s g

Model 2000

il il " | ‘_ i U AT Y 1.‘ k. *!.'. I
"|"r!%'l'“'l .|||.‘|) fll . .. T) "".'r.n}l || .I. ||l|| | I{ ‘ I)

!Lh” AL e '] ,. IO s | '.“h, .]I':":,'.. "'Iru‘d"""“r"u ’” g jmﬁ..w

i | il || |

Rt | It || A | I | J || "I 'II.-”I
.":.rl_mg I |Jr5‘r|jll;l ' I”.if | i | ! Iy

TRS-80

Running GRAPHICS.BAS:

A Demonstration of
High Resolution Graphics

We have added a file, GRAPHICS.BAS, to vour MS-DOS system disk-
ette. This program demonstrates some of the high resolution graphics
available with BASIC. To use the program, you need the CM-1 Color
Monitor and a Monochrome Graphics Option board upgraded with
the Color Graphics Option kit.

Note: If you have a VM-1 Monochrome Monitor and the Monochrome
Graphics Option Board, you can run the program after removing the
color-related statements and changing the SCREEN 3 statements to
SCREEN 4. (See Model 2000 BASIC Reference for more information
on these statements.)

If vou do not plan to use GRAPHICS BAS, vou mav delete the file from

ihe diskette, as described in Chapter 8 of Introduction to the Model

2000. Otherwise, run the file by typing (at the system prompt):
BASIC GRAPHICS.BAS

When finished, return to MS-DOS by typing:

SYSTEM

Tandy Corporation
Part No. 8759267

k |

—— g,

Cat. No. 26-5103

BASIC

TEAMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK AND TANOY
COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROM A RADIO SHACK
COMPANY-QWNED COMPUTER CENTER. RETAIL STORE OR FROM A RADIQ SHACK
FRANCHISEE DR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibilty that this computer hardware purchased ithe Equipment) and any copies of sotware
included with the Equipment or licensed separately the Software '} meets the specificalions. capacity capabililies versatily and
other requirements of CUSTOMER

CUSTOMER assumes tuil responsibility for the condition and eflectiveness of the operating environment in which the Equipment and
Software are to funchion. and for 1ts mstallation

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

For a period of ninety (90} calendar days Irom the date of the Radio Shack sales document receved upon purchase of the Eaupment
RADIQ SHACK warrants 1o the onginal CUSTOMER Ihal the Equipment and the medium upon whuch the Sollware s stored is [ree from
manulactunng defects This warranty is only applicable to purchases of Radio Shack and Tandy Equipment by the original customer
trom Radio Shack company-owned compuler centers, relail stores and Irom Radio Shack lranchisees and dealers at its authorized
location. The warranty 1s void «f the Equipment s case or cabinet has been opened. or if the Equipment or Software has been subjected
to improper or abnormal use. If a maaufacturing defect 15 discovered during the stated warranly peniod the defectsve Equipment must
be reiurned to a Radio Shack Computer Center “a Radio Shack retai store. participating Radio Shack Iranchisee or Rado Shack dealer
for repair. along with a copy of the sales document or lease agreement The arnginal CUSTOMER S sole and exclusive remedy in the
event of a defect 1s imited to the correction of the defect by repan replacement o1 refund of the purchase price at RADIQ SHACK S
efection and sole expense RADIQ SHACK has no obligation {0 replace or repar expendable tems
RADIQ SHACK makes no warranty as to the design. capabihly. capacity. or sustability tor use of the Software except as provided m
this paragraph Software 1s icensed on an ~ AS (S basis without warranty The onigmal CUSTOMER S exclusive remedy in the even!
of a Software manufacturing defect. 15 1is repair or reptacement within thirty 1301 calendar days of the date of the Radio Shack sales
document recewved upon license of the Software. The defechive Software shall be returned to a Radio Shack Compulter Center. a Radio
Shack relail store. participating Radio Shack franctusee or Radio Shack dealer along with the sales document
Except as provided herein no employee agent. franchisee. dealer or other person 1s authonzed to give any wasranties of any naluie on
behalt of RADIO SHACK
Except as provided herein. Radio Shack makes no express warraniies. and any implied warranty of merchanfabitity or fitness for a
particular purpose is limited in ils duration to the duralion af the written limiled warranlies set forth herein.
Some states do not allow imitations on how long an 'mplied warranty lasts. so the above lmilatonisi may not apply to CUSTOMER

LIMITATION OF LIABILITY

A

Except as provided herein. Radio Shack shall have no liabilily or responsibility to customer or any other persun or entily with
respect to any liability. loss or damage caused or alleged to be caused directly or indirecily by “Equipment” “Sofware’ sold,
leased, licensed nr l\umshed by Radio Shack. including. bul nol limited to. any mu"uplmn of service. lnss of business or

y profils ges resulling from the use or operation of the “Equipment” or “Software™. In no event
shall Radio Shack he liable lor loss of profits. or any indireci. special. or consequentiai damages arising out ol any breach of this

wgrﬁmy or in any manner arising oul ol or connecied with lhe sale. lease. license. use or anticipated use ol the "Equipmen” or
**Software".

Nolwithslanding the above limitations and warranties, Radio Shack's liability hereunder for damages incurred by cuslomer or
others shall nol exceed the amount paid by customer lor the particular “'Equipment” or “"Software’ involved.

RADID SHACK shail not be iable for any damages caused by delay n delivenng or furmistung Equipment and or Software

No actign ansing out of any ctaimed breach of this Warranty or transacions under this Wairanty may be brought more than two (2)
years after the cause of achon has accrued or more than four {4) years atter the date of the Ragio Shack sales document for the
Equipment o1 Software. whichever first occurs

Some stales do not ailow the imitalion or exclusion ol incidental or consequential damages so the above himiabionts) or exclusionts)
may nol apply 1o CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive paid-up license to use the RADIO SHACK Soltwaie on one compuler subiect 1o the
(ollowmg provisions

G

Except as otherwise prowided 1n this Softwate License applicable copynghi laws shall apply to the Soltware

Title to the medwm on which the Software 1s recorded (cassetie and or disketie) or siored (ROM) 1S lransferied to CUSTOMER bul not
litle to the Software

CUSTOMER may use Sottware on one hast computer and access that Software through one or more terminais 11 Ihe Soitware perruis
this tunchian

CUSTOMER shall not use make manutacture. or reproduce copres of Soltwace except or use on aae computer and as 15 specihcally
provided m this Software License Customer 1s expressly prohibited rom disassembling the Software

CUSTOMER 15 permitted 10 make additional copies o! the Software only for backup or archival purposes or 1f additional copies are
required 1 the operation of ene compuler with the Soltware but only to the extent the Sofiware allows 3 backup copy io be made
However, fo1 TRSDOS Software. CUSTOMER 15 permutted 10 make a limited number of additional copies for CUSTOMER S own use
CUSTOMER may resell or distribute unmodified copies of the Software prowided CUSTOMER has purchased one copy ol the Soltware
for each one sold or distributed The provisions of this Sottware License shall also be applhicable 10 trd parties receiving copies of the
Software from CUSTOMER

All copynght notices shall be retained on ali copies ol the Software

APPLICABILITY OF WARRANTY

A

The terms and conditians of this Wartanty are apphicable s between RADIO SHACK and CUSTOMER to either a sale of the Eguipment
and o1 Software License to CUSTOMER o to a lransaclion whereby RADIO SHACK sells 01 conveys such Equipment 10 a third party for
lease to CUSTOMER

The hmitations of habiity and Warranty provisions heresn shait inure to the benefit of RADIO SHACK the author owner and or Ircensor
of the Software and any manufaclurer o the Equipment sold by RAD!O SHACK

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal nghts and the ariginal CUSTOMER may have other nghts winch vary
from stale to state

GW®-BASIC Software: Copyright 1983 Microsoft Corporation.
Licensed to Tandy Corporation. All Rights Reserved.

MS®-DOS Software: Copyright 1983 Microsoft Corporation.
Licensed to Tandy Corporation. All Rights Reserved.

Model 2000 BIOS Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

BASIC Reference Manual: Copyright 1983 Microsoft Corporation and
Tandy Corporation.
All Rights Reserved.

Reproduction or use without express written permission from Tandy
Corporatian, of any portion of this manual is prohibited. While reason-
able efforts have been taken in the preparation of this manual to assure its
accuracy, Tandy Corporation assumes no liability resulting from any
errors or omissions in this manual, or from the use of the information
contained herein.

10 9 8 7 6 5 4 3

Introduction

This manual is about the popular GW-BASIC from Micro-
soft. BASIC for MS-DOS is an “interpreter.” When you run
a program, it executes each statement one at a time. This
makes it quick and easy to use. It also allows you to take
advantage of many MS-DOS features, such as:

® Faster running programs
® Expanded graphics capabilities

About this Manual

L N

N

(]

tations

This is a reference manual, not a tutorial. We assume you
already know BASIC and are using this manual to quickly
find the information you need. If you do not know BASIC,
many excellent books are available at your local bookstore
written in a tutorial fashion to teach you BASIC.

Section I — Operations. This section shows how to
load BASIC. It also demonstrates how to write, run,
and save a BASIC program on disk.

Section II — The BASIC Language. This section
includes a definition for each BASIC keyword (state-
ments and functions) in alphabetical order. In addi-
tion, it shows how to write a program to store data

on disk.

CAPITALS material that must be entered exactly
as it appears.

italics words, letters, characters, or values
you must supply from a set of accept-
able entries.

... (ellipsis) items preceding the ellipsis may be
repeated.

X’NNNN INNNN is a hexadecimal number.

O’NNNN NNNN is an octal number.

KEYNAME
[

Terms
buffer

[parameters]

{argumenis)

line

integer

a key on your keyboard.

a blank space character (ASCII code
32). For example, in

BASICKWPROG

two spaces are between BASIC and
PROG.

a number in the range 1 to 15. This
refers to an area in memory that
BASIC uses to create and access a disk
file. Once you use a buffer to create a
file, you cannot use it to create or
access any other files; you must first
close the file. You may only access an
open file with the buffer used to open
it.

information you supply to specify
how a command is to operate. Pa-
rameters enclosed in brackets are
optional.

expressions you supply for a function
to evaluate. Arguments enclosed in
brackets are optional.

acommand with its parameter(s), or a
function with its argument(s). This
shows the format to use for entering a
keyword in a program line.

a numeric expression that identifies a
BASIC program line. Each line has a
number between 0 and 65529.

any integer expression. It may consist
of an integer or of several integers
joined by operators. Integers are
whole numbers between —32768
and 32767.

string

number

dummy number
or dummiy string

any string expression. It may consist
of a string, or of several strings joined
by operators. A string is a sequence of
characters that is to be taken verba-
tim.

any numeric expression. It may con-
sist of a number or of several num-
bers joined by operators.

a number (or string) used in an
expression to meet syntactic re-
quirements, but the value of which is
insignificant.

Table of Contents

Section I/ Operations. 7
Chapter 1/ Sample Session 8
Loading BASIC. 8
Options for Loading BASIC 10
Typing the Program o 11
Saving the Program. oL 12
Loading the Program. 14
Chapter 2 / Command and Execution Modes. 15
Command Mode 15
Interpretation of aLine. 15
Immediate Lines. 16

Program Lines 16

Special Keys in Command Mode =17

Execution Mode. 19
Special Keys in Execution Mode, 19
Chapter 3 / The Line Editor. 21
Special Keys in the Edit Mode. 22
Changing Lines Anywhere on the Screen. 26
More on Line Edit Mode 27
Section II / The BASIC Language. 28
Chapter 4 / BASIC Concepts. 31
Overview: Elements of a Program., 31
How BASIC Handles Data. 34

How BASIC Classifies Constants. 43

Tlow BASIC Classifies Variables 46

How BASIC Converts Numeric Data 47

How BASIC Manipulates Data 51
Operators e 51

Functions 61

How to Construct an Expression. 62
Chapter 5/ Disk Files 65
Sequential Access Files. 65
Creating a Sequential File. 66

Updating a Sequential File 68

Direct Access Files. 70
Creating a Direct File 70

Accessing a Direct Fileo oL 72

Chapter 6 / Introduction to Keywords 75

Format For Chapter 7.. S 75

STACMENLS . ..o 76

Functions 81

Introduction to Graphics oL 84

Graphics 84

Medium Resolution Color Graphics Option. 85

High Resolution Monochrome Graphics Option 85

High Resolution Color Graphics Option. 87

Specifying Coordinates. 88

Aspect Ratio o 89

ScreenMode 1..... oo 90

ScreenMode 2. 90

Screen Modes 3and 4. 91

Chapter 7/ BASIC Keywords. 93

Section III / Appendices......................... ... 331

Appendix A / Error Codes and Messages......... .. 333
Appendix B / BASIC Reserved Words

and Derived Functions 341

Appendix C / Video Display Worksheet. 344

Appendix D/ Memory Map 345

Appendix E / Technical Functions 347

Interfacing with Assembly Language Subroutines 347

Accessing String Variables oL 354

File Control Block., 356

How Variables Are Stored, 358

Using BASIC

Section 1

Operations

C
@«
3
@
@
>
<2
O

Chapter 1
Sample Session

The easiest way to learn how BASIC operates is to write
and run a program. This chapter provides sample state-
ments and instructions to help familiarize you with the
way BASIC works.

The main steps in running a program are:

A) Loading BASIC

B) Typing the program

C) Editing the program

D) Running the program

E) Saving the program on disk

F) Loading the program back into memory

Loading BASIC

We recommend that you read your Introduction to Model
2000 for complete startup information on your Model
2000 before you load BASIC. It details the necessary steps
to get to the MS-DOS command level prompt.

At the MS-DOS system prompt A>, you can load BASIC
into the computer’s memory by typing

BASIC

A paragraph with copyright information appears on your
screen, followed by: Ok

You may now begin using BASIC.

Section I / Operations

Options for Loading BASIC

When loading BASIC, you can also specify a set of options.
They are:

BASIC [filename] [/F:number of files] [/C:buffer size)
[/M:highest memory location] [/S:record length]

Filename specifies a program to run immediately after
BASIC is started.

/F: specifies the maximum number of data files that mav be
open at any one time (from 0-15). If you omit this option,
the number of files defaults to three.

Each file you specify may use up to 190 bytes of memorv.
Sequential access files always use 190 bytes of memory.
The amount of memory a direct access file uses depends
on the record size set with the /S: option. Each file uses 62
bytes of memory for the file control block, plus the record
size. For example, if you specify a record size of 50 with
the /S: switch, the file uses 112 bytes.

/C: specifies the size of the receive buffer for RS232 com-
munication. If you omit the /C: option, BASIC allocates 256
bytes for the receive buffer. The transmit buffer is always
128 bytes.

/M: specifies the highest memorv location for BASIC to
use. Omit this option unless vou plan to call assembly-
language subroutines. (In that case, you may want to set
the highest memory location well below the top of
BASIC's data segment.) If you omit this option, the system
allocates 64K bytes of memory to BASIC.

/S: specifies the maximum record size for direct access
files. If you omit the /S: option, BASIC assumes 128 bytes.

10

Chapter 1 / Sample Session

Examples

Az
BASIC PAYROLL /F:5

initializes BASIC, then loads and runs the program
PAYROLL; allows five data files to be open; uses all mem-
ory available.

A
BASIC /M:21000

initializes BASIC; allows three data files to be open; sets
the highest memory location to be used by BASIC at 21000,
the first 21K bytes of BASIC's data segment.

A
BASIC /M:21000 /F:6 (ENTER

initializes BASIC; sets the highest memoryv location at
21000; allows six data files to be open. Notice that the
sequernce in which the /M: and /F: options are specified is
irrelevant.

A>
BASIC

initializes BASIC; allows three data files to be open; uses all
memory available.

Typing the Program

Let's write a small BASIC program. Before pressing (ENTER
after each line, check the spelling. If vou have made any
mistakes, use the kev to correct them.

10 A% ="WILLIAM SHAKESPEARE WROTE "
15 B$ ="THE MERCHANT OF VENICE"
20 PRINT AS3; B$

Check vour spelling again. If it is still not perfect, enter the
line number where vou made the mistake. Then type the
entire line again.

11

Section [/ Operations

For example, suppose you had typed:

15 B$="THE VERCHANT OF VENICE"

To correct line 15, retype it:

15 B$="THE MERCHANT OF VENICE"
Then type:

RUN

Your screen should display:

WILLIAM SHAKESPEARE WROTE THE MERCHANT
OF VENICE

BASIC replaced line 15 in the original program with the
most recent line 15.

Note: BASIC “reads” your program lines in numeri-
cal order. It doesn’t matter if you entered line 15
after line 20; BASIC still reads and executes 15 be-
fore “looking” at 20.

BASIC has a powerful set of commands that allow you to
correct mistakes without retyping the entire line. These
commands are discussed in Chapter 3, the “Line Edit
Mode.”

Saving the Program on Disk

You can save any BASIC program on disk. To do this, you
assign it a filespec. The filespec tells BASIC on which disk
you want to save the file and the name of the file. A filespec
consists of drive identifier, filename, and extension. Only
the filename is required. The filespec must be enclosed in
double quotes.

Filenames must conform to the MS-DOS file naming con-
ventions. A filename can have a maximum of eight alpha-
numeric characters. The first chardcter must be a letter, A
through Z. The remaining seven characters may be any of
the following:

Chapter 1 / Sample Session

Examples

the letters A through Z

the digits 0 through 9

the special characters <, >, (,), {,}, @, #, §, %, ",
&, 1, -, —, ', and /

The extension may be up to three characters long and
must also begin with a letter. The other two characters may
be any of the characters that are allowed in the filename. A
period (.) must be included between the filename and the
extension. If you omit an extension with the SAVE, LOAD,
MERGE, and RUN commands, BASIC appends the exten-
sion .BAS.

The drive identifier specifies on which disk you want
BASICto save your program. The drive identifier precedes
the filename and extension and may be any of the valid
drive letters (A through D); it must be followed by a colon.
If you omit the drive identifier, BASIC saves the file on the
MS-DOS current drive,

For example, to save the program we just wrote on Drive
B, assign it the filename “AUTHORBAS”. Type the follow-
ing command:

SAVE "“B:AUTHOR.BAS"

It takes a few seconds for the computer to find a place on
disk to store a program and to copy the program from
memory to the disk. When the program is saved on the
disk, the screen displays Ok.

SAVE “AUTHOR.WIL" (ENTER)

saves the program under the filename AUTHOR, with the
extension \WIL on the MS-DOS current drive.

SAVE "A:AUTHOR”

saves the program under the filename “AUTHOR” on the
disk in Drive A. Because no extension is given, BASIC
appends the extension .BAS.

13

Section 1 / Operations

Loading the Program

Example

If, after writing or running other programs, you want to
use this program again, you must “load” it back into
memory. To do this, type:

LOAD “filespec”, R

LOAD “AUTHOR", R (ENTER

tells the computer to load the program "AUTHOR™ from
disk into memory; option R tells the computer to run it.

Another way to load and run a program is to type:
RUN “filespec’

RUN automatically loads and runs the program specified
by “filespec”.

The SAVE, LOAD, and RUN commands are discussed in
more detail in Chapter 7.

14

Chapter 2

Command And Execution Modes

This chapter describes BASIC's command and execution
modes. BASIC is in the command mode when you are
typing in program lines and immediate lines. BASIC is in
the execution mode when it is performing the instructions
in the program and immediate lines.

Command Mode

Whenever you enter the command mode, BASIC displays
the prompt:

In the command mode, BASIC does not “read” your input
until you complete a “logical line” by pressing (ENTER).
This is called “line input,” as opposed to “character input.”

A logical line is a string of up to 255 characters and is
always terminated by pressing (ENTER). Of these 255 char-
acters, 249 are reserved for the line itself; the other six are
reserved for the line number and the space following the
line number.

A physical line, on the other hand, is one line on the
display. It contains a maximum of 80 characters.

For example, if you type 100 R’s and then press (ENTER),
you have two physical lines, but only one logical line.

Interpretation of a Line

BASIC always ignores leading spaces in the line — it jumps
ahead to the first non space character. If this character is
not a digit, BASIC treats the line as an immediate line. If it is
a digit, BASIC treats the line as a program line.

For example, if you type:
PRINT “THE TIME 1S” TIME$ (ENTER

BASIC takes this as an immediate line.

15

Section 1 / Operations

But if you type:
10 PRINT “THE TIME IS” TIME$ (ENTER

BASIC takes this as a program line.
Immediate Lines

An immediate line consists of one or more statements
separated by colons. There is no line number in an im-
mediate line. The line is executed as soon as you press
(ENTER). After BASIC executes the line, it is no longer in
memory. The values of variables and constants are still in
memory, but the statement no longer exists. Immediate
lines are useful for using the computer as a calculator for
quick computations that don’t require an entire program.
For example:

Ok
MILES = 133:GAS=11:MPG=MILES/GAS

After this statement is executed, the value of the variables
MILES, GAS, and MPG still exist in memory. But the in-
struction itself does not.

Ok
CLS: PRINT “THE SQUARE ROOT OF 2 1S” SQR(2)

is an immediate line. When you press (ENTER), BASIC
executes it.

Program Lines

A program line consists of a line number in the range 0 to
65529, followed by one or more statements separated by
colons. When you press (ENTER), the line is stored in
memory. All lines that you enter with a line number are
stored in memory until you execute a RUN or other ex-
ecute command. For example:

100 CLS: PRINT “THE SQUARE ROOT OF 2 IS”
SQR(2)

is a program line. When you press (ENTER), BASIC stores it
in memory. To execute it, type:

16

Chapter 2 | Command and Execution Modes

RUN

Note: If you include numeric constants in a line,
BASIC evaluates them as soon as you press (ENTER); it
does not wait until you RUN the program. If any
numbers are out of range for their type, BASIC re-
turns an error message immediately after you press

ENTER).

Special Keys

The CTRL and ALT keys have special functions in BASIC.
When you press and hold one of these keys while typing
another key, BASIC performs functions to make entering
and editing program lines and immediate lines easier.
These keys have no function in BASIC unless they are
pressed with another key. For example, if you press
key and type (H), BASIC backspaces and deletes the

character.

Special Keys in the Command Mode

BACKSPACE
or CTRL(H)

SPACE BAR

or (CTRLXC)
CTRL

ENTER) or
CTRL(M)

17

Backspaces the cursor, erasing the
preceding character in the line.
Use this to correct typing errors

before pressing (ENTER).

Enters a blank space character and
advances the cursor.
Interrupts line entry and starts
over with a new line.
Line feed — starts a new physical

line without ending the current
logical line.

Switches the display to either all
uppercase or uppercase/lower-
case mode.

Ends the current logical line.
BASIC “takes” the line.

Section 1 / Operations

CTRLA
or

CTRD() or

CTRLCY) or

CETRL(P) or
CTRD

CTRDBor
CTRD =)

('iii] or

(INSERD
(DELET

CTRDAD

CTRD(D

or
CTRDM

CTRLDEND) or
CTRD(ED

CTRD(D) or

CTAD(®

18

Erases the current line.

Moves the cursor one position to
the left.

Moves the cursor one position to
the right.

Moves the cursor to the first char-
acter in the next word to the right
of the current cursor positon.

Moves the cursor to the first char-
acter in the word to the left of the
current cursor position.

Turns on insert mode if it is off;
turns off insert mode if it is on.

Deletes the character at the cur-
rerit cursor position.

Deletes the next word to the right
of the cursor,

Displays the soft key values of the
12 Function Keys.

Moves the cursor to the iast charac-
ter in the logical line.

Deletes all characters from the cur-
rent cursor position to the end of
the line.

Advances the cursor to the next tab
position. Tab positions are set at
every eight character positions.

Rings the bell at the terminal.

Chapter 2 / Command and Execution Modes

Some BASIC keywords are associated with alphabetic
characters (A-Z). To enter these keywords easily, press
and the corresponding letter. BASIC inserts the
keyword at the current cursor position. The keywords and
their associated letters are listed below. Letters that don’t
have an associated keyword are indicated by “(none).”

A

2RI OTMmOO®

AUTO
BSAVE
COLOR
DELETE
ELSE
FOR
GOTO
HEX$
INPUT
(none)
KEY
LOCATE
MOTOR*

NRXE<OH®ROTQZ

NEXT
OPEN
PRINT
(none)
RUN
SCREEN
THEN
USING
VAL
WIDTH
XOR
(none)
(none)

*MOTOR is a reserved word, but is not a recognized
statement in this implementation of BASIC.

Execution ‘Mode

When BASIC is executing statements (immediate lines or
programs), it is in the execution mode. In this mode, the
contents of the video display are under program control.

HOLD) or
CTRL)(S)

BREAK

ENTER) or

CTRL(M)

Special Keys in the Execution Mode

Pauses execution. Press any other

key (except (BREAK)) to continue.

Terminates execution and returns
you to command mode.

Interprets data entered from the
keyboard as a response to the IN-
PUT statement.

19

Chapter 3
The Line Editor

Your BASIC Editor lets you “debug” (correct errors in)

your BASIC program quickly and efficiently without retyp-
ing entire lines.

To enter line edit mode type :
EDIT line number (ENTER

This lets you cdit the specified line number. (If the line
number you specify has not been used, an “Undefined line
number” error occurs.)

You may also use the LIST command to list one or several
lines before you make the changes. If you LIST one line
you can use the keys described in the next section to make
changes to the line. If you LIST several lines, see the last
section of this chapter, “Changing Lines Anywhere on the
Screen.”

You may also type:
EDIT.

The period after EDIT means that you want to edit the
current program line, the last line entered, the last line
altered, or a line in which an error has occurred. Notice
that you need to type a blank before the period; otherwise,
BASIC gives you a “Syntax error” message.

For example, type the following line and press (ENTER).
100 PRINT “This is our example line.”

This line will be used in exercising all the edit subcom-
mands described below.

Now type EDIT 100 and press (ENTER). BASIC displays the
entire line and positions the cursor under the first digit of
the line number. This starts the editor. You may now begin
editing line 100. Line 100 can be modified by using any of
the special keys described below. Note: None of the
changes you make to a program line are entered until you

press (ENTER).

21

Section. 1 / Operations

Special Keys in the Edit Mode

ENTER) or
(CTRL(W)

or
CTRL(D)

or
CTRD(V)

SPACEBAR

CTRL
or CTRL(F)

CTRL

or (CTRD(B)

or
CTRL(N)

gle)

Records the changes you made in
the current line and returns you to
the command mode.

Moves the cursor one position to
the left. If you advance the cursor
past the left-hand margin of the
screen, it moves to the right-hand
margin of the screen on the pre-
vious line.

Moves the cursor one position to
the right. If you advance the cursor
past the right-hand margin of the
screen, it moves to the left-hand
margin of the screen on the next
line.

Changes the character to a blank
and advances the cursor one posi-
tion to the right.

Moves the cursor right to the next
word. The next word is the next
letter or number that follows a
blank or a special character.

Moves the cursor to the first char-
acter in the previous word. Thc
previous word is the next letter or
number to the left of the cursor
that precedes a blank or special
character.

Moves the cursor to the last charac-
ter in the logical line.

DELETE

BACKSPACE) or
CTRU(H)

(CTRL(END)
or (CTRU(E)

CTRD(W) or
€O

or
CTRL(T)

BREAK) or
CTRL)(T)

CTRD(K)
or

CTRL

23

Chapter 3 / The Line Editor

Erases the character at the current
cursor position. All characters to
the right of the cursor and subse-
quent characters and lines within
the logical line move left or up one
position.

Erases the character to the left of
the cursor. All characters to the
right and subsequent characters
and lines within the logical line
move left or up one position.

Erases all characters from the cur-
rent cursor position to the end of
the logical line.

Erases the entire logical line from
the screen. BASIC does not record
in memory any of the changes
made to the line. You may press
either of these anywhere in the
line to cancel changes made.

Moves the cursor to the next tab
position. Tab positions are set at
every eight positions. As the cursor
advances to the next tab position,
the characters in the positions it is
tabbing over are printed.

Returns to direct mode and does not
record in memory any of the
changes to the line currently being
edited.

Moves the cursor to the first posi-

tion in row one,

Clears the screen and positions the
cursor at the first position in row
one.

Sectz'onml / A_»Qpemrz‘o_n}s

INSERT

CTRD(D

Sample Session

Type
EDIT 100

Allows you to enter characters be-
tween other characters that are
already in the line. To insert char-
acters press and type the
characters you want to insert. All
other characters on the logical line
move to the right or down each
time you insert a character. If while
you are inserting characters you
press the key, blanks are in-
serted from the current cursor
position to the next tab position.
After you insert all the characters,
press again and continue
editing the line.

Clears the screen from the current
cursor position to the end of the
screen.

Use the right arrow to space across the line to the “T” in
“This.” Type lowercase “t” and then (ENTER).

Type
LIST 100

to see that BASIC stored your change in memory.

Use the edit command to edit the line again. Press to
position the cursor on the second set of double quotes.

Press and type
We inserted the second sentence. (ENTER

Use the list command to see the new statement that is

stored in memory.

Chapter 3 / The Line Editor

Type
EDIT . (ENTER)

to edit the line again. You may use the period (.) instead of
the line number to edit the current line, Use and =9
to position the cursor on the “i" in inserted. Press
(CTRL)YEND). BASIC deletes all the characters you inserted
except “we” and the blank. Use to delete the
blank. Use to position the cursor on the pre-
vious word. Press twice to delete “we.” Press
(ANSERT), then () to put the double quote in at the end of
the statement. Use the list command to see the new line.

Now let’s add another line to the program. Type

200 GOTO 100
RUN

BASIC s in a loop printing your message repeatedly on the
screen. Press (BREAK) to stop program execution.

Type
DELETE 200

Line 200 is erased from memory.

Use the edit command to edir the line again. Use &) to
position the cursor on the “P” in PRINT. Press
to change the “P” to a blank. Press CTRL)™>) to position
the cursor on the “t” in “this.” Press to change the
lowercase “t” to a capital "T.” Instead of pressing
after you make the changes, press (ESC). Use the list com-
mand to see that BASIC did not record vour change,
because you pressed (ESC) instead of (ENTER).

Now you have used all the special keys in line edit mode. If
you still don’t feel comfortable with them, go through the
sample session again. If you feel confident that you under-
stand the line editor, read on to learn about some special
keys that make it easier and faster to change lines any-
where on the screen.

25

Section I / Operations

Changing Lines Anywhere
on the Screen

When more than one line is displayed on the screen, you
may use the arrow keys to move the cursor around the
screen to different program lines to correct errors. After
you make all the corrections, you must go to the beginning
of each line that you modified and press to record
the change in memory. Using the arrow keys to make
corrections can be much quicker than typing EDIT and a
line number for every line that needs to be changed.

CTRL() Moves the cursor up one row to

or () the character above the current
Cursor position.

CTRL(—) Moves the cursor down one row to

or (1) the character below the current

cursor position.

You may also use the left and right arrow keys as previous-
ly described under “Special Keys in the Edit Mode.”

Sample Session
After you type each of the following lines, press (ENTER

10 PRINT “With the fising cost of fuel, ras mileage ”;
20 PRINT “has vecome an important donsideration”
30 PRINT “in the purchase of anew vehiclee”

Now you can use the arrow keys to correct the mistakes in
the program statements.

1. Use (&), then (39 to position the cursor on the “f” in
“fising” in Line 10. Type "t over the “f.”

2. Use (TAB), then (=) to position the cursor on the “r” in
“ras.” Type (@) over the "r.”

3, Use (), then 10 position the cursor over the “d” in
“donsideration.” Type (&) over the “d.”

4. Use (CTRL(=s), then to position the cursor over the
“v" in “vecome.” Type (B) over the “v.”

26

Chapter 3 / The Line Editor

5. Use (1), @TRD(=2), and @3 to position the cursor over
the “n” in “anew”. Press and (SPACEBAR) to

[T

insert a blank between “a” and “new.”

6. Use to space across to the last “e” in “vehiclee.”
Press to erase the extra “e”.

7. Use to position the cursor over the “3" in Line 30.
Press (ENTER).

8. Use () to position the cursor over the “2” in Line 20.

Press (ENTER).

9. Use (4) to position the cursor over the “1” in Line 10.
Press (ENTER).

More on Line Edit Mode

If your computer encounters a syntax error while execut-
ing a program, BASIC automatically enters EDIT. It dis-
plays the line that contains the error. For example, type

10 A = 2812

RUN

The screen displays:

TSyntax error in 19

18 A = 2512

EDIT positions the cursor under the first digit of the line
number. Now press (35 to move the cursor to the dollar

sign ($) and press and then (ENTER). BASIC stores
the corrected line in memory.

27

BASIC Language

Section 11 -
The BASIC Language

29

oy
>
2
O
-
o
>
©«
[
Y
«
@

Chapter 4

BASIC Concepts

This chapter explains how to use the full power of BASIC
for MS-DOS. This information can help programmers
build powerful and efficient programs. If you are still
something of a novice, you might want to skip this chapter
for now, keeping in mind that the information is here
when you need it.

The chapter is divided into four sections:

Overview — Elements of a Program. This section
defines many of the terms we use in the chapter.

How BASIC Handles Data. Here we discuss how BASIC
classifies and stores data. This shows you how to get BASIC
to store your data in its most efficient format.

How BASIC Manipulates Data. This gives you an over-
view of the operators and functions you can use to man-
ipulate and test your data.

How to Construct an Expression. This topic can help
you construct powerful statements that you can use in-
stead of many short ones.

Overview: Elements of a Program

Program

This overview defines the elements of a program. A pro-
gram is made up of “statements”; statements may have
several “‘expressions.”

A program is a group of instructions that perform a certain
process. It is made up of one or more numbered lines.
Each line contains one or more BASIC statements, the
instructions. BASIC allows line numbers from 0 to 65529
inclusive. A line contains up to 255 characters, including
the line number.* You may also have two or more state-
ments to a line, separated by colons.

*You can type a maximum of 249 characters per line.
BASIC reserves the remaining six characters for the line
number and for the space following the line number.

31

Section 1l / The BASIC Language

Statements

Here is a sample program:

Line BASIC Colon between BASIC statement
numbe;/ A@statemenm

100 CLS:LOCATE 2,30: PRINT "“Graphic Characters”
110 FOR X = 1 to 6: PRINT CHR$(X),

120 NEXT X

130 FOR Y = 14 to 27: PRINT CHR$(Y),

140 NEXT Y

150 END

When BASIC executes a program, it handles statements
one at a time, starting with the first and proceeding to the
last. Some statements, such as GOTO, ON... GOTO,
GOSUB, change this sequence.

A statement is a complex instruction to BASIC, telling the
computer to perform specific operations. For example:

GOTO 100

tells the computer to perform the operations of (1) locat-
ing line 100, (2) transferring control to that line and (3)
executing the statement(s) on that line.

END

tells the computer to perform the operation of ending
execution of the program.

Many statements instruct the computer to perform opera-
tions with data. For example, in the statement:

PRINT “SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs
the computer to print (display on the screen) the data
inside quotes.

32

Chapter 4 /| BASIC Concepts

Expressions

An expression is part of a statement. It is one or more
pieces of data that produce a single value. The data may be
an expression itself, or several pieces of data may be
connected by operators or punctuation to form an ex-
pression. There are four types of expressions:

1. Numeric expressions, which contain numeric data.
Examples:

(1 + 5.2)3
D

5+B

3.7682

ABS(X) + RND(0)
SIN@3 + E)

2. String expressions, which contain character data.
Examples:

A%

“STRING”

“STRING” + “DATA”

MO$ + “DATA"

MID$(A$,2,5) + MID$(“MAN"1,2)
M$ + A$ + BS

3. Relational expressions, which test the relationship be-
tween two expressions.

Examples:

A=1
A$>B$

4. Logical expressions, which test the logical relationship
between two expressions.

Examples:

A$="YES” AND B$="NQ"
C>50RM<BORO0>-2
578 AND 452

33

Section II / The BASIC Language

Functions

Functions are automatic subroutines. Most BASIC func-
tions perform computations on data. Some serve a special
purpose, such as controlling the video display or provid-
ing data on the status of the computer. You may use
functions in the same manner that you use any data, that is,
as part of a statement.

These are some of BASIC’s functions:

INT
ABS
STRING$

For example, ABS returns the absolute value of a numeric
expression. The following example shows how this func-
tion works;:

PRINT ABS(7+(—-5))
35
Ok

How BASIC Handles Data

Strings

BASIC offers several methods of handling your data. Using
these methods properly can greatly improve the efficiency
of your program. In this section we discuss the different
ways BASIC represents data in your program. BASIC rec-
ognizes all data as either string or numeric. String and
numeric values are represented as either constants or
variables.

A string is a sequence of up to 255 characters, enclosed in
double quotes. You may store ASCII characters, graphics,
or non-ASCII symbols in a string. Strings require three
bytes of storage plus the number of characters in the
string. For example, the string “TABBY” requires three
bytes of storage plus five additional bytes to store the
characters, for a total of eight bytes.

34

Chapter 4 | BASIC Concepts

Numerics

Numerics are positive or negative numbers. The five types
of numerics are integer, fixed point, floating point, hex-
adecimal, and octal.

Integers are whole numbers between — 32768 and 32767
that do not contain decimal points.

Examples:
1 3200 -2 500 -—12345

Fixed point numbers are positive or negative real num-
bers and may contain decimal points.

Examples:
1.1234 -—-100.999 99 —.5998

Floating point numerics are positive or negative numbers
represented in exponential form (similar to scientific
notation). A floating point numeric consists of a mantissa,
followed by the letter E or D, and an exponent. The
mantissa may be an integer or fixed point number. The
letter E or D refers to number’s numeric precision and
means “times ten to the power of.” We discuss numeric
precision in the next section. The exponent is always an
integer. Floating point numerics must be in the range
10—38 to 10+ 38. For example, in the number:

2359E6

2359 is the mantissa and 6 is the exponent. This number
could be read as 2359 to sixth power,” that is,
2359000000.

In the number
235.988E—7

235988 is the mantissa and —7 is the exponent. This
number could be read as “235.988 to the negative seventh
power,” that is, .0000235988.

35

Section Il / The BASIC Language

Hexadecimal numerics are one- to four-digit hexadecimal
representations of decimal numbers. Hexadecimal
numerics are always preceded by the prefix &H, indicat-
ing that the numeric is a hexadecimal number and not a
decimal number. The hexadecimal numbers are 0-9 and
A-F.

Examples:
&H76 and &HO32F

are hexadecimal representations of the decimal numbers
118 and 815 respectively.

Octal numbers are one- to six-digit octal values preceded
by the prefix &0 or just &. Although only the & is re-
quired, we recommend that you use &O for clarity in your
program. The octal numbers are 0-7.

Examples:
&0123 and &0000456

are octal representations of the decimal numbers 83 and
302 respectively.

Numeric Precision

Regardless of the numeric type, BASIC stores all numbers
as integer, single precision, or double precision. The char-
acteristics of a number determine its numeric precision.
Numeric precision determines the amount of memory
BASIC uses and the speed at which BASIC can process the
number.

In this section we describe the different types of numeric
precision and how BASIC automatically stores the num-
ber. Later we show you how to override the automatic
storage by using type declaration tags.

Integer

BASIC stores a number as an integer if it is in the range
—32768 to + 32767 and does not contain a decimal point.
If it is outside the range, BASIC stores it as single or double
precision in exponential format.

36

Chapter 4 | BASIC Concepts

Integers require two bytes of storage. Integers require the
least amount of storage space and are therefore faster for
BASIC to access. But BASIC stores integers with the least
degree of exactness.

For example:

1 3200 -2 500 —12345
can all be stored as integers.

Single Precision

A single-precision number can include up to seven digits
and may be in exponential form using E. If a number is
larger than seven digits, BASIC stores it in double-
precision form with D. Note that a single precision num-
ber may be either a fixed or a floating. point numeric.

Single-precision numbers require four bytes of memory
for storage. Even though BASIC stores the number with
seven digits of precision, BASIC rounds the number to six
digits when it is printed.

For example:

10.001 —200034 1.774E6 6.024E-23
123.4567

can all be stored as single-precision values.
Double Precision

Double-precision numbers can include up to 16 digits and
may be in the exponential form using D. Note that a
double-precision number may be either a fixed or a float-
ing point numeric.

Double-precision numbers require eight bytes of mem-
ory for storage. As with single precision, BASIC rounds the
number to 16 digits when it is printed. Double-precision
numbers require the most number of bytes and are there-
fore the slowest for BASIC to access. However, double-
presicion numbers are the most exact.

Section Il / The BASIC Language

Constants

For example:

1010234578
—8.7777651010
3.141592653589793
8.00100708D12

can all be stored as double-precision values.

Constants are values input to a program that are not sub-
ject to change. The two types of constants are string and
numeric. String constants must be enclosed in double
quotes. Numeric constants can be integer, fixed point,
floating point, hexadecimal, or octal.

The statement:
PRINT “NAME", “ADDRESS", “CITY", “STATE"

contains four string constants; NAME, ADDRESS, CITY, and
STATE. Every time BASIC executes this PRINT statement,
these four values are printed.

A numeric value that won’t change in your BASIC program
may be represented as either a string constant or a numer-
ic constant. If you use puctuation in the number, it must be
a string constant enclosed in double quotes. For example,
in the statement:

PRINT “$250,000”

“$250,000” is a string constant.

In this statement:

PRINT “1,000 PLUS ”; 1000; “EQUALS "'; 2000

the first 1,000 is a string constant containing a comma. The
other 1000 is a numeric constant.

38

Chapter 4 / BASIC Concepts

Variables

Avariable is a place in memory where BASIC stores values
that can change. This allows you to write programs that
contain changing data.

In the statement:
A$ = “OCCUPATION”

The string variable A$ now contains the data OCCUPA-
TION. However, if this statement appeared later in the
program:

A$ = “FINANCE”

The variable A$ no longer contains OCCUPATION. It now
contains the data FINANCE.

Strings with length zero are called “null” or “empty.”
Strings are useful for storing non numeric information
such as names, addresses, or text.

Variables can also store numeric values. For example:
A =134

The numeric variable A now contains the value 134. If this
statement appears later in the program:

A =100
the variable A now contains 100.

Variable Names

In BASIC, variables are represented by names. Variable
names can be up to 40 characters long, and they must
begin with a letter, A through Z. This letter may be fol-
lowed by any of the digits 0 through 9, a period, or a type
declaration tag, Variable names cannot be exactly the same
as any of the reserved words listed in Appendix B. Howev-
er, reserved words may be imbedded in a variable name.

