
sun®
microsystems

Assembly Language Reference
for the Sun-2™ and Sun-3™

Part Number: 800-1773-10
Revision A, of9 May 1988

Sun Workstation® and Sun Microsystems® are registered trademarks of Sun
Microsystems, Inc.

Sun ViewTM, SunOSTM, Sun386iTM, and the combination of Sun with a numeric
suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other­
wise, without prior explicit written permission from Sun Microsystems. (~.

~)

Contents

Chapter 1 Introduction .. 3

1.1. Using the Assembler.. 3

1.2. Notation... 4

Chapter 2 Elements of Assembly Language .. 9

2.1. Character Set.. 9

2.2. Identifiers .. 9

2.3. Numeric Labels... 10

2.4. Local Labels ... 10

2.5. Scope of Labels .. 10

2.6. Constants .. 11

2. 7. Numeric Constants .. 11

2.8. String Constants ... 12

2.9. Assembly Location Counter .. 12

Chapter 3 Expressions ... 17

3.1. Operators 17

3.2. Terms 18

3.3. Expressions

3.4. Absolute, Relocatable, and External bxpressHJll.S

Chapter 4 Assembly Language Program

4.1. Label Field

4.2. Operation Code Field

-iii-

Contents - Continued

(\

4.3. Operand Field 25 \'-· /

4.4. Comment Field .. . 26

4.5. Direct Assignment Statements .. . 26

Chapter 5 Assembler Directives 31
5.1. . ascii- Generate Character Data 32

5 .2. . asci z - Generate Zero-Terminated Sequence of Character
Data 33

5.3. Directives to Generate Data .. . 33

5.4. Directives to Switch Location Counter .. . 34

5.5. . skip- Advance the Location Counter .. . 35

5.6. .lcornm- Reserve Space in bss Area .. . 35

5.7. . globl- Designate an External Identifier 36

5.8. . cornm- Define Name and Size of a Common Area 36

5.9. . align- Force Location Counter to Particular Byte
Boundary 37

5.10. . even- Force Location Counter to Even Byte Boundary 37

5.11. . s tabx- Build Special Symbol Table Entry 37
I~

__")
5.12. . proc- Separate Procedures for Span-Dependent

Instruction Resolution 38

5.13. . cpid-Name Default CoprocessoriD .. . 38

Chapter 6 Instructions and Addressing Modes 41
6.1. Instruction Mnemonics: 41

6.2. Extended Branch Instruction Mnemonics .. . 41
\

6.3. Addressing Modes .. . 42~

6.4. Addressing Categories 46

Appendix A .as Error Codes .. . 51
A.1. Usage Errors 51

A.2. Assembler Error Messages 51

Appendix B List of as Opcodes 59

-iv-

Contents- Continued

Appendix C FPA Assembler Syntax .. 83

C.1. Instruction Syntax .. 83

C.2. Register Syntax .. 84

C.3. Operand Types ... 84

C.4. Two-Operand Instructions ... 84

C.5. Three-Operand Instructions .. 85

C.6. Four-Operand Instructions ... 86

C. 7. Other Instructions ... 90

C.8. Restrictions and Errors .. 91

C.9. Instruction Set Summary.. 91

Index... 95

c
-v-

i
~ I

f

Tables

Table 3-1 Unary Operators in Expressions .. 17

Table 3-2 Binary Operators in Expressions... 17

Table 5-l Assembler Directives ... 31

Table 6-1 Addressing Modes ... 44

Table 6-2 Addressing Categories .. 46

Table B-1 List of MC680x0 Instruction Codes ... 60

Table B-2 MC68881 Instructions supported by as .. 68

Table C-1 Other Instructions .. 92

Table C-2 Floating-Point Instructions .. 93

-vii-

What as Provides

Scope of This Manual

Audience

Further Reading

Preface

This manual is the Programmer's Reference Manual for as -the assembler for
Sun-2 and Sun-3 workstations running the SunOS operating system. as converts
source programs written in assembly language into a form that the linker utility,
ld(l) will tum into a rurmable program.

as provides assembly language programmers with a minimal set of facilities to
write programs in assembly language. Since most programming is done in high­
level languages, as doesn't provide any elaborate macro facilities or conditional
assembly features. It is assumed that the volume of assembly code produced is
so small that these facilities aren't required. If they are needed, you can use the
C preprocessor (see cpp(l)) to provide them.

This manual describes the syntax and usage of the as assembler for the Motorola
MC68010 and MC68020 microprocessors, the MC68881 floating-point coproces­
sor, and Sun's Floating-Point Accelerator (FPA). The basic format of as is
loosely based on the Digital Equipment Corporation's Macro-11 assembler
described in DEC's publication DEC-11-0MACA-A-D. It also contains elements
of the UNIXt PDP-11 as assembler. The instruction mnemonics and effective
address format are based on a Motorola publication on the MC68000: the
MACSS MC68000 Design Specification Instruction Set Processor dated June 30,
1979.

This is a reference manual as opposed to a treatise on writing in a§§embly
language. It assumes that you are familiar with the concepts of n.t~cfijge architec­
ture, the reasons for an assembler, the ideas of instruction mpefugffiq§, ()perands,
and effective address modes, and assembler directives. It~sq ~ssj.l,giey>i.fi~tyou
are familiar with the relevant processors, their instructiqtf §~ts aijg. ~~dr~~$iHg ?
modes, and especially their irregularities. .··.·.·.·.· .··.·.·.··.· ··.··.·.······.· ··.····· ······

Motorola MC68010 16-bit Microprocessor Progr~~~~~~~fJ;endg~:~~ >

Motorola MC68020 32-bit Microprocessor User's ManuJ: < .. } >

Motorola MC68881 Floating-Point Coprocessor User's Man~~l) .

t UNIX is a registered trademarlc of AT&T.

-ix-

1
Introduction

Introduction ... 3

1.1. Using the Assembler.. 3

1.2. Notation .. ; 4

(\
\ J
'--· ,/

1.1. Using the Assembler

1
Introduction

By convention, the assembly language source code of the program should be in
one or more files with a . s suffix. Suppose that your program is in two files
called parts. sand rest. s. To run the assembler, type the command:

[tutorial% as parts.s rest.s

as runs silently (if there are no errors), and generates a file called a . out.

as also accepts several command-line options. These are:

-ofile Place the output of the assembler infile instead of a.out.

-m68010 This is the default on Sun-2 systems. Accept only the MC68010
instruction set and addressing modes. This also puts the MC68010
machine type tag into the a.out file.

-m68020 This is the default on Sun-3 systems. Accept the full MC68020,
MC68881, and Sun FPA instruction sets and addressing modes.
Includes the MC68010 instruction set and addressing modes as a
subset, and also puts the MC68020 machine type tag into the a.out
file.

-k Generate position-independent code as required by

(cc -pic/-PIC

l

l
WARNING Don't apply this flag to hand-coded ,assembler programs unless they are written

to be position-independent.

-o Perform span-dependent instruction resolution over each entire file,
rather than just over each procedure (see the description of the .proc
pseudo-operation in Chapter 5).

-R Make initialized data segments read-only (actually the assembler
places them at the end of the . text area).

-L Keep local (compiler-generated) symbols that start with the letter L.
This is a debugging feature. If the -L option is omitted, the assem­
bler discards those symbols and does not include them in the symbol
table.

3 Revision A of May 9, 1988

-------~- --~~-

4 Assembly Language Reference

1.2. Notation

-j Make all jumps to external symbols (j sr and jmp)
PC-relative rather than long-absolute. This is intended for use when
the programmer knows that the program is short, since it only per­
mits jumps (forward or back) up to 32K bytes long. If there are any
externals which are too far away, the loader will complain when the
program is linked.

-J Suppress span-dependent instruction calculations and force all
branches and calls to take the most general form. This is used when
assembly time must be minimized, but program size and run time
are not important.

-h Suppress span-dependent instruction calculations and force all
branches to be of medium length, but all calls to take the most gen­
eral form. This is used when assembly time must be minimized, but
program size and running time are not important. This option results
in a smaller and faster program than that produced by the -J option,
but some very large programs may not be able to use it because of
the limits of the medium-length branches.

-d2 This is intended for small stand-alone programs. The assembler
makes all program references PC-relative and all data references
short-absolute. Note that the -j option does half this job.

You should also consult the SunOS Reference Manual entry on as.

The notation used in this manual is a somewhat modified Backus-N aur Form
(BNF). A string of characters on its own stands for itself, for example:

(WIDGET

is an occurrence of the literal string 'WIDGET', and:

J

(~19-83----------------------~J
is an occurrence of the literal constant 1983. An element enclosed in< and>
signs is a non-terminal symbol, and must eventually be defined in terms of some
other entities. For example,

(<identifier>

stands for the syntactic construct called 'identifier', which is eventually defined
in terms of basic objects. A syntactic object followed by an ellipsis:

J

[~<-t-hl-·n-g> ___ • __ • __ • __ ~]
denotes one or more occurrences of <thing>.
Syntactic objects occurring one after the other, as in:

sun
microsystems

Revision A of May 9, 1988

Chapter 1 -Introduction 5

(~<-fi~r-~_t_m_n_g~> _____ <_s_e_co_n_d_t_hz_·n_g_> ________________________________ ~]
simply means an occurrence of first thing followed by second thing. Syntactic
elements separated by a vertical bar sign (I), as in:

(<letter> 1 <digit> J
~' --------
mean an occurrence of <letter> or <digit> but not both. Brackets and braces
define the order of interpretation. Brackets also indicate that the syntax
described by the subexpression they enclose is optional. That is:

([<thing> J

denotes zero or one occurrences of <thing>, while { and } are used for grouping
so that

J

(~ <thing one> 1 <thing two> } <thing three> J
'----' --------
denotes a <thing one> or a <thing two>, followed by a <thing three>.

Revision A of May 9, 1988

(\
\...,./

!'\.
I I

__j

2
Elements of Assembly Language

Elements of Assembly Language ... 9

2.1. Character Set .. 9

2.2. Identifiers .. 9

2.3. Numeric Labels... 10

2.4. Local Labels ... 10

2.5. Scope ofLabels .. 10

2.6. Constants .. 11

2.7. Numeric Constants .. 11

2.8. String Constants ... 12

2.9. Assembly Location Counter.. 12

c

2.1. Character Set

2.2. Identifiers

c

2
Elements of Assembly Language

This chapter covers the lexical elements which comprise an assembly language
program. (Chapter 3 discusses the rules for expression and operand formation.)
Topics covered in this chapter are:

o The character set that the assembler recognizes,

o Rules for identifiers and labels,

o Syntax for numeric constants,

o Syntax for string constants,

o The assembly location counter.

An assembly language program is ultimately constructed from characters. Char­
acters are combined to make up lexical elements or tokens of the language. Com­
binations of tokens form assembly language statements, and sequences of state­
ments form an assembly language program. This section describes the basic lexi­
cal elements of as.

as recognizes the following character set:

o The letters A through z and a through z.

o The digits 0 through 9.

o The ASCII graphic characters- the printing characters other than letters
and digits.

o The ASCII non-graphics: space, tab, carriage return, and newline (also
known as linefeed).

Identifiers are used to tag assembler statements (where they are called labels), as
location tags for data, and as the symbolic names of constants.

An identifier in an as program is a sequence of from 1 to 255 characters from the
set:

o Upper case letters A through z.
o Lower case letters a through z.

o Digits 0 through 9.

9 Revision A of May 9, 1988

10 Assembly Language Reference

2.3. Numeric Labels

2.4. Local Labels

2.5. Scope of Labels

o The characters underline (), period (.), and dollar sign ($).

The first character of an identifier must not be numeric. Other than that restric­
tion, there are a few other points to note:

o All characters of an identifier are significant and are checked in comparisons
with other identifiers.

o Upper case letters and lower case letters are distinct, so that
kit_of_parts and KIT_OF_PARTS are two different identifiers.

o Although the period (.) and dollar sign ($) characters can be used to con­
struct identifiers, they are reserved for special purposes (pseudo-ops for
instance) and should not appear in user-defined identifiers.

Here are some examples of legal identifiers:

Grab Hold
Widget
Pot_of_Message
MAXNAME

A numeric label consists of a digit (0 to 9) followed by a colon. As in the case of
alphanumeric labels, a numeric label assigns the current value of the location
counter to the symbol. However, several numeric labels with the same digit may
be used within the same assembly. References of the fonn nb refer to the first
numeric label named n backwards from the reference; n f symbols refer to the
first numeric label named nforwards from the reference.

Local labels are a special fonn of identifier which are strictly local to a control
section (see Section 5.4). Local labels provide a convenient means of generating
labels for branch instructions arid such. Use of local labels reduces the possibil­
ity of multiply defined labels in a program, and separates entry point labels from
local references, such as the top of a loop. Local labels cannot be referenced
from outside the current assembly unit. Local labels are of the fonn n$ where n
is any integer. Valid local labels include:

[
1$
27$
394$

The scope of a label is the 'distance' over which it is visible to other parts of the
program which may reference it. An ordinary label which tags a location in the
program or data is visible only within the current assembly. An identifier which
is designated as an external identifier via a . globl directive is visible to other
assembly units at link time.

l

Local labels have a scope, or span of reference, which extends between one ordi­
nary label and the next. Every time an ordinary label is encountered, all previous

sun
microsystems

Revision A of May 9, 1988

c
first: addl dO,d1

100$: addqw #7,d3
bees 100$

second: andl #Ox7ff,d4

100$: cmpw d1,d3
beqs 100$

third: movw dO,d7
beqs 100$

c
2.6. Constants

2.7. Numeric Constants

c

Chapter 2- Elements of Assembly Language 11

local labels associated with the current location counter are discarded, and a new
local label scope is created. The following example illustrates the scopes of the
different kinds of labels:

creates a new local label scope

first appearance of 100$
branches to the label above

above 100$ has gone away

this is a different 100$
branches to the previous instruction

now 100$ has gone away again
generates an error message if no 100$ below

The labels first, second, and third all have a scope which is the entire
source file containing them. The first appearance of the locallabell 0 0 $ has a
scope which extends between first and second.
The second appearance of the locallabell 0 0 $ has a scope which extends
between second and third. After the appearance of the label third, the
branch to 1 0 0 $ will generate an error message because that label is no longer
defined in this scope.

There are two forms of constants available to as users, namely numeric con­
stants and string constants. All constants are considered absolute quantities
when they appear in an expression (see Section 3.4 for a discussion on absolute
and relocatable expressions).

as assumes that any token which starts with a digit is a numeric constant. as
accepts numeric quantities in decimal (base 10), hexadecimal (base 16), or octal
(base 8) radices. Numeric constants can represent quantities up to 32 bits in
length.

Decimal numbers consist of between one and ten decimal digits (in the range 0
through 9). The range of decimal numbers is between -2,147,483,648 and
2,147,483,647. Note that you can't have commas in decimal numbers even
though they are shown here for readability. Note also that decimal numbers can't
be written with leading zeros, because a numeric constant starting with a zero is
taken as either an octal constant or a hexadecimal constant, as described below.

Hexadecimal constants start with the notation Ox or OX (zero-ex) and can then
have between one and eight hexadecimal digits. The hexadecimal digits consist
of the decimal digits 0 through 9 and the hexadecimal digits a through for
A through F.

