

•

('"°";" . \

Running GRAPHICS.BAS:

A Demonstration of
High Resolution Graphics

We have added a file, GRAPHICS.BAS. to your MS-DOS svstem di.~k­
ette. This program demonstrates some of the high resolution graphics
availahle with BASIC. To use the program, you need the CM-1 Color
Monitor and a Monochrome Graphics Option board upgraded with
the Color Graphics Option kit.

Note: If you have a VM-1 Monochrome Monitor and the Morn Kim ime
Graphics Option Board, you can run the program after removing the
color-related statements and changing the SCREEN 3 statements to
SCREEN 4. (See Mudel 2000 BA'i!C Reference for more information
on these statements.)

If you do not rlan to use GIW>J llCS.BAS, mu may delete the file from
the diskette, as described in Chapter 8 of /11trodlfctio11 tot/le ,1/odd
2000. Otherwise, run the file by tvping (at the system prompt):

BASIC GRAPHICS.BAS rum8)

When finished, return to MS-DOS by typi11g:

SYSTEM CEBilB)

Tandy Corporation
Part No. 875926 7

•

l
I

1!;AMS AND C:JNOIHONS OF SALi:: A:-.lO LICENSE Of 11AC:IO SHACK ANJ 1A\IOY
COMPUTER EOJlPMENl ANO SOFTWARE PURCHASED fROM A RAOlO SHACK

COMPANY·OWNEO COMPUTER CENTER RHAll STORE OR FROM A RADIO SHAC.
fRANCHISff OR OEAlER Al 'IS AtHHORilEO LOCAflON

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

CL'STOMER assumes h.111 respons1b1hty thal
included with lhe E.owpment or l•censed
oiher re4u1:eme--1!s of CUSTOMER
CUSTOMER assumes lull respons1b1hty !01 ihe cond1hon and ellechve.,ess ol lhe operat•ng ernmorimel'lt 11" w" ch :he Eo111oment ;;qd
Software are to luncl1or, and !or Hs msta'lal on

RADIO SHACK llMlTED WARRANTIES ANO CONDITIONS Of SALE

For a penod ol rnnei)• i90J calendar days lr:Jm !tie dale ol the RacM Shack sales <locumeni received uoon ptnchase ol t~e Eau1pme1'l
AAOlO SHACK warrants 10 !he on~H1a! CUSTOMER lflal lhe Equipment and !he rned1um upcn which !he Sollware 1s slored is lree horn
manufactunng G"elects This warranty is only applic:able to p:urchase-s of Radio Shack and Tandy Equipment by the ori11inal customer
lrom Madio Shack company-owned compuler centers, relail slores and lrom Aalfio Shack lram::Msees and dealen at its authori1ed
IGcation. The warranty 1s vouj 1! !he Eouiprre~l s case Of ciJbinet has been ;}perted. or if the fou1pmen'. or So!twa1e has bee1 subm::led
IC 1mpropef or abnormal vse_ I! a ma11uractorm~ defecl is d.uuve1ed durmg the SfJted warqinly 11eriod !he de!ectwe Eau1pment mus!
be rr,turneo 10 a Ramo Sh.;u:k Conpuler Center a Radm Shack 1eta1l s!ore. pari1op;,hnQ Ra{!10 Shack hanchisee or R;id10 9111c~ deaier
101 rnpa1r. along w1lh a copy o: tt«e sares doct1me111 o: lease ag•eemen! Ttie or:g1na1 CUSTOMffl S so:e and e(c!us1ve remedy m !he
even! at a defect is lirr1ted !o the correction a! fhe deiec! by repatr :epiacemeri! -01 re!und ol !he i;u1chase p11ce ;ii RAOIO SHACKS
eiert;on and so;e elipense RADIO SHACl!: !las no o!ll!garm01 10 replace or reww expendable 1!ems

8, RADIO SHACK makes no warranty as to Ille ttes1gn. capat11tily, capac1tv. 01 su1lab1hly !or use a! !he Softwaie exctp! as prnv1t!ed m
this parag1apti Sollwa'e is hcensed on an AS IS basis w1th0u! wananlv 1he ong1naf CUSTOMERS exclus•ve remedy •n lhe even!
ot a Software rnanufaclurmg de!ecl. is 1ls repair or rep!acemeol w1th.r1 !h1r!y l30! calendar days of tt>e date ol the Rud!O Sh«Ck sales
document received upon license 0J 1r-,e sonware. The <1efec1ive Soltware shall be returned to a Racho Shack Cor1pu\e1 Cenle• a Aad1{}
Sf1ack ~ela1I s!OtlL part1t1palm9 Radio Shack lra:nch see 01 Radio Shack de:aier along w1lh the sales document
Excepi as p;ov1deC herem ro employee ;u;;e<1t. lranch1see_ dealer or other person ·s aut~onted to QM:! anv wa11,~n11es of my na1tPe on
beha!f ol RAOlO SHACK
Except as provided h':rt!in. Radio Shack makes no upress warranUes, ar;d any implied warranty of merc.hantabiti1y or fitneH for a
particular purpose is limited in l1$ duration lo the thnatton of the wtitten limited wananlies sel for1.h herein.
Some slates do no! allow l1m1lat1ons on how :ong an 1mo11ed wa:rantv lasts so lhe above hm11at10111s1 rna·~ no! app!v 10 CUSTOMER

UMITATlON OF UABILITY

Except as prnvfded herein. Radio Shack shall have no liab1h1y 1:.r res.panstbility 10 customer or HY oUm person or enlity wilh
res9ec110 any liability, lnu or damage nund or alteg:ed to be c.ilused direttly tH irtdlretlly by "Equipment" or "Sottware·· sold.
leased, licensed or furnished by Radio Shack. including. bul nDI limited 1<L any inlerruplion of service. luss u1 business or

=~~il~,~~'3i~ G~~~is b~r ,;:~18ee~rer~~~I :,a;:3:,~ r:rs~~~n1~J~~e~1~"s2p::1~to~~~:;~oqnu:!1:~r ~~E~~~e~ 1a~;~·i~~ ~;t0::':~; ·~-r~:e~u o~~:~~
warranty or Ir; any ma•rner arising oul ol ot connecled with lhe sale, lease. lkerue. use or anticipated ute ol lhe "E!Ju1pmenl' or
"So11ware"
Nolwi1hstaruHno the above limllatlons and wanantles. Hallio Shack i liabilily hereunder !or damag's imamed by customer Dt
oth~rs shall Ml e~eeed ihe amounl paid by customer !or the particular "Eq\lipment'' or "Software" involved
RADIO SHAC!\ shalt 110! be tiable 1or any dam<19es caused by delay in dellvenn.g or lmrnshmo Eawpmeol and o• Sol!waJe
No action ansmg our of any cta1med breach of l!ns Wan-anfy 01 tra11sac11ons under ftus W,manly may be brot1Qh! lhan !wo 121
f~~~~~~1;~ ;:1e5~~~aert ;;1~~;v~;~.:s~c~~~~r~r more lhan !our ;41 vears al!e1 the ctate o• lhe Radio S>iack sales 101 !he

Some slates do not ailow !he llm1ta1!01 or exc!us1ori ol mc1den1tll 01 conseqvenl•<il tl<images so me Above hrnil<if•(irVSt 01 cxc1us+ontsi
may nol anply 1o CUS10MEfi

STATE lAW RIGHTS

1hc warranties granted 1"-erem gwe lhe original CUSTOMER speci'1c !egJi ngh!s Jnd ori11mal CIJSHJMER '!My !Mve otr.e1 11ohts wh1c~ v~rv
ir:;r:' stale to state

GW®-BASIC Software: Copvright 1983 Microsoft Corporation.
Licensed to Tandv Corporation. All Rights Reserved.

MS®-DOS Software: Copyrighc 1983 Microsoft Corporation.
Licensed to Tandv Corporation. All Rights Reserved.

Model 2000 BIOS Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

BASIC Reference Manual: COpyright 1983 Microsoft Corporation and
Tandy Corporation.
All Rights Reserved.

Reproduction or use without express written permission from Tand\•
Corporation, of any porcion of this manual is prohibited. While reason­
able efforts have been taken in the preparation of this manual to assure its
accuracy, Tandy Corporation assumes no liabilirv resulting from any
errors or omissions in this manual, or from the use of the information
contained herein.

10 9 8 7 6 5 4 3

Introduction
This manual is about the popular GW-BASIC from Micro­
soft. BASIC for MS-DOS is an "interpreter." When you run
a program, it executes each statement one at a time. This
makes it quick and easy to use. It also allows you to take
advantage of many MS-DOS features, such as:

• Faster running programs
• Expanded graphics capabilities

About this Manual

Notations

This is a reference manual, qot a tutorial. We assume you
already know BASIC and are using this manual to quickly
find the information you need. If you do not know BASIC,
many excellent books are available at your local bookstore
written in a tutorial fashion to teach you BASIC.

Section I Operations. This section shows how to
load BASIC. It also demonstrates how to write, run,
and save a BASIC program on disk.

Section II The BASIC Language. This section
includes a definition for each BASIC keyvvord (state­
ments and functions) in alphabetical order. In addi­
tion, it shows how to write a program to store data
on disk

CAPITALS

italics

... (ellipsis)

X'NNNN

O'NNNN

material that must be entered exactly
as it appears.

words, letters, characters, or values
you must supply from a set of accept­
able entries.

items preceding the ellipsis may be
repeated.

NNNN is a hexadecimal number.

NNNN is an octal number.

Terms

(KEYNAMEl

b

buffer

[parameters]

[arguments]

syntax

line

integer

2

a key on your keyboard.

a blank space character (ASCII code
32). For example, in

BASICbbPROG

two spaces are between BASIC and
PROG.

a number in the range 1 to 15. This
refers to an area in memory that
BASIC uses to create and access a disk
file. Once you use a buffer to create a
file, you cannot use it to create or
access any other files; you must first
close the file. You may only access an
open file with the buffer used to open
it.

information you supply to specify
how a command is lo operate. Pa­
rameters enclosed in brackets are
optional.

expressions you supply for a function
to evaluate. Arguments enclosed in
brackets are optional.

a command with its parameter(s), or a
function with its argument(s). This
shows the format to use for entering a
keyword in a program line.

a numeric expression that identifies a
BASIC program line. Each line has a
number between 0 and 65529.

any integer expression. It may consist
of an integer or of several integers
joined by operators. Integers are
whole numbers between 32768
and 32767.

string

number

dummy number
or dummy string

3

any string expression. It may consist
of a string, or of several strings joined
by operators. A string is a sequence of
characters that is to be taken verba­
tim.

any numeric expression. It may con­
sist of a number or of several num­
bers joined by operators.

a number (or string) used in an
expression to meet syntqctic re­
quirements, but the value of which is
insignificant.

Table of Contents
Section I I Operations.

Chapter 1 I Sample Session
Loading BASIC ...
Options for Loading BASIC .. .
Typing the Program
Saving the Program
Loading the Program.

7

8
. 8

. 10
. .. 11

. . 12

.. 14

Chapter 2 I Command and Execution Modes 15
Command Mode 15

Interpretation of a Line. 15
Immediate Lines 16
Program Lines 16
Special Keys in Command Mode , 17

Execution Mode. 19
Special Keys in Execution Mode 19

Chapter 3 I The Line Editor.. 21
Special Keys in the Edit Mode .. 22
Changing Lines Anywhere on the Screen 26
More on Line Edit Mode 27

Section II I The BASIC Language .. . '.'.'.' 28

. ... ' . ' . ' . 31 Chapter 4 I BASIC Concepts.
Overview: Elements of a Program. . . ' 31
How BASIC Handles Data '. '. '34

How BASIC Classifies Constants. 43
I Io;,v BASIC Classifies Variables .. '~...::: .. , , , , • , , , '"1:V

How BASIC Converts Numeric Data '. '47
' ' .. ' . 51

' 51
''. 61

. . 62

How BASIC Manipulates Data ..
Operators.
Functions

How to Construct an Expression ..

Chapter 5 I Disk Files
Sequential Access Files

Creating a Sequential File.
Updating a Sequential File

Direct Access Files ..
Creating a Direct File .. .
Accessing a Direct File .. .

....... '' '. '65

. ' ''' '' .. ''. '. '65
. ' 66

........... 68
. '' 70
. '. 70

'' '72

Chapter 6 I Introduction to Keywords . . 75
Format For Chapter 7 . . . 75

Staremems 76
Functions 81

Introduction ro Graphics . 84
Graphics . 84
Medium Resolution Color Graphics Option. . . 85
High Resolution Monochrome Graphics Option 85
High Resolution Color Graphics Option. 87

Specifying Coordinates 88
A.5pect Ratio ... 89

Screen Mode 1 90
Screen Mode 2 90
Screen Modes 3 and 4. 91

Chapter 7 I BASIC Keywords. 93

Section III I Appendices. ... 331

Appendix A I Error Codes and Messages. 333

Appendix BI BASIC Reserved Words

and Derived Functions . . 341

Appendix CI Video Display Worksheet.

Appendix D I Memory Map

Appendix EI Technical Functions

. 344

. ... 345

' .. 347
Interfacing with Assembly Language Subroutines 347
Accessing String Variables 354
File Control Block. 356
How Variables Are Srored 358

Section I
·--·---···--·

Operations

7

Chapter 1

Sample Session
The easiest way to learn how BASIC operates is to write
and run a program. This chapter provides sample state­
ments and instructions to help familiarize you with the
way BASIC works.

The main steps in running a program are:

A) Loading BASIC
B) Typing the program
C) Editing the program
D) Running the program
E) Saving the program on disk
F) Loading the program back into memory

Loading BASIC
We recommend that you read your Introduction to Model
2000 for complete startup information on your Model
2000 before you load BASIC. It details the necessary steps
to get to the MS-DOS command level prompt.

At the MS-DOS system prompt A>, you can load BASIC
into the computer's memory by typing

BASIC (ENTER)

A paragraph with copyright information appears on your
screen, followed by: Oh

You may now begin using BASIC.

9

Section I I

Options for Loading BASIC
When loading BASIC, you can also specify a set of options.
They are:

BASIC [filename] [IF:number of files] [IC:buffer size]
[!M:highest memory location] [IS:record length]

Filename specifies a program to run immediately after
BASIC is started.

IF specifies the maximum number of data files that may be
open at any one time (from 0-15). If you omit this option,
the number of files defaults to three.

Each file you specify may use up to 190 bytes of memory.
Sequential access files always use 190 bytes of memory.
The amount of memory a direct access file uses depends
on the record size set with the IS: option. Each file uses 62
bytes of memory for the file control block, plus the record
size. For example, if you specify a record size of 50 with
the IS: switch, the file uses 112 bytes.

IC: specifies the size of the receive buffer for RS232 com­
munication. If you omit the IC: option, BASIC allocates 256
bytes for the receive buffer. The transmit buffer is always
128 bytes.

IM: specifies the highest memory location for BASIC to
use. Omit thls option unless you plan to call assembly­
language subroutines. (In that case, you may want to set
the highest memory location well below the top of
BASIC's data segment.) If you omit this option, the system
allocates 64K bytes of memory to BASIC.

IS: specifies the maximum record size for direct access
files. If you omit the IS: option, BASIC assumes 128 bytes.

10

Examples

Session

A>
BASIC PAYROLL /F:S (ENTER)

initializes BASIC, then loads and runs the program
PAYROLL; allows five data files to be open; uses all mem­
ory available.

A>
BASIC /M:21000 (ENTER)

initializes BASIC; allows three data files to be open; sets
the highest memory location to be used by BASIC at 21000,
the first 21K bytes of BASIC's data segment.

A>
BASIC /M:21000 /F:6 (ENTER)

initializes BASIC; sets the highest memory location at
21000; allows six data files to be open. Notice that the
sequence in which the /M: and /F: options are specified is
irrelevant.

A>
BASIC

initializes BASIC; allows three data files to be open; uses all
memory available.

Typing the Program
Let's write a small HA'iIC program. Before pressing (ENTER)
after each line, check the spelling. If you have made any
mistakes, use the 8 key to correct them.

10 A$="WILLIAM SHAKESPEARE WROTE" CENJIID
15 8$ ="THE MERCHANT OF VEN ICE" (ENTER)
20 PRINT A$; B$ CENTER)

Check your spelling again. If it is still not perfect, enter the
line number where YOU made the mistake. Then type the
entire line again.

11

Section I I Operations

For example, suppose you had typed:

15 8$ ="THE VERCHANT OF VENICE"

To correct line 15, retype it:

15 8$ ="THE MERCHANT OF VENICE" (ENTER)

Then type:

RUN !ililID
Your screen should display:

WILLIAM SHAKESPEARE WROTE THE MERCHANT
OF VENICE

BASIC replaced line 15 in the original program with the
most recent line 15.

Note: BASIC "reads" your program lines in numeri­
cal order. It doesn't matter if you entered line 15
after line 20; BASIC still reads and executes 15 be­
fore "looking" at 20.

BA5IC has a powerful set of commands that allow you to
correct mistakes without retyping the entire line. These
commands are discussed in Chapter 3, the "Line Edit
Mode."

Saving the Program on Disk
You can save any BASIC program on disk. To do this, you
assign it aftlespec. The filespec tells BASIC on which disk
you want to save the file and the name of the file. A filespec
consists of drive identifier, filename, and extension. Only
the filename is required. The filespec must be enclosed in
double quotes.

Filenames must conform to the MS-DOS file naming con­
ventions. A filename can have a maximum of eight alpha­
numeric characters. The first character must be a letter, A
through Z. The remaining seven characters may be any of
the following:

12

Examples

Chapter 1 I Sample Session

the letters A through Z
the digits 0 through 9
the special characters<,>,(,),{,},@,#,$,%,',
&, !, -, _, ', and I

The extension may be up to three characters long and
must also begin with a letter. The other two characters may
be any of the characters that are allowed in the filename. A
period(.) must be included between the filename and the
extension. If you omit an extension with the SAVE, LOAD,
MERGE, and RUN commands, BASIC appends the exten­
sion .BAS.

The drive identifier specifies on which disk you want
BASIC to save your program. The drive identifier precedes
the filename and extension and may be any of the valid
drive letters (A through D); it must be foilo'Yed by a colon.
If you omit the drive identifier, BASIC saves the file on the
MS-DOS current drive.

For example, to save the program we just wrote on Drive
B, assign it the filename "AUTHOR.BAS". Type the follow­
ing command:

SAVE "B:AUTHOR.BAS" (Eff[IID

It takes a few seconds for the computer to find a place on
disk to store a program and to copy the program from
memory to the disk. When the program is saved on the
disk, the screen displays Ok.

SAVE "AUTHOR.WIL" (Eff[IID

saves the program under the filename AUTHOR, with the
extension .WIL on the MS-DOS current drive.

SAVE "A:AUTHOR" (Eff[IID

saves the program under the filename "AUTHOR" on the
disk in Drive A Because no extension is given, BASIC
appends the extension .BAS.

13

Section I I

Loading the Program

Example

If, after writing or running other programs, you warn to
use this program again, you must "load" it back into
memory. To do this, type:

LOAD "filespec", R

LOAD "AUTHOR", R CENTER)

tells the computer to load the program "AUTHOR" from
disk into memory; option R tells the computer to run it.

Another way to load and run a program is to type:

RUN "filespec"

RUN automatically loads and runs the program specified
by "filespec".

The SAVE, LOAD, and RUN commands are discussed in
more detail in Chapter 7.

14

Chapter 2
Command And Execution Modes

This chapter describes BASIC's command and execution
modes. BASIC is in the command mode when you are
typing in program lines and immediate lines. BASIC is in
the execution mode when it is performing the instructions
in the program and immediate lines.

Command Mode
Whenever you enter the command mode, BASIC displays
the prompt:

In the command mode, BASIC does not "read" your input
until you complete a "logical line" by pressing (ENTER).
This is called "line input," as opposed to "character input"

A logical line is a string of up to 255 characters and is
always terminated by pressing (ENTER). Of these 255 char­
acters, 249 are reserved for the line itself; the other six are
reserved for the line number and the space following the
line number.

A physical line, on the other hand, is one line on the
display. It contains a maximum of 80 characters.

For example, if you type 100 R's and then press CENTER),
you have two physical lines, but only one logical line.

Interpretation of a Line
BASIC always ignores leading spaces in the line- it jumps
ahead to the first non space character. If this character is
not a digit, BASIC treats the line as an immediate line. If it is
a digit, BASIC treats the line as a program line.

For example, if you type;

PRINT "THE TIME IS" TIME$ (ENTER)

BASIC takes this as an immediate line.

15

Section l I Operations
&~£~---~-·-~~~···--~~--· ········---··

But if you type:

10 PRINT "THE TIME IS" TIME$ (ENTER)

BASIC takes this as a program line.

Immediate Lines
An immediate line consists of one or more statements
separated by colons. There is no line number in an im­
mediate line. The line is executed as soon as you press
CEJrrEB). After BASIC executes the line, it is no longer in
memory. The values of variables and constants are still in
memory, but the statement no longer exists. Immediate
lines are useful for using the computer as a calculator for
quick computations that don't require an entire program.
For example:

Ok
MILES 133:GAS = 11 :MPG= MILES/GAS

After this statement is executed, the value of the variables
MILES, GAS, and MPG still exist in memory. But the in­
struction itself does not.

Ok
CLS: PRINT "THE SQUARE ROOT OF 2 IS" SQR(2)

is an immediate line. When you press (ENTER), BASIC
executes it.

Program Lines
A program line consists of a line number in the range 0 to
65529, followed by one or more statements separated by
colons. When you press CEJrrEID, the line is stored in
memory. All lines that you enter with a line number are
stored in memory until you execute a RUN or other ex­
ecute command. For example:

100 CLS: PRINT 'THE SQUARE ROOT OF 2 IS"
SQR(2)

is a program line. When you press carrEID, BASIC stores it
in memory. To execute it, type:

16

Special Keys

Chapter 2 I Command and Execution Modes

RUN (ENTER)

Note: If you include numeric constants in a line,
BASIC evaluates them as soon as you press (ENTER); it
does not wait until you RUN the program. If any
numbers are out of range for their type, BASIC re­
turns an error message immediately after you press
COOEID.

The CTRL and ALT keys have special functions in BASIC.
When you press and hold one of these keys while typing
another key, BASIC performs functions to make entering
and editing program lines and immediate lines easier.
These keys have no function in BASIC unless they are
pressed with another key. For example, if you press (CTRL)
key and type CID, BASIC backspaces and deletes the
character.

Special Keys in the Command Mode
(BACKSPACE)
or (CTRL)(HJ

!SPACE BAR)

COOEID or
(CTRLJOO

17

Backspaces the cursor, erasing the
preceding character in the line.
Use this to correct typing errors
before pressing COOEID.
Enters a blank space character and
advances the cursor.

Interrupts iine entry and siarts
over with a new line.

Line feed - starts a new physical
line without ending the current
logical line.

Switches the display to either all
uppercase or uppercase/lower­
case mode.

Ends the current logical line.
BASIC "takes" the line.

Section I I Operations

(CIB[)OD
or CE1ID

~CD or
e:J
ccmDCSJ or
EB
!Illll:)CEJ or
CCIIIDEB

CCIRl:)CI[) or
cxHsEfm
CDlliil)

CHiID(]) or
(JD)

18

Erases the current line.

Moves the cursor one position to
the left.

Moves the cursor one position to
the right.

Moves the cursor to the first char­
acter in the next word to the right
of the current cursor positon.

Moves the cursor to the first char­
acter in the word to the left of the
current cursor position.

Turns on insert mode if it is off;
turns off insert mode if it is on.

Deletes the character at the cur­
re11t cursor position.

Deletes the next word to the right
of the cursor.

Displays the soft key values of the
12 Function Keys.

Moves the cursor to the last charac­
ter in the logical line.

Deletes all characters from the cur­
rent cursor position to the end of
the line.

Advances the cursor to the next tab
position. Tab positions are set at
every eight character positions.

Rings the bell at the terminal.

Chapter 2 I Command and Execution Modes

Some BASIC keywords are associated with alphabetic
characters (A-Z). To enter these keywords easily, press
(AL Tl and the corresponding letter. BASIC inserts the
keyword at the current cursor position. The keywords and
their associated letters are listed below. Letters that don't
have an associated keyword are indicated by "(none)."

A AUTO N NEXT
B BSA VE 0 OPEN
c COLOR p PRINT
D DELETE Q (none)
E ELSE R RUN
F FOR s SCREEN
G GOTO T THEN
H HEX$ u USING
I INPUT v VAL

J (none) w WIDTH
K KEY x XOR
L LOCATE y (none)
M MOTOR* z (none)

*MOTOR is a reserved word, but is not a recognized
statement in this implementation of BASIC.

Execution Mode
When BASIC is executing statements (immediate lines or
programs), it is in the execution mode. In this mode. the
contents of the video display are under program control.

Special Keys in the Execution Mode
(HOLD) or
(CTRL)(]J

(BREAK)

CElillfil or
(CTRLJOO

19

Pauses execution. Press any other
key (except (BREAK)) to continue.

Terminates execution and returns
you to command mode.

Interprets data entered from the
keyboard as a response to the IN­
PUT statement.

Chapter 3
The Line Editor

Your BASIC Editor lets you "debug" (correct errors in)
your BASIC program quickly and efficiently without retyp­
ing entire lines.

To enter line edit mode type :

EDIT line number CENIEID

This lets you edit the specified line number. (If the line
number you specify has not been used, an "Undefined line
number" error occurs.)

You may also use the LIST command to list one or several
lines before you make the changes. If you LIST one line
you can use the keys described in the next section to make
changes to the line. If you LIST several lines, see the last
section of this chapter, "Changing Lines Anywhere on the
Screen."

You may also type:

EDIT • (ENTER)

The period after EDIT means that you want to edit the
current program line, the last line entered, the last line
altered, or a line in which an error has occurred. Notice
that you need to type a blank before the period; otherwise,
BASIC gives you a "Syntax error" message.

For example, type the following line and press (ENTER).

100 PRINT "This is our example line."

This line will be used in exercising all the edit subcom­
mands described below.

Now type EDIT 100 and press (ENTER). BASIC displays the
entire line and positions the cursor under the first digit of
the line number. This starts the editor. You may now begin
editing line 100. Line 100 can be modified by using any of
the special keys described below. Note: None of the
changes you make to a program line are entered until you
press (ENTERJ.

21

Sf!~tion I I Operations

Special Keys in the Edit Mode

8or
(CTRL)OJ

8or
C~.IH.IJCSJ

(SPACEBARl

or cc:mrim

(CTRLl8
or (CTRD(]J

(END) or
(CTRL)CfD

22

Records the changes you made in
the current line and returns you to
the command mode.

Moves the cursor one position to
the left. If you advance the cursor
past the left-hand margin of the
screen, it moves tu the right-hand
margin of the screen on the pre­
vious line.

Moves the cursor one position to
the right. If you advance the cursor
past the right-hand margin of the
screen, it moves to the left-hand
margin of the screen on the next
line.

Changes the character to a blank
and advances the cursor one posi­
tion to the right.

Moves the cursor right to the next
word. The next word is the next
letter or number that follows a
blank or a special character.

Moves the cursor to the first char­
acter in the previous word. The
previous word is the next letter or
number to the left of the cursor
that precedes a blank or special
character.

Moves the cursor to the last charac­
ter in the logical line.

(DELETE)

(BACKSPACE) or
(CTRL)CHJ

lTifil.)(END)
or (CTRLlffi

(CTRLJOD or
(ill)

(TAB) or
(CTRLJCIJ

(BREAK) or
(CTRLlW

(CTRLJOO
or (HOME)

(CTRLlW

23

Chapter 3 I The Line Editor

Erases the character at the current
cursor position. All characters to
the right of the cursor and subse­
quent characters and lines within
the logical line move left or up one
position.

Erases the character to the left of
the cursor. All characters tu Lhe
right and subsequent characters
and lines within the logical line
move left or up one position.

Erases all characters from the cur­
rent cursor position to the end of
the logical line.

Erases the entire logical line from
the screen. BASIC does not record
in memory any of the changes
made to the line. You may press
either of these anywhere in the
line to cancel changes made.

Moves the cursor to the next tab
position. Tab positions are set at
every eight positions. A~ the cursor
adv;mces to the next tab position,
the characters in the po.~itions it is
tabbing over are printed.

Returns to direct mode and does not
record in memc>rY anY of the
changes to the line currenth· being
edited.

Moves the cursor to the first posi­
tion in row one.

Clears the screen and positions the
cursor at the first position in row
one.

Section I I Operations
• --~._ ___ ,. __ ,<,_ •• --.,···-·---~&--------~-·---~~

(INSERT)

Sample Session
Type

EDIT 100

Allows you to enter characters be­
tween other characters that are
already in the line. To insert char­
acters press (INSERT) and type the
characters you want to insert. All
other characters on the logical line
move to the right or down each
time you insert a character. If while
you are inserting characters you
press the (TAB) key, blanks are in­
serted from the current cursor
position to the next tab po$ition.
After you insert all the characters,
press (INSERT) again and continue
editing the line.

Clears the screen from the current
cursor position to the end of the
screen.

Use the right arrow to space across the line to the "T'' in
"This." Type lowercase "t" and then (ENTER).

Type

LIST 100

to see that BA5IC stored your change in memory.

Use the edit command to edit the line again. Press CEJm) to

position the cursor on the second set of double quotes.
Press (INSERT) and type

We inserted the second sentence. ~

Use the list command to see the new statement that is
stored in memory.

24

Type

EDIT.CEID:EJ:I)

Chapter 3 I The Line Editor
"c• ~

to edit the line again. You may use the period(.) instead of
the line number to edit the current line. Use (TAB) and
to position the cursor on the "i" in inserted. Press
(CTRL)CEHID. BASIC deletes all the characters you inserted
except "we" and the blank. Use (BACKSPACE) to delete the
blank. Use (CTRL)8 to position the cursor on the pre­
vious word. Press (DELETE) twice to delete "we." Press
(INSERT), then B to put the double quote in at the end of
the statement. Use the list command to see the new line.

Now let's add another line to the program. Type

200 GOTO 100 CEID:EJ:I)
RUN

BASIC is in a loop printing your message repeatedly on the
screen. Press ~ to stop program execution.

Type

DELETE 200 (ENTER)

Line 200 is erased from memory.

Use the edit command to edit the line again. Use E8 to
position the cursor on the "p" in PRINT. Press (SPACEBAR)
to change the "p" to a blank. Press (CTRL)~ to position
the cursor on the "t" in "this." Press CT) to change the
lowercase "t" to a capital "T." Instead of pressing (ENTER)
after you make the changes, press (ESC). Use the list com­
mand to see that BASIC did not record your change,
because you pressed (ESC) instead of (ENTER).

Now you have used all the special keys in line edit mode. If
you still don't feel comfortable with them, go through the
sample session again. If you feel confidem that you under­
stand the line editor, read on to learn about some special
keys that make it easier and faster to change lines any­
where on the screen.

25

Section I I Operations
. .

Changing Lines Anywhere
on the Screen

When more than one line is displayed on the screen, you
may use the arrow keys to move the cursor around the
screen to different program lines to correct errors. After
you make all the corrections, you must go to the beginning
of each line that you modified and press (.Ef!IlID to record
the change in memory. Using the arrmv keys to make
corrections can be much quicker than typing EDIT and a
line number for every line that needs to be changed.

CCIBDCJ
orrn

CCIBDG
or CD

Moves the cursor up one row to
the character above the current
cursor position.

Moves the cursor down one row to

the character below the current
cursor position.

You may also use the left and right arrow keys as previous­
ly described under "Special Keys in the Edit Mode."

Sample Session
After you type each of the following lines, press (ENTER)

10 PRINT "With the fising cost of fuel, ras mileage";
20 PRINT "has vecome an important donsideration"
30 PRINT "in the purchase of anew vehiclee"

Now you can use the arrow keys to correct the mistakes in
the program statements.

1. Use CD, then EB to position the cursor on the "f' in
"fising" in Line 10. Type "r" over the "f."

2. Use (TAB), then EB to position the cursor on the "r" in
"ras." Type OD over the "r."

3. Use CD, then E3 to position the cursor over the "d" in
"donsideration." Type W over the "d."

4. Use CCJBDS, then E3 to position the cursor over the
''v'' in "vecome." Type C6J over the "v. ,.

26

Chapter 3 I 1be Line Editor

5. Use (!), (Cifil;)E3, and EB to position the cursor over
the "n" in "anew". Press (INSERT) and (SPACEBAR) to
insert a blank between "a" and "new."

6. Use EB to space across to the last "e" in "vehiclee."
Press (DELETE) to erase the extra "e".

7. Use to position the cursor over the "3" in Line 30.
Press CEB!m).

8. Use CI) to position the cursor over the "2" in Line 20.
Press CENilB).

9. Use CI) to position the cursor over the "1" in Line 10.
Press CEHIEID.

More on Line Edit Mode
If your computer encoumers a syntax error while execut·
ing a program, BASIC automatically enters EDIT. It dis­
plays the line that contains the error. For example, type

10 A 2$12 CEJmID
RUN
The screen displays:

?Syntax errn1- in i 0
10 A 2

EDIT positions the cursor under the first digit of the iine
number. Now press ffi to move the cursor to the dollar
sign ($) and press (DELETE) and then CEBIEID. BASIC stores
the corrected line in memory.

