Part Number 800-1108-01
Revision: E of 7th January 1984
For: Sun System Release 1.1

System Interface Manual
for the

Sun Workstation

Sun Microsystems, Ine.,
2550 Garcia Avenue
Mountain View
California 94043
(415) 960-1300

Credits and Acknowledgements

This manual is composed of parts of the original UNIX Programmer's Manual, plus two other
papers from University of California at Berkeley. The authors’' names and the titles of the origi-
nal works appear here.

Interprocess Communication Primer
is based on the document §.2bsd Interprocess Communications Primer by Samuel J. Lefller,
Robert S. Fabry and William N. Joy, of the Computer Systems Research Group, U.C.
Berkeley.

System Interface Overview
is based on the {.2BSD System Interface Overview by William Joy, Eric Cooper, Robert
Fabry, Samuel Leffler, Kirk McKusick and David Mosher; rcieased by the Computer Sys-
tems Research Group at U.C. Berkeley in July, 1983.

Trademarks

Multibus is a trademark of Intel Corporation.
Sun Workstation is a trademark of Sun Microsystems Incorporated.
UNIX is a trademark of Bell Laboratories.

Copyright © 1983 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

Revision History

Revision Date Comments
A 23 February 1983 | First release of this Manual.
B 15 April 1983 Second Release of this manual involved many corrections to

manual pages.

C 1 August 1983 Third Release of this manual involved many corrections to
manual pages. Added glossary of system calls and system
€ITOr responses,

D 1 November 1983 | Fourth Release of this manual involved many corrections to
manual pages. Fixed numerous incorrect cross-references
between pages. Added a System Interface Overview and the
Interprocess Communication Primer as a tutorial.

E 7 January 1984 Fifth Release of this manual involved many corrections to
manual pages.

- iii -

System Interface Manual

Table of Contents

Section I. Overview

System Interface Overview

Summarizes the facilities provided by the this release of the UNIX operating system
for the Sun Workstation.

Section II. Reference Manual Pages

1.
. C Library Functions — section 3.

e o

A B R A o

System Calls — previously section 2 of the UNIX Programmer's Manual.

Compatibility Functions — section 3C. Covers those functions which are included
for compatibility with older versions of the C Library.

Mathematical Functions — section 3M.

Network Library Functions — section 3N.
Standard I1/O Library Functions — section 3S.
Miscellaneous Library Functions — section 3X.
Special Files and Hardware Support — section 4.
File Formats — section 5.

Section HI. Tutorials

Interprocess Communication (IPC) Primer

PERMUTED INDEX

gettable — get NIC format hoat tables from a host
information file for readnews(1) and checknews(1
nohqp ~ run a command at low priority (sh only
program file including aliases and paths (csh only)

login, newgrp, read,/ sh, for, case, if, while, :,
- information file for readnews{1) and checknewu%
pewere - information file for readnews
interface. vp - Ikon

tm - tapemaster

ar - Archive

mti - Systech MTI-800/

tm - tapemaster 1/

ip - Disk driver for Interphase

printer interface. vpe - Systech VPC-

ec -

ar - Archive 1/

st — Driver for Sysgen SC

vp - tkon 10071-

8d - Disk driver for Adaptec ST-

mti - Systech MTI-

58 ~ silog

index, rindex, Inbink, len - tell
getrusage - get information
viimes — get information

fstab — static information
abort - terminate

abs - integer
fabs, floor, ceil -

accept -

getgroups - get group
initgroups - initialive group
seigroups — set group
accens — determine

access - determine

ac - login

=4, accton - system

acct - execution

pac - printer/plotter

acct — turn

o,

sin, cos, tan, asip,

signal - change the

tact - print current SCOS file editing

fortune - print » random, hopefully interesting,
sd - Disk driver for

adbgen - generate
swapon —

adduser - procedure for

swapon - specify

inet_Jnacf, inet_netof, inet_ntoa - Internet
loc - return the

arp -

Al
mailaddr - mail
pbysical relationshipa of screens.

admin - create and

Sun System Release 1.1

. DEWSIC —
. pice,
. which - locate a
@: arithmetic on ahell variables.
., break, continue, cd, eval, exec, exit, export,
1). newste . . .
1) and checknews{1).
10071-5 Multibus Versatec pa.ra.l]el pnnter ...
1/2 inch tape drive.
1/4 inch Streaming TapeDrve.
1800 multi-terminal interface. . .
2 inch tape drive.
2180 SMD Disk Centroller.
2200 Versatec printer/plotter and Centronics .
3Com 10 Mb/s Ethernet interface.
4 inch Streaming Tape Drive. . .
4000 (Archive) Tape Controller.
& Multibus Versatec paraliel printer mterfa.ce .
508 Disk Controllers.
800/1600 multi-terminal interface.
8530 SCC senial comunications driver.
abort — generate a fault.
abort - terminate abruptly with memory image.
about character objects.
about resource utilisation.
about resource utilization.
about the filesystems,
abruptly with memory image.
abs — integer absolute value,
abaolute value.
absolute value, floor, ceiling functions. . . .
- login accounting.
accept - accept & connection on a socket.
accept 2 connection on a socket. .
access - determine accezsability of a ﬁle PN
access ~ determine accessibility of file,
accens list,
access list,
access list.
acceesability of 2 file,
acceanibility of file. .
accounting.
accounting.
accounting file.
accoynting information.
accounting on oroff. . . .
acct - execution accounting ﬁ!e e e e
acct - turn accountingenoroff.
accton — aystem accounting. N
aces, atan, atan2 - trigonometric functmns
action for a signal.
activity.
sdage. .
Adaptec ST-508 Disk Cont.rollc
adb - debugger.
2db script.
adbgen - generate adb script.

D e R L Y

T R)

ERRC R L L

LI O L I

“« 4 e . a .

L
LR

LR R R I I

L e I T Y

L I TR R R

LI L
4 e x84
LI T

L R R

.
.
LI RN)
P
.

.+ .

L Y

L L T R R R Y
L I S L T I T SR Y I B 'Y
v 4 s v . . .
L R R T

s 4 s s = a2 w

LI T T T T T T B I

LI I T R

N

-

add a swap device for interleaved paging/swapping.

addbib - create or extend bibliographic database,
adding new uners.
additional device for paging and swapping. . .

L L T T R Y

.

-

.

address manipulation. /inet_network, inet makeaddr

address of an object.
address resolution display and control.
Address Resolution Protocol.
addrezsing description.

adduser - procedure for adding new users.
adjacentzscreens - notify the window driver of the
admin - create and administer SCCS files.
administer SCCS files.
adventure — an exploration game.

. e .

LI Y

L O I]

I I I T T Y R}

................

............

.....................

...........

gettable(8C)
newsro(5)
nice(1)
which(1}
csh(1)
sh(1)
newsrc{5)
newsrc{5)
vp(43)
tm(43)
ar{43)
mti{43)
tm(4S)
ip(45)
vpe(4S)
ec{45)
ar{43)
at(43)
vp(45)
8d(4S)
mti(43)
53(45)
abort(3)
abort(3F)
index(3F)
getrusage(2)
vtimes(3C)
fstab(5)
abort(3F)
abs(3)
aba(3)
foor{3M)

accept(2)
access(3F)
accesn(2)
getgroups(2)
initgroups(3)
setgroupa{2)
acceas(3F)
accean(2)
ac(8)

1a(8)

acct(5)
pac(8)
acet(2)
acct(5)
acct(2)

sa(8)
sin(3M)
signal(3F}
sact(l)
fortane(6)
ad(4S)
adb{1}
adbgen(8)
adbgea(8}
swapon(2)
addbib(1)
addusex(8}
swapon(8)
inet(3N)
loc(3F})
arp(8C)
arp(4P)
mailaddr(7}
adduser(8}
adjacentscreens(1)
admin(1)}
admin{1}
adventure(8)

January 1984

Permuted Indez

vadvise - give
flock - apply or remove an

yea ~ be repetitively
basename - strip filename
biff — mail

time.

upalias: remove

which - locate a program file including
newaliases — rebuild the data base for the mail
alianes -

valloc -

malloc, free, realloc, calloc, cfree,

free, realloc, calloc, clree, alloca — memory
valloc - ligned memory

eyace — modified yacc

imemtest - stand

gxtest — stand

diag ~ General-ptrpose stand-

scandir,

limit:

renjce -

else:

lex - generator of lexical

error —
anslyse ~ Virtual UNIX postmortem crash
worms -

raia -

bed - convert to

exit ~ terminate a process after flushing

flock -

aumber - convert

be -

graphics/ openpl, erase, label, line, clrcle,
cpio - format of cpio

ar-
ar -

tar ~ tape

" -

st ~ Driver for Sysgen SC 4000 (
tar -~ tape

cpio ~ copy file

ranlib - convert

w - who is on and what they

users — compact list of users who

glob: filename expand

shift: manipulate

varargs ~ variable

echo: echo

echo - echo

getarg, iarge - return command line

expr — evaluate

getopt, optarg, optind — get eption letter from
mout, pow, gcd, rpow — multiple precision integer

be -- arbitrary-precizien

news - USENET network news
expire - remove outdated news
inews - submit news

postnews - submit news
readnews — read news

recnews - receive unprocessed
recpews - receive dnprocessed
serdnews - send news

uurec - receive processed news

January 1984

advice to paging system.
advisory lock on an open file. . .
affirmative. . .
affixes. .
alarm. .
alarm - execute a sabroutine after a specified
alarm - schedule signal after specified time.
alias: shell macros.
aliases.
aliases - aliases file for sendmail.
aliases and paths (csh only). .
aliases file.
aliases file for sendmail.
aligned memory allocator.
alloca ~ memory allocator.
allocator. malloe,
allocator.
allowing much improved error recovery
alone memory test,
alone test for the Sun video graphics board.
alone utility package,
alphasort - scan a directory.
alter per-process resource limitations.
alter priority of running processes.
alternative commands.
analysis programs.

« & 8 v ¥ e 9 @

“ 4 e
- o+ v

-
-
.
T T B I B) -
-

. v & e

e 6 &+ 2 4 s e v 8w sy .

RS R I S R B R

P I I T TR S T -

I I

+
.
.
-
- »
.
.
-

+ ..

I T T R IR |

+ &+ a4 8 & s s e @

.
.
.
.
.
.
.
-
»

PR}

LI R T T .

R I T T T T TR R)

T L I R B)

D T T ST R)

TR Y

“ ¢ 8 4+ % 8 a0

® 8 & 4 8 & 2 s s ® s & & F * + * 8 =

LREC SN T R S R I

snalyze ~ Virtual UNIX postmortem crash l.na!yur

analyse and disperse compiler error messages.
analyser.
animate worms on a display terminal. . . .
animated rzindrops display.
antique media.
any pending output.
a.out ~ aszembler and link editor outpaut.

s 4 8 3 & B o4 & 3 o8 oE & x ok

.
LI Y -
+

s a8 % & 4 * @

. .
P O L
R

.

apply or remove an advisory lock on an open file.

ar — Archive 1/4 inch Streaming Tape Drive.

ar - sarchive and library maintainer. . . .
ar - archive (library) fle format.
Arabic numerals to English.
arbitrary-precision arithmetic Janguage.
arc, move, cont, point, linemod, apace, closepl -
archive,
Archive 1/4 inch Streaming Tape Drive.
archive and library maintainer. .
archive file format. ..
archive (library) file format, . . .

-
LR I
ERCEEC I T

.

+ 2

R . T I T T T S I) . o e

. e .

Archive) Tape Controller. . .
archiver.
archives in and out.
archives to random libraries.
are doing.
are on the system.
argument list. .
argument list. .
argument list. .

4 04 s s s s a8

L R

.
« e 4 & 2 8 * * 0
R T S

arguments.
arguments.
argumenta. .
arguments as an expression.
AgY. . . s e e e e
arithmetic. itom, madd, msub, mult mdiv, mia,
arithmetic - provide dnll in nnmber facts. . .
arithmetic langnage. . . .
arthmetic on shell vanableu s e e e e
address resolution display and control .

T T N)

* v = & = w

. % s
« s 8 & * %+

.
.
.
.
L) -
.

[N ')

P T R R R]

ap -

arp - Address Resolution Protocol.
article, utility files, e
articles. o . 4 v h v v e e e e e e e s
articles. . . 0 f 4 e v e e v e e e e s e
articles. o v 4 e e e s e s e e e e e
articles, . . f o bk e e 0 e s e e e
articlesviamail. .+ . 4o v ¢ .0 0 v e 0.
articleaviamail. “ e e
aticleaviamail. 0 00 o0 s .
articles via mail. e e e e e e

a3 - mc58000 uuemb]er e v e e s

a s s a2

which(1}
newaliases(8)
aliases(5)
valloc(3)
malloc(3)
malloc(3)
valloc(3)
eyace(l)
imemtent(8s)
gxtest{Bs)
diag(8s)

.
.
.
.
.
.
.
.
'
.
.
.
.
.
.
.
.
.
.
. . sacandir(3}
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

@ & & & B 4 & B & 4 4 4 B B 8 & &2 ¥ e @

esb{1)
renice(8)
cah(1)
lex(1)
analyze{8})
error{1)
analyze(8)
worms(8)
rain(6}
bed{6}
exit(3)
a.out(5)
flock(2)
ar(48}

a4 ® 8 B & % & & # & & & s & s e =8 = & & v = s
@ & 8 8 @ 4 4 & & & 4 % 4 B 8 B 8 P 8 & 8 v e v ow a

e % ® 4 € A 4+ & 2 B s A s s s s s = e

+ & 2 s e

.- s s .
P T T T T Y]

® & B & & & & 3 8 % 4 & & & 8 4 & = s e s = .

. anthmetic{8)
. be(1)

. cshﬁl)

. arp(8C)

. arp{4P})

. news(5)

. expire8)

. incwa(l)

. postnews(1)
+ readnews(l)
. recnews(l)

. recnews(8)

. sendnews(8)
.+ uurec(s)

2s(1)

P T T S S N e)

s b e = s 4 e
P)

" % s s

Sun System Release 1.1

-

expr - cvaluate arguments
timesone, dysize - convert date and time to
getdate - convert time and date from

aacii - map of

od - octal, decimal, hex,

atof, atoi, atol - convert

to ASCIL ctime, loc;ltlme. gmtime,
sin, cos, tam,

help -

as - mcGB000

a.out ~

setbuf, seibufler, setlinebuf -

shutdown ~ close down the system
at ~ execute commands

nice, nohup —~ run a commaznd

gin, cos, tan, asin, acos,

sin, cos, tan, asin, acos, atsn,

atof,

atof, atoi,

interrupt. sigpause -
rc - command script for
wait -

backgammon - the game of

bg: place job in
wait: wait for

banner - print large

gettytab - terminal configuration data
hoats - host name data

networks — network name data

phones — remote host phone number data
printcap ~ printer capability data
protocols - protocol name data

servers ~ inet server dats

services — service name data

termcap - terminal capability data
newaliases — rebuild the data

ttytype ~ data

fetch, store, delete, firsikey, nextkey ~ data
vi - screen oriented (visual) dizplay editor

beopy,

operations,

Display.

yes -

- ¢b-C program

uptime - show how long system has

30, j1, jn, ¥0, y1, yn -

changing/ random, srandom, initatate, setstate -

addbib - create or extend

roffbib - run off

sorthib — sort

a bibliograpby .br lookbib - find references in a
bibliography. indxbib - make inverted index to a

comasat -

whereis - locate source,

~ find printable strings in an object, or other
uuencode,undecode — encode/decode a

frezd, fwrite — buffered

bind -
beopy, bemp, brero, ffs -
bdemos - demonstrate Sun Monochrome

strip ~ remove symbols and relocation
commuaication.

Sun System Release 1.1

Permuted Indez

ABANEXPIESSION. o & = + o o s o v 4 o 2 o 4 v s o s
ASCIL ctime, localtime, gmtime, asctime,
ASCIL
ascii - map of ASCII characterset.
ASCII character set, .

asciidump. . . . 0. e e e
ASCII to numbers. . .
aucttme. timezone, dysize ~ convert date and time

asin, acos, atan, atan2 - trigonometric functions. .
ask for help.
assembler.

assembler and link editor output.
aspert — program verification.
assign buffering to a stream.
at — execute commands at a latertime.
2t a given time.
at a later time.
at low priority (sh only).
atan, atan2 - trigonometric functiona. e e e e e
atan? - trigonometric fanctions.
atof, atoi, atol — convert ASCII to numbers,
atoi, atol — convert ASCII to pumbers.
atol - convert ASCII t¢ numbers.
atomically release blocked signals and wait for
auto-reboot and daemons,

await completion of process.
awk - pattern scanning and processing language.

L L I R Y B

LI B R « e 4w

PR

L

LI O L T

I R N I I R

. s e

L I T S S I S T S T

L I)

L N Y I

. .

L T S B R

backgammon. v 4 . v vt e s v e e e s
backgammon - the game of backgammen.
background. 0. 0. v
background processes to complete,
banner ~ print large banner on printer. . . . , . .

banneron printer. . . 4 v 4 4 4 e e e s 0 a e e s
Base. &+ v v v i e h e e e e e e e e e
base. e e s e s et e e e e
BasE. . . e s e h et e e e e e e e e s
base.t v oee e s a s
BREE. & v s s e bk e e e e e ke e e e e e s
base. s e e e e e e e e e e e .
base. e h e e e e e e s e
BAEE. . v s . e e e et e e e e e e e e e s
base. e e e e e e e e .
base for the nml a.ha.sea ﬁ[e.

base of terminal typesbyport. v .. .
base subroutines. dbminit,
based on ex. .
basename — strip filename affixes, .
be - arbitrary-precision arithmetic language. . . .
bed - convert to antique media. L . .

L T T R R B S)
L T R T T R Y

bemp, bsero, ffs - bit and byte string operations.
beopy, bemp, bsere, fls — bit and byte string .
bdemos - demonstrate Sun Monochrome Bitmap
be repetitively affirmative.
beautifier.
been up.
beszel functions. .
better random number generator; routines for
bg: place job in background.
bibliographic database. . .
bibliographic databaze. .
bibliographic database. .
bibliography. indxbib - make inverted index to . .

+ % 4 s 2 s a s s =

e ¥ o+ e 2 8 % s 2 8 2 4 s oE v

L T)
L R N I T

L R T I R

bibliography .br lookbib - find referencesina .
biff - mail alarm.
biff server.
binary, and/or manual for program.
bipary, file. atrings
binary file for transmission via mail.
binary input/output.
bind - bind 2 name to a socket,, ..
bind a name to a socket
bin/mail - send or receive mail among users.
bit and byte string operations.
Bitmap Display.
bita, . .
bk - line discipline for machine-machine,

L I T T T SR B R

L)

LI R R T T

- .

. e o+ 3

L A

R R A Y

L T R e R L I e O I

ctime(3)
getdate(3)
aacii(7)
ascii(7)
od(1)
atof(3)
ctime(3)
sin{3M)
help(1)
as(1)
a.0ut(5)
assert(3)
setbuf(3S)
at(1)
shutdown(8)
at(1)
nice(1)
gin{3M
sin(3M
atof(3
atof§3§
atof(3
sigpause(2)
1c(8)

wait(1)
awk(1)
backgammon(6)
backgammon(6)
csh 1}

csh(l
banner(d)
banner{6)
gettytab(5)
hosta(5}
networks(5)
phones(5)
printcap(5)
protocols(5)
servers(5)
services()
termcap(5)
newaliazes(8)
ttytype(s)
dbm(3X)
vi(1)
basename(1}
be(1)

bed(6)
betring(3)
batring(3)
bdemos(6)
yes(1)

cb(1}
uptime(1)
JO(sM)
random(3}
csh(1)
addbib(1)
roffbib{1)
sortbib(1)
indxbib(1)
indxbib(1)
bifi(1)
comsat(3C)
whereis(1)
strings(1}
tuencode(1C)
fread(3s)
bind(2)
bind(2)
binmail(1)
bstring(3)
bdemos(6)
strip(1)

bk(4)

January 1984

Permuted Indez

bw - Sun

sync - update the super

sync ~ update super-

sync — update the super

update - periodically update the super
sigblock -

sigpause - atomically release

sum - sum and count

— stand alone test for the Sun video graphica
boggle - play the game of

ching — the

reboot - UNIX

mille - play Mille

indxbib - make inverted index to a bibliograpby
switch: multi-way command

login, newgrp,/ sk, for, case, if, while, :, .,

fs:
more, page -

bw - Sun black and white frame

fread, fwrite -

sitdio - standard

setbuf, setbuffer, setlinebuf - assign

fbio - general properties of frame

generate a dump of the operating system's profile
mkpod -

conflg -

- print out manual pages; find manual information
mkstr - create an error message file

ttytype — data base of terminal types

ptohs - convert values between host and network
beopy, bemp, bsero, s - bit and

swab - swap

beopy, bemp,

ec -

¢pp - the

¢b -

indent - indent and formast

lint - a

xstr - extract stringy from

mkatr - create an error message file by massaging
hypot,

de ~ desk
cal - display

syscall — indirect system

gprof - display

getuid, getgid — get user or group 1D of the
malloc, free, realloc,

intro - introduction to system

canfield, cfacores ~ the solitaire card game
canfield.

printcap — printer

termeap - terminal

oct — Central Data octal serial

canfield, cfscores - the solitaire

cribbage - the

exec, exit, export, logic, newgrp, read,/ b, for,

carman — create the
ccat — compreas and uncompress files, and
default:

them, compact, uncompact,
sh, for, case, if, while, :, ., break, continue,

January 1984

black and white frame befler. .
block. .
block. .
block. .
block. .
block signals, .
blocked signals and wait for interrapt.

I T O L]
4 4 e s & 8 4 8 s = w
L I I S I N N

.

LI N L

4 s 2 s 4+ e
L T }

s ¢+ s 8 s .

EIEE S B I T

blocks in » file.
board.
hoggle.
boggle - play the game of boggle.

boek of changes and other cockies.
bootstrapping procedures.
Bornes. . . . e v s e n e .
.br lookbib - find refeunces ina blblmgnphy
branch.
break, continue, cd, eval, exec, exit, export,
break: exit while/foreach loop.
breaksw: exit from switch.
bring job inte foreground.
brk, sbrk - change data segment size.
browse through a text file.
bsuncube - view 3-D San loge.
huffer.
buffered binary mput/outpnt

buflered input/output package.
buffering to a stream.

« 4 » s e u % &

gteat

-

L L R T T T S

L

. s e

LI N N T T S

« & & 8 & 2 s » s & =

P S R R T I R N

EE A
L
L
« 4 ¢ u

.
« v 4 s . “- s s ® 8
.

.
.
.
.
.
LRI *
.
-
*

buffers.
buflers. kgmon -
build special file.

« s & 4 % o® b s ok e

.
»
-
.
.
-
.
.
.

build system configuration files.
bw - Sun black and white frame bnl!er.
by keywords. man .
by massaging C source, .
byport. . 4 v s e e e
byte order. htonl, htons, ntohl, .
byte string operations.
bytes.
bzero, fls - bit and byte string operations. .
C compiler.
C language preprocessor,
C program beantifier.
C program source,

C program verifier. . . .
C programs to implement shared stnnp.
C source.

+ % a8 a4 &

L
O . T T S

.
*
»
.
.
.
.
.
-
-
.
.
.
.
.
+ -
..
. a
- .
« s s 4 s 2 e s
.

I L I I S BT]

L A . e

.

. .
+ e .
. .

“ e

. = e s
> 4 s & e
s e
« = 8 0w
L T T

L R L I T)

LI O T T T R S T T L L T Y

cabs - Euclidean distance., . . .
el - display calendar.,
Caleulator. « - 4 . i v e e e e e .
calendar. . . . 0 i v e e e e e e e s
eslendar - reminderservice,.
eall, s e s r e s s e s s s
call graph profile dah s e e e e
ealler. . L e e e e e e e .

calloc, cfree, alloca - memory allout.or.
calls and error numbers,
canfield.
canfield, cfacores - the solitaire card game
capability database. . . .
capability data bue .
card. . .
card game ca.nﬁefd . .
card game cribbage. . . .
caze, if, while, ;, ., break, contmue, cd eval, .,

4 &+ & 4+ 50

O)

L R I R]

LI . .

P S N T R R R T

. s s

a
. .

LN T SR
. . .
.

case: selector in switch. . . , . .
cat - concatenate and display. .

cat files for the manuwal.

cat them, compact, uncompact, .

catchall clayse in switch.
catman - create the cat files for the mnna.l
¢b - C program beautifier.
¢¢ - C compiler e s e e
ccat - compress and uncompress files, and cat

cd - change working directory.
¢d: change directory. “ v e
ed, eval, exee, exit, export, login, newgrp, read,/

L T S

-
. .
“« . .

L

L R

L I R T S T S R R ST T T S

“ e & 5 2 & & w & s

e 4 4 8 w s 4 e & & 5 = e & = B & ® 8 & 5 € & F 3 T & 8 8 2 e W = 3 e + 8 B P oA 4 = & =

Sun System Release 1.1

D T T S T Y

a & & & 3 4 % & a2 e &8 = " & s a

I . T T T T S T T T

P N)

L T T e e S T S R T T Y

L I T T T T T T T e,

L L R R R e R A I I O R L I R O A I R T . I N I I

4 6 9 & B % & & & 8 & % 4 & %2 & = 3 %2 8 ® s & &

bw(48)

aynd(l
sync{2
sync{8

update(8)
sighlock(2)
sigpause(2}
sumf(1)
gxtest(8s)
boggle{s)
boggle(s)
ching(8)
reboot(8)
mille(6)
indxbib{1)
esh(1)
sh(1)
csh(1
csh(1
esh(l
brk(2
more{1)
bsuncube(6)
bw(48)
fread(3S)
intro(3S)
setbuf(35)
fbio(4S
kgmon(8)
mknod(8)
config(8)
bw(4S
man(l
mkatr1l
ttytype(5)
byteorder{3N)
batring(3)
swab(3)
batring(3)
“(12
cpp(1)
¢b(1)
indent(1)
lint(1)
xstr(1)
mkstr{1)
bypot{3M)}
cal(1)
de(1)
cal{t}
calendar{1)
syscall(2)
gprof{1)
getuid(3F)
malloc(3)
intro(2
canﬁeld{ﬂ)
canfield(6)
printcap(5)
termeap(5)
oct(45)
canfield(6)
cribbage(6)
eb(1)
csh(1}
cat(1)
catman(8)
compact(1)
ceh(1) (
catman(8
¢b(1))

-

-

-

O

delta.

fabs, floor,

faba, floor, ceil - absolute value, floor,

och -

~ Systech VPC-2200 Versatec printer/plotter and
malloe, free, realloe, calloc,

canfield,

chdir -

brk, sbrk -
chdir -

chsh -

ed:

chdir:

ioinit -

chgrp -

pazowd -

chmod -

chmeod -

chmeod, fchmod -
umask:

chown -

chown, fchown -
chroot -
signal -

cde -

rename -
make a delts (
set:

ed -

ching ~ the book of

- better random pumber generator; routines for
i - view a file without

pipe - create an interprocess communication
ungete — purh

[isaacii, isgraph, toupper, tolower, toascii -
eqnchar - special

gete, fgetc ~ get a

index, rindex, Inbink, len - tell about

getc, getchar, fgetc, getw ~ get

pute, putchar, fputc, putw - put

aocii — map of ASCII

pute, fputc — write &

tset ~ establich terminal

tr - translate

delta -

snake, snscore - display

dcheck ~ file system directory consistency
icheck - file system storage consistency
fptype -

fack - file system consistency

checknews -

checkor -

eqn, neqe,

fasthalt ~ reboot /halt the aysiem without
news network.

newire - information file for readnews(1) and

clozep) — graphics/ openpl, erase, label, line,
isgraph, toupper, tolower, toascii - character
defanlt: catchall

uuclean - vzep spool directory

cln -~

Sun System Release 1.1

Permuted Indez

cdc - change the delta commentary of an SCCS
ceil ~ absolute valee, floor, ceiling functiona.
ceiling functions.
Central Data octal serial card.
Centronics printer interface. vpe
cfree, alloca — memory allocator.
cfacores — the solitaire card game canfield. .
¢g ~ Sun color graphics interface.
change current working directory.
change data segment size.
change default directory,
change default login shell.

L I L

L T TR S S T

change directory.
change directory. . .
change £77 1/O initialisation.
change group.

.« . e

changeloginpassword, 0 .o
changemode. 0. v
change modeofafile., .. e e s
change mode of file. e ‘e e e e .

change owner. ., .
change owner and group of a file. . .
change root directory.
change the action fora signal. . . .
change the delta commentary of an SCCSdelta.
change the name of a file.
change) to an SCCS file.

change valtae of shell vaniable,
change working directory.
changes and other cookies. .
changing generators. /srandom, initstate, setstate . ., .
changing it using the vi visual editer.

change or display file creation mask .

L I T T

chanzel.
character back into input siream.
character classification and convemion macres. . . , .
character definitions for eqn.
character from a logical unit.
character objects.
character or integer fromstream, .,
character or word on a stream.
characterset. 0. 00w .
character to a FORTRAN logicat wnit.
characteristics for the environment. . . .,
characters.
chase — Try to escape to hl[er robota. ., .
chase game.
¢hdir - change current working d:rect.ory. PO
chdir - change default divectory.
chdir: change directory. ..
check.
check. .
check a Boating point nnmber
check and interactive repair. . .
check if user kas news on the USENET news network.
check nroff/troff files.
checkeq ~ typeset mathematics. . .
checking the disks. fastboot, v ee e e
checknews — check if user has news on the USENET .
checknews(1). N
checknr - check nroff/troff fifes.
chgrp - change group. . .
ching ~ the book of changes and other cookies. .
¢hmod - changemode., ..
¢hmaod - change mode of a file. . . .
chmed, fchmod - change mode of file.
chown - change owner.
chown, {chown - change owner and group of a file.
chroot ~ change root directery.
chsh - change default login shell. .
circle, arc, move, cont, peint, linemod, space, ‘e
classification and conversion macros. fisascii, . . .
clause in switch. . .
clean-up.
clear - clear workstation or terminal screen., , ,
¢lear i-node.

L) L L T T S S B R

L T T R I
LY

. e e e s .
L I I T I
----- LI)
L I T e LR

L
------ *E e 4w
L .

.

..... L T
.....
......
L L)

LI)
L B
L I T)

----- LI R)

L

........ L T R T N T

cde(1)
floor(3M)
floor{3M)
oct(48)
vpc(4S)
malloc(3)
canfield(6)
cg{43)
chdir{2)
brk{2)
chdir{3F)
chsh(l)
csh%l)
csh(1)
joinit(3F)
chgrp{1)
passwd(1)
ckmod(1)
chmod(3F)
chmod(2)
csh(1)
chown(8)
chown(2)
chroot{2)
signal(3F)
cdc(1)
rename(2)
delta(1)
csh(1)

cd(1)
ching(6)
random(3})
view(1)
pipe(2)
ungetc{3S)
ctype(3)
equchar(7)
getc(3F)
index(3F)
getc(35)
putc(3S)
ascii(7)
putc(SF)
taet(1)

tr{1}
chase(8)
snake(6)
chdir(2)
chdir(3F)
cah1)
dcheck(s)
icheck(8)
fptype(3F)
fsck(8)
checknews(1)
checkor(l)
eqn(1)}
fastboot(8)
checknews(1)
newsre(5)
checknr{1)
chgrp(1)
ching(6)
chmed(1)
¢hmod(3F)
chmod(2)
chown(8)
chown(2)
chroot(2)
chah(1)
plot(3X)
ctype(3)
csh(1)
unclean(8C)
clear{1)
clri(8)

January 1984

Permuted Indez

clear -

ferror, feof,

csh - a shell (command interpreier) with
cron -

shutdown -

fcloze, flush -

opendir, readdir, telldir, seekdir, rewinddir,
syslog, openlog,

circle, arc, move, cont, point, linemod, space,

pi - Pascal interpreter

log. dmesg -

colordemos - demonstrate Sun
¢g ~ Sun

Display.

pr - priat file{s), possibly in multiple
colrm - remove

comb -

files.

exec: overlay shell with specified
time: time

- routines for returning a strezm to & remote
rexec ~ return stream to a remote
system - issue & shell

system — execute a UNIX

test — condition

time - time a

nice, nohup - run &

switch: multi-way

uux ~ unix to wnix

rehash: recompute

unhash: discard

harhatat: print

nohup: ren

coh = a shell (

whatis — describe what a
readonly, set, shift, times, trap, umask, wait -
getarg, iarge — return

repeat: execute

e -

onintr: process interrupts in

goto;

else: alternative

intro - intreduction to

~ intreduction to system maintenance and operation
at - execute

while: repeat

lastcomm - show last

source: read

¢de ~ change the delta

comm — gelect or reject lines

bk - line discipline for machine-machine
socket ~ create an endpoint for
pipe — create an interprocess

users —

files, and cat them.

diff - differential file and directory
emp -

sceadiff -

diff3 - 3-way differential file

intro - introduction to
- -0

77 - FORTRAN-T7
p¢ - Pascal

yace - yet another compiler-

error — analyse and disperse

yace - yet another

wait: wait for background proceszes to
wait - await

compact, uncompact, ccat -

January 1984

clear workstation or terminal screen.
clearerr, fleno - stream status inquiries.
C-like syntax,
clock daemon. . . .
close ~ delete a descriptor.
close down the system at a given time
cloze or flush a stream.
closedir - directory operations,
closelog — control system log.
closepl — graphics interface. [erase, label, Ime.
clri - clear i-node,
cmp - compare two files,
code translator.
cel — filter reverse paper motions. .
colert - filter sroff output for CRT previewing.
collect system diagnostic messages to form error
Color Graphics Display.
color graphics interface,
colordemes - demonsirate Sun Color Graphics
colrm - remove columns from » file,
columnos.
columasfromafile
comb - combine SCCS deltas.
combine SCCS deltas,
comm ~ select or reject liner common to two son d
command,
command.
command.
command,
command,
command.
command.
command.
command at low priority (sh only).
command branch.
commaznd execution.
command hash table.
command hash table.
command hashing statistics, .
command immune to hangups.
command lnterpreter) with C-like’ syntu.
command is. . . .
command language. /export, login, newgrp, read, .
command lite arguments,
command repeatedly.
command script for auto-reboot and daemons.

R I TR R T R R Y

L P

LI TN SR T B R

* a s s 8 s

« 4 4 2 e & e

L S

LI

LI T O I T I)

« 2+ e & B e ¥ w o &

« s s & o ® 4 s

L T I T Y BT R]

L S L T)

P A R A

L

P N R L I R R T S ST B N}

LR

« 2 s
-
I T T T S T

® * e 4 4 4 82 2 B s 8 B & 2 s oA e & o

.
.

.

¢

remd, rresvpert, ruserok .
® ® 4 = s 2 4 8 & & »

L L I]

« + + 8 a2 = @

L L TR T)

L)

P T

‘s s e

a s r v e &2 & 4 % = ¥

.
= e ke ow s
.

« v v 0

4+ s % a2 8 = % & & &

+« & s
R T L T T T S R S

L O T T T T T TS S S S

P A A e)
.

LI

L L T I T R T T

+ . e

LI I S T R R I

L Y

commands at a later time,
commands conditionally.

commands executed in reverse order.
commands from file,
commentary of an SCCS delta, . .
common to two sorted files,
cemmunication. .
communication.
commusication channel.
compact list of users who are on the syntem e s
compact, uncompact, ccatl - compress and uncompress
comparator.
compare two files. . ., , ., . ..
compare LWo versions of an SCCS ﬁle .

+ e v

.
command acripts. Ve e e e s e e s e e
command transfer.
commands, . . . 4 44 4o s
commands. G e e e e e s s
commands. intro e e e . .

L]

4 & 5 a8

. .

P A
D Y

.
.
a »
L T N
. .

@ & = 4 8 & @

L O O R Y
A s 4 & + & 2 e & 8 = =
+ % & 2 = s 8 & 4 s 2 2 4

comparison. .
compatibility library functions.
compiler,
compiler.
compiler.
compiler.
compiler error messages.
cempiler-compiler.
complete,
completion of process.

compress and uncompress files, a.nd cak them

.
.
.
L I R I R T Y .
.
»

L A L

IR T

« s s e

.
LR)
+

L S)

L O I T T R R T

LY

P N T T
. s s 8 e s 6+ 0w

P Y
.

.
.
-
.
.
.
@

P N)

-

s 2 e 8 &
> w4 s

.
.

.

.

.

.

.« .
.

.

.

.

.

EEY . -
.

* 4 8 e = ° 2 & &

. s 2+

L T T T T T T

.
.
.
s a
.
.
.
.

L I T T S Y

]

+ 2 b e .