Octal constants start with the digit 0. There can then be from one to 11 octal
digits (0 through 7) in the number. But note that 11 octal digits is 33 bits, so the
largest octal number is 037777777777.

sun
microsystems

Revision A of May 9, 1988

12 Assembly Language Reference

2.8. String Constants

2.9. Assembly Location
Counter

01
Floating-point constants must start with #Or or #OR, which may be followed by _/;
an optional sign and either a number, an infinity or a nan ("not a number"). The
syntax is

[{fOr I :ftOR} [+ I -] {<number> I inf I nan} J
where the syntax of a <number> is

{<digits> [. [<digits>]] I • <digits>} [E [+ I -] <digits>]

and <digits> is a string of decimal digits.

A string is a sequence of ASCII characters, enclosed in quote signs ".

Within string constants, the quote sign is represented by a backslash character
followed by a quote sign. The backslash character itself is represented by two
backslash characters. Any other character can be represented by a backslash
character followed by one, two, or three octal digits, or by a backslash followed
by 0 x or 0 x and a one- or two-digit hexadecimal constant. The table below
shows the octal representation of some of the more common non-printing charac­
ters.

Character Octal Hex

Backspace \010 Ox8

Horizontal Tab \011 Ox9

Newline (Linefeed) \012 OxA

Formfeed \014 OxC

Carriage Return \015 OxD

The assembly location counter is the period character (•). It is colloquially
known as dot. When used in the operand field of any statement, dot represents
the address of the first byte of the statement. Even in assembler directives, dot
represents the address of the start of that assembler directive. For example, if dot
appears as the third argument in a .long directive, the value placed at that loca­
tion is the address of the first location of the directive - dot is not updated until
the next machine instruction or assembler directive. For example:

Ralph: movl .,aO load value of Ralph into aO

sun
microsystems

Revision A of May 9, 1988

----'-------1.-J~-<~--"""'"'='~,..,--,.,-a, ... __ ..,,_w•-•u-lij __ .,,,._..,,...,.< ..,t!::l...,!~~-l...,ua_,_,_"""'""<,..*=""'sttt..,!>!!tl..,_ __________ _

c
Chapter 2-Elements of Assembly Language 13

You can reserve storage by advancing dot.
For example, the statement

(Table: .=.+OxlOO)
reserves 256 bytes (100 hexadecimal) of storage, with the address of the first byte
as the value of Table. This is exactly equivalent to using . skip (the preferred
syntax) as follows:

(Table: . skip OxlOO

The value of dot is always relative to the start of the current control section. For
example,

)

(. = OxlOOO)

doesn't set dot to absolute location OxlOOO, but to location OxlOOO relative to the
start of the current control section. This practice is not recommended.

Revision A of May 9, 1988

c
3

Expressions

Expressions ... 17

3.1. Operators .. 17

3.2. Terms .. 18

3.3. Expressions ... 18

3.4. Absolute, Relocatable, and External Expressions... 18

0

3.1. Operators

Table 3-1

3
••• !>··:t:·:::

Expressions

Expressions are combinations of operands (numeric constants and identifiers) and
operators, forming new values. The sections below define the operators which
as provides, then gives the rules for combining terms into expressions.

Identifiers and numeric constants can be combined, via arithmetic operators, to ·
form expressions. as provides unary operators and binary operators, as
described below.

Unary Operators in Expressions

Operator Function Description

- unary minus Two's complement of its argument.

- logical negation One's complement (logical negation) of its argu-
ment.

Table 3-2 Binary Operators in Expressions

Operator Function Description

+ addition Arithmetic addition of its arguments.

- subtraction Arithmetic subtraction of its arguments.

* multiplication Arithmetic multiplication of its arguments.

I division Arithmetic division of its arguments. Note that
division in as is integer division, which trun-
cates towards zero.

Each operator works on 32-bit numbers. If the value of a particular term occu­
pies only 8 bi.ts or 16 bits, it is sign extended to a full 32-bit value.

sun
microsystems

17 Revision A of May 9, 1988

18 Assembly Language Reference

3.2. Terms

3.3. Expressions

3.4. Absolute, Relocatable,
and External
Expressions

A term is a component of an expression. A term may be any of the following:

o A numeric constant, whose 32-bit value is used. The assembly location
counter, known as dot, is considered a number in this context

o An identifier.

o An expression or term enclosed in parentheses () .
Any quantity enclosed in parentheses is evaluated before the rest of the

expression. This can be used to alter the normal1eft-to-right evaluation of
expressions- for example, differentiating between a *b+c and a* (b+c)
or to apply a unary operator to an entire expression- for example,
- (a*b+c).

o A term preceded by a unary operator. For example, both
double_plus_ungood and -double_plus_ungood are terms.

Multiple unary operators can be used in a term. For example, - -positive
has the same value as positive.

Expression are combinations of terms joined together by binary operators. An
expression is always evaluated to a 32-bit value.

If the operand requires only a single-byte value (a . byte directive or an addq
instruction, for example) the low-order eight bits of the expression are used.

If the operand requires only a 16-bit value (a . word directive or a movem c/:
instruction, for example) the low-order 16 bits of the expression are used. __ -

Expressions are evaluated left to right with no operator precedence. Thus

J
evaluates to 9, not 7. Unary operators have precedence over binary operators
since they are considered part of a term, and both terms of a binary operator must
be evaluated before the binary operator can be applied.

A missing expression or term is interpreted as having a value of zero. In this
case, an Invalid expression error is generated.

An Invalid Operator error means that a valid end-of-line character or binary
operator was not detected after the assembler processed a term. In particular, this
error is generated if an expression contains an identifier with an illegal character,
or if an incorrect comment character was used.

When an expression is evaluated, its value is either absolute, relocatable, or
external:

An expression is absolute if its value is fixed.

o An expression whose terms are constants is absolute.

o An identifier whose value is a constant via a direct assignment statement is
absolute.

sun
microsystems

Revision A of May 9, 1988

c
Chapter 3 - Expressions 19

o A relocatable expression minus a relocatable term is absolute, if both items
belong to the same program section.

An expression is relocatable if its value is fixed relative to a base address, but
will have an offset value when it is linked or loaded into memory. All labels of a
program defined in relocatable sections are relocatable terms.

Expressions which contain relocatable terms must only add or subtract constants
to their value. For example, assuming the identifiers widget and bli vet
were defined in a relocatable section of the program, then the following demon­
strates the use of relocatable expressions:

Expression Description

widget is a simple relocatable term. Its value is an offset from
the base address of the current control section.

widget+S is a simple relocatable expression. Since the value of
widget is an offset from the base address of the current
control section, adding a constant to it does not change
its relocatable status.

widget*2 Not relocatable. Multiplying a relocatable term by a
constant invalidates the relocatable status.

2-widget Not relocatable, since the expression cannot be linked by
adding widget's offset to it.

widget-blivet Absolute, since the offsets added to widget and
blivet cancel each other out.

An expression is external (or global) if it contains an external identifier not
defined in the current program. With one exception, the same restrictions on
expressions containing relocatable identifiers apply to expressions containing
external identifiers. The exception is that the expression

(widget-bli vet

is incorrect when both widget and bli vet are external identifiers- you
cannot subtract two external relocatable expressions. In addition, you cannot
multiply or divide any relocatable expression.

J

sun
microsystems

· Revision A of May 9, 1988

4
Assembly Language Program Layout

Assembly Language Program Layout .. 23

4.1. Label Field... 23

4.2. Operation Code Field .. 24

4.3. Operand Field .. 25

4.4. Comment Field ... 26

4.5. Direct Assignment Statements ... 26

(~

----·-------~~-~2> - -~L2£11i>WI,J!&i!l$li - ...

4.1. Label Field

4
Assembly Language Program Layout

An as program consists of a series of statements. Several statements can be
written on one line, but statements cannot cross line boundaries. The format of a
statement is:

[< label field>] [< ope ode> [<operand field>]]

It is possible to have a statement which consists of only a label field.

The fields of a statement can be separated by spaces or tabs. There must be at
least one space or tab separating the opcode field from the operand field, but
spaces are unnecessary elsewhere. Spaces may appear in the operand field.
Spaces and tabs are significant when they appear in a character string (for
instance, as the operand of an . ascii pseudo-op) or in a character constant. In
these cases, a space or tab stands for itself.

A line is a sequence of zero or more statements, optionally followed by a com­
ment, ending with a < newline> character. A line can be up to 4096 characters
long. Multiple statements on a line are separated by semicolons. Blank lines are
allowed. The form of a line is:

[<statement> [; <statement> ...]] [I < comment>]

Labels are identifiers which the programmer may use to tag the locations of pro­
gram and data objects. The format of a <label field> is:

[
~identifier> [<identifier>] . . .]

.._______ __ _____
If present, a label always occurs first in a statement and must be terminated by a
colon:

[sticky: label defined here.)

sun
microsystems

23 Revision A of May 9, 1988

24 Assembly Language Reference

4.2. Operation Code Field

More than one label may appear in the same source statement, each one being
terminated by a colon:

presson: grab: hold: multiple labels defined here.

The collectiol!_ of label definitions in a statement is called the label field.

When a label is encountered in the program, the assembler assigns that label the
value of the current location counter. The value of a label is relocatable. The
symbol's absolute value is assigned when the program is linked with the system
linker ld(l).

The operation code field of an assembly language statement identifies the state­
ment as either a machine instruction or an assembler directive.

One or more spaces (or tabs) must separate the operation code field from the fol­
lowing operand field in a statement. Spaces or tabs are unnecessary between the
label and o~ration code fields, but they are recommended to improve readability
of the program.

A machine instruction is indicated by an instruction mnemonic. The assembly
language statement is intended to produce a single executable machine instruc­
tion. The operation of each instruction is described in the manufacturer's user
manual. Conventions used in as for instruction mnemonics are described in
Chapter 6 and a complete list of the instructions is presented in Appendix B. Q
An assembler directive, or pseudo-op, performs some function during the assem-
bly process. It does not produce any executable code, but it may assign space for
data in a program.

Note that as expects that all instruction mnemonics in the op-code field should
be in lower case only. Using upper case letters in instruction mnemonics gives
rise to an error message.

The names of register operands must also be in lower case only. This behavior
differs from the case of identifiers, where both upper and lower case letters may
be used and are considered distinct.

Many MC68010 and MC68020 machine instructions can operate upon byte (8-
bit), word (16-bit), or long word (32-bit) data. The size which the programmer
requires is indicated as part of the instruction mnemonic. For instance, a movb
instruction moves a byte of data, a movw instruction moves a 16-bit word of data,
and a movl instruction moves a 32-bit long word of data. In general, the default
size for data manipulation instructions is word.

Many MC68881 machine instructions can operate on byte, word or long word
integer data, on single-precision (32-bit), double-precision (64-bit) or extended­
precision (96-bit) floating-point data or on packed-decimal (96-bit) data. The
size required is specified as part of the instruction mnemonic by a trailing "b",
"w", "1", "s", "d", "x" orp, respectively.

An alternate coprocessor id can be specified for MC688 81 instructions by
appending @id to the opcode, such as fadd@2. If you don't do this, the

sun
microsystems

Revision A of May 9, 1988

4.3. Operand Field

c

Chapter 4- Assembly Language Program Layout 25

coprocessor id specified by the most recent . cpid pseudo-operation is used.
(See Chapter 5.)

Similarly, branch instructions can use a long or short offset specifier to indicate
the destination. So the beq instruction uses a 16-bit offset, whereas the beqs
uses a short (8-bit) offset.

Note that this implementation of as provides an extended set of branch instruc­
tions which start with the letter j instead of the letter b. If the programmer uses
the j forms, the assembler computesr the offset size for the instruction. See Sec­
tion 1.1 for the assembler options which control this.

The operand field of an assembly language statement supplies the arguments to
the machine instruction or assembler directive.

as makes a distinction between the <operand field> and individual <operands>
in a machine instruction or assembler directive. Some machine instructions and
assembler directives require two or more arguments, and each of these is referred
to as an "operand".

In general, an operand field consists of zero or more operands, and in all cases,
operands are separated by commas. In other words, the format of an <operand
field> is:

[[<operand> [, <operand>] . . .]

The general format of the operand field for machine instructions is the same for
all instructions, and is described in Chapter 6. The format of the operand field
for assembler directives depends on the directive itself, and is included in the
directive's description in Chapter 5 of this manual.

]

Depending upon the machine instruction or assembler directive, the operand field
consists of one or more operands. The kinds of objects which can form an
operand are:

D Register operands

D Register pairs

D Address Operands

D String constants

D Floating-point constants

D Register lists

D Expressions

Register operands in a machine instruction refer to the machine registers of the
processor or coprocessor.

Note that register names must be in lower case; as does not recognize register
names in upper case or a combination of upper case and lower case.

sun
microsystems

Revision A of May 9, 1988

26 Assembly Language Reference

4.4. Comment Field

4.5. Direct Assignment
Statements

Expressions are described in Chapter 3, address operands in Section 6.3, and con­
stants in Chapter 2.

as provides the means for the programmer to place comments in the source
code. There are two ways of representing comments.

A line whose first non-whitespace character is the hash character (#) is con­
sidered a comment. This feature is handy for passing C preprocessor output
through the assembler. For example, these lines are comments:

This is a comment line.
And this one is also a comment line.

The other way to introduce a comment is when a comment field appears on a line
with a statement. The comment field is indicated by the presence of the vertical
bar character (1) after the source statement.

The comment field consists of all characters on a source line following and
including the comment character. The assembler ignores the comment field.
Any character may appear in the comment field, with the obvious exception of
the <newline> character, which starts a new line.

An assembly language source line can consist of just a comment field. For exam­
ple, the two statements below are quite acceptable to the assembler:

[

1

1

This is a comment field.

. So is this.

A direct assignment statement assigns the value of an arbitrary expression to a
specified identifier. The format of a direct assignment statement is:

(<identifier> = <expression>

Examples of direct assignments are:

vect_size
vectora
vectorb
CRLF

dtemp

4

OxFFFE
vectora-vect_size
OxODOA

dO use register dO as temporary

Any identifier defined by direct assignment may be redefined later in the pro­
gram, in which case its value is the result of the last such statement. This is
analogous to the SET operation found in other assemblers.

A local identifier may be defined by direct assignment, though this doesn't make
much sense.

]

l

Revision A of May 9, 1988

if')
\ ' "'-.-/

(\
I I
___;

c

Chapter 4- Assembly Language Program Layout 27

Register identifiers may not be redefined.

An identifier which has already been used as a label may not be redefined, since
this would be tantamount to redefining the address of a place in the program. In
addition, an identifier which has been defined in a direct assignment statement
cannot later be used as a label. Both situations give rise to assembler error mes­
sages.

If the <expression> in a direct assignment is absolute, the identifier is also abso­
lute, and may be treated as a constant in subsequent expressions. If the <expres­
sion> is relocatable, however, the < identifier> is also relocatable, and it is con­
sidered to be declared in the same program section as the expression.

