MODEL 2¢¢¢ BUS DECODING BLOCK DIAGRAM

HLDA 4
CYCLE ‘ N
ALE pECODING | TO BUS
799 CONTROL
FROM BUS
G e Fopems CONTROL
ADDRESS
LATCH CPUAXX .
|STazus U83,64,77 apoRess/ | BUSA=
U { > m%g%n
U76 | ADDRESS/DATA 052,53
U6S ,66
PATA | _CPUDXX | g7g'g
STEERING 8USDxx
usd,s1 ‘
= _E ’
{ DT/aw l \
Dy ' ' [
—
= PERIPH
DATA |
. — BUS PERD
U4h
pCsd) :
15 —
4 CPUAXX
~1 soor
PERIPE L oy _| oS
DECODE BOARD CS |
u71,98 ~DERIPH .
: =
ucs
CPUAXX (—MEMYR
[——UEMRD
7 | e
CONTROL
pcst A - U116,117 8
o U127,128
u98

i

HANDOUT - MODEL 20@0@ BUS MAP

GDB - @2/14/84

20¢¢ BUS INTERFACE

The Model 20@¢ Bus Interface section includes the ICs necessary to produce and
control the iAPX 186 (8@186) processor bus.

— There are four main buses:

CPU bus System bus Peripheral bus Internal Memory bus

The 8#186 processor is supplied in a 68 contact leadless chip. To provide its
many functions with a limited number of pins, the 80186 uses a MULTIPLEXED
address and data bus. This means that the address and data lines share the
same contacts on the processor. Some means of separating the two must be
provided externally to the processor.

U63, Ub4, and U77 (schematic pg 2 of 13) are the ADDRESS DEMULTIPLEXERS. Their
job is to latch the address when it becomes available. U5@ and U51 are the
DATA GATES. The data bus is not latched, but is simply enabled and steered as
necessary.

The trick is knowing when the bus contains ADDRESSES and when the bus contains
DATA. The only thing that knows for sure is the CPU itself. It supplies us
with three timing signals - DEN%*, DT/R*, and ALE.

ALE is the Address Latch Enable signal. This signal is timed by the processor
such that the FALLING edge of ALE indicates that a valid address exists on the
lines. ALE is buffered by part of Ul@#5 to become a new signal, CPUALE. It is
also buffered by part of U78 to become BUSALE which appears on the motherboard.
There is no difference between ALE, CPUALE, and BUSALE except a slight and

"‘ hopefully negligible gate delay. .

The falling edge of CPUALE is used to latch the address lines into the address
latches, U63, U64, and U67. Note that only the lower 16 address lines (A@-AlS5)
are actually multiplexed. Address lines Al6 - Al9 and the processor status
lines SP - S2 are merely latched by the falling edge of CPUALE. No
demultiplexing is actually necessary.

The address demultiplexers (U63, U64, U77) are also effected by CPUHLDA. This
signal is identical to HLDA from the processor, except it is buffered by part
of Ul@5. CPUHLDA is produced by the processor in response to a HOLD signal
received from another unit. CPUHLDA is used to float (tri-state) the address
bus multiplexers while the other device uses the bus.

U5@ and U51 are the DATA STEERING GATES. Their first job is to properly direct
the flow of the data bus - to the processor or from the processor. This is
controlled by the signal DT/R* (Data Tramnsmit/Receive Not). If DT/R* is HIGH
the gates are placed in an OUTPUT (transmit) mode. At this time the processor
is attempting to place information on the data bus during a WRITE cycle. If
DT/R* is LOW the gates are placed in a INPUT (receive) mode while the processor
is attempting to READ informationm.

The processor must also make sure that the data bus is not enabled while

address information is present. This is the primary function for the DEN¥

(Data ENable Not) signal. If DEN* is LOW the data bus buffers (US@, US1) are

enabled and data passes through unimpeded. If DEN* iS HIGH the data buffers
PN\ are floated.

20¢¢ BUS INTERFACE -- GDB 2/20/84
PAGE 1 OF 3

“Note that DT/R* is buffered by part of Ul@5 to become CPUDT/R*, and DEN* is
« buffered by part of Ul@5 to become CPUDEN*.