39

Section II / The BASIC Language

For example:
OR LEN OPTION
cannot be used as variable names. However,

AM A Al BALANCE
EMPLOYEE2 LEN2 OPTION1

are all valid and distinct variable names.
Type Declaration Tags

A type declaration tag is a symbol at the end of a variable
name that tells BASIC what kind of data the variable will
store. The four types of declaration tags for variables are:

% Integer
! Single Precision
Double Precision

$ String

For example:

INT% indicates to BASIC that the variable INT%
will store integer type numerics.

PER! indicates to BASIC that the variable PER! will

store single precision type numerics.

SPEED# indicates to BASIC that the variable
SPEED# will store double precision type
numerics.

NAME$ indicates to BASIC that the variable NAME$
will store string data.

Arrays

An array is a group of related data values stored consecu-
tively in memory. The entire group of data values are
referred to as one variable name. Each value is called an
element of the array. A subscript is an integer used to
specify each element of the array. For example, an array
named A may contain three elements referred to as:

A(0) A1) A(2)

40

Chapter 4 / BASIC Concepts

You may use each of these elements to store a separate
data item, such as:

A@) = 10
A1) = 20
A2) = 30

An array is similar to a table, such as a tax table. For
example, array A could be the tax rate at different income
levels. The tax rates are arranged in a row corresponding
to the appropriate income levels, like this:

Income Tax Rate
0 - 10,000 10
10,001 - 20,000 .20
20,001 - 30,000 30

This is called a one-dimensional table because the ele-
ments are arranged in rows, one-dimension, with each
dimension containing only one element.

Since tax rates are decreased by number of dependents, a
tax array also has to contain columns within each row. As
with a tax table, you can first locate the proper row, by
income, and then move horizontally across the table to the
appropriate column for number of dependents. An array
that contains columns of data within rows of data is called a
two-dimensional array. Each dimension of the two dimen-
sions (row and column) contains more than one element.

A two-dimensional tax array named X could contain these
elements:

X(0,0) = .15 X(0,1) = .10 X(0,2) = .05
X(1,0) = 30 X(1,1) =25 X(12) = 20
X(20) = 45 X2 = 40 X(22) = 35

41

Section II / The BASIC Language

The first subscript indicates the row number of the data
and the second subscript indicates the column number.
For example, the data stored in the second row at the
second column, X(1,1) is .25. In a tax table these values are
arranged like this:

Income Number of Dependents
1 2 3
0 - 10,000 15 10 05
10,001 - 20,000 30 25 .20
20,001 - 30,000 45 40 35

A taxpayer who has an income of $15,000 and two depen-
dents has a tax rate of .25. That is element X(1,1) in the
array.

If you further subdivide dependents column by the tax-
payer’s marital status, you need one more dimension
within the column; depth. This is called a three-
dimensional array because there are three dimensions
(row, column, and depth), with each dimension contain-
ing more than one element. A three-dimensional array Z
could contain these eight elements:

Z(0,00) = 05 Z(0,10) = .15
Z(0,01) = .10 Z(0,1,1) = .20
Z(1,00) = 25 Z(1,1,0) = .35
Z(1,0,1) = 30 Z(1,1,1) = 45

The first subscript indicates the row, the second subscript
indicates the column, and the third subscript indicates the
depth. In a tax table, these values are arranged like this:

Income Number of Dependents
1 2
married | single |married| single
$0-10,000 05 .10 15 20
$10,001-$20,000 25 30 35 45

42

Chapter 4 | BASIC Concepts

A taxpayer who has an income of $15,000, has one depen-
dent, and is married has a tax rate of .30. That is element
Z(1,0,1).

With BASIC, you may have up to 255 dimensions in your
array and up to 32,767 elements in each dimension. Arrays
may be of any type: string, integer, single-precision, or
double-precision.

You may define arrays in your BASIC program with a DIM
statement at the beginning of your program or just by
setting the value of an element in the program. For
example:

A(5) = 300

creates an array named A containing six elements and
assigns element A(5) the value 300.

Use a DIM statement, to reserve space in memory for each
element of the array. For example:

DIM C#(99)

creates array C and reserves memory for 100 single preci-
sion elements.

See the DIM statement in Chapter 6 for more information
on creating arrays.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it
must determine the type of the constant: string, integer,
single precision, or double precision. First, we list the
rules BASIC uses to classify the constant. Then we show
you how you can override these rules if you want to store a
constant differently.

Rule 1

If the value is enclosed in double quotes, it is a string.

43

Section II / The BASIC Language

Examples:

“YES”
3331 Waverly Way”
“1234567890"

Rule 2
If the value is not in quotes, it is a number.
Examples:

123001
1
—7.3214E + 6

Rule 3

Whole numbers in the range of —32768 to 32767 are
integers.

Examples:

12350
—-12
10012

Note: If you enter a number as a constant in response to a
command that calls for an integer, and the number is out
of integer range, BASIC converts the number to single or
double precision. When the number is printed, it appears
with a type-declaration tag at the end.

Rule 4

If the number is not an integer and contains seven or
fewer digits, it is single precision.

Examples:

1234567
-1.23
1.3321

Rule 5

If the number contains more than seven digits, it is double
precision.

44

Chapter 4 | BASIC Concepts

Examples:

1234567890123456
—1000000000000.1
2.777000321

You can override BASIC's normal typing criteria by adding
type declaration “tags” at the end of the numeric constant.

Makes the number single precision. For example, in
the statement:

A = 12.345678901234!

BASIC classifies the constant as single precision and
shortens it to seven digits.

12.3457

Single-precision exponential format. The E indicates
that the constant is to be multiplied by a specific
power of 10. For example:

A = 1.2E5
stores the single-precision number 120000 in A.

Makes the number double precision. For example,
in statement:

PRINT 3#/7

BASIC classifies the first constant as double preci-
sion before the division takes place.

Double-precision exponential format. The D indi-
cates the constant is to be multiplied by a specified
power of 10. For example, in:

A = 1.23456789D~-1

the double-precision constant has the value
0.123456789.

45

Section Il / The BASIC Language

How BASIC Classifies Variables

When BASIC encounters a variable name in the program,
it classifies it as either a string, an integer, a single-
precision number, or a double-precision number.

BASIC classifies all variable names as single-precision in-
itially. For example:

AB AMOUNT XY L

are all single precision initially. If this is the first line of
your program:

LP = 1.2

BASIC classifies LP as a single-precision variable.

However, you may assign different attributes to variables
by using definition statements at the beginning of your
program:

DEFINT — Defines variables as integer

DEFDBL — Defines variables as double-precision

DEFSTR — Defines variables as string

DEFSNG — Defines variables as single-precision.
(Since BASIC classifies all variables as
single precision initially, you need to use
DEFSNG only if one of the other DEF
statements is used.)

Example:
DEFSTR L

BASIC classifies all variables that start with L as string
variables. After this statement, the variables

L LP LAST
can hold string values only.

As with constants, you can override the type of a variable
name by adding a type declaration tag at the end.

46

Chapter 4 / BASIC Concepts

For example:
1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes
have been assigned to the letters I, F, N, and C.

T! RY! QUAN! PERCENT!I

are all single-precision variables, regardless of what attri-
butes have been assigned to the letters T, R, Q, and P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what
attributes have been assigned to the letters X, R, P, and L.

Qs CAS WRD$ ENTRY$

are all string variables, regardless of what attributes have
been assigned to the letters Q, C, W, and E.

Any varjable name can represent four different variables.
For example:

A5# A5! A5% A5$

are all valid and distinct variable names.

How BASIC Converts Numeric Data

A statement in your BASIC program may contain numbers
with different degrees of precision. When BASIC evaluates
the expression, all operands are converted to the same
degree of precision, that of the most precise operand. The
result of the arithmetic operation is also returned to this
degree of precision.

Often your program might ask BASIC to assign one type of
constant to a different type of variable. For example:

A% = 2.34

In this example, BASIC must first convert the single-
precision constant 2.34 to an integer in order to assign it to
the integer variable A%.

47

Section 1l /| The BASIC Language

You might also want to convert one type of variable to a
different type, such as:

A# = A%
Al = A#
Al = A%

Single or double precision to integer type
BASIC rounds the fractional portion of the number.

Note: The original value must be in the range — 32768 to
32768,

Examples

A% = 32766.7

assigns A% the value 32767.

A% = 2.5D3

assigns A% the value 2500.

A% = —123.45678901234578

assigns A% the value —123.

A% = —32768.5

produces an Overflow Error (out of integer range).
Integer to single or double precision

BASIC appends a decimal point and zeroes to the right of
the original value.

Examples

A# = 32767

Stores 32767.000000000000 in A#.
Al = —1234

Stores —1234.000 in A!.

Double to single precision

BASIC rounds the number to seven significant digits.

48

Chapter 4 / BASIC Concepts

Examples

Al = 1.234567890124567

stores 1.234568 in Al. However, the statement:
Al = 1,3333333333333333

stores 1.333333 in Al

Single to double precision

BASIC adds trailing zeros to the single-precision number.
If the original value has an exact binary representation in
single-precision format, the resulting value is accurate.
For example:

A# =15

stores 1.5000000000000 in A#, since 1.5 does have an
exact binary representation.

However, for numbers that have no exact binary repre-
sentation, the conversion creates an erroneous value. For
example:

A# =13
stores 1.299999952316284 in A#.

You should keep such conversions out of your programs
because most fractional numbers do not have an exact
binary representation. For example, when you assign a
constant value to a double-precision variable, you can
force the constant to be double precision:

A# = 1.3# A# = 1.3D
both store 1.3 in A#.

Here is a special technique for converting a single
precision value to double precision accurately. It is useful
when the single-precision value is stored in a variable.

Convert the single-precision variable to a string with STR$;
then convert the resultant string into a number with VAL

49

Section IT / The BASIC Language

That is, use:
VAL(STR$(single-precision variable))

For example, the following program

10 Al = 1.3
20 A# = Al
30 PRINT A#

prints a value of:
1.299999952316284
This program

10 Al =13
20 A# = VAL(STR$(A!))
30 PRINT A#

prints a value of
1.3

The conversion in line 20 causes the value in A! to be
stored accurately in double-precision variable A#.

Illegal Conversions

BASIC cannot automatically convert numeric values to
string, or vice versa. For example, the statements:

A$ = 1234
A% = “1234"

are lllegal. They return a “Type mismatch” error. (Use
STR$ and VAL to accomplish such conversions.)

50

Chapter 4 | BASIC Concepts

How BASIC Manipulates Data

Operators

BASIC has many fast methods to count, sort, test, and
rearrange your data. These methods fall into two
categories:

1. Operators
4. numeric
b. string
¢. relational
d. logical

2. Functions

An operator is a symbol or word that signifies some action
to be taken on specified values. The data that the opera-
tions are performed on are called operands.

In general, an operator is used like this:
operand-1 operator operand-2
6 + 2

The addition operator, plus (+), connects or relates its
two operands, 6 and 2, to produce the result 8.

Operand-1 and -2 can be expressions.

A few operations take only one operand, and are used like
this:

operator operand
- 5

The negative operator, minus (—), acts on the single
operand 5 to produce the result negative 5.

‘Neither 6 + 2, nor —5 can stand alone; they must be used

in statements to be meaningful to BASIC. For example:

A=6+2
PRINT -5

51

Section Il / The BASIC Language

Operators fall into four categories:

® Numeric
® String
® Relational
® Logical

based on the kinds of operands they require and the
results they produce.

Numeric Operators

Numeric operators are used in numeric expressions.
Their operands must always be numeric, and the result
they produce is one numeric data item. Unless otherwise
stated, when BASIC evaluates the expression, all operands
are converted to the same degree of precision, that of the
most precise operand. The result of the arithmetic opera-
tion is also returned to this degree of precision.

There are seven numeric operators. Two of them, plus
(+) and minus (—), are unary, that is, they have only one
operand. A sign operator has no effect on the precision of
its operand.

For example, in the statement:
PRINT -77, +77

the sign operators — and + produce the values negative
77 and positive 77, respectively.

Note: When no sign operator appears in front of a numer-
ic term, + is assumed.

The other numeric operators are binary; that is, they all
take two operands.

These operators are, in order of precedence:

Exponentiation

* / Multiplication, Division
\ ,MOD Integer Division, Modulus Arithmetic
+,— Addition, Subtraction

Chapter 4 / BASIC Concepts

Exponentiation

The symbol ~ denotes exponentiation. It converts both its
operands to single precision and returns a single-
precision result.

Examples:

PRINT 2°3

prints 8. 2 * 2 * 2 is 8

PRINT 6°.3

prints 6 to the .3 power.

Multiplication

The asterisk (*) is the symbol for multiplication.
Examples:

PRINT 33 * 11%

performs integer multiplication and prints 363.
PRINT 33 * 11.1

performs single-precision multiplication and prints 366.3.
PRINT 12.345678901234567 + 11

performs double-precision multiplication and prints
135.8024679135802.

Division

The slash (/) is the symbol for ordinary division.
Examples:

PRINT 3/4

performs single-precision division and prints 0.75.
PRINT 3.8/4

performs single-precision division and prints 0.95.

Section II / The BASIC Language

PRINT 135802567913580237/11

performs double-precision division and prints
1.234568799214366D + 16

Integer Division

The \ (backslash) is the symbol for integer division. Both
operands are rounded to integers, and the result is trun-
cated to an integer.

Examples:

PRINT 10 \ 4

prints 2.

PRINT 68\ 6.99
prints 9.

Modulus Arithmetic

MOD is the operator for modulus arithmetic. Both oper-
ands are rounded to integers. The result is the integer that
is the remainder of an integer division.

Examples:

PRINT 10 MOD 3

prints 1. Ten divided by 3 is 3 with a remainder of 1.
PRINT 68 MOD 6.99

prints 5. 68 divided by seven is 3 with a remainder of 5.
Addition

The plus (+) is the symbol for addition.

Examples:

PRINT 2 + 3

performs integer addition and prints 5

PRINT 31 + 3

performs single-precision addition and prints 6.1

54

Chapter 4 / BASIC Concepts

PRINT 1.2345678901234567 + 1

performs double-precision addition and prints
2.234567890123457

Subtraction

The minus (—) is the symbol for subtraction.
Examples:

PRINT 33 - 11

performs integer subtraction and prints 22

PRINT 33 - 111

performs single-precision subtraction and prints 21.9
PRINT 12.345678901234567 — 11

performs double-precision subtraction and prints
1.34567890123457.

String Operator

BASIC has a string operator { +) to concatenate (append)
two strings into one. The concatenation symbol is used as
part of a string expression. The operands are both strings,
and the resulting value is one piece of string data.

The + operator appends the string on the right of the
symbol to the string on the left of the symbol. For example:

PRINT “CATS” + “LOVE” + “MICE”
prints:
CATSLOVEMICE

Since BASIC does not allow one string to be longer than
255 characters, you get an error if your resulting string is
too long.

55

Section Il / The BASIC Language

Relational Operators

Relational operators compare two numerical or two string
expressions to form a relational expression. This expres-
sion reports whether the comparison you set up in your
program is true or false. It returns a —1 if the relation is
true; a O if it is false.

Numeric Relations

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than

> Greater than

= Equal to
<> or >< Not equal to
=< or >= Less than or equal to
=>or <= Greater than or equal to

Examples of true relational expressions:

1 <2
2<>5
2<=5
2<=2
5> 2
7=7

String Relations

The relational operators for string expressions are the
same as above, although their meanings are slightly differ-
ent. Instead of comparing numerical magnitudes, the
operators compare their ASCII sequence. This allows you
to sort string data:

< Precedes
> Follows
><or <> Does not have the same precedence
<= Precedes or has the same precedence
> = Follows or has the same precedence

56

Chapter 4 / BASIC Concepts

BASIC compares the string expressions on a character-by-
character basis. When it finds a non matching character, it
checks to see which character has the lower ASCII code.
The character with the lower ASCII code is the smaller
(precedent) of the two strings.

Examples of true relational expressions:

AT < B

The ASCII code for A is decimal 65; for B it’s 66.
“CODE” < “COOL”

The ASCII code for O is 79; for D it’s 68.

If while making the comparison, BASIC reaches the end of
one string before finding non matching characters, the
shorter string is the precedent. For example:

“TRAIL” < “TRAILER”

Leading and trailing blanks are significant. For example:
AT <TUAY

ASCII for the space character is 32; for A, it's 65.
“ABCD” < “ABCDE”

The string on the left is four characters long; the string on
the right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an
IF/THEN statement. For example:

IF A = 1THEN PRINT “CORRECT”

BASIC tests to see if A is equal to 1. If it is, BASIC prints the
message.

57

- Section 11 / The BASIC Language

IF A$ < B$ THEN 50

if string A$ alphabetically precedes string B$, then the
program branches to line 50.

IF R$ = “YES” THEN PRINT A$
if R$ equals YES then the message stored as A$ is printed.

You may also use relational expressions to return the true
or false results of a test. For example:

PRINT7 =7

prints — 1 since the relation tested is true.
PRINT “A” > “B”

prints 0 because the relation tested is false.
Logical Operators

Logical operators make logical comparisons. Normally,
they are used in IF/THEN statements to make a logical test
between two or more relations. For example:

IFA=1 ORC =2 THENPRINT X

The logical operator, OR, compares the two relations
A=1landC = 2

Logical operators may also be used to make bit compari-
sons of two numeric expressions.

For this application, BASIC does a bit-by-bit comparison of
the two operands, according to predefined rules for the
specific operator.

Note: The operands are converted to integer type, stored
internally as 16-bit, two’s complement numbers. To
understand the results of bit-by-bit comparisons, you need
to keep this in mind.

58

Chapter 4 / BASIC Concepts

The following table summarizes the action of Boolean
operators in bit manipulation.

Meaning of First Second

Operator Operation Operand Operand Result

NOT Result is oppo- 1 0
site of bit. 2 1

AND When both bits 1 1 1
are 1, the re- 1 Q 0
sults will be 1. (] 1 (]
Otherwise, the 0 0 0
result will be 0.

OR Result will be 1 1 1 1
unless both bits 1 0 1
are 0. 0] 1 1

0 0 0

XOR When one of the 1 1]
bits is 1, the 1 o 1
result is 1. 2 1 1
Otherwise the 0 0 0
result is 0.

EQV When both bits 1 1 1
are 1 or both 1 0 0
bits are @, the] 1]
result is 1.]] 1

IMP The result is 1 1 1 1
unless the first 1 2 0
bit is 1 and 0 1 1
the second bit (] 0 1
is 0.

Hierarchy of Operators

When your expressions have multiple operators, BASIC
performs the operations according to a well-defined
hierarchy so that results are always predictable.

59

Section Il / The BASIC Language

Parentheses

When a complex expression includes parentheses, BASIC
always evaluates the expressions inside the parentheses
before evaluating the rest of the expression. For example,
the expression:

8 -3 -2
is evaluated like this:

3-2=1
8—1=7

With nested parentheses, BASIC starts evaluating the in-
nermost level first and works outward. For example:

4*(2 -G -4

is evaluated like this:

3-4=~1
2-(-1 =3
4+3 =12

Order of Operations

When evaluating a sequence of operations on the same
level of parenthesis, BASIC uses a hierarchy to determine
what operation to do first.

The two listings below show the hierarchy. Operators are
in decreasing order of precedence and are executed as
encountered from left to right:

For Numeric Operations:

) (Parentheses)

" (Exponentiation)

+,~ (Unary sign operands [not addition and
subtraction])

* / (Multiplication and division)

\\2MOD (Integer Division and Modulus Arithmetic)

+ - (Addition and subtraction)

<>, =<=>=<>

NOT

AND

60

Chapter 4 /| BASIC Concepts

Functions

OR
XOR
EQV
IMP

For String Operations:

+
<> = <=>= <>

For example, in the line:
X*X + 528

BASIC finds the value of 5 to the 2.8 power. Next it multi-
plies X*X, and finally it adds that value to the value of 5 to
the 2.8 power. If you want BASIC to perform the indicated
operations in a different order, you must add parentheses.
For example:

X* (X + 5)°28

BASIC adds the value X + 5 and raises that value to the
power before it performs the multiplication.

Here’s another example:
IFX=00RY>0ANDZ = 1 THEN 255

The relational operators = and > have the highest prece-
dence, so BASIC performs them first, one after the next,
from left to right. Then the logical operations are per-
formed. AND has a higher precedence than OR, so BASIC
performs the AND operation before OR.

If the above line looks confusing because you can't re-
member which operator is precedent over which, then
you can use parentheses to make the sequence obvious:

IF X = 0 OR ((Y > 0) AND (Z = 1)) THEN 255

A function is a built-in sequence of operations that BASIC
performs on data. BASIC functions make writing a BASIC
routine unnecessary, and they operate faster than a
routine would.

61

Section I / The BASIC Language

Examples:

SQR (A + 6)

BASIC computes the square root of (A + 6).
MID$ (A$,3,2)

BASIC returns a substring of the string A$, starting with the
third character, with a length of 2.

BASIC functions are described in more detail in Chapter 7.

If the function returns numeric data, it is a numeric func-
tion and may be used in a numeric expression. If it returns
string data, it is a string function and may be used in a
string expression.

How to Construct an Expression

Understanding how to construct an expression will help
you put together powerful statements — instead of using
many short ones. In this section we discuss the two kinds
of expressions you may construct

* Simple
* Complex
as well as how to construct a function.

An expression is actually data. This is because once BASIC
performs all the operations, it returns one data item. An
expression may be string or numeric. It may be composed
of:

* Constants
* Variables

* Operators
* Functions

Expressions may be either simple or complex.

Simple Expressions

Asimple expression consists of a single term: a constant,
variable, or function. If it is a numeric term, it may be

62

Chapter 4 | BASIC Concepts

preceded by an optional + or — sign or by the logical
operator NOT.

For example:
+A 33 —5 SQR(8)

are all simple numeric expressions, since they consist of
only one numeric term.

A$ STRINGS (20,A3) “WORD” “M”

are all simple string expressions, since they consist of only
one string term.

Complex Expressions

A complex expression consists of two or more terms (sim-
ple expressions) combined by operators. For example:

Al X+32-Y 1=1 AANDB
ABS(B)+LOG(2)

are all complex numeric expressions. Notice that you can
use the relational expression (1=1) and the logical ex-
pression (A AND B) as a complex numeric expression
since both actually return numeric data.

A$ + B$ "Z” + Z$ STRING§(10, “A™) + “M”
are all examples of complex string expressions.

Most functions, except those functions returning system
information, require that you input either or both of the
following kinds of data:

® One or more numeric expressions
® One or more string expressions

If the data returned is a number, the function may be used
asaterm in a numeric expression. If the data is a string, the
function may be used as a term in a string expression.

SIN(A) STR$(X) VAL(A) LOG(.53)

are all examples of functions.

03

Chapter 5
Disk Files

You may want to store data on your disk for future use. To
do this, you need to store the data in a “disk file.” A disk file
is an organized collection of related data. It may contain a
mailing list, a personnel record, or almost any kind of
information. This is the largest block of information on
disk that you can address with a single command.

To transfer data from a BASIC program to a disk file, and
vice-versa, the data must first go through a “buffer”. This is
an area in memory where data is accumulated for further
processing.

With BASIC, you can create and access two types of disk
files: sequential access or direct access.

Sequential-Access Files

With a sequential-access file, you can only access data in
the same order it was stored: sequentially. To read from or
write to a particular record in the file, you must first read
through all the records in the file until you get to the
desired record.

Data is stored in a sequential file as ASCII characters.
Therefore, it is ideal for storing variable length data with-
out wasting space between data. However, it is limited in
flexibility and speed.

The statements and functions used with sequential files

are:
OPEN WRITE# EOF LOF
PRINT# INPUT# LOC

PRINT# USING LINE INPUT# CLOSE

These statements and functions are discussed in more
derail in Chapters 6 and 7.

65

Section I / The BASIC Language

Creating a Sequential-Access File

1. To create the file, OPEN it in “O” (output) mode and

assign it a buffer number (from 1 to 15).

Example

OPEN “0O”, 1, "LIST.EMP"
OPEN “LIST.EMP” FOR OUTPUT AS 1

either of these forms of the syntax for the OPEN state-
ment opens a sequential output file named LIST.EMP
and gives buffer 1 access to this file.

. To input data from the keyboard into one or more
program variables, use either INPUT or LINE INPUT.
(The difference between these two statements is that
each recognizes a different set of “delimiters”. Delimit-
ers are characters that - define where a data item begins
or ends).

Example

LINE INPUT, “NAME? ”; N$

inputs data from the keyboard and stores it in variable
N$.

3. To write data to the file, use the WRITE# statement

(you can also use PRINT#, but make sure you delimit
the data).

Example
WRITE# 1, N$

writes variable N§ to the file, using buffer 1 (the buffer
used to OPEN the file). Remember that data must go
through a buffer before it can be written to a file.

4. To ensure that all the data was written to the file, use the

CLOSE statement.

66

Chapter 5 / Disk Files

Example
CLOSE 1

closes access to the file, using buffer 1 (the same buffer
used to OPEN the file).

Sample Program

10 OPEN “O”, 1, “LIST.EMP”
20 LINE INPUT "NAME? ";N$
30 IF N$ = “DONE” THEN 60
40 WRITE# 1, N$

50 PRINT: GOTO 20

60 CLOSE 1

RUN

Note: The file “LIST.EMP" stores the data you input
through the aid of the program, not the program
itself (the program manipulates data). To save the
program above, you must assign it a name and use
the SAVE command (refer to Chapter 1).

Example
SAVE “PAYROLL.BAS”
saves the program under the name “PAYROLL.BAS”.

Note: Every time you modify a program, you must
SAVE it again (you can use the same name); other-
wise, the original program remains on disk, without
your latest corrections. If the filename is eight char-
acters or less and you do not include an extension in
the file name, BASIC appends the extension “.BAS”
when you use the SAVE, MERGE, LOAD, and RUN
statements.

5. To access data in the file, reOPEN it in the “I" (input)
mode.

67

Section II / The BASIC Language

Example
OPEN “LIST.EMP” FOR INPUT AS 1

OPENSs the file named LIST.EMP for sequential input,
using buffer 1.

6. To read data from the file and assign it to program
variables, use either INPUT# or LINE INPUT#.

Examples
INPUT# 1, N$

reads a string item into N§, using buffer 1 (the buffer
used when the file was OPENed).

LINE INPUT# 1, N$

reads an entire line of data into N§, using buffer 1.

INPUT# and LINE INPUT# each recognize a different
set of “delimiters” for reading data from the file. De-
limiters are characters that define the beginning or
end of a data item. See Chapter 7 for a detailed explana-
tion of these statements.

Sample Program

10 OPEN *1”, 1, “LIST.EMP”
20 |F EOF(1), THEN 100

30 INPUT# 1, N$

40 PRINT N$

50 GOTO 20
100 CLOSE

Updating a Sequential-Access File
1. To add data to the file, OPEN it in “A” (append) mode.

OPEN “A”, 1, “LIST.EMP"

opens the file LIST.EMP so that it can be extended. The
data you enter is appended to LIST.EMP.

2. To enter new data to the file, follow the same proce-
dure as for entering data in “O” mode.

68

Chapter 5 / Disk Files

Example

The following program illustrates this technique. It

bu

ilds on the file we previously created under the

name LIST.EMP.

Note: Read through the entire program first. If yvou
encounter BASIC keywords (statements or func-
tions) that are unfamiliar to you, refer to Chapter 7
for their definitions.

NEW

10
20

30
40
50
60

OPEN “A”, 1, “LIST.EMP”

LINE INPUT “TYPE A NEW NAME OR PRESS
<N>"; N§

IF N$ = “N” THEN 60

WRITE# 1, N§

GOTO 20

CLOSE

If you want the program to print on vour display the
information stored in the updated file, add the follow-
ing lines:

1
1
20

70 OPEN “LIST.EMP” FOR INPUT AS 1
80 IF EOF(1) THEN 2000

90 INPUT# 1, N§

00 PRINT N$

10 GOTO 80

00 CLOSE

RUN

Aft

er you RUN this program, SAVE it.

SAVE “PAYROLL2.BAS” 'saves the new

program

69

Section 11 / The BASIC Language

Direct-Access Files

With a direct-access file, you can access data anywhere on
disk. It is not necessary to read through all the informa-
tion, as with a sequential-access file. This is possible be-
cause in a direct-access file, information is stored and
accessed in distinct units called “records”. Each record is
numbered.

Creating and accessing direct-access files requires more
program steps than sequential-access files. However,
direct-access files are more flexible and easier to update.

One important note: BASIC allocates space for records in
numeric order. That is, if the first record you write to the
file is number 200, BASIC allocates space for records 0
through 199 before storing record 200 in the file.

The maximum number of logical records is 65,535. Each
record may contain between 1 and 128 bytes.

The statements and functions used with direct-access files

are:

OPEN FIELD LSET/RSET
GET PUT CLOSE
LOC MKD$ MKI$
MKS$ CVvD CVI

CvS LOF

These statements and functions are discussed in more
detail in Chapters 6 and 7.

Creating a Direct-Access File

1. To create the file, OPEN it for random access in “R”
mode.

Example
OPEN, “R", 1, “LISTING.BAS", 32

70

Chapter 5 / Disk Files

opens the file named “LISTING.BAS", gives buffer 1
direct access to the file, and sets the record length to 32
bytes. (If you omit the record length, the default is 128
bytes). Remember that data is passed to and from disk
in records.

2. Use the FIELD statement to allocate space in the buffer
for the variables that you write to the file. This is neces-
sary because you must place the entire record into the
buffer before putting it into the disk file.

Example
FIELD 1, 20 AS N§, 4 AS A%,8 AS P$

allocates the first 20 positions in buffer 1 to string
variable N§, the next four positions to A$, and the next
eight positions to P$. N§, A$ and P$ are now “field
names”,

3. To move data into the buffer, use the LSET statement.
Numeric values must be converted into strings when
placed in the buffer. To do this, use the “make” func-
tions: MKI$ to make an integer value into astring, MKS$
for a single-precision value, and MKD$ for a double-
precision value.

Example

LSET N$ = X$
LSET A$ =MKS$(AMT)

4. To write data from the buffer to a record (within a
direct-access disk file), use the PUT statement.

PUT 1, CODE%

writes the data from buffer 1 to a record with the
number CODE%. (The percentage sign at the end of a
variable specifies that it is an integer variable.)

71

Section II / The BASIC Language

The following program writes information to a direct-
access file:

10 OPEN “LISTING.BAS” AS 1 LEN = 32
20 FIELD 1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE, 0 TO END"; CODE%
40 IF CODE% = 0 THEN 130

50 INPUT “NAME”; X$

60 INPUT “"AMOUNT”; AMT

70 INPUT "PHONE"; TEL$

80 LSET N$ = X$

90 LSET A$ = MKS$(AMT)

100 LSET P$ = TEL$

110 PUT 1, CODE%

120 GOTO 30

130 CLOSE 1

The two-digit code that you enter in line 30 becomes a
record number. That record stores the name(s),
amount(s) and phone number(s) you enter when lines
50, 60 and 70 are executed. The record is written to the
file when BASIC executes the PUT statement in line 110.

After typing this program, SAVE it and RUN it. Then,
enter the following data:

2-DIGIT CODE, 0 TO END? 20
NAME? SMITH

AMOUNT? 34.55

PHONE? 567-9000

2-DIGIT CODE, 0 TO END? 0

BASIC stored SMITH, 34.55, and 567-9000 in record 20
of file LISTING.

Accessing a Direct-Access File
1. OPEN the file in “R” mode.
Example
OPEN “R”, 1,“LISTING.BAS",32

Chapter 5 / Disk Files

2. Use the FIELD statement to allocate space in the buffer
for the variables that are read from the file.

Example
FIELD 1, 20 AS N§, 4 AS A$, 8 AS P$

3. Before you use the GET statement to read the record,
set a variable in your program equal to the record size
used in the OPEN statement. This provides a way for
you to check that you are not attempting to access a
record that is not in your file. LOF returns the length of
the file in bytes. The total number of bytes in the file
can’t be less than the requested record number multi-
plied by the record size. An attempt to access a record
number greater than the largest record number in the
file results in an “Input Past End” error.

Example

RECSIZE% = 32
IF (CODE% * RECSIZE%) > LOF(1) THEN 1000

4. Use the GET statement to read the desired record from
a direct disk file into a buffer.

Example
GET 1, CODE%

gets the record numbered CODE% and reads it into
buffer 1.

5. Convert string values back to numbers using the “con-
vert” functions: CVI for integers, CVS for single-
precision values, and CVD for double-precision values.

Example

PRINT N$
PRINT CVS(A$)

The program may now access the data in the buffer.

73

Section Il / The BASIC Language

The following program accesses the direct-access file
“LISTING.BAS” (created with the previous program).
When BASIC executes line 30, enter any valid record
number from “LISTING.BAS”. This program will print
the contents of that record.

10 OPEN “R", 1, “LISTING.BAS", 32

20 FIELD 1,20 AS N$,4 AS A$.8 AS P$

30 RECSIZE% = 32

40 INPUT “2-DIGIT CODE, @ TO END"; CODE%

50 IF CODE% = @ OR (CODE% * RECSIZE%) >
LOF(1) THEN 1000

60 GET #1, CODE%

70 PRINT N$

80 PRINT USING “$$#.##";, CVS(A$)

90 PRINT P$: PRINT

100 GOTO 40

1000 CLOSE 1

After typing this program, SAVE it and RUN it. When
BASIC asks you to enter a 2-digit code, enter 20 (the
record we created through the previous program).
Your display should show:

2-DIGIT CODE, 0 TO END?
SMITH

$34.55

567 — 9000

If you entered a record number which is not a part of
“LISTING.BAS”, your display would show:

$0.00

If you wanted to go back and update "LISTING.BAS”,
simply LOAD the previous program (the one that cre-
ated “LISTING.BAS™) and RUN it.

74

Chapter 6
Introduction To BASIC Keywords

BASIC is made up of keywords. These keywords instruct
the computer to perform certain operations.

Chapter 7 describes all of BASIC's keywords. This chapter
explains the format used in Chapter 7. It also introduces
you to BASIC's two types of kevwords: statements and
functions.

Format for Chapter 7

Communications Statement
Keyword Graphics Function

Syntax parameter(s) or (argument(s))

Brief definition of keyword.

Detailed definition of keyword.
Example(s)

Sample Program(s)
Communications indicates that the kevword performs a

specific operation when used with the RS-232C asvnchro-
nous commutiications adapter. Graphics indicates that the
kevword has a specific operation when used with either
the black and white graphics board (catalog number
26-5140) or the color graphics board (catalog number
26-5141). The RS-232C asvinchronous communications
adapter is standard on vour Model 2000. You must pur-
chase the optional graphics boards to use the graphics
commands.

This format varies slightly, depending on the complexity
of each keyword. For instance, some kevwords are used
alone (without parameters or arguments). Others have
several possible svntaxes. As a general rule, definitions for
statements are longer than definitions for functions. That
is because a statement is a complete instruction to BASIC,
while a function is a built-in subroutine which mav only be
used as part of a statement.

75

Section Il / The BASIC Language

Some keywords have several sample programs, others
don’t have any at all. We added programs to illustrate
useful applications which may not be readily apparent.
Remember that this manual is to be used as a reference,
not a tutorial on how to program in BASIC.

Important Note: BASIC for MS-DOS requires that
keywords be delimited by spaces. This means that you
must leave a space between a keyword and any variables,
constants or other keywords. The only exceptions to this
rule are characters which are shown as part of the syntax of
the keyword.

For example, if you type:
DELETE.

BASIC returns a “Syntax error.” You must leave a blank
space between the word DELETE and the period.

For a definition of the terms and notation used in Chapter
7, see page 1-2 of the Introduction.

Statements

A program is made up of lines; each line contains one or
more statements. A statement tells the computer to per-
form some operation when that particular line is ex-
ecuted. For example,

100 STOP

tells the computer to stop executing the program when it
reaches line 100.

Statements for assigning values to variables and
defining memory space:

CLEAR clears all variables, allocates memory
and stack space.

COMMON passes variables to a CHAINed program.

DATA stores data in your program so that you
may assign it to a variable.

DEFDBL defines variables as double precision.

76

Chapter 6 / Introduction to Keywords

DEF FN

DEFINT
DEF SEG
DEFSNG
DEFSTR
DEF USR

DIM
ERASE
LET

MID$
OPTION BASE

RANDOMIZE
READ

RESTORE
SWAP

defines a function according to vour
specifications.

defines variables as integers.

defines the current segment address.
defines variables as single precision
defines variables as strings.

defines the offset of the entrv point for
USR routines

dimensions an array.

erases an array.

assigns a value to a variable (the keyword
LET may be omitted).

replaces a portion of a string.

declares the minimum value for array
subscripts.

reseeds the random number generator.
reads data stored in the DATA statement
and assigns it to a variable.

restores the DATA pointer.

exchanges the values of variables.

Statements for altering program sequence:

CALL

CHAIN
COM(1) ON
END
FOR/NEXT
GOSUB

GOTO

calls an assembly language sub-
routine.

loads another program and passes
variables to the current program.
enables communication trapping.
ends a program.

establishes a program loop.
transfers program control to the
subroutine

transfers program control to the
specified line number.

IF.. . THEN.. ELSE evaluates an expression and per-

KEY(n) ON

forms an operation if conditions
are met.
enables key trapping.

ON COM(1) GOSUB branches to a subroutine when

activity occurs on the communica-
tion channel.

77

Section II / The BASIC Language

ON KEY ... GOSUB
ON...GOSUB

ON ... GOTO

ON STRIG..GOSUB
RETURN

STOP

STRIG ON

STRIG() ON
WHILE ... WEND

WAIT

branches to a subroutine when a
specific key is pressed.
evaluates an expression and
branches to a subroutine.
evaluates an expression and
branches to another program
line.

branches to a subroutine when
vou press a mouse button.
returns from a subroutine to the
calling program.

Stops program execution.
enables the STRIG function.
enables mouse trapping.
executes statements in a loop as
long as a given condition is true.
suspends program execution
while monitoring the status of a
machine input port.

Statements for storing and accessing data on disk:

CLOSE
FIELD
GET

INPUT#
LINE INPUT#

LSET
OPEN
OPEN “COM

PRINT#
PRINT# USING

78

closes access to a disk file.
organizes a direct-access buffer.
gets a record from a direct-access
file, or transfers a specific number
of bytes from a communication
file.

inputs data from a disk file.
inputs an entire line from a disk
file.

moves data (and left-justifies it) to
a field in a direct-access file buffer.
opens a disk file.

opens a communication file.
writes data to a sequential disk file.
writes data to a disk file using the
specified format.

Chapter 6 / Introduction to Keywords

PUT

RESET

RSET

WRITE#

puts a record into a direct-access
file or transfers a number of bvtes
to a communication file.

closes all open files on all
diskettes.

moves data (and right-justifies it)
to a field in a direct-access file
bufter.

writes data to a sequential file.

Statements for debugging a program:

CONT
ERL

ERR

ERROR

ON ERROR GOTO
REM

RESUME

TROFF
TRON

continues program execution.
returns the line number where an
error occurred.

returns an error code after an
error.

simulates the specified error.

sets up an error-trapping routine.
inserts a remark line in a program.
terminates an error-handling
routine.

turns the tracer off.

turns the tracer on.

Statements for inputting or outputting data to the
video display or the line printer:

CIRCLE

CLS
COLOR

DRAW
GET

INPUT
LINE
LINE INPUT

LIST

draws an ellipse with a center and
a radius on the display.

clears the display.

to select foreground, background,
and border display colors.

draws images on the display.
transfers graphic images from
memory to the display.

inputs data from the kevboard.
draws a line on the display.
inputs an entire line from the
keyboard.

lists a program to the display or
line printer.

Section 11 / The BASIC Language

LLIST
LOCATE
LPRINT
PAINT
PRESET

PRINT
PRINT USING

PSET

PUT

SCREEN

TAB

WIDTH

WRITE

prints a program on the line
printer.

positions the cursor on the screen.
prints data at the line printer.
fills in an area of the screen with a
selected color.

draws a point in color at a specified
position on the screen.

lists data to the displav.

lists data to the display in a specific
format.

draws a point on the screen at a
specified position.

transfers graphic images from the
display to memorv.

sets the screen attributes (text,
medium- or high-resolution) to be
used by subsequent statements.
positions the cursor or the print
head at a specified position.

sets the number of characters per
line for the screen or line printer.
prints data on the display.

Statements for performing system functions or en-
tering other modes of operation:

AUTO
BEEP
BLOAD

BSAVE
DELETE

EDIT
KILL
LOAD
MERGE

80

automatically numbers program
lines.

produces a sound from the com-
puter speaker.

loads a2 memory image file from
disk.

saves a memory image file to disk.
erases program lines from
memory.

edits program lines.

deletes a disk file.

loads a program from disk.
merges a disk program with a resi-
dent program.

Chapter 6 / Introduction to Keywords

SOUND

SYSTEM

Functions

renames a disk file.

erases a program from RAM.

sends a byte to a machine output
port.

writes a bvte into a2 memory
location.

produces musical notes.
renumbers a program.

executes a prograni.

saves a program on disk.
generates a specific tone for a
specified length of time.

returns to MS-DOS.

A function is a built-in subroutine. It may only be used as
part of a statement.

Most BASIC functions return numeric or string data by
performing certain built-in routines. Special print func-
tions are used to control the video display.

Numeric Functions (return a number):

ABS
ASC
ATN
CDBL
CINT

COs
CSNG
EXP
FIX
FRE

INSTR
INP
INT

31

computes the absolute value.
returns the ASCII code.
computes the arctangent.
converts to double precision.
returns the largest integer not
greater than the parameter.
computes the cosine.

converts to single precision
computes the natural exponential.
truncates to whole number.
returns the number of bytes in
memory not being used.
searches for a specified string.
returns the byte read from a port.
returns the largest whole number
not greater than the argument.

Section 1I / The BASIC Language

LEN
LOG
LPOS

PEEK

RND
SGN
SIN

SQR
TAN
USR

VAL

VARPTR

returns the length of the string.
computes the natural logarithm.
returns the position of the print
head in the line printer buffer.
returns a byte from a memory
location.

returns a pseudorandom number.
returns the sign.

calculates the sign.

calculates the square. root.
computes the tangent.

calls an assembly-language sub-
routine.

returns the numeric value of a
string.

returns an offset for a variable or
buffer.