If the <expression> contains an external identifier, the identifier defined by direct
assignment is also considered external. For example:

• globl X
holder = X

X is declared as external identifier
holder becomes an external identifier

assigns the value of X (zero if it is undefined) to holder and makes holder an
external identifier. External identifiers may be defined by direct assignment.

Revision A of May 9, 1988

c

5
Assembler Directives

Assembler Directives .. 31

5.1. . ascii- Generate Character Data.. 32

5.2. . asciz- Generate Zero-Tenninated Sequence of Character
Data.. 33

5.3. Directives to Generate Data... 33

5.4. Directives to Switch Location Counter... 34

. skip- Advance the Location Counter ... 35

. l comm- Reserve Space in b s s Area ... 35

5.5.

c 5.6.

5.7. . globl- Designate an External Identifier.. 36

5.8. . comm- Define Name and Size of a Common Area 36

5.9. . align- Force~Location Counter to Particular Byte
Boundary .. 37

5.10. . even- Force Location Counter to Even Byte Boundary............. 37

5 .11. . s t abx - Build Special Symbol Table Entry .. 37

5.12. . pro c - Separate Procedures for Span-Dependent
Instruction Resolution.. 38

5.13. . cpid-Name Default CoprocessoriD ... 38

c

Table 5-1

5
Assembler Directives

Assembler directives are also known as pseudo operations or pseudo-ops.
Pseudo-ops are used to direct the actions of the assembler, and to achieve effects
such as generating data. The pseudo-ops available in as are listed in Table 5-1
below.

Assembler Directives

Pseudo-
Description Operation

. ascii Generates a sequence of ASCII characters .

. asciz. Generates a sequence of ASCII characters, terminated by a zero byte .

. byte Generates a sequence of bytes in data storage .

. bytez Generates a sequence of bytes in data storage initialized to zero .

. word Generates a sequence of words in data storage .

. long Generates a sequence of long words in data storage .

.single Generates a sequence of single-precision floating-point constants in
data storage.

.double Generates a sequence of double-precision floating-point constants in
data storage.

.text Specifies that generated code be placed in the text control section unti~
further notice.

.data Specifies that generated code be placed in the data control section until
further notice.

.datal Specifies that generated code be placed in the datal control section
until further notice.

.data2 Specifies that generated code be placed in the data2 control section
until further notice.

.bss Specifies that space will be reserved in the bss control section until
further notice.

. globl Declares an identifier as global (external) .

. cornm Declares the name and size of a common area .

~\sun ~ microsystems
31 Revision A of May 9, 1988

32 Assembly Language Reference

Table 5-1

5.1 .. ascii- Generate
Character Data

Octal Code Generated:

150 145 154 154 157 040
164 150 145 162 145

127 141 162 156 151 156
147 055 007 007 040 012

141 142 143 144 145 146
147

Assembler Directives- Continued

Pseudo- Description
Operation

. lconun Reserves a specified amount of space in the bss control section .

.skip Advances the location counter by·a specified amount.

. align Forces location counter to next one-, two- or four-byte boundary .
I

. even Forces location counter to next word (even-byte) boundary .

.stabx Builds special symbol table entries. These directives are included for
the benefit of compilers which generate information for the symbolic
debuggers dbx and dbxtool.

. proc Separates procedures for faster span-dependent instruction resolution .

. cpid Assigns a coprocessor number .

These assembler directives are discussed in detail in the following sections.

The . ascii directive translates character strings into their ASCII equivalents
for use in the source program. The format ofthe . ascii directive is:

[[<label>:) . ascii "<character string>")
<character string> contains any character or escape sequence which can appear
in a character string. Obviously, a newline must not appear within the character
string. A newline can be represented by the escape sequence \012. The following
examples illustrate the use of the . ascii directive:

Statement:

.ascii "hello there"

.ascii "Warning-\007\007 \012"

.ascii "abcdefg"

Revision A of May 9, 1988

c

5.2 .. asciz- Generate
Zero-Terminated
Sequence of Character
Data

Octal Code Generated:

110 145 154 154 157 040
127 157 162 144 041 000

124 150 105 040 107 162
145 141 164 040 120 122
117 115 160 153 151 156
040 163 164 162 151 153
145 163 040 141 147 141
151 156 041 000

5.3. Directives to Generate
Data

Chapter 5- Assembler Directives 33

The . asciz directive is equivalent to the . ascii directive except that a zero
byte is automatically inserted as the final character of the string. This feature is ·
intended for generating strings which C programs can use. The following exam­
ples illustrate the use of the . asciz directive:

Statement:

.asciz "Hello World!"

.asciz "The Great PROMpkin strikes again!"

The . byte, . word, . long, . single, and . double directives reserve
storage locations and initialize them with specified values. __

The format of the various forms of data generation statements are:

<label>: . byte <expression> , <expression>] ...

<label>: . bytez <expression> , <expression>] ...

<label>: . word <expression> , <expression>] ...

<label>: . long <expression> , <expression>] ...

<label>: .single <expression> , <expression>] ...

<label>: . double <expression> , <expression>] ...

The . byte directive reserves one byte (8 bits) for each expression in the
operand field, and initializes it to the low-order 8 bits of the corresponding
expression.

The . bytez directive reserves one byte (8 bits) for each expression in the
operand field, and initializes it to zero.

The . word directive reserves one word (16 bits) for each expression in the
operand field, and initializes it to the low-order 16 bits of the corresponding
expression.

The .long directive reserves one long word (32 bits) for each expression in the
operand field, and initializes it to the value of the corresponding expression.

Revision A of May 9, 1988

34 Assembly Language Reference

5.4. Directives to Switch
Location Counter

Space

text

data

bss

The . single directive reserves one long word for each expression in the
operand field, and initializes it to the low-order 32 bits of tile corresponding
expression.

The . double directive reserves a pair of long words for each expression in the
operand field, and initializes them to the value of the corresponding expression.

Multiple expressions can appear in the operand field of the . byte, . word,
.long, . single, and . double directives. Multiple expressions must be
separated by commas.

Thesestatements .text, .data, .bss, .datal,and .data2,changethe
'control section' where assembled code is loaded.

as (and the system linker) view programs as divided into three distinct sections
or address spaces:

Description

The address space where the executable machine instructions are
placed.

The address space where initialized data is placed. The assem-
bler actually knows about three data areas, namely, data, datal,
and data2. The second and third data areas are mainly for the
benefit of compilers and are of minimal interest to the assembly
language programmer.

If the -R option is coded on the as command line, it means that
the initialized data should be considered read-only. It is actually
placed at the end of the text area.

The address space where the uninitialized data areas are placed.
Also, see the .lcomm directive described below.

For historical reasons, the different areas are frequently referred to as 'control
sections' (csects for short).

These sections are equivalent as far as as is concerned, with the exception that
no instructions or data are generated for the bss section- only its size is cqm­
puted and its symbol values are output.

During the first pass of the assembly, as maintains a separate location counter
for each section. Consider the following code fragments:

Revision A of May 9, 1988

0
\, .. ,/

5.5 . . skip- Advance the
Location Counter

5.6. . 1 comm -Reserve
Space in bs s Area

Chapter 5 - Assembler Directives 35

.text place next instruction
code: movw dl,d2 in text section

.data now generate data in
grab: .long 27 data section

.text now revert to text
more: addw d2,dl section

.data now back to data section
hold: .byte 4

During the first pass, as creates the intermediate output in two separate chunks:
one for the text section and one for the data section. In the text section, code
immediately precedes more; in the data section, grab immediately precedes
hold. At the end of the first pass, as rearranges all the addresses so that the
sections are sent to the output file in the order: text, data and bss.

The resulting output file is an executable image file with all addresses correctly
resolved, with the exception of undefined . globl's and . comm's.

For more information on the format of the assembler's output file, consult the
a.out(5) entry in the System Programmer's Reference Manual.

The . skip directive reserves storage by advancing the current location counter
a specified amount. The format of the . skip directive is:

([<label>:] . skip < size >]

where <size> is the number of bytes by which the location counter should be
advanced. The . skip directive is equivalent to performing direct assignment
on the location counter. For instance, a . skip directive like this:

(~T_a_b_l_e ____ ._s_k_i_P ___ l_o_o_o ____________________________________ ~]
reserves 1000 bytes of storage, with the value of Table equal to the address of the
first byte.

The . 1 comm directive is a compact way to get a specific amount of space
reserved in the bss area. The format of the .lcomm directive is:

[~_.l_c_o_mm __ ~,_< __ n_a_~ ___ >_,< __ s_n_e __ > ________________________________ ~]
where <name> is the name of the area to reserve, and <size> is the number of
bytes to reserve. The .lcomm directive specifically reserves the space in the bss
area, regardless of which location counter is currently in effect.

Revision A of May 9, 1988

36 Assembly Language Reference

5.7 .. globl- Designate
an External Identifier

5.8. . cornrn -Define Name
and Size of a Common
Area

A . lcornrn directive like this:

[.lcomm lower_forty,1200

is equivalent to these directives:

.bss
lower_forty: .skip size
revert to previous control section

switch to .bss area

A program may be assembled in separate modules, and then linked together to
form a single executable unit. See the ld(l) command in the SunOS Reference
Manual.

External identifiers are defined in each of these separate modules. An identifier
which is defined (given a value) in one module may be referenced in another
module by declaring it external in both modules.

There are two forms of external identifiers, namely, those declared with the

)

. globl and those declared with the . cornrn directive. The . cornrn directive is
described in the next section.

External symbols are declared with the . globl assembler directive. The format
is:

[.globl <symbol> [, <symbol>] . . .

For example, the following statements declare the array TABLE and the routine
SRCH as external symbols, and then define them as locations in the current con­
trol section:

TABLE:
SRCH:

.globl

.word
movw

etc.

TABLE, SRCH
0,0,0,0,0
TABLE, dO

)

The . cornrn directive declares the name and size of a common area, for compati­
bility with FOR1RAN and other languages which use common. The format of the
. cornrn statement is:

[. comm <name>, <constant expression>

where <name> is the name of the common area, and <constantexpression> is
the size of the common area. The . cornrn directive implicitly declares the
identifier <name> as an external identifier.

)

Revision A of May 9, 1988

C l
/

5.9 .. align- Force
Location Counter to
Particular Byte
Boundary

5.10. . even -Force
Location Counter to
Even Byte Boundary

5.11 •. stabx- Build
Special Symbol Table
Entry

Chapter 5 -Assembler Directives 37

as does not allocate storage for common symbols; this task is left to the linker.
The linker computes the maximum declared size of each common symbol (which
may appear in several load modules), allocates storage for it in the final bss sec­
tion, and resolves linkages. If, however, <name> appears as a global symbol
(label) in any module of the program, all references to <name> are linked to it,
and no additional space is allocated in the bss area.

The . align directive advances the location counter to the next one-, two- or
four-byte boundary, if it is not currently on such a boundary. Intervening bytes
are filled with zeros. The format of the . align directive is:

(.align < size >]

where <size> must be an assembler expression which evaluates to 1, 2 or 4.

This directive is necessary because word and long word data values must lie on
even-byte boundaries, because machine instructions must start on even-byte
boundaries, and because the MC68020 is much more efficient if word and long
word data are on even-byte and four-byte boundaries, respectively.

The . even directive advances the location counter to the next even-byte boun­
dary, if its current value is odd. This directive is necessary because word and
long word data values must lie on even-byte boundaries, and also because
machine instructions must start on even-byte boundaries. . even is equivalent
to. align 2.

(.even l
The . s tabx directives are provided for the use of compilers which can generate
information for the symbolic debuggers dbxand dbxtool. The directives
. stabs, . stabd, and . stabn build various types of symbol table entries.

The . stab directives have the following forms:

• stabs name, type, 0, desc, value

. s t abn type, 0 , desc, value

or

(~ __ .s_t_a_b_d _____ ~_p_e_,_o_,_de_s_c ______________________________________)

Revision A of May 9, 1988

3 8 Assembly Language Reference

5.12. . proc- Separate
Procedures for Span­
Dependent
Instruction
Resolution

5.13. . cpid- Name
Default Coprocessor
ID

The . stabs directives are used to describe types, variables, procedures, and so
on, while the . stabn directives convey information about scopes and the map­
ping from source statements to object code.

A . stabd directive is identical in meaning to a corresponding . stabn direc­
tive with the value field set to "."(dot), which the assembler uses to mean the
current location. Most of the needed information, for example symbol name and
type structure, is contained in the name field. The type field identifies the type of
symbolic information, for example source file, global symbol, or source line.
The desc field specifies the number of bytes occupied by a variable or type or the
nesting level for a scope symbol. The value field specifies an address or an
offset

The . proc directive separates procedures for span-dependent instruction resolu­
tion. In its absence the assembler does span-dependent instruction resolution
over entire files. If . proc is used, the resolution is done between occurrences of
the directive and between either end of the file and its nearest occurrences. Since
the algorithm used requires more than linear time, using . proc can save
significant time for large assemblies. Branch instructions must not cross . proc
directives, although calls may.

(.proc

The . cpid directive gives the assembler a coprocessor id value to use for
MC68881 instructions that don't have an explicit coprocessor id given. The
form of the directive is

(.cpid < id >

If no . cpid directive is given in a program, a value of 1 is assumed. Since no
Sun systems currently have more than one coprocessor, you don't need to use
this directive.

J

J

sun Revision A of May 9, 1988
micros ysterns

0

.0
_)

c
6

Instructions and Addressing Modes

Instructions and Addressing Modes... 41

6.1. Instruction Mnemonics ... 41

6.2. Extended Branch Instruction Mnemonics ... 41

6.3. Addressing Modes... 42

6.4. Addressing Categories .. 46

c

6
Instructions and Addressing Modes

This chapter describes the conventions used in as to specify instruction
mnemonics and addressing modes. The information in this chapter is specific to

the machine instructions and addressing modes of the MC68010 and MC68020

microprocessors and the MC68881 coprocessor. See Appendix C for informa­
tion on the Sun FP A's instructions set and addressing modes.

6.1. Instruction Mnemonics The instruction mnemonics that as uses are based on the mnemonics described
in the relevant Motorola processor manuals. However, as deviates from them in
several areas.

6.2. Extended Branch
Instruction Mnemonics

Most of the MC68010 and MC68020 instructions can apply to byte, word or long

operands. Instead of using a qualifier of . b, . w, or .1 to indicate byte, word, or

long as in the Motorola assembler, as appends a suffix to the normal instruction
mnemonic, thereby creating a separate mnemonic to indicate which length
operand was intended.

For example, there are three mnemonics for the or instruction: orb, orw, and
orl, meaning or byte, or word, and or long, respectively.

Instruction mnemonics for instructions with unusual opcodes may have addi­
tional suffixes. Thus in addition to the normal add variations, there also exist
addqb, addqw and addql for the add quick instruction:

Branch instructions come in two flavors for the MC68010, byte (or short) and
word, and an additional flavor, long, for the MC68020. Append the suffix s to
the word mnemonic to specify the short version of the instruction. For example,
beq refers to the word version of the Branch if Equal instruction, beqs refers to

the short version, while beql refers to the long version.

In addition to the instructions which explicitly specify the instruction length, as
supports extended branch instructions, whose names are, in most cases, con­
structed from the word versions by replacing the b with j.