27

Section II
~~~--r-,-.-~ -~-.-~--~-~~" •~----~~-- ,.~-,~·-·­

-----·--·-----~-

The BASIC Language 

29 





Chapter 4 
BASIC Concepts 

This chapter explains how to use the full power of BASIC 
for MS-DOS. This information can help programmers 
build powerful and efficient programs. If you are still 
something of a novice, you might want to skip this chapter 
for now, keeping in mind that the information is here 
when you need it. 

The chapter is divided into four sections: 

Overview - Elements of a Program. This section 
defines many of the terms we use in the chapter. 

How BASIC Handles Data. Here we discuss how BA..'iIC 
classifies and stores data. This shows you how to get BASIC 
to store your data in its most efficient format. 

How BASIC Manipulates Data. This gives you an over­
view of the operators and functions you can use to man­
ipulate and test your data. 

How to Construct an Expression. This topic can help 
you construct powerful statements that you can use in­
stead of many short ones. 

Overview: Elements of a Program 

Program 

This overview defines the elements of a program. A pro­
gram is made up of "statements"; statements may have 
several "expressions." 

A program is a group of instructions that perform a certain 
process. It is made up of one or more numbered lines. 
Each line contains one or more BASIC statements, the 
instructions. BASIC allows line numbers from 0 to 65529 
inclusive. A line contains up to 255 characters, including 
the line number.* You may also have two or more state­
ments to a line, separated by colons. 

*You can type a maximum of 249 characters per line. 
BASIC reserves the remaining six characters for the line 
number and for the space following the line number. 

31 



Section ll I 1be BASIC Language 

Statements 

Here is a sample program: 

Line BASIC Colon between BASIC statement 

n+mbe/statement sta~ 

100 CLS:~30: PRINT "Graphic Characters" 
110 FOR X 1 to 6: PRINT CHR$(X), 
120 NEXT X 
130 FOR Y = 14 to 27: PRINT CHR$(Y), 
140 NEXT Y 
150 END 

When BASIC executes a program, it handles statements 
one at a time, starting with the first and proceeding to the 
last. Some statements, such as GOTO, ON ... GOTO, 
GOSUB, change this sequence. 

A statement is a complex instruction to BASIC, telling the 
computer to perform specific operations. For example: 

GOTO 100 

tells the computer to perform the operations of (1) locat­
ing line 100, (2) transferring control to that line and (3) 
executing the statement(s) on that line. 

END 

tells the computer to perform the operation of ending 
execution of the program. 

Many statements instruct the computer to perform opera­
tions with data. For example, in the statement: 

PRINT "SEPTEMBER REPORT" 

the data is SEPTEMBER REPORT. The statement instructs 
the computer to print (display on the screen) the data 
inside quotes. 

32 



Expressions 

Chapter 4 I BASIC Concepts 

An expression is part of a statement. It is one or more 
pieces of data that produce a single value. The data may be 
an expression itself, or several pieces of data may be 
connected by operators or punctuation to form an ex­
pression. There are four types of expressions: 

1. Numeric expressions, which contain numeric data. 

Examples: 

(1 + 5.2)/3 
D 
5 .. 9 
3.7682 
ABS(X) + RND(0) 
SIN(3 + E) 

2. String expressions, which contain character data. 

Examples: 

A$ 
"STRING" 
"STRING"+ "DATA" 
MO$+ "DATA" 
MID$(A$,2,5) + MID$("MAN", 1,2) 
M$ +A$+ 8$ 

3. Relational expressions, which test the relationship be-
tween two expressions. 

Examples: 

A=1 
A$>8$ 

4. Logical expressions, which test the logical relationship 
between two expressions. 

Examples: 

A$= "YES" AND 8$-= "NO" 
C>5 OR M<B OR 0>-2 
578 AND 452 

33 



Section II I Tbe BASIC Language 

Functions 
Functions are automatic subroutines. Most BASIC func­
tions perform computations on data. Some serve a special 
purpose, such as controlling the video display or provid­
ing data on the status of the computer. You may use 
functions in the same manner that you use any data, that is, 
as part of a statement. 

These are some of BASIC's functions: 

INT 
ABS 
STRING$ 

For example, ABS returns the absolute value of a numeric 
expression. The following example shows how this func­
tion works: 

PRINT ABS(7•( - 5)) CERIEID. 
35 
Ok 

How BASIC Handles Data 

Strings 

BASIC offers several methods of handling your data. Using 
these methods properly can greatly improve the efficiency 
of your program. In this section we discuss the different 
ways BASIC represents data in your program. BASIC rec­
ognizes all data as either string or numeric. String and 
numeric values are represented as either constants or 
variables. 

A string is a sequence of up to 255 characters, enclosed in 
double quotes. You may store ASCII characters, graphics, 
or non-ASCII symbols in a string. Strings require three 
bytes of storage plus the number of characters in the 
string. For example, the string "TABBY" requires three 
bytes of storage plus five additional bytes to store the 
characters, for a total of eight bytes. 

34 



Numerics 
Numerics are positive or negative numbers. The five types 
of numerics are integer, fixed point, floating point, hex­
adecimal, and octal. 

Integers are whole numbers between ...,. 32768 and 32767 
that do not contain decimal points. 

Examples: 

1 3200 -2 500 -12345 

Fixed point numbers are positive or negative real num­
bers and may contain decimal points. 

Examples: 

1.1234 -100.999 .99 -.5998 

Floating point numerics are positive or negative numbers 
represented in exponential form (similar to scientific 
notation). A floating point numeric consists of a mantissa, 
followed by the letter E or D, and an exponent. The 
mantissa may be an integer or fixed point number. The 
letter E or D refers to number's numeric precision and 
means "times ten to the power of." We discuss numeric 
precision in the next section. The exponent is always an 
integer. Floating point numerics must be in the range 
10 - 38 to 10 + 38. For example, in the number: 

2359E6 

2359 is the mantissa and 6 is the exponent This number 
could be read as "2359 to sixth power," that is, 
2359000000. 

In the number 

235.988E-7 

235.988 is the mantissa and - 7 is the exponent. This 
number could be read as "235.988 to the negative seventh 
power," that is, .0000235988. 

35 



Section II I The BASIC Language 

Hexadecimal numerics are one- to four-digit hexadecimal 
representations of decimal numbers. Hexadecimal 
numerics are always preceded by the prefix &H, indicat­
ing that the numeric is a hexadecimal number and not a 
decimal number. The hexadecimal numbers are 0-9 and 
A-F. 

Examples: 

&H76 and &H032F 

are hexadecimal representations of the decimal numbers 
118 and 815 respectively. 

Octal numbers are one- to six-digit octal values preceded 
by the prefix &O or just &. Although only the & is re­
quired, we recommend that you use &O for clarity in your 
program. The octal numbers are 0-7. 

Examples: 

&0123 and &0000456 

are octal representations of the decimal numbers 83 and 
302 respectively. 

Numeric Precision 
Regardless of the numeric type, BASIC stores all numbers 
as integer, single precision, or double precision. The char­
acteristics of a number determine its numeric precision. 
Numeric precision determines the amount of memory 
BASIC uses and the speed at which BASIC can process the 
number. 

In this section we describe the different types of numeric 
precision and how BASIC automatically stores the num­
ber. Later we show you how to override the automatic 
storage by using type declaration tags. 

Integer 

BASIC stores a number as an integer if it is in the range 
- 32768 to + 32767 and does not contain a decimal point. 
If it is outside the range, BASIC stores it as single or double 
precision in exponential format. 

36 



Chapter 4 I BASIC Concepts 

Integers require two bytes of storage. Integers require the 
least amount of storage space and are therefore faster for 
BASIC to access. But BASIC stores integers with the least 
degree of exactness. 

For example: 

1 3200 -2 500 

can all be stored as integers. 

Single Precision 

-12345 

A single-precision number can include up to seven digits 
and may be in exponential form using E. If a number is 
larger than seven digits, BASIC stores it in double­
precision form with D. Note that a single precision num­
ber may be either a fixed or a floating point numeric. 

Single-precision numbers require four bytes of memory 
for storage. Even though BASIC stores the number with 
seven digits of precision, BASIC rounds the number to six 
digits when it is printed. 

For example: 

10.001 -200034 1.774E6 6.024E 23 
123.4567 

can all be stored as single-precision values. 

Double Precision 

Double-precision numbers can include up to 16 digits and 
may be in the exponential form using D. Note that a 
double-precision number may be either a fixed or a float­
ing point numeric. 

Double-precision numbers require eight bytes of mem­
ory for storage. As with single precision, BASIC rounds the 
number to 16 digits when it is printed. Double-precision 
numbers require the most number of bytes and are there­
fore the slowest for BASIC to access. However, double­
presicion numbers are the most exact. 

37 



Section II I Tbe BASIC !Llnguage 

Constants 

For example: 

1010234578 
8.7777651010 

3.141592653589793 
8.00100708D12 

can all be stored as double-precision values. 

Constants are values input to a program that are not sub­
ject to change. The two types of constants are string and 
numeric. String constants must be enclosed in double 
quotes. Numeric constants can be integer, fixed point, 
floating point, hexadecimal, or octal. 

The statement: 

PRINT "NAME", "ADDRESS", "CITY", "STATE" 

contains four string constants; NAME, ADDRESS, CI1Y, and 
STATE. Every time BASIC executes this PRINT statement, 
these four values are printed. 

A numeric value that won't change in your BASIC program 
may be represented as either a string constant or a numer­
ic constant. If you use puctuation in the number, it must be 
a string constant enclosed in double quotes. For example, 
in the statement: 

PRINT "$250,000" 

"$250,000" is a string constant. 

In this statement: 

PRINT "1,000 PLUS"; 1000; "EQUALS"; 2000 

the first 1,000 is a string constant containing a comma. The 
other 1000 is a numeric constant. 

38 



Variables 

Chapter 4 I BAf!C Concepts 

A variable is a place in memory where BASIC stores values 
that can change. Th.is allows you to write programs that 
contain changing data. 

In the statement: 

A$= "OCCUPATION" 

The string variable A$ now contains the data OCCUPA­
TION. However, if this statement appeared later in the 
program: 

A$ = "FINANCE" 

The variable A$ no longer contains OCCUPATION. It now 
contains the data FINANCE. 

Strings with length zero are called "null" or "empty." 
Strings are useful for storing non numeric information 
such as names, addresses, or text. 

Variables can also store numeric values. For example: 

A= 134 

The numeric variable A now contains the value 134. If this 
statement appears later in the program: 

A 100 

the variable A now contains 100. 

Variable Names 

In BASIC, variables are represented by names. Variable 
names can be up to 40 characters long, and they must 
begin with a letter, A through Z. This letter may be fol­
lowed by any of the digits 0 through 9, a period, or a type 
declaration tag. Variable names cannot be exactly the same 
as any of the reserved words listed in Appendix B. Howev­
er, reserved words may be imbedded in a variable name. 

39 



Section II I 7be BASIC Language 

For example: 

OR LEN OPTION 

cannot be used as variable names. However, 

AM A A1 BALANCE 
EMPLOYEE2 LEN2 OPTION1 

are all valid and distinct variable names. 

Type Declaration Tags 

A type declaration tag is a symbol at the end of a variable 
name that tells BASIC what kind of data the variable will 
store. The four types of declaration tags for variables are: 

% Integer 
Single Precision 

# Double Precision 
$ String 

For example: 

INT% indicates to BASIC that the variable INT% 
will store integer type numerics. 

PER! indicates to BASIC that the variable PER! will 
store single precision type numerics. 

SPEED# 

NAME$ 

Arrays 

indicates to BASIC that the variable 
SPEED# will store double precision type 
numerics. 

indicates to BASIC that the variable NAME$ 
will store string data. 

An array is a group of related data values stored consecu­
tively in memory. The entire group of data values are 
referred to as one variable name. Each value is called an 
element of the array. A subscript is an integer used to 
specify each element of the array. For example, an array 
named A may contain three elements referred to as: 

A(0) A(l) A(2) 

40 



Chapter 4 I BASIC Concepts 

You may use each of these elements to store a separate 
data item, such as: 

A(0) .10 
A(l) = .20 
A(2) .30 

An array is similar to a table, such as a tax table. For 
example, array A could be the tax rate at different income 
levels. The tax rates are arranged in a row corresponding 
to the appropriate income levels, like this: 

Income 
0 - 10,000 
10,001 20,000 
20,001 - 30,000 

Tax Rate 
.10 
.20 
.30 

This is called a one-dimensional table because the ele­
ments are arranged in rows, one-dimension, with each 
dimension containing only one element. 

Since tax rates are decreased by number of dependents, a 
tax array also has to contain columns within each row. As 
with a tax table, you can first locate the proper row, by 
income, and then move horizontally across the table to the 
appropriate column for number of dependents. An array 
that contains columns of data within rows of data is called a 
two-dimensional array. Each dimension of the two dimen­
sions (row and column) contains more than one element. 

A two-dimensional tax array named X could contain these 
elements: 

X(0,0) .15 
X(l,0) .30 
X(2,0) = .45 

X(0,1) 
X(l,1) 
X(2,1) 

41 

.10 

.25 

.40 

X(0,2) .05 
X(l,2) .20 
X(2,2) = .35 



Section II I The BASIC La.nguage 

The first subscript indicates the row number of the data 
and the second subscript indicates the column number. 
For example, the data stored in the second row at the 
second column, X( 1,1) is .25. In a tax table these values are 
arranged like this: 

Income Number of Dependents 

1 2 3 

0 - 10,000 .15 .10 .05 
10,001 - 20,000 .30 .25 .20 
20,001 - 30,000 .45 .40 .35 

A taxpayer who has an income of $15,000 and two depen­
dents has a tax rate of .25. 1hat is element X(l,1) in the 
array. 

If you further subdivide dependents column by the tax­
payer's marital status, you need one more dimension 
within the column; depth. This is caved a three­
dimensional array because there are three dimensions 
(row, column, and depth), with each dimension contain­
ing more than one element. A three-dimensional array Z 
could contain these eight elements: 

Z(0,0,0) = .05 
Z(0,0,1) = .10 

Z(l,0,0) = .25 
Z(l,0,1) = .30 

Z(0,1,0) .15 
Z(0,1,1) = .20 

Z(l,1,0) = .35 
Z(l,1,1) = .45 

The first subscript indicates the row, the second subscript 
indicates the column, and the third subscript indicates the 
depth. In a tax table, these values are arranged like this: 

Income I Number of Dependents 

1 2 

married single married single 

$0-10,000 .05 .10 .15 .20 

SI 0,001-$20,000 .25 .30 .35 .45 

42 



Chapter 4 I BASIC Concepts 

A taxpayer who has an income of $15,000, has one depen­
dent, and is married has a tax rate of .30. That is element 
Z(l,0,1). 

With BASIC, you may have up to 255 dimensions in your 
array and up to 32,767 elements in each dimension. Arrays 
may be of any type: string, integer, single-precision, or 
double-precision. 

You may define arrays in your BASIC program with a DIM 
statement at the beginning of your program or just by 
setting the value of an element in the program. For 
example: 

A(S) = 300 

creates an array named A containing six elements and 
assigns element A(5) the value 300. 

Use a DIM statement, to reserve space in memory for each 
element of the array. For example: 

DIM C#(99) 

creates array C and reserves memory for 100 single preci­
sion elements. 

See the DIM statement in Chapter 6 for more information 
on creating arrays. 

How BASIC Classifies Constants 
When BASIC encounters a data constant in a statement, it 
must determine the type of the constant: string, integer, 
single precision, or double precision. First, we list the 
rules BASIC uses to classify the constant. Then we show 
you how you can override these rules if you want to store a 
constant differently. 

Rule 1 

If the value is enclosed in double quotes, it is a string. 

43 



Section II I Tbe BASIC Language 
__;;;;~~~-~~~~~~~~~· 

Examples: 

"YES" 
"3331 Waverly Way" 
"1234567890" 

Rule 2 

If the value is not in quotes, it is a number. 

Examples: 

123001 
1 

7.3214E + 6 

Rule 3 

Whole numbers in the range of 32768 to 32767. are 
integers. 

Examples: 

12350 
12 

10012 

Note: If you enter a number as a constant in response to a 
command that calls for an integer, and the number is out 
of integer range, BASIC converts the number to single or 
double precision. When the number is printed, it appears 
with a type-declaration tag at the end. 

Rule 4 

If the number is not an integer and contains seven or 
fewer digits, it is single precision. 

Examples: 

1234567 
-1.23 
1.3321 

Rule 5 

If the numher contains more than seven digits, it is double 
precision. 

44 



Examples: 

1234567890123456 
-1000000000000.1 
2.777000321 

Chapter 4 I BASIC Concepts 

You can override BASIC's normal typing criteria by adding 
type declaration "tags" at the end of the numeric constant. 

Makes the number single precision. For example, in 
the statement: 

A 12.345678901234! 

BASIC classifies the constant as single precision and 
shortens it to seven digits. 

12.3457 

E Single-precision exponential fon;nat. The E indicates 
that the constant is to be multiplied by a specific 
power of 10. For example: 

A = 1.2E5 

stores the single-precision number 120000 in A. 

# Makes the number double precision. For example, 
in statement: 

PRINT 3#/7 

BASIC classifies the first constant as double preci­
sion before the division takes place. 

D Double-precision exponential format. The D indi­
cates the constant is to be multiplied by a specified 
power of 10. For example, in: 

A = 1.234567890-1 

the double-precision constant has the value 
0.123456789. 

45 



Section II I Tbe BASIC language 

How BASIC Classifies Variables 
When BASIC encounters a variable name in the program, 
it classifies it as either a string, an integer, a single­
precision number, or a double-precision number. 

BASIC classifies all variable names as single-precision in­
itially. For example: 

AB AMOUNT xv L 

are all single precision initially. If this is the first line of 
your program: 

LP= 1.2 

BASIC classifies LP as a single-precision variable. 

However, you may assign different attributes to variables 
by using definition statements at the beginning of your 
program: 

DEFINT - Defines variables as integer 
DEFDBL - Defines variables as double-precision 
DEFSTR - Defines variables as string 
DEFSNG - Defines variables as single-precision. 

(Since BASIC classifies all variables as 
single precision initially, you need to use 
DEFSNG only if one of the other DEF 
statements is used.) 

Example: 

DEFSTR L 

BASIC classifies all variables that start with L as string 
variables. After this statement, the variables 

L LP LAST 

can hold string values only. 

As with constants, you can override the type of a variable 
name by adding a type declaration tag at the end. 

46 



Chapter 4 I BASIC Concepts 

For example: 

1% FT% NUM% COUNTER% 

are all integer variables, regardless of what attributes 
have been assigned to the letters I, F, N, and C. 

T! RY! QUAN! PERCENT! 

are all single-precision variables, regardless of what attri­
butes have been assigned to the letters T, R, Q, and P. 

X# RR# PREV# LSTNUM# 

are all double-precision variables, regardless of what 
attributes have been assigned to the letters X, R, P, and L. 

0$ CA$ WAD$ ENTRY$ 

are all string variables, regardless of what attributes have 
been assigned to the letters Q, C, W, and E. 

Any variable name can represent four different variables. 
For example: 

AS# AS! A5% AS$ 

are all valid and distinct variable names. 

How BASIC Converts Numeric Data 
A statement in your BASIC program may contain numbers 
with different degrees of precision. When BASIC evaluates 
the expression, all operands are converted to the same 
degree of precision, that of the most precise operand. The 
result of the arithmetic operation is also returned to this 
degree of precision. 

Often your program might ask BASIC to assign one type of 
constant to a different type of variable. For example: 

A%= 2.34 

In this example, BASIC must first convert the single­
precision constant 2.34 to an integer in order to assign it to 
the integer variable A%. 

47 



Section II I The BASIC Language 

You might also want to convert one type of variable to a 
different type, such as: 

A#= A% 
A! A# 
A!= A% 

Single or double precision to integer type 

BASIC rounds the fractional portion of the number. 

Note: The original value must be in the range - 32768 to 

32768. 

Examples 

A%= 32766.7 

assigns A% the value 32767. 

A%= 2.503 

assigns A% the value 2500. 

A% = -123.45678901234578 

assigns A% the value - 123. 

A%= 32768.5 

produces an Overflow Error (out of integer range). 

Integer to single or double precision 

BASIC appends a decimal point and zeroes to the right of 
the original value. 

Examples 

A# = 32767 

Stores 32767.000000000000 in A#. 

A! = 1234 

Stores - 1234.000 in A!. 

Double to single precision 

BASIC rounds the number to seven significant digits. 

48 



Chapter 4 I BAS1 C Concepts 

Examples 

A! = 1.234567890124567 

stores 1.234568 in A!. However, the statement: 

A! = 1.3333333333333333 

stores 1.333333 in A!. 

Single to double precisio11 

BASIC adds trailing zeros to the single-precision number. 
If the original value has an exact binary representation in 
single-precision format, the resulting value is accurate. 
For example: 

A# = 1.5 

stores 1.5000000000000 in A#, since l.5 does have an 
exact binary representation. 

However, for numbers that have no exact binary repre­
sentation, the conversion creates an erroneous value. For 
example: 

A# = 1.3 

stores 1.299999952316284 in A#. 

You should keep such conversions out of your programs 
because most fractional numbers do not have an exact 
binary representation. For example, when you assign a 
constant value to a double-precision variable, you can 
force the constant to be double precision: 

A# = 1.3# A# = 1.30 

both store 1.3 in A#. 

Here is a special technique for converting a single 
precision value to double precision accurately. It is useful 
when the single-precision value is stored in a variable. 

Convert the single-precision variable to a string with STR$; 
then convert the resultant string into a number with VAL. 

49 



Section II I 1be BA5IC Lcmguage 

That is, use: 

VAL( STR$( single-precision variable)) 

For example, the following program 

10 Al = 1.3 
20 A# ==Al 
30 PRINT A# 

prints a value of: 

1.299999952316284 

This program 

10 Al = 1.3 
20 A# = VAL(STR$(AI)) 
30 PRINT A# 

prints a value of 

1.3 

The conversion in line 20 causes the value in A! to be 
stored accurately in double-precision variable A#. 

Wegal Conversions 
BASIC cannot automatically convert numeric values to 
string, or vice versa. For example, the statements: 

A$ = 1234 
A%= "1234" 

are illegal. They return a "Type mismatch" error. (Use 
STR$ and VAL to accomplish such conversions.) 

50 



Chapter 4 I BASIC Concepts 

How BASIC Manipulates Data 

Operators 

BASIC has many fast methods to count, sort, test, and 
rearrange your data. These methods fall into two 
categories: 

1. Operators 
a. numeric 
b. string 
c. relational 
d. logical 

2. Functions 

An operator is a symbol or word that signifies some action 
to be taken on specified values. The data that the opera­
tions are performed on are called operands. 

In general, an operator is used like this: 

operand-1 

6 

operator 

+ 

operand-2 

2 

The addition operator, plus ( + ), connects or relates its 
two operands, 6 and 2, to produce the result 8. 

Operand-1 and -2 can be expressions. 

A few operations take only one operand, and are used like 
this: 

operator operand 

5 

The negative operator, minus ( ), acts on the single 
operand 5 to produce the result negative 5. 

Neither 6 + 2, nor - 5 can stand alone; they must be used 
in statements to be meaningful to BASIC. For example: 

A=6+2 
PAINT -5 

51 



Section ll I Ibe BASIC Language 

Operators fall into four categories: 

• Numeric 
• String 
• Relational 
• Logical 

based on the kinds of operands they require and the 
results they produce. 

Numeric Operators 

Numeric operators are used in numeric expressions. 
Their operands must always be numeric, and the result 
they produce is one numeric data item. Unless othernrise 
stated, when BASIC evaluates the expression, all operands 
are converted to the same degree of precision, that of the 
most precise operand. The result of the arithmetic opera­
tion is also returned to this degree of precision. 

There are seven numeric operators. Two of them, plus 
( + ) and minus ( - ), are unary, that is, they have only one 
operand. A sign operator has no effect on the precision of 
its operand. 

For example, in the statement: 

PRINT 77, + 77 

the sign operators - and + produce the values negative 
77 and positive 77, respectively. 

Note: When no sign operator appears in front of a numer­
ic term, + is assumed. 

The other numeric operators are binary; that is, they all 
take two operands. 

These operators are, in order of precedence: 

*,I 
\,MOD 
+, 

Exponentiation 
Multiplication, Division 
Integer Division, Modulus Arithmetic 
Addition, Subtraction 

52 



Chapter 4 I BAS/ C Concepts 

Exponentiation 

The symbol ' denotes exponentiation. It converts both its 

operands to single precision and returns a single­

precision result. 

Examples: 

PRINT 2'3 

prints 8. 2 * 2 * 2 is 8. 

PRINT 6' .3 

prints 6 to the .3 power. 

Multiplication 

The asterisk ( *) is the symbol for multiplication. 

Examples: 

PRINT 33 * 11 % 

performs integer multiplication and prints 363. 

PRINT 33 * 11.1 

performs single-precision multiplication ::md prints )(i(i.5. 

PRINT 12.345678901234567 * 11 

performs double-precision multiplication and prints 

13'1 802-r67 9 l )")802. 

Division 

The slash (/) is the symbol for ordinary division. 

Examples: 

PRINT 3/4 

performs single-precision division and prints O -c::;. 

PRINT 3.8/4 

performs single-precision division and prints 0.9'1 



Section II I The BASIC Language 

PRINT 135802567913580237/11 

performs double-precision division and prims 
1.2345687992143660+ 16 

Integer Division 

The \ (backslash) is the symbol for integer division. Both 
operands are rounded to Integers, and the result is trun­
cated to an integer. 

Examples: 

PRINT 10 \ 4 

prints 2. 

PRINT 68 \ 6.99 

prints 9. 

Modulus Arithmetic 

MOD is the operator for modulus arithmetic. Both oper­
ands are rounded to integers. The result is the integer that 
is the remainder of an integer division. 

Examples: 

PRINT 10 MOD 3 

prints 1. Ten divided by 3 is 3 with a remainder of 1. 

PRINT 68 MOD 6.99 

prints 5. 68 divided by seven is 3 with a remainder of 5. 

Addition 

The plus ( +) is the symbol for addition. 

Examples: 

PRINT 2 + 3 

performs integer addition and prims 5 

PRINT 3.1 + 3 

performs single-precision addition and prints 6.1 

54 



Cbapter 41 BASIC Concepts 

PRINT 1.2345678901234567 + 1 

performs double-precision addition and prints 
2.234567890123457 

Subtraction 

The minus ( - ) is the symbol for subtraction. 

Examples: 

PRINT 33 - 11 

performs integer subtraction and prints 22 

PRINT 33 - 11.1 

performs single-precision subtraction and prints 21.9 

PRINT 12.345678901234567 - 11 

performs double-precision subtraction and prints 
1.34567890123457. 

String Operator 

BASIC has a string operator (+)to concatenate (append) 
two strings into one. The concatenation symbol is used as 
part of a string expression. The operands are both strings, 
and the resulting value is one piece of String data. 

The + operator appends the string on the right of the 
symbol to the string on the left of the symbol. For example: 

PRINT "CATS"+ "LOVE" + "MICE" 

prints: 

CATSLOVEMICE 

Since BASIC does riot allow on~ string to be longer than 
255 characters, you get an error if your resulting string is 
too long. 

55 



Section II I The BAS1C Language 

Relational Operators 

Relational operators compare two numerical or two string 
expressions to form a relational expression. This expres­
sion reports whether the comparison you set up in your 
program is true or false. It returns a -1 if the relation is 
true; a 0 if it is false. 

Numeric Relations 

This is the meaning of the operators when you use them to 
compare numeric expressions: 

< 
> 

<>or>< 
<or>= 
>or<= 

Less than 
Greater than 
Equal to 
Noc equal to 
Less than or equal to 
Greater than or equal to 

Examples of true relational expressions: 

1 < 2 
2 <> 5 
2< 5 
2< 2 
5 > 2 
7 7 

String Relations 

The relational operators for string expressions are the 
same as above, although their meanings are slightly differ­
ent. Instead of comparing numerical magnitudes, the 
operators compare their ASCII sequence. This allows you 
to sort string data: 

< 
> 

><or<> 
<= 

56 

Precedes 
Follows 
Does not have the same precedence 
Precedes or has the same precedence 
Follows or has the same precedence 



Chapter 4 / BAWC Concepts 

BASIC compares the string expressions on a character-by­
character basis. When it finds a non matching character, it 
checks to see which character has the lower ASCII code. 
The character with the lower ASCII code is the smaller 
(precedent) of the two strings. 

Examples of true relational expressions: 

"A"< "B" 

The ASCII code for A is decimal 65; for B it's 66. 

"CODE" < "COOL" 

The ASCII code for 0 is 79; for D it's 68. 

If while making the comparison, BASIC reaches the end of 
one string before finding non matching characters, the 
shorter string is the precedent. For example: 

"TRAIL" <"TRAILER" 

Leading and trailing blanks are significant. For example: 

"A"< "A" 

ASCII for the space character is 32; for A, it's 65. 

"ABCD" < "ABCDE" 

The string on the left is four characters long; the string on 
the right is five. 

How to Use Relational Expressions 

Normally, relational expressions are used as the test in an 
IF!fHEN statement. For example: 

IF A = 1 THEN PRINT "CORRECT" 

BASIC tests to see if A is equal to l. If it is, BASIC prints the 
message. 

57 



Section II I The BASIC Language 

IF A$ < 8$ THEN 50 

if string A$ alphabetically precedes string B$, then the 
program branches to line 50. 

IF R$ = "YES" THEN PRINT A$ 

if R$ equals YES then the message stored as A$ is printed. 

You may also use relational expressions to return the true 
or false results of a test. For example: 

PRINT 7 = 7 

print<> 1 since the relation tested is true. 

PRINT "A" > "B" 

print<> O because the relation tested is false. 

Logical Operators 

Logical operators make logical comparisons. Normally, 
they are used in IF!IlIEN statements to make a logical test 
between two or more relations. For example: 

IF A= 1 OR C = 2 THEN PRINT X 

lbe logical operator, OR, compares the two relations 
A= 1 and C = 2. 

Logical operators may also be used to make bit compari­
sons of two numeric expressions. 

For this application, BASIC does a bit-by-bit comparison of 
the two operands, according to predefined rules for the 
specific operator. 

Note: lbe operands are converted to integer type, stored 
internally as 16-bit, two's complement numbers. To 
understand the results of bit-by-bit comparisons, you need 
to keep this in mind. 

58 



Chapter 4 I BASIC Concepts 

The following table summarizes the action of Boolean 
operators in bit manipulation. 

Meaning of First Second 

Operator Operation Operand Operand Result 

NOT Result is oppo- 1 0 
site of bit. 0 1 

AND When both bits 1 1 1 
are 1, the re- 1 0 0 
suits will be 1. 0 1 0 
Otherwise, the 0 0 0 
result will be 0. 

OR Result will be 1 1 1 
unless both bits 1 0 1 
are 0. 0 1 1 

0 0 0 

XOR When one of the 1 1 0 
bits is 1, the 1 0 1 
result is 1. 0 1 1 
Otherwise the 0 0 0 
result is 0. 

EQV When both bits 1 1 1 
are 1 or both 1 0 0 
bits are 0, the 0 1 0 
result is 1. 0 0 1 

IMP The result is 1 1 
unless the first 1 0 0 
bit is 1 and 0 1 
the second bit 0 0 1 
is 0. 

Hierarchy of Operators 

When your expressions have multiple operators, BASIC 
performs the operations according to a well-defined 
hierarchy so that results are always predictable. 

59 



Section II I The BASIC Language 

Parentheses 
When a complex expression includes parentheses, BASIC 
always evaluates the expressions inside the parentheses 
before evaluating the rest of the expression. For example, 
the expression: 

8 (3 - 2) 

is evaluated like this: 

3 - 2 1 
8 - 1 7 

With nested parentheses, BASIC stares evaluating the in­
nermost level first and works outward. For example: 

4 * (2 - (3 - 4)) 

is evaluated like this: 

3 - 4 = -1 
2 (-1)=3 

4 * 3 = 12 

Order of Operations 

When evaluating a sequence of operations on the same 
level of parenthesis, BASIC uses a hierarchy to determine 
what operation to do first 

The two listings below show the hierarchy. Operators are 
in decreasing order of precedence and are executed as 
encountered from left to right: 

For Numeric Operations: 

( ) 

+, 

*, I 
\,MOD 
+,-

(Parentheses) 
(Exponentiation) 
(Unary sign operands [not addition and 
subtraction]) 
(Multiplication and division) 
(Integer Division and Modulus Arithmetic) 
(Addition and subtraction) 

<,>,=,<=,> ,<> 
NOT 
AND 

60 



Functions 

OR 
XOR 
EQV 
IMP 

For String Operations: 

+ 
<,>,= =,> ,<> 

Chapter 4 I BA5/C Concepts 

For example, in the line: 

x * x + 5'2.8 

BASIC finds the value of 5 to the 2.8 power. Next it multi­
plies X•X, and finally it adds that value to the value of 5 to 
the 2.8 power. If you want BASIC to perform the indicated 
operations in a different order, you must add parentheses. 
For example: 

x" ex+ 5)'2.8 

BASIC adds the value X + 5 and raises that value to the 
power before it performs the multiplication. 

Here's another example: 

IF X = 0 Ofi Y > 0 AND Z = 1 THEN 255 

The relational operators = and > have the highest prece­
dence, so BASIC performs them first, one after the next, 
from left to right. Then the logical operations are per­
formed. AND has a higher precedence than OR, so BASIC 
performs the AND operation before OR. 

If the above line looks confusing because you can't re­
member which operator is precedent over which, then 
you can use parentheses to make the sequence obvious: 

IF X 0 OR ((Y > 0) AND (Z = 1)) THEN 255 

A function is a built-in sequence of operations that BASIC 
performs on data. BASIC functions make writing a BASIC 
routine unnecessary, and they operate faster than a 
routine would. 

61 



Section II I Tbe BASIC .language 

Examples: 

SQR (A+ 6) 

BASIC computes the square root of (A + 6). 

MID$ (A$,3,2) 

BASIC returns a substring of the string A$, starting with the 
third character, with a length of 2. 

BASIC functions are described in more detail in Chapter 7. 

If the function returns numeric data, it is a numeric func­
tion and may be used in a numeric expression. If it returns 
string data, it is a string function and may be used in a 
string expression. 

How to Construct an Expression 
Understanding how to construct an expression will help 
you put together powerful statements - instead of using 
many short ones. In this section we discuss the two kinds 
of expressions you may construct 

• Simple 
• Complex 

as well as how to construct a function. 

An expression is actually data. This is because once BASIC 
performs all the operations, it returns one data item. An 
expression may be string or numeric. It may be composed 
of: 

• Constants 
• Variables 
• Operators 
• Functions 

Expressions may be either simple or complex. 

Simple Expressions 
A shnple expression consists of a single term: a constant, 
variable, or function. If it is a numeric term, it may be 

62 



Chapter 4 I BAS! C Concepts 

preceded by an optional + or 
operator NOT. 

For example: 

+A 3.3 - 5 SQR(8) 

sign or by the logical 

are all simple numeric expressions, since they consist of 
only one numeric term. 

A$ STRING$ (20,A$) "WORD" "M'' 

are all simple string expressions, since they consist of only 
one string term. 

Complex Expressions 
A complex expression consists of two or more terms (sim­
ple expressions) combined by operators. For example: 

A-1 X+3.2-Y l=l AAND B 
ABS(B) + LOG(2) 

are all complex numeric expressions. Notice that you can 
use the relational expression (1=1) and the logical ex­
pression (A AND B) as a complex numeric expression 
since both actually return numeric data. 

A$ + B$ "Z" + Z$ STRING$(10, "A") + "M" 

are all examples of complex string expressions. 

Most functions, except those functions returning system 
information, require that you input either or both of the 
following kinds of data: 

• One or more numeric expressions 
• One or more string expressions 

If the data returned is a number, the function may be used 
as a term in a numeric expression. If the data is a string, the 
function may be used as a term in a string expression. 

SIN(A) STR$(X) VAL(A) LOG(.53) 

are all examples of functions. 

63 





Chapter 5 
Disk Files 

You may want to store data on your disk for future use. To 
do this, you need to store the data in a "disk file." A disk file 
is an organized collection of related data. It may contain a 
mailing list, a personnel record, or almost any kind of 
information. This is the largest block of information on 
disk that you can address with a single command. 

To transfer data from a BASIC program to a disk file, and 
vice-versa, the data must first go through a "buffer". This is 
an area in memory where data is accumulated for further 
processing. 

With BASIC, you can create and access two types of disk 
files: sequential access or direct access. 

Sequential-Access Files 
With a sequential-access file, you can only access data in 
the same order it was stored: sequentially. To read from or 
write to a particular record in the file, you must first read 
through all the records in the file until you get to the 
desired record. 

Data is stored in a sequential file as ASCII characters. 
Therefore, it is ideal for storing variable length data with­
out wasting space between data. However, it is limited in 
flexibility and speed. 

The statements and functions used with sequential files 
are: 

OPEN 
PRINT# 
PRINT# USING 

WRITE# 
INPUT# 
LINE INPUT# 

EOF LOF 
LOC 
CLOSE 

These statements and functions are discussed in more 
detail in Chapters 6 and 7. 

65 



Section II I The BASIC Language 

Creating a Sequential-Access File 
1. To create the file, OPEN it in "O" (output) mode and 

assign it a buffer number (from 1 to 15 ). 

Example 
OPEN "O", 1, "LIST.EMP" 

OPEN "LIST.EMP" FOR OUTPUT AS 1 

either of these forms of the syntax for the OPEN state­
ment opens a sequential output file named LIST.EMP 
and gives buffer 1 access to this file. 

2. To input data from the keyboard into one or more 
program variables, use either INPUT or LINE INPUT. 
(The difference between these two statements is that 
each recognizes a different set of "delimiters". Delimit­
ers are characters that define where a data item begins 
or ends). 

Exalnple 
LINE INPUT, "NAME? "; N$ 

inputs data from the keyboard and stores it in variable 
N$. 

3. To write data to the file, use the WRITE# statement 
(you can also use PRINT#, but make sure you delimit 
the data). 

Example 
WRITE# 1, N$ 

writes variable N$ to the file, using buffer 1 (the buffer 
used to OPEN the file). Remember that data must go 
through a buffer before it can be written to a file. 

4. To ensure that all the data was written to the file, use the 
ODSE statement. 

66 



Example 

CLOSE 1 

Cbapter 5 I Disk Files 

closes access to the file, using buffer 1 (the same buffer 
used to OPEN the file). 

Sample Program 

10 OPEN "O", 1, "LIST.EMP" 
20 LINE INPUT "NAME? ";N$ 
30 IF N$ = "DONE" THEN 60 
40 WRITE# 1, N$ 
50 PRINT: GOTO 20 
60 CLOSE 1 
RUN 

Note: The file "LIST.EMP" stores the data you input 
through the aid of the program, not the program 
itself (the program manipulates data). To save the 
program above, you must assign it a name and use 
the SAVE command (refer to Chapter 1 ). 

Example 

SAVE "PAYROLL.BAS" 

saves the program under the name "PAYROLL.BAS". 

Note: Every time you modify a program, you must 
SAVE it again (you can use the same name); other­
wise, the original program remains on disk, without 
your latest corrections. If the filename is eight char­
acters or less and you do not include an extension in 
the file name, BASIC appends the extension ".BAS" 
when you use the SAVE, MERGE, LOAD, and RUN 
statements. 

5. To access data in the file, reOPEN it in the 'T' (input) 
mode. 

67 



Section II I The BASIC Language 

Example 

OPEN "LIST.EMP" FOR INPUT AS 1 

OPENs the file named LIST.EMP for sequential input, 
using buffer 1. 

6. To read data from the file and assign it to program 
variables, use either INPUT# or LINE INPUT#. 

Examples 

INPUT# 1, N$ 

reads a string item into N$, using buffer 1 (the buffer 
used when the file was OPENed). 

LINE INPUT# 1, N$ 

reads an entire line of data into N$, using buffer 1. 

INPUT# and LINE INPUT# each recognize a different 
set of "delimiters" for reading data from the file. De­
limiters are characters that define the beginning or 
end of a data item. See Chapter 7 for a detailed explana­
tion of these statements. 

Sample Program 

10 OPEN "I", 1, "LIST.EMP" 
20 IF EOF(1), THEN 100 
30 INPUT# 1, N$ 
40 PRINT N$ 
50 GOTO 20 

100 CLOSE 

Updating a Sequential-Access File 
1. To add data to the file, OPEN it in "A" (append) mode. 

OPEN "A", 1, "LIST.EMP" 

opens the file LIST.EMP so that it can be extended. The 
data you enter is appended to LIST.EMP. 

2. To enter new data to the file, follow the same proce­
dure as for entering data in "O" mode. 

68 



Example 

Chapter 5 I Disk Files 

The following program illustrates this technique. It 
builds on the file we previously created under the 
name LIST.EMP. 

Note: Read through the entire program first. If you 
encounter BASIC keywords (statements or func­
tions) that are unfamiliar to you, refer to Chapter 7 
for their definitions. 

NEW 
10 OPEN "A", 1, "LIST.EMP" 
20 LINE INPUT "TYPE A NEW NAME OR PRESS 

<N>"; N$ 
30 IF N$ = "N" THEN 60 
40 WRITE# 1, N$ 
50 GOTO 20 
60 CLOSE 

If you want the program to print on your display the 
information stored in the updated file, add the follow­
ing lines: 

70 OPEN "LIST.EMP" FOR INPUT AS 1 
80 IF EOF(1) THEN 2000 
90 INPUT# 1, N$ 

100 PRINT N$ 
110 GOTO 80 

2000 CLOSE 
RUN 

After you RUN this program, SAVE it. 

SAVE "PAYROLL2.BAS" 

69 

'saves the new 
program 



Section II I The BAS! C Language 

Direct-Access Files 
With a direct-access file, you can access data anyvvhere on 
disk. It is not necessary to read through all the informa­
tion, as with a sequential-access file. This is possible be­
cause in a direct-access file, information is stored and 
accessed in distinct units called "records". Each record is 
numbered. 

Creating and accessing direct-access files requires mote 
program steps than sequential-access files. However, 
direct-access files are more flexible and easier to update. 

One important note: BASIC allocates space for records in 
numeric order. That is, if the first record you write to the 
file is number 200, BASIC allocates space for records 0 
through 199 before storing record 200 in the file. 

The maximum number of logical records is 65,535. Each 
record may contain between 1 and 128 bytes. 

The statements and functions used with direct-access files 
are: 

OPEN 
GET 
LOC 
MKS$ 
CVS 

FIELD 
PUT 
MKD$ 
CVD 
LOF 

LSET/RSET 
CLOSE 
MKI$ 
CVI 

These statements and functions are discussed in more 
detail in Chapters 6 and 7. 

Creating a Direct-Access File 
1. To create the file, OPEN it for random access in "R" 

mode. 

Example 

OPEN, "R", 1, "LISTING.BAS", 32 

70 



Chapter 5 I Disk Files 

opens the file named "LISTING.BAS", gives buffer 1 
direct access to the file, and sets the record length to 32 
bytes. (If you omit the record length, the default is 128 
bytes). Remember that data is passed to and from disk 
in records. 

2. Use the FIELD statement to allocate space in the buffer 
for the variables that you write to the file. This is neces­
sary because you must place the entire record into the 
buffer before putting it into the disk file. 

Example 

FIELD 1, 20 AS N$, 4 AS A$,8 AS P$ 

allocates the first 20 positions in buffer 1 to string 
variable N$, the next four positions to A$, and the next 
eight positions to P$. N$, A$ and P$ are now "field 
names". 

3. To move data into the buffer, use the LSET statement. 
Numeric values must be converted into strings when 
placed in the buffer. To do this, use the "make" func­
tions: MKI$ to make an integer value into a string, MKS$ 
for a single-precision value, and MKD$ for a double­
precision value. 

Example 

LSET N$ X$ 
LSET A$= MKS$(AMT) 

4. To write data from the buffer to a record (within a 
direct-access disk file), use the PUT statement. 

PUT 1, CODE% 

writes the data from buffer 1 to a record with the 
number CODE%. (The percentage sign at the end of a 
variable specifies that it is an integer variable.) 

71 



Section II I The J3ASIC 

The following program writes information to a direct­
access file: 

10 OPEN "LISTING.BAS" AS 1 LEN = 32 
20 FIELD 1, 20 AS N$, 4 AS A$, 8 AS P$ 
30 INPUT "2-DIGIT CODE, 0 TO END"; CODE% 
40 IF CODE% 0 THEN 130 
50 INPUT "NAME"; X$ 
60 INPUT "AMOUNT'; AMT 
70 INPUT "PHONE"; TEL$ 
80 LSET N$ X$ 
90 LSET A$ = MKS$(AMT) 
100 LSET P$ = TEL$ 
110 PUT 1, CODE% 
120 GOTO 30 
130 CLOSE 1 

The two-digit code that you enter in line 30 becomes a 
record number. That record stores the name(s), 
amount(s) and phone number( s) you enter when lines 
50, 60 and 70 are executed. The record is written to the 
file when BASIC executes the PUT statement in line 110. 

After typing this program, SAVE it and RUN it. Then, 
enter the following data: 

2-DIGIT CODE, 0 TO END? 20 
NAME? SMITH 
AMOUNT? 34.55 
PHONE? 567-9000 
2-DIGIT CODE, 0 TO END? 0 

BASIC stored SMITH, 34.55, and 567~9000 in record 20 
of file LISTING. 

Accessing a Direct-Access File 
I. OPEN the file in "R" mode. 

Example 

OPEN "R", 1,"LISTING.BAS",32 

72 



5 I Disk Files 

2. Use the FIELD statement to allocate space in the buffer 
for the variables that are read from the file. 

Example 

FIELD 1, 20 AS N$, 4 AS A$, 8 ASP$ 

3. Before you use the GET statement to read the record, 
set a variable in your program equal to the record size 
used in the OPEN statement. This provides a way for 
you to check that you are not attempting to access a 
record that is not in your file. LOF returns the length of 
the file in bytes. The total number of bytes in the file 
can't be less than the requested record number multi­
plied by the record size. An attempt to access a record 
number greater than the largest record number in the 
file results in an "Input Past End" error. 

Example 

RECSIZE% = 32 
IF (CODE% • RECSIZE%) > LOF(1) THEN 1000 

4. Use the GET statement to read the desired record from 
a direct disk file into a buffer. 

Example 

GET 1, CODE% 

gets the record numbered CODE% and reads it into 
buffer 1. 

5. Convert string values back to numbers using the "con­
vert" functions: CVI for integers, CVS for single­
precision values, and CVD for double-precision values. 

Example 

PRINT N$ 
PRINT CVS(A$) 

The program may now access the data in the buffer. 

73 



Section II I The BM1C Language 
--'"'---=~~~~~~~~~~~~~ 

The following program accesses the direct-access file 
"LISTING.BAS" (created with the previous program). 
When BASIC executes line 30, enter any valid record 
number from "LISTING.BAS". This program will print 
the contents of that record. 

10 OPEN "R", 1, "LISTING.BAS", 32 
20 FIELD 1,20 AS N$,4 AS A$,8 AS P$ 
30 RECSIZE% = 32 
40 INPUT "2-DIGIT CODE, 0 TO ENO"; CODE% 
50 IF CODE% = 0 OR {CODE% • RECSIZE%) > 

LOF{1) THEN 1000 
60 GET #1, CODE% 
70 PRINT N$ 
80 PRINT USING"$$#.##"; CVS{A$) 
90 PRINT P$: PRINT 
100 GOTO 40 
1000 CLOSE 1 

After typing this program, SAVE it and RUN it. When 
Bl$IC asks you to enter a 2-digit code, enter 20 (the 
record we created through the previous program). 
Your display should show: 

2-DIGIT CODE, 0 TO END? 
SMITH 
$34.55 
567 9000 

If you entered a record number which is not a part of 
"LISTING.BAS", your display would show: 

$0.00 

If you wanted to go back and update "LISTING.BAS", 
simply LOAD the previous program (the one that cre­
ated "LISTING.BAS") and RUN it. 

74 



Chapter 6 
Introduction To BASIC Keywords 

BASIC is made up of keywords. These keywords instruct 
the computer to perform certain operations. 

Chapter 7 describes all ofBASICs keywords. This chapter 
explains the format used in Chapter 7. It also introduces 
you to BASICs two types of kevwords: statement<> and 
functions. 

Format for Chapter 7 

Keyword 
Communications 
Graphics 

Statement 
Function 

Syntax parameter(s) or (argument(s)) 

Example(s) 

Brief definition of keyword. 

Detailed definition of keyword. 

Sample Program(s) 
Communications indicates that the keyword performs a 
specific operation when used with the HS-232C asynchro­
nous commurlications adapter. Graphics indicates that the 
keyword has a specific operation when used with either 
the hlack and white graphics board (catalog number 
26-5140) or the color graphics board (catalog number 
26-5141 ). The HS-232C asynchronous communications 
adapter is standard on vour Model 2000. You must pur­
chase the optional graphics boards to use the graphics 
commands. 
This format varies slightly, depending on the complexitv 
of each keyword. For instance, some keywords are used 
alone (without parameters or arguments). Others have 
several possible svntaxes. A'i a general rule, definitions for 
statements are longer than definitions for functions. That 
is because a statement is a complete instruction to BASIC, 
while a function is a built-in subroutine which mav only be 
used as part of a statement. 

75 



Section II I Tbe BA)! C 

Some keywords have several sample programs, others 
don't have any at all. We added programs to illustrate 
useful applications which may not be readily apparent. 
Remember that this manual is to be used as a 
not a tutorial on how to program in BASIC 

Important Note: BASIC for MS·DOS requires that 
keywords be delimited by spaces. This means that you 
must leave a space between a keyword and any variables, 
constants or other keywords. The only exceptions to this 
rule are characters which are shown as part of the syntax of 
the keyword. 

For example, if you type: 

DELETE. 

BASIC returns a "Syntax error." You must leave a blank 
space between the word DELETE and the period. 

For a definition of the terms and notation used in Chapter 
7, see page 1-2 of the Introduction. 

Statements 
A program is made up of lines; each line contains one or 
more statements. A statement tells the computer to per­
form some operation when that particular line is ex­
ecuted. For example, 

100 STOP 

tells the computer to stop executing the program when it 
reaches line 100. 

Statements for assigning values to variables and 
defining memory space: 

CLEAR 

COMMON 
DATA 

DEPDDL 

clears all variables, allocates memorv 
and stack space. 
passes variables to a CHAINed program. 
stores data in your program so that you 
may assign it to a variable. 
defines variables as double precision. 

76 



DEF FN 

DEFINT 
DEF SEG 
DEFSNG 
DEFSTR 
DEF USR 

DIM 
ERASE 
LET 

MID$ 
OPTION BASE 

RANDOMIZE 
READ 

RESTORE 
SWAP 

defines a function according to your 
specifications. 
defines variables as integers. 
defines the current segment address. 
defines variables as single precision 
defines variables as strings. 
defines the offset of the entry point for 
USR routines 
dimensions an array. 
erases an array. 
assigns a value to a variable (the keyword 
LET may be omitted). 
replaces a portion of a string. 
declares the minimum value for array 
subscripts. 
reseeds the random number generator. 
read'i data stored in the DATA statement 
and assigns it to a variable. 
restores the DATA pointer. 
exchanges the values of variables. 

Statements for altering program sequence: 

CALL 

CHAIN 

COM(l) ON 
END 
FOR/NEXT 
GO SUB 

GOTO 

IF ... THEN ... ELSE 

calls an assembly language sub-
routine. 
loads anocher program and passes 
variables to the current program. 
enables communication trapping. 
ends a program. 
establishes a program loop. 
transfers program control to the 
subroutine 
transfers program control to the 
specified line number. 
evaluates an expression and per­
forms an operation if conditions 
are met 

KEY(n) ON enables key trapping. 
ON COM(l) GOSUB branches to a subroutine when 

77 

activity occurs on the communica­
tion channel. 



Section II I The BASIC Language 

ON KEY ... GOSUB 

ON ... GOSUB 

ON ... GOTO 

ON STRIG ... GOSUB 

RETURN 

STOP 
STRIG ON 
STRIG( ) ON 
WHILE ... WEND 

WAIT 

branches to a subroutine when a 
specific key is pressed. 
evaluates an expression and 
branches to a subroutine. 
evaluates an expression and 
branches to another program 
line. 
branches to a subroutine \'.·hen 
vou press a mouse button. 
returns from a subroutine to the 
calling program. 
stops program execution. 
enables the STRlG function. 
enables mouse trapping. 
executes statements in a loop as 
long as a given condition is true. 
suspends program execution 
while monitoring the status of a 
machine input port. 

Statements for storing and accessing data on disk: 

CLOSE 
FIELD 
GET 

INPUT# 
LINE INPUT# 

LSET 

OPEN 
OPEN "COM 
PRINT# 
PRINT# USING 

78 

closes access to a disk file. 
organizes a direct-access buffer. 
gets a record from a direct-access 
file, or transfers a specific number 
of bytes from a communication 
file. 
inputs data from a disk file. 
inputs an entire line from a disk 
file. 
moves data (and left-justifies it) to 
a field in a direct-access file buffer. 
opens a disk file. 
opens a communication file. 
writes data to a sequential disk file. 
writes data to a disk file using the 
specified format. 



Chapter 6 I Introduction to Keywords 

PUT 

RESET 

RSET 

WRITE# 

puts a record into a direct-access 
file or transfers a number of bvtes 
to a communication file. 
closes all open files on all 
diskettes. 
moves data (and right-justifies it) 
to a field in a direct-access file 
buffer. 
writes data to a sequential file. 

Statements for debugging a program: 

CONT 
ERL 

ERR 

ERROR 
ON ERROR GOTO 
REM 
RESUME 

TROFF 
TRON 

continues program execution. 
returns the line number where an 
error occurred. 
returns an error code after an 
error. 
simulates the specified error. 
sets up an error-trapping routine. 
inserts a remark line in a program. 
terminates an error-handling 
routine. 
turns the tracer off. 
turns the tracer on. 

Statements for inputting or outputting data to the 
video display or the line printer: 

CIRCLE 

CLS 
COLOR 

DRAW 
GET 

IKPUT 
LINE 
LINE INPUT 

LIST 

79 

draws an ellipse with a center and 
a radius on the display. 
clears the display. 
to select foreground, background, 
and border display colors. 
draws images on the display. 
transfers graphic images from 
memory to the display. 
inputs data from the keyboard. 
draws a line on the display. 
inputs an entire line from the 
keyboard. 
lists a program to the display or 
line printer. 



Section II I The BASIC Language 

LUST 

LOCATE 
LP RI NT 
PAINT 

PRESET 

PRINT 
PRINT USING 

PSET 

PUT 

SCREEN 

TAB 

WIDTH 

WRITE 

prints a program on the line 
printer. 
positions the cursor on the screen. 
prints data at the line printer. 
fills in an area of the screen with a 
selected color. 
draws a point in color at a specified 
position on the screen. 
lists data to the displav. 
lists data to the display in a specific 
format. 
draws a point on the screen at a 
specified position. 
transfers graphic images from the 
display to memory. 
sets the screen attributes (text, 
medium- or high-resolution) to be 
used by subsequent statements. 
positions the cursor or the print 
head at a specified position. 
sets the number of characters per 
line for the screen or line printer. 
prints data on the display. 

Statements for performing system functions or en­
tering other modes of operation: 

AUTO 

BEEP 

BLOAD 

BSA VE 
DELETE 

EDIT 
KILL 
LOAD 
MERGE 

80 

automatically numbers program 
lines. 
produces a sound from the com­
puter speaker. 
loads a memory image file from 
disk. 
saves a memory image file to disk. 
erases program lines from 
memory. 
edits program lines. 
deletes a disk file. 
loads a program from disk. 
merges a disk program with a resi­
dent program. 



Functions 

NAiv1E 
Nb"W 

OUT 

POKE 

PLAY 
REN UM 
RUN 
SAVE 
SOUND 

SYSTEM 

Chapter 6 I Introduction to Keywords 

renames a disk file. 
erases a program from RAM. 
sends a bvte to a machine output 
port. 
writes a byte into a memory 
location. 
produces musical notes 
renumbers a program. 
executes a program. 
saves a program on disk. 
generates a specific tone for a 
specified length of time. 
returns to MS-DOS. 

A function is a built-in subroutine. rt may only be used as 
part of a statement. 

Most BASIC functions return numeric or string data by 
performing certain built-in routines. Special print func­
tions are used to control the video display. 

Numeric Functions (return a number): 

ABS 
ASC 
ATN 
CDBL 
CINT 

cos 
CSNG 
EXP 
FLX 
FRE 

INSTR 
INP 
INT 

81 

computes the absolute value. 
returns the ASCII code. 
computes the arctangent. 
converts to double precision. 
returns the largest integer not 
greater than the parameter. 
computes the cosine. 
converts to single precision 
computes the natural exponential. 
truncates to whole number. 
returns the number of bytes in 
memory not being used. 
searches for a specified string. 
returns the byte read from a port. 
returns the largest whole number 
not greater than the argument. 



Section II I The BASIC Language 

LEN 
LOG 
LPOS 

PEEK 

RND 
SGN 
SIN 
SQR 
TAN 
USR 

VAL 

VAWfR 

returns the length of the string. 
computes the natural logarithm. 
returns the position of the print 
head in the line printer buffer. 
returns a byte from a memory 
location. 
returns a pseudorandom number. 
returns the sign. 
calculates the sign. 
calculates the square. root. 
computes the tangent. 
calls an assembly-language sub-
routine. 
returns the numeric value of a 
string. 
returns an offset for a variable or 
buffer. 

String Functions (return a string value): 

CHR$ 
DATE$ 
ERRS$ 

HEX$ 

LEFT$ 
MID$ 
OCT$ 

RIGHT$ 

SPACE$ 
STR$ 
STRING$ 
TIME$ 

returns the specified character 
sets or returns today's date. 
returns the latest error number 
and message. 
tonverts a decimal value to a hex­
adecimal string. 
returns the left portion of a string. 
return'S the mid-portion of a string. 
converts a decimal value to an 
octal string. 
returns the right portion of a 
string. 
returns a string of spaces. 
converts to string type. 
returns a string of characters. 
sets or returns the time. 

Input/Output Functions (perform input/output to 
the keyboard, display, line printer or disk files): 

CVD 

82 

restores data from a direct disk file 
to double precision. 



C\1 

CVS 

CRSLIN 

EOF 
FILES 

INKEY$ 
INPCT# 

INPUT$ 

KEY 

LOC 

LOF 

MKI$ 

MKS$ 

MKD$ 

POS 

SCREEN 

SPC 
STICK 

STRIG 

Chapter 6 I Introduction to Keywords 

83 

restores data from a direct disk file 
to integer. 
restores data from a direct disk file 
to single precision. 
returns the current row position of 
the cursor. 
checks for end-of-file. 
displays the names of the files on a 
diskette. 
returns the keyboard character. 
inputs a string of characters from a 
sequential disk file. 
returns a string of characters from 
the keyboard. 
assigns or displays the current 
function key soft values. 
returns the current disk file record 
number. 
returns the total number of bytes 
in a disk file or the amount of free 
space in a communication file in­
put queue. 
converts an integer value to a 
string for writing it to a direct­
access disk file. 
converts a single-precision num­
ber to a string for writing it to a 
direct-access file. 
converts a double-precision value 
to a string for writing it to a direct­
access file. 
returns the cursor column posi­
tion on the display. 
returns the ASCII code for the 
character stored at a specific posi­
tion on the screen. 
prints spaces to the display. 
returns the number of points 
moved along the coordinates. 
returns the status of the mouse 
buttons. 



Section II I 17Je BA~iC Language 

Introduction to Graphics 
Interpreter BASIC for vour Model 2000 includes man\' 
new commands to clisplav text and graphic images in hlack 
and white and in color. Which of these commands \'Ou can 
use and how you can use them depends on the graphics 
options you have, 

In Chapter 7 the word Graphics is primed at the top of the 
pages on which there are statements that require a 
graphics option. The graphics commands that \'OU can use 
to draw graphic images and perform animation are CIR­
CLE, DRAW, LINE, GET/Graphics, PAINT, POINT, PSET, 
PRESET, and PUT/Graphics. If you are using either of the 
color graphic options, vou mav also use the COLOR/ 
Graphics, PALETTE, and PALETTE USING statements to 
draw the images in color. 

Graphics Options 
You must have one of three graphics options to use am· of 
the graphics commands. Each option provides a different 
degree of resolution, Resolution is the number of points 
on the screen. The greater number of points, the sharper 
the image. 

In addition, each option controls the number of colors 
that can display on the screen at one time. BASIC provides 
fifteen colors, However, you mav onlv use a certain num­
ber of colors at one time. The number of colors is also 
determined by the graphics option vou have. 



Chapter 6 I Introduction to Kevwords 

Medium Resolution Color 
Graphics Option 

To use the Medium Resolution Color Graphics Option you 
must have a color television set and the TV/Joystick Option 
(catalog number 26-5143). 

The Medium Resolution Color Graphics Option provides 
320 x 200 points in four colors. That means there are 320 
vertical columns of 200 points each or 200 horizontal rows 
of 320 points each. Each horizontal row of points is num­
bered 0-320. Each vertical column of points is numbered 
0-200. The point in the upper left corner of the displav is 
0,0. The point in the lower left corner of the displa\' is 
319,199. 

With the Medium Resolution Color Graphics option you 
may display text or graphic images in 4 colors at one time. 
To display text, select Screen Mode 0. You can display 24 
lines of 40 characters each. You can use 4 COLOH/Text 
statements to choose 4 of 15 colors to display letters, 
numbers, and special characters. 

To use the graphics statements to draw graphic images 
and perform animation, select Screen Mode 1. You can 
specify any one point on the screen with the graphic 
statements. You can select the colors for the graphic im­
ages with the COLOH/Gr::iphic, PALE1TE, and PALETTE 
USING statements. 

High Resolution Monochrome Option 

To use the Medium Resolution Monochrome Option \'OU 

must have VM-1 Monochrome Monitor and a Mono­
chrome Graphics Option Board (catalog # 26-5140 ). 

The Iligh Resolutio11 Monochrome Graphics Option pro· 
vicies 640 vertical points. The numher of horizontal points 
depencl-; on the screen mode vou select with the SCREEN 
statement. You may ha\'e either 200 or 400 horizontal 
points. Remember, the more points, the sharper the 
image. 

85 



Section II I The BASIC Language 

Screen Mode 2 selects 640 x 200 points. That means there 
are 640 vertical columns of 200 points each or 200 hori­
zomal rows of 640 points each. Each horizontal row of 
points is numbered 0-640. Each vertical column of points 
is numbered 0-200. The point in the upper left corner of 
the display is 0,0. The point in the lower left corner of the 
display is 639,199. 

Screen Mode 4 selects 640 x 400 points. That means that 
there arc 640 vertical columns of 400 points each or 400 
horizontal rows of 640 points each. Each horizontal row of 
points is numbered 0-640. Each vertical column of points 
is numbered 0-400. The point in the upper left corner of 
the display is 0,0. The point in the lower left corner of the 
display is 639,399. 

With the High Resolution Monochrome Graphics Option 
you can display text or graphic images in black and white. 
There are two shades of white, white and high-intensity 
white (brighter white.) 

To display text, select SCREEN 0. You can use the COLOH/ 
Text statement to create reverse image, invisible, high­
lighted, and underscored characters. You can display 24 
rows of 40 characters or 24 rows of 80 characters bv setting 
the screen width with the WIDlH statement. 

To draw graphic images and perform animation select 
Screen Modes 2 or 4. The only difference between the two 
screen modes is the degree of resolution. By changing the 
parameters in the COLOR/Text statement, you can create 
reverse image, invisible, and highlighted graphic images. 

86 



Chapter 6 I Introt!._uction to Keywords 
~~~~~~~~~~~~~---~~~~~~· 

High Resolution Color Graphics Option

To use the High Resolution Color Graphics Option you
must have a CM-1 Color Monitor (catalog# 26-5112), a
Monochrome Graphics Option Board (catalog #
26-5140), and a Color Graphics Option kit (catalog #
26-5141).