There are three STATUS LINES - S@, S1, and S2 (U79 pins 52, 53, 54). These _
N lines are latched by U77 to become LS#, LS1, and LS2. These lines are a direct
— indication of what the processor is doing at any given moment. There are five
possible states the processor may be in:

1) Memory I/0 2) Peripheral I/O 3) Interrupt acknowledge
4) Halted 5) Passive

These states are reflected in the status lines as follows:

S2 Sl s@ STATUS

1 [} g Instruction fetch cycle _

1] 1 Memory READ cycle | -memory I/0

1 1 [Memory WRITE cycle _

@) 1 Peripheral READ cycle _

) 1 9 Peripheral WRITE cycle _|-peripheral I/0
@ | @ | @ | Interrupt Acknowledge

g |- 1 | 1 | Halt

1 | 1 | 1 | Passive

You'll notice that generally the S2 signal can be used to indicate a memory
cycle While the S@ and Sl lines are used to indicate READ or WRITE cycles.

The three status lines are decode by a l-of-8 decoder IC, U99. Note that U99
is DISABLED by the CPUHLDA during a hold acknowledge time and by CPUALE while
the address lines are being latched. HI3 is simply a pull-up resistor to +5
volts,

The processor also produces RD* (READ NOT) and WR* (WRITE NOT). These signals
are combined with the decoded outputs of U99 to produce distinct READ and WRITE
for the peripheral and memory cycles. The resulting signals are CPUIOR* (CPU
I/0 READ NOT), CPUIOW* (CPU I/0 WRITE NOT*), CPUMW* (CPU MEMORY WRITE NOT), and
CPUMR* (CPU MEMORY READ NOT). Both MR* (MEMORY READ NOT) and MRF* (INSTRUCTION
FETCH NOT) are combined with RD* to produce CPUMW*,

Once the address and data lines are demultiplexed and latched they are
collectively called the CPU BUS. This is as close as any device can get to the
CPU itself. The address lines branch off to all parts of the main logic PC
board without further buffers or gates. However, only the BOOT ROMS are
connected directly to the data bus. All other devices are buffered from the
CPU data bus in some manner.

2000 BUS INTERFACE — GDB 2/20/84
PAGE 2 OF 3

he lower eight data lines (CPUD@ - CPUD7) are steered through U44 (pg 11 of
13) to become the PERIPHERAL DATA BUS (PERD@ -~ PERD7). This bus handles the
8-bit peripheral devices. Included are the FDC (Floppy Disk Controller), the
interrupt controllers (pg 7 of 13), the line printer, configuration, and
keyboard ports (pg 12 of 13), and serial I/O and timer ports (pg 13 of 13).
The direction of U44 is controlled by CPUDT/R*. The chip is enabled by
activity on the INTAK*, BUSDMACK@* (BUS DMA ACKNOWLEDGE § NOT), or PCSP*
(PERIPHERAL CHIP SELECT @ NOT) lines.

The complete 16-bit CPU data bus is sent to the memory control section (pg 1¢
of 13). The CPU data bus is gated by Ull7 and U128 onto the Internal Memory
bus (IB#F - IB15) during a memory write. The memory data is latched onto the
CPU data bus by Ull6é and Ul27 during a memory read.

The entire CPU data, address, and control bus is gated by U52, U53, U65, U66,
U78, and U8J to become the main system bus, indicated by the BUS—- in the name
of the signal. The System bus runs mainly to the video generation section of
the main logic PC board (pg4, 5, 6 of 13) but also becomes the main signals on
the motherboard expansion connector, J5.

The various buses appearing in the 20¢0 system must be tightly controlled.
Devices using the HOLD line, and those using Direct Memory Addressing (DMA) can
seize the bus for their own uses. Of course, two devices must NEVER control
the bus at the same time.

