GPIB

NI-488.2™ User
Manual for MacOS

July 1997 Edition
Part Number 320897B-01

© Copyright 1995, 1997 National Instruments Gorporation. All rights reserved.

Internet Support

support@natinst.com

E-mail: info@natinst.com

FTP Site:ftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

)

Fax-on-Demand Support
(512) 418-1111

DN
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

>

>

&
&

() International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,

Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,

Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51,
Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIEDHEREIN, NATIONAL INSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE

CUSTOMER S RIGHT TO RECOVERDAMAGES CAUSED BY FAULT OR NEGLIGENCEON THE PART OF NATIONAL
INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT THERETOFOREPAID BY THE CUSTOMER NATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSSOF DATA, PROFITS USE OF PRODUCTS OR INCIDENTAL OR
CONSEQUENTIALDAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recordmg storing in an information retrieval system, or translatlng in whole or in part,
without the prior written consent of National Instruments Corporation.

NI-488%, NI-488.2™, and TNT4882C™ are trademarks of National Instruments Corporation.
Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

Table
of
Contents

About This Manual
HOow to Use ThiS MAnUAl SEL.........cociiiiiiiiiiiiee et Xi
Organization of ThisS Manual...........cccuuuiiiiiirii e Xii
Conventions Used in ThiS ManUAL............cccooiiiiiiiiiiiii e Xiii
Related DOCUMENTALION........ccciiiiieie ittt Xiii
Customer COMMUNICALIONcoiiieiiiei e ees Xiv
Chapter 1
Introduction
GPIB OVEIVIBW. ... ettt e ettt e e e e e e e e ettt et e e e e e e e e s e e babbbeeeeeeaaeeeaaaannnrnne 1. 1-
Talkers, Listeners, and CONtrollers............ooo i 1-1
Controller-In-Charge and System Controller ..., 1-2
GPIB AQUArESSING....cciiiiiiieetieeeeee ettt e ettt e e e e e e e e s e e e eaaaaaee s 1-2
Sending Messages Across the GPIB ... 1-3
DALA LINES ...ttt e e e e e e e e e e e 1-3
HaNAShaKe LINESoooiiiieeeee et 1-3
Interface Management LINeS..........occvveiiiiiiiie e 1-4
Setting Up and Configuring Your SYSteM.........c.ccooviiiieeiiiiiiie e 1-4
Controlling More Than One Board...........ccocceeeiiiiiiieieiiiiiee e 1-5
Configuration REQUIFEMENTScoiiiiiiiiiiiiiee ettt 1-6
NI-488.2 SOftware COMPONENTSuiiiiiiiiiiiie ittt e b e e e 1-7
NI-488.2 Driver and Driver ULIHtIESccueeiiiiiiiieic e 1-7
C LANQUAGE FlES ...t e 1-8
FutureBASIC Language Filescoooiiiiiiiiieie e 1-8
How the NI-488.2 Software Works with Your System..........c.ccccceeeviiiiiennnnnen. 1-9
Chapter 2
Developing Your Application
Choosing a Programming Methodueeiiiiiiiiiiiiee e 2-1
Using the NI-488.2 Language INterfaceccccovvviiiiiiiiiiiieieeeeee e 2-1
Using NI-488 Functions: One Device for Each Board...........ccccoooviiiiiiiieenennn. 2-1
NI-488 DeViCe FUNCHONScciiiiiaiiiiiiiiiiieieiee e e e 2-2
NI-488 Board FUNCHONS.ouuiiiiiiiiiaiieiiie e 2-2

© National Instruments Corporation v NI-488.2 User Manual for MacOS

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices.............. 2-3

Checking Status with Global Variables.............ccccccooiiiiiiis 2-3
Status Word—ibsta..........cooriiiiiiii 2-3
Error Variable—iberr. ... 2-5
Count Variables—ibcnt and ibentl ... 2-5
Using IBIC 488.2 to Communicate With DEVICES...........cceeeeiiiiiiiiiiieieaeeeeiiies 2-6
Writing Your NI-488 APPIICALIONeeiiiiaeiiieii et 2-6
IEEMS 10 INCIUAE ...t 2-6
NI-488 Program Shell ...t 2-7
General Program Steps and EXamples ... 2-8
Step 1. OPeEN @ DEVICEcoiiiiiiiiiiie e 2-8
Step 2. Clear the DEVICEcuviieiiiiiiee e 2-8
Step 3. Configure the DeVICE..........cooiiiiieiiiie e 2-9
Step 4. Trigger the DEVICEccouviiiiiiiiee et 2-9
Step 5. Wait for the Measurementceoviieeeeiiiieee e 2-10
Step 6. Read the Measurement ..o 2-11
Step 7. Process the Datacoouveiiiiiiiieiiiieee e 2-11
Step 8. Place the Device Offline..........ccooiiiiiiiiii e, 2-11
Writing Your NI-488.2 APPlICALIONeeiiiiiiii e 2-12
ITEMS 1O INCIUAE ...t 2-12
NI-488.2 Program SNEll..........cooiiiiiiiiii e 2-13
General Program Steps and EXamplescocvviiiiiiiiieiiiiieeeeee e 2-14
Step 1. INGANZATIONoiiiiiie e 2-14
Step 2. FiNd All LISTENEISviiiiiiiiie et 2-14
Step 3. Identify the INStrument ... 2-15
Step 4. Initialize the INStruMeNt............ocoeiiiiiee e 2-16
Step 5. Configure the INStrUMENt...........ooiiiiiiieie e, 2-16
Step 6. Trigger the INStrUMENt ... 2-17
Step 7. Wait for the Measurementc..ceevvieeiiiiiieee e 2-17
Step 8. Read the Measurement ..o 2-18
Step 9. Process the Datalcovveiiiiiiiiiieiiiiee e 2-19
Step 10. Place the Board Offlineoooviiiiiiiiiiii e, 2-19
Compiling, Linking, and RUNNINGc..cooiiiiiiiiie e 2-19
C APPHCALIONS ... 2-19
FutureBASIC APPLICALIONS.coiiiiiiiieiiiiiee e 2-20

NI-488.2 User Manual for MacOS vi © National Instruments Corporation

Chapter 3

Debugging Your Application

RUNNING NI-488.2 TOSE ..eiiiiiiiiiii ittt e et e e e e e e et aeeeaaaaeas 3-1
Debugging with the Global Status Variablescccccoiiiiiiiiiiie 3-1
Debugging With IBIC 488.2coeiiiiiiiiiiiee e 3-1
GPIB EITOr COUEBS....uuiiiii i e e e e e e e e e e 3-2
CoNfIQUIALION EITOIS...cciiiiiii ettt e e e e e e e e eeeeas 3-3
TIMING EITOIS ettt et e e e e e ettt eeeeaaee e e e annes 3-3
COomMmMUNICALION EFTOIS ...vvviiiiiiiiicciee e 3-4

Repeat AdAreSSINGuuueeieiiiiiiiiiiiiee e 3-4
Termination Method ... 3-4
1070] 10110 ToT o I @ TUT=2S] 1T0] o 1SRRI 3-4
Chapter 4
Interface Bus Interactive Control Utility

OVEIVIEW ...ttt ettt ettt ettt e sttt e e e eab bt e e s et bt e e e s nbbe e e e e snsbneee e e mnd 4-1....

Example Using NI-488 FUNCLONScciiiiiiiieie et e e s e e e e e e e e e e e 4-1

[BIC 488.2 SYNTAX .vettieiuiiiiiieiiiiiite ettt e e sttt ee e s sttt e e s sttt e e e sebbeee e s abbe e e e s anbbeeeeennbeeeeeanees 4-4
NUMBDEE SYNEAX ...ttttitiiiiee et e e e e e e s s s e reeeeaeee s e s e snsenreees 4-5
S T To S}V] 7= D G ESRRRS 4-5
FNo [0 | LTSI} o] = VS 4-5

IBIC 488.2 Syntax for NI-488 FUNCHONScccceeiiiiiiiiiiiiieieeeee e st e e e e e e e e seeaeeaee s 4-6

IBIC 488.2 Syntax for NI-488.2 ROULINESccuviiiiiiiiie e e et e e e e ee e e e e 4-9

STALUS WOIG. .ttt e e sttt e e e et e e e s snbe e e e e s e 4-11....

(ST qo) g 1] o] g0 F=1 1 o] o PP PPRRR :11.....4

L0 U] o | PP PPPPPPPPY” .

Common NI-488 FUNCLONSuuiiiiiiiiiie ettt e et e s e 4-12
] 00 Lo U PSEPRRR 4-12
] o SRR 4-14
] o] o [PRSPPI 4-14

Common NI-488.2 Routines in IBIC 488.2.........c..ooviiiiiiiieieiiiiee ettt 4-15
=] OO PP 4-15
Send and SENALIS........uueiiiiiiiiiie e 4-15
RECEIVE ...t e e e e 4-16

AUXIIArY FUNCHIONS ... s s e e e e e e e e e e e e e e e e e e ae e e eeaeeeeseesenenrnnnnes 6.....4-1
Set (Select Device OF BOArd)ccoooiiieiiiiie e e 4-17
Help (Display Help Information)coooee i 4-17
I (Repeat Previous FUNCHON)ot 4-18
N* (Repeat FUNCLON N TIMES) ..uuuuuuiiiiiiiieieie i e e e e e ee e e eee e 4-18
$ (Execute INAIreCt Fil@)covvviieicie ettt 4-18

Buffer (Set Buffer Display MOUE)........uuuiiiiiiiiiiiieieie e 4-19

© National Instruments Corporation vii

NI-488.2 User Manual for MacOS

Chapter 5
GPIB Programming Techniques

Termination of Data TIraNSTEISc.eviiiiie e 5-1
High-Speed Data Transfers (HS488)ooioiiiiiiiiiieeee e 5-2
ENabling HSA88.........eeeeeeeee et 5-2
System Configuration Effects on HS488............oooiiiiiiiiiiiiiies 5-3
Waiting for GPIB ConditionSc..uuiiiiiiiiiieeiiiiieeee e 5-4
Device-Level Calls and Bus Management............cooouiiiiiiiieiieene e 5-4
Talker/Listener APPlICALIONScc.uuiiieiiiieiiie ittt 5-5
Waiting for Messages from the Controllerc.ocooceiiiiiiiniee e, 5-5
REQUESTING SEIVICE ... ittt e e 5-5
SerIAL POIING ..ttt e e 5:5.....
Service Requests from |IEEE 488 DEVICES........cccooiuiiieiiiiiiieiiiiiee e 5-6
Service Requests from IEEE 488.2 DEVICESccccuuiieiiiiiiieeiiieee e 5-6
Automatic Serial POIINGoouiiiiiiiiiie s 5-6
StUCK SRQ SEALE ... 5-7
Autopolling and INLEITUPLS........uvieiiiiiiieeee e 5-7
C “ON SRQ” Capabilityccooriumiiieiiiiiie e 5-8
SRQ and Serial Polling with NI-488 Device FUNCLIONSccccceeiiiiiieeeninne 5-8
SRQ and Serial Polling with NI-488.2 ROULINEScccoviiiiiieiiiiiiieiiiieeeee 5-9
Example 1: USINg FINARQSuuiiiiiiiiie ettt 5-10
Example 2: USING AlISPOIL........ooiiiiiie e 5-11
Parallel POIINGcooiiiiiie e 5-11....
Implementing a Parallel POll...........ccooiiii e 5-11
Parallel Polling with NI-488 FUNCLIONSooocviiiiiiieeeiee e, 5-12
Parallel Polling with NI-488.2 ROULINES.........cccoviiiiiiiiiiiiiee e 5-13
Chapter 6
GPIB Configuration Utility
OVEBIVIEW ..ttt sttt e ettt e s n e e sm et e em e e e st e nnne e e s e e s nnneeemnn 6-1.....
Running the Configuration ULIlItY............coooiiiiiiiiie e e e 6-1
Opening the Configuration ULIlityccevvviieeiiiiicceee e 6-1
Default ConfiguIationccoiiiiiiciiiieeir e e e e 6-3
(00T 011 (o] I 1 (=101 I PSP RPPTRR 6-4
[1= o TN = T = PP 6-4
GIODAI FramMe.....c.eieiiii s 6-5

NI-488.2 User Manual for MacOS viii © National Instruments Corporation

BUS/DEVICE FTAIMEueiieiieieee ettt e e e et e e st e e e e e e s na e e s st e s enaaas 6-6

Options for BUSES OF DEVICES.......uueiiiiiiaeeiiiiiiiiieeee e 6-8
Primary AdAreSsoooooiiieeee e 6-8
Secondary AAAreSSueeeieiiiaei i 6-8
Repeat AddreSSING ...cccoeaiiiiiiiieieeeee e 6-9
THMEOUL. ...ttt 6-9
EOS MOUESooiiiiiiiiie ittt 6-9
EOS BYLE ...ttt ettt e 6-9
OPptioNS fOr BUSES ONIYoiiiiiiiiiiiiiiiie et 6-10
BUS TIMING .ttt 6-10
TNT High Speed......c.cooviiiiiiiii e 6-10
DIMA e 6-10
System CoNtroller..........cooiiiiiiiii e 6-11
Assert REN when System (Controller)cccccceviiieennnnee. 6-11
UNAAAreSSING ...vvveeeiiiiiiiie ettt 6-11
Options fOr DEeVICES ONIYccoiiiiiiieiiiiiie e 6-11
RENAME DEVICEcciiiiiiiiiiiiiiee et 6-11
USE BUS ... 6-12
Exiting the Configuration ULooooiiiiii e 6-12
Appendix A
Status Word Conditions
Appendix B
Error Codes and Solutions
Appendix C
Customer Communication
Glossary
Index

© National Instruments Corporation ix NI-488.2 User Manual for MacOS

Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.

Figure 2-1.
Figure 2-2.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.

Tables

Table 1-1.
Table 1-2.
Table 1-3.
Table 2-1.
Table 3-1.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 6-1.
Table A-1.

Table B-1.

Linear and Star System Configuration..........ccccccooiiiiiiiiiiieiiiee s 1-5
Example of Multiboard System Setupcoooiiiiiiiiiiiiiee e 1-6
How the NI-488.2 Software Works with Your Systemccccccceeen. 1-9
General Program Shell Using NI-488 Device Functions........................ 2-7
General Program Shell Using NI-488.2 RoUtines............cccueeeieeeneiinnnns 2-13
Opening Screen of NI-488 CONfig........coovueiiieiiiiiieeiiiie e 6-2
Device Default Settings in NI-488 CoNfig.......ccccevviiiiiiiiniiiieeiieeeees 6-3
Help Frame in NI-488 COoNfig.......ccooiiiiiiiiiiiiee e 6-5
Manual Bus Association in NI-488 Configcccccveriiiiieeiiiiiiee e, 6-6
GPIB AAAreSS BitS.......vveiieiiiiiiiee ettt 1-2
GPIB Handshake LINES.........cooiiiiiiiiiiiiieeiiie st 1-3
GPIB Interface Management LiNeSveeiaiiiiiiiiiiiieeeeee e 1-4
Status Word (IDSta) LAYOULcooiiiiiiiiiieeieiee e 2-4
GPIB EITOr COUES ... eueiieiiiiiiie ettt 3-2
Syntax for Board-Level NI-488 Functions in IBIC 488.2...................... 4-6
Syntax for Device-Level NI-488 Functions in IBIC 488.2...........c......... 4-7
Syntax for NI-488.2 Routines in IBIC 488.2.........cccccoviiveeiniiiieeeee, 4-9
Auxiliary Functions in IBIC 488.2coooiiiiieiiiiiiie e 4-16
Bus/Device Options in NI-488 CONfigcoocoeeeeiiiiiieeiiiieeeeie e 6-7
StAtUS WOI BItS ..ceeeiiiiiiieiiiieeeee ettt A-1
GPIB ETOr COUBSutiiieeiitiiie ettt ettt e s e e e e B-1

NI-488.2 User Manual for MacOS X © National Instruments Corporation

About
This
Manual

This manual describes the features and functions of the NI-488.2
software for MacOS. This manual assumes that you are already familiar
with the Macintosh operating system.

How to Use This Manual Set

S=————

Getting Started
Manual

Installation and
Configuration

Novice Experienced
Users Users
—— R — =
NI-488.2 Function
NI-488.2 Application Reference Manual
User Manual for Development for MacOS
MacOS and Examples
Function
and Routine
Descriptions
-

Use the getting started manual that came with your kit to install and
configure your GPIB hardware and NI-488.2 software.

Use theNI-488.2User Manual for MacO$%o learn the basics of GPIB
and how to develop an application program. The user manual also
contains debugging information and detailed examples.

© National Instruments Corporation Xi NI-488.2 User Manual for MacOS

About This Manual

Use theNI-488.2Function Reference Manual for Mac®& specific
NI-488 function and NI-488.2 routine information, such as format,
parameters, and possible errors.

Organization of This Manual

This manual is organized as follows:

e Chapter 1]ntroduction gives an overview of GPIB and the
NI-488.2 software.

e Chapter 2Developing Your Applicatiorexplains how to develop
a GPIB application program using NI-488 functions and NI-488.2
routines.

e Chapter 3Debugging Your Applicatiordescribes several ways to
debug your application program.

« Chapter 4|nterface Bus Interactive Control Utilityintroduces
you toIBIC 488.2 , the interactive control utility you can use to
communicate with GPIB devices interactively.

e Chapter 5GPIB Programming Techniquedescribes techniques
for using some NI-488 functions and NI-488.2 routines in your
application program.

e Chapter 6 GPIB Configuration Utility contains instructions for
configuring the NI-488.2 software with that-488 Config utility.

« Appendix A, Status Word Conditiongives a detailed description
of the conditions reported in the status wabdta

« Appendix B,Error Codes and Solutionsists a description of each
error, some conditions under which it might occur, and possible
solutions.

¢ Appendix C,Customer Communicatigrontains forms you can
use to request help from National Instruments or to comment on our
products and manuals.

* TheGlossarycontains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

* Thelndexcontains an alphabetical list of key terms and topics in
this manual, including the page where you can find each one.

NI-488.2 User Manual for MacOS Xii © MNational Instruments Corporation

About This Manual

Conventions Used in This Manual

bold

italic

bold italic

monospace

bold monospace

italic monospace

<>

IEEE 488 and
IEEE 488.2

Macintosh

The following conventions are used in this manual.

Bold text denotes commands, menus, menu items, options, and screen
button names and checkboxes.

Italic text denotes emphasis, cross references, field names, or an
introduction to a key concept.

Bold italic text denotes a note, caution, or warning.

Text in this font denotes text or characters that you enter from the
keyboard. Sections of code, programming examples, and syntax
examples also appear in this font. This font is also used for the proper
name of disk drives, paths, directories, device names, variables, and for
statements taken from program code.

Bold text in this font denotes the messages and responses that the
computer automatically prints to the screen.

Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

Angle brackets enclose the name of a key on the keyboard—for
example, <Shift>.

IEEE 488andIEEE 488.2refer to the ANSI/IEEE Standard 488.1-1987
and the ANSI/IEEE Standard 488.2-1987, respectively, which define
the GPIB.

Macintosh refers to any computer using MacOS.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in th&lossary.

Related Documentation

The following documents contain information that you may find helpful
as you read this manual:

 ANSI/IEEE Standard 488.1-198[EEE Standard Digital Interface
for Programmable Instrumentation

« ANSI/IEEE Standard 488.2-198IEEE Standard Codes, Formats,
Protocols, and Common Commands

* Inside MacintoshApple Computer, Inc., Reading, MA, 1987

* Macintosh Programmer's Workshop, Version, ABple
Computer, Inc., Cupertino, CA, 1993

© National Instruments Corporation Xiii NI-488.2 User Manual for MacOS

About This Manual

« Metrowerks CodeWarrior User’'s Guid®&etrowerks, Inc.,
Mooers, NY

e FutureBASIC STAZ Software, Inc., Diamondhead, MS, 1996
« THINK C User's ManualSymantec Corp., Bedford, MA

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them.

To make it easy for you to contact us, this manual contains comment
and configuration forms for you to complete. These forms are in
Appendix C,Customer Communicatiomt the end of this manual.

NI-488.2 User Manual for MacOS Xiv © MNational Instruments Corporation

Chapter

Introduction

This chapter gives an overview of GPIB and the NI-488.2 software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB

(General Purpose Interface Bus), describes a standard interface for
communication between instruments and controllers from various
vendors. It contains information about electrical, mechanical, and
functional specifications. The GPIB is a digital, 8-bit parallel
communications interface with data transfer rates of 1 MB/s and above.
The bus supports one System Controller, usually a computer, and up to
14 additional instruments. The ANSI/IEEE Standard 488.2-1987
extends IEEE 488.1 by defining a bus communication protocol, a
common set of data codes and formats, and a generic set of common
device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends
out data messages. Listeners receive data messages. The Controller,
usually a computer, manages the flow of information on the bus. It
defines the communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital
voltmeter, for example, can be a Talker and a Listener. If your personal
computer has a National Instruments GPIB interface board and the
NI-488.2 software installed, it can function as a Talker, Listener, and
Controller.

