Similar routines for
the other registers can also be written in the same manner as the data transfers. Again, XDS
may be used in place of XIS.

Completely General Transfers

A completely general register transfer routine is indicated below. The routine uses a RAM
digit for temporary storage. The routine is called by setting up the source register w ith an
LBI and establishing the destination register number in the accumulator. RAM digit TEMP is
any convenient digit.

LOOP: XAD TEMP
XABR

XFER: XAD TEMP ; XFER is the entry point for the routine
LD
XAD TEMP
XABR
XAD TEMP
XIS
JP LOOP
RET

The calling sequence for the routine is as follows:

LBI SOURCE
CLRA
AISC N ; N defines destination register
JSRP XFER

Obviously, if a transfer from RN to RK is common, the setup can be included in the
subroutine.

The routine can be rewritten in the following form and the calling sequence modified as
follows:

5-91

CALLING SEQUENCE:

LBI TEMP
STTI N ; destination register
LBI SOURCE
JSRP XFER

The subroutine is as follows:

LOOP: JSR EXCH EXCH: XAD TEMP
XFER: LD XABR

JSR EXCH XAD TEMP
XIS RET
JP LOOP
RET

There is no particular benefit in doing this for the simple register transfer but it w ill result in
code savings where register swaps, general purpose swaps, are also required.

The routine for a general purpose register swap and the calling sequence are given below.

CALLING SEQUENCE:

LBI TEMP
STB N ; one register number
LBI SOURCE
JSRP SWAP

The SWAP subroutine is:

SWAP2: JSR EXCH
SWAP: LD ; entry point for the routine

JSR EXCH
X
JSR EXCH
XIS
JP SWAP2
RET

Subroutine EXCH is the same routine as indicated in the general purpose transfer.

5-92

5.4.2 S h ift Routines

Right D igit Sh ift

The following routines w ill perform right digit shifts. The first routine shifts right one digit
from the starting B address to the end of the register. The second routine shifts an arbitrary
four-digit group right one digit. Both routines place a “0” in the starting digit and leave the
previous contents of the last digit in the accumulator.

; to put 0 to first digitRSHIFT: CLRA
RSH: XDS

RSH ; simple right shift loop, exit on XDS skipJP
RET

RSHIFT:
XDS
XDS ; shift 4-digit block right one digit
XDS
X ; save value of last digit in A
RET

L eft D igit S h ift

The following routines w ill perform left digit shifts. The first routine shifts left one digit
from the starting B address to the end of the register. The second routine shifts an arbitrary
four-digit group left one digit. Both routines place a “0” in the starting digit and leave the
previous contents of the last digit in the accumulator.

I

LSHIFT: CLRA
LSH: XIS

; to put 0 to first digit

JP
RET

LSH ; simple left shift loop, exit on XIS skip

n

LSHIFT: CLRA ; to put 0 to first digit
XIS
XIS
XIS
X
RET

; shift 4-digit block left on digit

; save value of last digit in A

5-93

NOTE: The left and right digit shift routines are written in the sense that the
direction of increasing Bd value is “left”. The direction of decreasing Bd
value is “right”. It is entirely possible that the user may, for his or her
application, wish to reverse this directional sense. This causes no problem
and the routines above are merely reversed (s.e, the left shifts become
right shifts and vice-versa).

Right Bit Sh ift

A right bit shift is one of those very few things that COPS microcontrollers do not do well.
If the algorithm or approach chosen involves right bit shifting, it is strongly recommended
that an alternative approach be used or developed. An alternative nearly always exists and
will commonly be COPS code efficient. Rarely, if ever, does the failure to find an alternative
to right bit shifting mean that no alternative exists. The programmer should think in broader
terms than the specific function of right bit shifting; if an algorithm requires right bit
shifting, consider other algorithms for the same function.

However, if there is no choice and right bit shifting must be performed, some routines to
perform the shift are presented. Note, right shift has the same directional sense here as in
digit right shift; data movement is in the direction of decreasing Bd.

Right Sh ift Memory D igit 1 Bit

This routine is a simple, straight-forward approach to shift a memory digit right one bit. The
shifted data is formed in the accumulator and then exchanged into memory. The routine can
be written for a simple shift or a right circular shift. Both versions are indicated. The
routines take advantage of the bit testing capability of COPS microcontrollers.

I - Simple Shift II - Circular Bit Shift

RBSHB-T: CLRA
SKMBZ 3
AISC 4
SKMBZ 2
AISC 2
SKMBZ 1
AISC 1
X
RET

RBSHEFT: CLRA
SKMBZ 3
AISC 4
SKMBZ 2
AISC 2
SKMBZ 1
AISC 1
SKMBZ 0
AISC 8
X
RET

These routines are not particularly long nor complex and work well. They form the most
efficient basis for general right bit shifting in COPS microcontrollers.

5-94

Right S h ift Using SIO

If the SIO register is not otherwise being used, it can be used to perform a right circular shift
of the data in the accumulator. This technique requires that pins SO and SI of the
microcontroller be tied together externally. The routine is then reduced.

RSHIFT: XAS ; SIO must be in shift register mode
NOP
NOP
XAS
RET

The SIO register shifts left one bit each instruction cycle when it is enabled as a shift register.
Thus, a right bit shift is achieved by three left bit shifts.

L eft Bit Shifts

Left bit shifts are easy to perform even though there is no bit shift instruction. Bit left shift
has the same directional sense as digit left shift; data movement is in the direction of
increasing Bd.

L eft Bit S h ift by Means o f Binary Double

Left shifting a value by one bit is equivalent to a binary doubling of that value. Thus, a
binary doubling routine can be used for left bit shifting. Two routines are provided; one
simply left shifts a single memory digit 1 bit; the other shifts several digits left 1 bit.

