Radio Shaek # Service Manual 6-6013 # TRS-80® Multiterminal Interface Catalog Number 26-6013 CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACK, A DIVISION OF TANDY CORPORATION # TRS-80® Multiterminal Interface Service Manual Copyright 1983 Tandy Corporation All Rights Reserved Reproduction or use, without express written permission from Tandy Corporation, or any portion of this manual is prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the information contained herein. # TABLE OF CONTENTS | Sec | Description | Page | |--|---|--| | 1/ | General | 1 | | 2/ | Installation | 3 | | 2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8 | Software Requirements | 3
6
7
7
9
10 | | 3/ | Theory of Operation | 11 | | 3.1
3.2
3.3
3.4
3.5 | USART Circuitry Baud Rate Generator. RS-232C Interface Loopback Circuit. Processor Interface Schematic 8000198 Component Layout. Circuit Trace, Component Side Circuit Trace, Solder Side Parts List | 11
16
16
18
18
21
23
24
25
26 | | 4/ | Troubleshooting | 29 | # LIST OF FIGURES | No. | Description | Page | No. | |-----|--|---------------------------------------|------| | 2-1 | Multiterminal Interface Board Installation | | . 4 | | 2-2 | DIP Switch Settings | • • • • • • • • • • • • • • • • • • • | . 5 | | 2-3 | Typical System Installation | • • • • • | . 8 | | | | | | | | LIST OF TABLES | | | | 3-1 | Programming Parameters (Page 1 of 4) | • • • • • | . 12 | | | Programming Parameters (Page 2 of 4) | | | | | Programming Parameters (Page 3 of 4) | • • • • • | . 14 | | | Programming Parameters (Page 4 of 4) | | | | 3-2 | Baud Rate Generator | | 17 | # 1/ General The Multiterminal Interface Board (26-6013) allows the Model 16/16B to interface with up to three additional terminals. This capability, combined with the XENIX OS multitasking capability, allows up to six independent operators to have access to the features contained in a single Model 16/16B. This results in a cost savings per terminal and the added advantage of a shared data base. The Multiterminal Interface Board is basically a three-port RS-232C serial interface to the 8-bit Z80A Model 16/16B Peripheral Processor. The normal mode of operation as defined by software is full duplex, asynchronous transmission with a baud rate range from 50 to 9600. The computer interface is interrupt driven. On the reception or transmission of any character, an interrupt is created and the character is stored to or retrieved from a memory buffer. The Multiterminal Interface Board is mounted in the Card Cage assembly which is internal to the Computer. Multiterminal Interface Board must be in the interrupt chain, its priority position in the card cage must be as noted in the chart below to preserve this daisy-chaining If one of the boards listed in the first three positions is not present, then the other boards move up a slot. If a board position is not critical, i.e. it is not a part of the interrupt cycle, its priority position is noted as "None". Physical positioning of the board in the card cage in the Model 16B is from the bottom (J1) to the top $(J\bar{7})$. | Priority Pos. | Description | Priority | |---------------|--------------------------|----------| | 1 | ARCNET | 1 | | 2 | Hard Disk Interface | 2 | | 3 | Multiterminal Interface | 3 | | 4 | Graphics | None | | 5 | Video/Keyboard Interface | None | | 6 | 256K Memory Board | None | | 7 | 256K Memory Board | None | | 8 | 256K Memory Board | None | | 9 | 16 Bit CPU Board | None | – Radio ∕haek[®] – # 2/ Installation Included in the following pages are instructions for installing and interconnecting the Multiterminal Interface PCB in the Model 16 Radio Shack Computer. This option allows you to interconnect as many as five additional terminals to the computer so that a common data base may be used by all terminals. Refer to the TRS-XENIX Operator's Manual for operating instructions for the system. # 2.1. Software Requirements The only