© National Instruments Corporation 1-1 NI-488.2 User Manual for MacOS

Chapter 1 Introduction

Controller-In-Charge and System Controller

GPIB Addressing

You can have multiple Controllers on the GPIB, but only one Controller
at a time can be the active Controller, or Controller-In-Charge (CIC).
When a Controller is not active, it is considered an idle Controller.
Active control can pass from the current CIC to an idle Controller.
The System Controller, usually a GPIB interface board, is the only
device on the bus that can make itself the CIC.

All devices and boards connected to the GPIB must be assigned a
unique GPIB address. The Controller uses the addresses to identify each
device when sending or receiving data. A GPIB address is made up of
two parts: a primary address and an optional secondary address.

The primary address is a number in the range 0 to 30. The GPIB
Controller uses the primary address to form a talk or listen address that
is sent over the GPIB when communicating with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of

the GPIB address. A listen address is formed by setting bit 5, the LA
(Listen Active) bit of the GPIB address. For example, if a device is at
address 1, the Controller sends hex 41 (address 1 with bit 6 set) to make
the device a Talker. Because the Controller is usually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a
Listener. Table 1-1 shows the configuration of the GPIB address bits.

Table 1-1. GPIB Address Bits

Bit Position 7 6 5 4 3 2 1 0

Meaning

0 TA LA GPIB Primary Address (range 0 to 30

With some With some devices, you can use secondary addressing.

A secondary address is a number in the range hex 60 to hex 7E. When
secondary addressing is in use, the Controller sends the primary talk or
listen address of the device followed by the secondary address of the
device.

NI-488.2 User Manual for MacOS 1-2 © MNational Instruments Corporation

Chapter 1 Introduction

Sending Messages Across the GPIB

Devices on the bus communicate by sending messages. Signals and
lines transfer these messages across the GPIB interface, which consists
of 16 signal lines and eight ground return (shield drain) lines. The

16 signal lines are discussed in the following sections.

Data Lines

Eight data lines, DIO1 through DIO8, carry both data and command
messages.

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of
message bytes between devices. This process is a three-wire interlocked
handshake, and it guarantees that devices send and receive message

bytes on the data lines without transmission error. Table 1-2
summarizes the GPIB handshake lines.

Table 1-2. GPIB Handshake Lines

Line

Description

NRFD (not ready for data)

Listening device is ready/not ready to receive a mes
byte. Also used by the Talker to signal high-speed
transfers (HS488).

sage

NDAC (not data accepted

Listening device has/has not accepted a message i

yte.

DAYV (data valid)

Talking device indicates signals on data lines are st
(valid) data.

able

© National Instruments Corporation

1-3 NI-488.2 User Manual for MacOS

Chapter 1 Introduction

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the
bus. Table 1-3 summarizes the GPIB interface management lines.

Table 1-3. GPIB Interface Management Lines

Line

Description

ATN (attention)

Controller drives ATN true when it sends
commands and false when it sends data mess

ages.

IFC (interface clear)

System Controller drives the IFC line to initializ
the bus and make itself CIC.

e

REN (remote enable)

System Controller drives the REN line to place
devices in remote or local program mode.

SRQ (service request)

Any device can drive the SRQ line to
asynchronously request service from the Contrg

ller.

EOI (end or identify)

Talker uses the EOI line to mark the end of a d
message. Controller uses the EOI line when it
conducts a parallel poll.

ata

Setting Up and Configuring Your System

Devices are usually connected with a cable assembly consisting of
a shielded 24-conductor cable with both a plug and receptacle

connector at each end. With this design, you can link devices in a
linear configuration, a star configuration, or a combination of the two.
Figure 1-1 shows the linear and star configurations.

NI-488.2 User Manual for MacOS

1-4 © National Instruments Corporation

Chapter 1 Introduction

o——

Device A
E Device A Device D

o——3

Device B
Device C Device B Device C
Linear Configuration Star Configuration

Figure 1-1. Linear and Star System Configuration

Controlling More Than One Board

Multiboard drivers, such as the NI-488.2 driver for MacOS, can control
more than one interface board. Figure 1-2 shows an example of a
multiboard system configuratiogpib0 is the access board for the
voltmeter, andypibl is the access board for the plotter and printer.
The control functions of the devices automatically access their
respective boards.

© National Instruments Corporation 1-5 NI-488.2 User Manual for MacOS

Chapter 1 Introduction

One
Digital
Voltmeter
Plotter
Another =
GPIB
\=1=1%)
gpi bl
Printer

Figure 1-2. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for,
you must limit the physical distance between devices and the number of
devices on the bus. The following restrictions are typical:

A maximum separation of four meters between any two devices and
an average separation of two meters over the entire bus

A maximum total cable length of 20 m

* A maximum of 15 devices connected to each bus, with at least
two-thirds powered on

For high-speed operation, the following restrictions apply:

e All devices in the system must be powered on.

e Cable lengths should be as short as possible up to a maximum of
15 m of cable in each system.

e There must be at least one equivalent device load per meter of
cable.

NI-488.2 User Manual for MacOS 1-6 © MNational Instruments Corporation

Chapter 1 Introduction

If you want to exceed these limitations, you can use bus extenders to
increase the cable length or expanders to increase the number of device
loads. Extenders and expanders are available from National
Instruments.

The following sections describe the NI-488.2 software, which controls
the flow of communication on the GPIB.

NI-488.2 Software Components

The following section highlights important elements of the NI-488.2
software for MacOS and describes the function of each element.

NI-488.2 Driver and Driver Utilities

The NI-488.2 software includes the following driver and utility files:

e Read Me is a documentation file that contains important
information about the NI-488.2 software and a description of any
new features. Before you use the software, read this file for the
most recent information.

e NI-488.2 Installer is an application that installs the NI-488.2
software.

 NI-488INIT loads the appropriate drivers for installed National
Instruments GPIB interfaces. Thg-488 INIT is loaded into
memory when the Macintosh is booted

* NI-488 Config is a configuration utility that you can use to
examine or change the software settings.

e NI-488.2 Test is a software diagnostic utility.

e IBIC488.2 is an interactive control program that you use to
communicate with the GPIB devices interactively using NI-488.2
functions and routines. It helps you to learn the NI-488.2 routines
and to program your instrument or other GPIB devices.

* NI-DMA/DSP is a system extension that provides DMA
functionality through an RTSI connection to an NB-DMA2800 or
NB-DMA-8.

 TheEthernet folder contains utilities that are applicable if you
have a National Instruments GPIB-ENET.

e MacGPIB.shlb is a shared library that programmers can use to call
NI-488.2 routines.

© National Instruments Corporation 1-7 NI-488.2 User Manual for MacOS

Chapter 1 Introduction

C Language Files

IBDIAG NUBUS, IBDIAG PCI , andIBDIAG PCMCIA are hardware
diagnostic utilities.

PCI_GPIB is a native PowerMac device driver which supports the
PCI-GPIB interface.

PCCARD_GPIHs a native PowerMac device driver for PowerBooks
that adhere to PC Card 3.0.

The C LI Folder contains the following files relevant to programming
in THINK C, MPW C, and Metrowerks CodeWarrior C:

decl.h is a file containing useful variable and constant
declarations.

Devsamp.c is a device-level sample program.
Samp4882.c is a sample program using NI-488.2 calls.

MacGPIB68k(CodeWarrior).lib is a library file for Metrowerks
CodeWarrior compiler.

MacGPIB68k(ThinkC).lib is a library file for THINK C
compiler.

MacGPIB68k.o is a library file for MPW C compiler.

MacGPIB.shlb is a shared library for developing applications for
PowerPC.

FutureBASIC Language Files

The BASIC LI Folder contains the following files relevant to
programming in FutureBASIC:

NI-488.2 User Manual for MacOS

FutureBASIC GPIB Ll.lib is a library file loaded by your
FutureBASIC program.

FutureBASIC GPIBLI.GLBL is a global file that must be included
at the beginning of your program.

Devsamp.bas is a device-level sample program.
Samp4882.bas is a sample program using NI-488.2 calls.

1-8 © National Instruments Corporation

Chapter 1 Introduction

How the NI-488.2 Software Works with Your System

The NI-488.2 INIT is a device driver that is loaded at system startup.

Figure 1-3 shows how the NI-488.2 software works with your system
and your GPIB hardware.

IBIC 488.2 Utility for User
Using NI-488.2 OR Application
Commands Interactively Program

NI-488.2 Language Interface

A

Operating System
\ 4

NI-488.2 Driver

A
A4

GPIB Hardware Interface

Figure 1-3. How the NI-488.2 Software Works with Your System

© National Instruments Corporation 1-9 NI-488.2 User Manual for MacOS

Chapter

Developing Your Application

This chapter explains how to develop a GPIB application program using
NI-488 functions and NI-488.2 routines.

Choosing a Programming Method

Programs that need to communicate across the GPIB can access the
NI-488.2 driver using the NI-488.2 language interface.

Using the NI-488.2 Language Interface

Your NI-488.2 software includes two distinct sets of subroutines to
meet your application needs. For most application programs, the NI-488
functions are sufficient. You should use the NI-488.2 routines if you
have a complex configuration with one or more interface boards and
multiple devices.

The following sections discuss some differences between NI-488
functions and NI-488.2 routines.

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI-488
functions are probably sufficient for your programming needs. Some
other factors that make the NI-488 functions more convenient include
the following:

e With NI-488 asynchronous I/O functionddmda , ibrda , and
ibwrta), you can initiate an 1/0O sequence while maintaining
control over the CPU for non-GPIB tasks.

* NI-488 functions include built-in file transfer functiorisrfif and
ibwrtf).

« With NI-488 functions, you can control the bus in non-typical ways
or communicate with non-compliant devices.

© National Instruments Corporation 2-1 NI-488.2 User Manual for MacOS

Chapter 2

Developing Your Application

The NI-488 functions consist of high-level (or device) functions that
hide much of the GPIB management operations and low-level (or
board) functions that offer you more control over the GPIB than
NI-488.2 routines. The following sections describe these different
function types.

NI-488 Device Functions

Device functions are high-level functions that automatically execute
commands that handle bus management operations such as reading
from and writing to devices or polling them for status. If you use device
functions, you do not need to understand GPIB protocol or bus
management. For information about device-level calls and how they
manage the GPIB, refer fdevice-Level Calls and Bus Managemant
Chapter 5GPIB Programming Techniques.

NI-488 Board Functions

Board functions are low-level functions that perform rudimentary GPIB
operations. Board functions access the interface board directly and
require you to handle the addressing and bus management protocol. In
cases when the high-level device functions might not meet your needs,
low-level board functions give you the flexibility and control to handle
situations such as the following:

e Communicating with non-compliant (non-IEEE 488.2) devices
e Altering various low-level board configurations
¢ Managing the bus in non-typical ways

The NI-488 board functions are compatible with, and can be
interspersed within, sequences of NI-488.2 routines. When you use
board functions within a sequence of NI1-488.2 routines, you do not need
a prior call toibfind to obtain a board descriptor. You simply
substitute the board index as the first parameter of the board function
call. With this flexibility, you can handle non-standard or unusual
situations that you cannot resolve using NI-488.2 routines only.

NI-488.2 User Manual for MacOS 2-2 © MNational Instruments Corporation

Chapter 2 Developing Your Application

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access more than one
device, use the NI-488.2 routines. NI-488.2 routines can perform the
following tasks with a single call:

* Find all of the Listeners on the bus

* Find a device requesting service

» Determine the state of the SRQ line, or wait for SRQ to be asserted
* Address multiple devices to listen

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates the global variables
to reflect the status of the device or board that you are using. The status
word (bsta), the error variableilferr), and the count variables

(ibent andibentl) contain useful information about the performance

of your application program. Your program should check these
variables frequently. The following sections describe each of these
global variables and how you can use them in your application program.
You can print out the values of the global variables at any time while
the application is running.

Status Word—ibsta

All functions update a global status woildsta , which contains
information about the state of the GPIB and the GPIB hardware. Most
of the NI-488 functions return the value storedbsta . You can test

for conditions reported iibsta to make decisions about continued
processing, or you can debug your program by checdking after

each call.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain
condition is in effect. A bit value of zero (0) indicates that the condition
is not in effect. Each bit iilbsta can be set for NI-488 device calls
(dev), NI-488 board calls and NI-488.2 calls (brd), or both (dev, brd).

Table 2-1 shows the condition that each bit position represents, the bit
mnemonics, and the type of calls for which each bit can be set. For a
detailed explanation of each of the status conditions, refer to
Appendix A, Status Word Conditions

© National Instruments Corporation 2-3 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

Table 2-1. Status Word (ibsta) Layout

Bit Hex

Mnemonic | Pos. | Value Type Description
ERR 15 8000 dev, brd | GPIB error

TIMO 14 4000 dev, brd | Time limit exceeded
END 13 2000 dev, brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
CMPL 8 100 dev, brd | 1/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

The language header files included on your distribution disk contain the
mnemonic constants fdssta . You can check a bit position ibsta

by using its numeric value or its mnemonic constant. For example, bit
position 15 (hex 8000) detects a GPIB error. The mnemonic for this bit
is ERR. To check for a GPIB error, use either of the following
statements after each NI-488 function and NI-488.2 routine.

if (ibsta & ERR) gpiberr();
or
if (ibsta & 0x8000) gpiberr();

where gpiberr() is an error handling routine.

NI-488.2 User Manual for MacOS 2-4 © MNational Instruments Corporation

Chapter 2 Developing Your Application

Error Variahle—iberr

If the ERR bit is set in the status woiblsta), a GPIB error has
occurred. When an error occurs, the error type is specified by the value
in iberr

Note: The value iniberr is meaningful as an error type only when the ERR bit
is set, indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 3,
Debugging Your Applicatigror Appendix B,Error Codes and
Solutions.

Count Variahles—ibent and ibentl

The count variables are updated after each read, write, or command
function.ibecnt andibentl are both 32-bit integers. If you are reading
data, the count variables indicate the number of bytes read. If you are
sending data or commands, the count variables reflect the number of
bytes sent.

In your application program, you can use the count variables to
null-terminate an ASCII string of data received from an instrument. For
example, if data is received in an array of characters, you calscase

to null-terminate the array and print the measurement on the screen as
follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (/(ibsta & ERR)){
rdbuf[ibcnt] = "\0";
printf ("Read: %s\n", rdbuf);
}
else {

error();

}

ibcnt is the number of bytes received. Data begins in the array at index
zero (0); thereforehbent is the position for the null character that
marks the end of the string.

© National Instruments Corporation 2-5 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

Using IBIC 488.2 to Communicate with Devices

Before you begin writing your application program, you might want

to use the Interface Bus Interactive Control utiliBIC 488.2

With IBIC 488.2 , you communicate with your instruments from the
keyboard rather than from an application program. Before you develop
your GPIB application, you can us#®C 488.2 to learn how to
communicate with your instruments and to determine your
programming needs. For specific device communication instructions,
refer to the user manual that came with your instrument. For
information about usingBIC 488.2 and for detailed examples,

refer to Chapter 4interface Bus Interactive Control Utility

Writing Your NI-488 Application

Items to Include

This section discusses items you should include in your application
program, general program steps, and an NI-488 example. In this
manual, the example code is presented in C using the standard C
language interface. The NI-488.2 software includes the source code
for example NI-488 applications written in Ogvsamp.c) and in
FutureBASIC Devsamp.bas).

Include the following in your application program:

* For C applications, include the GPIB header fidesl.h . These
files contain variable and constant declarations as well as
declarations of structures.

e For FutureBASIC applications, the files
FutureBASIC GPIB LI.GLBL andFutureBASIC GPIB LI.LIB
must be included at the beginning of your program.

« Check for errors after each NI-488 function call.

*« Declare and define a function to handle GPIB errors. This function
takes the device offline and closes the application. If the function
is declared as follows:

void gpiberr (char *msg);/* function prototype */

then your application invokes the function as follows:
if (ibsta & ERR) {

gpiberr("GPIB error");

}

NI-488.2 User Manual for MacOS 2-6 © MNational Instruments Corporation

Chapter 2 Developing Your Application

NI-488 Program Shell

Figure 2-1 is a flowchart of the steps to create your application program
using device-level NI-488 functions.

(St)

Are All Devices
Open?

‘Yes
<
\ 4
Make a Device-Level Call
* Send Data to Device (i bwr t)
* Receive Data from Device (i br d)
« Clear Device (i bcl r)
« Serial Poll Device (i br sp)

and so on

v

Finished GPIB
Programming?

No

Yes
o
4

“

Close Device (i bonl) I

Y

Closed All
Devices?

* Yes
C End)

Figure 2-1. General Program Shell Using NI-488 Device Functions

© National Instruments Corporation 2-7 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device
functions in your program. This example configures a digital

multimeter, reads 10 voltage measurements, and computes the average
of these measurements.

Step 1. Open a Device

Your first NI-488 function call should be ibdev to open a device.
ud = ibdev(0, 1, 0, T10s, 1, 0);

if (ibsta & ERR) {

gpiberr(“ibdev error");

}

The input arguments of thiedev function are as follows:

e 0O—board index for GPIBO

e 1—primary GPIB address of the device

¢ 0—no secondary GPIB address for the device

e T10s—I/O timeout value (10 s)

¢ 1—send END message with the last byte when writing to device
* 0O—disable EOS detection mode

When you calibdev , the driver automatically initializes the GPIB by

sending an Interface Clear (IFC) message and placing the device in
remote programming state.

Step 2. Clear the Device

Clear the device before you configure the device for your application.
Clearing the device resets its internal functions to a default state.

ibclr(ud);
if (ibsta & ERR) {

gpiberr(“ibclr error");

}

NI-488.2 User Manual for MacOS 2-8 © MNational Instruments Corporation

Chapter 2 Developing Your Application

Step 3. Configure the Device

After you open and clear the device, it is ready to receive commands.
To configure the instrument, you send device-specific commands using
theibwrt function. Refer to the instrument user manual for the
command bytes that work with your instrument.

ibwrt(ud, "*RST; VAC; AUTO; TRIGGER 2; *SRE 16", 35L);
if (bsta & ERR) {
gpiberr("ibwrt error");

}

The programming instruction in this example resets the multimeter
(*RST). The meter is instructed to measure the volts alternating current
(VAQ using auto-rangingAUTQ, to wait for a trigger from the GPIB
interface board before starting a measuremeRIGGER 2), and to

assert the SRQ line when the measurement completes and the
multimeter is ready to send the resu8RE 16).

Step 4. Trigger the Device

If you configure the device to wait for a trigger, you must send a trigger
command to the device before reading the measurement value. Then
instruct the device to send the next triggered reading to its GPIB output
buffer.

ibtrg(ud);
if (ibsta & ERR) {
gpiberr("ibtrg error");

ibwrt(ud,"VAL1?", 5L);
if (ibsta & ERR) {

gpiberr(“ibwrt error");

© National Instruments Corporation 2-9 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

Step 5. Wait for the Measurement

After you trigger the device, the RQS bit is set when the device is ready
to send the measurement. You can detect RQS by usirigntiie

function. The second parameter indicates what you are waiting for.
Notice that thébwait function also returns when the 1/0O timeout value
is exceeded.

printf("Waiting for RQS...\n");

ibwait (ud, TIMO | RQS);

if (ibsta & (ERR | TIMO)) {
gpiberr(“ibwait error");

}
When SRQ has been detected, serial poll the instrument to determine if
the measured data is valid or if a fault condition exists. For IEEE 488.2

instruments, you can find out by checking the message available
(MAV) bit, bit 4 in the status byte that you receive from the instrument.

ibrsp (ud, &StatusByte);
if (ibsta & ERR) {
gpiberr(“ibrsp error");

if (!(StatusByte & MAVbit)) {
gpiberr("Improper Status Byte");
printf(" Status Byte = Ox%x\n", StatusByte);

NI-488.2 User Manual for MacOS 2-10 © MNational Instruments Corporation

Chapter 2 Developing Your Application

Step 6. Read the Measurement

If the data is valid, read the measurement from the instrument.
(AsciiToFloat is a function that takes a null-terminated string as input
and outputs the floating point number it represents.)

ibrd (ud, rdbuf, 10L);
if (ibsta & ERR) {
gpiberr("ibrd error");

rdbuf[ibentl] = "\0'; printf("Read: %s\n", rdbuf);
/* Output ==> Read: +10.98E-3 */

sum += AsciiToFloat(rdbuf);

Step 7. Process the Data

Repeat steps 4 through 6 in a loop until 10 measurements have been
read. Then print the average of the readings as shown:

printf("The average of the 10 readings is %f\n",
sum/10.0);

Step 8. Place the Device Offline

As a final step, take the device offline using ittwnl function.
ibonl (ud, 0);

© National Instruments Corporation 2-11 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

Writing Your NI-488.2 Application

This section discusses items you should include in an application
program that uses NI-488.2 routines, general program steps, and an
NI-488.2 example. In this manual the example code is presented in C
using the standard C language interface. The NI-488.2 software
includes the source code for example NI-488.2 applications written in
C (Samp4882.c), and FutureBASICSamp4882.bas).