If the operand of the extended branch instruction is a simple address in the text
segment, and the offset to that address is sufficiently small, as automatically
generates the corresponding short branch instruction.

If the offset is too large for a short branch, but small enough for a branch, the
corresponding branch instruction is generated. If the operand references an
external address or is complex (see next paragraph), the extended branch

41 Revision A of May 9, 1988

42 Assembly Language Reference

6.3. Addressing Modes

instruction is implemented either by a jmp or j s r (for j r a or j b s r), or (for
the MC68010) by a conditional branch (with the sense of the condition inverted)
around a jmp for the extended conditional branches and (for the MC68020) the
corresponding long branch.

The extended mnemonics should only be used in the text segment......__ if they are
used in the data segment, the most general form of the branch is generated.

In this context, a complex address is either an address which specifies other than
normal mode addressing, or a relocatable expression containing more than one
relocatable symbol. For instance, if a, b and c are symbols in the current seg­
ment, the expression a+b-c is relocatable, but not simple.

Consult Appendix B for a complete list of the instruction opcodes.

Table 6-1 below describes the addressing modes that asrecognizes. Note that
certain modes are not valid for the MC68010. The notations used in this table
have these meanings:

Notation Meaning

an An address register.
dn A data register.
ri Either a data register or an address register.
fi A floating-point register.

d A displacement, which is a constant expression in as. In
MC68020 mode, a length specifier (: L, described below) may be
appended to the displacement. Any forward or external refer-
ences require the length specifier to be : 1. All other references
permit either :1 or : w or nulls.

L The index register's length. This may be either long (1) or word
(w) or null. If the only value permitted by a particular addressing
mode or category is 1 or w, then L will be replaced by the
appropriate value in the table notation.

s A scale factor that may be used to multiply the index register's
length. The scale factor may have a value of 1, 2, 4, or 8.

The table notation of two or three items separated by colons, such as r i : L : s,
indicate items that may be optional. In that particular case, you may not specify
: s unless you have specified :L, which you may not specify unless you have
specified ri. The items in the list must appear in the order given in the notation
of the tables that follow.

In the table where both d and d' are specified, d corresponds to a MC68020 outer
displacement and d' corresponds to a MC68020 base displacement.

xxx refers to a constant expression.

Revision A of May 9, 1988

c

('
"'-~

Chapter 6- Instructions and Addressing Modes 43

Certain instructions, particularly move, accept a variety of special registers
including:

Name Register

sp the stack pointer, which is equivalent to a 7
sr the status register
cc the condition codes of the status register

usp the user mode stack pointer
pc the program counter
sfc the source function code register
dfc the destination function code register

fpcr the floating-point control register
fpsr the floating-point status register
fpiar the floating-point instruction address register

The memory-indirect and program counter memory-indirect addressing modes
listed in the following tables are usable only with the MC68020.

In each of these addressing modes, up to four user-specified values are used to
generate the final operand address:

D base register

D base displacement

D index register

D outer dispacement

All four user-specified values are optional. Both base and outer displacements
may be null, word or long. When a displacement is null, or an element is
suppressed, its value is taken as zero in the effective address calculation.

In the case of memory-indirect addressing, an address register (an) is used as a
base register, and its value can be adjusted by an optional base displacement (d').

An index register (ri) specifies an index operand (ri: L: s) and finally, an outer
displacement (d) can be added to the address operand, yielding the effective
address.

Program counter memory-indirect mode is exactly the same. The only difference
is that the program counter is used as the base register.

Some examples of these addressing modes follow:

Revision A of May 9, 1988

44 Assembly Language Reference

Table 6-1

Mode

Register

Register Deferred

Register List

FP A register

Floating-Point Register

(MC68881 only)

Postincrement

Predecrement

Displacement

Word Index

Long Index

Absolute Short

Absolute Long

PC Displacement

PC Word Index

PC Long Index
PC-Memory Indirect

Pre-Indexed (68020)

PC-Memory Indirect

Post-Indexed (68020)

Memory Indirect

Pre-Indexed (68020)

Memory Indirect
Post-Indexed (68020)

an@ (d' : L, ri:L:s)@(d:L)
an@(d:L)@(d' :L,ri:L:s)
an@@
an@(d:L)@
an@(d' :L,ri:L:s)@
pc@@
pc@(d:L)@
pc@(d' :L,ri:L:s)@(d:L)
pc@(d:L)@(d' :L,ri:L:s)
@(d:L)@
@(d' :L,ri:L:s)@(d:L)
@(d:L)@(d' :L,ri:L:s)
@(d' :L,ri:L:s)@

In the table below, note that the notation ri/rj means ri and rj, while ri_rj means ri
throughrj.

Addressing Modes

Notation Example

an,dn,sp,pc,cc,sr,usp movw a3,d2
an@ movw a3@,d2
ri-rj or ri/rj movem a0-a4, a6@-

fpai fpmoves fpal,d2
fpi fmoves fpl,a3@(24)

an@+ movw a3@+,d2
an@- movw a3@-,d2

an@ (d) movw a3@(24),d2
an@ (d, ri:w) movw a3@(16, d2:w) ,d3
an@ (d, ri: 1) movw a3@(16, d2:1) ,d3

;ax:w movw 14:w,d2
;ax:1 movw 14:1,d2

pc@ (d) movw pc@(20),d3
pc@ (d,ri:w) movw pc@(14, d2:w),d3
pc@ (d, ri: 1) movw pc@(l4, d2 :1) ,d3
pc@ (d' :L, ri:L: s)@ (d:L) mov1 pc@(2:w,d4:w:4)@(14:1),d3

pc@(d:L)@(d':L,ri:L:s) mov1 pc@(d:1)@(3:w,d2:1:4),d3

an@ (d' :L, ri:L: s)@ (d:L) mov1 al@(d:L,d2:1:4)@(14:w)

an@(d:L)@(d' :L,ri:L:s) mov1 a2@(2:w)@(14:w,d4:w:2)

Revision A of May 9, 1988

0

c Table 6-1

Mode

Normal

Immediate

c

Chapter 6- Instructions and Addressing Modes 45

Addressing Modes- Continued

Notation Example

identifier movw widget,d3

#XXX movw #27+3,d3

Nonnal mode assembles as PC-relative if the assembler can detennine that this is
appropriate, otherwise it assembles as either absolute short or absolute long,
under control of the -d2 command line option.

The Motorola manuals present different mnemonics (and in fact different fonns
of the actual machine instructions) for instructions that use the literal effective
address as data instead of using the contents of the effective address. For
instance, they use the mnemonic adda for add address. as does not make
these distinctions because it can detennine the type of opcode required from the
fonn of the operand. Thus an instruction of the fonn:

[avenue: .word 0

~~~1 #avenue,aO l 
assembles to the add address instruction because as can detennine that aO is an 
address register. 

right_now: - 40000 

addl #right_now,dO 

assembles to an add immediate instruction because as can detennine that 
right_now is a constant. 

Because of this detennination of operand fonns, some of the mnemonics listed in 
the Motorola manuals are missing from the set of mnemonics that as recognizes. 

Certain classes of instructions accept only subsets of the addressing modes 
above. For example, the add instruction does not accept a PC-relative address as 
a destination, and register lists may be used only with the movem and fmovem 

instructions. 

as tries to check all these restrictions and generates the illegal operand error 
code for instructions that do not satisfy the address mode restrictions. 

The next section describes how the address modes are grouped into addressing 
categories. 

Revision A of May 9, 1988 



46 Assembly Language Reference 

6.4. Addressing Categories The processors group the effective address modes into categories derived from 
the manner in which they are used to address operands. Note the distinction 
between address modes and address categories. There are 14 addressing modes 
in the MC68010 and 18 in the MC68020, and they fall into one or more of four 
addressing categories. The addressing categories are defined here, followed by a 
table summarizing the grouping of the addressing modes into categories. Note 
that register lists can be used only by the movem and fmovem instructions. 

Addressing 

Mode 

Register Direct 

A-Register Indirect 

A-Register Indirect 

with Displacement 

A-Register Indirect 
with Word Index 

A-Register Indirect 
with Long Index 

A-Register Indirect 
with Post Increment 

A-Register Indirect 

with Pre Decrement 

Category Meaning 

Data means that the effective address mode is used to refer to data 
operands such as a d register or immediate data. 

Memory means that the effective address mode can refer to memory 
operands. Examples include all the a-register indirect address 
modes and all the absolute address modes. 

Alterable means that the effective address mode refers to operands which 
are writeable (alterable). This category takes in every addressing· 
mode except the PC-relative addressing modes and the immedi-
ate address mode. 

Control means that the effective address mode refers to memory 
operands with no explicit size specification. 

Some addressing categones can be intersected to make more restrictive ones. 
For example, the Motorola MC68010 manual mentions the Data Alterable 
Addressing Mode to mean that the particular instruction can only use those 
modes which provided data addressing and are alterable as well. 

Table 6-2 Addressing Categories 

Assembler Data Memory Control Alterable MC68020 
Syntax Only 

an, dn, sp, pc, 
cc, sr, usp X X 

an@ X X X X 

an@ (d: L) X X X X X 

an@ ( d: L, ri : w: s) X X X X X 

an@ (d:L,ri:l:s) X X X X X 

an@+ X X X 

an@- X X X 

sun 
microsystems 

Revision A of May 9, 1988 



.. 

Chapter 6- Instructions and Addressing Modes 47 

Table 6-2 Addressing Categories- Continued 

Addressing Assembler Data Memory Control Alterable MC68020 

Mode Syntax Only 

A-Register Indirect an@ (d) X X X X 

with Displacement 

A-Register Indirect an@ (d, ri: w) X X X X 

with Word Index 

A-Register Indirect an@ (d, ri: 1) X X X X 

with Long Index 

Memory-Indirect an@ (d:L)@ (d': L, ri:L: s) X X X X X 

Post-Indexed 

Memory-Indirect an@ ( d' : L, ri: L : s) @ ( d: L) X X X X X 

Pre-Indexed 

Absolute Short xxx::w X X X X 

Absolute Long xxx::1 X X X X 

PC-relative pc@ (d) X X X 

PC-Indirect pc@(d:L) X X X X 

with Displacement 

PC-relative with pc@ (d, ri: w) X X X 
Word Index 

PC-Indirect with pc@ (d:L,ri:w:s) X X X X 
Word Index 

PC-relative pc@ (d, ri: 1) X X X 
with Long Index 

PC-Indirect with pc@ (d: L, ri: 1: s) X X X X 
Long Index 

PC-Memory Indirect pc@(d:L)@(d' :L,ri:L:s) X X X X X 
Post-Indexed 

PC-Memory Indirect pc@(d' :L,ri:L:s)@(d:L) X X X X X 
Pre-Indexed 

Immediate Data #nnn_ X X 

Revision A of May 9, 1988 





A 
as Error Codes 

as Error Codes .............................................................................................................................. 51 

A.1. Usage Errors ........................ :............................................................................................. 51 

A.2. Assembler Error Messages........................................................................................ 51 

c 



(\ 
\._ .. / 



c 

C\ 
' 

A.l. Usage Errors 

A.2. Assembler Error 
Messages 

A 
as Error Codes 

Cannot open output file 
The specified output file cannot be created. Check that the pennissions 
allow opening this file. 

Cannot open source file 
The assembler cannot open the specified source file. Check the spelling, that 
the pathname supplied is correct, and that you have read pennission for the 

file. 

No input file 
One or more input files must be specified- as cannot accept the output of 
a pipe as its input. 

Too many file names given 
The assembler cannot cope with more than one source file. Break the job 
into smaller stages. 

Unknown option 'x' ignored 
as does not recognize the option x. Valid options are listed in Section 1.1 of 
this manual. 

If as detects any errors during the assembly process, it prints out a message of 
the fonn: 

[as: error (<line_no>) : <error _code> 

Error messages are sent to standard error. Here is a list of as error codes, and 
their possible causes. 

Illegal .align 

J 

The expression following a . align evaluates to some value other than 1, 2 
or4. 

51 Revision A of May 9, 1988 



52 Assembly Language Reference 

Invalid assignment 
An attempt was made to redefine a label with a direct assignment statement. 

Invalid Character 
An unexpected character was encountered in the program text. 

Invalid Constant 
An invalid digit was encountered in a number. For example, using an 8 or 9 
in an octal number. Also happens when an out-of-range constant operand is 
found in an instruction - for example: 

[ 

addq #200,d0 ] 

~---a_s_l_l __ #_1_2_,_ct_o ____________________________________ ~ 

Invalid opcode 
The assembler did not recognize an instruction mnemonic. Probably a 
misspelling. 

Invalid operand 
The operand used is not consistent with the instruction used - for example: r--, 

[ ', 

[~ __ a_d_d_q_b __ n_,_a_s ___________________ __,] \_. j 

is an invalid combination of instruction and operand. Check the instruction 
set descriptions for valid combinations of instructions and operands. 

Invalid Operator 
Check the operand field for a bad operator. The operators that as recog­
nizes are plus (+),minus (-),negate or one's complement C), multiply 
( * ), and divide (I). 

Invalid register expression 
A register name was found where one should not appear- for example: 

(.___a_d_d_l __ *ct_o_, __ t_h_e_r_e ___________________ __,} 

Invalid Register List 
The register list in a movem or fmovem instruction is malformed. Note 
that the list must contain more than one register name: to express a list con­
taining just a single register, you must write its name twice separated by a 
slash, e.g. fpO/fpO." 

Revision A of May 9, 1988 



Appendix A- as Error Codes 53 

Invalid string 
An invalid string was encountered in an . ascii or . asciz directive. 

o Make sure the string is enclosed in double quotes. 

o Remember that you must use the sequence\" to represent a quote inside 
a string. 

Invalid symbol 
An operand that should be a symbol is not - for example: 

( .globl 3 

because the constant 3 is not a symbol. 

Invalid Term 
The expression evaluator could not find a valid term: a symbol, constant or 

<expression>. 
An invalid prefix to a number or a bad symbol name in an operand gen­

erates this message. 

Line too long 

J 

A statement was found which has more than 4096 characters before the new­
line character. 

Missing close-paren ')' 
An unmatched'(' was found in an expression. 

Multiply defined symbol 

o An identifier appears twice as a label. 

o An attempt to redefine a label using a direct assignment statement. 

o An attempt to use, as a label, an identifier which was previously defined 
in a direct assignment statement. 

Multiply Defined Symbol (Phase Error) 
This rarely occurring message indicates an inconsistency in the assembler. 
Report it to Sun Microsystems Customer Support if it occurs. 

N on-relocatable expression 
If an expression contains a relocatable symbol (a label, for instance), the 
only operations that can be applied to it are the addition of absolute expres­
sions or the subtraction of another relocatable symbol (which produces an 
absolute result). 

Revision A of May 9, 1988 



54 Assembly Language Reference 

Odd address 
The previous instruction or pseudo-op required an odd number of bytes and 
this instruction requires word alignment. This error can only follow an 
. ascii, an . asciz, a . byte, or a . skip pseudo-operation. 

NOTE Use a . even directive to ensure that the location counter is forced to a 16-bit 
boundary. 

Offset too large 
The instruction is a relative addressing instruction and the displacement 
between this instruction and the label specified is too large for the address 
field of the instruction. 

Out of strings space 
No more room is left in the assembler's internal string table. Divide the pro­
gram into smaller portions; assemble portions of the program separately, 
then bind them together using the linker. 

Register out of range 
In the FP A's dot product, matrix move and transpose instructions when the 
register specified does not fall within the specified range, then this error is 
reported. Note that for most instructions where one operand is an effective 
address, the register range is 0 to 15. If all operands are FPA registers, the ('/\ 
register range is 0 to 31. For constant RAM registers, the range is 0 to 511. '-
This type of error would probably also cause the Invalid operand error to be 
reported. 

Stab storage exceeded 
No more room is left in the assembler's symbol table for debug information. 
Cut the program into smaller portions; assemble portions of the program 
separately, then bind them together using the linker. 

Symbol storage exceeded 
No more room is left in the assembler's symbol table. Divide the program 
into smaller portions; assemble portions of the program separately, then bind 
them together using the linker. 

Symbol Too Long 
A local label reference longer than one digit was found. 

sun 
microsystems 

Revision A of May 9, 1988 

0 



c 

Appendix A- as Error Codes 55 

Undefined L-symbol 
This is a warning message. A symbol beginning with the letter 'L' was used 
but not defined. It is treated as an external symbol. Compiler-generated 
labels usually start with the letter 'L' and should be defined in this assembly. 
The absence of such a definition usually indicates a compiler code genera­
tion error. This message is also generated by the use of symbols such as n$ 
if n$ has not been defined. 

Unqualified forward reference 
The displacement\field in an MC68020 based/indexed address mode con­
tains an unqualified forward reference. Note that the displacement in a 
based/indexed address mode for the MC68020 instruction set can contain a 
forward or external reference only if the length specifier is present. The 
length specifier should be : 1 (long). This type of error would probably also 
cause Multiply defined symbol (Phase error). 

Undefined Symbol 
A label reference to an undefined local label was found. 

Wrong number of operands 
Check Appendix B for the correct number of operands for the current 
instruction. 

Revision A of May 9, 1988 





c 
B 

List of as Opcodes 

List of as Opcodes ................................................................................................................... 59 

c 



0 



B 
List of as Ope odes 

This appendix is a list of the instruction mnemonics accepted by as, grouped 
alphabetically. The list is divided into two tables, the first covers the MC680x0 
processor's instructions, the second covers the MC68881 floating-point 
processor's instructions. For more information about floating-point program­
ming, see the Floating-Point Programmer's Guide. 

Each entry describes the following things: 

o The mnemonics for the instruction, 

o The generic name of the instruction, 

o The assembly language syntax and the variations on the instruction, 

o Whether the instruction is specific to the MC68020, or has extended capabil-
ities on the MC68020 compared to the MC68010. 

The syntax for as machine instructions differs somewhat from the instruction 
layouts and categories shown in the Motorola processor manuals. For example, 
as provides a single set of mnemonics for add (add binary), adda (add 
address), and addi (add immediate), differentiated only by the length of the 
operands. In general, as selects the appropriate instruction from the form of the 
operands. 

Here is a brief explanation of the notations used below. 

o An instruction of the form addx in the assembly language syntax column 
means that the instruction is coded as addb, addw, addl, etc. 

o An operand field of an means any A-register. 

o An operand field of dn means any D-register. 

o An operand field of rn means any A- or D-register. 

o An operand field of fn means any floating-point register. 

o An operand field of en means any control register. 

o An operand field of ea means an effective address designated by one of the 
permissible addressing modes. Consult the relevant Motorola processor 
manual for details of the allowed addressing modes for each instruction. 

59 Revision A of May 9, 1988 



60 Assembly Language Reference 

Mnemonic 
abed 

addb 

addw 

addl 

addqb 

addqw 

addql 

addxb 

addxw 

addxl 

an db 

andw 

andl 

aslb 

aslw 

asll 

NOTE 

Table B-1 

o An operand field of vector means an exception vector location. 

o An operand field of #data means an immediate operand. 

o Other special registers such as cc (condition code register) and sr (status 
register) are specifically indicated where appropriate. 

The MC68020 provides a set of bit-field manipulating instructions that don't 
exist on the MC68010. Their notation includes a bit field specifier of the form 
{ offset:width}, where the offset denotes the beginning of the bit field in the word 
and the width is the number of bits in the field. 

Offset values are counted from the high-order bit, as 0, to the low-order bit, as 
31. 

This ordering is the reverse of the convention used in the bchg, bclr, bset, 
andbtst instructions. 

Offset and width may be either constants or data registers. For example: 

o bfins dO,a5@(4){#0:#9} 

o bfexta a5@(4){d0:#8},d7 

In the table that follows, the processor is assumed to be the MC68010 unless 
specifically stated otherwise. 

List of MC680x0 Instruction Codes 

Operation Name Syntax Processor 
add decimal with extend abed dy,dx 

abed ay@-, aX@-

add binary adc!X ea,dn 

adc!X dn,ea 

adc!X ea,an (except addb) 

adc!X #data,ea 

add quick addqX #data,ea 

add extended addxX dy, ciX 
addxX ay@-, aX@-

logical and anc!X ea,dn 
anc!X dn,ea 
anc!X #data, dn 

arithmetic shift left aslX c!X, dy 

aslX #data, dy 

aslX ea 

Revision A of May 9, 1988 



Appendix B -List of as Opcodes 61 

Table B-1 List of MC680x0 Instruction Codes- Continued 

Mnemonic Operation Name Syntax Processor 