The High Resolution Color Graphics Option provides 640
x 400 points in 8 colors. That means that there are 640
vertical columns of 400 points each or 400 horizontal rows
of 640 points each. Each horizontal row of points is num­
bered 0-640. Each vertical column of points is numbered
0-400. The point in the upper left corner of the display is
0,0. The point in the lower left corner of the display is
639,399.

With the High Resolution Color Graphics Option you may
display text or graphic images in black and white or in 8 of
15 colors. The screen mode you select with the SCREEN
statement determines the color and resolution of the
graphic images. You may select any of the 5 screen modes,
0, 1, 2, 3, or4 and use any of the graphic options described.

To display text, select Screen Mode 0. You can display 24
lines of 40 characters each or 24 lines of 80 characters
each. You can use 8 COLOR!fext statements to choose
8 of 15 colors to display letters, numbers, and special
characters.

To use the graphics statements to draw colored graphic
images and perform animation, select Screen Mode 1 or
Screen Mode 3. Again, the only difference between the
two screen modes is the degree of resolution.

If you select Screen Mode 1, vou may specify horizontal
coordinates in the range 0 to 320 and vertical coordinates
in the range 0 to 199. If vou select Screen Mode 3, vou mav
specify horizontal coordinates in the range 0 to 640 and
vertical coordinates in the range 0 to 400.

87

Section II I The BASIC Language

With either Screen Modes 1 or .1, \'OU can displa\' 8 of the
15 colors at one time. You can select the colors for the
graphic images with the COLOR/Graphic, PALETTE, and
PALETTE USING statements.

If you select Screen Modes 2 or 4, vou can displav graphic
images in black nm! white. There are two shades of white,
white and high-intensit\' white (brighter \'chite)

The only difference between the two screen modes is the
degree of resolution. Hy changing the parameters in the
COLOH/Text statement, \'OU can create re\•erse image,
invisible, and highlighted graphic images.

Specifying Coordinates
To draw your graphic images on the displav, you must tell
BASIC where to put the image on the screen. To do this,
you must specify horizontal and vertical point numbers
for the point you want to draw.

The horizontal and vertical point numbers are known as
the coordinates. Coordinates are expressed as x­
coordinate, y-coordinate. The x-coordinate is the horizon­
tal point number, and they-coordinate is the \'ertical point
number. When you specify coordinates in a statement,
separate them with a comma. Specified actual coordinates
are called absolute coordinates.

You may also specify relative coordinates in some
graphics commands. In this case, \'OU specif\· off-;ets from
the last graphics point referenced. An off-;et from the last
graphics point referenced is a number of points a\\'aY from
rhe last point you dre\\'. ror example, if \'ou use the
CIHCLE statement to draw a CIRCLE, the lust point HAS!C
draws is the center of the circle. If you then execute a LINE
command and specif\> offsets rather than absolute corn"
dinates, RASIC draws the line offset points away from the
center of the circle.

88

Aspect Ratio

You may specify positive or negative values for offaets. If
vou specify a negative value, BASIC subtracts off'iet from
the coordinate of the last point referenced. If \'OU specify
positive values, BASIC adds offset to the coordinate of the
last point referenced.

As you can see by our discussion of graphic options, there
are more horizontal points than vertical points. In Screen
Modes 1, 2, 3. and 4, the number of horizontal points in an
inch is greater than the number of vertical points in an
inch because the horizontal points are closer together
than the vertical points. A'ipect ratio is the realtionship
between the number of points in a vertical inch to the
number of points in a horizontal inch.

To calculate the screen aspect ratio, you must know the
dimensions (height and width) of the viewing area of your
monitor.

Note: The viewing area is that portion of \'our screen on
which images are displayed. It may be smaller than
the screen itself. Calculate the aspect ratio accord­
ing to the following formula:

aspect ratio =

number of
vertical points

viewing area
height

89

number of
horizontal points

viewing area
width

Section 111 Tbe BASIC Language

Screen Mode 1

The standard viewing area has a width to height ratio of 4
to 3. This means that your moniror is 1 1/.1 times as wide as it
high (regardless of the actual dimensions). For example, a
viewing area that is 8 inches wide and 6 inches high has a
width to height ratio of 8 to 6, which is the same <L'> 4 to 3.

ln Screen Mode 1, there are 320 horizontal points and 200
vertical points. To calculate the aspect ratio, substitute the
actual values in the above formula.

200/6 -;- 32o/8 = 'Y6

To calculate the number of points per inch in each direc­
tion, divide the total number of horizontal points by the
width in inches and the total number of vertical points by
the height in inches. There are 40 vertical points per inch
and 33 horizontal points per inch on our example
monitor.

Remember, to calculate points per inch and aspect ratio
for vour viewing area, you need to know actual dimen··
sions and substitute those in the formula.

Screen Mode 2

In Screen Mode 2 there are 640 horizontal points and 200
vertical points. The viewing area is 10 inches wide and 7
inches high. Substituting actual values in the formula gives
the following equation:

200/-, -;- 640/10 = 'l8

The aspect ratio is /s. There are 28 vertical points per inch
and 64 horizontal points per inch.

90

Chapter 6 I Introduction to Keywords

Screen Modes 3 and 4

In Screen Modes 3 and 4 there are 640 horizontal points
and 400 vertical points. The viewing area is 10 inches wide
and 7 inches high. Substituting actual values in the formula
give the following equation:

+ 64o/lo 2y28

The aspect ratio is 25/2H. There are 57 vertical points per
inch and 64 horizontal points per inch.

The aspect ratio for the current screen mode is important
when using the graphics commands CIRCLE, DRAW, and
LINE. Keep in mind that the number of horizontal points is
not as long as the same number of vertical points. There·
fore, if you try to draw a square, the perimeter of the
square must contain more horizontal points than vertical
points.

The CIRCLE statement compensates the difference in
points per inch by letting you specify the aspect ratio. First,
CIRCLE computes the x and v coordinates for each point
on the ellipse. If the aspect ratio vou specify is less than
one, CIRCLE recomputes the v coordinates lw multiplving
the original y coordinates by the aspect ratio. If the aspect
ratio you specify is larger than one, CIRCLE recomputes
the x coordinates by multiplving the original x coon.Ii·
nates by aspect ratio.

You cannot specify an aspect ratio with the DRAW and
LINE statements. You must compensate for the difference
in points per inch yourself When specifying the coordi·
nates with the LINE ;mcl DRAW statements, keep in mind
the aspect ratio for the current screen and adjust the
coordinates iiO that the resulting image is wfon You

intended.

91

Section ll I 1be BASIC Language

Note also thar bec.1use there is a difference in points per
inch among the four different screen modes, images that
specify the same coordinates do not look the same in
different modes. For example, if vou dra\v a vertical line in
Screen Mode 2 with this statement

LINE (320, 100)-(320, 199)

the vertical line goes from the center of the screen to the
bonom of the screen. However, if you use the same coor­
dinates in Screen Mode 4, the center of the vertical line is
in the center of the displav and the line extends the same
distance up from the center as down. The line does not
extend to the bottom or to the top of the displa\'.

92

Chapter 7

Statements And Functions

93

ABS Function

ABS(number)

Example

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero, ABS(numher)
= number. If number is less than zero, ABS(negatil•e
number)= number.

X = ABS(Y)

computes the absolute value of Y and assigns it to X.

Sample Program
100 INPUT "WHAT'S THE TEMPERATURE

OUTSIDE (DEGREES F)"; TEMP
110 IF TEMP < 0 THEN PRINT "THAT'S"

ABS(TEMP) "BELOW ZERO! BRR!": END
120 IF TEMP = 0 THEN PRINT "ZERO DEGREES!

MITE COLD!": END
130 PRINT TEMP "DEGREES ABOVE ZERO?

BALMY!": END

94

ASC
ASC(string)

Example

Function

Returns the ASCII code for the first character of string

The value is returned as a decimal number. If string is null,
an "Illegal function call" error occurs.

PRINT ASC("A")

prints 6'), the ASCII code for "A".

Sample Program
ASC can be used to make sure a program is receiving
proper input. Suppose you've written a program that re­
quires the user to input hexadecimal digits 0-9, A-F. To
make sure that only those characters are input, and ex­
clude all other characters, you can insert the following
routine.

100 INPUT "ENTER A HEXADECIMAL VALUE
(0-9,A-F)";N$

110 A = ASC(N$) 'get ASCII code
120 IF A>47 AND A<58 OR A>64 AND A<71

THEN PRINT "OK.": GOTO 100
130 PRINT "VALUE NOT OK.": GOTO 100

95

ATN Function

ATN(number)

Example

Computes the arctangem of number in radians.

ATN returns the angle whose rangem is number. The
result is always single precision, regardless of number's
numeric type.

To convert this value to degrees, multiph' ATN(numher)
by 57.29578.

X = ATN(Y/3)

computes the arctangent ofY/3 and assigns the value to X.

96

AUTO Statement

AUTO[Jine][,increment]

Examples

Automatically generates a line number every time you
press (ENTER).

AUTO begins numbering at line and displays the next line
number after adding increment. The default for both
values is 10. A period (.) can be substituted for line. In this
case, BASIC uses the current line number. If line is fol­
lowed by a comma, but you omit increment, BASIC
assumes the last increment specified in the last AUTO
statement or the default value of 10.

If AUTO generates a line number that already exists in the
program, it displays an asterisk after the number. To save
the existing line, press (ENTER) immediately after the aster­
isk AUTO then generates the next line number.

To turn off AUTO, press (BREAK). The current line is can­
celed and BASIC returns to command level.

AUTO

generates lines 10, 20, 30, 40.

AUTO 1©0, 50

generates lines 100, 150, 200, 250 ...

97

BEEP
BEEP

Example

Statement

Produces a sound from the computer speaker.

The BEEP statement sounds the speaker at 800 Hz for 114
second. For information on how to control the frequency
or length of the sound, see the SOUND statement.

A BEEP statement has the same effect as

PRINT CHR$(7).

IF X > 20 THEN BEEP

If the variable X is out of range, the computer warns the
operator with a beep.

98

BLOAD Statement

BLOAD fllespec [,offset]
Loads a memory image file into memory.

filespec is a string expression that contains the drive identi·
fier and filename. The filename is required. If you omit the
drive identifier, BASIC assumes the current drive.

offset is an integer in the range 0 to 65535. offset represents
a location away from the beginning of a segment. BASIC
determines the address to load at from the segment
address given in the most recently executed DEF SEG
statement and offset. See DEF SEG.

If you omit offset, BASIC assumes the offset specified at
BSAVE and loads the file into the same location from
which it was saved.

If you specify offeet, BASIC assumes you want to BLOAD at
an address other than the address from which the pro­
gram was saved and uses the last known DEF SEG address.
Unless you want to load the file into BASIC's data segment,
you must execute a DEF SEG statement before the BLOAD
statement. If you used the IM: switch when you loaded
BASIC, BLOAD the file at that offset. If you do not execute a
DEF SEG before BLOAD, and you did not use the /M:
switch when you loaded BASIC, and you specify offset, the
file is loaded at that offset from BASIC's data segment,
destroying BASIC's workspace.

Note: BLOAD does not perform an address range check.
It is possible to load a file anywhere in memory.
Therefore, you must be careful not to load over
BASIC or over the operating system.

A memory image file is a byte-for-byte copy of what was
originally in memory. See BSAVE for information about
saving memory image files. See the section "Interfacing
Assembly Language Programs", in Appendix E for more
information on loading assembly language programs.

You may specify any segment as the target or source for
BLOAD or BSA VE. This is a useful way to save and redisplay
screen images by saving from or loading to the screen
buffer.

99

Section II I Tbe BAWC Language

NOTE: You may type (BBEAK) at any time during BLOAD
or LOAD, between files, or after a time-out
period. BASIC exits the search and returns to
direct mode. Previous memory contents remain
unchanged.

Sample Programs
Program l

10 'SAVE A 50 byte image of memory
20 DEF SEG = &H10
30 FOR I 256 to 306
40 VLUE = PEEK (I)
50 LfRINT "AT ADDRESS ";I;" WE HAVE A

VALUE OF "; VLUE
60 NEXT I
70 BSAVE "PROG1 ", 0, 50
80 PRINT "Now Run Program 2 to verify that the

contents saved in the file Prog1 match those in the
print out produced by this program."

Program 2

10 'Load a 50 byte file into memory and verify it
20 DEF SEG = &H10
30 BLOAD "PROG 1. BAS", 0
40 FOR I == 256 TO 306
50 VALUE = PEEK(I)
60 LPRINT "AT ADDRESS ";I; "the loaded value is

";VALUE
70 NEXT I

Program 1 saves a memory image file and Program 2
reloads that file and prints it.

100

BSAVE Statement

BSA VE filespec, offset, leI1gth

Saves the contents of an area of memory as a disk file.

filespec is a string expression that may contain the drive
identifier and filename. Filename is required. If you omit
the drive identifier, BASIC assumes the current drive.

offiet is an integer in the range 0 to 65535. offiet represents
a location away from the beginning of a segment. BASIC
determines the address to start saving from by the seg­
ment address used in the most recently executed DEF SEG
statement and offiet.

length is an integer in the range 1 to 65535. This is the
length in bytes of the memory image file to be saved.

You must specify filename, offiet, and length. If you omit
any of them, a "Bad File Name" error is issued and BASIC
aborts the s:i,ve.

A memory image file is a byte-for-byte copy of what is in
memory. The BSAVE statement lets you save data or pro­
grams as memory image files on disk. BSAVE is often used
for saving assembly language programs, but you can also
use it to save data, programs written in other languages, or
screen images.

Unless you want to BSAVE part ofBASIC's workarea or you
used the /M: switch when you loaded BASIC, you must
execute a DEF SEG statement before the BSA VE statement,
since BASIC uses the address given in the most recently
executed DEF SEG statement for the save. See DEF SEG
and the section "Interfacing with Assembly Language Sub­
routines", in Appendix E for more information.

See BLOAD for an example of how to save a memory
image file.

101

CALL Statement

CALL variable [(parameter list)]

Example

Transfers program control to an assembly-language sub­
routine stored at variable.

Variable contains the offset into the segment where the
subroutine starts in memory. Variable may not be an array
variable. Offset must be on a 16-byte boundary.

Parameter list contains the variables that are passed to the
external subroutine.

A CAIL statement with no parameters generates a simple
8086 "CAIL" instruction. The corresponding subroutine
should return with a simple "RET".

The CAIL statement is the recommended method of inter­
facing assembly language programs with BASIC programs.
Do not use the USR function unless you are running
previously written BASIC programs that already contain
USR statements.

When a CAIL statement is executed, BASIC transfers con­
trol to the subroutine through the address given in the last
DEF SEG statement and the segment offset specified by
variable. See the section "Interfacing Assembly Language
Subroutines" in Appendix E for more details.

Note: The number, type and length of the parameters in
the calling program must match with the para­
meters expected by the subroutine. This applies to
BASIC subroutines, as well as those subroutines
written in assembly language.

When accessing parameters in a subroutine, remember
that they are pointers to the actual arguments passed.

110 MYROUT &H0000
120 DEF SEG &H1700
130 CALL MYROUT(l,J.K)

The subroutine, MYROUT, begins at offset 0 in the seg­
ment that begins at hexadecimal 1700. The values of I, J,
and K (which we assume were given elsewhere) are
passed to that routine.

102

CDBL Function

CDBL (number)

Converts number to double precision.

CDBL returns a 17-digit value. This function may be useful
if you want to force an operation to be performed in
double precision, even though the operands are single
precision or integers.

Sample Program
210 A=454.67
220 PRINT A; CDBL(A)
RUN
454.67 454.6700134277344
Ok

103

CHAIN Statement

CHAIN [MERGE] filespec [,line] [,ALL] [,DELETE
line-line]

Examples

Loads a BASIC program named filespec, chains it to a
"main" program, and begins running it.

Filespec must have been saved in ASCII format before you
can CtWN it. To do this, use SA VE with the 'A' option.

Line is the first line to be run in the CHAINed program. If
you omit line, BASIC begins execution at the first program
line of the CHAINed program.

The ALL option passes every variable in the main program
to the chained program. If you omit the ALL option, the
main program must contain a COMMON statement to pass
variables. If you are CHAINing subsequent programs (and
passing variables), each new program must contain a
COMMON statement.

The MERGE option "overlays" the lines of filespec with the
main program. See MERGE to understand how BASIC
overlays (merges) program lines.

The DELETE option deletes lines in the overlay so that you
can MERGE in a new overlay.

CHAIN "PROG2.BAS"

loads PROG2.BAS, chains it to the main program currently
in memory, and begins executing it.

CHAIN "SUBPROG.BAS",,ALL

loads, chains and executes SUBPROG.BAS. The values of
all the variables in the main program are passed to SUB­
PROG .BAS.

Sample Program 1
10 REM THIS PROGRAM DEMONSTRATES

CHAINING USING COMMON TO PASS
VARIABLES.

104

Chapter 7 I Statements and Functions

20 REM SAVE THIS MODULE ON DISK AS
"PROG1 .BAS" USING THE A OPTION.

30 DIM A$(2),B$(2)
40 COMMON A$(),B$()
50 A$(1) "VARIABLES IN COMMON MUST BE

ASSIGNED"
60 A$(2) ="VALUES BEFORE CHAINING"
70 B$(1) =" ":B$(2) ;, "
80 CHAIN "PROG2.BAS"
90 PRINT : PRINT B$(1): PRINT : PRINT 8$(2):

PRINT
100 END

Save this program as "PROGl.BAS", using the 'A' option
(Type: SAVE.filespec, A). Type NEW, then enter the follow­
ing program.

10 REM THE STATEMENT "DIM A$(2),B$(2)" MAY
ONLY BE EXECUTED ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS
MODULE.

30 REM SAVE THIS MODULE ON THE DISK AS
"PROG2.BAS" USING THE A OPTION.

40 COMMON A$(),B$()
50 PRINT: PRINT A$(1);A$(2)
60 B$(1) "NOTE HOW THE OPTION OF

SPECIFYING A STARTING LINENUMBER"
70 B$(2)="WHEN CHAINING AVOIDS THE

DIMENSION STATEMENT IN 'PROG1'."
80 CHAIN "PROG1 .BAS",90
90 END

Save this program as "PROG2.BAS", using the 'A' option.
Load PROG 1.BAS and run it. Your screen should display:

VARIABLES IN CO,\lMON 1\lUST HE ASSIGNED \'AWES
BEFORE CHAlNl'.':G. NOTE HOW THE OPTION OF SPEC­
I:FYING A STARTING LINE Nl'MBEH \\TIEN Cl-l.AINING
AVOIDS THE 011\JENSION STATEI\lE'.\JT IN 'PROGJ.BAS'.

105

Section II I The BASIC Language

Type NEW and this program:

Sample Program 2

Note

10 REM THIS PROGRAM DEMONSTRATES
CHAINING USING THE MERGE AND ALL
OPTIONS.

20 A$= "MAINPROG.BAS"
30 CHAIN MERGE "OVRLAY1 .BAS", 1000, ALL
40 END

Save this program as "MAINPROG.BAS'', using the 'A' op­
tion. Enter NEW, then type:

1000 PRINT A$;" HAS CHAINED TO
0VRLAY1 .BAS."

1010 A$= "OVRLAY1. BAS"
1020 B$ "OVRLA Y2.BAS"
1030 CHAIN MERGE "OVRLAY2.BAS", 1000, ALL,

DELETE 1020 - 1040
1040 END

Save this program as "OVRLAYl.BAS", using the 'A' option.
Enter NEW, then type:

1000 PRINT A$; " HAS CHAINED TO ";B$;" ."
1010 END

Save this program as "OVRLAY2.BAS", using the 'A' option.
Load MAINPROG.BAS and run it. Your screen should dis­
play:

MAINPROG.BAS HAS CHAINED TO OVRLAY1 .BAS.
OVRLAY1.BAS HAS CHAINED TO OVRLAY2.BAS.

The CHAIN statement with the MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

106

Chapter 7 I Statements and Functions

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the
chained program That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statements containing shared vari­
ables must be restated in the chained program

When using the MERGE option, user-defined functions
should be placed before any CHAIN MERGE statements in
the program. Otherwise, the user-defined functions will
be undefined after the merge is complete.

107

CHR$ Function

CHR$ (code)

Examples

Returns the character corresponding to an ASCII or con­
trol code.

This is the inverse of the ASC function. CHR$ is commonly
used to send a special character to the display.

PRINT CHR$(35)

prints the character corresponding to ASCII code 35 (the
character is #).

Sample Program
The following program lets you investigate the effect of
printing codes 32 through 255 on the display. (Codes
0 - 31 represent certain control functions.)

100 CLS
110 INPUT "TYPE IN THE CODE (32-255)"; C
120 PRINT CHR$(C);
130 GOTO 110

108

CINT Function

CINT (number)

Converts number to integer representation.

CINT rounds the fractional portion of number to make it
an integer.

For example, PRINT CINT(l.5) returns ..'.; PRINT
CINT(1.5) returns 2. The result is a two-byte integer.

Sample Program
PRINT CINT(17.65)
18
Ok

109

CIRCLE Statement

CIRCLE [STEP] (x-coordinate, y-coordinate)
,radius [,color,start,end,aspectj

Draws an ellipse with the specified center and radius.

x-coordinate is the x coordinate of the center of the circle.
In Screen Mode 1, xcoordinate may be in the range 0 to
320. In Screen Modes 2, 3, and 4 x-coordinate may be in
the range 0 to 640.

y-coordinate is they coordinate of the center of the circle.
In Screen Modes 1 and 2,y-coordinate may be in the range
0 to 200. In Screen Modes 3 and 4 y-coordinate may be in
the range 0 to 400.

If you include the STEP option, the numbers you specify as
coordinates are offsets from the most recent graphics
point referenced. x-coordinate is the number of points in
the horilzontal direction, and yccoordinate is the number
of points in the vertical direction. Precede the numbers
with a plus (+) or a minus () sign to indicate the
direction (up, down, left, or right) from the most recent
point referenced. The plus sign indicates to add the num­
ber to the most recent coordinate (right or up), and the
minus indicates subtract (left or down) the number from
the most recent coordinate.

color indicates the color of the ellipse and must be a color
number in the current palette. In Screen Mode 1, color
may be in the range 0 to 3. In Screen Mode 3, color may be
in the range 0 to 7. In Screen Modes 2 and 4, color may be
either 0 or 1. If you omit color in Screen Modes 1 or 3,
BASIC assumes color 3. If you omit color in Screen Modes
2 or 4, BASIC assumes white.

radius is the major axis of the ellipse.

110

Chapter 7 I Staternents and Functions

start and end are the beginning and ending angles in
radians and must be in the range 6 283186 and
6.283186, or 2 *PI and 2 *PI. If you specify a negative
start or end angle, the ellipse is connected to the center
point with a line and the angles are treated as if they were
positive.

aspect is the ratio of the x radius to they radius in terms of
coordinates. If aspect is less than one, radius is the x radius
and is measured in points in the horizontal direction. If
aspect is greater than one, radius is they radius and is
measured in points in the vertical direction. If you omit
aspect, BASIC assumes 516 in screen mode 1, 25156 in
Screen Mode 2, and 25/28 in Screen Modes 3 and 4. When
you use the default value, BASIC draws a circle.

To draw an ellipse that is wider than it is high, use an
aspect ratio that is less than the default value for that
screen mode. The smaller the aspect ratio you specify, the
wider and shorter the ellipse is. For example, in Screen
Mode 1, an aspect ratio of 112 gives you a wide, short
ellipse like this:

111

Section II I 71Je BASIC

Examples

To draw an ellipse that is higher than it is \Vide, use an
aspect rario that is larger than the default value for that
screen mode. The larger the aspect ratio that \'OU use, the
taller and thinner the ellipse is. For example, in Screen
Mode 1, an aspect ratio of 7/6 gi\'es rnu a talL thin ellipse
like this:

See Chapter 6 "Introduction co Graphics" for more in·
formation on aspect ratio and specif\·ing coordinates.

10 SCREEN 1
20 CIRCLE (200,200),50

draws a circle with the center at point 200,200 and a radius
of 50

10 SCREEN 1
20 CIRCLE (160, 100), 60,,,,5/18

draws an ellipse with the center at point 160,100 and a
radius of 60. Bemuse the aspeet ratio is less than the
default value, the ellipse is wider than it is high.

112

CLEAR Statement
·---------·-·--------------------
CLEAR [,memory location]
[,stack space]

Examples:

Clears the value of all variables and CLOSEs all open files.

l>1ernory location must be an integer. It specifies the high­
est memory location available for BASIC. The default is the
current top of memory (as specified with the /M: switch
when BASIC was loaded). This option is useful if you wiii
be loading a machine-language subroutine, since it pre­
vents BASIC from using that memory area.

Stack space must also be an integer. This sets aside mem·
ory for temporarily storing internal data and addresses
during subroutine calls and during FOR/NEXT loops. The
default is 768 bytes. An "Out of memory" error occurs if
there is insufficient stack space for program execution.

Note: BASIC allocates string space dynamically. An "Out
of string space" error occurs only if no free mem­
ory is left for BASIC.

Since CLEAR initializes all variables, you must use it near
the beginning of your program, before any variables have
been defined and before any DEF statements.

CLEAR

clears all variables and closes all files.

CLEAR, 45©©©

clears all variables and closes all files; makes 45000 the
highest address BASIC may use to run your programs.

CLEAR, 61©©©, 2©©

clears all variables and closes all files; makes 61000 the
highest address BASIC may use to run your programs, and
allocates 200 bytes for stack space.

113

CLOSE Statement

CLOSE [but.fer, . ..]

Examples

Closes access to a file.

Buff er is a number from 1 - 15 used to OPEN the file. If no
buffers are specified, BASIC closes all open files.

This command terminates access to a file through the
specified buffer. If a buff er was not assigned in a previous
OPEN statement, then

CLOSE buffer

has no effect.

Do not remove a diskette which contains an open file.
CLOSE the file first. This is because the last records may
not have been written to disk yet. Closing the file writes
the data, if it hasn't already been written.

See also OPEN and the chapter on "Disk Files".

CLOSE 1, 2, 8

terminates the file assignments to buffers 1,2, and 8. These
buffers can now be assigned to other files with OPEN
statements.

CLOSE FIRST% + COUNT%

terminates the file assignment to the buffer specified by
the sum FIRST% + COUNT%.

114

CLS
CLS

Statement

Clears the screen.

If the screen is in text mode, CLS clears the active page to
the currently selected background color. See COLOR
statement. If the screen is in medium or high resolution
mode, CLS clears the entire screen buffer to black.

CLS returns the cursor to home position. In graphics
mode, home position is the center of the screen. In
medium resolution, that is position 160,100. In high res­
olution, home position is 320,100 or 320,200, depending
on the current SCREEN mode.

If a SCREEN or WIDTH statement changes the screen
mode, the screen clears for the new mode. You can also
clear the screen by pressing ~ and OJ or ~ and
(HOME).

Sample Program
540 CLS
550 FOR I = 1 TO 24
560 PRINT STRING$ (79,33)
570 NEXT I
580 GOTO 540

115

COLOR/Text Statement

COLOR [foreground, background, border]

Selects the display colors for che foreground, background,
and border on the video display.

foreground is an integer in the range 0 co 31, specifying
the foreground color.

backp;round is an integer in the range 0 to 15, specii~·ing
the background color.

border is an integer in the range 0 to 15, specifying the
border color with the Medium Resolution Color Graphics
option. With the High Resolution Color Graphics option
the border is always black, and BASIC ignores this
parameter.

For more information abouc che graphics commands, see
Chapter 6 "Introduction to Graphics."

The first part of the COLOR!fexc description gives che
COLOR!fext statement for all computers, regardless of
options. An additional description is provided for the
color graphics options. Please note che following about
the COLOR!fext statement, regardless of any options you
are using:

1. To be in texc mode, you muse have selected Mode 0
wich the SCREEN statement.

2. If you omit any parameter, BASIC assumes the previous
or the default values.

3. If you set foreground color the same as background
color, the characters are invisible.

116

Examples

Possible foregound selections are:

0 or 8
1
2-7
9
10-15
16 or 24
17
18-23
25

26-31

Black
Underlined white character
White
High intensity white underlined
High intensity white
Black blinking
Underlined white blinking
White blinking
High intensity white
underlined blinking
High intensity white blinking

High intensity white is a brighter white. There is no high
intensity black

Possible background selections are:

0-6
7

Black
White

Specifying white (7) as a background color displays only if
the foreground selection is black. The foreground may be
0, 8, 16, or 24. White background with black characters
creates a reverse video image.

Specifying black (0-6) as a background color displavs only
if the foreground selection is white. That is, you may not
specify a foreground color selection of 0, 8, 16 or 24.

COLOR 0,7

selects black characters on a white background.

COLOR 1, 0

selects underlined white characters on a black back­
ground.

COLOR 4, 0

select'i white characters on a black background.

117

Section II I The BAS1C Language

Color Graphics Options
With the Medium or High Resolution Color Graphics op·
tions you may select the following colors for foreground
and background:

0, 8, 16, or 24 Black
1or17 Blue
2 or 18 Green
3 or 19 Cyan
4 or 20 Red
5 or 21 Magenta
6 or 22 Yellow
7 or 23 Gray

9 or 25 Light Blue
10 or 26 Light Green
11 or 27 Light Cyan
12 or 28 Light Red
13 or 29 Light Magenta
14 or 30 Light Yellow
15 or 31 White

With the Medium Resolution Color Graphics Option, you
may also select the border color from the above listing.
With the High Resolution Color Graphics Option, the
border is always black

With the Medium Resolution Color Graphics option you
may display only five colors at one time. Of the five, one
can be the border, one can be the background, and three
can be foreground. This means that you can display text in
three different colors.

If you execute a COLOR/Text statement that uses a fourth
foreground color, the fourth foreground color replaces
the first foreground color you selected. All characters of
first color change to the fourth color.

118

Chapter 7 I Statements and Functiorz.s

You can think of it as a first-in-first-out system. The first
foreground color you specify is the first color replaced.
The sixth foreground color you select replaces the second
color. For example, if you execute the following
statements:

COLOR 0,6,2:PRINT "PEPPER"
COLOR ?:PRINT "TABBY"
COLOR 4:PRINT "WAYNE"
COLOR 15:PRINT "ROBBIE"

The first line prints PEPPER in black on a yellow back­
ground with a green border.

The second line prints TABBY in gray. Background and
border retain their previous values.

The third line prints the word WAYNE in red. Background
and border retain their previous values.

When BASIC executes the fourth line, it requires a fourth
foreground color to print ROBBIE in white. White re­
places black as one of the three possible foreground
colors. BASIC prints ROBBIE in white and also changes
PEPPER to white.

With the High Resolution Color Graphics option you can
display characters in seven different foreground colors at
one time. The principal is the same as with the Medium
Resolution Color Graphics option, first-in-first-out. If you
select an eighth color, that color replaces the first fore­
ground color. If you select a ninth color, that color re­
places the second foreground color.

119

Section II I The BASIC Language

Examples
COLOR 7,0,0

Selects white characters on a black background with a
black border.

COLOR ,,4

Changes border color to red. The foreground and back­
ground colors retain their previous values.

COLOR 6,1

Changes the foreground to yellow and background to
blue. Border retains its previous value.

COLOR ,6

Changes background to yellow. If the previous example
has been executed, any characters on the screen are now
invisible.

120

COLOR/Graphic Graphic Statement
-~----·---~---------·-,·---··----~--~---,---~--~------------~-,.

COLOR [background] [,palette]

Selects the palette of colors to be used lw subsequent
graphics statements.

background is an integer in the range 0 to 15 that specifies
the background and border colors as described in the
COLOIVfext statement In Screen Modes 2 and 4, the
border is always black.

palette is a numeric expression in the range 0 to 255 that
specifies the palette of colors. Even numbers select palette
0, and odd numbers select palette 1.

The palette of colors is the group of colors associated with
color numbers specified in subsequent graphics state­
ments, such as LINE or PRESET. When you select a palette,
you tell BASIC to associate certain colors \Yith position
numbers in the palette when you use them as the color
parameter in graphics statements.

Color number 0 is the current background color. The
other colors and their position numbers when You specifv
each palette are:

Position Palette Palette
Number 0 1

1 Green CYan
2 Red Magenta
3 Yellow White
4 White Light Red
5 Light Cvan Light Green
6 Light Blue Light Blue
7 Light Yellow Light Ydlmv

In Screen Mode 1 YOU may onh specif\· colors 0. l, 2, and 3
in your graphics commands.

121

Section II I The BA51C Language

Examples

These colors are the default colors when you execute a
COLOR/Graphic statement to select a palette. After execut­
ing the COLOR/Graphics statement, you may use the
PALETTE and PALETTE USING statements to change any or
all of these values. See PALETTE AND PALETTE USING.

Please note the following regardless of which graphics
options you are using:

1. To be in color graphics mode, you must have selected
Screen Mode 1 or 3 with the SCREEN statement

2. If you omit any parameters, BASIC assumes the pre­
vious values.

3. If you set foreground color the same as background
color, the characters are invisible.

10 COLOR 9,0

Sets background to light blue and selects Palette 0.

20 COLOR ,3

Background retains its previous value. Because 3 is an odd
number, Palette 1 is selected.

122

Chapter 7 I Statements and Functions

10 COLOR 11,1
20 LINE (0,0) - (319,199),1

Line 10 selects a light cyan background and Palette 1. Line
20 draws a cyan diagonal line on the display because the
color of Position 1 in Palette 1 is cyan.

10 COLOR 3,0
20 LINE (0,0) - (319, 199),5

Line 10 selects a cyan background and Palette 0. Line 20
draws a light cyan diagonal line on the video display. If you
select Palette 1 in Line 10, Line 20 draws a light green
diagonal line.

123

COM Communications Statement

COM(l) action

Turns on, turns off, or temporarily halts the trapping of
activity on the communications channel.

action may be any of the following:

ON
OFF
STOP

enables communication trapping
disables communication trapping
temporarily suspends communication
trapping

Use the COM statement in a communication trap routine
with the ON COM(1) statemem to detect when characters
have come into the communication channel. The
statement

COM(1) ON

turns the crap on. BASIC checks after even' program state­
ment to see if a character has come into che communica­
tion channel. If there is activity on the communication
channel, BASIC transfers program control to the line num­
ber specified in the ON COM(1) statement.

the statement

COM(1) STOP

temporarily halts communication trapping. If activitv
occurs on the communication channel, BA.'iIC does not
transfer program control to the ON COM(1) statement
until communication trapping is turned on again b\· ex­
ecuting a COM(1) ON statement. BASIC remembers that
activity took place. Immediately after communication trap·
ping is turned on again, BASIC transfers program control
to the line number specified in the ON COM(1) statement.

124

Example

The statement

COM(1) OFF

turns off communication activity trapping and does not
remember that activity took place when activitY trapping is
turned on again.

We recommend that your COM trap routine read the
entire message from the communication port. Do not use
a COM trap to trap for a single character message because
the amount of time required to trap and read every charac·
ter can cause the communication buffer to overflow.

See ON COM(1) for more information about communica­
tion trapping.

10 COM(1) ON
20 PRINT "NO ACTIVITY"
30 ON COM(1) GOSUB 100
40 GOTO 20

100 PRINT "YOU ARE RECEIVING DATA":

200 RETURN

Line 10 turns on a communication trap. If characters are
received on the communication channel, program control
transfers to the subroutine beginning at Line 100. If there
is no activity on the communications channel. Line 20
prints a message and Line 40 keeps the program in a loop
until there is activity on the communication channel. Note
that BASIC checks the communication channel for activilY
after executing each :'taternent.

125

COMMON Statement

COMMON variable, . ..

Example

Passes variables to a CHAINed program.

COMMON may appear anywhere in a program, but we
recommend using it at the beginning.

The same variable cannot appear in more than one COM­
MON statement in a single program. The size and order of
the variables must be the same in the programs being
CHAINed. To specify array variables, append "()" to the
variable name. If you are passing all variables, use CIWN
with the ALL option and omit the COMMON statement.

Note: array variables used in a COMMON statement must
have been declared in a DIM statement.

90 DIM 0(50)
100 COMMON A, B, C, D(),G$
110 CHAIN "PROG3.BAS", 10

line 100 passes variables A, B, C, D and G$ to the CHAIN
command in line 110.

See also CHAIN.

126

CONT
CONT

Example

Statement

Resumes program execution.

You may only use CONT if the program was stopped by the
~ key, or a STOP or an END statement in the
program.

CONT is primarily a debugging tool. During a break or
stop in execution, you may examine variable values (using
PRINT) or change these values. Then type CONT ~;
execution continues with the current variable values.

You cannot use CONT after editing your program lines or
otherwise changing your program. CONT is also invalid
after execution has ended normally.

10 INPUT A, B, C
20 K=A·2
30 L = B. 3/ .26
40 STOP
50 M=C+40•K+100: PRINT M

Run this program.
You will be prompted with:

?

Type:

1,2,3~

The computer displays:

Break in 40

You can now type any immediate command.

For example:

PRINT L

displays)iJ ~ti'J..'.. You can also change the value of A, B,
or C.

127

Section II/ The BASIC Language

For example:

c 4

changes the value of C in the program. Type:

CONT

your screen displays: 1 -i +.

See also STOP.

128

cos Function

COS (number)

Examples

Computes the cosine of number.

COS returns the cosine of number in radians. The number
must be given in radians. When number is in degrees, use
COS(number • .01745329).

The result is always single precision.

Y COS(X • .01745329)

stores in Y the cosine of X, if X is an angle in degrees.

PRINT COS(S.8) COS(85 • .42)

prints the arithmetic (not trigonometric) difference of the
two cosines.

129

CSRLIN
[variable]

Function

CSRLIN

Returns the current row position of the cursor.

mriable is a numeric variable to hold the value returned
by CSRLIN. Because there are 24 usable lines on the
screen, the value is 1 through 24.

See the POS function to return the current column posi·
tion and the LOCATE statement to set the row and column
positions.

Sainple Prograin
10 PRINT "This is Line";
20 ROW = CSRLIN
30 PRINT ROW

130

CSNG Function

CSNG (number)

Example

Converts number to single precision.

If number is double precision, when its single-precision
value is printed, only six significant digits are shown.
BASIC rounds the number in this conversion.