Items to Include

Include the following in your application program:

NI-488.2 User Manual for MacOS

For C applications, include the GPIB header fdesl.h . These
file contain variable and constant declarations as well as
declarations of structures.

For FutureBASIC applications, the fifeitureBASIC GPIB
LI.GLBL andFutureBASIC GPIBLI.LIB must be included at the
beginning of your program.

Check for errors after each NI-488.2 routine.

Declare and define a function to handle GPIB errors. This function
takes the device offline and closes the application. If the function
is declared as follows:

void gpiberr (char *msg);/* function prototype */
then your application invokes the function as follows:
if (ibsta & ERR) {

gpiberr("GPIB error");

2-12 © National Instruments Corporation

NI-488.2 Program Shell

Chapter 2 Developing Your Application

Figure 2-2 is a flowchart of the steps to create your application program

using NI-488.2 routines.

C

Start

)

15

Initialize Specified GPIB
Interface (Sendl FC)

Low-Level

v

Are All Boards
Installed?

High-Level

\ 4

Make a Low-Level Call
« Address Devices to Listen (SendSet up)
« Send Data to Addressed Listener
(SendDat aByt es)
« Address Device to Talk (Recei veSet up)
« Receive Data from Addressed Talker
(RevRespMsg)
and so on

Make a High-Level Call

* Send Data to Device (Send)

» Receive Data from Device (Recei ve)

* Clear Device (Devd ear)

« Serial Poll Device (ReadSt at usByt e)
and so on

Finished GPIB

Programmiy

Yes

No

4

“

Close Board (i bonl)

Y

Are All Boards
Closed?

* Yes

No

C

End

)

Figure 2-2. General Program Shell Using NI-488.2 Routines

© National Instruments Corporation

NI-488.2 User Manual for MacOS

Chapter 2

Developing Your Application

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routines in
your program. This example configures a digital multimeter, reads 10
voltage measurements, and computes the average of these
measurements.

Step 1. Initialization

Use theSendIFC routine to initialize the bus and the GPIB interface
board so that the GPIB board is Controller-In-Charge (CIC). The only
argument ofSendIFC is the GPIB interface board number.

SendIFC(0);
if (ibsta & ERR) {
gpiberr("SendIFC error");

}

Step 2. Find All Listeners

Use theFindLstn routine to create an array of all of the instruments
attached to the GPIB. The first argument is the interface board number,
the second argument is the list of instruments that was created, the third
argument is a list of instrument addresses that the procedure actually
found, and the last argument is the maximum number of devices that the
procedure can find (that is, it must stop if it reaches the limit). The end
of the list of addresses must be marked withN@RADDRonstant,
which is defined in the header file that you included at the beginning of
the program.
for (loop = 0; loop <=30; loop++){

instruments[loop] = loop;

}
instruments[31] = NOADDR;
printf("Finding all Listeners on the bus...\n");
Findlstn(0, instruments, result, 30);
if (ibsta & ERR) {
gpiberr("FindLstn error");

NI-488.2 User Manual for MacOS 2-14 © MNational Instruments Corporation

Chapter 2 Developing Your Application

Step 3. Identify the Instrument

Send an identification query to each device for identification. For this
example, assume that all of the instruments are IEEE 488.2-compatible
and can accept the identification quetpN? . In addition, assume that
FindLstn found the GPIB interface board at primary address 0
(default) and, therefore, you can skip the first entry in¢kelt array.

for (loop = 1; loop <= num_Listeners; loop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {

gpiberr("Send error");

Receive(0, result[loop], buffer, 10L, STOPend);
if (ibsta & ERR) {

gpiberr("Receive error");

buffer[ibcntl] = "\0";

printf("The instrument at address %d is a %s\n",
resultfloop], buffer);

if (strncmp(buffer, "Fluke, 45", 9) == 0) {
fluke = result[loop];
printf("**** Found the Fluke ****\n");

break;

if (loop > num_Listeners) {
printf("Did not find the Fluke\n");
ibonl(0,0);

exit(1);

}

© National Instruments Corporation 2-15 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

The constankLend signals that the new line character with EOI is
automatically appended to the data to be sent.

The constan8TOPendindicates that the read is stopped when EOI is
detected.

Step 4. Initialize the Instrument

After you find the multimeter, use tibevClear routine to clear it. The
first argument is the GPIB board number. The second argument is the
GPIB address of the multimeter. Then send the IEEE 488.2 reset
command to the meter.

DevClear(0, fluke);
if (ibsta & ERR) {

gpiberr("DevClear error")

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {
gpiberr("Send *RST error");

}
sum = 0.0;

for(m =0; m<10; m++){
[* start of loop for Steps 5 through 8 */

Step 5. Configure the Instrument

After initialization, the instrument is ready to receive instructions. To
configure the multimeter, use ti$send routine to send device-specific
commands. The first argument is the number of the access board. The
second argument is the GPIB address of the multimeter. The third
argument is a string of bytes to send to the multimeter.

The bytes in this example instruct the meter to measure volts alternating
current YAQ using auto-rangingAUTQ, to wait for a trigger from the
Controller before starting a measuremehigger 2), and to assert

SRQ when the measurement has been completed and the meter is ready
to send the result$RE 16). The fourth argument represents the

number of bytes to be sent. The last argumigbdnd, is a constant

defined in the header file which te&nd to append a linefeed

NI-488.2 User Manual for MacOS 2-16 © MNational Instruments Corporation

Chapter 2 Developing Your Application

character, with EOI asserted, to the end of the message sent to the
multimeter.

Send (0, fluke, "VAC; AUTO; TRIGGER 2; *SRE 16", 29L,
NLend);
if (ibsta & ERR) {

gpiberr("Send setup error");

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for a trigger
before conducting a measurement. Now send a trigger command to the
multimeter. You could use therigger routine to accomplish this, but
because the Fluke 45 is IEEE 488.2-compatible, you can just send it the
trigger command‘TRG. TheVAL1? command instructs the meter to
send the next triggered reading to its output buffer.

Send(0, fluke, "*TRG; VAL1?", 11L, NLend);
if (ibsta & ERR) {
gpiberr("Send trigger error");

Step 7. Wait for the Measurement

After the meter is triggered, it takes a measurement and displays it on
its front panel and then asserts SRQ. You can detect the assertion of
SRQ using either th€estSRQ or WaitSRQ routine. If you have a

process that you want to execute while you are waiting for the
measurement, ugestSRQ. For this example, you can use theitSRQ
routine. The first argument WaitSRQ is the GPIB board number. The
second argument is a flag returnedvigyitSRQ that indicates whether

or not SRQ is asserted.

WaitSRQ(0, &SRQasserted);
if ({SRQasserted) {
gpiberr("WaitSRQ error");

© National Instruments Corporation 2-17 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

After you have detected SRQ, use HeadStatusByte routine to poll

the meter and determine its status. The first argument is the GPIB board
number, the second argument is the GPIB address of the instrument, and
the last argument is a variable tiRaiadStatusByte uses to store the
status byte of the instrument.

ReadStatusByte(0, fluke, &statusByte);

if (ibsta & ERR) {
gpiberr("ReadStatusByte error");

}

After you have obtained the status byte, you must check to see if the
meter has a message to send. You can do this by checking the message
available (MAV) bit, bit 4 in the status byte.

if (I(statusByte & MAVhit) {
gpiberr("Improper Status Byte");
printf("Status Byte = 0x%x\n", statusByte);

Step 8. Read the Measurement

Use theReceive function to read the measurement over the GPIB. The
first argument is the GPIB interface board number, and the second
argument is the GPIB address of the multimeter. The third argument is
a string into which th&eceive function places the data bytes from the
multimeter. The fourth argument represents the number of bytes to be
received. The last argument indicates thatRéesive message
terminates upon receiving a byte accompanied with the END message.

Receive(0, fluke, buffer, 10L, STOPend);
if (ibsta & ERR) {

gpiberr("Receive error");

bufferfibcnt] = "\0;
printf (Reading : %s\n", buffer);
sum += AsciiToFloat(buffer);

} /¥ end of loop started in Step 5 */

NI-488.2 User Manual for MacOS 2-18 © MNational Instruments Corporation

Chapter 2 Developing Your Application

Step 9. Process the Data

Repeat Steps 5 through 8 in a loop until 10 measurements have been
read. Then print the average of the readings as shown:

printf (" The average of the 10 readings is : %f\n",
sum/10);

Step 10. Place the Board Offline

Before ending your application program, take the board offline using
theibonl function.

ibonl(0,0);
Compiling, Linking, and Running

C Applications

Include the following C statement at the beginning of your application
program.

#include "decl.h"

The filedecl.h defines external variables and constants that you can
use in your application.

If your application requires prototypes, be sure to include the following
statement at the beginning of your application program:

#define PROTOTYPES

The GPIB status, error, and count information are returned in the
variablesbsta ,iberr , andibcnt , as described earlier in this chapter.

Do one of the following based on the type of your application and the
type of compiler you are using:

» For 68k applications compiled under Think C—Before compiling,
add the fileMacGPIB68K(ThinkC).lib to your project. Add Think
C libraries that support toolbox and string functions as well.

* For 68k applications compiled under Metrowerks CodeWarrior—
Before compiling, add the fillacGPIB68k(CodeWarrior).lib
to your project. Add CodeWarrior libraries that support toolbox and
string functions as well.

© National Instruments Corporation 2-19 NI-488.2 User Manual for MacOS

Chapter 2 Developing Your Application

¢ For 68k applications compiled under MPW C—Add the file
MacGPIB68k.o to the command that links your object module to
create the application.

¢ For native PowerPC applications—Use ta&GPIB.shlb shared
library located in th&xtensions folder.

FutureBASIC Applications

Place the following lines at the beginning of your application:
GLOBALS "FutureBASIC GPIB LI.GLBL"

END GLOBALS

INCLUDE "FutureBASIC GPIB LI.LIB"

NI-488.2 User Manual for MacOS 2-20 © MNational Instruments Corporation

Chapter

Debugging Your Application

This chapter describes several ways to debug your application program.

Running NI-488.2 Test

The software diagnostic telst-488.2Test verifies that the NI-488.2
software is installed and functioning with the GPIB board. For more
information abouiNI-488.2 Test , refer to the getting started manual
that came with your GPIB board.

Debugging with the Global Status Variables

After each function call to your NI-488.2 drivélssta , iberr ,ibcent
andibcntl are updated before the call returns to your application. You
should check for an error after each GPIB call. Refer to Chapter 2,
Developing Your Applicatigrfor more information about how to use
these variables within your program to automatically check for errors.

After you determine which GPIB call is failing and note the
corresponding values of the global variables, refer to Appendix A,
Status Word Conditionsnd Appendix BError Codes and Solutions
These appendixes will help you interpret the state of the driver.

Debugging with IBIC 488.2

If your application does not automatically check for and display errors,
you can locate an error by using the Interface Bus Interactive Control
utility, IBIC 488.2 . Simply issue the same functions or routines,

one at a time as they appear in your application program. Because
IBIC 488.2 returns the status values and error codes after each call,
you should be able to determine which GPIB call is failing. For more
information aboutBIC 488.2 , refer to Chapter 4Anterface Bus
Interactive Control Utility

© National Instruments Corporation 3-1 NI-488.2 User Manual for MacOS

Chapter 3 Debugging Your Application

After you determine which GPIB call is failing and note the
corresponding values of the global variables, refer to Appendix A,
Status Word Conditiongnd Appendix BError Codes and Solutions
These appendixes will help you interpret the state of the driver.

GPIB Error Codes

Table 3-1 lists the GPIB error codes. Remember that the error variable
is meaningful only when the ERR bit in the status variable is set. For a

detailed description of each error and possible solutions, refer to
Appendix B,Error Codes and Solutions

Table 3-1. GPIB Error Codes

Error iberr
Mnemonic Value Meaning
EDVR 0 Systemerror
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as required
EABO 6 I/0 operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 No DMA channel available
EOIP 10 Asynchronous 1/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position

NI-488.2 User Manual for MacOS

3-2 © National Instruments Corporation

Chapter 3 Debugging Your Application

Table 3-1. GPIB Error Codes (Continued)

Error iberr
Mnemonic Value Meaning
ETAB 20 Table problem
ELCK 21 Board or device is locked

Configuration Errors

Timing Errors

If your hardware and software settings do not match, one of the
following problems might occur:

» Application hangs on input or output functions
e Datais corrupted

If these problems occur, make sure that the GPIB hardware settings
match the NI-488.2 software settings for the interrupt request level and
the DMA channel. Refer to the getting started manual that came with
your kit for information on hardware and software default settings. For
instructions on how to view or modify the NI-488.2 software
configuration, refer to Chapter gPIB Configuration Utility

Several applications require customized configuration of the GPIB
driver. For example, you might want to terminate reads on a special
end-of-string character, or you might require secondary addressing. In
these cases, you can use either the configuration utility to permanently
reconfigure the driver or the NI-488config function to
programmatically modify the driver while your application is running.

If your application useibconfig , it will always work regardless of the
previous configuration of the driver. Refer to the description of
ibconfig in theNI-488.2 Function Reference Manual for Mact@$
more information.

If your application fails, but the same calls issuein are

successful, your program might be issuing the NI-488.2 calls too
quickly for your device to process and respond to them. This problem
can also result in corrupted or incomplete data.

A well-behaved IEEE 488 device should hold off handshaking and set
the appropriate transfer rate. If your device is not well behaved, you can

© National Instruments Corporation 3-3 NI-488.2 User Manual for MacOS

Chapter 3 Debugging Your Application

test for and resolve the timing error by single-stepping through your
program and inserting finite delays between each GPIB call. One way
to do this is to have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is
usually the best option. Your delays will be controlled by the device and
your application can adjust itself and work independently on any
platform. Other delay mechanisms will probably cause varying delay
times on different platforms.

Communication Errors

Repeat Addressing

Some devices require GPIB addressing before any GPIB activity.
Devices adhering to the IEEE 488.2 standard should remain in their
current state until specific commands are sent across the GPIB to
change their state. You might need to configure your NI-488.2 driver to
perform repeat addressing if your device does not remain in its currently
addressed state. Refer to ChapteGBJB Configuration Utility or to

the description oibconfig (optionlbcREADDR) in theNI-488.2

Function Reference Manual for Mac@®3 more information about
reconfiguring your software.

Termination Method

You should be aware of the data termination method that your device
uses. By default, your NI-488.2 software is configured to send EOI on
writes and terminate reads on EOI or a specific byte count. If you send
a command string to your device and it does not respond, it might be
because it does not recognize the end of the command. You might need
to send a termination message such as <CR> <LF> after a write
command as follows:

ibwrt(dev,"COMMAND\x0A\x0D",9);

Common Questions

What do | do if NI-488.2 Test fails with an error?

Refer to the getting started manual for specific information about what
might cause this test to fail.

NI-488.2 User Manual for MacOS 3-4 © MNational Instruments Corporation

Chapter 3 Debugging Your Application

How do | communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument
manufacturer. The command sequences you use are totally dependent
on the specific instrument. The documentation for each instrument
should include the GPIB commands you need to communicate with it.
In most cases, NI-488 device-level calls are sufficient for
communicating with instruments. Refer to Chaptdd@yeloping Your
Application for more information.

Can | use the NI-488 and NI-488.2 calls together in the same
application?

Yes, you can mix NI-488 functions and NI-488.2 routines.

What do | do if | have installed the NI-488.2 software and now my
Macintosh crashes upon startup?

Try changing the name of th&-488INIT toZNI-488INIT . Because
INITs load in alphabetical order, tlzi-488 INIT will load last,
preventing possible corruption from INITs that load after it. If changing
the name of th&ll-488INIT does not solve the problem, another INIT
file might have a conflict with th&lI-488 INIT . Try removing some

of your other INIT files. You can store them in a temporary folder, in
case you need to reload them later. If you are using System 7.5 or later,
you can use thExtensions Manager ~ control panel to disable certain
extensions and control panels.

What can | do to check for errors in my GPIB application?

Examine the value difista after each NI-488 or NI1-488.2 call. If a call
fails, the ERR bit ofbsta is set and an error code is storedbimt

For more information about global status variables, refer to Chapter 2,
Developing Your Applicatian

How can | use the files located in th&thernet folder?

You do not need to use the files in taernet folder unless you have
a National Instruments GPIB-ENET.

© National Instruments Corporation 3-5 NI-488.2 User Manual for MacOS

Chapter 3

Debugging Your Application

How do | uselBIC 488.2 *?

You can useBIC 488.2 to practice communication with your
instrument, troubleshoot problems, and develop your application
program. For instructions, refer to Chaptetterface Bus
Interactive Control Utility

How can | determine which type of GPIB board | have installed?

Run theNI-Boards configuration utility for information about the
GPIB boards installed in your computer.

What information should | have before | call National Instruments?

Before you contact National Instruments, note the results of the
diagnostic tesnI-488.2 Test and fill out the support forms in
Appendix C,Customer Communication

NI-488.2 User Manual for MacOS 3-6 © MNational Instruments Corporation

Chapter

Interface Bus
Interactive Control Utility

This chapter introduces you IBIC 488.2 , the interactive control
utility you can use to communicate with GPIB devices interactively.

Overview

With theIBIC 488.2 utility, you communicate with GPIB devices
through functions you enter at the keyboard. For specific information
about how to communicate with your particular device, refer to the
manual that came with the device. You canlBge488.2 to practice
communication with the instrument, troubleshoot problems, and
develop your application program.

One wayiBIC 488.2 helps you to learn about your instrument and to
troubleshoot problems is by displaying the following information on
your screen whenever you enter a command:

e The results of the status woritisfa) in hexadecimal notation
« The mnemonic constant of each bit seibita

e The mnemonic value of the error variable() if an error exists
(the ERR bit is set iibsta)

 The count value for each read, write, or command function
e The data received from your instrument

Example Using NI-488 Functions

This section shows how you might ug¢C 488.2 to test a sequence
of NI-488 device function calls. You do not need to remember the
parameters that each function takes. If you enter the function name
only, IBIC 488.2 prompts you for the necessary parameters.

© National Instruments Corporation 4-1 NI-488.2 User Manual for MacOS

Chapter 4 Interface Bus Interactive Control Utility

1. RuniBIC 488.2 by double-clicking on théBIC 488.2 icon.
Your screen should appear as follows:

IBIC 488.2.0ut

[0

Mational Instruments

IEEE 4338.2 Interfoace Bus |Interactive Conmtrol FProgram CIBICH

For the HMacintosh Family of Computers

o2 1987-1995, MHational Instruments Corp. Version 6.0

All Rights Reserwved
ik
=]

2. Useibdev to open a device, assign it to access baoaitaD |,
choose a primary address of 6 with no secondary address, set a
timeout of 10 s, enable the END message, and disable the EOS
mode:

sibdev

enter board index: 0

enter primary address: 6

enter secondary address: 0

enter timeout: 13

enter 'EOI on last byte' flag:

enter end-of-string mode/byte: 0
id = 32256

udo:

You could also input all the same information with ibdev
command as follows:

:iibdev0601310
id = 32256

udo:

NI-488.2 User Manual for MacOS 4-2 © MNational Instruments Corporation

© National Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

Clear the device as follows:
udO: ibclr
[0100] (cmpl)

Write the function, range, and trigger source instructions to your
device. Refer to the instrument's user manual for the command
bytes that work with your instrument.

udO: ibwrt

enter string: "*RST; VAC; AUTO; TRIGGER 2; *SRE
16"

[0100] (cmpl)

count: 35

or

ud0: ibwrt "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
[0100] (cmpl)

count: 35

Trigger the device as follows:

udo: ibtrg

[0100] (cmpl)

Wait for a timeout or for your device to request service. If the
current timeout limit is too short, u@mo to change it. Use the
ibwait command as follows:

ud0: ibwait
enter wait mask: TIMO RQS
[0900] (rgs cmpl)
or
ud0: ibwait TIMO RQS
[0900] (rgs cmpl)

Read the serial poll status byte. This serial poll status byte varies
depending on the device used.

udo: ibrsp
[0100] (cmpl)
Poll: 0x40 (decimal : 64)

4-3 NI-488.2 User Manual for MacOS

Chapter 4 Interface Bus Interactive Control Utility

8. Use the read command to display the data on the screen both in hex
values and their ASCII equivalents.

udo: ibrd

enter byte count:
[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30
2e 303034 3745 2b 30
Oa Oa
or
udO: ibrd 18
[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30
2e 303034 3745 2b 30
Oa Oa

18

NDCV 000
.0047E+0

NDCV 000
.0047E+0

9. Place the device offline as follows:

udo: ibonl

enter value: 0
[0100] (cmpl)

or

ud0: ibonl O

[0100] (cmpl)

10. Terminate théBIC 488.2

program by entering at the prompt or

choosingQuit from theFile menu.