I - Single Digit II - Multidigit

LBSHIFT: LD LBSHIFT: RC
ADD LSHFT: LD
X ASC
RET NOP

XIS
JP
RET

These two routines perform the left shift in the same manner. The number is added to itself
to do a binary double. The second version remembers the state of the MSB of a given digit in
C so shifting can be performed across the digits.

5-95

Use o f SIO for L eft Bit Shifting

The SIO register can be used to shift the data in the accumulator left one bit. In the shift
register mode, SIO is always shifting left. This normal operational feature can be used to
advantage. The routine is simplicity itself:

LBSHiFl: XAS ; SIO must be in shift register mode
XAS
RET

A and SIO are simply swapped twice. Since SIO is always shifting (in shift register mode),
this results in a net one bit left shift. This routine does not require that SI and SO be tied
together and is therefore more or less unrestricted in its use. The user must remember that
the state of SI, whatever it may be, is shifted into SIO and that the LSB of the accumulator
after this routine w ill be controlled by the state of SI during the shift. Tying SI to SO will
result in a left circular shift of one bit, the MSB of the accumulator w ill be moved to the LSB
as the left bit shift occurs.

5.4.3 D ata/String Compare

A routine to compare two strings of data or characters is provided. It is the same routine that
would be used to compare two registers (within the four register blocks). The RAM map for
this routine is indicated below:

Br

Bd
15 14 13 12 11

11 11 1
String 1

1 11

11____!
String 2
I |1____11

The routine is setup as a subroutine. It w ill simply return if the strings are not equal and
return and skip if the two strings are identical. By changing the starting LBL larger strings
can be tested.

COMPARE LBI 1,11 ; initialize B
CMPR: LD 3 ; load value to A, point to other register

SKE ; test equal
RET ; not equal, return
XIS 3
JP
RETSK

CMPR
; all digits equal, return and skip

The preceding routine is excellent if the data is placed so that it can be used. The programmer
should strive to place data in RAM so that routines such as the one previously illustrated can
be used. However, data is not always located in the most efficient places. Therefore, a general
purpose compare routine is provided. This routine w ill compare a three-digit string located in

5-96

1,10,1,11, and 1,12 to another three-digit string located in 3,7, 3,8, and 3,9.

Br

Bd
12 11 10 9 8 7

1 1
String 1

1 1 ...
Not Used

Not Used
| 1

String 2

1 1
COMPARE LBI 1,10 ; initialize B register

LDD
SKE

3,7 ; fetch first digit to compare

RET ; not equal
XIS ; point to next digit
LDD
SKE

3,8 ; fetch second digit

RET
XIS

; not equal

LDD
SKE

3,9 ; fetch third digit

RET ; not equal
RETSK ; strings equal

This routine is general and the two strings could be located anywhere. By merely supplying
the proper values in the LBI and LDD instructions, the routine is modified for data in locations
other than those indicated here.

5.4.4 String Search

It is often necessary to search data memory for a string of characters. This routine w ill search
register 0 for the three character string located in digits 2,15, 2,14, and 2,13. The routine
simply returns if no match and returns and skips if the string is found.

5-97

SEARCH: LBI 0,15 ; initialize B register
CHARI: LDD 2,15 ; fetch first character

SKE
JP DECR ; not equal, move B register
XDS
JP CHAR2 ; matched first character, test second
RET ; string not found in register 0

CHAR2: LDD 2,14 ; fetch second character
SKE
JP CHARI ; no match
XDS
JP CHAR 3
RET ; string not found in register 0

CHAR 3: LDD 2,13 ; fetch third character
SKE
JP INCR
RETSK ; string found

DECR: LD ; no match, move Bd down
XDS
JP CHARI ; and start over
RET ; moved over the end, string not found

INCR LD
XIS
JP CHARI

Remember, the routine is searching for the contiguous three-digit group and exists via RETSK
when that group is found.

5.4.5 RAM Clear Routines

Routines that clear the data memory are commonly required in programs. Some of the more
standard techniques are indicated here.

Single Register Clear

The following routines w ill clear all or part of a register. They are normally preceded by an
LBI instruction.

i n

CLEARX: LBI START CLEARX: LBI START
CLR: CLRA CLR: CLRA

XIS XDS
JP CLR JP CLR
RET RET

5-98

The routines are equivalent Routine I clears the data in the register from the digit defined by
START up to and including digit 15. Routine II clears the data in the register from the digit
defined by START down to and including digit 0.

Clearing Entire RAM

It is a common requirement that the entire RAM be cleared at power up or on the basis of a
master clear operation or both. This can be done by calling the register clear instructions
provided previously. It will usually be more code efficient to use the routine provided here.

MCLEAR: LBI
CLRA

0,0

AISC N ; N = highest number of register in device
. ; N = 3 for COP420, N = 7 for COP444L, etc.

LOOP: XABR
CLR: CLRA ; these three words could be replaced

XIS ; with a subroutine call to CLR
JP CLR ; subroutine defined above
XARR
AISC 15 ; decrement BR
JP LOOP

The routine merely establishes the maximum value of BR allowed in the device - or desired to
be cleared - and successively clears each register.

5.5 INPUT/OUTPUT

This section deals w ith the techniques for getting data in and out of COPS microcontrollers.
Some of this is straight-forward since COPS devices have independent instructions for input
and output.

5.5.1 Table Look Up

The LQID instruction makes outputting converted data very simple. It is powerful in its own
right as a table look-up instruction but that power is increased if it is necessary to output the
table values. A routine to output information is shown below. The table is not shown but is
obviously required. Note that the table may be any kind of code conversion: BCD to Seven
Segment, ASCII conversion, etc. The output is not affected by the table contents. By virtue of
the successive LBI feature, the routine is set up to output either of two data streams.