@ 4 % e s+ & ® 4w e & b o+

L T R I T T T T T T T

L T O I T T R T T S S S S

P L T T S R Y

clear(1)
ferror{33)
<sh{1)
cron(8)
close(2)
shatdown(8)
fclose(3S)
directory(3)
syslog(3)
plot(3X)
clri(8)
cmp(1)

colordemos(8}
cg(4S)
colordemos{6)
colrm(1}
pr(1)
colrm(1)
comb{l}
combf(1
comm{1)
eshil

csh(1
rcmdﬁSN;
rexec(3N
eystem(3)
system(3F)
test(1)
time(1)
nice(1)

esh(1}
nux(1C)
csh{l)

csb{l)
csh{1)
cuh{l)
cah(1)
whaiis(1)

cde(1)
comm(1)
bk(4)
socket(2)
pipe(2)
users{l)
compact(1)
diff(1)
cmp(l‘)ﬁ)
sccadifif1
diff3(1)
intro(3C}
cc(1)
£77(1)
pe(1)
yacc(l)
errox(1)
yaec(1)
cah(1})
wait(1)
compact(1)

Sun System Release 1.1

-

-

C

bangman -

s8 — silog 8530 SCC serial
cat -

test -

endif: terminate

if:

while: repeat commands

gettytab - terminal
config — build system
ifconfig -

tip, cu -

getpeername - get name of

socketpair — create a pair of

shutdewn - shut down part of a full-duplex
accept — accept &

connect — initiate a

listen ~ listen for

dcheck - file syatem directory

icheck - file system storage

fock - file aystem

cons ~ driver for Sun

mkis -

newls -

mkprote -

deroff - remove nroff, troff, thl and eqn
setrlimit - control maximum system resource
viimit - control maximum system resource
openpl, erase, label, line, circle, arc, move,
Is - Tist

sigstack — set and/or get signal stack
lockscreen - mzintain window

newgrp,/ sh, for, case, if, while, :, ., break,

arp - address resolution display and

fentl - file

"nd - network disk

iectl -

init - process

getrimit, setrlimit -

vlimit -

icmp — Internet

dkio - generic disk

featl - file

Ipe - line printer

tep - Internet Transmission

syslog, openlog, closelog -

vhangup - virtually “hangup” the eurrent
ip - Disk driver for Interphase 2180 SMD Disk
ot - Driver for Sysgen SC 4000 (Archive) Tape
#d - Disk driver for Adaptec ST-808 Disk
xy - Disk driver for Xylogics SMD Disk
ecvt, fevt, gevt - output

priat!, fprintf, sprintf - formatted output
scanf, fzcanf, sscanf - formatted input
tolower, teancii ~ character classification and
ugits -

vawap -

dd -

number -

ranlib -

atof, atoi, ato] -

localtime, gratime, asctime, timesone, dysize -
htable -

getdate -

bed -

btonl, htens, ntohl, ntohs -

ching ~ the book of changes and other

rcp - remote file

uucp, uulog - unix to unix
dd - convert and

cpio -

cp ~

Sun System Release 1.1

Permuted Indez

Computer version of the game hangman,
comsat ~ biff server, s e e e e e e e e e e e
comunications driver. , . .

concatenate and display. S et e e ey e
condition command. v 0 v e e e o e . .
conditional. . . . L 0 s s e e e e e e e e e .

conditional statement.
conditionally. e e e e e e e e e e e as
config — build system configuration files, , . ,
configuration data base. S r e e e
configuration files.
configure network interface parameters.
connect — initiate a connection on asocket.
conmect toaTemote sYBtem. . . . ¢ v 0 4 0 . o000 . s
connected PEET. b v b e e e e e e e e s
connected sockets. v e e e e s
CODBECEIOR. « -+ 4 v b s s s s s s s e s e s e .
connectiononasocket. -
connectiononasocket. 4.
connections on a socket. e r e e s

cons — driver for Sun console. 4 0 04 ...

consistencycheck. o000 L0 .

consistencycheck.
consistency check and interactive repalr
conole. . . 4 i i 4 e e e e
construct a file system.
construct a new file aystem. . . .
construct a prototype file system.

LI I

conatructs. f e e e e e e

consumption. getedimit,
copsumption. S h e 44 e ke e e s s . s
cont, point, linemed, space, closepl—gnphlcu/ e e
contentzof directory. . . & . v 4 b b b 44w e s ..
context. . . o 0 b b s 4 e e e ke e e s e e ’ .

context until “logn”.
continue, ¢d, eval, exec, exit, export, login, .
continue: cycleinloop. e
COBEIOL, . v . h s c 4 e e ke e e e e
control,
€oBtPO). . . e e b e h e e e ke e e e e .
controf device.

control initialisation.
contre] maximum system resource consumption. .
contro] maximum system resource consumption. .

Control Message Protecol.
control operations.
control options. e e e e e .
control program. P .
Control Protocol. . . e e e e

control system log,
control terminal.

Controller.
Controller.
Coatrollers,
Controllers.
convermion.
convemion,
conversion. e e e e e s e e e e s e .

COnVernion macros. /muu, isgraph, toupper, e e
CODVETSION PIOETATA. « o « » o « o 2 s = 5 s o = « &
copvert a foreignfont file,. -
convert and copyafile.
convert Arabic numerals to English. .

convert archives to random libraries.

-
.
.
.
-
)

L I I T .

convert ASCIl to numbers.
convert date and time to ASCIL. ctime,
convert NIC standard format hoat tables.

convert time and date from ASCII,
convert to antique media. C e e e e e
convert values between host and network byte order. .
LY - .
COPY. + o o v o # 5 4 v v o s o 5 o o &
COPY. « ¢ s = o
copy a file. Ch e s e et e e e e e
copy file archives inandout. v
copy files.00 ..
- vii -

hangman(6)
comsat(8C)
13(48)
cat(1}
test{1)
csh(1)
csh(1)
cah(1)
config(8)
gettytab(s)
config(8)
ifconfig(8C)
conuect(2)
tip(1C)
getpeername(2)
socketpair(2)
shutdown(2)
accept(2)
connect(2)
listen(2)
cons{4S)
dcheck(8)
icheck{8)
fack(8)
cons(43)
mkfs(8)
newfs(8)
mkproto(8)
dercfi(1)
getrlimit(2)
viimit(3C)
plot{3X)
ls(1)
sigstack(2)
lockscreen(1)
sh(1)

czh{1)
arp(8C)
fentl{2)
nd(8C)
ioctl(2)
init(8)
getrlimit(2)
vlimit(3C)
icmp(4P)
dkio(4S)
fentl(5)
Ipe{8)
tep(4P)
syslog(3)
vhangup{2}
ip}48§
at(45
2d(4S)
xy{48)
ecvt(3)
printf(38)
zcanf(3S)
ctype(3)
unita(1)
vawap(l)
dd(1)
number{6)
ranlib(1)
atof(3)
ctime(3)
htable(8}
getdate(3)
bed(6)
byteorder(3N)
ching(6)
rep(1C)
wucp(1C)
dd(1)
cpio(1)
cp(1)

January 1984

Permuted Indez

fork - create a
tee —

2AVECOTE — JAVE 3

geore — get

foync - synchronixe a file's in-
functions. sin,

sinh,

we - word

sum - sum and

cpio - format of

analysze - Virtual UNIX postmeriem
crash ~ what happens when the system

fork -

tmpoam -~

creat -

open - open a file for reading or writing, or
fork -

socketpair -

ctage -

socket -

mkstr -

pipe -

sdmin -

addbib -

catman —

umask: change or display file
umask — set file

eribbage - the card gamse

pxref - Paseal
colert - filter nroff output for

syntax.
locate a program file including sliases and paths (

— convert date and time to ASCIL
tip,
vhangup - vutunlly “hangup” the
gethostid - get unique identifier of
gethostname, sethostname ~ get/set name of
hostnm - get name of
hostid - print identifier of
hoatname - set or print name of
jobs: print
sun - is
vax - is
sact — print
sigeetmask — set
whoami ~ display eflective
¢hdir - change
getcwd - get pathname of
getwd - get
motion.
curses - screen functions with “optimal”
spline - interpolate smooth
continue;
bauncube - view $-
cron - clock
internet services
Ipd - line printer
routed - network routing
rc — command script for aute-reboot and
ftpd -
telnetd ~
timed -
titpd -

inetd -

January 1984

copy of this process,
copy stapdard output to many files.

core ~ format of memory image file, .
core dump of the operating system. .
core images of ranning processes. . .
core state with that on disk,
cos, tan, asin, acos, atan, atan2 - trigonometric
cosh, tanh - byperbolic functions.
count.
count blocks in a file.
¢p ~ copy files.
cpio - copy file archives in and out,
cpio - format of cpio archive.
cpio archive. . .
cpp — the C language preprocessor.
¢rash ~ what bappens when the system crashes.
crash analyser. .
crashes, .
creat — create a new file. .
create a copy of this process. .
create & pame for a temporary file, .

s 8 e s e
s 5 & 3 s s
L

L L 'Y

+ e v o

+ o 2 4
L T R T R R A I L)
I S T T I L I Y

PRI R R R S RS

« + a =

.
.
. o
L A L

-

.- e s e e
* 2 e s 4

= 8 v s s & & = -« 8 »

LI T T N L

create a new file,
create a new file.
create a aew procesa.
create a pair of connected sockets.
create a tage file,
create an endpoint for communication. .
create an error message file by massaging C so
create an interproceas communication chann el
crexte and administer SCCS files,
create or extend bibliographic database,
create the cat files for the mannal.

creation mask.
creation mode mask.
cribbage. . .
cribbage ~ the card game cribbage.
cron - clock deemon.
crontab - table of times to run periodic Joba
cross-reference program.
CRT previewing,
crypt - encode/decode.
crypt, setkey, encrypt - DES encryption. .
csh - a shell (cormmand interpreter) with C-like
csh enly). which -
ctags — create & tage file.

e @ & 8 2+ 3 .

L T

L I

L T O

L T T T S
L T

L I R I R

« 5 e » =

L I I T T)

.
.

L]
. ..
.

« o+ + s s
L T S S
L e

LI I

L I L
L I T I B R)

LI I Y

- s s =

LI I L I I

s s 4 a4 & 8 ¢ & a

ctime, Jocaltime, gmtime, asctime, timesone, dysize

cy — connect to a remote system.
current control terminal, . . .

current job tist. . .
current machine a sun workutmon
current machineawvax.
current SCCS file editing activity.
current signal mask.
current username.
current working directory.
current working directory.
current working directory pathrame,
curses - screen fanctions with "optlml" cnrsor
cursor motion. . . .

curve.
cycle in loop.
D Sun logo.
daemon. . .
daemon. .
daemon. . .

current host.4 .
current host. ¢
curreat host.
current host system.
current hest system.

LI I Y

P T . T R S A

LR Y S

L S S RS ST S SR T S

a &« & ® = & »

« 4 = a2

.

.
LI A)
L] .

4 5 8 % 8 8 & a2 2 & * s &2 & @

LI I N . LI I Y)

-
- . LR S
L . .
- . »
.

+ 8 = 4 e s

.
+
.
.

L I

T S Y

daemon. .
daemons. .
DARPA Internet F:Ie Transfer Protocol senrer
DARPA TELNET protocol server.
DARPA Timeserver. . . . v v v s o s « »
DARPA Trivial File Transfer Protoco! server.

.o - .

+ e 2 ¥ ¢ s 0=
a4 e & w s = s
s 2 4 e s & a
+ e e 2 4

T L

.
.
+ .
-
.

« o s

- viii -

L N I

fork(3F)
tee(1)
core(5)
uvecore(s)
geo

f2yn 2)
sin(3M)
sinh(3M)
wefl
sum(1)
cp(1)
cplogl)

L Y
LI S TR S

cpio(5)
epi:(5)
cpp(l
cnsheﬂu)
analyze(8)
crash(8s)
creat(2)
fork{sF')
tmpnam(3C)
creat(2)
open(2)
fork(2)
socketpair(2)
ctage(1)
socket(2)
mkste(1)
. pipe(2)
. admin(1)
. addbib{1)
catman(8)
csh(1)
umask(2)
cribbage(6)
cribbage(s)
cron(8)
crontab(5)
pxref(1)
colert(1)
erypt(1
crypt.{ag
cshl)
which(1)
ctags(l)
ctime(3)
tip(1C)
vhangup(2)
gethoztid(2)
gethostname(2)
hostnm{3F)
bostid(1)
hostname(1)
esh(1)
sun(l
vuilg
sact(1)
sigeetmazk(2)
whoami(1)
¢hdir(2)
getewd(3F)}
getwd(3)
curses{3X}
curses(3X)
apline(1G)
ceh(1)
bauncube{6)
cron(8)
inetd(8C)
Ipd(8)
routed(3C)
rc(8)
ftpd(8C)
telnetd(sC)
timed(8C)
tftpd(8C)

L Y
L T L T

L T S S T

- & » 4 »
LI . T T T S

L T T S L I R T T S)

.

L N Y
L T T T T T e S

L T T S

L T T T S T L I S}

L I I T I
O T T T S T S S T T T S S R . T T T T T R e S R S S T R T T T T T T T T T

4+ 2 & 4 & & 8 B & 8 8 4+ & 4 & 4 € & 5 3 B K 4 2 B B B+ = & 2 B s = B & B & B &+ +

L T N N N R T L I T T B

Sun System Release 1.1

eval: re-evaluate shell

gprof - display call graph profile
prof - display profile

ttys — terminal initialisation
gettytab - terminal configuration
hosts — host name

networks ~ network name

phones - remote hoat phone number
printcap - ponter capability
protocols — protocol name

servers - inet server

sETVICEs — eIvice name

termecap - terminal capability
neweliases — rebuild the

ttytype -

dbminit, fetch, store, delete, firstkey, nextkey -
oct - Central

brk, sbrk - change

nufl -

types — primitive system

addbib - create or extend bibliographic
roffbib - run off bibliographbic
sortbib - sort bibliographic

join - relational

udp - Internet User

dats —~ display or set the

gettimeofday, settimeofday ~ get /set

time, ftime - get

gmiime, asctime, timesone, dysize -~ convert
rdate ~ set system

getdate - convert time and

touch - update

idate, itime ~ return

data base subroutines.

sdb -

dbx -

od - octal,

tp ~

crypt - encode/
uunencode,uudecode ~ encode/

chdir -~ change

choh - change

kbd - keyboard translation table format and
equchar - special character

closs -

dbminit, fetch, store,

cdc - change the delta commentary of an SCCS

delta - makea

cde - change the

rmdel - remove a

comb - combine SCCS
colordemos -

bdemos -

mesg - permit or
constracts.

crypt, setkey, encrypt -
whatis -

mailaddr - mail addressing
remote — remote host
close — delete a

dup, dup2 - duplicate a
getfatype, setfsent, endfsent - get file system
getfd — geb the file
getdtablesize - get

de -

accessy -

access —

file -

drum - paging

C

Sun System Release 1.1

Fermuted Indez

data, .
data. .
data, .
data.

data bane.
data base.
data base, .
data basze. .
data base.
database,.
database. . . . v 0 v u e s h e e e e e e e e e

. e s

LI R S

data base,
data base.
data base for tha mul :luus file ..
data base of terminal types by port.
data base subroutines. . .
Data octal serial card.
data segment sise. .
data sink.
data types.
database.
database.
database. .
database operator.

-

.
.

e e+ e s
L] .
.

D I O L I R T R R T N]

Datagram Protocol. . . .
date. .
date - display or set the d;te. .
date and time, .
date and time.
date and time to ASCIIL. ct:me, localtlme, .

LI

L

date from a remote hoat.
date from ASCIL
date last modified of a file.
date or time in numerical form.
dbminit, fetch, store, delete, firstkey, nextkey -
dbx - debugger.
dec - desk calculator.

LI R

L

« .

L I T B R R}

deheck ~ file system directory consistency check. v e e
dd - convertand copyafile.+ ...
debugger. . . . v . o v 4t e s e e e e
debugger. i it s
decimal, hex, asclidump.
DEC/mug tape formats. e e e e e s
decede.
decode a binary file for transmission viamail.
default: catchall clauseinswitch.
default directory. e e e e s s
default loginshell. 0. ¢....
default table. v o e
definitions foregqa. . . . « . ¢ . 0. L0000 . .
delete a descriptor. . . e e e

ge:eto, firstkey, nextkey - data bue subroutines.
elte, - .. 0ol e e s e

delta - make a detta {change) to an SCCS ﬁle
delta (change) to an SCCS fie.
delta commentary of an SCCS delta.
delta from an SCCS file.
deltas.
demonstrate Sun Color Graphics Display. . .
demonstrate Sun Monochrome Bitmap Display.
deny messages. .
deroff — remove nroff, troff, thlandeqn
DES encryption.
describe what a command § u .
description.
description file.
descriptor.
deacriptor. .
descriptor file entry. /fgetfsspec, getfaﬁle, f e e e e s
descriptor of an external unit number. . ,
descriptor table size.
desk caleulator.
determine accessability of 2 file,
determine accessibility of file.
determine file type, . .
device.

L I)

a4 s

+ e e s

L S

L L L R R R

L T R L T T B R R

LI I T T T S R T S Y

L —

I I R T T S

L L I

-ix -

cah(1)
gprof(1)
prof(1)
ttys(5)
gettytab(5)
hosts(5)
networks(5)
phones(5)
printcap(5)
protocols(5)
servers(5)
services(5)
termcap{5)
newaliazes(8)
ttytype(5)
dbm(3X)
oct{45)
brk(2)
null{4}
types(5)
addbib(1)
roffbib(1)
sortbib(1)
join(1}
udp(4P)
date{1)
date{1)
gettimeofday(2)
time(3C)
ctime(8)
rdate{8)
getdate{3)
touch(1)
idate(3F)
dbm(3X)
dbx(1)
de(1
dcheck(8)
dd(1)
adb{1)
dbx(1
oc[(lS)
¢p(5)
erypt(1)
uuencode(1C)
cah(1)
chdir(3F)
chsh(1)
kbd(5)
equchar{7)
cloaeéi.’)
dbm(3X)
cde(1)
delta(1)
delta(1)
cde(1)
rmdel(1)
comb(1)
colordemos(6)
bdemos(6)

whatis(1)
mailaddr(7)
remote(5)
close(2)
dup(2)
getisent(3)
getfd(3F)
getdtablesize(2)
de(1)
access{3F)
access(2)
file(1)

drum(4)

January 1984

Permuted Indes

fold - foid long lines for finite width ountput
ioctl ~ control

swapon — add a swap

swapon - specify additional

fmin, fmax, dimin,
fimin, fmax,

package.

dmesg ~ collect system
ratfor — rational Fortrin

diff -
difi3 - 3-way

dir ~ format of

rm, mdir - remove {unlink) files or
rmdir, rm - remove (unlink)

cd - chazge working

chdir - change current working

chdir ~ change default

chroot - change root

cd: change

chdir: change

getewd — get pathaame of current working
Is ~ tist contents of

mkdir - makea

scandir, alpharort - scan a

uuclean ~ utcp spool

diff - differential file and

dcheck - file system

unlink ~ remove

ualink - remove &

mkdir -~ make a

rmdir - remove a

pwd - print working

readdir, telldir, seekdir, rewinddir, closedir -
getwd - get current working

popd: pop shelt

pushd: push shell

aetquots — enable/

unhash:

unset:

bk - line

- synchronise a file’s in-core atate with that on
nd - network

dkio - generic

ip - Disk driver for Interphase 2180 SMD
sd - Disk driver for Adaptec ST-506

xy - Disk driver for Xylogics SMD

nd - setwork

od -

Controller. ip -

xy -

quota - manipulate

df - report free

du - summarize

- reboot/halt the system without checking the
mount, umount - mount and

error ~ analyse and

bdemos - demonstrate Sun Monochrome Bitmap
cat - concatenate and

colordemos - demonstrate Sun Color Graphics
™™in - animated raindrops

arp ~ addrese resolution

cal -

gprof -

snake, snscore -

vi — screen oriented (visual)

whoamij -

umask: change or

bead -

perfmon - graphical

date -

prof -

worms - animate worms on a

January 1984

device.
device.
device for interleaved paging/swapping.
device for paging and swapping. . . .
df - report free disk space on file systems.
dfimax, inmax — return extreme valoes, . .
dfimin, dimax, inmax - reture extreme values,
diag - General-purpose stand-alone utility . .
diagnostic messages to form error log.
dialect.
diff - differential file and directory comparator.
diffs - 3-way differential file comparison. .
differential file and directory comparator.
differential file comparison.
dir - format of directories.
directories.

e & 8 ¥ & s 8 s+ s & & &

P I R R T I B I)

.
.
.
+
-

+ s = & » s

« s s

4 F % E s 2 e 9 s & 4 s b E e s+

-
.
.
.
.

L T T T

Disk Controllers.
diskdriver.4 40t 0o
Dirk driver for Adaptec ST-508 Disk Controllers.
Disk driver for Interphase 2180 SMD Disk . .
Disk driver for Xylogics SMD Dick Coatrollers.
disk quotas.
disk space on file eystems. . .
diskwsage.
disks. fastboot, fasthalt
dismount file system.
disperae compiler error messages.
Display.
display. . .
Displsy.
display.
display and control.
display calendar. . .
display call graph profile dzts
display chase game,
display editor based on ex. .
display effective current username,
dizplay file creation mask.
display first few lines of specified files.
display of general system statistics. . .
display or set the date, . .
display profile data,
dieplay terminal.

LN T T R B .

directories. 0 s 4 e v e e ..
directoriesorfiles. . . . ¢ . v s .4 ¢ .
directory. + « v v s v b s e e s e e
directory. . < 4 b e et s e e e s
directOry. « v a4 4 ¢ v 0 s s e e e e e
directory. . . v 0 b e e v et e e e,
directory. o ¢ v 0 v v v e e b o e e
directory. .+ « v ¢t 4t 4 v b e
directory. . ¢ ¢ v v v e st e e e
directory. .+ v i e s e e e e e e e
directory. « . 0 s v v v e e e e
directory. .+ . ¢ s v c 0 0 c et
dmctoryclean—up
directory comparator. 44 .. .
directory consistency check.
directory entry. . + o v 4 4 s 4 e s s 4 e
directoryentry. . . « ¢ v v v v v s b ..
directory file. s v e e e
directory file. .+ . . o v« v o o v 00 e
directoryname. o0 s s e e e e .
directory operations. opendlr, v e s e s e
directory pathname. o 00
directorystack, v . 0.
directory stack. v 4 s e b e v s
disable quotaz on a filesystem.,
discard command hash table.
discard shell variables.
discipline for machize-machine communl cation.
disk. fayBe .+ 4 f b b e v e e e a e e
diskcontrol. ¢ 4 v it h e
disk control operations.
DiskController. . . . + + v = ¢ 4 ¢+ 4 « &
Disk Controllers.« v o v 0 v v v W

L N N I O DI B B

. .
.

LT) ..
. .

L T -

.+ 0 . .

I N L Y

« s = s s

.
s 8 v e .
.

P L L

.
- .
.. .
e e e
* s oa
.. .
.
- e e

.
.
.
..
.
.
.

a 4 4 &= 8 e 4 s e & & »

4« e e+ s e » »

LR

L R T T T R S S Y

LR Y

D A)

L I T T T T T T)

L R L T T T Y
4 8 & & % a = = % &

Y

LI L I T I

L L L T

L T T T T T T T T T T T e

-

« e« s

L T R T I e T T T T

L L N T T R

L A A N}

L R e I T . T T T T T S S

P

L T S S T S T

L e O I T T T e T T

« s & 3 4 = 2 2

fold(1)
joctl(2)
swapon(2
aw;ponES}
df(1)
range(3F
range{3F
diag(8s)
dmesg(8)
ratfor(1)

chroot(2)
csb(1
eshit
getcwd(3F)
1s(1)
mkdir{1)
scandir(3)
uuclean({3C)
difi(1)
dcheck(8)
uelink(2)
unlink(3F)
mkdir(2)
rmdir(2)
pwd(1)
directory(3)
getwd(3)
csh(1)
cah(1)
setquota(?)
coh(1
cnh{lg
bk(4)
fsync(2)
2d{8C)
dkio(48)
ip(48)
ed(43)
y?ls)
d(4P}
2d(48)
ip{45)
xy(48)

do(1)
fastboot(B)
mount(8)
error(1}
bdemos(6)
cat(1)
colordemos(6)
rain(8)
arp(8C)
cal(1)
gprof(1)
snake(6)
vi(1)
whoami(1)
csh(1)
head(1)
perfmon(1)
date(1)
prof(1)
worms(8)

Sun System Release 1.1

tail -
hypot, cabs - Euclidean

error log.

refer — find and inzert literature references in
troff —~ typeset or format

w - who iz on and what they are

shutdown - shut

shatdown - close

graph -

interactive graphics
arithmetic - provide
ar - Archive 1/4 inch Streaming Tape
tm - tapemaster 1/2 inch tape

nd - network disk

pty - pseudo terminat

3 - silog B530 SCC serisl comunications
od - Disk

ip - Disk

cons —

Controller. ot -

xy - Disk

adjacentscreens - notify the window
term - terminal

term - terminal

draw -

dump - incremental file system

od ~ octal, decimal, hex, ascii
dumpfs -

dump, dumpdates - incremental
SAVECOT® — JAVE A COTe

kgmon - generate a

dump,

dup,

shutdown - shut down part of 2 full-
dup, dup2 -

ctime, localtime, gmtime, sectime, timesoae,

echo:
echo -

end, etext,

X,

vipw -

sact - print curreat SCCS file

ed - text

ex, edit — text

Id - link

sed - stream

view & file without changing it using the vi visual
vi — screen oriented (visual) display
a.out - assembler and link

whoami - display

setregid — aet real and

setreuid - set real and

viork — spawn new process in a virtual memory
grep,

insque, remque — inzert /remove

soclim -

“tektool - Tektronix 4014 terminal
seiquota —

uuencode - format of an
crypt -

mail. uwaencode,nadecode ~
crypt, setkey,

Sun System Release 1.1

Permuted Index

display the tast part of a file. . .
distance.
dkio — generic disk control operations, .
dmesg - collect aystem diagnostic messages to form .

LR R

documents.
documentas.
doing.
down part of a fuli- dnple.x connection.
down the system at a given time.
draw - interactive graphics drawing.
draw a graph.
drawing.
drill in number facta,
Drive. . .
drive, . .
driver. .
driver. .
driver. .
driver for Adaptec S'I‘-bOG Disk Controllers. .
driver for Interphasze 2180 SMD Disk Controller
driver for Sun console. .
Driver for Sysgen SC 4000 {Archive) Tape . . .
driver for Xylogics SMD Disk Controllers. . . .
driver of the physical relationships of screens. .
driving tables for nroff.
driving tables fororof., .
drum - paging device. e s e
du - summarise disk usage, . .
dump. .
dump. . v e v e 0o
dump - incremental fle system dump
dump, dumpdates - incremental dump format.
dump file system information. .
dump format.
dump of the operating system.
dump of the operating system’s profile buffers.
dumpdates - incremental dump format.
dumpis — dump file system information.
dup, dup2 - duplicate a descriptor. .
dup? - duplicate a deseriptor.
duplex connection. . . .
duplicate a descriptor.
dysize - convert date and time to ASCIL. .
¢c - 3Com 10 Mb/s Ethernet interface. . .
echo - echo arguments.
etho arguments,
echo arguments.
echo: echo arguments,
ecvt, fevt, gevt - output conversion.
ed - text editor.
edata - last locationainprogram. .+ + + . v o 4 v . .
edit - text editer. . .
edit the password file. .

L T T T R I R R R
LI R S I R T T T T

LI T L I T T T R S R S

- s

. »
. . . .
D R T R
s v e e .
v
.

L A L

L)

.
. ke .

L L R I . .

P Y

.

LI
a

. . .

L I I T T T S R T S RS
« & & o 4

......

.
. s 8 .
LR)
.

L]

.
.
I T I T R T R R R R
D R
P R R S T S R S
.........
LI T T T T S S Y

editing activity, . .
editor.
editor.
editor.
editor.
editor. vi-
editor based on ex.
editor output.
effective current wsername. . .
effective group ID.
effective userDs.
eflicient way. .

egrep, fgrep — search a file for a pattern ..

+ 4 % 4 4w

L T T T R I e e S Y

D I R R S I T
s oo P R T I T

P
L A) 0

LR T

element from a queune.
climinate .30’s from nroff input.
else; alternative commando.
emulatortool.
¢n ~ San 3 Mb/s experimental Ethernet 1nterface
enable/disable quotas on a file system,

L I T

L R R R

LRI }

encoded uuencode file,. 0.

encodefdecode. . .« v . o oL oo oL .

encode/decode a binary file for transmission via

encrypt — DES encryption. C e e e e e s . e
-Xxi-

tail(1)
bypot(3M)
dkio(48}
dmesg(8)
refer(1)

shutdown(2)
shutdown(8)
draw(6)
graph(1G})
draw(6)
arithmetic(6)

adjacentacreens(l)
Jterm(5)
term(5)
drum(4)
du(1)
dump(8)
od{1)
dump(8
dumpE&}
dumpfs(8)
dump(5)
savecors(8)
kgmon(8)
dump(5)
dumpfs(8)
dup(2)
dup(2)
shutdown(2)
dup(2z
ctime(3)
ec(4S)
echo(1)
cah(1)
echo(1)
csh(1)
ecvi(3)
ed(1)

a.out(5)
whoami(1
sctrcgid%2;
setreuid(2)
viork(2)
grep(1)
inaque(3)
soelim(1)
csh(1)
tektool(1)
en(4S)
setquota(2)
uuencede(S)
crypt(1)
unencode({1C)
erypt(3)

January 1984

Permuted Index

crypt, setkey, encrypt - DES
makekey ~ generate

sces - front
logout:

[getfsspec, getfafile, getistype, setfsent,
getgrent, getgrgid, getgrnam, setgrent,
gethostbyaddr, gethostbyname, sethostent,

gethetent, gelnethyaddr, getnetbyname, setnetent,
socket — create an

getprotobynumber, getprotobyname, setprotoent,
getpwent, getpwuid, getpwoam, setpwent,
getaervbyport, getservbyname, setservent,

number - convert Arabic numerals to

xsend, xget,

alist - get

endfsent — get file aystem descriptor file

getgrnam, setgrent, endgrent - get group file
sethoatent, endhostent - get network host
getnetbyname, setnetent, endnetent — get network
setprotoent, endprotoent — get protocol
getpwnam, setpwent, endpwent — get password file
setservent, endservent — get service

syslog ~ make system log

unlink - remove directory

unlink - remove a directory

execl, execy, execle, execlp, execvp,

setony; set variable in

enviren — uger

printeny — print out the

suntools - the Suntools window

toet — establish terminal characteristics for the
geteny ~ value for

unsétenv. remove

getenv ~ get value of

eqncbar - special character definitions for
deroff - remove aroff, troff, tbl and

linemeod, opace, clozepl — graphics/ openpl,
perror, sys_errlist, sys_nerr,

messages.

dmesg - collect zyatem diagnoatic messages to form
mkotr - create an

error - analyse and disperse compiler

perror, ayn_errlist, sys_nery, e1rno ~ system
POITor, gerror, ierrno ~ get aystem

intro - introduction to system calls and

eyace - modified yacc allowing much improved
spell, spellin, speliout - find spelling

chasze - Try to

environment. tset -

end,

¢c - $Com 10 Mb/a

en - Sun 3 Mb/s experimental

bypot, cabs -

for, caze, if, while, ;, ., break, continue, ¢d,

expr -

eval: re-

history: print history

~ screen oriented (visual) display editor based on

lpq - spocl quene
[case, if, while, :, ., break, continue, cd, eval,

execute & file.

execl, execw,

exacl, execy, execle,

aticky -

exech, execv, execle, execlp, execvp, environ -
execve -

January 1984

- eval: m-euhn.te shell data.

encryption.
encryption key. .
end, etext, edata - last Iocallona in program.
end for the .SM SCCS subsystem,
end sestion.
end: terminate loop.
endfsent — get file system descriptor file entry. .
endgrent — get group file entry.
endhostent — get network host entry. gethostent,
endif; terminate conditional.

endnetent — get network entry.
endpoint for communication.

endprotoent - get protocol entry. getprotoent, .
endpwent — get password fle entry.
endservent — get service entry. getservent,
endsw: terminate switch. .
English.
enroll - secret mail.
entries from name list.
entry. /getfaspec, getfafile, getfatype, setfsent, .

D L I)

L Y

R B

4 8 2 ¥ 4 = s s 4 8 s w s e e

« = v o4 s e &
LI T B T T I
LI I S

. o

L R)

» e » »

LI]

e 8 B 4 8 & T & 4 2w b s s

- s e % =
L S

L R T T ')

L R L I T T T

eniry. getgrent, getgrgid,
entry. gethostent, gethostbyaddr, gethostbyname,
eptry. getpetent, getnetbyaddr,
entry. /getprotebynumber, getprotobyname, .
entry. getpwent, getpwuid,,
entry. getservent, getservbyport, getservbyname,
eRlTY. & . v 4 b h s e e e e e e e s
CBLTY. & ¢ 4 ¢ e e v e s e s e e e e e
enlry......--............
envirop -executea file.
CNVirOD — USCT eRVIFOBMEDt. . + 4 4 . . o .
environment, e e e e e e a s
enVITORMEnt. . . . v s e e n s e
eavironment.
environmenst. c e e e e
environment. P4t e s s 4 e e s s e
CRVITODMEDt DAME. &+ 4 & & o o o 2 5 + » &
environment variables,.
enviropment variables. .,
eqn, et s s e e s s e s e e e e
eqn constructe. v e e m s

eqn, neqn, checkeq - typelet mathemtla .
eqnchar - special character definitions for eqa.
erase, label, line, circle, arc, move, cont, point,
IO - sysiem error messages.
error - analyze and disperve compiler error
error log.
error measage file by massaging C source.
eTrOr messages. . . .

D I R Y

* B % s s 2 e + = 8 =or o e

...l.lll
CITOr messafed. <« . < 4 4 4 v v 400 s
CITOT TIOBIAESY. o+ « + » o o 4 o « «
CTrOr DUmMbBEIT. + 4 ¢ 0 4 v 0w e
CITOT POCOVAIY. - o & o o + o « o + »
errors. I T
escapeto killerrobots,

establish terminal characteristics for the
etext, edata - last [ocations in program.
Ethernet interface,
Ethernet interface.
Euclidean distance.
eval, exec, exit, export, login, newgry, read,/

LI B BRI S

L T T I T T e R O I T T T S T R S R S

* e % & 8 & + & & 8 e &
4 % 5 e + % 3 e e 4 & a

* 4 2 e s = % + 8

L N)

evaluate srguments 23 an expression.
evaluate shell dats.

. ..

D A T Y T R
-

evendlish, e e e e e
ex. vi © s s b e e aa et e e s s oss
ex,edit ~textediter,.
exaraination program. PP . .

exec, exit, export, login, newgrp, read rea.donly,/
exec: overlay shell with specified command .
exec], execy, execle, execlp, execvp, environ -
execle, execlp, execvp, environ - execute a file.
execlp, execvp, environ - execute a file.
executable files with persistent text.
execute a file.
execute a file.

.

- . 0

DI TR S

L L T R I I R S

+ 4 e a

LI e I I

~ xii -

4 % 8 4 2 s s v s = 2

L S I Y

“ e * 2 s

L T T T T T S T S S L T T T T T S O T T)

P N

LI T T . L T T T Y,

L T L I L I S S S T A L A N T T T T T T T T R S

L R T T S S

I T T T T T T

* 4 5 & 3 & % = o5 4 % = s 8 b % 0w

N N)

 F ¥ 4 * B & ® ® & # & s % & 4 B 8 S + & + 8 %S ¥ e v & 8 & 4 8 " E E s e % =8 + 85 0w e mw

4 & 2 84 & 2 & @& 3 s 2 & + 2 s B 4 * 8 B b N s @

erypt(3)
makekey(8)
end(3)

sces(1)

cab(1

csb{l}
getfsent(3)
getgrent(3)
gethostent(SN)
csh(1)
getnetent(3N)
socket(2)
getprotoent(3N)
getpwent(3)
getservent(3IN)
csb(1)
aumber{8)
xsend(1)
nlist(3)
getfsent(3)
getgrent(3)
gethostent(3N)
getnetent{3N)
getprotoent (3N}
getpwent(3)
getservent{3N)
syslog(1)
unlink(2)
unlink(3F}
execl(3
environ(5}
coh(1}
environ{5)
printenv(1)
suntools(1)
taet(1)
gotenv(3)
csh{l)
getenv(3F)
equchar(7)
derofi{1)
eqn(1)
eqnehar(?)
plot(3X}
perror(3)
error{l

dnkleul(8))
mkstr{l
error{1)}
perror{3)
perror{3F)
intro(2)
eyacc(l)
speli(1)
chase(8)
taet{1)

end(3)

ec(45)

en(48)
hypot{3M)
sh(1)

¢sh(1)

expr(1)

csh(l
cnhgl;
vi(1
ex(1)
Ipa(1)
2h(1)
csh(1)
execl(3
execl(3
execl(3
sticky(8)
execl(3)
execve(2)

Sun System Release 1.1

-

-

-

alarm -

syatem -

repeat:

at -

lastcomam - show last commands
wux ~ unix to wnix command
acct -

sleep - suspend

sleep - suspend

sleep - suspend

menitor, monstartup, moncontrel ~ prepare
pxp - Pascal

rexecd - remote

profil -

pix - Pascal interpreter and

file. execl,

execl, execy, execle, execlp,
link, symlak - make a link to an
tunefs — tune up an

pending output.

Ji, while, :, ., break, continue, cd, eval, exec,
breaksw:

break:

logarithm, power, square root.
glob: filename

expand, unexpand -

veres.