IBIC 488.2 Syntax

When you enter commands IiBIC 488.2

, you can either include the

parameters, or the program prompts you for values. Some commands
require numbers as input values. Others might require you to input a

string.

NI-488.2 User Manual for MacOS 4-4

© MNational Instruments Corporation

Number Syntax

String Syntax

Address Syntax

Chapter 4 Interface Bus Interactive Control Utility

You can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbersYou must precede hex numbers by zero and x
(for example, 0xD).

Octal numbers-You must precede octal numbers by zero only (for
example, 015).

Decimal numbers-Enter the number only.

You can enter strings as an ASCII character sequence, octal bytes, hex
bytes, or special symbols.

ASCII character sequeneeYou must enclose the entire sequence in
guotation marks (for examplé#tst "). To include a quotation mark in
a string, precede it with a backslash (for examplig\'cd").

Octal bytes—You must use a backslash character followed by the octal
value. For example, octal 40 is representettbyand can be used in a
string as'ab\40cd"

Hex bytes—You must use a backslash character ang &ilowed by
the hex value. For example, hex 40 is representagdby and can be
used in a string dab\x40cd"

Special SymbotsSome instruments require special termination or
end-of-string (EOS) characters that indicate to the device that a
transmission has ended. The two most common EOS characters are
\r and\n .\r represents a carriage return charactenanepresents a
linefeed character. You can use these special characters to insert the
carriage return and linefeed characters into a string, as in

"F3R5T1\r\n"

Many of the NI-488.2 routines have an address or address list
parameter. An address is a 16-bit representation of the GPIB address of
a device. The primary address is stored in the low byte and the
secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address
of 0x6706. ANULL address is represented as Oxffff.

© National Instruments Corporation 4-5 NI-488.2 User Manual for MacOS

Chapter 4 Interface Bus Interactive Control Utility

IBIC 488.2 Syntax for NI-488 Functions

Table 4-1 and Table 4-2 summarize the syntax of NI-488 functions in
IBIC488.2 .vrepresents anumber, astdng represents a string that
you input. For more information about the function parameters, use the
IBIC 488.2 help feature or refer to tHe¢l-488.2 Function Reference
Manual for MacOS

Table 4-1. Syntax for Board-Level NI-488 Functions in IBIC 488.2

Syntax Description

ibbna brdname Change access board of device wiedeame is symbolic name
of new board

ibclr Clear specified device

ibconfig mn v Alter configurable parameters whenais mnemonic for a
configuration parameter or equivalent integer value

ibdevvvvvv Open an unused devidbedev parameters atgoard id , pad,

v sad, tmo, eos, eot

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

iblines Read the state of all GPIB control lines

iblnv v Check for presence of device on the GPIBaat, sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibpct Pass control

ibppc v Parallel poll configure

ibrd v Read data wheneis the bytes to read

ibrda v Read data asynchronously wheris the bytes to read

NI-488.2 User Manual for MacOS 4-6 © MNational Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

Table 4-1. Syntax for Board-Level NI-488 Functions in IBIC 488.2 (Continued)

Syntax Description
ibrdf flname Read data to file wheiftmname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsp Return serial poll byte
ibsad v Change secondary address
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibtrg Trigger selected device
ibwait mask Wait for selected event whengask is a hex, octal, or decimal
integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file whertname is pathname of file to write

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2

Syntax Description
ibcac v Become Active Controller
ibcmd string Send commands
ibcmda string Send commands asynchronously
ibconfig mn v Alter configurable parameters whenais mnemonic for a

configuration parameter or equivalent integer value

ibdma v Enable/disable DMA
ibeos v Change/disable EOS message
ibeot v Enable/disable END message

© National Instruments Corporation 4-7 NI-488.2 User Manual for MacOS

Chapter 4

Interface Bus Interactive Control Utility

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2 (Continued)

Syntax

Description

ibfind udname

Return unit descriptor wherginame is the symbolic name of a
board (for examplegpib0)

ibgts v Go from Active Controller to standby

ibist v Set/cleaiist

iblines Read the state of all GPIB control lines

iblnv v Check for presence of device on the GPIBaat, sad
ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibppc v Parallel poll configure

ibrd v Read data whereis the bytes to read

ibrda v Read data asynchronously wheris the bytes to read
ibrdf flname Read data to file whefftname is pathname of file to read
ibrpp Conduct a parallel poll

ibrsc v Request/release system control

ibrsv v Request service

ibsad v Change secondary address

ibsic Send interface clear

ibsre v Set/clear remote enable line

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

NI-488.2 User Manual for MacOS

4-8 © National Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2 (Continued)

Syntax Description
ibwait mask Wait for selected event whengask is a hex, octal, or decimal
integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file whertname is pathname of file to write

IBIC 488.2 Syntax for NI-488.2 Routines

Table 4-3 summarizes the syntax of NI-488.2 routindBlin 488.2

v represents a number asiting represents a stringddress
represents an address, anidrlist represents a list of addresses
separated by commas. For more information about the routine
parameters, use thBIC 488.2 help feature or refer to tHe¢l-488.2
Function Reference Manual for MacOS

Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2

Routine Syntax

Description

AllSpoll addrlist

Serial poll multiple devices

DevClear address

Clear a device

DevClearList addrlist

Clear multiple devices

EnableLocal addrlist

Enable local control

EnableRemote addrlist

Enable remote control

FindLstn addrlist limit

Find all Listeners

FindRQS addrlist

Find device asserting SRQ

PassControl address

Pass control to a device

PPoll

Parallel poll devices

© National Instruments Corporation 4-9

NI-488.2 User Manual for MacOS

Chapter 4

NI-488.2 User Manual for MacOS

Interface Bus Interactive Control Utility

Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2 (Continued)

Routine Syntax

Description

PPollConfig address line sense

Configure device for parallel poll

PPollUnconfig address

Unconfigure device for parallel poll

RcvRespMsg address string mode

Receive response message

ReadStatusByte address

Serial poll a device

Receive address count mode

Receive data from a device

ReceiveSetup address

Receive setup

ResetSys addrlist

Reset multiple devices

Send address string mode

Send data to a device

SendCmds string

Send command bytes

SendDataBytes addrlist string
mode

Send data bytes

SendIFC

Send interface clear

SendList addrlist string mode

Send data to multiple devices

SendLLO

Put devices in local lockout

SendSetup addrlist

Send setup

SetRWLS addrlist

Put devices in remote with lockout state

TestSys addrlist

Cause multiple devices to perform self te

TestSRQ

Test for service request

Trigger address

Trigger a device

TriggerList addrlist

Trigger multiple devices

WaitSRQ

Wait for service request

© MNational Instruments Corporation

Sts

Status Word

Chapter 4 Interface Bus Interactive Control Utility

In IBIC 488.2 , all NI-488 functions (excepbfind andibdev) and
NI-488.2 routines return the status wdwsta in two forms—a hex

value in square brackets and a list of mnemonics in parentheses. In the
following example, the status word is on the second line. It shows that
the device function write operation completed successfully:

udO: ibwrt "f2t3x"
[0100] (cmpl)

count: 5

udo:

For more information about the status word, refer to Chapter 2,
Developing Your Applicatian

Error Information

If an NI-488 function or NI1-488.2 routine completes with an el&iC
488.2 displays the relevant error mnemonic. In the following example,
an error condition EBUS has occurred during a data transfer.

udo: ibwrt "f2t3x"
[8100] (err cmpl)
error: EBUS

count: 1

udo:

In this example, the addressing command bytes could not be transmitted
to the device. This indicates that eitllerl is powered off, or the
GPIB cable is disconnected.

For a detailed list of the error codes and their meanings, refer to
Chapter 3Debugging Your Applicatian

© National Instruments Corporation 4-11 NI-488.2 User Manual for MacOS

Chapter 4 Interface Bus Interactive Control Utility

Count

When an /O function complete®IC 488.2 displays the actual
number of bytes sent or received, regardless of the existence of an error
condition.

If one of the addresses in an address list of an NI-488.2 routine is
invalid, then the error is EARG an@liC 488.2 displays the index of
the invalid address as the count.

The count has a different meaning depending on which NI-488 function
or NI-488.2 routine is called. Refer to the function descriptions in the
NI-488.2Function Reference Manual for Mac@@& the correct
interpretation of the count return.

Common NI-488 Functions

Following are some common NI-488 functions.

ibdev

Theibdev command initializes a device descriptor with the input
information.

With ibdev , you specify the following values:
e Access board for the device

e Primary address

e Secondary address

e Timeout setting

« EOT mode

« EOS mode

The following example showibdev opening an available device and
assigning it to accegmib0 (board =0) with a primary address of

6 (pad =6), a secondary address of hex 6dd(= 0x67), a timeout
of 10 s fmo=13), the END message enabledt(=1), and the EOS
mode disabledeps =0).

:ibdev 0 6 0x67 1310
id = 32256
udo:

NI-488.2 User Manual for MacOS 4-12 © MNational Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

If you useibdev without specifying parameten®IC 488.2 prompts
you for the input parameters as shown in the following example:

sibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0x67
enter timeout: 13
enter ‘EOI on last byte’ flag: 1
enter end-of-string mode/byte: 0
id = 32256

udo:

The following three distinct errors can occur with thdev call:

« EDVR—No device is available, the board index entered refers to a
nonexistent board (thatis, not 0, 1, 2, or 3), or no driver is installed.
The following example illustrates an EDVR error.

;ibdev4 6 0x67710
id=-1

[8000] (err)

error: EDVR (2)

« ENEB—The board index entered refers to a known board
(such as 0), but the driver cannot find the board.

» EARG—One of the last five parameters is an invalid value. The
ibdev call returns with a new prompt and the EARG error (invalid
function argument). If thébdev call returns with an EARG error,
you must identify which parameter is incorrect and use the
appropriate command to correct it. In the following exampde,

© National Instruments Corporation 4-13 NI-488.2 User Manual for MacOS

Chapter 4 Interface Bus Interactive Control Utility

has an invalid value. You can correct it withibpad call as
shown:

sibdev 0 66 0x67 710
id = 32256

[8100] (err cmpl)
error: EARG

udO: ibpad 6

previous value: 16

ibwrt

Theibwrt command sends data from one GPIB device to another.
For example, to send the six character data sE#@RHT1 from the
computer to a device, you enter the following string at the prompt as
shown in the following example:

ud0: ibwrt "F3R5T1"
[0100] (cmpl)

count: 6

The returned status word contains thel bit, which indicates a
successful I/0 completion. The byte coénindicates that all six
characters were sent from the computer and received by the device.

ibrd
Theibrd command causes a GPIB device to receive data from another
GPIB device. The following example acquires data from the device and

displays it on the screen in hex format and in its ASCII equivalent,
along with the status word and byte count.

udO: ibrd 20

[2100] (end cmpl)

count: 18

4e 44 435628303030 NDCV9000
2e30303437452b30 .0047E+0
0d Oa

NI-488.2 User Manual for MacOS 4-14 © MNational Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

Common NI-488.2 Routines in IBIC 488.2

Following are some common NI-488.2 routines in IBIC 488.2.

Set
You must use theet command before you can use NI-488.2 routines
in IBIC 488.2 . The syntax for this form of theet command is as
follows:
set 488.2 n
wheren represents a board number (for exampi®, for gpib0).
The488.2 prompt indicates that you are in NI-488.2 mode on baard
The following example shows how to enter into 488.2 mode on board
gpibo .
set 488.2 0
488.2 (0):

Send and SendList

TheSend routine sends data to a single GPIB device. You can use the
SendList command to send data to multiple GPIB devices. For
example, suppose you want to send the five character stbiNg

followed by the new line character with EOI. You want to send the
message from the computer to the devices at primary address 2 and 17.
To do this, enter theendList command at thd88.2 (0) promptas
shown in the following example:

488.2 (0): SendList 2, 17 "*IDN?" NLend
[0128] (cmpl cic tacs)

count: 6

The returned status word contains thel bit, which indicates a
successful I/O0 completion. The byte coénindicates that six

characters, including the added new line, were sent from the computer
and received by both devices.

© National Instruments Corporation 4-15 NI-488.2 User Manual for MacOS

Chapter 4

Receive

Interface Bus Interactive Control Utility

TheReceive routine causes the GPIB board to receive data from
another GPIB device. The following example acquires 10 data bytes
from the device at primary address 5. It stops receiving data when 10
characters have been received or when the END message is received.
The acquired data is then displayed in hex format along with its ASCII

equivalent. ThéBIC 488.2

program also displays the status word and

the count of transferred bytes.
488.2 (0): Receive 5 10 STOPend
[2124] (end cmpl cic lacs)

count: 5

48 65 6¢ 6¢C 6f Hello

Auxiliary Functions

Table 4-4 summarizes the auxiliary functions that you can use in
IBIC 488.2

Table 4-4. Auxiliary Functions in IBIC 488.2

£

Function Description

set udname Select active device or board what®ame is the symbolic nam
of the new device or board (for exampleyl orgpib0). Call
ibfind oribdev initially to open each board or device.

help [option] Display help information wheraption is any NI-488 or
NI-488.2 call. If you do not enter aiption , a menu of options|
appears.

! Repeat previous function.

- Turn display off.

+ Turn display on.

n* function Execute functiom times wherdunction represents the corregct
IBIC 488.2 function syntax.

n* | Execute previous functiomtimes.

NI-488.2 User Manual for MacOS

4-16 © National Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

Table 4-4. Auxiliary Functions in IBIC 488.2 (Continued)

Function Description

$ filename Execute indirect file wherilename is the pathname of a file
that containgBIC 488.2 functions to be executed.

print string Display string on screen whesging is an ASCII character
sequence, octal bytes, hex bytes, or special symbols.

buffer Set the type of display used for buffers.

[option]

e Exit.

q Quit.

Set (Select Device or Board)

Help (Display Help

You can use theet command to select 488.2 mode or to communicate
with a different device. The following example switches
communication from using NI-488.2 routines fmib0 to using a unit
descriptor ¢d0) previously acquired by aihdev call.

488.2 (0): set ud0

udo:

Information)

The help feature displays a menu of topics to choose from. Each topic
lists relevant functions and other information. You can access help for
a specific NI-488 function or NI-488.2 routine by typimgp followed

by the call name (for exampleelp ibwrt). Help describes the

function syntax for all NI-488 functions and NI-488.2 routines.

© National Instruments Corporation 4-17 NI-488.2 User Manual for MacOS

Chapter 4 Interface Bus Interactive Control Utility

| (Repeat Previous Function)

The! function repeats the most recent function executed. The following
example issues absic command and then repeats that same
command.

gpib0: ibsic
[0130] (cmpl cic atn)

gpib0: !
[0130] (cmpl cic atn)

n* (Repeat Function n Times)

Then* function repeats the execution of the specified funatitimes,
wheren is an integer. In the following example, the messagle is
sent five times to the device describedua .

ud0: 5*bwrt "Hello"

In the following example, the worndello is sent five times, 20 times,
and then 10 more times.

ud0: 5*ibwrt "Hello"
ud0: 20*!
ud0O: 10*!

Notice that the multiplier) does not become part of the function
name; that isijpwrt "Hello" is repeated 20 times, n&tibwrt
"Hello"

$ (Execute Indirect File)

The$ function reads a specified file and executesIBi@ 488.2

functions listed in that file, in sequence, as if they were entered in that
order from the keyboard. The following example executes the

IBIC 488.2 functions listed in the fileserfile

gpib0: $ userfile

The following example repeats the operation three times:
gpib0: 3*$ userfile

The display mode that is in effect before this function was executed can
be changed by functions in the indirect file.

NI-488.2 User Manual for MacOS 4-18 © MNational Instruments Corporation

Chapter 4 Interface Bus Interactive Control Utility

Buffer (Set Buffer Display Mode)

You can set the type of display used for buffers to control how much of
the buffer is displayed. Typmuffer 0 to turn off the display of all
buffers,buffer 1 to display the buffer in ASCII onhhuffer2 to
display the buffer in hex/ASCII, dwuffer 3 to display a brief
hex/ASCII display.

© National Instruments Corporation 4-19 NI-488.2 User Manual for MacOS

Chapter

GPIB Programming
Techniques

This chapter describes techniques for using some NI-488 functions and
NI-488.2 routines in your application program.

For more detailed information about each function or routine, refer to
the NI-488.2 Function Reference Manual for MacOS

Termination of Data Transfers

GPIB data transfers are terminated either when the GPIB EOI line is
asserted with the last byte of a transfer or when a preconfigured
end-of-string (EOS) character is transmitted. By default, the NI-488.2
driver asserts EOI with the last byte of writes and the EOS modes are
disabled.

You can use thiveot function to enable or disable the end of
transmission (EOT) mode. If EOT mode is enabled, the NI-488.2 driver
asserts the GPIB EOI line when the last byte of a write is sent out on the
GPIB. If it is disabled, the EOI line ot asserted with the last byte of

a write.

You can use thibeos function to enable, disable, or configure the EOS
modes. EOS mode configuration includes the following information:

e An EOS byte

e« EOS comparison method—This indicates whether the EOS byte
has seven or eight significant bits. For a 7-bit EOS byte, the eighth
bit of the EOS byte is ignored.

* EOS write method—If this is enabled, the NI-488.2 driver
automatically asserts the GPIB EOI line when the EOS byte is
written to the GPIB. For example, if the buffer passed into an
ibwrt call contains five occurrences of the EOS byte, the EOI line
is asserted as each of the five EOS bytes are written to the GPIB. If
theibwrt buffer does not contain an occurrence of the EOS byte,
the EOI line is not asserted (unless the EOT mode is enabled, in
which case the EOI line is asserted with the last byte of the write).

© National Instruments Corporation 5-1 NI-488.2 User Manual for MacOS

Chapter 5 GPIB Programming Techniques

e EOS read method—If this is enabled, the NI-488.2 driver
terminatesbrd , ibrda , andibrdf calls when the EOS byte is
detected on the GPIB, when the GPIB EOI line is asserted, or when
the specified count is reached. If the EOS read method is disabled,
ibrd ,ibrda , andibrdf calls terminate only when the GPIB EOI
line is asserted or the specified count has been read.

You can use thidconfig function to configure the software to inform
you whether or not the GPIB EOI line was asserted when the EOS byte
was read. Use thiecEndBitlsNormal option to configure the

software to report only the END bit ibsta when the GPIB EOI line

is asserted. By default, the NI-488.2 driver reports ENbsta when

either the EOS byte is read in or the EOI line is asserted during a read.

High-Speed Data Transfers (HS488)

National Instruments has designed a high-speed data transfer protocol
for IEEE 488 calledHS488 This protocol increases performance for
GPIB reads and writes up to 8 MB/s, depending on the speed of your
computer.

HS488 is a superset of the IEEE 488 standard; thus, you can mix
IEEE 488.1, IEEE 488.2, and HS488 devices in the same system. If
HS488 is enabled, the TNT4882C hardware implements high-speed
transfers automatically when communicating with HS488 instruments.
If you attempt to enable HS488 on a GPIB board that does not have the
TNT4882C chip, the error ECAP is returned.

Enabling HS488

To enable HS488 for your GPIB board, useititenfig function
(optionlbcHSCableLength). The value passed tioconfig should
specify the number of meters of cable in your GPIB configuration. If
you specify a cable length that is much smaller than what you actually
use, the transferred data could become corrupted. If you specify a cable
length longer than what you actually use, the data is transferred
successfully, but more slowly than if you specified the correct cable
length.

In addition to usindbconfig to configure your GPIB board for
HS488, the Controller-In-Charge must send out GPIB command bytes
(interface messages) to configure other devices for HS488 transfers.