In the case of DMA request the processor handles the bus control since the DMA
controllers are built into the CPU itself. In the case of an external HOLD,
the device producing the HOLD will control the bus. The only area on the main
PC board capable of producing a HOLD is the video section, producing signal
VIDHOLD. Other devices that plug into the motherboard may generate a HOLD
(BUSHOLD¥*).]

In the case of a HOLD the bus is handled, by the HOLDing device through U79,
Ul¢2, and Ul¢3. The important signals produced by PALs Ul#2 and Ul@3 are HOLD
to the CPU, BUSADIR to U65 and U66, BUSAEN* to U65, U66, and U8@, BUSDEN* to
U52 and US53, BUSDT/R* to U52 and U53, BUSHLDA* hold acknowledge to the bus, and
VIDHLDA* hold acknowledge to the video section.

20@¢ BUS INTERFACE —- GDB 2/20/84
PAGE 3 OF 3

> MODEL 2¢¢¢ BOOT ROM

All computer systems must have enough "smarts" to be able to begin operating
from virtually nothing. Even all RAM based systems like the Model II must
#\ contain enough non-volatile program to allow the system to load and run a more
-~ complete operating system without serious intervention of the user.

This non-volatile program is called a BOOTSTRAP and is contained in the BOOT
ROM. For a boot ROM to be useful we need to know only one item - where in
memory does the processor begin processing after a power up or reset? This
address is defined by the manufacturer of the CPU. Once this address is known

the bootstrap program can be written such that it will run at this memory
location. The hardware is designed such that after a power up or reset the CPU
will always find this program inside the ROM.

The 80186 is defined to begin processing at address FFFF@H after power onm or
reset. The 80186 also supplies a special signal called UPPER CHIP SELECT NOT
(UCS*) on pin 34 of the chip package. UCS* is active any time an address in
the upper memory area is accessed.

Of course, this upper memory area must be defined. After power on or reset the
lower limit of the upper memory area is defined as FFCA@H. A little
mathematics will show that this is the upper 1K of the total 1 megabytes of
memory. Any address in the range of FFCAUH to FFFFFH will produce UCS*. This
will set us up as a possible 1K of memory space available for the boot ROM.

We have already determined the the 80186 processor starts processing at address
FFFFPH. This falls within the 1K upper memory limit, so UCS* is active (LOW).

Referring to page 7 of 13 in the Model 200¢ schematics, we see that UCS* is

f“ gated with CPUALE by Ul133. This will assure that BOOT*, the ROM chip selects,
will NOT be active when the address lines may be changing. BOOT* is also a
function of the activity on CPUAl4. BOOT* will be produced only if CPUAl4 is
HIGH, locking us into a 16K segment of the boot ROM.

Note that the 80186 starts processing at FFFF#H, only 8 words below the top of
memory. This would appear to be a problem, but remember that UCS* is active
for at least the upper 1K of memory. The lower limit of the UCS* signal can be
changed under software control. In fact, it may be expanded up to 256K bytes.
The Model 20¢¢ boot ROMS are only 64K bytes, and it is doubtful that all 64K is
used.

The 80186 also produce a signal Lower Chip Select Not (LCS*) and four Middle
Chip Select Not (MCSP* - MCS3*). These signal serve the same purpose as UCS¥,
but for different memory areas. LCS* would be used to define a chip or chips
in the lower memory area from addresses @@@U@@H up to 3FFFFH, but this signal is
unused in the Model 20@@#. By definition, LCS* will not be active until its
upper limit is programmed. Since LCS* is unused, its upper limit is never
programmed, effectively disabling it.

Of the four MCS* signals, MCS2* and MCS3* are presently unused, but run to J4,
the Math Co-processor connector, and are probably used on that board. MCS@*
and MCS1l* are buffered by U8l (pg2 of 13) to become CPUMCS®* and CPUMCS1*.
These two signals are then buffered onto the system bus by U8¢ to become

A\ BUSMCS§* and BUSMCSL*.