5-99

Bd
15 14 13 12 11 10 9 8

1 11 1 1
Data St

1 1
ream 1

1 11 1

____ 11____ 1 1
Data St

I____ 1
ream 2

!____ 11 1!_____11
OUTDS1: LBI 0,8 ; this entry point will output data stream 1
OUTDS2: LBI

CLRA
1,8 ; this entry point will output data stream 2

AISC N ; setup accumulator for Table location
OUTPUT: OBD ; output digit position on D lines

LQID
X ; this allows movement through
XIS ; the data without disturbing the data
JP OUTPUT ; or the accumulator
RET

The routine assumes that the L drivers have been enabled prior to calling the routine. Note
that the LQID instruction loads the Q register. The L drivers must be enabled to output the
data in Q. Remember also that the LQID instruction uses a subroutine level in some COPS
microcontrollers.

5.5.2 Microbus I/O

Microbus I/O is, of course, relevant only to those COPS microcontrollers which have the
Microbus option implemented. This option makes the code required for the interface
simplicity itself. Only one caution is necessary: Do not enable the L drivers, i.e, do not set
EN2, on Microbus parts. COPS Microbus devices are structured to be peripheral devices for
some host processor. The host has control over the L drivers via the chip select, read strobe,
and write strobe.

As stated earlier GO is the handshake line for the Microbus interface. It is the responsibility
of the COPS program to set GO to a 1 level to indicate the COPS device is ready for access by
the host. A write to the COPS Microbus peripheral by the host w ill set GO low. A typical
sequence for this is as follows:

5-100

OGI 1 ; GO assumed low, 0 prior to this
; set GO high to indicate COPS ready

WAIT: SKGBZ 0 ; wait for a write by host
JP WAIT
CQMA ; GO was low, a write was performed
• ; read the data and continue with

; the program

Note that when the host processor writes to a COPS Microbus device, the host writes directly
into the Q register. The COPS microcontroller then merely reads the Q register.

A read by the host is equally simple. Upon seeing GO high, the host w ill execute a read
operation which takes the Q data out to the eight-bit bus. The only possible difficulty is that
the COPS microcontroller does not know that a read has been performed. If it is necessary for
the microcontroller to know a read has been performed, the following sequence is
recommended.

CAMQ
OGI

WAIT: SKGBZ
JP
JMP

; load Q; could use LQID
1 ; set GO high to indicate data ready
0
WAIT ; host acknowledges ready by a dummy write
MAIN

This sequence outputs the data to Q and then sets GO high to indicate ready. The host reads
the data and then does a dummy write to indicate the data has been read. The
microcontroller detects this and then returns to the main loop where GO is set high and the
device waits for the next write.

The procedure above is, of course, not necessary if there is no requirement that the COPS
microcontroller know that a read operation by the host has taken place.

5-101

5.5.3 Serial I/O - MICROWIRE

Routines for handling serial I/O are provided. Two versions of output routines are provided:
a destructive output and a nondestructive output. The routines are written for 16-bit
transmissions but are trivially expandable up to 64-bit transmissions by merely changing the
initial LBI instruction. The routines are written using the XIS instruction, but the XDS
instruction could be used equally well.

The routines arbitrarily select register 0 as the I/O register. It is assumed that the external
device requires a logic low chip select. It is further assumed that chip select is high, SK is
low, and SO is low on entry to the routines. The routines exit w ith chip select high, SK low,
and SO low. GO is arbitrarily chosen as the chip select for the external device.

Destructive Data Output

This routine outputs the data under the conditions specified above. The output data is
destroyed after it is transmitted.

OUTl: LBI 0,12 ; point to start of data word
SC ; set C to enable SK clock
OGI 14 ; select external device by 0 -> GO
LEI 8 ; enable shift register output

SEND: LD
XAS ; data transmission loop, first
XIS ; XAS turns on SK clock
JP SEND
RC
XAS ; turn off SK clock, transmission done
OGI 15 ; deselect external device
LEI 0 ; set SO to 0
RET

Note that this is a general purpose routine and handles all the overhead except loading the
data into RO. The routine takes a total of 17 ROM words and can undoubtedly be reduced in
specific applications.

Nondestructive Data Output

This routine is identical to the destructive data output routine except that the transmitted
data is preserved in the microcontroller.

5-102

OUT2: LBI 0,12 ; point to start of data word
SC
OGI 14 ; select the external device
LEI 8 ; enable shift register mode
JP SEND2

SEND1: XAS
SEND2: LD ; data output loop

XIS
JP SEND1
XAS ; send last data
RC ; wait 4 cycles to data to get out
CLRA
NOP
XAS ; turn SK clock off
OGI 15 ; deselect the device
LEI 0 ; turn SO low
RET

The nondestructive routine takes 21 ROM words, four more than the destructive routine.
Again, this is a general purpose routine which can probably be reduced in specific applications.

Serial Data Input

The code for reading serial data is almost the same as the write code. This should be expected
because of the nature of the SIO register and the XAS instruction.

The first routine enables shift register mode, selects the external device, and reads the data in.
Register 0 is the input register and the routine, as written, is for a 16-bit data stream. As
before, the routine is trivially expandable up to 64 bits. GO is arbitrarily selected as the chip
select for the external device. SK is 0, and GO is high or entry to the routine.

READ: LEI 0 ; enable shift register mode, SO is 0
OGI 14
SC
XAS ; turn on the clock
LBI 0,13 ; initialize the B register
NOP ; NOPs to preserve the timing

LOOP: NOP
XAS
XIS ; read all but last four bits in this loop
JP LOOP
RC
XAS ; turn off the clock and read last four bits
OGI 15 ; deselect the device
RET

The routine exits w ith the data in digits 0,13,0,14,0,15, and the accumulator.