current operating system offered by Radio Shack which supports this board is TRS-XENIX, Version 01.03.00 or higher. You must upgrade your system to at least a version 01.03.00. If you already have the XENIX Operating System, it is necessary to modify it using a software update diskette (Catalog No. 700-2066) which modifies a 1.1 or 1.2 system to a version 01.03.00 System. If you do not have the XENIX Operating System, it will be necessary to purchase the XENIX Version 01.03.00 Core System (Catalog No. 700-2052). ### 2.2. Installation The following instructions are given to allow proper installation of the Multiterminal Interface Board, check out its function to ensure proper operation, and perform modifications required to the Main Terminal to allow communication between it and the remote terminal(s). The Multiterminal Interface Board is installed in a Model 16 or 16B in the card cage assembly. It is accessible when the rear cover is removed from the Model 16B Case Assembly, or the top cover from the Model 16. Model 16 **Board** Figure 2-1. Multiterminal Interface Board Installation **- Radio Shaek**® - # 1. Rear Cover Removal ### Model 16 Turn the computer so that the rear is facing you to allow access to the top cover. Remove the top cover by unscrewing the two mounting screws. Lift up and to the rear on the top cover to gain access. Insert Multiterminal Interface PCB as noted in Figure 2-1. ## Model 16B Turn the computer so that the rear is facing you to allow access to the rear cover. Remove the two mounting screws at the lower part of the rear cover. Lift out on the bottom of the cover plate and pull down. 2. Remove the card holding brackets from either side of the card cage to allow the Multiterminal Interface board to be installed. Attach the cable end(s) to the connector(s) on the Multiterminal Interface Board. The DIP switch Sl must be set for the proper operation as noted in Figure 2-2. Slide the board into the connector slot as shown in Figure 2-1. The Multiterminal Interface board must be in the interrupt chain. Therefore, there must be no empty slots between the board and Jl. The Multiterminal Interface board must be in Jl if no other boards are present. Figure 2-2. DIP Switch Settings Loosen the screws which mount the Strain Relief Bracket 3. to the Rear Door. Feed the cable(s) from the remote unit(s) between the Strain Relief Bracket and the Rear Door and tighten the screws mounting the Bracket. Allow enough cable to the inside of the bracket to provide an internal loop. # 2.3. Setting Up Multiple Terminals The Xenix system is programmed to accommodate a wide range of terminal types -- but the system has to know what kind of terminals are connected to it so that it can calibrate itself to the terminal's particular characteristics and capabilities. The console is automatically set to accommodate two DT-1 terminals. TRS-XENIX calls them the "Adds25" terminal type, and expects the terminals you connect to be set to the DT-1's Adds25 emulation mode. That information is stored in a TRS-XENIX file called /etc/ttytype. If you're connecting a DT-1 to the console, just follow connection instructions and proceed directly to enabling your terminal (see Paragraph 2.6). If, however, you're connecting a terminal other than a DT-1, you have to let TRS-XENIX know. A file called /etc/termcap stores the characteristics of all commonly used terminals. The following list gives the names and codes for the terminals pre-configured in /etc/termcap: | NAME | CODE | |---------------|--------| | VT 100 | vt100 | | VT 52 | vt52 | | ADM 3a | adm3a | | ADM 5 | adm5 | | Televideo 910 | tvi910 | | ADDS 25 | adds25 | To let TRS-XENIX know what kind of terminal you'll be using, edit the /etc/ttytype file to include one of the above names. At that point, TRS-XENIX can work with your terminal -- just as soon as you've enabled it. 2.4. Connecting A Terminal To The Computer (see Figure 