20¢@ BOOT ROM -- GDB 2/20/84
PAGE 1 OF 2

3.
¢ Like LCS* and UCS*, the MCS* signal can have their limits set by software. The

v

~

TOTAL area covered by the MCS* lines can range from a minimum of 8K to a
maximum of 512K. With in these limits the area is divided equally among the
four MCS* lines. Therefore, if the area size is 8K, each MCS* line will define
a 2K block within the 8K. If the area is 512K each MCS* line defines a 128K
block. There are several limitations on the area size and where it may start.
The most sever of these is that the limits of UCS*, MCS*, and LCS* may not
overlap.

Since the limits for MCS* are programmable they may be reprogrammed to point
almost anywhere (within their limitations) at will. One of the uses of MCS@*
and MCS1* are to set RAM memory limits. CPUMCSP* and CPUMCS1* can be found in
the memory timing circuitry on page 9 of 13.

2006 BOOT ROM -- GDB 2/28/84
PAGE 2 OF 2

MODEL 2¢¢¢ PERIPHERAL SELECTS

Like the memory select signals LCS, MCS, and UCS, the 8186 CPU also supplies a
set of peripheral chip select signals, PCSf* - PCS6*, These signals can be
used to decode various areas of memory for device I/0 function. Like the
memory signals, the peripheral select signals are totally defined by the
operating system. .

Like the memory select lines, the peripheral select lines are defined by an
address limit which may be set under software control. Once the limit is set
each peripheral select line (PCSP - PCS6) defines a 128-byte block of memory.
Using the system address lines these blocks of memory can be further broken
down into small blocks as the specific device requires.

There seven PCS lines available for use.

PCSP* - General I/0 ports
PCS1l* - DMA Acknowledge ports
PCS2* - 90@7 CRTC ports
PCS3* - BUSPCS3%*

PCS4*.- BUSPCS4*

PCS5* - BUSPCS5*

PCS6* - unused

PCSP* is further divided into smaller areas by combining it with address lines
to produce the following ports:

- PCS@PPA* - Speaker/Timer controls _
PCSPPOB* ~ DMA multiplexer control register
FLDTC* - FDC DMA terminate

PCSPP1 - 8251A Serial I/0 chip

PCSPP3 - 8272A Floppy Disk Coutroller
PCSPP4 - 8253 Timer

PCSPP5 - 8255 Parallel I/0

PCSPP6 - 8259A Interrupt Controller #
PCSPP7 - 8259A Interrupt Controller 1

20@¢ PERIPHERAL SELECTION -— GDB 2/28/84
PAGE 1 OF 1

o

~

-

2
MODEL 20@@ INTERRUPTS

The 8@186 contains 5 internal sources of hardware interrupts. These are:

@l1) Timer @-
92) Timer 1
@3) Timer 2
$4) DMA - channel @
.@5) DMA channel 1

The 80186 also has provisions for up to 5 external interrupts. Two of these
interrupts are programmable as interrupt acknowledge outputs. Of course, the
80186 also contains provisions for properly handling and prioritizing all ten
interrupt sources.

Of the five external interrupt pins, one is a Non-Maskable Interrupt, or NMI.
One use of the NMI is to signal that the power supply is not functioning
properly. This is indicated by the ACLO* signal from J1#, the power supply
connector.

Of the remaining four interrupt pins, only two, INT® and INTl, are programmed
as interrupt signal input pins. The remaining two, INTA@* and INTAl*, are the
interrupt acknowledge pins. When the 80186 is programmed in this manner the
interrupt system is said to be in the CASCADE MODE.

However, there are 16 possible external interrupting devices available to the
8(186:

§l) Main logic memory parity error

@2) Memory/peripheral timeout .

#3) Main logic serial I/O channel

@4) Second serial I/O chanmel option

@5) Main logic floppy disk controller

#6) Secondary floppy disk controller option

@#7) Hard disk countroller

@8) Second hard disk controller option

#9) Keyboard

14) CTR 9907 video controller

11) Mouse

12) Line printer

13) Math co-processor option

14) Additional memory parity error

15) DMA programming error

16) Unused.

Handling these interrupts is done with two 8259A Interrupt Controller ICs, U42
and U43. These IC can prioritize or disable the interrupts, depending on how
they are programed. The processor itself can also prioritize each device (INT®
or INT1).

