PROCEEDINGS OF

THE INTERNATIONAL SOCIETY
OF PARAMETRIC ANALYSTS

FIFTH ANNUAL CONFERENCE

INTERNATIONAL SOCIETY
OF PARAMETRIC ANALYSTS

[Hele

VOLUME I NUMBER | |

ST. LOUIS, MISSOURI
APRIL 26-28, 1983

A METHOD TO MEASURE THE
"EFFECTIVE PRODUCTIVITY"
IN BUILDING SOFTWARE SYSTEMS

oy

Lawrence H. Putnam
Douglas T. Putnam
Lauren P. Thayer

Loarntsrtatrive Softwore Managemen ., [re.

1057 /f’aver'/e/ /f’a/
Mclear, Virginia 22787
(T35 780-55

(e) QSM B3/15/83

96

A METHOD TO MEASURE THE "EFFECTIVE PRODUCTIVITY"

IN BUILDING SOFTWARE SYSTEMS

We have been building software systems in the U.S. for over 25 years. The
computer industry has not found many, if any, good methods to quantify and measure

changes 1in the overall efficiency of building software systems.

Generically this is referred to as "productivity". Yet productivity, at least
the traditional definition (Total Output/Total Effort), appears to be inadequate
and a counter-intuitive measure for software systems. The productivity metric is
not adequate as a standalone measure, but it can be used with a combination of
metrics related to resource consumption. By using a set of 1lntegrated metrics the
software measurement process will be more complete with respect to the management

information that needs to be quantified.

PRODUCTIVITY - AN INADEQUATE MEASURE BY ITSELF

First we need to explore what productivity 1s, how 1t should be perceived and

why 1t 1s inadequate as a standalone measure.

In keeping with the traditional definition, productivity for a software system
is the total output divided by the total effort required to produce the output. The
total output of a software system is the functionality that is created. This might
be thought of as the final end product. It is proportional to the number of

"developed"” executable lines of source code or any lines of code that required work.

It is very important to recognize that this ratio measures the productivity

for the system. Many people mistakenly think of system productivity in terms of

programmer productivity. This is a dangerous conceptual problem because programming
effort is only a small portion of the work involved in building systems. A great
deal of work is expended in the front end creating a design. Later in the process

a very significant amount of effort is used integrating and testing at the unit.

subsystem and system levels.

97

The most serious problem with the productivity ratio as an objective measure
1s its extreme time sensitivity. Notice that time 1s not explicitly stated anywhere
in the definition. Rather it 1s implicitly buried in the denominator term (manmonths
of work). A better definition that separates time and effort is needed. Time and
effort are related but in a non-linear way. A powerful exponent attached to the
schedule causes the manmonths to change drastically as the schedule changes modestly.
If the manmonths are so sensitive to changes in time then productivity is equally

sensitive.

There are a number of different ways to approach building a given software
system. One extreme uses a very large number of people to get the system built in the
shortest possible time. The other extreme is to let a few people work for a longer
time until the job gets done. This situation usually happens when people or money
are scarce. Keep in mind there are a large number of different time-effort strategies

between these two extremes.

If productivity varies with chéenges :n the planned schedule then the productivity
can change dramatically from one development to the next. Therein lies the problem....
1s it possible to measure systems effectively with a metric that 1s so sensitive to the

schedule?

A SET OF MANAGEMENT METRICS

This paper presents a set of measures that can cope with the sensitivities of
the software development process. A sound theoretical basis will tie these metrics

together in a consistent and reinforcing way. The metrics that will be used are:

. Technology factor (A Macroscopic Efficiency Index)
. Productivity (Source Statements/Manmonths)

Average Manpower (Total Manmonths/Time)

Project Duration (Schedule)

Total Manmonths (Work)

A U A W N
. .)

Mean Time To Failure (Reliability)

These measures will tie productivity, resources and quality aspects together to
provide a quantitative basis for effective strategic planning, management control,

and good software decision making.

98

The Software Equation (Trade Off Law)

Seven years ago when Larry Putnam was working for the Army at the Computer

Systems Command at Fort Belvoir he discovered an algorithm known as the Software

Equation,
1/3 4/3
S = c . K .t
s k d
where, i
\
Ss = The number of developed executable source statements
Ck = Technology constant
K = Life cycle effort = E _ Development Effort
B Adjusting Factor
td = The development time (schedule)

g = Ad justing factor

The software equation states that for a system of a given size, it will take
td months using E manmonths of effort at an efficiency level of Ck' Note that time
and effort are multiplied together. A change in the schedule will cause a change
in the effort required to get the product done to meet that schedule. The software
equation can be thought of as a software trade-off law since it is possible to trade

time for effort.

This is an extraordinarily time sensitive process. Very small changes in time
oroduce very large changes in effort. The software equation 1is very powerful. If
an organization deliberately plans to take a little longer they can reduce the
effort required to produce a system by a very substantial amount. However, this
policy must be adopted before the start; you cannot slip into it. A few good people
given enough time to build a product right will create fewer errors that will have to
be found and fixed later. Most people familiar with software dzvelopment agree that
there is a time-effort trade-off relationship. The magnitude of the trade-off is
sometimes questioned. A substantial amount of data supports that it is close to an

inverse 4th power time trade-off.

99

The Technology Constant (An Efficiency Index)

Is there any way the software equation might be able to quantify the development
process in an all inclusive way? The technology constant (Ck) in the software equation
is quite well suited to this task. The technolegy constant 1s a macroscopic parameter
that measures the aggregate impact of all influences that effect how long 1t takes and
how much effort is required to build a system. In essence this parameter measures
how efficient an organization 1s 1in building a certain class of software. For
example, a very efficient producer of MIS software would have a high value for Ck’
This type of environment would typically include on-line development, good tools,
strong professional skills, stable requirements, etc. A less efficient producer would
have a lower value for Ck' Higher values of C, will produce shorter schedules that
require less effort for a product of a given size. The real objective in building

systems 1s to produce an equivalent or better quality product in less time using less

effort. The technology constant measures these objectives very well.

After collecting and analysing a large database of technology constants (over

800 systems) values for C have been established that represent a baseline for diffeian:

k
classes of software. The baseline values are primarily driven by the complexity of
the particular class of work. The same values of Ck have been observed in similar
organizations building the same type of software during the same time frame. It
appears that it is the best unambiguous measure of the overall effectiveness of
building software found so far. It is important that one deals with a homogenous
class of work in making theilr measurements (i.e., all business systems, or all real-

time embedded systems, etc.)

How does one get the value of Ck? For a system that has recently been completed

the following information is known:
1. The number of developed lines of code
2. The development time

3. The development effort

With values for three terms of the software equation it is possible to calculate

the fourth term, Ck.

100 ’

Establishing Trend Lines for Metrics on Resource Consumption

There 1s still a need to bring measures of resource consumptlion 1nto thils process.
The U.S. Air Force spent several years collecting a large gquantity of data on software
projects . This is known as the Rome Air Development Center (RADC) database. It 1s
a very good collection of software data from a wide variety of applications and
organizations. This is the largest heterogeneous database ever collected. Richard
Nelsonof RADC analyzed these data with respect to the management parameters - size.

schedule. effort. average staffing and productivity.

These are shown as Figures 1 - 4.

LY
10K —

3

3 S

3 +

) + +

+ + +

4 ” + o .
— + * + - * W *
z K- + * + \d
= 3 + g R _t' 2 ;‘ "F 4 +0
: - v ag ¥ Y ; . +
S 1 24 . i AR ’r’ ')\‘ S ’ .
> 4 ’ KA S RN oF fet PO +
a }’ f‘. . t+ ad RLAE] I hd 2 b4
z] vy RTINS +
- A4 L T [N Y
Z 100 A + v 1 +
o 3 + + o' ‘{L + T Frs hd -0
8 3 F J - ;1' \d *1 3 + Y
b= 3 *e + . + b .
-3 e * . *e t 7%, * * + +
e - * . + +~ * e, : + * rr o9

* *
+
10 — [

3 LEAST SQUARES BEST FIT

J + Y = 181.574600(X?.019901)

- R = 033415

‘ T T LSRR AAS L4 T LSRR RAL T T T 7TT7Tr°eY LS v TrTervry v v rrvrereyy X
ﬁ T T 177 '7'[]' I] I I T T
10 . 100 1K 10K 100K ™ 10M
ostoc RADC/ISIS 001-78-04

Productivity vs. DSLOC.