2-3) First, check which connector you're using for the terminal. If it is either Serial Channel A or B, you will need an RS-232 cable (Cat. No. 26-4403) and a null modem adapter (Cat. No. 26-1496) for each terminal. - Connect one end of the RS-232 cable to the terminal's 1. RS-232 jack. - 2. Connect the other end of the cable to the female plug of the null modem adapter. - Connect the adapter's male plug to either Serial 3. Channel A or B of your computer. - 4. If the computer requires it (check the owner's manual), insert a Terminator Plug into any unused Serial Channel. If the terminal connects to one of the three connectors on the Multiterminal Interface PCB, you will need only the RS-232 cable assembly. # 2.5. Checking Installation Correct installation of the Multiterminal Interface is ensured when the following commands typed into the computer running XENIX produce the noted responses. Type in the following command*: disable tty0X (enter) ### Response There will be no response or the following error message will appear: disable: tty0X is already disabled disable: /etc/ttys not updated (which is OK) * 0X = one of the tty terminals, either 4, 5 or 6. For example, tty04. # Radio Shack Figure 2-3. Typical Installation, Multiterminal Interface Board Radio Shaek® Type in the following command: cat /etc/ttys >/dev/tty0X (enter) Response (on terminal 0X) lhconsole 09tty01 09tty02 09tty04 09tty05 09tty06 (or something similar -- it should look the same as if "cat /etc/ttys" were typed without any output redirection) # 2.6. Enabling A Terminal Before you can use a terminal, it must be enabled. To enable a terminal connected at Serial Channel A, type: enable tty01 <ENTER> To enable a terminal connected at Serial Channel B, type: enable tty02 <ENTER> For any terminals connected to the Multiterminal Interface PCB, type: enable tty04 <ENTER> (for terminal connected to Jl) or enable tty05 <ENTER> (for terminal connected to J2) or enable tty06 <ENTER> (for terminal connected to J3) Then you're ready to use the terminal with TRS-XENIX. # 2.7. Disabling A Terminal If you have to disconnect a terminal from the main computer for any reason, be sure you first disable it. Again, check the connector the terminal is using, and at the main terminal type: > disable tty01 (for Serial Channel A) thru disable tty06 (for terminal connected to J3) (Remember: There is no tty03) and proceed to disconnect the remote terminal connector from the main computer connector. ### 2.8. Model II to 16 Conversions The Model II can be used to test the Multiterminal Interface board provided some precautions are taken. There is a dual addressing problem in early Model II VDG boards that makes ports 7CH-7FH be interpreted as ports FCH-FFH. This is only on Rev A and Rev B VDG boards. To correct this, a jumper has to be installed from pin 1 to pin 10 of IC27 on the VDG board. This will not affect the normal operation of the Model II. The test software MULTERM for the Multiterminal Interface board was written for ports 70H-7EH. TRS-XENIX also uses 70H-7EH for the first board. If this is in an older Model II with a Rev A or Rev B VDG board OR if a Model II/12/16/16B has an older video board installed, it will cause a problem testing the board or attempting to run TRS-XENIX without the jumper mentioned above on these older VDG boards. # 3/ Theory Of Operation The Multiterminal Interface Board can be functionally divided into five parts: (1) USART circuitry; (2) Baud Rate Generator; (3) RS-232C Interface circuitry; (4) Loopback; and (5) Z80 Interface. See Intel Specification 8251A and Model II Technical Reference Manual, SIO Section. # 3.1 USART Circuitry The USART (Universal Synchronous Asynchronous Receiver Transmitter) is a Medium Scale Integrated Circuit (MSI) which accomplishes all of the required transformation of serial and parallel data under CPU directions. circuit can be divided into four parts: (1) the CPU interface