¢n ~ Sun 3 Mb/s

adventure - an

frexp, Idexp, modf - split into mantissa and
exp, log, l1og10, pow, sqrt -

/while, &, ., break, continue, cd, eval, exec, exit,

expr — evaluate arguments as an
re_comp, re_exec - regular

addbib - creste or

getfd - get the file descriptor of an
strings. xwtr-

T8COVEry.

ioinit - change

tclose, tread, twrite, trewin, tskipf, totate -
functions.

signal - simplified software signal

sigvec — software signal

arithmetic - provide drill in number

petat - prinat system

true,

inet — Internet protocol

without checking the disks.

the disks. fastboot,

sbort ~ generate a

trplpe, [pecnt - trap and repair floating point

chmod,
chown,

ecvt,

fopen, freopen,

ferror,

inquiries.

baze subroutines. dbminit,
head - display first

fclose,

beopy, bemp, bsero,

gete,
stream, gete, getchar,

Sun System Release 1.1

Permuted [ndez

execute a subroutine after a specified time.
execute 2 UNIX command.
execute command repeatedly.
execote commands at a later time.
executed in reverse order.
execution.
execution accounting file, .
execution for an interval,
execution for an interval. .
execution for interval.
execution profile.
execution profiler.
execution server.
exscution time profile.
executor.
execy, execle, execlp, execvp, environ - executea
execve — execute a file
execyp, enviren — exccute z file.
existing file.
existing file system.
_exit — terminate a process.
exit — terminate a process after ﬂnahmg any
exit - terminate process with status.
exit, export, login, newgrp, read, readonly, set,/
exit from switch,
exit: leave shell.
exit while/foreach loop.
exp, log, logl0, pow, sqrt — exponential, . .
expand argument list.
expand tabs to spaces, and vice versa.
expand, unexpand - expand taba Lo spaces, and vice .
experimental Ethernet interface.

D L T

P I I T T)

L)
. o+
LI}

.

L L I T I I I I]

LI T N R T B T
LI I T R S

+ .

L A R)

.

PR T T R T T
a
.

LI R R T TR R}

expire - remove outdated news articles. .
exploration game.
exponent. . . .
exponential, fogarithm, power, square root.
export, login, newgrp, read, readonly, set, shift,/ . .
expr - evaluate arguments a3 an e.xpreuaion. .
expression.
expression handler,
extend bibliographic database,
external unit number.
extract stringa from C programs to implement shared
eyacc ~ modified yacc allowing much improved error
f77 - FORTRAN-77 compiler.
177 1/O initialigation.
{77 tape 1/O. topen, .
fabs, floor, ceil — absclute value, floor, ceiling e .
facilities,
facilities.
facta.
facts.
false - provide truth values. .
false, true — provide truth values,
family.
fastboot, fasthalt ~ reboot /halt the system
fasthalt - reboot/halt the system without checking . . .
fault. .
faults.
fbio - general properties of frame buffers.
fchmod - change mode of file.

LR R
L R R L T I T

L T O

.
.
s a s a4 s 8
L I I R A O I U |
LI N T BT T |

L R R S T

.
-
I L T T T SR R Y
.
.
.

LT T R S L Y

LI I)

L T S S T B R R)

L I T R R

L T R S L R T

LR T I

P T N T I B Y

L I I N

fchown — change owner and gronpof afile.
fclose, fllush — close or flush astream. . . ., ., . .
feotl - filecontrol,
fentl - file control options,

fevt, gevt — output conversion.
fdopen - open a stream.
feof, clearerr, fileno - stream status inquiriea.
ferror, feof, clearerr, fileno - stream status
fetch, atore, delete, firstkey, nextkey —data
few lines of zpecified files.
fllush - cloze or Bush a stream. . .
fis - bit and byte string vperations.
feg: bring job into foreground.

.
.
L R A T I R}
L T T R TR
I T T R T T Y

.....

..............
L N R T T
LI I T R

D T R e

fgetc — get a character from a logical unit.
fgetc, getw — get character orintegerfrom
- xiii -

alarm(3F)
aystem(3F)
csh(t)
at(1}
lastcomm(1)
nux(1C)
acct(5}
slcep{l)
sleep(3F)
gleep(3)
monitor(3)
pxp(1)
rexecd(8C)
profil(2}
pix(1)
execl(3)
execvel2)
execl(3)
link{3F)
tunefs(8)
exit(2)
exit{3)
ex;t)SF)
sh(1
cah(1)
cah(1)
cah(1)
exp(3M)
cah(1)
expand(1}
expand(1})
en(4S)
expire{8)
adventure(6)
frexp(3)
exp(3M)
sh(1)
expr{1)
expr{1)
regex(3)
addbib(1)
getfd(3F)
xstr(1)
eyace(l)
f77(1)
foinit{3F)
topen(3F)
floor{3M})
signal(3)
sigvec(2)
anthmetic{g)
potat(8)
true(1)
false(1)
inet{4})
fastboot{8}
fastboot(2)
abori(3)
trpipe(3F)
fbio(4S)
chmod(2)
chowa(2)
fclose(33)
fentl(2)
fentl(5)
ecvi(3)
fopen(3S)
ferrer(3S)
ferror(3s)
dbm(3x)
head(1)
fclose(33)
bstring(3)
csh{1)
getc(3F)
getc(38)

January 1984

Permuted Indes

gets,

grep, egTep,

access ~ determine accessibility of

access — determine accessability of a

acch - execution accounting

chmeod, fchkmod — change mode of

chmed - change mode of a

chown, fchown - change owner and group of a
colrm - remove columns from a

core - format of memory image

creat - create a new

source: read commands from

ctage - create a tapgy

dd - convert and copy a

delta — make & delta (change) to an SCCS
execy, execle, execlp, execvp, environ - execute a
execve — execute a

- apply or remove an advisory lock on an open
fpr - print Fortran

get — get a vervion of sn SCCS

group — group

link — make a hard link to a

link, symlzk - make a link to an existing
mkdir ~ make a directery

mknod - make a special

mkned - build vpecial

more, page — browze through a text

- rebuild the data base for the mail aliases
oper a file for reading or writing, or create a new
passwd - password

pre - print an SCCS

remote -~ remote host description

rename — change the name of

rename — rename a

rev ~ reverse lines of a

rmdel - remove a delta from an SCCS
rmdir - remove a directory

sceedif - compare two versions of an 8CCS
sccefile - format of SCCS

sige - vize of an object

printable strings in an object, or other binary,
sum ~ stm and count blocksin a

symlink — make symbolic link to a

tail - dinplay the Jast part of &

tmpnam - create & name for a temporary
touch - update date last modified of
unget - undo a previous get of an SCCS
uniq - report repeated Jines in a

uuencode - format of an encoded uuencode
val - validate 3CCS

vipw - edit the password

vewap — convert a foreign font

write, writer - write on a

diff - differential

cpio - copy

mkatr - create an error message

diffs - 3-way differential

fent! -

fent] -

cp - remote

umask: change or display

umask — set

getfd — get the

sact — print current SCCS

setfsent, endfsent - get file system descriptor
getgrgid, getgroam, setgrent, endgrent — get group
getpwoam, setpwent, endpwent - get password
grep, egrep, {grep - search &

Open ~ Oped 2

pewsre — icformation

aliases - aliases

uuencode,uudecode ~ encode/decode a binary
ar - archive (library)

tar - tape archive

which - Jocate a program

January 1984

fgets — get a string from a stream.
fgrep - search a file for a patiern.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file. exed
file. ...
file. flock
filee. ...
file. ..
file. .
file. .
file. .
file. .
file. .
file. .
file,

file. nenlmel
file. open -
file,
file.
file,
file.
file.
fils.
file.
file.
file.
file.
file.

file. wtri

L . A I T T I}

- .

a
.

« e s 8 B s e & &

L R SR Y YR T T T T
a8 & s v e« 8 & o o»

a & & & ¥ 8 8 + 2w

.
-
.
.
-
-
-
.
.
-
.
.
-
.

D N R T S

.
.
.
.
.
.
-

I T L. T T S
L T I T T S S T T Y
& & e & B 8 4 %+ & B2 5 & + 8 % o e + 2 »
L T T T A O

s * & 2 = » s
L T T S S T

" & s e
« & & a
e & 4 B 2 & & 2 & 4 & = % & & &

L S T T S S S S S S
.

[
-
S - T R T T

Il s s o o« 5 & o + o & =
.

file.
file.
file.
file.
ile.
file.
file.
file.
file.
file.
file.
file. .
file - determine file type

fite and directory comparator.
file archives in and out. . .
file by massaging C source.
file comparison.

" s e s ow s
L R R S S S S S S S

e &2 » s
s 4+ s = B B 4 e B 4 & B3 & B & B B S & 2 B ¥ B 8 s & 8 B b A 8 A = sk a e E R oA A R s s on s s ow

& % 4 B & 4 e & % & 8 B B = & B 4 % B & K & B 4 2 B e & & s = & % a4 = & & & " = 8 3 4 4 8 = ¥ e ®

............,..........
............Q....‘.......

D R A A L
4 2 & & = 2 & 2 = % s .

“ 8 e a2 8 ® & & B & B B T 4+ 4 @ = & & % B & ¥ W ¥ 4 8 B 4 & + 2 ® 4 % & & ¥ 4 + 4 = = =w o4 " N @ v @

.
.
-
-
-
"
.
-
.
-
-
»
.
-
.
*
.
.
.
-
1)
.
.
-
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.

L T T T O T T T T . T

L T T T e S L T T S R S S T T T T T R N T T T T T T O,
L T O T T T T T S

-
-
.
-
-
13
.
.
.
-
.
.
.
.
.
.
»
»
.
.
Py
-
.
.
.
-
.
.
-
.
.
-
-
.
.
-
-
.
.
.
*
.
.
-
.
.
.
v
.
.
-
»
.
.
.
.
.
.
.
.

4 s 4 & & = 4 B E & 8 4 & 3 8 & 8 ® B & B B B+ 8 8 & & + = & 8 &8 e 4 #
A s o 4 8 ® B s 4 5 B 4 8 B & & s 8 8 N & & & % 8 B s+ A s s s ow e oo

filecontrol,
file control options.
fillecopy. .+ + 4 s s v b bt v e 0 .
file creation mask.

file creation mode mask.
file descriptor of an external nmt number
file editing activity.
file entry. /getfospec, getfafile, getfstype,
file entry. getgrent,
file entry. getpwent, getpwuid,
fileforapattern.
file for reading or writing, or create a new ﬁ
file for readnews(1) and checknews(1). .
file for sendmail. .
file for transmission via mail.
file format. .
file format. .
file including aliases and paths {csh onl ¥).

LI R S S I }
. s s s

L I I)

L L T A Y

LR A I}

- xiv -

'l..l.'ﬂi.'l.l

* %+ 4 = 4 ® 4 & B 8 8 F e = 8 4 8 ® ¥ 4 & ® 5 B B B s % 8 b & 4 4 % v w8 % @

« 4 e s s

.

L T T R e R I T T e T T T T S

geto(3S)
grep(1)
access(2)
acceu&F)
acct(5)
chmod(2}
chmod(3F)
chown(2)
colrm(1)
core(5
creat(2)
¢sh(1)
ctaga(1)
dd(1

dclt
exed

Iock(2)

sd ;
group(5)
link(2)
link(3F})
mkdix2)
mknod(2
mkaod(8
more(1)
newahuea(a)
open(2)
pasawd(5)
pre(1)
remote(5)
recame(2)
rename(3F)
rev(l)
rmdel(1}
riadir(2)
rceadifif1)
sccafile(5)
size(1)
stringa{1)
sum(1)
symlink(2)
tail(1)
tmpnam(3C)
tonch| 1;

1

uaigf1)
unencode(5)
val(1)
vipw(8
vewap(1)
write(2)
file(1)
difi(1)
cp{o(l)
mkstril
diﬁS(IIS)
fentl(2
fcntlgﬁg
rep{1C}
csh(1)
umask(2)
getfd(3F)
sact(l)
getisent(3)
getgrent(3)
getpwent(3)
grep(1)

I T T T T T T S R T T S R T T T T T S S T T T T T T T T S OO,
P T T T T T S T T T L . T T T T T T O T T T T T T T T T T T
L T T T S R T T T T . T T T T T e T T T T
L T T T T R T T T R T I I I T R R I I I I I T T I

D T T R I L T I T T T R . T T T T

which(1)

Sun System Release 1.1

faplit — split & multi-routine Fortran
split - split a

pmerge ~ pascal

mktemp — make a unigue

fseck, ftell - reposition a

stat, Istat, fotat — get

mkfs - construct a

mkproto — construct a prototype
mount, umount ~ mount or remove
mount, umotnt - mount and dismount
newfs — construct 2 new

setquota — enable/disable quotas on a
tunefs - tune up an existing

repair. fack -

getfafile, getfatype, setfsent, endfsent — get
dcheck -
incremental
hier -
dumpfs - dump

quot — summarize

restore — incremental

icheck -

miah - mounted

fa, inode - formas of

df - report free disk space on

utime — set

utimes ~ set

uusend - send a

truncate, firuncate — tmnc;&e 3

tp -

ftpd - DARPA Internet

tftpd - DARPA Trivial

file — determine

editor. vi- view a

basename - strip

glob:

ferror, feof, clearerr,

admin - creste and administer SCCS

checknr - check nroff/troff

cmp - compare two

comm — aelect or reject lines common to two sorted
config - build system configuration

¢p — copy

find - find

split & multi-routine Fortran file into individual
head - display first few lines of specified

inatall — install

MAKEDEV - make system special

mv - move or recame

news - USENET network news article, utility
rmdir, rm - remove (unlink) directories or

sort — sort oT merge

tee - copy standard output to many

what - ideniify the verion of

compact, uncompact, ccat - compress and uncomprem
intro - introduction to special

catman - create the cat

fsyne - synchronise a

e, rmdir ~ remove (unlink)

Pr - print

sticky — executable

fstab - static information about the

colert -

col -

plot — graphics

dump -

refer -

find -

ook -

maz - print ont manual pages;

ttyname, isatty, tiyslot —

ttynam, isatty -

lorder —

binary, file. strings -

inverted index to a bibliography .br lookbib ~
apell, speilin, spellout -

Sun System Release 1.1

Permuted Indesx

file into individual files.
file into pieces.
filemerger. . . & & f 4 bt ot e e e e e e e e
file name.
file on a logicalunit. e s
file atatus.
file system.
file aystem.
file aystem.
file system.
file system.
file system.
file system.
file system consiztency check and interactive
file aystem descriptor file entry. /getfsapec,
file system directory consistency check.,
file system dump.

file system hierarchy.
file system information.
file system ownership.
file aystem restore.

file aystem storage consistency check.
file system table.
fileaystemwvolgme. . . v 4 o v o 0 b 0 b e b e e
filesystems. . . . « ¢ v v o v u i e e s e e e
file times.
file times.
fletoaremote hoat. . . v o v v v v o 4 v 0 000
file to & specified length.
fle tranafer program.
File Transfer Protocol server. .
File Transfer Protocol server. .
file type. . .
file without chanxm; it using the vi waual s r e e e
filename affixes.
filename expand argument list. .

4 s & a4 ® = s = s s s m s s s oo .

P L T B)

L T R L I R e O L R

L R R R T R R R B
................
L I I R R
s s s 4 s 3 8 s 4 8 s 8 s e s

L L O R e T Y B

L I T e e I L

L L

.

files and hardware snpport e e e
files for the manual.
file's in-core state with that on dlsk ..
files or directories. . .
file{s), possibly in multiple cotumns. . v
files with persistent text,
filesystems,
filter nroff output for CRT previewing.
filter reverse paper motions.
filters. S e e r e e e et s e e e
find - find files. .

find and insert literature references in documents. . . .

.
fileno - stroam status inquiries. DTN
files. & o i h e e e e e e s
files. & v h ot ot e e e e e e e e
files, . ¢ v h e e e e e e e e e e e s
files. . . . i e e e e s e e e ..
fles. . . o e e e e e e
filer. & o 4 b b b b s e e e s e e e e s s e e e
files, . ot e e e e e e e e s e e e e s
files. foplit- . . .00 v v v v v v i i
files. . o0 v o v v o v e e e e e e e e ..
filles., & & v a s e e e e e e e e e e e e e s
1
Bles. & v 4 v o bk h e e e e e e e e e
1
1
files. s e e e e e e e e e ..
files, . ¢ ¢ v i s e s .
files. & v v o e e e s e e e e e .
files, and cat them. .. .

.

.

. e CREE BN T

L I R T T ST
L T S e R T T
........
.............

D T T I B S T I

find files.
find lines iz a sorted list.
find manual information by keywords.

® * 4 ¥ s+ =2 4 3 4 s 4 & &8 = s & 3 =

L R '}

find nameof a terminal. e e e .
find name of a terminal port. L ...
find ordening relation for an object library. . ., . .,

find printable strings in an object, orother
find references in a biblicgraphy., indxbib - make . .
find spelling errors.

- XV -

fsplit(1)
split(1)
pmerge{1)
mktemp(3)
fseek(3F)
stat(2)
mkfz(8)
mkproto(8)
mount(2)
mount(3)
newfa(8)
setquota(2)
tunefs{g)
f2ck(8)
getfsent{3)
dcheck(8)
dump(s)

icheck(8)
mtab{s)
fs(5)

df(1)
utime{3C)
utimes(2)
uusend(1C)
truncate(2)
ftp(1C)
ftpd(8C)
tftpd(8C)
file(1)
view(1)
basename(1)
csh(1)
ferror(38)
admin(1)
checknr{1)
cmp(1)
comm(1)
config{8)
ep(1)
find{1)
faplit(1}
head(1
install{1)
makedev(8)

man{l)
tiyname(3)
ttynam(3F)
lorder({1)
strings(1)
Cindxbib(1}
“speli(1)

January 1984

Permuted Indes

fold - fold long lines for
head - display

dbminit, fetch, atore, delete,
fish - play “Go

values, fimin,

cxtreme values.

trpfpe, fpecut - trap and repair
fptype ~ check a

isinf, isnan ~ teat for indeterminate
opea file.

functions. fabs,

fabs, Boor, ceil ~ absolute value,

{close, Mush - close or
fush -
exit — terminate a process after

device.

fold -

vswap - convert a forcign
vioat -

break: exit while/

fg: bring job inte
vawap — convert &

idate, itime ~ return date or time in numerical
dmesg — collect syetem diagnostic messages to
ar - archive (library) file

dump, dumpdates - incremental dump
tar - tape archive file

kbd - keyboard transiation table
indent - indent and

trofl - typeset or

htable - convert NIC standard
gettable — get NIC

guencode —

cpio -

dir -

fs, inode -

core -

acesfile ~

thl -~

tp - DEC/may tape

viont - font

scanf, fscanf, secanf -

printf, fpriotd, sprintf -

fmt - simple text

proff - text

ms ~ text

me - macros for

ntfor - rational

fpr - print

faplit — 2plit & multi-routine

intro ~ introduction to

pute, fpute - write a character to a
17 -

adage.

trpfpe,

printf,

unit. putc,

putc, putchar,

puts,

bw - Sur black and white
fbio - general properties of

df*- report

allocater. malloc,
fopen,

exponent.

from - who is my mail

January 1984

finite width output device. .,
first few lines of specified files.
firstkey, nextkey - data base subroutines.
Fish". e e b e e e
fish - play “Go Fish".
fimax, dimin, dimax, inmax - return extreme
fimin, imax, dBmin, dimax, inmax — return .
foating point fanlts.
floating point number.
floating point values.
flock — apply or remove an advisery lock on an
floor, ceil - absolute value, foor, ceilin: .
floor, ceiling functions.
flush - Bush ontput te a logical nmt
flush a stream.
flush ountput to a logical unit.
flushing any pending output.
fmt - simple text formatter.
fold - fold long lines for finite width ontput
{old long lines for finite width output device.
font file.
font formats.
fopen, freopee, fdopen ~ open a stream.
foreach loop.
foreach: {oop over list of names. .
foreground.
foreign font file,
fork — create a copy of this process.
fork - create a new process. ., .

P

. .

D]

LR I B

s e 8+ & = & w s s
L LI I I)

4 4 & o & a4 & s« ¢«

LR T I S

.
.
.
.
. . (3
.

« 4 .

L L A T I R I A

L SR R R S Y

L I I O R I)

L T I)

L L I

L T T]

format and’ default tab!o
format C program source.
format documents.
format host tables.
format host tables from a host .

format of an encoded unencode file,
format of cpio archive.
Ioml‘ 0‘ difedofie'. PR
format of file system volume.
format of memory image file.
format of SCC3 file,
format tables for nroff or trofl.
formats.
formats.
formatted input convemion. .

form. .+ + ¢ s 4 v e v e .

formerroriog.
format.
format. . . ¢ v v e , .
format.

s & = e v a4 » = =
- » s ¢ 2 ® v s .

.

a
LIS -
.

« s % & = 2 &

« & 4 0+ a

.8 & & 4t 2 o e

D T T T T R S S R S S T R R

a » & s & % 4 s e

4 ¢ & @& ® & + 2 & & 4 » & =

Fortran file into individual ﬁlea
FORTRAN library functions. .
FORTRAN logical unit:
FORTRAN-77 compiler.
fortuns - print a razdom, hopefully lnteremng
fpecat — trap and repair floating. point faults.
fpr - print Fortran file.
fprintf, sprintf - formatted output conversion.
fptype - check a floating point number. , . .
fputc ~ write a character to a FORTRAN logical

P N N T L T T T T T T S,

L I T T L T e S N N L T T T T T T T S S S S
L S O L L I T T T R

. . .

LI T T O T R O L T T S R S O S T T T T T T S

L R I R R R A L

formatted output conversion. .
formatter. . . . « ¢ s o « & .
formatting and typesetting. . .
formatting macros.
formatting papers.
Fortran dialect.
Fortram file.

LI

LR I O I I Y T 1

fputc, putw - put character or word on a stream,

fputa - put & string on a stream.
frame buffer.
frame buffers.
{read, fwrite - buffered binary input/output.
free disk space on file systemn.
free, realloc, calloc, cfree, alloca - memory .
freopen, fdopen - open a stream.
frexp, ldexp, modf - split into mantissa and
from?. ..

e s 8 s .

I . I T I S R R S

LI I R R T R A}

LI T

L Y

. e 0.

e« 2 2 ¥ & 2 =3

L R R T B R S Y

fold(1)
hea.d}l)
dbm(3X)
fish{6
ﬁsbfﬁ}
Tang 3F;
range{3F
$1pfpe(3F)
fptype(sF)
isinf(3)
fock(2)
foor(3M)
foor{3M)
fush(3F)
feloae(33)
fush(3F)
exit(3)
fmt(1)
fold{1
lold{l{
vawap(1)
viont(5)
fopen(33)

csh(l
esh(1
esh(1

vswap(l}
fork(3F}
fork{2)
idate(aF)
dmesg(8)
ar(s)
dump{5)
tar(5)
kbd(5)
indent(1)
troff{1)
htable(8)
gettable{8C)
uuencode(5)
cpio(5)
dir{5
fs(5)
core{5)
scesfile(5)
tbi(1)
tp(5)
viont(5)
scanf{38)
print{(3S)
fmi{1)-
nrofi(t)

L L T T T T S T S S S S Sy

4 8 ¥ 4 B e 8 % 4 ® o m & % = B & & $ & 8B % 4 4 8 & & & * 4 & + 4 4 a » =
L L I L T T T T T

. e e
L R T I e I I I T T I T T I T T

L I R e L T R I . T T T e I . T T e T T S

L T S

L
L I I T T I T T T S L T T T S S S S

e v e e 8 % e & a4 & & 8 s & e 4 s s N s s e s st e e s s s s
.g.
' = & >N
—
)
S

4 8 B e & % ®w ® @

Sun System Release 1.1

-

-

8CCH —

scanf,
interactive repair,
unit.

individua! files,

stat, Istat,
that on disk.
faeek,

{seck,

time,

gerver.

truncate,

shutdown - shut down part of &

gamma - log gamma

fabs, flcor, ceil — abaolute value, flcor, ceiling
intro - introduction to library

intro - intreduction to compatibility library
intro - introduction to FORTRAN library
intre - introduction to mathematical library
intro - introduction to network library

§0, j1, jn, y0, ¥1, ¥ ~ bessel

coe, tan, asin, acos, atan, atan? ~ trigonometric
sinh, cosh, tanh - hyperbolic

curses — screen

fread,

adventure -~ an exploration

menop — Monopoly

snake, snecore — display chase

trek ~ trekkie

worm - Play the growing worm

canfield, cfscores — the solitaire card
cribbage ~ the card

hangman - Computer verion of the
backgammon ~ the

boggle - play the

wump - the

gamma - log
item, madd, msudb, mult, mdiv, min, mout, pow,

ecvt, fevi,

buflers. kgmon -

abort -

adbgen -

makekey ~

ncheck -

rand, srand - random nu:lnber

a -

[initstate, setstate - better random number
random number generator, routines for Ch:ﬁss'i“
io -

perrer,

integer from stream.
from stream. getc,
directory.

getgid,

getuid,

unit number.

setfsent, endfsent — get file system descriptor/
filo system descriptor file/ getfsent, getfsspec,
- get filo aystem descriptor file/ geifsent,
descriptor Gle/ getfsent, getisepec, getisfile,
getuid,

get group file entry.
file eniry, getgrent,

Sun Syetem Release 1.1

front end for the .SM SCCS subsystem. . , .
fs, inode - format of file system volume.
fscanf, sscanf - formatted input conversion.
fack - file system consistency check and
faeek, ftell - reposition a file on a logical
faeck, ftell, rewind — reposition a stream, P
fsplit — split 2 multi-routine Fortran file into . .
fstad - static information about the fileaystems.

fstat - get file statua
faync - synchronize a file's in-core state with . .
ftell - reposition a file on a logical unit.
ftell, rewind - reposition a stream.
ftime — get date and time.

)

......... o o

L I T

ftp - file transfer program. e b e e e e e e

fipd - DARPA Internet File Transfer Protocol .
firuncate — truncate a file to a specified length.

full-duplex congection.
fanctioR. & 4 v v v v b v e e e e e e s
fanctiond. . o v v 0 v 0 b ek e e ke a e
fanctions. . . . 4 ¢ ¢ v 4 e n e e . .
fanctions. . + .« v 4 b« v o4 s
functions.

fanctions.
functions.
functions,.
fanctions. sin,
functions. .
functions with * opt:mal’ cursor motion.
fwrite — buffered binary input/output. .
game. .

L I

sme- @ & 90 & 8 + ¢ e p =T e 2 = 2 L]

BAME. + = 4 & v 4 s s s v v e s b e e e
BAINE. &+ &+ 4 4 s r 4t s e e s e e s e
BRIME, © & o ¢ b e s e s e e
gamecanfield. 000000 e e
gamecribbage. 00000 ..
game hamgman.00 .. .

game of backgammon.,
game of boggle.
game of hunt-the-wumpus.
gamma - log gamma functien.
gamma fanction. -
ged, rpow — multlple precmon mteger lnthmetlc
geore — get core images of running processes. . .
gevt — output conversion.
gererate s dump of the operating system’s profile
generateafanlt. e
generate adb script,
generate encryption key. s e s e e e
generate names from i-numbers.
BORETALOT. . + 4.v o v e e 4 s s e e e s .
generator of lexical analysis programs. ., , . .
generator; routines for changing generators. . .
generators. /arandom, initstate, seistate - better
gezeric disk control operations.
gerror, iermo — get system error messages. . . .
getarg, iarge — return command line arguments.
gete, fgetc — get a character from a logical unit.
gete, getchar, fgetc, getw — get character or
getchar, fgete, getw — get character or integer
getcwd — get pathname of current working .
getdate — convert time and date from ASCH.
getdtablesise ~ get descriptor table size. . ., .
getegid — get group identity.
getenv — get valee of environment variables.
geteny — value for environment name.
getenid — get user identity. ..
getfd — get the file descriptor of an external
getfsent, getfsapec, getfefile, getfatype,
getfsfile, getfatype, setfsent, endfsent — ges
getfaspec, getlsfile, getfstype, setfsent, endfsent
getfstype, setfzent, endisent - get file system .
getgid — get uacer or group ID of the caller. . ,
getgid, getegid - get group identity. . . .
getgrent, getgrgid, getgrnam, setgrent, endgrent -
getgrgid, getgrnam, setgrent, endgrent — get group

L I R I T R Y

.

.
L R e
.
.

DR R R)

.. e

L I I

- xvii -

L

L R S T

L

s e n s s

.
.
.
.
L SR R Y
.
.
.

P N Y

L e e e I

Permuted Indez

fzeek(33)
fsplit{1}
fstab(5)
atat(2)
fsync(2)
fseek(3F)
faeek(35)
time{3C})
ftp{1C)
ftpd(8C)
truncate(2)
shutdown(2)
gamma(3M)
Boor(3M)
introf{3}
intro{3C)
intro{3F)
intro(3M)
intro{3N)
jo(aM)
sin(3IM)
sinh(3M)
curses(3X)
fread(3s)
adventure(6)
monop(6)
snake(6)
trek{6)
worm{6)
canfield(6}
cribbage(8)
hangman(8)
backgammon(s)
boggle(6)
wump(6)
gamma(3M)
gamma(3M)
mp(3X)
geore(1)
ecvi(3)
kgmon(8)
abort(s)
adbgen(8)
makekey(8)
ncheck(8)
rand(3C)
lex(1)
random(3)
random(3}
dkio(45)
perror{3F}
getarg{sF)
gctcESF‘)
get<(3S)
gete(38)
getcwd(3F)
geidate(3)
getdtablesize(2)
geigid(2)
getenﬁSF)
getenvi3
getuid(2)
getfd(3F)
getfaent(3)
getfaent(3)
getfsent(3)
getfaent(3)
getuid(3F)
getgid(2)
getgrent(3)
getgrent(3)

January 1984

Permuted Indes

entry. getgrent, getgrgid,

endhostent — get network host entry. gethostent,
network host entry. gethoatent, gsthostbyaddr,
aethostent, endhostent — get network host entry.

host.
timer.

get network entry. getnetent,
entry. getnetent, getnetbyaddr,
endnetent — get network entry.
argv.

geipid,

echeduling priority.

protocol entry. getprotoent, getprotobynumber,
endprotoent — get protocol entry. getprotoeat,
setprotoent, endprotoent — get protocel entry.

get password fle entry.

entry. getpwent, getpwuid,
paseword file entry. getpwent,
rezource consumption.
utilization.

service entry getservent, getzervbyport,
endservent — get service entry. getservent,
setzervent, endeervent - get service entry.

aockets,

time.

caller.
getc, getchar, fgete,

vadvise -
shutdown - close down the system at &

and time to ASCH. ctime, localtime,
fish - play
sctjmp, longjmp - non-local

graph - draw a

gprof ~ display call

perfmon -

gxtest — stand alone test for the Sun video
colordemos - demonstrate Sun Color

draw - interactive

plot -

- Sun color

are, move, cont, point, linemod, space, cloa:pl -
plot ~

vgrind ~

chgrp - change

getpgrp — get process

killpg - send signal to a process
setpgrp ~ sct process

getgroups - get

initgroups - initialize

setgroups — st

group ~

getgrgid, getgrnam, setgrent, endgrent — get

January 1984

getgrnam, setgreni, endgrent — get group file . .
getgroups — get group accesa list,
gethostbyaddr, gethostbyname, sethostent, . .
gethostbyname, sethostent, endhostent —get . .
gethoatent, gethostbyaddr, gethostbyname, .
gethoatid - get unique identifier of current host.
gethostname, sethostname — get/set name of current
getitimer, setitimer - get/set value of interval
getlog - get waer’s login name.
getlogin - get login name.
getnetbyaddr, getnetbyname, setnetent, endnetent —
getnetbyname, setnetent, endnetent - get network
getnetent, getnetbyaddr, getnetbyname, setnetent,
getopt, optarg, optind - get option letter from .
getpagesize — get system page dixe,
getpaas — read a pasaword.
getpeername — get name of connectod peer.
getpgrp ~ get process group.
geipid - get process id.
getpid, getppid - get process identification.
getppid — get process identification.
getpriority, setpriority ~ get/set program . .
getprotobyname, sctprotoent, endprotoent - get
getprotobynumber, getprotobyname, setprotoent,
getprotoent, getprotobynumber, getprotobyname,
getpw — get name from uid.
getpwent, getpwuid, getpwnam, setpwent, endpwent
getpweam, setpwent, endpwent - get password file
getpwuid, getpwnam, setpwent, endpwent - get
getrlimit, setrlimit - control maximum system
getrusage - get information about resource
geto, fgets — get a string from a stream. .
getservbyname, setservent, endservent — gt

.
-
.
*
-
-

. .
L SR R S T}

« 2 4 & 2 & 8 s s 8w

«. + o 4

* s s a2 2 s

+ % 2 v s e =

L O I I I

LI T

.
.
.
.
.
.
« v o s .
.

L A L R Y

LI A A L

geteervbyport, getservbyname, setservent, .
getservent, getservbyport, getservbyname,
geisockname — get socket name, . , .
getsockopt, aetzockopt - get and set options on

gettable - get NIC format host tables from a host
gettimeofday, settimeofday — get /oot date and .
getty — set terminal mode.
getiytab - terminal configuration data base.
geteid, geteuid - get user identity. .
getuid, getgid - get user or group ID of the
getw — get character or integer from stream.
getwd — get current working directory pathname.
give advice to paging system.
given time. . .
glob: filename expmd arguments liat.
gmtime, asctime, timesone, dysise ~ convert date
Go Fish".
goto. .
goto: command transfer.
gprof — display call graph profile data.
graph,
graph - draw a graph.
graph profile data.
graphical display of general system statistics.
graphics board. .
Graphics Display. .
graphics drawing. .
graphics filters. ..
graphica interface, .
graphics interface, ferase, label Ilne, cu'cle,
graphics interface,
grep, cgrep, [grep - search a file for a pattern.
grind nice listings of programs,
group.
group.
group.
group. . .
greup - group file,

group access list, .
group access list, .
group access list. .
group file.
group file entry. getgn:

LR T T T

L Y N T)

L T A]

L

“ s s »
. o s e
L R TR

I T A
L L T I T SR T T)

L

L T T S Y

L I I . T T Y

LI R A L I I S

L L T T T S

LT S T Y

LY

-
-
-
.

« & = 8

L N N A L

L T S I BRI I}

P e s e s & =

+ e .
“ e s 4 8.
. . .

« s = »
. s e
s & s a
« 0+ 4 s »

..

D R T T Y

L T T R S R R L

L)
LI I I T S

LI A T I TR Y LI

.
.

.
« a6 48 . .
LY . .
.

A s s s s
* 4 s 8 s

« v s 4

I
“ e e e e
s s s o+ s .
P A
2 s s s e s s
s s 4 e e
.
D T R
P T T R S

L T Y

.
.
.
.
.

D
.