asrb arithmetic shift right asrX dX,dy 

asrw asrX #data,dy 

asrl asrX ea 

bee branch conditionally be eX label 

bccl MC68020 

bees 

bchg test a bit and change bchg dn,ea 

bchg #data, ea 

bclr test a bit and clear bclr dn,ea 

bclr #data, ea 

bkpt breakpoint bkpt #data MC68020 
c 

bset test a bit and set bset dn,ea 

bset #data,ea 

btst test a bit btst dn,ea 

btst #data, ea 

bfchg test a bit field and change bfchg ea{ offset:width) MC68020 

bfclr test a bit field and clear bfclr ea{ offset:width) MC68020 

bfexts extract a bit field signed bfexts ea{offset.width), dn MC68020 

bfextu extract a bit field unsigned bfextu ea{offset.width), dn MC68020 

bfffo find first one in bit field bfffo ea{offset:width), dn MC68020 

bfins insert a bit field bfins dn, ea{offset.width) MC68020 

bfset test a bit field and set bfset ea{ offset:width) MC68020 

bftst test a bit field bftst ea{ offset:width) MC68020 

bcs branch carry set bcsX ea 

bcsl MC68020 

bess 

beq branch on equal beqX ea 

beql MC68020 

beqs 

bge branch greater or equal bgeX ea 

bgel MC68020 

bges 

bgt branch greater than bgtX ea 

bgtl MC68020 

c bgts 

~~sun ~ microsystems 
Revision A of May 9, 1988 



62 Assembly Language Reference 

Table B-1 List of MC680x0 Instruction Codes- Continued 

Mnemonic Operation Name Syntax Processor 
bhi branch higher bhiX ea 
bhil , MC68020 
bhis 

ble branch less than or equal bleX ea 
blel MC68020 
bles 

bls branch lower or same blsX ea 
blsl MC68020 

blt branch less than bltX ea 

bltl 

blts 

bmi branch minus bmiX ea 
bmil 

bmis 

bne branch not equal bneX ea 
bnel MC68020 
bnes 

bpl branch positive bplX ea 
bpll MC68020 
bpls 

bra branch always braX label 
bral MC68020 
bras 

bsr subroutine branch bsrX label 
bsrl MC68020 
bsrs 

bvc branch overflow clear bvcX ea 
bvcl MC68020 
bvcs 

bvs branch overflow set bvsX ea 
bvsl bvsl MC68020 
bvss 

callm call module callm ,g,data, ea MC68020 

cas2b compare & swap with operand cas2X clcl: clc2, dul: du2, {rnl) : { rn2) MC68020 
cas21 MC68020 
cas2w MC68020 

casb compare & swap with operand casX de, du, ea MC68020 
casl MC68020 
casw MC68020 0 

sun 
microsystems 

Revision A of May 9, 1988 



Appendix B -List of as Opcodes 63 

Table B-1 List of MC680x0 Instruction Codes- Continued 

Mnemonic Operation Name Syntax Processor 

chkb check register against bounds chkX ea,dn MC68020 
" 

chkw MC68020 

chkl MC68020 

chk2b check register against bounds chk2X ea, rn MC68020 

chk21 MC68020 

chk2w MC68020 

clrb clear an operand clrX ea 

clrw 

clrl 

cmp2b compare register against bounds cmp2X ea,rn MC68020 

cmp21 MC68020 

cmp2w MC68020 

cmpmb compare memory cmpmX ay@+,aX@+ 

cmpmw 

cmpml 

cmpb arithmetic compare cmpX ea,dn 

cmpw cmpX tdata, ea 

cmpl 

dbcc decrement & branch on carry clear dbcc dn, label 

dbcs " on carry set dbcs dn, label 

dbeq " on equal dbeq dn, label 

dbf " on false dbf dn, label 

dbge " on greater than or equal dbge dn, label 

dbgt " on greater than dbgt dn, label 

dbhi " on high db hi dn, label 

dble " on less than or equal dble dn, label 

dbls " on low or same dbls dn, label 

dblt " on less than dblt dn, label 

dbmi " on minus dbmi dn, label 

dbne " on not equal dbne dn, label 

dbpl " on plus dbpl dn, label 

dbra " always (same as dbf) dbra dn, label 

dbt " on True dbt dn, label 

dbvc " on overflow clear dbvc dn, label 

dbvs " on overflow set dbvs dn, label 

divs signed divide divs ea,dn 

divsl divsX ea,dn MC68020 

divsll divsX ea,dq MC68020 

divsX ea,dr:dq MC68020 

divu unsigned divide divu ea,dn 

divul divuX ea,dn MC68020 

Revision A of May 9, 1988 



64 Assembly Language Reference 

Table B-1 List of MC680x0 Instruction Codes- Continued 

Mnemonic Operation Name Syntax Processor 
divuw divuX ea,cln MC68020 

divuX ea,dq MC68020 
divuX ea, dr: dq MC68020 

divull divull ea,dr:dq MC68020 

eorb logical exclusive or eorX cln, ea 
eorw eorX #data, ea 
eorl eorb #data, cc 

eorw #data,sr 

exg exchange registers exg rx,ry 

extbl sign extend extbl dn MC68020 
extw extX cln 
extl 

jmp ~ jump jmp ea 
jsr jump to subroutine jsr ea 
jcc jump carry clear jcc ea 
jcs jump on carry jcs ea 
jeq jump on equal jeq ea 
jge jump greater or equal jge ea 
jgt jump greater than jgt ea 
jhi jump higher jhi ea 
jle jump less than or equal jle ea 
jls jump lower or same jls ea 
jlt jump less than jlt ea 
jmi jump minus jmi ea 
jne jump not equal jne ea 
jpl jump positive jpl ea 
jra jump always jra ea 
jbsr jump to subroutine jbsr ea 
jvc jump no overflow jvc ea 
jvs jump on overflow jvs ea 

lea load effective address lea ea,an 

link link and allocate link an, #disp 
linkl linkl an, #disp MC68020 

lslb logical shift left lslX dx,dy 
lslw lslX #data,dy 
lsll lslX ea 

lsrb logical shift right lsrX dx,dy 
lsrw lsrX #data,dy 
lsrl lsrX ea 

movb move data movX ea,ea 
movl 

movw movX #data, cln 

Revision A of May 9, 1988 



Appendix B -List of as Opcodes 65 

c Table B-1 List ofMC680xO Instruction Codes- Continued 

Mnemonic Operation Name Syntax Processor 

movw move from condition code register movw cc,ea 

movw move from status register movw sr,ea 

move move to/from control register move rn,cr 

move cr, rn 

moveml move multiple registers movemX #mask,ea 

movemw movemX ea, #mask 

movemX ea,reglist 

movemX reglist, ea 

movepl move peripheral movepX dn, an@ (d) 

movepw movepX an@(d),dn 

moveq move quick moveq #data, dn 

movsb move to/from address space movsX rn,ea 

movsw movsX ea,rn 

movsl 

muls signed multiply muls ea,dn 

mulslw mulsX ea, dl MC68020 

mulsll mulsX ea, dh:dl MC68020 

mulu unsigned multiply mulu ea,dn 

mulul muluX ea, dl MC68020 

muluX ea, dh:dl MC68020 

nbcd negate decimal with extend nbcd ea 

negb negate binary negX ea 

negw 

negl 

negxb negate binary with extend negxX ea 

negxw 

negxl 

nap no operation nap 

notb logical complement notX ea 

notw 

notl 

orb inclusive or orX ea,dn 

orw orX dn,ea 

orl or #data,ea 

orb #data, cc 

orw #data,sr 

pack pack pack aX@-,ay@-,#data MC68020 

C' 
~ 

pack dX, dy, #data MC68020 

pea push effective address pea ea 

Revision A of May 9, 1988 



66 Assembly Language Reference 

Table B-1 List of MC680x0 Instruction Codes- Continued 

Mnemonic Operation Name Syntax Processor 
reset reset device reset 

rolb rotate left rolX dx,dy 
rolw rotate left rolX #data, dy 
roll rolX ea 

rorb rotate right rorX dx,dy 
rorw rorX #data,dy 
rorl rorX ea 

roxlb rotate left with extend roxlX dx,dy 
roxlw roxlX #data, dy 
roxll roxlX ea 

roxrb rotate right with extend roxrX dx,dy 
roxrw roxrX #data, dy 
roxrl roxrX ea 

rtd return and deallocate parameters rtd #data 
rte return from exception rte 
rtm return from module rtm rn MC68020 
rtr return and restore codes rtr 
rts return from subroutine rts 

rts #n 0 
sbcd subtract decimal with extend sbcd dy,dx 

sbcd ay@-, aX@-

stop halt machine stop #xxx 

subb arithmetic subtract subX ea,dn 
subw subX dn,ea 

subX ea,an 
.subl subX #data,ea 

st set all ones st ea 
sf set all zeros sf ea 
shi set high shi ea 
sls set lower or same sls ea 
sec set carry clear sec ea 
scs set carry set scs ea 
sne set not equal sne ea 
seq set equal seq ea 
svc set no overflow svc ea 
svs set on overflow svs ea 
spl set plus spl ea 
smi set minus smi ea 
sge set greater or equal sge ea 
slt set less than slt ea 
sgt set greater than sgt ea 
sle set less than or equal sle ea 

Revision A of May 9, 1988 



c 
Mnemonic 

subqb 

subqw 

subql 

subxb 

subxw 

subxl 

swap 

tas 

trap 

trapcc 

trapccl 

trapccw 

trapcs 

trapcsl 

trapcsw 

trapeq 

trapeql 

trapeqw 

trapf 

trapfl 

trapfw 

trapge 

trapgel 

trapgew 

trapgt 

trapgtl 

trapgt 

Appendix B -List of as Opcodes 67 

Table B-1 List of MC680x0 Instruction Codes- Continued 

Operation Name Syntax Processor 

subtract quick subqX #data,ea 

subtract quick 

subtract extended subxX dy,dx 

subxX ay@-, aX@-

swap register halves swap dn 

test operand then set tas ea 

trap trap #vector 

trap on carry clear trapccX MC68020 

trapccX #data MC68020 

MC68020 

trap on carry set trapcsx MC68020 

trapcsX #data MC68020 

MC68020 

trap on equal trapeqX MC68020 

trapeqX #data MC68020 

MC68020 

trap on never true trapfX MC68020 

trapfX #data MC68020 

MC68020 

trap on greater or equal trapgeX MC68020 

trapgeX #data MC68020 

MC68020 

trap on greater trapgtX MC68020 

trapgtX #data MC68020 

The following table describes the MC68881 instruction mnemonics supported by 

as. 
Each mnemonic indicates the data type that it operates on by the last character of 

the mnemonic: 

o b indicates a byte format instruction 

o w indicates a word format instruction 

o 1 indicates a long format instruction 

o s indicates a single-precision format instruction 

0 d indicates a double-precision format instruction 

Revision A of May 9, 1988 



68 Assembly Language Reference 

o x indicates an extended-precision format instruction 

o p indicates a packed format instruction 

o y indicates that any of 1, s, p, w, d, orb, are acceptable. 

Table B-2 MC68881 Instructions supported by as 

Mnemonic Operation Name Syntax 
fabsx absolute value fabsx ea, fn 
fabsl fabsx fm, fn 
fabss fabsy ea, fn 
fabsp 

fabsw 

fabsd 

fabsb 

facosx arc cosine facosx ea, fn 
facosl facosx fm, fn 
facoss facosy ea, fn 
facosp 

facosw 

facosd 

facosb 

faddx add faddx ea, fn 
faddl faddx fm,fn 
£adds faddy ea,fn 
faddp 

faddw 

faddd 

faddb 

fasinx arc sin fasinx ea, fn 
fasinl fasinx fm, fn 
fa sins fasiny ea, fn 
fasinp 

fasinw 

fa sind 

fasinb 

fatanx arc tangent fatanx ea, fn 
fatanl fatanx fm, fn 
fa tans fatany ea, fn 
fatanp 

fatanw 

fatand 

fatanb 

fatanhx hyperbolic arc tangent fatanhx ea, fn 
fatanhl fatanhx fm, fn 
fatanhs fatanhy ea, fn 

(\, 
I ' \.___/ 

Revision A of May 9, 1988 



Appendix B -List of as Opcodes 69 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fatanhp hyperbolic arc tangent ( contd.) 

fatanhw 

fatanhd 

fatanhb 

fbcc branch conditionally fbcc label 

fbeq (equal) 

fbeql 

fbf (false) 

fbfl 

fbgt (greater than) 

fbgtl 

fble (less than or equal) 

fblel 

fblt (less than) 

fbltl 

fbge (greater than or equal) 

fbgel 

fbgl (greater than or less) 

fbgll 

fbgle (greater less or equal) 

fbglel 

fbgt (greater than) 

fbne (not equal) 

fbnel 

fbneq (not (equal)) 

fbneql 

fbnge (not greater than or equal) 

fbngel 

fbngl (not greater than or less) 

fbngll 

fbngle (not greater than, less or equal) 

fbnglel 

fbngt (not greater than) 

fbngtl 

fbnle (not less than or equal) 

fbnlel 

fbnlt (not less than) 

fbnltl 

fbt (true) 

fbtl 

fbor (ordered) 

fborl c\ fboge (ordered greater or equal) 

fbogel 

fbogl (ordered greater or less) 

Revision A of May 9, 1988 



70 Assembly Language Reference 

Table B-2 MC688811nstructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fbogll 

fbogt (ordered greater than) 
fbogtl 

fbole (ordered less or equal) 
fbolel 

fbolt (ordered less than) 
fboltl 

fbseq (signalling equal) 
fbseql 

fbsf (signalling false) 
fbsfl 

fbsne (signalling not equal) 
fbsnel 

fbst (signalling true) 
fbstl 

fbueq (unordered equal) 
fbueql 

fbuge (unordered greater or equal) 

fbugel 

fbugt (unordered greater than) 
fbugtl 

fbule (unordered less or equal) 
fbulel 

fbult (unordered less than) 
fbultl 

fbun (unordered) 

fbunl 

fcmpx compare fcmpx ea, fn 

fcmpl fcmpx fm, fn 

fcmps fcmpy ea, fn 

fcmpp 

fcmpw 

fcmpd 

fcmpb 

fcosx cosine fcosx ea, fn 

fcosl fcosx fm, fn 
fcoss fcosy ea,fn 

fcosp 

fcosw 
fcosd, 

fcosb 

fcoshx hyperbolic cosine fcoshx ea,fn 

fcoshl fcoshx fm, fn 0 
fcoshs fcoshy ea, fn 

Revision A of May 9, 1988 



Appendix B -List of as Opcodes 71 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fcoshp 

fcoshw hyperbolic cosine (contd.) 

fcoshd 

fcoshb 

fdbcc decrement & branch on condition fdbcc dn, label 

fdbeq (equal) 

fdbne (not equal) 

fdbgt (greater than) 

fdbngt (n9t greater than) 

fdbge (greater or equal) 

fdbnge (not greater or equal) 

fdblt (less than) 

fdbnlt (not less than) 

fdble (less or equal) 

fdbnle (not less or equal) 

fdbgl (greater or less) 

fdbngl (not greater or less) 

fdbgle (greater, less or equal) 

c fdbngle (not greater, less or equal) 

fdbogt (ordered greater than) 

fdbule (unordered less or equal) 

fdboge (unordered greater or equal) 

fdbult (unordered less than) 

fdbolt (ordered less than) 

fdbuge (unordered greater or equal) 

fdbole (ordered less or equal) 

fdbugt (unordered greater than) 

fdbogl (ordered greater or less) 

fdbueq (unordered equal) 
/ 

fdbor (ordered) 

fdbun (unordered) 

fdbf (false) 

fdbt (true) 

fdbsf (signalling false) 

fdbst (signalling true) 

fdbseq (signalling equal) 

fdbsne (signalling not equal) 

fdivx divide fdivx ea, fn 

fdivl fdivx fm, fn 
fdivs fdivy ea, fn 
fdivp 

fdivw 

fdivd 

fdivb 

sun 
microsystems 

Revision A of May 9, 1988 



72 Assembly Language Reference 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fetoxx X fetoxx ea, fn ,e 

fetoxl fetoxx fm, fn 

fetoxs ~ fetoxy ea, fn 

fetoxp 

fetoxw 

fetoxd 

fetoxb 

fetoxmlx ex -1 fetoxmlx ea, fn 

fetoxmll fetoxmlx fm, fn 

fetoxmls fetoxmly ea, fn 

fetoxmlp 

fetoxmlw 
-fetoxmld 

fetoxmlb 

fgetexpx get exponent fgetexpx ea, fn 

fgetexpl fgetexpx fm, fn 

fgetexps fgetexpy ea, fn 

fgetexpp 

fgetexpw 

fgetexpd 0 
fgetexpb 

fgetmanx get mantissa fgetmanx ea, fn 

fgetmanl fgetmanx fm, fn 

fgetmans fgetmany ea, fn 

fgetmanp 

fgetmanw 

fgetmand 

fgetmanb 

fintx integer part fintx ea, fn 

fintl fintx fm, fn 

fints finty ea,fn 

fintp 

fintw 

fintd 

fintb 

fintrx integer part, round toward 0 fintrx ea, fn 

fintrzl fintrx fm, fn 

fintrzs fintry ea,fn 

fintrzp 
' 

fintrzw 

fintrzd 

fintrzb 

sun 
microsystems 

Revision A of May 9, 1988 



Appendix B -List of as Opcodes 73 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fjcc jump on condition fjcc label 

fjeq (equal) 

fjne (not equal) 

fjneq (not equal or equal) 

fjgt (greater than) 

fjngt (not greater than) 

fjge (greater or equal) 

fjnge (not greater or equal) 

fjlt (less than) 

fjnlt (not less than) 

fjle Oess or equal) 

fjnle (not less or equal) 

fjgl (greater or less) 

fjngl (not greater or less) 

fjgle (greater, less or equal) 

fjngle - (not greater, less or equal) 
~ 

fjogt (ordered greater than) 

fjule (unordered less or equal) 

fjoge (ordered greater or equal) 

fjult (unordered less than) 

fjolt (ordered less than) 

fjuge (unordered greater or equal) 

fjole (ordered less or equal) 

fjugt (unordered greater than) 

fjogl (ordered greater or less) 

fjueq (unordered equal) 

fjor (ordered) 

fjun (unordered) 

fjf (false) 

fjt (true) 

fjsf (signalling false) 

fjst (signalling true) 

fjseq (signalling equal) 

fjsne (signalling not equal) 

floglOx loglO floglOx ea, fn 

floglOl floglOx fm, fn 

floglOs floglOy fn 

floglOp 

floglOw 

floglOd 

flog lOb 

.c 
flog2x log2 flog2x ea, fn 
flog21 flog2x fm, fn 

flog2s flog2y ea, fn 

flog2p 

Revision A of May 9, 1988 



74 Assembly Language Reference 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

flog2w log2 ( contd.) 

flog2d 

flog2b 

flognx loge flognx ea, fn 

flognl flognx fm, fn 

flogns flogny ea, fn 

flognp 

flognw 

flognd 

flognb 

flognplx loge(x+l) flognplx ea, fn 

flognpll flognplx fm, fn 

flognpls flognply ea, fn 

flognplp 

flognplw 

flognpld 

flognplb 

fmodx modulo fmodx ea, fn 

fmodl fmodx fm,fn 

fmods fmody ea,fn 0 
fmodp 

fmodw 

fmodd 

fmodb 

fmovex move fp register fmovex ea,fn 

fmovel fmovex fm, ea 

fmoves fmovey ea, fn 