logic; (2) the Transmitter logic; (3) the Receiver logic; and (4) the Modem Control logic. The schematic designators for the USARTs are U16, U17, and U19. # 3.1.1 CPU Interface Logic The CPU Interface logic links the two major parts -- the transmitter and the receiver -- with the Z80 CPU. CPU, by read/write operations, issues configuration/ parameter commands and transmitter data, and reads status and receiver data. Configuration commands, for example, specify the transmission mode (asynchronous) and transmission characteristics (number of characters, stop bits, etc.). See Table 3-1 for the programming parameters. ### 3.1.2 Transmitter Logic The transmitter serially shifts out the character data stored in the transmitter buffer at the applied baud clock rate. When the transmitter buffer is empty, it sets the TX RDY signal. The TX RDY signal is connected to an interrupt which is used to request another character from the CPU. Transmission is controlled either internally by the TX Enable flag controlled by the CPU or possibly by external RS-232 signals DSR/DCD and CTS received by the modem control logic. | BAUD RATE GENERATOR | | | | | | | | |---------------------|-------------------------------|--|--|--|--|--|--| | ADDRESS DATA | | | | | | | | | 70 | CHANNEL 0, LSB BYTE, MSB BYTE | | | | | | | | 71 | CHANNEL 1, LSB BYTE, MSB BYTE | | | | | | | | 72 | CHANNEL 2, LSB BYTE, MSB BYTE | | | | | | | | 73 | COMMAND WORD | | | | | | | # **COMMAND WORD** | 7 | | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |----------------------|----------------------|----------------------|-------------------------|---|-----------------------|------------------|---|-------------------|----------------| | | 1 | | | 1 | 0 | 1 | 1 | 0 | 1 | | 00: SELECT CHANNEL 0 | 01: SELECT CHANNEL 1 | 10: SELECT CHANNEL 2 | 00: LATCH CURRENT COUNT | VALUE TO READ
11: LOAD COUNTER VALUE | COUNTER OUTPUT SIGNAL | CONTINUOUS PULSE | | COUNTER DATA TYPE | 0=BINARY 1=BCD | Note 1: Bit 4, 5 = 0, Bit 0-3 = DON'T CARE Note 2: Counter Value Read/Write in two consecutive bytes, LSB first. Table 3-1. Programming Parameters (page 1 of 4) # - Radio Shaek® | INTERRUPT CONTROLLER | | | | | | | | | |---|---|--|--|--|--|--|--|--| | ADDRESS DATA | | | | | | | | | | 74 CHANNEL 0 CTC CONTROL/INTERRUPT VECTOR | | | | | | | | | | 75 CHANNEL 1 CTC CONTROL/INTERRUPT VECTOR | | | | | | | | | | 76 | 76 CHANNEL 2 CTC CONTROL/INTERRUPT VECTOR | | | | | | | | | 77 NOT USED | | | | | | | | | # **CONTROL WORD:** Table 3-1. Programming Parameters (page 2 of 4) # Radio Shaek® | USART | | | | | | | | |---------|--|--|--|--|--|--|--| | ADDRESS | DATA | | | | | | | | 78 | CHANNEL 0, RECEIVE, TRANSMIT CHARACTER | | | | | | | | 7A | CHANNEL 1, RECEIVE, TRANSMIT CHARACTER | | | | | | | | 7C | CHANNEL 2, RECEIVE, TRANSMIT CHARACTER | | | | | | | | 79 | CHANNEL 0, USART MODE/COMMAND/STATUS | | | | | | | | 7B | CHANNEL 1, USART MODE /COMMAND/STATUS | | | | | | | | 7D | CHANNEL 2, USART MODE/COMMAND/STATUS | | | | | | | # MODE | B | | 7 | |---------------------------------------|-----|---| | 10 = 2 11 = 3 | 1 | 6 | | 0 = ODD PARITY
1 = EVEN PARITY | 0 | 5 | | PARITY ENABLE = 1 | 0 | 4 | | ACTER 1 | | 3 | | 10 = 7 11 = 8 | | 2 | | SYNC/ASYNC & BAUD
RATE FACTOR | 1 | 1 | | 00 = SYNC 01 = 6
10 = 16X 11 = 64X | , 0 | 0 | # COMMAND | | 0 | |-------------------------|---| | 1 = RESET IC | | | 1 = RTS TRUE | | | 1 = RESET ERROR | | | 0 = NORMAL