String Functions (return a string value):

CHR$
DATE$
ERRS$

HEX$

LEFT$
MID$
OCT#$

RIGHT$

SPACE$
STR$
STRING $
TIME$

returns the specified character
sets or returns today's date.
returns the latest error number
and message.

converts a decimal value to a hex-
adecimal string.

returns the left portion of a string.
returns the mid-portion of a string.
converts a decimal value to an
octal string.

returns the right portion of a
string.

returns a string of spaces.
converts to string type.

returns a string of characters.

sets or returns the time.

Input/Output Functions (perform input/output to
the keyboard, display, line printer or disk files):

CvD

82

restores data from a direct disk file
to double precision.

Chapter 6 / Introduction to Keywords

CVvl
CVS
CRSLIN

EOF
FILES

INKEY$
INPUT#

INPUT$
KEY
LOC

LOF

POS
SCREEN
SPC
STICK
STRIG

83

restores data from a direct disk file
to integer.

restores darta from a direct disk file
to single precision.

returns the current row position of
the cursor.

checks for end-of-file.

displays the names of the files on a
diskette.

returns the keyboard character.
inputs a string of characters from a
sequential disk file.

returns a string of characters from
the keyboard.

assigns or displays the current
function key soft values.

returns the current disk file record
number.

returns the total number of bytes
in a disk file or the amount of free
Space in a communication file in-
put queue.

converts an integer value to a
string for writing it to a direct-
access disk file.

converts a single-precision num-
ber to a string for writing it to a
direct-access file.

converts a double-precision value
to a string for writing it to a direct-
access file.

returns the cursor column posi-
tion on the display.

returns the ASCII code for the
character stored at a specific posi-
tion on the screen.

prints spaces to the display.
returns the number of points
moved along the coordinates,
returns the status of the mouse
buttons.

Section 1l / The BASIC Language

Introduction to Graphics

Interpreter BASIC for vour Model 2000 includes many
new commands to display text and graphic images in black
and white and in color. Which of these commands vou can
use and how vou can use them depends on the graphics
options you have.

In Chapter 7 the word Graphics is printed at the top of the
pages on which there are statements that require a
graphics option. The graphics commands that vou can use
to draw graphic images and perform animation are CIR-
CLE, DRAW, LINE, GET/Graphics, PAINT, POINT, PSET,
PRESET, and PUT/Graphics. If vou are using either of the
color graphic options, vou may also use the COLOR/
Graphics, PALETTE, and PALETTE USING statements to
draw the images in color.

Graphics Options

You must have one of three graphics options to use any of
the graphics commands. Each option provides a different
degree of resolution. Resolution is the number of points
on the screen. The greater number of points, the sharper
the image.

In addition, each option controls the number of colors
that can display on the screen at one time. BASIC provides
fifteen colors. However, vou mav only use 4 certain num-
ber of colors at one time. The number of colors is also
determined by the graphics option vou have.

84

Chapter 6 / Introduction to Keywords

Medium Resolution Color
Graphics Option

To use the Medium Resolution Color Graphics Option you
must have a color television set and the TV/Joystick Option
(catalog number 26-5143).

The Medium Resolution Color Graphics Option provides
320 x 200 points in four colors. That means there are 320
vertical columns of 200 points each or 200 horizontal rows
of 320 points each. Each horizontal row of points is num-
bered 0-320. Each vertical column of points is numbered
0-200. The point in the upper left corner of the display is
0,0. The point in the lower left corper of the displav is
319,199.

With the Medium Resolution Color Graphics option vou
may display text or graphic images in 4 colors at one time.
To display text, select Screen Mode 0. You can display 24
lines of 40 characters each. You can use 4 COLOR/Text
statements to choose 4 of 15 colors to display letters,
numbers, and special characters.

To use the graphics statements to draw graphic images
and perform animation, select Screen Mode 1. You can
specify any one point on the screen with the graphic
statements. You can select the colors for the graphic im-
ages with the COLOR/Graphic, PALETTE, and PALETTE
USING statements.

High Resolution Monochrome Option

To use the Medium Resolution Monochrome Option vou
must have VM-1 Monochrome Monitor and ¢ Mono-
chrome Graphics Option Board (catulog # 26-5140).

The Iigh Resolution Monochrome Graphics Option pro-
vides 640 vertical points. The number of horizontal points
depends on the screen mode vou select with the SCREEN
statement. You may have either 200 or 400 horizontal
points. Remember, the more points, the shurper the
image.

Section Il / The BASIC Language

Screen Mode 2 selects 640 x 200 points. That means there
are 640 vertical columns of 200 points each or 200 hori-
zontal rows of 640 points each. Each horizontal row of
points is numbered 0-640. Each vertical column of points
is numbered 0-200. The point in the upper left corner of
the display is 0,0. The point in the lower left corner of the
display is 639,199.

Screen Mode 4 selects 640 x 400 points. That means that
there are 640 vertical columns of 400 points each or 400
horizontal rows of 640 points each. Each horizontal row of
points is numbered 0-640. Each vertical column of points
is numbered 0-400. The point in the upper left corner of
the display is 0,0. The point in the lower left corner of the
display is 639,399.

With the High Resolution Monochrome Graphics Option
you can display text or graphic images in black and white.
There are two shades of white, white and high-intensity
white (brighter white.)

To display text, select SCREEN 0. You can use the COLOR/
Text statement to create reverse image, invisible, high-
lighted, and underscored characters. You can displav 24
rows of 40 characters or 24 rows of 80 characters by setting
the screen width with the WIDTH statement.

To draw graphic images and perform animation select
Screen Modes 2 or 4. The only difference between the two
screen modes is the degree of resolution. By changing the
parameters in the COLOR/Text statement, vou can credte
reverse image, invisible, and highlighted graphic images.

86

Chapter 6 / Introduction to Keywords

High Resolution Color Graphics Option

To use the High Resolution Color Graphics Option you
must have a CM-1 Color Monitor (catalog # 26-5112), a
Monochrome Graphics Option Board (catalog #
26-5140), and a Color Graphics Option kit (catalog #
26-5141).

The High Resolution Color Graphics Option provides 640
x 400 points in 8 colors. That means that there are 640
vertical columns of 400 points each or 400 horizontal rows
of 640 points each. Each horizontal row of points is num-
bered 0-640. Each vertical column of points is numbered
0-400. The point in the upper left corner of the display is
0,0. The point in the lower left corner of the display is
639,399.

With the High Resolution Color Graphics Option you may
display text or graphic images in black and white or in 8 of
15 colors. The screen mode vou select with the SCREEN
statement determines the color and resolution of the
graphic images. You may select any of the 5 screen modes,
0,1, 2,3, or4and use any of the graphic options described.

To display text, select Screen Mode 0. You can display 24
lines of 40 characters each or 24 lines of 80 characters
each. You can use 8 COLOR/Text statements to choose
8 of 15 colors to display letters, numbers, and special
characters.

To use the graphics statements to draw colored graphic
images and perform animation, select Screen Mode 1 or
Screen Mode 3. Again, the only difference between the
two screen modes is the degree of resolution.

If you select Screen Mode 1, vou may specify horizontal
coordinates in the range 0 to 320 and vertical coordinates
in the range 0 to 199. If vou select Screen Mode 3, vou mav
specify horizontal coordinates in the range 0 to 640 and
vertical coordinates in the range 0 to 400.

Section Il / The BASIC Language

With either Screen Modes 1 or 3, vou can display 8 of the
15 colors at one time. You can select the colors for the
graphic images with the COLOR/Graphic, PALETTE, and
PALETTE USING statements.

If you select Screen Modes 2 or 4, vou can display graphic
images in black and white. There are rwo shades of white,
white and high-intensity white (brighter white).

The only difference between the two screen modes is the
degree of resolution. By changing the parameters in the
COLOR/Text statement, vou can create reverse image,
invisible, and highlighted graphic images.

Specifying Coordinates

To draw yvour graphic images on the display, vou must tell
BASIC where to put the image on the screen. To do this,
vou must specify horizontal and vertical point numbers
for the point vou want to draw.

The horizontal and vertical point numbers are known as
the coordinates. Coordinates are expressed as x-
coordinate, v-coordinate. The x-coordinate is the horizon-
tal point number, and the v-coordinate is the vertical point
number. When you specify coordinates in a statement,
separate them with a comma. Specified actual coordinates
are called absolute coordinates.

You may also specifv relative coordinates in some
graphics commands. In this case, vou specify offsets from
the last graphics point referenced. An offset from the last
graphics point referenced is a number of points awayv from
the last point vou drew. For example, if vou use the
CIRCLE statement to draw a CIRCLE, the last point BASIC
draws is the center of the circle. [fvou then execute a LINE
command and specify offsets rather than absolute coor-
dinates, BASIC draws the line offset points away from the
center of the circle.

88

Chapter 6 / [ntroduction to Keywords

You may specifv positive or negative values for offsets. If
vou specify a negative value, BASIC subtracts offset from
the coordinate of the last point referenced. If you specify
positive values, BASIC adds offset to the coordinate of the
last point referenced.

Aspect Ratio

As you can see by our discussion of graphic options, there
are more horizontal points than vertical points. In Screen
Modes 1, 2, 3, and 4, the number of horizontal points in an
inch is greater than the number of vertical points in an
inch because the horizontal points are closer together
than the vertical points. Aspect ratio is the realtionship
between the number of points in a vertical inch to the
number of points in a horizontal irch.

To calculate the screen aspect ratio, you must know the
dimensions (height and width) of the viewing area of vour
monitor.

Note: The viewing area is that portion of vour screen on
which images are displaved. It may be smaller than
the screen itself. Calculate the aspect ratio accord-
ing to the following formula:

aspect ratio =

number of number of
vertical points , horizontal points
viewing area viewing area
height width

89

Section 11 / The BASIC Language

Screen Mode 1

The standard viewing area has a width to height ratio of 4
to 3. This means that vour monitor is 1 V4 times as wide as it
high (regardless of the actual dimensions). For example, a
viewing area that is 8 inches wide and 6 inches high has a
width to height ratio of 8 to 6, which is the same as 4 to 3.

In Screen Mode 1, there are 320 horizontal points and 200
vertical points. To calculate the aspect ratio, substitute the
actual values in the above formula.

200 + 320 = %

To calculate the number of points per inch in each direc-
tion, divide the total number of horizontal points by the
width in inches and the total number of vertical points by
the height in inches. There are 40 vertical points per inch
and 33 horizontal points per inch on our example
monjtor.

Remember, to calculate points per inch and aspect ratio
for vour viewing area, vou need to know actual dimen-
sions and substitute those in the formula.

Screen Mode 2

In Screen Mode 2 there are 640 horizontal points and 200
vertical points. The viewing area is 10 inches wide and 7
inches high. Substituting actual values in the formula gives
the following equation:

2004 + 64040 =

The aspect ratio is 74. There are 28 vertical points per inch
and 64 horizontal points per inch.

90

Chapter 6 / Introduction to Keywords

Screen Modes 3 and 4

In Screen Modes 3 and 4 there are 640 horizontal points
and 400 vertical points. The viewing area is 10 inches wide
and 7 inches high. Substituting actual values in the formula
give the following equation:

40045 = 64040 = 2944

The aspect ratio is 2%2s. There are 57 vertical points per
inch and 64 horizontal points per inch.

The aspect ratio for the current screen mode is important
when using the graphics commands CIRCLE, DRAW, and
LINE. Keep in mind that the number of horizontal points is
not as long as the same number of vertical points. There-
fore, if you try to draw a square, the perimeter of the
square must contain more horizontal points than vertical
points.

The CIRCLE statement compensates the difference in
points per inch by letting vou specifv the aspect ratio. First,
CIRCLE computes the x and v coordinates for each point
on the ellipse. If the aspect ratio vou specify is less than
one, CIRCLE recomputes the v coordinates by multiplving
the original v coordinates by the aspect ratio. If the aspect
ratio you specify is larger than one, CIRCLE recomputes
the x coordinates by multiplying the original x coordi-
nates by aspect ratio.

You cannot specify an aspect ratio with the DRAW and
LINE statements. You must compensate for the difference
in points per inch vourself. When specifving the coordi-
nates with the LINE and DRAW statements, keep in mind
the aspect ratio for the current screen and adjust the
coordinates so that the resulting image is what vou
intended.

91

Section I / The BASIC Language

Note also that because there is a difference in points per
inch among the four different screen modes, images thut
specify the same coordinates do not look the same in
different modes. For example, if vou draw a vertical line in
Screen Mode 2 with this statement

LINE (320,100)-(320,199)

the vertical line goes from the center of the screen to the
bottom of the screen. However, if vou use the same coor-
dinates in Screen Mode 4, the center of the vertical line is
in the center of the display and the line extends the same
distance up from the center as down. The line does not
extend to the bottom or to the top of the displav.

Chapter 7

Statements And Functions

93

ABS

Function

ABS(number)

Example

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero, ABS(riumber)
= number. If number is less than zero, ABS(negative
number) = number.

X = ABS(Y)

computes the absolute value of Y and assigns it to X.

Sample Program

100 INPUT “WHAT'S THE TEMPERATURE
OUTSIDE (DEGREES F)”; TEMP

110 IF TEMP < 0 THEN PRINT "THAT'S”
ABS(TEMP) “BELOW ZERO! BRR!": END

120 IF TEMP = 0 THEN PRINT “ZERO DEGREES!
MITE COLD!": END

130 PRINT TEMP “DEGREES ABOVE ZERO?
BALMY!’: END

94

ASC

Function

ASC(string)

Example

Returns the ASCII code for the first character of string.

The value is returned as a decimal number. If string is null,
an “Illegal function call” error occurs.

PRINT ASC(*A™)
prints 65, the ASCII code for “A".

Sample Program

ASC can be used to make sure a program is receiving
proper input. Suppose vou've written a program that re-
quires the user to input hexadecimal digits 0-9, A-F. To
make sure that only those characters are input, and ex-
clude all other characters, vou can insert the following
routine.

100 INPUT “ENTER A HEXADECIMAL VALUE
(0-9,A-F)”:N$

110 A = ASC(N$) 'get ASCHi code

120 IF A>47 AND A<58 OR A>64 AND A<71
THEN PRINT “OK.”: GOTO 100

130 PRINT “VALUE NOT OK.” : GOTO 100

95

ATN Function
ATN(number)

Computes the arctangent of number in radians.

ATN returns the angle whose tangent is number. The
result is always single precision, regardless of number’s
numeric type.

To convert this value to degrees, multiply ATN(»umber)
by 57.29578.

Example
X = ATN(Y/3)

computes the arctangent of Y/3 and assigns the value to X.

96

AUTO

Statement

AUTO(line |[,increment]

Examples

Automatically generates a line number every time you

press (ENTER).

AUTO begins numbering at /irne and displays the next line
number after adding increment. The default for both
values is 10. A period (.) can be substituted for /ire. In this
case, BASIC uses the current line number. If fine is fol-
lowed by a comma, but you omit increment, BASIC
assumes the last increment specified in the last AUTO
statement or the default value of 10.

If AUTO generates a line number that already exists in the
program, it displays an asterisk after the number. To save
the existing line, press immediately after the aster-
isk. AUTO then generates the next line number.

To turn off AUTO, press (BREAK). The current line is can-
celed and BASIC returns to command level.

AUTO

generates lines 10, 20, 30, 40.

AUTO 100, 50

generates lines 100, 150, 200, 250 . . .

97

BEEP

Statement

BEEP

Example

Produces a sound from the computer speaker.

The BEEP statement sounds the speaker at 800 Hz for 1/4
second. For information on how to control the frequency
or length of the sound, see the SOUND statement.

A BEEP statement has the same effect as

PRINT CHR$(7).

IF X > 20 THEN BEEP

If the variable X is out of range, the computer warns the
operator with a beep.

98

BLOAD Statement
BLOAD filespec [,offset]

Loads a memory image file into memory.

Sfilespec is a string expression that contains the drive identi-
fier and filename. The filename is required. If you omit the
drive identifier, BASIC assumes the current drive.

offset is an integer in the range 0 to 65535, offSet represents
a location away from the beginning of a segment. BASIC
determines the address to load at from the segment
address given in the most recently executed DEF SEG
statement and offSet. See DEF SEG.

If you omit offset, BASIC assumes the offSet specified at
BSAVE and loads the file into the same location from
which it was saved.

If you specify offSet, BASIC assumes you want to BLOAD at
an address other than the address from which the pro-
gram was saved and uses the last known DEF SEG address.
Unless you want to load the file into BASIC's data segment,
you must execute a DEF SEG statement before the BLOAD
statement. If you used the /M: switch when vou loaded
BASIC, BLOAD the file at that offset. If vou do not execute a
DEF SEG before BLOAD, and vou did not use the /M:
switch when you loaded BASIC, and vou specify offset, the
file is loaded at that offset from BASIC’s data segment,
destroying BASIC's workspace.

Note: BLOAD does not perform an address range check.
It is possible to load a file anywhere in memory.
Therefore, you must be careful not to load over
BASIC or over the operating system.

A memory image file is a byte-for-bvte copy of what was
originally in memory. See BSAVE for information about
saving memory image files. See the section “Interfacing
Assembly Language Programs”, in Appendix E for more
information on loading assembly language programs.

You may specify any segment as the target or source for
BLOAD or BSAVE. This is a useful way to save and redisplay
screen images by saving from or loading to the screen
buffer.

99

Section 1I / The BASIC Language

NOTE: You may type at any time during BLOAD
or LOAD, between files, or after a time-out
period. BASIC exits the search and returns to
direct mode. Previous memory contents remain
unchanged.

Sample Programs
Program 1

10 'SAVE A 50 byte image of memory
20 DEF SEG = &H10

30 FOR 1 = 256 to 306

40 VLUE = PEEK (})

50 LPRINT “AT ADDRESS ";l;“ WE HAVE A
VALUE OF ”; VLUE
60 NEXT |

70 BSAVE “PROG1", 0, 50

80 PRINT “Now Run Program 2 to verify that the
contents saved in the file Prog1 match those in the
print out produced by this program.”

Program 2

10 ‘Load a 50 byte file into memory and verify it

20 DEF SEG = &H10

30 BLOAD “PROG 1. BAS", 0

40 FOR | = 256 TO 306

50 VALUE = PEEK(l)

60 LPRINT “AT ADDRESS ";l; "the loaded value is
VALUE

70 NEXT |

Program 1 saves a memory image file and Program 2
reloads that file and prints it.

100

BSAVE Statement
BSAVE filespec, offset, length

Saves the contents of an area of memory as a disk file.

filespec is a string expression that may contain the drive
identifier and filename. Filename is required. If you omit
the drive identifier, BASIC assumes the current drive.

offset is an integer in the range 0 to 65535. offset represents
a location away from the beginning of a segment. BASIC
determines the address to start saving from by the seg-
ment address used in the most recently executed DEF SEG
statement and offSet.

length is an integer in the range 1 to 65535. This is the
length in bytes of the memory image file to be saved.

You must specify filename, offSet, and lengrh. If you omit
any of them, a "“Bad File Name” error is issued and BASIC
aborts the save.

A memory image file is a byte-for-byte copy of what is in
memory. The BSAVE statement lets you save data or pro-
grams as memory image files on disk. BSAVE is often used
for saving assembly language programs, but you can also
use it to save data, programs written in other languages, or
screen images.

Unless you want to BSAVE part of BASIC’s workarea or you
used the /M: switch when you loaded BASIC, you must
execute a DEF SEG statement before the BSAVE statement,
since BASIC uses the address given in the most recently
executed DEF SEG statement for the save. See DEF SEG
and the section “Interfacing with Assembly Language Sub-
routines”, in Appendix E for more information.

See BLOAD for an example of how to save a memory
image file.

101

CALL

Statement

CALL variable [(parameter list)]

Example

Transfers program control to an assembly-language sub-
routine stored at variable.

Variable contains the offset into the segment where the
subroutine starts in memory. Variable may not be an array
variable. Offset must be on a 16-byte boundary.

Parameter list contains the variables that are passed to the
external subroutine.

A CALL statement with no parameters generates a simple
8086 “CALL” instruction. The corresponding subroutine
should return with a simple “RET”.

The CALL statement is the recommended method of inter-
facing assembly language programs with BASIC programs.
Do not use the USR function unless you are running
previously written BASIC programs that already contain
USR statements.

When a CALL statement is executed, BASIC transfers con-
trol to the subroutine through the address given in the last
DEF SEG statement and the segment offset specified by
variable. See the section “Interfacing Assembly Language
Subroutines” in Appendix E for more details.

Note: The number, type and length of the parameters in
the calling program must match with the para-
meters expected by the subroutine. This applies to
BASIC subroutines, as well as those subroutines
written in assembly language.

When accessing parameters in a subroutine, remember
that they are pointers to the actual arguments passed.

110 MYROUT = &H0000
120 DEF SEG = &H1700
130 CALL MYROUT(1,J,K)

The subroutine, MYROUT, begins at offset 0 in the seg-
ment that begins at hexadecimal 1700. The values of 1, J,
and K (which we assume were given elsewhere) are
passed to that routine.

102

CDBL Function
CDBL (number)

Converts number to double precision.

CDBL returns a 17-digit value. This function may be useful
if you want to force an operation to be performed in
double precision, even though the operands are single
precision or integers.

Sample Program

210 A=454.67

220 PRINT A; CDBL(A)
RUN

454.67 454.6700134277344
Ok

103

CHAIN

Statement

CHAIN [MERGE] filespec [,line] [,ALL] [,DELETE

line-line]

Examples

Loads a BASIC program named filespec, chains it to a
“main” program, and begins running it.

Filespec must have been saved in ASCII format before you
can CHAIN it. To do this, use SAVE with the ‘A’ option.

Line is the first line to be run in the CHAINed program. If
you omit /ine, BASIC begins execution at the first program
line of the CHAINed program.

The ALL option passes every variable in the main program
to the chained program. If you omit the ALL option, the
main program must contain a COMMON statement to pass
variables. If you are CHAINing subsequent programs (and
passing variables), each new program must contain a
COMMON statement.

The MERGE option “overlays” the lines of filespec with the
main program. See MERGE to understand how BASIC
overlays (merges) program lines.

The DELETE option deletes Zines in the overlay so that you
can MERGE in a new overlay.

CHAIN “PROG2.BAS”

loads PROG2.BAS, chains it to the main program currently
in memory, and begins executing it.

CHAIN “SUBPROG.BAS”, ALL

loads, chains and executes SUBPROG BAS. The values of
all the variables in the main program are passed to SUB-
PROG.BAS.

Sample Program 1

10 REM THIS PROGRAM DEMONSTRATES
CHAINING USING COMMON TO PASS
VARIABLES.

Chapter 7 / Statements and Functions

20

30
40
50

60
70
80
90

100

REM SAVE THIS MODULE ON DISK AS
“PROG1.BAS” USING THE A OPTION.

DIM A$(2),B%(2)

COMMON AS$(),B$()

A$(1)="VARIABLES IN COMMON MUST BE
ASSIGNED "

A$(2) = “VALUES BEFORE CHAINING"
BS(1)=" "B$(2)=" "

CHAIN “PROG2.BAS”

PRINT : PRINT B$(1): PRINT : PRINT B$(2):
PRINT

END

Save this program as “PROG1.BAS”, using the 'A’” option
(Type: SAVE filespec, A). Type NEW, then enter the follow-

ing
10
20
30
40
50
60
70

80
90

program.

REM THE STATEMENT “DIM A$(2),B$(2)” MAY
ONLY BE EXECUTED ONCE.

REM HENCE, IT DOES NOT APPEAR IN THIS
MODULE.

REM SAVE THIS MODULE ON THE DISK AS
“PROG2.BAS” USING THE A OPTION.
COMMON A$(),BS()

PRINT: PRINT A$(1);A$(2)

B$(1)="NOTE HOW THE OPTION OF
SPECIFYING A STARTING LINE NUMBER”
B$(2) = “WHEN CHAINING AVOIDS THE
DIMENSION STATEMENT IN 'PROG1"."
CHAIN "PROG1.BAS”,90

END

Save this program as “"PROG2.BAS”, using the ‘A’ option.
Load PROG1.BAS and run it. Your screen should display:

VARIABLES IN COMMON MUST BE ASSIGNED VALUES

BEF

ORE CHAINING. NOTE HOW THE OPTION OF SPEC-

IFYING A STARTING LINE NUMBER WHEN CHAINING
AVOIDS THE DIMENSION STATEMENT IN PROGIL.BAS".

105

Section Il /| The BASIC Language

Type NEW and this program:

Sample Program 2

Note

10 REM THIS PROGRAM DEMONSTRATES
CHAINING USING THE MERGE AND ALL
OPTIONS.

20 A$="MAINPROG.BAS"

30 CHAIN MERGE "OVRLAY1.BAS", 1000, ALL

40 END

Save this program as “MAINPROG.BAS”, using the ‘A’ op-
tion. Enter NEW, then type:

1000 PRINT AS$;“ HAS CHAINED TO
OVRLAY1.BAS.”

1010 A$="OVRLAY1.BAS"

1020 B$="OVRLAY2.BAS”

1030 CHAIN MERGE “OVRLAY2.BAS", 1000, ALL ,
DELETE 1020 — 1040

1040 END

Save this program as “OVRLAY1.BAS”, using the ‘A’ option.
Enter NEW, then type:

1000 PRINT A$; “ HAS CHAINED TO ";B$;".”
1010 END

Save this program as “OVRLAY2 BAS”, using the ‘A’ option.
Load MAINPROG.BAS and run it. Your screen should dis-
play:

MAINPROG.BAS HAS CHAINED TO OVRLAY1.BAS.
OVRLAY1.BAS HAS CHAINED TO OVRLAY2.BAS.

The CHAIN statement with the MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

Chapter 7 / Statements and Functions

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the
chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statements containing shared vari-
ables must be restated in the chained program.

When using the MERGE option, user-defined functions
should be placed before any CHAIN MERGE statements in
the program. Otherwise, the user-defined functions will
be undefinted after the merge is complete.

107

CHRS$ Function
CHR$ (code)

Returns the character corresponding to an ASCII or con-
trol code.

This is the inverse of the ASC function. CHR$ is commonly
used to send a special character to the display.

Examples
PRINT CHR$(35)

prints the character corresponding to ASCII code 35 (the
character is #).

Sample Program

The following program lets you investigate the effect of
printing codes 32 through 255 on the display. (Codes
0—31 represent certain control functions.)

100 CLS

110 INPUT “TYPE IN THE CODE (32-255)"; C
120 PRINT CHR$(C);

130 GOTO 110

108

CINT Function
CINT (number)

Converts number o integer representation.

CINT rounds the fractional portion of number to make it
an integer.

For example, PRINT CINT(1.5) returns 2; PRINT
CINT(—1.5) returns — 2. The result is a two-byte integer.

Sample Program

PRINT CINT(17.65)
18
Ok

109

CIRCLE Statement

CIRCLE [STEP] (x-coordinate, y-coordinate)
,radius [,color,start,end,aspect

Draws an ellipse with the specified center and radius.

x-coordinate is the x coordinate of the center of the circle.
In Screen Mode 1, xcoordinate may be in the range 0 to
320. In Screen Modes 2, 3, and 4 x-coordinate may be in
the range 0 to 640.

y-coordinate is the y coordinate of the center of the circle.
In Screen Modes 1 and 2, y-coordinate may be in the range
0 to 200. In Screen Modes 3 and 4 y-coordinate may be in
the range 0 to 400.

If you include the STEP option, the numbers you specify as
coordinates are offsets from the most recent graphics
point referenced. x-coordinate is the number of points in
the horizontal direction, and y:coordinate is the number
of points in the vertical direction. Precede the numbers
with a plus (+) or a minus (~) sign to indicate the
direction (up, down, left, or right) from the most recent
point referenced. The plus sign indicates to add the num-
ber to the most recent coordinate (right or up), and the
minus indicates subtract (left or down) the number from
the most recent coordinate.

color indicates the color of the ¢llipse and must be a color
number in the current palette. In Screen Mode 1, color
may be in the range 0 to 3. In Screen Mode 3, color may be
in the range 0 to 7. In Screen Modes 2 and 4, color may be
either 0 or 1. If you omit color in Screen Modes 1 or 3,
BASIC assumes color 3. If you omit color in Screen Modes
2 or 4, BASIC assumes white.

radius is the major axis of the ellipse.

110

Chapter 7 / Statements and Functions

start and end are the beginning and ending angles in
radians and must be in the range —6.283186 and
6.283186, or —2 * Pl and 2 * PL If vou specifv a negative
start or end angle, the ellipse is connected to the center
point with a line and the angles are treated as if they were
positive.

aspect is the ratio of the x radius to the y radius in terms of
coordinates. If aspect is less than one, radius is the x radius
and is measured in points in the horizontal direction. If
aspect is greater than one, radius is the y radius and is
measured in points in the vertical direction. If you omit
aspect, BASIC assumes 5/6 in screen mode 1, 25/56 in
Screen Mode 2, and 25/28 in Screen Modes 3 and 4. When
you use the default value, BASIC draws a circle.

To draw an ellipse that is wider than it is high, use an
aspect ratio that is less than the default value for that
screen mode. The smaller the aspect ratio vou specify, the
wider and shorter the ellipse is. For example, in Screen
Mode 1, an aspect ratio of 1/2 gives you a wide, short
ellipse like this:

111

Section 11 / The BASIC Language

Examples

To draw an ellipse that is higher than it is wide, use an
aspect ratio that is larger than the default value for thar
screen mode. The larger the aspect ratio that vou use. the
taller and thinner the ellipse is. For example, in Screen
Mode 1, an aspect ratio of 7/6 gives vou a tall, thin ellipse
like this:

See Chapter 6 “Introduction to Graphics™ for more in-
formation on aspect ratio and specifving coordinates.

10 SCREEN 1
20 CIRCLE (200,200),50

draws a circle with the center at point 200,200 and a radius
of 50.

10 SCREEN 1
20 CIRCLE (160, 100), 60,,,,5/18

draws an ellipse with the center at point 160,100 and a
radius of 60. Because the aspect ratio is less than the
default value, the ellipse is wider than it is high.

112

CLEAR

Statement

CLEAR [,memory location]
[,stack space)

Examples:

Clears the value of all variables and CLOSEs all open files.

Memory location must be an integer. It specifies the high-
est memory location available for BASIC. The default is the
current top of memory (as specified with the /M: switch
when BASIC was loaded). This option is useful if you wiil
be loading a machine-language subroutine, since it pre-
vents BASIC from using that memory area.

Stack space must also be an integer. This sets aside mem-
ory for temporarily storing internal data and addresses
during subroutine calls and during FOR/NEXT loops. The
default is 768 bytes. An “Out of memorv” error occurs if
there is insufficient stack space for program execution.

Note: BASIC allocates string space dynamically. An "Out
of string space” error occurs only if no free mem-
ory is left for BASIC.

Since CLEAR initializes all variables, you must use it near
the beginning of your program, before any variables have
been defined and before any DEF statements.

CLEAR
clears all variables and closes all files.
CLEAR, 45000

clears all variables and closes all files; makes 45000 the
highest address BASIC may use to run vour programs.

CLEAR, 61000, 200

clears all variables and closes all files; makes 61000 the
highest address BASIC may use to run vour programs, and
allocates 200 bytes for stack space.

113

CLOSE

Statement

CLOSE [buffer,. . .}

Examples

Closes access to a file.

Buffer isanumber from 1 — 15 used to OPEN the file. If no
buffers are specified, BASIC closes all open files.

This command terminates access to a file through the
specified buffer. If a buffer was not assigned in a previous
OPEN statement, then

CLOSE buffer
has no effect.

Do not remove a diskette which contains an open file.
CLOSE the file first. This is because the last records may
not have been written to disk yet. Closing the file writes
the data, if it hasn’t already been written.

See also OPEN and the chapter on “Disk Files”.

CLOSE 1, 2,8

terminates the file assignments to buffers 1,2, and 8. These
buffers can now be assigned to other files with OPEN
statements.

CLOSE FIRST% + COUNT%

terminates the file assignment to the buffer specified by
the sum FIRST% + COUNT%.

114

CLS

Statement

CLS

Clears the screen.

If the screen is in text mode, CLS clears the active page to
the currently selected background color. See COLOR
statement. If the screen is in medium or high resolution
mode, CLS clears the entire screen buffer to black.

CLS returns the cursor to home position. In graphics
mode, home position is the center of the screen. In
medium resolution, that is position 160,100. In high res-
olution, home position is 320,100 or 320,200, depending
on the current SCREEN mode.

If a SCREEN or WIDTH statement changes the screen
mode, the screen clears for the new mode. You can also
clear the screen by pressing and (L) or and
(HOMB).

Sample Program

540 CLS

550 FOR | = 1 TO 24

560 PRINT STRINGS$ (79,33)
570 NEXT I

580 GOTO 540

115

COLOR/Text Statement
COLOR [foreground, background, border]

Selects the display colors for the foreground, background,
and border on the video display.

Joreground is an integer in the range 0 to 31, specifying
the foreground color.

background is an integer in the range 0 to 15, specifying
the background color.

border is an integer in the range 0 to 15, specifying the
border color with the Medium Resolution Color Graphics
option. With the High Resolution Color Graphics option
the border is always black, and BASIC ignores this
parameter.

For more information about the graphics commands, see
Chapter 6 “Introduction to Graphics.”

The first part of the COLOR/Text description gives the
COLOR/Text statement for all computers, regardless of
options. An additional description is provided for the
color graphics options. Please note the following about
the COLOR/Text statement, regardless of anyv options you
are using:

1. To be in text mode, vou must have selected Mode 0
with the SCREEN statement.

2. Ifyou omit any parameter, BASIC assumes the previous
or the default values.

3. If vou set foreground color the same as background
color, the characters are invisible,

116

Chapter 7 | Statements and Functions

Examples

Possible foregound selections are:

Oor8 Black

1 Underlined white character

2-7 White

9 High intensity white underlined

10-15 High intensity white

16 or 24 Black blinking

17 Underlined white blinking

18-23 White blinking

25 High intensity white
underlined blinking

26-31 High intensity white blinking

High intensity white is a brighter white. There is no high
intensity black.

Possible background selections are:

0-6 Black
7 White

Specifying white (7) as a background color displays only if
the foreground selection is black. The foreground may be
0, 8, 16, or 24. White background with black characters
creates a reverse video image.

Specifyving black (0-6) as a background color displays only
if the foreground selection is white. That is, you may not
specify a foreground color selection of 0, 8, 16 or 24.

COLOR 0,7
selects black characters on a white background.
COLOR 1,0

selects underlined white characters on a black back-
ground.

COLOR 4,0

selects white characters on a black background.

117

Section Il / The BASIC Language

Color Graphics Options

With the Medium or High Resolution Color Graphics op-
tions you may select the following colors for foreground
and background:

0, 8, 16, or 24 Black
1or17 Blue

2or 18 Green
3o0r19 Cyan

4 or 20 Red

5 or 21 Magenta

6 or 22 Yellow

7 or 23 Gray

9 or 25 Light Blue
10 or 26 Light Green
11 or 27 Light Cyan
12 or 28 Light Red
13 or 29 Light Magenta
14 or 30 Light Yellow
15 or 31 White

With the Medium Resolution Color Graphics Option, vou
may also select the border color from the above listing.
With the High Resolution Color Graphics Option, the
border is always black.

With the Medium Resolution Color Graphics option vou
may display only five colors at one time. Of the five, one
can be the border, one can be the background, and three
can be foreground. This means that you can display text in
three different colors.

If you execute a COLOR/Text statement that uses a fourth
foreground color, the fourth foreground color replaces
the first foreground color you selected. All characters of
first color change to the fourth color.

118

Chapter 7 / Statements and Functions

You can think of it as a first-in-first-out svstem. The first
foreground color vou specify is the first color replaced.
The sixth foreground color vou select replaces the second
color. For example, if vou execute the following
statements:

COLOR 0,6,2:PRINT "PEPPER”
COLOR 7:PRINT “TABBY”
COLOR 4:PRINT “WAYNE”
COLOR 15:PRINT “ROBBIE”

The first line prints PEPPER in black on a yellow back-
ground with a green border.

The second line prints TABBY in gray. Background and
border retain their previous values.

The third line prints the word WAYNE in red. Background
and border retain their previous values.

When BASIC executes the fourth line, it requires a fourth
foreground color to print ROBBIE in white. White re-
places black as one of the three possible foreground
colors. BASIC prints ROBBIE in white and also changes
PEPPER to white.

With the High Resolution Color Graphics option vou can
display characters in seven different foreground colors at
one time. The principal is the same as with the Medium
Resolution Color Graphics option, first-in-first-out. If you
select an eighth color, that color replaces the first fore-
ground color. If you select a ninth color, that color re-
places the second foreground color.

119

Section II / The BASIC Language

Examples

COLOR 7,0,0

Selects white characters on a black background with a
black border.

COLOR , 4

Changes border color to red. The foreground and back-
ground colors retain their previous values.

COLOR 6,1

Changes the foreground to yellow and background to
blue. Border retains its previous value.

COLOR ,6

Changes background to yellow. If the previous example
has been executed, any characters on the screen are now
invisible.

120

COLOR/Graphic Graphic Statement
COLOR [background)] [,palette]

Selects the palette of colors to be used by subsequent
graphics statements.

background is an integer in the range 0 to 15 that specifies
the background and border colors as described in the
COLOR/Text statement. In Screen Modes 2 and 4, the
border is always black.

palette is a2 numeric expression in the range 0 to 255 that
specifies the palette of colors. Even numbers select palette
0, and odd numbers select palette 1.

The palette of colors is the group of colors associated with
color numbers specified in subsequent graphics state-
ments, such as LINE or PRESET. When vou select a palette,
you tell BASIC to associate certain colors with position
numbers in the palette when vou use them as the color
parameter in graphics statements.

Color number 0 is the current background color. The
other colors and their position numbers when vou specifv
each palette are:

Position Palette Palette
Number 0 1

1 Green Cvan

2 Red Magentu

3 Yellow White

4 White Light Red

5 Light Cyan Light Green

6 Light Blue Light Blue

7 Light Yellow Light Ycllow

In Screen Mode 1 vou may only specify colors 0.1, 2, and 3
in vour graphics commuinds.

121

Section 1I / The BASIC Language

Examples

These colors are the default colors when you execute a
COLOR/Graphic statement to select a palette. After execut-
ing the COLOR/Graphics statement, you may use the
PALETTE and PALETTE USING statements to change any or
all of these values. See PALETTE AND PALETTE USING.

Please note the following regardless of which graphics
options you are using:

1. To be in color graphics mode, you must have selected
Screen Mode 1 or 3 with the SCREEN statement.

2. If you omit any parameters, BASIC assumes the pre-
vious values.

3. If you set foreground color the same as background
color, the characters are invisible.

10 COLOR 9,0
Sets background to light blue and selects Palette 0.
20 COLOR ;3

Background retains its previous value. Because 3 is an odd
number, Palette 1 is selected.

122

Chapter 7 / Statements and Functions

10 COLOR 11,1
20 LINE (0,0) - (319,199),1

Line 10 selects a light cvan background and Palette 1. Line
20 draws a cvan diagonal line on the display because the
color of Position 1 in Palette 1 is cyan.

10 COLOR 3,0
20 LINE (0,0) - (319,199),5

Line 10 selects a cyan background and Palette 0. Line 20
draws a light cyan diagonal line on the video display. If vou
select Palette 1 in Line 10, Line 20 draws a light green
diagonal line.

123

COM Communications Statement
COM(1) action

Turns on, turns off, or temporarily halts the trapping of
activity on the communications channel.

action mav be anv of the following:

ON enables communication trapping

OFF disables communication trapping

STOP temporarily suspends communication
trapping

Use the COM statement in a communication trap routine
with the ON COM(1) statement to detect when characters
have come into the communication channel. The
statement

COM(1) ON

turns the trap on. BASIC checks after everv program state-
ment to see if a character has come into the communica-
tion channel. If there is activity on the communication
channel, BASIC transfers program control to the line num-
ber specified in the ON COM(1) statement.

The statement

COM(1) STOP

temporarily halts communication trapping. If activity
occurs on the communication channel, BASIC does not
transfer program control to the ON COM(1) statement
until communication trapping is turned on again by ex-
ecuting a COM(1) ON statement. BASIC remembers that
activity took place. Immediately after communication trap-
ping is turned on again, BASIC transfers program control
to the line number specified in the ON COM(1) statement.

Example

Chapter 7 / Statements and Functions

The statement
COM(1) OFF

turns off communication activity trapping and does not
remember that activity took place when activity trapping is
turned on again.

We recommend that yvour COM trap routine read the
entire message from the communication port. Do not use
a COM trap to trap for a single character message because
the amount of time required to trap and read every charac-
ter can cause the communication buffer to overflow.

See ON COM(1) for more information about communica-
tion trapping.

10 COM(1) ON

20 PRINT “NO ACTIVITY”
30 ON COM(1) GOSUB 100
40 GOTO 20

100 PRINT “YOU ARE RECEIVING DATA":

200 RETURN

Line 10 turns on a communication trap. If characters are
received on the communication channel, program control
transfers to the subroutine beginning at Line 100. If there
is no activity on the communications channel, Line 20
prints a message and Line 40 keeps the program in a loop
until there is activity on the communication channel. Note
that BASIC checks the communication channel for activity
after executing each statement.

125

COMMON Statement
COMMON variable,. . .

Passes variables to a CHAINed program.

COMMON may appear anywhere in a program, but we
recommend using it at the beginning.

The same variable cannot appear in more than one COM-
MON statement in a single program. The size and order of
the variables must be the same in the programs being
CHAINed. To specify array variables, append “()" to the
variable name. If you are passing all variables, use CHAIN
with the ALL option and omit the COMMON statement.

Note: arrayvariables used in a COMMON statement must
have been declared in a DIM statement.

Example

90 DIM D(50)
100 COMMON A, B, C, D(),G$
110 CHAIN “PROG3.BAS”, 10

line 100 passes variables A, B, C, D and G$ to the CHAIN
command in line 110.

Seée also CHAIN.