When in the cascade mode the 80186 expects the 8259 to supply an INTERRUPT
VECTOR on request. The vector for each of the 16 interrupts is placed in its
corresponding 8259A during the boot sequence of the software to be used. When
an interrupt occurs the CPU acknowledges the interrupt and requests that the
vector be placed on the peripheral data bus (PERD@ ~ PERD7). The processor
then receives this vector and uses it as an index into a jump table to locate
the entry point for the interrupt handling software.

200¢ INTERRUPTS -- GDB 2/20/84
PAGE 1 OF 1

MODEL 2090 DMA

The 8§186 CPU has provisions for two Direct Memory Access (DMA) channels built
in. Using the circuitry built around U62 and U49, up to four DMA channels can
be multiplexed onto the to CPU DMA channels.

Of the four DMA channels ounly two are used. Channel # comes from the Floppy
Disk Controller (FDC). Channel 3 comes from the optional Hard Disk Controller
card.

U49 is an 8-bit data latch. The lower 4 bits (f-3) are used as enable lines

called DMAPEN - DMA3EN. These bits are used to enable the DMA request signals,
BUSDMARQ@* - BUSDMARQ3*, onto the DMA input lines to the processor.

The upper 4 bits (4-7) of U49 are the DMA select bits called DMA@S - DMA3S.
These bits are used to select which of the two DMA channels any particular DMA
request will activate.

A DMA acknowledge is generated through software to the particular port
requesting DMA. These signals are BUSDMAK@* - BUSDMACK3*.

If a DMA programming error is produced (more than two enabled DMA channels
routed to the same 8§186 channel) DMEINT16 is produced. This interrupt signals
that a DMA error has occured. :

“

200¢ DMA CONTROL -- GDB 2/2¢/84
PAGE 1 OF 1

' 4
@ . OVERVIEW
iAPX 186 PROCESSOR

The Intel iAPX 186 processor (commonly referred to as the 8@186) is supplied in
a 68 pin leadless chip carrier package. The 186 processor is upwards

M\ compatible with the 8086 and 8088 processors, and adds 1§ new instruction types
~ to those already available on the 8086 and 8@88.

*% General Purpose Registers ¥¥%

The 186 is a true 16-bit processor in that it both accesses and operates on
data and instructions in 16-bit words. It is also capable of 8-bit operationm.
The 186 contains a 16-bit Arithmetic Logic Unit (ALU) which is supported by
fourteen (14) 16-bit registers.

Eight of these registers are general purpose registers used by the ALU. Four
of the general purpose registers can be split into 8-bit pairs to allow
operation on 8-bit data. These registers are called AX, BX, CX, and DX.

Two of the general purpose registers are Index Registers, commonly used as
pointers into data areas. A l6-bit Base Register is also supplied. The

.~ function of the base register is almost identical to that of an index register,
except that the index registers have the ability to be auto-incremented and
auto-~decremented. A 16-bit Stack Pointer is also supplied.

*% Segment Registers *¥

Four of the 16-bit registers are assigned as 16-bit segment registers. These
registers are used to effectively offset the actual address of the program,

’.\ data area, or stack. By changing the values of the segment registers a program
may be rum in any area of the memory without need for position independent
coding techniques.

During operation, the value of the segment register is shifted LEFT by four
bits. Then, the base address of the program (or data) is added to the segment
register value. This produces a 2¢-bit absolute (physical) address to be
accessed or executed. This result in a 2¢-bit absolute address space, or 1
megabyte of addressable RAM area.

As an example, suppose a program is written such that it resides at a base
address of 10@PH (hex). As well, suppose that the code segment register is set
at 10¢gH. When the program is run, the code segment register is shifted LEFT 4
bits to supply an address of 1§@@@H. The program base address is added to this
value, producing a physical address of 110@@#H. This becomes the absolute
address at which the program is running. The shifting and addition process is
automatic, and need not concern the programmer that writes the specific
application program.