A variation on this routine which places the input data in digits 0,12 through 0,15 is
presented below. This routine uses one subroutine level.

5-103

READ: LEI 0 ; enable shift register mode 0->SO
OGI 14 ; select external device
LBI 0,12 ; initialize B register

LOOP: JSRP SIO
LD ; data read loop
X1S
JP LOOP
OGI 15 ; deselect the devices
RET

The following subroutine is used:

SIO: SC ; turn on SK clock
XAS
RC ; wait 4 cycles for the data to fu ll SIO and
NOP ; turn off the clock
NOP
XAS
X ; put data to memory
RET

These are two implementations of the same basic routine. The first version reads the data in
one continuous stream; the second version reads the data in four-bit groups. The second
routine uses a little more code. The choice of routine is entirely governed by the application,
the peripheral devices used, and not by the microcontroller.

It is fairly common that the peripheral device must be sent some command or instruction
directing it to output some data to the MICRO WIRE interface. A typical routine of this type
is given below. GO is again chosen as the chip select. It is assumed that the peripheral device
requires a start bit followed by four bits of instruction information. Location 0,0 is
arbitrarily selected for storage of the instruction data. The routine is again w ritten for 16
data bits. The input portion of the routine is essentially the same routine as the first version
above. There is a subtle difference: the data is all placed in RAM and four extra clocks are
generated. This is not normally a problem, but if it is, use another form of the input routine.
There is no requirement that the input routine must be in this form:

5-104

READ: OGI 14 ; select the device
LEI 8 ; enable shift register
CLRA ; setup start bit in A
AISC 1
SC ; turn on clock and send start bit
XAS
LDD 0,0 ; fetch command/instruction
LBI 0,12 ; initialize B register
XAS ; send command/instruction
NOP ; wait 4 cycles for data to get to
CLRA ; the peripheral
XAS ; just maintaining the timing, send Os
NOP ; delay - typical required 0 to 3 instruction cycles
NOP ; now wait 4 cycles for data to fill SIO
NOP

LOOP: CLRA
XAS ; data read loop
XIS
JP LOOP
RC
XAS ; turn off the clock
OGI 15
LEI 0 ; deselect the device and turn SO off
RET

5.5.4 SI as a General Purpose Input

When not used as part of the MICROWIRE interface, SI can be used as a general purpose
input. There are two ways in which this can be done:

1. Leave SIO in shift register mode. SO may be enabled or disabled depending on
system requirements. Then reading SI is simple:

CLRA ; this clear not absolutely necessary
XAS
AISC 15 ; test SIO for 0, if 0 SI=0, else SI=1
JP SIEQO

SIEQ1 .

2. Put SIO in counter mode. Then SI w ill capture pulses that meet minimum width
requirement Load SIO w ith 0 and test for 15.

Sample code for this is as follows:

CLRA ; CLRA required here
XAS

5-105

AISC 1
JP NOPULSE

PULSE: .

Remember that this mode captures and remembers the occurrences of a high to low transition
at SI input. SIO is in binary counter mode for this method to work.

Some devices have the SKSZ instruction. This makes testing SL or SIO, particularly easy.
SKSZ tests the contents of SIO without affecting those contents and generates a skip if SIO is 0.
This is essentially the same test as above except that it is a single instruction.

5.6 DISPLAY CONTROL

It is frequently required to control a display as part of an application using COPS
microcontrollers. There are several approaches to this and this section will attempt to
illustrate those approaches.

5.6.1 A Four-Digit Multiplexed Display

This routine w ill output a four-digit number to a standard seven segment display. The D
lines w ill be the digit strobes, w ith D3 being the most significant display digit. The L lines
will provide the segment data with the following format:

f=L5

e=L4

a=L0

q=L6

d=L3

b=Ll

c=L2

L7 not used

The interconnect and flow chart are shown in Figures 5-26 and 5-27. The code is written
independently and simply displays the data. In a real application, the routine would have to
be merged w ith the main code. The routine provides both segment and digit interdigit
blanking. A simple delay routine is used to control display ON/OFF time.

Bd
15 14 13 12 11

Br 0
DISPLAY |

MSD
_______ L

1

_____ L

| DISPLAY |
LSD

J_______ 1

WORK
SPACE

1
The RAM map for this routine is shown above. The display data is in BCD.

5-106

BA-29-0

Figure 5-26. Interconnect for Sample and Multiplexed Display Code

5-107

BA-30-0

Figure 5-27. Multiplexed Display Flow Chart

5-108

DISPLAY: LBI 0,11 ; initialize digit strobe
STB 1
JSR OUT ; output first digit - LSD
LBI 0,13
JSR OUT ; second digit
LBI 0,14
JSR OUT ; third digit
LBI 0,15
JSR OUT ; fourth digit - MSD
JP DISPLAY

The subroutine OUT does most of the work:

OUT: CLRA ; set up address for table
AISC 4
LQID
LDD 0,11 ; output digit strobe
CAB
OBD
LEI 4 ; enable segment outputs
LBI 0,11
LD
ADD ; shift the strobe to next digit
X

WAIT: CLRA ; delay time arbitrary for display
SKT ; on time
JP WAIT
LBI 0,15 ; tu rn off the digits; all high
OBD
LEI 0 ; turn off the segments; L drives o
RET ; return for the next digit

The preceding routine uses a subroutine level. A routine that performs the same function but
does not use a subroutine level is indicated below. As the RAM map indicates, an extra RAM
digit is used in this implementation of the multiplexed display routine.

Bd
15 14 13 12 11 10

Br 0
DISPLAY |

MSD

1

1

1

1

|

| DISPLAY
LSD

1

| DIGIT
STROBE

| DISPLAY
POSI­
TION

As before, the data is assumed to be in BCD.