1 = BREAK | | | 1 = ENABLE RECEIVE | | | 1 = DTR TRUE | | | 1 = ENABLE TRANSMIT | | | | | Table 3-1. Programming Parameters (page 3 of 4) | | USART (con't) | | | | | | | | | | | | |---|--------------------|---------------|---------------------|-----------------|-------------|------------------|--------------|-----------------|-----------------|--|--|--| | | ADDRESS | | | | DA | ATA | | | | | | | | ٠ | 79, 7B, 7D (con't) | STATU | ratus | | | | | | | | | | | | | 7 6 5 4 3 2 1 | 1 = DSR TRUE | 1 = RX DATA = BREAK | 1 = FRAME ERROR | 1 = OVERRUN | 1 = PARITY ERROR | 1 = TX EMPTY | 1 = RX RDY TRUE | 1 = TY RDY TRUE | 7E | LO | OPBAC | COM | MAND | | | | | | | | | · | | LOOPB | ACK CO | MMAN | D | | | | | | | | | | | х | X | X | Х | x | Х | х | 7F | NOT USED | | | | | | | | | | | Table 3-1. Programming Parameters (page 4 of 4) # 3.1.3 Receiver Logic The receiver serially shifts serial data in, using the applied baud clock (in this particular operation, it is multiplied sixteen times). When the "start" bit sequence is detected, the next data character bits are stored in the receive buffer. When a complete character is stored, the RX RDY signal is set. The RX RDY signal is applied to an interrupt (the same interrupt as the TX RDY) requesting the CPU to read the character. Reception is controlled by the RX Enable flag and reception of data character. ### 3.1.4 Modem Control Logic The Modem Control logic handles the RS-232C handshaking signals DSR/DCD, DTR, CTS, and RTS. The state of the source signals DTR and RTS is controlled by the Z80 CPU. These four signals are used to control the flow of data around the dedicated link. ### 3.2 Baud Rate Generator The Baud Rate Generator U18 is an MSI IC that consists of three independent programmable counters. Each counter is hard-wired to a specific USART. The counter output is applied to the USART TX and RX clocks. The frequency output of each counter is a fractional portion of the applied clock frequency. The fraction is programmed individually into each counter by the CPU (therefore, each can have a different baud rate frequency). The input clock is 2.000 MHz divided from the 4 MHz on the Z80 bus. The BCD values for the different baud rate frequencies are noted in Table 3-2. See Intel Specification 8253. # 3.3 RS-232C Interface The RS-232C Interface logic consists of buffers and receivers which convert from/to the digital logic levels to the \pm 12 Vdc levels of the RS-232C. The buffers are the 1488 ICs U2, U4, and U7. The buffers which transmit the data and clocks have a capacitor on their output. The purpose of this capacitor is to increase the rise time of the signals to reduce cross-coupling. The receivers are the 1489 ICs Ul, U3, and U6. The receivers for the control signals have resistor terminations to one of the power # **8253 BAUD RATE GENERATOR** (CLOCK = 2.000 MHz) | BAUD | 1X | | | 16 | SX . | | 64X | | | |------|--------|----------|--------------|-------|------|---------|-----|------|--| | RATE | DEC | HEX | | DEC | HEX | | DEC | HEX | | | 50 | 40,000 | 9C40 | | 2,500 | 09C4 | | 625 | 0271 | | | 75 | 26,667 | 682B | | 1,667 | 0683 | | 417 | 01A1 | | | 110 | 18,182 | 4706 | 4706 | | 0470 | $\ \ $ | 284 | 011C | | | 150 | 13,333 | 3415 | | 833 | 0341 | | 208 | 00D0 | | | 300 | 6,667 | 1A06 | | 417 | 01A1 | | 104 | 0068 | | | 600 | 3,333 | 0D05 | 0D05
0683 | 208 | 00D0 | | 52 | 0034 | | | 1200 | 1,667 | 667 0683 | | 104 | 0068 | | 26 | 001A | | | 2400 | 833 | 0341 | | 52 | 0034 | | 13 | 000D | | | 4800 | 417 | 01A1 | | 26 | 001A | | 7 | 0007 | | | 9600 | 208 | 00D0 | | 13 | 000D | | 3 | 0003 | | Table Baud Rate Generator # Radio Shack® supply voltages. This biases the signal into either the "true" (-12 Volts) or "false" (+12 Volts) state to create the required state if the signal is not present. # 3.4 Loopback Circuit The loopback circuitry provides a means to self-test the three serial channels without external stimulus. The output serial data TXD and the modem control signals DTR and RTS of the USARTs are returned to their complementary signals RXD, DSR/DCD, and CTS. This is done before the RS-232 interface to switch the signals at digital levels. All three loopback switches U9, U10, and U13 are switched on/off together. ### 3.5 Processor Interface The processor interface consists of an address decoder, control signal circuitry, data transceiver, interrupt controller and clock circuitry. # 3.5.1 Address Decoder The address