L S Y

- xviij -

« 2 = & & &

I 4 & ¢ o o o o o o« 4 o s = 3 »

D L Y T S

LI T T

L T T T S R S R e L)

L L T T T Y

D T T T O I T T T S T R S T T T T T S S S A

L

.« ® 2 & 4+ 4 a8 B o= 4 4+ e + a2 =

L L T T T T T R Y

L S A L |

getgrent(s)
getgroups(2)
gethostent(s
gethoutent.(s
gethostent(3N)
gethontid(2)
gethostname(2)
getitimer(2)
getlog(3F)
getlogin(3)
getnetent(3
getnetent(3
getnetent(3N)
getopt(3C)
getpagesise(2)
getpazs(3)
getpeername(2)
getperp(2)
getpid(3F)
getpid(2)
getpid(2)
getpriority(2)
getprotoent(3N
getprotoent(3N
getprotoent{3N}
getpw(3)
getpwent(3
getpwent(3
getpwent(3)
getrdimit(2)
getruoage(2)
getz(35)
getservent(3N)
getservent{3N}
getzervent{3N)
getsockname(2)
getsockopt(2)
gettable(8C)

::tt:;?:)ofday&) @

gettytab(5)
getuid(2)
getuid(3F)
getcf3s)
getwd(3)
vadvise(2)
thutdown(8)
eshil)
ctime{3)
fish{6)
aetjmp(3)
csh(l)
gorof(1}
graph(1G})
graph(1G)
gprof(1)
perfmon(1)
gxteat(Bs)
colordemos(6)
draw(6)

getgroupa(2)
initgroups{3)
setgroups(2)
group(5)
getgrent(3)

Sun System Release 1.1

-

-

setregid — #et veal and eflective

setruid, setgid, setegid, setrgid - set wyer and
getuid, getgid ~ get user or

getgid, getegid — get

groups - show

chown, fchown - change owner and

make - maintain program

worm - Play the
stly,
graphics board.

stop:

reboot - reboot system or

fastboot, fasthalt - reboot/

rmail -

re_comp, re_exec - regular expression
hacgman - Computer version of the game

vhangup - virtually

nohup: run command immuae to
crash — what

link - makea

introduction to special files and
uptime - show how long system
checknews — check if user
rehash: recompute command
unhash: discard command
hashstat: print command

intro -

leave — remind you when you
help ~ ask for

od - octal, decimal,

hier — file aystem
history: print

fortune - print a random,

gethostid — get nnique identifier of current
gethootname, sethostname - get/eet name of current
hestam - get name of current

rdate — set syatem date from a remote
uusend - send a file to a remote

gettable - got NIC format host tables from a
htons, ntohl, ntohs ~ convert values between
remote - remote

sethostent, endhostent - get network

hosts -

phones - remote

ruptime - show

hoatid - print identifier of current

hostname - set or print name of current
ktable - convert NIC atandard format
gettable - get NIC format

system.

uptime - show

between host and network byte order.
and network byte order. hionl,
wump - the game of

sinh, cosh, tanh -

getarg,

getpid — get process

setregid — set real and effective group
setgid, setegid, setrgid - set user and group
getuid, getgid - get user or group

su - substitute user

form.

getpid, getppid ~ get process

Sun System Release 1.1

Permuted Indez

group ID.
group [D. setuid, seteuid,
group ID of the caller.
group identity.
group memberships,.
group of a file.
groups. . . .
groups — show group memberships. . .,
growing worm game.
gtty - set and get terminal state.
gxtest — stand alone test for the Sun video
halt - stop the processor.
halt a job or process.
halt procesaor.
halt the system without checking ¢he disks, .
handle remote mail received via uucp.
bandler.
hangman.
hangman - Computer version of the game hangman.
hangup' the current control terminal.
hangups.
happens when the system crashes., . ..,
hard link to a file.
hardware support.
hasbeenup. v i i i e
has news on the USENET news network
hash table.
hash table.
bashing statistica,
hashstat: print command hashing statistics.
have to leave.
help.
help-askforhelp.
hex, ascii dump.
hier - file system hierarchy,
hierarchy.
history event list.
history: print history event list.
hopefully interesting, adage.
host, . & @ 4 v i ha e
host. .

host.
host.
host,
host .
hoet and network byte order htem,, ..
host description file.
host entry. /gethostbyaddr, gethostbyname, C e e e
host name data base.
host phone number data base.
host status of local machines. . .
host system.
host system.
host tables.
host tables from a host .
hostid - print identifier of current hont system.
hostname - set or print name of current host .
hostnm — get name of current host.
hosts ~ host name data base.
how fong system has beenwp. . . .,
htable - convert NIC standard format host tables.
htonl, htons, ntohl, ntehs - convert values

W a4 s & s s s 4 s a s s s s s s e s
I T T T S S S) +
L L)
DR I

.

L T T T R
LI I T R I)
.

L I I e R R L L I}

L T T T O T BT T T I}

----- L)

.
L
.
.
L T R T)

L T T S .

L T BT S R R R R)

L I N)

LI T T T

I I I R I T Y

. RN S}

.
.

LY .
LY .

- 2 e e
« s s s s
« & & a s
- v e e
“- & .

.

.

.

.

.

.

.

.

.

.

.

.

.

3

-

L T T T T Y L3

LI I I R R I T T

« s & & 8 8 5 2 & 4 ¥ s e

LI

.
.
I I
I A

.

e e ot = s e 2 % s s

L

htons, ntohl, ntohs ~ convert values between host .
hunt-the-wompes. e e e s e e
byperbolic functions. s r e e e e e e
hypot, caba - Euclidean distance.
iargc - return command fine arguments., . . .
icheck - file system storage consistency check.
i;mp — Internet Control Message Protocol.
L ..
ID. h ot ot i ettt e e e e e e .
ID. setuid, scteuid, setruid,
IDofthecaller,. e e e e
idtemporarily. . - + ¢+ & ¢ 4 4 e s e et e e ..
idate, itime - return date or time in numerical
identification. . . 4 . 4 h v v e e e e e e e e e
- xix -

setregid(2)
setaid(3)
getuid(3F)
getgid(2}
groups{1)
chown(2)
make(1)
groups(1})
worm(6}
stty(3C)
gxtesi(8s)
halt(8)
csh{l)
reboot(2)
fastboot(8)
rmail(8)
regex(3)
kangman(6)
bangman(B)
vhangup(2)
csh(1)
crazh(8s)
link(2)
intro{4)
uptime(1)
checknews(1)
coh(t)
cahil)
cah{l)

cah{1)
leave(1)
hclp(l}

help(1

od(1)

hier(7)
hier(7)

csh(1)

crh(1)
fortune(s)
gethostid(2)
gethostname(2)
bostnm(3F)
rdate(8)
wurend(1C)
gettable(8C)
byteorder(3N)
remote(5)
gethostent(3N)
hostz(5)
phones(5)
ruptime(1C)
bostid(1)
hostname(1)
hiable(8)
gettable(8C)
hostid(1)
hostname(1)
hostum(3F}
hosta{5)
uptime(1)
htable(8}
byteorder(3N})
byteorder(3N)
wump(6}
sinh(3M}
bypot(3M)
getarg(3F)
icheck(8)
icmp(4P)
getpid(3F)
setregid(2)
setuid(3)
getuid(3F)
su(1)
idate(3F)
getpid(2)

January 1984

Permuted Indez

gethostid ~ get unique

hostid - print

what -

getgid, getegid — get group

getuid, getenid - get user

setrenid — net real and effective user
perror, gerror,

checknews - check
exit, export, login, newgrp, read,/ sh, for, case,

interface, vp -

abort - terminate abruptly with memory
core - format of memory

geoTe — get core

notify: request

nohup: run command

xstr ~ extract strings from C programs to
eyace — modified yacc allowing much

ar - Archive 1/4

tm - tapemaster 1/2

which - locate a program file

dump, dumpdates ~

dump -

restore -

indent -

tgetflag, tgetetr, tgoto, tputs - terminal

isinf, isnan - test for

ptx - permuted

strucat, siicmp, stracmp, strepy, stracpy, stries,
objects.

references in a/ indxbib - make inverted

last -

syscall -

foplit - split & multi-routine Fortran file izto
.br lookhib - find references in & bibliography.

servers -
inet_netof, inet_ntoa - Internet address/

address/ inet_addr, inet_network, inet_makeaddr,
Internet address/ inet_addr, inet_network,
inet_sddr, inet_network, inet_makeaddr, inet_lnaof,
inet_netof, inet_ntoa - Internet/ inet_addr,
Jinet_makeaddyr, inet_nacf, inet_netof,

dunpfs - dump file systert

pac - printer/plotter accounting

getrusage — gei

viimes -~ get

fatab - static

man - prict out manual pages; find manual
pewarc -

mircellaneous — miscellaneous usefut

init — process convrol

ioinit - change £77 1/0

ttys - terminal

initgronps -

connect -

popen, pelose -

generator; roatines for changing/ random, srandom,
fimin; Aimax, dimin, dEmax,

clri - clear

fa,

read, readv ~ read

poelim - eliminate .50’s from nroff

scanf, facanf, sscanf - formatted

ungete - push character back into

fread, fwrite ~ buffered bigary

stdic — standard buffered

ferror, feof, clearery, fileno - stream status

January 1984

identifier of curreat host.
identifier of carrent hoat system.
ideptify the version of files. . .
identity.
identity.
{2 37 T T N
iertno - get aystem error meszages.
if - general propertics of petwork interfaces.
if: conditional statement.
if user has news on the USENET news network.
if, while, :, ., break, continue, ¢d, eval, exec, . .
ifconfig - configure network intcrface parameters.
Tkon 10071-5 Multibus Versatec paralled printer
image.
image file.
images of rapning processes.
imemtest ~ stand alone memory test.
immediate notification. . .

o 0

L L L)

L N L L)

P]
« a2 s & &

L

.
.
"
-
-
.
.

LI Y T S

L R Y

L L]

LR R BT B Y

I R R T I N T B I)

D R A T I I +
- s s »

immune to haagups,
implement shared otringe.
improved error recovery.
inch Streaming Tape Drive.

inch tape drive.
including alizsses and paths (cak oaly).
incremental dump format.
incremental filo system dump. . . .
incremental ile system restore.
indent - indent and format C program source.
indent and format C program source.
independent operation routines. tgetent, igetnum,
indeterminate floating point values.
indeX, & o 0 v s v e e e e e e e
index, rindex - siring operations. streat, . . .
index, rindex, Inbink, fen - tell about character
index to a bibliograpky .br lockbib - find . .
indicate last logine of users and teletypes. . .
indirect system cadl.
individual files. . .
indxbib - make inverted index to a biblicgraphy
inet - Internet protocol family.
inet serverdatabaze. 0. 0.
inet_addr, inet_network, inet_makeaddr, inet_lnaof
inetd ~ internet aervices daemon.
inet_Inaof, inet_netof, inet_ptos — Intermet . .
inet_makesddr, inet_lnaof, inet_netof, inet_ntoa -
inet_netof, inet_ntos — Internet address/ ., .
inet_network, inet_makeaddr, inet_tnaof, . .
inet_ntoa — Internet addresy manipulation.
inews - submit news articles. .
information. . , . .
information. .
information about resource utilisation. .

LR TS T I Y

*+ & 3 8 s = 2 & + & 0
R T S R S S
s 9+ 8 5 3 & s + 8 = % & 8

.
-
-
+
.
.
.
-

4 & 8 8 & & 8 3 4 s % 2 % = 2 =
L T T T S S TS

«- s s

L A

L A R

-
-
I S I T T Y A
.

LRI R I I I I T T T

L T T

“=Ta e e

+ = s n
D A]

L I T T I T TR)

information about resource utilisation.

information sbout the fileaystems. . .
information by keywords,.
information file for readnews(1} and checknew
information pages.
init « process contro} initialisation. . .
initgroups - initialise group sccess tist,

initialisation.
initialization, C e s e e e
initislisation data.
initislize group access list. . . .
initiate & connection on » socket. . . .
initiate I/O to/lrom a process.
initstate, setstate — better random number
inmax - return extreme values. . . .
i-oode. .. .
irode — format of file aystem volume.
input,
input. .
input conversion. . . .
inpet stream.
input/output.
@npu't/output package. .
inquiries. .

a 8 4+ v 2 4+ 9 2

* 4 . e & 0

1

« s B 4 s a2

- e »

.

.

.
. .
. . .
.. -
. . .
.

I T T R S S

L L)

LI I)

[P T T e

I T I N I B NI B
L T S I) LI I I Y
* s .

F T S S T
P I I

LI T I B I)

L N L

.
-
+
.
-
.
.
.
.

LR R S T S
L

.
.
P
.
.

> b s .
. v e s

L A .

- XX -

T T T T S T T S Y

® & & ¥ s B B & B E 2 8 % B 3 A B 3 4+ S B b % 4 %W & 5 2 = = s &8 e %

LI T I T T

4+ 2 4 % ¢ &

L R T TR T T S S

D R T L N R T T T T)

L R I I T S S T T T S

D R O T T T N S S S S S T S

L T O O I T T T N T S SR T)

gethoatid(2)
hostid(1)
what(1)
getg'i'd(zg
getuid(2
sctrenid(2)
perror{3F)
if(4N)

¢ah(1)
¢hecknews(1)
#sh(1)
ifconfig(8C)
vp{4S)
abort{sF)
core(5)
geore(1)
imemtest(8a)
csh(1)

csh{l)
xotr{1)
eyacc(l)
ar(45)
tm{45}
which(1
dump(s
dump{s
restore(8)
indent(1
indent{l
termcap(3X)
isinf(8)
ptx(1)
string(3)
index(3F)
indxbib{1)
last(1)
ayscall(2)
feplit{1)
indxbib{1)
inet(ﬂ?
servers(5)
inet(sN)
inetd(8C)
inet{SN
inet(3N
inet(3N
inet(3N)
inet(3N)
inews(1)
dumpfs(8)

viimes(3C
l’nta.b(:is)
man(lg()
newsrc{b
intro(7
init(sS)
initgroups(3)
init(8)
ioinit{3F)
ttye(5
initgroups(3)
connect(2)
popen(3S)
random(3)
r';nge(sF}
clri(s

fa(ss)
read(2)
soelim(lg
acanf(3S
ungete(38)
fread(3s)
intro(33)
ferror(35)

Sun System Release 1.1

refer - find and
ingque, remque —
quene.

install -

draw -

fack - file system consistency check and
fortune - print a raxdem, hopefully

cg — Son color graphics

ec — 3Com 10 Mb/s Ethernet

eb - Sun 3 Mb/s experimentat Ethernet

lo - software loopback network

mti ~ Systech MT]-SOO/ISOO multi-terminal
ratio - UNIX magnetic tape

cont, point, linemed, space, closepl - graphics
plot - graphics

tiy - general terminal

~ tkon 10071-5 Multibus Versatec parallef printer
Versatec printer/plotter and Centronics printer
ifconfig - configure network

telnet — user

if — general properties of network

swapon ~ add & swap device for

sendmail - send mail over the

inet_makeaddr, inet_tnsof, inct_netof, inet_ntoa -
icmp —

fipd - DARPA

ip-

- inet -

inetd -

tep -

udp -

ip ~ Disk driver for

) spline -

pti - phototypesetter

px - Pascal

pix - Pascal

pi - Pascal

ceh — a shell {command

pipe ~ creats an

~ atomically release blocked signals and wait for
onintr: process

sleep — suspend execution for an

sleep - suspend execution for

sleep - suspend execution for an

’ intro -

intro -

intro -

intro -

intro -

intro -

intro —

intro -

intro -

commands. intro -

ncheck — génerate names from

find references in a bibliography. indxbib - make
tread, twrite, trewin, takipf, tstate - 177 tape
ioinit ~ change £77

stlect - synchronons

mem, kmem, mbmem, mbio - main memery and
iostat - report

popen, pclose - initiate

Controller.

sail - multi-user wooden ships and

whatis - describe what a command
isalpha, isupper, islower, isdigit, isxdigit,
isalnum, isspace, ispunct, isprint, iscots,/
Jisaloum, isspace, ispunct, isprint, iscntt,
ttynam,

tiyname,

Jisxdigit, isalnum, isspace, iapunct, isprint,

Sun System Release 1.1

Permuted Indez

insert literature references in documents.
insert /remove element from a quene.

inaque, remque ~ inaert/remove element from a PP
install - install files.
install files.
interactive graphics drawing. ..
interactiverepail. .+ . v v s v 4 v s 4 oa s
interesting, adage.
interface.
interface, ., .
interface,
interface.
interface,
interface, I
interface. ferase, label, line, circle, ate, move, .
interface. .
interface. .
interface. vp,
interface. vpc — Systech VPC-2200 ., .

L N}

PR T

I T T T I T T)

.....

e e

L

2 » e s

+
.
.
.
-

- s s+ .
s e

.

L N A L)

interface parameters.
interface to the TELNET protocol.

interfaces.
interleaved paging/swapping. . .
internet.
Internet address manipulation. /inet_network, ...
Internet Control Message Protocol.
Internet File Transfer Protocol server. .
Internet Protocol.
Internet protocol family.
internet services daemon.
Internet Transmission Contrel Protocol.
Internet User Datagram Protoceol. S e s e e e
Interpbase 2180 SMD Disk Controller.
interpolate smooth curve.
interpreter.
interpreter.
interproter and executor, . .
interpreter code transfator. .
interpreter) with C-like syntax.
interprocess communication channe
interTupt. sigpause
interrupts in command scripts.
interval. v e e e e e s
interval,
interval,
introduction to commands,
introduction to compatibility library functions.
introduction to FORTRAN library functions.
intreduction to library functions.
introduction to matkematical library functions. .
intreduction to network library functions.
introduction to other libraties.

e e

.
.

LI L T T I O I T S Y
.

L R T S T S R S
LI R T T T

L R LY

R T T R T T Y

L T I I T Y
..... LI A)

« s a .

.
.
.

L

L T L T R N N T R R R R

LI R R

. .o

IR A

----- EIEE R A

introduction to special files and hardware support. . .
introduction o system calls axd error numbers. . . .
introduction to system maintenance and operation . .
i-bumbers. .
inverted index to a bibliography .brilookbidb-
1/0. topen, tclose,
1/0O initialisation.

1/O meultiplexing.
I/Ospace.
/O statistion.
1/O to/from a process. . , . .
ioctl — control device, oree
ioinit — change {77 1/O initialization. . .
tostat - report 1/O statistics. . . , ., .
ip ~ Disk driver for Interphase 2180 SMD Disk
ip - Internet Protocol.
iren men,
7
isalnum, isspace, ispunct, isprint, iscntrl,/
isalpha, isupper, islower, iadigit, faxdigit,
isascii, isgraph, toupper, tolower, toascii -/
isatty - find pame of a terminal port.
isatty, ttyslot - find name of a terminal. e s e e
iscntrl, isascii, isgraph, toupper, tolower,/

L R I L e R e

L L R

« s e

L T R .

L T T I O I I S A .

L)

- xxi~-

refer(1)
insque(3)
izaque(3}
install(1}
install(1)
draw{6)
fsck(S];()
fortune(6
cg(48}
cc((‘!S))
en{43

lo(4)
mti(4S)
mtic(4)
plot(3X})
plot(5)
tty(4)
vp(45)
vpc(48)
ifconfig(8C)
telnet(1C)
if{4N)
swapon{2)
sendmail{8)
inet(3N)
icmp(4P)
ftpd(8C)
ip(4P)
inet(4F)
inetd(2C)
tep(4P)
udp(4P)
ip(45)
upl}nc(lG)
ptil

p{t(l}
pix(1)
pi(1)
esh{1}
pipe(2)
sigpause(2)
ceh(1)
sleep(1)
sleep(3)
sleep(3F)
intro(1)
intro(3C)
intro(3F)
intro(3)
intro(3M)
intro(3N)
intro(3X)
intro{*i)
intro(2)
intro{8)
ncheck(8)
indxbib{1)
topen(3F)
ioinit(3F)
select(2)
mem{43)
iostat(s)
popen(35)
ioctl{2)
ioinit(3F)
iostat(8)
ip(43)
ip(4P)
nail(6)
whatia{1)
ctype(3)
ctype(3)
ctype(3)
ttynam(3F)
ttyname(3)
ctype(3)

Januvary 1984

| Permuted Indez

isprint, iscntrl,/ isalpha, isupper, istower,
Jisspace, ispunct, isprint, iscatrl, isascii,
point values.

ispunct, isprint, iscntsd,/ isalpha, isupper,
values, isinf,

[isdigit, iexdigit, isalnum, isspace, ispunct,
[islower, isdigit, izxdigit, isalnam, isapace,
[isupper, islower, isdigit, isxdigit, isalnum,
system -

isspace, ispunct, isprizt, iscntr,/ izalpha,
iscntrl,/ isalpha, isupper, islower, isdigit,
vi - view a fils without changing

idate,

rpow ~ muliiple precision integer arithmetic.
suspend: suspend a shell, resuming

io,

i0, i1,

bg: place

fg: bring

jobe: print current

stop: halt a

crontab - table of times to run periodic
kill: kill

iprm - remove

default table.

makekey - generate encryption

table. kbd -

print out manual pages; find manual informatior by
profile buflers.

procen.
kill:
chaze - Try to escape to

mem,
quix - test your

linemeod, space, closepl - graphics/ openpl, erase,
awk - pattern scanning and processing

be - arbitrary-precision arithmetic

sot, shift, times, trap, umask, wait - command
¢pp - the C

order.

frexp,
feave - remizd you when you have to

exit:

index, rindex, lnblnk,

firuncate ~ truncate a file to a specified
getopt, optarg, optind — get option

lex - generator of

intro — introduction to other

ranlib ~ convert archives to random

lorder - find ordering relation for an object
ar — archive (

intro -~ introduction to

intro - introduction to compatibility

intro - introdection to FORTRAN

intro — introduction to mathematical

intro - introduction to network

. ar — archive and

osh — a shell (command interpreter) with C-

limit: alter per-process rescurce

unlimit; remove resource

ulimit — get and set wser

getarg, targe ~ return command

apage, closepl - graphics/ openpl, erase, label,
bk -

Ipr - off

January 1984

indigit, iaxdigit, isalnum, isspace, ispunck, ctype{&}
isgraph, toupper, tolower, toascii ~ character/ ciype(3
isinf, isnan - test for indeterminate floating isinf(3)
islower, isdigit, isxdigit, isaloum, isspace, ctype(3)
ianan - test for indeterminate floating point isinf(3)
isprint, iscntr, isascii, isgraph, toupper,/ ctype{S
ispunct, isprint, iscntd, isascii, isgraph,/ ciype(3
isspace, ispunct, isprint, iscotd, isascii,/ ctype(3
jsoucashelicommand, .« v s s 2 o v o v o e oo Eystem(3)
isupper, islower, isdigit, isxdigit, isaloum, ctypeES
isxdigit, isalaum, isspace, ispunct, isprint, ctype(3
it usipg the vivisuafedibor. . . o v « o v v 4 o o o o view(l)
itime - return date or time in pumericl form. idate(3F)
itom, madd, maub, mult, mdiv, min, mout, pow, ged, . . mp(3X)
MIBUPEHIOT. , & v « c s s 4 s s b e v e .. « + coh{l)
j0, i1, jn, ¥0, ¥1, yn - beasel functions. JOBM
ji, jo, ¥0, ¥1, yn - bessel functions. . . . + .« jOSM
jn, ¥0, ¥1, yn - bessel functions, 0. . . JO(SM)
jobinbackgronnd. v v v v s e e . w oo oo cabil)
jobintoforeground. . . 4 . 4 4 4 s e e+ o .+ . . cCob{l
Joblitk, ¢ a4 s o o a e e v m e e v e e s+ o coht
JobOrprocess. . . o ¢« v v v o s e o v o v o o v oo Cobl
Jobh e e i e et i s e s e s e e e oo s crontab(s)
jobsand processes. . . . 4 40 - 0o o s o« o s cob(l
jobs from the line printer spooling quewe. Ipmn(l)
jobs: print current joblist. - . eshil
join - relational database operator. . . . + .+ o« . . . join(l
kbd - keyboard translation table format and kbd(5
KeY. ¢ « v v v« s 2ot o v s s e e+ oo+ makekey(8)
keyboard translation table format and default kbd(5)
keywords, mam~o i o e a e oo .. man(l)
kgmon - generate a dump of the operating system's . . kgmon(8)
kill —aend asignaltoaprocess.+ . s+ .+ Kkill(3F)
kill - send a signal to a process, or terminatea- kill{1
kill - send signal to a process. . « « v o v . .o« o s Kill(2

kill jobs and processes. i 0. 0. .. « .« cshi
kill: kill jobs and processes. . . ¢ ¢ v v 0 0 o 0 v .. €ob(l
killerrobots. . . "v . ¢ o o v ¢ s v v v v s s o s+ chase(B)
killpg - send signal to a proceas group. killpg(2)
k¥mem, mbmem, mbic - main memory and [/O space. . . mem(48)
knowledge. B 1 (1]
label, line, circle, 2rc, move, cont, point, . + « « o+ 4 o plotESX)
1aBEUAGE. « « + v 0 c 0 s e . s e e e e e s e awk(l)
lsnguage......................bcglg
fanguage. fexport, login, newgrp, read, readonly, .« « 8h{l
language proprocessor. .« « + + s o s+ + s + 2 + » + » C€PP{1)
lastcomm — show last commands executed in reverse . . lastcomm(1)
M-linkeditor. . .« ¢ v v s sv e e 0w . (1)
Idexp, modf - aplit into mantissa and exponent. frexp(3)
leave, o ¢ v o v s v o n 2 v 2 e s o o e o ..o« leave(l)
leave - remind you when you haveto leave. leave{l)
lezveshelll. . . v . v v s v v v v n e s v e e . csh(l)
len - tell about character objects. index(3F})
length. truncate, + + o v o s v ¢ o s o s+ o o+ o . truncate(2)
letter from aTgY. « « o « & + « o e e e v e v e e s s getopt(3C)
lex - generator of lexical analysis programa. lex(1
lexical analysie programs. o 0 ¢ o oo .o oo fex(i
libraties. .+ & 4 v ¢ v s s s s x s s s e s se s s o INtrof3X)
libraries. c h e s 4 e s s e s e v e e ranlib(l
Iibnry.......................lon‘ler{l;
library) file format. .+ .+ ¢ v s s 4 v 0 s 0 0w o . arB)
library functions. . . « v v v v v 4 4 e o s v s o o o introe(8)
library functions. s s s s e s e s . iDtrof3C
library functions. ¢ o 4 e 0 0 0. e« « o« intro SF;
library fenetions. « + + « v o 4 ¢ s o o o v o v o o o intro(3M)
library funetions. . + v v v v ¢« o s o v s s s « o o o intro(3N)
library maintainer. v . ar(l}
BKesyntaX. . ¢ « o v s o ¢ o o 2 o 2 2 0 2 40+ cshil
limit: alter per-process resource limitations. <¢sh(l
limitationa. . + . « + ¢ & ¢ v 4+ 4 = 2 2 0 s s+« c8h{l
limitiations. + + + + + 4+ + 2+ s s s s+ .+ coh{l
Bmits, & v v v o o e h v e e e e e e ey o ulimit(3C)
Bhe ArguUmMEnte. . . .« « v 0 4 s s e e s 0 0 e o o Eetarg{3F)
line, circle, arc, move, cont, point, Yinemed, plot(8X)
line dizcipline for machine-machine communication. . . . bk(4
Hoeprinbk, « v o v v v o v v v b 0 s s u v e oo o . Iprl)

Sun System Release 1.1

-

Ipe -

Ipd -

lprm - remove jobs from the
/era.ue, tabel, line, circle, arc, move, cont, point,
comm — select or reject

fold - fold long

uniq - report repeated

look - find

TeV ~ reveme

head - dizplay first few

readlink — read value of a symbolic

M-
a.out — azsembler and

link - make a hard
symlink - make symbolic
link, symink - make a

In - make

glob: filename expand argument
history; print histery event
jobs: print current job

shift: manipulate argument
getgroups — get group access
initgroups ~ initjalize group access
lock - find lines in a sorted
nlist - get entriez from name
nm - print name

setgroups - 2ol group access
varargs - variable ug'umlent

s -

foreach: loop over

users - compact

listen -
vgrind - grind nice
refer - find and insert

" index, rindex,

convert date and time to ASCIL ctime,

(uh only). which -

whereis -

end, etext, edata - lasi

flock ~ apply or remove an advisory

“login"’.

- collect system diagnostic meswages to form error
syslog, openleg, closelog ~ control system
syslog — make system

gamma -

power, aquare root. exp,

syelog -

square root. exp, log,

exp, log, legl0, pow, sqrt — exponential,

twho - who's

flush - flush output te a

facek, fiell ~ reposition a file on a

getc, fgetc — get a character from a

pute, fputec ~ write a characier to A FORTRAN
lockucucu ~ maintain mndow context uatil *
regin - remote

ac -

" getlog — get user's

getlogin - get

login:

/ break, continue, cd, eval; exec, exit, export,
passwd - change

uimp, wimp -

“~rlogind - remote

chsh - change default

last - indicate last

bsuncube — view 3-D Sun

Sun System Release 1.1

Permuted Indez

line printer control program.
line printer daemon.
line printer spooling quene.
linemod, space, closepl — graphica interface, .
lines common to two sorted files.

lines for finite width output device,
lines in a file.
liner in a sorted list.
lines of a file.
lines of apecified files. . . .
link.
fink — make a hard Ilnk to a ﬁlc f e e e
link editor. .
link editor output. RPN

LR N

L R B S

LI T B
..........
LI I T T I T I I
................
L R T T T B R S R R T T A A R I
.............
..................
L N T T T T B S Y

link, symink - make a link to an existing file.

linktoafile. 4000 ..
link to a file. .
link to an existing file.
links. . .
lint = a C program verifier. . .

L B Y

hist. . .
list, . .
list.
list,
list. . .
list,
list.
list,
list.
liss. ..
list.
list contents of dnrcctory . e
list of names.
list of users who are on the system.
listem - listen for connections on a socket.
listen for connections on a socket. ..
listings of programs., ..
literature references in documents.
In - make links. e h e
Inblak, len - tell about character objecta.
lo - software loopback network interface.
loc - return the address of an object.
localtime, gmtime, asctime, timesone, dysize -
locate a program file including aliases and paths
locate source, binary, and/or manual for program. . . .
locations in program.

LI T S T]

L] + 8 e

LRI

..

L

« s s e = 2 s s
« e s s a

@ 2 % 4 4 4 & 4 4 s s 8 s ek

lockonanopenfife.¢..0.0....
lockscreen — maintain window context until . . ., . .
log. dmesg . . & . & v v 4 v s e e e e e
log. S et e e e e e e v e
logembry. .+ &« & ¢ 4 v v e e e e e e e e e e
log gamma fanction. e e
log, logl0, pow, aqrt — exponential, logarithm,
Jogaystems messages. 4 e v e 0 0 0a . . .
logl®, pow, sqrt — exponential, logarithm, power,
logarithm, power, squarereot. v e as
logged in on local machines.
logicalwmit. .+ & v v 4 v v o b e s e e e e e e
logiealunit. . . . v v v v e e vt e e e e e e e
logieal amit. . & o v v v ¢ v o v 00 0. e e e
legical UBit. + & v v 0 ke e e e e e e e e e s
login®, & v v v s et e s e e e s e e s .
. T
login —BIER OB, & v & 4 v 4 4 4 4 4 e e e e e ..
login accounting. . .+ « . . .4 .00 .. N
login: loginmewnzer. 0 4.
Iogim BAME, & 4 o 4 o v 0 v v s e e e e e
login mame. & v o v s v b b e e e e s e e e .

login new uzer.
login, newgrp, read, readonly, set, shift, tlmee/ e e
login password.

L T N T T D I T

I T

logimrecords. . 4 v ¢ v v 4 i e v b 0. s
login 8TVEr. v v & v 4 o+ 4 v o b b b e e e e e e
login shell. e e i h e e e e e e e e e .
loging of users and teletypes.
T

- xxiii -

plot{3X)
commi(1)
fold(1)
unig(1)
look(1)
rev(1)
head{1)
readlink{2)
link(2)
k(1)
a.0ut{s)
tink(3F)
tink(2)
symlink(2)
link(3F)
1n(1)
lint(1)
csh(1)
csh(1}
csh(l}
czh(1)
getgroups(2)
initgroups(3)
look(1)
olist(3)
nm(1)
setgroups(2)
varargs(3)
1s(1)

csh(1)
users(1)
listen(2)
listen(2)
vgrind(1)
refer(1)
In{1)
index(3F)
lo(4)
loc(3F)
ctime(3)
which{1)
whereis(1)
end(3)
flock(2)
lockscreen{1)
dmesg(8)
syslog(3)
syslog(1)
gamma(3M)
exp(3M)
syslog(8)
exp{3M)
exp(3M)
rwho({1C)
flush(3F)
facek(3F}
getc(3F)
putc(3F)
lockscreen(1)
rlogin{1C)
login(1}
2c(B)

csh(1)
getlog(3F)
getlogin(3)
csh(1)
sh(1)
passwd(1)
utmp(5)
rlogind(3C)
chsh{l)
last{1}
bsuncube(8)

January 1984

Permuted [ndez

setjmp,

/- make inverted index to a bibliography .br
break: exit while/foreach

continue: cycle in

end: terminate

foreach:

lo - software

library.

quene.

stat,

sun — is current

vax - is current

bk - line discipline for machine-

bk - lize discipline for

ruptime - show host status of local

twho — who's logged in on local

m4 -

aliaz: shell

toascii - charactel classification and conversion

ma - text formatting’

me -
man -

— multiple precision integer arithmetic. itom,
tp - DEC/

mtio - UNIX

mt -

rmt - remote

mail — send ‘and receive

‘prmail - print out waiting

récnéws ~ receive unprocessed articles via
recnéws — receive unprocessed articles via
“sendnéws - send news irticles vis
~encode/decode 2 bmsry file for transmission via
uurec - receive processed news articles via
‘xsend, xget, enroll - secret

/bin/

mailaddr -

biff -

newaliases - rebuild the data bise for the
/bin/mail - send or receive

from - who is my

sendmail — send

‘rmail = handle remote

nmém, kmem, mbme, mbio -
make -

lockscreen -

ar - archive and library
intro - introduoction to systém
delta -

mkdir -

mkdir -

tink -

link, symink -

mknod -

mktemp -

~ find references in a bibliography. indxbib -
In -

symlink -

syslog -

MAKEDEV -

script -

memory allocator.

January 1984

‘leop.

‘loopback metwork interface.

‘magtape protocol module. .

~mail,
‘mail.

‘mail,

“mail received via uep.
fnmh.ddr “mail addressing deacnptuon
main memory and 1/O space.

logout: end session,
longjmp - non-tecal goto.
look — find lines in a sorted Jist.
lookbib - find references in a bibliography.
leop.

« 4+ 4 8 B a8 r u e s
P T S T

LI

loop.
loop over list of names,

“« s e o
s s s e .

e
PR R
s e e s

-
4 4 = s 3 4 & = & 8 = &
-
-

lorder - find ordering retation for an objecl
Ipe - line printer control program.
ipd - line printer daemon.
!pq - spool queue examination program. .
Ipr - off lize print,
Iprm rémiove jobs from the line printer spooling
ts - list contents of directory.
lseek, tell — move read/write pointer.
Istat, fotat — get file status.
m4 ~ macro processor.
machine a sun workstation.
machine a vax.
machine communication. . .
machine-machine communication.
machines,
machines.
DIACTO processor.
macror.
macros. /isascii, isgraph, toupper, tulower.
macros.
macros for formatting papers.
macros to $ypeset manual.
madd, maub, mult, mdiv, min, mout, pow, ged, rpow
mag tape formats.’
maguetic tape interface.
magnetic tape manipulating program. 4 .

. ..

L I R I I)

-
PR ST S T I I)
-

L T R R T I Y
I I R R R R S I]

LI

IR T T T I

P A A)

+ s o 8

LRI T B

L R T T T B Y

-
.
-
.
-

LRI Y
. s+ 8 s 2

+ ¢ 3 80

L S T S

PSR B R I A L

TR T)

I T S R T TR S Y

*
.
-
* B 5 & 8 W 4 s s 9o . -
I T A

4 2 & 4 + + & s s & o .

P I T R R L A I

I I R S A N

@ % e 6 4 & & & % B & & B B B & B 8 A+ 8 8 8 4 B 8 B O E oA s o o

mail.
mail.
mail.

--------- - « & s 8 s .

LI B R I T
«'e o 8 e 8 e

L T T T I)

LY

mail. uuencode,nudecode

‘mail,

B st ¢ 4 s s o .

L A I)
.

L R]

L R T R R R)

a % e+ 2 e

mail - send ‘and receive mail. .
mail — send 6r receive mail smong usem,
mail addressing deucnptlon
mail alarm.
mail aliases file. .
mail smong users. .

mail from?.0

.
.
2 e = = e

.

mail over the internet.

PR R Y

P T T I R)

.
+ »

maintain program-groups.
maintain window context until “login™.
‘maintainer, .
maintenance and operation commands.
make — majntain program groups. . .
make a delta (change) to an SCCS file.
make a directory.
make a directory fite. .
makea hard link to a file. . . .
make a link to an existing file. .

-
.
.
LI R]
.
-

.

P N)

« s 0

make a special file.
mike a unique file name. ..
make inverted index to a bibliography .br look

T R}

I T N L

e & %
T T Y

. .

make links.
make symbolic link to a file.
‘make system log entry.
make system special files.
make typescript of terminal session.
MAKEDEYV - make system special files,
makekey ~ generate encryption key,
malloc, free, realloc, calloc, cfree, alloca -

L I R
- s e s
LR S T
.

LR)

P L I I T
e 8 s 2 0 s Ty o o o s v v v &

- xxiv -

Iseek(2)
stat(2)
m4(1)
sun(1}
vax(1)
bk 4;
bk(4

raptime(1C)

rwho({iC)

o)

ctype(3)

recnews(8)

lendnewatsl})
1

guencode
uured8)
xsend(1)
mail{l)
binmail(l

mailaddr(7)

bifl(t)

newaliasés(8)

binmail(1)
from(1)

sendmail(8)}

rmail(8)

mem(4S
'ma’:e(;l))

Tockscreen(1)

ar{1)
introe((s))
make(l
deltafi)
l'nkdi:gl)
mkdir(2)
tink(2)
Yiek(3F)
mknod(2)

mktemp(3)

indxbib{1)
In(1)
eymlink(2)
syalog(1)

makedev(8)

script(1)

maked 8}

makek
malloc(3)

Sun System Release 1.1

information by keywords.

shift;

quota -

route — manually

mt - magnetic tape

inet_netof, inet_ntoa - Internet address
frexp, |dexp, modf — split into

catman - create the cat fles for the
man - macros to typeset

whereis - locate source, binary, and/or
map - print out manual pages; find
man - print out

route -

tee - copy standard output to

umask: change or display file creation
sigsetmask — set current signal

umask - set file creation mode

mkstr - create an error message file by
intro — introduction to

eqn, neqn, checkeg — typeset

getrlimit, setrlimit - control

viimit - control

mem, kmem, mbmem,

mem, kmem,

ec - 3Com 10

en - Sun 3

as -

precision integer/ itom, madd, msud, mault,

bed - convert to antique

space.

groups — show group

mmap - map pages of

muamap - enmap pages of

malloc, free, realloc, calloe, cfree, alloca ~
valloc - aligned

mem, kmem, mbmem, mbio — maia
viork - spawn new process in a virtual
sbort - terminate abruptly with

© core - format of

vmstat - report virtual

imemtest — stand alone

sail - multi-user weoden ships and iron
sort — sort or

pmerge — pascal file

mkstr - create ah error

recv, recvirom, recvmsg — receive a

send, sendto, sendmsg - rend a

icmp - Internet Control

error - analyse and disperse compiler error
mesg - permit or deny

ays_ertlist, sys_nerr, ermo - system error
PEITOr, gerTor, ierrno ~ get system error
peignal, sys_siglist — eystem signal

gynlog - log rystems

dmesg - collect system diagnostic

mille - play

integer arithmetic. itom, madd, maub, mult, mdiv,
. pagon.

miscellaneons -

C source.

chmod - change
getty - set terminal
umask - set file creation

Sun System Release 1.1

Permuted Indez

man — macros to typeset manual,
man - print out mannal pages; find mapual
mabpipulate argument list.
manipulate disk quotas.

manipalate the routing tables. .
manipulating program. : .
manipulation. /inet_makeaddr, inet_Ilnaof, ., . . .
mantisaa and exponent. .
mantgal, . 4 . . e v s h e s s e s e e e e e e e e
manual,
manual for program.
manual information by keywords.
manual pages; find manual information by keywords.
manually manipalate the routing tables. . .
many files.
mask.
mask,
mask,
massaging C source.
mathematical library functions.
mathematics,. e e e
maximum system resource consumption.
maximum system resource consumption. . . .
mb - Multibus. .

mbio - main memory and 1/O space. . .,

I R S T

L I R I R P
L L R T R R Y)
L R T T)

...... + « 48 a e

L L T T T T R S L)
L T O

LI L

I
L N}
L I L I TR I 3

= s % & s s a2 oe a .