Figure 1.

130K 101

PO AAAIAJ

10K —

4 444kl

1

s
x

s A4 llllll

TOTAL MAN-MONTHS
8

=3
R
10—
1 - LEAST SOUARES BEST FIT
3 Y = 005744 (X1.975873)
3 R = .853915
AR AAS 2 L4 x
1 T F—r—rrfrry T T T v T
10 100 1% 10K 100K ™ 10M
v psLoc RAQC/1SIS 003 78-04
Figure 2.
Total man-months ve. DSLOC. "
Y
1K =3
3
h
-
S 1007
= 3
= 3
3 3
= 4
(%)
z 4
2
S
5 103
= P
-“d
ud b
= A
=) s
=
bt -
(&)
-
[- 4
< e
< 3
LEAST SCUARES BEST FIT
1— Y = .014754 (X1.508761)
R = .803888
v rrrYr y— x
] L T l’lfl’r'] RAEERA ITYV'T]' T 1T T l""f‘ T T'l"l'[’ rr
10 100 1K 10K 100X ™ . 10M
osLoc RADC/1SIS 009-78-04

Avarace number of neonle vea. DSLOC.

102
Y
1K —
3
100 —i,_ 5
1
I3
F 2
by -4
= L
S 10—
= 3
=z]
=] 4
-
< -
(-4
> 4
Q
21—
=] 3
S 4
] LEAST SQUARES BEST FIT.
Y = .407731 (X?.349163)
1 — R = .700265
. X
T T YYYYY" AV L4 YIV"I] T T 'rv"r] T T er'va L4 T "ll"l T l
Jb 100 1K 10K 100X ™ 10M
0sLoC RADC/1SIS 005-78-04
i i . DSLOC.
Figure 4. Project duration {months) vs o

On each of the RAIC graphs the horizontal axis represents source lines of cocde.
Note that both scales are logarithmic. Power functions plot as straight lines on
logarithmic scales. The data ranges from 10 to 1l million lines of code which spans
the range of most systems. The plotted lines show a best fit of the data for
productivity, project duration, total manmonths (proporticnal to cost), and average
manpower. The middle line in each case represents the average best fit of all the

data points. The upper and lower lines are the +1 and -1 standard deviation lines.

The correlation of the trend lines are quite good on all the graphs except
productivity. We know that productivity is very sensitive to the schedule and this
is why the correlation is close to 0 (no fit). Even though the trend lines on the
other graphs look good there is still a large variation in the data at any particular
system size. For example. at a system size of 10,000 lines the project duration

could be from 1 month up to 1.5 years. If there is some way to discriminate within

103

these data sets then they can be used in a comparative way. The technology constant
gives us this capability. Notice that the information used to plot the data points

on the graphs can be derived from the inputs to the software equation. With the
additional sorting capability provided by the technology constant the four graphs will

be more meaningful.

The RADC trend lines appear to be valid. A new set of data superimposed on the
trend lines will give a new basis of comparison. From this analysis it will be
possible to evaluate the overall effectiveness in management terms. This tells a
complete story about the development philosophy and management style of a software

organization.
CASE STUDY OF THREE SYSTEMS

To demonstrate this method it is worth looking at the data for five real systems
built by three well known and respected or@anizations. This case 'study will look at

three distinct classes of software. The three application groups are:

1. Real time embedded software
2. Systems software

3. MIS software to support manufacturing operations

The real time system is the software for a cruise missile. The systems software
project 1s called EXEC System and can be classified as an operating system. RFM,
Parts No., and Materials are MIS systems and were developed by the same manufacturing

company .

»
Shown in Table 1 are calibration runs using SLIM to calculate Ck with a

computer.

* "SLIM is a computerized implementation of the Putnam software equation and the
Norden/Rayleigh resource allocation model. The Calibrate function calculates

values of Ck from data of previously developed software projects.

104

Table 1.

113881003t RIitr sttt as st it istaIatusstsssassaasssstsssstsstasIILILILILY

CALIBRATE
338300880t Isst N8t siIs eIttt sttt ssassIst sttt sILIIILLIIILLLL

SYSTEM NAME: CRUISE MISSILE SYSTEN NAME: RFM

SIIE {SOURCE STATEMENTS): 3800 SIZE (SOURCE STATEMENTS): 100000
DEVELOPMENT TINE: 24 MONTHS DEVELOPMENT TINE: 21 MONTHS
DEVELOPMENT EFFORT: 107 MANMONTHS DEVELOPMENT EFFORT: - 48 MANMONTHS
GRADIENT LEVEL: 1 GRADIENT LEVEL: !
TECHNOLOGY FACTOR:) TECHNOLDGY FACTOR: 15

Ck = 754

THIS TECHNOLOGY FACTOR SEEMS UNREASONABLE. PLEASE RECHECK YOUR DATA. Cx = 21,892

SYSTEM NAME: MATERIALS

SYSTEN NAME: EIEC SYSTEM SIZE (SOURCE STATENENTS): 700000

SIZE (SOURCE STATEMENTS): 51000 DEVELOPMENT TINE: 38 NONTHS
DEVELOPNENT TINE: 33 MONTHS DEVELOPMENT EFFORT: 384 MANMONTHS
DEVELOPHENT EFFORT: 248 NANNONTHS : SRADIENT LEVEL: !

SRADIENT LEVEL: 1 TECHNOLDSY FACTOR: 17
TECHNOLOGY FACTOR: 8 Cyx = 35,422

Cx = 4181

SYSTEM MAME: PARTS M.

SIIE (SOURCE STATEMENTS): 108000

DEVELOPMENT TINE: 21 MONTHS
DEVELOPMENT EFFORT: 25 NANNONTHS
GRADIENT LEVEL: !
TECHNOLOSY FACTOR: 14

Sy = 28,657

u)

—

SH0L3V 4 ASOTIONHD3L

dsvdviva A30 3JAVMLAH0S
AOMNLS 3Isvd

ADNINO3d A

'q

aanbry

FREQUENCY

Figure 6.

60

S0

40

30

20

10

SLIM SOFTWARE DATABASE

as of JUNE 82
Cimcludes RADC DB>

TECHNOLOGY FACTORS

18

20

22

90T

107

Table 1 shows the actual size. development time and development effort for
each system. These numbers were run through the software equation to calculate
the technology constant. Note that technology factor is used i1n the table. Technology
factors are a linear sequence of number (1 - 22) that corresponds to a empirically

determined sequence of Ck values from 610 - 121,393.

A parameter called the gradient level 1s also calculated. The gradient level
is the ratio of life cycle effort divided by the development time cubed (K/td3).
Like Ck and the technology factor, a similar transformation of empirical values to a
linear sequence 1is used, the range is from 1 - 6. The gradient level measures how
fast you actually applied people to a project. For example, if a system's functiocnal
content 1is well known then one could build up to a high level of staffing quickly.
Gradient levels 3, 4, 5 and 6 take on this general character in varying degrees.
Gradient level 1 and 2 are very gradual manpower build ups. This profile seems most

appropriate to match fuzzy. ill-defined and largely sequential problems. Time

compression 1s not possible.

In certalin situations where resources are constralned (people or money) 1t 1s
possible to force a project to be built in & very sequential way even though high
degrees of parallelism would have been possible. The gradient levels measure how
projects were actually built. For example a Rebuild (Gradient Level 3) may have been
built like a new complicated system (Gradient Level 1) because only 7 people were
avallable to work on the system. These situations indicate that the software trade-off
law 1s being exercised. Indeed four of the five systems here are cases where trade-offs
did take place. These trade-off systems are the Exec System, Parts No., RFM and

Materials.