It can be seen that, by manipulation of the segment registers, any specific
program can be made to run virtually anywhere in memory without making any
changes to the application program. This gives the 186 a strong basis for
multi-processing, multi-user operation, or both simultaneously. Each process
or user is assigned a unique, non-overlapping segment of memory. The master
time-sharing control program simply keeps track of what is using each segment,
A and changes the segment registers at the appropriate time allow each process to
run.

iAPX PROCESSOR OVERVIEW
PAGE 1 OF 5 $4/09/84 gdb

8

In addition to the code segment register, there is a data segment register, a
stack segment register, and a fourth extra segment register. Due to the nature
of the 186 machine code, it is possible to keep these four segments completely
separate in memory. There is no direct or implied relation ship between these
four segments. It is possible, and in some cases desirable, to keep these four
segments in completely separate, distinct memory areas, so long as they do not
interfere with other programs, data, or stack.

** Program Counter and Status Register **

The 186 also contains 16-bit instruction pointer or program counter. This
register contains the base address of the next sequential instruction to be
executed. Of course, interrupts and subroutines will effect the value found in
this register. As explained above, the base value contained in the program
counter is added to the shifted value of the segment register to determine the
physical memory address within the 1 megabyte memory space.

The last of the fourteen registers is the status or flag register. This
register is much like the flag registers found in other processors. The usual
Zero Flag, Overflow Flag, Carry Flag, etc are present, but there are some
significant additions.

There is a Single Step flag which controls a single step function. By setting
this flag the processor can be made to step through a program one instruction
at a time for debugging purposes.

There is a Direction Flag used by the processor when processing string
information. "By setting or resetting this flag the index registers can be made
to auto increment or auto decrement after an instruction which accesses string
data. This saves program execution time, as it is not necessary the the index
register be incremented or decremented by the program itself.

*% Bus Architecture **

The iAPX 186 contains all of the "usual" microprocessors features: address
lines, data lines, clock generation, bus control circuitry, etc. with a few
minor variationms.

The 186 handles 20 address lines to address a total of 1 megabyte of address
space. The physical address of an instruction or data has already been
determined to be the result of left-shifting the segment register and adding
the 16-bit base register involved to form the 20-bit absolute address.

In order to keep the number of pins manageable the 186 uses data/address line
multiplexing. The 16 data input/output lines are multiplexed onto the same
pins as the lower 16 bits of the address lines. Of course, the 186 also
supplies the necessary timing signals to allow the address and data to be
properly demultiplexed into and out of the processor.

The 186 contains logic to handle "slow" peripherals by the generation of wait
states. Two "wait" lines are provided ~ ARDY and SRDY. They function
identically, except that SRDY must be synchronized to the processor clock.

ARDY requires no such synchronization. However, the 186 allows the number of
wait states to be programmable, and the SRDY and ARDY lines may be ignored
completely, in which case wait states may be automatically included or excluded
under program control.

1APX PROCESSOR OVERVIEW
PAGE 2 OF 5 @4/09/84 gdb

¢ The processor also allows for bus sharing with other devices or processors.
¢ HOLD and HLDA are supplied for this purpose. If another device asserts the
HOLD line the processor will relinquish the bus to the other device, but only
after the processor has finished its current instruction. When it is finished
the processor will assert the HLDA line to signal that the other device may
#N\ control the bus. When the other device is finished it drops the HOLD line and
_ the 186 continues processing.

*% Additiéns Wk

At this point the iAPX 186 takes several radical digression from other
processors. These digressions set the 186 far above many other processors.

*% Prefetch Queue *¥*

The 186 contains a 6-byte PREFETCH QUEUE. This section works almost
independently of the processor, and strives to keep itself filled with the next
6 sequential bytes in memory. It can do this while the internal ALU is
processing an instruction or data. When the ALU needs the next byte it is
presented from the prefetch queue so that the ALU does not have to waste time
waiting for the next byte to be fetched from memory. This results in a
significant increase in instruction throughput.