-------- L T T)

mbmem, mbio — main memory and 1/O space.
Mb/s Ethernet interface.
Mb/s experimental Ethernet interface.,
meB3000 assembler.
mdiv, min, mout, pow, ged, rpow - maultiple .,
me - macroa for formatting papers.
media. v e e e s e e
mem, kmem, mbmem, mbio - maix memory and 1/O . .
memberships. .-. .
memory.
memory.
memory allocator. .
memory allocator,
memery and [/O space.
memory efficient way.
memory image. . . .
memory image file. .
memory statistics.”
memeory test. . . .

L L N I S Y

L R T T e T R R .

L I I I

+ a 2’8 o

a & a4 ¢

P
L T
. .
.
. s s 2

men.
merge files.
merger.
mesg ~ permit or deny messages.
mesaage file by massaging C source.
message fromasocket. e
meszage from a socket.
Message Protocol. -
messages.
MessAges. . . .,
MesAges, perror,
messages.
messages.
messages.
mezsages to form ervortog. . .
mille — play Mille Bornes.
Mille Bornes. .
min, mout, pow, ged, rpow - multiple precision .

L
. 4 o

L AR

L

L T Y

+* e o

* * & s = 3

-
L R T

L A)

L L N T I T R R .

miscellaneons - mizcellaneous useful information

miscellaneona uzeful information pages.
mkdir -makeadirectory. 40 v 0. e 0. .
mkdir - make a directory file.

mkfs — construct a file system. .
mknod - build special file. . . .
mknod - make a apecial file.
mkproto - construct a prototype file aystem. . . .
mkstr ~ create an ervor message file by massaging . .
mktemp - make a vnique file name.
mmap - map pages of memory. b i e e e e e s
mode,
mode.
mode mask,

L T T B

L N N A N R R R T -

- XXV -

man(7)
man(1)
csh(1)
quota(2)
Toute(8C)
mt(1)
inet(3N)
frexp(3)
catman(g)
man(7)
whereis(1)
man(1)
man(l)
route(8C)
tee(1)
¢sh(l)
nigsetmask(2)
umask(?)
mketr{1)
intro(3M)
eqn(1)
getrlimit(2)
vlimit(3C}
mb{45)
mem(43)
mem(48)
ec(48)
en(4S)

valloc(3)
mem(48)
viork(2)
abort(3F)
core(5)
vmstat(8)
imemtest(8z)
sail(6)
sort(1)}

psignal(3)
ayalog(8)
dmesg(8)
mille(5)
mille(8)
mp(3X)
intro(7)
intro(7)
mkdir(1)
mkdir(2)
mkfz(8)
mknod(8)
mknod(2)
mkproto(8)
mkstr{1)
mktemp(3)
mmap(2)
chmod(1)
getty(8)
umask(2)

Janunary 1984

Permuted Indez

chmod — change

chmod, fchmod ~ change
frexp, |dexp,

touch - update date last
TECOVETY. eYALC —

rmt - remote magtape protocol
‘moniter, monstartup,
execution profile.

bdemos - demonstrate Sun

monop -
profile. monitor,

curwes — screen functions with “‘optimal’ cursor
col ~ filter reverse paper

mount, umounnt -

mount, umount -

mtab ~
mouse — Sun

arithmetic. itom, madd, meub, mul, mdiv, min,
graphics/ openp), erase, label, line, circle, arc;
mv —

Iseek, tell -

multiple precision integet arithmetic. itom, madd,

interface.
mti - Systech

eyace — modified yace allowing

precision integer anthmetic. itom, madd, m:b.
m -

vp - lkon 10071-5

pr- print file{s), peasibly in

msub, mult, mdiv, min, mout, pow, ged, rpow -
select ~ synchronous 1/O

. faplit - split &

mti - Systech MTI-800/1600

aail -

switch:

from - who is

geteny - value for environment
getlog - get uzer’s login
getlogin — get login
getsockname — get socket
mkiemp - make a unique file
pwd - prizt working directory
tty — get terminal

hosts - host

networks — network

protocols — protocol

seIvices — service

tmpham - create a

getpw - get

get entries from
nm - print
rename - change the

ttyname, isatty, ttyslot - find
ttypam, izatty - find

getpeername - get

gethostname, sethostname ~ get/zet
hostom — get

hostname - zet or print

bind - bind a

foreach: loop over list of

echeck - generate

nlisg -

eqn,

January 1084

mode of a file.
mode of file.
modf ~ split into mantissa and exponent. .
modified of a file.
modified yacc allowing much improved error
module. . . .
moncontrol — prepare execution profile.
monitor, monstartup, moncontrol - prepare
Monochrome Bitmap Display.
monop — Monopoly game.
Menopoly game.
monstartup, moncontro! - prepare execution
more, page - browae through a text file. .
motion. . . .
motions.
mount and dizmount file system.
mount or remeve file system,
mount, umounnt ~ mount and dismount fle system.
mount, umount - mount or remove file system.
mounted file aystem table.
monuse.
mouse - Sun mouse.
mout, pow, gcd, Tpow ~ multiple precision integer
move, cont, point, linemod, space, closepl ~
move or rename filea,
move read/write pointer.
ms - text formatting macros,
msub, mult, mdiv, mia, mout, pow, gcd, rpow ~
mt ~ magnetic tape manipulating program. .
mtab - mounted file syptem table.
mti - Systech MTI-800/1600 multi-terminal .
MTI-800/1600 multi-terminal interface.
mtio - UNIX magnetic tape interface.
much mprwed CITOT TECOVErY.
mult, mdiv_ min, mott, pow, ged, rpow - mulnple
Multlbus
Multibus Versatec paralle] printer interface.
multiple columns.
multiple precision integer arithmetic. itom, madd,
multiplexing. .
maulti-routine Fortran file into mdmdna.l ﬁles
multi-terminal interface,
multi-user wooden ships and iron mea. . .
multi-way command branch.
munmap - unmap pages of memory. . .
my — move or rename files.
my mail fromf.
name,
name,
name,
namse.
name.
name.
name.
name dat; bm.
name data base.
name datas base. '
name data base,
name for a temporuy file.
name from uid.
name list.
name list.
name of a file.
name of a terminal.
name of a terminal port.
pame of connected peer.
name of current host.

P T T S Y ST B I I]

2 8 % 5 + 3 s = & 8 8 2 2

4 % = s s ¥ v a8
PR L L S T

e s e & 8 80w

4 4 + % % s 8 & & 8 2

s 4 4 2 % ® e o &

-
.

.

.

.

.

.

.

DR T T Y

.

.

.

.

.

. . -
.

F I

“ .

T T T T R S S T R T SR S
T I T R S S S S R R S Y

-
P . T T AT T A I]
-
.

« 0+ o+ L

P T A A

2 & s & 8 e 8 P T T S BT TR R IR}

LR Y

L L N P T

. e .

L T T S R B I R N T I T T S S S
S 2 8 & & & 2 B2 8 2 B B 4V 8 8 8 B S &+ s e s

L A A A L

4 4 4 4+ % 8 ¥ ¥ = e s e

. s a s

P R T T I R R T) .+

R S S S T S S T R Y

PR B
P .
P B
- e e s b

L A L}

.
.

.

.

.

-

.

.

.

.

.

DI)
-

*

.

.

+

-

-

.

.

P (3
.
.

L T T T S L Y
P L T T
e & 8 & 4 8 & 2 s % x ¥ 0w

LR T A)
P
* = s &

.
. .
. .
PR
. .
. »
. .

* % e e e o e
.
.
.
.
.
.
.
.
.
.
-
-
-
-
« v s e

. 4 o+ w

« 4 e
L I A

.
.

.

.

.

a & 2 s @
.

.

« 2 8o .
.

. s 2.

pame of current host.
name of current bost system.
name to a socket.
names. .
pames from i-numbers,
ocheck - generate pamesz from l-nnmbers
nd - network disk control.
nd —petwork disk driver. L4 v b e 0 b e b
neqn, checkeq ~ typeset mathematics.

& = 2 s e .
.

D R T T R Y

- xxvi-

chmod(3F)
chmod(2)
frexp(3)
touch(1)
eyacc(l)
rmt(8C)
momto:%a)
monitor(3)
bdemos(6)
monop(6)
monop(6}
monitor(3)
more(1)
curses(3X)
col(t)
mount(8)
mount(2}
mount(8)
mount(2)
mtab{s)
mouse{4S)
mouse(45)
mp(3X)
plot(3X)

mp(3X)
select(2)
fsplit(1)
mti{45}
rail(6)
cabil) %)
munmap{2
mv{1)

from(1)
getenv(3)
getlog(3F)
getlogin(3)
getaockname(2)
mktemp(3)
pwd(1)

tty(1)

bosta(5)
networks(s)
protocols(5)
services(5)
tmpnam(3C)
getpw(3)
nliat(as

am(l)
rename(2}
ttyname(3)
ttynam(3F)
getpeername(2
gethostname(2
hostam(3F)
bostname(1)
bind(2)

cah{l)
Mhed?;
ncheck(8
nd(8C)

nd{4P)

equ(1)

Sun System Release 1.1

- check if user has news on the USENET news
ntohl, ntohs -~ convert values between host and
nd -

nd -

getnetbyname, setnetent, endnetent - get
gethostbyname, sethostent, endhostent - get
lo - software loopback

ifconfig - configure

if — general properties of

intro — introduction to

networks -

news -~ USENET

routing — system supporting for locat

routed -

netatat ~ shiw

creat - create a

- open a file for reading or writing, or create a
newls — construct a

fork — create a

viork - apawn

login: login

adduser — procedure for adding

aliages file.

[continue, cd, eval, exec, exit, export, login,

news - USENET network
expire - remove outdated
inews — submit

postnews — submit

readnews - read

. sendnews - send

uurec ~ receive processed
checknews — check if user has news on the USENET
checknews — check if user has
checknews{1).

dbminit, fetch, store, delete, firstkey,

gettable - get

htable - convert

vgrind ~ grind
only).

clri - clear i~
nice,

setjmp, longjmp -
notify: request immediate

relationships of screens. adjacentscreens -
term - terminal driving tableg for
term - terminal driving tabl

soelim - eliminate .20's from

tbl - format tables for

colert - filter

deroff ~ remove

checknr - check

network byte order. hton), htons,
byte erder. htonl, htons, ntohl,

fptype - chock a floating point
- get the file descriptor of an external unit

phones — remote host phone

arithmetic - provide drill in

rand, srand - random

[erandom, initstate, setstate — beiter random
atof, atoi, ato] — convert ASCII to

intro - introduction to system calls and error
ncheck - generate names from i-

number — convert Arabic

C

Sun System Release 1.1

Permuted Indez

netstat — show network status,
network. checknews
network byte order. htonl, htons,
network dizk control,
network disk driver.
network entry. getnetent, getnetbyaddr,
network host eniry. gethostent, gethostbyaddr,
vetwork interface.
network interface parameters, , . .
network interfaces.
network library functions,
network name data base.
network news article, utility files.
network packet routing.
network routing daemon.
network statua.
networks — network name data base.
new file,
new file. open
new file system.
new process.
new process in a virtual memory efficient way.
new user.
Dew nsers.
newaliases ~ rebuild the data base forthemail
newls - construct a new file system.
newgrp, read, readenly, set, shift, times, trap,/
news - USENET unetwork news ariicle, utility files. . . .
news article, utility files. .
news articles.
news articles.
news articles.
news articles.
news articles via mail.
news articles via mail.
pews network, P
news on the USENET news network s e e e s

* 4 % % s s 2 s & & a4 a a s e

L Y

T R I

. o

. .

L

L T
L R T Y

e e o+ s e s

I T Y BRI)

P I e

L I T T e S

.
L I I T I I
-

I I

L . I T S R Y

.
.
.
»
.
-
L L T T T T R) -

oy s oa

L T T T T B R I A I A A

LI I O T T R e]
LR T R T S R S T T T T R
LI

LR T R S R N

-------- A]

newsr¢ — information file for readnews(1) and
nextkey — data base subroutines.
NIC format host tables from a host .
NIC standard format host tables.
Rice ~ set program priority.
nice listinge of programa.
nice, nohup - run a command at low priority (sh
nice; run low prierity process.

LI L L I Y

nlist — get entriea fromname biat.
nm-print name list.
Bode. 4 4 s 4 4 r ke e e

nokop - rur a command at low priority (sh only).
nohup: run command immune to hangaps. e .
noz-local goto.
notification.
notily: request immediate notification.
notify the window driver of the phynical
nroff,
nroff,
nroff - text formatting and typesetting. .
nroff input.
nroff or troff.
nroff output for CRT previewing.
nroff, troff, tb! and eqn constructa.
nroff/trofl files.
ntokl, ntohs — convert valuea between host and
ntohs - convert values between host and network
null - data sink.
number.
number, getfd
number - convert Arabic numerals to English, . .
number data base. .
pumberfacts. . v 4 a v v v e e e e e
number generator. -
number generator; routines for changing generators.
numbers.
numbers.
pumbers,
numerals to English.

.
R I A
.
-

L R T T T

L I T T T S A e S Y

........
I T T T S
L T T T I T
.......
P I
L L R T I S P SRR

L N A

CRE I

P S

L L LT T T T T I)

L T T N S Y

. e w0 L L I T T)
.....
L R R R LY

~ Xxxvii -

netstat(8)
checknews(1)
byteorder(3N)
rd(8C)

nd(4P)
getnetent{3N)
gethostent(3N)

networks(s)
news(5)
routing(4N)
routed(8C)
netatat(8)
networks(5)
creat(2)
open(2)
newfs(8)
fork(2)
viork(2)
csh(1}
adduser{8)
newaliases(8)
newfs(8)
sh{1)
news(5)
news(5)
expire(8)
inews{1)
postaews(1}
readnews(1)
sendnews(8)
unrec(8)
checknews(1)
checknews{1}
newsro(5)
dbm(3X)
gettable(8C)
htable(8)
nice(3C)
vgrind(1)
nice(1)
cab{1)
nlist(3)
am{l)
¢lri(8)
nice(1)
csh{1)
setjmp(3)
cak{1)
csh{1)

adjacentscreens(1)

,term(5)
term(5)
nrofi{1)
soelim(1)
tbi(1)
colert{1}
derofi(1)
checknr(1)
byteorder{3N)
byteorder(3N)
null(4}
fptype(3F)
getfd(3F)
number{6)
phones(5)
arithmetic(s)
rand(3C)
random(3)
atof(3)
intro(2)
ncheck(8)
number(8}

January 1984

Permuted Indez

idate, itime — return date or time in

twrite, trewin, tskipf, tstate — £77 tape 1/

loc - return the address of an

size - size of an

lorder - find ordering relation for an

strings - find printable stringa in an

index, rindex, Inblnk, len - tell about character

od -
oct — Central Data

acct - turn accounting on or
login — sign

nice, robup - run a command at low priority (sh
a program file including zliases and paths (csh
create a new file,

file. open -

fopen, freopen, fdopen -

flock - apply or remove an advisory lock on an
closedir — directory operations,

syslog,

cont, point, linemod, space, closepl - graphics/
savecore — save a core dump of the

kgmon - generate a dump of the

intro — introduction to system maintenance and
tgetatr, tgoto, tputs - terminal independent
beopy, bemp, baero, ffs - bit and byte string
telldir, seckdir, rewinddir, closedir - directory
dkio - generic disk control

strcpy, strucpy, strlen, index, rindex - string
join — relativhial database
getopt,

curnes ~ screen functions with *

getopt, optarg,

getopt, optarg, optind — get

fentl - file control

" gtty — set terminal

getaockopt, setsockopt - get and set

- convert values between host and network byte
lastcomm - show last commands -executed in reverse
lorder - find

vi - screen

cpio - copy file arckives in and

expire - remove

a.0ut — assembler and link editor

~ terminate a process after furhing any pending
“fread, fwrite - buffered binary input/

ecvt, fovt, gevt -

printf, fprintf, sprintf - formatted

fold ~ fold long linea for finite width

colert ~ filter arofl

stdio — standard buffered input/

flush - flush

tee — copy standard

foreach: toop

aendmul ~ send mail

- exec;

chown - change

chown, fchown - change

quot - summarise file system

diag ~ General-purpose stand-aione utility

stdio ~ standard buffered input/output

routing — system supporting for local network
more,

getpagesize ~ get system

pagesize — print system

miscellanecus - miscellancous wseful information
man - print out manual

mmap - map

PAUDMAP ~ UDMAP

swapon - specify additional device for

drum -
vadvise — give advice to

January 1984

numerical form. . . .
Q. topen, telose, tread,
object.
object file.
object library.
object, or other binary, file,

objects.00
oct ~ Central Data octal serial card.

octal, decimal, hex, ascii dump. . .
octal serial card.
od - ocial, decimal, hex, ascii dump.

+ 4 9 v

.
-
PR TR T I
.
.

* 4 9 s e+ & 0
DR T S Y
* & = a2 = @

+ 2 s 8+ = e @

4 % s 8 8 4 s e e

LI T

R
L T T T
L S T S Y

o, .. e e e

OD. « o o s s 2 o o v v v onrvasn

onintr; process interrupta in command scripts.
ORlY). o ¢ o o b e e s i e e e
only). which —locate

L R R S R T K TR Y

open - open a file for reading or writing, or .

open a file for reading or writing, or create a new
open A atream.
open file.
opendir, readdir, telldir, seekdir, rewinddir, .
openlog, closelog - control system log.
openpl, erase, label, line, circle, arc, move,
operating syatem.
operating system’s profile buffers.
operation commands.
operation routines. tgetemt, tgetnum, tgetfiag,
operations.
operations. opendir, readdir,
eperations.
operations. strcat, stracat, stremp, stracmp, PR
eperator.
optarg, optind - get option letter from argv.
optimal” cursor motion.
optind ~ get option letter from argy.
option letter from argv.
options,
options. .
optionmonpockets,

2 4 % & 8 8 8 s m sk &+ 0o

R S S S R T I}

L I R T T S R S A T T

. .

.
-
st 8 s e s s 3 s e
-

LI)

I I I T

4 0 5 8 & 8 8 B s & & & B s e

4 4 4 8 e ® 3 s & & $ 8 B 8 ¥ s+ s B oA TR X s s oA o+ s

L T I L T T e R R S R T T e S S

PRI SR Y

D]

P I TR)

L T T T T I S R R R R T T T T S S S

L I T T

LR I Y
------- -

A)

order. htonl, htons, ntohl, ntohs
order.
ordering relation for an object library.
oriented (visual) display editor bazed on ex.
out.
outdated news articles.
outpat.
output. exit
output,
output conversion,
cutput conversion.
output device,
output for CRT pmnewmg. e e e s
eutput package.
output to a logical unit. .
output to many files. . . .

.
.
.
.
.
.
.
.

« s e+ v w

L I L T T)

.
-
.
.
.
.
.
.
.
P R R S T R R R R R
..
P B
" s e e e
T N
..
T e e s e e +

L A
L L I I)

over list of names. ., .

over the internet. .
overlay shell with specified command. .

.o LI T I A

owBer.
owner and group of a file.
ownenkip.
pac - printer/plotter accounting mformahon c e s
package.
package., ..
packet routing.
page - browse throagh a text file.
page sise.
page tise.
pages.
pages; find manual informaticn by keywnrds
pages of memory.
pages of memory. .
pagesise — print system page site. .
paging and swapping.
paging device,
paging system.

L L T T T SR B)
LI I Y
a2 s 0w

4 & & 4 s & a2 8 s ® s T s & s s s T e 2 .

L L I I I)
L I L T S T}
I I R I T I I A}

LR N . T T T T B I Y .

PO Y

.

LRI I B R R)

P T O . R R)

L R S

LI A L)

- xxviii -

idate(3F}
tepen(3F)
loc(3F
size(1)
lorder(1)
strings{1)
index(3F)
oct(4S)
od(1)
oct(43)
od(1)
acct(2)
login(1)
csh(1)

savecore(8)
kgmon(B)
intro(8)
termeap{3X)
batring(3)
directory(3)
dkio(48)
string(3)
join(1)
getopt(3C)
curaes(3X)
getopt(3C)
getopt(3C)
fentl(5)
stty{1)
getsockopt(2)
byteorder(3N)
lastcomm(1)
lorder{1)
vi(_l)

cpio(1)
expire(8)
a.out{5)
exit{3)
fread(3s)
ecvi(3)
printf(3S)
fold(1)
colert(1)
intro(35)

intro(35)
routing{4N)
more(1)
getpagesize(2)
pagesize{l
intro{7)
omasl2)
mmap(2
munmap(2)
pagesize(1)
awapon(8)
drum{4)
vadvize(2)

Sun System Release 1.1

»

swapon — add a swap device for interleaved
socketpair - create a

col - filter reverse

me - macroa for formatting

vp ~ Ikon 10071-5 Multibus Versatec
ifconfig — configure network interface
PC -

pxref -

PXp -

pinerge —

-

pix -

pi -

getpass —read a

parswd — change login

pasnswd -

vipw ~ edit the

getpwuid, getpwnam, setpwent, endpwent - get
getwd — get current working directory

getewd — get

- locate a program file including aliases and
grep, egrep, fgrep — search a file for a

¥k -

popen,
getpeername - get name of connected

exit - terminate a process after flushing any
statistice.

crontab - table of times to run

mesg -

pix -

limit; alter

messages.

_ erTor messages,

sticky — executable Gles with

phonel - remote host

tl
adjacentscreens — notily the window driver of the

up!it - aplit a file ito
channel.

be:

fish -
mifle -
boggle -
worm -

pac - printer/
vpe - Systech VPC-2200 Versatec printer/

trpfpe, fpecnt — trap and repair Soating
erane, label, line, circle, arc, move, cont,
fptype — check a floating

isinf, isnan - test for indeterminate floating
loeek, tell < move read/write

popd:

ttynam, isatty - find name of a terminal
ttytype data base of terminal types by
" pr - print file(s),

analyse - Virtoal UNIX

itom, madd, msub, mult, mdiv, min, mout,
root. exp, log, logl0,
log, logl0, pow, sqrt — exponential, logarithm,

be - arbitrary-
mult, mdiv, min, mout, pow, gcd, rpow — multiple
monitor, monstartup, moncontrol —

Sun System Release 1.1

paging /swapping.
pair of connected sockets,
paper motions.
papers.

D T T R T R S

P T S N

parallel printerinterface,

parameters,
Pascal compiler.
Pascal cross-relerence program.
Pascal execution profiler.
pascal file merger.
Pascal interpreter.
Pascal interpreter and executor.

Pascal interpreter code translator.
passwd - change login password.

passwd - pasaword file.

password. v r s e e et e e s

patsword.
patsword file, . . .
passweord file.
password file eniry. getpwent,
pathname.
pathname of current working dnrectory
patha (coh only). which
pattern,

L N N T)

..

--------- + ..

R I I T R S

pattern scanning and processing language.

pause — stop until signal.
pe - Pascal compiler.
pcloze - initiate I/O to/from a process.
peer.
pending output.
perimon - graphical display of geneml system .
periodic jobs.
permit or deny messages.
permuted index.
per-process resource limitations,
PEITOT, GEITOT, ierrno — get aystem error
perror, sys_ertlist, sys_nerr, errno ~ system
pertistent ext.
phone number data base,
phones - remote host phone number data base,
phototypesetter interpreter.
phyzical relationskips of screens,

i — Pascal interpreter code tranalator,
picces.
pipe — creaté 4n interprocess commaunication
pix — Pascal interpreter and executor.
place job in background.

L N L

TR

R T S}

+
L T T R S)
a
.

D I A)

L L L T I

PR TR T I

I T T T N]

» 2 4 s e s 4 o & e & s+ %+ =2 s & a

..............

play “Go Fisk”. e e e e e e e e

play Mille Bornes.
play the game of boggle. ’
Play the growing worm game.
plot — graphics filters.
plot — graphics interface.
plotter accounting information.
plotter and Centronics printer interface.
pmerge — pascal file merger.
point faults.
point, linemod, space, closep! ~ graphics/ openpl,
point number,
point values.

pointer.
pop shell directory stack.
popd: pop shell directory stack.
popen, pclose - initiate 1/O to/from a process.
PO, v . v v e e s e e e s P e e e s
port.
possibly in multiple columns
postmoriem crash analyzer. ,
portnews — submit news artictes.
pow, ged, rpow — multiple precision integer/
pow, sqrt - expenential, logatithm, power, square
power, aquare root. exp,
pr - print file{s), possibly in multiple columna,
precmon arithmetic language.
precision integer arithmetic,
prepare execution profile.

L I T R B Y

L

........ L L
L R L T B S A

I I I I I Y

* e = o2 o= oo

jtom, madd, maub

L R

- xxix -

.....

LI L R R

.....

L I B D N T

Permuted Index

swapon({2)
socketpatr{2)
col(1}

me(7)

vp(43)
ifconfig{8C)

pasawd(5)
vipw(8)
getpwent(3)
getwd(3)
getewd(3F)
which(1)
grep(1)
awk(1)
pause(3C)
pe(1)
popen(3S)
gotpeername(2}
exit(3}
perfmon(1)
crontab{5)
meag(1)
ptx(1)
¢ah(1)
perror{3F)
perrox(3)
aticky(8)
phones(5)
phones(5)
pti(1)

adjacentacreens(1)

pi(l)
split(1}
pipe(2)
pix(1)
cah(1)
fish(6)
mille(6}
boggle(6)
worm(6)
plot(1G)
plot(5)
pac(8)
vpe(43)
pmerge(1)
t1pfpe(3F)
plot{3X}
fptype{3F}
innf(3)
aeeki2)
esh(1}
esh(1)
popen(3S)
ttynam(3F)
ttytype(5)
pr(1)
analyze(3)
postnews(1)
mp(3X)
exp(3M}
exp(3M)
pr{1)

be(1)
mp(3X)
monitor(3)

January 1984

Permuted Indes

cpp - the C language
colert — filter nroff output for CRT
unget - undo a
types -

Ipr - off line
fortune -

pre -

hashstat:

jobm:

sact ~

Pr-—

fpr-

history:

hostid -

banner -

nm -

hostname - set or
keywords. manm -
printeny —

prmail -

patat -

pagesize -

pwd -

file, strings - find

banner - print large banner on

printcap -

Ipc - line

1pd - line

- Ikon 10071-5 Multibus Versatec parallel
VPC-2200 Versatec printer/plotter and Centronics
lprm - remove jobs from the line

pac -

vpe ~ Systech VPC-2200 Versatec
conversion.

setpriority - get/set program scheduling
nice - set program

renice - alter

nice; ruh low

pice, nohup - rue a command at low

adduser -

reboot —~ UNIX bootstrapping
nice: run low priority

stop: halt & job or

exit — terminate a

fork — create 3 new

fork - create a copy of this

kill - send a signal to & process, or terminate s
kill - send nignal to a

kill - send a signal to 2

popen, pcloze - initiate 1/0 to/from a
wait - await completion of

exit - terminate 3

init -

EelPETP - Kot

killpg - send signal to a

setpgrp — oet

getpid - get

getpid, getppid ~ get

viork - spawn new

onintr:

kill - vend a signal to s

limit: alter per-

-

times - get

wait - wait for a

wait, wait8 - wait for

ptrace -

exit — terminate

uurec — receive

kill: kill jobs and

geore — get core images of running
renice — alter priority of running
wait: wait for background

January 1984

preprocessor. e e s e s e s
previewice, C e e s e
previous get of an SCCS file. .
primitive system data types. .
print.
print a random, hopefully lntemtlng, ldage
print an SCCS file.
print command hashing statistics. .
print current job list,
print current SCCS file editing activity. .
print file(s), possibly in maltiple columns.
print Fortran file. .
print history event list.
print identifier of current host system.
print large banner on printer. . .
print name list.
print name of current host system.
print out manual pager; find manual mfonmt:on by
print out the environment,
print out waiting mail.
print system facta.
print system page size.
print working directory name.
printable strings in an object, or other binary,
printcap - printer capability data base.
printeny - print out the environment.
printer,
printer capability data base. . . .
printer contre] program. .
printer daemon.
printer interface.
printer interface. vpc - Systech
printer spooling quene,
printer/plotter accounting information.
printer/plotter and Centronics printer mtexﬁ.oe.
printf, fprintf, sprintf - formatted output .

P T Y
P T T)
.

DR R)
-
R B R Y

+ 8 ® & s = e 8 @ w

s o .

2 & ¢ & =2 3 0 s =

P L]

LI R R I I T S T S S Y

P I}

I T T T T T)
@ & 4 4 8 F B A e E e+ 8
4 & & * * w ® 2 s ¥ a2 r P v e 2
« s ® = e 8 &£ 3 ® = 2w * v » o= »

L T T T S

. .
A s s w8 = = &
L I A Y A L
« s % & & = P & 8 e .
L A A L
-

P I I T T R R R R B R)

+ &+ 2 s & a

. .
LI I R T I
« s 84 s s s s s s =

« + s v =

-
.
.
.

« & 4 v = 8 = 0w

LR R) .« v .

P T I T T S T T}

priority. getpriority, . . « s ¢ 4 . 0 . .
PRHOLIEY. + « o ¢ ¢ v v o o s s n o s o a s
priorit¥ of running processes. - . .
PrioTitYy PrOCess. . . . ¢ 4 4 s 0 e 4 o0 e e
priority (shoenly).

prmail - print out waitipgmail.
procedure for adding new users.
procedures.
procesy. . -
procest.
process.
process.
process.
process.
process.
process.
process.
procen.
process a!t.er ﬂulhlu any pendmg ontput
process control initialisation. . .

-
.
.
.
.
.
.
.
.

* + = 3 & 4 & a
a + 2 8 ® 4 9 =
=+ & & s B s 4w
s s e = v 9 " 4 @
4 % & & 2 4 s e s &

a s & 4 8 4 & A 8 @
« & 4 & 8 »2 8 ¥ v'w
s * 2 & & 8 4 ® s @
M R

- * v s v

ProCess GrOUP. o = « o o s s 3 + ¢+ + »
Process EIOUP. + ¢ « o o o & s ¢ s o«
PIrOCEBMMEIOUD. » + = o 4 + « o o o o &
procemsid. he e v e e
process identibcation.

process in a virtual memory e!ictent way.
process interrupts in command scripts.

process, or terminate a process. .
process resource limitations.
process status.
procens timea,
process to terminate.
process to terminate or stop.
process trace.
process with status,
processed news articles via mail.
processes,
PIOCE3SED. « o o o o ¢ 5 s 2 v =
processes, 4+ 8 s = s ¥
processes to complete, .

LI R I

.

.
LRI B +
.

.« o

D T T R A)

L

4 & 5 @

2 v s 2w

L L T T R I)

* 4 & & @ 3 2 & & &

- XXX -

P I T T T T T T T S T S R T S S T S

« 4 & & + 8 8 2 B = B 2 8 @

* s & ® 4 % B 8 ® 4 4 8 = ® 2 & 4 & B E & 5 B & 8 4 2 s 0w

FR]

hostid(1)
banner(6)
am(1)
hostname(1)
man(1)
printenv{1)
prmail(1})
patat(8)
pagesize(1)
pwd(1)
strings(1)
printcap{5}
printenv{l}
banner{6)
printcap(5}

vpe(45)
printf(35)
getpriority(2)
nice(3C)
renice(8)
csh(1)

nice(1)
prmail(1)
adduser(8)
reboot(8)

bl
exit(2)

fork(2)
fork(3F)
kill(1)
kill(2)
kill{sF)
popen(35})
wait(1)
exit(3}
init(8)
getpErp(2)
killpg(2)
setpgrp(2)
getpid(3F)
getpidi2)
vlork(2)
eah(1)
killfl
cah(l
ps(1)
times(3C)
wait{3F)
wait(2)
ptrace(2)
exit(3F
uvurec(s
csh(1)
geore(1)
renice(8)
csh{1)

Sun System Release 1.1

-

awk - pattern scanning and
halt - stop the

m4 - macro

reboot - reboot system or halt

monstartap, moncontrol — prepare execution
prefil - execution time

kgmon - generate a dump of the operating system’s
gprof - display call graph

prof - display

pxp - Pascal execution

end, etext, edata — last locations in

ftp - file transfer

Ipe ~ line printer control

Ipq - spool queue examination

mt - magnetic tape manipulating

pxref - Pascal cross-reference

units - conversion

whereis - locate source, binary, and/or manual for

cb-C

only). which — locate a
make - maintain

nice — set

getpriority, setpriority - get/set
indent - indent and format C

assert -

lint -2 C

lex - generator of lexical analysis
vgrind - grind nice listings of

xotr ~ extract strings from C

fbio - general

if - general

arp - Address Resolution

icmp - Internet Control Message

ip - Internet

tep - Internet Transmission Control
telnet - user interface to the TELNET
udp - Internet User Datagram
getprotebyname, setprotoent, endprotoent — get
inet - Internet

rmt - remote magtape

protocols —

ftpd ~ DARPA Internet File Tranefer
telnetd - DARPA TELNET

tftpd - DARPA Trvial File Transfer
trpt - transliterate

O

mkproto - construct a
arithmetit -
false, true -
true, false ~

Pty -

diag - General-
ungetc -
pushd:

puts, fputs -

pute, putchar, fpate, patw ~
logical unit.

on a stream.

stream. putc,

peute, putchar, fputce,

O

Sun System Release 1,1

Permuted Indez

processing language.
processor.
Processor.
Processor.
prof - display profile da.ta -
profil — execution time profile,

profile. momiter,
profile.
profile buffers.
profiledata.
profile data.
profiler.
PrOgTam.
program.
PIOBTAML. 2 o + « s v o + o » s s o « o s s o o «
program,
program. . .
program. . .
program. . .
program.
program beautifier.
program file including aliases and paths
program groups.

Program prionty. .
program scheduling priority.
program source.

L S

L I I I R e R N L)

.
.
.

a0 0w P L
.
L N L L
.

.
.
.
.
B
-
+ s s e
+ 4 = .

LRI

b'....

L R O L T I U N R)

program venification.
program verifier. v v b v v e e e e e
prognmn....................
PrOEIAMB. & « « + o » « » e e e e e e
programs to implement shared stnngs C e e e
propertien of frame buflers. e e
properties of network interfaces,
Protocol, + o v o v 4 v 6 4 4 s s s s b v 0 v s v
Protocol, « ¢ 4 v v ¢ v s s st s e s e e e e
Protocol, D,
Protocol, . & ¢ v v o v v v o v ot e e e
protocol. o 4 . s s e e e e e e e e e e e
Protocol, . . .

protocol entry. getprotoent, getprotobynumber, . . .
protocol family.
protocol module.

“ e e s L T

. e .

protocol name database. 0.0 L.
Protocol server. . ¢ . 4 & 4 v 5o s 4 5 s 5 s ¢ 4«
protocol server. e e e e e e e e e e ..
Protocolserver. . . . + o « s ¢ 2 o « & & e

protocol trace.
protocols ~ protocol name data bne e e s e e e
prototype Iile system, .
provide dnll in number facts.
provide truth values.
provide trath values,
pre—print an SCCSfile. 4 v v v v v v v o
ps — process status.
preudo terminal driver. . . .
prignal, sys_siglist — system signal messages,
patat - print system facta.
pti — phototypesetter interpreter.
ptrace — process trace.
ptx - permuted index.
pty — pseudo terminal driver.
purpose stand-alone utility package.
push character back into input stream.
push shell directory stack.
pushd: push shell directory stack. .
put a string on a stream. .
put characteror word on astream.
pute, fputc - write a character to a FORTRAN ..