Project Histories

Let's look at the technology factors calculated from the actual project data
for each of these systems in the context of what we know about the nature of the

work and the history of the project.

Cruise Missile
(Embedded System) - First an examination of the cruise missile project. The
project data produced a technology factor of 1. This is the lowest value

that has been observed historically.

This software was written to process a data stream of radar information
related to the terrain on the ground below. The software was made up

of 5800 machine order instructions. Limited memory conditions, maximum

108

processing speed, and extremely complex algorithms make this software
one of the most difficult to create. The very low technology factor
in this case is determined by the extreme difficulty associated with
this work. Micro-code and ROMable firmware tend to be on the extreme
low end of the technology factor scale as well. These three problem

classes appear to be equally difficult to solve.

EXEC System
(Systems Software) - The EXEC system can be classified as operating
system software - a system executive. The EXEC system was designed to
run on a standalone computer and handle all data and memory management
functions. The system was written primarily in Fortran (80-85%) with
the remaining (15-20%) being written in Assembly language for optimization

purposes.

The EXEC system was done under contract by a large computer corporation.
The contractor's project manager 1n charge of the software development
was adamant about using a small team of people on the main sof tware
build (not more than 10-12 people). There was absolutely no way he
was golng to be talked into trying to 'steamroller' this project

with large numbers of people. There were several reasons that he

felt this way; the first reason was his own intuitive feel that small
groups could communicate much better than large groups. From a
management point of view he felt that a smaller team would be better
able to implement the structured. modular development which he planned
to use extensively on this system. The project manager used PDL,
front end structured design as well as code walk throughs. This

resulted in very modular and efficient code.

The system originally was designed and coded around a Interdata 7/32 CPU.
This machine had some significant memory constraints which somewhat
compromised the design. Approximately one third of the way through

the development the software builders switched to a Perkin Elmer 3242
for a development machine. This CPU did not have the memory problems

but the overall design remained consistent with its original concept.

(It is not clear at this point whether the machine switch caused a break
in the continuity of the project or not -- it usually does.) Both

development computers supported on-line interactive development.

"EXEC" consisted of 61,000 lines of executable code. The development
time from detailed logic design to full operational capability was
33 months and 248 manmonths of work was expended during the 33 month

period.

(Verification of the Software Trade-Off Laws) - When these data were

run through the software equation in SLIM 1t produced a Technology Factor
of 8 (a technology constant of 4181) énd a manpower acceleration rate
(gradient level) of 1. It was described by the project manager as a
gradient level 2 standalone system. This is often the clue to expect

a trade-off situation because a level 1l system takes longer than a

level 2 system to do. The gradient level calculation determines how

it was actually done. So if the actual time was significantly longer
than the mlﬁimum time for that type of system, 1t 1s very likely to be
a trade-off candidate caused by some management constraint such as
constrained funding, or constrained manpower. In thls case a maximum
of 10 to 12 people was the constraint. Using the actual size, the
calibrated technology factor and the described level (61,000 Ss, TF = 8
and Level =2), SLIM's Monte Carlo simulation was run to determine the
minimum time and corresponding effort. The simulation produced the

following results:

Minimum Time 25.8 Month

Development Effort 658 Manmonths

This was encouraging since the actual time was 7.2 months longer than

this, and the actual effort was significantly less.

We reasoned that if the parameters were set to 248 manmonths using
the Design to Cost function in SLIM the software equation would calculate
a time solution very close to the actual data point if the fourth power

software trade-off law was valid.

This procedure resulted in a near perfect fit. A 29% stretch out 1in

the schedule produced a 62% reduction in cost. Even if we had considered
the system to be a level 1 system, the minimum time result would have

been 28.5 months and 438 manmonths. The difference between this and

the actual data point (33 months and 248 manmonths) is still significant --
an 18% stretch out produces a 48% reduction in cost. See Appendix A - a
set of annotated outputs which show how the computerized model was used

to verify the trade-off situation.

110

RFM, Parts No. and Materials

(Manufacturing Support Systems) - The final three data polnts are systems
built by the same company. They are MIS systems that support manufacturing
cperations. The technology factors for these systems were very high (15,16
and 17). They fall in the top 10% of what has been observed in the U.S.,
Europe and Japan. The developing organization is very tool conscious. They

upgrade and assimilate new equipment and software tocls on a regular basis.

Over a four year period (1978 - 1982) this company moved out of a Non-IBM
mainframe environment into a very modern large scale IBM environment. The
sof tware development people using the new equipment characterized the IBM
environment as being much better for software development. The utilities
that they formerly had to create were available as part of the normal IBM
development tool kit. Additional capabilities available on this system
included a data base management system and full capability screen editor.
They were also using the ADE tools associated with IDMS. The functional
designers made extensive use of the PRIDE structured development methodology.
As a result they moved from a baseline technology factor of 12 in 1978 to
16 in 1982. This represents a phenominal increase in efficiency. Used 1n
this way the technology factor is a very good measure of an organization's

real efficiency increase.

Futhermore. this organization tends to invoke the software trade-off law
strongly. They choose to build software using small groups of people
(manpower ccnstrained). Their experience shows that they get a higher

quality product using this software development philosophy.

Materials System

(Verification of the’ Software Trade-Off Law) - It is worth taking a lock

at one of these systems - Materials. It is a very large system. Materials
was built in the environment described above. The system contained 700,000
lines of COBOL. It took 38 months and 384 manmonths to build. The technology
factor for Materials was 17. This is a very high technology factor (in the
top 5% of what has been observed). The system designers described Materials

as a rebuild of an existing system.

The actual data from Materials was run through S1IM 1n order to
determine the minimum time to complete the project. Gradient level 3
was used because 1t corresponds to the fastest manpower buildup rate
possible for a rebuilt system. The calibration of the actual data
showed that they worked the problem like a level 1. This 1s often

a good indication that a trade-off has taken place. Gradient level 1

has a more gradual manpower buildup therefore they take longer to do.

The Monte Carlo simulation routine in the SLIM model produced the

following results:

Minimum time 27 Months

Development Effort 1434 Manmonths

To build the system in the minimum time it would have required 82 people
at peak staffing. This organization typically doesn't use this many
people on projects. Materials actually took 11 months longer to build
than the minimum time but 1t used much less effort. To test the actual
results against the 4th power software trade-off law the Design to Cost
function in SLIM was used. If the actual recorded manmonths (384) was
put in the Design to Cost function then the new schedule should be very
close to 38 months. The software equation predicted a time of 37.45
months. The prediction was only off by 2 weeks from what actually
happened. This is very close realizing that most people don't record

the data more accurately than whole months.

The thirteen months schedule stretch out reduced the peak staffing to
16 people. The increase between the minimum time and the actual time
is 39%. This time increase caused a 1,050 manmonth reduction in effor=.
The decrease between the minimum time effort and the actual effort is
73%. At a burdened labor rate of $50,000 / manyear this represents a
4.5 million dollar cost savings. See Appendix B - a set of annotated
outputs showing how the SLIM computerized model can be used to perform

this analysis.

[
—

112

(Materials System - Reliability) - The Materials system has some
reliability information. SLIM shows that when Materials first became
operational it had a Mean Time to Failure (MTTF) of about 1 week to

10 days. In other words the average time between major system failures

that required prompt corrective action was about one week.

Some work in the software reliability modeling area gives us the
capability to compare the expected reliability levels for the minimum
time and the actual time for the Materials system and determine if
there are any quality trade-offs between these different development
approaches. When both cases were analyzed 1t appeared that there were
significant differences. The minimum time solution would have produced
roughly 1900 significant design and coding errors. The MTTF at the
minimum time would have been about .05 months. This is about one

eight hour day under normal operating conditions. On the cther hand,
the number of significant errors for the actual system would have been
about 500 and the MTTF would have been .25 months (about 1 week). This

is very close to the reliability level experienced in the field.