However, make note that the prefetch queue fills itself with the next 6
SEQUENTIAL bytes. If the current instruction in the ALU results in
non-sequential program flow (JUMP TO, JUMP TO SUBROUTINE, etc) the prefetch
queue must be emptied and reloaded, and the ALU must now wait for the next
instruction to be fetched from memory. However, the vast majority of program
time is spent in sequential program flow, so the effects of prefetch queue
dumping are minimal.

‘#% Chip Selection **

The iAPX 186 also contains internal chip selection decoding circuitry. Three
of these outputs determine three main memory areas - Lower Memory, Middle
Memory, and Upper Memory. All three areas are programmable in size, and the
upper and lower areas may be disabled.

The middle memory area is further decodes into four equal sized blocks. The
starting point of the first block and the block sizes are programmable. All
four blocks must be of the same size.

The 186 also decodes a separate peripheral memory area which is separate from
and does not conflict with the system RAM memory area. The absolute address of
the peripheral area is programmable. This area is effectively port addresses.
The peripheral memory area is divided into seven 128-byte blocks, and one
select output is provided for each block. Further address decoding must be
accomplished through external circuitry.

*% Interrupts **
The iAPX 186 is capable of directly handling 5 internal hardware interrupts, 5

external hardware interrupts, and 8 internal software interrupts, or traps.
M\ The hardware interrupts are prioritized by an internal interrupt controller.

iAPX PROCESSOR OVERVIEW
PAGE 3 OF 5 @4/0¢9/84 gdb

L]

2 4

o

Two of the five external interrupt pins can be programmed as interrupt
acknowledge outputs, thereby allowing three external interrupts, two of which
allow true handshaking capabilities. Using extermal circuitry, up to 16
external interrupts may be handled on the two available lines. The NMI
interrupt has no handshaking capabilities, but is used as a "fatal error"
interrupt, usually signifying that the power supply is about to die.

*% Counters **

The 1APX 186 contains three internal counter circuits. All three counters may
be clocked from the processor clock (8 MHz). Each counter is updated every
four CPU clock cycles, therefore their maximum operation frequency is 2 MHz.

All three counters contain a 16-bit MAX COUNT register. When the counter
reaches this count the output of the counter is activated. The output of
counter 2 is not available externally to the processor. The counters may be
used in this mode as a time delay device, and Counter 2 is often used a a DMA
request timer.

Counters # and 1 each contain a second MAX COUNT timer, and they may be
programmed to alternate between max count registers. The counter output
directly reflects which max count register the counter is using. By proper
programming of the max count registers the outputs of counter @ or 1 may be
used to generate waveforms of varying duty cycle.

Counters @ and 1 may also be clocked by an external source which may be useful
for event counting or real time applications. Additionally, each of the three
timers may generate an internal hardware_interrupt to the processor.

*% DMA Controller **

The iAPX 186 contains a 2 channel DMA costroller. Both channels are identical.
Each channel may provide an interrupt to the processor.

Each DMA channel contains a 2¢-bit (1 megabyte) SOURCE register, a 2(¢-bit
DESTINATION register, and a 16-bit (64K) COUNT register, along with associated
control registers.

The DMA channels can be programmed to operate in virtually any mode. Data may
be transferred from memory location to memory location, from memory location to
peripheral device, from peripheral device to memory location, or from
peripheral device to peripheral device. Data may be transferred in 8-bit bytes
or 16-bit words.

DMA may occur in a BYTE MODE where each byte (or word) of data is transferred
and then the transfer is stopped to let some other device control the bus. If
no other device needs the bus then another transfer takes place.

DMA may also occur in a BURST MODE where a block of data (whose size is set by
the count register) is transferred. The DMA will not release the bus until the
transfer is complete.

iAPX PROCESSOR OVERVIEW
PAGE 4 OF 5 @4/09/84 gdb

»

2 Data may also be transferred in a SYNCRONIZED mode. In this mode either the

source or destination device may initiate the transfer. This allows devices

‘like the FDC chip to accept or send data at its own pace. Data transfers

between two like devices (memory to memory, for example) may be unsynchronized,
running as fast as possible. The result is that DMA transfers can be
accomplished at rates approaching 2 megabytes per second.