fmovep 

fmovew 

fmoved 

fmoveb 

fmovecrx move constant ROM fmovecrx #ccc, fn 

fmovemx move multiple data registers fmovemy ea, list 

fmoveml fmovemx list, ea 

fmovem fmoveml ea, dn 

fmovem dn, ea 

fmulx multiply fmulx ea, fn 

fmull fmulx fm, fn 

fmuls ~ fmuly ea, fn 

fmulp 

- 0 
~~sun ~"' microsystems 

Revision A of May 9, 1988 



c Table B-2 

Mnemonic 

fmulw 

fmuld 

fmulb 

fnegx 

fnegl 

fnegs 

fnegp 

fnegw 

fnegd 

fnegb 

fnop 

fremx 

freml 

frems 

fremp 

fremw 

fremd 

fremb 

C' £restore 

fsave 

fscalex 

fscalel 

fscales 

fscalep 

fscalew 

fscaled 

fscaleb 

£sec 

fseq 

fsne 

fsneq 

fsgt 

fsngt 

fsge 

fsnge 

fslt 

fsnlt 

fsle 

fsnle 

fsgl 

fsngl 

fsgle 

Appendix B -List of as Opcodes 75 

MC6888llnstructions supported by as- Continued 

Operation Name 

multiply (contd.) 

negate 

no operation 

IEEE remainder 

restore internal state 

-
save internal state 

scale exponent 

set according to condition 

(equal.) 

(not equal) 

(not equal or equal) 

(greater than) 

(not greater than) 

(greater or equal) 

(not greater or equal) 

(less than) 

(not less than) 

(less or equal) 

(not less or equal) 

(greater or less) 

(not greater or less) 

(greater, less or equal) 

Syntax 

fnegx ea, fn 

fnegx fm, fn 

fnegy ea, fn 

fnop 

fremx ea, fn 

fremx fm, fn 

fremy ea, fn 

£restore ea 

fsave ea 

fscalex ea, fn 

fscalex fm, fn 

fscaley ea, fn 

fscc ea 

Revision A of May 9, 1988 



76 Assembly Language Reference 

Table B-2 MC68881lnstructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fsngle (greater, less or equal) 

fsogt (not greater, less or equal) 

fsule (unordered less or equal) 

fsoge (ordered greater or equal) 

fsult (unordered less than) 

fsolt (ordered less than) 

fsuge (unordered greater or equal) 

fsole (ordered less or equal) 

fsugt (unordered greater than) 

fsogl (ordered greater or less) 

fsueq (unordered equal) 

fsor (ordered) 

fsun (unordered) 

fsf (false) 

fst (true) 

fssf (signalling false) 

fsst (signalling true) 

fsseq (signalling equal) 

fssne (signalling not equal) 

fsgldivx single-precision divide fsgldi vx ea, fn 

fsgldivs fsgldivx fm, fn 0 
fsgldivl fsgldivy ea, fn 

fsgldivp 

fsgldivw 

fsgldivb 

fsglmulx single-precision multiply fsglmulx ea, fn 

fsglmuls fsglmulx fm, fn 

fsglmull fsglmuly ea, fn 

fsglmulp 

fsglmulw 

fsglmulb 

fsinx sin fsinx ea, fn 

fsinl fsinx fm, fn 

fsins fsiny ea, fn 

fsinp 

fsinw 

fsind 

fsinb 

fsincosx simultaneous sine and cosine fsincosx ea,fc:fs 

fsincosl ' fsincosx fm, fc: fs 

fsincoss fsincosy ea, fc: fs 

fsincosp 0 
Revision A of May 9, 1988 



Appendix B -List of as Opcodes 77 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

fsincosw simultaneous sine and cosine ( contd.) 

fsincosd 

fsincosb 

fsinhx hyperbolic sine fsinhx ea, fn 

fsinhs fsinhx fm, fn 

fsinhp fsinhy ea, fn 

fsinhw 

fsinhd 

fsinhb 

fsqrtx square root fsqrtx ea, fn 

fsqrtl fsqrtx fm, fn 

fsqrts fsqrty ea, fn 

fsqrtp 

fsqrtw 

fsqrtd 

fsqrtb 

fsubx subtract fsubx ea, fn 

fsubl fsubx fm, fn 

fsubs fsuby ea, fn 

fsubp 

fsubw 

fsubd 

fsubb 

ftanx tangent ftanx ea, fn 

ftanl ftanx fm,fn 

ftans ftany ea, fn 

ftanp 

ftanw 

ftand 

ftanb 

ftanhx hyperbolic tangent ftanhx ea, fn 

ftanhl ftanhx fm, fn 

ftanhs ftanhy ea, fn 

ftanhp 

ftanhw 

ftanhd 

ftanhb 

ftentoxx lOX ftentoxx ea, fn 

ftentoxl ftentoxx fm, fn 

ftentoxs ftentoxy ea, fn c ftentoxp 

Revision A of May 9, 1988 



78 Assembly Language Reference 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

ftentoxw lOx ( contd.) 

ftentoxd 

ftentoxb 

ftrapcc trap conditionally ftrapcc 

ftrapeq (equal) ftrapcc idata 

ftrapeqw 

ftrapeql 

ftrapne (not equal) 

ftrapnew 

ftrapnel 

ftrapgt (greater than) 

ftrapgtw 

ftrapgtl 

ftrapngt (not greater than) 

ftrapngtw 

ftrapngtl 

ftrapge (greater or equal) 

ftrapgew 

ftrapgel 

ftrapnge (not greater or equal) 

ftrapngew 

ftrapngel 

ftraplt (less than) 

ftrapltw 

ftrapltl 

ftrapnlt (not less than) 

ftrapnltw 

ftrapnltl 

ftraple (less than or equal) 

ftraplew 

ftraplel 

ftrapnle (not less than or equal) 

ftrapnlew 

ftrapnlel 

ftrapgl (greater than or less) 

ftrapglw 

ftrapgll 

ftrapngl (not greater than or less) 

ftrapnglw 

ftrapngll 

ftrapgle (greater, less or equal) 

ftrapglew 

ftrapglel 

0 
Revision A of May 9, 1988 



c 

c 

c 

Mnemonic 

ftrapngle 

ftrapnglew 

ftrapnglel 

ftrapogt 

ftrapogtw 

ftrapogtl 

ftrapule 

ftrapulew 

ftrapulel 

ftrapoge 

ftrapogew 

ftrapogel 

ftrapult 

ftrapultw 

ftrapultl 

ftrapolt 

ftrapoltw 

ftrapoltl 

ftrapuge 

ftrapugew 

ftrapugel 

ftrapole 

ftrapolew 

ftrapolel 

ftrapugt 

ftrapugtw 

ftrapugtl 

ftrapogl 

ftrapoglw 

ftrapogll 

ftrapueq 

ftrapueqw 

ftrapueql 

ftrapor 

fftraporw 

ftraporl 

trapun 

ftrapunw 

ftrapunl 

ftrapf 

ftrapfw 

ftrapfl 

ftrapt 

ftraptw 

ftraptl 

Table B-2 

Appendix B -List of as Opcodes 79 

MC688811nstructions supported by as- Continued 

Operation Name Syntax 

(not greater, less or equal) 

(ordered greater than) 

(unordered less or equal) 

(ordered greater or equal) 

(unordered less than) 

(ordered less than) 

(unordered greater or equal) 

(ordered less or equal) 

(unordered greater than) 

(ordered greater or less) 

(unordered equal) 

(ordered) 

(unordered) 

(false) 

(true) 

Revision A of May 9, 1988 



80 Assembly Language Reference 

Table B-2 MC68881 Instructions supported by as- Continued 

Mnemonic Operation Name Syntax 

ftrapsf (signalling false) 

ftraptw 

ftrapsfl 

ftrapst (signalling true) 

ftrapsfw 

ftrapstl 

ftrapseq (signalling equal) 

ftrapseqw 

ftrapseql 

ftrapsne (signalling not equal) 

ftrapsnew 

ftrapsnel 

ftstx test operand ftstx ea 

ftstl ftstx fm 

ftsts ftsty ea 

ftstp 

ftstw 

ftstd 

ftstb 

ftwotoxx 2x ftwotoxx ea, fn 

ftwotoxl ftwotoxx fm, fn 

ftwotoxs ftwotoxy ea, fn 

ftwotoxp 

ftwotoxw 

ftwotoxd 

ftwotoxb 

sun 
microsystems 

Revision A of May 9, 1988 



c 
FP A Assembler Syntax 

FP A Assembler Syntax ............................................................................................................ 83 

C.1. Instruction Syntax .......................................................................................................... 83 

C.2. Register Syntax ................................................................................................................ 84 

C.3. Operand Types................................................................................................................. 84 

C.4. Two~Operand Instructions ····························'···························································· 84 

C.5. Three-Operand Instructions ...................................................................................... 85 

C.6. Four-Operand Instructions ......................................................................................... 86 

C. 7. Other Instructions ........................................................................................................... 90 

C.8. Restrictions and Errors ................................................................................................ 91 

C.9. Instruction Set Summary............................................................................................ 91 

c 



() 



c 

C.l. Instruction Syntax 

c 

c 
FPA Assembler Syntax 

This appendix describes the Sun Floating-Point Accelerator (FPA) support exten­
sions to as included in Sun software release 3.1 and later. 

The extensions to as are described in general, with discussions of two-, three-, 
and four-operand instruction examples. Some instructions covered separately 
don't follow the formats described at the beginning of the appendix. The appen­
dix includes restrictions and potential errors, followed by a summary of sup­
ported floating-point instructions. 

The general format for floating-point instructions is 

( fpopt@A operands 

where 

fp indicates an FPA instruction. 

op is the opcode name. 

t is the operand type, either single (s) or double (d). 

l 

The @A part of the instruction is optional. When present, A specifies the address 
register which contains the base address for the FP A and can be in the range 0 .. 7. 
If this form is used, a previous instruction must load the FP A address 
(OxeOOOOOOO) into the specified address register. 

If @A is not present, then absolute long addressing is used to refer to the FP A. 
This form is more efficient for short routines. 

Depending on the instruction, there may be from zero to four operands specified. 
The operands can be any of the following forms: 

o Any MC68020 effective address, with the exception that absolute short 
addresses are not allowed for double-precision values. 

o If either of the data register or the address register is used to hold a double­
precision value, then the value will be in a register pair and both registers, 
separated by a colon, must be specified in the instruction. For example: 

( fpaddd dO:dl, fpaO l 
~~sun 

• microsystems 
83 Revision A of May 9, 1988 



84 Assembly Language Reference 

C.2. Register Syntax 

C.3. Operand Types 

C.4. Two-Operand 
Instructions 

(\ 

The only exception to this rule is the fpl tod instruction (convert integer to \_j 
double-precision value). 

o In some instructions (command register type) it is possible to specify that the 
register be in constant RAM. The syntax used for this case is %n, where n is 
a register number in the range 0 to 511. 

The 32 floating-point data registers are designated fpaO, fpal, ... , 
fpa31. The supported control registers are: 

Hardware Software 

MODE3 0 fpamode -
WSTATUS fpastatus 

as supports three floating-point operand types: 

o s for single-precision floating-point operands. 

o d for double-precision floating-point operands. 

o 1 for 32-bit integer operands, used for integer to floating-point conversions. 

Opcodes such as add, subtract, multiply, divide, negate, absolute value, square 
root, conversion from integer to floating-point, conversion from single to double 
(and vice versa) are all represented as: 

( fpopt X, fpan l 
where t= s or d, and X is any valid MC68020 effective address for an operand or 
is an FP A data register. 

If X is an FP A register which is in the constant RAM, then it can be in the range 
0 to 511. If it is not in constant RAM, then it is one of the 32 FP A data registers. 
When X is an FP A register, then fpan is one of the 32 floating-point data regis­
ters. If X is an effective address, then fpan is one of the FP A registers in the 
range 0 to 15. The following are examples of such instructions: 

fpnegs 
fpsqrd 
fpsubs 
fprsubs 
fpdivs 
fprdivs 

Instruction 

<effective address>, fpa 1 
<effective address>, fpa2 
fpal, fpa2 
fpal, fpa2 
dO, fpa2 
dO, fpa2 

Computes 

fpa2 ~ fpa2- fpal 
fpa2 ~ fpal - fpa2 
fpa2 ~ fpa2 I dO 
fpa2 ~ dO I fpa2 

In the above examples fprsubs and fprdi vs are the reverse subtract and 0 
reverse divide operators, respectively. lj 

Revision A of May 9, 1988 



c 

C.5. Three-Operand 
Instructions 

Appendix C - FP A Assembler Syntax 85 

The opcodes for sine, cosine, atan, e~x, e~x -1, ln (x}, 
ln (l+x}, sqrt (x}, and sincos (x} are all supported as command register 
type instructions: 

( fpopt fpax, fpan 

where t= s or d. 

fpax is either a floating-point register or a register in the constant RAM (which 
is specified as %number). For the sincos instruction, the destination operand 
is actually a register pair: 

) 

( 
fpsincost fpax, fpac: fpas J 

'---· -------
where fpac is the cosine's destination and fpas is the sine's destination. 

The opcodes +, -, *, I are supported in extended and command register forms as· 

( fpop3t X, fpam, fpan l 
where t = s or d and X is an <effective addresS> for an extended instruction or 
a floating-point register for a command register type of instruction. 

In the command register form, X and fpam can indicate a register number in the 
constant RAM. That is, they can either be in the range 0 to 511 or in the range 0 
to 31. In the extended instruction form, fpam and fpan must be in the range 
0 to 15. In the above format the positions of X and fpam can be exchanged for 
the commutative operators add and multiply (the result of the operation remains 
the same). 

For example, 

( fpa2 f- <effective address> + fpal 

can be represented by either of the following forms: 

fpadd3s 
fpadd3s 

<effective address>, fpa 1, fpa2 
fpal, <effective address>, fpa2 

The same rule applies to subtract and divide operations. However, they are not 
commutative, so different answers result from each order. For example, 

( fpa2 f- fpal - <effective address> 

must be coded as: 

fpsub3s <effective address>, fpal, fpa2 

l 

l 

Revision A of May 9, 1988 



86 Assembly Language Reference 

C.6. Four-Operand 
Instructions 

whereas 

[ fpa2 ~ <effective address> - fpal 

must be coded as: 

fpsub3s fpal, <effective address>, fpa2 

Following the same format, 

[ fpa3 ~ fpa2 - fpal 

must be coded as: 

[ fpsub3s fpal, fpa2, fpa3 

In the extended and command register formats there are pivot instructions of the 
form: 

) 

) 

) 

( 
fpopt X, fpax, fpay, fpan J '----· --~---------' 0 

where fpan is the destination floating-point data register, t = s or d, and X is 
an effective address or a floating-point register. 

In the extended form, the positions of X and fpay can be exchanged for both 
single- and double-precision types of instructions. In single-precision extended 
form, it is possible for two of the four operands to be effective addresses. This is 
in general either the first and third or the second and third operands. 

In the command register form, fpax and fpay can be replaced by %x and %y 
indicating register numbers x and y in the constant RAM. 

For four-operand instructions, fpax, £pay and fpan can each be in the range 
0 to 15 when X is an effective address. If X is an FP A register, then X and fpan ~ 
must be in the range 0 to 31 and fpax and fpay can either be in the range 0 to 
511 (designating a location in constant RAM) or else in the range 0 to 31. 

These pivot instructions are rather complicated and will be dealt with com­
pletely. The following shows the forms of each operation, the assembly code 
equivalent to each form, a generalization of the assembly instruction and a 
sequence of operations equivalent to the pivot instruction. 

sun 
microsystems 

Revision A of May 9, 1988 



c 
fpma{s,d} 
fpma{s,d} 
fpma{s,d} 
fpmas 

fpms{s,d} 
fpms{s,d} 
fpms{s,d} 
fpmss 

Appendix C - FP A Assembler Syntax 87 

Instruction 

<effective address>, reg2, reg3, 
reg2, reg3, <effective address>, 
reg4, reg2, reg3, regl 
<eal>, reg2, <ea2>, regl 

regl 
regl 

Meaning 

regl f- reg3 + (reg2 * operand) 
regl f- operand + (reg3 * reg2) 

regl f- reg3 + (reg2 * reg4) 
regl f- operand2 + (reg2 * operandi) 

The fpma instruction, where m stands for multiply, and a stands for add, can 
be generalized as 

[ fpmat X, fpa.x, fpay, fpan l 
where t is s or d, and X is an <effective address> or one of the floating~ point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. Also, for single precision either the first and third operands or 
the second and third operands can be effective addresses. Note that, for example, 

[ fpmas dO, fpal, fpa2, fpa3 

is equivalent to the following sequence of instructions 

fpmul3s 
fpadd3s 
fpmoves 

dO, fpal, temp 
temp, fpa2, temp 
temp, fpa3 

where temp is a temporary register. 