Why would the quality be better for the second case? In the
manpower intensive software development people spend a great deal

of time trying to communicate with one another. The human communication
process 1s ambiguous. Therefore erroneous human communication is
always happening. Software developments that have large amounts of
human communication tend to generate more "noise". This means that
such systems have a large number of errors and a short mean time
between failures. By reducing the human communication on a project
you also reduce the noise. A few good people given enough time will
not create nearly as many design or coding errors. The attached
computerized output shows how the quality changes between the two

solutions.

113

DI it eI I eI s RNt as IS Bt I eI IBIIIIRLILLILIIILLLILLLILGNLL
RELIABILITY
PSS s st assans st st ass s s s s s st IssIILLILILLIIRIIISILILILIIILOLLY
MATERIALS SYSTEN

A SUMMARY OF THE CURRENT PARAMETERS ARE: MINIMUM TIME RELIABILITY

PARAMETERS

TINE: 27.1 MONTHS .. . ,
EFFORT: 1434 HANHUNTMS] The minimum time solution
C0sT: 3927 (1 1000 $)
MEAN TIME TO FAILURE: .05 MONTHS —eaemmms 1 eight hour day of normal operation
EXPECTED ERRORS: 1871 ERRORS —~-affemmmm Close to 1900 significant design and
EXPECTED ERRORS/1000 SS: 2.67 EPRORS coding errors
EXPECTED ERRORS/1000 SS

{(FROM SIT TO FOC): .47 ERRORS
ERRORS REMAINING AT 27.1 Mos: 93 ERRORS

BESIs s sn ittt st saanasassass et ettt ss I I IS It ILILILLIILIILILILLILL
RELIABILITY ’
BI LSSt aR s sttt R ansnssaasss sttt an Nt eISLIINIIRIIILIILIILILILLIILILILLLL
MATERIALS SYSTEM

A SUMMARY OF THE CURRENT PARANETERS ARE: ACTUAL DEVELOPMENT
SCHEDULE RELIABILITY PARAMETERS

TINE: 37.5 MONTHS]
EFFORT: 384 MANMONTHS
£osT: 1600 (X 1000 ¢}
MEAN TIME TO FAILURE: 025 MONTHS e 1 week between major system failures
EXPECTED ERRORS: 301 ERRORS —afemmm= On 1y about 500 significant errors
EXPECTED ERRORS/1000 SS: .72 ERRORS
EXPECTED ERRORS/1000 SS

(FRON SIT TO FOC): .13 ERRORS

ERRORS REMAINING AT 37.5 Mos: 23 ERRORS

114

THE TABLE BELOW SHONS THE EXPECTED ERROR RATE, MEAN TINE TO FAIL-

URE (MONTHS), AND EXPECTED CUMULATIVE ERRORS FOR DEVELOPHENT
THROUGH THE .999 RELIABILITY LEVEL.

DEVELOPMENT TINE OF

THESE VALUES ARE BASED ON A
27.1 MONTHS AND A TDTAL DEVELOPNENT

MINIMUM TIME ERROR FORCAST

EFFORT OF 1434.2 MANMONTHS.
EXPECTED ERRORS

REAN ERROR EXPECTED RANBE

ERROR RATE Cum ERRORS CUM ERRORS NTTF
MONTH RATE RANGE FIIED FIXED {MONTHS)
JAN 79 15.2 10.7 - 197 8 6 - 9 -
FEB 79 30.1 20.4 - 3B.8 30 3 - 33 -
MAR 79 4.2 3.7 - S67 68 36 - 79 -
APR 79 57.3 ALd - T3.2 118 99 - 138 -
MAY 79 9.0 50.2 - 87.8 182 152 - 212 -
JUN 79 79.2 58.0 - 100.3 256 214 - 298 -
JuL 79 87.6 b4.6 - 110.6 339 284 - 393 -
AUG 79 94,2 49.9 - 118.4 430 360 - 501 -
SEp 7 98.8 73.8 - 123.8 527 440 - 614 -
0cT 79 101,6 76.4 - 125.8 628 524 - 731 -
NOY 79 102.6 77.6 - 121.8 730 610 - 830 -
DEC 79 101.9 77.4 - 126.3 832 895 - 9469 -
JAN 80 9.6 Th.t - 12301 933 779 - 1087 -
FEB 80 96.1 73.8 - 118.4 1031 gst - 1201 -
HAR 80 91.5 70,6 - 112.3 1125 940 - 1310 -
APR 80 86.0 4b.6 - 105.3 1214 1014 - 1413 -
HAY 80 79.8 62.2- 973 1296 1083 - 1310 -
JUN 80 73.2 9.3 - 89.2 1373 1147 - 1599 -
JuL 8o 66.5 52.2 - 807 1443 1205 - 1680 .02
AUG 80 59.7 47.0 - T72.3 1506 1258 - 1754 .02
SEP 80 53.0 41.9 - 64.1 1562 1305 - 1819 .02
0CT 80 4.6 369 - 58.2 1612 1347 - 1877 .02
NOV 80 40.5 32.2 - 48.8 1636 1383 - 1928 .02
DEC 80 349 27.8 - ALY 1693 1414 - 1972 .03
JAN 81 9.7 23.8 - 357 1723 1441 - 2010 .03
FEB 8t 25.1 20.1 - 30.1 1753 1464 - 2041 .04
AR 81 21,0 16,9 - 25.1 1776 1483 - - 2068 .03
APR 81 17.4 14,0 - 20.8 1795 1499 - 2091 .06
MAY 81 143 1.5 - 17,0 1811 1513 - 2109 .07
JUN 81 11.6 9.4 - 13.8 1824 1523 - 2124 .09
JuL 81 9.3 7.6 - 1.1 1834 1532 - 2136 11
AUG 81 1.5 6.0 - 8.9 1842 1539 - 2146 A3
SEP 81 5.9 48- 1.0 1849 1545 - 2154 A7
0CT 81 4.4 3.8 - 5.3 1854 1549 - 2160 22
NOV 81 3.6 2.9 - 43 1838 1552 - 2154 .28
DEC 81 2.8 2.2- 33 1862 1555 - 2148 .36
JAN 82 2.1 1.7 - 2.3 1864 1557 - UM A7
FEB 82 1.6 1.3- L9 1866 1559 - U3 .83
HAR 82 1.2 1.0 - 1.4 1867 1560 - 2173 84
APR 82 .9 gJ- 01 1848 1561 - 2176 1.13
MAY 82 J S5- .8 1869 1561 - U77 1.33
JUN 82] A8 1870 152 - UM 2.10

No MTTF because we don't have
a system yet :

Systems Integraﬁion?@st
starts about here.

MTTF = .05 Mos. when the
system will become operati

You will have to continue to te
and work an additional 7.5 mont
to get a MTTF of 1 week. The
development cost now will be
close to 10 million dollars.