NI-488.2 User Manual for MacOS 5-2 © MNational Instruments Corporation

Chapter 5 GPIB Programming Techniques

If you are using device-level calls, the NI-488.2 software automatically
sends the HS488 configuration message to devices. If you enabled the
HS488 protocol in the configuration utility, the NI-488.2 software
sends out the HS488 configuration message when yoibdse to

bring a device online. If you caliconfig to change the GPIB cable
length, the NI-488.2 software sends out the HS488 message again the
next time you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you
want to configure devices for high-speed, you must send the HS488
configuration messages usiibgmd or SendCmds. The HS488
configuration message is made up of two GPIB command bytes. The
first byte, the Configure Enable (CFE) message (hex 1F), places all
HS488 devices into their configuration mode. Non-HS488 devices
should ignore this message. The second byte is a GPIB secondary
command that indicates the number of meters of cable in your system.
Itis called the Configure (CFGn) message. Because HS488 can operate
only with cable lengths of 1 to 15 meters, only CFGn values of 1
through 15 (hex 61 through 6F) are valid. If the cable length was
configured correctly in the configuration utility, you can determine

how many meters of cable are in your system by calliagk (option
IbaHSCableLength) in your application program. For CFE and CFGn
messages, refer to Appendix Kultiline Interface Message# the
NI-488.2 Function Reference Manual for MacOS

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and
GPIB system setup. For example, even though the theoretical maximum
transfer rate with HS488 is 8 MB/s, the maximum transfer rate
obtainable on Macintosh computers with a NuBus is 2 MB/s. The same
IEEE 488 cabling constraints for a 350 ns T1 delay apply to HS488. As
you increase the amount of cable in your GPIB configuration, the
maximum data transfer rate using HS488 decreases. For example, two
HS488 devices connected by two meters of cable can transfer data faster
than three HS488 devices connected by four meters of cable.

© National Instruments Corporation 5-3 NI-488.2 User Manual for MacOS

Chapter 5

GPIB Programming Techniques

Waiting for GPIB Conditions

You can use thébwait function to obtain the curreiitsta value or

to suspend your application until a specified condition occurs on the
GPIB. If you usdbwait with a parameter of zero, it immediately
updatesbsta and returns. If you want to u#svait to wait for one

or more events to occur, then pass a wait mask to the function. The wait
mask should always include the TIMO event; otherwise, your
application is suspended indefinitely until one of the wait mask events
occurs.

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB
management for your application program. However, the NI-488.2
driver can handle bus management only when the GPIB interface board
is CIC (Controller-In-Charge). Only the CIC is able to send command
bytes to the devices on the bus to perform device addressing or other
bus management activities. Use one of the following methods to make
your GPIB board the CIC:

e If your GPIB board is configured as the System Controller
(default), it automatically makes itself the CIC by asserting the
IFC line the first time you make a device-level call.

e If your setup includes more than one Controller, or if your GPIB
interface board is not configured as the System Controller, use the
CIC Protocol method. To use the protocol, issueitibanfig
function (optionlbcCICPROT) or use the configuration utility to
activate the CIC protocol. If the interface board is not CIC and you
make a device-level call with the CIC Protocol enabled, the
following sequence occurs.

The GPIB interface board asserts the SRQ line.
The current CIC serial polls the board.

N

3. The interface board returns a response byte of hex 42.
4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2 driver returns the
ECIC error code to your application. This error can occur if the current

CIC does not understand the CIC Protocol. If this happens, you could

send a device-specific command requesting control for the GPIB board.
Then use a board-levigwait command to wait for CIC.

NI-488.2 User Manual for MacOS 5-4 © MNational Instruments Corporation

Chapter 5 GPIB Programming Techniques

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also
use the NI-488.2 software in most non-Controller situations. These
situations are known as Talker/Listener applications because the
interface board is not the GPIB Controller. A typical Talker/Listener
application waits for events from the Controller and responds as
appropriate. The following paragraphs describe some programming
techniques for Talker/Listener applications.

Waiting for Messages from the Controller

A Talker/Listener application typically usésvait with a mask of 0

to monitor the status of the interface board. Then, based on the status
bits set inibsta , the application takes whatever action is appropriate.
For example, the application could monitor the status bits TACS
(Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The
application could also monitor the DCAS (Device Clear Active State)
and DTAS (Device Trigger Active State) bits to determine if the
Controller has sent the device clear (DCL or SDC) or trigger (GET)
messages to the interface board. If the application detects a device clear
from the Controller, it might reset the internal state of message buffers.
If it detects a trigger message from the Controller, the application might
begin an operation such as taking a voltage reading if the application is
actually acting as a voltmeter.

Requesting Service

Another type of event that might be important in a Talker/Listener
application is the serial poll. A Talker/Listener application can call
ibrsv with a serial poll response byte when it needs to request service
from the Controller.

Serial Polling

You can use serial polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ line is
asserted, it signals the Controller that a service request is pending. The
Controller then determines which device asserted the SRQ line and
responds accordingly. The most common method for SRQ detection and
servicing is the serial poll.

© National Instruments Corporation 5-5 NI-488.2 User Manual for MacOS

Chapter 5

GPIB Programming Techniques

Service Requests from IEEE 488 Devices

IEEE 488 devices request service from the GPIB Controller by
asserting the GPIB SRQ line. When the Controller acknowledges the
SRQ, it serial polls each open device on the bus to determine which
device requested service. Any device requesting service returns a status
byte with bit 6 set and then unasserts the SRQ line. Devices not
requesting service return a status byte with bit 6 cleared. Manufacturers
of IEEE 488 devices use lower order bits to communicate the reason for
the service request or to summarize the state of the device.

Service Requests from IEEE 488.2 Devices

The IEEE 488.2 standard refined the bit assignments in the status byte.
In addition to setting bit 6 when requesting service, IEEE 488.2 devices
also use two other bits to specify their status. Bit 4, the Message
Available bit (MAV), is set when the device is ready to send previously
queried data. Bit 5, the Event Status bit (ESB), is set if one or more of
the enabled IEEE 488.2 events occurs. These events include power-on,
user request, command error, execution error, device-dependent error,
query error, request control, and operation complete. The device can
assert SRQ when ESB or MAV are set, or when a manufacturer-defined
condition occurs.

Automatic Serial Polling

You can enable automatic serial polling if you want your application to
conduct a serial poll automatically any time the SRQ line is asserted.
You can use autopolling with NI-488 device-level calls only. The
autopolling procedure occurs as follows.

1. To enable autopolling, use the configuration utility or the
configuration functionijpconfig ~ with optionlbcAUTOPOLL.
(By default, autopolling is enabled.)

2. Whenthe SRQ line is asserted, the driver automatically serial polls
the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored
in a queue associated with the device that sent it. The RQS bit of
the device status worihsta , is set.

4. The polling continues until SRQ is unasserted or an error condition
is detected.

NI-488.2 User Manual for MacOS 5-6 © MNational Instruments Corporation

Chapter 5 GPIB Programming Techniques

5. To empty the queue, use thesp function.ibrsp returns the first
gueued response. Other responses are read in first-in-first-out
(FIFO) fashion. If the RQS bit of the status word is not set when
ibrsp is called, a serial poll is conducted and returns whatever
response is received. You should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded
if the queue is full.

6. If the RQS bit of the status word is still set aftesp is called,
the response byte queue contains at least one more response byte.
If this happens, you should continue to dadép until RQS is
cleared.

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ,
the driver serial polls all open devices connected to that board. The
serial poll continues until either SRQ unasserts or all the devices have
been polled.

If no device responds positively to the serial poll, or if SRQ remains in
effect because of a faulty instrument or cablstuck SRGtate is in
effect. If this happens during &wait for RQS, the driver reports the
ESRQ error. If thestuck SRGtate happens, no further polls are
attempted until anothéswait for RQS is made. Whenevibwait is
issued, thestuck SRGtate is terminated and the driver attempts a new
set of serial polls.

Autopolling and Interrupts

If autopolling is enabled, the NI-488.2 software can perform
autopolling after any device-level NI-488 call as long as no GPIB I/O
is currently in progress. This means that an automatic serial poll can
occur even when your application is not making any calls to the
NI-488.2 software. Autopolling can also occur when a device-level
ibwait for RQS is in progress. Autopolling is not allowed whenever an
application calls a board-level NI-488 function or any NI-488.2 routine,
or thestuck SREESRQ) condition occurs.

If autopolling is enabled and interrupts are disabled, you can use
autopolling in the following situations only:
* During a device-levebwait for RQS

 Immediately after a device-level NI-488 function is completed,
before control is returned to the application program

© National Instruments Corporation 5-7 NI-488.2 User Manual for MacOS

Chapter 5

GPIB Programming Techniques

C “ON SRQ” Capability

C applications can respond asynchronously to SRQ using the NI-488
ibsrg function. This function lets an application specify an
SRQ-handling routine that is called whenever the NI-488.2 driver
detects that the SRQ line is asserted. This SRQ-handling routiog is
an interrupt service routine. The driver checks the GPIB SRQ line after
any NI-488 function or NI-488.2 routine has completed, and if SRQ is
asserted and the application has calbady , the user-defined
SRQ-handling routine is called.

SRQ and Serial Polling with NI-488 Device Functions

You can use the device-level NI-488 functibrsp to conduct a serial
poll. ibrsp conducts a single serial poll and returns the serial poll
response byte to the application program. If automatic serial polling is
enabled, the application program can ibs&it to suspend program
execution until RQS appears in the status wiigda . The program

can then calibrsp to obtain the serial poll response byte.

The following example illustrates the use of theait andibrsp
functions in a typical SRQ servicing situation when automatic serial
polling is enabled.

#include "decl.h"
char GetSerialPolIResponse (int DeviceHandle)
{
char SerialPollResponse = 0;
ibwait (DeviceHandle, TIMO | RQS);
if (ibsta & RQS) {
printf ("Device asserted SRQ.\n");

[* Use ibrsp to retrieve the serial poll
response. */

ibrsp (DeviceHandle, &SerialPollIResponse);

}

return SerialPollResponse;

NI-488.2 User Manual for MacOS 5-8 © MNational Instruments Corporation

Chapter 5 GPIB Programming Techniques

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2 software includes a set of NI-488.2 routines that you
can use to conduct SRQ servicing and serial polling. Routines
pertinent to SRQ servicing and serial polling ali§poll , FindRQS,
ReadStatusByte , TestSRQ, andWaitSRQ.

AllSpoll can serial poll multiple devices with a single call. It places
the status bytes from each polled instrument into a predefined array.
Then you must check the RQS bit of each status byte to determine
whether that device requested service.

ReadStatusByte is similar toAllSpoll , except that it serial polls only
a single device. It is also analogous to the device-level Nliz88
function.

FindRQS serial polls a list of devices until it finds a device that is
requesting service or until it has polled all of the specified devices. The
routine returns the index and status byte value of the device requesting
service.

TestSRQ determines whether the SRQ line is asserted or unasserted,
and returns to the program immediately.

WaitSRQ is similar toTestSRQ, except thawvaitSRQ suspends the
application program until either SRQ is asserted or the timeout period
is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then
determine which device requested service. In these examples three
devices are present on the GPIB at addresses 3, 4, and 5, and the GPIB
interface is designated as bus index 0. The first exampleFugEsS

to determine which device is requesting service and the second example
usesAllSpoll to serial poll all three devices. Both examples use
WaitSRQ to wait for the GPIB SRQ line to be asserted.

Note: Automatic serial polling is not used in these examples because you cannot
use it with NI-488.2 routines.

© National Instruments Corporation 5-9 NI-488.2 User Manual for MacOS

Chapter 5 GPIB Programming Techniques

Example 1: Using FindRQS

This example illustrates the userfidRQS to determine which device
is requesting service.

void GetASerialPollIResponse (char *DevicePad,
char *DeviceResponse)

char SerialPollResponse = 0;

int WaitResult;

Addr4882_t Addrlist[4] = {3,4,5,NOADDRY;

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf ("SRQ is asserted.\n");

/* Use FindRQS to find a device that requested service.
*

FindRQS (0, AddrList, &SerialPollResponse);

if (!(ibsta & ERR)) {
printf ("Device at pad %x returned byte %x.\n",
AddrList[ibcnt],(int) SerialPollResponse);
*DevicePad = AddrList[ibcnt];

*DeviceResponse = SerialPollIResponse;

return;

NI-488.2 User Manual for MacOS 5-10 © MNational Instruments Corporation

Chapter 5 GPIB Programming Techniques

Example 2: Using AllSpoll

This example illustrates the useAfSpoll to serial poll three
devices.

void GetAllSerialPollResponses (Addr4882_t AddrList([],
short ResponseList(]

{
int WaitResult;
WaitSRQ (0, &WaitResult);
if (WaitResult) {
printf ("SRQ is asserted.\n");

/* Use Allspoll to serial poll all the devices at once.

*/

AllSpoll (0, AddrList, ResponselList);
if (!(ibsta & ERR)) {
for (i = 0; AddrList[i] '= NOADDR; i++) {
printf ("Device at pad %x returned byte %x.\n",
AddrList[i], ResponseList[i]);
}
}

}

return;

Parallel Polling

Although parallel polling is not widely used, it is a useful method for
obtaining the status of more than one device at the same time. The
advantage of a parallel poll is that it can easily check up to eight
individual devices at once. In comparison, eight separate serial polls
would be required to check eight devices for their serial poll response
bytes.

Implementing a Parallel Poll

You can implement parallel polling with either NI-488 functions or
NI-488.2 routines. If you use NI-488.2 routines to execute parallel

© National Instruments Corporation 5-11 NI-488.2 User Manual for MacOS

Chapter 5 GPIB Programming Techniques

polls, you do not need extensive knowledge of the parallel polling
messages. However, you should use the NI-488 functions for parallel
polling when the GPIB board is not the Controller and must configure
itself for a parallel poll and set its own individual status isit (.

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI-488
functions. Each step contains example code.

1. Configure the device for parallel polling using thygoc function,
unless the device can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number,
theist sense, and whether or not the function configures or
unconfigures the device for the parallel poll. The bit pattern is as
follows:

011ESD2D1DO0

E is 1 to disable parallel polling and 0 to enable parallel polling for
that particular device.

Sis 1 if the device is to assert the assigned data line isthen 1,
and 0 if the device is to assert the assigned data line isthen O.

D2 through DO determine the number of the assigned data line.
The physical line number is the binary line number plus one. For
example, DIO3 has a binary bit pattern of 010.

The following example code configures a device for parallel
polling using NI-488 functions. The device asserts DIO7 if its
ist =0.

In this example, thibdev command is used to open a device that
has a primary address of 3, has no secondary address, has a timeout
of 3 s, asserts EOI with the last byte of a write operation, and has
EOS characters disabled.

#include "decl.h"
char ppr;
dev = ibdev(0,3,0,T3s,1,0);

[* Pass the binary bit pattern, 0110 110 or hex 66,
to ibppc. */

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you
should still use thibppc function. Pass the board index or a board
unit descriptor value as the first argumentojppc . In addition, if

NI-488.2 User Manual for MacOS 5-12 © MNational Instruments Corporation

Chapter 5 GPIB Programming Techniques

the individual status biigt) of the board needs to be changed, use
theibist function.

In the following example, the GPIB board is to configure itself to
participate in a parallel poll. It asserts DIO5 whsetn = 1 if a
parallel poll is conducted.

ibppc(0, 0x6C);

ibist(0, 1);

Conduct the parallel poll usirigpp and check the response for a
certain value. The following example code performs the parallel
poll and compares the response to hex 10, which corresponds to
DIOS. If that bit is set, thist of the device is 0.

ibrpp(dev, &ppr);

if (ppr & 0x10) printf("ist = 0\n");

Unconfigure the device for parallel polling witippc . Notice that
any value having the parallel poll disable bit set (bit 4) in the bit
pattern disables the configuration, so you can use any value
between hex 70 and 7E.

ibppc(dev, 0x70);

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2
routines. Each step contains example code.

1.

© National Instruments Corporation

Configure the device for parallel polling using #olIConfig

routine, unless the device can configure itself for parallel polling.
The following example configures a device at address 3 to assert
data line 5 (DIO5) when itsst value is 1.

#include "decl.h"
char response;
Addr4882_t AddressList[2];

/* The following command clears the GPIB. */
SendIFC(0);

/* The value of sense is compared with the ist bit of
the device
and determines whetherthe dataline is asserted.*/

PPollConfig(0,3,5,1);

5-13 NI-488.2 User Manual for MacOS

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS

Conduct the parallel poll usirRpPoll, store the response, and
check the response for a certain value. In the following example,
because DIOS5 is asserted by the devidstif = 1, the program
checks bit 4 (hex 10) in the response to determine the valste of

PPoll(0, &response);

[*If response has bit 4 (hex 10) set, the ist bit of
the device

atthattimeis equalto 0. If it does not appear,
the ist

bitis equal to 1. Check the bit in the following
statement.*/
if (response & 0x10) {

printf("The ist equals 1.\n");
}
else {

printf("The ist equals 0.\n");
}

Unconfigure the device for parallel polling using the
PPollUnconfig ~ routine as shown in the following example. In this
example, the&N\OADDRonstant must appear at the end of the array
to signal the end of the address lisStNOADDRs the only value in
the array, all devices receive the parallel poll disable message.

AddressList[0] = 3;
AddressList[1] = NOADDR,;
PPollUnconfig(0, AddressList);

5-14 © National Instruments Corporation

Chapter

GPIB Configuration Utility

This chapter contains instructions for configuring the NI-488.2
software with theNI-488 Config utility.

Overview

You can use the GPIB configuration utilityl-488 Config , to view

or change the configuration settings of your NI1-488.2 software. With
NI-488 Config , you can change the default GPIB settings that your
interface board uses to communicate with other devices. The utility
edits the default GPIB configuration resources inNhé88INIT file.
Help is available on the screen for modifying the current settings.

For specific information about possible settings, refer to the getting
started manual that came with your GPIB interface board or box.

Running the Configuration Utility

This section contains information on running tiet88 Config
configuration utility. It explains how to use the utility and describes the
configuration settings that you can modify.

Opening the Configuration Utility

TheNI-488 Config ~ configuration utility appears in theontrol
Panels folder when you install your NI-488.2 software. Open the
Control Panels folder by choosingontrol Panelsfrom the

Apple Icon menu and seled\{l-488 Config.

TheNI-488 Config utility displays the currently defined values for
characteristics of a particular device or bus, such as addressing and
timeout information. Help for modifying the current settings is
available at the bottom of the window.

TheNI-488 Config ~ configuration utility consists of three frames,
arranged vertically and separated by a heavy line.

© National Instruments Corporation 6-1 NI-488.2 User Manual for MacOS

Chapter 6 GPIB Configuration Utility

S[I=————— NI4488 Lonfig
Mational Instruments GPIE Configuration Hility |:9| I:-“~| é E‘? L |:E|
(<] Auto Configure (zean bus) apib--3 o1 oz
Interface Type: [MuBus boards |
Bus /Device............ [gpibor | O ora
Frimary Address.. [O | | Systern Controller
Secondary Address [Mone] [€] #ssert REM when System
Timeaut................ | 10 zen I D Unaddressing
Bus Timing............ |NAT4882 Tirming | |:| Repeat Addressing

[read ENC on EOS

[write END on EOS

(] “write END on Last Byte
[=EitEos

[: Save Set :] [Load Set] EOS Buyte: El

Configuration Sets:

Help message box for each dialog itern. Refer to the User Manual for more
information. k

Figure 6-1. Opening Screen of NI-488 Config

The global and bus/device frames contain the configuration
characteristic settings. The help frame displays information about the
item over which the cursor is positioned.

Thelnterface Type andBus/Devicemenus affect the display of
configuration controls. For example, selecting a serial interface hides
the Auto Configure checkbox.

NI-488.2 User Manual for MacOS 6-2 © MNational Instruments Corporation

Default Configuratio

Chapter 6 GPIB Configuration Utility

Your NI-488.2 software is shipped with the following default
configurations:

The Auto Configure checkbox is selected.

All buses are configured as shown in the bus/device frame in
Figure 6-1.

All devices are configured similarly titevl shown in the

bus/device frame in Figure 6-2. The devidesl throughdev30

use bugpib0 and are at the primary addresses 1 through 30,
respectively. The devicev31l throughdev60 use bugpibl and

are at the primary addresses 1 through 30, respectively. The devices
dev6l throughdev64 use bugpib2 and are at the primary
addresses 1 through 4, respectively.