5-109

DISPLAY: LBI 0,10 ; initialize display pointer and digit strobe
STD 12
STB 1

DSP1: CLRA
AISC 4 ; set up address for table
LQID ; look up segments
LDD 0,11 ; output digit strobe
CAB
OBD
LEI 4 ; enable L to output segment data
LBI 0,11 ; increment digit strobe (left shift)
LD
ADD
X

WAIT: CLRA ; delay arbitrary for display ON time
SKT
JP WAIT
LBI 0,10 increment display pointer
LD
AISC 1
JP DSP2
JP DISPLAY ; have outputted MSD, start over

DSP2: X
LD
CAB
JP DSP1

This routine is completely equivalent to the preceding routine but does not have a subroutine
call. Both routines use the following BCD to seven-segment code conversion table:

.=0140 set up table location
starts at 140 hex

.WORD 03F 0

.WORD 006 1

.WORD 05B 2

.WORD 04F 3
•WORD 066 4
•WORD 06D 5
.WORD 07D 6
.WORD 007 7
.WORD 07F 8
•WORD 067 9

Both routines assume that the L drivers are off and that the digit strobes are high on entry to
the routine. Some display types do not require both digit and segment blanking. If this is the
case, the routines can be shortened by removing the unnecessary blanking code. Note that the
routines do not alter the BCD data. Remember, also, that the LQID instruction uses a
subroutine level on some COPS microcontrollers. Also note that the delay time included
the routine may not be necessary for some display types. In these cases, that code may

5-110

.a m

eliminated. The delay, if required at all, may be implemented in any convenient manner.

5.6.2 Peripheral Display Drivers

Several display drivers are available which are compatible w ith the COPS MICROWIRE and
remove the burden of display control from the microcontroller to an inexpensive driver.

The COP470 and COP472

The COP470 is a four-digit multiplexed vacuum fluorescence display driver. The device is
loaded w ith 32 bits of segment data and controls the display directly. Updating the display
merely requires loading the new data. Note that any required code conversion must be
performed by the microcontroller.

The COP472 is a similar device intended for use w ith a multiplexed (three backplane) liquid
crystal display. The COP472 is a 4V2 digit driver and can drive 36 segments of data. Again,
any required code conversion must be done in the microcontroller.

Both the COP470 and COP472 may be cascaded to drive somewhat larger displays. The
COP470 and COP472 are software compatible devices. Code can be w ritten that works w ith
either the COP470 or the COP472 either alone or cascaded. The four extra data bits in the
COP472 correspond to brightness control in the COP470.

Both the COP470 and COP472 load data eight bits at a time. The format for the data is as
follows:

SB ISA I SB I SC ISD ISE ISF I SG ISH I

SC JSH

SH for digit 1 is the first data bit shifted into the device. SA for digit four is the last data bit
(ie , 32nd data bit) shifted into the device. The segments are mapped into a standard numeric
seven-segment plus decimal point display. There is, of course, no requirement that the display
be configured in this manner.

The fifth and final group of eight bits sent to the device(s) is as follows:

1 C4 | C3 | C2 | C l | SP4 | SP3 [SP2 | SP1 |

SP1 is the first data bit sent in this group, C4 is the last bit sent.

The COP470 and COP472 display drivers may be “cascaded” to provide more digits and
“stacked” to provide more segments per digit. Both the COP472 and COP470 are code
compatible devices even when they are used in expanded form.

SD

5-111

Single COP470, COP472 Control Bits

The control bits for the COP470 and COP472 are listed below in Table 5-1. These control bits
were positioned to allow for common software operations

The COP470 also contains four bits of intensity information which is in the same bit locations
corresponding to the four special segments of the COP472. In code compatible routines, the
four special segments of the LCD display will reflect the intensity information of the COP470.
The control bits that enable code compatible operation w ith four-digit displays are given in
Table 5-1.

TABLE 5-1. CONTROL BITS

C4 C3 C2 Cl

C0P470
CONTROL: SYNC OSC RT LT

C0P472
CONTROL: SYNC

O
' Q6 X

SP4 SP3 SP2 SP1
INTENSITY INFORMATION

SPECIAL SEGMENTS

X = DON'T CARE
C0P472 C0P470 CONTROL BIT

SYNC SYNC 0
Q7 OSC 0
Q6 RT 1
X LT 1

BA-36-0

Eight Digit

COP470 and COP472 devices are cascadable to obtain more digits of display. The control codes
for a multiple device display driver configuration are listed in Table 5-2.

i

5-112

TABLE 5-2. CONTROL CODES

CONTROL CODES

COP472 COP470 INITIALIZE MASTER SLAVE
(BOTH DEVICES) (LEFT DEVICE) (RIGHT DEVICE)

Sync Sync 1 0 0
07 Osc 1 0 1
06 RT 1 0 1
X LF 0 1 0

X = Don’t Care

The sequence of operations to load a single COP470 or COP472 is as follows:

1. Turn CS low.

2. Clock in eight bits of data for digit 1.

3. Clock in eight bits of data for digit 2.

4. Clock in eight bits of data for digit 3.

5. Clock in eight bits of data for digit 4.

6. Clock in eight bits of data for special segments/brightness and the control function.
0 0 1 1 SP4 SP3 SP2 SP1

7. Turn CS high.

CS may be turned high after any step. It is not necessary to continuously reload the control
bits but they must be loaded at least once. If the special segments or brightness bits are
changed, the control bits must be reloaded.

CS must toggle between writes. CS is the state that resets the internal counters in the device
which controls data loading.

Typical code to write to a single COP470 or COP472 is shown below. The look-up table is not
shown but is obviously required. The routine is written as in-line code. It does the code
conversion and writes to the display driver. The original values are destroyed in the
operation. DO is arbitrarily chosen as a chip select for the device. Note that chip select is an
essential connection for these devices. Chip select must toggle between accesses for proper
operation. The data to be displayed is in locations 0,12 through 0,15. The special segments or
brightness bits are in location 0,0.