8y

(syadows AW I 1L A3JU

€ AN
TARE
00000L SS
KALSAS SIVIY3LYH

w SOW LT = P3

5] N N o
] T 0
-1 92
)
: — 2S
19Aa1 A3TiTqRTI9Y . . -] 8¢
L L j N\ \
© 0 0
0) u
] — v01
1 | 1 1 1
TN - cC o T 0 7 08!
0O 0 0 0 O o
0 0 m - 0 b 2

ase) awT], wowiulp

JlVYd d0dd3 d3133dXd

HINOW,/SH0953

JW

EXPECTED ERRORS

116

NEAN E"ROR Cafinin r Aok

ERROR RATE CUA cnnune LuM cRRORS NTTF
e MR e Tm MRS cro oo
JAN 79 2.1 1.4 - 2.9 { { - | - ERROR FORCAST
FEB 79 4,2 2.8 - 5.7 4 4 - 3 -
#AR 79 6.3 4.2 - 8.4 10 8 - 11 -
APR 79 8.3 5.6 - 1.0 17 14 - 20 -
maY 79 10.2 6.9 - 13.4 26 22 - 3! -
JUN 79 11.9 8.2 - 15.6 37 31 - 44 -
Jut 79 13.5 9.3 - 7.7 30 41 - S -
AlE 79 14.9 10.4 - 19.5 b4 33 - S -
SEP 79 16.2 11.3 - 21.1 80 46 - 93 -
ocy 7% 17.3 12.2 - 22.4 9 80 - 13 -
N3Y 79 18.2 12.9 - 23.S 114 93 - 134 -
06C 79 189 13.4 - 24.4 133 10 - 156 - No system yet
JAN 80 19.4 13.9 - 24.9 152 126 - 178 -
FEB 20 19.7 14,2 - 25.3 172 142 - 201 -
MAR 80 19.9 14,3 - 25.4 194 158 - 224 -
APR 80 19.8 14,4 - 25.3 21 175 - 247 -
MaY 80 19.5 14.3 - 25.0 231 191 - M -
JUN 80 19.3 141 - 24.5 250 - 207 - 293 -
JuL 80 18.8 13.8 - 23.8 269 223 - 316 -
AU 8¢ 18.2 13.4 - 23.0 288 239 - 337 -
SEP 89 17.95 13.0 - 22,1 306 283 - 338 -
ocT 80 14,7 12.3 - 21,0 323 268 - 379 -
NOY 80 13.9 11.9 - 19.9 339 281 - 398 -
DEC 30 15.0 11.2 - 18.8 339 294 - 415 -
JAN 81 14,1 10.6 - 17.6 349 306 - 433 -
FEB 81 13.1 9.9 - 18.3 383 37 - 449 .08 Systems Integration Test
MAR 81 12.2 9.2 - 15.! 396 328 - 464 .08
APR 81 11.2 8.5 - 13.9 407 337 - 477 .09
MAY 81 10.3 7.8 - 12.7 418 344 - 490 .10
JUN 81 9.4 7.2 - 1.4 428 334 - 501 N3
JuL 81 8.9 6.5 - 10.3 437 362 - 512 .12
AUS 8! 1.7 5.9 - 9.5 445 348 - 521 A3
SEP 8t 5.9 5.3 - 8.3 452 374 - 330 .19
0cT 8t 5.1 4.7 - 1.8 459 380 - 337 .18
NOY 8t 5.5 4.2 - 6.7 444 383 - 544 .18
DEC 81 4.8 3.7 - 5.9 470 389 - 550 2
JAN 82 4.2 3.3 - 5.2 474 393 - 536 .24

MTTF = 1 week at full

FEB 82 37 29- A5 478 396 - 50 27 operational capability
MAR 82 3.2 2.3 - 3.9 482 - 399 - 564 31
APR 82 2.8 2.2 - 3.4 485 401 - 948 .36
MAY 82 2.4 1.9 - 2.9 487 404 - n A4
JUN 82 21 1Lb- LS 489 T 405- 54 A48
JW 82 1.8 1.4 - 2.1 9 407 - 376 .57
AUE 82 1.3 1.2 - 1.8 493 408 - 578 .47 How things get better as you
SEP 82 1.3 1.0 - 1.5 494 409 - 519 19 continue to test and work.
0CT 82 1.1 8- 1.3 494 410 - 381 94
NOY 82 .9 J-0 1 497 411 - 382 1.12
DEC 82 .7 6 - .9 497 412 - 583 1.34
JAN 83 N .3 - .7 498 412 - 584 1.482
FEB 83 W5 A - .6 499 413 - 584 1.9
NAR 83 A 3 -) 499 413 - 389 2.38
APR 83 .3 3 - .4 499 4 - 585 2.91
NAY 83 .3 2 - .3 300 414 - 586 3.58
JUN 83 .2 2 - 3 300 A4 - 586 4.42
Ju 83 .2 .1 - 2 500 414 - 586 5.47
sun v . « " a0 414 - N 4 87

117

"SOW 6Lt = "3
Q) > w -
o Ul O wn o
v e | | |
TanaT1 A3t119eT113yd B
(.] 1 . Vn
0 0 © "/
0 0 0 >
6 —
L L1 1 1 1 1
m - c o n 0 LY
0 0O g = Q @) 0
0O 0 n A 0 Py Py
||_

(syauvowy GWI L AFd

p

ase) jjo-apel], 104

JLVvyY HOY¥d3 03103dX3

o1

Gl

Oc

Ge

€ 3AI
Ly 4
00000L SS
WALSAS STIVIYILYH

HLINOW,/ SH03d 3

118

Plotting the Data on the RADC Trend Lines

we have examined three classes of software; a realtime embedded system, an
operating system and three manufacturing support MIS systems. The different
schedule. staffing and quality implications that determined the particular software
development strategy have also been examined. Now we will plot these data on the
trend lines established by the RADC analysis. The data will be portrayed on the

graphs listed below:

. Productivity versus System Size
Project Duration versus System Size

Total Manmonths versus System Size

W N

Average Manpower versus System Size

See Figures 7 through 10 .

119

ccgoc1Tt =y =S
pt —
O (@] — .
(@]) (@] O — p—
. . | R L1140 1 1 i 1 T 1 | U O O 1 |

i
\ -
-4
o J1SSIN 3SINYI i
il WILSAS I3X3 -
w. L g -
] | =
~ s
m ._.ISSQE YW mn WHY 1
g nl "ON S1YVvd -
< -

SS TSA

ALIANT LONQOHdd

0l

00001

/
L

aanbry

ALINTI LONACHd

(NS5

120

EOOOI

~001

(0001 >> S5

—
| U O VY WS S | 1 U U O | 1 1 | O O T O

ADD P38 -

1+

SIVIHILYH

ABD P38

ON S14vd

1 1

W44

JTISSIW 351N43

W3L1SAS J3X3

nirrrv b1

1

RIARRERIEI

T mrrrrr i
Q
ot

Tiit1

(SOWD

SS TSA
NOI lLVvdNa 1233rodd

oot

000t

-g oanbty

NOILlvdnd

(SOWD

121

0oat

ABD D38 -

I 1 T T o | 1

~01

§ 10 U0 VY WA Y W | |

SIVIYILVYH

-

‘ON S14vVd

JTUSSIN 3SINYI

W31SAS 3X3

T rr 1 Iy rr 11 mITrrr 1
o
w—r

¥

ISR R

ABP P3s 1+

SS TSA
SHINOWNYW V101l

001

000t

00001

"6

sanbty

WN TV LOL

122

CO001 >> =5

8 o —
o (@) (@) — —
W |] 1 | 50 U I I | 1 1 | T O U B | 5 W U O I . | 1 ﬁ.
‘ON S18Vd -
» m~
’ b—
\ SIviyILvw hIY -
o | -
m » FO1
& FTISSIW 3SINYI B
<
WILISAS J3X3 =001
+
- -
Q =
m u
w _ - ; E0001

SS TSA
d1d03d 40 # Z[DIAVAHIAY

0l

aanbty

3 1d03d # JOVIIANY

123

Productivity Versus System Size

The first graph that will be analyzed (Figure 7.) is Productivity
versus System Size. The cruise missile software falls more than one standard deviaticn
below the average productivity of over 400 systems. Remember this software was
extremely complex. it had a very low technology factor (1 on a scale of 1 - 22) and
it was a minimum time (maximum effort) development strategy. The cruise missile's

productivity plots exactly where one would expect (very low).

The EXEC system's productivity plots almost exactly on the average trend line.
The technology factor for this system was 8. This 1s lower than the average technology
factor of all the systems in the RADC data base. Normally., with this technology
factor we would expect to see a slightly lower than average productivity. However
this would only be true 1f a minimum schedule (maximum effort) strategy were employed.
Productivity for the minimum time would be 61,000/665MM or 93 source statements per
manmonth of work. This productivity would plot well below the average trend line.
We know that this system was resource constrained at a maximum staffing of 11 people.
The manpower constraint caused a 7.2 month increase in the schedule and a substantial
reduction 1n effort. The calculated productivity for the system as it was actually
built 1s 61.000/248MM or 246 source statements per manmonth of work. This productivity
1s much higher than the minimum time. This 1s why the EXEC system's productivity plots
on the average trend line even though a technology factor of 8 might initially cause

us to think it would be lower.