PRINT CSNG(.1453885509)

prints 145389

Sample Program
280 v # 876.2345678#
290 PRINT V#; CSNG(V#)
RUN

876.2345678
Ok

131

876.2346

CVD, CVI, CVS Function
~~~~~~~~~~~~~~~~~ 

CVD (eight-byte string) 
CVS (four-byte string) 
CVI (two-byte string) 

Examples 

Convert string values to numeric values. 

These functions restore data to numeric form after it is 
read from disk. Typically, the data has been read by a GET 
statement, and is stored in a direct access file buffer. CVD 
converts an eight-byte string to a double-precision num­
ber. CVS converts a four-byte string to a single-precision 
number. CVI converts a two-byte string to an integer. 

CVD, CVI, and CVS are the inverses of MKD$, MKf$, and 
MKS$, respectively. 

Suppose the name GROSSPAY$ references an eight-byte 
field in a direct-access file buffer, and after GETting a 
record, GROSSPAY$ contains an MKD$ representation of 
the number 13123.38. Then the statement 

A# = CVD(GROSSPAY$) 

assigns the numeric value 13123.38 to the double­
precision variable A#. 

Sample Program 
This program reads from the file "TEST.DAT", which is 
assumed to have been previously created For the pro­
gram that creates the file, see MKD$, MKI$, and MKS$. 

1420 OPEN "R", 1, 'TEST.DAT", 14 
1430FIELD1, 2AS 11$, 4AS 12$, 8AS 13$ 
1440 GET 1 
1450 PRINT CVl(l1$), CVS(l2$), CVD(l3$) 
1460 CLOSE 

Note: GET without a record number tells BASIC to get 
the first record from the file, or the record follow­
ing the last record accessed. 

132 



DATA Statement 

DATA constant,. 

Examples 

Stores numeric and string constants to be accessed by a 
READ statement. 

This statement may contain as many constants 
by commas) as will fit on a line. Each will be read sequen­
tially, starting with the first constant in the first DATA 
statement, and ending with the last item in the last DATA 
statement. 

Numeric expressions are not allowed in a DATA list If 
your string constants include leading blanks, colons, or 
commas, you must enclose these constants in double 
quotation marks. 

DATA statements may appear anywhere it is convenient in 
a program. The data types in a DATA statement must match 
up with the variable types in the corresponding READ 
statement, otherwise a "Syntax error" occurs. 

To reREAD DATA statements from the beginning, use a 
RESTORE statement before the next READ statement. 

1340 DATA NEW YORK, CHICAGO, LOS 
ANGELES, PHILADELPHIA, DETROIT 

stores five string data items. Note that quote marks aren't 
needed, since the strings contain no delimiters and the 
leading blanks are not significant. 

1350 DATA 2.72, 3.14159, 0.0174533, 57.29578 

stores four numeric data items. 

1360 DATA "SMITH, T.H.", 38, "THORN, J.R.", 41 

stores both types of constants. Quote marks are required 
around the first and third items because they contain 
commas (commas are delimiters between constants). 

133 



SatnplePrograrn 
NEW 
10 PRINT "CITY", "STATE", "ZIP" 
20 READ C$,S$,Z 
30 DATA "DENVER,", COLORADO, 80211 
40 PRINT C$,S$,Z 

This program READS string and numeric data from the 
DATA statement in line 30. 

134 



DATE$ Statement 

variable = DATE$ 
DATE$ = string 

Sets or retrieves the current date. 

variable is a variable in your BASIC program that receives 
the current date. 

string is a literal, enclosed in quotes, that sets the current 
date by assigning a value to DATE$. 

Setting the Date 
This system supports dates between January 1, 1980 and 
December 31, 2099. You may use either a slash or a 
hyphen to separate the month, day, and year. You may use 
any of the following forms to set the current date: 

mm/dcVyy 
mm dd-yy 

mm/dcVyyyy 
mm-dd-yyyy 

mm is the month and may be any number 01 12. 
dd is the day and may be any number 01-31. 
yy or yyyy is the year and may be 01~99 or 1980 2099. 

You may omit leading zeroes for the month and day. If you 
only supply two digits for the year, BASIC precedes these 
digits with 19. 

Retrieving the Date 
Regardless of the form you use to set the date, BASIC does 
the following when retrieving it: 

• Separates month, day, and year with hyphens. 

• Displays month and day as two digits, inserting leading 
zeroes as necessary. 

• Displays year in four digits. 

135 



Examples 
DATE$ = "9/6/83" 

sets the current date as 09-06-1983. 

DATE$ = "10/22/83" 

sets the date as 10-22-1983. 

DATE$ "6/6/86" 

sets the date as 06-06-1986. 

CURDATE$ DATE$ 

assigns the value of the current date to the variable CUR­
DAlE. 

136 



DEFDBL/INT/SNG/STR Statement 

DEFDBL letter, .. . 
DEFINT letter, .. . 
DEFSNG letter, .. . 
DEFSTR letter, .. . 

Examples 

Defines any variables beginning with letter(s) as: (DBL) 
double precision, (INT) integer, (SNG) single precision, 
or (STR) string. 

Note: A type declaration tag always takes precedence 
over a DEF statement. 

10 DEFDBL L-P 

classifies all variables beginning with the letters L through 
P as double-precision variables. Their values are stored 
with 17 digits of precision, though only 16 are printed. 

10 DEFSTR A 

classifies all variables beginning with the letter A as string 
variables. 

10 DEFINT 1-N, W,Z 

classifies all variables beginning with the letters I through 
N, W and Z as integer variables. Their values are in the 
range - 32768 to 32767. 

10 DEFSNG I, Q-T 

classifies all variables beginning with the letters I or Q 
through T as single-precision variables. Their values in­
clude seven digits of precision, though only six are printed 
out. 

137 



DEFFN Statement 

DEF FN function name 
[ (argument, . .. ) ] = 
function detJ.nition 

Examples 

Defines function name according to your function 
definition. 

Function name must be a valid variable name. This name, 
preceded by FN, is the name of the function when you call 
it. The type of variable used determines the type of value 
the function will return. For example, if you use a single­
precision variable, the function will always return single­
precision values. 

Argument represents those variables in function defini­
tion that are to be replaced when the function is called. If 
you enter several variables, separate them by commas. 

Function definition is an expression that performs the 
operation of the function. A variable used in a function 
definition may or may not appear in argument. If it does, 
BASIC uses its value to perform the function. Otherwise, it 
uses the current value of the variable. 

Once you define and name a function (by using this 
statement), you can use it as you would any BASIC 
function. 

DEF FNR = RND(90) + 9 

defines a function FNR to return a random value between 
10 and 99. Notice that the function can be defined with no 
arguments. 

210 DEF FNW# (A#,B#)=(A# B#)*(A#-8#) 
280 T FNW#(l#,J#) 

defines function FNW# in line 210. Line 280 calls that 
function and replaces parameters A# and B# with pa­
rameters I# and J#. (We assume that I# and J# were 
assigned values elsewhere in the program). 

138 



7 I Staternents and Functions 

Note: Using a variable as a parameter in a DEF FN state­
ment has no effect on the value of that variable. You may 
use that variable in another part of the program without 
interference from DEF FN. 

139 



DEF SEG Statement 

DEF SEG [ = address J 

Example 

Assigns the current segment address. 

address is an integer in the range 0 to 65535. A value 
outside this range causes an "Illegal Function Call" error, 
and BASIC retains the previous value. 

If you do not specify address, the default value is BASIC's 
data segment (DS). 

If you specify address, do so on a 16-byte boundary. BASIC 
shifts the value left 4 bits and adds the offset specified in 
the instruction to the value to form the code segment 
address for the instruction. See the section "Interfacing 
Assembly Language Subroutines" in Appendix E for more 
information. 

Note: BASIC does not check the validity of the resultant 
segment + offset address. 

When you load BASIC, the DS (data segment) register is 
set to the address ofBASIC's workspace. This is the default 
value of the DS register. You must, therefore, execute a 
DEF SEG statement before executing BLOAD, BSAVE, 
PEEK, POKE, USR, or CALL, unless you used the /M: switch 
when you loaded BASIC. Without the DEF SEG statement 
or the /M: switch, these statements and functions could 
destroy BASIC's workspace. If you execute a DEF SEG to 
change the DS register to a different segment, you must 
execute another DEF SEG to restore the DS register to its 
default value. 

Separate DEF and SEG with a space. Otherwise, BASIC 
interprets the statement 

DEFSEG=100 

to mean "assign the value 100 to the variable DEFSEG." 

10 DEF SEG = &HB800 
20 DEF SEG 

140 

'Set segment to 800 Hex 
'Restore to BASIC data 
segment 



DEF USR Statement 

DEF USR[ digit] = offset 

Examples 

Defines the segment offset and user number of a sub­
routine to be called by the USR function. 

digit may be an integer in the range 0 to 9. 

offset is an integer in the range of 0 to 65535. It specifies 
the location into a segment where the subroutine begins 
in memory. 

When a USR function is executed, BASIC transfers control 
to the subroutine through the address given in the last 
DEF SEG statement and the segment offset specified in the 
DEF USR statement. If the subroutine is not in BAS I C's data 
segment, a DEF SEG statement must be executed before 
the USR function. See the section "Interfacing Assembly 
Language Subroutines" in Appendix E and USR in this 
chapter for more details. 

A program may contain any number of DEF USR state­
ments, allowing access to as many subroutines as neces­
sary. However, only 10 definitions may be in effect at one 
time. 

If you omit digit, BASIC assumes USRO. 

DEF USR3 = &H0020 
DEF SEG = &H1700 

USR3 begins at offset hexadecimal 20 in the segment 
beginning at hexadecimal address 1700. When your pro­
gram calls USR3, control branches to your subroutine 
beginning at absolute hexadecimal address 17020. 

141 



DELETE Statement 

DELETE Hnel - line2 

Examples 

Deletes from linel through line2 of a program in 
memory. 

A period (" .") can be substituted for either line 1 or line2 
to indicate the current line number. 

DELETE 70 

deletes line 70 from memory. If there is no line 70, an 
error will occur. 

DELETE 50-110 

deletes lines 50 through 110 inclusive. 

DELETE -40 

deletes all program lines up to and including line 40. 

DELETE-. 

deletes all program lines up to and including the line that 
has just been entered or edited. 

DELETE. 

deletes the program line that has just been entered or 
edited. 

142 



DIM Statement 

DIM array (dhnension(s)), array 
(dimension(s)), . .. 

Examples 

Sets aside storage for arrays with the dimensions you 
specify. 

Arrays may be of any type: string, integer, single precision 
or double precision, depending on the type of variable 
used to name the array. 1f no type is specified, the array is 
classified as single precision. 

When you create the array, BASIC reserves space in mem­
ory for each element of the array. All elements in a newly­
created array are set to zero (numeric arrays) or the null 
string (string arrays). 

Note: The lowest element in a dimension is always zero, 
unless an OPTION BASE 1 statement is executed. 

Arrays can be created implicitly, without explicit DIM 
statements. Simply refer to the desired array in a BASIC 
statement. For example, 

A(5} = 300 

creates array A and assigns element A(S) the value of 300. 
Each dimension of an implicitly-defined array contains 11 
elements, subscripts 0-10. 

DIM AR(100} 

sets up a one-dimensional array AR( ), containing 101 
elements: AR(O), AR(l), AR(2), ... , AR(98), AR(99), and 
AR(IOO). 

Note: The array AR( ) is completely independent of the 
variables AR. 

DIM L 1 %(8,25} 

sets up a two-dimensional array L1 %(,),containing 9 x 26 
integer elements, Ll %(0,0), L1 %(1,0), L1 %(2,0), ... , 
L1%(8,0), L1%(0,1), L1%(1,1), ... , L1%(8,l), 
L1%(0,25), L1%(1,25), ... 'L1%(8,25). 

143 



Section II I The BASIC 

Two-dimensional arrays like AR(.) can be thought of as a 
table in which the first subscript specifies a row position, 
and the second subscript specifies a column position: 

0,0 
1,0 

7,0 
8,0 

0,1 
1,1 

7,1 
8,1 

0,2 
1,2 

7,2 
8,2 

DIM 81 (2,5,8), 

0,3 
1,3 

7,3 
8,3 

CR(2,5,8), 

sets up three arrays: 

0,23 0,24 0,25 
1,23 1,24 1,25 

7,23 7,24 
8,23 8,24 

LY$(50,2) 

7,25 
8,25 

Bl(,,) and CR(,,) are three-dimensional, each containing 
3*6*9 elements. 
LY(,) is two-dimensional, containing 51*3 string elements. 



DRAW Statement 

DRAW direction [number] 

Draws an object on the video display. 

direction specifies one or more of the movement com­
mands listed below. 

number specifies the number ORA W uses with scale factor 
to determine the actual distance to move. If you omit 
number, DRAW assumes one. DRAW moves scale factor• 
number points. 

Movement Commands 
Each of the following movement commands begin move­
ment from the "current graphics position," which is the 
coordinate of the last graphics point plotted with another 
graphics command, such as LINE or PSET. The current 
position defaults to the center of the screen if no previous 
graphics command is executed. 

u [number] Move up 
D [number] Move down 
L [number] Move left 
R [number] Move right 
E [number] Move diagonally up and right 
F [number] Move diagonally up and left 
G [number] Move diagonally down and left 
H [number] Move diagonally down and right 

M x-coordinate, y-coordinate 

If you precede the coordinates with a plus ( + ) or 
minus ( ) sign, DRAW assumes it is a relative posi­
tion. Otherwise, it is an absolute position. 

145 



Section II I The BASIC 

Preiix Commands 
These prefix commands can precede the movement com­
mands. 

B 

N 

Aangle 

Ceo/or 

Sinteger 

Move but don't plot any points. 

Move but return to original position when 
done. 

Set an angle. angle may be in the range of 0 to 
3. 0 is 0 degrees, 1 is 90 degrees, 2 is 180 

and 3 is 270 degrees. 

Set color number as described in COLOH/ 
Graphics. color may be in the range 0 to 3 in 
Screen Mode 1, 0 to 7 in Screen Mode 3, and 0 
to 1 in Screen Modes 2 and 4. 

Set scale factor. integer may he in the range 1 
to 255. The scale factor is integer divided by 
4. For example, if integer is 2, the scale factor 
is 214. To determine the actual travel dis­
tance, multiply the scale factor by the num­
ber in the movement commands. 

Xvariable; Executes a substring. The X command allows 
you to execute a second substring from a 
string, much like GOSUB. You can have one 
string execute another, which executes a 
third, and so on. t•ariable is a string variable 
in your program that contains the substring 
you want to execute. uariable may contain an 
X command to execute another substring. 
The semicolon after string is required. 

In the prefix commands, the numeric arguments can he 
consrams or variables. If you use a variable name as a 
numeric argument, you must follow it with a semicolon. 

146 



Chapter 7 I Statements and Functions 

Sample Programs 
10 U$ = "U30;": 0$= "030;": L$ = "L40;": R$ = 

"R40;" 
20 BOX$ = U$ + R$ + 0$ + L$ 
30 DRAW "XBOX$" 

draws a rectangle on the screen. 

10 U$ = "U30;": 0$ = "030;": L$ = "L40;": R$ 
"R40;" 

20 DRAW "XU$; XR$; XO$; XL$;" 

draws the same rectangle as the previous example. 

10 SCREEN 1 
20 DRAW "L40 E20 F20" 

draws a triangle on the screen. 

147 



EDIT 
EDIT line 

Examples 

Statement 

Enters the edit mode so that you can edit line. 

See the chapter on the "Edit Mode" for more information. 

EDIT 100 

enters edit mode at line 100. 

EDIT. 

enters edit mode at current line. 

148 



END 
END 

Statement 

Ends program execution and closes all files. 

This statement may be placed anywhere in the program. It 
forces execution to end at some point other than the last 
sequential line. 

An END statement at the end of a program is optional. 

Sample Program 
40 INPUT $1, S2 
50 GOSUB 100 
55 PRINT H 
60 END 
100 H=SOR(S1*S1 + S2*S2) 
110 RETURN 

line 60 prevents program control from "crashing" into the 
subroutine. Line 100 may only be accessed by a branching 
statement, such as GOSUB in line 50. 

149 



EOF 
EOF(buffer) 

Function 

Detects the end of a file. 

This function checks to see whether all characters up to 
the end-of-file marker have been accessed, .so you can 
avoid "Input past end" errors during sequential input. 

EOF does not accurately detect the end-of-file marker for 
random files that contain less than 128 bytes. We recom­
mend that you use the LOF function with random access 
tlles. 

EOF( buff er) returns 0 (false) when the EOF record ha.s not 
been read yet, and - 1 (true) when it has been read. The 
buffer number must access an open file. 

Sainple Progratn 
The following .sequence of lines reads numeric data from 
DATA.1XT into the array A(). When the Ia.st data character 
in the file is read, the EOF test in line 30 "passes", so the 
program branches out of the disk access loop. 

1470 DIM A(100) 'ASSUMING THIS IS A SAFE 
VALUE 

1480 OPEN "I", 1, "DATA.TXT'' 
1490 1°/o = 0 
1500 IF EOF(1) THEN GOTO 1540 
1510 lNPUT#1, A(I%) 
1520 1% = 1% + 1 
1530 GOTO 1500 
1540 REM PROG. CONT. HERE AFTER DISK 

INPUT 

150 



EOF Communication Function 

EOF(variable) 

Detects an empty input queue for communications files. 

variable is a variable in your BASIC program to receive the 
value 0 (false) if there are characters in the input queue 
waiting to be read and 1 (true) if the input queue is 
empty. 

Sample Program 
These lines would be useful in a program when you want 
to run the program while waiting for communication 
activity. Line 10 opens a file and allocates Buffer 1 for 
communication. Line 20 causes BASIC to check for activity 
on the communications channel after executing every 
statement. Line 30 instructs BASIC to perform the sub­
routine beginning at Line 1000 as soon as there is activity 
on the communication channel. When all of the com­
munication data has been processed, Line 1050 returns to 
the main program. 

10 OPEN "COM1 :300, N, 8, 1, ASC" AS 1 
20 COM(1) ON 
30 ON COM(1) GOSUB 100© 

1000 'Communication Subroutine Begins Here 

1050 IF EOF(3) THEN RETURN 

151 



ERASE Statement 

ERASE array, ... 

Example 

Erases one or more arrays from a program. 

This lets you either redimension arrays or use their pre· 
viously allocated space in memory for other purposes. 

If one of the parameters of ERASE is a variable name which 
is not used in the program, an "Illegal Function Call" 
occurs. 

450 ERASE C,F 
460 DIM F{99) 

line 450 erases arrays C and F. Line 460 redimensions array 
F. 

152 



ERL 
ERL 

Examples 

Statement 

Returns the line number in which an error occurred. 

This function is primarily used inside an error-handling 
routine. If no error has occurred when ERL is called, line 
number 0 is returned. Otherwise, ERL returns the line 
number in which the error occurred. If the error occurred 
in the command mode, BASIC returns the largest possible 
line number, 65535. 

PRINT ERL 

prints the line number of the error. 

E =ERL 

stores the error's line number in the variable E. 

For an example of how to use ERL in a program, see 
ERROR. 

153 



ERR 
ERR 

Example 

Statement 

Returns the error code. 

ERR is only meaningful inside an error-handling routine 
accessed by ON ERROR GOTO. See Appendix A for a list of 
Error Codes. 

IF ERR = 7 THEN 1000 ELSE 2000 

branches the program to line 1000 if the error is an "Out of 
Memory" error (code 7); if it is any other error, control 
goes instead to line 2000. 

For an example of how to use ERR in a program, see 
ERROR. 

154 



ERROR 
ERROR code 

Example 

Statement 

Simulates a specified error during program execution. 

Code is an integer expression in the range 0 to 255 specify­
ing one of BASIC's error codes. 

This statement is mainly used for testing an ON ERROR 
GOTO routine. When the computer encounters an ERROR 
statement, it proceeds as if the error corresponding to that 
code had occurred. (Refer to Appendix A for a listing of 
Error Codes and their meanings). 

ERROR 1 

a "Next Without For" error (code 1) "occurs" when BASIC 
reaches this line. 

Sample Program 
110 ON ERROR GOTO 400 
120 INPUT "WHAT IS YOUR BET"; B 
130 IF 8>5000 THEN ERROR 21 ELSE GOTO 420 
400 IF ERR = 21 THEN PRINT "HOUSE LIMIT IS 

$5000" 
410 IF ERL = 130 THEN RESUME 500 
420 S = S+B 
430 GOTO 120 
500 PRINT "THE TOTAL AMOUNT OF YOUR BET 

IS";S 
510 END 

This program receives and totals bets until one of them 
exceeds the house limit. 

155 



EXP Function 

EXP( number) 

Example 

Calculates the natural exponent of number. 

Returns e (base of natural logarithms) to rhe power of 
number. This is the inverse of the LOG function; therefore, 
number= EXP(LOG(number)). The number you supply 
must be less than or equal to 88.0296. 

The result is always single precision. 

PRINT EXP( 2) 

prints the exponential value .13"i:\:3"i3 

Sample Program 
310 INPUT "NUMBER"; N 
320 PRINT "E RAISED TO THEN POWER !S" EXP(N) 

1'i6 



FIELD Statement 

FIELD buffer, length AS fleld name, ... 

Example 

Divides a direct-access buffer into one or more fields. Each 
field is identified by field name and is the length you 
specify. 

Field name must be a string variable. 

This divides a direct file buffer so that you can send data 
from memory to disk and disk to memory. FIELD must be 
run prior to GET or PUT 

Before "fielding" a buffer, use an OPEN statement to 
assign that buffer to a particular disk file. You must use the 
direct access mode, i.e., OPEN "R", .... The sum of all field 
lengths should equal the record length assigned when the 
file was OPENed. 

You may use the FIELD statement any number of times to 
"re-field" a file buffer. "Fielding" a buffer does not dear 
the buffers contents; only the means of accessing it. Also, 
two or more field names can reference the same area of 
the buffer. 

See also the chapter on "Disk Files", OPEN, CLOSE, PUT, 
GET, LSET, and RSET. 

FIELD 3, 50 AS A$, 50 AS 8$ 

tells BASIC to assign two 50-byte fields to the variables A$ 
and B$. If you now print A$ orR$, you will see the contents 
of the field. Of course, this value would be meaningless 
unless you have previously used GET to read a 100-byte 
record from disk. 
Note: All data both strings and numbers must be 
placed into the buffer in string form. There are three pairs 
of functions (MKI$/CV1, MKS$/CVS, and MKD$/CYD) for 
converting numbers to strings and strings to numbers. 

FIELD 3, 16 AS NM$, 25 AS AD$, 10 AS CY$, 2 AS 
ST$, 7 AS ZP$ 

assigns the first 16 bytes of buffer 3 to field NM$; the next 
25 bytes to AD$; the next 10 to CY$; the next 2 to ST$; and 
the next 7 to ZP$. 

157 



FILES Statement 

FILES [filespec] 

Examples 

Displays the names of the files on a diskette. 

If you specify filespec, BASIC lists all files that match that 
file specification. If you specify a drive as part of the 
ji'lespec, then BASIC lists all files that match the specified 
filename on that drive. If you omitfilespec, FILES lists all 
files on the current drive. 

FILES is similar to the MS-DOS DIR command, except that 
you can specify which files on which drive you want to list. 
Filespec may contain question marks and asterisks as wild 
cards. A question mark matches any character in a file­
name. For example, 

FILES "PAY???" 

lists all filenames that begin with the letters PAY followed 
by any other three or fewer characters. 

An asterisk is a short form of several question marks. It 
matches any characters beginning at that position. For 
example, 

FILES "PAY*" 

lists all files that have PAY as their first three letters. 

FILES 

lists all files on the current drive 

FILES "*.BAS" 

lists all files on the current drive with the extension .BAS 

FILES "PAY?????.BAS" 

lists all files beginning with PAY followed by any other five 
or fewer characters, on the current drive, with the exten­
sion .BAS 

158 



FIX Function 

FIX( number) 

Examples 

Returns the truncated integer of number. 

All digits to the right of the decimal point are simply 
chopped off, so the resultant value is a whole number. For 
a negative, non-whole number X, FIX(X) = INT(X) + 1. 
For all others, FIX(X) = INT(X). 

The result is the same precision as the argument (except 
for the fractional portion). 

PRINT FIX (2.6) 

prints 2. 

PRINT FIX( - 2.6) 

prints 

159 



FOR/NEXT Statement 

FOR variable initial value TO flnal value 
[STEP increment] 

NEXT [variable J 

Example 

Establishes a program loop. 
va1-iable must be an integer or single precision numeric 
constant. 

If you omit increment, BASIC assumes the value one. 

Each FOR/NEXT loop must have a unique variable. 

A loop allows for a series of program statements to be 
executed over and over a specified number of times. 

BASIC executes the program lines following the FOR state­
ment until it encounters a NEXT. At this point, it increases 
variable by STEP increment. If the value of variable is less 
than or equal to final value, BASIC branches back to the 
line after FOR, and repeats the process. If variable is 
greater thanfinal value, it completes the loop and con­
tinues with the statement after NEXT. 

If increment is a negative value, BASIC decreases the 
variable each time through the loop and the final value is 
lower than the initial value. 

BASIC always sets the final value for the loop variable 
before setting the initial value. 

Note: BASIC skips the body of the loop if initial value 
times the sign of STEP increment exceeds final zialue 
times the sign of STEP increment. 

20 FOR H = 1 TO 2 STEP 2 
30 PRINT H 
40 NEXT H 

the initial value of H times the sign of STEP increment is 
greater than the final value of H times the sign of STEP 
increment, therefore BASIC skips the body of the loop. 
(The sign of STEP increment is negative in this case.) 

160 



Sample Program 
820 I 5 

7 I Statements and Functions 

830 FOR I = 1 TO I + 5 
840 PRINT I; 
850 NEXT 
RUN 

this loop is executed ten times. It produces the following 
output: 

2 3 4 5 6 7 8 9 10 

Nested Loops 
FOR/NEXT loops may be "nested". That is, a FOR ... NEXT 
loop may be placed within the context of another FOR ... 
NEXT loop. 

The NEXT statement for the inside loop must appear 
before the NEXT for the outside loop. If nested loops have 
the same end point, a single NEXT statement may be used 
for all of them. 

Sample Program 
880 FOR I = 1 TO 3 
890 PRINT "OUTER LOOP" 
900 FOR J = 1 TO 2 
910 PRINT TA8(5) "INNER LOOP" 
920 NEXT J 
930 NEXT I 

This program performs three "outer loops·· and within 
each, two "inner loops··. It produce.'> the following output: 

OUTER LOOP 
INNER LOOP 
INNER LOOP 

OUTER LOOP 
INNER LOOP 
INNER LOOP 

OUTER LOOP 
INNER LOOP 
INNER LOOP 

161 



Section II I The BASIC LanRUaRe 

The NEXT statement can be used to close nested loops by 
listing the counter variables (but make sure not to type the 
variables out of order). For example, delete line 920 and 
change 930 to: 

NEXT J, I 

Note: In nested loops, if you omit the variable(s) in the 
NEXT statement, the NEXT statement matches the most 
recent FOR statement. 

162 



FRE Function 

FRE(dummy number) or 
(dummy string) 

Examples 

Returns the number of bytes in memory not being used by 
BASIC. 

PRINT FRE("44") 

prints the amount of memory left. 

PRINT FRE(44) 

prints the amount of memory left. 

163 



GET Statement 

GET buffer [,record] 

Examples 

Reads a record from a direct-access disk file and places it 
in a buffer. 

record is an integer in the range 0 to 32767 that specifies 
which record number you want to access. If you omit 
record, BASIC reads the next sequential record (after the 
last GET) 

Before using GET, you must OPEN the file and assign it a 
buffer. 

When BASIC encounters GET, it reads the record number 
from the file and places it into the buffer. The actual 
number of bytes read equals the record length set when 
the file is OPENed. 

GET 1 

reads the next record into buffer 1. 

GET 1, 25 

reads record 25 into buffer 1. 

164 



GET Communication Statement 

GET buffer, integer 

Transfers data from the communications buffer to the file 
buffer. 

buffer must be the same bi~ffer assigned to the file in the 
OPEN statement. 

integer is the number of bytes to transfer from the com­
munic1tions buffer into the file buffer. integer cannot 
exceed the value used in the LEN option of the OPEN COM 
statement. 

Note: Because of the low performance associated with 
telephone line communication, we recommend that you 
not use GET and PUT statements in such applications. 
Instead, use the other disk I/O statements. 

165 



GET Graphics Statement 

GET [STEP] (x-coordinate1, y-coordinate1) 
(x-coordlnate2, y-coordinate2), array 

Transfers points from an area on the display to an array. 

If you specify the STEP option, the numbers you specify as 
coordinates are offsets from the most recent graphics 
point referenced. x-coordinate is the number of points in 
the horizontal direction, and y-coordinate is the number 
of points in the vertical direction. Precede the numbers 
with a plus ( +) or minus ( ) sign to indicate the direc­
tion (up, down, left, or right) from the most recent point 
referenced. The plus sign indicates to add the number 
(right or up) to the most recent coordinate, and the minus 
indicates to subtract the number (left or down) from the 
most recent coordinate. 

x-coordinate 1 indicates the x coordinate where the image 
begins. In Screen Mode 1, x-coordinate may be in the 
range 0 to 320. In Screen Modes 2, 3, and 4, x-coordinate 
may be in the range 0 to 640. 

y-coordinate 1 indicates the y coordinate where the image 
begins. In Screen Modes 1and2,y-coordinate may be in 
the range 0 to 200. In Screen Modes 3 and 4,y-coordinate 
may be in the range 0 to 400. If you omit x-coordinate 1 
and y-coordinatel, BASIC begins the image at the last 
point referenced on the screen. 

x-coordinate2 indicates the x coordinate where the image 
ends at and may be in the same range as x-coorclinate2. 

y-coordinate2 indicates the y coordinate where the image 
ends at and may be in the same range as y-coordinate. 

166 



Chapter 7 I Statements and Functions 

array is an array variable name to hold the image. You may 
not define the array as a string array, and it must be 
dimensioned large enough to hold the entire image. 

You use the GET/Graphics and PUT/Graphics statements 
together for animation and high-speed object motion in 
Screen Modes 1, 2, 3, and 4. The GET/Graphics statement 
transfers the screen image described by specified points 
of the rectangle into the array. The PUT/Graphics state­
ment transfers the image from the array to the display. 

The coordinates that you specify are opposite corners of 
the image to store in the array. The array is used as a place 
to hold the image. It may be any numeric precision. To 
ensure that array is large enough to hold the image use the 
following formula: 

4 + (INT((h * bits per point + 7)/8) * u) 

bits per point is 2 in Screen Mode 1, 1 in Screen Modes 2 
and 4, and 3 in Screen Mode 3. h is the length of the 
horizontal side of the image, and t' is the length of the 
vertical side of the image. The dimensions of the image are 
in points. 

If you want to use the GET/Graphics statement to store an 
image that is 10 by 12 in Screen Mode 1, your array has to 
be 40 bytes. Determine this by substituting values in the 
formula as follows: 

4 + (INT((IO * 2 + 7)/8) * 12) 40 

The array must store 40 bytes. The number of bytes per 
element of an array are: 

2 for integer 
4 for single precision 
6 for double precision 

167 



Section II I 11Je BA\JC 

For this example, vou need an integer array with 20 ele­
ments, or a single-precision array with 10 elements, or a 
double-precision array with 7 elements. 

If you use an integer array, you can examine the array. 
Remember, the GET/Graphics statement stores the data in 
bits. The information from the display is stored in the array 
as: 

Element 0 
Element 1 

the x dimension of the image 
the y dimension of the image 

The remaining elements of the arrav store the data bits of 
the image. Numeric data is stored low bvte first and then 
high byte, but the data is transferred high byte first and 
then low byte. 

For more information on using the GET/Graphics and 
PUT/Graphics statements for high speed animation, see 
the PUT/Graphics statement. 



GO SUB 
GOSUB line 

Example 

Statement 

Branches to a subroutine, beginning at line. 

You can call subroutine as many times as you want. When 
the computer encounters RETUfu\I in the subroutine, it 
returns control to the statement which follows GOSUB. 

GOSUB is similar to GOTO in that it may be preceded by a 
test statement. Every subroutine must end with a RETURN. 

GOSUB 1000 

branches control to the subroutine beginning at line 1000. 

Sample Program 
260 GOSUB 280 
270 PRINT "BACK FROM SUBROUTINE": END 
280 PRINT "EXECUTING THE SUBROUTINE" 
290 RETURN 

transfers control from line 260 to the subroutine begin· 
ning at line 280. Line 290 instructs the computer to return 
to the statement immediately following GOSUB. 

169 



GOTO 
GOTO line 

Example 

Statement 

Branches to the specified line. 

When used alone, GOTO line results in an unconditional 
(automatic) branch. However, test statements may pre­
cede the GOTO to effect a conditional branch. 

You can use GOTO in the command mode as an alterna­
tive to RUN. This lets you pass values assigned in the 
command mode ro variables in the execute mode. 

GOTO 100 

automatically transfers control to line 100. 

Sample Program 
10 READ R 
20 IF R 13 THEN GOTO 80 
30 PRINT "R ";R 
40A 3.14•R"2 
50 PRINT "AREA =";A 
60 GOTO 10 
70 DATA 5,7,12, 13 
80 END 
RUN 

line 10 reads each of the data items in line 70; line 60 
returns program control to line 10. This enables BASIC to 
calculate the area for each of the data items, until it reaches 
item 13. 

170 



HEX$ Function 

HEX$(number) 

Examples 

Calculates the hexadecimal value of number. 

HEX$ returns a string representing the hexadecimal value 
of the argument The value returned is like any other 
string: it cannot be used in a numeric expression.That is, 
you cannot add hex strings. You can concatenate them, 
though. 

PRINT HEX$(30), HEX$(50), HEX$(90) 

prints the following strings: 

1E 32 5A 

Y$ = HEX$(X/16) 

Y$ is the hexadecimal string representing the integer 
quotient X/16. 

171 



IF ... THEN . .. ELSE Statement 

IF expression THEN statement(s) or line 
[ELSE statement(s) or line] 

Examples 

Tests a conditional expression and makes a decision re­
garding program flow. 

If expression is true, control proceeds to the THEN state­
ment or line. If not, control jumps to the matching ELSE 
statement, line, or to the next program line. 

IF X > 127 THEN PRINT "OUT OF RANGE" : END 

passes control to PRINT, then to END if X is greater than 
127. IfX is not greater than 127, control jumps down to the 
next line in the program, skipping the PRINT and END 
statements. 

If A < B THEN PRINT "A < B" ELSE PRINT "B < A" 

tests the first expression, if true, prims A< H . Otherwise, 
the program jumps to the ELSE statement and prints 
H A 

IF X > 0 AND Y <> 0 THEN Y = X + 180 

assigns the value X + 180 to Y if both expressions are true. 
Otherwise, control passes directly to the next program 
line, skipping the THEN clause. 

IF A$ "YES" THEN 210 ELSE IF A$= "NO" THEN 
400 ELSE 370 

branches to line 210 if A$ is YES. If not, the program skips 
over to the first which introduces a new test. If A$ is 
NO, then the program branches to line 400. If A$ is any 
value besides NO or YES, the program branches to 
line 370. 

172 



Chapter 7 I Statenwnts and Functions 

Saniple Prograni 
IF!rHEN/ELSE statements may be nested. However, you 
must take care to match up the IFs and ELSEs. (IF the 
statement does not contain the same number of ELSE's 
and !F's, each ELSE is matched with the closest unmatched 
IF.) 

1040 INPUT "ENTER TWO NUMBERS"; A, B 
1050 IF A<= B THEN IF A< B THEN PRINT A; ELSE 

PRINT "NEITHER"; ELSE PRINT B; 
1060 PRINT "IS SMALLER THAN THE OTHER" 

This program prints the relationship between the two 
numbers entered. 

173 



INKEY$ 
INKEY$ 

Example 

Function 

Returns a keyboard character. 

Returns a one-character string from the keyboard without 
having to press (ENTER). If no key is pressed, a null string 
(length zero) is returned. Characters typed to INKEY$ are 
not echoed to the display. 

INKEY$ is invariably put inside some sort of loop. Other­
wise a program execution would pass through the line 
containing INKEY$ before a key could be pressed. 

10 A$ = INKEY$ 
20 IF A$ = ""THEN 10 

This causes the program to wait for a key to be pressed. 

174 



INP 
INP(port) 

Example 

Function 

Returns the byte read from a port. 

INP is the complementary function of the OUT statement. 

Port may be any integer from 0 to 65535. 

100 A INP(255) 

175 



INPUT Statement 

INPUT[;] ['°prompt string";] variablel, 
variable2, ... 

Examples 

Inputs data from the keyboard into one or more l'ariables. 

When BASIC encounters this stacement, ic stops execution 
and displays a question mark This means that the program 
is waiting for you to type data. 

INPUT may specify a list of string or numeric variables, 
indicating string or numeric data items to be input. For 
instance, INPUT X$, Xl, Z$, Zl calls for you to input a 
string literal, a number, another string literal, and another 
number, in that order. 

The number of data items you supply must be the same as 
the number of variables specified. You must separate data 
items by commas. 

Responding to INPUT with too many items, or with the 
wrong type of value (including numeric type), causes 
BASIC to print the message "!Redo from start". No values 
are assigned until you provide an acceptable response. 

If a prompt string is included, BASIC prints it, followed by a 
question mark This helps che person inputting the data to 
enter it correctly. If instead of a semicolon, vou type a 
comma after prompt string, BASIC suppresses the ques· 
tion mark when printing the prompt. Prompt string must 
be enclosed in quoces. It must be typed immediately after 
INPUT. 

If INPUT is immediately followed by a semicolon, any 
carriage returns pressed as part of the response are not 
echoed. 

INPUT Y% 

when BASIC reaches this line, you must type anv number 
and press (ENTEID before the program will continue. 

l 7() 



7 I Statenzents and Functions 

INPUT SENTENCE$ 

when BASIC reaches this line, you must type in a string. 
The string wouldn't have to be enclosed in quotation 
marks unless it contained a comma, a colon, or a leading 
blank. 

INPUT "ENTER YOUR NAME AND AGE (NAME, 
AGE)"; N$, A 

prints a message on the screen to help the person at the 
keyboard enter the right kind of data. 

Sample Program 
50 INPUT "HOW MUCH DO YOU WEIGH"; X 
60 PRINT "ON MARS YOU WOULD WEIGH ABOUT" 

CINT(X • .38) "POUNDS." 

177 



INPUT# Statement 

INPUT# buffer, variable, 

Inputs data from a sequential disk file and stores it in a 
program variable. 

Buffer is the number used when the file was OPENed for 
input. 

Variable contains the variable name(s) that will be 
assigned to the item(s) in the file. 

With INPUTlf, data is ir1put sequentially. That is, when the 
file is OPENed, a pointer is set to the beginning of the file. 
The pointer advances each time data is input. To start 
reading from the beginning of the file again, you must 
close the file buffer and re-OPEN it. 

INPUT# doesn't care how the data was placed on the disk 
- whether a single PRINT# statement put it there, or 
whether it required ten different PRINT# statements. 
What matters to INPUT# is the position of the terminating 
characters and the EOF marker. 

When inputting data into a variable, BASIC ignores leading 
blanks. When the first non-blank character is encountered, 
BASIC assumes it has encountered the beginning of the 
data item. 

The data item ends when a terminating character is en­
countered or when a terminating condition occurs. The 
terminating characters vary, depending on whether BASIC 
is inputting to a numeric or string variable. 

Numeric values: BASIC begins input at the first character 
which is neither a space or a carriage return. It ends input 
when it encounters a space, carriage return, or a comma. 

String values: BASIC begins input with the first character 
which is neither a space nor carriage return. It ends input 
when it encounters a carriage return or comma. One 
exception to this rule: If the first character is a quotation 
mark ("), the string will consist of all characters between 
the first quotation mark and the second. Thus, a quoted 
string may not contain a quotation mark as a character. 

178 



Examples 

Chapter 7 I Statements and Functions 

If the end-of-file is reached when a numeric or string item 
is being INPUT, the item is terminated. 

!NPUT#1, A,B 

sequentially inputs two numeric data items from disk and 
places them in A and B. Buffer #1 is used. 

INPUT#4, A$, 8$, C$ 

sequentially inputs three string data items from disk and 
places them in A$, B$, and C$. Buffer #4 is used. 

179 



INPUT$ Statement 

INPVT$(number1 [,number2]) 

Examples 

Inputs a string of characters from either the keyboard or a 
sequential disk file. 

Number I is the number of characters to be input. It must 
be a value in the range 1to255.Number2 is a buffer which 
accesses a sequential input file. 

INPUT$(numberl) inputs a string of characters from the 
keyboard. When the program reaches this line, it stops 
until you (or any operator) type number! characters. (You 
don't need to press CEHIEB) to signify end-of-line.) The 
character( s) you type are not displayed on the screen. Any 
character, except R!IO, is accepted for input. 

lNPUTi(numberl, number2) inputs a string from a se­
quential disk file. Number 2 is the buffer associated with 
that disk file. 

A$ = INPUT$(5) 

assigns a string of five keyboard characters to A$. Program 
execution is halted until the operator types five characters. 

A$ = INPUT$(11 ,3) 

assigns a string of 11 characters to A$. The characters are 
read from the disk file associated with buffer 3. 

SatnplePrograms 
This program shows how you could use INPUT$ to have an 
operator input a password for accessing a protected file. 
By using INPUTS, the operator can type in the password 
without anyone seeing it on the video display. (To see the 
full file specification, run the program, then type PRlNT 
F$). 

110 LINE INPUT "TYPE IN THE FILESPEC.EXT"; F$ 
120 PRINT "TYPE IN THE PASSWORD - MUST 

TYPE 8 CHARACTERS: "; 
130 P$ = INPUT$(8) 
140 F$ = F$ + "." + P$ 

180 



7 I Statements and Functions 

In the program below, line 100 OPENs a sequential input 
file (which we assume has been previously created). Line 
200 retrieves a string of 70 characters from the file and 
stores them in T$. Line 300 CLOSEs the file. 

100 OPEN "I", 2, "TEST.DAT" 
200 T$ = INPUT$(70,2) 
300 CLOSE 

181 



INSTR Function 

lNSTR([integer,] string1, string2) 

Examples 

Searches for the first occurrence of string2 in string 1, and 
returns the position at which the match is found. 

Integer specifies a position in stringl to begin searching 
for string2. integer must be a value in the range 1 to 255. If 
you omit integer, INSTR starts searching at the first charac­
ter in stringl. 

This function lets you search through a string to see if it 
contains another string. If it does, INSTR returns the start­
ing position of the substring in the target string; otherwise, 
it returns zero. Note that the entire substring must be 
contained in the search string, or zero is returned. 

Optional integer sets the position for starting the search. If 
omitted, INSTR starts searching at the first character in 
stringl. 

In these examples, A$ 

INSTR(A$, "INC") 

returns a value of 2. 

INSTR(A$, "12") 

returns a zero. 

"LINCOLN": 

INSTR(A$, "LINCOLNABRAHAM") 

returns a zero. For a slightly different use ofINSTR, look at 

INSTR (3, "1232123", "12") 

which returns 5. 

Sample Program 
The program below uses INSTR to search through the 
addresses contained in the program's DATA lines. It 
counts the number of addresses with a specified county 
zip code (761-) and returns that number. The zip code is 

182 



Chapter 7 I Statements and Functions 
~~~~~~~~~~--"-~-

preceded by an asterisk to distinguish it from the other
numeric data found in the address.

360 RESTORE
370 COUNTER = 0
390 READ ADDRESS$
395 IF ADDRESS$ = "$END" THEN 410
400 IF INSTR(ADDRESS$, "*761 ") <> 0 THEN

COUNTER = COUNTER + 1 ELSE 390
405 GOTO 390
410 PRINT "NUMBER OF TARRANT COUNTY, TX

ADDRESSES IS' COUNTER: END
420 DATA "5950 GORHAM DRIVE, BURLESON,

TX *76148"
430 DATA "71 FIRSTFIELD ROAD,

GAITHERSBURG, MD •20760"
440 DATA "1000 TWO TANDY CENTER, FORT

WORTH, TX *76102"
450 DATA "16633 SOUTH CENTRAL

EXPRESSWAY, RICHARDSON, TX *75080"
460 DAT A "$END"

183

INT Function
------···---·--·--·----------------

INT(number)

Examples

Converts number to integer value.

This function returns the largest integer which is not
greater than the number.

The result has the same precision as the argument except
for the fractional portion. Number is not limited to the
range - 32768 to 32767.

PRINT INT(79.89)

prints ..,9.

PRINT INT (- 12.11)

prints - 1.1.

184

KEY/Set/Display Statement

KEY integer, string
KEYON
KEY OFF
KEY LIST

KEY integer, string

KEYON

Assigns or displays function key values.

integer is a number 1 through 12 that indicates the func­
tion key being defined.

string is the string expression assigned to the key and may
contain up to 15 characters.

A soft key is a function key that is "programmed" to
generate a specific string of characters. When you press
the key, BASIC displays the string on the screen just as if
you had typed every character. Initially, the function keys
have these soft key values:

Fl LIST
F2 RUNCEHIEID
F3 LOAD"
F4 SAVE"
FS CONTCEJmB)
F6 ,"LPTl:"CEHIEID

F7 TRONCEJIIEID
F8 TROFFCEJIIEID
F9 KEY
F10 SCREEN 0,0,0CEJIIEID
Fll (none)
F12 (none)

Functions Keys 11 and 12 do not have initial values. You
can use the KEY statement to define these keys. You can
also use the KEY statement to redefine the other function
keys so that BASIC displays the strings you use most often.

Assigning a string length of zero ("") to a function key
disables it as a soft key. For example,

KEY 1, ""

removes the present capability of the Fl key.

KEY ON displays the function key assignment values on
Line 25 of the screen. If the screen width is 40. the screen
shows 5 qf the soft key assignments. If the width is 80, the

185

Section II I The BAS! C Language

KEY OFF

KEY LIST

screen shows 10 of the key assignments. In both cases the
screen shows only the first 6 characters of the string
assignment. When you load BASIC, KEY ON is the initial
default value.

(CTRU CT) has the same effect as a KEY ON statement. If the
screen width is 40, KEY ON displays 5 of the soft key
assignments. If you press (C]]]J CT), the next five key
assignments are displayed. Pressing (CTRL) CT) a second
time displays the assignments for Function Keys 11 and 12.
This is also true for width 80. KEY ON displays the Key
assignments for Function Keys 1 through 10. Pressing
(C]]]J CT) displays the assignments for Function Keys 11
and 12.

KEY OFF erases the soft key assignments from line 25. The
assignment~ are still active, but the screen does not display
them.

BASIC reserves line 25 for soft key display. Even if the soft
key display is turned off, BASIC does not display program
lines on line 25.

KEY LIST displays all 15 characters of all 12 soft key assign­
ments on the screen.

REMARKS
If a function key has been pressed, an INKEY$ statement in
a BASIC progtam returns one character of a soft key
assignment each time it is executed. For example, if this
statement is executed

A$= INKEY$

and you press Fl, the first time the statement is executed,
A.$ equals L, the second time A$ equals I, and so on. Keep
this in mind when writing a BASIC routine to trap for a
certain key. Your routine may not perform as expected if a
function key is accidentally pressed.