126

CONT

Statement

CONT

Example

Resumes program execution.

You may only use CONT if the program was stopped by the
key, or a STOP or an END statement in the
program.

CONT is primarily a debugging tool. During a break or
stop in execution, you may examine variable values (using
PRINT) or change these values. Then type CONT (ENTER);
execution continues with the current variable values.

You cannot use CONT after editing your program lines or
otherwise changing your program. CONT is also invalid
after execution has ended normally.

10 INPUT A B, C

20 K=A"2
30 L=B"3/ .26
40 STOP

50 M=C+40*K+100: PRINT M

Run tltis program.
You will be prompted with:

?

Type:

1,2,3

The computer displays:

Break in 40

You can now type any immediate command.
For example:

PRINT L

displays 31.7092. You can also change the value of A, B,
or C.

127

Section 1 / The BASIC Language

For example:

C=4

changes the value of C in the program. Type:
CONT

your screen displays: 14+4.

See also STOP.

128

COS

Function

COS (number)

Examples

Computes the cosine of number.

COS returns the cosine of number in radians. The number
must be given in radians. When niumber is in degrees, use
COS(rniumber * 01745329).

The result is always single precision.

Y = COS(X " .01745329)
stores in Y the cosine of X, if X is an angle in degrees.
PRINT COS(5.8) — COS(85 * .42)

prints the arithmetic (not trigonometric) difference of the
twQ cosines.

129

CSRLIN Function
[variable] = CSRLIN

Returns the current row position of the cursor.

variable is a numeric variable to hold the value returned
by CSRLIN. Because there are 24 usable lines on the
screen, the value is 1 through 24.

See the POS function to return the current column posi-
tion and the LOCATE statement to set the row and column
positions.

Sample Program

10 PRINT “This is Line ”;
20 ROW = CSRLIN
30 PRINT ROW

130

CSNG

Function

CSNG (number)

Example

Converts number to single precision.

If number is double precision, when its single-precision
value is printed, only six significant digits are shown.
BASIC rounds the number in this conversion.

PRINT CSNG(.1453885509)
prints .145389

Sample Program

280 V# = 876.2345678#
290 PRINT V#; CSNG(V#)
RUN

876.2345678 876.2346
Ok

131

CVD, CVI1, CVS Function

CVD (eight-byte string)
CVS (four-byte string)
CVI (two-byte string)

Examples

Convert string values to numeric values.

These functions restore data to numeric form after it is
read from disk. Typically, the data has been read by a GET
statement, and is stored in a direct access file buffer. CVD
converts an eight-byte string to a double-precision num-
ber. CVS converts a four-byte string to a single-precision
number. CVI converts a two-byte string to an integer.

CVD, CVI, and CVS are the inverses of MKD$, MKI$, and
MKS$, respectively.

Suppose the name GROSSPAY$ references an eight-byte
field in a direct-access file buffer, and after GETting a
record, GROSSPAY$ contains an MKD$ representation of
the number 13123.38. Then the statement

A# = CVD(GROSSPAY$)

assigns the numeric value 13123.38 to the double-
precision variable A#.

Sample Program

This program reads from the file “TEST.DAT", which is
assumed to have been previously created For the pro-
gram that creates the file, see MKD$, MKI$, and MKS$.

1420 OPEN “R”, 1, “TEST.DAT", 14

1430 FIELD 1, 2 AS |1$, 4 AS 128, 8 AS I3%
1440 GET 1

1450 PRINT CVI(I1$), CVS(I12%), CVD(I3%$)
1460 CLOSE

Note: GET without a record number tells BASIC to get
the first record from the file, or the record follow-
ing the last record accessed.

132

DATA

Statement

DATA constant,. . .

Examples

Stores numeric and string constasnis to be accessed by a
READ statement.

This statement may contain as many constarnts (separated
by commas) as will fit on a line. Each will be read sequen-
tially, starting with the first constant in the first DATA
statement, and ending with the last item in the last DATA
statement,

Numeric expressions are not allowed in a DATA list. If
your string constants include leading blanks, colons, or
commas, you must enclose these constants in double
quotation marks.

DATA statements may appear anywhere it is convenient in
aprogram. The data types in a DATA statement must match
up with the variable types in the corresponding READ
statement, otherwise a “Syntax error” occurs.

To reREAD DATA statements from the beginning, use a
RESTORE statement before the next READ statement.

1340 DATA NEW YORK, CHICAGO, LOS
ANGELES, PHILADELPHIA, DETROIT

stores five string data items. Note that quote marks aren't
needed, since the strings contain no delimiters and the
leading blanks are not significant.

1350 DATA 2.72, 3.14159, 0.0174533, 57.29578
stores four numeric data items.

1360 DATA “SMITH, T.H.”, 38, “THORN, J.R.”, 41

stores both types of constants. Quote marks are required
around the first and third items because thev contain
commas (commas are delimiters between constants).

133

Sample Program

NEW

10 PRINT “CITY”, "STATE", “ZIP”

20 READ C$,S$,Z

30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S%,2

This program READS string and numeric data from the
DATA statement in line 30.

134

DATES$ Statement

variable = DATES$
DATE$ = string

Sets or retrieves the current date.

variable is a variable in your BASIC program that receives
the current date.

string is a literal, enclosed in quotes, that sets the current
date by assigning a value to DATES$.

Setting the Date

This system supports dates between January 1, 1980 and
December 31, 2099. You may use either a slash or a
hyphen to separate the month, day, and year. You may use
any of the following forms to set the current date:

mm/dd/yy mm/dd/yyyy
mm—dd —yy mm — dd —yyyy

mm is the month and may be any number 01 —12.
dd is the day and may be any number 01 —31.
yy Of yyyy is the year and may be 01 —99 or 1980 —2099.

You may omit leading zeroes for the month and day. If you
only supply two digits for the year, BASIC precedes these
digits with 19.

Retrieving the Date

Regardless of the form you use to set the date, BASIC does
the following when retrieving it:

+ Separates month, day, and year with hyphens.

* Displays month and day as two digits, inserting leading
Zeroes as necessary.

+ Displays year in four digits.

135

Section Il / The BASIC Language

Examples

DATES$ = “9/6/83"

sets the current date as 09-06-1983.
DATES$ = “10/22/83"

sets the date as 10-22-1983.
DATES$ ="6/6/86"

sets the date as 06-06—1986.
CURDATE$= DATES$

assigns the value of the current date to the variable CUR-
DATE.

136

DEFDBL/INT/SNG/STR Statement

DEFDBL lIetter,...
DEFINT Ietter,...
DEFSNG letter,...
DEFSTR letter,...

Examples

Defines any variables beginning with letter(s) as: (DBL)
double precision, (INT) integer, (SNG) single precision,

A QTN ctoalon o
Or (o1 string.

Note: A type declaration tag always takes precedence
over a DEF statement.

10 DEFDBL L-P

classifies all variables beginning with the letters L through
P as double-precision variables. Their values are stored
with 17 digits of precision, though only 16 are printed.

10 DEFSTR A

classifies all variables beginning with the letter A as string
variables.

10 DEFINT I-N, W,Z

classifies all variables beginning with the letters I through
N, W and Z as integer variables. Their values are in the
range — 32768 to 32767,

10 DEFSNG |, Q-T

classifies all variables beginning with the letters T or Q
through T as single-precision variables, Their values in-
clude seven digits of precision, though only six are printed
out.

137

DEF FN

Statement

DEF FN function name

[(argument,...)] =
function definition

Examples

Defines function name according to your function
definition.

Furiction name must be a valid variable name. This name,
preceded by FN, is the name of the function when you call
it. The type of variable used determines the type of value
the function will return. For example, if you use a single-
precision variable, the function will always return single-
precision values.

Argument represents those variables in function defini-
tion that are to be replaced when the function is called. If
you enter several variables, separate them by commas.

Function definition is an expression that performs the
operation of the function. A variable used in a function
definition may or may not appear in argument. If it does,
BASIC uses its value to perform the function. Otherwise, it
uses the current value of the variable.

Once you define and name a function (by using this
statement), you can use it as you would any BASIC
function.

DEF FNR = RND(90)+9

defines a function FNR to return a random value between
10 and 99. Notice that the function can be defined with no
arguments.

210 DEF FNW# (A#,B#) = (A# — B#)*(A# —B#)
280 T = FNW#(l#,J#)

defines function FNW# in line 210. Line 280 calls that
function and replaces parameters A# and B# with pa-
rameters 1# and J#. (We assume that I# and J# were
assigned values elsewhere in the program).

138

Chapter 7 / Statements and Functions

Note: Using a variable as a parameter in a DEF FN state-
ment has no effect on the value of that variable. You may
use that variable in another part of the program without
interference from DEF FN.

139

DEF SEG Statement
DEF SEG [= address]

Assigns the current segment address.

address is an integer in the range 0 to 65535. A value
outside this range causes an “Illegal Function Call” error,
and BASIC retains the previous value.

If you do not specify address, the default value is BASIC’s
data segment (DS).

If you specify address, do so on a 16-byte boundary. BASIC
shifts the value left 4 bits and adds the offset specified in
the instruction to the value to form the code segment
address for the instruction. See the section “Interfacing
Assembly Language Subroutines” in Appendix E for more
information.

Note: BASIC does not check the validity of the resultant
segment + offset address.

When you load BASIC, the DS (data segment) register is
set to the address of BASIC's workspace. This is the default
value of the DS register. You must, therefore, execute a
DEF SEG statement before executing BLOAD, BSAVE,
PEEK, POKE, USR, or CALL, unless you used the /M: switch
when you loaded BASIC. Without the DEF SEG statement
or the /M: switch, these statements and functions could
destroy BASIC’s workspace. If you execute a DEF SEG to
change the DS register to a different segment, you must
execute another DEF SEG to restore the DS register to its
default value.

Separate DEF and SEG with a space. Otherwise, BASIC
interprets the statement

DEFSEG =100
to mean “assign the value 100 to the variable DEFSEG.”
Example
10 DEF SEG=&HB800 ’Set segment to 800 Hex
20 DEF SEG 'Restore to BASIC data
segment

DEF USR

Statement

DEF USR| digit] = offset

Examples

Defines the segment offset and user number of a sub-
routine to be called by the USR function.

digit may be an integer in the range 0 to 9.

offset is an integer in the range of 0 to 65535. It specifies
the location into a segment where the subroutine begins
in memory.

When a USR function is executed, BASIC transfers control
to the subroutine through the address given in the last
DEF SEG statement and the segment offset specified in the
DEF USR statement. If the subroutine is not in BASIC’s data
segment, a DEF SEG statement must be executed before
the USR function. See the section “Interfacing Assembly
Language Subroutines” in Appendix E and USR in this
chapter for more details.

A program may contain any number of DEF USR state-
ments, allowing access to as many subroutines as neces-
sary. However, only 10 definitions may be in effect at one
time.

If you omit digit, BASIC assumes USRO.

DEF USR3 = &H0020
DEF SEG = &H1700

USR3 begins at offset hexadecimal 20 in the segment
beginning at hexadecimal address 1700. When your pro-
gram calls USR3, control branches to your subroutine
beginning at absolute hexadecimal address 17020.

141

DELETE Statement
DELETE linel - line2

Deletes from line1 through line2 of a program in
memory.

A period (“.”) can be substituted for either /ine? or line2
to indicate the current line number.

Examples
DELETE 70

deletes line 70 from memory. If there is no line 70, an
error will occur.

DELETE 50—-110

deletes lines 50 through 110 inclusive.

DELETE —40
deletes all program lines up to and including line 40.
DELETE —.

deletes all program lines up to and including the line that
has just been entered or edited.

DELETE .

deletes the program line that has just been entered or
edited.

142

DIM

Statement

DIM array (dimension(s)), array
(dimension(s)), . ..

Examples

Sets aside storage for arrays with the dimensions you
specify.

Arrays may be of any type: string, integer, single precision
or double precision, depending on the type of variable
used to name the array. If no type is specified, the array is
classified as single precision.

When you create the array, BASIC reserves space in mem-
ory for each element of the array. All elements in a newly-
created array are set to zero (numeric arrays) or the null
string (string arrays).

Note: The lowest element in a dimension is always zero,
unless an OPTION BASE 1 statement is executed.

Arrays can be created implicitly, without explicit DIM
statements. Simply refer to the desired array in a BASIC
statement. For example,

A(5) = 300
creates array A and assigns element A(S) the value of 300.

Each dimension of an implicitly-defined array contains 11
elements, subscripts 0-10.

DIM AR(100)

sets up a one-dimensional array AR(), containing 101
elements: AR(0), AR(1), AR(2),..., AR(98), AR(99), and
AR(100).

Note: The array AR() is completely independent of the
variables AR.

DIM L1%(8,25)

sets up a two-dimensional array L1%(,), containing 9 x 26
integer elements, L1%(0,0), L1%(1,0), L1%(2,0), ...,
L1%(8,0), L1%(0,1), L1%(1,1), ..., L1%(8,1), ...,
L1%(0,25), L1%(1,25), ..., L1%(8,25).

143

Section II / The BASIC Language

Two-dimensional arrays like AR(,) can be thought of as a
table in which the first subscript specifies a row position,
and the second subscript specifies a column position:

00 01 02 03 ... 023 024 025
10 11 12 13 ... 123 124 125

7,0 7,1 7.2 73 .. 723 724 7725
8,0 8,1 8,2 8,3 ... 823 824 825

DIM B1(2,5,8), CR(2,5,8), LY$(50,2)

sets up three arrays:

B1(,,) and CR (, ,) are three-dimensional, each containing
3+6+0 elements.

LY(,)is two-dimensional, containing 51#3 string elements.

144

DRAW Statement
DRAW direction [number] ...

Draws an object on the video display.

direction specifies one or more of the movement com-
mands listed below.

number specifies the number DRAW uses with scale factor
to determine the actual distance to move. If vou omit
number, DRAW assumes one. DRAW moves scale factor *
number points.

Movement Commands

Each of the following movement commands begin move-
ment from the “current graphics position,” which is the
coordinate of the last graphics point plotted with another
graphics command, such as LINE or PSET. The current
position defaults to the center of the screen if no previous
graphics command is executed.

U [rnumber] Move up

D [number] Move down

L [rumber] Move left

R [number] Move right

E [number] Move diagonally up and right

F [number) Move diagonally up and left

G [number] Move diagonally down and left
H [number] Move diagonally down and right
M x-coordinate, y-coordinate

If you precede the coordinates with a plus (+) or
minus (—) sign, DRAW assumes it is a relative posi-
tion. Otherwise, it is an absolute position.

145

Section Il / The BASIC Language

Prefix Commands

These prefix commands can precede the movement com-

mands.
B
N

Aangle

Ccolor

Sinteger

Xvariable,

Move but don't plot any points.

Move but return to original position when
done.

Setan angle. angle may be in the range of O to
3. 0 is 0 degrees, 1 is 90 degrees, 2 is 180
degrees, and 3 is 270 degrees.

Set color number as described in COLOR/
Graphics. color may be in the range 0 to 3 in
ScreenMode 1,010 7 in Screen Mode 3, and 0
to 1 in Screen Modes 2 and 4.

Set scale factor. integer may be in the range 1
to 255. The scale factor is integer divided by
4. For example, if integer is 2, the scale factor
is 2/4. To determine the actual travel dis-
tance, multiply the scale factor by the num-
ber in the movement commands.

Executes a substring. The X command allows
you to execute a second substring from a
string, much like GOSUB. You can have one
string execute another, which executes a
third, and so on. variable is a string variable
in your program that contains the substring
you want to execute. variable may contain an
X command to execute another substring.
The semicolon after string is required.

In the prefix commands, the numeric arguments can be
constants or variables. If vou use a variable name as a
numeric argument, vou must follow it with a semicolon.

Chapter 7 / Statements and Functions

Sample Programs

10 U$ = "“U30;": D$= “D30;": L$ = “L40;: R$ =
“R40;”

20 BOX$ = U$ + R$ + D$ + L$

30 DRAW “XBOX$”

draws a rectangle on the screen.

10 U$ = “U30;": D$= “D30;": L$ = “L40;": R$ =
“R40;"
20 DRAW “XU$; XR$; XD$; XL$;"

draws the same rectangle as the previous example.

10 SCREEN 1
20 DRAW *“L40 E20 F20"

draws a triangle on the screen.

147

EDIT

Statement

EDIT line

Examples

Enters the edit mode so that you can edit /ine.

See the chapter on the “Edit Mode” for more information.

EDIT 100
enters edit mode at line 100.
EDIT.

enters edit mode at current line.

END

Statement

END

Ends program execution and closes all files.

This statement may be placed anywhere in the program. It
forces execution to end at some poirt other than the last
sequential line.

An END statement at the end of a program is optional.

Sample Program

40 INPUT S1, S2

50 GOSUB 100

55 PRINT H

60 END

100 H=SQR(S1+S1 + S2+82)
110 RETURN

line 60 prevents program control from “crashing” into the
subroutine. Line 100 may only be accessed by a branching
statement, such as GOSUB in line 50.

149

EOF Function
EOF(buffer)

Detects the end of a file.

This function checks to see whether all characters up to
the end-of-file marker have been accessed, so vou can
avoid “Input past end” errors during sequential input.

EOF does not accurately detect the end-of-file marker for
random files that contain less than 128 bytes. We recom-
mend that you use the LOF function with random access
files. ’

EOF(buffer) returns 0 (false) when the EOF record has not
been read yet, and —1 (true) when it has been read. The
buffer number must access an open file.

Sample Program

The following sequence of lines reads numeric data from
DATA.TXT into the array A(). When the last data character
in the file is read, the EOF test in line 30 “passes”, so the
program branches out of the disk access loop.

1470 DIM A(100) "ASSUMING THIS IS A SAFE
VALUE

1480 OPEN “I”, 1, “DATA.TXT"

1490 1% = 0

1500 IF EOF(1) THEN GOTO 1540

1510 INPUT#1, A(1%)

1520 1% = 1% + 1

1530 GOTO 1500

1540 REM PROG. CONT. HERE AFTER DISK
INPUT

EOF Communication Function
EOF(variable)

Detects an empty input queue for communications files.

variable is a variable in your BASIC program to receive the
value 0 (false) if there are characters in the input queue
waiting to be read and —1 (true) if the input queue is

empty.
Sample Program

These lines would be useful in a program when you want
to run the program while waiting for communication
activity. Line 10 opens a file and allocates Buffer 1 for
communication. Line 20 causes BASIC to check for activity
on the communications channel after executing every
statement. Line 30 instructs BASIC to perform the sub-
routine beginning at Line 1000 as soon as there is activity
on the communication channel. When all of the com-
munication data has been processed, Line 1050 returns to
the main program.

10 OPEN *“COM1:300, N, 8, 1, ASC” AS 1
20 COM(1) ON
30 ON COM(1) GOSUB 1000

1000 ‘Communication Subroutine Begins Here

1050 IF EOF(3) THEN RETURN

151

ERASE

Statement

ERASE array, . ..

Example

Erases one or more arrays from a program.

This lets you either redimension arrays or use their pre-
viously allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name which
is not used in the program, an “lllegal Function Call”
occurs.

450 ERASE CF
460 DIM F(99)

line 450 erases arrays C and F. Line 460 redimensions array
F.

ERL

Statement

ERL

Examples

Returns the line number in which an error occurred.

This function is primarily used inside an error-handling
routine. If no error has occurred when ERL is called, line
number 0 is returned. Otherwise, ERL returns the line
number in which the error occurred. If the error occurred
in the command mode, BASIC returns the largest possible
line number, 65535.

PRINT ERL

prints the line number of the error.

E = ERL

stores the error’s line number in the variable E.

For an example of how to use ERL in a program, see
ERROR.

153

ERR

Statement

ERR

Example

Returns the error code.

ERR is only meaningful inside an error-handling routine
accessed by ON ERROR GOTO. See Appendix A for a list of
Error Codes.

IF ERR = 7 THEN 1000 ELSE 2000

branches the program to line 1000 ifthe error is an “Out of
Memory” error (code 7); if it is any other error, control
goes instead to line 2000.

For an example of how to use ERR in a program, see
ERROR.

154

ERROR

Statement

ERROR code

Example

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specify-
ing one of BASIC's error codes.

This statement is mainly used for testing an ON ERROR
GOTO routine. When the computer encounters an ERROR
statement, it proceeds as if the error corresponding to that
code had occurred. (Refer to Appendix A for a listing of
Error Codes and their meanings).

ERROR 1

a “Next Without For” error (code 1) “occurs” when BASIC
reaches this line.

Sample Program

110 ON ERROR GOTO 400

120 INPUT “WHAT IS YOUR BET”: B

130 IF B>5000 THEN ERROR 21 ELSE GOTO 420

400 IF ERR = 21 THEN PRINT “HOUSE LIMIT IS
$5000”

410 IF ERL = 130 THEN RESUME 500

420 S = S+B

430 GOTO 120

500 PRINT “THE TOTAL AMOUNT OF YOUR BET
IS”;S

510 END

This program receives and totals bets until one of them
exceeds the house limit.

155

EXP Function
EXP(number)

Calculates the natural exponent of number.

Returns e (base of natural logarithms) to the power of
number. This is the inverse of the LOG function; therefore,
number = EXP(LOG(number)). The number you supply
must be less than or equal to 88.0296.

The result is always single precision.
Example

PRINT EXP(-2)

prints the exponential value .1353353
Sample Program

310 INPUT “NUMBER"; N
320 PRINT “E RAISED TO THE N POWER I1S” EXP(N)

156

FIELD

Statement

FIELD buffer, length AS field name, . ..

Example

Divides a direct-access buffer into one or more fields. Each
field is identified by field name and is the length you

specify.
Field name must be a string variable.

This divides a direct file buffer so that you can send data
from memory to disk and disk to memory. FIELD must be
run prior to GET or PUT.

Before “fielding” a buffer, use an OPEN statement to
assign that buffer to a particular disk file. You must use the
directaccess mode, i.e.,, OPEN“R”, The sumofall field
lengths should equal the record length assigned when the
file was OPENed.

You may use the FIELD statement any number of times to
“re-field” a file buffer. “Fielding” a buffer does not clear
the buffers contents; only the meadns of accessing it. Also,
two or more field names can reference the same area of
the buffer.

See also the chapter on “Disk Files”, OPEN, CLOSE, PUT,
GET, LSET, and RSET.

FIELD 3, 50 AS A$, 50 AS B$

tells BASIC to assign two S0-byte fields to the variables A$
and B$. If you now print A§ or B$, you will see the contents
of the field. Of course, this value would be meaningless
unless you have previously used GET to read a 100-byte
record from disk.

Note: All data — both strings and numbers — must be
placed into the buffer in string form. There are three pairs
of functions (MKI$/CV1, MKS$/CVS, and MKD$/CVD) for
converting numbers to strings and strings to numbers.

FIELD 3, 16 AS NM$, 25 AS ADS$, 10 AS CY$, 2 AS
ST$, 7 AS ZP$

assigns the first 16 bytes of buffer 3 to field NM§; the next
25 bytes to AD$; the next 10 to CY$; the next 2 to ST$; and
the next 7 to ZP$.

157

FILES

Statement

FILES [filespec]

Examples

Displays the names of the files on a diskette.

If you specify filespec, BASIC lists all files that match that
file specification. If you specify a drive as part of the
Sfilespec, then BASIC lists all files that match the specified
filename on that drive. If you omit filespec, FILES lists all
files on the current drive.

FILES is similar to the MS-DOS DIR command, except that
you can specify which files on which drive you want to list.
Filespec may contain question marks and asterisks as wild
cards. A question mark matches any character in a file-
name. For example,

FILES “PAY??2?"

lists all filenames that begin with the letters PAY followed
by any other three or fewer characters.

An asterisk is a short form of several question marks. It
matches any characters beginning at that position. For
example,

FILES “PAY*"

lists all files that have PAY as their first three letters.

FILES
lists all files on the current drive
FILES “~.BAS”

lists all files on the current drive with the extension .BAS

lists all files beginning with PAY followed by any other five
or fewer characters, on the current drive, with the exten-
sion .BAS

158

FIX

Function

FIX(number)

Examples

Returns the truncated integer of number.

All digits to the right of the decimal point are simply
chopped off, so the resultant value is a whole number. For
a negative, non-whole number X, FIX(X) = INT(X) + 1.
For all others, FIX(X) = INT(X).

The result is the same precision as the argument (except
for the fractional portion).

PRINT FIX (2.6)
prints 2.
PRINT FIX(-2.6)

prints — 2.

159

FOR/NEXT Statement

FOR variable = initial value TO final value
[STEP increment]

NEXT [variable]

Example

Establishes a program loop.
variable must be an integer or single precision numeric
constant.

If you omit increment, BASIC assumes the value one.
Each FOR/NEXT loop must have a unique variable.

A loop allows for a series of program statements to be
executed over and over a specified number of times.

BASIC executes the program lines following the FOR state-
ment until it encounters a NEXT. At this point, it increases
variable by STEP increment. If the value of variable is less
than or equal to final value, BASIC branches back to the
line after FOR, and repeats the process. If variable is
greater than final value, it completes the loop and con-
tinues with the statement after NEXT.

If increment is a negative value, BASIC decreases the
variable each time through the loop and the final value is
lower than the initial value.

BASIC always sets the final value for the loop variable
before setting the initial value.

Note: BASIC skips the body of the loop if initial value
times the sign of STEP increment exceeds final value
times the sign of STEP increment.

20 FORH=1TO 2 STEP -2
30 PRINT H
40 NEXT H

the initial value of H times the sign of STEP increment is
greater than the final value of H times the sign of STEP
increment, therefore BASIC skips the body of the loop.
(The sign of STEP increment is negative in this case.)

160

Chapter 7 / Statements and Functions

Sample Program

820 I=5

830 FORI =1T01 + 5
840 PRINT I;

850 NEXT

RUN

this loop is executed ten times. It produces the followiing
output:

1 2 3 456 7 8 9 10
Nested Loops

FOR/NEXT loops may be “nested”. That is, a FOR . . . NEXT
loop may be placed within the context of another FOR . ..
NEXT loop.

The NEXT statement for the inside loop must appear
before the NEXT for the outside loop. If nested loops have
the same end point, a single NEXT statement may be used
for all of them.

Sample Program
880 FOR| = 1TO 3

890 PRINT “OUTER LOOP”

900 FORJ =1TO2

910 PRINT TAB(5) “INNER LOOP”
920 NEXT J

930 NEXT I

This program performs three “outer loops™ and within
each, two “inner loops™. It produces the following output:

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

161

Section II / The BASIC Language

The NEXT statement can be used to close nested loops by
listing the counter variables (but make sure not to type the
variables out of order). For example, delete line 920 and
change 930 to:

NEXT J, |

Note: In nested loops, if you omit the variable(s) in the
NEXT statement, the NEXT statement matches the most
recent FOR statement.

162

FRE

Function

FRE(dummy number) or
(dummy string)

Examples

Returns the number of bytes in memory not being used by
BASIC.

PRINT FRE("44")
prints the amount of memory left.
PRINT FRE(44)

prints the amount of memory left.

163

GET

Statement

GET buffer [,record]

Examples

Reads a record from a direct-access disk file and places it
in a buffer.

record is an integer in the range 0 to 32767 that specifies
which record number you want to access. If you omit
record, BASIC reads the next sequential record (after the
last GET).

Before using GET, you must OPEN the tile and assign it a
buffer.

When BASIC encounters GET, it reads the record number
from the file and places it into the buffer. The actual
number of bytes read equals the record length set when
the file is OPENed.

GET 1
reads the next record into buffer 1.
GET 1, 25

reads record 25 into buffer 1.

164

GET Communication Statement

GET buffer, integer

Transfers data from the communications buffer to the file
buffer.

buffer must be the same buffer assigned to the file in the
OPEN statement.

integer is the number of bytes to transfer from the com-
munications buffer into the file buffer. integer cannot
exceed the value used in the LEN option of the OPEN COM
statement.

Note: Because of the low performance associated with
telephone line communication, we recommend that you
not use GET and PUT statements in such applications.
Instead, use the other disk I/O statements.

165

GET Graphics Statement

GET [STEP] (x-coordinatel, y-coordinatel) —
(x-coordinate2, y-coordinate2), array

Transfers points from an area on the display to an array.

If you specify the STEP option, the numbers you specify as
coordinates are offsets from the most recent graphics
point referenced. x-coordinate is the number of points in
the horizontal direction, and y-coordinate is the number
of points in the vertical direction. Precede the numbers
with a plus (+) or minus (—) sign to indicate the direc-
tion (up, down, left, or right) from the most recent point
referenced. The plus sign indicates to add the number
(right or up) to the most recent coordinate, and the minus
indicates to subtract the number (left or down) from the
most recent coordinate.

x-coordinatel indicates the x coordinate where the image
begins. In Screen Mode 1, x-coordinate may be in the
range 0 to 320. In Screen Modes 2, 3, and 4, x-coordinate
may be in the range 0 to 640.

Yy-coordinatel indicates the y coordinate where the image
begins. In Screen Modes 1 and 2, y-coordinate may be in
the range 0 to 200. In Screen Modes 3 and 4, y-coordinate
may be in the range 0 to 400. If you omit x-coordinate1
and y-coordinatel, BASIC begins the image at the last
point referenced on the screen.

x-coordinate? indicates the x coordinate where the image
ends at and may be in the same range as x-coordinate2.

y-coordinate2 indicates the y coordinate where the image
ends at and may be in the same range as y-coordinate.

166

Chapter 7 / Statements and Functions

array is an array variable name to hold the image. You may
not define the array as a string array, and it must be
dimensioned large enough to hold the entire image.

You use the GET/Graphics and PUT/Graphics statements
together for animation and high-speed object motion in
Screen Modes 1, 2, 3, and 4. The GET/Graphics statement
transfers the screen image described by specified points
of the rectangle into the array. The PUT/Graphics state-
ment transfers the image from the array to the display.

The coordinates that you specify are opposite carners of
the image to store in the array. The array is used as a place
to hold the image. It may be any numeric precision. Ta
ensure that array is large enough tq hold the image use the
following formula:

4 + (INT((D * bits per point + 7)/8) * v)

bits per point is 2 in Screen Mode 1, 1 in Screen Modes 2
and 4, and 3 in Screen Mode 3. / is the length of the
horizontal side of the image, and v is the length of the
vertical side of the image. The dimensions of the image are
in points.

If vou want to use the GET/Graphics statement to store an
image that is 10 by 12 in Screen Mode 1, vour array has to
be 40 bytes. Determine this by substituting values in the
formula as follows:

4 + (INT((10 * 2 +7)/8) * 12) = 40

The array must store 40 bytes. The number of bytes per
element of an array are:

2 for integer
4 for single precision
6 for double precision

167

Section 11 / The BASIC Language

For this example, vou need an integer array with 20 ele-
ments, or a single-precision array with 10 elements, or a
double-precision array with 7 elements.

If you use an integer array, vou can examine the arrav.
Remember, the GET/Graphics statement stores the data in
bits. The information from the display is stored in the array

as:
Element 0 the x dimension of the image
Element 1 the v dimension of the image

The remaining elements of the array store the data bits of
the image. Numeric data is stored low byte first and then
high byte, but the data is transferred high byte first and
then low byte.

For more information on using the GET/Graphics and
PUT/Graphics statements for high speed animation, see
the PUT/Graphics statement.

168

GOSUB

Statement

GOSUB line

Example

Branches to a subroutine, beginning at /ire.

You can call subroutine as many times as vou want. When
the computer encounters RETURN in the subroutine, it
returns control to the statement which follows GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a
test statement. Every subroutine must end with a RETURN.

GOSUB 1000

branches control to the subroutine beginning at line 1000.

Sample Program

260 GOSUB 280

270 PRINT “BACK FROM SUBROQUTINE”: END
280 PRINT “EXECUTING THE SUBROUTINE"
290 RETURN

transfers control from line 260 to the subroutine begin-
ning at line 280. Line 290 instructs the computer to return
to the statement immediately following GOSUB.

169

GOTO

Statement

GOTO line

Example

Branches to the specified line.

When used alone, GOTO /ine results in an unconditional
(automatic) branch. However, test statements may pre-
cede the GOTO to effect a conditional branch.

You can use GOTO in the command mode as an alterna-
tive to RUN. This lets you pass values assigned in the
command mode 1o variables in the execute mode.

GOTO 100

automatically transfers control to line 100.

Sample Program

10 READ R

20 IF R = 13 THEN GOTO 80
30 PRINT “R=";R

40 A=3.14*R2

50 PRINT “AREA =";A

60 GOTO 10

70 DATA 5,7,12, 13

80 END

RUN

line 10 reads each of the data items in line 70; line 60
returns program control to line 10. This enables BASIC to
calculate the area for each of the data items, until it reaches
item 13.

170

HEX$

Function

HEX$(number)

Examples

Calculates the hexadecimal value of number.

HEX$ returns a string representing the hexadecimal value
of the argument. The value returned is like any other
string: it cannot be used in a numeric expression.That is,
you cannot add hex strings. You can concatenate them,
though.

PRINT HEX$(30), HEX$(50), HEX$(90)
prints the following strings:

1E 32 5A

Y$ = HEX$(X/16)

Y$ is the hexadecimal string representing the integer
quotient X/16.

171

IF... THEN... ELSE Statement

IF expression THEN statement(s) or line
[ELSE statement(s) or line]

Examples

Tests a conditional expression and makes a decision re-
garding program flow.

If expression is true, control proceeds to the THEN state-
ment or line. If not, control jumps to the matching ELSE
statement, line, or to the next program line.

IF X > 127 THEN PRINT “OUT OF RANGE" : END

passes control to PRINT, then to END if X is greater than
127.1fXis not greater than 127, control jumps down to the
next line in the program, skipping the PRINT and END
statements.

If A< B THEN PRINT “A < B” ELSE PRINT “B < A”

tests the first expression, if true, prints A <B . Otherwise,
the program jumps to the ELSE statement and prints
B <C A

IFX>0ANDY <>0@THENY = X + 180

assigns the value X + 180 to Y if both expressions are true.
Otherwise, control passes directly to the next program
line, skipping the THEN clause.

IF A$ = “YES” THEN 210 ELSE IF A$ = “NO"” THEN
400 ELSE 370

branches to line 210 if A$ is YES. If not, the program skips
over to the first ELSE, which introduces a new test. If A$ is
NO, then the program branches to line 400. If A$ is any
value besides NO or YES, the program branches to
line 370.

172

Chapter 7 / Statements and Functions

Sample Program

IF/THEN/ELSE statements may be nested. However, you
must take care to match up the IFs and ELSEs. (IF the
statement does not contain the same number of ELSE’s
and IF’s, each ELSE is matched with the closest unmatched
1F.)

1040 INPUT “ENTER TWO NUMBERS”; A, B

1050 IF A<= BTHENIFA <BTHEN PRINT A; ELSE
PRINT “NEITHER”; ELSE PRINT B;

1060 PRINT “IS SMALLER THAN THE OTHER”

This program prints the relationship between the two
numbers entered.

173

INKEY'$

Function

INKEY$

Example

Returns a keyboard character.

Returns a one-character string from the keyboard without
having to press (ENTER). If no key is pressed, a null string
(length zero) is returned. Characters typed to INKEY$ are
not echoed to the display.

INKEY$ is invariably put inside some sort of loop. Other-
wise a program execution would pass through the line
containing INKEY$ before a key could be pressed.

10 A$ = INKEY$
20 IF A$ = “ " THEN 10

This causes the program to wait for a key to be pressed.

INP

Function

INP(port)

Example

Returns the byte read from a port.
INP is the complementary function of the OUT statement.

Port may be any integer from 0 to 65535.

100 A=INP(255)

175

INPUT

Statement

INPUT[;] [“prompt string”;] variablel,
variable2, . . .

Examples

Inputs data from the keyboard into one or more variables.

When BASIC encounters this statement, it stops execution
and displays a question mark. This means that the program
is waiting for vou to type data.

INPUT may specify a list of string or numeric variables,
indicating string or numeric data items to be input. For
instance, INPUT X$, X1, Z$, Z1 calls for you to input a
string literal, a number, another string literal, and another
number, in that order.

The number of data items you supply must be the same as
the number of variables specified. You must separate data
items by commas.

Responding to INPUT with too many items, or with the
wrong type of value (including numeric tvpe), causes
BASIC to print the message “?Redo from start”, No values
are assigned until vou provide an acceptable response.

If aprompt string is included, BASIC prints it, followed by a
question mark. This helps the person inputting the datato
enter it correctly. If instead of a semicolon, vou tvpe 2
comma after prompt string, BASIC suppresses the ques-
tion mark when printing the prompt. Prompt string must
be enclosed in quotes. [t must be typed immediately atter
INPUT.

If INPUT is immediately followed by a semicolon, any
carriage returns pressed as part of the response are not
echoed.

INPUT Y%

when BASIC reaches this line, vou must type any number
and press (ENTER) before the program will continue.

Chapter 7 / Statements and Functions

INPUT SENTENCES$

when BASIC reaches this line, you must type in a string.
The string wouldn’t have to be enclosed in quotation
marks unless it contained a comma, a colon, or a leading

blank.
INPUT “ENTER YOUR NAME AND AGE (NAME,
AGE)"; N§, A

prints a message on the screen to help the person at the
keyboard enter the right kind of data.

Sample Program

50 INPUT “HOW MUCH DO YOU WEIGH"; X
60 PRINT "ON MARS YOU WOULD WEIGH ABOUT”
CINT(X * .38) “POUNDS."”

177

INPUT# Statement
INPUT# buffer, variable, . . .

Inputs data from a sequential disk file and stores it in a
program variable.

Buffer is the number used when the file was OPENed for
input.

Variable contains the variable name(s) that will be
assigned to the item(s) in the file.

With INPUT#, data is iriput sequentially. That is, when the
file is OPENed, a pointer is set to the beginning of the file.
The pointer advances each time data is input. To start
reading from the beginning of the file again, you must
close the file buffer and re-OPEN it.

INPUT# doesn’t care how the data was placed on the disk
— whether a single PRINT# statement put it there, or
whether it required ten different PRINT# statements.
What matters to INPUT# is the position of the terminating
characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading
blanks. When the first non-blank character is encountered,
BASIC assumes it has encountered the beginning of the
data item.

The data item ends when a terminating character is en-
countered or when a terminating condition occurs. The
terminating characters vary, depending on whether BASIC
is inputting to a numeric or string variable.

Numeric values: BASIC begins input at the first character
which is neither a space or a carriage return. It ends input
when it encounters a space, carriage return, or a comma.

String values: BASIC begins input with the first character
which is neither a space nor carriage return. It ends input
when it encounters a carriage return or comma. One
exception to this rule: If the first character is a quotation
mark (), the string will consist of all characters between
the first quotation mark and the second. Thus, a quoted
string may not contain a quotation mark as a character.

Chapter 7 / Statements and Functions

Examples

If the end-of-file is reached when a numeric or string item
is being INPUT, the item is terminated.

INPUT#1, AB

sequentially inputs two numeric data items from disk and
places them in A and B. Buffer #1 is used.

INPUT#4, AS, BS, C$

sequentially inputs three string data items from disk and
places them in A$, B$, and C$. Buffer #4 is used.

179

INPUT$ Statement
INPUT $(numberl [,number2])

Inputs a string of characters from either the keyboard or a
sequential disk file.

Number1 is the number of characters to be input. It must
be avalue in the range 1 to 255. Number2 is a buffer which
accesses a sequential input file.

INPUT$(rnumber1) inputs a string of characters from the
keyboard. When the program reaches this line, it stops
until you (or any operator) type number1 characters. (You
don’t need to press to signify end-of-line.) The
character(s) you type are not displayed on the screen. Any
character, except BREAK), is accepted for input.

INPUT$(number1, number2) inputs a string from a se-
quential disk file. Number 2 is the buffer associated with
that disk file.

Examples
A$ = INPUTS$(5)

assigns a string of five keyboard characters to A$. Program
execution is halted until the operator types five characters.

A$ = INPUT$(11,3)

assigns a string of 11 characters to A§. The characters are
read from the disk file associated with buffer 3.

Sample Programs

This program shows how you could use INPUT$ to have an
operator input a password for accessing a protected file.
By using INPUT$, the operator can type in the password
without anyone seeing it on the video display. (To see the
full file specification, run the program, then type PRINT
F$).

110 LINE INPUT “TYPE IN THE FILESPEC.EXT"; F$

120 PRINT “TYPE IN THE PASSWORD — MUST
TYPE 8 CHARACTERS: ";

130 P$ = INPUT$(8)

140 F$ = F$ + " + P$

180

Chapter 7 / Statements and Functions

In the program below, line 100 OPENSs a sequential input
file (which we assume has been previously created). Line
200 retrieves a string of 70 characters from the file and
stores them in T$. Line 300 CLOSEs the file.

100 OPEN "I", 2, “TEST.DAT"
200 T$ = INPUT$(70,2)
300 CLOSE

181

INSTR

Function

INSTR([integer,| string1, string2)

- Examples

Searches for the first occurrence of string2 in string1, and
returns the position at which the match is found.

Integer specifies a position in string? 1o begin searching
for string2. integer must be a value in the range 1 to 255. If
you omit integer, INSTR starts searching at the first charac-
ter in stringl.

This function lets you search through a string to see if it
contains another string. If it does, INSTR returns the start-
ing position of the substring in the target string; otherwise,
it returns zero. Note that the entire substring must be
contained in the search string, or zero is returned.

Optional integer sets the position for starting the search. If
omitted, INSTR starts searching at the first character in
stringl.

In these examples, A$ = “LINCOLN™:

INSTR(AS$, “INC”)

returns a value of 2,

INSTR(AS, “12”)

returns a zero.

INSTR(A$, “LINCOLNABRAHAM")

returns a zero. For a slightly different use of INSTR, look at
INSTR (3, “1232123", “12")

which returns s.

Sample Program

The program below uses INSTR to search through the
addresses contained in the program’s DATA lines. It
counts the number of addresses with a specified county
zip code (761—) and returns that number. The zip code is

182

Chapter 7 | Statements and Functions

preceded by an asterisk to distinguish it from the other
numeric data found in the address.