The three manufacturing support systems experienced very high productivity rates.
All three of these systems had very high technology factors. They were all resource
constrained by the organization's small team development approach. Consequently, all
three of these systems fall in the trade-off region. This organization's capital
investment in tools coupled with their development philosophy has really paid off.
Their productivity plots 2 to 3 standard deviations higher than the average of over

400 systems.

124

Project Duration Versus System Size

The second graph is project Duration versus System Size. Notice first that the
cruise missile software plots more than one standard deviation longer than the average
of 400 systems. The very complex nature of this work would intuitively lead you to

expect this and indeed, this 1is the case.

The EXEC system plots close to one standard deviation longer than the average
duration. Why? Begause the schedule was deliberately stretched out 7.2 months from

the minimum time schedule - - the trade-off becomes very evident.

The three manufacturing support systems all plot very close to the average duration.
The influence of the high technology factors shortens the development schedule at the
minimum time. Materials schedule was stretched out 13 months. Even with thils dramatic
time stretch out 1t still plots slightly shorter than the average duration. The other

two systems had similar situations.

Total Manmonths Versus System Size

The next graph is Total Manmonths versus System Size (Figure 9). Manmonths
are proportional to cost therefore this graph also represents how expensive it 1is
to build a system. Notice that the three manufacturing systems required much less
effort than the average (2 to 3 standard deviations fewer manmonths). This means
that these systems were very lnexpensive compared to what other organizations have
historically paid for similar sized systems. Again, it shows quite clearly that this

organlization's capital investments and development practices have really paid off.

The EXEC system plots slightly less than the average manmonths. This is due

to the constrained resource development approach (Trade-Off) that was used.

The cruise missile was more complex. It had a lower productivity, it took
longer to build and it required more effort. The effort was more than one standard
; ,

deviation (higher) than the average of over 400 systems.

Average Manpower Versus System Size

The last graph 1s Average Manpower versus System Size (Figure 10). As you
might expect, the cruise missile software required a greater than average number of

people.

125

The EXEC system tock less than the average number of people. This 1s not

surprising because the system was resource constrained at 11 people.

The manufacturing support systems used significantly fewer people. All three
systems fall two to three standard deviations lower than the average number of people

of 400 systems.

CONCLUSION

The graphs tend to support that the software equation 1is very close to expressing
the way software systems behave with respect to changes 1in the schedule and effort.
The large number of systems in the RADC database from which the trend lines on the
four graphs were derived provide an objective means to measure the actual performance.
The technology factor provides the capability to measure relative 1lncreases 1n

efficliency 1n a homogenous class of work.

When these metrics are combined they give a good account of how you really
performed. This starts to become meaningful as you acquire tools and develop new
methodologies. Measure the old projects. Measure the new projects. Did you really
get the pay off that you anticipated? wWhat is the pay off? Are you getting an equal

or better quality product in less time, using less effort and fewer people?

Using this approach we are able to capture the long term dynamics of the software
development process. As things change over time we will be able to better assess
the actual capabilities of the organization. This information can then be fed back

1into the estimating process so that our estimates are consistent with the organization':

current capabilities.

127

APPENDIX A

EXEC SYSTEM
VERIFICATION OF THE TRADE—OFF LAW

128

TS saast e ssaas I sss st ss s NS IINLILLRILILILILILLILILLILILL
SUMMARY OF INPUT PARAMETERS

LIS et eIt I NI ILILIIILILLILILLLILIILILUL

SYSTEM: EXEC SYSTEM DATE: 10 MAR 83

TINE: 13:30

PROJECT START: 0478

COST ELEMENTS

cosT/ny: 75000, INFLATION RATE: .100
NONETARY UNIT: ($)
STD DEV (COST/NY): 7500.

ENYIRONMENT
ONLINE DEVELOPMENT: 1.00 HOL USAGE: .85
DEVELOPMENT TINE: 1.00 PRODUCTION TINME: 0.00
DBNS: 0.00 REPORT WRITER: 0.00
LANGUASE: FORTRAN

SYSTEM
TYPE: OPERATING SYSTEM REAL-TIME CODE: - .1IS
LEVEL: ? ~ff— UTILIZATION: .80

MODERN PROGRAMMING PRACTICES

STRUCTURED PROGRAMMING: > 751 DESIGN/CODE INSPECTION: Y751

TOP-DOWN DESIEN: > 7151 CHIEF PROG TEAM USABE: (251
EXPERIENCE .

OVERALL: EXTENSIVE SYSTEM TYPE: EXTENSIVE

LANGUAGE: AVERAGE HARDWARE: MINIMAL
TECHNOLOGY

FACTOR: § —ouffm—— Ck = 4181
SIZE

LOWEST: 51000 RIGHEST: 71000

Gradient level 2 for a
standalone system as
described by the project
manager .

Technology factor 8 was
calculated from the actua
project data.

RE AR R R R R SRR R R R AR R AR R R R R R R R RN R R R R A R R R R A R R R R R R R R R R R R RRR SRR R RE

SIXULATION

R PR AR R R R R R R A R R R R RN DR R R R R AR SRR R R R PR RRSR R

EXEC SYSTcX

10 MAR 83

13:36

SYSTEM SIZE (STATEMENTS)
MINIMUM DEVELOPMENT TINE (MONTHS)
DEVELOPMENT EFFORT (MANNONTHS)
DEVELOPMEXT COST ($)

(UNINFLATED)

(INFLATED)

PEAK MANPOWER (PEQPLE)

MEAN STD DEV
51000 3333
25.8 l .8
658.1’ 70.6
1144 S84
1599 655
38 e

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION

SQURCE STXTS MONTHS
-3 STD DEY 51000, 23.9
-1 STD DEV 37641, 25.2
MOST LIKELY 41000, 25.8
+1 STD DEv 64333, 26.4
+3 STD DEV 71000. 21.3

A COMSISTENCY CHECX WIiH DATA FROM OTHER SYSTEMS. OF THE SAME SIZIE SHONS:

TOTAL MANMONTHS 658
PROJECT DURATION (MONTHS) 25.8
AVERAGE § PEOPLE 25
PRODUCTIVITY (LINES/MN) 93

UNINFLATED
RANHONTHS COST (X 1000}
310. 3187.
614, 3835.
458. 4145,
ns. 4490,
824. 5132,

IN NORMAL RAWGE
IN NORMAL RANGE
IN NORMAL RANMGE
IN NORMAL RANGE

129

This 1s ¢l
that the E
could have

© fastest time
XEC system
been buillt in.

(@

To build the system in the
minimum time it would have
required 38 people at

peak staffing.

Productivity at the
minimum time is 93 Ss
per manmonth.

130

D (&)

CO0atl X> s "3ZISs

€0)]

— 0y
— 0Z
0]

I # [
ad3mo 11V 1LON

UoTIN TOS

dotantos

[en3oY
asmony

(SAW S22 '0S ‘se ‘01>

1Hd0443 A3FA

2 AN
8 4l
gool8 SS
W31SAS 233

dJWNI L A3A

(S aKy

R R R SRR AR RN R R R R AR R R R AR R R R e R R R RN PR R PR RN SRR R R R AR IR
DESIGX TO COST
PEISES s s Rt g s s st s it st antsarI N InnLILINtILIIILIIIILILL
EXEC SYSTEM

THE BEST ESTIMATES OF THE MININUM TINE AND CORRESPONDING EFFORT AND COST TO
DEVELOP YOBUR SYSTEM ARE:

MININUM TINME: 25.85 MONTHS
EFFORT: 6358 MANMONTHS
CosT: 4146 (X 1000 $)

ENTER DESIRED DEVELOPMENT EFFORT IN MANMONTHS
7

131

248 —~f— The actual manmonths of effort

NEW DEVELOPMENT TIME
EXEC SYSTEM

NEAN STD DEV

A near perfect fit to the inverse

‘/////// 4th trade-off relationship.
NEW DEV TIME (MONTHS) 33.00 .98

NEW DEV EFFORT (MANMONTHS) 248 3
NEW DEV CDST (X 1000) 1350 218

YOUR FILE IS WOM UPDATED WITH THESE NEW PARAMETERS. RUM MAMLOADING AND CASHFLOW
T0 SEE HOW THESE SAVINGS CAN BE REALIZED.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTENS OF THE SAME SIZE SHONWS:

TOTAL MANMONTHS 248 IN NORMAL RANGE
PROJECT DURATION (MONTKS) 33.0 IN NORMAL RANGE
AVERAGE % PEOPLE 8 IN NORMAL RANGE
PRODUCTIVITY (LINES/MM) 246 IN NORMAL RANGE -~

Productivity has increased
from 93/MM to 246/MM..