L]

L I N)
.....
L R R R e N L]

L L e R

LI R R A)

L T
a & e 4 s
LI I B B)

LI S . T

L L T T I R S

pute, putchar, fputc, putw — put character or word
putchar, fputc, putw - put character or word on a
puts, fputs - put s string on a stream.
putw - put character or word on a stream.
pwd - print working directory name,
px - Pascal interpreter.
pxp - Pascal execution profiler.
pxref - Pascal croas-reference program.

L
D R T T S S T

- XXXi-

awk(1)
halt(8}
m4(1)
reboot(2}
prof(1)
profil(2)
moniter(3)
profil{2)
kgmon(8)
gprof(1)
prof(1)
pxp(l)
end(3)
ftp(1C)
Ipc(8)
Ipg(1)
mtf1)
pxref(1}
unita(1)
whereis(1)

nice(3C)
getpriority(2)
indent(1)
assert(3}
lint{2)

lex(1)
vgnnd(1)
xstr{l)
fbio(43)
if(4N)
arp(4P)
iemp(4P)}
ip(4P)
tep(4P)
telnet{1C)
udp(4F)
getprotoent(3N)
inet(4F)
rmt(8C)
protocols(5)
ftpd(8C}
telnetd(8C)
titpd(2C)
trpt(8C)
protocols(5)
mkproto(8)
arithmetic(8)
falze(1)
true(l)

diag(8s)
ungetc(3s)
¢sh(1)
esh{1)
puts(3S)
pute(3S)
puic(3F)
pute(3S)
pute(38)
puts(33)
putc(3S)
pwd(1)
px(1)
pxp(1)
pxref(1)

January 1984

Permuted Indez

insque, remque — insert/remove element from &
Iprm - remove jobs from the line printer spocling
Ipq - spool

_ qgort —

qsort -

quota - manipulate disk
setquota - enable/disable

rain - apimated

_ fortune - print a

ranlib - convert archives to

rand, srand -

rardom, standom, initatate, setatate ~ better
random number generator; routines for changing/

ratfor -

a stream to.a remote command,

getpasy -

source;

read, readv -

readnews -

wait/ [cd, eval, exec, exit, export, login, newgrp,

readlink -

directory operations. opendir,
open - open a file for

newsrc — information file for
[ed, eval, exec, exit, export, login, newgrp, read,

m 1]
lseek, tell - move

setregid — set
setrenid — set
mallec, free,

rc — command senpt for auto-
reboot —

fastboot, fasthalt -
newaliases -

recv, recvirom, recvmog -
mail - send and

/bin/aall - send or

aurec -

mcnews -

recnews —

rmail — handle remote mail

rehash:

utmp, wtmp - logia

eyacc ~ modified yace allowing much improved error
socket.

socket. recv,

recy, recvirom,

eval:

Te_comp,

documents.

pxref — Pascal cross-

index to a bibliegraphy .br lookbib - find
refer — find and insert literature

T¢_cOmp, re_exeéc —

comm ~ select or

January 1984

qsort — quick sort.
qsort — quicker sort.
queue.
quene.
queue examination program.
quick sort. .
quicker sort.
quis - test your kaowledge. .
quot ~ summarise file system ownership.
quota - manipulate disk quotas. . .
quotas.
quotas on a file system.
rain — animated raindrops display.
raindrops display.
rand, srand ~ random number generator.
random, hopefully interesting, adage. . .
random libraries. . .
random number generator. .
random number generator; routines for changing/
random, srandom, initstate, setstate - better .
ranlib - convert archives to random libraries. .
ratfor — rational Fortran dialect,
rational Fortran dialect.
rc - command script for aute-reboot and daemons.
remd, rresvport, ruserok — routipes for returning
rcp — remote file copy.
rdate - set system date from a remote host.
read a password.
read commands from fle.
read input.
read news articles.
read, readonly, set, shift, times, trap, umask,
read, ready - read input.
read value of & symbolic Jink.
readdir, telldir, seekdir, rewinddir, closedir -
reading or writing, or create a new file. .
readlink - read value of a symbolic link. .
readnews — read news articles.
readnews(1) and checknews{1).
readonly, set, shift, times, trap, umask, wait —~/
readv - read input.
read /write pointer.
real and effective group ID.
real and effective user ID’n.
reslloc, calloc, cfree, alloca - memory allocator.
reboot ~ reboot system or halt processor.
reboot — UNIX bootstrapping procedures.
reboot and daemons.
reboot system or halt processor.
reboot/halt the system without checking the disks.
rebuild the data base for the mail aliases file.
receive a message from a socket.
receive mail, .
receive mail among users. .
receive processed news articles via mail. .

+ e .
DY
P
P

P T)
L T T A

¢+ & = a =

P

.
.
.
.
.

.
.
.

“« 8 & & 8 & 2 =

« %+ s & s ¥ = e a0

e = e s b & & s = s 0

.
* 2 s s e @
.
.

« s 2 3
e e s 008

R T I

> & & & 8 8 s v &

L T T T T R S O . L N R T SRR
L N I T T S T S T SR Y R T

" 8+ 4 8 e 4 & & & 2 = 4 % % = w8

.
.
.
.
.
.
.

o % s e 2

P T T T T T N T S T
L I R

LI O I B R I I

L T T)

-
.
.

P T I)

4 8 8 % & ¢ & &

L I

LI T
L I T R R N LT T

. s = .

" e e s

s s & 2

L R R R A

LR I T T B)

e & 4 B & 4 4 & & 4 ¥ B B B B oE ¥ 2+ 8 s 8

.
.
.
L I R |
-
-
.

a2 e

v s % e w

receive unprocessed articles via mail. .
receive unprocessed articles via mail. .
received via uucp.
recnews — receive unprocessed articles via mail.
recnews — receive unprocessed articles via mail.
re_comp, re_exec — regular expression handler.
recompute command bash table.
records, . . .
TeCOVErY.
recy, recvirom, recvmsg — receive a mesaage from a
recvfrom, recvmag - receive a message from a

recvmsg — receive a measage from a socket,
re-evaluateshelidata.
re_exec — regular expression handler.
refer - find and insert literature references in
reference program.
references in a bibliography. /- make inverted
references in documents. .
regular expression handler. .
rehash: recompute command hash table. . .
reject lines common to two sorted files. . . .

PO T T T)

.
-
.
.
.
.
-
L I I A L '} -
-
-
.
.

LT T ¥

2 v e 4 5 & & s & s 3 e 2 .

4 4 & & b B e E & 8+ % 8

-------------- . . .

LI)

LI R I S R I O)

L S

T T R T R T TR R
* 82 2 =2 & e+ 3 = & @ =

- xxxii -

“ & & & 8 2 B B 4 B B F T 2 + & % 4 ¥ . s & s s @ T e =2 & =B P 4P & T F 4T AT E T s

P T T O L R T T R R S I I L I I I)

L T T T T T T T T S S B R S S S O I T T T T T S R S S SOy

L L T S S S T T S T S e T T T T T

4 % 8 B & B % & F % B 4 8 & % 2 8 s & 8 5 5 B ¥+ o=@

qeort(3F})
quott(3)
inzque(3)

quota(2)
petquota(2)
rain(B}
rain{6}
1and(3C)
fortune(8)
ranlib(1)
rand(3C)
random| s}
random(3
raalib(1
ratfor(l
ratfor(l
rc(8)
remd(3N)
rep{tC)
rdate(8)
getpass(3)
csh(l)
read(2)
readnews(1)
sh{1)
read(2)
readlick(2)
directory(3)
open(2)
readtink(2)
readnews(1)
newarc(5)
sh{1}
read(2)
iseek(2)
setregid(2)
setreuid(2)
malloc{3)
reboo:;2}
reboot(8
re(8)
reboot(2)
fastboot(8)
newaliases(8)
recv(2)
mail{1)
binmail(1)
uurec(8}
recnews(1)
recnews(8)
rmail(8)
recnews(1)
recnews(8)
regex(3)
csh(1)
utm 5}
eyacc{l

2
recv(2
recvi2
cshil)
regex(3)
refer(1)
pxref(1)
indxbib(1)
refer(1)
regex(3)
csh{l)
comm(1)

Sun Systemn Release 1.1

-

-

-

O

lorder - find ordering

join —

- potify the window driver of the physical
sigpause — atomically

strip - remove symbols and

leave -

calendar -

ruserok ~ routines for returning a stream to a
rexec - return stream to »
rexecd -

rep -

rdate - set system date from a
uusend ~ send a file to a
remote -

phones -

rogia -

rlogind -

mt -

rmail - handle

roh ~

rshd -

tlp, cu - connect to a
rmdel -

aglink -

rmdir -

unalias:

flock - apply or

colrm -

unlink ~

insque, remque - insert/

) unacteny:
mount, umount - mount or
fprm -

deroff -

expire -

unlimit:

strip -

tmdir, rm -

rm, rmdir -

insque,

repame —
mv - move or

- file system consistency check and interactive
trpipe, fpecnt - trap and
while:

uniq — report

repeat; execute command

yea - be

daf -

tontat -

uhiq -

vmatat -

fseek, ftell -

Iseek ftell, vewind -

- notify:

state,

reset ~

arp - address

arp - Address

getlimit, setrlimit - control maximum system
vlimit - control maximum systcm
limit: alter per-proceas

~ unlimit: remove

getrusage - get information abont
viimes - get information about
restore - incremental file system

suspend: suspend a shell,

getarg, iatge —

idate, itime -

fimin, fmax, dfimin, dfimax, inmax -

Sun System Release 1.1

Permuted Indez

relation for an cbject library.
relational database operator.
relationships of screens. adjacentscreens
release blocked signals and wait for interrupt.
relocation bits.
remind you when you have to leave.

I R I I]

P L | R R L R R T T

I T R

Teminder26TviCe. < « v« s 0 s b s r e e e v s e
remote — remote host description file. s
remote command, remd, rresvport, o 4 .
remote command. e e e e e e
remote exccution server. e wr e e e . e
remotefile copy. .+ - .+« ¢ ¢ 0 v s h e s e a e .
remote host. 040 s ..
remote host.

remote host description file. . .
remote host phone number data base.
remote login.
remote login server. . . .
remeke magtape protocol module. C e e e e e
remote mail received viawuep. o oL 000 o
remote shell.
remote shell server.
remote system,
remove a delta from an SCCS file.

remove a directoryentry.
remove & directory file.
remove aliases.
remove an advisory lock on an open fle.
remove columna from a file. .
remove directory entry.
remove element from a quete.
remove environment variables. . . .
remove file system.
remove jobs from the line printer spooling queue. . .

L]

P R T I R R

« % 4 4 4 & & 8 v 4 v o »

LI R R R R R)

LI R}

L N L I I I -

s s s e *

L L T R I

L R R R S B)

P I T T SR I)

remove nroff, troff, tb! and eqn constructs.

remove outdated news articles.
remove resource limitiations, e e e e
remove symbols and relocation bits.

remove (unlink) directories or files.
remove (unlink) files or directories.
remque - insert/remove element from a quene. ., .
repame — change the name of a file. .
rename ~ rename & file. .
rename a file.
rename files.
renice — alter priority of running processes.
repair, fock .
repair floating point faults. .
repeat commands conditionally.
repeat: execute command repeatedly. . .
repeated lines in a file.
repeatedly.
repetitively affirmative.
report free disk space on file systems.
report 1/O statistics.

LI T

L N L I R R]

L T A L I T I)

. e e o

L R)
L L Y I I)

L T R R R R I . . B)

report repeated linesinafile. e e e s
report virtual memory statistics,.
reposition a file on a logical mnit. o ..
reposition a stream. C e e s s e e e
request immediate notification.

reset — reoet the teletype bits to a sensible . . .
resct the teletype bits to a sensible state. . . .
resolution display and control.
Resolution Protocol.
resource consumption. .
resource consumption. e e
resource limitations.
resource limitiations.

.
.

L I N L
2 2 %+ v ot w e ¥
.

e kB 4 W o+ e w .

resource utilisation. . .

resource utilization. . + « 4+ o 4 @ e 0 4 e e s I
restore. e b s e e e e s s e s
restore — incremental ﬁle system restore.

resuming its superior.
return command line argumenta.
return date or time in numerical form.
yetarn extreme values. . s

« & o+
. e o .

- xxxiit -

lorder{1)
join(1)
adjacentscreens(1)
sigpause(2)
strip(1)
leave(1)
calendar(1)
remote(5)
rcmd(3N)
rexec{3N)
rexecd(8C)
repf1C)
rdate(8)
uusend(1C)
remote(5)
phores(5)
rlogin{1C})
rlogind(8C)
rmt{8C)
rmail(8}
rsh(1C)
rshd(8C)
tip(1C)
rmdel(1)
unlink(3F)
rmndir(2}
csh(1)
flock(2)
colrm(1)
ualink(2)
inzque(3)
csh(1)
motnt{2)
Iprm(1}
deroff(1)
expire(8)
esh(1)
utnp[l)

insque(3)
rename(2)
rename(3F)
rename{3F)

df(1}
ioatat(8)
uniq(1)
vmatat(8)
faeck(3F)
f3eek{35)
cshil)
reaet{l]
reset(1)
arp(8C)
arp(4F)
getdimit(2)
vlimit(3C)
csh(1)
csh(1)
getrusage(2)
vtimes(3C)
restore(8)
restore(8)
csh(l)
getarg(3F)
idate(3F)
range{3F)

January 1984

Permuted Indez

rexec —
loc -
rcmd, rresvport, ruzerok - routines for

rev —
lastcomm - show last commands executed in
col - filter

faeek, ftell,

opendir, readdir, telldir, seekdir,

strcmp, stracmp, strcpy, strocpy, strlen, index,
objects. index,

rmndir,

chase - Try to escape to killer

pow, aqrt - exponential, logarithm, power, square
chroot - change

faplit - split a multi-

tgoto, tputa - terminal independent operation
setstate - better random number generater,;
command. remd, rresvport, ruserok —

- system supporting for local network packet

packet routing.

routed — network

route - manually manipulate the

itom, madd, msub, mult, mdiv, min, mout, pow, gcd,
stream to a remote command. remd,

nice, nohap -

nohup:

nice:

roffbib -

crontab — table of times to
geore — get core images of
renice — alter priority of

remote command. remd, rresvport,

ec - 3Com 10 Mb/
ez ~ Sun 3 Mb/
pr - print file{

pavecore -
system.

brk,

st — Driver for Sysgen
scandir, alphasort —

conversion.
awk ~ pattern
8 - silog 8530

cdc - change the delta commentary of an
comb -~ combine

delta — make a delta (change) to an

get — get a version of an

pre — print an

rmdel - remove a delta from an

sccadiff - compare two versiona of an
sccafile ~ format of

January 1984

return stream to 2 remote command. . .
return the address of an object.
returning a stream to a remote command.
1ev — reverse lines of a file. e e e
reverse lines of a file.
reverse order. . . .
reverse paper motions.
rewind - reposition a stream. .
rewinddir, closedir - directory operations.
Texec — return siream to a remote command.
rexecd - remote execution server. .
rindex - string operations. streat, strncat, .
rindex, Inblok, len — tell about character . .

L B .
.
-

.
. & 8 2w
a e s s .

.

LI T]

.
.
.
.

D T T T S
L A

e 0

FRE I R S T

LI T R R N L R R T)

tlogin - remote login. . .
tlogind — remote login server.
rm - remove (unlink) directories or files. . . .
rm, rmdir - remove (ualink) files or directories.
rmail - handle remote mail received via nucp.
rmdel - remove a delta from an SCCS file. .
rmdir - remove (uslink) files or directories. .
rmdir - remove a directory file.
rmdir, rm - remove (unlink) directories or filea.
rmt - remote magtape protocel module.
robots.
roffbib — run off bibliographic database.
root. exp, log, loglo,
root directory.
rogte — manually manipulate the ronting tables.
routed - network routing daemon.
routine Fortran file into individual files,
routines. tgetent, tgetnum, igetfag, tgetstr,
routines for changing generators. [initstate,
routines for returning a stream to a remote
routing. routing . . .
routing - system supporting for tocal network
routing dacmon.
routing tables,
rpow - multiple precision integer arithmetic.
rresvport, ruserok - routines for returning a
rah - remote shell.
rshd — remote shell server.
run a command at low priority (shealy).
run command immune to bangups. . .
run low priority process. .
run off bibliographic database.

L L T e R R N L L R R B)
« s 8 4 4 ® = e @ & ® B+ BB e s " & =

L I

LR R)

. e .

L R L I - . s 8

"+ 8 8 8 e+ e a2

P N R I T T A)

* 0

T T TR B B

L A A B R I)

8 % 8 ® s % & & 4 8 & & & B 4+ 4 8 2 % 4 B 8+ 2 & 5 B & B B B o 8 8

.
DRI T T T R S B S S)
.
.

« &8 & ® & & % B 4 3 8 ¥ B & % . ow & w

* e = a4 & 8 4 s s 8 s

A 8 B+ & 8 8 & @ & 4 4 4 8 8 4 B B B 4 8 8 B * 8 A B * B O A % & & 4+ & & 4 & + a

s & & B 2 & ® & 4 8 2 % s 8 e a2 & = e &

run periodic joba.
TUDRIDE Processes. + « « o + v o v o o = o = o o o o
Tunning processes. C s h e s e s e
ruptime — show host status of local machines.
ruzerok — routines for returning a streamtoa
rwho — who's logged in on local machines.
rehod - system statusserver. 0 e e oo

s Ethernet interface.
s experimental Ethernet interface. .
8), possibly in multiple columna. .
sa, accton — system accounting. .
sact — print current SCCS file editing activity. .
sail - multi-user wooden ships and iron men. . .
save & core dump of the operating system. . . .
savecore — oave a core dump of the operating .

4 % 4 5 4 8 4 e s & s s e 2 » =
. " 2
¢ 4+ 4+ s .

e 4o

sbrk - change data segment sise.

SC 4000 {Archive) Tape Controller.
scan & directory.
scandir, alphasert < scan a directory. .
scanf, fscanf, sscanf - formatted input

scanning and processing language. . .
SCC serial comunications drniver. . . .
sces — front end for the .SM SCCS subsystem.
SCCSdelta. + ¢ ¢ ¢ ¢ 6 v 4 4 6 ¢t 0 a0 8040
SCCS deltas.

L]
PR T

L T R A L I I DY T ¥

E R S
PR
L

SCCSfile. . v o ¢ v v s e o o v oo v e s e
SCOSBle. + ¢ o o ¢ ¢ ¢ 2 0 2 8 3 28 8 8 0 v a3 28
SCCSAle. & & v e o e v s b v s e s e
SCCSfile, + .. 4.4 e e e e e e e e e s
SCCSfile. .+ v o o ¢ s o o 5 ¢ s a o s 2o 02204
SCCSfile, . v o o v v s 0 oo s e s e e e
- XXXIV -

rexec(3N)
loc(3F)
rcmdgsN)
rev(l

re:{l)
lastcomm(1)
col(1)
fseek(3S)
directory(3)
rexec(3N}
rexecd(8C}
string(3)
index(3F)
rlogin(1C)
rlogind(8C)
rmdir{1)
rm(1)

exp(3M)
chroot(2)
route{BC)
routed(8C)
faplit(1)
termcap(3X})
random(8)
remd(3N)
routin:?N)
routing{4N)
routed(8C)
route{8C)
mp{3X)
remd(3N)
reh{1C)
rehd(8C)
pice(1}
csh(1)

csh(l)
roffbib(1)
crontab(5)
geore(1)
renice{8)
ruptime{1C)
rcmd(3N)
rwho(1C)
rwhod(8C}
ec{4S)
¢n(4S)

#ail(8)
savecore(8
savecore(8
brk(2)
ot(45)
acandir{3)
scandir(3)
scanf(3S)
awk(1)
15(4S)
scea(1)
cde(1)
comb(1)
delta(1)
get(1)
pra(1)
rmdel{1
sceadifi(1)
sceafile(5)

Sun System Release 1.1

-

-

unget — undo a previous get of an
val - validate

sact - print current

admin - create and administer
sccs — front end for the .SM

alarm -

getpriority, setpriority ~ get/set program

clear - clear workstation or terminal

curses -

ex. vi-

the window driver of the physical relationships of
adbgen - generate adb

re - command

onintr: process interrupts in command
Controliers.

grep; egrep, fgrep -

xsend, xget, enroll -

" operations. opendir, readdir, telldir,
brk, sbrk - change data

comm -
cane:

uusend -

send, sendto, sendmag -
kil -

kill -

mail -

sendmail -

sendnews -

/bin/maif -

socket,

kill -

killpg -

aliases - aliases filo for

send, sendto,

send,
reset — resct the teletype bits to
oct ~ Central Data octal
£ ~ rilog 8530 SCC
comeat — biff
ftpd - DARPA Internet File Transfer Protocol
rexecd - remote execution
rlogind - remote togin
r3hd ~ remote shell
rwhod - system status
telaetd - DARPA TELNET protocol
Htpd - DARPA Trivial File Transfer Protocol
timed - DARPA Time
servers - inet

calendar - mni;:der

inetd - internet

fogout: end

script ~ make typescript of terminal
ascii - map of ASCII character

sty gtty -

sigetack -

siguctmut‘ -

gettimeofday, settimeofday - get/
umask -

atime -

utimes -

setgroups —

gethostname, sethostname - get/
getsockopt, setaockopt — get and
kostname -

setperp -
nice —

Sun System Release 1.1

- sed — stream editor.

SCCSfile.« e e e e s
SCCSfile. . v o v v v o s v v v v 0 o v o 4 a4
SCCS file editing activity. . . .« . < ¢ 0 00 o v - e
SCCS files. e s e e e e e e e e e e e e
SCCS subsystem. e,
sccsdiff - compare two vemions of an SCCS file. . . .
sccsfile - format of SCCSfilee. e e

schedule signal after apecified time.
scheduling priority.
screem. . .
screen functlons with “optimal” curser motion.
screen oriented (visual) display editor based on .
screens. adjacentscreens — notify .
script. e e
script - make typescript of terminal session.
script for auto-reboot and daemona.
scripts. . .
sd - Disk driver for Adaptec ST-506 Disk
search a file for a pattern.
secret mail,

L
R

PEET R R BN I

------- I I R T R R R)

L A
......

2 8 % ¢ v 8 s .

pegment sise.
select - synchronous 1/0 mult:plexmg
select or rejoct lines common to two sorted ﬁles
selector in switch,
send a file to a remote hoat,

send a message from a socket.
aend a zignal to a process,
send a signal to a process, or terminate a process.
send and receive mail. . .
send mail over the internet.
send news articles via mail.
send or receive mail amorg usen.
send, sendto, sendmsg - send a message froma . . .
send sigoal to & process.
send signal to a process group.
sendmail.
sendmail - send mail over the internet.

sendmeg - send a meszage from a socket.
sendnews - send newa articles via mail.

PR I Y B) .

seekdir, rew:nddir. closedir — directory .

L)

T L LI R
D

L L T

. 2 e

* 4 e e

L A)

L T e

R T R R A R

e v o4 e

LI I T SRR)

A 8 2 4 4 P 4 % e o 2 a

o & 8% 8 o+ 8

Permuted Indez

a4 4 & & & ® F o 4

L T T AT I)

LR T T S Y

sendto, szendmsag ~ send a message from a socket.

sensible state.
serial card.

serial comunications driver,
server.
server,
BEIVEr.
server.
server.
server.
Berver.
BEIVEL.
seTver.
server data base,
servers - inet server da.ta. ba.ae
service,
services — service name data base.
services daemon.
BEESIOB. & v . 4 v v e e on s e s
sesziod. . .
geb, i . o0 0 e e w e P4 e E e s e ey e
set and get terminal state. . . .,
set and/or get signal stack context.
set: change valae of shell variable.

set current signal mask. . .
set date and time.
set file creation mode mask, . . .
set file times.
set file times,
pet gronp access list.
set nameof current host. o o 00w .
sct options on sockets, . ..
set or print name of current host system.

I T T T R N R]

L L

* o+ & s & v s e+ @

.
.
.
.
.
.
.
.

.

P
« + v & e

LI I R AL)

e B & & 4 4+ % B o* o= o B o»

« 0o

.
.
L T I)
-

D T R e O L I I |

I I I S R LA I

sel process group.
set program priority.

D T I |

P I

= XXXV -

unget(1)
val(1)
sact{l)
admin(1}
sccs(1)
secsdiff(1)
scesfile(5)
alarm(3C)
getpriority(2)
clear{1)
curses(3X)
vi(1)
adjacentacreens(1)
adbgen(8}
aczipt(l]
re(8)

csh(1})
3d{4S)
grep{1)
xzend(1)
sed(1)
directory(3)
brk(2)
select(2)
comm(1)
csh(1)
uusend(1C)
send(2)
Kill(3F)
Kill1)
mail{1)
sendmail(8)
sendnewa(8)
binmail(1)
send(2)
kill(2)
killpg(2)
aliases(5)
sendmail(8)
send(2)
sendnews(8)
send(2)
react{1)
oct{4S)
3(48)
comsat(8C)
ftpd(8C)
rexecd{8C)
rlogind(8C)
rahd(8C)
rwhod(8C)
telnetd(8C)
t{tpd(8C)
timed(8C)
servers(5)
servers(5)
calendai(;)
services(5
inetd(8C)
esh(1)
script(1)
ascii(7}
stty{3C)
sigatack(2)
¢ah(1)
sigaetmask(2)
gettimeofday(2)
umask(2)
utime(3C)
utimes(2)
setgroups(2)
gethostname(2)
getsockopt(2)
hostname(1)
setpgrp(2)
nice(3C)

January 1984

FPermuted Indez

getpriority, setpriority — get/

setregid —

setrenid -

Jexec, exit, export, login, newgrp, read, readonly,
rdate -

getty ~

: stty -

date - display or

seteuid, setruid, setgid, aetegid, setrgid -
ulimit - get and

getitimer, setitimer - get/

setenv:

to a stream.

stream. setbuf,

setnid, seteuid, setruid, seigid,

user and group ID. »setuid,

file/ getfsent, getfaapec, getfofile, get{stype,
setuid, seteuid, setruid,

getgrent, getgrgid, getgroam,

gethontent, gethostbyaddr, gethosibyname,
gethostname,
getitimer,

CTYPY,
setbuf, setbuffer,
getnetent, getnetbyaddr, getnetbyname,

getpriority,
getprotoent, getprotobynumber, getprotobyname,
getpwent, getpwuid, getpwnam,

setuid, setenid, setruid, setgid, setegid,

' consumption. getrlimit,

group ID. setuid, setenid,

getservent, getoervbyport, getservbyname,
getsockopt,

routines for changing/ random, srandom, initatate,
gettimeofday,

- set user and group ID.

¢d, eval, exec, exit, export, login, newgrp, read,/
nice, nohup - run & command at low priority (
- extract strings from C programs to implement
cheh — change default login

exit: leave

1sh - remote

system - issue a

cth -a

eval; re-evaluate

popd: pop

pushd: push

alian:

suspend: suspend &

rshd - remote

set: change value of

@: arithmetic on

unset: discard

exec: overlay

exit, export, login, newgrp, read, readonly, set,
sail ~ multi-user wooden

groups -

ruptime -

uptime -

lastcomm -

netstat -

shutdown -

connection.
login -

pause - stop until
signal - change the action for a

January 1984

set program scheduling priority.
set real and effective group ID.
et real and effective user ID's.

T

L

set, shift, times, trap, umask, wait ~ command/
set system date from a remote host.

setterminalmode. & . . . 0 0 0 00 v e e s
set terminal options. . + 4 o ¢ o 4o s ¢ 0 . .
setthodate. . . . « o o v v o 0 0 0 v 0 v
set user and group ID, setuid,
seburerdimite. 0 . 00 o0 00w
set value of interval timer. . + o « « 4 & o o«
set variable in eavironmeat. 0 ..
setbuf, setbuffer, setlinebuf - assign buflening .
setbufler, setlinebuf - assign bufferingtoa . . .
setegid, setrgid ~ set nser and groupID.
setenv: set variable in environment.
setenid, setreid, setgid, aetegid, netrgid —set , .
setfsent, endfsent - get file system descriptor .

setgid, setegid, setrgid — set user and group ID.
setgrent, endgrent — get group file entry.
setgroups - set group access list.
sethoatent, endhostent — get network host entry.
sethostname — get/set name of current host.
setitimer — get/set value of interval timer. .
setjmp, longjmp — nox-local goto.
setkey, encrypt — DES encryption.
setlinebuf - assign buffering to a stream. .
setnetent, endnetent — get network entry.
setpgrp — seb process group.
setpriority — get/set program scheduling priority.
setprotoent, endprotoent — get protocol entry. .
setpwent, endpwent — get password fle entry. .
setquota - enable/disable quotas on a file system.
setregid - set real and effective growpI1D. . .,
setrenid — set real and effective user ID's.
vetrgid - set vrer and group ID.
setrlimit - control maximum system resource
setruid, setgid, setegid, setrgid — set user and
setservent, endservent — get service entry. , .
setsockopt — get and sct options on sockets.
setotate — better random number generator; .
settimeofday - get/set date and time. .
setuid, setenid, setruid, setgid, setegid, setrgid
sh, for, case, if, while, :, ., break, continue,
oh only),
shared strings. xstr
shel]. .
shell, . v 0o v 00 0.
shell. . .
shell command. . . .
shell {(command interpret
shell data.
shell directory stack.
shell directory stack.
shell macros.
shell, resuming its superior.
shell server.
shell variable.
shell variables.
shel] variables.
shell with specified command., .
shift: manipulate argument list.
shift, times, trap, umask, wait - command/ /exee,
ships and iron men.
show group memberships.
show host status of Jocal machines.
show how long system has beepup,
show last commands executed in reverse order. .
show network status,
shut down part of a foll-duplex connection. . .
shutdown - close down the system at a given time.
shutdowe - shut down part of a full-duplex
sighlock - block signals.

- .

L T)

L

- 2 =2 s s &
+ 2 s 8 s &

I S

LI TS R B}

L S R A T]
a v s v e 4 . .
LI

.

Y
*
.
.
.
LI T R B} a
-

.
-
-
-
.
-

L T
“« v .

. .

LI I B Y

s v e

* * 2 A s s & =

.
.
.
.
L B R R |
.
.
.

L T

“ s e s

L I I Y S R Y

+ 4 e e e s o

L R I T I R R Y

* -

BIEROM. 4 4 b o ¢ 4« s s v e e e e
signal. e e e a e e
signal. P e e e s s e s e e e e s
- xxxvi -

L T T T T . T T

* ¢ & 4 4 P & 4 s v e

.

2+ &+ % & 2w

L L T T S

L I T I T T T

D I T T T T e T O N T T TS S S)

« 2 & 2 a4 s & 3 e s & &

+ s+ =2 e .

getpriority(2)
setregid(2)
setrenid(2)
sh{1)
rdat;((s}
getty(8
stty(1)
date(1)
setnid(3)
ulimit(3C)
getitimer(2)
cah(1)
setbuf{38)
setbuf{3S)
setuid(3)
csh(1)
setuid(3)
getizent(3)
setuid(3)
getgrent(3)
setgroups(2)
gethostent{3N)
gethoatname(2)
getitimer(2)
setjmp(3)
crypt(3
setbuf(3S)
getoetent(3N)
setpgrp(2)
getpriority(2)
getprotoent(3N)
getpwent(3)
setquota(2)
setregid(2)
petrenid(2)
setuid(3)
getdimit(2)
setnid{3)
getaervent(3IN)
getaockopt(2)
random(3)
gettimeofday(2)
setaid(3)
sh(1)

nice(1)
xatr(1)
chsh(1)
coh(1)
mh(1C)
system(3)
csh(1)

coh(1)

csh(1)

coh(1)

cah(1)

cah{1)
hd(28C)
csh(1)

csh(1)

¢oh(1)

csh(1)

csh(l)

i)

aail{6
groups(1)
ruptime(1C)
uptime(1)
Sastcommil)
netstat(8)
shutdown(2)
shutdown(g)
shutdown(2)
sigblock(2)
togin(1)
pause(3C)
signal(3F)

Sun System Release 1.1

-

-

C

alarm — schedule

rignal - simplified software
sigvec — noftware

sigset mask - set current
prignal, sys_siglist - system
sigetack - set and/or get
kill - send

kill - send a

killpg - send

kill - send a

tighlock — block

sigpause ~ atomically release blocked
wait for interrupt.

vignal -
trigonometric functions.

null - data

brk, sbrk — change data segment
getdtablesige — get descriptor table
getpagesise — get system page
pagensise — print system page

size -

sces — front end for the

- ip - Disk driver for Interphase 2180
- Disk driver for Xylogics

spline — interpolate

snake,

accept ~ accept a connection on a

bind - bind a name to a

connect — initiate a conrection on a

Jisten - listen for connections on a

recy, recvirom, recvmag ~ receive a message from a
send, sendto, sendmsg - send a message from a

kétaockname - get

getaockopt, setsockopt - get and zet options on
socketpair - create & pair of connected

le -

sigzal — simplified
pigvec -

canfield, cfacores - the
qoort - quicker

qeort - quick

taort - topological

14
sortib -
sort -

comm - select or reject lines common to two
look - find lines in a

soelim — eliminate

indent - indent and format C program

~ creats an error message file by massaging C
whereis - locate

mem, kmem, mbmem, mbio - main memory and 1/O
line, circle, arc, move, cont, poiat, linemod,

df - report free dizk

expand, unexpand — expand tabs to

way. viork -

exec: overlay shell with

head -~ display first few lines of

truncate, firuncate - truncate a file to a

alarm - schedule signal after

Sun System _Release 1.1

Permuted Indez

signal - change the action forasigeal.
signal - simplified software signal facilities.
sigoal after specified time.
signal facilities.
signal facilities.
tignal mask.
signal messages. .
signal stack context.
signal to a process.
signal to a process.
signal to a process group. . . .
signal to a proceas, or terminate a process.
signals.
signals and wait for interrupt.
sigpause — atomically release blocked signals and
sigretmask ~ set current zignal mask.
sigatack — aet and/or get signal stack context. .
sigvec - software signal facilities. . . .
simplified noftware signal facilities.
sin, cos, tan, asib, acos, atan, atan2-

I R e O I

P R I T ST B I R)

P R T R T T R T R)

.
PR S)
L T T I R S S S I
L I T T B
L I I)

PR I S R TR)

L A

sinh, cosh, tanh - byperbelic functions.
) Y2
sixe. f s e e s e e h e e e e e e e e e e
T
BB 4 vt b s e s s e e e e e s e
sixe. e e s e e e e e e e e e e
site—siseof anobject file.

sire of an object file.
sleep - suspend execution for aminterval.

L T R I I L R IR)

sleep - suspend execution foran interval.
eleep ~ suspend execution forinterval.
SM 8CCS subsystem. e e e e e
SMD Disk Controller. . « ¢ v ¢ ¢ « o ¢ o s o 4 2 o«
SMD Disk Controllers. e e eee PR
smooth curve.
snake, snscore — display chasegame.
snacore — display chase game. e e s
B0CkEE. . v . o v v ke e e s
socked, . L o s s e e e e e e e s e s e
sockeh, . . . s s e e e e e e e e e e
pockeb, . . 4 v 0 a s s e e e e e e s e e e
Bockeb. & . 4 b i e e e e e e e s e s e s e
BocKkeb, . 4 . -t 4 s e h e e s e e e e e e e

socket-cuate an endpolnt for communication.
socket name.
socketpair - create a pair of connected sockets.
sockets.
sockels. v e s v e e e s e
soelim — eliminate .s0’s from nroff inpaut.
software loopback network interface.

software signal facilities. .
software signal facilities. e v e
so}itaire card game canfield,
80 . ..
aoi-?;
sott.
sort - sort ormerge files.

L R B T T T T B T

@ " & % & & & & 8 2 2 s & 3 8 8 8 s s s e =

.
L T T)
L R A T T R T)

@ 8 4 s 2 8 8 3 4 3 e s 8 8 8 8 s s e s e v

sort bibliographic database.
sort ormerge files.
sortbib - sort bibliographic databa.se. P e e e e s e s
sorted Bles. . . . 0 4 0 0 0 s 0 e e e e e e
sorted liat. e e e e e s s
BOUPCE. o o o 2 0 2 5 8 8 o 5 o ¢ 0 o v o o v o o 3

source. mkstr ., ,
source, bipary, andfor manual for program.
source; read commands from file.
space. .
space, closepl - .
space on file systems. .
spaces, and vice versa. P e e e e e

LI R R . T Y B)

L R N TR T I I]

graphics interface. flabel,

A e 4 e
.

LI A

spawn hew process in a virtnal memory elﬁcwnt
specified command. . . .
specified files,
specified length.
specified time.