EO0=—————— NI-488 Config |
Natinal Instruments GPIE Configur ation Ltility é I:1| I:2| I:3| I:4| |:5|
(<] sute Configure (soan bus) apib—> O
Interface Type: [PCIclots |
Buz Device............ [de1
i 1
Primary Address... | Use Bus.... |gpibd

Secondary Address [Mone

Renarne Dewvice

|:| Repeat Addressing

Tireout. . [10 sec

FC1 Buffer |:| Fead EMD on EOS
[write END an EOS
(<] write END an Last Byte
[=Eiteos
Configuration Sets: EQS Byte: El

Save Set Load Set

© National Instruments Corporation

Figure 6-2. Device Default Settings in NI-488 Config

6-3 NI-488.2 User Manual for MacOS

Chapter 6 GPIB Configuration Utility

Control Items

NI-488 Config

Buz /Device............ [der1

[<] 'write END on Last Byte

EOS Byte: [0]

Help Frame

has the following four types of control items:

The rectangular boxes with drop shadows
and labels to the left have pop-up menus of
options. The currently selected option is
displayed in the box. To select an option
on the pop-up menu, click and hold down
the mouse button when the cursor is over
the box.

A checkbox is a small square box that
contains an X when selected and is labeled
at the right or on the top. An unselected
checkbox displays an alert box when
clicked.

A button is a rounded rectangular box.

An editable text box is a rectangular box
labeled to the left.

When you place the cursor over any configuration item, a help message
for that item appears in the help frame. Figure 6-3 shows the default
configuration for bugpib0 . The global frame shows the automatic
association of bugpib0 with a GPIB board installed in System slot 3
(NuBus slot xB). The cursor is positioneder theAuto Configure

checkbox and a corresponding help message appears in the help frame.

NI-488.2 User Manual for MacOS

© MNational Instruments Corporation

Chapter 6 GPIB Configuration Utility

Mational Instruments GFIE Configuration Utility I:9| I:-"-l é [ZI? % I:E|
E*Auto Confiqure (scan bus) apib—> a1z
Interface Type: [HuBus boards |

Bus /Device........... [apibo | [ora

Primary Address... [O |] System Controller
Secondary Address [None] [€] assert REN when Systemn
Timeout......ccoeeens [10 sec | [unaddressing

Bus Timing............ [NAT4252 Tirning | [] Repeat Addressing

[] Read END on EOS

[write EMD on EOS

(<] “write EMD on Last Byte
[=eitEos

Load Set E0S Byte:[_0]

Check to automnatically confiqure the bus to hatdware interface association.

Configuration Sets:

Figure 6-3. Help Frame in NI-488 Config

Global Frame

Thelnterface Type pop-up menu options let you switch the checkboxes
among interface types. ChooNeBus boardsfor boards, such as the
NB-GPIB-P/TNT or NB-GPIB-P, installed in a NuBus Macintosh.

The Serial box productsoption applies to the GPIB-422CT or
GPIB-232CT-A, theEthernet box products option applies to the
GPIB-ENET, and th&CSI box productsoption applies to the

GPIB-SCSI or GPIB-SCSI-A. For specific information on configuring
one of those products, refer to the getting started manual that came with
the product.

To the upper right of thimterface Type menu box is a row of interface
checkboxes with which you can associate an IEEE 488 bus. Slot
numbers appear above the checkboxes, and associated bus numbers, if
any, appear below the checkboxes. To manually associate a bus with an
interface, first unseledkuto Configure. When you select an interface
checkbox withAuto Configure selected, the next available bus is
assigned to it. Figure 6-4 shows the manual association of bus 0 to
System slot 3 (NuBus slot xB).

© National Instruments Corporation 6-5 NI-488.2 User Manual for MacOS

Chapter 6 GPIB Configuration Utility

S[I=————— NI488 Config
Mational Instruments GPIE Configuration Utility |:9| I:-"-l B |:C| |:D| |:E|
(] Auto Configure (sean bus) apib——> a
Interface Type: [MuBus boards |
Bus/Device............ [apibo | [cHa
Primary address... | O | B Systern
Secondary Address |None | E As=ett REM when Systemn
Timeaut.........coe... [10 zec | [unaddressing
Bus Timing............ [MaT4282 Timing | [Repeat Addressing

[read END on ECS

[write EMD on EOS

B2 write EMD on Last Byte
[=Eeiteos

|: Sawve Set] [Load Set :I EOS B'Jt‘?:ljl

Configuration Sets:

Check to associate Systern slot 3 (MuBus slot B) with the next free bus,

Figure 6-4. Manual Bus Association in NI-488 Config

Selecting theéAuto Configure checkbox in the global frame
automatically configures the buses according to the way the boards
are contained in the system. Wheuto Configure is checked, each
bus,gpib0 throughgpib7 , is associated with the next GPIB board
found by the Slot Manager when searching System slots 1 through 6
(NuBus slots 9 through E) and expansion slots x1 through x8
(NuBus slots 1 through 8). Select thato Configure checkbox unless
your application requires compatibility with older releases of the
NI-488.2 driver, where the naming conventions of the buses are
different. Donot check theAuto Configure checkbox if you want to
change the order that device-identifying software uses GPIB interfaces.

Bus/Device Frame

Items in the bus/device frame configure characteristics of a bus, a
device, or either. Table 6-1 lists the primary bus/device options
available inNI-488 Config . The sections following the table describe
the options in more detail.

NI-488.2 User Manual for MacOS 6-6 © MNational Instruments Corporation

Chapter 6 GPIB Configuration Utility

For information on product-specific options, such as3kgal or
IP Address pop-up boxes, refer to the getting started manual that
came with your GPIB hardware.

Table 6-1. Bus/Device Options in NI-488 Config

Option Type Default Setting
Primary Address Bus/Device 0
Secondary Address Bus/Device None
Timeout Bus/Device 10 sec
Read END on EOS Bus/Device Disabled
Write END on EOS Bus/Device Disabled
Write END on Last Byte Bus/Device Enabled
8-bit EOS Bus/Device Disabled
EOS Byte Bus/Device 0
Bus Timing Bus Only (Interface-specific)
TNT High Speed Bus Only Disabled
DMA Bus Only Disabled
System Controller Bus Only Enabled
Assert REN when System Bus Only Enabled
Unaddressing Bus Only Disabled
Repeat Addressing Bus/Device Disabled
Rename Device Device Only | devl-dev64
Use Bus Device Only | gpib0

© National Instruments Corporation 6-7 NI-488.2 User Manual for MacOS

Chapter 6

GPIB Configuration Utility

Options for Buses or Devices

Select the device or bus you want to configure fromBbg/Device
pop-up menu. The following sections describe the options available for
buses or devices. Also refer to the subsequent sediptisns for

Buses OnlyandOptions for Devices Only

Primary Address

Each device and bus must have unique primary addresses in the range
decimal 0 to decimal 30 (hex 1E). The primary GPIB address of any
device is set within that device, either with hardware switches or, in
some cases, a software program. This address must match the address
listed in the configuration utility. Refer to the device documentation for
instructions about the device address. The primary GPIB address of all
NI-488.2 driver buses is 0, unless changed by the configuration utility.
There are no hardware switches on the interface board to select the
GPIB address. Use thlirimary Address pop-up menu to select the
primary address of the bus or device.

Secondary Address

You must assign a secondary address in the range decimal 96 (hex 60)
to decimal 126 (hex 7E) to any device or bus using secondary
addressing. As with primary addressing, the secondary GPIB address of
any device is set within that device, either with hardware switches or,

in some cases, a software program. This address must match the address
listed in the configuration utility. Refer to your device documentation

for instructions. By default, secondary addressing is disabled for all
devices and boards unless you change it with the configuration utility.

Select the secondary address of the bus or device fro®etandary
Addresspop-up menu. The secondary addresses are displayed in three
formats: zero-based, decimal, and hexadecimal. Only the zero-based
format is displayed in the pop-up menu box. Seledingemeans that

only primary addressing is used for this bus or device. If you configure
any bus or device for secondary addressing, all buses and devices used
by the application must be configured for secondary addressing.

NI-488.2 User Manual for MacOS 6-8 © MNational Instruments Corporation

Chapter 6 GPIB Configuration Utility

Repeat Addressing

Normally, a device remains addressed after a read or write operation
is performed. However, some devices require addressing for each
operation. If you check theepeat Addressingbox, read or write
operations readdress the selected device even if the same operation
was just performed with that device.

Timeout

The timeout value is the approximate length of time that can elapse
before I/O functions complete. Select the 1/O timeout of the bus or
device from thelimeout pop-up menu. The abbreviations used in the
Timeout pop-up menu argusec(microseconds)nsec(milliseconds),
andsec(seconds). Selectindone means 1/O for this bus or device will
never time out.

EOS Modes

The following options determine how the device 1/O transmissions
terminate:

 Read END on EOS—-Some devices send an EOS byte signaling the
last byte of a data message. Checking this box causes the NI-488.2
software to terminate read operations when it receives the EOS
byte.

e Write END on EOS—Checking this box causes the NI-488.2
software to assert the EOI (send End) line when the EOS character
is sent.

* Write END on Last Byte—Some devices, as Listeners, require that
the Talker terminate a data message by asserting the EOI signal line
(sending END) with the last byte. Checking this box causes the
NI-488.2 software to assert EOI on the last data byte.

e 8-bit EOS—Along with the designation of an EOS charactaer, you
can specify whether all eight bits are compared to detect EOS, or if
just the seven least significant bits (ASCII or ISO format) are
compared to detect EOS.

EOS Byte

You can program some devices to terminate a read operation when a
selected character is detected. A linefeed character (decimal 10) is a
popular EOS character.

© National Instruments Corporation 6-9 NI-488.2 User Manual for MacOS

Chapter 6

GPIB Configuration Utility

Notice that to send the EOS character to a device in a write operation,
you must explicitly include that byte in your data string.

Enter the EOS byte (0 to 255) of the bus or device irEXD8 Byte
editable text box. To change the EOS byte, click inside the box, enter
the new number, and press the <return> key.

Options for Buses Only

Select the device you want to configure from Ehwes/Devicepop-up
menu. The following sections describe the available bus options. See
also the sectio®ptions for Buses or Devicesrlier in this chapter.

Bus Timing

This pop-up menu appears when configuring a bus associated with a
NAT4882-based interface, such as the NB-GPIB-P. You can use it to
specify the T1 delay of the board source handshake capability. This
delay determines the minimum interval following Ready for Data
(RFD) after which the board may assert Data Valid (DAV) during a
write or command operation. If the total length of the GPIB cable in the
system is less than 15 m and all devicesoareyou can choose the
sub-itemVery High (350 ns) from th& AT4882 Timing pop-up menu.
For total cable lengths greater than 15 m, chaase (2 us) orHigh

(500 ns) depending on the maximum capability of your particular
device.

TNT High Speed

If you are using a National Instruments TNT4882C-based interface,
such as the NB-GPIB-P/TNT, a second itdiN;T High Speed appears
enabled. Initially, the sub-itetdigh Speed Mode Disableds checked.

If your device is capable of 1-wire high-speed handshaking, you can
enable the HS488 high-speed protocol by choosing the sub-item
corresponding to the total GPIB cable length of your setup. For
maximum performance, select the sub-itéRIB cable is 1 meter

DMA

When theDMA box is checked, direct memory access hardware is used
for data transfers, freeing the CPU for other work. Uncheclotfia

box to transfer data using the CPU. DMA channels are allocated for
GPIB when you check theMA box or call theébdma function with

v =1 in an application program.

NI-488.2 User Manual for MacOS 6-10 © MNational Instruments Corporation

Chapter 6 GPIB Configuration Utility

System Controller

Generally, the NI-488.2 driver is the System Controller (SC). In some
situations, such as in a network of computers linked by the GPIB,
another device might be System Controller. SelectingStstem
Controller box designates the NI-488.2 driver as System Controller.
Unselecting the box designates that ihéd System Controller. Each

bus can have only one System Controller.

Assert REN when System (Controller)

Some devices must be in remote state to communicate over the GPIB.
Checking this box permits the driver to assert the Remote Enable
condition (REN) when it is System Controller, placing all instruments
subsequently addressed into remote state.

Unaddressing

Some devices must be unaddressed after each data or command
transfer. To force unaddressing commands to be sent at the end of
device functions, check tHénaddressingbox. (Unchecking the
Unaddressingbox slightly improves the performance of your
application, because unaddressing commands are not sent at the
end of device functions.)

Options for Devices Only

Select the device you want to configure from Bues/Devicepop-up
menu. The device is connected to the bus number that appears in the
Use Bustext box. The following sections describe the available device
options. See also the secti@ptions for Buses or Devicearlier in

this chapter.

Rename Device

You can rename the device displayed in Bus/Devicepop-up menu

by clicking theRename Devicédutton and entering the new name. This
feature is helpful when configuring a large number of devices, because
the new name of the device that you entered appears BuiBevice
pop-up menu. However, to avoid the confusion of naming and renaming
devices, use the NI-488 functidsdev in new applications to
dynamically configure new devices. You can isev to configure

the driver from your program instead of from the configuration utility.

© National Instruments Corporation 6-11 NI-488.2 User Manual for MacOS

Chapter 6 GPIB Configuration Utility

Use Bus

You can connect the device displayed onBlus/Devicepop-up menu

to a different bus by selecting the new bus fromulse Buspop-up

menu. The new bus humber appears to the left of the device name in the
Bus/Devicepop-up menu.

Exiting the Configuration Utility

To exit the configuration utility, click on the close box in the upper left
corner of the configuration screen.

An alert message displays if you close the utility while any of the
following conditions applies:

NI-488.2 User Manual for MacOS

The Macintosh must be restarted to load new drivers or change the
serial port, PCI buffers, or ENET connection settings.

A device GPIB address conflicts with the GPIB address of the bus
to which it is connected. Each GPIB address must be unique.

No GPIB board is in the slot associated with one of the buses.
A bus or device 1/O timeout is setipne (disabled).

6-12 © National Instruments Corporation

Status Word Conditions

Appendix

This appendix gives a detailed description of the conditions reported in
the status wordbsta .

For information about how to udigsta in your application program,
refer to Chapter 2Developing Your Applicatian

If a function call returns an ENEB or EDVR error, all status word bits
except the ERR bit are cleared, indicating that it is not possible to obtain
the status of the GPIB board.

Each bit inibsta can be set for device calls (dev), board calls (brd), or
both (dev, brd).

Table A-1 lists the status word bits.

Table A-1. Status Word Bits

Bit Hex

Mnemonic | Pos. | Value Type Description
ERR 15 8000 | dev, brd | GPIB error

TIMO 14 4000 | dev, brd | Time limit exceeded
END 13 2000 | dev, brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
CMPL 8 100 dev, brd | 1/0O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CiC 5 20 brd Controller-In-Charge

© National Instruments Corporation A-1 NI-488.2 User Manual for MacOS

Appendix A Status Word Conditions

Table A-1. Status Word Bits (Continued)

Bit Hex
Mnemonic | Pos. | Value Type Description
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

ERR (dev, brd)

ERR is set in the status word following any call that results in an error.
You can determine the particular error by examining the error variable
iberr . Appendix B,Error Codes and Solutionslescribes error codes
that are recorded iherr along with possible solutions. ERR is cleared
following any call that does not result in an error.

TIMO (dev, brd)

END (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set
in the status word following aibwait call if the TIMO bit of the

ibwait mask parameter is set and the time limit expires. TIMO is also
set following any synchronous I/O functions (for exampgiend ,

ibrd , ibwrt , Receive , Send, andSendCmds) if a timeout occurs

during one of these calls. TIMO is cleared in all other circumstances.

NI-488.2 User Manual for MacOS

END indicates either that the GPIB EOI line has been asserted or that
the EOS byte has been received, if the software is configured to
terminate a read on an EOS byte. If the GPIB board is performing a
shadow handshake as a result ofitiges function, any other function
can return a status word with the END bit set if the END condition
occurs before or during that call. END is cleared when any 1/O
operation is initiated.

A-2 © National Instruments Corporation

Appendix A Status Word Conditions

Some applications might need to know the exact I/O read termination
mode of a read operation—EOI by itself, the EOS character by itself, or
EOI plus the EOS character. You can useilthenfig ~ function
(optionibcEndBitlsNormal) to enable a mode in which the END bit

is set only when EOI is asserted. In this mode, if the I/O operation
completes because of the EOS character by itself, END is not set. The
application should check the last byte of the received buffer to see if it
is the EOS character.

SRQI (brd)

SRQI indicates that a GPIB device is requesting service. SRQI is set
whenever the GPIB board is CIC, the GPIB SRQ line is asserted, and
the automatic serial poll capability is disabled. SRQI is cleared either
when the GPIB board ceases to be the CIC or when the GPIB SRQ line
is unasserted.

RQS (dev)

RQS appears in the status word only after a device-level call and
indicates that the device is requesting service. RQS is set whenever bit
6 is asserted in the serial poll status byte of the device. The serial poll
that obtains the status byte can be the result of a cilisfo , or the

poll might be automatic if automatic serial polling is enabled. Do not
issue aribwait on RQS for a device that does not respond to serial
polls. RQS is cleared when @msp reads the serial poll status byte

that caused the RQS.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an
I/0O operation is complete. CMPL is cleared while the 1/O operation is
in progress.

© National Instruments Corporation A-3 NI-488.2 User Manual for MacOS

Appendix A Status Word Conditions

LOK (brd)

REM (brd)

LOK indicates whether the board is in a lockout state. While LOK is set,
the EnableLocal routine oribloc function is inoperative for that

board. LOK is set whenever the GPIB board detects that the Local
Lockout (LLO) message has been sent either by the GPIB board or by
another Controller. LOK is cleared when the System Controller
unasserts the Remote Enable (REN) GPIB line.

CIC (brd)

REM indicates whether or not the board is in the remote state. REM is
set whenever the Remote Enable (REN) GPIB line is asserted and the
GPIB board detects that its listen address has been sent either by the
GPIB board or by another Controller. REM is cleared in the following
situations:

* When REN becomes unasserted

« When the GPIB board as a Listener detects that the Go to Local
(GTL) command has been sent either by the GPIB board or by
another Controller

« When thebloc function is called while the LOK bit is cleared in
the status word

ATN (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC
is set when th&endIFC routine oribsic function is executed either
while the GPIB board is System Controller or when another Controller
passes control to the GPIB board. CIC is cleared either when the GPIB
board detects Interface Clear (IFC) from the System Controller or when
the GPIB board passes control to another device.

NI-488.2 User Manual for MacOS

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set
whenever the GPIB ATN line is asserted, and it is cleared when the
ATN line is unasserted.

A-4 © National Instruments Corporation

TACS (brd)

Appendix A Status Word Conditions

LACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker.
TACS is set whenever the GPIB board detects that its talk address
(and secondary address, if enabled) has been sent either by the GPIB
board itself or by another Controller. TACS is cleared whenever the
GPIB board detects the Untalk (UNT) command, its own listen address,
a talk address other than its own talk address, or Interface Clear (IFC).

DTAS (brd)

LACS indicates whether the GPIB board is addressed as a Listener.
LACS is set whenever the GPIB board detects that its listen address
(and secondary address, if enabled) has been sent either by the GPIB
board itself or by another Controller. LACS is also set whenever the
GPIB board shadow handshakes as a result abgee function.

LACS is cleared whenever the GPIB board detects the Unlisten (UNL)
command, its own talk address, Interface Clear (IFC), or that the
ibgts function has been called without shadow handshake.

DCAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger
command. DTAS is set whenever the GPIB board, as a Listener, detects
that the Group Execute Trigger (GET) command has been sent by
another Controller. DTAS is cleared on any call immediately following
anibwait call, if the DTAS bit is set in thibwait mask parameter.

DCAS indicates whether the GPIB board has detected a device clear
command. DCAS is set whenever the GPIB board detects that the
Device Clear (DCL) command has been sent by another Controller, or
whenever the GPIB board as a Listener detects that the Selected Device
Clear (SDC) command has been sent by another Controller. DCAS is
cleared on any call immediately following #wait call, if the DCAS

bit was set in thébwait mask parameter. It also clears on any call
immediately following a read or write.

© National Instruments Corporation A-5 NI-488.2 User Manual for MacOS

Appendix

Error Codes and Solutions

This appendix lists a description of each error, some conditions under
which it might occur, and possible solutions.

The following table lists the GPIB error codes.

Table B-1. GPIB Error Codes

Error iberr
Mnemonic Value Meaning
EDVR 0 Systemerror
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as required
EABO 6 I/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 No DMA channel available
EOIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position

© National Instruments Corporation B-1 NI-488.2 User Manual for MacOS

Appendix B Error Codes and Solutions

Table B-1. GPIB Error Codes (Continued)

Error iberr

Mnemonic Value Meaning
ETAB 20 Table problem
ELCK 21 Board or device is locked

EDVR (0)

EDVR is returned for the following reasons:

« When the board or device name passefbfital is not configured
in the software

« When an invalid unit descriptor is passed to any function call

« When the driver is not installed. In this cag®nt contains a
system level error code

Solutions
Following are some possible solutions:
* Useibdev to open a device without specifying its symbolic name.