132

R R R R R R R R R R RN R R R R R S R RN R R AR R R R RR R R R R PR R RN R R A SRR R SRR NS
MANLOADING

R R R R R R R R R R R R R R SR R R R R R AR R R e R Rt R R e R R R R AR RSN ERRRRERRRRERE
EXEC SYSTEM

THE TABLE BELOW SHONS THE MEAN PROJECTED EFFORT (AND STANDARD
DEVIATION) REQUIRED FOR DEVELOPMENT. THESE VALUES ARE BASED
ON A DEVELOPRENT TIME OF 33.0 MONTHS AND A TOTAL DEVELOP-
HENT EFFORT OF 248.0 MANMONTHS,

STAFFING PLAN

CUMULATIVE cun
MONTH PEOPLE/MONTH STD DEV NANMONTHS STD DEV
JUN 78 .1
JUL 78 | .2 |
AUG 78 1 .3 3
SEP 78 2 A S 1
0CT 78 3] 7 I
NOY 78 3 b i1 |
DEC 78 4 .7 14 2
IAN 79 4 .8 19 2
FEB 79 5 .9 2% 3
MAR 79 S .9 29 3
APR 79 b 1.0 33 4
NAY 79 [1.1 41 4
JUN 79 7 1.1 48 5
JuL 79 7 1.2 56 b
AUG 79 8 1.2 63 7
SEP 79 8 1.3 12 8
0cr 79 9 1.3 80 9
NOY 79 9 1.4 89 10
DEC 79 9 1.4 98 11
JAN 80 10 1.4 108 12
FEB 80 10 1.3 118 13
MAR B8O 10 1.5 128 14
APR 80 10 1.3 138 15
MAY 80 13 1.5 149 14
JUN 80 11 1.3 159 17
JUL 80 11 1.3 170 18
AUG 80 § 1.5 181 19 Peak staffing does not
SEP 80 1 1.5 192 21 exceed 11 people (this
0CcT 80 § 1.5 203 22 is the maximum number of
ngg H ti g; gi people the project manager
e ! Ul - » was wlilling to use),
FEB 81 1t 1.3 248 27

-
-~

133

SE

(SUJIUOW)

Le

g1

HANT L AZFC

NV 1ld ONI A4V LS

o o,
e .
IITILIFI o
>]
&o+ .
X .
)%(mWW -
\ww 2) - 0c
$. -
@\ _
> @ :
| B | _ _ 1 o
mn — C 0N m 0O RV
0 0 @] 1 0O O O
@] 0O 5 — 0O A pi)

Otk

8 4l
00018 SS

W31SAS J3X3

HIMOINVIN

(2 1do=d>

135

APPENDIX B

MATERIALS SYSTEM
VERIFICATION OF THE TRADE-OFF LAW

136

ll!l!Xl!l!lll!lllXtXX!!ll!X!ltt!llttlt!t!%ll!!llll!llllttl!lllltlit!tll!!!lll!li
SUMMARY OF INPUT PARAMETERS

Xt!ltll!!l!XZ!lll!!l!t!l!!!t!ll!!!l!!!!!!!!t!!ll!llxtllll!t!lttltil!lll

SYSTEM: MATERIALS SYSTEN

PROJECT START: 0179

COST ELEMENTS

COST/NY: 50000.

MONETARY UNIT: ($)

STD DEV (COST/MY): 5000.
ENVIRONMENT

ONLINE DEVELOPHENT: 1.00

DEVELOPMENT TIME: 1.00

0BNS: .30

{ANGUAGE: COBOL
SYSTEN

TYPE: BUSINESS APPLICATION

LEVEL: 3

NODERN PROGRAMMING PRACTICES
STRUCTURED PROGRAMNING: > 751

TOP-DOWN DESIEN: > 731
EXPERIENCE

OVERALL: EXTENSIVE

LANGUAGE: EXTENSIVE
TECHNOLOGY .

FACTOR: 17
SIZE

LOMEST: 400000

DATE:
TINE:

INFLATION RATE:

HOL USAGE:
PRODUCTION TIME:
REPORT WRITER:

REAL-TIME CODE:
UTILIZATION:

DESIGN/CODE INSPECTION:
CHIEF PROG TEAM USABE:

SYSTEN TYPE:
HARDMARE:

Ck = 35422

HIGHEST:

1372 ERERE
10 MAR 83

12:26

. 100

0.00
.30

> 751
(¢ 251

AVERAGE
EXTENSIVE

800000

A rebuild of an existin:
system.

Exceptionally high.
A very good performer,

R R R R R R R R RN R R R P RN R R SRR R R R RN R R R R R N SRR AR RN R SRR R RN PR R R RN R R ERRE

SINULATION

LR RN R R R a R R R R R R R R R R R e RN R R R R RN R PR RR AR SRR EERE

MATERTALS SYSTEM

10 MAR 83

12:27

SYSTEM SIZE (STATEMENTS)
MININUM DEVELOPMENT TIME {MONTHS)
DEVELOPMENT EFFORT {MANMONTHS)
DEVELOPMENT COST ($)

(UNINFLATED)

{INFLATED)

PEAX MANPOWER (PEDPLE)

NEAN

STD DEY

3927 812
5606 898
g2 <<.‘---

SENSITIVITY PROFILE FOR MININUM TINE SOLUTION

SOURCE STMTS HONTHS
-3 STD DEV 400000. 23.2
-1 STD DEV bb6bbéT. 26.4
MOST LIKELY 700000. 27.1
+#1 STD DEV 733333 21.5
+3 STD DEV B0000O. 28.3

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTENS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS 1434
PROJECT DURATION (MONTHS) 27.1
AVERAGE § PEOPLE 33

PRODUCTIVITY (LINES/MM) 488

UNINFLATED
HANMONTHS COST (X 1000}
1178. 4907.
1349, 5419.
1434, 5927.
1524, 6352.
1705. 7103,

IN NORMAL RANGE
IX NORMAL RANGE
IN MORMAL RANGE
IN NORMAL RANGE

137

This 1s the absolute
minimum time that this
system could have been
built.

To build the system 1in

the minimum time would
reguire 82 people. This
is not the organizational
style -- a few good people
is their approach.