I I L I T

- xxxvii -

signal(3F)
signal(3)
alarm(3C)
signal(3)
sigvec(2)
sigsetmask(2)
peignal(3)
sigatack(2)
kill{2)
kill{3F)
killpg(2)
Lill(1)
sigblock(2)
sigpause(2)
sigpause(2)
sigaetmask(2)
sigatack(2)
sigvec(2)
signal(3)
#in(3M)
sinh(3M)
null{4)
brk(2)
getdtablesize(2)
getpagesise(2
pagesize(1)
size(1)
size(1)
sleep(1)
sleep(3F)
sleep(3)
scea(1)
ip(45)
xy(45)
apline(1G)
snake(6)
snake(6)
accept(2)
bind(2)
connect(2)
listen(2)
recv(2)
send(2)
socket(2)
getsockname(2)
socketpair(2)
getsockopt(2}
socketpain(2)
soelim(1)
lo{4)
signal(3)
sigvec(2)
canfield(8)
quort(3)
qsort(3F)
tsort(1)
sort(1}
sorthbib(1)
sort(1)
sortbib(1)
comm(1)

look(1)

indent(1)
mkstr{l)
whereis(1)
csh(1}
mem(4S)
plot{3X)
di(1)
expand{1})
viork(2)
esh(1)
bead(1)
truncate(2)
alarm(3C)

January 1984

Permuted Indes

alarm - execute 5 subroutine after a
gwapon -

apell,
spell, spellin, spellont - find
speil, apellin,

split -

files. faplit ~

frexp, Idexp, modf -

uuclean - wucp

Ipq -

Iprm - remove joba from the line printer
printf, fprintf,

exp, log, logl0, pow,

log10, pow, sqrt - exponential, fogarithm, power,
m L]

number generator; routines for changing/ random,
scanf, facanf,

Controller.

sd — Disk driver for Adaptec

poepd: pop shell directory

puthd: push shelt directory

sigstack ~ set and/or get signad
imemtest —

gxtest -

diag ~ General-purpose

stdio -

htable - convert NIC

tee - copy

reset — reset the teletype bits to a sensible
atty, gtty — set and get terminal

fsync - synchronizse a file's in-core

if: conditional

fatad -

hashatat: print command hashing

iostat - report 1/0O

pedmon - graphical display of general sysiem
vmatat - report virtual memory

exit - terminate process with

petatat ~ show network

ps — process

stat, Istat, fotat — get file

ferror, feof, clearerr, fileno ~ stream
ruptime — show host

rwhod - system

wait, wait3 — wait for process to terminate or

halt -

patse -

icheck - file saystem

subroutines. dbminit, fetch,

strien, index, rindex — string operations.
rindex - string operations. strcat, strncat,
operations. strcat, stracat, stremp, streemp,
felose, fllush - close or flush a

fopen, freopen, {dopen - open a

facek, ftell, rewind — reposition »

fgete, getw - get character or integer from
gets, fgets — get a otring from a

putchar, fputc, putw - put character or word on a
puts, fputs - put a stringon a

setbuffer, setlinebufl - assign buffering to a
engetc - push character back into input

sed -

ferror, feof, clearerr, fileno -

rresvport, ruserck — routines for returning a
rexec ~ return

ar - Archive 1/4 inch

gels, fgets — get a

puts, fputs - put a

‘beopy, bemp, brero, ff2 - bit and byte

January 1984

.----ooocu.o----

specified time.
specify additional device for paging and swappicg.
spell, spellin, spellont - find spelling error.
spellin, apellout — find spelling errora.
spelling errors.
spellout - find spelling errors.
spline - interpolate amooth curve.
split — split & file into pieces.
split a file into pieces.
split » multi-routine Fortran file into individual
split into mantis2s and exponent.
spoo] directory clean-up.
spool queue examination program.
spooling quene.
sprintf - formatted output conversion.
sqri ~ exponential, loganithm, power, square root.
square root. exp, log,
srand - random number generator.
standom, initatate, setstate - better random .
sscanf - formatted input convemion.
at - Driver for Sysgen SC 4000 (Archwe) Tape
ST-508 Disk Coutrollers. . .
atack.
stack. .
stack context.
stand alone memory test, .
stand alone test for the Sun wdeo gnplucu board
stand-alone utility package.
standard buffered input/output p;chge
standard format host tables,
standard output to many files.
stat, 1stat, fstat — get file status.
state.
state. . . . 0 00 ..
state with that on disk. .
statement. . .
static information about the filenyatems,
statistics. . .
statistice. ..
statistics. . .
statistics. . .

. .

4 %+ 8 8 & e m s 8

.
.

LI I I
- v o

-

I T R S T

LI T R

LI R

P A)

LI I T O I I Y Y

A = 4 4 % & + ® & s s = 5w

L I R]

« 4 s

T R T I T T) “ ¢ 8 e

4 4 s 2 s 6w w B v LI I]

« & v » . .

L)

EIE I R T B S}

.
LI T . .
-
-

P R e
P T R SR
e 88 e e e e
. ot s]
.
P R

L

statua,

P T T T]

status, .. .
atatus, .. [T PR . .
status. . P T .
status lnqumea. s h e s e e . .
status of local muhlnen e s s v e e e e e .

status server. .
stdic - standard buflered |nput/outpnt package .
sticky — executable files with persistent text.
stop.
stop: halt a job or process.
stop the processor.
stop until signal.
storage consistency check.
store, delete, firstkey, nextkey - data base , .
strcat, strncat, strcmp, stracmp, strepy, stmepy,
stremyp, strocmp, strepy, struepy, strlen, index,
strepy, strmcepy, atrlen, index, rindex - string
stream, . .
stream.
stream.
stream.
stream.
stream.
stream.
stream.
stream. . . . e
stream editor.
stream status jnquiries.
stream to a remote command.
stream to aremote command. 0. ...
Streaming Tape Drive.
string from a etream. .
string on a siream.
string operations.

+ B & 8 4 4 & % & 8 s e & & 8 ¥ s s e ® =
LI T R
P T T R T T B S

.
.

L . I R R S R R R R }
O I I A L

-

L + .

LI R I

gete, getchr,
putce,

LI I I)

sethaf, ...

LT Y
. s s .

-
L L TR R I Y Y R Y

. . -

.

a s s

- s .

- xxxviii -

a e+ r ¥ & s 2 = =

a s+ 8 = % »

P T T S

R T I L T R T T R ¥

alarm(3F
swapon(8
speli(1
epeli(l
spetl{1
spell{1)
spline(1G)
oplit(1)
split(1)
faplit(1)
frexp(3)
uuclean(3C)
Ipg(1)
Ipm(1)
printf(33)
expf{3M
expl SM}
rand(3C
rapdom(3)
scanf(3S
ot(45)
sd(45)
cah(l}

csh(1
sigatack(2)
imemtest{3s)
gxtest(8s)
diag(8s)
intro(3S)
htable(3)
tee(1)
stat(2)
reset(1)
atty{3C)
faync(2)
csh(1)
fatab{5)
csh{1)
iostat(8)
perfmon(1)
vmstat(8)
exit(3F)
netatat(s)
pa(1)
atat{2)
ferror(33)
ruptime(1C)
rwhod(3C)
intro(35)
sticky(3}
wait{2)
cah(1)
halt{8)
pause(3C)
icheck(s
dbm(3X
string(3)
atring(3)
string(3)
fclose(38)
fopen(33)
fseek(38)
getc(3S
gets(3s
putc(3S)
puts(3S)
aetbuf{35)
ungetc(3S)
sed(1)
ferror(3S
remd(3N
rexec(3N)
ar{4S)
gets(38)
puts(3S)
batring(3)

Sun System Release 1.1

-

strocmp, strepy, strnepy, ut.rlcn, index, rindex -
extract sirings from C programs to lmplement shared
other binary, file,

sirings, xstr - exiract

stringe - find printable

basename -

streat, strucat, stremp, strncmp, strepy, stracpy,
index, rindex — string operations. sircat,

string operations. strcaf, stracat, stremp,
streat, stracat, stremp, stracmp, strepy,

inews —

postnews —

alarm - execute a

store, deleto, firsthey, nextkey — data base
-

sces - front end for the .SM SCCS

sum -
du ~
quot -

en -
bw -

colordemon - demonntrate

g~

cons ~ driver for

bsuncube - view 3-D

bdemos — demonstrate

mouse -

gxteat - stand alone test for the
win -

sun - is current machine s
suntools — the

sync - update the
sync - update the
update - periodically update the

sync - update

suspend: suspend a shell, resuming its
introduction to special files and hardware
routing — system

suapend:

sleep -

sleep -

sleep -

intro -

swab -

ewapon - add 2

paging/swapping.

sWaAppidg.

swapoa - add a swap device for.interleaved plgln;/
swapon - specify additional dévice for paging and
breaksw: exit from

case: selector in

default: catchall clause in

- endew: terminate

readlink - read value of a
symlink - make
strip - remove

link,

disk. fzync -
select -
c2h - a sbell {command interpreter) with C-like

messages. Perror,
st - Driver for

Sun System Rglease 1.1

Permuted Indez

string operations. strcat, strmcat, stremp, . . . - . .
strings. xstr— . . .
strings - find printable strings in an object, or
strings from C programs to implement shared .
strings in an object, or other binary, file. . . .
ptrip - remove symbols and relocation bits. . .
strip filename affixes.
strlen, index, rindex — string operations.
strocat, stremp, strocmp, strepy, strocpy, strien,
strocmp, strepy, strocpy, stien, index, rindex -
strocpy, stren, index, rindex - string/
stty - set terminal options.
atty, gity - set and get terminal state.
su - substitute user id temporarily. .
submit news articles. . .
submit news articles,
subroutine after a specified time. . .
subroutines. dbminit, fetch,
substitute user id temporarily e
subsystem.
sum - sum and count blocks in a ﬁle.
sum and count blocksin a file.
summarise disk usage.
summarize fle system ownership. . .
sun - is current machine a sun workatat:on‘
Sen 3 Mb/s experimental Ethernet interface,
Sun black and white frame buffer.
Sun Color Graphica Diaplay. . « « ¢« « ¢ v v ¢ v 4 + &

L L]

.
.
.
+ % 2 s 1 v s s a s 4 &
.
-

e o *
L N
.

e ® % + + & a4 s+ = s @

« s = w »

LR

P I S)

« s % b s

« * 4 & & = 82 o8 = »

LR I R I .

« s v 4 4 & 8 »

PR T S T)

.
-
-
.
.

P L)

4 % & % =+ 4 * & 3 e =

a8 s & 4 4 e

L . IR)

Sun color graphics interface.
Suncomsole. « 4 o+ 4 e s 0 s w0 e e e .
BEB IO « o . b e s e e h e e e e e e .
Sun Monochrome Bitmap Display.
Sunmouse. . . 4. . or 0. . PR . .

Sus video graphics board
Sup window rystem.
san workstation. . . .
sendools - the Suntools window environment.
Suanteols window environment.
auper block.
super block.
super block.
super-block.
superior.
support.
supporting for local network packet routmg
suspend a shell, resuming its superior. . .
suspend execution for an interval.
suspend execution for an interval,
suspend execution for interval.
suspend: suspend a shell, resuming its superior. ..
swab - swap byles. . . .
awap bytes.
swap device for interleaved paging/swapping. . . .
swapon ~ add a swap device for interleaved . . .
awapon — ppecify sdditional device for paging and

-
L L
LI L I)

.

LR R}
L L
L A I L)

I T I T R S

P S R T

L T T

.
. .
L T S S R) .
. -
LI @ - -
F T R T

L R R R B]

L T R T I T)

TR I R I)

BWAPPIRG: + » = 4 ¢ + ¢ 0 ¢ 8 2 s o s s PN
SWADPIDE., - « = « o o « o ¢ 0 4 o 8 v o v 4 o .
D21 71 Y
217 VA
L2171 VA
switch.+ 4" c ks e e e s es .

switch: multi-way commnd bnnch
symboliclink.
symbelic link to a file.
symbols and relocation bits.
symlink - make symbolic link to a file.
symlnk ~ make a link to an existing file. . .
sync — update super-block.

sync - update the super block.
sync - update the super block.
synchronise a file's in-core state with that on
synchronouns I/O multiplexing.
syntax.
syscall - indirect syatcm call.
sys_errlist, sys_nerr, ertno — system error .
Sysgen SC 4000 (Archive) Tape Controller,

PR T T

P T T T T T T T)

D R Y

T T

LI] L R L

.
.
.
*
-
.

L N I I
.
a
.
-
.

L I

.

- xxxix -

string(3)
xstr{l)
strings(1)
xatr(1}
strings(1)
otrip(1)
basename(1)
string(3)
string(3)
string(3)
string(3)
stty(1)
sity(3C)
su(l)
inews(1)
postnews(1)
alarm(3F)
dbm(3X)
su(l)

secs(1)
sum[l}

sum(1

du(1)

quot(8)
sun(1)

en(45)
bw(4S)
¢olordemos{6)
cg(48)
cons(4S)
bzuncube(8)
bdemos(6
mouse(45
gxtcxt{Ss)
win(45)
sun(l)
suntools(2)
auntoolagl)
synd(1)
2ync(8)
update(8)
aync(2)
csh(1)
intro(4)
routing{4N)
csh(1)
sleep(1)
sleep(3F)
sleep(3}
cah(ls
swab(3)
swab(3)
swaponfiz)
swapon(2}
swapon{8)
swapon(2)
swapon(8)
csh(1)
cshil)
czh(1
cth li
csh(1
readlink(2)
symlink(2)
strip(1)
symlink(2}
link(3F)
syne(2)
syne(1)
syne(8)
fsync(2)
aelect(2)
¢sh(1)
syacall(2)
perror(3)
8t{43)

- January 1984

Permuted Indez

perror, sys_errlist,
prignal,
mti -
Centronics printer interface. vpe -
bostid — print identifier of current host
hostname - set or print kame of current bost
mkfs — construct a file
mkproto - construct a prototype file
mount, umount — meunt or remove file
mount, umount ~ mount and dismount file
newls - construct a new file
savecore — save & core dump of the operating
setgnota — enable/disable quotas on a file
tip, cu — connect to a remote
tunefs — tune up an existing file
users — compact list of users who are on the
vadvise - give advice to paging
who - who is on the
win — Sun window
df - report free disk epace on ﬁlc

sysleg -
kgmon - generate a dump of the opemmg
rehash: recompute command bash
unhash: discard command hash
- keyboard translation table format and defauh
mtab - mounted file system
kbd - keyboard translation
crontab —
getdtablesize - get descriptor
htable - convert NIC standard format host
route - manually manpipulate the routing
term - terminal driving
term ~ terminal driving
thl - format
gettable - get NIC format boet
expand, unexpand - expand
ctage — create a

tatk

functions. sin, cos,

sinh, cosh,

tar -

tar -

st - Driver for Sysgen SC 4000 {Archive)
ar - Archive 1/4 inch Streaming

tm - tapemaster 1/2 inch

tp - DEC/mag

mtio - UNIX magnetic

tread, twrite, trewin, tskipf, tatate — {77
mt — magnetic

tm -

deroff ~ remove nroff, troff,
77 tape 1/O. topen,

tektool —

reset — reset the

lzst — indicate last logins of nsers and
lseck,

index, rindex, lnblak, len -
operations. opendir, readdir,

telnet - wser interface to the
telnetd - DARPA

su - substitute user id
tmpnam — create a name for a

January 1984

tape archive file format. .
tape archiver,
Tape Gontroller.
Tape Drive.
tape.drive, P
tape formats.
tape interface.
tape [/O. topen, tclose,
tape manipulating program.
tapemaster 1/2 inck taps drive.
tar - tape archive file format. .
tar - tape archiver.
tbl - format tables for nroff or trofl.
tbl and eqn constructs.
tclose, tread, twrite, trewin, takipf, tatate -
tcp - Internet Transmission Control Protocol.
tee — copy standard cutput to many files.
tektoo] - Tektronix 4014 terminal emulator tool.
Tektronix 4014 terminal emulator tool. .
teletype bits to a sensible state. .
teletypes. . . o 4 v 4 e b b s e e e e
tell - move read/write pointer. .

tell about character objects.
telldir, seekdir, rewinddir, closedir - dlredory
telnet — uzer interface to the TELNET protocol,
TELNET protocol. . « « s o v ¢ 0 s o o »
TELNET protocol server. . . . + ¢ & « + »
telnetd ~ DARPA TELNET protocol server. .
bemporaTily. « o ¢ 4 4 2 % ¢ 4 s 4 4 s a
temporary file, ., , s b e s w e
term ~ terminal driving tables for nrofl. .

+ 0.

.

.
LI Y
.

“ e

«a e & 4 v 8 = ® 0
« + s+ 2 W e

syslog — log systems Messages. . . « + + + s o o+ o«
syslog - make system logentry. . o - ¢ o o o 0 v 0
syslog, openlog, closelog — control systemlog.
BYS_ReEIT, IThO — Sy3tem eITor mossaged. .+ + « « » « » »
sys_siglist — system signal messages. . .+ + o o o o 4 .
Systech MTI-800/1600 multi-terminal interface.
Systech VPC-2200 Versatec printer/plotterand
BYSLEIM. .+ - v 4« s s ks s b s e n et s
BYMEM. . + o s s+ s s s s e v u s s s e e s s e
LT T I T T O L A
ly“em- P I R T TR T ST ST R T R B T
BYSEEM. .« .+ - b 4 e s s e e s v ke s s e s s e
BAYSEEID. o s o+ s ¢ b s s s 8 v v e r s n e e es
system. . . . O
SYBLEM. & o o 4 5 ¢ ¢ 8 s 0 4 b o s r s v e s e s
BYRUOML. o « + o 0 e s o e n e b e e e a s e e
T T T I I R S
32T | T N A
) 1.1 - T T T I R B N
BYSEEDL. o + o 4 4 v b s s 8 s a e e s v s as e
[}t M T I T T TS T B S S
system. R L R R R R R T T T R R R B .
IVRLEINE. « « o 5 ¢ 2 0 2 8 s 6 b s e e 02t r e
IYROMIMENIEELE. « « ¢ « ¢ 2 o s« v s 6+ s s
system'aprofilebuffers. .« . ¢ v 4 00 e v 000w
BaBlE. . v v e h e s e b s e n e s e e e s
table. ¢ v e i ke s e et e e
table. Kbd & 4 4 4 s e r e s e s e s e s e e s
table. e 8t b e e r e e s
table format and default table et it e s e e e
table of times to run periodic jobs. . . .+ . . - . .
tablogi®e, . « & ¢ v i st e e e e
tables. e e b e s e u s e e s e e e e
tables. T T T
tableaformrofl. . ¢ . 0 o s s b e e e e e e
tablesformrofl. . . ¢ o v 0 b v e b e e e s e e
ublelfornrolortroﬂ Gt s s e s e s e s s e e
tablesfremabost. . . o . & i o v o v s e e e
tabe to spaces, and vice versa. . . ¢ ¢ - 4« 0 v s e
tagafile. . . v v v v v s i e e s e s e e
tail ~ display the last part of afile.
talk -talktoanother user. . . . 4 ¢ o 040 e .0
talk to anotheruger. e e e e
tan, atin, acce, atan, atan2 - irigonometric
tanh - hyperbolic fupctions. PR

P S T T S T S S S Y S

® 4+ & 2 % % &+ 82 & & &

I T T T T T T S T R R
* & s = s 4 & B 3 o+ & & % ®

P T T T T Y

PRI S B) .

P O A T L T)

e o ..

.
.

.

LI - o
.

-

e T T T T e I L I I N L I A L I I L

4 8 ¥ & & 2 % & 4 % * & & 3 2 e = & & 4 & B2 2 A T s s o= o= 4
e 8 8 B 8 B 8 % 2 2 & 2 s 4 = ® & s+ s s 8 F e

“ @ § & ®w @ 8 @ & & 4 B B & 2 & s a =

PR T T T}

-xla

syslog(8
ayslog(1
ayslog(3s

perror(3
peignal(3)
mti{&S)
vpc(4S)
hostid(1)
hostname(1)
mkfs(8)
mkproto(8}
moun${2}
mount(8}
newfs(8)
savecore(s)
setquota(2)
ip(1C
tunefs(8)
users(1)
vadvise(2)
who(1)

win(4S)

df(lg

syslog(8)
kgmon(8)
csh(1)

csh(1)

kbd(5)
mtab(5)

xbd(5
crontab{5)
getdtablesize{2)
hiable(s)
route(8C)
LSterm(5)

gettable(8C)
expand(1}
ctags(1)
tail(1)
talk(1
L)
sin(3M)
sinh(3M)
tar(b
tar(l
at{43
ar{43
tm(4S)
tp(5)
mtio{4)
topen(3F)

taisd

;'.’r}}
:ibl

ero
topeﬂEM“}
tcp(4P)
teof 1
tektool(1
tektool{ ;
reset(1)
last(1)
laeek(2)
index(3F)

directo 3)
telnet(1
telnet(1

telnetd{SC
telnetd(sc
su(1)
tmpnam(3C)
term(5)

Sun System Release 1.1

-

O

ttyname, isatty, tiyslot - ind name of 2
vhangup - yirtually “hangup” the cerrent control
worms - animate worms on a display
termcap -

taet — establish

gettytab -

pty - preudo

term -

term ~

tektool — Tektronix 4014

tgetnum, tgetflag, tgetsir, tgoto, tputs -
ttys -

mti -~ Systech MT1-800/1600 multi-
tty - general

gotty - set

fty - get

stty — set

ttynam, isatty - find name of a

clear - clear workstation or

script — make typescript of

otty, gity - set and get

ttytype ~ data base of

wait - wait for a process to

exit -

kill - send & eignad to & process, or
output. exit -

abort -

endif:

end:

wait, wait$ - wait for process to

exit -

endaw:

imemtest ~ stand alon¢ memeory

isinf, isnan -

gxtest ~ stand alone

quis -

sticky - executable files with persiatent

ex, edit -

mors, page — browse through a

fmt - simple

nroff -

m -

o server.

- terminal independent operation routines.
independent operation routines. tgetent, tgetnum,
terminal independent operation routines, tgetent,
operation routines. igetent, tgetnum, tgetflag,
routines. tgetent, tgetaum, tgetflag, tgetsir,
fsync - synchronize a files in-core state with
ccat — compress and uncompress files, and cat
w - who is on and what

more, page - browse

alarm — schedule signal after specified

alarm - execute a subroutine after a specified
at — execute commands at a later
gettimeofday, settimeofday — got/set date and
shutdown - close down the system at a given
time, fiime — get date and

time -
getdate - convert
time:

idate, itime - return date or

profi} - execution

timed - DARPA

asctime, timegone, dysize - convert date and
geiitimer, setitimer — get/set value of interval

times — get process
atime — sct file

Sun System Release 1.1

Permuted Indez

term - terminal driving tables formroff.
termcap - terminal capability data base.
terminal.

O] L)

terminal, . - v . e e e e e e e
terminal. . . . b e e e e e e e e e s e e e
terminal capability data base.

terminal characteristics for the environment. . . .
terminal configuration data base.
terminal driver.
terminal driving tables for nreoff.
terminal driving tables for nroff.
terminal emulator tool.
terminal independent operation routines. tgetent, .
terminal initialization data. .
terminal interface,
terminal interface. . . .
terminal mode. . .
terminal pame. . .
terminal options. .
terminal port. . .

4+ & 4+ s 5 s a e »

L)

+ ® 2 s a2 w0 .

P R T T)

PR S
.

P I A

----- LI R

terminal screen.
terminal session.
terminal state. . .
terminal types by port.
terminate.
terminate a process,
terminate a process. . -
terminate a process afier flushing any pending
terminate abruptly with memory image.
terminate conditional.+ . ..
terminate loop.
terminate or stop.
terminate process with statue,
terminate switch,
test.
test - condition command. e e e e
test for indeterminate floating point values.
test for the Sun video graphics board. . . .
test your knowledge.
text.
texteditoT. .+ -« . - 4 b 4 b e e e e s e
text editor.
text file.
text formatter.
text formatting and typesetting.
text formatting macros. . . « « . ¢ 0 v w0 oo o
tftpd - DARPA Trivial File Transfer Protocol .
tgetent, tgetnum, tgetflag, tgetair, tgoto, tputs
tgetBag, tgetatr, tgoto, tputs ~ terminal
tgetnum, tgetfiag, tgetatr, tgoto, tputa - . . .
tgetstr, tgoto, tputs - terminal independent
tgoto, tputs — terminal independent operation
that on disk.
them. compact, uncompact,
they are doing.
through a text file. . . .
time.
time,
time.
time.
time.
time. . @ v v s v b b 4 b e e
time — time a command. .
time a commaed.
time and date from ASCII. . .
time command.
time, ftime - get date and time.
time in numerical form. . . .
time profile,
Time server.
time: time command.
time to ASCIL. ctime, localtime, gmtime,
timed - DARPA Time server.
timer.
times.
times,

2 2 4 v 8 e

PRI RN T R}

s s 3 ® & 4 & &£ ¥ s @
s & e 4 + & 8 % + b e

s 4 & + & & s = 8

. . v 4.

.
LR S B R B
LI A R A]

.

.
e 4 4 4 5 8 8 s & v e

.
.
-
-
.

PO T T T T T S T TN B B B

.

P N L .
R N T I R R R TR I
LI e % & 4 8 8 3 8 4 w s s a2 e =

.
s % 4 4 % % + # = a4 s 8 s e @ = ou . .
.

LTI I

« + & 4+ 8 % & = e

.
.

P A L A R Y
.

P T T

L N

8 s % s .
+ % 2 & s @

P

P

.
« s s ¥ 2 s s e s e .
.
*

A+ s 4 s a8 .
D N)
I I S

P N LI)

.
.

P S R R I I |
. s . .
.

P

- xli-

term(5)
termcap(5)
ttyname(3)
vhangup(2)
worms(6)
termcap(5)
taet(1)
gettytab(5)
pty(4}
;term(5)
term(5)
tektool(1)
termcap(3X)
ttys(5)
mti(4S)
tty(4)
getty(8)
tty(1)
atty(1)
ttynam(3F)
clear(1)
script(1}
stty(3C)
ttytype(5)
wait(3F)
exit(2)
kili(1)
exit(3)
abort(3F)
coh(l)
csh{l)
wait(2)
exit(3F)
csh(1)
imemtest(8s)
test(1)
isinf(3)
gxtest(8s)
quix{8)
sticky(8)
ed{l%

ex(1
more(1)
fmt(1)
arofi(1)
ma(7}
titpd(8C)
termca.p(axg
termecap(3X
termceap(3X)
tcrmcapfsx
termeap(3X
fayne{2)
compact(1)
w

1
more(1)
l.larmgSC)
alarm{3F)
at(1)
gettimeofday(2)
shutdown(8)
time(3C)
timcgl)
time(1)
getdate{3)
cah(1)
time(3C)
idate(3F)
profil(2)
timed(8C)
cah(1)
ctime(3)
timed(8C)
getitimer(2)
times(3C)
utime{3C)

January 1984

Permuted Indes

atime — set file

crontab - table of
Jexport, login, newgry, read, readonly, set, shift,
ASCIL ctime, localtime, gmtime, asctime,

Jizentrl, isancii, isgraph, toupper, tolower,
Jisprint, isentrl, isascii, isgraph, toupper,
tektool — Tektronix 4014 terminal emulator
tatate - £77 tape [/O.

tsory ~

ispunct, isprint, iscntr, isascii, isgraph,
tgetent, tgetnum, tgetllag, tgetstr, tgoto,

ptrace — process

trpt - transliterate protecol
goto: command

fip - file

fipd - DARPA Internet File
tftpd - DARPA Trivial File

tr-

kbd - keyboard

pi — Paseal interpreter code

trpt -

tcp - Internet

- encode/decode a binary file for
trpfpe, fpecnt -

login, newgrp, read, readonly, set, shift, times,
1/0. topen, tclone,

trek -

topen, tcloze, tread, twrite,

sin, cos, tan, arin, acos, atan, atan —
titpd - DARPA

thl - format tables for nroff or

checkar - check nroff/
deroff — remove nroff,
faults.

false,

truncate, ftruncate -

specified length.

false, true - provide

true, false - provide

chasé -

environment.

topen, tclove, tread, twrite, trewin,

topen, tclose, tread, twrite, trewin, {kkipl’,

terminal,
ttyname, isatty,
tusels -

topen, tclone, tread,
file — determine file
types — pnmitive system data

ttytype — data base of terminal
script — make

man — macros to

eqo, neqn, checkeq -

troff -

proff - text formatting and

getpw — get name from

January 1984

times.
times - get process times.
timea to run periodic jobs.
times, trap, umask, wait - command ianguage.
timexone, dysize — convert date and time to
tip, cu ~ connect to a remote zystem.
tm - tapemaster 1/2 inch tape drive.
tmpnam - create 2 pame for a temporary file.
toaschi - character clasification and convemion/
tolower, toascii — character classification and/
tool.
topen, tclose, Sread, twrite, trewin, takipf,
topological sort.« s 4 0 44w ..
touch - update date last modified of a file. .
toupper, tolower, toascii — character/ [isspace,
tp - DEC/mag tape formata,
tputs - terminal independent operation routines.
tr - translate characiers. .
trace. . .
trace.
transfer.
transfer program.
Transfer Protocol server.
Transfer Protocol server.
translate characten. . .
trapolation table format and dehult table
translator.
transliterate protocol trace.
Transmission Control Protocol.
transmission via mail. nuencode,uudecode
trap and repair Boating point faulte.
trap, amask, wait - command language. /export,
tread, twrite, trewin, takipf, tstate - {77 tape
trek ~ trekkie game.
trekkiegame,
trewin, takipf, tetate - 77 tape l/O .
trigonometric functions.
Trivial File Transfer Protocol server.
troff.
troff - typeset or format documenta
troff files.
troff, tb! and eqn constructs.
trpipe, fpecnt - trap and repair floating point
trpt - transliterate protocol trace,
trae ~ provide truth values.
true, false - provide truth values.
truncate a file to a specified length.
troncate, firuncate - truncate a fileto a
truth values.
truth valges. . . .
Try to excape to kll!er robota
toet - establish terminal characteristics for the
tskipf, tatate - 77 tape 1/O.
tsort - topological sort,
tatate - £77 tape 1O,
tty — general terminal interface.
tty - get terminal pame. . .
ttynam, isatty - find name of a terminal port.
ttyname, isatly, ttyslot — find name of a2 . .
ttys - terminal initialisation data.
ttyslot — find name of a terminal, . .
ttytype ~ data base of terminal types by port.
tune up an existing file system.

4 4 % 5 9 2 & & F T B & " oo
L B)

L L R)

« . s 0w

-« s e .

2 » 2 & & & 4 &

L . I T S R R I S B

* e s s

5 s 8 8 8 s e e
. ..
[B I)
LI B A

.

-
LI B I}
.

a .

L
« 2 s e s s
« s 8 % a2 e e
a2 e s s s
« s 8 2 e s
¢ 4 6 a 2 a

« s ¢ s 4 s

L T T S B I BT
L Y

.
.
.
-
.
.
.
-
.
.
.
* 2 8w
.
.

L I T T T

D . R I I 1

. L)

a4 s % e s u

« o+ om w e

-
L
.

L T T)

« a2 4w & s s s s s e 2 e =

« a2 s 8 e+ 2 2 *

I R

DR T

..

4+ e 4 4 2 e e 2 % e

L Y

L)

R T S T

« s a2 s o+

. o o .
« e+ e s a

LI A I
L N

- v s

LI I I

PR T TR

LR S)

4 e o s

tunefs — tune ep an existing file system. . .
twrite, trewin, takipf, tstate - £77 tape [/O,
L2 4+
EYPER. ¢ 4 v e a i b e s e e s e

types - primitive system data type'
types by port. .
typescript of terminal session.
typeset manual
typeset mathematics,
typeset or format documents.
typesetting.
udp ~ Internet User Datagram Protoco!
uid.

I

+ = 4 s s 2
« e« s 8 =
s & 8 s & 0w

. s 8 % s

L

LR R L
I T T R S T T R T T T S R T T T T T T S SO

4 = 2 + + % & =2 & & 8 8 = @

.
.
.
.
.
.
.
.
.
-
+

L I R L I R S

- xlii »

L I L T T I L T T T S S A

L R T S R N T T T T T T T S S T T S O S T

L I e e I I L I I T I e T T T

L N T T T T T S,

4 4 a2 s & % 2 = & e o ¥ s = =

L T T O T T T S S O S T S S N U T T T T T S TSP S S U Y

LI I I R I T T R T T I T T T T T

utimes(2)
times{3C)
crontab{5)
sh(1)
ctime({3)
tip{lC)
4m{45)
tmpnam(3C)
ctype(3
ctype(S
tektool(1
topen(3F
tsort(1)
touch(1)
ctype(3}
tp(5)
termeap(3X)
(1)
ptrace(2)
4rpt{8C}
coh(1)
1p(1C)
fipd(8C)
titpd(8C)

tcp(4P)
uunencode{1C)
trpfpe(3F)
sh{1)
topen(3SF)
trekgﬁ

trek(6
topen(3F)
rin(3M)
tftpd(3C)
tbi(t)
tmﬁ(l)r()
checknr(1
derofi(1)
trplpe(3F)
Lrpt(8C)
false(1)
true(1)
truncate(2
tmncueiz}
false(1)
true(l)
chase(8)
taet(1
topen(3F)
tsort(1)
tog{el}(SF)
tty(4
ttynam(3F)
ttyname(3)
ttys(s)
ttyname(3)
tytype(5)
tunefs(8
tunefsisg
topen(3F)
file(1)
ty]m{s;
types(b
ytype(s)
script(t)
man(7)
i)

10
arofi(1)
udp(4P)
getpw(8)

Sun System Release 1.1

-

-

pewgrp, read, readonly, set, shift, times, trap,
mount,
mount,

and ¢at them, compact,

compact, uncompact, ccat - compress and
ul - do

unget -

expand,

mktemp - make s

gethostid ~ get

flush - flush output to a logical

fseck, fiell — reposition a file on a logical

et fgetc - get a character from a logical
fputc - write a character to 8 FORTRAN logical
getfd — get the file descriptor of an external

reboot —

system - execule a
uux - unix to

uucp, uwulog - unix to
mtio -

analyse - Virtual
aux -

nuep, nnlog -

rmdir, rm - remeove E
rm, rmdir - remove

mupmap -

TECREWD — Teceive

TECRews — Teceive

uptime ~ show how long system has been
auclean - uucp spool directory clean-
tunefs - tune

tonch —

sync -

sync -

sync¢ -

update - periodically

du - summarize disk

miscellaneons - miscellaneons

news -

checknews - check if user has news on the
login: login new

talk ~ talk to another

write — write to another

seteuid, setruid, setgid, setegid, setrgid — set
udp - Internet

environ —

checknews ~ check if

su ~ substitute

getuid, getenid - get

setrenid — set real and effective

telnet -

ulimit — get and set

getuid, getgid - get

sail - multi-

whoami — display effective current
adduser - procedure for 2dding new
/bin/mail - send or receive mail among
wall - write to all

system,

Sun System Release 1.1

Permuted Indez

ul - do undedining.
ulimit - get and set user limits.
nmask - set file creation mode mask. .
umask: change or display file creation mask.
umask, wait - command language. fexport, login, .
umount - mount and dismount file system.
umount — mount or remove file system.
unalias: remove aliases.
uncompact, ccat - compress and uncompress files,
uncompress files, and cat them.
underlining. .
undo a previous get of an SCCS file,
unexpand - expand tabs to spaces, and vice versa. .
unget ~ undo a previous get of an SCCS file.
ungetc - push character back into input stream. . .

I R N N I T T T S A)

L T L)

P

I R T)

L)

unhash: discard command hash table.
uniq - report repeated lines in a file.

unique file name. . .
upique identifier of current host. . .

“ s & s = e »

.
.
L O
.
.

P

UNIX magnetic tape interface.

UNIX postmortem crash analyzer. .
unix to unix command exccution. .
unix to unix copy.
unlimit: remove resource limitiationa.
unlink — remove & directoryentry.
vnlink - remove directory entry.
un!ink} directories or files.
unlink) files or directories. . . .
uamap pages of memory. . . .
unprocessed articles via mail. .

L A)

BRIk, & v e v e e e e e e e s . ..
MOIb. ¢ o o 5 2 ¢ 4 8+ 2 8 o = s oa e . .
T 1 ..
anit. PubC, . s e e e e e s b e s e e s e e
apit number. e v v s e e e e s e e e e PN
uaits - conversion pmgrzm. s e e s e e s e e e
UNIX bootstrapping pmceduren e e e s e e e
UNIXcommand. . + « ¢ ¢« ¢ ¢ ¢ o 5 o o ¢ s + 0
unix command execution. . . . 4 0 4 b e b b0 0.
BOIX COPY. « o = = o « & o s + s ¢ s 0 + 0 ¢ ¢ 1 v

" s .

unprocessed articles via mail.
unset: discard shell variables.
unseteny: remove environment variables.
LY T
T
up an emtlng file system.
update - periodically update the super block.
update date last modified of & file. . .
apdate super-block.
update the super block.
update the super block.
update the super block.

...................

L T R R R T Y T B R}

L A L
L O L I
L B N I T

.

L S TR S R R T Y A

uptime - show bow long system has beenup.
UOREL, & o & 4 o # 4 5 2 8 s 2 u o 0 s vk . e s
useful information pages. ¢ . . o 0 0. ..

USENET network news article, utility files.
USENET news network. .
aser,
user,
USE. < v v v o s o s &

user and group ID. setuid,

Uszey Datagram Protocol. .
user environment.
user has news on the USENET news nctwork
user id temporarily.
urer identity.
el ID'M. . v i v e e b ke e s e e e e e s e
user interface to the TELNET protocel.
user limits,
user or group ID of the cailer.

user wooden ships and iron men.
username.
userr,
user,
asers, + e s s e % =
users — compact list of users who are on the

.. -
P)

P
oo s s s

. . .
P
e e e s s

“ a e e e e
« s e & & & 4

“ v oo -

L R T T R R

* 4 4 ® 4 ¥ 4+ % s =2 & s & s a2 s s =

e 8 & 4 + & + 8 3 8 5 s 4 ¥ & e v s s .