360
370
390
3985
400

405
410

420

430

440

450

460

RESTORE
COUNTER = 0
READ ADDRESS$

IF ADDRESS$ = "$END” THEN 410

IF INSTR(ADDRESSS$, “+761”) <> 0 THEN
COUNTER = COUNTER + 1 ELSE 390
GOTO 390

PRINT “NUMBER OF TARRANT COUNTY, TX
ADDRESSES {S" COUNTER: END

DATA “5950 GORHAM DRIVE, BURLESON,
TX «76148”

DATA “71 FIRSTFIELD ROAD,
GAITHERSBURG, MD *20760"

DATA “1000 TWO TANDY CENTER, FORT
WORTH, TX +76102”

DATA "16633 SOUTH CENTRAL
EXPRESSWAY, RICHARDSON, TX +75080”
DATA “$END”

183

INT

Function

INT(number)

Examples

Converts number to integer value.

This function returns the largest integer which is not
greater than the rnumber.

The result has the same precision as the argument except
for the fractional portion. Number is not limited to the
range — 32768 to 32767,

PRINT INT(79.89)
prints 79.
PRINT INT (-12.11)

prints —13.

184

KEY/Set/Display Statement

KEY integer, string

KEY ON
KEY OFF
KEY LIST

KEY integer, string

KEY ON

Assigns or displays function key values.

integer is a number 1 through 12 that indicates the func-
tion key being defined.

string is the string expression assigned to the key and may
contain up to 15 characters.

A soft key is a function key that is “programmed” to
generate a specific string of characters. When you press
the key, BASIC displays the string on the screen just as if
you had typed every character. Initially, the function keys
have these soft key values:

F1 LIST F7 TRONENTER)

F2 RUNENTER) F8 TROFFENTER)

F3 LOAD" F9 KEY

F4 SAVE” F10 SCREEN 0,0,0ENTER)
F5 CONT(ENTER F11 (none)

F6 ,"LPT1."(ENTER) F12 (none)

Functions Keys 11 and 12 do not have initial values. You
can use the KEY statement to define these keys. You can
also use the KEY statement to redefine the other function
keys so that BASIC displays the strings you use most often.

Assigning a string length of zero (") to a function key
disables it as a soft key. For example,

KEY t, "

removes the present capability of the F1 key.

KEY ON displays the function key assignment values on
Line 25 of the screen. If the screen width is 40. the screen
shows 5 of the soft key assignments. If the width is 80, the

185

Section II / The BASIC Language

KEY OFF

KEY LIST

screen shows 10 of the key assignments. In both cases the
screen shows only the first 6 characters of the string
assignment. When you load BASIC, KEY ON is the initial
default value.

has the same effect as a KEY ON statement. If the
screen width is 40, KEY ON displays S of the soft key
assignments. If you press (D), the next five key
assignments are displayed. Pressing a second
time displays the assignments for Function Keys 11 and 12,
This is also true for width 80. KEY ON displays the Key
assignments for Function Keys 1 through 10. Pressing
displays the assignments for Function Keys 11
and 12.

KEY OFF erases the soft key assignments from line 25. The
assignments are still active, but the screen does not display
them.

BASIC reserves line 25 for soft kéy display. Even if the soft
key display is turned off, BASIC does not display program
lines on line 25.

KEY LIST displays all 15 characters of all 12 soft key assign-
ments on the screen.

REMARKS

If a function key has been pressed, an INKEY$ statement in
a BASIC progiam returns one character of a soft key
assignment each time it is executed. For example, if this
statement is executed

A$ = INKEY$

and you press F1, the first time the statement is executed,
A$ equals L, the second time A$ equals I, and so on. Keep
this in mind when writing a BASIC routine to trap for a
certain key. Your routine may not perform as expected if a
function key is accidentally pressed.

186

KEY/Trap Statement
KEY (number) action

Turns on, turns off, or temporarily halts key trapping for a
specified function key or cursor direction key.

actiorr may be any of the following:

ON enables key trapping
OFF disables key trapping
STOP temporarily suspends key trapping

number may be a number in the range 1 to 16, indicating
the number of the key to trap. Function keys use their
corresponding function key number. The cursor direction
key trap numbers are

™ 13
14
15
€D 16

Note: Do not confuse the KEY/Trap statement with the
KEY/Display/Set statement. These are two separate
statements that perform two distinct functions in
BASIC.

187

Section 1l / The BASIC Language

The KEY/trap statement is used in a key trapping routine
with the ON KEY() GOSUB statement to detect when a
specific function or cursor direction key is pressed. After
executing a KEY() ON staternent, BASIC checks after each
program statement to see if the specified kev has been
pressed. If so, BASIC transfers program control to the line
number specified in the ON KEY() GOSUB statement. For
example, the statements

KEY(3) ON
ON KEY(3) GOSUB 1000

turn on a trap for Function Key 3. BASIC continues to
execute the other program statements, checking after
each statement to see if Function Key 3 has been pressed.
When Function Key 3 is pressed, program control
branches to the subroutine beginning at Line 1000,

The statement

KEY() STOP

temporarily halts trapping for the specified key. If the key
is pressed, BASIC does not transfer program control to the
subroutine until key trapping is turned on again with a
KEY() ON statement. BASIC remembers that the kev was
pressed and transfers program control to the subroutine
immediately after key trapping is turned on again.

The statement

KEY() OFF

turns off key trapping and does not remember that the key
was pressed when key trapping is turned on again.

Key trapping only occurs when BASIC is in execution
mode. The function kevs retain their soft kev values during
command mode.

See ON KEY() GOSUB for more information on key
trapping.

188

Chapter 7 | Statements and Functiorns

Example

10 KEY(1) ON
20 KEY(3) ON
30 KEY(3) STOP
40 KEY(2) OFF

50 ON KEY(1) GOSUB 1000
60 ON KEY(3) GOSUB 2000

.1000 SUBROUTINE

1100 KEY(3) ON
1110 RETURN

Lines 10 and 20 turn on key trapping for Function Keys 1
and 3. Line 30 temporarily suspends kev trapping for
Function Kev 3, and Line 40 turns kev trapping off for
Function Key 2. This is useful if vou want to trap for certain
kevs to be pressed in a specific sequence. In this example,
if Function Keyv 3 is pressed before Function Key 1, the
subroutine for Function Kev 3 is not executed until the
end of Function Key 1 subroutine, Line 1100. When BASIC
executes Line 1110, if Function Kev 3 hus been pressed,
the subroutine beginning at Line 2000 is executed.

189

KILL

Statement

KILL filespec

Example

“Kills” (deletes) filespec from disk.

You may KILL any type of disk file. However, if the file is
currently OPEN, a “File already open” error occurs. You
must CLOSE the file before deleting it.

KILL “FILE.BAS”
deletes this file from the first drive which contains it.
KILL “A:DATA”

deletes this file from Drive A: only.

190

LEFT$

Function

LEFT$(string,integer)

Examples:

Returns the leftmost integer characters of string.
integer must be in the range of 1 to 255.

If integer is equal to or greater than LEN (string), the entire
string is returned.

PRINT LEFT$("BATTLESHIPS”, 6)
prints BATTLE.
PRINT LEFT$(“BIG FIERCE DOG”, 20)

since BIG FIERCE DOG is less than 20 characters long, the
whole phrase is printed.

Sample Program

740 A$ = “TIMOTHY”
750 B$ = LEFT$(AS, 3)
760 PRINT B$; “--THAT'S SHORT FOR ”; A$

When this is run, BASIC prints:
TIM--THAT'S SHORT FOR TIMOTHY

Line 750 gets the three leftmost characters of A$ and stores
them in B$. Line 760 prints these three characters, a string,
and the original contents of A$.

LEN

Function

LEN(string)

Examples

Returns the number of characters in szring. Blanks are
counted.

X = LEN(SENTENCES)

gets the length of SENTENCES$ and stores it in X.
PRINT LEN("CAMBRIDGE"”) + LEN("BERKELEY”)
prints 17.

PRINT LEN(“WAUKEGAN, ILLINOIS")

prints 18

192

LET

Statement

[LET] variable = expression

Examples

Assigns the value of expression to variable.

BASIC doesn’t require assignment statements to begin
with LET, but you might want to use LET to be compatible
with versions of BASIC that do require it.

LET A$ = “A ROSE IS A ROSE”
LET B1 1.23
LETX = X — Z1

In each case, the variable on the left side of the equal sign
is assigned the value of the constant or expression on the
right side,

Sample Program

550 P = 1001: PRINT “P =" P
560 LET P = 2001: PRINT “NOW P = "P

193

LINE Graphics Statement

LINE [STEP] [(x-coordinatel, y-coordinatel) |
— (x-coordinate2, y-coordinate2) [,color] [,B[F]]

Draws a line or a box on the video displav.

x-coordinatel indicates the x coordinate at which to begin
the line. In Screen Mode 1, x-coordinate may be in the
range 0 to 320. In Screen Modes 2, 3, and 4, x-coordinate
may be in the range 0 to 640.

y-coordinatel indicates the v coordinate at which to begin
the line. In Screen Modes 1 and 2, y-coordinate may be in
the range 0 to 200. In Screen Modes 3 and 4, y-coordinate
may be in the range 0 to 400. If vou omit x-coordinatel
and y-coordinatel, BASIC begins the line at the last point
referenced on the screen.

x-coordinate2 indicates the x coordinate at which to end
the line at and may be in the same range as x-coordinatel.

y-coordinate2 indicates the y coordinate at which to end
the line at and may be in the same range as y-coordinatel.

Ifyou include the STEP option, the numbers vou specify as
coardinates are offsets from the most recent graphics
point referenced. x-coordinate is the number of points in
the horizontal direction and y-coordinate is the number
of points in the vertical direction. Precede the numbers
with a plus (+) or minus (—) sign to indicate the direc-
tion (up, down, left, or right) from the most recent point
referenced. The plus sign indicates to add the number to
the most recent coordinate (right or up) and the minus
indicates to subtract the number (left or down) from the
most recent coordinate.

194

Chapter 7 / Statements and Functions

Examples

color indicates the color of the line and must be a color
number in the current palette. In Screen Mode 1, color
may be in the range 0 to 3. In Screen Mode 3, color may be
in the range 0 to 7. In Screen Modes 2 and 4, color may be
either 0 or 1. If vou omit color in Screen Modes 1 or 3,
BASIC assumes color 3. If vou omit color in Screen Modes
2 or 4, BASIC assumes white.

With the B option, BASIC draws a box. The points that vou
specify are opposite corners.

If you specify both the B and F options, BASIC draws a box
and fills the box in with color.

If you specify coordinates that are not within the range for
the selected screen mode, BASIC assumes the closest legal
value. In other words, negative values become zero. In
Screen Modes 1 and 2, v values greater than 199 become
199. In Screen Mode 1, x values greater than 319 become
319. In Screen Modes 2, 3, and 4, x values greater than 639
become 639.

You can try these examples in Screen Modes 1, 2, 3, or 4.
The color, size, and position of the image on the display
varies, depending on the current screen mode.

LINE -(319, 199)

draws a line from the last point referenced to point
319,199 in the default color. This is the simplest form of
the LINE statement. Note that when vou omit the begin-
ning points you must still include the hyphen.

LINE (0,0)-(319,199)
draws a diagonal line on the display in the default color.
LINE (0,100)-(319,100),1

draws a vertical line across the displav in Color 1.

195

Section 11 / The BASIC Language

LINE (0,0)-(320,100),,B

draws a box in the upper left corner of the display.

LINE (0,0)-(200,200),1,bf

draws a box on the display and fills it in with Color 1.
Sample Programs

10 CLS
20 LINE ~(rnd+319,rnd+199),rd+4
30 GO TO 20

In Screen Modes 1, 2, 3, or 4, Lines 10-30 create a loop that
draws random lines on the video display.

40 FOR x=0 TO 319
50 LINE (x,0)-(x,199),x AND 1
60 NEXT

In Screen Modes 1, 2, 3, or 4, Lines 40-60 draw an alternat-
ing pattern, turning the line on and off.

10 CLS
20 LINE -(rnd+*639,rnd*199),rnd*2,bf
30 GO TO 20

This program draws a random filled box in Screen Modes
2,3, or 4.

196

LINE INPUT Statement

LINE INPUT[; || “prompt message”;| string variable

Examples:

Inputs an entire line (up to 254 characters) from the
keyboard.

LINE INPUT is a convenient way to input string data with-
out having to worry about accidental entry of delimiters
(commas, quotation marks, etc.).

LINE INPUT (the space is not optional) is similar to INPUT,
except:

* The computer does not display a question mark when
waiting for input.

Each LINE INPUT statement can assign a value to only
one variable.

+ Commas and quotes can be used as part of the string
input.

Leading blanks are not ignored — they become part of
variable.

The only way to terminate the string input is to press
ENTER). However, if LINE INPUT is immediately followed
by a semicolon, pressing does not echo a carriage
return to the display.

Some situations require that you input commas, quotes,
and leading blanks as part of the data. LINE INPUT serves
well in such cases.

LINE INPUT A%
inputs A§ without displaying any prompt.
LINE INPUT “LAST NAME, FIRST NAME? ”; N$

displays a prompt message and inputs data. Commas do
not terminate the input string, as they do in an INPUT
statement.

You may abort a LINE INPUT statement by pressing
BREAK). BASIC returns to command level and displays (k.
Typing CONT resumes execution at LINE INPUT.

197

LINE INPUT# Statement
LINE INPUT# buffer, variable

Inputs an entire line of data from a sequential disk file to a
string variable.

Buffer is the number under which the file was OPENed.

This statement is useful when you want to read an ASCII-
format BASIC program file as data, or when you want to
read in data without following the usual restrictions re-
garding leading characters and terminators.

LINE INPUT# reads everything from the first character up
to:

* the end-of-file

* the 255th data character

* a carriage return

Other characters encountered — quotes, commas, lead-
ing blanks — are included in the string,

Example _
If the data on disk looks like this:

10 CLEAR 500
20 OPEN “I", 1, “PROG”

then the statement
LINE INPUT#1, A$

could be used repetitively to read each program line, one
at a time.

198

LIST

Statement

LIST [startline]-[endline] [,device]

Examples

Lists a program in memory to the display.

Startline specifies the first line to be listed. If you omit
startline, BASIC starts with the first line in vour program.

Endline specifies the last line to be listed. 1f you omit
endline, BASIC ends with the last line in your program. If
you omit startline and endline, BASIC lists the entire
program.

Device may be either “SCRN:” (screen) or “LPT1.” (line
printer 1). If you omit device, the lines are listed to the
screen.

You can substitute period (.) for either startline or endline
to signify current line number.

LIST

displays the entire program. If vou omit device, vou can
stop the automatic scrolling by pressing (BREAK). This
freezes the display. Press any key to continue the listing.
Listings directed to a device may not be interrupted.

LIST 50

displays line 50 on the screen.

LIST 50-85, “SCRN:”

displays lines in the range 50-85 on the screen.
LIST .-

displays the program line that has just been entered or
edited, and all higher-numbered lines on the screen.

LIST —227
displays all lines up to and including 227 on the screen.
LIST 227 —, “LPT1:"

lists line 227 and all higher numbered lines to the printer.

199

LLIST

Statement

LLIST [startline]-[endline]

Examples

Lists program lines in memory to the printer.

Startline specifies the first line to be listed. If you omit
startline, BASIC starts with the first line in your program.

Endline specifies the last line to be listed. If you omit
endline, BASIC ends with the last line in your program. If
you omit startline and endline, BASIC lists the entire
program.

LLIST assumes a 132-character-wide printer. You may
change this by using the WIDTH statement.

LLIST

lists the entire program to the printer. To stop this process,
press (HOLD). This causes a temporary halt in the com-
puter’s output to the printer. Press any key to continue
printing.

LLIST 68-90

prints lines in the range 68-90.

LOAD

Statement

LOAD filespec [,R]

Example

Loads a BASIC program into memory.

filespec is a string expression containing the drive identi-
fier and filename. The filename is required. If you omit the
drive identifier, BASIC assumes the current drive.

If the filename is 8 characters or fewer and you do not
specify an extension, BASIC appends the extension .BAS.

Note: You can press (BREAK) at any time during LOAD,
between files, or after a time-out period. BASIC exits the
search and returns to direct mode. Previous memory con-
tents remain unchanged.

The R option tells BASIC to run the program. (LOAD with
the R option is equivalent to the command RUN filespec).

LOAD without the R option wipes out any resident BASIC
program, clears all variables, and CLOSES all OPEN files.
LOAD with the R option leaves all OPEN files open and
runs the program automatically.

You can use either of these commands inside programs to
allow program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a “Direct state-
ment in file” error occurs.

LOAD "A:PROG1.BAS”

loads PROG1.BAS from Drive A. BASIC then returns to the
command mode.

LOAD “PROG1.BAS”

loads PROG1.BAS since no drive is specified, BASIC be-
gins searching for it in the MS-DOS default drive.

201

LOC

Function

LOC(buffer)

Example

Returns the current record number.
Buffer is the buffer under which the file was OPENed.

You use LOC to determine the current record number,
that is, the number of the last record processed since the
file was OPENed. It returns the record number accessed
by the last GET or PUT statement.

IF LOC(1)>55 THEN END

if the current record number is greater than 55, ends
program execution.

Sample Program

1310 A$ = “WILLIAM WILSON"

1320 GET 1

1330 IF N$ = A$ THEN PRINT “FOUND IN RECORD"
LOC(1): CLOSE: END

1340 GOTO 1320

This is a portion of a program. Elsewhere the file has
been OPENed and FIELDed. N#§ is a field variable. If N$
matches A$, the record number in which it was found is
printed.

202

LOC

Communication Function

LOC(variable)

Example

Returns the number of characters in the input queue.

variable is avariable in your BASIC program to receive the
number of characters in the input queue waiting to be
read.

The input queue can hold more than 255 characters. You
determine the number of characters to be stored in the:
input queue by the value of the /C: switch when BASIC is
loaded. Since a string is limited to 255 characters, this
eliminates the need for testing string size before reading
data into the input queue.

If more than 255 characters are in the input queue, LOC
always returns 255. If there are less, LOC returns the actual
number of characters waiting to be read.

10 LOC(X)
20 If X>0 THEN 1000

Line 10 checks to see if there are any characters in the
input queue and stores the number of characters in the
variable X. Line 20 tests the value of X. I X is greater than 0,
there are characters in the input queue and line 20 trans-
fers program control to line 1000 to process the data.

LOCATE Statement
LOCATE [row] [,column] [,cursor] [,start] [,stop]

Positions the cursor on the screen.

row is a numeric expression in the range 1 to 24 that
indicates the screen row on which you want to position
the cursor. Note that line 25 is reserved for function key
values only. You may not use LOCATE to position the
cursor on the 25th line.

column is a numeric expression that indicates the screen
column on which you want to position the cursor. It may
be inthe range 1 to 40 or 1 to 80, depending on the current
screen width.

cursor indicates whether the cursor is visible or invisible.
Set cursor to 1 for avisible cursor and to 0 for an invisible
Cursor.

start is a numeric expression in the range 0 to 7 that
specifies the size of the cursor. Values 0, 1, 2, and 3 indicate
a full cursor. Values 4, 5, 6, and 7 indicate a half cursor.

The stop parameter has no effect in this implementation of
BASIC. However, values supplied for stop are accepted
and ignored to provide compatibility with other imple-
mentations of BASIC that use stop.

Examples
LOCATE 10,20,1,4
positions a half visible cursor on row 10 in column 20.
LOCATE 24,1,1.3

positions a full cursor in the first position of the last line.

204

LOF

Function

LO¥F(buffer)

Example

Returns the length of the file in bytes.

buffer is an integer in the range 1 to 15. It is the I/O buffer
you used to OPEN the file.

If BASIC creates the file, LOF always returns the number of
bytes in the file as a multiple of 128. For example, if the file
actually contains 300 bytes, LOF returns 384. If you create
the file with EDLIN, LOF returns the actual number of
bytes used.

Y = LOF(5)

assigns the length of the file in bytes to variable Y.

Sample Programs

During direct access to a pre-existing file, you often need a
way to know when you've read the last valid record. LOF
provides a way.

1540 OPEN “R”, 1, "UNKNOWN.TXT”, 128

1550 FIELD 1, 255 AS A%

1560 RECNUM% = 1 'START AT BEGINNING
OF FILE

1570 RECSIZE% = 128 'SET RECORD SIZE

1580 IF RECNUM% * RECSIZE% > LOF(1) GOTO

1640
1590 "CHECK FOR END OF
FILE
1600 GET 1, RECNUM% 'RECORD NUM. TO BE
ACCESSED

1610 PRINT A$

1620 RECNUM% = RECNUM% + 1
'INCREMENT RECORD
NUM

1630 GOTO 1580

1640 CLOSE

205

Section Il / The BASIC Language

If you attempt to GET record numbers beyond the end-of-
file, BASIC gives you an error.

When you want to add to the end of a file, LOF tells you
where to start adding:

1700 RECNUM% = (LOF(1) / RECSIZE%) +1

1710 'HIGHEST EXISTING RE-
CORD

1610 PUT 1, RECNUM% 'ADD NEXT RECORD

206

LOF Communication Function

LOF(variable)

Returns the amount of free space in the input queue.

variable is a variable in your BASIC program that receives
the amount of free space in the input queue.

You can use LOF to determine when an input queue is
getting full so that transmission is stopped.

207

LOG

Function

LOG(number)

Examples

Computes the natural logarithm of number.

Number must be greater than zero. This is the inverse of
the EXP function. The result is always in single precision.

PRINT LOG(3.14159)
prints the value 1.14473.
Z = 10 ~ LOG(Ps/P1)

performs the indicated calculation and assigns the value to
Z.

Sample Program

This program demonstrates the use of LOG. It utilizes a
formula taken from space communications research.

540 INPUT “DISTANCE SIGNAL MUST TRAVEL
(MILES)”; D

550 INPUT “SIGNAL FREQUENCY (GIGAHERTZ)"; F

560 | = 96.58 + (20 * LOG(F)) + (20 » LOG(D))

570 PRINT “SIGNAL STRENGTH LOSS IN FREE
SPACE IS” L “DECIBELS.”

LPOS

Function

LPOS(number)

Examples

Returns the logical position of the print head within the
line printer’s buffer.

Number indicates which printer and may be any of the
following :

@orl indicates LPT1:

2 indicates LPT2:

LPOS is only useful to check the position of the print head
after printing an LPRINT statement that is terminated by a
semicolon to suppress the automatic carriage return. The
statement cohtaining LPOS is not executed until the
LPRINT statement is finished printing.

LPRINT A; B; C;

You may want to use LPOS to determine if there is enough
room to continue printing more variables on the same
line.

100 IF LPOS(X)>60 THEN LPRINT

If the printer has printed more than 60 characters, a car-
riage return is sent so that the printer skips to the next line.

LPOS does not necessarily give the physical position of the
print head if the printed string contains the ASCII code for
a carriage return. For example, if you are printing a string
of 20 characters and the 10th character is the ASCII code
for a carriage return, after printing the ninth character, the
printer advances to the next line and prints the remaining
10 characters. If the string is terminated by a semicolon to
suppress the automatic line feed, the physical location of
the print head is at position 10, but LPOS returns a value of
21 because that is the logical location of the print head.

209

LPRINT, LPRINT USING Statement

LPRINT data, . ..
LPRINT USING format; data, . . .

Examples

Prints data on the printer.

LPRINT and LPRINT USING assume a 132-character-wide-
printer. You may change the width with the WIDTH
statement.

See PRINT and PRINT USING for more information.

LPRINT (A * 2)/3
prints the value of expression (A * 2)/3 on the printer.
LPRINT TAB(50) “TABBED 50"

moves the line printer carriage to TAB position 50 and
prints “TABBED 50". (Refer to the TAB function).

LPRINT USING “#####.#";, 217

sends the formatted value bbbb2.2 to the line printer.

210

LSET

Statement

LSET field name = data

Example

Sets data in a direct-access buffer field name in prepara-
tion for a PUT statement.

You must have used FIELD to set up buffer fields before
using LSET.

You must convert numeric values to string values before
they are LSET. See MKI$, MKD$§, MKS$.

You use LSET to left-justify the variable in the field. If the
field is larger than the variable it is receiving, the field is
filled with blanks on the right. If the variable is larger than
the field, characters are truncated on the right. The com-
plement command to LSET is RSET.

See also the chapter on “Disk Files”, OPEN, CLOSE, FIELD,
GET, PUT, and RSET.

Suppose NM$ and AD$ have been defined as field names
for a direct access file buffer. NM$ has a length of 18
characters; AD$ has a length of 25 characters. The
statements

LSET NM$ = “JIM CRICKET, JR.”
LSET AD$ = “2000 EAST PECAN ST."

set the data in the buffer as follows:
JIMBCRICKET, JR.bbb 2000BEASTHPECANBST bbb

Notice that filler blanks are placed to the right of the data
strings in both cases. If we use RSET statements instead of
LSET, the filler spaces are placed to the left. This is the only
difference between LSET and RSET.

MERGE Statement
MERGE filespec

Loads a BASIC program and merges it with the program
currently in memory.

Filespec is a string exptession, enclosed in quotes, that
may contain the drive identifier, filename and extension.
The filename is required. If you omit the drive identifier,
BASIC assumes the current drive. If the fileriame is eight
characters or fewer and you omit the extension, BASIC
appends the extension .BAS.

The file must be in ASCII format, that is, it must have been
SAVEd with the A option.

Program lines in the disk program are inserted into the
resident program in sequential order. For example, sup-
pose that three of the lines from the disk program are
numbered 75, 85 and 90, and three of the lines from the
current program are numbered 70, 80, and 90. When
MERGE is used on the two programs, this portion of the
new program is numbered 70, 75, 80, 85, 90.

If line numbers on the disk program coincide with line
numbers in the resident program, the disk program’s lines
replace the resident program’s lines.

MERGE closes all files and clears all variables. Upon com-
pletion, BASIC returns to the command mode.

Example

Suppose you have a BASIC program on disk, PROG2.TXT
(saved in ASCIT), which you want to merge with the pro-
gram you've been working on in memory. Then we use:

MERGE “PROG2.TXT"
merges the two programs.
Sample Programs

MERGE provides a convenient means of putting program
modules together. For example, an often-used set of
BASIC subroutines can be tacked onto a variety of pro-
grams with this command.

212

Chapter 7 ! Statements and Functions

Suppose the following program is in memory:

80 REM

MAIN PROGRAM

90 REM LINE NUMBER RESERVED FOR

SUBROUTINE HOOK

100 REM PROGRAM LINE
110 REM PROGRAM LINE
120 REM PROGRAM LINE
130 END

And suppose the following subroutine, SUB.TXT, is stored
on disk in ASCII format:

90 GOSUB 1000 SUBROUTINE HOOK

1000 REM BEGINNING OF
SUBROUTINE
1010 REM SUBROUTINE LINE
1020 REM SUBROUTINE LINE
1030 REM SUBROUTINE LINE

1040 RETURN

You can MERGE the subroutine with the main program
with:

MERGE “SUB.TXT"
and the new program in memory is:

80 REM MAIN PROGRAM
90 GOSUB 1000 SUBROUTINE HOOK

100 REM PROGRAM LINE
110 REM PROGRAM LINE
120 REM PROGRAM LINE
130 END

1000 REM BEGINNING OF

SUBROUTINE

1010 REM SUBROUTINE LINE
1020 REM SUBROUTINE LINE
1030 REM SUBROUTINE LINE

1040 RETURN

213

MID$

Statement

MID $(oldstring, position [,length]) =
replacement string

Examples:

Replaces a portion of an oldstring with replacement string.

Oldstring is the variable name of the string you want to
change.

Position is a number specifying the position of the first
character to be changed.

Length is a number specifying the number of characters to
be replaced.

Replacement string is the string to replace a portion of
oldstring.

The length of the resultant string is always the same as the
original string. If replacement string is shorter than length,
the entire replacement string is used.

A$ = “LINCOLN"

MIDS$ (AS$, 3, 4) = “12345": PRINT A$
returns LI1234N.

MID$ (A$, 5) = “01": PRINT A$
returns LINCO1N,

MID$ (A$, 1, 3) = “«~": PRINT A$

returns ***COLN,

214

MID$

Function

MID$(string, integer [,number])

Examples

Returns a substring of a string.

Number is the number of characters in the substring. It
must be in the range 1 to 255.

Integer specifies the position in the string to begin return-
ing characters from.

If you omit number or there are fewer than number
characters to right of inreger position, BASIC returns all
right most characters, beginning with the character at
position irteger.

If énteger is greater than the number of characters in
string, MID$§ returns a null string.

If A$ = “WEATHERFORD” then
PRINT MID$(AS$, 3, 2)

prints AT.

F$ = MID$(A$, 3)

puts ATHERFORD into F$.

Sample Program

200 INPUT “AREA CODE AND NUMBER
(NNN-NNN-NNNN)"; PHS$

210 EX$ = MID$(PHS, 5, 3)

220 PRINT “NUMBER IS IN THE ” EX$
* EXCHANGE.”

The first three digits of a local phone number are some-
times called the exchange of the number. This program
looks at a complete phone number (area code, exchange,
last four digits) and picks out the exchange of that number.

MKD$, MKI$, MKS$ Function

MKI$(integer expression)
MKS$(single-precision expression)
MKD$(double-precision expression)

Convert numeric values to string values.

Any numeric value placed in a direct file buffer with an
LSET or RSET statement must be converted to a string.

These three functions are the inverse of CVD, CVI, and
CVS. The byte values which make up the number are not
changed; only one byte, the internal data-type specifier, is
changed, so that numeric data can be placed in a string
variable.

MKD$ returns an eight-byte string; MKI$ returns a two-
byte string; and MKS$ returns a four-bvte string.

Example
LSET AVG$ = MKS$(0.123)
Sample Program

1350 OPEN "R", 1, “TEST.DAT", 14

1360 FIELD 1, 2 AS 118, 4 AS 123, 8 AS I13%
1370 LSET 11$ = MKI$(3000)

1380 LSET 12$ = MKS$(3000.1)

1390 LSET 3% = MKD$(3000.00001)

1400 PUT 1, 1

1410 CLOSE 1

For a program that retrieves the data from TEST.DAT, see -
CVD/CVI/CVS.

216

NAME

Statement

NAME old filespec AS new filespec

Example

Renames old filespec as new filespec.

With this statement, the data in the file is left unchanged.
The new filespec may not contain a password or drive
specification.

NAME “FILE.BAS” AS “FILE.OLD”
renames FILE.BAS as FILE.OLD.

217

NEW Statement

Deletes the program currently in memory and clears all
variables.

NEW returns you to the command mode.
Example
NEW

218

OCTS$

Function

OCT$(number)

Examples

Computes the octal value of number.

OCT$ returns a string which represents the octal value of
number. The value returned is like any other string — it
cannot be used in a numeric expression.

PRINT OCT$(30), OCT$(50), OCT$(90)
prints the following strings:

36 62 132

Y$ = OCT$(X/84)

Y$ is a string representation of the integer quotient X/84 to
base 8.

219

ON COM(1) Communication Statement
ON COM(1) GOSUB line number

Transfers program control to a subroutine beginning at
line number when activity occurs on the communication
channel.

line number is the first line of the subroutine to be ex-
ecuted when activity occurs on the communication chan-
nel. If you specify line number 0, you turn communication
trapping off. It is the same as executing a COM(1) OFF
statement.

The ON COM(1) statement is only executed if a COM(1)
ON staternent has been executed to enable communica-
tion trapping. If a COM(1) STOP statement has been ex-
ecuted to temporarily halt communication trapping, the
subroutine is executed immediately after the next
COM(1) ON statement is executed.

When the ON COM(1) statement is executed, BASIC im-
mediately issues a COM(1) STOP statement to prevent
recursive traps. When BASIC executes the RETURN from
the subroutine, it automatically executes another COM(1)
ON statement to enable communication trapping again,
unless the subroutine executes a COM(1) OFF statement.

220

Chapter 7 / Statements and Functions

Example

10 COM(1) ON

200 ON COM(1) GOSUB 1000

Line 10 turns on comrmunication trapping. After each
program statement is executed, BASIC checks to see if the
communication buffer contains characters. If it does,
BASIC immediately executes the subroutine beginning at
Line 1000.

If you execute a simple RETURN statement at the end of
the subroutine, BASIC returns to the next statement after
the statement that activated the trap. For example, if activ-
ity occurs while BASIC is executing Line 100, the RETURN
returns to execute Line 110.

You may also use the RETURN line number option form of
the RETURN statement, However, do so with care because
any GOSUB, FOR, or WHILE statement remains active
during trapping.

221

Section Il / The BASIC Language

Example

10 COM(1) ON
20 ON COM(1) GOSUB 1000
30 FOR| = 1TO 10

40 PRINT |

50 NEXT |

1000 ' SUBROUTINE CODE

.1 050 RETURN 200

If activity occurs on the communication channel while the
FOR/NEXT loop is executing, BASIC immediately executes
the subroutine beginning at Line 1000. But the subroutine
returns to Line 200 instead of completing the FOR/NEXT
loop. This results in a “For without next” error because
any GOSUB, FOR, or WHILE statement remains active
during key trapping.

If the RETURN statement does not include a line number,
program control returns to complete the FOR/NEXT loop,
and no error occurs.

[38]
[38]
ro

ON ERROR GOTO Statement

ON ERROR GOTO line

Example

Transfers control to fire if an error occurs.

This lets your program “recover” from an error and con-
tinue execution. (Normally, you have a particular type
of error in mind when you use the ON ERROR GOTO
statement).

ON ERROR GOTO has no effect unless it is executed
before the error occurs. To disable it, execute an ON
ERROR GOTO 0. If you use ON ERROR GOTO 0 inside an
error-trapping routine, BASIC stops execution and prints
an error message. If you have no recovery procedure for
an error, ON ERROR GOTO 0 stops execution and prints
an error message for the error that caused the trap.

Note: If an error occurs during execution of an error
handling routine, that error message is printed and execu-
tion terminates. Error trapping does not occur within the
error handling routine.

The error-handling routine must be terminated by a RE-
SUME statement. See RESUME.

10 ON ERROR GOTO 1500

branches program control to line 1500 if an error occurs

‘anywhere after line 10.

For the use of ON ERROR GOTO ih a program, see the
sample program for ERROR.

223

ON ... GOSUB Statement

ON number GOSUB linel, line2, ...

Example

Branches to a subroutine at the /ine specified by the value
of number.

Number must be between 0 and 255, inclusive. For exam-
ple, if nuumber’s value is three, the third line number in the
list is the destination of the branch.

If numbper’s value is zero or greater than the number of
items in the list (but less than or equal to 255), BASIC
continues with the next executable statement. If number is
negative or greater than 255, an “Illegal function call”
€rror occurs.

ON Y GOSUB 1000, 2000, 3000

ifY = 1, the subroutine beginning at 1000 is called. If Y =
2, the subroutine at 2000 is called. If Y = 3, the subroutine
at 3000 is called.

Sample Program

430 INPUT “CHOOSE 1,2, OR 3" ; |

440 ON | GOSUB 500, 600, 700

450 END

500 PRINT “SUBROUTINE #1": RETURN
600 PRINT “SUBROUTINE #2": RETURN
700 PRINT “SUBROUTINE #3": RETURN

224

ON...GOTO Statement

ON number GOTO linel, line2, . . .

Example

Goes to the /line specified by the value of number.
Number is a numeric expression between 0 and 255.

This statement is very similar to ON .. . GOSUB. However,
instead of branching to a subroutine, it branches control
to another program line.

The value of number determines to which line the pro-
gram will branch. For example, if the value is four, the
fourth line number in the list is the destination of the
branch. If there is no fourth line number, control passes to
the next statement in the program.

If the value of expression is negative or greater than 255,
an “Illegal function call” error occurs. Any amount of line
numbers may be included after GOTO.

ON MI GOTO 150, 160, 170, 150, 180

tells BASIC to “Evaluate MI,”

if the value of MI equals one then go to line 150,
if it equals two, then go to 160;

if it equals three, then go to 170;

if it equals four, then go to 150;

if it equals five, then go to 180;

if the value of MI doesnt equal anv of the numbers
one through five, advance to the next statement in the
program’.

225

ON KEY GOSUB Statement
ON KEY(number) GOSUB line number

Transfers program control to a subroutine when you press
a function key or a cursor direction key.

line number is the first line number in the subroutine to
execute when the specific key is pressed. If you specify a
line number 0, you turn key trapping off for that key. It is
the same as executing a KEY() OFF statement.

number may be a number in the range 1 to 16, indicating
the number of the key to trap. Function keys use their
corresponding function key number. The cursor direction
keys are numbered:

M 13
= 14
(=) 15
@Y 16

The ON KEY() GOSUB statement is only executed if a
KEY() ON statement has been executed to enable key
trapping for that key. If 2 KEY() STOP statement has been
executed to temporarily halt key trapping for that key, the
subroutine is executed immediately after the next KEY()
ON statement for that key is executed.

When the ON KEY() statement is executed, BASIC im-
mediately issues a KEY() STOP statement for that key to
prevent recursive traps. When BASIC executes the RE-
TURN from the subroutine, it automatically executes
another KEY() ON statement for that key to enable key
trapping again, unless the subroutine executes a KEY()
OFF statement for that key.

226

Chapter 7 | Statements and Functions

Example

If you execute a simple RETURN statement at the end of
the subroutine, BASIC returns to the next statement after
the statement that activated the trap. For example, if vou
press the specific key while BASIC is executing Line 100,
the RETURN returns to execute Line 110.

You may also use the RETURN /irne nurmber option form of
the RETURN statement. Do so with care, however, because
any GOSUB, FOR, or WHILE statement remains active
during key trapping.

10 KEY(1) ON

20 ON KEY(1) GOSUB 1000
30 FOR 1 = 1 TO 10

40 PRINT |

50 NEXT |

1000 * SUBROUTINE CODE

1050 RETURN 200

If you press Function Key 1 while the FOR/NEXT loop is
executing, BASIC immediately executes the subroutine
beginning at Line 1000. But the subroutine returns to Line
200 instead of completing the FOR/NEXT loop. This re-
sults in a “For without next” error because any GOSUB,
FOR, or WHILE statement remains active during key

trapping.

if the RETURN statement does not include a line number,
program control returns to complete the FOR/NEXT loop
and no error occurs.

227

ON STRIG Statement
ON STRIG (integer) GOSUB line number

Branches to a subroutine when you press the specified
mouse button.

integer specifies the number of the button pressed. irnte-
ger may be 0 for the left button and 1 for the right button.

line number is the first line number of the subroutine to
be executed when you press the mouse button. Specifying
a line number of 0 turns the trap off and is the same as
executing a STRIG OFF statement.

The ON STRIG() GOSUB statement is only executed if a
STRIG ON statement has been executed to enable mouse
button trapping. If a STRIG STOP statement has been
executed to temporarily halt mouse button trapping, the
subroutine is executed immediately after the next STRIG
ON statement is executed.

When the ON STRIG() GOSUB statement is executed,
BASIC immediately issues a STRIG STOP statement to
prevent recursive traps. When BASIC executes the RE-
TURN from the subroutine, it automatically executes
another STRIG ON statement to enable mouse button
trapping again, unless the subroutine executes a STRIG
OFT statement.

If you execute a simple RETURN statement at the end of
the subroutine, BASIC returns to the next statement after
the statement that activated the trap. For example, if activ-
ity occurs while BASIC is executing Line 100, the RETURN
returns to execute Line 110.

You may also use the RETURN /ine number option form of
the RETURN statement. Do so with care because, however,
any GOSUB, FOR, or WHILE statement remains active
during trapping.

228

Chapter 7 / Statements and Functions

Example

10 ON STRIG(0) GOSUB 1000

20 ON STRIG(1) GOSUB 2000

30 PRINT “Press one of the mouse buttons.”

40 FOR | = 1 TO 3000:NEXT |

50 GOTO 30

1000 PRINT "You pressed the left button.” :RETURN

2000 PRINT "You pressed the right button.”
:RETURN

Lines 10 and 20 turn on mouse button trapping. Line 30
prints a message for you to press one of the buttons. Line
40 waits for you to press a button. If you press the left
button, BASIC transfers program control to the subroutine
at Line 1000. If you press the right button, BASIC transfers
program control to the subroutine at Line 2000. If you
don’t press a button, Line S0 returns to print the message
again. This program is a continuous loop. To end the

program, press (BREAK).

229

OPEN Statement

OPEN mode, buffer, filespec [,record length]

OPEN filespec [FOR mode] AS buffer
[LEN = record length]

Establishes an input/output path for a file or device.

buffer is an integer in the range 1 to 15. It specifies the /O
buffer to use when accessing the file.

Sfilespec specifies the device identifier, the filename, and
the password. The password and device identifier are
optional when you OPEN a disk file. If you omit the device
identifier, BASIC assumes the current drive. Filename and
password are optional with all other devices. You must
enclose filespec in quotes.

device identifier indicates the physical device with which
you want to communicate. Some devices restrict the direc-
tion of communication. These are the device identifiers
and the mode with which they can be used:

A - D which disk drive to access. May be OPENed
for all modes.

KYBD: keyboard. INPUT only.

SCRN: screen. OUTPUT only.

LPT1: line printer 1. OUTPUT only.

LPT2: line printer 2. OUTPUT only.

COM1: RS232 communications 1. OUTPUT, INPUT,
or RANDOM.

record length is an integer in the range 2 to 32768 that sets
the record length for random access files. It may not
exceed the maximum set with /S: when you loaded BASIC.
Do not use this option with sequential access files. If you
omit record length, BASIC assumes a default record length
of 128 byte.s

mode specifies any of the following:

O or OUTPUT sequential output mode

I or INPUT sequential input mode

A or APPEND sequential output and extend mode
R or RANDOM direct input/output mode

230

Chapter 7 / Statements and Functions

Examples

You must enclose mode in quotes in the first form of the
syntax and you may only specify the abbreviated form of
mode. If you omit mode in either form of the syntax, BASIC
assumes random access.

In the second form of the syntax, you must specify the
complete word for mode. You may not specify RANDOM,
If you want to use random access in the second form of the
syntax, omit mode.

If you OPEN a file for INPUT that does not exist, a “File Not
Found” error occurs. If you OPEN a file for OUTPUT that
does not exist, BASIC creates the file. If vou OPEN a file for
APPEND that does not exist, BASIC creates the file and sets
the mode to RANDOM. If you OPEN a file for RANDOM
access with a record length that does not match the record
length assigned to the file when it was created, an error
OCcurs.