5-113

DISPLAY: LBI 0,12 ; point to first display data
OBD ; turn CS low (DO) to select drive

LOOP: CLRA
LQID ; look up segment data
CQMA ; copy data from Q to M & A
SC ; set C to turn on SK
XAS ; output lower four bits of data
NOP ; delay
NOP ; delay
LD ; load A with upper four bits
XAS ; output four bits of data
NOP ; delay
NOP ; delay
RC ; reset C
XAS ; turn ofiF SK clock
XIS ; increment B for next data
JP LOOP ; skip this jump after last digit
SC ; set C
LBI 0,0 ; address special segments or brightness
LD ; load into A
XAS
NOP
CLRA

; output special segments or brightness

AISC 12 ; 12 to A=code for single chip operation
XAS
NOP

; output control bits

LBI 0,15 ; 15 to B to deselect the device
RC reset C
XAS ; turn off SK
OBD ; turn CS high (DO)

This code works with either the COP470 or COP472.

The sequence to drive two COP470s or COP472s in an eight-digit display is outlined below.
There is an initialization procedure required in order to set up the two devices properly. The
control bits are different during the initialization sequence than they are during subsequent
data loads. For the COP472s, this sequence sets up the left chip as the master and the right
chip as the slave. For the COP470s, the left chip provides the oscillator for the right chip.
The sequence is as follows:

1. Turn CS low to both devices.

2. Shift in 32 bits of data - slave’s four digits for COP472, right four digits for
C0P470.

3. Shift in four bits of special segment/brightness data, a zero and three ones.

5-114

I 1 I 1 I 1 I 0 1 SP4 1 SSP3 1 SP2 I SP1 I

This synchronizes and stops both chips. Both chips are expecting an external
oscillator.

4. Turn CS high to both chips.

5. Turn CS low to left device - (master COP472, left COP470).

6. Shift in 32 bits of data for that device.

7. Shift in four bits of special segment/brightness data, a one and three zeroes.

| 0 | 0 | 0 1 1 1 SP4 | SSP3 | SP2 | SP1 |

This sets this device to internal oscillator and provides an oscillator output to the
other device.

8. Turn CS high.

The chips are now synchronized and driving eight digits of display. New data is loaded in the
normal manner. Care must be taken to keep the control bits in the proper state. For the
master COP472 or left COP470, the control bits specified in Step 7 are the proper state. For
the slave COP472 or right COP470, the following information must be sent in every case
except the initialization sequence:

1 0 | 1 1 1 | 0 1 SP4 | SSP3 | SP2 1 SP1 |

Figure 5-28 provides system diagrams for the dual COP470/COP472 systems.

Typical code to write to the devices in this way is shown below. The display data for the
slave (right) device is in register 0, digits 12 through 15. The display data for the master
(left) device is in register 1, digits 12 through 15. Digit 0,0 contains special
segment/brightness data for the slave. Digit 1,0 contains special segment/brightness data for
the master. DO is used as the chip select for the master; D1 is the chip select for the slave.
The code is again shown as in-line code.

Display Initialization Sequence:

EMIT: LBI 0,15 _
OBD ; tu rn both CSs high
LEI 8 ; enable SO out of S.R.
RC
XAS
LBI
STI1
LBI
JSR

3,15 ; use M(3,15) for control bits
7 ; store 7 to sync both chips
0,12 ; set B to turn both CSs low
OUT ; call output subroutine

; turn off SK clock

Main Display Sequence:

5-115

BA-31-0

Figure 5-28. Dual COP470/472 Systems

5-116

DISPLAY: LBI 3,15
STD 8
LBI 0,13
JSR OUT
LBI 3,15
STII 6
LBI 1,14
JSR OUT

; set control bits for slave right devices
; set B to turn slave CS low
; output data from register 0

; set control bits for master left device
; set B to turn master CS low
; output data from register 1

Output Subroutine:

OUT:

LOOP:

OBD
CLRA

; output B to CSs

AISC 12 ; 12 to A
CAB
CLRA

; point to display digit (BD=12)

LQID ; look up segment data
CQMA
SC

; copy data from Q to M & A

XAS ; output lower four bits of data
NOP ; delay
NOP ; delay
LD ; load A with upper four bits
XAS ; output four bits of data
NOP ; delay
NOP ; delay
RC ; reset C
XAS ; turn off SK
XIS ; increment B for next display digit
JP LOOP ; skip this jump after last digit
SC
NOP

; set C

LD ; load special segments
XAS
NOP

; output special segments

LBI 3,15
LD ; load A
XAS
NOP
NOP
RC

; output control bits

XAS ; turn off SK
OBD
RET

; turn CSs high (BD=15)

5-117

«1

The MM54XX Series Display Drivers

The MM54XX series drives are a family of status display drivers for vacuum fluorescent,
liquid crystal, and LFD displays. All of these devices require a start bit and 35 data bits. All
the devices are MICROWIRE compatible. Table 5-3 indicates the present devices that comprise
the MM54XX series. The code here is applicable to all similar type devices. The MM54XX
devices are static segment drivers and must be loaded with the appropriate segment
information.

TABLE 5-3. MM54XX SERIES DEVICES

MM5445 - Static Vacuum Fluorescent
MM5446 - Static Vacuum Fluorescent
MM5447 - Static Vacuum Fluorescent
MM5448 - Static Vacuum Fluorescent

MM5450 - Static LED
MM5451 - Static LED

MM5452- Static Liquid Crystal
MM5453 - Static Liquid Crystal

MM5480 - Static LED (Smaller Package)
MM5481 - Static LED (Smaller Package)

Two basic output techniques can be used. The first approach is the same as that illustrated for
the COP470 and COP472: turn the clock on and off and convert the number on the fly. This
example w ill use GO as the data enable control: GO must go low to enable the device. The
routine assumes GO high, SO low, and SK low on entry. The look-up table is not shown.