« Use only device or board names that are configured in the utility
programNI-488 Config ~ as parameters in thigfind function.

e Use the unit descriptor returned from fhind function as the
first parameter in subsequent NI-488 functions. Examine the
variable after thébfind and before the failing function to make
sure it was not corrupted.

« Make sure the NI-488.2 driver is installed by checking to see if
NI-488 INIT is in theExtensions folder in theSystem Folder

ECIC (1)

ECIC is returned when one of the following board functions or routines
is called while the board is not CIC:

* Any device-level NI-488 functions that affect the GPIB

« Any board-level NI-488 functions that issue GPIB command bytes
such asbcmd , ibcmda , ibin , ibrpp , ibcac , ibgts

NI-488.2 User Manual for MacOS B-2 © MNational Instruments Corporation

Solutions

ENOL (2)

Appendix B Error Codes and Solutions

» Any of the NI-488.2 routines that issue GPIB command bytes such
asSendCmds, PPoll , Send, Receive

Following are some possible solutions:

 Useibsic orSendIFC to make the GPIB board become CIC on the
GPIB.

 Useibrsc 1 to make sure your GPIB board is configured as
System Controller.

« In multiple CIC situations, always be certain that the CIC bit
appears in the status word ibsta before attempting these calls. If it
does not appear, you can performiawait (for CIC) call to delay
further processing until control is passed to the board.

Solutions

ENOL usually occurs when a write operation is attempted with no
Listeners addressed. For a device write, this error indicates that the
GPIB address configured for that device in the software does not match
the GPIB address of any device connected to the bus, that the GPIB
cable is not connected to the device, or that the device is not

powered on.

ENOL can occur in situations in which the GPIB board is not the CIC
and the Controller asserts ATN before the write call in progress has
ended.

Following are some possible solutions:

* Make sure that the GPIB address of your device matches the GPIB
address of the device to which you want to write data.

e Use the appropriate hex codeittamd to address your device.

» Check your cable connections and make sure at least two-thirds of
your devices are powered on.

e Callibpad (oribsad , if necessary) to match the configured
address to the device switch settings.

» Reduce the write byte count to that which is expected by the
Controller.

© National Instruments Corporation B-3 NI-488.2 User Manual for MacOS

Appendix B Error Codes and Solutions

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly
addressing itself before read and write functions. This error is usually
associated with board-level functions.

EADR is also returned by the functidgsgts when the

shadow-handshake feature is requested and the GPIB ATN line is
already unasserted. In this case, the shadow handshake is not possible
and the error is returned to notify you of that fact.

Solutions
Following are some possible solutions:

« Make sure that the GPIB board is addressed correctly before calling
ibrd , ibwrt , RcvRespMsg, or SendDataBytes

« Avoid callingibgts except immediately after abcmd call.
(ibcmd causes ATN to be asserted.)

EARG (4)

EARG results when an invalid argument is passed to a function call.
The following are some examples:

e ibtmo called with a value not in the range 0 through 17
* ibpad oribsad called with invalid addresses
« ibppc called with invalid parallel poll configurations

¢ A board-level NI-488 call made with a valid device descriptor or a
device-level NI-488 call made with a board descriptor

* An NI-488.2 routine called with an invalid address
e PPoliConfig called with an invalid data line or sense bit

Solutions
Following are some possible solutions:

* Make sure that the parameters passed to the NI-488 function or
NI-488.2 routine are valid.

« Do not use a device descriptor in a board function or vice-versa.

NI-488.2 User Manual for MacOS B-4 © MNational Instruments Corporation

ESAC (9)

Appendix B Error Codes and Solutions

Solutions

EABO (6)

ESAC results wheibsic , ibsre , SendIFC, or EnableRemote is
called when the GPIB board does not have System Controller
capability.

Give the GPIB board System Controller capability by callimgc 1
or by usingNI-488 Config to configure that capability into the
software.

Solutions

ENEB (7)

EABO indicates that an 1/O operation has been canceled, usually due to
a timeout condition. Other causes for this error are caitistgp or
receiving the Device Clear message from the CIC while performing an
I/O operation.

Frequently, the 1/O is not progressing (the Listener is not continuing to
handshake or the Talker has stopped talking), or the byte count in the
call which timed out was more than the other device was expecting.

Following are some possible solutions:

» Use the correct byte count in input functions or have the Talker use
the END message to signify the end of the transfer.

» Lengthen the timeout period for the 1/O operation ugingo .

* Make sure that you have configured your device to send data before
you request data.

ENEB occurs when there is no GPIB board present. This happens when
the board is not physically plugged into the system, or there is a conflict
in the system.

© National Instruments Corporation B-5 NI-488.2 User Manual for MacOS

Appendix B Error Codes and Solutions

Solutions

EDMA (8)

Verify that all GPIB interfaces and external controller boxes are
plugged in securely, powered on, and configured properly in the GPIB
configuration.

Solutions

EQIP (10)

EDMA occurs when the driver is unable to allocate a DMA channel.

Verify that other boards are not using all seven available DMA
channels. Disconnect the RTSI connector from the other DMA boards
temporarily.

Solutions

NI-488.2 User Manual for MacOS

EOIP occurs when an asynchronous I/O operation has not finished
before some other call is made. During asynchronous 1/O, you can only
useibstop , ibwait , andibonl , or perform other non-GPIB

operations. Once the asynchronous I/O has begun, further GPIB calls
other tharibstop , ibwait , oribonl are strictly limited. If a call might
interfere with the 1/0O operation in progress, the driver returns EOIP.

Resynchronize the driver and the application before making any further
GPIB calls. Resynchronization is accomplished by using one of the
following three functions:

¢ jbwait —Ifthe returnedbsta contains CMPL then the driver and
application are resynchronized.

e ibstop —The I/O is canceled; the driver and application are
resynchronized.

« ibonl —The I/O is canceled and the interface is reset; the driver
and application are resynchronized.

B-6 © National Instruments Corporation

Appendix B Error Codes and Solutions

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an
operation or when a particular capability has been disabled in the
software and a call is made that requires the capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board
and the driver both have the needed capability.

EFSO (12)

EFSO results when dbrdf oribwrtf call encounters a problem
performing a file operation. Specifically, this error indicates that the
function is unable to open, create, seek, write, or close the file being
accessed. The specific system error code for this condition is contained
in ibcnt

Solutions
Following are some possible solutions:
* Make sure the file is in the same folder as your application.
» Make sure there is enough room on the disk to hold the file.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device
functions. All device functions send command bytes to perform
addressing and other bus management. Devices are expected to
accept these command bytes within the time limit specified by the
default configuration or thidtmo function. EBUS results if a
timeout occurred while sending these command bytes.

Solutions

Following are some possible solutions:
« Verify that the instrument is operating correctly.

» Check for loose or faulty cabling or several powered-off
instruments on the GPIB.

» If the timeout period is too short for the driver to send command
bytes, increase the timeout period.

© National Instruments Corporation B-7 NI-488.2 User Manual for MacOS

Appendix B Error Codes and Solutions

ESTB (15)

ESTB is reported only by thiersp function. ESTB indicates that one

or more serial poll status bytes received from automatic serial polls
have been discarded because of a lack of storage space. Several older
status bytes are available; however, the oldest is being returned by the
ibrsp call.

Solutions
Following are some possible solutions:
e« Callibrsp more frequently to empty the queue.

« Disable autopolling with th@bconfig ~ function or the
NI-488 Config utility.

ESRQ (16)

ESRQ occurs only during thiewait function or thewaitSRQ

routine. ESRQ indicates that a wait for RQS is not possible because
the GPIB SRQ line is stuck on. This situation can be caused by the
following events:

e Usually, a device unknown to the software is asserting SRQ.
Because the software does not know of this device, it can never
serial poll the device and unassert SRQ.

« A GPIB bus tester or similar equipment might be forcing the SRQ
line to be asserted.

e A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB
problem, it does not affect GPIB operations, except that you cannot
depend on the RQS bit while the condition lasts.

Solutions

Check to see if other devices not used by your application are asserting
SRQ. Disconnect them from the GPIB if necessary.

NI-488.2 User Manual for MacOS B-8 © MNational Instruments Corporation

ETAB (20)

Appendix B Error Codes and Solutions

Solutions

ELCK (21)

ETAB occurs only during theindLstn , FindRQS, andibevent
functions. ETAB indicates that there was some problem with a table
used by the following functions:

* Inthe case ofindLstn , ETAB means that the given table did not
have enough room to hold all the addresses of the Listeners found.

* In the case oFindRQS, ETAB means that none of the devices in
the given table were requesting service.

* Inthe case obevent , ETAB means the event queue overflowed
and event information was lost.

In the case oFindLstn , increase the size of result arrays. In the case
of FindRQS, check to see if other devices not used by your application
are asserting SRQ. Disconnect them from the GPIB if necessary. In the
case of ETAB returned froiibevent , callibevent more often to

empty the queue.

Solutions

ELCK occurs if the requested GPIB-ENET board or device is being
used through another connection.

Wait for the lock on the board or device to be released, or try using
ibunlock if you previously useéblock to lock access to the
connection.

© National Instruments Corporation B-9 NI-488.2 User Manual for MacOS

Appendix

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary to
help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and the
configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
quickly provide the information you need. Our electronic services include a bulletin board service,
an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or software
problem, first try the electronic support systems. If the information available on these systems
does not answer your questions, we offer fax and telephone support through our technical support
centers, which are staffed by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. You can
access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet Higshatinst.com , asanonymous and use
your Internet address, suchi@ssmith@anywhere.com , as your password. The support files and
documents are located in theipport directories.

© National Instruments Corporation C-1 NI-488.2 User Manual for MacOS

El Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
(512) 418-1111.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact the

source from which you purchased your software to obtain support.

&

°£3°<> Telephone

Fax

Australia 03 9879 5166 039879 6277
Austria 06624579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 4576 26 00 45 76 26 02
Finland 09 72572511 09 725 725 55
France 0148142424 0148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 328484 00 328486 00
Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533
Sweden 08 73049 70 08 7304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United States
United Kingdom

512 795 8248
01635 523545

512 794 5678
01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand Model Processor

Operating system (include version number)

Clock speed MHz RAM MB Display adapter
Mouse __yes __ no Other adapters installed
Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-488.2" User Manual for MacOS
Edition Date: July 1997
Part Number: 320897B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone (__) Fax (___)

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

Glossary

Prefix Meanings Value
n- nano- 10°
u- micro- 106
m- milli- 1073
k- kilo- 10°
M- Mega- 16
A
AC alternating current.
acceptor handshake Listeners use this GPIB interface function to receive data, and all
devices use it to receive comman8gesource handshake and
handshake.
access board The GPIB board that controls and communicates with the devices on the
bus that are attached to it.
ANSI American National Standards Institute.
ASCII American Standard Code for Information Interchange.

automatic serial polling A feature of the NI-488.2 software in which serial polls are executed
(autopolling) automatically by the driver whenever a device asserts the GPIB SRQ
line.

© National Instruments Corporation G-1 NI-488.2 User Manual for MacOS

Glossary

board-level function

boot

C

CFE

CFGn

CIC

configuration

Controller-In-Charge
(CIC)

CPU

D

DAV (Data Valid)

DCL

dec
Device Clear

device-level function

DIO1 through DIO8

NI-488.2 User Manual for MacOS

A rudimentary function that performs a single operation.

Seestartup.

Configuration Enable is the GPIB command which precedes CFGn and
is used to place devices into their configuration mode.

These GPIB commands (CFG1 through CFG15) follow CFE and are
used to configure all devices for the number of meters of cable in the
system so that HS488 transfers occur without errors.

SeeController-In-Charge.

The process of altering the software parameters in the driver that
describe characteristics of the devices and boards.

The device that manages the GPIB by sending interface messages to
other devices.

Central processing unit.

One of the three GPIB handshake lirfsehandshake.

Device Clear is the GPIB command used to reset the device or internal
functions of all devicesSeeSDC.

Decimal.
SeeDCL.

A function that combines several rudimentary board operations into one
function so that the user does not have to be concerned with bus
management or other GPIB protocol matters.

The GPIB lines that are used to transmit command or data bytes from
one device to another.

G-2 © National Instruments Corporation

Glossary

DMA High-speed data transfer between the GPIB board and memory that is
(direct memory access) not handled directly by the CPU. Not available on some syems.
programmed I/O.

driver Device driver software installed within the operating system.

E

END or END message A message that signals the end of a data string. END is sent by asserting
the GPIB End or Identify (EOI) line with the last data byte.

EOI (End or Identify) A GPIB line that is used to signal either the last byte of a data message
(END) or the parallel poll Identify (IDY) message.

EOS End-of-string.

EOS byte A 7- or 8-bit end-of-string character that is sent as the last byte of a data
message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status byte which

is received from a device responding to a serial poll.

F

FIFO first-in-first-out.

G

GET Group Execute Trigger is the GPIB command used to trigger a device
or internal function of an addressed Listener.

Go To Local SeeGTL.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1987.

GPIB address The address of a device on the GPIB, composed of a primary address

(MLA and MTA) and an optional secondary address (MSA). The GPIB
board has both a GPIB address and an 1/O address.

© National Instruments Corporation G-3 NI-488.2 User Manual for MacOS

Glossary

GPIB board

Refers to the National Instruments family of GPIB interface boards.

Group Executed TriggeSeeGET.

GTL

H

handshake

hex

high-level function

Hz

ibcnt

iberr

IBIC 488.2

ibsta

IEEE

interface message

NI-488.2 User Manual for MacOS

IBIC 488.2

Go To Local is the GPIB command used to place an addressed Listener
in local (front panel) control mode.

The mechanism used to transfer bytes from the Source Handshake
function of one device to the Acceptor Handshake function of another
device. The three GPIB lines DAV, NRFD, and NDAC are used in an
interlocked fashion to signal the phases of the transfer, so that bytes can
be sent asynchronously (for example, without a clock) at the speed of
the slowest device. For more information about handshaking, refer to
the ANSI/IEEE Standard 488.1-1987.

Hexadecimal; a number represented in base 16. For example,
decimal 16 = hex 10.

Seedevice-level function.

Hertz.

After each NI-488.2 1/O function, this global variable contains the
actual number of bytes transmitted.

A global variable that contains the specific error code associated with a
function call that failed.

, the Interface Bus Interactive Control utility, is used to
communicate with GPIB devices, troubleshoot problems, and develop
your application.

At the end of each function call, this global variable (status word)
contains status information.

Institute of Electrical and Electronic Engineers.

A broadcast message sent from the Controller to all devices and used to

manage the GPIB.

G4 © National Instruments Corporation

Glossary

I/0 (Input/Output) In the context of this manual, the transmission of commands or
messages between the computer via the GPIB board and other devices
on the GPIB.

I/0 address The address of the GPIB board from the point of view of the CPU, as

opposed to the GPIB address of the GPIB board. Also called port
address or board address.

ist An Individual Status bit of the status byte used in the Parallel Poll
Configure function.

K

KB Kilobytes of memory.

L

LAD (Listen Address) SeeMLA.

language interface Code that enables an application program that uses NI-488 functions or
NI-488.2 routines to access the driver.

listen address SeeMLA.

Listener A GPIB device that receives data messages from a Talker.

low-level function Seeboard-level function.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status byte
which is received from a device responding to a serial poll.

MB Megabytes of memory.

memory-resident Resident in RAM.

MLA A GPIB command used to address a device to be a Listener. It can be

(My Listen Address) any one of the 31 primary addresses.

© National Instruments Corporation G-5 NI-488.2 User Manual for MacOS

Glossary

MSA My Secondary Address is the GPIB command used to address a device

(My Secondary Address) to be a Listener or a Talker when extended (two byte) addressing is
used. The complete address is a MLA or MTA address followed by an
MSA address. There are 31 secondary addresses for a total of 961
distinct listen or talk addresses for devices.

MTA (My Talk Address) A GPIB command used to address a device to be a Talker. It can be any
one of the 31 primary addresses.

N

NDAC One of the three GPIB handshake lingsehandshake.
(Not Data Accepted)

NI-488 Config The NI-488.2 driver configuration control panel utility.
NRFD One of the three GPIB handshake lirfgsehandshake.

(Not Ready For Data)

P

parallel poll The process of polling all configured devices at once and reading a
composite poll respons8eeserial poll.

P1O Seeprogrammed 1/O.

PPC Parallel Poll Configure is the GPIB command used to configure an

(Parallel Poll Configure) addressed Listener to participate in polls.

PPD Parallel Poll Disable is the GPIB command used to disable a configured
(Parallel Poll Disable) device from patrticipating in polls. There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used to enable a configured
(Parallel Poll Enable) device to participate in polls and to assign a DIO response line. There
are 16 PPE commands.

PPU Parallel Poll Unconfigure is the GPIB command

(Parallel Poll used to disable anydevice from participating in

Unconfigure) polls.

programmed /O Low-speed data transfer between the GPIB board and memory in which
the CPU moves each data byte according to program instruc8ess.
DMA.

NI-488.2 User Manual for MacOS G-6 © National Instruments Corporation

Glossary

R

RAM Random-access memory.

RQS Request Service.

S

SC SeeSystem Controller.

SDC Selected Device Clear is the GPIB command used to reset internal or
device functions of an addressed Lister8&xeDCL and IFC.

serial poll The process of polling and reading the status byte of one device at a
time. Seeparallel poll.

Service Request SeeSRQ.

source handshake The GPIB interface function that transmits data and commands. Talkers
use this function to send data, and the Controller uses it to send
commandsSeeacceptor handshake and handshake.

SPD Serial Poll Disable is the GPIB command used to

(Serial Poll Disable) cancel an SPE command.

SPE Serial Poll Enable is the GPIB command used to enable a specific

(Serial Poll Enable) device to be polled. That device must also be addressed to talk.

SeeSPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the CIC that the device
needs servicing.

startup To load the operating system programs from floppy or hard disk into
memory and to begin executing the code. A hard boot is when power is
applied to the computer.

status byte The IEEE 488.2-defined data byte sent by a device when it is serially
polled.

status word Seeibsta.

System Controller The single designated Controller that can assert control (become CIC of

the GPIB) by sending the Interface Clear (IFC) message. Other devices
can become CIC only by having control passed to them.

© National Instruments Corporation G-7 NI-488.2 User Manual for MacOS

Glossary

I

TAD (Talk Address)
Talker

TCT

timeout

TLC

TTL

U

ud (unit descriptor)

UNL

UNT

NI-488.2 User Manual for MacOS

SeeMTA.
A GPIB device that sends data messages to Listeners.

Take Control is the GPIB command used to pass control of the bus from
the current Controller to an addressed Talker.

A feature of the NI-488.2 driver that prevents I/O functions from
hanging indefinitely when there is a problem on the GPIB.

An integrated circuit that implements most of the GPIB Talker,
Listener, and Controller functions in hardware.

Transistor-transistor logic.

A variable name and first argument of each function call that contains
the unit descriptor of the GPIB interface board or other GPIB device
that is the object of the function.

Unlisten is the GPIB command used to unaddress any active Listeners.

Untalk is the GPIB command used to unaddress an active Talker.

G-8 © National Instruments Corporation

Index

Numbers/Symbols

I (Repeat Previous Function), IBIC 488.2, 4-18
$ (Execute Indirect File) function,
IBIC 488.2, 4-18

A

address syntax, IBIC 488.2, 4-5
addressing, GPIB
address bits (illustration), 1-2
configuring in NI-488 Config utility
Primary Address option, 6-8
Repeat Addressing option, 6-9
Secondary Address option, 6-8
Unaddressing option, 6-11
overview, 1-2
repeat addressing, 3-4
AllSpoll routine, 5-9, 5-11
ANSI/IEEE Standard 488.1-1987, 1-1
application developmentSeedebugging
applications; programming.
Assert REN When System (Controller) option,
NI-488 Config utility, 6-11
ATN (attention) line, 1-4
ATN status word condition, A-4
automatic serial polling Seeserial polling.
auxiliary functions, IBIC 488.2
I (Repeat Previous Function), 4-18
$ (Execute Indirect File), 4-18
Buffer (Set Buffer Display Mode), 4-19
Help (Display Help Information), 4-17
list of functions (table), 4-16 to 4-17

© National Instruments Corporation

n* (Repeat Function n Times), 4-18
Set (Select Device or Board), 4-17

BASIC. Sed-utureBASIC.
Buffer (Set Buffer Display Mode) function,
IBIC 488.2, 4-19
bus/device frame, NI-488 Config utility
bus only options, 6-10to 6-11
bus or device options, 6-8 to 6-10
device only options, 6-11 to 6-12
options (table), 6-7
Bus Timing option, NI-488 Config utility, 6-10
byte count, IBIC 488.2, 4-12

C

C language
compiling, linking, and running
applications, 2-19 to 2-20
NI-488.2 software language files, 1-8
CIC protocol, for making GPIB board
Controller-in-Charge, 5-4
CIC status word condition, A-4
CMPL status word condition, A-3
communication errors
repeat addressing, 3-4
termination method, 3-4
compiling, linking, and running applications
C applications, 2-19 to 2-20
FutureBASIC applications, 2-20
configuration SeeGPIB operation; NI-488
Config utility.