You may OPEN a file for output in only one buffer at a time.
Once you assign a buffer to a file with the OPEN statement,
you cannot use that buffer in another OPEN statement
until you close the first file. However, BASIC allows you to
access the same file for input by opening it in different
buffers. You may keep several records from the same file
in memory for quick access.

OPEN "R", 2, “TEST.DAT”

opens the file TEST.DAT in random access mode, using
buffer 2. If TEST.DAT does not exist, BASIC creates it on
the current drive. The record length is 128 bytes.

OPEN 1, “"LIST.DAT", 80
opens the file LIST.DAT in randont access mode. with a
record length of 80.

OPEN “LPT1:” FOR OUTPUT AS #2

opens line printer 1 for sequential output using buffer 2.

OPEN “A:DATA.BAS” FOR INPUT AS #1
opens the file DATABAS on Drive A: for sequential input

using buffer 1.

231

OPEN Communication Statement

OPEN “COM1: [speed] [,parity] [,data] [,stop] [,RS]
[,CS[seconds] | [l,)DS[seconds | [,CD[seconds] |
[,mode] [,LF]|” AS [buffer| [LEN = number]

Openis a file and allocates a buffer for RS-232C (Asynchro-
nous Communications Adapter) communication.

speed is an integer specifying the transmit and receive rate
in bits per second (bps). Valid speeds are 75, 110, 150, 300,
600, 1200, 1800, 2400, 4800, and 9600. If vou omit speed,
BASIC sets the speed at 300 bps.

parity is a constant specifying the parity to be used when
the data is transmitted and received. The constant must be
one of the following:

E indicates EVEN transmit parity, EVEN receive par-
ity checking.

O indicates ODD transmit parity, ODD receive par-
ity checking.

M indicates parity bit always transmitted and re-
ceived as a mark (a 1 bit).

S indicates parity bit always transmitted and re-
ceived as a space (a 0 bit).

N indicates no transmit parity, no receive parity
checking.

If you omit parity, BASIC assumes E (EVEN).

data is an integer specifving the number of transmit and
receive bits. Valid values are 4, 5, 6, 7, and 8. If vou do not
specify data, BASIC assumes 7.

Note: Four data bits with no paritv and eight data bits
with parity are illegal.

stop must be either 1 or 2 to indicate the number of stop
bits. If you ormit stop, 75 and 100 bps transmit two stop bits,
and all other speeds transmit one srop bit.

buffer is a number 1 through 15 indicating the buffer that
accesses the file.

number specifies the maximum number of bytes that can
be accessed in the communications buffer by GET and

232

Chapter 7 / Statements and Functions

PUT statements. If you omit the LEN option, BASIC
assumes 128 bytes.

The parameters speed, parity, data, and stop, are all posi-
tional. That is, they must be in the order specified in the
syntax. The remaining parameters are not positional. They
may be in any order or you may omit them.

The remaining parameters control the software com-
munication signal lines between two terminals. If you
omit the CS, DS, or CD options, the signals are not checked
at all. Only include these parameters if you are testing
these software signals.

The RS option suppresses the Request To Send (RTS)
signal. Request To Send is a signal that is sent from the
sending terminal to the receiving terminal to ensure that
the receiving terminal is ready to accept communication
data. When you execute an OPEN “COMI1: statement, the
RTS line is turned on, unless you include the RS option.

The CS option controls the Clear To Send (CTS) signal
which is sent from the receiving terminal to the sending
terminal to let the sending terminal know that the receiv-
ing terminal is ready to receive.

You can think of RTS and CTS as a hand-shaking exercise,
in which the two terminals let each other know that they
are ready to send and/or receive data. RTS is an output
signal from the sending terminal, and CS is an input signal
to the sending terminal.

The DS option controls the Data Set Ready (DSR) signal.
The DSR signal ensures that there is a data set, such as a
modem, present to transmit the data.

The CS option controls the Carrier Detect (CD) signal. The
CD signal is an input signal that ensures that the data set is
ready to transmit the data.

The seconds argument in the CS, DS, and CD options
specifies the number of milliseconds to wait for the signal
before returning a “Device Timeout™ error. secords mayv

233

Section Il / The BASIC Language

be in the range 0 to 65535. If you omit seconds or specify a
zero, the signal is not checked at all.

If you specify RS, secornls default to zero for CS. If you
omit RS, the default for CS is 1000. Either an RS ora CS is
required. That is, if you omit RS, the Clear To Send signal is
not checked. If you include RS, OPEN “COMI: waits 1
second for CS before issuing a-“Device Timeout” error.

If you omit seconds after the DS option, the defaultvalue is
1000, and OPEN “COM]1: waits 1 second before issuing a
“Device Timeout” error. If you omit seconds after CD, the
default is zero and the signal is not checked.

I/O statements to a communication file do not execute if
these signals are off. The system waits one second before
returning a “Device Timeout” error. Specifying these op-
tions allows you to ignore these signals or to specify the
length of time to wait for the signal.

The LF option sends a line feed character after every
carriage return. This is useful if you are printing the com-
munication data to a serial line printer. A line feed is also
sent after the carriage return that is the result of the width
setting. Note that when you specify the LF option INPUT#
and LINE INPUT# stop when they see a carriage return
and ignore the line feed.

mode specifies the type of data that is transmitted. mode
may be either BIN for binary mode or ASC for ASCII maode.
If you omit mode, OPEN “COMI: opens the device in
binary mode.

If you specify the BIN mode, OPEN “COM1: does not
expand tabs to spaces, does not force a carriage return at
the end of the line, does not recognize Control Z as an
end-of-file, and ignores the LF option.

If you specify the ASC mode, OPEN “"COM1: expands tabs
to spaces, forces a carriage return at the end of the line,
and recognizes Control Z as the end-of-file. When vou
close the channel, Control Z is sent over the RS-232C line.

234

Chapter 7 / Statements and Functions

Examples

OPEN "COM1:” AS 1

opens File 1 for communication at a rate of 300 bps with
even parity, seven data bits, and one stop bit. RTS signal is
sent.

OPEN "“COM1: 9600, N,8,1,BIN" AS 2

opens File 2 for communication at a rate of 9600 bps with
no parity, 8 data bits, and 1 stop bit. The data is binary.

OPEN “COM1: 4800,,,,CS3000,0S52000" AS 1

opens File 1 for communication at a rate of 4800 bps with
even parity, seven data bits, and one stop bit. RTS is sent.
OPEN “COM1: issues “Device Timeout” error if there is no
CS signal after 3 seconds and no DS signal after 2 seconds.
Note that even though parity, data, and stop are not in-
cluded, the commas are required.

235

OPTION BASE Statement
OPTION BASE n

Sets 7 as the minimum value for an array subscript.
N may be 1 or 0. The default is 0.

If you use this statement jn a program, it must precede the
DIM statement.

If the statement
OPTION BASE 1

is executed, the lowest value an array subscript may have is
one.

236

ouT

Statement

OUT port, data byte

Example

Sends a data byte to a machine output port.
Port is an integer between 0 and 65535.
Data byte is an integer between 0 to 255.

A port is an input/output location in memory.

OUT 32,100
sends 100 to port 32,

237

PAINT Statement

PAINT [STEP] (x-coordinate,y-coordinate) [color
[,border]]

Fills in an area on the display with a selected color.

x-coordinate indicates the x coordinate at which to begin.
In Screen Mode 1, x-coordinate may be in the range 0 to
320. In Screen Modes 2, 3, and 4 x-coordinate may be in
the range 0 to 640.

y-coordinate indicates the y coordinate at which to begin.
In Screen Modes 1 and 2, y-coordinate may be in the range
0 to 200. In Screen Modes 3 and 4 y-coordinate may be in
the range 0 to 400.

color specifies a color number in the current palette. In
Screen Mode 1, color may be in the range 0 to 3. In Screen
Mode 3, color may be in the range 0 to 7. In Screen Modes
2 and 4, color may be either 0 or 1. If you omit color in
Screen Modes 1 or 3, BASIC assumes color 3. If you omit
color in Screen Modes 2 or 4, BASIC assumes white.

border specifies the color of the border of the object and
must be a color number in the current palette. border may
be specified in Screen Modes 1, 2, and 4 only. border is
always black in Screen Mode 3. In Screen Mode 1, border
may be in the range 0 to 3. In Screen Modes 2 and 4, border
may be either 0 or 1. If you omit border, BASIC assumes
the value of color, and the object has the same color
border and center.

238

Chapter 7 / Statements and Functions

BASIC begins to change the color of points at the point you
specify with x and y coordinates. BASIC continues to
change the color of every point that is not the same color
as color. When BASIC PAINTs one line of points without
changing the color of any point in that line PAINT is
complete.

PAINT must start on a non border point. If the point is
already border or color color, BASIC does not execute the
PAINT statement.

PAINT can fill any figure, but PAINTing “jagged” edges or
very complex figures may result in an “Out of Memory™
error. If this happens, vou must use the CLEAR statement
to increase the amount of stack space available.

239

PALETTE Graphics Statement
PALETTE [position number, new color]

Changes one of the colors in the current palette.

position number specifies which position in the current
palette you want to change. position number may be a
number in the range 0to 3 in Screen Mode 1;and O to 7 in
Screen Mode 3.

new color specifies the new color number you want in that
position in the current palette. new color may be a num-
ber in the range — 1 to 31. If you specify a value of —1 for
any position number, that position number retains its
default value and cannot be changed by subsequent
PALETTE or PALETTE USING statements.

The PALETTE statement allows you to change the color in
the current palette. The default values for Palettes 0 and 1

are
Position Palette Palette
Number 0 1
1 Green Cyan
2 Red Magenta
3 Yellow White
4 White Light Red
5 Light Cyan Light Green
6 Light Blue Light Blue
7 Light Yellow Light Yellow

When you select a palette, with a COLOR/Graphic state-
ment, you tell BASIC to associate the position number with
these colors when you use the number as the color pa-
rameter in graphics statements, such as LINE or PSET.

240

Chapter 7 / Statements and Functions

You can use the PALETTE statement to change the default
values of the colors. You may change any of the position
numbers to these color numbers.

0, 8, 16, or 24 Black

lorl7 Blue

2o0r18 Green

3o0r19 Cyan

4 or 20 Red

Sor2l Magenta

6or22 Brown

7o0r23 Gray

9 or 25 Light Blue
10 or 26 Light Green
11 or 27 Light Cyan
12 or 28 Light Red
13 or 29 Light Magenta
14 or 30 Yellow
15 0r31 White

For example, if you select Palette 0 with this statement
COLOR 0,0

number 1 is associated with green. You can use the
PALETTE statement to change that value so that number 1
is associated with a different color from the list above. For
example, we want to change number 1 to magenta. Use
this statement

PALETTE 1,5

Number 1 in the current palette (Palette 0) changes from
green to magenta.

241

Section 11 / The BASIC Language

Example

When you execute a palette statement to change the de-
fault values, the new values remain in effect until vou
execute another COLOR/Graphic, PALETTE or PALETTE
USING statement. A PALETTE statement without pa-
rameters forces the position numbers to return to their
default values.

You can only change one position in the palette each time
you execute a PALETTE statement. To change more than
one position in a paleite, see the PALETTE USING
statement.

COLOR, 1:PALETTE 3,7

selects Palette 1 and changes the third position from yel-
low to gray.

PALETTE 1,-1

prevents position number 1 in the current palette from
being changed by other PALETTE statements.

PALETTE

changes all positions in the current palette to their default
values.

242

Chapter 7 / Statements and Functions

Sample Program

10 COLOR 0,0

20 PALETTE 3,1

30 LINE (0,100) - (319,199),1
40 PAINT (1,100) 3,6

50 PALETTE

Line 10 selects Palette 0 as the current palette. Line 20
changes position number 3 from yellow to blue. Line 30
draws a vertical blue line across the center of the screen.
Line 40 colors the bottom half of the screen light blue with
a blue border. Line 50 causes the palette to return to its
original value. Position 3 is now yellow again.

243

PALETTE USING Graphics Statement
PALETTE USING array name (subscript)

To change more than one of the color numbers in the
current palette.

array name is the name of an integer array where you
define the order of colors to be put in the current palette.

subscript is the position in the array that contains the value
of the first position of the palette. BASIC assigns the re-
maining color numbers in the array to the palétte in
consecutive order. See the PALETTE statement for possi-
ble colors and their default values.

Load each element in the array with a color number.
Group color numbers that you use together, consecutively
in the array. For example, if you use both shades of blue
with both shades of green, place their color numbers
consecutively in the array, array A, like this

Subscript Color
0 2 (green)
1 10 (light green)
2 1 (blue)
3 9 (light blue)

The statement
PALETTE USING A(Q)

puts a 2 into position 0 in the current palette, 10 into
position 1, 1 in position 2, and 9 into position 3.

Chapter 7 / Statements and Functions

The array may be larger than the palette. PALETTE USING
stops filling the current palette when it reaches the last
position in the palette. If you also use the two shades of
blue with the two shades of red, and you also use the two
shades of blue with the two shades of cyan, vou can put the
numbers for the shades of blue in your array as often as
you need them. For example, you could expand the pre-
vious array to look like this

Subscript Color

el

2 (green)

10 (light green)
1 (blue)

9 (light blue)

4 (red)

12 (light red)

9 (light blue)

1 (blue)

3 (cyan)

11 (light cyan)

[0 JBEN BN NV IR NG S S

O

To load the palette with the blues and reds use this
statement:

PALETTE USING A(2)

Position 1 becomes number 1, blue. Position 2 becomes
number 9, light blue. Position 3 becomes number 4, red.
Position 4 becomes number 12, light red.

You could also load the palette with the blues and reds
with this statement:

PALETTE USING A(4)

In this case, position 1 becomes number 4, red. Position 2
becomes number 12, light red. Position 3 becomes num-
ber 9, light blue. Position 4 becomes number 7, blue. The
same colors are put into the palette, but in a different
order.

245

Section 11 / The BASIC Language

To load the palette with the blues and cyans, use this
statement:

PALETTE USING A(6)

BASIC starts loading the palette with the value of the sixth
element in the array.

If you use the PALETTE statement to assign avalue of —1to
a position in the palette, PALETTE USING does not change
that position.

246

PEEK

Function

PEEK (memory location)

Example

Returns a byte from memory locatjon.

The memory location must be in the range —32768 to
65535.

The value returned is an integer between 0 and 255. (For
the interpretation of a negative value of memory location,
see the statement VARPTR).

PEEK is the complementary function of the statement
POKE.

A = PEEK (&H5A00)

247

PLAY Statement
PLAY string

Plays musical notes specified by string.

string is a string expression consisting of one or more
single character music commands.

The single character music commands are:
A-G[#, +, -]

The leuers A through G play the notes of one musical
scale. You may include an optional number sign (#) or
plus (+) to indicate a sharp note or a minus (—) to
indicate a flag note. You may only specify sharp or flat notes
that correspond to the black keys on a piano. The letters A,
C, D, F, and G may be followed by a plus because they are
followed by black keys on a piano. The letters A, B, D, E,
and G may be followed by minus because they are fol-
lowed by black notes on a piano.

Linteger

Sets the length of the notes that follow. integer may be a
value in the range 1 to 64. Here are a few of the more
common lengths:

indicates a whole note.
indicates a half note.
indicates a quarter note.
indicates an eighth note.
6 indicates a sixteenth note.

=0 AN =

If you only want to change the length for one note, integer
may follow the note. For example, A16 is equivalent to
L16A.

N
SN
x

Chapter 7 / Statements and Functions

Ointeger

Sets the current octave. There are 7 octaves, numbered 0
to 6. Each octave starts with C and ends with B. Octave 3
starts with middle C. If you omit integer, BASIC assumes
Octave 4.

Ninteger

Play a note. integer may be in the range 0 to 84. In the 7
possible octaves, there are 84 notes. Instead of specifying
the letter and the octave of the note you mav specify its
number 1 to 84. Specifying an irteger of zero means rest.

Pinteger

Rest. integer may be in the range 1 to 64 and has the same
medning as integer with the L option.

Tinteger

Sets the number of quarter notes in one minute. integer
may be in the range of 32 to 255. If you omit integer, BASIC
assumes 120 quarter notes in one minute. That is a mod-
erato tempo. See the SOUND statement for information
on beats per minute for common tempos.

With the O, N, P, and T commands, integer may also be a
numeric variable in your BASIC program. Do not space
between the command and the integer or between the
command and the variable. You must include a semicolon
after the varjable name.

A dot after a note causes the note to play half again as long
as the length specified by the integer with the L option.
You may use more than one dot after each note. BASIC
scales the length of time accordingly. Dots may also
appear after the P option to scale the length of the rest.

249

Section Il / The BASIC Language

Example

MF

Sounds made by the PLAY and SOUND statements are to
run in foreground. That is, each subsequent note or sound
does not start until the previous note or sound is finished.
If you omit MF or MB, BASIC assumes MF.,

MB

Sounds made by the PLAY and SOUND statements are to
run in background. That is, each note or sound is placed in
a buffer allowing the BASIC program to continue execu-
tion while music plays in the “background.” A maximum
of 32 notes and/or rests can play in background at a time.

MN

Each note plays 7/8ths of the time specified by the L option.
If you omit MN and MS, BASIC assumes MN.

MS
Each note plays 3/4ths of the time specified by the L option.
Xvariable;

Executes a substring. The X command lets you execute a
second substring from a string, much like GOSUB. You
can have one string execute another, which executes a
third, and so on. variable is a string variable in your
program that contains the substring you want to execute.
variable may contain an X command to execute another
substring. The semicolon after string is required.

10 PLAY “C4F4.C8F8.C16F8.G16A2F2"

20 INPUT “CAN YOU NAME THAT TUNE™;A$

40 IF A$ = “THE EYES OF TEXAS” THEN GOTO
50 ELSE PRINT “TRY AGAIN":GOTO 10

50 PRINT “THAT'S RIGHT!”

250

POINT

Graphics Function

POINT (x-coordinate, y-coordinate) = variable

Example

Returns the color number of a point on the screen.

x-coordinate specifties the x coordinate of the point. In
Screen Mode 1, x-coordinate may be in the range 0 to 320.
In Screen Modes 2, 3, and 4, x-coordinate may be in the
range 0 to 640.

y-coordinate specifies the y coordinate of the point. In
Screen Modes 1 and 2, y-coordinate may be in the range 0
to 200. In Screen Modes 3 and 4, y-coordinate may be in
the range 0 to 400.

variable is numeric variable to hold the value returned by
POINT.

The x and y coordinates must be absolute values. If you
specify a point that is out of range, BASIC returns a — 1.

If you are using either of the color graphics options,
POINT returns the color number as it is defined in the
current palette. In Screen Mode 1, POINT returns a value
of 0to 3. In Screen Mode 3, POINT returns avalue Oto 7. In
Screen Modes 2 and 4, POINT returns a value of 0 or 1.

10 SCREEN 2
20 IF POINT(1,1)<>0 THEN PRESET (1,1) ELSE
PSET (1,1)

If point 1,1 is any foreground color, PRESET changes it to
the background color. If the point is the background
color, PSET changes it to color number 3.

251

POKE

Statement

POKE memory location, data byte

Example

Writes data byte into memory location.

Both memory location and data byte must be integers.
Memory location must be in the range — 32768 to 65535.

POKE is the complementary statement of PEEK. The argu-
ment to PEEK is a memory location from which a byte is to
be read.

PEEK and POKE are useful for storing data efficiently,
loading assembly-language subroutines, and passing argu-
ments (or results) to and from assembly-language sub-
routines.

10 POKE &H5A00, &HFF

[\
N
[\

POS

Function

POS(number)

Example

Returns the position of the cursor.
Number is a dummy argument.

POS returns a number from 1 to 40 or 1 to 80, depending
on the current width, indicating the current cursor-
column position on the display.

PRINT TAB(40) POS(0)

prints 40. The PRINT TAB statement moves the cursor to
position 40, therefore, POS(0) returns the value 40.
(However, since a blank is inserted before the “4" to
accommodate the sign, the “4” is actually at position 41).

Sample Program

150 CLS

160 A$ = INKEY$

170 IF A$ = “” THEN 160

180 IF POS(X) > 70 THEN IF A$ = CHR$(32) THEN
-A$ = CHR$(13)

200 PRINT A$;

210 GOTO 160

This program lets you use your printer as a typewriter
(except that you cannot correct mistakes). Your computer
keyboard is the typewriter keyboard. The program will
keep watch at the end of a line so that no word is divided
between two lines.

253

PRINT

Statement

PRINT data, . ..

Prints numeric or string data on the display.

BASIC prints the values of the data items you list in this
statement. If you omit data, BASIC prints a blank line.

You may separate the data items by commas, semicolons,
or spaces. If you use commas, the cursor automatically
advances to the next tab position before printing the next
item. (BASIC divides each line into print zones containing
14 positions each, at columns 14, 28, 42, 56, and 70). If you
use semicolons or spaces to separate the data items, PRINT
prints the items without any spaces between them.

A semicolon or comma at the end of a line causes the next
PRINT statement to begin printing where the last one left
off. If no trailing punctuation is used with PRINT, the
cursor drops down to the beginning of the next line. If the
printed line is longer than 80 characters, BASIC continues
printing on the next line.

Single-precision numbers with six or fewer digits that can
be accurately represented in ordinary (rather than ex-
ponential) format, are printed in ordinary format. For
example, 1E-7 is printed as .0000001; 1E-8 is printed as
1E-08.

Double-precision numbers with 16 or fewer digits that can
be accurately represented in ordinary format, are printed
using the ordinary format. For example, 1D-15 is printed
as .000000000000001; 1D-16 is printed as 1D-16.

BASIC prints all numbers with a trailing blank, positive
numbers with a leading blank, and precedes negative
numbers with a minus sign.

To insert strings into this statement, surround them with
quotation marks.

Chapter 7 / Statements and Functions

Example

PRINT “DO”; “NOT"; “LEAVE"; “SPACES",
“"BETWEEN”; “THESE"; “WORDS"

prints on the display: DONOTLEAVESPACESBETWEEN-
THESEWORDS

Sample Program

60 INPUT “ENTER THIS YEAR”; Y

70 INPUT “ENTER YOUR AGE™;A

80 INPUT “ENTER A YEAR IN THE FUTURE”;F

WN=A+(F-Y)

100 PRINT “IN THE YEAR"F*YOU WILL
BE”N“YEARS OLD"

RUN

Since F and N are positive numbers, PRINT inserts a space
before and after them, therefore your display should look
similar to this (depending on your input):

IN THE YEAR 2004 YOU WILL BE 46 YEARS OLD

If we had separated each expression in line 100 by a
comma,

100 PRINT “IN THE YEAR",F,"YOU WILL
BE”,N,“YEARS OLD"

BASIC would move to the next tab position after printing
each data item.

255

PRINT USING Statement
PRINT USING format; data item, . ..

Prints data items using a format specified by you.

Format consists of one or more field specifier(s), or any
alphanumeric character.

Data item may be string and/or numeric value(s).

This statement is especially useful for printing report
headings, accounting reports, checks, or any other docu-
ments which require a specific format.

With PRINT USING, you may use certain characters, field
specifiers, to formart the field. These field specifiers are
described below. They are followed by sample program
lines and their output to the screen. You may use more
than one field specifier, except as indicated.

Specifiers for String Fields:

Print the first character in the string only.

PRINT USING “I"; “PERSONNEL"
P

\spaces\ Print 2 + n characters from the string. If you
type the backslashes without any spaces,
BASIC prints two characters; with one
space, BASIC prints three characters, and so
on. If the string is longer than the field, the
extra characters are ignored. If the field is
longer than the string, the string is left-
justified and padded with spaces on the
right.

PRINT USING “\Bbb\"; “PERSONNEL"
(three spaces berween the backslashes)
PERSO

& Print the string without modifications.

Chapter 7 / Statements and Functions

10 A$="TAKE":B$="RACE”
20 PRINT USING “!I";A$;

30 PRINT USING “&";B$
RUN

TRACE

Specifiers for Numeric Fields:

#

Print the same number of digit positions as
number signs (#). If the number to be
printed has fewer digits than positions
specified, the number is right-justified (pre-
ceded by spaces). Numbers are rounded as
necessary. You may insert a decimal point at
any position. In that case, the digits preced-
ing the decimal point are always printed (as
zero, if necessary).

If the number to be printed is larger than
the specified numeric field, a percent sign
(%) is printed in front of the number. If
rounding the number exceeds the field, a
percent sign is also printed in front of the
rounded number.

PRINT USING “##.##"/111.22
%111.22

If the number of digits specified exceeds
24, an “Illegal function call” occurs.

PRINT USING “##.##",.75
0.75

PRINT USING “###.##",876.567

076 7
CrUooy

Print the sigh of the number. The plus sign
may be typed at the beginning or at the end
of the format string.

[N
N
~d

Section Il / The BASIC Language

*k

$$

PRINT USING “+ ##.## ",
—98.45,3.50,22.22,~ .9
—98.45 +3.50 +22.22 -0.90

PRINT USING "“##.## + i
—98.45,3.50,22.22,—.9
98.54 — 3.50 + 2222+ 0.90 -

(Note the use of spaces at the end of a
format string to separate printed values).

Print a negative sign after negative numbers
(and a space after positive numbers). You
may only use a negative sign to the right of a
number.

PRINT USING “###.# —", —768.660
768.7 —

Fill leading spaces with asterisks. The two
asterisks also establish two more positions
in the field.

PRINT USING “+####"; 44.0
*xxxd 4

Print a dollar sign immediately before the
number. This specifies two more digit posi-
tions, one of which is the dollar sign. You
may not use exponent format with $§.

PRINT USING “$$##.##", 112.7890
$112.79

Fill]? leading spaces with asterisks and print a
dollar sign immediately before the num-
ber.

PRINT USING “~$##.##"; 8.333
**+$8.33

Print a comma before every third digit to
the left of the decimal point. The comma
establishes another digit position.

258

Chapter 7 / Statements and Functions

PRINT USING “####, ##", 1234.5
1,234.50

AAAn

Print in exponential format. The four expo-
nent signs are placed after the digit position
characters. You may specify any decimal
point position. You may not use $§ or *<§
with exponent format.

PRINT USING ".####° " """, 888888
.8889E + 06

- Print next character as a literal character.

PRINT USING “_l##.##_1";12.34
112.34!

Sample Program

420 CLS: A$ = "~$## ######.## DOLLARS”
430 INPUT “WHAT IS YOUR FIRST NAME”; F$
440 INPUT “WHAT IS YOUR MIDDLE NAME”; M$
450 INPUT “WHAT IS YOUR LAST NAME”; L$
460 INPUT "ENTER AMOUNT PAYABLE"; P#
470 CLS : PRINT “PAY TO THE ORDER OF ”;
480 PRINT USING “I! It ", F$; “."; M$; “.”;

490 PRINT L$

500 PRINT :PRINT USING A$; P#

In line 480, each ! picks up the first character of one of the
following strings (F$, “.”, M§, and *."” again). Notice the
two spaces in “1B!B”. These two spaces insert the
appropriate spaces after the initials of the name (see be-
low). Also notice the use of the variables A$ for format and
P for item list in line 500. Any serious use of the PRINT
USING statement would probably require the use of vari-
ables at least for item list rather than constants. (We've
used constants in our examples for the sake of better
illustration).

When the program above is run, the output should look
something like this:

259

Section II / The BASIC Language

WHAT IS YOUR FIRST NAME? JOHN
WHAT 1S YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.6
PAY TO THE ORDER OF J. P. JONES

+4:1$12,435.60 DOLLARS

PRINT TAB Statement

PRINT TAB(n)

Example

Moves the cursor to the » position on the current line.
TAB may be used more than once in a print list.

Since numeric expressions may be used to specify a TAB
position, TAB can be very useful in creating tables, graphs
of mathematical functions, etc.

TAB can't be used to move the cursor to the left. If the
cursor is to the right of the specified position, the TAB
statement is simply ignored.

The first parenthesis must be typed immediately after the
word TAB.

If n is greater than 80, BASIC divides # by 80 and uses the
remainder of the division as the tab position. For example,
if you enter the line:

PRINT “NAME"; TAB(84); “AMOUNT"

BASIC converts TAB(84) into TAB(4). Since the cursor is
already at column five after printing NAME, BASIC moves
the string AMOUNT to the next line. If, instead, you had
typed TAB(85), BASIC would print AMOUNT on the same
line.

If the string you are printing is too long to fit on the current
line, BASIC moves the string to the next line.

PRINT TAB(5) “TABBED 5”; TAB(25) “TABBED 25"

Notice that no punctuation is needed after the TAB
modifiers.

Sample Program

220 CLS

230 PRINT TAB(2) “CATALOG NO."; TAB(16)
“DESCRIPTION OF ITEM”;

240 PRINT TAB(39) “QUANTITY"; TAB(51)
“PRICE PER ITEM";

245 PRINT TAB(69) “TOTAL PRICE"

261

PRINT# Statement
PRINT# buffer, iteml, item2, . ..

Prints data items in a sequential disk file.

Buffer is the buffer number used to OPEN the file for
input.

When you first OPEN a file for sequential output, BASIC
sets a pointer to the beginning of the file — that’s where
PRINT# starts printing the values of the stems. At the end of
each PRINT# operation, the pointer advances, so values
are written in sequence.

A PRINT# statement creates a disk image similar to what a
PRINT to the display creates on the screen. For this reason,
make sure to delimit the data so that it will be input
correctly from the disk.

PRINT# does not compress the data before writing it to
disk. It writes an ASCII-coded image of the data.

When you include the USING option, data is written to the
disk in the format you specify. See PRINT USING.

Examples

If A = 123.45
PRINT# 1,A

writes this nine-byte character sequence onto disk:
$123.45b carriage return

The punctuation in the PRINT list is very important. Un-
quoted commas and semicolons have the same effect as
they do in regular PRINT statements to the display. For
example, if A = 2300 and B = 1.303, then

PRINT# 1, AB
writes the data on disk as

b 2300 BbbbbbbBBY 1.303B carriage return

The comma between A and B in the PRINT# list causes 10
extra spaces in the disk file. Generally you wouldn’t want
to use up disk space this way, so you should use semi-
colons instead of commas.

262

Chapter 7 | Statements and Functions

PRINT# 1, A; %", B

writes the same data on disk as

123.45,1.303

An INPUT# statement reads this as two separate fields.

If string variables contain commas, semicolons, or leading
blanks, write them to disk enclosed with quotation marks.
For example, if A§ = CAMERA, AUTOMATIC and B$ =
102382, then

PRINT# 1, AS$; B$

writes the data on disk as

CAMERAWBBY BB BHAUTOMATIC102382

An INPUT# statement reads this as two separate fields

A$ = CAMERA
B$ = AUTOMATIC102382

To separate these two strings properly on the disk, write
double quotation marks to the disk using the hexadecimal
character for quotation marks, CHR$(34).

PRINT# 1, CHR$(34); A$; CHR$(34); B$; CHR$(34)
writes the following image to disk

“CAMERA AUTOMATIC”*102382"

The statement

INPUT# 1, A, B$

reads "CAMERAAUTOMATIC” into A$ and “102382” into
BS.

Files can be written in a carefully controlled format using
PRINT# USING. You can also use this option to control
how many characters of a value are written to disk.

263

Section Il / The BASIC Language

For example, suppose A$ = “LUDWIG"”, B$ = “VAN", and
C$ = "BEETHOVEN”. Then the statement

PRINT# 1, USING"LL.\BB\";A$;B$,C$
would write the data in nickname form:
LV.BEET

(In this case, we didn't want to add any explicit delimiters.)
See PRINT USING for more information on the USING
option.

264

PSET/PRESET Graphics Statement

PSET [STEP] (x-coordinate, y-coordinate) |,

color]

PRESET [STEP] (x-coordinate, y-coordinate) [,

color]

Draws a point on the display.

x-coordinate specifies the x coordinate of the point. In
Screen Mode 1, x-coordinate may be in the range 0 to 320.
In Screen Modes 2, 3, and 4, x-coordinate may be in the
range 0 to 640.

y-coordinate specifies the y coordinate of the point. In
Screen Modes 1 and 2, y-coordinate may be in the range 0
to 200. In Screen Modes 3 and 4, y-coordinate may be in
the range 0 to 400.

If vou include the STEP option, the numbers vou specify as
coordinates are offsets from the most recent graphics
point referenced. x-coordinate is the number of points in
the horizontal direction, and y-coordinate is the number
of points in the vertical direction. Precede the numbers
with a plus (+) or minus (=) sign to indicate the direc-
tion (up, down, left, or right) from the most recent point
referenced. The plus sign indicates to add the number to
the most recent coordinante (right or up) and the minus
indicates to subtract (left or down) the number from the
most recent coordinate.

265

Section Il / The BASIC Language

color specifies the color of the point and must be a color
number in the current palette. In Screen Mode 1, color
may be in the range 0 to 3. In Screen Mode 3, color may be
in the range 0 to 7. In Screen Modes 2 and 4, color may be
either 0 or 1.

The only difference between the PSET and PRESET state-
ments is the default values for color. In Screen Modes 1
and 3, if you omit color with PSET, BASIC assumes a
default value of 3. In Screen Modes 2 and 4, if you omit
color with PSET, BASIC assumes white. If you omit color
with PRESET, BASIC asssumes the background color for all
Screen Modes and the point is invisible.

Note: BASIC does not print and does not issue an error
message for points whose coordinate values are
beyond the edge of the screen. However, values
outside the integer range (— 32768 to 32767) cause
an overflow error.

Chapter 7 | Statements and Functions

Sample Program

10 FOR I=0TO 100

20 PSET (I,

30 NEXT | '(draw a diagonal line to (100,100))
40 FOR 1=100 TO 0 STEP -1

50 PRESET (l,1),0

60 NEXT ‘

70 '(clear out the line by setting each pixel to 0)

Lines 10 to 30 draw a diagonal line on the screen from the
home position to position 100,100. Lines 40 to 60 erase the
line by drawing another line at the same position in the
background color.

267

PUT

Statement

PUT buffer [,record]

Examples

Puts a record in a direct-access disk file.
Buffer is the same buffer used to OPEN the file.

Record is the record number you want to PUT into the file.
It is an integer between 1 and 65535. If you omit record,
BASIC uses the current record.

This statement moves data from the buffer of a file into a
specified place in the file.

If record is higher than the end-of-file record number,
then record becomes the new end-of-file record number.

The first timie you use PUT after OPENing a file, you must
specify the record. The first time you access a file via a
particular buffer, the next record is set equal to one. (The
next record is the record whose number is one greater
than the last record accessed).

See the chapter on “Disk Files” for programming
information.

PUT 1
writes the next record from buffer 1 to a direct-access file.
PUT 1, 25

writes record 25 from buffer 1 to a direct-access file.

PUT

Communication Statement

PUT buffer, integer

Example

Transfers data from the file buffer to the communications
buffer.

buffer must be the same buffer you assigned to the file in
the OPEN “COMI: statement.

integer is the number of bytes to transfer from the file
buffer into the communications buffer. integer cannot
exceed the value you used in the LEN option in the OPEN
“COM1I: statement.

Note: Because of the low performance associated with
telephone line communications, we recommend that you
not use GET and PUT statements in such applications.

PUT 4,80

transfers 80 bytes from file buffer 4 to the communication
buffer.

269

PUT/Graphics Graphics Statement

PUT (x-coordinate, y-coordinate),array [,action]

Transfers an image stored in an array onto the screen.

x-coordinate indicates the x coordinate where the image
begins. In Screen Mode 1, x-coordinate may be in the
range 0 to 320. In Screen Modes 2, 3, and 4 x-coordinate
may be in the range 0 to 640.

y-coordinate indicates the y coordinate where the image
begins. In Screen Modes 1 and 2, y-coordinate may be in
the range 0 to 200. In Screen Modes 3 and 4, y-coordinate
may be in the range 0 to 400. If you omit x-coordinate and
y-coordinate, BASIC begins the image at the last point
referenced on the screen.

array is the array variable name that holds the image.

action may be PSET, PRESET, AND, OR, or XOR. action
causes the transferred image to interact with the image
already on the screen. If omit action, BASIC assumes XOR.

You use the GET/Graphics and PUT/Graphics statements
together for animation and high-speed object motion in
Screen Modes 1, 2, 3, or 4. The GET/Graphics statement
transfers the screen image described by specified points
of the rectangle into the array. The PUT/Graphics state-
ment transfers the image from the array to the display.

The x and y coordinates specify the coordinate of the
upper left corner of the image. An “Illegal Function call”
error results if the image is too large to fit on the screen.

PSET transfers the data onto the screen exactly as it stored
in the array.

270

Chapter 7 / Statements and Functions

PRESET produces an opposite image on the screen. In
Screen Modes 2 and 4 an array value of 1 (white) becomes
a 0 (black) on the screen. In Screen Modes 1 and 3, the
color value in the array becomes the numeric opposite on
the screen. For example, if the array contains a 0, that point
becomes a 3 in Screen Mode 1 and a 7 in Screen Mode 3.
These tables show the effects on color when vou specify
PRESET in Screen Modes 1 and 3.

Mode 1 Mode 3
Array Screen Array Screen
Color Color Color Color

0 3 0 7
1 2 1 6
2 1 2 5
3 0 3 4
4 3
5 2
6 1
7 0

AND transfers the image only if an image already exists at
those points on the screen. If an image is on the screen, the
new image is placed over the existing image. If an image is
not on the screen and you specify AND as the actiorn,
BASIC does not execute the PUT/Graphics statement.

OR superimposes an image onto an existing image. OR
transfers the image onto the screen whether or not an
image already exists at that position.

XOR inverts the points on the screen where a point exists
in the array image. When an image is PUT against a com-
plex background twice, the background is restored un-
changed. This allows you to move an object around the
screen without obliterating the background.

271

Section 11 / The BASIC Language

These tables show what effects AND, OR, and XOR have on

color that is on the screen.

AND

ARRAY VALUE

0

vy

v \O

OR

ARRAY VALUE

M~

v \O

o0

v \O

272

Chapter 7 / Statements and Functions

XOR
ARRAY VALUE
- 1
0 1 2 3 4 6 7
olo 1 2 3 4 s 6 7|
1 1 0 3 2 5 4 7 6
2 l2 3 0o 1 6 7 4 s
3013 2 1 90 7 6 5 4
4 4 5 6 7 0 1 2 3
s|s 4 7 6 1 0 3 2
616 7 4 s 2 3 o0 1
7017 6 5 4 3 2 1 0

To perform object animation, follow these steps:
1. PUT the object on the screen using XOR.
2. Calculate the next position of the object.

3. PUT the object on the screen a second time at the
previous location to remove the previous image.

4. Repeat step 1, PUTting the object at the next location.

273

Section Il / The BASIC Language

If you do movement this way, the background is not
changed. You can reduce flicker by minimizing the time
between steps 4 and 1 and by ensuring enough time delay
between 1 and 3. If you are animating more than one
object, process every object at once, one step at a time.

If preserving the background is not important, you can
perform animation using the PSET action verb. Leave a
border around the image as large or larger than the max-
imum distance the object moves. When you move an
object, this border effectively erases any points. This
method may be faster than the method using XOR de-
scribed above, since only one PUT is required to move an
object.

RANDOMIZE Function
RANDOMIZE [number]

Reseeds the random number generator.

number is an integer in the range — 327680 32767. If you
omit number, BASIC suspends program execution and
prompts you for a number before executing RANDOMIZE:

Random Number Ssed (- 32768 to 32767)7

If the random number generator is not reseeded, the RND
function returns the same sequence of numbers each time
it is executed. To change the sequence of random
numbers every time the RND function is executed, place a
RANDOMIZE statement before the RND function.

You can use the seconds digits of the TIME$ function to
insure that the random number generator is reseeded
with a different value each time BASIC executes the
RANDOMIZE function. For example, the statement:

RANDOMIZE VAL(RIGHT$(TIMES,2))

uses the seconds digits as the value of number. Because
those digits are constantly changing, number has a
different value each time BASIC executes this statement.

Sample Program

10 CLS

20 RANDOMIZE VAL(RIGHT$(TIMES$,2))

30 INPUT “PICK A NUMBER BETWEEN 1 AND
100";A

40 B=INT(RND*100)

50 IF A = B THEN 80

60 PRINT “You lose, the answer is";B;"--try again.”

70 GOTO 20

80 PRINT “You picked the right number -- you win.’

275

READ

Statement

READ variable,

Example

Reads values from a DATA statement and assigns them to
variables.

BASIC assigns values from the DATA statement on a one-
to-one basis. The first time READ is executed, the first
value in the first DATA statement is used; the second time,
the second value is used, and so on.

A single READ may access one or more DATA statements
(each DATA statement is accessed in order), or several
READs may access the same DATA statement.

The values read must agree with the variable types speci-
fied in list of variables, otherwise, a “Syntax error” occurs.
If the number of variables in the READ statement exceeds
the number of elements in the DATA statement(s), an “Out
of data” error message is printed.

To reREAD DATA from the start, use the RESTORE state-
ment. If the number of variables specified is lower than
the number of elements in the DATA statement(s), subse-
quent READ statements begin reading data at the first
unread element.

READ T

reads a numeric value from a DATA statement and assigns
it to variable “T".

Sample Program

This program illustrates a common application for the
READ and DATA statements.

40 PRINT “NAME”", “AGE”

50 READ N$

60 IF N$ ="END" THEN PRINT “END OF LIST": END
70 READ AGE

80 IF AGE<18 THEN PRINT N$, AGE

90 GOTO 50

100 DATA “SMITH, JOHN", 30, “ANDERS, T.M.”, 20
110 DATA “JONES, BILL", 15, “DOE, SALLY", 21
120 DATA “COLLINS, W.P.", 17, “END”

276

REM Statement

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the
program line. This allows you to insert remarks into your
program for documentation. Then, when you look at a
listing of your program, or someone else does, it will be
easier to figure it out.

If REM is used in a multi-statement program line, it must
be the last statement in the line.

You may use an apostrophe () as an abbreviation for REM.
Sample Program

110 DIM V(20)

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1TO 20

140 SUM=SUM + V(I)

150 NEXT |

or

110 DIM V(20)

120 FOR I=1TO 20 'CALCULATE AVERAGE
VELOGCITY

130 SUM=SUM + V()

140 NEXT |

277

RENUM

Statement

RENUM [new line] [,line] [,increment]

Examples

Renumbers a program, starting at /inze, using new line as
the first new line and increment for the new sequence.