5-118

DISPLAY: CLRA ; set up start bit
AISC 1
SC
DGI 14
XAS
RC
CLRA
NOP
XAS
LBI 0,7

; turn off the clock
; point to start of data
; set up table address

; select the device
; turn on clock and send start bit

LOOP: CLRA
LQID
CQMA
SC ; send eight data bits
XAS
NOP
NOP
LD
XAS
NOP
CLRA
RC
XAS
LD
XIS
JP LOOP
OGI 15 ; deselect the device
LEI 0 ; turn SO low
RET

The other approach is to load a display buffer w ith the segment data and then simply send all
the information out in one burst of data- This technique can also be used w ith the COP470
and COP472. The following routine implements this procedure. Again, the table is not
shown, and GO is the data enable. The display output is the BCD number contained in
locations 2,12 through 2,15. Register 0 w ill be used as the display output register. The
segmented data w ill be placed in digits 0,7 through 0,15. Digit 0,15 will be loaded w ith Os to
fill out the required 35 data bits. The code is as follows:

5-119

DISPLAY: LBI 2,12
CLRA
LQID
LBI 0,7
JSRP INQ
LBI 2,13
LQID
LBI 0,9
JSRP INQ
LBI 2,14
LQID
LBI 0,11
JSRP INQ
LBI 2,15
LQID
LBI 0,13
JSRP INQ
STH 0
LBI 0,7
SC
AISC 1
LEI 8
XAS
JSR DATOUT
RET

The following subroutines are used:

INQ: CQMA DATOUT: LD
XIS XAS
XIS XIS
CLRA JP
RET RC

XAS
RET

; convert data to segment information
; set up table address

; save segments in register 0

; load Os to 0,15
; point to first segment data
; set C to turn on clock
; set up start bit
; enable shift register output
; send start bit

DATOUT
; turn off clock

5-120

Universal Display Loading Routine

Theory of Operation

The universal display driver loading routine both initializes and sends 32 data bits to the
display drivers. In those devices w ith more than 32 data bits, the extra segments are not used.
The routine is compatible with the COP470, COP472, and MM54XX series devices.

Associated w ith the COP470/COP472 and MM54XX series are two communication protocols.
The COP470 and the COP472 accept data in blocks of eight bits and require an initialization
procedure. The MM54XX series requires a start bit and a block of 35 bits before data is
latched in the output buffers. There exists a common block of 32 data bits between all these
devices (less are bonded out on the MM5480 and MM5481) and this similarity makes it
possible to create universal display load routine. The control bits for the COP470 and the
COP472 are sent once upon initialization, and the start bit for the MM54XX series is sent on
the tail end of the data load routine every time it is called.

The COP470 and COP472 have a chip select which, upon a high to low transition, clears the
input register and the internal counters which route the data and control bits to their
ultimate positions. (See COP470, COP472 block diagrams.) Each of these devices accepts a
serial data pattern and latches that serial stream in blocks of eight. For example, once
initialized, the first digit may be changed, without affecting the other digits, by chip selecting
and sending eight data bits. Data streams of less than eight bits, between chip selects or after
a block of eight bits has been accepted, will be ignored. The initialization routine for the
COP470 and COP472, which sends 44 bits, makes use of this type of operation; the last four
bits are ignored.

The MM54XX series displays, unlike the COP470 and COP472, have a data enable. This input
to the device does not reset any counter and functions only as a data enable. This is to say
that information contained within the display buffers and the input counter are not affected
by the data enable signal. It is for this reason that the start bit for MM54XX series devices is
sent out at the tail end of each data output routine. Initially, the MM54XX devices must be
cleared and this is accomplished by clocking in more than 35 zeroes. In normal operation, the
MM54XX type devices are automatically cleared at power up due to SIO port power up state;
SK as clock and SO as a logical zero, lasting much more than 36 cycles. In the universal
display routine, the MM54XX series devices w ill contain the COP470 and COP472 control
codes along w ith a start bit in the first position. This must be cleared out by sending 35 zeroes
and a new start bit. This will clock in 32 zeroes to the COP470 and COP472, and again the
last four bits will be ignored in the COPS display drivers.

Now both display device types are initialized and data may be sent out in 36 bit blocks, first
32 data, next three zeroes, and the last bit a start bit. The first 32 segment outputs of the
COP472 and MM54XX series devices w ill correspond to the COP470’s segment outputs.

5-121

5.7 KEYBOARD SCAN

Reading a keyboard is a common requirement. The following routine is representative of a
keyboard scan routine. The four D lines provide the strobes for the keyboard. The IN lines
are the keyboard return lines. Thus, this routine is structured to read a 16-key keyboard
arranged in a 4 by 4 matrix. A key is detected when one of the IN lines goes low. The
strobes, D lines, are normally high and go low to strobe the keyboard. Figure 5-29 is the flow
chart for this routine. Figure 5-30 is the interconnect. This routine uses two RAM digits:
digit 0,15 for a debounce counter and digit 0,14 for temporary storage. The routine debounces
the keys up and down.