decoder determines whether or not the Z80 is addressing the Multiterminal Interface. U24 is a line receiver. U21 decodes A7-A4 into one-of-eight addresses. Switch SWl, manually set, selects one of the outputs to be "ADDMATCH" which, when combined with IOR/IOW in U22 (a programmable logic array), creates the individual chip selects CS*. # 3.5.2 Control Signal Circuitry The control signal circuitry consists of line receiver U25, timing signal converter U8, U12, and U15 and loopback control U5. The timing signal converter delays the leading edge of the Z80 signals IORQ, IOR, and IOW with respect to the chip selects to be acceptable by the INTEL family ICs. ### 3.5.3 Data Transceiver The data transceiver is U23. Direction is controlled by an output from U22, labeled "OUT". The normal direction is receive (or IN). When OUT=1, the direction is onto the Z80 bus. # 3.5.4 Interrupt Controller The interrupt controller U20 is a Z80 CTC to match the existing interrupt format. The TX RDY, RX RDY and BREAK (selectable) of each USART are ORed together to create a single interrupt per USART channel. This interrupt is used to inform the CPU when a USART needs service. # 3.5.5 Clock Circuitry The clock circuitry has two parts. First, the 4 MHz clock from the bus is divided by 2 to create a 2 MHz clock. clock is used in two places: the unbuffered version is applied to the baud rate generator Ul8; the buffered version is increased in amplitude to meet Z80 CTC requirements. | Multiterminal | Interface | TDC 80 8 | Service Manual | |---------------|-----------|----------|----------------| | | | I HO-OU | | Component Layout, Multiterminal Interface Board 26-6013 Radio Shaek® Circuit Trace 1700230, Multiterminal Interface Board 26-6013, Component Side Radio Shaek® Circuit Trace 1700230, Multiterminal Interface Board 26-6013, Solder Side **— Radio Shaek**® Parts List Multiterminal Interface 26-6013 | Item | Sym | Description | Part No. | |------|-----|-----------------------------------|----------| | | Cl | Capacitor, .1 mfd,50V Axial | 8374104 | | | C2 | Capacitor, 390 pfd, 50V C Disk | 8301394 | | | C3 | Capacitor, 390 pfd, 50V C Disk | 8301394 | | | C4 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C5 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C6 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C7 | Capacitor, 390 pfd, 50V C Disk | 8301394 | | | C8 | Capacitor, 390 pfd, 50V C Disk | 8301394 | | | C9 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C10 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C11 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C12 | Capacitor, 390 pfd, 50V C Disk | 8301394 | | | C13 | Capacitor, 390 pfd, 50V C Disk | 8301394 | | | C14 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C15 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C16 | Capacitor, 15 pfd, 50V Cer Disk | 8300154 | | | C17 | Capacitor, 100 pfd, 50V Cer Disk | 8301103 | | | C18 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C19 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C20 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C21 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C22 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C23 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C24 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C25 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C26 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C27 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C28 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C29 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C30 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | C31 | Capacitor, 10 mfd, 25V Elec Axial | 8316102 | | | C32 | Capacitor, 10 mfd, 25V Elec Axial | 8316102 | | | C33 | Capacitor, 22 mfd, 16V Elec Axial | 8316221 | | | C34 | Capacitor, .1 mfd, 50V Axial | 8374104 | | | Ql | Transistor, 2N3906 | 8100906 | | | Rl | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | | | R2 | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | | | R3 | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | | | R4 | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | | | R5 | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | Parts List (cont) Multiterminal Interface 26-6013 | Item | Sym | Description | Part No. | | | |------|-----|---------------------------------------|----------|--|--| | | R6 | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | | | | | R7 | | 8207222 | | | | | R8 | · · · · · · · · · · · · · · · · · · · | | | | | | R9 | | | | | | | R10 | | | | | | | Rll | | | | | | | R12 | Resistor, 560 ohm, 1/4W 5% | 8207156 | | | | | R13 | | 8207222 | | | | | R14 | Resistor, 2.2 kohm, 1/4W 5% | 8207222 | | | | | R15 | Resistor, 220 ohm, 1/4W 5% | 8207122 | | | | | R16 | Resistor, 1.2 kohm, 1/4W 5% | 8207212 | | | | | R17 | N.A. | | | | | | R18 | Resistor, 4.7 kohm, 1/4W 5% | 8207247 | | | | | R19 | Resistor, 10 kohm, 1/4W 5% | 8207310 | | | | | R20 | Resistor, 56 ohm, 1/4W 5% | 8207056 | | | | | R21 | Resistor, 4.7 kohm, 1/4W 5% | 8207247 | | | | | R22 | | | | | | | R23 | Resistor, 2.2 kohm, 1/4W 5% | | | | | | SWl | Switch, SPST DIP 8 Pos | 8489004 | | | | | Ul | IC, MC1489, Line Receiver | 8050189 | | | | | U2 | IC, MC1488, Line Driver | 8050188 | | | | | U3 | IC, MC1489, Line Receiver | 8050189 | | | | | U4 | IC, MC1488, Line Driver | 8050188 | | | | | U5 | IC, 74LS74, Dual Flip Flop | 8020074 | | | | | U6 | IC, MC1489, Line Receiver | 8050189 | | | | | บ7 | IC, MC1488, Line Driver | 8050188 | | | | | U8 | IC, 74LS00, Quad 2-In NAND | 8020000 | | | | | U9 | IC, 74ALS241, Octal Buffer | 8025241 | | | | | U10 | IC, 74ALS241, Octal Buffer | 8025241 | | | | | Ull | IC, 74LS27, Triple 3-In NOR | 8020027 | | | | | U12 | IC, 74LS74, Dual Flip Flop | 8020074 | | | | | U13 | IC, 74ALS241, Octal Buffer | 8025241 | | | | | U14 | IC, 74LS04, Hex Inverter | 8020004 | | | | | U15 | IC, 74LS32, Quad 2-In AND | 8020032 | | | | | U16 | IC, 8251A, USART | 8040251 | | | | | U17 | IC, 8251A, USART | 8040251 | | | | | U18 | IC, 8253, Counter | 8041253 | | | | | U19 | IC, 8251A, USART | 8040251 | | | | | U20 | IC, Z8430A, CTC | 8047882 | | | | | U21 | IC, 74LS138, Decoder | 8020138 | | | Parts List (cont) Multiterminal Interface 26-6013 | ===== | ===== | | | |-----------------------|---------------------------------|---|---| | Item | Sym | Description | Part No. | | | U22
U23
U24
U25
U26 | IC, 82S153 IC, 8303, Transceiver IC, 74ALS240, Octal Buffer IC, 74ALS244, Octal Buffer IC, 7407, Hex Buffer | 8040153
8060303
8025240
8025244
8000007 | | 1
2
3
4
5 | 1
15
2
1
4 | PCB Logic Board Pin, Staking Socket, 20 Pin DIP(U22,23) Socket, 24 Pin DIP (U18) Socket, 28 Pin DIP (U16,17 U19,20) | 8709410
8529014
8509009
8509001
8509007 | | 6 | 3 | Connector, Rt Angle (J1-3) | 8519109 | # 4/ Troubleshooting Correct installation of the Multiterminal Interface is ensured when the following commands typed into the computer running XENIX produce the noted responses. Type in the following command*: disable tty0X (enter) # Response There will be no response of the following error message will appear: disable: tty0X is already disabled disable: /etc/ttys not updated (which is OK) Type in the following command: cat /etc/ttys >/dev/tty0X (enter) # Response lhconsole 09tty01 09tty02 09tty04 09tty05 09tty06 (or something similar -- it should look the same as if "cat /etc/ttys" were typed without any output redirection) * OX = one of the tty terminals, either 4, 5 or 6. For example, tty04. — Radio Shaek® - # RADIO SHACK, A DIVISION OF TANDY CORPORATION # U.S.A.: FORT WORTH, TEXAS 76102 CANADA: BARRIE, ONTARIO L4M 4W5 # **TANDY CORPORATION** AUSTRALIA BELGIUM U. K. 91 KURRAJONG AVENUE MOUNT DRUITT. N.S.W. 2770 PARC INDUSTRIEL DE NANINNE 5140 NANINNE BILSTON ROAD WEDNESBURY WEST MIDLANDS WS10 7JN MS-2606013-1083 PRINTED IN U.S.A.