NI-488.2 User Manual for MacOS

Index

configuration errors, debugging, 3-3
Configure Enable (CFE) message, 5-3
Configure (CFGn) message, 5-3
control items, NI-488 Config utility, 6-4
Controllers
CIC protocol for making GPIB board
Controller-in-Charge, 5-4
Controller-In-Charge and System
Controller, 1-2
device-level calls and bus
management, 5-4
GPIB operation, 1-1
monitoring by Talker/Listener
applications, 5-5
System Controller option, NI-488 Config
utility, 6-11
count, IBIC 488.2, 4-12
count variables (ibcnt and ibcntl), 2-5
customer communicationjv, C-1

D

data lines, 1-3
data transfers
high-speed (HS488), 5-2 to 5-4
enabling, 5-2 to 5-3
system configuration effects, 5-3
terminating, 5-1 to 5-2
DAYV (data valid) line, 1-3
DCAS status word condition
description, A-5
waiting for messages from Controller, 5-5
debugging applicationsSee als¢éBIC 488.2.
common questions, 3-4 to 3-6
communication errors
repeat addressing, 3-4
termination method, 3-4
configuration errors, 3-3
global status variables, 3-1

NI-488.2 User Manual for MacOS -2

GPIB error codes, 3-2 to 3-3
IBIC 488.2, 3-1 to 3-2
NI-488.2 Test, 3-1
timing errors, 3-3to 3-4
default configuration for NI-488.2
software, 6-3
device frame, NI-488 Config utilitySee
bus/device frame, NI-488 Config utility.
device-level calls and bus management, 5-4
DMA option, NI-488 Config utility, 6-10
documentation
conventions usedjii
organization ofxii
related documentatiomiii to xiv
driver and driver utilities, NI1-488.2, 1-7
DTAS status word condition
description, A-5
waiting for messages from Controller, 5-5

E

EABO error code, B-5
EADR error code, B-4
EARG error code, B-4
EBUS error code, B-7
ECAP error code, B-7
ECIC error code, B-2 to B-3
EDMA error code, B-6
EDVR error code, B-2
EFSO error code, B-7
ELCK error code, B-9
END status word condition, A-2 to A-3
ENEB error code, B-5 to B-6
ENOL error code, B-3
EOI (end or identify) line
definition (table), 1-4
termination of data transfers, 5-1 to 5-2
EOIP error code, B-6

© National Instruments Corporation

EOS, configuring
ibeos function, 5-1
NI-488 Config utility
EOS Byte option, 6-9 to 6-10
EOS Modes option, 6-9
EOS comparison method, 5-1
EOS read method, 5-2
EOS write method, 5-1
ERR status word condition, A-2
error codes, IBIC 488.2 operation, 4-11
error codes and solutions
debugging applications, 3-1 to 3-2
EABO, B-5
EADR, B-4
EARG, B4
EBUS, B-7
ECAP, B-7
ECIC, B-2 to B-3
EDMA, B-6
EDVR, B-2
EFSO, B-7
ELCK, B-9
ENEB, B-5 to B-6
ENOL, B-3
EOIP, B-6
ESAC, B-5
ESRQ, B-8
ESTB, B-8
ETAB, B-9
list of error codes (table), 3-2 to 3-3,
B-1to B-2
error variable (iberr), 2-5
errors, debugging
common questions, 3-4 to 3-6
communication errors
repeat addressing, 3-4
termination method, 3-4
configuration errors, 3-3
GPIB error codes, 3-2 to 3-3
timing errors, 3-3 to 3-4

© National Instruments Corporation -3

Index

ESAC error code, B-5

ESRQ error code, B-8

ESTB error code, B-8

ETAB error code, B-9

Event Status bit (ESB), 5-6

Execute Indirect File function ($),
IBIC 488.2, 4-18

F

FindRQS routine, 5-10
functions SedBIC 488.2; NI-488 functions.

G

General Purpose Interface Bus (GRIBee
GPIB operation.
global frame, NI-488 Config utility, 6-5 to 6-6
global variables
count variables (ibcnt and ibcntl), 2-5
debugging applications, 3-1 to 3-2
error variable (iberr), 2-5
status word (ibsta), 2-3 to 2-4, A-1to A-5
GPIB addressing Seeaddressing, GPIB.
GPIB configuration utility SeeNI-488
Config utility.
GPIB error codes Seeerror codes and
solutions.
GPIB operation
addressing, 1-2
configuration
controlling more than one board, 1-5
linear and star configuration
(illustration), 1-5
requirements, 1-6 to 1-7
Controller-In-Charge and System
Controller, 1-2
interface management lines
ATN (attention), 1-4
EOI (end or identify), 1-4
IFC (interface clear), 1-4

NI-488.2 User Manual for MacOS

Index

REN (remote enable), 1-4
SRQ (service request), 1-4
overview, 1-1
sending messages, 1-3to 1-4
signals and lines
data lines, 1-3
DAV (data valid), 1-3
handshake lines, 1-3
NDAC (not data accepted), 1-3
NRFD (not ready for data), 1-3
Talkers, Listeners, and Controllers, 1-1
GPIB programming techniques
device-level calls and bus
management, 5-4
high-speed data transfers, 5-2 to 5-4
enabling HS488, 5-2 to 5-3
system configuration effects, 5-3
parallel polling, 5-11 to 5-14
implementing, 5-11 to 5-14
using NI-488 functions, 5-12 to 5-13
using NI-488.2 routines, 5-13 to 5-14
serial polling, 5-5 to 5-9
automatic serial polling, 5-6 to 5-8
autopolling and interrupts, 5-7
C "ON SRQ" capability, 5-8
stuck SRQ state, 5-7
service requests
from IEEE 488 devices, 5-6
from IEEE 488.2 devices, 5-6
SRQ and serial polling
with NI-488 device
functions, 5-8
with NI-488.2 routines, 5-9
Talker/Listener applications, 5-5
requesting service, 5-5
waiting for messages from
Controller, 5-5
termination of data transfers, 5-1 to 5-2
waiting for GPIB conditions, 5-4

NI-488.2 User Manual for MacOS -4

H

handshake lines, 1-3
Help (Display Help Information) function,
IBIC 488.2, 4-17
help frame, NI-488 Config utility, 6-4 to 6-5
high-speed data transfers (HS488), 5-2 to 5-4
enabling HS488, 5-2 to 5-3
system configuration effects, 5-3
HS488 Seehigh-speed data transfers
(HS488).
HSS488 configuration message, 5-3

ibcnt and ibentl count variables, 2-5
ibconfig function
configuring GPIB board as CIC,
5-2t0 5-3
determining assertion of EOI line, 5-2
enabling autopolling, 5-6
enabling high-speed data transfers,
5-2t0 5-3
ibdev function, IBIC 488.2, 4-12 to 4-14
ibeos function, 5-1
ibeot function, 5-1
iberr (error variable), 2-5
IBIC 488.2
auxiliary functions
I (Repeat Previous Function), 4-18
$ (Execute Indirect File), 4-18
Buffer (Set Buffer Display
Mode), 4-19
Help (Display Help
Information), 4-17
list of functions (table), 4-16 to 4-17
n* (Repeat Function n Times), 4-18
Set (Select Device or Board), 4-17
byte count, 4-12
debugging applications, 3-1 to 3-2
error information, 4-11

© National Instruments Corporation

NI-488 functions commonly used with
ibdev, 4-12 to 4-14
ibrd, 4-14
ibwrt, 4-14
NI-488.2 routines commonly used with
examples, 4-1to 4-4
Receive, 4-16
Send and SendList, 4-15
Set, 4-15
overview, 4-1
status word (ibsta), 4-11
syntax
address syntax, 4-5
NI-488 functions, 4-6 to 4-9
NI-488.2 routines, 4-9 to 4-10
number syntax, 4-5
string syntax, 4-5
ibppc function
conducting parallel polls, 5-12
unconfiguring device for parallel
polling, 5-13
ibrd function, 4-14
ibrpp function, 5-13
ibrsp function, 5-7
ibrsrv function, 5-5
ibsta. Seestatus word (ibsta).
ibwait function
conducting serial polls, 5-7
Talker/Listener applications, 5-5
terminating stuck SRQ state, 5-7
waiting for GPIB conditions, 5-4
ibwrt function, 4-14
IFC (interface clear) line, 1-4
Interface Bus Interactive Control utility (IBIC
488.2). SeelBIC 488.2.
interface management lines
ATN (attention), 1-4
EOI (end or identify), 1-4
IFC (interface clear), 1-4

© National Instruments Corporation

Index

REN (remote enable), 1-4
SRQ (service request), 1-4
interrupts and autopolling, 5-7

L

LACS status word condition
description, A-5
waiting for message from Controller, 5-5
lines. Seesignals and lines.
Listeners
definition, 1-1
Talker/Listener applications, 5-5
LOK status word condition, A-4

Message Available (MAV) bit, 5-6
messages, sending across GPIB, 1-3to 1-4

n* (Repeat Function n Times) function,
IBIC 488.2, 4-18
NDAC (not data accepted) line, 1-3
NI-488 applications, programmingsee
programming.
NI-488 Config utility
Assert REN When System (Controller)
option, 6-11
bus/device frame, 6-6 to 6-7
bus-only options, 6-10 to 6-11
bus or device options, 6-8 to 6-10
device-only options, 6-11 to 6-12
options (table), 6-7
Bus/Device menu, 6-1to 6-2
Bus Timing option, 6-10
control items, 6-4
default configuration, 6-3
DMA option, 6-10
EOS Byte option, 6-9 to 6-10

NI-488.2 User Manual for MacOS

Index

EOS modes, 6-9
exiting, 6-12
global frame, 6-5 to 6-6
help frame, 6-4 to 6-5
Interface Type menu, 6-2
opening, 6-1 to 6-2
opening screen (illustration), 6-2
overview, 6-1
Primary Address pop-up menu, 6-8
Rename Device option, 6-11
Repeat Addressing option, 6-9
Secondary Address pop-up menu, 6-8
System Controller option, 6-11
Timeout pop-up menu, 6-9
TNT High Speed option, 6-10
Unaddressing option, 6-11
Use Bus option, 6-12
NI-488 functions
board functions, 2-2
device functions, 2-2
one device per board concept, 2-1 to 2-2
parallel polling, 5-11 to 5-14
serial polling, 5-5 to 5-8
using in IBIC 488.2
ibdev, 4-12 to 4-14
ibrd, 4-14
ibwrt, 4-14
syntax (table), 4-6 to 4-9
NI-488.2 applications, programmingee
programming.
NI-488.2 routines
capabilities, 2-2
parallel polling, 5-13 to 5-14
serial polling, 5-9
serial polling examples
AllSpoll, 5-11
FindRQS, 5-10
using in IBIC 488.2
Receive, 4-16
Send, 4-15

NI-488.2 User Manual for MacOS

SendList, 4-15
Set, 4-15
syntax (table), 4-9 to 4-10
NI-488.2 software
C language files, 1-8
default configuration, 6-3
driver and driver utilities, 1-7
FutureBASIC language files, 1-8
NI-488.2 Test utility, 3-1 to 3-2
NRFD (not ready for data) line, 1-3
number syntax, IBIC 488.2, 4-5

0

operation of GPIB.SeeGPIB operation.

P

parallel polling, 5-11 to 5-14
implementing, 5-11 to 5-14
using NI-488 functions, 5-12 to 5-13
using NI-488.2 routines, 5-13 to 5-14
PPoll routine, 5-14
PPollConfig routine, 5-13
PPollUnconfig routine, 5-14
primary GPIB address
definition, 1-2
setting in NI-488 Config utility, 6-8
programming.See alsaebugging
applications; GPIB programming
techniques.
checking status with global variables

count variables (ibcnt and ibentl), 2-5

error variable (iberr), 2-5
status word (ibsta), 2-3 to 2-4

choosing programming method, NI1-488.2

language interface, 2-1
compiling, linking, and running
C applications, 2-19 to 2-20
FutureBASIC applications, 2-20

© National Instruments Corporation

Q

examples, NI-488.2 routines in IBIC
488.2, 4-1t0 4-4
IBIC 488.2 for communicating with
devices, 2-6
NI-488 applications
clearing devices, 2-8
configuring devices, 2-9
items to include, 2-6
NI-488 program shell
(illustration), 2-7
opening devices, 2-8
placing device offline, 2-11
processing data, 2-11
reading measurements, 2-11
triggering devices, 2-9
waiting for measurements, 2-10
NI-488.2 applications
configuring instruments,
2-16to 2-17
finding all Listeners, 2-14
identifying instruments, 2-15 to 2-16
initialization, 2-14
initializing instruments, 2-16
items to include, 2-12
NI-488.2 program shell
(illustration), 2-13
placing board offline, 2-19
processing data, 2-19
reading measurements, 2-18
triggering instruments, 2-17
waiting for measurements,
2-17t0 2-18

FutureBASIC

compiling, linking, and running
applications, 2-20
NI-488.2 software language files, 1-8

© National Instruments Corporation -7

Index

R

ReadStatusByte routine, 5-9
Receive routine, IBIC 488.2, 4-16
REM status word condition, A-4
REN (remote enable) line, 1-4
Rename Device option, NI-488 Config
utility, 6-11
repeat addressing
enabling in NI-488 Config utility, 6-9
required before GPIB activity, 3-4
Repeat Function n Times (n*),
IBIC 488.2, 4-18
Repeat Previous Function (!),
IBIC 488.2, 4-18
RQS status word condition, A-3

S

secondary GPIB address
definition, 1-2
setting in NI-488 Config utility, 6-8
Send routine, 4-15
SendCmds function, 5-3
sending messages across GPIB, 1-3to 1-4
SendList routine, 4-15
serial polling, 5-5 to 5-9
automatic serial polling, 5-6 to 5-7
autopolling and interrupts, 5-7
C "ON SRQ" capability, 5-8
stuck SRQ state, 5-7
service requests
from IEEE 488 devices, 5-6
from IEEE 488.2 devices, 5-6
Talker/Listener applications, 5-5
SRQ and serial polling
with NI-488 device functions, 5-8
with NI-488.2 routines, 5-9

NI-488.2 User Manual for MacOS

Index

service requests
serial polling
IEEE 488 devices, 5-6
IEEE 488.2 devices, 5-6
stuck SRQ state, 5-7
Talker/Listener applications, 5-5
Set (Select Device or Board) function, IBIC
488.2, 4-17
Set routine, IBIC 488.2, 4-15
signals and lines
ATN (attention), 1-4
data lines, 1-3
DAV (data valid), 1-3
EOI (end or identify), 1-4
handshake lines (table), 1-3
IFC (interface clear), 1-4
interface management lines (table), 1-4
NDAC (not data accepted), 1-3
NRFD (not ready for data), 1-3
REN (remote enable), 1-4
SRQ (service request), 1-4
SRQ (service request) line
definition, 1-4
serial polling
automatic serial polling, 5-6 to 5-7
C "ON SRQ" capability, 5-8
stuck SRQ state, 5-7
using NI-488 device functions, 5-8
using NI-488.2 routines, 5-9
SRQI status word condition, A-3
status word (ibsta)
ATN, A-4
CIC, A4
CMPL, A-3
DCAS, A-5
DTAS, A-5
END, A-2 to A-3
ERR, A-2
IBIC 488.2 operation, 4-11
LACS, 5-5, A-5

NI-488.2 User Manual for MacOS -8

list of status word bits (table), 2-4,
A-1to A-2
LOK, A-4
REM, A-4
RQS, A-3
SRQI, A-3
TACS, 5-5, A-5
testing for ibsta conditions, 2-3 to 2-4
TIMO, A-2
string syntax, IBIC 488.2, 4-4 to 4-5
stuck SRQ state, 5-7
syntax, IBIC 488.2.SeelBIC 488.2.
System Controller
configuring in NI-488 Config utility, 6-11
GPIB operation, 1-1

T

TACS status word condition
definition, A-5
waiting for message from Controller, 5-5
Talker/Listener applications
definition, 5-5
requesting service, 5-5
waiting for messages from Controller, 5-5
Talkers, 1-1
technical support, C-1
termination of data transfers
debugging applications, 3-4
GPIB programming techniques,
5-1to0 5-2
TestSRQ routine, 5-9
timeout value, setting in NI-488 Config
utility, 6-9
timing errors, 3-3to 3-4
TIMO status word condition, A-2
TNT High Speed option, NI-488 Config
utility, 6-10
TNT4882C hardware, 5-2

© National Instruments Corporation

U

Unaddressing option, NI1-488 Config
utility, 6-11
Use Bus option, NI-488 Config utility, 6-12

W

WaitSRQ routine, 5-9
writing applications.Seeprogramming.

© National Instruments Corporation

Index

NI-488.2 User Manual for MacOS

	NI-488.2™ User Manual�for MacOS
	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Table of Contents
	About This Manual
	How to Use This Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Setting Up and Configuring Your System
	Controlling More Than One Board

	Configuration Requirements

	NI-488.2 Software Components
	NI-488.2 Driver and Driver Utilities
	C Language Files
	FutureBASIC Language Files
	How the NI-488.2 Software Works with Your System

	Chapter 2 Developing Your Application
	Choosing a Programming Method
	Using the NI-488.2 Language Interface
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions

	Using NI-488.2 Routines: Multiple Boards and/or Mu...
	Checking Status with Global Variables
	Status Word—ibsta
	Error Variable—iberr
	Count Variables—ibcnt and ibcntl

	Using IBIC 488.2 to Communicate with Devices

	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Configure the Device
	Step 4. Trigger the Device
	Step 5. Wait for the Measurement
	Step 6. Read the Measurement
	Step 7. Process the Data
	Step 8. Place the Device Offline

	Writing Your NI-488.2 Application
	Items to Include

	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline

	Compiling, Linking, and Running
	C Applications
	FutureBASIC Applications

	Chapter 3 Debugging Your Application
	Running NI-488.2 Test
	Debugging with the Global Status Variables
	Debugging with IBIC 488.2
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Common Questions

	Chapter 4 Interface Bus Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	IBIC 488.2 Syntax
	Number Syntax
	String Syntax
	Address Syntax

	IBIC 488.2 Syntax for NI-488 Functions
	IBIC 488.2 Syntax for NI-488.2 Routines
	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibdev
	ibwrt
	ibrd

	Common NI-488.2 Routines in IBIC 488.2
	Set
	Send and SendList
	Receive

	Auxiliary Functions
	Set (Select Device or Board)
	Help (Display Help Information)
	! (Repeat Previous Function)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Buffer (Set Buffer Display Mode)

	Chapter 5 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions

	Device-Level Calls and Bus Management

	Talker/Listener Applications
	Waiting for Messages from the Controller
	Requesting Service

	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	C “ON SRQ” Capability

	SRQ and Serial Polling with NI-488 Device Function...
	SRQ and Serial Polling with NI-488.2 Routines

	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 6 GPIB Configuration Utility
	Overview
	Running the Configuration Utility
	Opening the Configuration Utility
	Default Configuration
	Control Items
	Help Frame
	Global Frame
	Bus/Device Frame
	Options for Buses or Devices
	Options for Buses Only
	Options for Devices Only

	Exiting the Configuration Utility

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. Linear and Star System Configuration
	Figure 1-2. Example of Multiboard System Setup
	Figure 1-3. How the NI-488.2 Software Works with Y...
	Figure 2-1. General Program Shell Using NI-488 Dev...
	Figure 2-2. General Program Shell Using NI-488.2 R...
	Figure 6-1. Opening Screen of NI-488 Config
	Figure 6-2. Device Default Settings in NI-488 Conf...
	Figure 6-3. Help Frame in NI-488 Config
	Figure 6-4. Manual Bus Association in NI-488 Confi...

	Tables
	Table 1-1. GPIB Address Bits
	Table 1-2. GPIB Handshake Lines
	Table 1-3. GPIB Interface Management Lines
	Table 2-1. Status Word (ibsta) Layout
	Table 3-1. GPIB Error Codes
	Table 4-1. Syntax for Board-Level NI-488 Functions...
	Table 4-2. Syntax for Device-Level NI-488 Function...
	Table 4-3. Syntax for NI-488.2 Routines in IBIC 48...
	Table 4-4. Auxiliary Functions in IBIC 488.2 (Cont...
	Table 6-1. Bus/Device Options in NI-488 Config
	Table A-1. Status Word Bits (Continued)
	Table B-1. GPIB Error Codes (Continued)