If you omit new line, BASIC starts numbering at line 10.
If you omit /ine, it renumbers the entire program.
If you omit fncrement, it increments each line by 10.

RENUM also changes all line number references appear-
ing after ELSE, GOTO, GOSUB, THEN, ON ... GOTO,
ON ... GOSUB, ON ERROR GOTO, RESUME, and
ERL[relational operator].

RENUM

renumbers the entire resident program, incrementing by
10’s. The new number of the first line will be 10.

RENUM 600, 5000, 100

renumbers all lines 5000 to the end of the program. The
first renumbered line becomes 600, and an increment of
100 is used between subsequent lines.

RENUM 10000, 1000

renumbers line 1000 and all higher-numbered lines. The
first renumbered line becomes line 10000. An increment
of 10 is used between subsequent line numbers.

RENUM 100, , 100

renumbers the entire program, starting with a new line
number of 100, and incrementing by 100’s. Notice that you
must include commas even though the middle argument
is not included.

[y.}
~J
09]

Chapter 7 / Statements and Functions

Error Conditions

1. RENUM cannot be used to change the order of program
lines. For example, if the original program has lines
numbered 10, 20 and 30, then the command:

RENUM 15, 30

is illegal, since the result would move the third line of
the program ahead of the second. In this case, an
“Illegal Function Call” error occurs, and the original
program is left unchanged.

2. RENUM will not create new line numbers greater than
65529. Instead, an “Illegal Function Call” error occurs,
and the original program is left unchanged.

3. Ifan undefined line number is used inside your origin-
al program, RENUM prints a warning message, Unde-
fined line XXXX in YYYY”, where XXXX is the original
line number reference and YYYY is the original num-
ber of the line containing XXXX. Note that RENUM
renumbers the program in spite of this warning mes-
sage. It does not change the incorrect line number
reference, but it does renumber YYYY, according to the
parameters in your RENUM command.

279

RESET

Statement

RESET

Closes all open files on all drives.

If a diskette contains any open files, RESET rewrites the
diskerte’s directory track.

RESET ensures that all files on all diskettes are closed
before you remove thern from the drives. RESET is the
same as a CLOSE on each OPEN file.

280

RESTORE Statement
RESTORE |line]

Restores a program'’s access to previously-read DATA
statements.

This lets your program re-use the same DATA lines.
If line is specified, the next READ statement accesses the
first item in the specified DATA statement.

Sample Program

160 READ X$

170 RESTORE

180 READ Y$

190 PRINT X$, Y$

200 DATA THIS IS THE FIRST ITEM, AND THIS IS
THE SECOND

When this program is run,
THIS IS THE FIRST ITEM THIS IS THE
FIRSTITEM

is printed on the display. Because of the RESTORE state-
ment in line 170, the second READ statement starts over
with the first DATA iten.

281

RESUME Statement

RESUME [line]
RESUME NEXT

Resumes program execution after an error-handling
routine.

RESUME without an argument and RESUME 0 both cause
the computer to return to the statement in which the error
occurred.

RESUME /ine causes the computer to branch to the speci-
fied line number.

RESUME NEXT causes the computer to branch to the
statement following the point at which the error occurred.

A RESUME that is not in an error-handling routine causes a
“RESUME without error” message.

Examples
RESUME

if an error has occurred, this line transfers program con-
trol to the statement in which it occurred.

RESUME 10

if an error has occurred, transfers control to line 10.
Sample Program

10 ON ERROR GOTO 900

900 IF (ERR =230) AND(ERL=90) THEN PRINT
“TRY AGAIN" : RESUME 80

282

RETURN Statement
RETURN [line number]

Returns control to the line immediately following the
most recently executed GOSUB.

line number is an optional parameter that you may in-
clude to return program control to a specific /ine number
instead of the line number immediately following the
GOSUB.

Use the line number parameter with caution. Any other
GOSUB, WHILE, or FOR statement remains active while a
GOSUB subroutine is executing. If you RETURN to a /ine
number that does not complete these loops you get an
€rrOor.

Example

10FOR1 =1T0O3

20 PRINT I: GOSUB 100

30 NEXT |

40 PRINT J

100 'SUBROUTINE BEGINS HERE
110 RETURN 40

When lisequalto1,2, or3Line 110 causes a “FOR without
NEXT” error because the FOR/NEXT loop has not been
completed.

If the program encounters a RETURN statement without
execution of a matching GOSUB, an error occurs.

Sample Program

330 PRINT “THIS PROGRAM FINDS THE AREA OF
A CIRCLE"

340 INPUT “TYPE IN A VALUE FOR THE RADIUS";
R

350 GOSUB 370

360 PRINT “"AREA IS” ; A: END

370 A = 3.14-R+*R

380 RETURN

283

RIGHT$

Function

RIGHT $(string, number)

Examples:

Returns the rightmost number characters of string.

RIGHT$ returns the last nuember characters of siring. If
LEN (string) is less than or equal to number, the entire
string is returned.

PRINT RIGHT$(“WATERMELON", 5)
prints MELON.

PRINT RIGHT$(“MILKY WAY", 25)
prints MILKY WAY.

Sample Program

850 RESTORE : ON ERROR GOTO 880

860 READ COMPANY$

870 PRINT RIGHT$(COMPANYS, 2), : GOTO 860

880 END

890 DATA “BECHMAN LUMBER COMPANY,
SEATTLE, WA”

900 DATA “ED NORTON SEWER SERVICE,
BROOKLYN, NY”

910 DATA “HAMMON MANUFACTURING
COMPANY, HAMMOND, IN”

This program prints the name of the state in which each
company is located.

[\
o
S

RND

Function

RND (number)

Examples

Generates a pseudorandom number between 0 and 1.
Number is an integer in the range —32767 to 32708,

Only zero has any effect on the random number that
BASIC generates.

RND produces a pseudorandom number using the cur-
rent “seed” number. BASIC generates the seed internally,
therefore, it is not accessible to the user. RND produces
the same sequence of random numbers each time the
program is run unless vou execute 4 RANDOMIZE state-
ment to reseed the random number generator.

If you specify negative values for number, RND starts the
sequence of random numbers at the beginning. RND(Q)
repeats the last number generated. If vou omit rnumber, or
you specify a positive value, RND returns the next number
in the sequence.

PRINT RND(0)

prints a decimal fraction between 0 and 1
PRINT RND(1)

prints the next decimal fraction in the sequence.
Sample Program

10FORI =1T0O5
20 PRINT INT(RND+*100);
30 NEXT |

This program produces 5 random integers. Line 20 con-
verts the decimal fraction returned by RND to a real num-
ber and truncates the real number to an integer.

o
xL
N

RSET Statement
RSET field name = data

Sets data in a direct-access buffer field name in prepara-
tion for a PUT statement.

This statement is similar to LSET. The difference is that
with RSET, data is right-justified in the buffer.

See LSET for details.

RUN

Statement

RUN [line]

RUN filespec[,R]

Examples

Executes a program.

RUN followed by a line or nothing at all simply executes
the program in memory, starting at /ine or at the begin-
ning of the program.

RUN followed by a filespec deletes the current contents.of
memory, loads a program from disk and then executes it.
If filespec contains fewer than eight characters and you do
not include an extension, BASIC appends the extension
.BAS. Any resident BASIC program is replaced by the new
program.

Option R leaves all previously OPEN files open. If omitted,
BASIC closes all open files.

RUN automatically CLEARS all variables. However, it does
not re-set the value of an ERL variable.

RUN

starts execution at lowest line number.

RUN 100

starts execution at line 100.

RUN “PROGRAM.A”

loads and executes PROGRAM A.

RUN “EDITDATA”, R

loads and executes EDITDATA, leaving OPEN files open.

287

SAVE Statement
SAVE filespec [,A] [,P]

Saves a program in a disk file under filespec.

filespec is a string expression that may contain the drive
identifier and filename. If you omit the drive identifier,
BASIC assumes the current drive. The filename is re-
quired. If the filename is eight characters or fewer and you
do not include an extension, BASIC appends the extension
BAS. If filespec already exists, its contents are lost as the
file is re-created.

SAVE without the A option saves the program in a com-
pressed format. This takes up less disk space. It also helps
in performing SAVEs and LOADs faster. BASIC programs
are stored in RAM using compressed format.

Using the A option causes the program to be saved in
ASCII format. This takes up more disk space. However, the
ASCII format allows you to MERGE this program later on.
Also, data programs which are read by other programs
must usually be in ASCII.

If you use the A option, make sure your program doesn’t
have any embedded line feeds; otherwise, the computer
will not be able to read it properly. Embedded line feeds
are produced by pressing €TRD(J) simultaneously when
typing a program line.

For compressed-format programs, a useful convention is
to use the extension BAS. For ASCII-format programs, use
The P option protects the file by saving it in an encoded
binary format. When a protected file is later RUN (or
LOADed), any attempt to list or edit it fails. The only
operations that can be performed on a protected file are:
RUN, LOAD, MERGE, and CHAIN.

288

Chapter 7 / Statements and Functions

Examples
SAVE “A:FILE1.BAS”

saves the resident BASIC program in compressed format.
The file name is FILE1; the extension is .BAS. The file is
placed on Drive A..

SAVE "MATHPAK.TXT”, A

saves the resident program in ASCII form, using the name
MATHPAK.TXT, on the current drive.

289

SCREEN Function
variable = SCREEN (row, column),[1]

Returns the ASCII code or the color attribute for the
character at the specified row and column.

row is an integer in the range 1 to 25.

column is an integer in the range 1 to 40 or 1 to 80,
depending on the screen width.

The 7 indicates return the color attribute rather than the
ASCII code.

SCREEN stores the ASCII character or the color attribute of
the character at the specified row and column position in
variable.

Sample Program

10 LOCATE 20,20

20 PRINT “Robbie”

30 A = SCREEN(20,20):B = SCREEN(20,21)
40 PRINT AB

Line 10 positions the cursor to row 20, column 20.
Line 20 prints the message at the current cursor position.
Line 30 stores the ASCII code for “R™ in the variable A and
the ASCII code for “0” in variable B. Line 40 prints

82 79

290

SCREEN Statement
SCREEN mode [, burst]

Sets the screen attributes to be used by all other graphics
statements.

mode is an integer in the range 0 to 4. Valid modes are:

0 — text mode at the current width (40 or 80).

1— 320 x 200 medium resolution color graphics mode.
You can only use WIDTH 40.

2 — 640 x 200 high resolution monochrome mode at the
current width (40 or 80).

3 — 640 x 400 highest resolution color graphics mode at
the current width (40 or 80).

4 — 640 x 400 highest resolution monochrome mode at
the current width (40 or 80).

If you have the TV/Jovstick option you may use Mode 0 in
width 40 and Mode 1. If you have the High Resolution
Monochrome Graphics Option, you may use modes 0, 1, 2
and 4. If you have the High Resolution Color Graphics
Option, you mayv use all of the maodes in all widths.

burst may be zero to disable color burst or any other
number to enable color burst. If you specifv zero, vou can
only display black and white images with subsequent
graphics commands. buwrst is only valid with the color
graphics options.

291

Section 1l / The BASIC Language

The SCREEN statement controls all graphics statements:
CIRCLE, LINE, DRAW, POINT, PSET, PRESET, PALETTE, and
PALETTE USING. When vou select mode with the SCREEN
statement, you set the valid coordinates and the number of
colors that these statements mav use.

If the SCREEN statement changes the mode, BASIC stores
the new screen mode, erases the video display, sets the
foreground color to white, and the background and bor-
der colors to black.

We recommend that you use these statements at the begin-
ning of programs that vou intend to run on machines that
could have either graphics board:

SCREEN 0,0
WIDTH 40

For more information on the graphics statements refer to
Chapter 6, “Introduction to Graphics.”

Examples
10 SCREEN 0,1
Selects text mode with color.

60 SCREEN 2

Changes to high resolution monochrome graphics mode.

Sample Program

10 BLANK$ =CHR$(32)

‘Define blank character
20 CLS:WIDTH 40:SCREEN 1

‘Double size characters
30 FORE=16:BACK=7:GOSUB 1000

'Blinking reverse video
40 FORE=0:GOSUB 1000

‘Reverse video
50 BACK=0:GOSUB 200

'‘Background color black
60 WIDTH 80:SCREEN 0

'Normal size characters

292

Chapter 7 / Statements and Functions

70 BACK=7:FORE =16:GOSUB 1000
'Blinking reverse video
80 FORE =0:GOSUB 1000
'Reverse video
90 BACK=0:GOSUB 200
'Background black
100 END
200 FORE=31:GOSUB 1000
'Bright white blinking
210 FORE = 18:GOSUB 1000
"White blinking
220 FORE=17:GOSUB 1000
"Underlined bright white blinking
230 FORE =10:GOSUB 1000
"Bright white
240 FORE =9:GOSUB 1000
'Underlined white
250 FORE=2:GOSUB 1000
'White
260 RETURN
1000 PRINT 'Carriage return
1010 FOR I=1 TO 1000:NEXT |
'Wait loop
1020 FOR CHAR=1TO 6
‘Char = Graphics character to print
1030 COLOR FORE,BACK
"Print in specified color
1040 PRINT CHR$(CHAR);BLANKS;
'Print the character and a blank
1050 PRINT CHR$(CHAR + 14);BLANKS;
1060 PRINT CHR$(CHAR +21):BLANKS;
1070 NEXT CHAR
1080 RETURN

This program prints graphics characters in all possible
color combinations in normal mode and double size
mode.

SGN Function
SGN(number)

Determines number’s sign.

If number is a negative number, SGN returns — 1.
If number is a positive number, SGN returns 1.
If number is zero, SGN returns 0.

Example
Y = SGN(A * B)
determines what the sign of the expression A * B is, and
passes the appropriate number (—1,0,1) to Y.
Sample Program

610 INPUT “ENTER A NUMBER"; X

620 ON SGN(X) + 2 GOTO 630, 640, 650
630 PRINT “NEGATIVE": END

640 PRINT “ZERO": END

650 PRINT “POSITIVE”: END

SIN Function

SIN(number)

Computes the sine of number.

Number must be in radians. To obtain the sine of number
when number is in degrees, use SIN(number =
.01745329). The result is always single precision.

Example
PRINT SIN(7.96)
prints . 994345,
Sample Program

660 INPUT “"ANGLE IN DEGREES”; A
670 PRINT "“SINE I1S"; SIN(A + .01745329)

295

SOUND Statement
SOUND tone, duration

Generates a sound with the rone and duration specified.

Tone is an integer in the range 37 and 32767 indicating the
frequency in Hertz. Thirty-seven produces the lowest tone
and 32767 produces the highest tone.

Duration is dn integer in the range 0 to 65535 specifying
the duration in clock ticks. Clock ticks occur 18.2 times per
second. One produces the shortest sound and 65535 pro-
duces the longest sound.

While a SOUND statement produces noise, the program
continues to execute. If another SOUND statement is en-
countered while the previous SOUND statement is still
making noise, the program waits until the first sound ends
before executing the next SOUND statement. However, if
the duration of the new SOUND statement is zero, the
previous SOUND statement is turned off. See the PLAY
statement for more information about executing program
lines during SOUND.

This statement can be especially useful in educational
applications. For example, you can have the computer
respond with a sound if a user has answered a program'’s
prompt incorrectly (or vice versa).

You can use the SOUND or PLAY statements to generate
musical notes from your computer. This chart shows the
frequency you should specify to generate the notes in the
octave above middle C. Middle C is the first note in the

chart.
Note Frequency
C 523.25
D 587.33
E 659.26
F 698.46
G 783.99
A 880.00
B 987.77
C 1046.50

Chapter 7 / Statements and Functions

To generate notes that are in the octave below middle C,
find the frequency of the notes letter in the chart and
divide that number by 2. For example, the note A in the
octave below middle C has a frequency of 440.00

To generate notes that are in the octave above middle C,
find the frequency of the notes letter in the chart and
multiply that number by 2. For example, the note A in the
octave above middle C has a frequency of 1760.00.

There are 1092 clock ticks per minute. To determine the
number of clock ticks for one beat, divide the beats per
minute into 1092. The chart below shows the number of
clock ticks for some typical tempos.

Beats Ticks
Tempo per Minute per Minute
Largo 40-60 273 -18.2
Largehetto 60-66 18.2 -16.55
Adagio 66-76 16.55-14.37
Andante 76-108 14.37-10.11
Moderato 108-120 10.11- 9.1
Allegro 120-168 9.1 - 65
Presto 168-208 6.5 - 5.25

Sample Program

10 INPUT "IN HONOR OF WHOM WAS THE
CONTINENT OF AMERICA NAMED”; A$

20 IF A$="AMERIGO VESPUCCI" THEN SOUND
32000,200 ELSE GOTO 40

30 PRINT “THAT'S RIGHT!": END

40 SOUND 37,2 : PRINT “THE CORRECT
ANSWER IS AMERIGO VESPUCCI”

SPACE$ Function
SPACE$(number)

Returns a string of number spaces.

Number must be in the range 0 to 255.
Example

PRINT “DESCRIPTION" SPACE$(4) “TYPE"
SPACES$(9) “QUANTITY"

prints DESCRIPTION, four spaces, TYPE, nine spaces,
QUANTITY.

Sample Program

920 PRINT “Here"
930 PRINT SPACES$(13) “is”
940 PRINT SPACE$(26) “an”
950 PRINT SPACE$(39) “example”
960 PRINT SPACE$(52) “of”

)

970 PRINT SPACE$(65) “SPACES$”

298

SPC

Function

SPC(number)

Example

Prints number blanks.

Number is in the range 0 to 255. SPC does not use string
space. The left parenthesis must immediately follow SPC.

SPC may only be used with PRINT, LPRINT, or PRINT# .
PRINT “HELLO” SPC(15) “THERE"

prints
HELLO THERE

299

SQR Function
SQR(number)

Calculates the square root of ruumber.
The number must be greater than zero.
The result is always single precision.
Example
PRINT SQR(155.7)
prints 12.47798
Sample Program

680 INPUT “TOTAL RESISTANCE (OHMS)"; R
690 INPUT “TOTAL REACTANCE (OHMS)"; X
700 Z = SQR((R * R) + (X * X))

710 PRINT “TOTAL IMPEDANCE (OHMS) IS” Z

This program computes the total impedance for series
circuits.

300

STICK Statement
STICK (integer) = variable

Returns the number of points moved along the x and y
axes since the last STICK statement.

integer may be zero to return the number of points moved
on the x axis or one to return the number of points moved
on the v axis.

variable is a numeric variable to hold the value returned
by integer.

If you specify zero for integer, the following values are
returned:

positive values, which indicate the number of points
moved right on the x axis since the last STICK statement.

negative values, which indicate the number of points
moved left on the x axis since the last STICK statement.

a zero, which indicates that no movement occurred on the
x axis since the last STICK statement.

If you specify one for integer, the following values are
returned:

positive values, whicli indicate the number of points
moved down on the vy axis since the last STICK statement.

negative values, which indicate the number of points
moved up on the y axis since the last STICK statement.

a zero, which indicates that no movement occurred on the
v axis since the last STICK statement.

301

Section 11 / The BASIC Language

Example

10 STICK(0)= XMOVE:STICK(1)= YMOVE

20 IF STICK(0) < 0 THEN DIR$ = “left” ELSE DIR$
= “right”

30 IF STICK(0) = @ GOTO 40 ELSE PRINT “You
moved” ABS(XMOVE) “pixels” DIR$ “and ";

40 PRINT “You didn’t move any pixels on the x axis
and ";

50 IF STICK(1) < @ THEN DIR$ = “up” ELSE DIR$
= “down” _

60 IF STICK(1) = 0 GOTO 70 ELSE PRINT “you
moved” ABS(YMOVE) “pixels” DIR$ “.”

70 PRINT “you didn't move any pixels on the y axis.”

Line 10 stores the number of points moved on the x axis in
XMOVE and stores the number of points moved on the y
axis in YMOVE. DIR$ is a string variable to store the
direction that was moved. If the number returned by the
STICK function is negative, the direction is left or up. If the
number returned is positive, the direction is right or
down. Lines 20-70 test the values returned by the two
STICK functions and print a message to tell how many
poirits you moved on each axis or that you didn't move any
points.

302

STOP

Statement

STOP

Stops program execution.

When a program encounters a STOP statement, it prints
the message BREAK IN, followed by the line number that
contains the STOP. STOP is primarily a debugging tool.
During the break in execution, you can examine variables
or change their values.

The CONT command resumes execution at the point it
was halted. But if the program itself is altered during the
break, CONT cannot be used.

Unlike the END statement, STOP does not close files.

Sample Program

2260 X = RND(10)
2270 STOP
2280 GOTO 2260

A random number between 1 and 10 is assigned to X, then
program execution halts at line 2270. You can now ex-
amine the value X with PRINT X. Type CONT to start the
cycle again.

303

STR$ Function
STR$(number)

Converts number into a string.

If number is positive, STR$ places a blank before the
string.

While arithmetic operations may be performed on »um-
ber, only string functions and operations may be per-
formed on the string.

Example

S$ = STR$(X)

converts the number X into a string and stores it in S§.
Sample Program

10 A = 1.6 : B# = A : C# = VAL(STR$(A))

20 PRINT “REGULAR CONVERSION" TAB(40)
“SPECIAL CONVERSION”

30 PRINT B# TAB(40) C#

STRIG/Function Enable Statement

STRIG ON
STRIG OFF

Enables the STRIG Function command.

STRIG ON

When you load BASIC, the default is STRIG OFF and you
cannot execute STRIG/Function statements. STRIG ON
lets you execute STRIG/Function statements to return the
status of the mouse buttons. If you attempt to execute a
STRIG/Function statement before you execute a STRIG
ON statement, BASIC issues an “Illegal function call”
€rror.

STRIG OFF

If you execute a STRIG OFF statement you may not ex-
ecute a STRIG/Function statement. Executing a STRIG/
Function statement after a STRIG OFF statement results in
an “Illegal function call” error.

You cannot place a STRIG/Function statement in a sub-
routine that you branch to as a result of an ON STRIG()
GOSUB statement. BASIC does not keep track of which
button was pressed after the ON STRIG() GOSUB state-
ment is executed. If you wish to trap both buttons and
perform a different procedure for each button, you must
execute a STRIG/Trap Enable for each button and vou
must branch to different subroutines with different ON
STRIG() GOSUB statements.

See STRIG Function, STRIG/Trap Enable and ON STRIG()
GOSUB for additional information on the mouse button

trapping.

305

STRIG/Trap Enable Statement

STRIG(integer) ON
STRIG(integer) OFF
STRIG(integer) STOP

Turns on, turns off, or temporarily halts mouse trapping.

integer is avalue of 0 or 2 to indicate the mouse button you
are trapping. 0 indicates the left button and 2 indicates the
right button.

STRIG() ON

STRIG() ON enables mouse trapping with the ON
STRIG() GOSUB statement. If you execute a STRIG() ON
statement, BASIC checks after every program statement to
see if you pressed the mouse buttons. If you press the
mouse buttons, BASIC transfers program control to the
line number specified in the ON STRIG() GOSUB state-
ment. See ON STRIG() GOSUB.

Note: Do not confuse the STRIG/Trap Enable statement
with the STRIG/Function Enable statement. These
are two separate statements that perform two dis-
tinct functions in BASIC.

STRIG()STOP

STRIG STOP temporarily halts mouse trapping. If you
press the mouse buttons after a STRIG STOP statement is
executed, BASIC does not transfer program control to the
subroutine until mouse trapping is turned on again with a
STRIG ON statement. BASIC remembers that the mouse
buttons were pressed and transfers program control to the
subroutine immediately after mouse trapping is turned on
again.

306

Chapter 7 / Statements and Functions

STRIG OFF

Example

STRIG() OFF turns off mouse button trapping with the
ON STRIG() GOSUB statement.

When you load BASIC, STRIG() OFF is the default because
STRIG trapping slows program execution. Therefore, if
you execute a STRIG() ON statement to enable mouse
bution trapping, we recommend that you also execute a
STRIG() OFF statement when vou no longer need to
check for mouse button activity.

If you press the mouse buttons after a STRIG OFF state-
ment is executed, BASIC does not remember that the
mouse buttons were pressed when mouse trapping is
turned on again.

10 STRIG(0) ON:STRIG(2) ON
20 ON STRIG(0) GOSUB 1000
30 ON STRIG(2) GOSUB 2000

Line 10 turns on mouse button trapping. When vou press
the left mouse button, BASIC transfers program control to
the subroutine beginning at Line 1000. If vou press the
right mouse buttons, BASIC transfers program control to
the subroutine beginning at Line 2000.

307

STRIG Function
variable = STRIG integer

Returns the status of mouse buttons.

integer is a number in the range 0 to 3 to test the status of
the mouse buttons.

variable is a numeric variable to recieve the value re-
turned by irnteger.

Each #nteger 1ests for a different status of the two buttons
and returns a numeric value in variable regarding the
results of the test. The inregers and their functions are

0 Tests to see if the left button has been pressed and
released since the last STRIG/Function statement was
executed, If the left button has been pressed since the
last test, BASIC returns a — 1 in variable. If the button
has not been pressed, BASIC returns a 0.

1 Tests to see if you are currently pressing the left but-
ton. If you are pressing the left button, BASIC returns a
—1 in variable. If you are not pressing the button,
BASIC returns a 0.

2 Tests to see if the right button has been pressed and
released since the last STRIG/Function statement was
executed. If the right button has been pressed and
released since the last test, BASIC returns a —1 in
variable. 1f the button has not been pressed and re-
leased, BASIC returns a 0.

3 Tests to see if you are currently pressing the right
button. If you are currently pressing the right button,
BASIC returns a — 1 in variable. If you are not pressing
the button, BASIC returns a 0.

308

Chapter 7 | Statements and Functions

You must execute a STRIG/Function Enable statement
before you can execute a STRIG/Function statement. If you
attempt to execute a STRIG/Function statement before you
execute a STRIG/Function Enable statement, BASIC issues
an “Illegal function call” error. See STRIG/Function En-
able Trap.

309

Section 11 / The BASIC Language

Exampfe

You cannot place a STRIG/Function statement in a sub-
routine that you branch to as a result of an ON STRIG()
GOSUB statement. BASIC does not keep track of which
button was pressed after the ON STRIG() GOSUB state-
ment is executed. If you wish to trap both buttons and
perform a different procedure for each button, you must
execute a STRIG/Trap Enable for each button and you
must branch to different subroutines with different ON
STRIG() GOSUB statements.

10 STRIG ON:PRINT “Press one of the mouse
butions.”

20 FOR | = 1 TO 1000:NEXT |

30 STATO = STRIG(0):STAT1 = STRIG(1)

40 STAT2 = STRIG(2):STAT3 = STRIG(3)

50 IF STATO = —1 THEN PRINT “You pressed the
left button.”

60 IF STAT1 = —1 THEN PRINT “You are still
pressing the left button.”

70 IF STAT2 = —1 THEN PRINT “You pressed the
right button.”

80 IF STAT3 = —1 THEN PRINT “You are stili
pressing the right button.”

90 IF STATO = 0 AND STAT1 = 0 AND STAT2 =
0 AND STAT3 = 0 THEN PRINT “Aren’t you
going to press a button?":GOTO 20

Line 10 enables the mouse function and prints a message
telling you to press one of the mouse buttons. Line 20
gives you time to press one of the mouse buttons. Lines 30
and 40 check to see if either button has been pressed or is
currently being pressed. Lines 50-90 print a message re-
porting the status of the buttons. If the buttons weren't
pressed, Line 80 prints a message, and the program loops
to Line 10 to start again. To end this program, press
(BREAK).

310

STRING $ Function
STRING$(number,character)

Returns a string of number characters.
Number must be in the range 0 to 255.

Character is a string or an ASCII code. If you use a string
constant, it must be enclosed in quotes. All the characters
in the string have either the ASCII code specified, or the
first letter of the string specified.

STRING# is useful for creating graphs or tables.
Examples:

B$ = STRINGS$(25, “X")

puts a string of 25 "“X”s into B§.

PRINT STRING$(50, 10)

prints 50 blank lines on the display, since 10 is the ASCII
code for a line feed.

Sample Program

1040 CLEAR 300

1050 INPUT “TYPE IN THREE NUMBERS
BETWEEN 33 AND 159”; N1, N2, N3

1060 CLS: FOR | = 1 TO 4: PRINT STRING$(20,
N1): NEXT |

1070 FOR J = 1 TO 2: PRINT STRING$(40, N2):
NEXT J

1080 PRINT STRING$(80, N3)

This program prints three strings. Each string has the
character corresponding to one of the ASCII codes
provided.

311

SWAP

Statement

SWAP variablel, variable2

Example

Exchanges the values of two variables.

Variables of any type may be SWAPed (integer, single
precision, double precision, string). However, both must
be of the same type, otherwise, a “Type mismatch” error
results.

Either or both of the variables may be elements of arrays. If
one or both of the variables are non-array variables which
have not been assigned values, an “Illegal Function Call”
error results.

SWAP F1#, F2#

swaps the contents of F1# and F2#. The contents of F2#
are put into F1#, and the contents of F1# are put into F2#.

Sample Program

10 A$="ONE ":B$="ALL ":C$="FOR "
20 PRINT A$ C$ B$

30 SWAP A3, B$

40 PRINT A$ C$ B$

RUN

ONE FOR ALL

ALL FOR ONE

312

SYSTEM

Statement

SYSTEM

Examples

Returns you to MS-DOS level.

Your resident BASIC program is not retained in
memory.

Note: You cannot call DEBUG from BASIC.

SYSTEM

returns you to MS-DOS. Your resident BASIC program is
lost.

313

TAB Function
TAB(number)

Spaces to position xiumber on the display.
Number must be in the range 1 to 255.

If the current print position is already beyond space num-
ber, TAB goes to that position on the next line. Space one is
the leftmost position; the width minus one is the rightmost
position.

TAB may only be used with the PRINT and LPRINT
statements.

Sample Program

10 PRINT “NAME” TAB(25) “AMOUNT":PRINT
20 READ A$, BS$

30 PRINT A$ TAB(25) B$

40 DATA “G.T.JONES",“$25.00"

RUN

The display shows:

NAME AMOUNT
G.T.JONES $25.00

314

TAN Function
TAN(number)

Computes the tangent of number.

Number must be in radians. To obtain the tangent of
number when it is in degrees, use TAN (number *
01745329). The result is alwavs single precision.

Example
PRINT TAN(7.96)
prints —9.396959
Sample Program

720 INPUT “ANGLE IN DEGREES"”; ANGLE
730 T = TAN(ANGLE + .01745329)
740 PRINT “TAN IS" T

315

TIME$ Statement

variable=TIME$
TIME$ = “string”

Sets or retrieves the current time.

variable is a variable in your BASIC program that receives
the current time.

siring is a literal, enclosed with quotes, that sets the time
by assigning its value to TIME$.

You set the time in the format hh:mm:ss, where hh is the
hours, mm is the minutes, and ss is the seconds. BASIC
uses a 24 hour clock. For example, it sets 8:15 P.M. as
20:15:00.

Setting the Time

bb may be any number 0 through 23.

mm and ss may be any number 0 through 59. If you omit
the minutes, minutes and seconds default to zero. If you
omit the seconds, seconds default to zero.

Although you may omit leading zeros in each of the values,
you must include at least one digit of the previous value,
For example, you may type 0:5 to set the time to 12:05 a.m.
However, :5 is invalid.

Retrieving the Time

BASIC always returns the time in the eight character
(hh:mm:ss) format, with leading zeros. The time may be
set by the operator prior to entering BASIC. If the operator
did not set the time at the MS-DOS time prompt and the
time was not set with the TIME$ statement, BASIC returns
the length of the time that has elapsed since the terminal
was powered on.

316

Chapter 7 / Statements and Functions

Examples
TIME$ ="1."
sets the current time to 01:00:00.
TIME$ ="14:15"
sets the current time to 14:15:00.
TIME$ = “3:3:3”
sets the current time to 03:03:03.
A$=TIMES$

assigns the current time to the variable A§.

317

TROFF, TRON Statements

TROFF

TRON

Turn the “trace function” orvoff.

The trace function lets you follow program flow. This is
helpful for debugging and analyzing the execution of a
program.

Each time the program advances to a new line, TRON
displays that line number inside a pair of brackets. TROFF
turns the tracer off.

Sample Program

2290 TRON
2300 X = X * 3.14159
2310 TROFF

Lines 2290 and 2310 above might be helpful in assuring
you that line 2300 is actually being executed, since each
time it is executed [2300] is printed on the display.

After a program is debugged, the TRON and TROFF state-
ments can be removed,

318

USR Function
USR| digit|(argument)

Calls a user’s assembly-language subroutine identified
with digit and passes argument to that subroutine.

The digit you specify must correspond to the digit sup-
plied with the DEFUSR statement for that routine. If digit is
omitted, zero is assumed.

This function lets you call as many as 10 machine-language
subroutines, then continue execution of your BASIC pro-
gram. Subroutines must have been previously defined
with DEFUSR[digit] statements.

We recommend that you use the CALL statement to inter-
face assembly language programs with BASIC programs.
Do not use the USR function unless you are running
previously written BASIC programs that already contain
USR statements.

Before you can execute a USR function call, you must
define the subroutine’s address in a DEF SEG and DEF
USR statement. The DEF SEG defines the address of the
segment containing the subroutine. The DEF USR state-
ment defines the subroutine being called and its offset
from the beginning of the segment. This offset and the
most recent DEF SEG address specify the entry point of the
subroutine. See DEF SEG, DEF USR, and the section “In-
terfacing Assembly Language Subroutines”in Appendix E.

“Machine language” is the low-level language that your
computer uses internally. It consists of 8086 micro-
processor instructions. Machine-language subroutines are
useful for special applications (things you can’t do in
BASIC) and for doing things very fast (like to “white-out”
the display). Writing such routines requires familiarity
with assembly-language programming and with the 8086
instruction set.

319

VAL

Function

VAL(string)

Examples

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the
number represented by the characters in a string argu-
ment. This number may be integer, single precision, or
double precision, depending on the range of values and
the rules used for typing all constants.

For example, if A$ = 12" and B§ = “34" then VAL(A$ +
“” + B$) returns the value 12.34 and VAL(A$ + “E” +
B$) returns the value 12E34, that is, 12 * 1034

VAL terminates its evaluation on the first character which
has no meaning in a numeric value.

If the string is non-numeric or null, VAL returns a zero.

PRINT VAL(*100 DOLLARS")
prints 100.

PRINT VAL(*1234E5")

prints 123400000.

B = VAL("3" + “«" + “2")

assigns the value 3 to B (the asterisk has no meaning in a
numeric term).

Sample Program

10 READ NAMES, CITY$, STATES, ZIP$

20 IF VAL(Z!P$) < 90000 OR VAL(ZIP$) > 96699
THEN PRINT NAME$ TAB(25) “OUT OF STATE”

30 IF VAL(ZIP$) > 90801 AND VAL(ZIP$) <=
90815 THEN PRINT NAMES TAB(25) “LONG
BEACH”

320

VARPTR Function
VARPTR (variable)
VARPTR (# buffer)

Returns the offset into BASIC’s data segment of a variable
or the file control block.

VARPTR can help you locate a value in memory. When
used with variable, it returns the address of the first byte of
data identified with variable. To see the format of how this
data is stored see the section “How Variables are Stored”
in Appendix E.

When used with buffer, it returns the address of the file’s
file control block.

If the variable you specify has not been assigned a value,
an “Illegal Function Call” occurs. If you specify a buffer
that was not allocated when loading BASIC, a “Bad file
number” error occurs. (See Chaptet 1 for information on
how to load BASIC.)

The offset returned is an integer in the range —32768 to
32767. It is always an offset into BASIC's data segment,
regardless of whether a DEF SEG has been executed to
change the segment.

VARPTR is used primarily to pass a value to a machine-
language subroutine via USR[digit]. Since VARPTR returns
an offset which indicates where the value of a variable is
stored, this address can be passed to a machine-language
subroutine as the argument of USR; the subroutine can
then extract the contents of the variable with the help of
the address that was supplied to it.

If VARPTR returns a negative address, add it to 65536 to
obtain the actual address.

321

VARPTRS$

Function

VARPTRS$(variable)

Example

Returns a character form of the address of a variable in
memory.

variable is a variable name in your BASIC program.
VARPTR$ returns a three byte string in the form:

Byte 0 type indicates the type of variable.
Byte1 low order byte of variable address.
Byte 2 high order byte of variable address.

The value returned in Byte 0 is 2 for integer variables, 3 for
string variables, 4 for single-precision variables, and 8 for
double precision varaibles.

You must assign all simple variables in an array before you
use VARPTR$. Addresses of arrays change when you assign
a new simple variable.

VARPTR$ is primarily used with the PLAY and DRAW state-
ments in programs that you want to compile because the
complier does not support the X subcommand. To ex-
ecute a substring with compiler, you must append the
character form of the address of the substring to “X".

DRAW “XA$:"
DRAW “X” + VARPTR$(A$)

These statements are equivalent. The first statement is for
interpreter BASIC and the second statement is for compil-
er BASIC. The second statement appends the address of
the variable A$ to the X subcommand.

322

WAIT

Statement

WAIT port, integerl [,integer2]

Example

Suspends program execution until a machine input por¢
develops a specified bit pattern. (A port is an input/output
location.)

The data read at the port is exclusive OR'ed with integer2,
then AND’ed with integer?. 1f the result is zero, BASIC
loops back and reads the data at the port again. If the result
is nonzero, execution continues with the next statement. If
integer2 is omitted, it is assumed to be zero.

It is possible to enter an infinite loop with the WAIT
statement. In this case, you will have to manually restart
the machine. To avoid this, WAIT must have the specified
value at port number during some point in program
execution.

100 WAIT 32,2

323

WHILE WEND Statement

WHILE expression

iloop statements}

WEND

Execute a series of statements in a loop as long as a given
condition is true.

If expression is not zero (true), BASIC executes loop state-
ments until it encounters a WEND. BASIC returns to
the WHILE statement and checks expression. If it is still
true, BASIC repeats the process. If it is not true, execution
resumes with the statement following the WEND
statement.

WHILE/WEND loops may be nested to any level. Each
WEND matches the most recent WHILE. An unmatched
WHILE statement causes a “WHILE without WEND" error,
and an unmatched WEND causes a “WEND without
WHILE” error.

Sample Program

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FORI=1TO J-1
130 IF A$(l)>AS$(1 +1)THEN

SWAP A$(l), A$(l+1): FLIPS=1
140 NEXT I
150 WEND
This program sorts the elements in array A$. We assume
Array A$ has been defined previously in the program.
Control falls out of the WHILE loop when no more SWAPS
are performed on line 130.

324

WIDTH Statement

WIDTH [LPRINT] size
WIDTH buffer, size
WIDTH device, size

Sets the line width in number of characters for the display,
line printer, or communication channel.

stze may be an integer in the range 0 to 255 that specifies
the number of characters in a line. For the screen, size may
only be 40 or 80.

buffer is an integer in the range of 0 to 15 and specifies the
buffer used in the OPEN statement.

device is a string expression, enclosed in quotes, that
specifies on which device you want to set the WIDTH. Valid

devices are:

SCRN: indicates the screen.

LPT1: or LPT2: indicates Line Printer 1 or 2.
COM1: indicates the communication

channel.

When you specify a device, BASIC stores the new width
and does not change the current width of the device.
When a subsequent OPEN statement opens that device,
BASIC uses the new width while the file is open. After you
close the file, the device returns to the previous width.

When vou specify buffer, BASIC changes the width im-
mediately. This allows you to change the width when the
file is open. To return to the previous width, you must
execute another width statement.

When you set the width at the line printer or the com-
munication channel, BASIC sends a carriage return after
every size characters. If you set the width to 255 for the
communication channel, BASIC sends a carriage return
after sending the 255th character.

325

Section Il / The BASIC Language

10 WIDTH LPRINT 100

20 LPRINT “This line is over 100 characters long.
See what happens when you print a string longer
than width setting.”

Line 10 sets the printer width to 100 characters. After
printing 100 characters, BASIC issues a carriage return.
The carriage return causes the printer to print the remain-
ing characters on the next line.

To set WIDTH at the screen, you may omit the LPRINT
option in the first form of the syntax, like this:

WIDTH 40

or you may use the third form of the syntax and specify the
device, like this:

WIDTH “SCRN:", 40

You may only use the WIDTH statement to select a WIDTH
of 80 if you are using the VM-1 Monochrome Monitor or
CM-1 Color Monitor. If you are using the VM-1
Monochrome Monitor or the CM-1 Color Monitor, you
should note the following:

326

Chapter 7 / Statements and Functions

1. If you change the screen width, BASIC clears the
screen.

2. Ifyou are in Screen Mode 1, changing the WIDTH to 80
forces the screen into Screen Mode 4.

3. 1f you are in Screen Mode 2 or 4, changing the WIDTH
to 40 forces the screen into Screen Mode 1.

If you attempt to select a size outside the range of 0 to 255,
an “Illegal function call” error results.

327

Section Il / The BASIC Language

Examples

WIDTH LPRINT 132
WIDTH “LPT1:", 132

both of these statements change the printer width to 132,
The second statement does not change the printer width
until LPT1: is specified as the device in an OPEN statement.

10 WIDTH LPRINT 80

.100 OPEN “LPT1:” FOR OUTPUT AS #1
150 PRINT #1

.1000 WIDTH #1, 40

Line 10 changes the width of the printer to 80 characters.
Line 150 prints the records as 80 characters each. After
BASIC executes Line 1000, Line 150 prints the records as
40 characters each.

328

WRITE

Statement

WRITE [data, . . .]

Example

Writes data on the display.

WRITE prints the values of the data items you type. If
data is omitted, BASIC prints a blank line. The data may
be numeric and/or string. They must be separated by
commas.

When the data is printed, each data item is separated from
the last by a comma. Strings are delimited by quotation
marks. After printing the last item on the list, BASIC inserts
a carriage return. WRITE prints numeric values using the
same format as the PRINT statement. See PRINT.

10 D=95:B=76:V$="GOOD BYE”
20 WRITE D, B, V$
RUN
95, 76, “GOOD BYE”
Ok

329

WRITE# Statement
WRITE# buffer, data, . ..