Instruction Meaning 

<effective address>, reg2, reg3, regl regl f- reg3 - (reg2 * operand) 
reg2, reg3, <effective address>, regl regl f- operand- (reg3 * reg2) 
reg4, reg2, reg3, regl regl f- reg3- (reg2 * reg4) 
<eal>, reg2, <ea2>, regl regl f- operand2- (reg2 *operandi) 

The fpms instruction, where m stands for multiply, and s stands for subtract, 
can be generalized as 

[ fpmst X, fpax,fpay,fpan 

where tis s or d, and X is an <effective address> or one of the floating-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. Also, in siQgle-precision two-memory instructions~; either the 
first and third operands or the second and third operands can be effective 
addresses. Note that, for example, 

l 

) 

[ 
fpmss fpal, fpa2, dO, fpa3 J 

'--· ------

Revision A of May 9, 1988 



88 Assembly Language Reference 

fpmr{s,d} 
fpmr{s,d} 
fpmr{s,d} 
fpmrs 

is equivalent to the following sequence of instructions 

fpmul3s 
fpsub3s 
fpmoves 

fpal, fpa2, temp 
temp, dO, temp 
temp, fpa3 

The fpmr instruction, where m stands for multiply, and r stands for reverse 
subtract, can be generalized as 

[ fpmrt X, fpax,fpay,fpan 

where tis s or d, and X is an <effective addresS> or one of the floating-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. 

Instruction Meaning 

<effective address>, reg2, reg3, regl regl <-- ( -reg3) + (reg2 * operand) 
reg2, reg3, <effective address>, regl regl <--(-operand) + (reg3 * reg2) 
reg4, reg2, reg3, regl regl <-- (-reg3) + (reg2 * reg4) 
<eal>, reg2, <ea2>, regl regl <-- (-operand2) + (reg2 *operandi) 

J 

(\, 
\ I 
'-._j 

In single-precision extended form either the first and third operands or the second (j 
and third operands can be effective addresses. Note that, for example, "-~ 

[fpmrs dO, fpal, fpa2, fpa3 

is equivalent to the following sequence of instructions: 

fpmul3s 
fpsub3s 
fpmoves 

dO, fpal, temp 
fpa2, temp, temp 
temp, fpa3 

The fpam instruction, where a stands for add, and m stands for multiply, can 
be generalized as 

[ fpamt X, fpax,fpay,fpan 

where tis s or d, and X is an <effective addresS> or one of the floating-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. 

J 

J 

Revision A of May 9, 1988 

.r-\ 
'0 



c 

fpam{s,d} 
fpam{s,d} 
fpam{s,d} 
fpams 

fpsm{s,d} 
fpsm{ s, d} 
fpsm{s,d} 
fpsm{ s, d} 
fpsm{ s, d} 
fpsms 
fpsms 

Appendix C- FP A Assembler Syntax 89 

Instruction Meaning 

<effective address>, reg2, reg3, regl reg I ~ reg3 * (reg2 + operand) 
reg2, reg3, <effective address>, regl reg I ~ operand * (reg3 + reg2) 
reg4, reg2, reg3, regl reg I ~ reg3 * (reg2 + reg4) 
<eal>, reg2, <ea2>, regl reg I ~ operand2 * (reg2 +operandi) 

In single-precision two-memory instructions, either the first and third operands or 
the second and third operands can be effective addresses. Note that, for example, 

( fpams fpal, fpa2, fpa3, fpa4 

is equivalent to the following sequence of instructions: 

fpadd3s 
fpmul3s 
fpmoves 

fpal, fpa2, temp 
temp, fpa3, temp 
temp, fpa4 

The fp sm instruction, where s stands for subtract, and m stands for multiply, 
can be generalized as 

( fpsrnt X,fpax,fpay,fpan 

where t is s or d, and X is an effective address or one of the floating-point data 
registers. In the extended type of instruction, the positions of X and fpay can 
be exchanged. The special cases for single-precision instructions are that either 
the first and third operands or the second and third operands can be effective 
addresses. 

Instruction 

<effective address>, reg2, reg3, 
reg2, reg3, <effective address>, 
reg4, reg2, reg3, regl 
reg2, <effective address>, reg3, 
reg2, reg4, reg3, regl 
<eal>, reg2, <ea2>, regl 
reg2, <eal>, <ea2>, regl 

Meaning 

regl reg I~ reg3 * (reg2- operand) 
regl reg I ~ operand * (reg3 - reg2) 

reg I~ reg3 * (reg2- reg4) 
regl regi ~ reg3 * (-reg2 +operand) 

reg I~ reg3 * (-reg2 + reg4) 
regi ~ operand2 * (reg2- operandi) 

regi ~ operand2 * (-reg2 +operandi) 

Note that, for example, 

( fpsms dO, fpal, fpa2, fpa3 

is equivalent to the following sequence of instructions: 

l 

l 

l 

Revision A of May 9, 1988 



90 Assembly Language Reference 

C. 7. Other Instructions 

Table C-1 

Mnemonic 

fpnop 

fptstt 

fpcmpt 

fpmcmpt 

fpmovet 

fpmove2t 

fpmove3t 

fpmove4t 

fpdot2t 

fpdot3t 
-

fpdot4t 

fptran2t 

fptran3t 

fptran4t 

fpmove 

fpmove 

fpmove 

fpsub3s 
fpmul3s 
fpmoves 

dO, fpal, temp 
temp, fpa2, temp 
temp, fpa3 

Other special instructions are listed below. In each of them the last operand is 
also the destination, except for tst, cmp and mcmp where fpastatus is 
the implied destination. X is either an effective address or an FP A data register 
and tis either s or d for'all instructions except fpmovet, where t can be s, 
d,or 1. 

Other Instructions 

Operand Operation Name 

nop 

X operand compare with zero 

X, fpam register m compare with operand 

X, fpam register m compare magnitude with operand 

fpam, fpan move floating-point registers 

fpam, fpan 2x2 matrix move 

fpam, fpan 3x3 matrix move 

fpam, fpan 4x4 matrix move 

fpax, fpay, fpan fpan ~ fpax*fpay + 

(fpa.x+l) * (fpay+l) 

fpax, fpay, fpan fpan ~ fpax*fpay + 

(fpa.x+l) * (fpay+l) + 

(fpax+2) * (fpay+2) 

fpax, fpay, fpan fpan ~ fpax*fpay + 

(fpax+l)*(fpay+l) + (fpax+2)*(fpay+2) + 

(fpax+3)*(fpay+3) 

fpam, fpan transpose 2x2 matrix 

fpam, fpan transpose 3x3 matrix 

fpam, fpan transpose 4x4 matrix 

fpamode, <ea> read mode register 

<ea>, fpamode write to mode register 

fpastatus, <ea> read status register 

fpmove <ea>, fpastatus write to status register 

fpmovet fpam, <ea> read a floating-point data register 

fpmO'I.-et <ea>, fpan write to a floating-point data register 

Revision A of May 9, 1988 



c 

C.S. Restrictions and 
Errors 

C.9. Instruction Set 
Summary 

Table C-2 

Instruction Operand 
fpnegs X, fpan 

fpnegd X, fpan 

fpabss X, fpan 
fpabsd X, fpan 

fpltos X, fpan 
fpltod X, fpan 

fpstol X, fpan 
fpdtol X, fpan 

fpstod X, fpan 
fpdtos X, fpan 

£psqrs X, fpan 
fpsqrd X, fpan 

fpadds X, fpan 
fpadd3s X, fpam, fpan 

fpaddd X, fpan 
fpadd3d X, fpam, fpan 

fpsubs X, fpan 
fpsub3s X, fpam, fpan 
fprsubs <ea>, fpan 

fpsubd X, fpan 
fpsub3d X, fpam, fpan 
fprsubd <ea>, fpan 

fpmuls X, fpan 
fpmul3s X, fpam, fpan 

Appendix C- FP A Assembler Syntax 91 

In double-precision instructions, when absolute short addressing or a single data 
or address register is used, as reports an invalid operand error. 

For the dot product and matrix move and transpose instructions, when the regis­
ter specified does not fall within the specified range, as reports a register out of 
range error. 

For most instructions where one operand is an effective address, the register 
range is 0 to 15. If all operands are FPA registers, then the register range is 0 to 
31. For constant RAM registers, the range is 0 to 511. as reports an invalid 
operand error when any of these registers are not within the permitted range. 

In the following table, X is any valid MC68020 effective address (the form 
(m) : w is not allowed for double) or FP A register. In some three- or four­
address instructions the position of the X and one of the FP A register can be 
exchanged. This is shown in the fourth column of the following table. 

Floating-Point Instructions 

Operation Alternative 
negate single 

negate double 

absolute value single 

absolute value double 

convert integer to single 
convert integer to double 

convert single to integer 
convert double to integer 

convert single to double 

convert double to single 

square single 

square double 

add single 

add single fpam, X, fpan 

add double 

add double fpam, X, fpan 

subtract single 

subtract single fpam, X, fpan 
reverse subtract single 

subtract double 
subtract double fpam, X, fpan 
reverse subtract double 

multiply single 

multiply single fpam, X, fpan 

sun 
microsystems 

Revision A of May 9, 1988 



92 Assembly Language Reference 

Table C-2 Floating-Point Instructions-- Continued 

Instruction Operand Operation Alternative 

fpmuld X, fpan multiply double 

fpmul3d X, fpam, fpan multiply double fpam, X, fpan 

fpdivs X, fpan divide single 

fpdiv3s X, fpam, fpan divide single fpam, X, fpan 

fprdivs <ea>, fpan reverse divide single 

fpdivd X, fpan divide double 

fpdiv3d X, fpam, fpan divide double fpam, X, fpan 

fprdivd <ea>, fpan reverse divide double 

fpnop nop 

fptsts X single compare with 0 

fptstd X double compare with 0 

fpcmps X, fpam single compare 

fpcmpd X, fpam double compare 

fpmcmps X, fpam single magnitude compare 

fpmcmpd X, fpam double magnitude compare 

fpsins fpax, fpan sine single 

fpsind fpax, fpan sine double 

fpcoss fpax, fpan cosine single 

fpcosd fpax, fpan cosine double 
0 

fpatans fpax, fpan atan single 

fpatand fpax, fpan atandouble 

fpetoxs fpax, fpan e~x single 

fpetoxd fpax, fpan e~x double 

fpetoxmls fpax, fpan e~x-1 single 

fpetoxmld fpax, fpan e~x-1 double 

fplogns fpax, fpan ln(x) single 

fplognd fpax, fpan ln(x) double 

fplognpls fpax, fpan ln(1+x) single 

fplognpld fpax, fpan ln(l+x) double 

fpsincoss fpax, fpac:fpas fpac +- cosine(x), fpas +- sine (x) 

fpsincosd fpax, fpac:fpas fpac +- cosine(x), fpas +- sine (x) 

fpmas X, fpax, fpay, fpan fpan +- (fpax *X)+ fpay fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpmad X, fpax, fpay, fpan fpan +- (fpax *X) + fpay fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpmss X, fpax, fpay, fpan fpan +- fpay - (fpax * X) fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

Revision A of May 9, 1988 



Appendix C- FP A Assembler Syntax 93 

c Table C-2 Floating-Point Instructions- Continued 

Instruction Operand Operation Alternative 
fpmsd X, fpax, fpay, fpan fpan~ fpay - (fpax * x) fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpmrs X, fpax, fpay, fpan fpan ~ (fpax * x)- fpay fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

\ 
X, fpax, X, fpan 

fpax, X, X, fpan 

fpmrd X, fpax, fpay, fpan fpan ~ (fpax * x)- fpay fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpams X, fpax, fpay, fpan fpan ~ (fpax + x) * fpay 

- fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpamd X, fpax, fpay, fpan fpan ~ (fpax + x) * fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpsms X, fpax, fpay, fpan fpan ~ (fpax- x) * .fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpsmd X, fpax, fpay, fpan fpan ~ (fpax- x) * fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpmoves <ea>, fpan write to a register, single 

fpmoved <ea>, fpan write to a register, double 

fpmovel ·<ea>, fpan write to a register, integer 

fpmoves fpam, <ea> read a register, single 

fpmoved fpam, <ea> read a register, double 

fpmove2s fpam, fpan 2x2 matrix move, single 

fpmove2d fpam, fpan 2x2 matrix move, double 

fpmove3s fpam, fpan 3x3 matrix move, single 

fpmove3d fpam, fpan 3x3 matrix move, double 

fpmove4s fpam, fpan 4x4 matrix move, single 

fpmove4d fpam, fpan 4x4 matrix move, double 

fpdot2s fpax, fpay, fpan fpan ~ fpax* fpay + (fpax+l) * (fpay+l) 

fpdot2d fpax, fpay, fpan fpan ~ fpax* fpay + (fpax+l) * (fpay+l) 

fpdot3s fpax, fpay, fpan fpan ~ fpax* fpay + (fpax+l) * (fpay+l) + 

(fpax+2) * (fpay+2) 

fpdot3d fpax, fpay, fpan fpan~ fpax*fpay + (fpax+l) * (fpay+l) + 

(fpax+2) * (fpay+2) 

c 
Revision A of May 9, 1988 



94 Assembly Language Reference 

Table C-2 Floating-Point Instructions-- Continued 

Instruction Operand Operation Alternative 
fpdot4s fpax, fpay, fpan fpan ~ fpax* fpay + (fpax+l)*(fpay+l) + 

(fpax+2)*(fpay+2) + (fpax+3)*(fpay+3) 

fpdot4d fpax, fpay, £pan fpan ~ fpax* fpay + (fpax+l) * (fpay+l) + 

(fpax+2)*(fpay+2) + (fpax+3)*(fpay+3) 

fptran2s fpam, fpan transpose 2x2 matrix, single 

fptran2d fpam, fpan transpose 2x2 matrix, double 

fptran3s fpam, fpan transpose 3x3 matrix, single 

fptran3d fpam,fpan transpose 3x3 matrix, double 

fptran4s fpam, fpan transpose 4x4 matrix, single 

fptran4d £pam, £pan transpose 4x4 matrix, double 

fpmove fpamode, <ea> read the mode register 
fpmove <ea>, fpamode write on mode register 

fpmove fpastatus, <ea> read the status register 

fpmove <ea>, fpastatus write to status register 

~~sun ~~ microsystems 
Revision A of May 9, 1988 



c 

c 

Index 

A 
absolute expressions, 18 thru 19 
addressing categories, 46 thru 47 

alterable, 46 
control, 46 
data, 46 
memory,46 

addressing modes, 42 thru 45 
. align directive, 37 
. ascii directive, 32 
. asciz directive, 33 
assembler directives, 31 thru 38 

.align, 37 

.ascii, 32 

.asciz, 33 
,bss, 34 
.byte, 33 
. co nun, 36 
.data, 34 
.even, 37 
.globl, 36 
.lconun, 35 
.long, 33 
.proc, 38 
. skip, 35 
.text, 34 
.word, 33 

assembler options, 3 thru 4 
-d2,4 
-h,4 
-j,4 
-k,3 
-L,3 
-m68010, 3 
-m68020, 3 
-o,3 
-R,3 

assignment statements, 26 thru 27 

B 
basic elements, 9 thru 13 
. bss directive, 34 
.byte directive, 33 

\ 

-95-

c 
character set, 9 
. comm directive, 36 
comment field, 26 
constants, 11 thru 12 

decimal, 11 
floating-point, 12 
hexadecimal, 11 
numeric, 11 
octal, 11 
string, 12 

D 
-d2 option, 4 
. data directive, 34 
decimal constants, 11 
direct assignment, 26 thru 27 
directives, 31 thru 38 

.align, 37 

.ascii, 32 

.asciz, 33 

.bss, 34 

.byte, 33 

. conun, 36 

.data, 34 

.even, 37 

.globl, 36 

.lconun, 35 

.long, 33 

.proc, 38 

. skip, 35 

.text, 34 

.word, 33 

E 
Error Codes, 51 
. even directive, 37 
expressions, 17 thru 19 

absolute, 18 thru 19 
external, 18 thru 19 
operators, 17 
relocatable, 18 thru 19 
terms, 18 

external expressions, 18 thru 19 



Index- Continued 

F 
floating-point constants, 12 
FP A Assembler Syntax, 83 thru 90 

G 
. globl directive, 36 

H 
-hoption, 4 
hexadecimal constants, 11 

I 
identifiers, 9 thru 10 
Instruction Syntax, 83 
Instructions, Two-Operand, 84 

J 
-j option, 4 

K 
-k option, 3 

L 
-L option, 3 
label field, 23 thru 24 
labels, 10 thru 11 

local, 10 
numeric, 10 
scope, 10 

.lcomm directive, 35 
lexical elements, 9 thru 13 
lines, 23 
local labels, 10 
location counter, 12 
.long directive, 33 

M 
-m68010 option, 3 
-m.68020 option, 3 

N 
notation, 4 thru 5 
numeric constants, 11 
numeric labels, 10 

0 
-o option, 3 
octal constants, 11 
operand field, 25 thru 26 
Operand Types, 84 
operation code field, 24 thru 25 
options, 3 thru 4 

-k,3 
-d2,4 
-h,4 
-j,4 
-L,3 
-m68010, 3 
-m68020, 3 

-96-

options, continued 
-o,3 
-R,3 

p 
. proc directive, 38 
program layout, 23 thru 27 
pseudo-ops, 31 thru 38 

.align, 37 

.ascii, 32 

.asciz,33 

.bss, 34 

.byte, 33 

. comm, 36 

.data, 34 

.even, 37 

.globl, 36 

.lcomm, 35 

.long, 33 

.proc, 38 

. skip, 35 

.text, 34 

.word, 33 

R 
-R option, 3 
register operands, 25 thru 26 

address registers, 42 
data registers, 42 
special registers, 42 

Register Syntax, 84 
relocatable expressions, 18 thru 19 

s 
scope of labels, 10 
. skip directive, 35 
special register operands 

cc,42 
dfc,42 
fpcr,42 
fpiar,42 
fpsr, 42 
pc,42 
sfc,42 
sp,42 
sr,42 
usp,42 

statements, 23 
comment field, 26 
direct assignment, 26 thru 27 
label field, 23 thru 24 
operand field, 25 thru 26 
operation code field, 24 thru 25 

string constants, 12 

T 
. text directive, 34 
Two-Operand Instructions, 84 

0 

0 



Index- Continued 

c u 
Usage Errors, 51 

w 
. word directive, 33 

c 
-97-


	Title Page

	Contents

	Tables

	Preface

	1. Introduction

	2. Elements of Assembly Language

	3. Expressions

	4. Assembly Language Program Layout

	5. Assembler Directives

	6. Instructions and Addressing Modes

	A. as Error Codes

	B. List of as Opcodes

	C. FPA Assembler Syntax

	Index