186

KEY/Trap Statement

KEY (number) action

Turns on, turns off, or temporarily halts key trapping for a
specified function key or cursor direction key.

action may be any of the following:

ON
OFF
STOP

enables key trapping
disables key trapping
temporarily suspends key trapping

number may be a number in the range 1to16, indicating
the number of the key to trap. Function keys use their
corresponding functior1 key number. The cursor direction
key trap numbers are

m 13
8 14
8 15
m 16

Note: Do not confuse the KEY/Trap statement with the
KEY/Display/Set statement. These are two separate
statements that perform two distinct functions in
BASIC.

187

Section II I The BASIC Language

The KEY/trap statement is used in a key trapping routine
with the ON KEY() GOSUB statement to detect when a
specific function or cursor direction key is pressed. After
executing a KEY() ON statement, BASIC checks after each
program statement to see if the specified key has been
pressed. If so, BASIC transfers program control to the line
number specified in the ON KEY() GOSUB statement. For
example, the statements

KEY(3) ON
ON K!=Y(3) GOSUB 1000

turn on a trap for Function Key 3. BASIC continues to
execute the other program statements, checking after
each statement to see if Function Key 3 has been pressed.
When Function Key 3 is pressed, program control
branches to the subroutine beginning at Line 1000.

The statement

KEY()STOP

temporarily halts trapping for the specified key. If the key
is pressed, BASIC does not transfer program control to the
subroutine until key trapping is turned on again with a
KEY() ON statement. BASIC remembers that the key was
pressed and transfers program control to the subroutine
immediately after key trapping is turned on again.

The statement

KEY()OFF

turns off key trapping and does not remember that the key
was pressed when key trapping is turned on again.

Key trapping only occurs when BASIC is in execution
mode. The function kevs retain their soft key values during
command mode.

See ON KEY() GOSUB for more information on ke\'
trapping.

188

Example

Chapter 7 I Statements and Functions

10 KEY(1) ON
20 KEY(3) ON
30 KEY(3) STOP
40 KEY(2) OFF
50 ON KEY(1) GOSUB 1000
60 ON KEY(3) GOSUB 2000

1000 SUBROUTINE

1100 KEY(3) ON
1110 RETURN

Lines 10 and 20 turn on key trapping for Function Keys 1
and 3. Line 30 temporarilv suspends kev trapping for
Function Key 3, and Line 40 turns ke,· trapping off for
Function Ke~· 2. This is useful if you want to trap for certain
keys to he pressed in a specific sequence. In this example,
if Function Key 3 is pressed before Function Key L the
subroutine for Function Key 3 is not executed until the
end of Function Key 1 subroutine, Line 1100. When BASIC
executes Line 1110, if Function Ke\· 3 has been pressed,
the subroutine beginning at Line 2000 is executed.

189

KILL Statement

KILL filespec

Example

"Kills" (deletes) filespec from disk.

You may KIIL any type of disk file. However, if the file is
currently OPEN, a "File already open" error occurs. You
must CLOSE the file before deleting it.

KILL "FILE.BAS"

deletes this file from the first drive which contains it.

KILL. "A:DAT A"

deletes this file from Drive A: only.

190

LEFT$ Function

LEFT$(strlng,lnteger)

Examples:

Returns the leftmost integer characters of stn·ng.

integer must be in the range of 1 to 255.

If integer is equal to or greater than LEN (string), the entire
string is returned.

PRINT LEFT$("8ATTLESHIPS", 6)

prints BATTI.E

PRINT LEFT$("81G FIERCE DOG", 20)

since HlG FIERCE DOG is less than 20 characters long, the
whole phrase is printed.

Sample Program
740 A$ = "TIMOTHY"
750 8$ LEFT$(A$, 3)
760 PRINT 8$; "--THAT'S SHORT FOR "; A$

When this is run, BASIC prints:

TIM--THAT'S SHORT FOR TIMOTHY

Line 750 gets the three leftmost characters of A$ and stores
them in B$. Line 760 prints these three characters, a string,
and the original contents of A$.

LEN
LEN(string)

Examples

Function

Returns the number of characters in string. Blanks are
counted.

X = LEN(SENTENCE$)

gets the length of SENTENCE$ and stores it in X.

PRINT LEN("CAMBRIDGE") + LEN("BERKELEY")

prints 17,

PRINT LEN("WAUKEGAN, ILLINOIS")

prints 18

192

LET Statement

[LET] variable = expression

Examples

Assigns the value of expression to variable.

BASIC doesn't require assignment statements to begin
with LET, but you might want to use LET to be compatible
with versions of BASIC that do require it.

LET A$
LET 61
LET X

"A ROSE IS A ROSE"
1.23

X Z1

In each case, the variable on the left side of the equal sign
is assigned the value of the constant or expression on the
right side.

Sample Program
550 P 1001: PRINT "P =" P
560 LET P 2001: PRINT "NOW P "P

193

LINE Graphics Statement

LINE [STEP] [(x-coordinate1, y-coordinate1)]
- (x-coordinate2, y-coordinate2) [,color] [,B[F]]

Draws a line or a box on the video display.

x-coordinate 1 indicates the x coordinate at which to begin
the line. In Screen Mode 1, x-coordinate may be in the
range 0 to 320. In Screen Modes 2, 3, and 4, x-coordinate
may be in the range 0 to 640.

y-coordinate 1 indicates they coordinate at which ro begin
the line. In Screen Modes 1 and 2,y-coordinate may be in
the range 0 to 200. In Screen Modes 3 and 4,y-coordinate
may be in the range 0 to 400. If you omit x-coordinate 1
andy-coordinatel, BASIC begins the line at the la5t point
referenced on the screen.

x-coordinate2 indicates the x coordinate at which to end
the line at and may be in the same range a.'ix-coordinatel.

y-coorctinate2 indicates the y coordinate at which to end
the line at and may be in the same range asy-coordinatel.

lfy<Du include the STEP option, the numbers you specifv as
coordinates are offsets from the most recent graphics
point referenced. x-coordinate is the number of points in
the horizontal direction and y-coordinate is the number
of points in the vertical direction. Precede the numbers
with a plus (+) or minus () sign to indicate the direc­
tion (up, down, left, or right) from the most recent point
referenced. The plus sign indicates to add the number to

the most recent coordinate (right or up) and the minus
indicates to subtract the number (left or down) from the
most recent coordinate.

194

Examples

7 I Statements and Functions

color indicates the color of the line and must be a color
number in the current palette. In Screen Mode 1, color
may be in the range 0 to 3. In Screen Mode 3, color may be
in the range 0 to 7. In Screen Modes 2 and 4, color may be
either 0 or 1. If you omit color in Screen Modes 1 or 3,
BASIC assumes color 3. If you omit color in Screen Modes
2 or 4, BASIC assumes white.

With the B option, BASIC draws a box. The points that you
specify are opposite corners.

If you specify both the Band F options, BASIC draws a box
and fills the box in with color.

If you specify coordinates that are not within the range for
the selected screen mode, BASIC assumes the closest legal
value. In other words, negative values become zero. In
Screen Modes 1 and 2, y values greater than 199 become
199. In Screen Mode 1, x values greater than 319 become
319. In Screen Modes 2, 3, and 4, x values greater than 639
become 639.

You can try these examples in Screen Modes 1, 2, 3, or 4.
The color, size, and position of the image on the display
varies, depending on the current screen mode.

LINE -(319, 199)

draws a line from the last point referenced to point
319, 199 in the default color. This is the simplest form of
the LINE statement. Note that when you omit the begin­
ning points you must still include the hyphen.

LINE (0,0)-(319, 199)

draws a diagonal line on the display in the default color.

LINE (0,100)-(319,100),1

draws a vertical line across the display in Color 1.

195

Section II I The BASIC Lanf!.uaf!.e
·~~~~~~~~~~~~~~

LINE (0,0)-(320, 100),.B

draws a box in the upper left corner of the display.

LINE (0,0)-(200,200), 1 ,bf

draws a box on the display and fills it in with Color 1.

SatnpleProgratns
10 CLS
20 LINE -(rnd•319,rnd*199),rnd•4
30 GO TO 20

In Screen Modes 1, 2, 3, or 4, Lines 10-30 create a loop that
draws random lines on the video display.

40 FOR x=0 TO 319
50 LINE (x,0)-(x, 199),x AND 1
60 NEXT

In Screen Modes 1, 2, 3, or 4, Lines 40-60 draw an alternat­
ing pattern, turning the line on and off.

10 CLS
20 LINE -(rnd•639,rnd*199),rnd•2,bf
30 GO TO 20

This program draws a random filled box in Screen Modes
2, 3, or 4.

196

LINE INPUT Statement

LINE INPUT[;]["promptmessage";] string variable

Examples:

Inputs an entire line (up to 254 characters) from the
keyboard.

LINE INPUT is a convenient way to input string data with­
out having to worry about accidental entry of delimiters
(commas, quotation marks, etc.).

LINE INPUT (the space is nut optional) is similar to INPUT,
except:

• The computer does not display a question mark when
waiting for input.

• Each LINE 1NPUT statement can assign a value to only
one variable.

• Commas and quotes can be used as part of the string
input.

• Leading blanks are not ignored they become part of
variable.

The only way to terminate the string input is to press
(ENTER). However, if LINE INPUT is immediately followed
by a semicolon, pressing (ENTER) does not echo a carriage
return to the display.

Some situations require that you input commas, quotes,
and leading blanks as part of the data. LINE INPUT serves
well in such cases.

LINE INPUT A$

inputs A$ without displaying any prompt.

LINE INPUT "LAST NAME, FIRST NAME? "; N$

displays a prompt message and inputs data. Commas do
not terminate the input string, as they do in an INPUT
statement.

You may abort a LINE INPUT statement by pressing
(BREAK). BASIC returns to command level and displays Ok.
Typing CONT resumes execution at LINE INPUT.

197

LINE INPUT# Statement

LINE INPUT# buffer, varlable

Example

Inputs an entire line of data from a sequential disk file to a
string variable.

Buff er is the number under which the file was OPENed.

This statement is useful when you want to read an ASCII­
format BASIC program file as data, or when you want to
read in data without following the usual restrictions re­
garding leading characters and terminators.

LINE INPUT# reads everything from the first character up
to:
• the end-of-file
• the 255th data character
• a carriage return

Other characters encountered quotes, commas, lead-
ing blanks are included in the string.

If the data on disk looks like this:

10 CLEAR 500
20 OPEN "I", 1, "PROG"

then the statement

LINE INPUT#1, A$

could be used repetitively to read each program line, one
at a time.

198

LIST Statement

LIST [startline]-[endline] [,device]

Examples

Lists a program in memory to the displav.

Startline specifies the first line to be listed. If you omit
startline, BASIC starts with the first line in vour program.

Endline specifies the last line to be listed. If you omit
endline, BASIC ends with the last line in your program. If
you omit startline anJ endline, BASIC lists the entire
program.

Device may be either "SCRN:" (screen) or "LPTl:" (line
printer 1). If you omit device, the lines are listed to the
screen.

You can substitute period (.)for either startline or endline
to signify current line number.

LIST

displays the entire program. If you omit device, you can
stop the automatic scrolling by pressing (BREAK). This
freezes the display. Press any key to continue the listing.
Listings directed to a device may not be interrupted.

LIST 50

displays line 50 on the screen.

LIST 50-85, "SCAN:"

displays lines in the range 50-85 on the screen.

LIST.-

displays the program line that has just been entered or
edited, and all higher-numbered lines on the screen.

LIST -227

displays all lines up to and including 227 on the screen.

LIST 227 , "LPT1 :"

lists line 227 and all higher numbered lines to the printer.

199

LLIST Statement

LLIST [startline]-[endline]

Examples

Lists program lines in memory to the printer.

Startline specifies the first line to be listed. If you omit
startline, BASIC starts with the first line in your program.

Endline specifies the last line to be listed. If you omit
endline, BASIC ends with the last line in your program. If
you omit startline and endline, BASIC lists the entire
program.

LLIST assumes a 132-character-wide printer. You may
change this by using the WIDTH statement.

LUST

lists the entire program to the printer. To stop this process,
press CHQLID. This causes a temporary halt in the com­
puter's output to the printer. Press any key to continue
printing.

LUST 68-90

prints lines in the range 68-90.

200

LOAD Statement

LOAD filespec [,R]

Example

Loads a BASIC program into memory.

filespec is a string expression containing the drive identi­
fier and filename. The filename is required. If you omit the
drive identifier, BASIC assumes the current drive.

If the filename is 8 characters or fewer and you do not
specify an extension, BASIC appends the extension .BAS.

Note: You can press ~ at any time during LOAD,
between files, or after a time-out period. BASIC exits the
search and returns to direct mode. Previous memory con­
tents remain unchanged.

The R option tells BASIC to run the program. (LOAD with
the R option is equivalent to the command RUN filespec).

LOAD without the R option wipes out any resident BASIC
program, clears all variables, and CLOSES all OPEN files.
LOAD with the R option leaves all OPEN files open and
runs the program automatically.

You can use either of these commands inside programs to
allow program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a "Direct state­
ment in file" error occurs.

LOAD "A:PROG1 .BAS"

loads PROG 1.BAS from Drive A. BASIC then returns to the
command mode.

LOAD "PROG1 .BAS"

loads PROGl.BAS since no drive is specified, BASIC be­
gins searching for it in the MS-DOS default drive.

201

LOC
LOC(buffer)

Example

Function

Returns the current record number.

Buff er is the buffer under which the file was OPENed.

You use LOC to determine the current record number,
that is, the number of the last record processed since the
file was OPENed. It returns the record number accessed
by the last GET or PUT statement.

IF LOC(1)>55 THEN END

if the current record number is greater than 55, ends
program execution.

SainplePrograin
1310 A$ "WILLIAM WILSON"
1320 GET 1
1330 IF N$ = A$ THEN PRINT "FOUND IN RECORD"

LOC(1): CLOSE: END
1340 GOTO 1320

This is a portion of a program. Elsewhere the file has
been OPENed and FIELDed. N$ is a field variable. If N$
matches A$, the record number in which it was found is
printed.

202

LOC Communication Function

LOC(variable)

Example

Returns the number of characters in the input queue.

variable is a variable in your BASIC program to receive the
number of characters in the input queue waiting to be
read.

The input queue can hold more than 255 characters. You
determine the number of characters to be stored in the·
input queue by the value of the /C: switch when BASIC is
loaded. Since a string is limited to 255 characters, this
eliminates the need for testing string size before reading
data into the input queue.

If more than 255 characters are in the input queue, LOC
always returns 255. If there are less, LOC returns the actual
number of characters waiting to be read.

10 LOC(X)
20 If X>0 THEN 1000

Line 10 checks to see if there are any characters in the
inpuc queue and stores the number of characters in the
variable X. Line 20 tests the value ofX. IfX is greater than 0,
there are characters in the input queue and line 20 trans­
fers program control to line 1000 to process the data.

203

LOCATE Statement

LOCATE [row] [,column] [,cursor] [,start] [,stop]

Examples

Positions the cursor on the screen.

row is a numeric expression in the range 1 to 24 that
indicates the screen row on which you want to position
the cursor. Note that line 25 is reserved for function key
values only. You may not use LOC.ATE to position the
cursor on the 25th line.

column is a numeric expression that indicates the screen
column on which you want to position the cursor. It may
be in the range 1 to 40 or 1 to 80, depending on the current
screen width.

cursor indicates whether the cursor is visible or invisible.
Set cursor to 1 for a visible cursor and to 0 for an invisible
cursor.

start is a numeric expression in the range 0 to 7 that
specifies the size of the cursor. Values 0, I, 2, and 3 indicate
a full cursor. Values 4, 5, 6, and 7 indicate a half cursor.

The stop parameter has no effect in this implementation of
BASIC. However, values supplied for stop are accepted
and ignored co provide compatibility with other imple·
mentations of BASIC that use stop.

LOCATE 10,20,1,4

positions a half visible cursor on row 10 in column 20.

LOCATE 24,1,1,3

positions a full cursor in the first position of the last line.

204

LOF
LOF(bu.tfer)

Example

Function

Returns the length of the file in bytes.

buffer is an integer in the range 1to15. It is the VO buffer
you used to OPEN the file.

If BASIC creates the file, LOF always returns the number of
bytes in the file as a multiple of 128. For example, if the file
actually contains 300 bytes, LOF returns 384. If you create
the file with EDLIN, LOF returns the actual number of
bytes used.

Y = LOF(5)

assigns the length of the file in bytes to variable Y.

Sample Programs
During direct access to a pre-existing file, you often need a
way t0 know when you've read the last valid record. LOF
provides a way.

1540 OPEN "R", 1, "UNKNOWN.TXT', 128
1550 FIELD 1, 255 AS A$
1560 RECNUM% = 1 'START AT BEGINNING

OF FILE
1570 RECSIZE% = 128 'SET RECORD SIZE
1580 IF RECNUM% .. AECSIZE% > LOF(1) GOTO

1640
1590

1600 GET 1, AECNUM%

1610 PAINT A$

'CHECK FOR END OF
FILE
'RECORD NUM. TO BE
ACCESSED

1620 AECNUM% = AECNUM% + 1
'INCREMENT RECORD
NUM

1630 GOTO 1580
1640 CLOSE

205

Section II I The BA5/C Language

If you attempt to GET record numbers beyond the end-of­
file, BASIC gives you an error.

When you want to add to the end of a file, LOF tells you
where to start adding:

1700 RECNUM% (LOF(1) I RECSIZE%) + 1
1710 'HIGHEST EXISTING RE­

CORD
1610 PUT 1, RECNUM% 'ADD NEXT RECORD

206

LOF Communication Function

LOF(variable)

Returns the amount of free space in the input queue.

variable is a variable in your BASIC program that receives
the amount of free space in the input queue.

You can use LOF to determine when an input queue is
getting full so that transmission is stopped.

207

LOG Function

LOG(number)

Examples

Computes the natural logarithm of number.

Number must be greater than zero. This is the inverse of
the EXP function. The result is always in single precision.

PRINT LOG(3.14159)

prints the value 1

Z = 10 * LOG(Ps/P1)

performs the indicated calculation and assigns the value to
z.

Sample Progratn
This program demonstrates the use of LOG. It utilizes a
formula taken from space communications research.

540 INPUT "DISTANCE SIGNAL MUST TRAVEL
(MILES)"; D

550 INPUT "SIGNAL FREQUENCY (GIGAHERTZ)"; F
560 ~ = 96.58 + (20 • LOG(F)) + (20 * LOG(D))
570 PRINT "SIGNAL STRENGTH LOSS IN FREE

SPACE IS" L "DECIBELS."

208

LPOS Function

LPOS(number)

Examples

Returns the logical position of the print head within the
line printer's buffer.

Number indicates which printer and may be any of the
following:

0 or 1
2

indicates LPTl:
indicates LPT2:

LPOS is only useful to check the position of the print head
after printing an LPRINT statement that is terminated by a
semicolon to suppress the automatic carriage return. The
statement cohtaining LPOS is not executed until the
LPRINT statement is finished printing.

LPRINT A; B; C;

You may want to use LPOS to determine if there is enough
room to continue printing more variables on the same
line.

100 IF LPOS(X)>60 THEN LPRINT

If the printer has printed more than 60 characters, a car­
riage return is sent so that the printer skips to the next line.

LPOS does not necessarily give the physical position of the
print head if the printed string contains the ASCII code for
a carriage return. For example, if you are printing a string
of 20 characters and the 10th character is the ASCII code
for a carriage return, after printing the ninth character, the
printer advances to the next line and prints the remaining
10 characters. If the string is terminated by a semicolon to
suppress the automatic line feed, the physical location of
the print head is at position 10, but LPOS returns a value of
21 because that is the logical location of the print head.

209

LPRINT, LPRINT USING Statement

LPRINT data, ...
LPRINT USING format; data, ...

Examples

Prints data on the printer.

LPRINT and LPRINT USING assume a 132-character-wide­
printer. You may change the width with the WIDTH
statement.

See PRINT and PRINT USING for more information.

LPRINT (A * 2)/3

prints the value of expression (A * 2)/3 on the printer.

LPRINT TAB(50) "TABBED 50"

moves the line printer carriage to TAB position 50 and
prints "TABBED 50". (Refer to the TAB function).

LPRINT USING"#####.#"; 2.17

sends the formatted value bbbb2.2 to the line printer.

210

LSET Statement

LSET fleld name = data

Example

Sets data in a direct-access bufferji"eld name in prepara­
tion for a PUT statement.

You must have used FIELD to set up buffer fields before
using LSET.

You must convert numeric values to string values before
they are LSET. See MKI$, MKD$, MKS$.

You use LSET to left-justify the variable in the field. If the
field is larger than the variable it is receiving, the field is
filled with blanks on the right If the variable is larger than
the field, characters are truncated on the right. The com­
plement command to LSET is RSET.

See also the chapter on "Disk Files", OPEN, CLOSE, FIELD,
GET, PUT, and RSET.

Suppose NM$ and AD$ have been defined as field names
for a direct access file buffer. NM$ has a length of 18
characters; AD$ has a length of 25 characters. The
statements

LSET NM$ = "JIM CRICKET, JR."
LSET AD$= "2000 EAST PECAN ST."

set the data in the buffer as follows:

JIMbCRICKET ,JR bbb 2000bEASTbPECANbST. bbbbbb

Notice that filler blanks are placed to the right of the data
strings in both cases. If we use RSET statements instead of
LSET, the filler spaces are placed to the left. This is the only
difference between LSET and RSET.

211

MERGE Statement

MERGE li.lespec

Example

Loads a BASIC program and merges it with the program
currently in memory.

Filespec is a string expression, enclosed in quotes, that
may contain the drive identifier, filename and extension.
The filename is required. If you omit the drive identifier,
BASIC assumes the current drive. If the filename is eight
characters or fewer and you omit the extension, BASIC
appends the extension .BAS.

The file must be in ASCII format, that is, it must have been
SA VEd with the A option.

Program lines in the disk program are inserted into the
resident program in sequential order. For example, sup­
pose that three of the lines from the disk program are
numbered 75, 85 and 90, and three of the lines from the
current program are numbered 70, 80, and 90. When
MERGE is used on the two programs, this portion of the
new program is numbered 70, 75, 80, 85, 90.

If line numbers on the disk program coincide with line
numbers in the resident program, the disk program's lines
replace the resident program's lines.

MERGE closes all files and clears all variables. Upon com­
pletion, BASIC returns to the command mode.

Suppose you have a BASIC program on disk, PROG2.TXT
(saved in ASCII), which you want to merge with the pro­
gram you've been working on in memory. Then we use:

MERGE "PROG2.TXT"

merges the two programs.

Sample Programs
MERGE provides a convenient means of putting program
modules together. For example, an often-used set of
BASIC subroutines can be tacked onto a variety of pro­
grams with this command.

212

7 I Statenients and Functions

Suppose the following program is in memory:

80 REM MAIN PROGRAM
90 REM LINE NUMBER RESERVED FOR

SUBROUTINE HOOK
100 REM
110 REM
120 REM
130 END

PROGRAM LINE
PROGRAM LINE
PROGRAM LINE

And suppose the following subroutine, SUB.TXT, is stored
on disk in ASCH format:

90 GOSUB 1000 SUBROUTINE HOOK
1000 REM BEGINNING OF

1010 REM
1020 REM
1030 REM
1040 RETURN

SUBROUTINE
SUBROUTINE LINE
SUBROUTINE LINE
SUBROUTINE LINE

You can MERGE the subroutine with the main program
with:

MERGE "SUB.TXT"

and the new program in memory is:

80 REM MAIN PROGRAM
90 GOSUB 1000 SUBROUTINE HOOK
100 REM PROGRAM LINE
110 REM PROGRAM LINE
120 REM PROGRAM LINE
130 END
1000 REM

1010 REM
1020 REM
1030 REM
1040 RETURN

213

BEGINNING OF
SUBROUTINE
SUBROUTINE LINE
SUBROUTINE LINE
SUBROUTINE LINE

MID$ Statement

MID$(oldstring, position [,length]) -
replacement string

Examples:

Replaces a portion of an oldstring with replacement string.

Oldstring is the variable name of the string you want to
change.

Position is a number specifying the position of the first
character to be changed.

Length is a number specifying the number of characters to
be replaced.

Replacement string is the string to replace a portion of
oldstring.

The length of the resultant string is always the same as the
original string. If replacement string is shorter than length,
the entire replacement string is used.

A$ = "LINCOLN"

MID$ (A$, 3, 4) = "12345": PAINT A$

returns Lll234N.

MID$ (A$, 5) = "01 ": PRINT A$

returns LINC01N.

MID$ (A$, 1, 3) "***":PAINT A$

returns ***COLN.

214

MID$ Function

MID$(string, integer [,number])

Examples

Returns a substring of a string.

Number is the number of characters in the substring. It
must be in the range 1 to 255.

Integer specifies the position in the string to begin return­
ing characters from.

If you omit number or there are fewer than number
characters to right of integer position, BASIC returns all
right most characters, beginning with the character at
position integer.

If integer is greater than the number of characters in
string, MID$ returns a null string.

If A$ "WEATHERFORD" then

PRINT MID$(A$, 3, 2)

prints AT.

F$ = MID$(A$, 3)

puts ATHERFORD into F$.

Sample Program
200 INPUT "AREA CODE AND NUMBER

(NNN-NNN-NNNN)"; PH$
210 EX$ = MID$(PH$, 5, 3)
220 PRINT "NUMBER IS IN THE " EX$

" EXCHANGE."

The first three digits of a local phone number are some­
times called the exchange of the number. This program
looks at a complete phone number (area code, exchange,
last four digits) and picks out the exchange of that number.

215

MKD$, MKI$, MKS$ Function
~~~~~~~~~~~~~-

M KI$ (integer expression) 
MKS$(single-precision expression) 
MKD$(double-precision expression) 

Example 

Convert numeric values to string values. 

Any numeric value placed in a direct file buffer with an 
LSET or RSET statement must be converted to a string. 

These three functions are the inverse of CVD, CVI, and 
CVS. The byte values which make up the number are not 
changed; only one byte, the internal data-type specifier, is 
changed, so that numeric data can be placed in a string 
variable. 

MKD$ returns an eight-byte string; MKU returns a two­
byte string; and MKS$ returns a four-byte string. 

LSET AVG$ = MKS$(0.123) 

Sample Program 
1350 OPEN "R", 1, 'TEST.DAT", 14 
1360 FIELD 1, 2 AS 11$, 4 AS 12$, 8 AS 13$ 
1370 LSET 11$ = MKl$(3000) 
1380 LSET 12$ MKS$(3000.1) 
1390 LSET 13$ MKD$(3000.00001) 
1400 PUT 1, 1 
1410 CLOSE 1 

For a program that retrieves the data from TEST. DAT, see · 
CVD/CVI/CVS. 

216 



NAME Statement 

NAME old tilespec AS new tilespec 

Example 

Renames old filespec as new filespec. 

With this statement, the data in the file is left unchanged. 
The new filespec may not contain a password or drive 
specification. 

NAME "FILE.BAS" AS "FILE.OLD" 

renames FILE.BAS as FILE.OLD. 

217 



NEW 
NEW 

Example 

Statement 

Deletes the program currently in memory and dears all 
variables. 

NEW returns you to the command mode. 

NEW 

218 



OCT$ Function 

OCT$(number) 

Examples 

Computes the octal value of number. 

OCT$ returns a string which represents the octal value of 
number. The value returned is like any other string - it 
cannot be used in a numeric expression. 

PRINT OCT$(30), OCT$(50), OCT$(90) 

prints the following strings: 

36 62 132 

Y$ = OCT$(X/84) 

Y$ is a string representation of the integer quotient X/84 to 
base 8. 

219 



ON COM(l) Communication Statement 

ON COM(l) GOSUB line number 

Transfers program control to a subroutine beginning at 
line number when activity occurs on the communication 
channel. 

line number is the first line of the subroutine to be ex­
ecuted when activity occurs on the communication chan­
nel. If you specify line number 0, you turn communication 
trapping off. It is the same as executing a COM(l) OFF 
statement. 

The ON COM(l) statement is only executed if a COM( 1) 
ON statement has been executed to enable communica­
tion trapping. If a COM(l) STOP statement has been ex­
ecuted to temporarily halt communication trapping, the 
subroutine is executed immediately after the next 
COM( 1) ON statement is executed. 

When the ON COM(l) statement is executed, BASIC im­
mediately issues a COM( 1) STOP statement to prevent 
recursive traps. When BASIC executes the RETIJR...l\J from 
the subroutine, it automatically executes another COM( 1) 
ON statement to enable communication trapping again, 
unless the subroutine executes a COM(l) OFF statement. 

220 



Example 

CIJaDter 7 I Statements and Functions 

10 COM(1) ON 

200 ON COM(1) GOSUB 1000 

Line 10 turns on communication trapping. After each 
program statement is executed, BASIC checks to see if the 
communication buffer contains characters. If it does, 
BASIC immediately executes the subroutine beginning at 
Line 1000. 

If you execute a simple RETURN statement at the end of 
the subroutine, BASIC returns to the next statement after 
the statement that activated the trap. For example, if activ­
ity occurs while BASIC is executing Line 100, the RETURN 
returns to execute Line 110. 

You may also use the RETURN line number option form of 
the RETURN statement. However, do so with care because 
any GOSUB, FOR, or WHILE statement remains active 
during trapping. 

221 



Section II I The BASIC Language 
·~~~~~~~~~~~~~~~ 

Example 
10 COM(1) ON 
20 ON COM(1) GOSUB 1000 
30 FOR I 1 TO 10 
40 PRINT I 
50 NEXT I 

1000 ' SUBROUTINE CODE 

1050 RETURN 200 

If activity occurs on the communication channel while the 
FOR/NEXT loop is executing, BASIC immediately executes 
the subroutine beginning at Line 1000. But the subroutine 
returns to Line 200 instead of completing the FOR/NEXT 
loop. This results in a "For without next" error because 
any GOSUB, FOR, or WHILE statement remains active 
during key trapping. 

If the RETURN statement does not include a line number, 
program control returns to complete the FOR/NEXT loop, 
and no error occurs. 

222 



ON ERROR GOTO Statement 

ON ERROR GOTO line 

Example 

Transfers control to line if an error occurs. 

This lets your program "recover" from an error and con­
tinue execution. (Normally, you have a particular type 
of error in mind when you use the ON ERROR GOTO 
statement). 

ON ERROR GOTO has no effect unless it is executed 
before the error occurs. To disable it, execute an ON 
ERROR GOTO 0. If you use ON ERROR GOTO 0 inside an 
error-trapping routine, BASIC stops execution and prints 
an error message. If you have no recovery procedure for 
an error, ON ERROR GOTO 0 stops execution and prints 
an error message for the error that caused the trap. 

Note: If an error occurs during execution of an error 
handling routine, that error message is printed and execu­
tion terminates. Error trapping does not occur within the 
error handling routine. 

The error-handling routine must be terminated by a RE­
SUME statement. See RESUME. 

10 ON ERROR GOTO 1500 

branches program control to line 1500 if an error occurs 
·anywhere after line 10. 

For the use of ON ERROR GOTO ih a program, see the 
sample program for ERROR 

223 



ON ... GOSUB Statement 

ON number GOSUB linel, line2, ... 

Example 

Branches to a subroutine at the line specified by the value 
of number. 

Number must be between 0 and 255, inclusive. For exam­
ple, if number's value is three, the third line number in the 
list is the destination of the branch. 

If number's value is zero or greater than the number of 
items in the list (but less than or equal to 255), BASIC 
contlnues with the next executable statement. If number is 
negative or greater than 255, an "Illegal function call" 
error occurs. 

ON Y GOSUB 1000, 2000, 3000 

ifY = 1, the subroutine beginning at 1000 is called. IfY = 

2, the subroutine at 2000 is called. IfY = 3, the subroutine 
at 3000 is called. 

Sample Program 
430 INPUT "CHOOSE 1, 2, OR 3" ; I 
440 ON I GOSUB 500, 600, 700 
450 END 
500 PRINT "SUBROUTINE #1": RETURN 
600 PRINT "SUBROUTINE #2": RETURN 
700 PRINT "SUBROUTINE #3": RETURN 

224 



ON ... GOTO Statement 

ON number GOTO linel, line2, 

Example 

Goes to the line specified by the value of number. 

Number is a numeric expression between 0 and 255. 

This statement is very similar to ON ... GOSUB. However, 
instead of branching to a subroutine, it branches control 
to another program line. 

The value of number determines to which line the pro­
gram will branch. For example, if the value is four, the 
fourth line number in the list is the destination of the 
branch. If there is no fourth line number, control passes to 
the next statement in the program. 

If the value of expression is negative or greater than 255, 
an "Illegal function call" error occurs. Any amount of line 
numbers may be included after GOTO. 

ON Ml GOTO 150, 160, 170, 150, 180 

tells BASIC to "Evaluate MI," 
if the value of MI equals one then go to line 150; 
if it equals two, then go to 160; 
if it equals three, then go to 170; 
if it equals four, then go to 150; 
if it equals five, then go to 180; 

if the value of MI doesn't equal any of the numbers 
one through five, advance to the next statement in the 
program". 

225 



ONKEYGOSUB Statement 

ON KEY(number) GOSUB line number 
Transfers program control to a subroutine when you press 
a function key or a cursor direction kev. 

line number is the first line number in the subroutine to 

execute when the specific key is pressed. If you specify a 
line number 0, you tum key trapping off for that key. It is 
the same as executing a KEY( ) OFF statement. 

number may be a number in the range I to 16, indicating 
the number of the key to trap. Function keys use their 
corresponding function key number. The cursor direction 
keys are numbered: 

m 
El 
E) 

m 

13 
14 
15 
16 

The ON KEY( ) GOSUB statement is only executed if a 
KEY( ) ON statement has been executed to enable key 
trapping for that key. If a KEY( ) STOP statement has been 
executed to temporarily halt key trapping for that key, the 
subroutine is executed immediately after the next KEY( ) 
ON statement for that key is executed. 

When the ON KEY() statement is executed, BASIC im­
mediately issues a KEY( ) STOP statement for that key to 
prevent recursive traps. When BASIC executes the RE­
TURN from the subroutine, it automatically executes 
another KEY( ) ON statement for that key to enable key 
trapping again, unless the subroutine executes a KEY( ) 
OFF statement for that key. 

226 



Chapter 7 I Statements and Functions 
~~~~~~~~~~~~~~~~~-

Example

If you execute a simple RETURN statement at the end of
the subroutine, BASIC returns to the next statement after
the statement that activated the trap. For example, if you
press the specific key while BASIC is executing Line 100,
the RETURN returns to execute Line 110.

You may also use the RETURN line number option form of
the RETURi~ statement. Do so with care, however, because
any GOSUB, FOR, or WHILE statement remains active
during key trapping.

10 KEY(1) ON
20 ON KEY(1) GOSUB 1000
30 FOR I 1 TO 10
40 PRINT I
50 NEXT I

1000 ' SUBROUTINE CODE

1050 RETURN 200

If you press Function Key 1 while the FORINSTI loop is
executing, BASIC immediately executes the subroutine
beginning at Line 1000. But the subroutine returns to Line
200 instead of completihg the FOR/NSXT loop. This re­
sults in a "For without next" error because any GOSUB,
FOR, or WHILE statement remains active during key
trapping.

If the RETURN statement does not include a line number,
program control returns to complete the FOR/NEXT loop
and no error occurs.

227

ON STRIG Statement
------·-----

ON STRIG (integer) GOSUB line number
Branches to a subroutine when you press the specified
mouse button.

integer specifies the number of the button pressed. inte­
ger may be 0 for the left button and 1 for the right button.

line number is the first line number of the subroutine to
be executed when you press the mouse button. Specifying
a line number of 0 turns the trap off and is the same as
executing a STRIG OFF statement.

The ON STRJG() GOSUB statement is only executed if a
STRIG ON statement has been executed to enable mouse
button trapping. If a STRIG STOP statement has been
executed to temporarily halt mouse button trapping, the
subroutine is executed immediately after the next STRIG
ON statement is executed.

When the ON STRIG() GOSUB statement is executed,
BASIC immediately issues a STRIG STOP statement to
prevent recursive traps. When BASIC executes the RE­
TURN from the subroutine, it automatically executes
another STRIG ON statement to enable mouse button
trapping again, unless the subroutine executes a STRIG
OFF statement.

If you execute a simple RETURN statement at the end of
the subroutine, BASIC returns to the next statement after
the statement that activated the trap. For example, if activ­
ity occurs while BASIC is executing Line 100, the RETURN
returns to execute Line 110.

You may also use the RETURN line number option form of
the RETURN statement. Do so with care because, however,
any GOSUB, FOR, or WHILE statement remains active
during trapping.

228

Example
10 ON STRIG(0) GOSUB 1000
20 ON STRIG(1) GOSUB 2000
30 PRINT "Press one of the mouse buttons."
40 FOR I = 1 TO 3000:NEXT I
50 GOTO 30
1000 PRINT "You pressed the left button." :RETURN
2000 PRINT "You pressed the right button."

:RETURN

Lines 10 and 20 turn on mouse button trapping. Line 30
prints a message for you to press one of the buttons. Line
40 waits for you to press a button. If you press the left
button, BASIC transfers program control to the subroutine
at Line 1000. If you press the right button, BASIC transfers
program control to the subroutine at Line 2000. If you
don't press a button, Line 50 returns to print the message
again. This program is a continuous loop. To end the
program, press (BREAK).

229

OPEN Statement

OPEN mode, buffer, filespec [,record length]

OPEN filespec [FOR mode] AS buffer
[LEN= record length]

Establishes an input/output path for a file or device.

buffer is an integer in the range 1 to 15. It specifies the I/0
buffer to use when accessing the file.

filespec specifies the device identifier, the filename, and
the password. The password and device identifier are
optional when you OPEN a disk file. If you omit the device
identifier, BASIC assumes the current drive. Filename and
password are optional with all other devices. You must
enclose filespec in quotes.

device identifier indicates the physical device with which
you want to communicate. Some devices restrict the direc­
tion of communication. These are the device identifiers
and the mode with which they can be used:

A: - D:

KYBD:
SCRN:
LPTl:
LPT2:
COMl:

which disk drive to access. May be OPENed
for all modes.
keyboard. INPUT only.
screen. OUTPUT only.
line printer 1. OUTPUT only.
line printer 2. OUTPUT only.
RS232 communications 1. OUTPUT, INPUT,
or RANDOM.

record length is an integer in the range 2 to 32768 that sets
the record length for random access files. It may not
exceed the maximum set with /S: when you loaded BASIC.
Do not use this option with sequential access files. If you
omit record length, BASIC assumes a default record length
of 128 byte.s

mode specifies any of the following:

0 or OUTPUT
I or INPUT
A or APPEND
R or RANDOM

sequential output mode
sequential input mode
sequential output and extend mode
direct input/output mode

230

Examples

7 I Statements and Functions

You must enclose mode in quotes in the first form of the
syntax and you may only specify the abbreviated form of
mode. If you omit mode in either form of the syntax, BASIC
assumes random access.

In the second form of the syntax, you must specify the
complete word for mode. You may not specify RANDOM.
If you want to use random access in the second form of the
syntax, omit mode.

If you OPEN a file for INPUT that does not exist, a "File Not
Found" error occurs. If you OPEN a file for OUTPUT that
does not exist, BASIC creates the file. If you OPEN a file for
APPEND that does not exist, BASIC creates the file and sets
the mode to RANDOM. If you OPEN a file for RANDOM
access with a record length that does not match the record
length assigned to the file when it was created, an error
occurs.

You may OPEN a file for output in only one buffer at a time.
Once you assign a buffer to a file with the OPEN statement,
you cannot use that buffer in another OPEN statement
until you close the first file. However, BASIC allows you to
access the same file for input by opening it in different
buffers. You may keep several records from the same file
in memory for quick access.

OPEN "R", 2, "TEST.DAT"
opens the file TEST.DAT in random access mode, using
buffer 2. If TEST.DAT does not exist, BASIC creates it on
the current drive. The record length is 128 bytes.

OPEN 1, "UST.DAT', 80
opens the file LIST.DAT in random access mode. with a
record length of 80.

OPEN "LPT1 :" FOR OUTPUT AS #2
opens line printer 1 for sequential output using buffer 2.

OPEN "A:DATA.BAS" FOR INPUT AS #1
opens the file DATA HAS on Drin~ A: for sequential input
using buffer 1.

231

OPEN Communication Statement

OPEN "COMl: [speed] [,parity] [,data] [,stop] [,RS]
[,CS[seconds]] L,DS[secondsj] [,CD[seconds]]
[,mode] [,LF]" AS [buffer] [LEN= number]

Opens a file and allocates a buffer for RS-232C (Ac;ynchro
nous Communications Adapter) communication.

speed is an integer specifying the transmit and receive rate
in bits per second (bps). Valid speeds are 75, 110, 150, 300,
600, 1200, 1800, 2400, 4800, and 9600. If you omit speed,
BASIC sets the speed at 300 bps.

parity is a constant specifying the parity to be used when
the data is transmitted and received. The constant must be
one of the following:

E indicates EVEN transmit parity, EVEN receive par­
ity checking.

0 indicates ODD transmit parity, ODD receive par­
ity checking.

M indicates parity bit always transmitted and re­
~eived as a mark (a 1 bit).

S indicates parity bit always transmitted and re­
ceived as a space (a O bit).

N indicates no transmit parity, no receive parity
checking.

If you omit parity, BASIC assumes E (EVEN).

data is an integer specifying the number of transmit and
receive bits. Valid values are 4, 5, 6, 7, and K If you do not
specify data, BASIC assumes 7.

Note: Four data bits with no parity and eight data bits
with parity are illegal.

stop must be either 1 or 2 to indicate the number of stop
bits. If you omit stop, 75 and 100 bps transmit two stop bits,
and all other transmit one stop bit.

bz~ffer is a number 1 through 15 indicating the buffer that
accesses the file.

number specifies the maximum number of bytes that can
be accessed in the communications buffer by GET and

232

Chapter 7 I Statements and Function.s

PUT statements. If you omit the LEN option, BASIC
assumes 128 bytes.

The parameters speed, parl~v, data, and stop, are all posi·
tional. That is, they must be in the order specified in the
syntax. The remaining parameters are not positional. They
may be in any order or you may omit them.

The remaining parameters control the software com­
munication signal lines between two terminals. If you
omit the CS, DS, or CD options, the signals are not checked
at all. Only include these parameters if you are testing
these software signals.

The RS option suppresses the Request To Send (RTS)
signal. Request To Send is a signal that is sent from the
sending terminal to the receiving terminal to ensure that
the receiving terminal is ready to accept communication
data. When you execute an OPEN "COMl: statement, the
RTS line is turned on, unless you include the RS option.

The CS option controls the Clear To Send (CTS) signal
which is sent from the receiving terminal to the sending
terminal to let the sending terminal know that the receiv­
ing terminal is ready to receive.

You can think of RTS and CTS as a hand-shaking exercise,
in which the two terminals let each other know that they
are ready to send and/or receive data. RTS is an output
signal from the sending terminal, and CS is an input signal
to the sending terminal.

The DS option controls the Data Set Ready (DSR) signal.
The DSR signal ensures that there is a data set, such as a
modem, present to transmit the data.

The CS option controls the Carrier Detect (CD) signal. The
CD signal is an input signal that ensures that the data set is
ready to transmit the data.

The second'i argument in the CS, DS, and CD options
specifies the number of milliseconds to \vait for the signal
before returning a "Device Timeout" error. seconds ma\·

233

Section /I I Jhe BASIC Language

be in the range 0 to 65535 If you omit seconds or specify a
zero, the signal is not checked at all.

If you specify RS, seconds default to zero for CS. If you
omit RS, the default for CS is 1000. Eicher an RS or a CS is
required. That is, if you omit RS, the Clear To Send signal is
not checked. If you include RS, OPEN "CO Ml: waits 1
second for CS before issuing a· "Device Timeout" error.

If you omit seconds after the DS option, rhe default value is
1000, and OPEN "COMl: waits 1 second before issuing a
"Device Timeout" error. If you omit seconds after CD, the
default is zero and the signal is not checked.

110 statements to a communication file do not execute if
these signals are off. The system waits one second before
returning a "Device Timeout" error. Specifying these op­
tions allows you to ignore these signals or to specify the
length of time to wait for the signal.

The LF option sends a line feed character after every
carriage return. This is useful if you are printing the com­
munication data to a serial line printer. A line feed is also
sent after the carriage return that is the result of the width
setting. Note that when you specify the LF option INPUT#
and LINE INPUT# stop when they see a carriage return
and ignore the line feed.

mode specifies the type of data that is transmitted. mode
may be either BIN for binary mode or ASC for ASCII mode.
If you omit mode, OPEN "COMl: opens tlie device in
binary mode.

If you specify the BIN mode, OPEN "COMl: does not

expand tabs to spaces, does not force a carriage return at
the end of the line, does not recognize Control Z as an
end-of-file, and ignores the LF option.

If you specify the ASC mode, OPEN "COMl: expands tabs
to spaces, forces a carriage return at the end of the line,
and recognizes Control Z as the end-of-file. When you
close the channel, Control Z is sent over the RS-232C line.

234

Examples

7 I Statements and Functions

OPEN "COM1 :" AS 1

opens File 1 for communication at a rate of 300 bps with
even parity, seven data bits, and one stop bit. RTS signal is
sent.

OPEN "COM1: 9600, N,8, 1.BIN" AS 2

opens File 2 for communication at a rate of 9600 bps with
no parity, 8 data bits, and 1 stop bit. The data is binary.