*% Data Types **

One of the iAPX 186's most interesting features is its ability to handle
different data types directly. All processors can handle standard 8-bit binary
numbers, some can handle up to l6-bit binary numbers, and a few can handle
Binary Coded Decimal (BCD). The 186 handles all of these, and more.

o

Integer

A signed binary numeric value of either 8 or 16 bits. Integer operations
assume 2's complement representation of the numbers involved.

° Ordinal

An unsigned binary value of either 8 or 16 bits.
° BCD

A byte representing the decimal digits §-9.

° Packed BCD =

A byte representing two decimal digits ¢;9. Each nibble (4 bits) of the byte
is one decimal digit.

° ASCII

A byte representing the alphanumeric and control codes specified by the ASCII
standard.

° Strings

Strings are contiguous blocks of binary data. They may be up to 64K bytes in
length. These strings should not be confused with the BASIC language STRING
functions, as these are usually limited to to messages or ASCII data. The

strings manipulated by the 186 have no limit on their individual byte values.

1APX PROCESSOR OVERVIEW
PAGE 5 OF 5 §4/%#9/84 gdb

‘x

-, Vin

FIGURE 1. BASIC FLYBACK CONVERTER

7S =135 VAC | namial 120Use

AC Line MODEL 20@@ 95 WATT POWER SUPPLY
fuse & M1 input DC .
12v output
surge :
lxnugt:mq tilter supply g seconaary | filters o
I |
| 1
| |
| l
auxillary] overvoltage
power supply (+12V) crowopar
| = 9% 0V
: | 6, Py S (lc‘—\\m‘nm\
|
|
, |
sott scart latch — s e]
Semiconductor —
Switch +5V outpu &
- A l g secondary filcer o)
Control 1IC
duty cycle control
—34 oscillator base 1
current limit e i ;
output driver drive
rererence with current -12v output —0 -12V
soft start sense secondary filter
= o
load sensef
+5V adj. |=
feedback
signal
feedback compensation
isolation

. ' N mmriae e e A c(osu'\
holdup bwe ~ hine wnre FIGURE 3. BLOCK DIAGRAM ~U%ése PA'may Lsan'fe

77777 lﬂ;u» >'4'1—Ll '.\.u,-Q, \‘;'”rt :-“Yk’ ('?‘z‘.F (“(*(o (O'ML(\S 4:3(,({, {'@ "%"
: i L '

/

w.Pv\ no Sw «‘ L-t/(»k .\4\«3J 535:\‘\6“ hr== 2 . Ao T U({/‘ (‘ﬁ.,i(‘c/ O

:) rad
, = » g N Zicd I—- r D (& (:A“ Oy

ows AL s>,\‘5}:::s\-3o— Sogc ed) 1,'_f__ \¢ R Y

4 S] 8

=

49Tav4s PTWL 10A

..vouiu-nanH Atgdns ¥

a
"

BaHN -y P

pog

- D+ S 45

ApNa ANIYININND0C
LUveailS WXNHIIL 02208

ONAINE OIURYINLO
SIPTNN THNO M)
SINTM LEOUTSIY TV ILON

-

A0YLNOY

naaig 3504 P

eivivgwo) awiravag ®

tmecatans®

dUy ¥OoNN3Z wouvraaolt @

ote
sy LSV
L
e
£
LN
”
"

1

9CHEIN

¢

K113

MaEgnNgs

bt o.o— — IVLIGANIONN 5 _IO‘
e "-tr
! O am
Jmete——
HoLw cer
Lyvis XN o
b O e
i bl - —O> o1 wJva
(3 A\ 1™ k- o tor 2ot
4, a0tz
] T -~ !
d |-
noc
poer g l_l

wr Sl siNlod 1SP1L dsw3

- Fshd P E — avm oMY
\/\ sSLNIOAL ANFWLSAFQAY SISSPND = A2i—
010300521 O 39NA™
aseools
L |) " no._.e
0D AGNVL
3
a
[d
8
(]
3
VA SU
b o7 LSAPTY AS + 4sarad A0+
araoyh hdPas u2moL mssb ol aY
HeY VI s