138

C00aT1T X> s "JZI1Is

G0s

0&e

€ 1BAT
L1 41
00000L SS
KALSAS STVIY3LWH

a3smoy LON

———— 0001

uoTINTOS
DWTI WNWTUTH

a3Imonyv

syjuow T Tenjoe

S AW OS2 0SS 1T ‘001

140443 A 3U

‘as>

dWnIl A3d

(s aX>y

TISTTSEIse s tsstntes s atsaussatssatsraassastsstssasssIsasIIsIIIIILININININING

PESSSsestegssttTsresttanssssaasrssssssteasessssssasesssanattasassssssBIIILLLIL

NANLOADING

NATERIALS SYSTEM

THE TABLE BELON SHOWS THE MEAN PROJECTED EFFORT (AND STANDARD

DEVIATION) REGUIRED FOR DEVELOPMENT.
ON A DEVELOPMENT TINE OF

MENT EFFORT OF

THESE VALUES ARE BASED

27.1 MONTHS AND A TOTAL DEVELOP-
1434,2 MANNONTHS.

STAFFING PLAN

CUNULATIVE Cun
MONTH PEOPLE/MONTH STD DEV MANMONTHS STD DEY
JAN 79 2 A 2
FEB 79 7 1.3 10 1
MAR 79 12 2.1 22 2
APR 79 17 2.9 39 4
HAY 79 22 3.7 62 b
JUN 79 27 4.4 8 9
JuL 79 3t 3.0 120 12
AUE 79 38 3.6 133 16
SEP 19 40 6.2 195 20
0cT 79 44 8.7 240 24
NV 79 48 7.2 288 29
DEC 79 32 7.4 340 34
JAN 80 36 8.0 398 40
FEB 80 39 8.4 455 45
NAR 80 62 8.7 518 32
APR 80 65 9.0 583 58
MAY 80 68 9.2 631 43
JUN 80 n 9.4 122 72
JuL 80 IM 9.3 794 A
AUG 80 75 9.7 849 87
SEP 80 78 9.8 9435 94
0cT 80 78 9.8 1023 102
NOV 80 79 2.8 1102 110
DEC 80 80 9.9 1183 118
JAN 81 81 9.8 1263 126
FEB 81 81 9.8 1343 134
MAR 81 82 9.7 1426 142
APR 81 41 4.8 1467 150

139

This 1is mOore people
than they usually use
on a project.

140

SE

€ AN
L1 4l

00000L SS
(syauowy JWI 1l Add WALSAS STVINALYN
R m w (ew]
‘‘‘‘‘ 0
. <
>
7] Z
| a U
. 08 5
QD Ad 7 L
1 A
o o% .
RN
&\/@% - o
& — 091 0
P 0
7] U
| —
0
_ Y,
LI L L _ -
k1 - C] T 0O L)
@] 0 0 — 0))
0 0)] -1 0O P A
L
NV 1d 9ONIHd4dVLS

141

RR AR RS E RN R R AR R R R R RS R R R R R R e R R R e R R R R A RS R R RS R AR R SRR R R R R R RRRRRRRRRRY
DESIGN TO COST

R RN e R RN R AR SR R R R R R R AR R R R R R RS AR RN RS A AR RS R RN R R RN AR RRERERRRRRRRAL
MATERTALS SYSTEM

THE BEST ESTIMATES OF THE MINIMUM TINME AND CORRESPONDING EFFORT AND COST T0
DEVELOP YOUR SYSTEM ARE:

MIRIMUN TINE: 25.99 NONTHS
EFFORT: 1430 MANNCONTHS
C0ST: 5967 {X 1000 $)

ENTER DESIRED DEVELOPMENT EFFORT IN MANMONTHS
?

304 —~efpmm— They actually bullt the system i1n 38 months for
384 manmonths.

Let's try these numbers
NEW DEVELOPMENT TIME
MATERTALS SYSTEM

MEAN STD DEV . : : .
. This 1s within two weeks of what

A////// actually happened.

NEW DEV TIME (MONTHS) 37.45 124
NEW DEY EFFORT (MANMONTHS) 384 10
NEW DEV COST (X 1000} 1600 204

YOUR FILE IS NOW UPDATED WITH THESE NEW PARAMETERS. RUN MAMLGADING AND CASHFLOW
T0 SEE HOW THESE SAVINGS CAN BE REALIZED.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIIE SHOWS: NOTICE THE FLAGS

TOTAL MANMONTHS 384 C NORMAL RANGE Less than normal effort
PROJECT DURATION (MONTHS) 37.5 IN NORMAL RANGE

AVERAGE 3 PEOPLE 10 (NORMAL Rewpe | el Less than normal # people
PRODUCTIVITY (LINES/MM) 1823 > NORMAL RANGE

Greater than normal
productivity

THESE ARE GOOD FLAGS !!

!2XlggfggtX!!ll!Xl!!!!!ll!l!!tl!!lltt!tl!l!!llltll!Xll!1!!1!!!!!!!!!!!!!3!!1!!!!

R R R R R AR R R R AR R R RS R R R RN RIS AR AR AR RRSRRRRRRRCRIL!

MANLOADING

MATERIALS SYSTEN

THE TABLE BELOW SHOMS THE MEAN PROJECTED EFFORT (AND STANDARD

DEVIATION) RERUIRED FOR DEVELOPMENT,
ON A DEVELDPMENT TINE OF

NENT EFFORT OF

THESE VALUES ARE BASED

37.5 MONTHS AND A TOTAL DEVELOP-
384.0 MANMONTHS.

STAFFING PLAN

CUMULATIVE Cun
HONTH PEOPLE/MONTH STD DEV NANNONTHS STD Dey
JAN 79 .l
FEB 79 ! .2 1
NAR 79 2 .3 3
APR 79 2 .3 6 1
NAY 79 3 b 9 1
JUN 79 4 g 12 !
JUuL 79 4 .8 17 2
AUG 79 3 1.0 22 2
SEP 79 b 1.1 28 -3
0cT 79 6 1.2 34 4
NOY 79 7 1.3 4 4
DEC 79 8 1.3 49 3
JAN 80 8 1.4 37 b
FEB 80 9 1.3 b6 7
MAR 80 9 1.6 75 8
APR 80 10 1.7 a3 9
NAY 80 10 1.7 9% 10
JUN 80 11 1.8 106 11
Jut 80 11 1.8 118 12
AUG 80 12 1.9 130 1
SEP 80 12 1.9 142 15
0cT B8O 13 2.0 153 16
NOV 80 13 2.0 168 17
DEC 80 13 - 2.0 181 19
JAN 81 14 2.1 195 20
FEB 81 14 2.1 209 2
NAR 81 14 2.1 223 23
APR 81 15 2.1 238 25
HAY 81 13 2.2 253 24
JUN 81 15 2.2 268 28
JUL 8¢ 15 2.2 283 29
AUG 81 15 2.2 298 3
SEP B1 16 2.2 314 33
0CT 81 16 2.2 330 34
NOv 81 16 2.2 345 36
DEC 81 16 2.2 ALY 38
JAN 82 14 2.1 3 39
FEB 82 8 1.1 385 41

The actual staffing

This plan peaks at 16
people. (This is the
typical organizational styl
for this company)

143

S

(syYuowsy GWIT 1L A3IJ

) N N o
““““ - 0]
- — o1

L .

rlrl..rl_ -

T .

_ a

% 4 :
> 02

)%V A«& .Ju

Y .

) .

» .

L1 _ 1 | _ s
L — C 0 mn 0 - 0€E

0 0 9] = 0O @) O

0O 0 5 - 0O Py A

NV 1d ONIJd4dV 1S

€ TB[AA
TANE!
00000L SS
H31SAS STIVIH31VH

SGIMOINYWW

(= 1doady

144

BIOGRAPHICAL SKETCH

LAWRENCE H. PUTNAM

Larry Putnam is President of Quantitative Software
Management, Inc., a firm specializing in software cost estimating
and life cycle management. Mr. Putnam has had extensive
experience in industry and government in planning the quantitative
aspects of software life cycle management including cost,
schedule and manpower determination for development, and for
control of the process during operations and maintenance.

Mr. Putnam recently worked for General Electric Company as manager
of system technologies. Prior to that, he was special assistant
to the Commander, US Army Computer Systems Command, special
assistant to the Assistant Secretary of the Army, Financial
Management, and special assistant to the Director Army Automation,
in which positions he developed and implemented systems to plan,
budget and control large scale software systems. Mr. Putnam is

a member of IEEE, IEEE Computer Society, AIAA and the Society of
the Sigma Xi. He is also a member of the Society of Management
Information Systems, a member of the International Society of
Parametric Analysts (ISPA), and a member of the Board of Directors
of the Baltimore and Washington Chapter of ISPA. He holds a
master's degree in physics and the Naval Postgraduate School and

a bachelor of science degree from the United States Military

Academy.