OPEN "COM1: 4800,,,.CS3000,DS2000" AS 1

opens File 1 for communication at a rate of 4800 bps with
even parity, seven data bits, and one stop bit. RTS is sent.
OPEN "COMl: issues "Device Timeout" error if there is no
CS signal after 3 seconds and no DS signal after 2 seconds.
Note that even though parity, data, and stop are not in­
cluded, the commas are required.

235

OPTION BASE Statement

OPTION BASE n

Sets n as the minimum value for an array subscript.

N may be 1 or 0. The default is 0.

If you use this statement in a program, it must precede the
DIM statement.

If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is
one.

236

OUT Statement

OUT port, data byte

Example

Sends a data byte to a machine output port.

Port is an integer between 0 and 65535.

Data byte is an integer between 0 to 255.

A port is an input/output location in memory.

OUT 32,100

sends 100 to port 32.

237

PAINT Statement

PAINT [STEP] (x-coordinate,y-coordinate) [color
[,border]]

Fills in an area on the display with a selected color.

x-coordinate indicates the x coordinate at which to begin.
In Screen Mode 1, x-coordinate may be in the range 0 to

320. In Screen Modes 2, 3, and 4 x-coordinate may be in
the range 0 to 640.

y-coordinate indicates the y coordinate at which to begin.
In Screen Modes 1 and 2,y-coordinate may be in the range
O to 200. In Screen Modes 3 and 4 y-coordinate may be in
the range O to 400.

color specifies a color number in the current palette. In
Screen Mode 1, color may be in the range O to 3. In Screen
Mode 3, color may be in the range 0 to 7. In Screen Modes
2 and 4, color may be either O or 1. If you omit color in
Screen Modes 1 or 3, BASIC assumes color 3. If you omit
color in Screen Modes 2 or 4, BASIC assumes white.

border specifies the color of the border of the object and
must be a color number in the current palette. border may
be specified in Screen Modes 1, 2, and 4 only. border is
always black in Screen Mode 3. In Screen Mode 1, border
may be in the range 0 to 3. In Screen Modes 2 and 4, border
may be either 0 or 1. If you omit border, BASIC assumes
the value of color, and the object has the same color
border and center.