Writes data to a sequential-access file.
Buffer must be the number used to OPEN the file.
The data you enter may be numeric or string expressions.

WRITE# inserts commas between the data items as they
are written to disk. It delimits strings with quotation
marks. Therefore, it is not necessary to put explicit delim-
iters between the data.

The items on data must be separated by commas.

WRITE# inserts a carriage return after writing the last data
item to disk.

For example, if

A$="MICROCOMPUTER” and B$="NEWS"
the staterment

WRITE#1, A$,B$

writes the following image to disk:

“MICROCOMPUTER”,"NEWS”

N
N
o

Appendices

Section III / Appendices

>
kS)
o
o)
>
o
o
™
w

331

Appendix A

Code

BASIC Error Codes and Messages

Number

1

Message
NEXT without FOR

A variable in a3 NEXT statement does not cor-
respond to any previously executed, unmatch-
ed FOR statement variable.

Syntax error

BASIC encountered a line that contains an in-
correct sequence of characters (such as un-
matched parenthesis, misspelled statement,
incorrect punctuation, etc.), BASIC automati-
cally enters the edit mode at the line that
caused the error.

Return without GOSUB

BASIC encountered a RETURN statement for
which there is no matching GOSUB statement.

Out of data

BASIC encountered a READ statement, but no
DATA statements with unread items remain in
the program.

Illegal function call

A parameter that is out of range was passed to a
math or string function. An FC error mav also
occur as the result of:

a. A negative or unreasonably large subscript.
b. A negative or zero argument with LOG.
¢. A negative argument to SQR.

d. A negative mantissa with a noninteger ex-
ponent.

e. A call 1o a USR function for which the start-
ing address has not vet been given.

333

Section 11l | Appendices

10

f. An improper argument to MID§, LEFTS,
RIGHT$, PEEK, POKE, TAB, SPC, STRING$,
SPACE$, INSTR, or ON ... GOTO.

Overflow

The result of a calculation was too large to be
represented in BASIC numeric format. If
underflow occurs, the result is zero and execu-

P Tty O ey 1t N At e

tion continues without an error.
Out of memory

A program is too large, or has too many FOR
loops or GOSUBs, too many variables, or ex-
pressions that are too complicated.

Undefined line number

A nonexistent line was referenced in a GOTO,
GOSUB, IF. .. THEN. . . ELSE, or DELETE state-
ment.

Subscript out of range

An array element was referenced either with a
subscript that is outside the dimensions of the
array, or with the wrong number of subscripts.

Duplicate definintion

Two DIM statements were given for the same
array, or a DIM statement was given for an
array after the default dimension of 10 has
been established for that array.

Appendix A / Evvor Codes and Messages

11

12

13

14

15

16

17

Division by zero

An expression includes division by zero, or the
operation of involution results in zero being
raised to a negative power. BASIC supplies
machine infinity with the sign of the numer-
ator as the result of the division, or it supplies
positive machine infinitv as the result of the
involution. Execution then continues.

llegal direct

A statement that is illegal in direct mode was
entered as a direct mode command.

Type mismatch

Astring variable name was assigned a numeric
value or vice versa. A numeric function was
given a string argument or vice versa.

Out of string space

String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
allocates string space dynamically, until it runs
out of memorv.

String too long

An attempt was made to create a string more
than 255 characters long.

String formula too complex

Asstring expression is too long or too complex.
The expression should be broken into smaller
expressions.

Can't continue

An attempt was made to continue a program
that:

4. Has halted due to an error.

335

Section 111 /| Appendices

18

[
O

20

21

22

23

24

25

26

b. Has been modified during a break in execu-
tion.

¢. Does not exist,
Undefined user function.

A USR function was called before providing a
function definition (DEF statement).

No RESUME

An error-handling routine was entered with-
out a matching RESUME statement.

RESUME without error

ARESUME statement was encountered prior to
an error-handling routine.

Unprintable error

An error message is not available for the error
that occurred.

Missing operand

An expression contains an operator with no
operand.

Line buffer overflow

An attempt was made to input a'line with too
many characters.

Device Timeout

BASIC did not receive information from an I/O
device within a predetermined amount of
time.

Device Fault

Indicates a hardware error in the printer or
interface card.

FOR without NEXT

A FOR statement was encountered without a
matching NEXT.

336

Appendix A / Error Codes and Messages

27 Out of paper
The printer is out of paper.

29 WHILE without WEND
A WHILE statement does not have a matching
WEND.

30 WEND without WHILE

AWEND statement was encountered without a
matching WHILE.

Disk Errors
50 Field overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a direct-access file.

51 Internal error

An internal malfunction has. occurred in
BASIC. Report the conditions under which the
message appeared to Radio Shack.

52 Bad file number

A statement or command references a file with
a buffer number that is not OPEN or is out of
the range of file numbers specified at initializa-
tion.

53 File not found

ALOAD, KILL, or OPEN statement references a
file that does not exist on the current disk.

54 Bad file mode

An attempt was made to use PUT, GET, or LOF
with a sequential file, to LOAD a direct file, or
to execute an OPEN statement with a file mode
other than I, O, R, or A,

337

Section 111 / Appendices

55

57

58

61

62

63

64

66

File already open

An OPEN statement for sequential output was
issued for a file that is already open; or a KILL
statement was given for a file that is open.

Device I/O error

An Input/Output error occurred. This is a fatal
error; the operating system cannot recover it.

File already exists

The filespec specified in a NAME statement is
identical to 3 filespec already in use on the
disk.

Disk full
All disk storage space is in use.
Input past end

An INPUT statement was executed after all the
data in the file had been INPUT, or for a null
(empty) file. To avoid this error, use the EQF
function to detect the end-of-file.

Bad record number

In a PUT or GET statement, the record number
is either greater than the maximum allowed
(32,767) or equal to zero.

Bad file name

An illegal filespec (file name) was used with a
LOAD, SAVE, KILL, or OPEN statement (for
example, a filespec with too many characters).

Direct statement in file

A direct statement was encountered while
LOADing an ASCll-format file. The LOAD is
terminated.

338

Appendix A | Error Codes and Messages

67

68

69

70

Too many files

An attempt was made to create a new file (us-
ing SAVE or OPEN) when all directory entries
are full.

Device Unavailable

An attempt was made to open a file to a non-
existent device. It may be that hardware did
not exist to support the device, such asLPT2: or
LPT3:, or was disabled by the user. This occurs
if an OPEN “COML1.: . .. statement is executed
but the user disabled RS232 support via the
/C:0 switch directive on the command line.

Communication buffer overflow

Occurs when a communication input state-
ment is executed and the input queue is
already full. Use an ON ERROR GOTO state-
ment to retry the input when this condition
occurs. Subsequent inputs attempt to clear this
fault unless characters continue to be received
faster than the program can process them. In
this case several options are available:

a. Increase the size of the COM receive buffer
via the /C: switch.

b. Implement a “hand-shaking” protocol with
the host/satellite such as XON/XOFF to turn
transmit off long enough to catch up.

¢. Use a lower Baud rate for transmit and re-
ceive.

Disk Write Protect

This is one of 3 “hard” disk errors returned
from the diskette controller. This occurs when
an attempt is made to write to a diskette that is
write protected. Use an ON ERROR GOTO
statement to detect this situation and request
operator action.

339

Section I1I / Appendices

71

72

74

Disk not Ready

Occurs when the diskette drive door is open
or a diskette is not in the drive. Again use an
ON ERROR GOTO statement to recover.

Disk Media Error

Occurs when the FDC controller detects a
hardware or media fault. This usually indicates
harmed media. Copy any existing filesto a new
diskette and re-format the damaged diskette.
FORMAT flags the bad tracks and places them
in a file “badtrack”. The remainder of the dis-
kette is now usable.

Rename across disks

An attempt was made to rename a file with a
new drive designation. This is not allowed.

340 -

Appendix B

BASIC Reserved Words and Derived
Functions

Reserved BASIC Words

ABS DEF USR LEN PEN STRIG
AND DELETE LET PLAY STRING$
ASC DIM LINE POINT SWAP
ATN DRAW LIST POKE SYSTEM
AUTO EDIT LLIST POS TAB
BEEP ELSE LOAD PRESET TAN
BLOAD END LOC PRINT THEN
BSAVE EOF LOCATE PRINT# TIME$
CALL ERASE LOF PSET TO
CDBL ERL LOG PUT TROFF
CHAIN ERR LPOS RANDOMIZE TRON
CHR$ ERROR LPRINT READ USING
CINT EXP LSET REM USR
CIRCLE FIELD MERGE RENUM VAL
CLEAR FILES MID$ RESET VARPTR
CLOSE FIX MKD#$ RESTORE VARPTR$
CLS FN MKI$ RESUME WAIT
COLOR FOR MKS$ RETURN WEND
COM FRE MOD RIGHT# WHILE
COMMON GET MOTOR RND WIDTH
CONT GOSUB NAME RSET WRITE
COS GOTO NEW RUN WRITE#
CSRLIN HEX$ NEXT SAVE XOR
CSNG IF NOT SBN

CVD IMP OCT$ SCREEN

Cvl INKEY$ OFF SGN

CVS INP ON SIN

DATA INPUT OPEN SOUND

DATE$ INPUT# OPTION SPACE$

DEF INPUT$ OR SPC

DEFDBL INSTR ouT SQR

DEFINT INT PAINT STEP

DEFSNG KEY PALETTE STICK

DEFSTR KILL PALETTE USING STOP

DEF FN LEFT$ PEEK STR$

341

Section III / Appendices

Derived BASIC Functions

Functions which are not intrinsic to BASIC may be calculated as follows:

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT

INVERSE
COSECANT
INVERSE
COTANGENT
HYPERBOLIC
SINE
HYPERBOLIC
COSINE
HYPERBOLIC
TANGENT
HYPERBOLIC
SECANT
HYPERBOLIC
COSECANT
HYPERBOLIC
COTANGENT
INVERSE
HYPERBOLIC
SINE
INVERSE
HYPERBOLIC
COSINE
INVERSE
HYPERBOLIC
TANGENT

BASIC Equivalent

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SQR(—X*X +1))
ARCCOS(X) = —ATN(X/SQR(—X*X + 1))
+1.5708

ARSCEC(X) = ATN(X/SQR(X*X — 1))

+ (SGN(X) —1)+1.5708

ARCCSC(X) = ATN(X/SQR(X*X — 1))
+(SGN(X) — 1)*1.5708

ARCCOT(X) =ATN(X) + 1.5708
SINH(X) = (EXP(X) — EXP(—X))/2
COSH(X) = (EXP(X) + EXP(—X))/2
TANH(X) = (EXP(X) — EXP(— X))/
(EXP(X) + EXP(—X)

SECH(X) = 2/(EXP(X) + EXP(— X))
CSCH(X) = 2/(EXP(X) — EXP(— X))

COTH(X) = (EXP(X) + (EXP(— X))/
(EXP(X) — EXP(—X))

ARCSINH(X) =LOG(X + SQR(X*X = 1))
ARCCOSH(X) =LOG(X + SQR(X*X — 1))

ARCTANH(X) =LOG((1 +X)/(1 —X))/2

342

Appendix B / Reserved Words and Derived Functions

INVERSE
HYPERBOLIC ARCSECH(X) = LOG((SQR(—X*X + 1)
SECANT +1)/X)

INVERSE
HYPERBOLIC ARCCSCH(X) = LOG((SGN(X)*SQR(X*X + 1)
COSECANT +1/X)

INVERSE
HYPERBOLIC ARCCOTH(X) =LOG(X + 1 /(X —1)/2
COTANGENT

343

Appendix C Video Display Worksheet

i
e e

211 1 ARERRE 2j20272y242 (2712|2133 337334313 444 44 4(4|415(S 5 § Si5|§
1 415167 11213 (4f5(6|718|9(0(1 314{5(6]{7|8 12 415 7|8(9(0]|1 3 5 7(8)9

13 11040}
i

1921

| ; BEEEEEEEEEEE BEEEEEEEERE
1BE0BEEOENARRRBABRARABE 2]212(2(2(3(3|3[3[3]3(33]3
[| o|t!2]sials|elzlalelo1}2 siei7lels|o|1]2]alajs]el7|8

uzu!
xzou

i
16 |1zaﬂ

17 | 1360]
i

18 [1440

19 11520

Appendix D

Memory Map

Hexadecimal Address
(Segment:Offset)

0000:0 to OAFF.F
0B00:0 to xA00:0

xB00:0 to xB39:0

xB40:0 to xCFF:0

C000:9 to DFFF:0
E000:0 to E7FF:0

E800:0 to F7FF.0
F800:0 to FOFF:0
FA0@:0 to FBFF:0
FC00:0 to FFFE:0

345

Description

System Area

Available to User
See Note on next page

Hardware Stack
512 levels

Video Display RAM
Screen Buffers

Room for eight 40 x 25
display pages or four
80 x 25 display pages

Not used — Reserved

Graphics RAM
Low- or
High-Resolution
Graphic Boards

Not used — Reserved
Video Character RAM
Not used — Reserved

Boot ROM

Section 111 /| Appendices

Note: Additional memory must be added in 128 K byte
increments. This key can be used to determine the value of
x in the above addresses. Memory Size is the total amount
of memory you have in your system. n is the number you
additional 128 K bytes of memory that have been added in
addition to the standard system. If you have not added any
additional memory to your system, in the memory map
above x is equal to 1.

Memory Size n Value x Value
128 K 0 1
256 K 1 2
384 K 2 3
512 K 3 4
640 K 4 5
768 K 5 6

Appendix E
Technical Information

Interfacing with Assembly Language
Subroutines

This section is for users who call subroutines written in
languages other than BASIC, from their BASIC programs.
BASIC provides for interfacing with subroutines through
the USR function and through the CALL and the CALLS
statements.

The USR function allows you to call assembly language
subroutines in the same way BASIC calls intrinsic func-
tions. However, we recommend CALL or CALLS statements
for interfacing 8086 machine-language programs with
BASIC. These statements produce more readable source
code and can pass multiple arguments. In addition, the
CALL statement is compatible with more languages than is
the USR function.

Memory Allocation

You can load your assembly language subroutine into
BASIC’s work area or into another segment of memory.

We show you both methods.
Outside the BASIC work area

When you load BASIC, the DS (data segment) register is
set to the address of BASIC's workarea. To access an area of
memory outside this workarea, you must execute a DEF
SEG statement to specify the address of the segment of
memory you are accessing. If you don’t execute a DEF SEG
statement, your CALL, CALLS, or USR statements transfer
control to an area within BASIC’s workarea. After return-
ing from the subroutine, you must execute another DEF
SEG statement to restore the DS register to its original
value. See “Chapter 7 BASIC Keywords” DEF SEG state-
ment for more information on DEF SEG.

347

Section 11l | Appendices

Inside the BASIC work area

To set aside memory space for an assembly language
subroutine within BASIC’s workarea, use the /M: switch
when you load BASIC. See Chapter 1 for a review of the
start-up procedure.

The /M: switch sets the highest memory address that BASIC
can use. The value that you specify with the /M: switch tells
BASIC that it can use all memory up to that offset. Load
your subroutine at that offset. Using the /M: switch will
prevent BASIC from destroying your subroutine. For ex-
ample,

BASIC /M:&HF000

sets the highest memory location that BASIC can use at
hexddecimal address EFFF. This reserves the highest 4K
bytes of memory for your subroutine. You can load your
subroutine at hexadecimal address &HF000 like this:

BLOAD “SUBA.ASM”,&HF000
Stack Space

If you need more stack space when you call an assembly
language subroutine, you can save the BASIC stack and set
up a new stack for the subroutine. You must restore the
BASIC stack before returning from the subroutine. You
save the stack, create a new stack, and restore the stack in
your subroutine.

Loading the Subroutine into Memory

You can use the operating system or the POKE statement
to load the subroutine into memory. You may assemble
the routines with the Macro Assembler (Catalog Number
26-5252), and link (but not load) them with Linker. The
Linker is part of the MS-DOS package. To load the program
file, observe these guidelines:

1. Be sure that the subroutines do not contain any long
references.

o8]
BN
[o9]

Appendix E | Technical Information

2. Skip the first 512 bytes of the LINK output file, and then
read in the rest of the file.

Poking a Subroutine into Memory

You can code short subroutines in machine language and
use the POKE statement to put the code into memory. To
do so, follow these steps:

1. Code the machine language instructions for your sub-
routine.

2. Put the assembly opcode for each byte of the machine
language code into DATA statements, preceded by the &H
symbols to denote that they are hexadecimal values.

3. Execute a loop that reads the DATA statements and
POKEs them into an area of memory.

For example, the opcode for the statement

PUSH BP
is 55. The DATA statement for that instruction is
DATA &H55

After the loop is complete, the subroutine is in memory.
Whether you are using the USR function or the CALL
statément to call the subroutine, you must set the value of
the subroutine entry point as the location specified in the
first POKE statement.

CALL Statement

We recommend that you use the CALL statement to inter-
face 8086 machine language programs with BASIC. Do not
use the USR function unless you are running previously
written programs that already contain USR functions.

CALL variable [parameter list]

variable is a variable in your BASIC program that contains
the offset into a segment where the subroutine starts.

Dparameter list contains the variables or constants, sepa-
rated by commas, that are passed to the subroutine.

349

Section 11l / Appendices

The number, length, and type (string, integer, single preci-
sion, or double precision) of variables passed in the CALL
statemént must match the number, length, and type of
variables expected by the subroutine.

Example:

100 MYROUT = &H0000
110 DEF SEG = &H1700
120 CALL MYROUT, HRS!, RATE!, PAY!

Line 100 defines the subroutine address at offset 0. Line
110 defines the segment address of the subroutine. Line
120 transfers program control to the subroutine, passing it
the variables HRS!, RATE!, and PAY!. In this example, HRS!
and RATE! are variables for the subroutine to perform the
calculation of weekly pay. When the subroutine returns
program control to BASIC, PAY! contains the result of the
calculation.

Entry Conditions
When the CALL statement is executed, the following occur:

1. For each parameter in the parameter list, the two-byte
offset of the parameter’s location within the data segment
(DS) is pushed onto the stack. If the parameter is a string
variable, the offset points to the string descriptor. See the
section “Accessing String Parameters” in this appendix.

2. The BASIC return address code segment (CS) and
offset (IP) are pushed onto the stack.

3. Controlis transferred to the subroutine by an 8086 long
call to the segment address given in the last DEF SEG
statement and the offset given in variable.

This diagram illustrates the state of the stack when the
CALL is executed.

Subroutine Address

When the CALL statement is executed, the operating sys-
tem loads the CS (code segment) register with the value
specified in the last DEF SEG statement. If you are CALLing

350

Appendix E / Technical Information

a subroutine within BASIC’s workarea, and no DEF SEG is
required, the CS register is loaded with the address of
BASIC's workarea. This address is shifted left four bits; in
other words, a zero is appended like this: 17000. Then the
offset of the subroutine is added to the segment address.

Example:
17000 + 0020 = 17020

17020 is the absolute address of the tirst instruction in the
subroutine.

Technical Functions

The CALLed routine may destroy the previous contents of
all registers. If you want to save the contents of the regis-
ters, the first instructions in the subroutine must be a
PUSH for each register and the last instructions in the
subroutine must be a POP to restore the registers to their
original value. You must execute a POP for every PUSH to
maintain stack integrity.

The subroutine may refer to the passed parameters as
positive offsets to the Base Pointer (BP). The CALLed
routine must PUSH BP on the stack and then move the
current stack pointer into BP. BP should be the first regis-
ter you PUSH so that the parameters may be referenced as
an offset to BP. The first four bytes of the stack contain the
IP and CS register values that BASIC saves when the CALL is
executed. To calculate the parameters offset from the BP,
use this equation:

2 * (total parameters — parameter position)
+ 6 = offset

For example, the address of parameter 1 is at 10(BP),
parameter 2 is at 8(BP), and parameter 3 is at 6(BP).

Example
PUSH BP :save BP
MOV BP,SP ;current stack position in BP

MOV BX,10[BP] ;get address of HRS! dope

351

Section III / Appendices

Exit Conditions

The called routine must execute a RET number statement
to adjust the stack to the start of the calling sequence. The
value of number is two times the number of parameters in
the parameter list.

Example
RET 6

number is 6 for our sample because three parameters
were passed.

USR Function

Although we recommend the CALL statement for calling
assembly language subroutines, the USR function is avail-
able for compatibility with previously written programs.

USR [digit] (argument)

digit is in thé range 0 to 9. digit specifies which USR
routine is being called and must correspond to the digir
supplied in the DEFUSR statement. If you omit digit, BASIC
assumes USRQ.

argument is any numeric or string expression. Even if the
function that is called does not need an argument, you
must supply a dummy argument.

Example

100 DEF USR2 = &H0020
110 DEF SEG = &H1700
120 E = USR2(A)

Line 100 defines the USR2 subroutine’s address at .offset
hexadecimal 20. Line 110 defines the segment address of
the subroutine, Line 120 transfers program control to the
subroutine, passing it parameter A. When the subroutine
returns program control to BASIC, E contains the result of
the subroutine calculations.

352

Appendix E | Technical Information

USR can only pass one value to a subroutine, and it can
only receive one value from the subroutine after execu-
tion. The value returned by a USR function is the same type
(integer, string, single precision, or double precision) as
the argument that was passed to it.

Entry Conditions

When the USR statement is executed, the operating system
loads the CS (code segment) register with the value speci-
fied in the last DEF SEG statement. If you are accessing a
subroutine within BASIC’s work area and no DEF SEG is
required, the CS register is loaded with the address of
BASIC'’s workarea. This address is shifted left four bits; in
other words, a zero is appended like this: 17000. Then the
offset of the subroutine is added to the segment address.

Example:
17000 + 0020 = 17020

17020 is the absolute address of the first instruction in the
subroutine.

Technical Functions

When the subroutine gains control, register AL contains a
value that specifies the type of argument that was given,
The value in AL may be one of the following:

Value in AL Type of Argument

2 Two-byte integer (two's comple-
ment)

3 String

4 Single precision floating-point
number

8 Double precision floating-point
number

If the argument is a string, the DX register pair points to
the “string descriptor.” See the section “Accessing String
Variables” in this appendix.

353

Section 111 / Appendices

If the argument is a number, the BX register pair points to
the Floating-Point Accuraulator (FAC) where the argu-
ment is stored:

FAC is the exponent minus 128, and the binary point is to
the left of the most significant bit of the mantissa.

FAC-1 contains the highest 7 bits of mantissa with leading 1
suppressed (implied). Bit 7 is the sign of the number

{0=positive, 1 = negative).

If the argument is an integer:

FAC-2 contains the upper 8 bits of the argument.
FAC-3 contains the lower 8 bits of the argument.

If the argument is a single-precision floating-point num-
ber:

FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.

If the argument is a double-precision floating-point num-
ber:

FAC-4 through FAC-7 contain four more bytes of mantissa
(FAC-7 contains the lowest 8 bits).

Exit Conditions

The subroutine must execute a RET 2 statement to adjust
the stack to the start of the calling sequence.

Accessing String Variables

If the parameter passed in a CALL statement is a string
expression, the parameters offset points to the string de-
scriptor. If the argument passed in a USR function call is a
string expression, the DX register points to the string
descriptor.

354

Appendix E / Technical Information

The string descriptor is a three-byte area of memory that
points to the text of the string. The string descriptor con-
tains the following:

Byte 0 contains the length of the string (0 to 255).

Byte 1 contains the lower eight bits of the string start
address in BASIC's data segment.

Byte 2 contains the upper eight bits of the string start
address in BASIC’s data segment.

The text of the string may be altered by the subroutine, but
the length of the string must not be changed. BASIC
cannot correctly manipulate strings if their lengths are
modified by external routines.

Since the string descriptor points to an area of memory in
your BASIC program, you must be careful not to alter or
destroy your program. To avoid unpredictable results, add
the concatenation symbol (+) to the string. This forces
the string to be copied into string space, where the string
may be modified without affecting the program.

Example

20 A$ ="“MONTHLY SALES REPORT” +*”

355

Section 11l / Appendices

File Control Block

A file control block is a storage area in BASIC's data
segment that contains information BASIC needs for all
functions performed on that file. When you execute the
VARPTR function and specify the buffer number, BASIC
returns the address of the BASIC file control block for that
file. Note that this is the BASIC file control block, not the
MS-DOS file control block. The address is specified as an
offset into BASIC data segment. In this section we define
the information in the file control block. Offsets are rela-
tive to the value returned by VARPTR. Length is in bytes.

OFFSET LENGTH DESCRIPTION

(] 1 Mode The mode in which the
file was opened:
1 — Input Only
2 — Output Only
4 — Random 1/O
16 — Append Only
32 — Internal use
64 — Future use
128 — Internal use

1 38 FCB MS-DOS Disk File
Control Block.
29 2 CURLOC Number of sectors read

or written for sequential
access. For random
access, it contains the
last record number +1
read or written.

41 1 ORNOFS Number of bytes in
sector when read or
written.

42 1 NMLOFS Number of bytes

left in Input buffer.

356

Appendix E / Technical Information

43 3 *rk Reserved for future
expansion.

46 1 DEVICE Device number:
0-4 — Disks A: thru D:
249 — LPT2:
251 — COM1:
253 — LPT1:
254 — SCRN:
255 — KYBD:

47 1 WIDTH Device width.

48 1 POS Position in buffer for
PRINT.

49 1 FLAGS Internal use during
LOAD/SAVE; not used for
data files.

50 1 OUTPOS Output position used
during tab expansion.

51 128 BUFFER Physical data buffer.
Used to transfer data
between MS-DOS and
BASIC. Use this offset to
examine data in
Sequential YO mode.

179 2 VRECL Variable length record
size. Default is 128, Set
by length option in
OPEN statement.

181 2 PHYREC Current physical record
number.
183 2 LOGREC Current logical

record number.

185 1 L Future use.

357

Section III / Appendices

186 2 OUTPOS Disk files only.
Output position for
PRINT, INPUT, and
WRITE.

188 <n> FIELD Actual FIELD data
buffer. Size is
determined by /S:
switch. VRECL bytes are
transferred between
BUFFER and FIELD on
/O operations. Use this
offset to examine File
data in Random /O
mode.

How Variables are Stored

BASIC stores variables in its data segment as follows:

Byte Contents Description

Byte 0 Type Identifies the type

of variable stored at this loca-
tion:

integer

string

single-precision
double-precision

AV N S SR)

Bytes 1 and 2 Name The first two characters
of the variable name.

Byte 3 Integer Integer is the number of
3-38 additional characters
in the variable name.

Byte 4 + Name The remainder of the variable
integer stored name is stored at bytes 4 +
in byte 3 the integer stored in byte 3.

358

Appendix E /| Technical Information

Byte 4 + length Data The contents of the

length variable are stored in the
bytes immediately
following the variable
name. The data can be two,
three, four, or eight bytes
in length, depending on
the type of data.

At least three bytes are required to store any variable
name. A one- or two-character variable name occupies
exactly three bytes, bytes one and two for the first two
characters and byte three contains a zero to indicate that
there are no additional characters in the variable name. If
the variable name only contains one or two characters, the
data is stored beginning at byte four. As you can see, the
location of the first actual byte of data depends on the
length of the variable name. VARPTR returns the offset of
the first actual byte of data, not the dffset of the beginning
of the storage area.

359

Index

A

Absolute value of number 94
ABS ..o 94
Active Page 291
Addition............ 55
Address, Character formof. 322
AlLoption....................... 104, 126
ALT Key for BASIC Keyword Entry 19
AND 59, 2706-271
Animation. 166, 270-271
Apostrophe for a remark., ..., .. 277
Arctangent, Computing the 96
Arrays 40-43, 143, 152, 166, 236

ASCII
Code of character on screen........... 290
Codes, printing311
Compare 56
Converting string to (ASC) 95
Converting to string (CHRS) 108
Format, Saving filesin 104, 288-289
AspectRatio 89-92, 111
Assembly language subroutines 102, 115,
141, 252, 319, 321, 347-354
ATN o 96
AUTO 97
Automatic Keyword Entry 19
Automatic Line Number Entry 97

B

Background colors. 117, 118, 121
BEEP 98
Binary File, encoded 288
Bits per Point. 166
Blanks 298-299
BLOAD............ oL 99
Boolean Operators. 59
Bordercolors......................... 118

Branch
Conditional 170, 172, 173, 223-225
onanerror 223
toaline number 170, 225
to a subroutine 169, 283

Buffer
File............. 2, 65, 71, 157, 178, 180,
205, 211, 230, 268, 286, 321
Screen 117, 291

C
P 10, 203
CALL 102, 319, 349-352
COBL ... 103
CHAIN 104, 126
Chaining Programs 104, 126
CINT. ... 109
CIRCLE.............. P 110
Clearing

theScreen......................... 117
Memory218, 287
Clock Ticks 296-297
CLOSE ... o 116
Closing files............. 115, 149, 280, 287
CLS . 117
COLOR. it 116-123
Color 241-245, 265-267
of a point on the screen 251, 290
To enable and disable 291
Column, Screen. 204, 253
COM(1) ON, OFF, STOP....... 124, 151, 220
Command Mode
prompt. ... 15
special keysin.................... 17-19
Comments in a program................ 277
COMMON........................ 104, 126
Communication
Channel 124, 232-234, 325
Files
BOF .o 151
Number of characters in queue. . .203, 207
Transferring data.............. 166, 269
Transmitting data. 232-234
Trapping. 124, 220
Compressed Files 288-289
Concatenation 55
Constants.......................... 38, 46
CONT..........i 127, 303
Continue program execution............. 127
Control Key functions in
Command Mode 17-19
EditMode 25-27
ExecutionMode 19
Converting
ASCHl to character. 108
numeric data47-50, 103, 109, 184, 131
numeric to string. 71, 216
stringto ASCIL. g5
string to numeric................. 73, 132
Coordinate, Movementon............... 301
COS ... 129

CSRLIN 130
Currentdate.......................... 135
Current time.......................... 316
Cursor position 117, 130, 204, 253
CVDS, CVIS, CVSS 73,132
D
DATA 133, 182, 276, 281
DATES ... 135
Dates, Valid.......................... 135
Debugging.................. 127, 303, 318
Defining variables 137
Defining functions 138
Defining USR subroutine. 141
DEFFN. ... 107, 138
DEFUSR 141, 319
DEFDBL 46, 107, 137
DEFINT. 46, 107, 137
Definition statements............ 46, 47, 137
DEFSNG 46, 107, 137
DEF SEG 99, 101, 102, 140, 319, 347
DEFSTRo 46, 107, 137
Degrees
cosineof 129
sineof 295
tangentof 315
to convert radians to.................. 96
DELETE 76, 142
Deleting ‘
aprogram ..., 218, 287
files fromadisk 190
programlines 104, 142
Dimensioning anarray 43
Directory 158, 280, 313
Direct Access. 70-74
Creating..................... 70-72, 268
Updating and Accessing 72-74
Division
Ordinary......................... 52,53
Integer 52,54
Documentation. 277
Double Precision 37
constants. 46
converting, 48-50, 103
DRAW 145
Draw a point on the screen.......... 265-267
Drive Identifier......................... 12

E
Edit Modeccoviiiia., 21-24
Sample Session. 25-27
Special keysin.................... 25-27
EDIT Statement 21, 148
Editing outputl 256-260
Elementof anarray................. 40, 143
Ellipseooveiiii i 110-112
Encoded Binary File. 288-289
END .o 149
EQF (End Of File)
DiskFile..............coiiiinnan.. 150
Communication File.................. 151
ERASE 152
ERL oo 153, 287
ERR . 154
ERROR.o 153-155
Error
Code. ... 154
Handling routine 153-155, 223, 282
Line numberof 153
Messages. ..., 333-340
tosimulate............ 155
Exchanging values of variables........... 312
Executing a program................... 287
Executing MS-DOS Commands. 313
Execution Mode.................., 15
Special Keysin...............coii 19
EXP e 156
Exponent 156
Exponential Format 35
Exponentiation............... 52,53
Expression............... 33
Extension............... 12, 288
F
3 10
FIELD statement 71-74, 157
File
buffer. ... 65, 116
closing 115, 116
Control Block. 321, 356
direct 70-74
sequential. 65-69
File protection 288-289
FILES .o 158
Filespec ... 12
FIX 159

Fixed point
constants L. 38

AUMENCS . ..o oo 35
Floating Point
constants L 38
AUMErICSottt 35
FOR/NEXT 160-162
Foreground colors 117, 118, 121
Formatting data................... 256-260
FRE ... 163
Function.................. 34
Brief definition of each 81-83
Defining........................... 138
KeYS. ..o 185-189
G
GET (Communication Files).............. 165
GET (Disk files) 73, 132, 164
GET (Graphics)ccoia... 166
GOSUB..................oiit, 169, 283
Graphic Images 145, 166
Graphics Options
Colors 118, 121
Coordinates 85, 87, 88, 89
Modes 85-91, 291
H
Hexadecimal
Constants........................... 38
Numerics L. 36
Valueof anumber................... 171
|
IF/THEN/ELSE 57,172, 173
Immediate Lines 16
INKEYS. 174
INPUT ..o 66, 72
input from keyboard 175, 176, 180, 197
Inputqueve...................... 151, 203
INPUT# 66,68, 178, 263
INPUTS ... 180
INSTR ... 182
INT. .o 184
Integer 2
constants 38,46
convert numberto.......... 109, 159, 184
converting 48-50
defining (DEFINT) 46

division 52, 53

NUMENCSot 35-36

Invisible characters 116, 122, 265-267
K
KEY
OFF. 185-189
ON ... 185-189
LIST. ... 185-189
Set/Display. 185-186
STOP 185-189
Teap ..o 187-189, 226
()ON ... 226
()OFF. .. 226
()STOP ... 226
Keyboard
As an input device................... 230
Input 174, 176, 197
KILL . 190
L
Last Record inafile 150
Leftdustify. 211
LEFTS. ... 191
LEN ..o 192
LET. . 193
LINE.. 194-196
Line,
Drawing on the screen 194-196
Immediate 16
Logical 15
Numbers 2, 31, 278-279
Numbers, Automatic Entry 97
Physical 15
Program............................ 16
Line Editor. 21
LineFeed............................ 289
LINEINPUT ... 197
LINEINPUT# 66-68, 198
LIST . 199
Listing to printer 199, 200, 210
Listingto screen 199
LLIST ..o 200
LOAD 201
Loading
amemory image file 99
aprogram 14, 201
assembly language subroutines 347-349
BASIC........ 9
Graphics BASIC 9

LOC (Communication Files). 203
LOC (Disk Files).ooovens. 202
LOCATEt 204
LOF (Communication Files).............. 207
LOF (Disk Files)................ 73, 74, 205
LOG ..ot 208
Logarithm coin.. 208
Logical
Expression.......... 33
Lines ... e 15
Operators. 58
LOOPS. .. oo 161, 162, 324
LPOS .. 209
LPRINT ... 210, 314
LPRINTUSING 210
LSET 71,72, 211
M
Mo 10, 99, 115, 140, 348
Memory
Address ... 238
Available. 163
Clearing 115, 218
Map ... 345
Writing datain...................... 252
Memory image file.................. 99, 101
MERGE
Option 104, 288-289
Statement. 212-213
Merging programs. 104, 212-213
MKDS, MKIS, MKSS 7
Modes, Graphics and text............... 291
Modulus Arithmetic. 52, 54
Mouse button trapping 228, 306-307,
308-310
MS-DOS command level prompt 9, 313
MS-DOS commands, executing 313
Multiplication. 52, 54
Musical notes 248, 296-297
N
NAME................, 217
Naming files............... 217
Rulesfor 13
Nested loops 161, 162, 172-173
Numeric
Constants.l 38
Conversions. 48-50, 71, 73, 103,

132, 216

Expression............ 33

Operators.coovnn... 52-54
Precision 36
Relations 56
Types of. ... 35
Number
Absolute value of. 94
Arctangentof............ 96
Converting 48-50, 71, 73, 103, 109,
132, 159, 184, 216, 304, 320
Cosineof............. e 129
Exponentof 156
Hexadecimai value of. 171
Logarithmof 208
Octalvalueof.................... ... 219
Signof......... ... 294
Sineof........... 295
Squarerootof...................... 300
Tangentofl 315
0
Octal
Constants. 38
Numericsc L 36
Valueofanumber................... 219
OCTS ... 219
Offset, Address 99, 101, 102, 141,
319, 321
Offset, Coordinate 110
ONCOM(1) ... 124, 220
ONERRORGOTO 154, 155, 223
ONGOSUB........................... 224
ONGOTO............................ 225
ONKEY 187-189, 226
ONSTRIG 228, 306-307
OPEN (Disk Files) 66-70, 72, 74,
230-231
OPEN COM1 (Communication Files) . . .232-234,
269
Operands ..., 51
Operators
togical e 58
Numeric......................... 52-54
Relational 56
String. ... 55
OPTIONBASE 106, 143, 236
OB ... 59, 270-271
OUT .. 237

P
Page, active and visual 291
PAINT. ... 239
Palette 121, 241
PALETTE, 241
PALETTEUSING 245
Parameter, passing to a subroutine ...102, 252
Passing variables.................. 104, 126
PEEK 238
Physical Lines 15
PLAY ... 248
POINT ... 251
POKE 252, 349
Ports 237, 324
POS 253
PRESET............. 251, 265-267, 270-271
PRINT 73, 254-255, 314
PRINT # 178, 262
Printer
listing.................... 199, 200, 210
outputto 230, 314
position of head. 209
widthof 325
PRINTTAB. 261, 314
PRINTUSING 74, 256-260
Program................ 31,76
ending, 149
deleting from memory................ 218
loading into memory 201
loops 161, 162, 172, 173, 283, 324
L T=T (0] 1 o 104
overlaying 104
pause exection...................... 303
TUNNING ...t 201
Program Lines......................... 16
Program Listing
to line printer. 199, 200
toScreen ...l 199
Prompt for keyboard input 176, 197
Protection, file.................... 288-289
PSET 251, 265-267, 270-271
PUT (Communication Files). 269
PUT (Disk Files). 71, 268
PUT (Graphics) 270-271
R
Radians
computing 96
cosineof 129
sineof 295

Radius of acircle 110

RANDOM mode.................... 70, 230
Random numbers 275, 285
RANDOMIZE 275
Ratio, aspect................... 89-92, 111
READ 133, 276, 281
Readingdata............ 133, 178, 276, 281
Real Numbers 35
Records
current number 202
detecting last in a disk file 150
length......... ...l 230
maximum number.................... 70
number 71-72, 164, 202
reading fromdisk 164
size and default size 70
writing todisk 268
Relational
BXPression 33
how to use relational expressions. 57
operators 56
REM. .. . 277
Remarks in a program 277
RENUM il 278-279
Renaming Files 217
Reserved Words 341
RESET ... 280
RESTORE. 133, 276, 281
RESUME 223, 282
RETURN........ .o i, 169, 283
Return to MS-DOS 313
RIGHTS 284
Right portion of a string................ 284
ND..oo 275, 285
Row, screen 130, 204
RSET ... 286
RUN..... 14
Running a program 14, 201
S
IS 10, 230
SAVE ... 288-289
Saving
a memory image file................. 101
aprogram 12, 288-289
a program in ASCIl format 104
SCREEN (Statement) 117
SCREEN (Function) 290
Screen
buffer.......... . . 117
clearing ... 117

images..........cocoiiiin. 270-271
modes, selecting.................... 291
printing datato................. 254-261
program listing 199, 200
TOW. ot oo ettt e e 130
SPACING e 314
width 291, 325
Segment......................... 140, 141
Sequential Files 65-69
Accessing and Updating 68-69, 178,
198, 230-231, 329
Creating......... 66-67, 230-231, 262, 329
Setting the time.................... ... 316
SGN ... 294
SIN. . 295
Sineofanumber...................... 295
Single Precision. 37
constants. 46
convertingovien..... 48-50
defining (DEFSNG). 46
Softkeys 185-189
SOUND...............oiii o 296-297
Sounds, to generate 98, 248, 296-297
SPaACBS . ..o 298
SPACES 298
SPC . 299
SAR .. 300
Square Root of Number 300
Stack Space...................... 115,348
Statement. L 3
brief definition of each 76-81
Status of mouse buttons. 308-310
STICK. .. 301
STOP ... 303
STRS ... 304
STRIG (Function). 305
STRIG (Statement) 308-310
STRIGOFF.............. ... i 305
STRIGON i 305
STRIG Trapping 306-307
STRIG() OFF......... 307
STRIG()ON 228, 306
STRIG({) STOP 228, 306
Sting. ...
COMPATE. . .o e e ee e e 56
concatenation. 55
constants. 38, 46
convertingto....................,..304
converting to ASCIl 95
converting to numeric.......... 49, 50, 73,
216, 320
defining (DEFSTR) 46
descriptor. 354-355

BXPreSSION 33

operator 55
reflations. ... 56
storage requirements. 34
Structured programming techniques. . 169, 224,
283
Subroutine............... 169, 224, 349-352
Subseript. ... 40
Substring........... 182, 191, 214, 215, 284
Subtraction 52, 55
SWAP. ... 312
T
TAB ... 210, 261, 314
Tables (see Arrays) 40-43
Tangentof anumber................... 315
Textmode 291
Ticks, clock 296-297
TIMES ... o 316
Time, setting, retrieving 316
Trace function 318
Trapping
mouse buttons. 228
Trigonometric Functions 342-343
TRON, TROFF ... 318
Type Declaration Tags........ 40, 46, 72, 137
U
User Defined Functions................. 107
USR subroutine number 141
USR. .. 319, 352-354
USR, argumentof..................... 321
\
VAL . 320
Variable
Accessing Strings 354-355
addressof 321
assigning variables 175, 193
clearing 115
defining, 137
exchanging valuesof. 312
how BASIC classifies. 46
How BASIC stores. 358
inititizing. 115
NUMEC . ..o et 38, 47

rules fornaming 39

BYPBS .o 46 WIDTH.......................... 117, 325
VARPTR., 321,35 WRITE............ o 328
VARPTRS.oii.l, 322 WRITE#........ e, 329
Video Display Worksheet. 344 Writing data
Visualpage 291 onthescreen....................... 328

to a sequential file................... 329
w
WAIT .. 323 X
WEND 324

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM u_ K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 TUN

B74-9485-08/84-5P Printed in U.S.A.