5-122

KEYBRD

LOCATION KBC
UP |READY!UP |READY
BIT 1 BIT I

COUNTER

1-^UP BIT
IrREADY ll-CNTR

(15 ■►KBC)
^ KYLOOP ^

INITIALIZE STROBE
4r-«

ALLUP

NO RESET UP BIT

\ » NO ^Uceyde bounces.YES

' J V

BA-32-0

Figure 5-29. Keyboard Scan Flow Chart

5-123

C0P420

D3
D2
D1
DO

IN3

IN2

INI

INO

X// /

/ A / /

/ y / /

/
—/
/ _ __

BA-33-0

Figure 5-30. Interconnect for Key Scan Routine

KBC =0,15
KEYIN = 0,14

KEYBRD: LBI KBC ; initialize debounce counter
STII 15

KYLOOP: LBI 1,14 ; set DO low, see if a key is down
JSRP SCAN
JP KEYO ; key is down
LBI 0,13 ; set D1 low and see if a key is down
JSRP SCAN
JP KEYl
LBI 0,11 1 set D2 low and see if a key is down
JSRP SCAN
JP KEY2
LBI 0,7 ; set D3 low and see if a key is down
JSRP SCAN
JP KEY 3 ; if the routine falls through to this point

; there is no key down on this scan,
; or key not fully debounced

NOKEY: LBI KBC
CBA ; put 15 to A

DBNCE: SKMBZ 3 ; test up bit = 1
JP ALLUP ;yes
SKMBZ 2 ; up bit = 0, test ready bit
JP STR ; 15 -> KBC else decrement KBC

DCRKBC: ADD ; remember A=15, so decrement KBC
STR: X ; A ->KBC

SMB 3 ; set up bit
JP KYLOOP

ALLUP: SKMBZ 2 ; if ready bit=l, decrement KBC
JP DCRKBC
STD 11 ; else, load KBC w ith 11
JP KYLOOP

KEY3: These are the key decode positions; location KEYIN
KEY2: contains IN line data; entry point defines strobe
KEY1: line. The key is fully debounced if reach any of
KEYO: these points.

5-125

Appendix A

DATA RAM IN COP410L/411L/413L AND COP410C/411C DEVICES

A.1 DATA RAM DESCRIPTION

All COPS microcontrollers except the COP410L, C0P411L, COP410C, and COP411C have the
data RAM matrix organized as a number of registers by 16 digits. The COP410C series devices
mentioned above have the data RAM organized as 4 registers by 8 digits. This is significant
because the Bd portion of the RAM address register B is still four bits wide. The D output
port is still a four-bit port and it is loaded by Bd as in all COPS microcontrollers.

Physically, only the lower three bits of Bd address the digit portion of RAM. The upper bit is
not connected to the RAM in any way. However, the XIS and XDS instructions work on the
entire Bd register. The skip conditions on these instructions is the same as always. Bd will
increment from 0 to 15. Thus each RAM digit in a COP410 series device is addressed by two
values of Bd. Because of this characteristic, the programmer must exercise some care in the
implementation of any routine which increments or decrements through the register, e.g,
shift routines. The standard digit shift routines provided earlier could actually shift a
COP410 register right or left two digits if the programmer started at one end of the register
and relied on the XIS or XDS skip to exit the routine. The two shift routines provided below
provide one method of circumventing the problem.

LBI 0,9 LBI 0,9
LD LD
XDS XDS
LD LD

LSHIFT: XIS RSHIFT XDS
JP LSHIFT JP RSH
RET RET

As written, these routines w ill shift register 0 left or right one digit. Figure A -l below
illustrates the RAM mapping in COP410 series devices.

A-l

The following is the key scan subroutine:

SCAN: OBD ; output key strobe
ININ ; read the return lines
LBI KEYIN
COMP
X ; store key information
LD ; test if a key is down
AISC 15
RETSK ; no key, return and skip
CLRA ; a key is down
LBI KBC
RMB 3 ; reset key up bit
SKE ; if KBC is 0, key is fully debounced
RETSK ; not debounced yet
OBD ; key fully debounced, turn the strobes high
LBI KEYIN ; set up pointing to KEYIN for key decode
RET

This is a simple keyboard routine. It is a variation on the routine provided in Section 5.3 of
the COPS Family User's Guide. The routine continues to scan until a key is detected and
fu lly debounced.

5-126

BD VALUE COP 410

Figure A -l. RAM Mapping

Appendix B

DEVICES WITH SUBROUTINE STACK IN RAM

B.1 SUBROUTINE STACK IN RAM DESCRIPTION AND LOCATION

As mentioned earlier, a number of COPS microcontrollers have the subroutine stack in data
RAM. In these devices the stack is assigned a specific location and does not, under any
circumstances, go outside of the assigned area. It is not possible for the programmer to
overflow the stack and destroy some data, although it is quite possible to overflow the stack.
The only information lost if the stack overflows is some previous return address. The devices
which have the stack in RAM and the location of the stack in the RAM is indicated below.

DEVICE LOCATION

COP440/441/442
COP404

Stack in register 8

COP2440/2441/2442

COP2404

CPU X stack in register 8, CPU
Y stack in register 9

COP484/485
COP408

Stack in register 15

COP409 Stack in registers 30 and 31

Note that the registers are numbered starting at 0. The register number is the Br address.

Figure B-l is the structure for the stack in RAM. This organization is valid for all the devices
w ith the subroutine stack in data RAM

i

B-l

DATA DIGITS NOT USED IN STACK

Figure B-l. Stack Structure in RAM

B-2

N ational
Sem iconductor

MICROCOMPUTER
SYSTEMS DIVISION

READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on
this manual.

Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA
(800) 672-1811 - CA only
(408) 733-2600

Please rate this document according to the following categories. Include your comments below.

EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) □ □ □ □ □

Technical Accuracy □ □ □ □ □

Fulfills Needs □ □ □ □ □

Organization □ □ □ □ □

Presentation (format) □ □ □ □ □

Depth of Coverage □ □ □ □ □

Overall Quality □ □ □ □ □

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT__

ADDRESS___

CITY___ STATE______________ZIP

Do you require a response? □ Yes □ No PHONE__________________________

Comments:

F O L D , S T A P L E , A N D M A I L 424410284-001A