238

Chapter 7 I Statements and Functions
~~~~~~~~~~~~~-"'-~~~ 

BASIC begins to change the color of points at the point you 
specify with x and y coordinates. BASIC continues to 
change the color of every point that is not the same color 
as color. When BASIC PAINTs one line of points without 
changing the color of any point in that line PAINT is 
complete. 

PAINT must start on a non border point. If the point is 
already border or color color, BASIC does not execute the 
PAINT statement. 

PAINT can fill any figure, but PAINTing "jagged" edges or 
very complex figures may result in an "Out of Memory" 
error. If this happens, you must use the CLEAR statement 
to increase the amount of stack space available. 

239 



PALETTE Graphics Statement 

PALETTE [position number, new color] 

Changes one of the colors in the current palette. 

position number specifies which position in the current 
palette you want to change. position number may be a 
number in the range 0 to 3 in Screen Mode 1; and 0 to 7 in 
Screen Mode 3. 

new color specifies the new color number you want in that 
position in the current palette. new color may be a num­
ber in the range - 1 to 31. If you specify a value of - 1 for 
any position number, that position number retains its 
default value and cannot be changed by subsequent 
PALETfE or PALETfE USING statements. 

The PALETfE statement allows you to change the color in 
the current palette. The default values for Palettes 0 and 1 
are 

Position Palette Palette 
Number 0 1 

1 Green Cyan 
2 Red Magenta 
3 Yellow 'W'hite 
4 White Light Red 
5 Light Cyan Light Green 
6 Light Blue Light Blue 
7 Light Yellow Light Yellow 

When you select a palette, with a COLOR/Graphic state­
ment, you tell BASIC to associate the position number with 
these colors when you use the number as the color pa­
rameter in graphics statements, such as LINE or PSET. 

240 



7 I Statements and Functions 

You can use the PALETTE statement to change the default 
values of the colors. You may change any of the position 
numbers to these color numbers. 

0, 8, 16, or 24 Black 
1or17 Blue 
2or18 Green 
3or19 Cyan 
4 or 20 Red 
5 or 21 Magenta 
6 or 22 Brown 
7or23 Gray 

9or 25 Light Blue 
10 or 26 Light Green 
11or27 Light Cyan 
12 or 28 Light Red 
13 or 29 Light Magenta 
14 or 30 Yellow 
15 or 31 White 

For example, if you select P;alette 0 with this statement 

COLOR 0,0 

number 1 is associated with green. You can use the 
PALETTE statement to change that value so that number 1 
is associated with a different color from the list above. For 
example, we want to change number 1 to magenta. Use 
this statement 

PALETTE 1,5 

Number 1 in the current palette (Palette 0) changes from 
green to magenta. 

241 



Section ff I 7be BASIC Language 

Example 

When you execute a palette statement to change the de­
fault values, the new values remain in effect until you 
execute another COLOWGraphic, PALETIE or PALETIE 
USING statement. A PALETTE statement without pa­
rameters forces the position numbers to return to their 
default values. 

You can only change one position in the palette each time 
you execute a PALETTE statement. To change more than 
one position in a palette, see the PALETTE USING 
statement. 

COLOR, 1 :PALETTE 3,7 

selects Paleue 1 and changes the third position from yel­
low to gray. 

PALETTE 1, -1 

prevents position number 1 in the current palette from 
being changed by other PALETIE statements. 

PALETTE 

changes all positions in the current palette to their default 
values. 

242 



ChaDter 7 I Statements and Functions 

Sample Program 
10 COLOR 0,0 
20 PALETIE 3, 1 
30 LINE (0,100) - (319,199),1 
40 PAINT (1,100) 3,6 
50 PALETIE 

Line 10 selects Palette 0 as the current palette. Line 20 
changes position number 3 from yellow to blue. Line 30 
draws a vertical blue line across the center of the screen. 
Line 40 colors the bottom half of the screen light blue with 
a blue border. Line 50 causes the palette to return to its 
original value. Position 3 is now yellow again. 

243 



PALETTE USING Graphics Statement 

PALETTE USING array name (subscript) 

To change more than one of the color numbers in the 
current palette. 

array name is the name of an integer array where you 
define the order of colors to be put in the current palette. 

subscript is the position in the array that contains the value 
of the first position of the palette. BASIC assigns the re­
maining color numbers in the array to the palette in 
consecutive order. See the PALETTE statement for possi­
ble colors and their default values. 

Load each element in the array with a color number. 
Group color numbers that you use together, consecutively 
in the array. For example, if you use both shades of blue 
with both shades of green, place their color numbers 
consecutively in the array, array A, like this 

Subscript 

0 
1 
2 
3 

The statement 

PALETTE USING A(0) 

Color 

2 (green) 
10 (light green) 
1 (blue) 
9 (light blue) 

puts a 2 into position 0 in the current palette, 10 into 
position l, 1 in position 2, and 9 into position 3. 

244 



7 I Statements and Functions 

The array may be larger than the palette. PALETIE USING 
stops filling the current palette when it reaches the last 
position in the palette. If you also use the two shades of 
blue with the two shades of red, and you also use the two 
shades of blue with the two shades of cyan, you can put the 
numbers for the shades of blue in your array as often as 
you need them. For example, you could expand the pre­
vious array to look like this 

Subscript Color 

0 2 (green) 
1 10 (light green) 
2 1 (blue) 
3 9 (light blue) 
4 4 (red) 
5 12 (light red) 
6 9 (light blue) 
7 1 (blue) 
8 3 (cyan) 
9 11 (light cyan) 

To load the palette with the blues and red;; use this 
statement: 

PALETTE USING A(2) 

Position 1 becomes number 1, blue. Position 2 becomes 
number 9, light blue. Position 3 becomes number 4, red. 
Position 4 becomes number 12, light red. 

You could also load the palette with the blues and reds 
with this statement: 

PALETTE USING A(4) 

In this case, position 1 becomes number 4, red. Position 2 
becomes number 12, light red. Position 3 becomes num­
ber 9, light blue. Position 4 becomes riumber 7, blue. The 
same colors are put into the palette, but in a different 
order. 

245 



Section II I The BA51C Language 

To load the palette with the blues and cyans, use this 
statement: 

PALETTE USING A(6) 

BASIC starts loading the palette with the value of the sixth 
element in the array. 

If you use the PALETfE statement to assign a value of 1 to 
a position in the palette, PALETTE USING does not change 
that position. 

246 



PEEK Function 

PEEK (memory location) 

Example 

Returns a byte from memory locat{on. 

The memory location must be in the range - 32768 to 
65535. 

The value returned is an integer between 0 and 255. (For 
the interpretation of a negative value of memory location, 
see the statement VARPTR). 

PEEK is the complementar.y function of the statement 
POKE. 

A PEEK (&H5A00} 

247 



PLAY 
PLAY string 

Statement 

Plays musical notes specified by string. 

string is a string expression consisting of one or more 
single character music commands. 

The single character music commands are: 

A·G[#,+,-] 

The letters A through G play the notes of one musical 
scale. You may include an optional number sign ( #) or 
plus ( +) to indicate a sharp note or a minus ( ) to 
indicate a fla~ note. You mayonlyspecifysharpor flat notes 
that correspond to the black keys on a piano. The letters A, 
C, D, F, and G may be followed by a plus because they are 
followed by black keys on a piano. 111e letters A, B, D, E, 
and G may be followed by minus because they are fol­
lowed by black notes on a piano. 

Linteger 

Sets the length of the notes that follow. integer may be a 
value in the range 1 to 64. Here are a few of the more 
common lengths: 

1 indicates a whole note. 
2 indicates a half note. 
4 indicates a quarter note. 
8 indicates an eighth note. 
16 indicates a sixteenth note. 

If you only want to change the length for one note, integer 
may follow the note. For example, Al6 is equivalent to 
L16A. 

248 



7 I Statements and Functions 

Ointeger 

Sets the current octave. There are 7 octaves, numbered 0 
to 6. Each octave starts with C and ends with B. Octave 3 
starts with middle C. If you omit integer, BASIC assumes 
Octave 4. 

Ninteger 

Play a note. integer may be in the range 0 to 84. In the 7 
possible octaves, there are 84 notes. Instead of specif)ring 
the letter and the octave of the note you may specify its 
number 1 to 84. Specifying an integer of zero means rest. 

Pinteger 

Rest. integer may be in the range 1 to 64 and has the same 
meaning as integer with the L option. 

Tinteger 

Sets the number of quarter notes in one minute. integer 
may be in the range of 32 to 255. If you omit integer, BASIC 
assumes 120 quarter notes in one minute. That is a mod­
erato tempo. See the SOUND statement for information 
on beats per minute for common tempos. 

With the 0, N, P, and T commands, integer may also be a 
numeric variable in your BA<;IC program. Do not space 
between the command and the integer or between the 
command and the variable. You must include a semicolon 
after the var1able name. 

A dot after a note causes the note to play half again as long 
as the length specified by the integer with the L option. 
You may use more than one dot after each note. BASIC 
scales the length of time accordingly. Dots may also 
appear after the P option to scale the length of the rest 

249 



Section 11 I The BASIC Langitage 

Example 

MF 

Sounds made by the PLAY and SOUND statements are to 
run in foreground. That is, each subsequent note or sound 
does not start until the previous note or sound is finished. 
If you omit MF or MB, BASIC assumes MF. 

MB 

Sounds made by the PLAY and SOUND statements are to 
run in background. That is, each note or sound is placed in 
a buffer allowing the BASIC program to continue execu­
tion while music plays in the "background." A maximum 
of 32 notes and/or rests can play in background at a time. 

MN 

Each note plays 7 /8ths of the time specified by the L option. 
If you omit MN and MS, BASIC assumes MN. 

MS 

Each note plays 3/4ths of the time specified by the L option. 

Xvariable; 

Executes a substring. The X command lets you execute a 
second substring from a string, much like GOSUB. You 
can have one string execute another, which executes a 
third, and so on. variable is a string variable in your 
program that contains the substring you want to execute. 
variable may contain an X command to execute another 
substring. The semicolon after string is required. 

10 PLAY "C4F4.C8F8.C16F8.G16A2F2" 
20 INPUT "CAN YOU NAME THAT TUNE";A$ 
40 IF A$ = "THE EYES OF TEXAS" THEN GOTO 

50 ELSE PRINT "TRY AGAIN":GOTO 10 
50 PRINT "THAT'S RIGHT!" 

250 



PO INT Graphics Function 

POINT (x-coordinate, y-coordinate) = variable 

Example 

Returns the color number of a point on the screen. 

x-coordinate specifies the x coordinate of the point. In 
Screen Mode 1, x-coordinate may be in the range 0 to 320. 
In Screen Modes 2, 3, and 4, x-coordinate may be in the 
range 0 to 640. 

y-coordinate specifies the y coordinate of the point. In 
Screen Modes 1and2,y-coordinate may be in the range 0 
to 200. In Screen Modes 3 and 4, y-cooi-dinate may be in 
the range O to 400. 

variable is numeric variable to hold the value returned by 
POINT. 

The x and y coordinates must be absolute values. If you 
specify a point that is out of range, BASIC returns a - I. 

If you are using either of the color graphics options, 
POINT returns the color number as it is defined in the 
current palette. In Screen Mode 1, POINT returns a value 
ofO to 3. In Screen Mode 3, POINT returns a value 0 to 7. In 
Screen Modes 2 and 4, POINT returns a value of 0 or 1. 

10 SCREEN 2 
20 IF POINT(1,1)<>0 THEN PRESET (1,1) ELSE 

PSET(1,1) 

If point 1,1 is any foreground color, PRESET changes it to 
the background color. If the point is the background 
color, PSET changes it to color number 3 

251 



POKE Statement 

POKE memory location, data byte 

Example 

Writes data byte into memory location. 

Both memory location and data byte must be integers. 
Memory location must be in the range - 32768 to 65535. 

POKE is the complementary statement of PEEK. The argu­
ment to PEEK is a memory location from which a byte is to 
be read. 

PEEK and POKE are useful for storing data efficiently, 
loading assembly-language subroutines, and passing argu­
ments (or results) to and from assembly-language sub­
routines. 

10 POKE &H5A00, &HFF 

252 



POS Function 

POS(number) 

Example 

Returns the position of the cursor. 

Number is a dummy argument. 

POS returns a number from 1 to 40 or 1 to 80, depending 
on the current width, indicating the current cursor­
column position on the display. 

PRINT TAB(40) POS(0) 

prints '10. The PRINT TAB statement moves the cursor to 
position 40, therefore, POS(O) returns the value 40. 
(However, since a blank is inserted before the "4" to 
accommodate the sign, the "4" is actually at position 41). 

Sample Program 
150 CLS 
160 A$ = INKEY$ 
170 IF A$ = ""THEN 160 
180 IF POS(X) > 70 THEN IF A$ = CHR$(32) THEN 

A$ = CHR$(13) 
200 PRINT A$; 
210 GOTO 160 

This program lets you use your printer as a typewriter 
(except that you cannot correct mistakes). Your computer 
keyboard is the typewriter keyboard. The program will 
keep watch at the end of a line so that no word is divided 
between two lines. 

253 



PRINT Statement 

PRINT data, ... 

Prints numeric or string data on the display. 

BASIC prints the values of the data items you list in this 
statement. If you omit data, BASIC prints a blank line. 

You may separate the data items by commas, semicolons, 
or spaces. If you use commas, the cursor automatically 
advances to the next tab position before printing the next 
item. (BASIC divides each line into print zones containing 
14 posilions each, at columns 14, 28, 42, 56, and 70). If you 
use semicolons or spaces to separate the data items, PRINT 
prints the items without any spaces between them. 

A semicolon or comma at the end of a line causes the next 
PRINT statement to begin printing where the last one left 
off. If no trailing punctuation is used with PRINT, the 
cursor drops down to the beginning of the next line. If the 
priqted line is longer than 80 characters, BASIC continues 
printing on the next line. 

Single-precision numbers with six or fewer digits that can 
be accurately represented in ordinary (rather than ex­
ponential) format, are printed in ordinary format. For 
example, IE-7 is printed as .0000001; IE-8 is printed as 
IE-08. 

Double-precision numbers with 16 or fewer digits that can 
be accurately represented in ordinary format, are printed 
using the ordinary format. For example, lD-15 is printed 
as .000000000000001; ID-16 is printed as lD-16. 

BASIC prints all numbers with a trailing blank, positive 
numbers with a leading blank, and precedes negative 
numbers with a minus sign. 

To insert strings into this statement, surround them with 
quotation marks. 

254 



Example 
PRINT "DO"; "NOT"; "LEAVE"; "SPACES"; 
"BETWEEN"; "THESE"; "WORDS" 

prints on the display: DONOTLEAYESPACESHE'l\X'EEN­
THESEWORDS 

Sample Program 
60 INPUT "ENTER THISYEAR"; Y 
70 INPUT "ENTER YOUR AGE";A 
80 INPUT "ENTER A YEAR IN THE FUTURE";F 
90 N = A + (F - Y) 
100 PRINT "IN THE YEAR"F"YOU WILL 

BE"N"YEARS OLD" 
RUN 

Since F and N are positive numbers, ,PRINT inserts a space 
before and after them, therefore your display should look 
similar to this (depending on your input): 

IN THE YEAR 2004 YOU WILL BE 46 YEARS OLD 

If we had separated each expression in line 100 by a 
comma, 

100 PRINT "IN THE YEAR",F,"YOU WILL 
BE",N,"YEARS OLD" 

BASIC would move to the next tab position after printing 
each data item. 

255 



PRINT USING Statement 

PRINT USING format; data item, 

Prints data items using a format specified by you. 

Format consists of one or more field specifier(s), or any 
alphanumeric character. 

Data item may be string and/or numeric value(s). 

This statement is especially useful for printing report 
headings, accounting reports, checks, or any other docu­
ments which require a specific format. 

With PRINT USING, you may use certain characters, field 
specifiers, to format the field. These field specifiers are 
described below. They are followed by sample program 
lines and their output to the screen. You may use more 
than one field specifier, except as indicated. 

Specifiers for String Fields: 

\spaces\ 

& 

Print the first character in the string only. 

PRINT USING "!"; "PERSONNEL" 
p 

Print 2 + n characters from the string. If you 
type the backslashes without any spaces, 
BASIC prints two characters; with one 
space, BASIC prints three characters, and so 
on. If the string is longer than [he field, the 
extra characters are ignored. If the field is 
longer than the string, the string is left­
justified and padded with spaces on the 
right. 

PRINT USING "\k>l616\"; "PERSONNEL" 
(three spaces berween the backslashes) 
PERSO 

Print the string without modifications. 

256 



7 I Statements and Functions 

HJ A$ "TAKE":B$ ="RACE" 
20 PRINT USING "!";A$; 
30 PRINT USING "&";B$ 
RUN 
TRACE 

Specifiers for Numeric Fields: 
# 

+ 

Print the same number of digit positions as 
number signs ( #). If the number to be 
printed has fewer digits than positions 
specified, the number is right-justified (pre­
ceded by spaces). Numbers are rounded as 
necessary. You may insert a decimal point at 
any position. In that case, the digits preced­
ing the decimal point are always printed (as 
zero, if necessary). 

If the number to be printed is larger than 
the specified numeric field, a percent sign 
(%) is printed in front of the number. If 
rounding the number exceeds the field, a 
percent sign is also printed in front of the 
rounded number. 

PRINT USING "##.##";111.22 
%111.22 

If the number of digits specified exceeds 
24, an "Illegal function call" occurs. 

PRINT USING "##.##";.75 
0.75 

PRINT USING "###.##";876.567 
876_5/' 

Print the sigh of the number. The plus sign 
may be typed at the beginning or at the end 
of the format string. 



Section II I Tbe BASIC Language 

** 

PRINT USING "+ ##.## 
- 98.45,3.50,22.22. .9 
- 98.45 + 3.50 22.22 

PRINT USING"##.##+ 
98.45,3.50,22.22, .9 

98.54 - 3.50 + 22.22 + 

'" . 

"· 
' 

-0.90 

0.90-

(Note the use of spaces at the end of a 
format string to separate printed values). 

Print a negative sign after negative numbers 
(and a space after positive numbers). You 
may only use a negative sign to the right of a 
number. 

PRINT USING "###.# "; - 768.660 
768.7 

Fill leading spaces with asterisks. The two 
asterisks also establish two more positions 
in the field. 

PRINT USING "**####"; 44.0 
****44 

Print a dollar sign immediately before the 
nuIJl:lber. This specifies two more digit posi­
tiQ111s, one of which is the dollar sign. You 
may not use exponent format with $$. 

PRINT USING"$$##.##"; 112.7890 
$112.79 

** S Fill, leading spaces with asterisks and print a 
doilar sign immediately before the num­
be11. 

PRINT USING "**$##.##"; 8.333 
***$8.33 

Print a comma before every third digit to 
the left of the decimal point. The comma 
establishes another digit position. 

2')8 



Sample Program 

7 I Statements and Functions 

PRINT USING"####,.##"; 1234.5 
1,234.50 

Print in exponential format. The four expo­
nent signs are placed after the digit position 
characters. You may specify any decimal 
point position. You may not use U or **$ 
with exponent format. 

PRINT USING".####'""'"; 888888 
.8889E+ 06 

Print next character as a literal character. 

PRINT USING "-1##.##-1";12.34 
!12.34! 

420 CLS: A$ ."**$##,######.##DOLLARS" 
430 INPUT "WHAT IS YOUR FIRST NAME"; F$ 
440 INPUT "WHAT IS YOUR MIDDLE NAME"; M$ 
450 INPUT "WHAT IS YOUR LAST NAME"; L$ 
460 INPUT "ENTER AMOUNT PAYABLE"; P# 
470 CLS : PRINT "PAY TO THE ORDER OF"; 
480 PRINT USING "!! l! "; F$; "."; M$; ".''; 
490 PRINT L$ 
500 PRINT :PRINT USING A$; P# 

In line 480, each l picks up the first character of one of the 
following strings (F$, ".", M$, and"," again). Notice the 
two spaces in " 1!1-J!!b". These two spaces insert the 
appropriate spaces after the initials of the name (see be­
low). Also notice the use of the variables A$ for format and 
P for item list in line 500. Any serious use of the PRJNT 
USING statement would probably require the use of vari­
ables at least for item list rather than constants. (We've 
used constants in our examples for the sake of better 
illustration). 

When the program above is run, the output should look 
something like this: 

259 



Section II I The BASIC Language 

WHAT IS YOUR FIRST NAME? JOHN 
WHAT IS YOUR MIDDLE NAME? PAUL 
WHAT IS YOUR LAST NAME? JONES 
ENTER AMOUNT PAYABLE? 12345.6 
PAY TO THE ORDER OF J. P. JONES 

*****$'12,435.60 DOLLARS 

260 



PRINT TAB Statement 

PRINT TAB(n) 

Example 

Moves the cursor to the n position on the current line. 

TAB may be used more than once in a print list 

Since numeric expressions may be used to specify a TAB 
position, TAB can be very useful in creating tables, graphs 
of mathematical functions, etc. 

TAB can't be used to move the cursor to the left. If the 
cursor is to the right of the specified position, the TAB 
statement is simply ignored. 

The first parenthesis must be typed immediately after the 
word TAB. 

If n is greater than 80, BASIC divides n by 80 and uses the 
remainder of the division as the tab position. For example, 
if you enter the line: 

PRINT "NAME"; TAB(84); "AMOUNT" 

BASIC converts TAB(84) into TAB( 4). Since the cursor is 
already at column five after printing NAME, BASIC moves 
the string AMOUNT to the next line. If, instead, you had 
typed TAB(85 ), BASIC would print AMOUNT on the same 
line. 

If the string you are printing is too long to fit on the current 
line, BASIC moves the string to the next line. 

PRINT TAB(5) 'TABBED 5"; TAB(25) "TABBED 25" 

Notice that no punctuation is needed after the TAB 
modifiers. 

Sample Program 
220 CLS 
230 PRINT TAB(2) "CATALOG NO."; TAB(16) 

"DESCRIPTION OF ITEM"; 
240 PRINT TAB(39) "QUANTITY"; TAB(51) 

"PRICE PER ITEM"; 
245 PRINT TAB(69) "TOTAL PRICE" 

261 



PRINT# Statement 

PRINT# buffer, iteml, item2, ... 

Examples 

Prints data items in a sequential disk file. 

Buffer is the buffer number used to OPEN the file for 
input. 

When you first OPEN a file for sequential output, BASIC 
sets a pointer to the beginning of the file that's where 
PRINT# starts printing the values of the items. At the end of 
each PRINT# operation, the pointer advances, so values 
are written in sequence. 

A PRINT# statement creates a disk image similar to what a 
PRINT to the display creates on the screen. For this reason, 
make sure to delimit the data so that it will be input 
correctly from the disk. 

PRINT# does not compress the data before writing it to 
disk. It writes an ASCII-coded image of the data. 

When you include the USING option, data is written to the 
disk in the format you specify. See PRINT USING. 

If A = 123.45 
PRINT# 1,A 

writes this nine-byte character sequence onto disk: 

b123.451'> carriage return 

The punctuation in the PRINT list is very important. Un­
quoted commas and semicolons have the same effect as 
they do in regular PRINT statements to the display. For 
example, if A = 2300 and B = 1.303, then 

PRINT# 1, A,B 
CEmID 
writes the data on disk as 

b 2300 Vlbbbl'>Vlbbbb 1.3031'.carriage return 

The comma between A and B in the PRINT# list causes 10 
extra spaces in the disk file. Generally you wouldn't want 
to use up disk space this way, so you should use semi­
colons instead of commas. 

262 



7 I Statements and Functions 

PRINT# 1, A;","; B 

writes the same data on disk .as 

123.45,1.303 

An INPUT# statement reads this as two separate fields. 

If string variables contain commas, semicolons, or leading 
blanks, write them to disk enclosed with quotation marks. 
For example, if A$ CAMERA, AUTOMATIC and B$ = 
102382, then 

PRINT# 1, A$; B$ 

writes the data on disk as 

CAMERAhhhhhbhhhbAUTOMATIC102382 

An INPUT# statement reads this as two separate fields 

A$= CAMERA 
B$ = AUTOMATIC102382 

To separate these two strings properly on the disk, write 
double quotation marks to the disk using the hexadecimal 
character for quotation marks, CHR$(34). 

PRINT# 1, CHR$(34); A$; CHR$(34); 6$; CHR$(34) 

writes the following image to disk 

''CAMERA,AUTOMATIC""102382'' 

The statement 

INPUT# 1, A$, B$ 

reads "CAMERA,AUTOMATIC" into A$ and "102382" into 
B$. 

Files can be written in a carefully controlled format using 
PRINT# USING. You can also use this option to control 
how many characters of a value are written to disk. 

263 



Section II I 1be BASIC Language 

For example, suppose A$ "LUDWIG", B$ = "VA.l\J", and 
C$ = "BEETHOVEN". Then the statement 

PRINT# 1, USING"!.!.\IDID\";A$;8$;C$ 

would write the data in nickname form: 

LY.BEET 

(In this case, we didn't want to add any explicit delimiters.) 
See PRINT USING for more information on the USING 
option. 

264 



PSET /PRESET Graphics Statement 

PSET [STEP] (x-coordinate, y-coordinate) [, 
color] 
PRESET [STEP] (x-coordinate, y-coordinate) [, 
color] 

Draws a point on the display. 

x-coordinate specifies the x coordinate of the point. In 
Screen Mode 1, x-coordinate may be in the range 0 to 320. 
In Screen Modes 2, 3, and 4, x-coordinate may be in the 
range 0 to 640. 

y-coordinate specifies the y coordinate of the point. In 
Screen Modes 1 and 2,y-coordinate may be in the range 0 
to 200. In Screen Modes 3 and 4,y-coordinate may be in 
the range 0 to 400. 

If you include the STEP option, the numbers you specif\' as 
coordinates are offsets from the most recent graphics 
point referenced. x-coordinate is the number of points in 
the horizontal direction, andy-coordinate is the number 
of points in the vertical direction. Precede the numbers 
with a plus ( + ) or minus ( - ) sign to indicate the direc­
tion (up, down, left, or right) from the most recent point 
referenced. The plus sign indicates to add the number to 
the most recent coordinante (right or up) and the minus 
indicates to subtract (left or down) the number from the 
most recent coordinate. 

265 



Section II I Ibe BASIC Language 

color specifies the color of the point and must be a color 
number in the current palette. In Screen Mode 1, color 
may be in the range 0 to 3. In Screen Mode 3, color may be 
in the range 0 to 7. In Screen Modes 2 and 4, color may be 
either 0 or 1. 

The only difference between the PSET and PRESET state­
ments is the default values for color. In Screen Modes 1 
and 3, if you omit color with PSET, BASIC assumes a 
default value of 3. In Screen Modes 2 and 4, if you omit 
color with PSET, BASIC assumes white. If you omit color 
with PRESET, BASIC asssumes the background color for all 
Screen Modes and the point is invisible. 

Note: BASIC does not print and does not issue an error 
message for points whose coordinate values are 
beyond the edge of the screen. However, values 
outside the integer range ( - 32768 to 32767) cause 
an overflow error. 

266 



Chapter 7 I Statements and Functions 

Sample Program 
10 FOR l=0 TO 100 
20 PSET (1,1) 
30 NEXT I '(draw a diagonal line to (100,100)) 
40 FOR I= 100 TO 0 STEP 1 
50 PRESET (1,1),0 
60 NEXT 
70 '(clear out the line by setting each pixel to 0) 

Lines 10 to 30 draw a diagonal line on the screen from the 
home position to position 100, 100. Lines 40 to 60 erase the 
line by drawing another line at the same position in the 
background color. 

267 



PUT Statement 

PUT buffer [,record] 

Examples 

Puts a record in a direct-access disk file. 

Buffer is the same buffer used to OPEN the file. 

Record is the record number you want to PUT into the file. 
It is an integer between 1 and 65535. If you omit record, 
BASIC uses the current record. 

This statement moves data from the buffer of a file into a 
specified place in the file. 

If record is higher than the end-of-file record number, 
then record becomes the new end-of-file record number. 

The first time you use PUT after OPENing a file, you must 
specify the record. The first time you access a file via a 
particular buffer, the next record is set equal to one. (The 
next record is the record whose number is one greater 
than the last record accessed). 

See the chapter on "Disk Files" for programming 
information. 

PUT 1 

writes the next record from buffer 1 to a direct-access file. 

PUT 1, 25 

writes record 25 from buffer 1 to a direct-access file. 

268 



PUT Communication Statement 

PUT buffer, integer 

Example 

Transfers data from the file buffer to the communications 
buffer. 

buffer must be the same buffer you assigned to the file in 
the OPEN "COMl: statement. 

integer is the number of bytes to transfer from the file 
buffer into the communications buffer. integer cannot 
exceed the value you used in the LEN option in the OPEN 
"COMl: statement. 

Note: Because of the low performance associated with 
telephone line communications, we recommend that you 
not use GET and PUT statements in such applications. 

PUT 4,80 

transfers 80 bytes from file buffer 4 to the communication 
buffer. 

269 



PUT /Graphics Graphics Statement 

PUT (x-coordinate, y-coordinate),array [,action] 

Transfers an image stored in an array onto the screen. 

x-coordinate indicates the x coordinate where the image 
begins. In Screen Mode 1, x-coordinate may be in the 
range 0 to 320. In Screen Modes 2, 3, and 4 :x-coordirtate 
may be in the range 0 to 640. 

y-coordinate indicates they coordinate where the image 
begins. In Screen Modes 1and2,y-coordinate may be in 
the range 0 to 200. In Screen Modes 3 and 4,y-coordinate 
may be in the range 0 to 400. If you omitx-coordinate and 
y-coordinate, BASIC begins the image at the last point 
referenced on the screen. 

array is the array variable name that holds the image. 

action may be PSET, PRESET, AND, OR, or XOR action 
causes the transferred image to interact with the image 
already on the screen. If omit action, BASIC assumes XOR 

You use the GET/Graphics and PUT/Graphics statements 
together for animation and high-speed object motion in 
Screen Modes 1, 2, 3, or 4. The GET/Graphics statement 
transfers the screen image described by specified points 
of the rectangle into the array. The PUT/Graphics state­
ment transfers the image from the array to the display. 

The x and y coordinates specify the coordinate of the 
upper left corner of the image. An "Illegal Function call" 
error results if the image is too large to fit on the screen. 

PSET transfers the data onto the screen exactly as it stored 
in the array. 

270 



7 I Statements and Functions 

PRESET produces an opposite image on the screen. In 
Screen Modes 2 and 4 an array value of 1 (white) becomes 
a 0 (black) on the screen. In Screen Modes 1 and 3, the 
color value in the array becomes the numeric opposite on 
the screen. For example, if the array contains a 0, that point 
becomes a 3 in Screen Mode 1 and a 7 in Screen Mode 3. 
These tables show the effects on color when you specify 
PRESET in Screen Modes 1 and 3. 

Array 
Color 

0 
1 
2 
3 

Mode 1 
Screen 
Color 

3 
2 
] 

0 

Array 
Color 

0 
1 
2 
3 
4 
5 
6 
7 

Mode 3 
Screen 
Color 

7 
6 
5 
4 
3 
2 
1 
0 

AND transfers the image only if an image already exists at 
those points on the screen. If an image is on the screen, the 
new image is placed over the existing image. If an image is 
not on the screen and you specify AND as the action, 
BASIC does not execute the PUT/Graphics statement. 

OR superimposes an image onto an existing image. OR 
transfers the image onto the screen whether or not an 
image already exists at that position. 

XOR inverts the points on the screen where a point exists 
in the array image. When an image is PUT against a com­
plex background twice, the background is restored un­
changed. This allows you to move an object around the 
screen without obliterating the background. 

271 



Section II I Tbe 

These tables show what effects AND, OR, and XOR have on 
color that is on the screen. 

At'\ID 

ARRAY VALUE 

0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 0 1 0 1 () 1 0 1 
2 0 0 2 2 0 0 2 2 
3 0 1 2 3 0 1 2 3 
4 0 0 0 0 4 4 4 4 
5 0 1 0 1 4 5 4 5 
6 0 0 2 2 4 4 6 6 
7 0 1 2 3 4 5 6 7 

OR 

ARRAY VALUE 

0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 
1 1 1 3 3 5 5 7 7 
2 2 3 2 3 6 7 6 7 
3 3 3 3 3 7 7 7 7 
4 4 5 6 7 4 5 6 7 
5 5 5 7 7 5 5 7 7 
6 6 7 6 ..., 6 7 6 7 I 

7 7 7 7 7 7 7 7 7 

272 



XOR 

ARRAY VALUE 

0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 
1 1 0 3 2 5 4 .., 

I 

2 2 3 0 1 6 7 4 
3 3 ') 1 0 7 6 s '" J 

4 4 s 6 7 0 1 2 3 
s s 4 7 6 1 0 3 2 

6 6 7 4 5 2 3 0 1 
7 7 6 s 4 3 2 1 0 

To perform object animation, follow these steps: 

1. PUT the object on the screen using XOR 

2. Calculate the next position of the object 

3. PUT the object on the screen a second time at the 
previous location to remove the previous image. 

4. Repeat step 1, PUTting the object at the next location 

273 



Section II I 1be BAS! C 

If you do movement this way, the background is not 
changed. You can reduce flicker by minimizing the time 
between steps 4 and 1 and by ensuring enough time delay 
between 1 and 3. If you are animacing more than one 
object, process every object at once, one step at a time. 

If preserving rhe background is not important, you can 
perform animation using the PSET action verb. Leave a 
border around the image as large or larger than the max­
imum distance the object moves. When you move an 
object, this border effectively erases any points. This 
method may be faster than the method using XOR de­
scribed above, since only one PUT is required to move an 
object. 

274 



Function RANDOMIZE 
RANDOMIZE [number] 

·-----~---~· ----

Reseeds the random number generator. 

number is an integer in the range 32768 to 32767. If you 
omit number, BASIC suspends program execution and 
prompts you for a number before executing RANDOMIZE: 

Random !'Jumber Seed ( 32768 to 32767)? 

Ifthe random number generator is not reseeded, the RND 
function returns the same sequence of numbers each time 
it is executed. To change the sequence of random 
numbers every time the RND function is executed, place a 
RA<~DOMIZE statement before the RND function. 

You can use the seconds digits of the TIME$ function to 
insure that the random number generator is reseeded 
with a different value each time BASIC executes the 
RANDOMIZE function. For example, the statement: 

RANDOMIZE VAL(RIGHT$(TIME$,2)) 

uses the seconds digits as the value of number. Because 
those digits are constantly changing, number has a 
different value each time BASIC executes this statement. 

Sample Program 
10 CLS 
20 RANDOMIZE VAL(RIGHT$(TIME$,2)) 
30 INPUT "PICK A NUMBER BETWEEN 1 AND 

100";A 
40 B INT(RND*100) 
50 IF A B THEN 80 
60 PRINT "You lose, the answer is";B;"--try again." 
70 GOTO 20 
80 PRINT "You picked the right number -- you win." 

275 



READ Statement 

READ variable, .... 

Example 

Reads values from a DATA statement and assigns them to 
variables. 

BASIC assigns values from the DATA statement on a one­
to-one basis. The first time READ is executed, the first 
value in the first DATA statement is used; the second time, 
the second value is used, and so on. 

A single READ may access one or more DATA statements 
(each DATA statement is accessed in order), or several 
READS may access the same DATA statement. 

The values read must agree with the variable types speci­
fied in list of variables, otherwise, a ''Syntax error" occurs. 
If the number of variables in the READ statement exceeds 
the number of elements in the DATA statement(s), an "Out 
of data" error message is printed. 

To reREAD DATA from the start, use the RESTORE state­
ment. If the number of variables specified is lower than 
the number of elements in the DATA statement(s), subse­
quent READ statements begin reading data at the first 
unread element. 

READT 

reads a numeric value from a DATA statement and assigns 
it to variable "T". 

Sample Program 
This program illustrates a common application for the 
READ and DATA statements. 

40 PRINT "NAME", "AGE" 
50 READ N$ 
60 IF N$ "END" THEN PRINT "END OF LIST": END 
70 READ AGE 
80 IF AGE< 18 THEN PRINT N$, AGE 
90 GOTO 50 
100 DATA "SMITH, JOHN", 30, "ANDERS, T.M.", 20 
110 DATA "JONES, BILL'', 15, "DOE, SALLY", 21 
120 DATA "COLLINS, W.P.", 17, "END" 

276 



REM Statement 

REM 

Inserts a remark line in a program. 

REM instructs the computer to ignore the rest of the 
program line. This allows you to insert remarks into your 
program for documentation. Then, when you look at a 
listing of your program, or someone else does, it will be 
easier to figure it out. 

If REM is used in a multi-statement program line, it must 
be the last statement in the line. 

You may use an apostrophe(') as an abbreviation for REM. 

Sample Program 
110 DIM V(20) 
120 REM CALCULATE AVERAGE VELOCITY 
130 FOR I = 1 TO 20 
140 SUM SUM + V(I) 
150 NEXT I 

or 

110 DIM V(20) 
120 FOR I 1 TO 20 

130 SUM= SUM + V(I) 
140 NEXT I 

277 

'CALCULATE AVERAGE 
VELOCITY 



RENUM Statement 

RENUM [new line] [,line] [,increment] 

Examples 

Renumbers a program, starting at line, using new line as 
the first new line and increment for the new sequence. 

If you omit new line, BASIC starts numbering at line 10. 
If you omit line, it renumbers the entire program. 
If you omit increment, it increments each line by 10. 

RENUM also changes all line number references appear­
ing after ELSE, GOTO, GOSUB, THEN, ON ... GOTO, 
ON ... GOSUB, ON ERROR GOTO, RESUME, and 
ERL[relational operator]. 

REN UM 

renumbers the entire resident program, incrementing by 
lO's. The new number of the first line will be 10. 

RENUM 600, 5000, 100 

renumbers all lines 5000 to the end of the program. The 
first renumbered line becomes 600, and an increment of 
100 is used between subsequent lines. 

RENUM 10000, 1000 

renumbers line 1000 and all higher-numbered lines. The 
first renumbered line becomes line 10000. An increment 
of 10 is used between subsequent line numbers. 

RENUM 100,, 100 

renumbers the entire program, starting with a new line 
number of 100, and incrementing by lOO's. Notice that you 
must include commas even though the middle argument 
is not included. 

278 



7 I Statements and Functions 

Error Conditions 
1. RENUM cannot be used to change the order of program 

lines. For example, if the original program has lines 
numbered 10, 20 and 30, then the command: 

RENUM 15, 30 

is illegal, since the result would move the third line of 
the program ahead of the second. In this case, an 
"Illegal Function Call" error occurs, and the original 
program is left unchanged. 

2. RENUM will not create new line numbers greater than 
65529. Instead, an "Illegal Function Call" error occurs, 
and the original program is left unchanged. 

3. If an undefined line number is used inside your origin­
al program, RENUM prints a warning message, Unde­
fined line XXXX in YYYY", where XXXX is the original 
line number reference and YYYY is the original num­
ber of the line containing XXXX. Note that RENUM 
renumbers the program in spite of this warning mes­
sage. It does not change the incorrect line number 
reference, but it does renumber YYYY, according to the 
parameters in your RENUM command. 

279 



RESET 
RESET 

Statement 

Closes all open files on all drives. 

If a diskette contains any open files, RESET rewrites the 
diskette's directory track 

RESET ensures that all files on all diskettes are closed 
before you remove them from the drives. RESET is the 
same as a CLOSE on each OPEN file. 

280 



RESTORE Statement 

RESTORE [line] 

Restores a program's access to previously-read DATA 
statements. 

This lets your program re-use the same DATA lines. 
If line is specified, the next READ statement accesses the 
first item in the specified DATA statement. 

Sample Program 
160 READ X$ 
170 RESTORE 
180 READY$ 
190 PRINT X$, Y$ 
200 DATA THIS IS THE FIRST ITEM, AND THIS IS 

THE SECOND 

When this program is run, 

THIS IS THE FiRST ITEM 
FIRST ITEM 

THIS IS THE 

is printed on the display. Because of the RESTORE state­
ment in line 170, the second READ statement starts over 
with the first DATA item. 

281 



RESUME Statement 

RESUME [line] 
RESUME NEXT 

Examples 

Resumes program execution after an error-handling 
routine. 

RESUME without an argument and RESUME 0 both cause 
the computer to return to the statement in which the error 
occurred. 

RESUME line causes the computer to branch to the speci­
fied line number. 

RESUME NEXT causes the computer to branch to the 
statement following the point at which the error occurred. 

A RESUME that is not in an error-handling routine causes a 
"RESUME without error" message. 

RESUME 

if an error has occurred, this line transfers program con­
trol to the statement in which it occurred. 

RESUME 10 

if an error has occurred, transfers control to line 10. 

Sample Program 
10 ON ERROR GOTO 900 

900 IF (ERR= 230) AND(ERL = 90) THEN PRINT 
"TRY AGAIN" : RESUME 80 

282 



RETURN Statement 

RETURN [line number] 

Example 

Returns control to the line immediately following the 
most recently executed GOSUB. 

line number is an optional parameter that you may in­
clude to return program control to a specific line number 
instead of the line number immediately following the 
GOSUB. 

Use the line number parameter with caution. Any other 
GOSUB, Wl-iILE, or FOR statement remains active while a 
GOSUB subroutine is executing. If you RETURN to a line 
number that does not complete these loops you get an 
error. 

10 FOR I = 1 TO 3 
20 PRINT I: GOSUB 100 
30 NEXT I 
40 PRINT J 
100 'SUBROUTINE BEGINS HERE 
110 RETURN 40 

When I is equal to 1, 2, or 3 Line 110 causes a "FOR without 
NEXT" error because the FOR/NEXT loop has not been 
completed. 

If the program encounters a RETURN statement without 
execution of a matching GOSUB, an error occurs. 

Sample Program 
330 PRINT "THIS PROGRAM FINDS THE AREA OF 

A CIRCLE" 
340 INPUT "TYPE IN A VALUE FOR THE RADIUS"; 

R 
350 GOSUB 370 
360 PRINT "AREA IS" ; A: END 
370 A = 3.14 * R * R 
380 RETURN 

283 



RIGHT$ 
RIGHT$(string, number) 

Function 

Examples: 

Returns the rightmost number characters of string. 

RJGHT$ returns the last number characters of string. If 
LEN (string) is less than or equal to number, the entire 
string is returned. 

PRINT RIGHT$("WATERMELON", 5) 

prints MELON. 

PRINT RIGHT$("MILKY WAY", 25) 

prints MILl\.'Y WAY. 

Sample Program 
850 RESTORE : ON ERROR GOTO 880 
860 READ COMPANY$ 
870 PRINT RIGHT$(COMPANY$, 2), : GOTO 860 
880 END 
890 DATA "BECHMAN LUMBER COMPANY, 

SEATTLE, WA" 
900 DATA "ED NORTON SEWER SERVICE, 

BROOKLYN, NY" 
910 DATA "HAMMON MANUFACTURING 

COMPANY, HAMMOND, IN" 

This program prints the name of the state in which each 
company is located. 

284 



RND Function 

RND (number) 

Examples 

Generates a pseudorandom number between 0 and 1. 

Number is an integer in the range 32767 to 32768. 

Only zero has any effect on the random number that 
BASIC generates. 

R~D produces a pseudorandom number using the cur­
rent "seed" number. BASIC generates lhe seed internally, 
therefore, it is not accessible to the user. RND produces 
the same sequence of random numbers each time the 
program is run unless you execute a RANDOMIZE state­
ment to reseed the random number generator. 

If you specify negative values for number, RND starts the 
sequence of random numbers at the beginning. RND(O) 
repeats the last number generated. If you omit number, or 
you specify a positive value, RND returns the next number 
in the sequence. 

PRINT RND(0) 

prints a decimal fraction berween 0 and 1 

PRINT RND(1) 

prints the next decimal fraction in the sequence. 

Saniple ProgranI 

10 FOR I = 1 TO 5 
20 PRINT INT(RND•100); 
30 NEXT I 

This program produces 5 random integers. Line 20 con­
verts the decimal fraction returned by Ri"ID to a real num­
ber and lruncates the real number to an integer. 

285 



RSET Statement 

RSET Jleld name = data 

Sets data in a direct-access buffer field name in prepara­
tion for a PUT statement 

This statement is similar to LSET. The difference is that 
with RSET, data is right-justified in the buffer. 

See LSET for details. 

286 



RUN 
RUN [line] 

Statement 

RUN filespec[,R] 

Examples 

Executes a program. 

RUN followed by a line or nothing at all simply executes 
the program in memory, starting at line or at the begin­
ning of the program. 

RUN followed by afilespec deletes the current contents of 
memory, loads a program from disk and then executes it. 
Iffilespec contains fewer than eight characters and you do 
not include an extension, BASIC appends the extension 
.BAS. Any resident BASIC program is replaced by the new 
program. 

Option R leaves all previously OPEN files open. If omitted, 
BASIC closes all open flies. 

RUN automatically CLEARS all variables. However, it does 
not re-set the value of an ERL variable. 

RUN 

starts execution at lowest line number. 

RUN 100 

starts execution at line 100. 

RUN "PROGRAM.A" 

loads and executes PROGRAM.A. 

RUN "EDITDATA", R 

loads and executes EDIIDATA, leaving OPEN files open. 

287 



SAVE Statement 

SA VE tJ.lespec [,A] [ ,P] 

Saves a program in a disk file under filespec. 

filespec is a string expression that may contain the drive 
identifier and filename. If you omit the drive identifier, 
BASIC assumes the current drive. The filename is re­
quired. If the filename is eight characters or fewer and you 
do not include an extension, BASIC appends the extension 
.BAS. Iffilespec already exists, its contents are losL as the 
file is re-created. 

SAVE without the A option saves the program in a com­
pressed format. This takes up less disk space. It also helps 
in performing SAVEs and LOADs faster. BASIC programs 
are stored in RAM using compressed format. 

Using the A option causes the program to be saved in 
ASCII format. This takes up more disk space. However, the 
ASCII format allows you to MERGE this program later on. 
Also, data programs which are read by other programs 
must usually be in A5CII. 

If you use the A option, make sure your program doesn't 
have any embedded line feeds; otherwise, the computer 
will not be able to read it properly. Embedded line feeds 
are produced by pressing ~QJ simultaneously when 
typing a program line. 

For compressed-format programs, a useful convention is 
to use the extension .BAS. For ASCII-format programs, use 
.1XT. 

The P option protecl~ the file by saving ir in an encoded 
binary format. When a protected file is later RUN (or 
LOADed), any attempt to list or edit it fails. The only 
operations that can be performed on a protected file are: 
RUN, LOAD, MERGE, and CHAIN. 

288 



Examples 

Chapter 7 I Statements and Function'> 

SAVE "A:FILE1 .BAS" 

saves the resident BASIC program in compressed format. 
The file name is FILEl; the extension is .BAS. The file is 
placed on Drive A:. 

SAVE "MATHPAK.TXT", A 

saves the resident program in ASCII form, using the name 
MATHPAK.TXT, on the current drive. 

289 



SCREEN Function 

variable = SCREEN (row, column),[1] 

Returns the ASCII code or the color attribute for the 
character at the specified row and column. 

row is an integer in the range 1 to 25. 

column is an integer in the range 1 to 40 or 1 to 80, 
depending on the screen width. 

The 1 indicates return the color attribute rather than the 
ASCII code. 

SCREEN stores the ASCII character or the color attribute of 
the character at the specified row and column position in 
van'able. 

Sample Program 
10 LOCATE 20,20 
20 PRINT "Robbie" 
30 A SCREEN(20,20):B = SCREEN(20,21) 
40 PRINT A,B 

Line IO positions the cursor to row 20, column 20. 
Line 20 prints the message at the current cursor position. 
Line 30 stores the ASCII code for "R'' in the variable A and 
the ASCII code for "o" in variable B. Line 40 prints 

82 79 

290 



SCREEN Statement 

SCREEN mode burst] 

Sets the screen attributes to be used lw all other graphics 
statements. 

mode is an integer in the range 0 to 4. Valid modes are: 

0- text mode at the current width ( 40 or 80). 
1 - 320 x 200 medium resolution color graphics mode. 

You can only use WIDTH 40. 
2 - 640 x 200 high resolution monochrome mode at the 

current width ( 40 or 80). 
3 640 x 400 highest resolution color graphics mode at 

the current width ( 40 or 80). 
4 - 640 x 400 highest resolution monochrome mode at 

the current width ( 40 or 80). 

If you have the 1V1Joystick option you may use Mode 0 in 
width 40 and Mode 1. If you have the High Resolution 
Monochrome Graphics Option, you may use modes 0, 1. 2 
and 4. If vou have the High Resolution Color Graphics 
Option, vou may use all of the modes in all \Vilfths. 

hw:w may be zero to disable color burst or an\· other 
number to enable color burst. If you specify zero. you can 
only display black and white images with subsequent 
graphics commands. burst is only valid with the color 
graphics options. 

291 



Section II I 77Je BAWC Language 

Examples 

The SCREEN statement controls all graphics statements: 
CIRCLE, LINE, DRAW, POINT, PSET, PRESET, PALE1TE, and 
PALETTE USING. When you select mode with the SCREEN 
statement, you set the valid coordinates and the number of 
colors that these statements mav use. 

If the SCREEN statement changes the mode, BASIC stores 
the new screeo mode, erases the video displav, sets the 
foreground color to white, and the background and bor­
der colors to black 

We recommend that you use these statements at the begin­
ning of programs that you intend to run on machines that 
could have either graphics board: 

SCREEN 0,0 
WIDTH 40 

For more information on the graphics statements refer to 
Chapter 6, "Introduction to Graphics." 

10 SCREEN 0, 1 

Selects text mode with color. 

60 SCREEN 2 

Changes to high resolution monochrome graphics mode. 

Sample Program 
10 BLANK$= CHR$(32) 

'Define blank character 
20 CLS:WIDTH 40:SCREEN 1 

'Double size characters 
30 FORE= 16:BACK = 7:GOSUB 1000 

'Blinking reverse video 
40 FORE=0:GOSUB 1000 

'Reverse video 
50 BACK=0:GOSUB 200 

'Background color black 
60 WIDTH 80:SCREEN 0 

'Normal size characters 

292 



Chapter 7 I Statements and Functions. 

70 BACK= ?:FORE= 16:GOSUB 1000 
'Blinking reverse video 

80 FORE= 0:GOSUB 1000 
'Reverse video 

90 BACK= 0:GOSUB 200 
'Background black 

100 END 
200 FORE=31 :GOSUB 1000 

'Bright white blinking 
210 FORE= 18:GOSUB 1000 

'White blinking 
220 FORE= 17:GOSUB 1000 

'Underlined bright white blinking 
230 FORE= 10:GOSUB 1000 

'Bright white 
240 FORE= 9:GOSUB 1000 

'Underlined white 
250 FORE= 2:GOSUB 1000 

'White 
260 RETURN 
1000 PRINT 'Carriage return 
1010 FOR 1=1TO1000:NEXT I 

'Wait loop 
1020 FOR CHAR= 1 TO 6 

'Char = Graphics character to print 
1030 COLOR FORE.BACK 

'Print in specified color 
1040 PRINT CHR$(CHAR);BLANK$; 

'Print the character and a blank 
1050 PRINT CHR$(CHAR + 14);BLANK$; 
1060 PRINT CHR$(CHAR + 21 );BLANK$; 
1070 NEXT CHAR 
1080 RETURN 

This program prints graphics characters in all possible 
color combinations in normal mode and double size 
mode. 

293 



SGN Function 

SGN(number) 

Example 

Determines number's sign. 

If number is a negative number, SGN returns -1. 
If number is a positive number, SGN returns 1. 
If number is zero, SGN returns 0. 

Y = SGN(A • B) 

determines what the sign of the expression A • B is, and 
passes the appropriate number ( 1,0,1) to Y. 

Sample Program 
610 INPUT "ENTER A NUMBER"; X 
620 ON SGN(X) + 2 GOTO 630, 640, 650 
630 PRINT "NEGATIVE": END 
640 PRINT "ZERO": END 
650 PRINT "POSITIVE": END 

294 



SIN Function 

SlN(number) 

Example 

Computes the sine of number. 

Number must be in radians. To obtain the sine of number 
when number is in degrees, use SIN(number * 
.01745329). The result is always single precision. 

PRINT SIN(7.96) 

prints . 9943H'i 

Sample Program 
660 INPUT "ANGLE IN DEGREES"; A 
670 PRINT "SINE IS"; SIN(A * .01745329) 

295 



SOUND Statement 

SOUND tone, duration 

Generates a sound with the tone and duration specified. 

Tone is an integer in the range 37 and 32767 indicating the 
frequency in Hertz. Thirty-seven produces the lowest tone 
and 32767 produces the highest tone. 

Duration is an integer in the range 0 to 65535 specifying 
the duration in clock ticks. Clock ticks occur 18.2 times per 
second. One produces the shortest sound and 65535 pro­
duces the longest sound. 

While a SOUND statement produces noise, the program 
continues to execute. If another SOUND statement is en­
countered while the previous SOUND statement is still 
making noise, the program waits until the first sound ends 
before executing the next SOUND statement. However, if 
the duration of the new SOUND statement is zero, the 
previous SOUND statement is turned off. See the PLAY 
statement for more information about executing program 
lines during SOUND. 

This statement can be especially useful in educational 
applications. For example, you can have the computer 
respond with a sound if a user has answered a program's 
prompt incorrectly (or vice versa). 

You can use the SOUND or PlAY statements to generate 
musical notes from your computer. This chart shows the 
frequency you should specify to generate the notes in the 
octave above middle C. Middle C is the first note in the 
chart. 

Note Frequency 

c 523.25 
D 58733 
E 65926 
F 698.46 
G 783.99 
A 880.00 
B 987.77 
c 1046.50 

296 



7 I Statements and Functions 

To generate notes that are in the octave below middle C, 
find the frequency of the notes letter in the chart and 
divide that number by 2. For example, the note A in the 
octave below middle C has a frequency of 440.00 

To generate notes that are in the octave above middle C, 
find the frequency of the notes letter in the chart and 
multiply that number by 2. For example, the note A in the 
octave above middle C has a frequency of 1760.00. 

There are 1092 clock ticks per minute. To determine the 
number of clock tick'> for one beat, divide the beats per 
minute into 1092. The chart below shows the number of 
clock ticks for some typical tempos. 

Beats Ticks 
Tempo per Minute per Minute 

Largo 40-60 27.3 -18.2 
Largehetto 60-66 18.2 -16.55 
Adagio 66-76 16.55-14.37 
Andante 76-108 14.37-10.11 
Moderato 108-120 10.11- 9.1 
Allegro 120-168 9.1 6.5 
Presto 168-208 6.5 - 5.25 

Sample Program 
10 INPUT "IN HONOR OF WHOM WAS THE 

CONTINENT OF AMERICA NAMED"; A$ 
20 IF A$= "AMERIGO VESPUCCI" THEN SOUND 

32000,200 ELSE GOTO 40 
30 PRINT "THAT'S RIGHT!": END 
40 SOUND 37,2 : PRINT "THE CORRECT 

ANSWER IS AMERIGO VESPUCCI" 

297 



SPACE$ Function 

SPACE$(number) 

Example 

Returns a string of number spaces. 

Number must be in the range 0 to 255. 

PRINT "DESCRIPTION" SPACE$(4) 'TYPE" 
SPACE$(9) "QUANTITY" 

prints DESCRIPTION, four spaces, TI1}F.,, nine spaces, 
QUANTITY. 

Sample Program 
920 PRINT "Here" 
930 PRINT SPACE$(13) "is" 
940 PRINT SPACE$(26) "an" 
950 PRINT SPACE$(39) "example" 
960 PRINT SPACE$(52) "of" 
970 PRINT SPACE$(65) "SPACE$" 

298 



·---·------
SPC 
SPC(number) 

Function 

Example 

Prints number blanks. 

Number is in the range 0 to 255. SPC does not use string 
space. The left parenthesis must immediately follow SPC. 

SPC may only be used with PRINT, LPRINT, or PRINT# . 

PRINT "HELLO" SPC(15) "THERE" 

prints 

HELLO 

299 

THERE 



SQR Function 

SQR(number) 

Example 

Calculates the square root of number. 

The number mu.st be greater than zero. 

The result is always single precision. 

PRINT SQR(155.7) 

prints 12 4'7 9H 

Sample Program 
680 INPUT 'TOTAL RESISTANCE (OHMS)"; R 
690 INPUT "TOT AL REACT ANGE (OHMS)"; X 
700 Z SQR((R * R) + (X • X)) 
710 PRINT 'TOTAL IMPEDANCE (OHMS) IS" Z 

This program computes the total impedance for series 
circuits. 

~()() 



STICK Statement 

STICK (integer) = variable 

Returns the number of points moved along the x and y 
axes since the last STICK statement. 

integer may be zero to return the number of points moved 
on the x axis or one m return the number of points moved 
on the y axis. 

uariable is a numeric variable to hold the value returned 
by integer. 

If you specify zero for integer, the following values are 
returned: 

positive values, which indicate the number of points 
moved right on the x axis since the last STICK statement. 

negative values, which indicate the number of points 
moved left on the x axis since the last STICK statement. 

a zero, which indicates that no movement occurred on the 
x axis since the last STICK stnten1ent. 

if you specify one for integer, the following values are 
returned: 

positive values, which indicati; the number of points 
moved down on they axis since the last STICK statement. 

negative values, which indicate the number of points 
moved up on the Y axis since the last STICK statement 

a zero, which indicates that no movement occurred on the 
y axis since the last STICK statement. 

301 



Section II I The BAWC 

Example 
10 STICK(0) = XMOVE:STICK(1) = YMOVE 
20 IF STICK(0) < 0 THEN DIR$ = "left" ELSE DIR$ 

= "right" 
30 IF STICK(0) = 0 GOTO 40 ELSE PRINT "You 

moved" ABS(XMOVE) "pixels" DIR$ "and "; 
40 PRINT "You didn't move any pixels on the x axis 

and"; 
50 IF STICK(1) < 0 THEN DIR$ = "up" ELSE DIR$ 

="down" 
60 IF STICK(1) = 0 GOTO .70 ELSE PRINT "you 

moved" ABS(YMOVE) "pixels" DIR$"." 
70 PRINT "you didn't move any pixels on they axis." 

Line 10 stores the number of points moved on the x axis in 
XMOVE and stores the number of points moved on they 
axis in YMOVE. DIR$ is a string variable to store the 
direction that was moved. If the number returned by the 
STICK function is negative, the direction is left or up. If the 
number returned is positive, the direction is right or 
down. Lines 20-70 test the values returned by the two 
STICK functions and prim a message to tell how many 
poitits you moved on each axis or that you didn't move any 
points. 

302 



STOP 
STOP 

Statement 

Stops program execution. 

When a program encounters a STOP statement, it prints 
the message BREAK IN, followed by the line number that 
contains the STOP. STOP is primarily a debugging tool. 
During the break in execution, you can examine variables 
or change their values. 

The CONT command resumes execution at the point it 
was halted. But if the program itself is altered during the 
break, CONT cannot be used. 

Unlike the END statement, STOP does not close files. 

Sample Program 
2260 X = RND(10) 
2270 STOP 
2280 GOTO 2260 

A random number between 1 and 10 is assigned to X, then 
program execution halts at line 2270. You can now ex­
amine the value X with PRINT X. Type CONT to start the 
cycle again. 

303 



STR$ Function 

STR$(number) 

Example 

Converts number into a string. 

If number is positive, STR$ places a blank before the 
string. 

While arithmetic operations may be performed on num­
ber, only string functions and operations may be per­
formed on the string. 

S$ STR$(X) 

converts the number X into a string and stores it in S$. 

Sample Program 
10 A = 1.6: B# = A: C# = VAL(STR$(A)) 
20 PRINT "REGULAR CONVERSION" TAB(40) 

"SPECIAL CONVERSION" 
30 PRINT B# T AB(40) C# 

304 



STRIG/Function Enable 
STRIG ON 

Statement 

STRIG OFF 

Enables the STRJG Function command. 

STRIG ON 
When you load BASIC, the default is STRJG OFF and you 
cannot execute STRJG/Function statements. STRJG ON 
lets you execute STRJG/Function statements to return the 
status of the mouse buttons. If you attempt to execute a 
STRJG/Function statement before you execute a STRJG 
ON statement, BASIC issues an "Illegal function call" 
error. 

STRIG OFF 
If you execute a STRJG OFF statement you may not ex­
ecute a STRJG/Function statement. Executing a STRJG/ 
Function statement after a STRJG OFF statement results in 
an "Illegal function call" error. 

You cannot place a STRJG/Function statement in a sub­
routine that you branch to as a result of an ON STRJG( ) 
GOSUB statement. BASIC does not keep track of which 
button was pressed after the ON STRJG( ) GOSUB state­
ment is executed. If you wish to trap both buttons and 
perform a different procedure for each button, you must 
execute a STRJG/Trap Enable for each button and you 
must branch to different subroutines with different ON 
STRJG( ) GOSUB statements. 

See STRJG Function, STRJGffrap Enable and ON STRJG( ) 
GOSUB for additional information on the mouse button 
trapping. 

305 



STRIG/Trap Enable 
STRIG(integer) ON 
STRIG(integer) OFF 
STRIG(integer) STOP 

Statement 

Turns on, turns off, or temporarily halts mouse trapping. 

integer is a value of 0 or 2 to indicate the mouse button you 
are trapping. 0 indicates the left button and 2 indicates the 
right button. 

STRIG{) ON 
STRIG( ) ON enables mouse trapping with the ON 
STRIG() GOSUB statement. If you execute a STRIG() ON 
statement, BASIC checks after every program statement to 
see if you pressed the mouse buttons. If you press the 
mouse buttons, BASIC transfers program control to the 
line number specified in the ON STRIG( ) GOSUB state­
ment. See ON STRIG( ) GOSUB. 

Note: Do not confuse the STRIG!frap Enable statement 
with the STRIG/Function Enable statement. These 
are two separate statements that perform two dis­
tinct functions in BASIC. 

STRIG{ )STOP 
STRIG STOP temporarily halts mouse trapping. If you 
press the mouse buttons after a STRIG STOP statement is 
executed, BASIC does not transfer program control to the 
subroutine until mouse trapping is turned on again with a 
STRIG ON statement. BASIC remembers that the mouse 
buttons were pressed and transfers program control to the 
subroutine immediately after mouse trapping is turned on 
again. 

306 



Chapter 7 I Statements and Functions 

STRIG OFF 

Example 

STRIG( ) OFF turns off mouse button trapping with the 
ON STRIG( ) GOSUB statement. 

When you load BASIC, STRIG( ) OFF is the default because 
STRIG trapping slows program execution. Therefore, if 
you execute a STRIG( ) ON statement to enable mouse 
button trapping, we recommend that you also execute a 
STRIG( ) OFF statement when you no longer need to 
check for mouse button activity. 

If you press the mouse buttons after a STRIG OFF state­
ment is executed, BASIC does not remember that the 
mouse buttons were pressed when mouse trapping is 
turned on again. 

10 STRIG(0) ON:STRIG(2) ON 
20 ON STRIG(0) GOSUB 1000 
30 ON STRIG(2) GOSUB 2000 

Line 10 turns on mouse button trapping. When you press 
the left mouse button, BASIC transfers program control to 
the subroutine beginning at Line 1000. If you press the 
right mouse buttons, BASIC transfers program control to 
the subroutine beginning at Line 2000. 

307 



STRIG Function 

variable - STRIG integer 

Returns the status of mouse buttons. 

integer is a number in the range 0 to 3 to test the status of 
the mouse buttons. 

variable is a numeric variable to recieve the value re­
turned by integer. 

Each integer tests for a different status of the two buttons 
and returns a numeric value in variable regarding the 
results of the test. The integers and their functions are 

O Tests to see if the left button has been pressed and 
released since the last STR1G/Function statement was 
executed. If the left button has been pressed since the 
last test, BASIC returns a - 1 in variable. If the button 
has not been pressed, BASIC returns a 0. 

1 Tests to see if you are currently pressing the left but­
ton. If you are pressing the left button, BASIC returns a 

1 in variable. If you are not pressing the button, 
BASIC returns a 0. 

2 Tests to see if the right button has been pressed and 
released since the last STR1G/Function statement was 
executed. If the right button has been pressed and 
released since the last test, BASIC returns a 1 in 
variable. If the button has not been pressed and re­
leased, BASIC returns a 0. 

3 Tests to see if you are currently pressing the right 
button. If you are currently pressing the right button, 
BASIC returns a -1 in variable. If you are not pressing 
the button, BASIC returns a 0. 

308 



Chapter 7 I Statements and Functiom 
ON"'•-•~<--•,~-···---

You must execute a STRIG/Function Enable statement 
before you can execute a STRIG/Function statement. If you 
attempt to execute a STRIG/Function statement before you 
execute a STRIG/Function Enable statement, BASIC issues 
an "Illegal function call" error. See STRIG/Function En­
able Trap. 

309 



Section II I The BASIC Language 

Exam pie 

You cannot place a STRIG/Function statement in a sub­
routine that you branch to as a result of an ON STRIG( ) 
GOSUB statement. BASIC does not keep track of which 
button was pressed after the ON STRIG( ) GOSUB state­
ment is executed. If you wish to trap both buttons and 
perform a different procedure for each button, you must 
execute a STRIG!frap Enable for each button and you 
must branch to different subroutines with different ON 
STRIG( ) GOSUB statements. 

10 STRIG ON:PRINT "Press one of the mouse 
buttons." 

20 FOR I = 1TO1000:NEXT I 
30 STAT0 = STRIG(0):STAT1 STRIG(1) 
40 STAT2 = STRIG(2):STAT3 STRIG(3) 
50 IF STAT0 = -1 THEN PRINT "You pressed the 

left button." 
60 IF STAT1 = -1 THEN PRINT "You are still 

pressing the left button." 
70 IF STAT2 = -1 THEN PRINT "You pressed the 

right button." 
80 IF STAT3 = -1 THEN PRINT "You are still 

pressing the right button." 
90 IF STAT0 = 0 AND STAT1 0 AND STAT2 = 

0 AND STAT3 = 0 THEN PRINT "Aren't you 
going to press a button?":GOTO 20 

Line 10 enables the mouse function and prints a message 
telling you to press one of the mouse buttons. Line 20 
gives you time to press one of the mouse buttons. Lines 30 
and 40 check to see if either button has been pressed or is 
currently being pressed. Lines 50-90 print a message re­
porting the status of the buttons. If the buttons weren't 
pressed, Line 80 prints a message, and the program loops 
to Line 10 to start again. To end this program, press 
CWAKJ. 

310 



STRING$ Function 

STRING$(number,character) 

Examples: 

Returns a string of number characters. 

Number must be in the range 0 to 255. 

Character is a string or an ASCII code. If you use a string 
constant, it must be enclosed in quotes. All the characters 
in the string have either the ASCII code specified, or the 
first letter of the string specified. 

STRING$ is useful for creating graphs or tables. 

8$ STRING$(25, "X") 

puts a string of 25 "X"s into 8$. 

PRINT STRING$(50, 10) 

prints 50 blank lines on the display, since 10 is the ASCII 
code for a line feed. 

Sample Program 
1040 CLEAR 300 
1050 INPUT "TYPE IN THREE NUMBERS 

BETWEEN 33 AND 159"; N1, N2, N3 
1060 CLS: FOR I 1TO4: PRINT STRING$(20, 

N1): NEXT I 
1070 FOR J = 1 TO 2: PRINT STRING$(40, N2): 

NEXT J 
1080 PRINT STRING$(80, N3) 

This program prints three strings. Each string has the 
character corresponding to one of the ASCII codes 
provided. 

311 



SWAP Statement 

SW AP varlablel, variable2 

Example 

Exchanges the values of two variables. 

Variables of any type may be SWAPed (integer, single 
precision, double precision, string). However, both must 
be of the same type, otherwise, a 'Type mismatch" error 
results. 

Either or both of the variables may be elements of arrays. If 
one or both of the variables are non-array variables which 
have not been assigned values, an "Illegal Function Call" 
error results. 

SWAP F1#, F2# 

swaps the contents of Fl# and F2#. The contents of F2# 
are put il)to Fl#, and the contents of Fl# are put intoF2#. 

Sample Program 
10 A$="0NE ":B$·="ALL ":C$="FOR" 
20 PRINT A$ C$ B$ 
30 SWAP A$, B$ 
40 PRINT A$ C$ B$ 
RUN 
ONE FOR ALL 
ALL FOR ONE 

312 



SYSTEM 
SYSTEM 

Examples 

Statement 

Returns you to MS-DOS level. 

Your resident BASIC program is not retained in 
memory. 

Note: You cannot call DEBUG from BASIC. 

SYSTEM 

returns you t;,:i MS-DOS. Your resident BASIC program is 
lost. 

313 



TAB Function 

TAB( number) 

Spaces to position number on the display. 

Number must be in the range 1 to 255. 

If the current print position is already beyond space num­
ber, TAB goes to that position on the next line. Space one is 
the leftmost position; the width minus one is the rightmost 
position. 

TAB may only be used with the PRINT and LPRINT 
statements. 

Sample Program 
10 PRINT "NAME" T Aa(25) "AMOUNT":PRINT 
20 READ A$, 8$ 
30 PRINT A$ T A8(25) 8$ 
40 DATA "G.T.JONES'',"$25.00" 
RUN 

The display shows: 

NAME 

G.T.JONES 

314 

AMOUNT 

$25.00 



TAN Function 

TAN(number) 

Example 

Computes the tangent of number. 

Number must be in radians. To obtain the tangent of 
number when it is in degrees, use TAN (number • 
.01745329 ). The result is always single precision. 

PRINT TAN(7.96) 

prints 93969:;9 

Sample Program 
720 INPUT "ANGLE IN DEGREES"; ANGLE 
730 T T AN(ANGLE * .017 45329) 
740 PRINT 'TAN IS" T 

315 



TIME$ Statement 

variable= TIME$ 

TIME$=" string' 

Sets or retrieves the current time. 

variable is a variable in your BASIC program that receives 
the current time. 

string is a literal, enclosed with quotes, that sets the time 
by assigning its value to TIME$. 

You set the time in the format hh:mm:ss, where hh is the 
hours, mm is the minutes, and ss is the seconds. BASIC 
uses a 24 hour clock. For example, it sets 8:15 P.M. as 
20:15:00. 

Setting the Time 
bb may be any number 0 through 23. 

mm and SS may be any number 0 through 59. If you omit 
the minutes, minutes and seconds default to zero. If you 
omit the seconds, seconds default to zero. 

Although you may omit leading zeros in each of the values, 
you must include at least one digit of the previous value. 
For example, you may type 0:5 to set the time to 12:05 a.m. 
However, :5 is invalid. 

Retrieving the Time 
BASIC always returns the time in the eight character 
(hh:mm:ss) format, with leading zeros. The time may be 
set by the operator prior to entering BASIC. If the operator 
did not set the time at the MS-DOS time prompt and the 
time was not set with the TIME$ statement, BASIC returns 
the length of the time that has elapsed since the terminal 
was powered on. 

316 



7 I Statements and Functions 

Examples 
TIME$ ="1 :" 

sets the current time to 01:00:00. 

TIME$ "14:15" 

sets the current time to 14:15:00. 

TIME$ = "3:3:3" 

sets the current time to 03:03:03. 

A$ TIME$ 

assigns the current time to the variable A$. 

317 



TROFF, TRON Statements 

TROFF 
TRON 

Turn the "trace function" on/off. 

The trace function lets you follow program flow. This is 
helpful for debugging and analyzing the execution of a 
program. 

Each time the program advances to a new line, TRON 
displays that line number inside a pair of brackets. TROFF 
turns the tracer off. 

Sample Program 
2290 TRON 
2300 x = x • 3. 14159 
2310 TROFF 

Lines 2290 and 2310 above might be helpful in assuring 
you that line 2300 is actually being executed, since each 
time it is executed [2300] is printed on the display. 

After a program is debugged, the TRON and TROFF state­
ments can be removed. 

318 



USR Function 

USR[ digit](argument) 

Calls a user's assembly-language subroutine identified 
with digit and passes argument to that subroutine. 

The digit you specify must correspond to the digit sup­
plied with the DEFUSR statement for that routine. If digit is 
omitted, zero is assumed. 

This function lets you call as many as 10 machine-language 
subroutines, then continue execution of your BASIC pro­
gram. Subroutines must have been previously defined 
with DEFUSR(digit] statements. 

We recommend that you use the CAll statement to inter­
face assembly language programs with BASIC programs. 
Do not use the USR function unless you are running 
previously written BASIC programs that already contain 
USR statements. 

Before you can execute a USR function call, you must 
define the subroutine's address in a DEF SEG and DEF 
USR statement. The DEF SEG defines the address of the 
segment containing the subroutine. The DEF USR state­
ment defines the subroutine being called and its offset 
from the beginning of the segment. This offset and the 
most recent DEF SEG address specify the entry point of the 
subroutine. See DEF SEG, DEF lJSR, and the section "In­
terfacing Assembly Language Subroutines"in Appendix E. 

"Machine language" is the low-level language that your 
computer uses internally. It consists of 8086 micro­
processor instructions. Machine-language subroutines are 
useful for special applications (things you can't do in 
BASIC) and for doing things very fast (like to "white-out" 
the display). Writing such routines requires familiarily 
with assembly-language programming and with the 8086 
instruction set. 

319 



VAL 
VAL( string) 

Examples 

Function 

Calculates the numerical value of string. 

VAL is the inverse of the STR$ function; it returns the 
number represented by the characters in a string argu­
ment. This number may be integer, single precision, or 
double precision, depending on the range of values and 
the rules used for typing all constants. 

For example, if A$ "12" and 8$ = "34'' then VAL(A$ + 
"." + B$) returns the value 12.34 and VAL(A$ + "E'' + 
B$) returns the value 12E34, chat is, 12 * 10"34. 

VAL terminates its evaluation on the first character which 
has no meaning in a numeric value. 

If the string is non-numeric or null, VAL returns a zero. 

PRINT VAL("100 DOLLARS") 

prints 10(1. 

PRINT VAL("1234E5") 

B = VAL("3" + "•" + "2") 

assigns the value 3 to B (the asterisk has no meaning in a 
numeric term). 

Sample Prograill 
10 READ NAME$, CITY$, STATE$, ZIP$ 
20 IF VAL(ZIP$) < 90000 OR VAL(ZIP$) > 96699 

THEN PRINT NAME$ TAB(25) "OUT OF STATE" 
30 IF VAL(ZIP$) > 90801 AND VAL(ZIP$) < = 

90815 THEN PRINT NAME$ TAB(25) "LONG 
BEACH" 

320 



VARPTR Function 

V ARPTR (variable) 

VARPTR (#buffer) 

Returns the offset into BASIC's data segment of a variable 
or the file control block. 

VARPTR can help you locate a value in memory. When 
used with variable, it returns the address of the first byte of 
data identified with variable. To see the format of how this 
data is stored see the section "How Variables are Stored" 
in Appendix E. 

When used with buffer, it returns the address of the file's 
file control block. 

If the variable you specify has not been assigned a value, 
an "Illegal Function Call" occurs. If you specify a buffer 
that was not allocated when loading BASIC, a "Bad file 
number" error occurs. (See Chaptet 1 for information on 
how to load BASIC.) 

The offset returned is an integer in the range - 32768 to 
32767. It is always an offset into BASIC's data segment, 
regardless of whether a DEF SEG has been executed to 
change the segment. 

VARPTR is used primarily to pass a value to a machine­
language subroutine via USR[ digit]. Since VARPTR returns 
an offset which indicates where the value of a variable is 
stored, this address can be passed to a machine-language 
subroutine as the argument of USR; the subroutine can 
then extract the contents of the variable with the help of 
the address that was supplied to it. 

If VARPTR returns a negative address, add it to 65536 to 
obtain the actual address. 

321 



VARPTR$ Function 

V ARPTR$( variable) 

Example 

Returns a character form of the address of a variable in 
memory. 

variable is a variable name in your BASIC program. 

V ARPTR$ returns a three byte string in the form: 

Byte O type indicates the type of variable. 
Byte 1 low order byte of variable address. 
Byte 2 high order byte of variable address. 

The value returned in Byte 0 is 2 for integer variables, 3 for 
string variables, 4 for single-precision variables, and 8 for 
double precision varaibles. 

You must assign all simple variables in an array before you 
use VARPTR$. Addresses of arrays change when you assign 
a new simple variable. 

VARPTR$ is primarily used with the PI.AYand DRAW state­
ments in programs that you want to compile because the 
complier does not support the X subcommand. To ex­
ecute a substring with compiler, you must append the 
character form of the address of the substring to "X". 

DRAW "XA$;" 

DRAW "X" + VARPTR$(A$) 

These statements are equivalent. The first statement is for 
interpreter BASIC and the second statement is for compil­
er BASIC. The second statement appends the address of 
the variable A$ to the X subcommand. 

322 



WAIT Statement 

WAIT port, integerl [,integer2] 

Example 

Suspends program execution until a machine input port 
develops a specified bit pattern. (A port is an input/output 
location.) 

The data read at the port is exclusive OR'ed with integer2, 
then AND'ed with integerl. If the result is zero, BASIC 
loops hack and reads the data at the port again. If the result 
is nonzero, execution continues with the next statement. If 
integer2 is omitted, it is assumed to be zero. 

It is possible to enter an infinite loop with the WAiT 
statement. In this case, you will have to manually restart 
the machine. To avoid this, WAiT must have the specified 
value at port number during some point in program 
execution. 

100 WAIT 32,2 

323 



WHILE .... WEND 
WHILE expression 

{loop statements} 

WENO 

Statement 

Execute a series of statements in a loop as long as a given 
condition is true. 

If expression is not zero (true), BASIC executes loop state­
ments until it encounters a WEND. BASIC returns to 
the WHILE statement and checks e:>.pression. If it is still 
true, BASIC repeats the process. If it is not true, execution 
resumes with the statement following the WEND 
statement. 

WHILE/WEND loops may be nested to any level. Each 
WEND matches the most recent WHILE. An unmatched 
WHILE statement causes a "WHILE without WEND" error, 
and an unmatched WEND causes a "WEND without 
WHILE" error. 

Sample Program 
90 'BUBBLE SORT ARRAY A$ 
100 FLIPS= 1 'FORCE ONE PASS THRU LOOP 
110 WHILE FLIPS 
115 FLIPS =0 
120 FOR I = 1 TO J - 1 
130 IF A$(1)>A$(1+1 )THEN 

SWAP A$(1), A$(1+1 ): FLIPS= 1 
140 NEXT I 
150 WEND 
This program sorts the elements in array A$. We assume 
Array A$ has been defined previously in the program. 
Control falls out of the WHILE loop when no more SWAPS 
are performed on line 130. 

324 



WIDTH Statement 

WIDTH[LPRINT]size 
WIDTH buffer, size 
WIDTH device, size 

Sets the line width in number of characters for the display, 
line printer, or communication channel. 

size may be an integer in the range 0 to 255 that specifies 
the number of characlers in a line. For the screen, size may 
only be 40 or 80. 

buffer is an integer in the range of 0 to 15 and specifies the 
buffer used in the OPEN statement. 

device is a string expression, enclosed in quotes, that 
specifies on which device you want to set the WIDTI-l. Valid 
devices are: 

SCRN: 
LPTl: or LPT2: 
COMl: 

indicates the screen. 
indicates Line Printer 1 or 2. 
indicates the communication 
channel. 

When you specify a device, BASIC stores the new width 
and does not change the current width of the device. 
·when a subsequent OPEN statement opens that device, 
BASIC uses the new width while t!)e file is open. After you 
close the file, the device returns to the previous width. 

When you specify buffer, BASIC changes the width im­
mediately. This allows you to change the width when the 
file is open. To return to the previous width, you must 
execute another width statement. 

When you set the width at the line primer or the com­
munication channel, BASIC sends a carriage return after 
every size characters. If you set the width to 255 for the 
communication channel, BASIC sends a carriage return 
after sending the 255th character. 

325 



Section II I 1be BASIC Language 

10 WIDTH LPRINT 100 
20 LPRINT "This line is over 100 characters long. 

See what happens when you print a string longer 
than width setting." 

Line 10 sets the printer width to 100 characters. After 
printing 100 characters, BASIC issues a carriage renirn. 
The carriage return causes the printer to print the remain­
ing characters on the next line. 

To set WIDTH at the screen, you may omit the LPRINT 
option in the first form of the syntax, like this: 

WIDTH 40 

or you may use the third form of the syntax and specify the 
device, like this: 

WIDTH "SCAN:", 40 

You may only use the WIDTH statement to select a WIDTH 
of 80 if you are using the VM-1 Monochrome Monitor or 
CM-1 Color Monitor. If you are using the VM-1 
Monochrome Monitor or the CM-1 Color Monitor, you 
should note the following: 

326 



7 I Statements and Functiom 

1. If you change the screen width, BASIC clears the 
screen. 

2. If you are in Screen Mode 1, changing the WIDTH to 80 
forces the screen into Screen Mode 4. 

3. If you are in Screen Mode 2 or 4, changing the WIDTH 
to 40 forces the screen into Screen Mode 1. 

If you attempt to select a size outside the range of 0 to 255, 
an "Illegal function call" error results. 

327 



Section II I The BAS/ C LanJittaQe 

Examples 
WIDTH LPRINT 132 
WIDTH "LPT1 :", 132 

both of these statements change the printer width to 132. 
The second statement does not change the printer width 
until LPTl: is specified as the device in an OPEN statement. 

10 WIDTH LPRINT 80 

100 OPEN "LPT1 :" FOR OUTPUT AS #1 

150 PRINT #1 

1000 WIDTH #1, 40 

Line 10 changes the width of the printer to 80 characters. 
Line 150 prints the records as 80 characters each. After 
BASIC executes Line 1000, Line 150 prints the records as 
40 characters each. 

328 



WRITE Statement 

WRITE [data, ... ] 

Example 

Writes data on the display. 

WRITE prints the values of the data items you type. If 
data is omitted, BASIC prints a blank line. The data may 
be numeric and/or string. They must be separated by 
commas. 

When the data is printed, each data item is separated from 
the last by a comma. Strings are delimited by quotation 
marks. After printing the last item on the list, BASIC inserts 
a carriage return. WRITE prints numeric values using the 
same format as the PRINT statement. See PRINT. 

10 D = 95:B = 76:V$ ="GOOD BYE" 
20 WRITE D, B,' V$ 
RUN 
95, 76, "GOOD BYE" 

Ok 

329 



WRITE# Statement 

WRITE# bu/Ier, data, ... 

Writes data to a sequential-access file. 

Buff er must' be the number used to OPEN the file. 

The data you enter may be numeric or string expressions. 

WRITE# inserts commas between the data items as they 
are written to disk. It delimits strings with quotation 
marks. Therefore, it is not necessary to put explicit delim­
iters between the data. 

The items on data must be separated by commas. 

WRITE# inserts a carriage return after writing the last data 
item to disk. 

For example, if 

A$= "MICROCOMPUTER" and B$ ="NEWS" 

the statement 

WRITE#1, A$,B$ 

writes the following image to disk: 

"MICROCOMPUTER", "NEWS" 

330 





Section III I Appendices 

331 





Code 

Appendix A 
BASIC Error Codes and Messages 

Number 

1 

Message 

NEXT without FOR 

A variable in 'l NEXT statement does not cor­
respond to any previously executed, unmatch­
ed FOR statement variable. 

2 Syntax error 

BASIC encountered a line that contains an in­
correct sequence of characters (such as un­
matched parenthesis, misspelled statement, 
incorrect punctuation, etc.). BASIC automati­
cally enters the edit mode at the line that 
caused the error. 

3 Return without GOSUB 

BASIC encountered a RETUR."l statement for 
which there is no matching GOSUB statement. 

4 Out of data 

5 

BASIC encountered a READ statement, but no 
DATA statements with unread items remain in 
the program. 

Illegal function call 

A parameter that is out of range was passed to a 
math or string function. An FC error may also 
occur as the result of: 

a. A negative or unreasonably large subscript. 

b. A negative or zero argument with LOG. 

c. A negative argument to SQR. 

d. A negative mantissa with a noninteger ex­
ponent. 

e. A call to a USR function for which the start­
ing address has not yet been given. 

333 



Section Ill I 

f. An improper argument to MID$, LEFT$, 
RIGHT$, PEEK, POKE, TAB, SPC, STRING$, 
SPACE$, INSTR, or ON ... GOTO. 

6 Overflow 

The result of a calculation was too large to be 
represented in BASIC numeric format. If 
underflow occurs, the result is zero and execu­
tion continues without an error. 

7 Out of memory 

A program is too large, or has too many FOR 
loops or GOSUBs, too many variables, or ex­
pressions that are too complicated. 

8 Undefined line number 

A nonexistent line was referenced in a GOTO, 
GOSUB, IF ... THEN ... ELSE, or DELETE state­
ment. 

9 Subscript out of range 

An array element was referenced either with a 
subscript that is outside the dimensions of the 
array, or with the wrong number of subscripts. 

10 Duplicate definintion 

Two DIM statements were given for the same 
array, or a DIM statement was given for an 
array after the default dimension of 10 has 
been established for that array. 

334 



Appendix A I Error Codes and Messages 

11 Division by zero 

An expression includes division by zero, or the 
operation of involution results in zero being 
raised to a negative power. BASIC supplies 
machine infinity with the sign of the numer­
ator as the result of the division, or it supplies 
positive machine infinity as the result of the 
involution. Execution then continues. 

12 Illegal direct 

A statement that is illegal in direct mode was 
entered as a direct mode command. 

· 13 Type mismatch 

A string variable name was assigned a numeric 
value or vice versa. A numeric function was 
given a string argument or vice versa. 

14 Out of string space 

String variables have caused BASIC to exceed 
the amount of free memory remaining. BASIC 
allocates string space dynamically, until it runs 
out of memory. 

15 String too long 

An attempt was made to create a string more 
than 255 characters long. 

16 String formula too complex 

A string expression is too long or too complex. 
The expression should be broken into smaller 
expressions. 

17 Can't continue 

An attempt was made to continue a program 
that: 

a. Has halted due to an error. 

335 



Section II I I 

b. Has been modified during a break in execu­
tion. 

c. Does not exist. 

18 Undefined user function. 

A USR function was called before providing a 
function definition (DEF statement). 

19 No RESUME 

An error-handling routine was entered with­
out a matching RESUME statement. 

20 RESUME without error 

A RESUME statement was encountered prior to 
an error-handling routine. 

21 Unprintable error 

An error message is not available for the error 
that occurred. 

22 Missing operand 

An expression contains an operator with no 
operand. 

23 Line buffer overflow 

An attempt was made to input a· line with too 
many characters. 

24 Device Timeout 

BASIC did not receive information from an I/O 
device wichin a predetermined amount of 
time. 

25 Device Fault 

Indicates a hardware error in the printer or 
interface card. 

26 FOR without NEXT 

A FOR statement was encountered without a 
matching NEXT. 

336 



Appendix A I Error Codes and Messages 

27 Out of paper 

The printer is out of paper. 

29 WHILE without WEND 

A WHILE statement does not have a matching 
WEND. 

30 WEND without WHILE 

A WEND statement was encountered without a 
matching WHILE. 

Disk Errors 

50 Field overflow 

A FIELD statement is attempting to allocate 
more bytes than were specified for the record 
length of a direct-access file. 

51 Internal error 

An internal malfunction has. occurred in 
BASIC. Report the conditions under which the 
message appeared to Radio Shack 

52 Bad file number 

A statement or command references a file with 
a buffer number that is not OPEN or is out of 
the range of file numbers specified at initializa. 
ti on. 

53 File not found 

A LOAD, KILL, or OPEN statement references a 
file that does not exist on the current disk 

54 Bad file mode 

An attempt was made to use PUT, GET, or LOF 
with a sequential file, to LOAD a direct file, or 
to execute an OPEN statement with a file mode 
other than I, 0, R, or A. 

337 



Section III I Appendices 

55 File already open 

An OPEN statement for sequential outpur was 
issued for a file that is already open; or a KILL 
statement was given for a file that is open. 

57 Device VO error 

An Input/Output error occurred. This is a fatal 
error; the operating system cannot recover it. 

58 File already exists 

The filespec specified in a NAME statement is 
identical to a filespec already in use on the 
disk. 

61 Disk full 

All disk storage space is in use. 

62 Input past end 

An INPUT statement was executed after all the 
data in the file had been INPUT, or for a null 
(empty) file. To avoid this error, use the EOF 
function to detect the end-of-file. 

63 Bad record number 

In a PUT or GET statement, the record number 
is either greater than the maximum allowed 
(32,767) or equal to zero. 

64 Bad file name 

An illegal filespec (file name) was used with a 
LOAD, SAVE, KILL, or OPEN statement (for 
example, a filespec with too many characters). 

66 Direct statement in file 

A direct statement was encountered while 
LOADing an ASCII-format file. The LOAD is 
terminated. 

338 



.Appendix A I Error Codes and M~essages 

67 Too many files 

An attempt was made to create a new file (us· 
ing SAVE or OPEN) when all directory entries 
are fulL 

68 Device Unavailable 

An attempt was made to open a file to a non­
existent device. It may be that hardware did 
not exist to support the device, such as LPT2: or 
LPT3:, or was disabled by the user. This occurs 
if an OPEN "COM1: ... statement is executed 
but the user disabled RS232 support via the 
/C:O switch directive on the command line. 

69 Communication buffer overflow 

Occurs when a communication input state­
ment is executed and the input queue is 
already full. Use an ON ERROR GOTO state­
ment to retry the input when this condition 
occurs. Subsequent inputs attempt to clear this 
fault unless characters continue to be received 
faster than the program can process them. In 
this case several options are available: 

a. Increase the size of the COM receive buffer 
via the /C: switch. 

b. Implement a "hand-shaking" protocol with 
the host/satellite such as XON/XOFF to turn 
transmit off long enough to catch up. 

c. Use a lower Baud rate for transmit and re­
ceive. 

70 Disk Write Protect 

This is one of 3 "hard" disk errors returned 
from the diskette controller. This occurs when 
an attempt is made to write to a diskette that is 
write protected. Use an ON ERROR GOTO 
statement to detect this situation and request 
operator action. 

339 



Section If!/ App~ices 

71 Disk not Ready 

Occurs when the diskette drive door is open 
or a diskette is not in the drive. Again use an 
ON ERROR GOTO statement to recover. 

72 Disk Media Error 

Occurs when the FDC controller detects a 
hardware or media fault. This usually indicates 
harmed media. Copy any existing files to a new 
diskette and re-format the damaged diskette. 
FORMAT flags the bad tracks and places them 
in a file "badtrack". The remainder of the dis­
kette is now usable. 

74 Rename across disks 

An attempt was made to rename a file with a 
new drive designation. This is not allowed. 

340 



Appendix B 
-~-.·.~-·,-~---·-~·-~-~-·····-~~--~,.; .. ~ .. ~ 

BASIC Reserved Words an.d Derived 
Functions 

Reserved BASIC Words 
ABS DEF USR LEN PEN STRIG 
AND DELETE LET PIAY STRING$ 
ASC DIM LINE POINT SWAP 
AlN DRAW LIST POKE SYSTEM 
AUTO EDIT ll.IST POS TAB 
BEEP ELSE LOAD PRESET TAN 
BLOAD END LOC PRINT TIIEN 
BSAVE EOF LOCATE PRINT# TIME$ 
CALL ERASE LOF PSET TO 
CDBL ERL LOG PUT TROFF 
CHAIN ERR LPOS Rful\/DOMIZE TRON 
CHR$ ERROR LPRINT READ USING 
CINT EXP LSET REM USR 
CIRCLE FIELD MERGE REN UM VAL 
CLEAR FILES MID$ RESET VARPTR 
CLOSE FIX MKD$ RESTORE VARFTR$ 
CLS FN MKI$ RESUME WAIT 
COLOR FOR MKS$ RETURN WEND 
COM FRE MOD RIGHT$ WHILE 
COMMON GET MOTOR Ri'\/D WIDTII 
CONT GOSUB NAME RSET WRITE 
cos GOTO NEW RUN WRITE# 
CSRLIN HEX$ NEXT SAVE XOR 
CSNG IF NOT SBN 
CVD IMP OCT$ SCREEN 
CV! INKEY$ OFF SGN 
CVS INP ON SIN 
DATA INPUT OPEN SOUND 
DATE$ INPUT# OPTION SPACE$ 
DEF INPUT$ OR SPC 
DEFDBL INSTR OUT SQR 
DEFINT INT PAINT STEP 
DEFSNG KEY PALETTE STICK 
DEFSTR KILL PALETTE USING STOP 
DEFFN LEFT$ PEEK STR$ 

341 



Section III I Appendices 

Derived BASIC Functions 
Functions which are not intrinsic to BASIC may be calculated as follows: 

Function 
SECANT 
COSECANT 
COTANGENT 
INVERSE SINE 
INVERSE COSINE 

INVERSE SECANT 

INVERSE 
COSECANT 

INVERSE 
COTANGENT 

HYPERBOLIC 
SINE 

HYPERBOLIC 
COSINE 

HYPERBOLIC 
TANGENT 

HYPERBOLIC 
SECANT 

HYPERBOLIC 
COSECANT 

HYPERBOLIC 
COTANGENT 

INVERSE 
HYPERBOLIC 
SINE 

INVERSE 
HYPERBOLIC 
COSINE 

INVERSE 
HYPERBOLIC 
TANGENT 

BASIC Equivalent 
SEC(X) = l/COS(X) 
CSC(X) = l/SIN(X) 
COT(X) = ltTAN(X) 
ARCSIN(X) =ATN(X/SQR( - X•X + 1)) 
ARCCOS(X) = -ATN(X/SQR( - X•X + 1)) 
+ 1.5708 
ARSCEC(X) =ATN(X/SQR(X*X-1)) 
+ (SGN(X)- l)•l.5708 

ARCCSC(X) =A TN(X/SQR(X •X - 1)) 
+ (SGN(X)- l)•l.5708 

ARCCOT(X) = ATN(X) + 1.5708 

SINH(X)"""" (EXP(X)- EXP( - X))/2 

COSH(X) = (EXP(X) + EXP( - X) )/2 
TANH(X) = (EXP(X)- EXP( - X))/ 
(EXP(X) +EXP( - X) 

SECH(X) = 2/(EXP(X) +EXP( - X)) 

CSCH(X) = 2/(EXP(X) - EXP( - X)) 
COTH(X) = (EXP(X) + (EXP( - X) )/ 
(EXP(X) - EXP( - X)) 

ARCSINH(X) =LOG(X + SQR(X*X= 1)) 

ARCCOSH(X) = LOG(X + SQR(X*X-1)) 

ARCT ANH(X) =LOG( ( 1 + X)/( 1 - X) )/2 

342 



Appendix BI Reserved Words and Derived Functions 

INVERSE 
HYPERBOLIC 
SECAl"\JT 

INVERSE 
HYPERBOLIC 
COSECANT 

INVERSE 
HYPERBOLIC 
COTANGENT 

ARCSECH(X) = LOG((SQR( - X*X + 1) 
+ 1)/X) 

ARCCSCH(X)=LOG((SGN(X)*SQR(X*X + 1) 
+1/X) 

ARCCOTH(X) = LOG(X + 1 )/(X - 1 )/2 

343 





Appendix C Video Display Worksheet 

344 



Appendix D 

Memory Map 

Hexadecimal Address 
(Segment:Offset) 

0000:0 to 0AFF:F 

0B00:0 to xA00:0 

xB00:0 to xB39:0 

xB40:0 to xCFF:0 

C000:0 to DFFF:0 

E000:0 to E7FF:0 

E800:0 to F7FF:0 

F800:0 to F9FF:0 

FA00:0 to FBFF :0 

FC00:0 to FFFF:0 

345 

Description 

System Area 

Available to User 
See Note on next page 

Hardware Stack 
512 levels 

Video Display RAM 
Screen Buffers 
Room for eight 40 x 25 
display pages or four 
80 x 25 display pages 

Not used Reserved 

Graphics RAM 
Low- or 
High-Resolution 
Graphic Boards 

Not used - Reserved 

Video Charact~r RAM 

Not used - ·Reserved 

Boot ROM 



Section Ill I Appendices 

Note: Additional memory must be added in 128 K byte 
increments. This key can be used to determine the value of 
x in the above addresses. Memory Size is the total amount 
of memory you have in your system. n is the number you 
additional 128 K bytes of memory that have been added in 
addition to the standard system. If you have not added any 
additional memory to your system, in the memory map 
above x is equal to 1. 

Memory Size n Value xValue 

128 K 0 1 
256 K 1 2 
384 K 2 3 
512 K 3 4 
640K 4 5 
768 K 5 6 

346 



Appendix E 
Technical Information 

Interfacing with Assembly Language 
Subroutines 

This section is for users who call subroutines written in 
languages other than BASIC, from their BASIC programs. 
BASIC provides for interfacing with subroutines through 
the USR function and through the CAIL and the CAILS 
statements. 

The USR function allows you to call assembly language 
subroutines in the same way BASIC calls intrinsic func­
tions. However, we recommend CAIL or CAILS statements 
for interfacing 8086 machine-language programs with 
BASIC. These statements produce more readable source 
code and can pass multiple arguments. In addition, the 
CAIL statement is compatible with more languages than is 
the USR function. 

Memory Allocation 
You can loadr your assembly language subroutine into 
BASIC's work area or into another segment of memory. 
We show you both methods. 

Outside the BASIC work area 

When you load BASIC, the DS (data segment) register is 
set to the address ofBASIC's workarea. To access an area of 
memory outside this workarea, you must execute a DEF 
SEG statement to specify the address of the segment of 
memory you are accessing. If you don't execute a DEF SEG 
statement, your CAIL, CAILS, or USR statements transfer 
control to an area within BASIC's workarea. After return­
ing from the subroutine, you must execute another DEF 
SEG statement to restore the DS register to its original 
value. See "Chapter 7 BASIC Keywords" DEF SEG state­
ment for more information on DEF SEG. 

347 



Section Ill I 

Inside the BASIC work area 

To set aside memory space for an assembly language 
subroutine within BASIC's workarea, use the /M: switch 
when you load BASIC. See Chapter 1 for a review of the 
start-up procedure. 

The/M: switch sets the highest memory address that BASIC 
can use. The value that you specify with the /M: switch tells 
BASIC that it can use all memory up to that offset. Load 
your subroutine at that offset. Using the /M: switch will 
prevent BA5IC from destroying your subroutine. For ex­
ample, 

BASIC /M:&HF000 

sets the highest memory location that BASIC can use at 
hexadecimal address EFFF. This reserves the highest 4K 
bytes of memory for your subroutine. You can load your 
subroutine at hexadecimal address &HFOOO like this: 

BLOAD "SUBA.ASM" ,&HF000 

Stack Space 

If you need more stack space when you call an assembly 
language subroutine, you can save the BASIC stack and set 
up a new stack for the subroutine. You must restore the 
BASIC stack before returning from the subroutine. You 
save the stack, create a new stack, and restore the stack in 
your subroutine. 

Loading the Subroutine into Memory 
You can use the operating system or the POKE statement 
to load the subroutine into memory. You may assemble 
the routines with the Macro Assembler (Catalog Number 
26-5252), and link (but not load) them with Linker. The 
Linker is part of the MS-DOS package. To load the program 
file, observe these guidelines: 

1. Be sure that the subroutines do nor contain any long 
references. 

348 



2. Skip the first 512 bytes of the LINK output file, and then 
read in the rest of the file. 

Poking a Subroutine into Memory 
You can code short subroutines in machine language and 
use the POKE statement to put the code into memory. To 
do so, follow these steps: 

1. Code the machine language instructions for your sub­
routine. 

2. Put the assembly opcode for each byte of the machine 
language code into DATA statements, preceded by the &H 
symbols to denote that they are hexadecimal values. 

3. Execute a loop that reads the DATA statements and 
POKEs them into an area of memory. 

For example, the opcode for the statement 

PUSH BP 

is 55. The DATA statement for that instruction is 

DATA &H55 

After the loop is complete, the subroutine is in memory. 
Whether you are using the USR function or the CAil 
statement to call the subroutine, you must set the value of 
the subroutine entry point as the location specified in the 
first POKE statement. 

CALL Statement 
We recommend that you use the CAil statement to inter­
face 8086 machine language programs with BASIC. Do not 
use the USR function unless you are running previously 
written programs that already contain USR functions. 

CALL variable [parameter Ust] 
variable is a variable in your BASic program that contains 
the offset into a segment where the subroutine starts. 

parameter list contains the variables or constants, sepa­
rated by comma'>, that are passed to the subroutine. 

349 



Section III I Appendices 

The number, length, and type (string, integer, single preci­
sion, or double precision) of variables passed in the CAll 
statement must match the number, length, and type of 
variables expected by the subroutine. 

Example: 

100 MYROUT = &H0000 
110 DEF SEG &H1700 
120 CALL MYROUT, HRSI, RATE!, PAY! 

Line 100 defines the subroutine address at offset 0. Line 
110 defines the segment address of the subroutine. Line 
120 transfers program control to the subroutine, passing it 
the variables HRS!, RATE!, and PAY!. In this example, HRS! 
and RATE! are variables for the subroutine to perform the 
calculation of weekly pay. When the subroutine returns 
program control to BASIC, PAY! contains the result of the 
calculation. 

Entry Conditions 
When the CAll statement is executed, the following occur: 

1. For each parameter in the parameter list, the two-byte 
offset of the parameter's location within the data segment 
(DS) is pushed onto the stack. If the parameter is a string 
variable, the offset points to the string descriptor. See the 
section "Accessing String Parameters" in this appendix. 

2. The BASIC return address code segment (CS) and 
offset (IP) are pushed onto the stack. 

3. Control is transferred to the subroutine by an 8086 long 
call to the segment address given in the last DEF SEG 
statement and the offset given in variable. 

This diagram illustrates the state of the stack when the 
CAll is executed. 

Subroutine Address 

When the CAil. statement is executed, the operatiqg sys­
tem loads the CS (code segment) register with the value 
specified in the last DEF SEG statement If you are CAlling 

350 



Appendix EI Technical Information 

a subroutine within BASIC's workarea, and no DEF SEG is 
required, the CS register is loaded with the address of 
BASIC's workarea. This address is shifted left four bits; in 
other words, a zero is appended like this: 17000. Then the 
offset of the subroutine is added to the segment address. 

Example: 

17000 0020 = 17020 

17020 is the absolute address of the tirst instruction in the 
subroutine. 

Technical Functions 

The CAI.Led routine may destroy the previous contents of 
all registers. If you want to save the contents of the regis­
ters, the first instructions in the subroutine must be a 
PUSH for each register and the last instructions in tbe 
subroutine must be a POP to restore the registers to their 
original value. You must execute a POP for every PUSH to 
maintain stack integrity. 

The subroutine may refer to the passed parameters as 
positive offsets to the Base Pointer (BP). The CAI.Led 
routine must PUSH BP on the stack and then move the 
current stack pointer into BP. BP should be the first regis­
ter you PUSH so that the parameters may be referenced as 
an offset to BP. The first four bytes of the stack contain the 
IP and CS register values that BASIC saves when the CALL is 
executed. To calculate the parameters offset from the BP, 
use this equation: 

2 * (total parameters parameter position) 
+ 6 = offset 

For example, the address of parameter 1 is at 10(13P), 
parameter 2 is at S(BP), and parameter 3 is at 6(BP). 

Example 

PUSH 
MOV 
MOV 

BP 
BP,SP 
BX,10[BP] 

351 

;save BP 
;current stack position in BP 
;get address of HRS! dope 



Section III I Appendices 

Exit Conditions 

The called routine must execute a RET number statement 
to adjust the stack to the start of the calling sequence. The 
value of number is two times the number of parameters in 
the parameter list. 

Example 

RET 6 

number is 6 for our sample because three parameters 
were passed. 

USR Function 
Although we recommend the CALL statement for calling 
assembly language subroutines, the USR function is avail­
able for compatibility with previously written programs. 

USK[dlgirj(argumentj 
digit is in the range O to 9. digit specifies which USR 
routine is being called and must correspond to the digit 
supplied in the DEFUSRstatement. If you omit digit, BASIC 
assumes USRO. 

argument is any numeric or string expression. Even if the 
function that is called does not need an argument, you 
must supply a dummy argument. 

Example 

100 DEF USR2 = &H0020 
110 DEF SEG = &H1700 
120 E USR2(A) 

Line 100 defines the USR2 subroutine's address at.offset 
hexadecimal 20. Line 11 O defines the segment address of 
the subroutine. Line 120 transfers program control to the 
subroutine, passing it parameter A. When the subroutine 
returns program control to BASIC, E contains the result of 
the subroutine calculations. 

352 



Appendix EI Technical Infomiation 

USR can only pass one value to a subroutine, and it can 
only receive one value from the subroutine after execu­
tion. The value returned by a USR function is the same type 
(integer, string, single precision, or double precision) as 
the argument that was passed to it. 

Entry Conditions 

When the USR statement is executed, the operating system 
loads the CS (code segment) register with the value speci­
fied in the last DEF SEG statement. If you are accessing a 
subroutine within BASIC's work area and no DEF SEG is 
required, the CS register is loaded with the address of 
BASIC's workarea. This address is shifted left four bit<;; in 
other words, a zero is appended like this: 17000. Then the 
offset of the subroutine is added to the segment address. 

Example: 

17000 + 0020 = 17020 

17020 is the absolute address of the first instruction in the 
subroutine. 

Technical Functions 

When the subroutine gains control, register AL contains a 
value that specifies the type of argument that was given. 
The value in AL may be one of the following: 

Value in AL 

2 

3 
4 

8 

Type of Argument 

Two-byte integer (two's comple­
ment) 
String 
Single precision floating-point 
number 
Double precision floating-point 
number 

If the argument is a string, the DX register pair points to 
the "string descriptor." See the section "Accessing String 
Variables" in this appendix. 

353 



Section Ill I Appendi'ces 

If the argument is a number, the BX register pair points to 
the Floating-Point Accumulator (FAC) where the argu­
ment is stored: 

FAC is the exponent minus 128, and the binary point is to 
the left of the most significant bit of the mantissa. 

FAC-1 contains the highest 7 bits of mantissa with leading 1 
suppressed (implied). Bit 7 is the sign of the number 
( O positive, 1 =negative). 

If the argument is an integer: 

FAC-2 contains the upper 8 bits of the argument. 

FAC-3 contains the lower 8 bits of the argument. 

If the argument is a single-precision floating-point num­
ber: 

r'AC-2 contains the middle 8 bits of mantissa. 

FAC-3 contains the lowest 8 bits of mantissa. 

If the argument is a double-precision floating-point num­
ber: 

FAC-4 through FAC-7 contain four more bytes of mantissa 
(r'AC-7 contains the lowest 8 bits). 

Exit Conditions 

The subroutine must execute a RET 2 statement to adjust 
the stack to the start of the calling sequence. 

Accessing String Variables 
If the parameter passed in a CAIL statement is a string 
expression, the parameters offset points to the string de­
scriptor. If the argument passed in a USR function call is a 
string expression, the DX register points to the string 
descriptor. 

354 



Appendix E I Technical Information 

The string descriptor is a three-byte area of memory that 
points to the text of the string. The string descriptor con­
tains the following: 

Byte 0 contains the length of the string (O to 255). 

Byte 1 contains the lower eight bits of the string start 
address in BASIC's data segment. 

Byte 2 contains the upper eight bits of the string start 
address in BASIC's data segment. 

The text of the string may be altered by the subroutine, but 
the length of the string must not be changed. BASIC 
cannot correctly manipulate strings if their lengths are 
modified by external routines. 

Since the string descriptor points to an area of memory in 
your BASIC program, you must be careful not to alter or 
destroy your program. To avoid unptedictable results, add 
the concatenation symbol ( + ) to the string. This forces 
the string to be copied into string space, where the string 
may be modified without affecting the program. 

Example 

20 A$ ="MONTHLY SALES REPORT"+"" 

355 



Section III I Appendices 

File Control Block 
A file control block is a storage area in BASIC's data 
segment that contains information BASIC needs for all 
functions performed on that file. When you execute the 
VARJYI'R function and specify the buffer number, BASIC 
returns the address of the BASIC file control block for that 
file. Note that this is the BASIC file control block, not the 
MS-DOS file control block. The address is specified as an 
offset into BASIC data segment. In this section we define 
the information in the file control block. Offsets are rela­
tive to the value returned by VARPTR. Length is in bytes. 

OFFSET LENGTH DESCRIPTION 

0 1 Mode 

1 38 FCB 

39 2 CURLOC 

41 ORNOFS 

42 1 NMLOFS 

The mode in which the 
file was opened: 
1 - Input Only 
2 - Output Only 
4 - Random I/O 
16 Append Only 
32 Internal use 
64 Future use 
128 - Internal use 

MS-DOS Disk File 
Control Block 

Number of sectors read 
or written for sequential 
access. For random 
access, it contains the 
last record number + 1 
read or written. 

Number of bytes in 
sector when read or 
written. 

Number of bytes 
left in Input buffer. 



Appendix EI Technical Information 

43 3 .. * Reserved for future 
expansion. 

46 1 DEVICE Device number: 
0-4 Disks A: thru D: 
249 LPT2: 
251- COMl: 
253 -LPTl: 
254- SCRN: 
255- KYBD: 

47 1 WIDTH Device width. 

48 1 POS Position in buffer for 
PRINT. 

49 1 FLAGS Internal use during 
LOAD/SA VE; not used for 
data files. 

50 1 OUTPOS Output position used 
during tab expansion. 

51 128 BUFFER Physical data buffer. 
Used to transfer data 
between MS-DOS and 
BASIC. Use this offset to 
examine data in 
Sequential 1/0 mode. 

179 2 VRECL Variable length record 
size. Default is 128. Set 
by length option in 
OPEN statement. 

181 2 PHYREC Current physical record 
number. 

183 2 LOG REC Current logical 
record number. 

185 1 ••• Future use. 

357 



Section III I Appendices 

186 2 OUTPOS Disk files only. 
Output position for 
PRINT, INPUT, and 
WRITE. 

188 <n> FIELD Actual FIELD data 
buffer. Size is 
determined by IS: 
switch. VRECL bytes are 
transferred between 
BUFFER and FIELD on 
IJO operations. Use this 
offset to examine File 
data in Random I/O 
mode. 

How Variables are Stored 

BASIC stores variables in its data segment as follows: 

Byte 
Byte 0 

Bytes 1 and 2 

Byte 3 

Byte 4 + 
integer stored 
in byte 3 

Content.'i Description 
Type Identifies the type 

of variable stored at this loca-
ti on: 

2 integer 
3 string 
4 single-precision 
5 double-precision 

Name The first two characters 
of the variable name. 

Integer Integer is the number of 
3 38 additional characters 

in the variable name. 

Name The remainder of the variable 
name is stored at bytes 4 + 
the integer stored in byte 3. 

358 



Appendix EI Technical Information 

Byte 4 + length Data 
length 

The contents of the 
variable are stored in the 
bytes immediately 
following the variable 
name. The data can be two, 
three, four, or eight bytes 
in length, depending on 
the type of data. 

At least three bytes are required to store any variable 
name. A one- or two-character variable name occupies 
exactly three bytes, bytes one and two for the first two 
characters and byte three contains a zero to indicate that 
there are no additional characters in the variable name. If 
the variable name only contains one or two characters, the 
data is stored beginning at byte four. As you can see, the 
location of the first actual byte of data depends on the 
length of the variable name. V ARPTR returns the offset of 
the first actual byte of data, not the offset of the beginning 
of the storage area. 

359 



Index 

A 

Absolute value of number ................ 94 
ABS ................................. 94 
Active Page .......................... 291 
Addition ............................. 55 
Address, Character form of. ............. 322 
ALL option ....................... 104, 126 
ALT Key for BASIC Keyword Entry ......... 19 
AND ......................... 59, 270-271 
Animation .................... 166, 270-271 
Apostrophe !or a remark. . . . . . . . . ...... 277 
Arctangent. Computing the ............... 96 
Arrays ........... 40-43, 143, 152, 166, 236 
ASCII 

Code of character on screen ........... 290 
Codes, printing . . . . . . .............. 311 
Compare ........................... 56 
Converting string to (ASC) ............. 95 
Converting to string (CHAS) ........... 108 
Format, Saving files in ....... 104. 288-289 

Aspect Ratio ................... 89-92, 111 
Assembly language subroutines ..... 102, 115, 

141, 252, 319, 321, 347-354 
ATN ................................. 96 
AUTO ................................ 97 
Automatic Keyword Entry . . . . . . . . . . . . . . . 19 
Automatic line Number Entry. . . . . . . . . . . 97 

B 

Background colors ............ 117, 118, 121 
BEEP .............................. 98 
Binary File, encoded ................... 288 
Bits per Point. ........................ 166 
Blanks .......................... 298-299 
BLOAD .............................. 99 
Boolean Operators ...................... 59 
Border colors ......................... 118 
Branch 

Conditional. ....... 170, 172, 173, 223-225 
on an error ........................ 223 
to a line number ................ 170, 225 
to a subroutine ................. 169, 283 

Buffer 
File ............. 2, 65, 71, 157, 178, 180, 

205, 211, 230, 268, 286, 321 
Screen ....................... .117, 291 

c 
IC: . . . . .. .. . .. .. . .. .. . . .... 10, 203 
CALL ................... 102, 319, 349-352 
CDBL ............................ 103 
CHAIN....... .. ......... 104, 126 
Chaining Programs ................ 104, 126 
CINT.................... .. ........ 109 
CIRCLE .............................. 110 
Clearing 

the Screen . . . . . . . . . . . . . . . . . . . . 117 
Memory...... . ............. 218, 287 

Clock Ticks ...................... 296-297 
CLOSE .............................. 116 
Closing files ............. 115, 149, 280, 287 
CLS ................................ 117 
COLOR ......................... 116-123 
Color ................... 241-245, 265-267 

of a point on the screen .......... 251, 290 
To enable and disable ................ 291 

Column, Screen ................... 204, 253 
COM(1) ON, OFF. STOP ....... 124, 151, 220 
Command Mode 

prompt. ............................ 15 
special keys in .................... 17-19 

Comments in a program ................ 277 
COMMON ........................ 104, 126 
Communication 

Channel ............... 124, 232-234, 325 
Files 

EOF ............................ 151 
Number of characters in queue ... 203, 207 
Transferring data .............. 166, 269 
Transmitting data .............. 232-234 
Trapping ..................... 124, 220 

Compressed Files ................. 288-289 
Concatenation . . . . . . . . . . . . . . . . . . . ..... 55 
Constants. . . . . .................... 38, 46 
CONT ........................... 127, 303 
Continue program execution ............. 127 
Control Key functions in 

Command Mode .................. 17-19 
Edit Mode . . . . . . . . . . . . . . . . . . .... 25·27 
Execution Mode. . . . . . . . . . . . . . . . ..... 19 

Converting 
ASCII to character ................... 108 
numeric data .... 47-50, 103. 109, 184, 131 
numeric to string ................. 71, 216 
string to ASCII. ...................... 95 
string to numeric ................. 73, 132 

Coordinate, Movement on ............... 301 
cos ................................ 129 
Cosine of number . . . . . . . . . . . ...... 129 



CSNG.... .. .. . . ........... 132 
CSRLIN . . . . . .. .. .. . . .130 
Current date. . . . . . . . . . . . . . . .......... 135 
Current time........... . . 316 
Cursor position ......... 117, 130, 204. 253 
CVD$, CVI$, CVS$........ . .... 73, 132 

D 

DATA........... . .. 133, 182, 276, 281 
DATE$ .............................. 135 
Dates, Valid . . . . . . . . . . . . . . . . . ....... 135 
Debugging .................. 127, 303, 318 
Defining variables ..................... 137 
Defining functions . . . . . . . . . . . . . . ..... 138 
Defining USA subroutine. . . . . . . . . . . . . .. 141 
DEF FN ......................... 107, 138 
DEF USA ....................... 141, 319 
DEFDBL........... . ....... 46, 107, 137 
DEFINT.................. . 46, 107, 137 
Definition statements ............ 46, 47, 137 
DEFSNG..... . ....... 46, 107, 137 
DEF SEG ....... 99, 101, 102, 140, 319, 347 
DEFSTR . . . . . . . . . . . . . . . . . . . . 46, 107, 137 
Degrees 

cosine of .......................... 129 
sine of . . . . . . . . . . . . . . . . ........... 295 
tangent of ......................... 315 
to convert radians to .................. 96 

DELETE . . . . .. . . . . . . . . . . .. 76, 142 
Deleting 

a program .218, 287 
files from a disk . . . . . .. .. .. ........ 190 
program lines .................. 104. 142 

Dimensioning an array .................. 43 
Directory . . . . . 158, 280, 313 
Direct Access... . . . . . . . . . . ....... 70-74 

Creating ..................... 70-72, 268 
Updating and Accessing . . . ..... 72-74 

Division 
Ordinary. . . . .......... 52 ,53 
Integer..... . . . . . . . . . . . . . . . . . . 52,54 

Documentation. . . . . . . . . . . . . . . . ....... 277 
Double Precision ....................... 37 

constants. . . . . . . . . . . . . . . . . . ........ 46 
converting ................... 48-50. 103 

DRAW .............................. 145 
Draw a point on the screen .......... 265-267 
Drive Identifier ......................... 12 

E 

Edit Mode .. .. .. .. . .. . .. .. . .. . 21-24 
Sample Session. . . . . . . . . . . . . . . ... 25-27 
Special keys in. . . . . . . . . . . . . . . . . . 25-27 

EDIT Statement . . . . . . . . ........... 21, 148 
Editing output . . . . . . . . . . . . . . . . . . 256-260 
Element of an array ................. 40, 143 
Ellipse .......................... 110-112 
Encoded Binary File. . . . ........... 288-289 
END ................................ 149 
EDF (End Of File) 

Disk File. . . . . . . . . . . . . . . . . . . . . . . . . . 150 
Communication File. . . . . . . . . . ....... 151 

ERASE .............................. 152 
ERL ............................ 153, 287 
ERR ................................ 154 
ERROR ......................... 153-155 
Error 

Code .............................. 154 
Handling routine ........ 153-155, 223, 282 
Line number of . . . . . . . . . . . . . . . . . . . 153 
Messages.. . . .. . .. . . . .. . ...... 333-340 
to simulate ......................... 155 

Exchanging values of variables ........... 312 
Executing a program . . . . . . . . . . . . . . . . . . 287 
Executing MS-DOS Commands. . ........ 313 
Execution Mode. . . . . . . . . . . ............ 15 

Special keys in ....................... 19 
EXP ................................ 156 
Exponent ............................ 156 
Exponential Format . . . . . ............... 35 
Exponentiation ...................... 52,53 
Expression ............................ 33 
Extension. . . . . . . . . . . . . . . . . . .12, 288 

F 

/F:................................ . 10 
FIELD statement . . . . . . . . ...... 71-7 4. 157 
File 

buffer.......... . ....... 65, 116 
closing . . . . ..... 115, 116 
Control Block... . ....... 321, 356 
direct . . . . . . . . . . . . . . . . . ........ 70-74 
seQuential. . . . . . . . . . . . . . . . . . . . .. 65-69 

File protection . . . . . . . . . . . . . . . .. 288-289 
FILES ............................... 158 
Filespec .............................. 12 
FIX ................................ 159 
Fixed point 

constants ........................... 38 



numerics . . . ................ 35 
Floating Point 

constants . . . . . . . . . . ......... 38 
numerics . . ........................ 35 

FOR/NEXT ....................... 160-162 
Foreground colors .......... 117, 118, 121 
Formatting data ................... 256-260 
FAE ................................ 163 
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 

Brief definition of each . . . . . . . . . . . . 81-83 
Defining ........................... 138 
Keys .. . .. . . .. . . . . .. . . .. .. .. .. . 185-189 

G 

GET (Communication Files) .............. 165 
GET (Disk files) ............... 73, 132, 164 
GET (Graphics) ....................... 166 
GOSUB .......................... 169, 283 
Graphic Images ................... 145, 166 
Graphics Options 

Colors ........................ 118, 121 
Coordinates ............... 85, 87, 88, 89 
Modes ...................... 85-91, 291 

H 

Hexadecimal 
Constants ........................... 38 
Numerics ........................... 36 
Value of a number. .................. 171 

IF/THEN/ELSE ................ 57, 172, 173 
Immediate Lines ....................... 16 
INKEY$........... . . . . .............. 174 
INPUT ............................ 66, 72 
Input from keyboard ...... 175, 176, 180, 197 
Input queue ...................... 151, 203 
INPUT# ................... 66,68, 178, 263 
INPUT$ ............................. 180 
INSTR .............................. 182 
INT ................................. 184 
Integer ................................ 2 

constants ........................ 38,46 
convert number to .......... 109, 159, 184 
converting ....................... 48-50 
defining (OEFINT) . . . . . . . . . . . . ....... 46 
division . . . ..................... 52. 53 

numerics . . . . . .............. 35-36 
Invisible characters ........ 116, 122, 265-267 

K 

KEY 
OFF ........................... 185-189 
ON ........................... 185-189 
LIST ......................... 185-189 
Set/Display ..................... 185-186 
STOP . .. . . . .. . . . .. . . .. .. . . .. . . 185-189 
Trap ...................... 187-189, 226 
()ON ............................ 226 
( ) OFF ............................ 226 
( ) STOP . . ....................... 226 

Keyboard 
As an input device ................... 230 
Input .................... 174, 176, 197 

KILL ................................ 190 

L 

Last Record in a file ................... 150 
Left Justify ........................... 211 
LEFT$ ............................... 191 
LEN . . . . . .......................... 192 
LET....... . ........................ 193 
LINE ............................ 194-196 
Line, 

Drawing on the screen ........... 194-196 
Immediate .......................... 16 
Logical ............................. 15 
Numbers ................. 2, 31, 278-279 
Numbers, Automatic Entry ............. 97 
Physical. ........................... 15 
Program. . . . . . . . . . . . . . . . . . . . . . ..... 16 

Line Editor ............................ 21 
Line Feed ............................ 289 
LINE INPUT .......................... 197 
LINE INPUT# .................. 66-68, 198 
LIST.............. . .. .............. 199 
Listing to printer ............. 199, 200, 210 
Listing to screen ...................... 199 
LUST ............................... 200 
LOAD ............................... 201 
Loading 

a memory image file . . . . . . . . ......... 99 
a program ...................... 14, 201 
assembly language subroutines .... 347-349 
BASIC ............................... 9 
Graphics BASIC . . . . . . . . . ............. 9 



LOG (Communication Files). . . . . 203 
LOG (Disk Files) ....................... 202 
LOCATE............... .. ......... 204 
LOF (Communication Files) .............. 207 
LOF (Disk Files) ................ 73, 74, 205 
LOG ............................. 208 
Logarithm . . . . . . . . . . . . . . . . . . . . 208 
Logical 

Expression . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 58 

Loops ...................... 161, 162, 324 
LPOS ............................... 209 
LPRINT ......................... 210, 314 
LPRINT USING ....................... 210 
LSET ......................... 71.72, 211 

M 

/M: .............. 10. 99, 115, 140, 348 
Memory 

Address . . . . . . . . . . . . . . . . . . . . . . . .. 238 
Available .......................... 163 
Clearing ...................... 115, 218 
Map .............................. 345 
Writing data in. . . . . . . . . . . . . . . . . . . . . 252 

Memory image file .................. 99, 101 
MERGE 

Option .................... 104, 288-289 
Statement. ..................... 212-213 

Merging programs ............. 104, 212-213 
MKD$, MKI$, MKS$ .................... 71 
Modes. Graphics and text ............... 291 
Modulus Arithmetic .................. 52, 54 
Mouse button trapping ........ 228, 306-307, 

308-310 
MS-DOS command level prompt ...... 9, 313 
MS-DOS commands, executing . . . ..... 313 
Multiplication ....................... 52, 54 
Musical notes ................ 248, 296-297 

N 

NAME............ . .............. 217 
Naming files. . . . . . . ............. 217 

Rules for . . . . . . .. 13 
Nested loops ............. 161, 162, 172-173 
Numeric 

Constants ........................... 38 
Conversions ........... 48-50, 71, 73, 103, 

132, 216 

Expression .......................... 33 
Operators. . . . . . . . . . . . . . . . 52-54 
Precision ........................... 36 
Relations . . . . . . . . . . . . . . . . . . . . ...... 56 
Types of ............................ 35 

Number 
Absolute value of.. . . . .. . . . . .. . . . .. 94 
Arctangent of ........................ 96 
Converting ....... 48-50, 71, 73, 103, 109, 

132, 159, 184, 216, 304, 320 
Cosine of . . . . . . . . . . . . . . . . . . . . . . .. 129 
Exponent of ........................ 156 
Hexadecimal value of. ................ 171 
Logarithm of ....................... 208 
Octal value of. . . . . . . . . . . . . . . . . . . . . . 219 
Sign of ............................ 294 
Sine of ............................ 295 
Square root of ...................... 300 
Tangent of. . . . . . . . . . . . . . . . . . . . . . .. 315 

0 

Octal 
Constants ........................... 38 
Numerics . . . . . . . . . . . . . . . . .......... 36 
Value of a number ................... 219 

OCT$ ............................... 219 
Offset, Address .......... 99, 101, 102, 141, 

319, 321 
Offset, Coordinate ..................... 110 
ON COM(1) ...................... 124, 220 
ON ERROR GOTO ............ 154, 155, 223 
ON GOSUB. . . . . . . . . . . . . . . . . . . . . . . . .. 224 
ON GOTO ............................ 225 
ON KEY ..................... 187-189, 226 
ON STRIG ................... 228, 306-307 
OPEN (Disk Files) ............ 66-70, 72, 74, 

230-231 
OPEN COM1 (Communication Files) ... 232-234, 

269 
Operands . . . . . . . . . . . . . . . . . . . . . .... 51 
Operators 

Logical... . . . . . . . . . . . . 58 
Numeric . . . . . . . . . . . . . 52-54 
Relational. . . . . . . . . . . . . . 56 
String......... . . . . . . . . . . . . . . . . 55 

OPTION BASE ............... 106, 143, 236 
OR .......................... 59, 270-271 
OUT ................................ 237 



p Radius of a circle ..................... 110 
RANDOM mode ................... 70, 230 

Page, active and visual ................. 291 Random numbers ................. 275, 285 
PAINT ............................... 239 RANDOMIZE ......................... 275 
Palette .......................... 121, 241 Ratio, aspect ................... 89·92, 111 
PALETIE ............................ 241 READ ...................... 133, 276, 281 
PALETIE USING ...................... 245 Reading data ............ 133, 178, 276, 281 
Parameter, passing to a subroutine ... 102. 252 Real Numbers ......................... 35 
Passing variables. . . . . . . . . . . ...... 104, 126 Records 
PEEK ............................... 238 current number ..................... 202 
Physical Lines ......................... 15 detecting last in a disk file ............ 150 
PLAY ............................... 248 length ............................. 230 
POINT ............................. 251 maximum number .................... 70 
POKE ........................... 252, 349 number ................. 71-72, 164, 202 
Ports ........................... 237, 324 reading from disk ................... 164 
POS....... .. .................... 253 size and default size .................. 70 
PRESET ............. 251, 265-267, 270-271 writing to disk ...................... 268 
PRINT ................... 73, 254-255, 314 Relational 
PRINT # ........................ 178, 262 expression .......................... 33 
Printer how to use relational expressions ........ 57 

listing .................... 199, 200, 210 operators ........................... 56 
output to ...................... 230, 314 REM ................................ 277 
position of head ..................... 209 Remarks in a program ................. 277 
width of ........................... 325 RENUM ......................... 278-279 

PRINT TAB ....................... 261, 314 Renaming Files . . . . . . . . . . . . . . . . . . . ... 217 
PRINT USING ................. 74, 256-260 Reserved Words ...................... 341 
Program ........................... 31, 76 RESET .............................. 280 

ending ............................ 149 RESTORE ................... 133, 276, 281 
deleting from memory ................ 21 B RESUME ........................ 223, 282 
loading into memory . . . . . . . . . . . . . . . . 201 RETURN ......................... 169, 283 
loops ....... 161. 162. 172. 173, 283, 324 Return to MS-DOS .................... 313 
merging . . . . . . . . . . . . .............. 104 RIGHT$ ............................. 284 
overlaying ......................... 104 Right portion of a string ................ 284 
pause exection ...................... 303 RND ............................ 275, 285 
running ........................... 201 Row, screen ..................... 130, 204 

Program Lines ......................... 16 RSET ............................... 286 
Program Listing RUN ................................. 14 

to line printer ................... 199, 200 Running a program . . . ... 14, 201 
to screen .......................... 199 

Prompt for keyboard input .......... 176, 197 
Protection, file .................... 288-289 s 
PSET ................ 251, 265-267, 270-271 
PUT (Communication Files) .............. 269 IS: . . . .. . .................. 10, 230 
PUT (Disk Files) .................... 71, 268 SAVE ........................... 288-289 
PUT (Graphics) . . . ........ 270-271 Saving 

a memory image file . . . . . . ........ 101 
R a program . . . . . . . . . . . ...... 12. 288-289 

a program in ASCII format ............ 104 
Radians SCREEN (Statement) ................... 117 

computing ................... 96 SCREEN (Function) .................... 290 
cosine of .......................... 129 Screen 
sine of ............................ 295 buffer ............................. 117 
tangent of ......................... 315 clearing . . . . . . . . . . . . . ............. 117 



images . . . . . . . . . . . . . . . . . ..... 270-271 
modes, selecting. . . . . . . . .......... 291 
printing data to . . . . . . . . . . . . . . . 254-261 
program listing . . . . . ........... 199, 200 
row................... . . . . . . . . . . 130 
spacing ......................... 314 
width ......................... 291, 325 

Segment...... . ............... 140, 141 
Sequential Files . . . . . . . . . . . . . . . . . . . 65-69 

Accessing and Updating ....... 68-69. 178. 
198, 230-231, 329 

Creating ......... 66-67, 230-231, 262, 329 
Setting the time ....................... 316 
SGN ................................ 294 
SIN ................................. 295 
Sine of a number. ..................... 295 
Single Precision. . . . . . . . . . . . . . . . . . .... 37 

constants ........................... 46 
converting ....................... 48-50 
defining (DEFSNG) .................... 46 

Soft keys . . .................... 185-189 
SOUND .......................... 296-297 
Sounds, to generate ........ 96, 248, 296-297 
Spaces .............................. 298 
SPACE$ ............................. 296 
SPC ................................ 299 
SQA ................................ 300 
Square Root of Number ................ 300 
Stack Space ...................... 115,348 
Statement. ............................ 31 

brief definition of each . . . . . . . . . . .. 76-81 
Status of mouse buttons.... . . . . . . . 308-310 
STICK... . . . . . . . . . ............. 301 
STOP . .. . .. . . . . . . . . .. .. .. .. . 303 
STR$ . . . . . . . . . . . . . . . . .... 304 
STRIG (Function) ...................... 305 
STRIG (Statement) ................ 308-310 
STRIG OFF ........................... 305 
STRIG ON ........................ 305 
STRIG Trapping ................... 306-307 
STRIG( ) OFF. . . . . . . . . . . . . . . . . . . . ... 307 
STRIG( ) ON . . . . . . . ....... 226, 306 
STRIG( ) STOP ................... 226, 306 
String . . . . . . . . ........ 2 

com pare . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 
concatenation ......................... 55 
constants ........................ 38, 46 
converting to . . . . . ............ , .. 304 
converting to ASCII ................... 95 
converting to numeric ......... .49, 50, 73, 

216, 320 
defining (DEFSTR).. . . . . . . . ....... 46 
descriptor. ..................... 354-355 

expression . . . . . . . . . . . . . .. 33 
operator . . . . . . . . . . . . . . . . ........ 55 
relations . . . . . . . . . . . . . ............. 56 
storage requirements. . . . . . . . ......... 34 

Structured programming techniques .. 169. 224, 
283 

Subroutine ............... 169, 224, 349-352 
Subscript ............................. 40 
Substring ........... 182, 191, 214, 215, 284 
Subtraction ........................ 52. 55 
SWAP ............................... 312 

T 

TAB ....................... 210, 261, 314 
Tables (see Arrays) . . . . . . . . . . . . . .. 40-43 
Tangent of a number. .................. 315 
Text mode......... . .............. 291 
Ticks. clock ...................... 296-297 
TIME$ ............................ 316 
Time, setting, retrieving . . . . . . . . . . . .... 316 
Trace function . . . . . . . . . . . . . . . . . . . . .. 318 
Trapping 

mouse buttons. . . . . . . . . . . . . . . . . . ... 228 
Trigonometric Functions ............ 342-343 
TRON, TROFF ........................ 318 
Type Declaration Tags ........ 40, 46, 72, 137 

u 

User Defined Functions ................. 107 
USA subroutine number . . . . . . . . . . . 141 
USR ........................ 319, 352-354 
USA, argument of................ . ... 321 

v 

VAL.. . . . . . . . . . . . . . . . . . . . . ....... 320 
Variable 

Accessing Strings . . . . .... 354-355 
address of . . . . . . . . ....... 321 
assigning variables . . . . . . . . . . .175, 193 
clearing ........................... 115 
defining . . . . . . . . . . . . . . . . . . . . . 137 
exchanging values of. . . . . . ....... 312 
how BASIC classifies .................. 46 
How BASIC stores. . . . . . . . ...... 358 
initilizing. . . . . . . . . . . . . . . . . 115 
numeric.... . . . . . . . ... 38, 47 
rules for naming . . . . . . . . . . . . . . .. 39 



string . . . . . . . . . . ... 38, 46 Whole numbers ....................... 159 
types .............................. 46 WIDTH .......................... 117, 325 

VARPTR ......................... 321, 356 WRITE ............................. 328 
VARPTR$ ............................ 322 WRITE# ............................. 329 
Video Display Worksheet ................ 344 Writing data 
Visual page .......................... 291 on the screen. . . . . . . . . . . . . . . ...... 328 

to a sequential file . . . . . ............. 329 

w 

WAIT ............................... 323 X 
WEND .............................. 324 
WHILE . . . . . . . ..................... 324 XOR ......................... 59, 270-271 



RADIO SHACK, A DIVISION OF TANDY CORPORATION 

U.S.A.: FORT WORTH, TEXAS 76102 
CANADA: BARRIE, ONTARIO L4M 4W5 

TANDY CORPORATION 
AUSTRALIA BELGIUM 

91 ~URRAJONG ROAD PARC INOUSI RIEL DE NANINNE 
MOUNT ORUITI. N SW 2770 5140 NANINNE 

974-9485-08 84 ·SP 

U. K 
BILSTON ROAD WEONESBUR V 
WEST MIDLANDS WS10 7J N 

Printed in U.S.A. 

• • 

r 