4+ s % 4 a » s 8 8 a4 r e oa e . P
LR R O R e e L] T
R R R R T T T R Y S S]
P T S

......

- xhiii -

ul(1)
ulimit(3C)
umask(2)
csh(1)
3h(1)
mount(8)
mount(2}
csh(1)
compact(1)
compaci(l)
ul(1)
unget{1)
expand(1}
unget(1)
angetc(35})
cab(1)
uniq(1)
mktemp(3)
gethostid(2)
flush(3F)
faeck(3F)
getc(3F)
putc(3F)
getl'd{SF)
units(1)
reboot(8)
system(3F)
nux{1C)
nucp{1C)
mtio(4)
analyse(8)
aux(1C)
aacp(1C
csh(l;())
unlink(3F)
unlink{2)
rmdir{1)
rm(1)
munmap(2)
recnewu{l}
recnews(8
cah(1)
csh(l)
uptime{1)
vuclean(8C})
tunefz(3)
update(8)
touch(1)
sync(2)
sync(1)
sync(8)
update(8)
uptime(1)
duf1)

intro
ncwsgsg
checknews(1)
czh(1)
talk(1}
write(l)
setuid(3)
udp(4F)
environ(5)
checknews(1)
su(1)
getuid(2)
setrenid{2)
telnet(1C)
alimit(3C}
getuid(3F)
sail(6)
whoami(1)
adduser(8)
binmail(1)
wall(1)
usen(l)

January 1984

Permuted Indez

last - indicate last logins of
getlog — get

users — compact list of
vi — view a file without changing it

news — USENET network news article,
diag - Genenal-purpose stand-zlone
getrunage - get information about resource
vtimes - get information about resource

rmai! - baadle remote mail received via
uuclean -

transmission via mail. nuencode,

uueacode — format of an encoded
for tranamission via mail.
wucp,

val -

abs - integer absolute

fabs, floor, ceil - absolute

geteny ~

readlink - read

getenr — get

getitimer, setitimer - get/set

set: change

false, true - provide truth

isnan - test for indeterminate Boating poind
fimax, dfmip, dimax, inmax - return extreme
true, falve - provide truth

htonl, hions, ntobl, ntohs - convert

set: change value of shell
varargs —
seteny: set
@: arithmetic on shell
unset: discard shell
-unseteny; FemMove eevironment
getenv ~ get value of environment
vax - is current machinea
uueﬂ progiaili
lint - 4 © prog
expand, unexpand - expand taby to spaces, and vice
= lkon 10071-5 Muitibus
interface. vpe - Systech VPC-2200
gét —geta
what - |dent|fy the
bangman - Computer
scesdilf - compare two

eflicient way.

terminal.

on ex,

visual editor,

vi ~ view a file without changing it vsing the
recnews - receive unprocessed articles
Tecnews — receive unprocessed articles
sendnews — send news articles

- encode/decode a binary file for transmission
uurec - receive processed news articles

rmail - handle remote mail received

expand, unexpand — expand tabs to spaces, and
gxtest ~ stand alone test for the Sun
bsencube -

editor. vi-

January 1984

uzers and teletypes.
user’s login name.
nsers who are on the system.
uzing the vi visual editor.
utility files.
utility package. .
utilisation.
utilisation.
utime — set file timea.
utimes — st file times. .
utmp, wimp - logia records.
uuclean - uucp spool directory clen-up
aucp.
aucp speol directory clean-up.
uucp, unlog — unix to unix copy.
uudecode - encode/decode a binary file for
auencede — format of an encoded uuencode file.
uuencode file.
uuencode,uudecode - encode/decode a binary file
uulog - unix to unix copy.
uurec - receive processed news articles via mail.
uusend - send a file to & remote host.
uwux - 4bix to unix command execution.
vadvise - give advice to paging systom.
val - validate SCCS file.
validate SCCS file.
valloc - aligned memory allocator.
value.
value, floor, ceiling functions.
value for environment name. .
valae of a symbolic link.
value of environment vanables,
value of interval timer.

. e e .

- s e
a
« s 0
.

« 4 e e @

N
-
.
.

-.‘.-...
“ v e 4 s s
“« 2 8 s & & 8 s =

LI S
P
“ e & a s s s e s e
D T S O e

LI S T N I T R R T T U)

v e s

LR]

LRI I I I)

L R

« 48 8.

T T T IR I B I)

L N Y

L)

* s v s 2 8 & B & & & s @
a4 & & & B & & B3 * & F B 2 " 0 e
T R I T T IR T R S BT S Y)

« s = & 8 & &4 8 B o B B @

" 2 B 3 8 ¥ & ¥ P s 2 = =+ o« .

.
.
.
-
.
*
.
.
-
-
L
+
-

4 & + & » 8 & & s e

value of shell variable. “ e s e
walues, . . 0 e e e v e e
valoes. ioinf, . ¢ ¢ 0 e . 0
values. flmin, .« .+ . <« . . o
values,

values between host and network byte ordu’

@ &8 8 e B & & 8 8 & % & + & # 2 % % s = B & & & & 4 = ¥ & 3 8 & 3 & & § e @«

varargs ~ variable argument list.
variable,. . . L. i e e e e e e e e
variableargument ist. 04
variable in environment. s b e s a s e
vardables.0 .. e e
variables, . ¢ v f v v h e e e e e e e
variablel, . . . 4 0 0 s e e e e e s
variables. . . .+ 4 v v o 0. e e e e e
VEX. o o % o o 8 0 0 3 s v v s s 4 s s s
vu-rscumntmchmeaux “r s e e
verification., 4 0 v e e e e e . .
Verifle. . 4 ¢ v s e e e e e s e e

versa.
Versatec parallel printer tnter!ace
Versatec printer/plotter and Centronics printer
version of an SCCS file.

4 8 2 & & & 8 8 & v @ .

vemionof files. ¢ 00000
version of thegame hangman, .+ + . + « + « &
vemmionn of an SCCSfile.44 ¢ o
vient -fontformats, v 4 o 4 v 4+ o

viork - spawn new process in a virtual memory
vgrind - grind nice listings of programs.
vhangup -~ virtually “hangup" the current control
vi — screen oriented (visual) display editor based

vi — view a file without changing it using the vi

vi visual editor.
via mail.
via mail.
via mail.
via mail. uuencode,nudecode
via mail.
via uucp.
VICE VEIEA. + + + s o 0 o &
video graphics board.
view3-DSunlogo. . . v ¢ ¢ o s v o
view a file without changing it vsing the vi visual
vipw — edit the password fite.

e % % b 6 8 ® B % 4 ® % W € @ ® B = om 8+ U & # # B F & % B & & 8 s+ ° & & & = g a2 s+ a2 s = 8t & s 2

. e o0

" e 2 % % 8 2 & e @ .

* s 8 s & 2 & & s 3 e & o v 3

2 & & 4 = ® 8 4 " o2+ 2o s

LI T I T

P L

P TR S T S Y

LI T T
LR T T
« 2 e w

T)
P
&+ 8 e a8 = &

PR R I T T

4 4+ 8 2 2 & ® e a2

. e 2 4 s+ & =

& % 8 8 8 & ® & % % B & 8 & W W e s & 4 % B 4 ¥ & T T 8 T s & » o4& 4 4 4 4 & 4 F s o o+ T o s oE s o=

e 8 B % 8 8 ® ¥ & 4+ 4 8 & & & ¥ w4 & & 8 0w s "+ o+

LI T R T T T Y

-« xliv-

* s & 4 v 4 & = s &

e s 8 4 8 % & B 8 + @ 8 4 @ & & 8 8 & & B2 s & 5 8 & & 3 B 3 2 & B & T P o= v 4 L LS s s E s st s s s s s s s

Sun System Release 1.1

last(1}
getlog(3F)
wsers(l)

view(1}

aewa(5)

diag{Bs)

getrusage{2)

vtimes{3C)

utime(3C)

utimes(2)
utmp{5) i
uuclean{8C) :
rnail(8) |
nuclean(3C) i
wacp(1C) i
nnencod lC)

nuencode

uuencod s)

uaencode(1C)

uucp(1C)

uurec(8)

uuaend()lc)

nux{1C

vadvise(2)

val(t

nl{lg

valloc(3)

abs(3)

foor(3M)

;etenv(sz

readlink(2)

getenv(3F) ‘
getitimer(2) :
csh(1)
false(1)
isief(3)
range(SF}
true{t
byteorder{3N)
varargs(3)
csh(1)
varargs(3)
cah(1

cshil

cab(1

<ah(1
getenv(3F) !
vax l;

vax(l
assert(3)
lint{1)
expand(1)
vp{4S)

get(1)
what(1)
hangman{6}
sceadiff{1}
viont(s
vfork%2}
vgrind(1)
vhangup(2)
vi(1)

view 1;
view(l
mcnewsEl)
recnews(8
sendnews(8)
nuencode{1C)
uurec{B)
rmail(3)
expard(1)
gxtest(ss)
bauncube{6})
view(1)
vipw(8)

-

vfork — spawn new procesain a

vmstat - report

analyze -

vhangup -

vi — screen oriented (

vi — view a file without charging it wsing the vi
consumption.

O

fs, inode - format of file system

printer interface,

and Centronics printer interface,
phinter interface. vpc - Systech

utilisation.

read, readonly, set, shift, times, trap, vmask,

wait -

wait:

sigpause - atomically release blocked signals and
wait, waitd -

stop.
wait,
prmail - print out

- spawn new process in & virtual memory efficient

whatis - deacribe
crash -
w - who is on and

crash — what happens

leave ~ remind you

program.

and paths (csh only).

export, login, newgrp, read,/ oh, for, case, if,

break: exit
bw - Sun black and

sers — compact list of user
from -

' -

who -

rwho -
fold - fold long lines for finite

lockscrecn ~ maintain

screens. adjacentocreens — notify the
suntools - the Suntools

win - Sun

vi — view a file

fastboot, fasthalt — reboot /halt the system
sail - multi-user

we -
putc, putchar, fputc, putw - put character or
cd - change

chdir - change current

getcwd - get pathname of current
pwd - print

getwd - get current

- is current machine a sun
clear - clear

worm ~ Play the growing
worms - animate

pute, fputc -

write, writev -

Iseek, tell - move read/
wall -

O

Sup System Release 1.1

Permuted Index

virtnal memory efficient way.
virtual memory statistics.
Virtual UNIX postmortem crash analyzer.
virtually “hangup” the current control terminal.
visual) display editor based on ex.
visual editor. .
vlimit - control maximum system rescurce
vmstat — report virtual memory statistics.
volume. .
vp - Ikon 10071-5 Multibus Vematec parallel
vpe - Systech VPC-2200 Versatec printer/plotter
VPC-2200 Versatec printer/plotter and Centronics . . .
vawap — convert a foreign font file. .
viimes - get information about resource
w - who is on and what they are doing.
wait — await completion of process.
wait - command language. /export, login, newgrp,
wait - wait for a process to terminate.
wait for a process to terminate.
wait for background processes to complete.
wait for interrupt.
wait for process to terminate or stop.
wait: wait for background processes to complete, .
wait, wait3 - wait for process to terminate or . .
wait3 ~ wait for process to terminate or stop. . .
waiting mail. .
wall ~ write to all users.
way. viork
wc ~ word count,
what - identify the version of files.
what & command iz
what happens when the system crashes.
what they are doing.
whatis — describe what a command is. .
when the aystem crashes.
when you have to leave.
whereis - locate source, binary, and/or manual for
which - locate a program file including aliases . .
wkile, :, ., break, continue, ¢d, eval, exec, exit, . .
while: repeat commanda conditionally.
while/foreach loop.
white frame bufer.
who - who iz on the system.
who are on the system.
who is my mail from?.
wha is on and what they are doing.
who is on the system,
whoami - display effective current username. e e
wha’s logged in on local machines.
width cutput device. 0000l
win - Sun window system,
window context until “login”. .
window driver of the physical relauonuhlpu of
window envircnment.
window system.
without changing it using the vi visual editor.
without checking the disks. . . .
wooden ships and iron men.

word count.

word on a stream.
working directory.
working directory.
working directory. . .
working directery name, P
working directory pathoame, ‘e
workstation.
workstation or terminal screen.
worm - FPlay the growing worm game. . . .
worm game. P R T R S T S T S
worms ~ animate worms on a display terminal. . .
worms on a display terminal.
write - write to another user.
write a character to a FORTRAN logical enit. . , .
write on a file,
write pointer.
write to all users. . .

LI I

4+ 4 0 o+ 8 s w
......... T I R T T B

L O N I R] P I R T R T T T B B}

.........
PR T T
R R N
..... P

-
+ 4 e e s
L R N]
..

D I R R T I)

L R I T TR BT R 2

e & & & 4+ & + & 4 B s ¥ v o= o omo o
----- DR T N S T R R)

LI)

P

@ 2 s ® % & & 4+ 2 8 & ¥ 4 & & = &

R I T T T T R TR Y SRR}

I T T T I . T T S BT A]

.
.
D I A L
I I I R e

-

+ = o s 0

 r s 2 & s a4 s @

L L R T T T

P
. .

P Y
LI R TR Y
. - .

LI Y
-
-

o & e 4w

- xlv -

viork(2)
vmstat(8)
analyse{(8)
vhangup(2)
vi(1)
v1.ewl(1)
vlimit(3C)
vinstat(8)
f5(5)
vp(48)
vpe(4S}
vpc(43)
vawap(1}

whoami(1)
rwho(1C)
fold(1)
win{45)
lockscreen(1)

adjacentscreens(1)

suntoola(1)
win(48)
view(1)
fastboot(8)
#ail(8)
we(l)
puic(3s)
cd(1)
chdir{2)
getewd(3F)
pwd(1)
getwd(3)
sun(1)
clear{1)
worm(6)
worm(6)
worms(6)
worms(6)
write(1)
putc(3F)
write(2)
13eek(2)
wall(1)

January 1984

Permuted Indez

write -

write,
open - open a fite for reading or
utmp,

wump - the game of hunt-the-
xsend,

itmplement shared strings.
Controllers.

xy — Disk driver for

i0, j1, im,

i0, i1, ju, ¥0,

eyace — modified

io, j1, jn, ¥0, ¥1,

leave - remind you when
leave — remind

0 -

January 1984

write to another user.
write, writev — write on a file.
writev - write on a file.
writing, or create a new file, .
wimp - login records. .
wump — the game of hunt-the-wompus.
wumpus.
xget, enroll — secret mail.

“ ¢ s s LRI I I)
LR S)
. 8 e CEEE R T)

LR T

-+ s .

.

.

P R I L L
LR I BT B}

»

xsend, xget, enroll - secret mail,
xstr - extract strings from C programato .
xy - Disk driver for Xylogics SMD Disk . .
Xylogica SMD Disk Controllers, .
¥0, ¥1, yn - bessel functions. .
y1, yn — besael functions. .
yacc - yet another compiler-compiler.
yacc sllowing much improved error recovery.
yes ~ be repetitively afirmative.
ya - bessel functions. e
you have to leave.
you when you have to leave,
silog 8530 SCC serial comunications driver.
13 - silog 8530 SCC serial comunications driver.

" e e .
IR T S
R T T T B

-
.
= s 0 P & 8 2 s 0 w &
-

LI B

- xlvi -

*

.

4 8 & 4 & 8 & s B 8 e s s 2 s v s

L T T R Y S I R S N T T T
L I T T T T S R T S T R N T TR Y
L T R I R A R

Sun System Release 1.1

C

|
i
5
;
[
L
i
i
i

System Interface Overview

Table of Contents

Part I — Kernel PRIMIEIVES ... sttt saaesssssssaesessssss sessss s sresaame s

1. Processes and Protection

1.1. Host and Process Identlﬁersl

1.2. Process Creation and Termlnatlon ..

1.3. User and Group Ids .

1.4. Process Groups and Syatem Termmals

2. Memory MAanagemientt ssssnssstonses

2.1. Text, Data, and Stack ...

2.2. Mapping Pages

2.3. Page Protection Control

2.4. Giving and Getting Advice ...

3. Slgnals

................................

3.2 Signal Handlers
3.3. Sending Signals ..

3.4. Protecting Crltlcal Sectmns
3.5. Signal Stacks

4. Timers _
4.1, Real Tlme
4.2, Interval Tlme

[~ RN

SO 00~ =) =

10
10
11
11

12
12
12

Bt DESCTIPULOTS oot ee bbb s st sesa e e et sest s b e b as s bR msesaseras s st ater 14
5.1. The Reference Tableoeeeoeeeesseeesssesseseerims e sssmseemsessssassscssesonssmnns 14 O

5.2. Descriptor Properties SRR { | ;
5.3. Managing Descriptor References vttt asa b s rrssranraass 14 :
5.4. Multiplexing Requestscooiieiiionsesssssssessssssmmssesssmsssssssssssessssssennns 15 i

8. Resource COntrols ... sssssisnssssssssssssssssssssssmsssssrnnsenss 18
6.1, Process PLHOTILIES ..o essneensesscssessssssesssesesssssssssmsssasossenssssasssrnsene 100
6.2. Resource UtIIZation ... ossnsssssssissssss oo seessseeesseceens 18
6.3. Resource Limits ... eeerere e seeee e seemmesen s T ¥ ¢

7. System operation support 18
7.1. Bootstrap Operations 18
7.2. Shutdown Operationsvveneeennnne e 18
T3, ACCOUMINGoocooevmsssoscsarrs s e resesrsss s s s s st ses s ssss s sessses sessssssss 18

Part I1 — System Facilitiesooooiooeeccesseeseeeeeeeeeoseerssseems s ormssssesseennenes 20

8. Generic OPeTationS ... sree e seeeseesssmessssessesseest st eeessserseeeeeemsessesees 21
8.1. Read and Write ..., R) |
8.2, Input/Output COMIOlo e seres s seese s rereeeesees 21
8.3. Nor-Blocking and Asynchronous Operations ... 22

9. File System ORI T |
0.1. Namlng U OTDRI - Q
9.2. Creation and Removal SO - ;
9.2.1. Directory Creation and Removal w28 :
9.2.2. File Creation " . 24 ;
9.2.3. Creating References to Devnces 24
9.2.4. File and Device Removal OO .
9.3. Reading and Modifying File Attributes 25
9.4. Links and ReDaminE ... 26
9.5. Extension and Truncation e 26
9.6. Checking Accessibility o 27
9.7. Locking ... ¥ 4
9.8. Disk Quotas ... y e 28

10. Interprocess Commumcatlons OOV UIOVSUUSR- | *
10.1. Interprocess Commumcatlon anltlves
10.1.1. Communication Domains | . 29
10.1.2, Socket Types and Protocols . . 20
10.1.3. Socket Creation, Naming, and Service Estabhshment ,,,,,,,,,,,,,,,,,,, 30
10.1.4. Accepting CORNECLIONS ..o 30
10.1.5. Making Connections 31
10.1.8. Sending and Receiving Data ..., 31

»s
-1} -

10.1.7. Scatter/Gather and Exchanging Access Rights

10.1.8. Using Read and Write with Sockets

10.1.9. Shutting Down Halves of Full-Duplex Connections

10.1.10. Socket and Protocol Options

10.2, UNIX Domain .,
10.2.1. Types of Sockets

10.2.2. Naming S
10.2.3. Access Rights Transmission ...,

10.3. INTERNET Domainoooviinnees

10.3.1. Socket Types and Protocols

10.3.2. Socket Namingoooovooveevveieevermseracnnnes

10.3.3. Access Rights Transmission ...

10.3.4. Raw Accessc.cco..,

11. Devices .
11.1. Struct.ured Deﬂces

11.2. Unstructured Devices S

12, Debugging SUPPOIt ..o seeemss st aiis s et sssss s srse et s seses e

Part 111 — Summary of Facilities . . oo sssasseesseseeseossssiees

A. Summary of Facilities ..

A.l. Kernel Primitives
A.1.l. Process Nammg and Protect:on

A.1.2. Memory Management

A.1.3. Signals

ALd Tootny e G

A.1.5. Descriptors
A.1.8. Resource Controlso,

A.1.7. System Operation Support

A.2. System Facilities ...

A.2.1. Generic OPerations siesssesrs et sses s besssnisss e

A.2.2. File System .

A.2.3. Interprocess Commumcatlons ...

A.2.4. Devices

A:2.5. DebBUEEINE SUPPOTL ... oo

- iii -

32
32
33
33
33
33
33
33
34
34
34
34

356
35
35

36

37

37
37
37
37
38
38
38
39
39
39
39
39
40
40

System Interface Overview

Revised for Sun Release 1.1, April 1984

This document summarizes the facilities provided by the 1.1 and later releases of the UNIX?

operating system for the Sun Workstation. It does not attempt to act as a tutorial for use of

the system nor does it attempt to explain or justify the design of the system facilities. It gives
neither motivation nor implementation details, in favor of brevity. This document is in three
major parts:

Part I describes the basic kernel functions provided to a UNIX process: process naming and
protection, memory management, software interrupts, object references (descriptors),
time and statistics functions, and resource controls. These facilities, as well as facilities
for bootstrap, shutdown and process accounting, are provided solely by the kernel.

Part I1 describes the standard system abstractions for files and file systems, communication,
' terminal handling, and process contro] and debugging. These facilities are imple-
mented by the operating system or by network server processes,

Part III is an appendix containing a summary of the facilities described in parts I and II.

Notation and Types

The notation used to deacribe system calls is a variant of a C language call, consisting of a pro-
totype call followed by declaration of parameters and results. An additional keyword result,
not part of the normal C language, is used to indicate which of the declared entities receive
results. As an example, consider the read call, as described in section 8.1:

¢c¢ == read(fd, buf, nbytes);

result int cc; int fd; result char *baf; int nbytes;
The first line shows how the read routine is called, with three parameters. As shown on the
second line ccis an integer and read also returns information in the parameter buf.
Description of all error conditions arising from each system call is not provided here; they
appear in the System Interface Manual. In particular, when accessed from the C language,
many calls return a characteristic -1 value when an error occurs, returning the error code in the
global variable errno. Other languages may present errors in different ways.

A number of system standard types are defined in the <ays/types.h> include file and used in
the specifications here and in many C programs. These include caddr_t giving a memory

—_— e
1 UNIX is a trademark of Bell Laboratories.

Revision E of 7 January 1984 1

System Interface Overview

address (typically as a character pointer), off_t giving a file offset (typically as a long integer),
apd a set of unsigned types u_char, u_short, u_int and u_long, shorthand names for
unsigned char, unsigned short, etc.

Revision E of 7 January 1084

-

-

-}

O

System Interface Overview Kernel Primitives

Part I — Kernel Primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel facili-
ties directly implemented by UNIX code running in the operating system, and system facilities
implemented either by the system, or in cooperation with a server process. The kernel facilities
are described in this part of the document.

The facilities implemented in the kernel are those which define the UNIX virtual machine which
each process runs in. Like many real machines, this virtual machine has memory management
hardware, an interrupt facility, timers and counters. The UNIX virtual machine also allows
access to files and other objects through a set of descriptors. Each descriptor resembles a device
controller, and supports a set of operations. Like devices on real machines, some of which are
internal to the machine and some of which are external, parts of the descriptor machinery are
built-in to the operating system, while other parts are often implemented in server processes on
other machines. The facilities provided through the descriptor machinery are described in Part
IL

Revision E of 7 January 1984 3

Processes and Protection System Interface Overview

1. Processes and Protection

1.1. Host and Process Identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255 characters.
These are set (by a privileged user) and returned by the calls:

sethostid(hostid);
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len);
char *name; int len;

gethostname(buf, buflen);
result char #buf; int buflen;

The host id is not used in this release of the system. The buf containing the host name returned
by gethostname is null-terminated (if space allows).

On each host runs a set of processes. Each process is largely independent of other processes,
having its own protection domain, address space, timers, and 2n independent set of references to
system or user implemented objects.

Each process in a host is named by an integer called the process id. This number is in the range
1-30000 and is returned by the getpid routine:

pid = getpid();

result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the
(hostid, process id) pairs are guaranteed unique.

1.2. Process Creation and Termination

A new process is created by making a logical duplicate of an existing process:

pid = fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is. the process identifier of the
child, and once in the child process where pid is 0. The parent-child relationship induces a
hierarchical structure on the set of processes in the system.

A process may terminate by executing an ezit call:

exit(status);
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives information
about any event which caused termination of the child process. A second call provides a non-

4 Revision E of 7 January 1984

-

O

System Interface Overview Processes and Protection

blocking interface and may also be used to retrieve information about resources consumed by

the process during its lifetime,
#include <sysfwait.h>

pid == wait(astatus);
result int pid; result union wait *astatus;

pid = wait3{astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, *+*envp;

The specified name must be a file which is in a format recognized by the system, either a binary
executable file or a file which causes the execution of a specified interpreter program to process
its contents.

1.3. User and Group Ids

Each process in the system has associated with it two user-id’s: a real user ¢d and a effective
user id, both non-negative 18 bit integers. Each process has an real accounting group id and an
effective accounting group id and a set of accesa group id’s. The group id's are non-negative 16
bit integers. Each process may be in several different access groups, with the maximum con-
current number of access groups a system compilation parameter, the constant NGROUPS in
the file <sys/param.h>>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:
ruid == getuid();
result int ruid;
euid = geteuid();
result int euid;

the real and effective accounting group ids by:

rgid = getgid();
result int rgid;

egid = getegid();
result int egid;
and the access group id set is returned by a gelgroups call:

ngroups == getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id’s are assigned at login time using the setreuid, setregid, and setgroups

calls:

Revision E of 7 January 1984 5

Processey and Protection System Interface Overview

setreuid(ruid, euid);
in'f. ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset);
int gidsetsize; int gidset[gidsetsize);

The setreuid call sets both the real and effective user-id’s, while the setregid call sets both the
real and effective accounting group id's. Unless the caller is the super-user, ruid must be equal
to either the current real or effective user-id, and rgid equal to either the current real or effective
accounting group id. The sctgroups call is restricted to the super-user.

1.4. Process Groups and System Terminals

Each process in the system is also normally associated with a process group. The group of
processes in a process group is sometimes referred to as a job and manipulated by high-level sys-
tem software (such as the shell). The current process group of a process is returned by the

getpgrp call:

pgrp == getpgrp(pid);
result int pgrp; int pid;

The process group associated with a process may be changed by the setpgrp call:

setpgrp(pid, pgrp);

int pid, pgrp;
Newly created processes are assigned process id's distinct from all processes and process groups,
and the same process group as their parent. A normal {unprivileged) process may set its process
group equal to its process id. A privileged process may set the process group of any process to
any value.
Wher a process is in a specific process group it may receive software interrupts affecting the
group, causing the group to suspend or resume execution or to be interrupted or terminated. In
particular, every system terminal has a process group and only processes which are in the pro-
cess group of a terminal may read from the terminal, allowing arbitration of terminals among
several different jobs. A process can examine the process group of a terminal via the foctl call:

ioctl(fd, TIOCGPGRP, pgrp);
int fd; result int *pgrp;

A process may change the process group of any terminal which it can write by the soctl call:
ioctl(fd, TIOCSPGRP, pgrp);
int fd; int *pgrp;
The terminal’s process group may be set to any value. Thus, more than one terminal may be in
a process group.

Each process in the system is usually associated with a control terminal, accessible through the
file /dev/tty. A newly created process inherits the control terminal of its parent. A process
may be in a different process group than its control termirnal, in which case the process does not
receive software interrupts affecting the control terminal’s process group.

6 Revision E of 7 January 1984

-

System Interface Overview Memory management

2. Memory management

This section represents the interface planned for later releases of the system. Of the calls
described in this section, only sbrk, etpagesize, and mmap are included in the current release.
Note that mmap is restricted in that it only works with certain character devices such as the
framebuffer and devices like mbmem.

2.1. Text, Data, and Stack

Each pr§ ess begins execution with three logical areas of memory called text, data and stack.
The text area is read-only and shared, while the data and stack areas are private to the process.
Both the data and stack areas may be extended and contracted on program request. The call

addr == sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed.
On the VAX the text and data areas are adjacent in the PO region, while the stack section is in
the P1 region, and grows downward.

2.2. Mapping Pages

The system supports sharing of data between processes by allowing pages to be mapped into
memory. . These mapped pages may be shared with other processes or private to the process.
Protection and sharing options are defined in <mman.h> as:

/* protections are chosen from these bits, or-ed together */

##define PROT_READ 0x4 [pages can be read */
ftdefine PROT_WRITE 0x2 /* pages can be written */
#tdefine PROT_EXEC 0x1 /+* pages can be executed +/

/* sharing types; choose either SHARED or PRIVATE #/
#define MAP_SHARED 1 /* share changes */
#define MAP_PRIVATE 2 /* changes are private */

The cpu-qppendent size of a page is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;
The call;

mmap(addr, len, prot, share, fd, pos);

caddr_t addr; int len, prot, share, fd; off_t pos;
causes the pages starting at addr and continuing for len bytes to be mapped from the object
represented by descriptor fd, at absolute position pes. The parameter share specifies whether
modifications made to this mapped copy of the page, are to be kept private, or are to be shared
with other references. The parameter prot specifies the accessibility of the mapped pages. The

Revision ﬁ of 7 January 1984 : 7

'

Memory management System Interface Overview

addr, len, and pos parameters must all be multiples of the pagesize.
A process can move pages within its own memory by using the mremap call:

mremap(addr, len, prot, share, fromaddr);
caddr_t addr; int len, prot, share; caddr_t fromaddr;

This call maps the pages starting at fromaddr to the address specified by addr.
A mapping can be removed by the call

mpnmap(addr, len);
cpddr_t addr; int len;

This causes further references to these pages to refer to private pages initialized to gero.

2.3. Page Protection Control

A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prot.

2.4. Giving and Getting Advice

A process that has knowledge of its memory behavior may use the madvise call:

madvise{addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as given in <mman.h>:

ftdefine MADV_NORMAL 0 /* no further special treatment */
#define MADV_RANDOM 1 /* expect random page references */
f#define MADV_SEQUENTIAL 2/+ expect sequential references */
ff#define MADV_WILLNEED 3 /* will need these pages */

f4define MADV_DONTNEED 4 /* don’t need these pages 3/

Finally, a process may obtain information about whether pages are core resident by using the
call

mincore(addr, len, vec);
caddr_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vee, with a value
of 1 meaning that the page is in-core.

8 Revision E of 7 January 1984

-

System Interface Overview Signals

3. Signals

The system defines a set of signals that may be delivered to a process. Signal delivery resembles
the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new omne is built. A process may specify the handler to
which a signal is delivered, or specify that the signal is to be blocked or ignored. A process may
also spegify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accompanied
by creatlon of a core image file, containing the current memory image of the process for use in
post-mortem debugging. A process may choose to have signals delivered on a special stack, so
that sophisticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order in
which they are delivered to a process is implementation specific. Signal routines execute with
the signal that caused their invocation blocked, but other signals may yet occur. Mechanisms
are provided whereby critical sections of code may protect themselves against the occurrence of
specified signals.

3.1. Signal Types

The signals defined by the system fall into one of five classes: hardware conditions, software
conditions, input/output notification, process control, or resource control. The set of signals is
defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execution.
Such signals include SIGFPE representing floating point and other arithmetic exceptions,
SIGILL for illegal instruction execution, SIGSEGV for addresses outside the currently assigned
area of memory, and SIGBUS for accesses that violate memory protection constraints. Other,
more cpu-specific hardware signals exist, such as those for the various customer-reserved
instructions on the VAX (SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt
signal; SIGQUIT for the more powerful guit signal, that normally causes a core image to be gen-
erated; SIGHUP and SIGTERM that cause graceful process termination, either because a user
has “hung up”, or by user or program request; and SIGKILL, a more powerful termination sig-
nal which a process cannot catch or ignore. Other software signals (SIGALRM, SIGVTALRM,
SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a
descriptor, or when a non-blocking operation completes. A process may request to receive a
SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The SIG-
STOP signal is a powerful stop signal, because it cannot be caught. Other stop signals
SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or output
request respectively is the reason the process is being stopped. A SIGCONT signal is sent to a
process when it is continued from a stopped state. Processes may receive notification with a
SIGCHLD signal when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been
reached. '

Revision E of 7 January 1984 9

Signals System Interface Overview

3.2. Signal Handlers

A process has a handler associated with each signal that controls the way the signal is delivered.
The call

#include <signal.h>>

struct sigvec {

int (*sv_handler));
int sv_mask;
it sv_onstack;

b

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address svu_handler to signal signo. Each handler address specifies
either an interrupt routine for the signal, that the signal is to be ignored, or that a default
action (usually process termination) is to occur if the signal occurs. The constants SIG_IGN
and SIG_DEF used as values for sv_hkandler cause ignoring or defaulting of a condition. The
su_mask and sv_onstack values specify the signal mask to be used when the handler is invoked
and whether the handler should operate on the normal run-time stack or a special signal stack
(sce below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it will be delivered. The
process of signal delivery adds the signal to be delivered and those signals specified in the associ-
ated signal handler's sv_maak to a set of those masked for the process, saves the current process
context, and places the process in the context of the signal handling routine. The call is
arranged so that if the signal handling routine exits normally the signal mask will be restored
and the process will resume execution in the original context. If the process wishes to resume in
a different context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents signals from
being delivered much as a raised hardware interrupt priority level prevents hardware interrupts.
Preventing an interrupt from occurring by changing the handler is analogous to disabling a dev-
ice from further interrupts.

The signal handling routine sv_kandler is called by a C call of the form

(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The 2igno gives the number of the signal that occurred, and the code, a word of information
supplied by the hardware. The scp parameter is a pointer to a machine-dependent structure
containing the information for restoring the context before the signal.

3.3. Sending Signals

A process can send a signal to another process or group of processes with the calls:

10 Revision E of 7 January 1984

-

-

-

System Interface Overview Signals

kill(pid, signo);
int pid, signo;

killpgrp(pgrp, signo};

int pgrp, signo;
Unless the process sending the signal is privileged, it and the process receiving the signal must
have the same effective user id.

Signals are also sent implicitly from a terminal device to the process group associated with the
terminal when certain input characters are typed.

3.4. Protecting Critical Sections

To block a section of code against one or more signals, a sighlock call may be used to add a set
of signals to the existing mask, returning the old mask:

oldmask == sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with aigsetmask,

oldmask == sigsetmask(mask);

result long oldmask; long mask;
The sighlock call can be used to read the current mask by specifying an empty mask.
It is possible to check conditions with some signals blocked, and then to pause waiting for a sig-
nal and restoring the mask, by using:

sigpause(mask);

long mask;

3.6. Signal Stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

i

sigstack(ss, oss)
struct sigatack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack
indicates whether the process is currently on the signal stack, a notion maintained in software
by the system. ‘

When a signal is to be delivered, the system checks whether the process is on a signal stack. If
not, then the process is switched to the signal stack for delivery, with the return from the signal
arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the signal
stack that uses a different stack, a sigatack call should be used to reset the signal stack.

Revision E of 7 January 1984 11

Timers System Interface Overview

4. Timers

4.1. Real Time

The system’s notion of the current Greenwich time and the current time zone is set and
returned by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.b> as:

struct timeval {
long tv_sec; /* seconds since Jan 1, 1970 «/
long tv_usec; /* and microseconds #*/

1§

struct timezone {
int tz_minuteswest; [+ of Greenwich #/
int tz_dsttime; /* type of dst correction to apply +/

b
Earlier versions of UNIX contained only a 1-second resolution version of this call, which remains
as a library routine:

time(tvp)
result long *tvp;

or

tv == time(0);
result long tv;

returning only the tv_sec field from the gettimeofday call.

4.2. Interval Time

The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /# real time intervals »/
#define ITIMER_VIRTUAL 1 /# virtual time intervals +f
#define ITIMER_PROF 2 [* nser and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to
maintain a wakeup service queue. A SIGALRM signal is delivered when this timer expires,

12 Revision E of 7 January 1984

©

System Interface Overview Timers

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the pro-
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by processes to statistically profile their
execution. A SIGPROF signal is delivered when it expires.

A timer value is defined by the stimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval +/
struct timeval it_value; [+ current value #/
}s
and a timer is set or read by the call:
getitimer{which, value);
int which; result struct itimerval *value;

setitimer{which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setitimer specifies an optional structure to receive the previous contents
of the interval timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This
clock resolution can be determined by loading a very small value into a timer and reading the
timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain
because it is not always possible to guarantee the automatic restart of system calls after receipt
of a signal.

pﬁ)ﬁl(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

Revision E of 7 January 1984 _ 13

Descriptors System Interface Overview

Descriptors

Each process has access to resources through descriptors. Each descriptor is a handle allowing
the process to reference objects such as files, devices and communications links.

5.1. The Reference Table

Rather than allowing processes direct access to descriptors, the system introduces a level of
indirection, so that descriptors may be shared between processes, Each process has a deseriptor
reference table, containing pointers to the actual descriptors. The descriptors themselves thus
have multiple references, and are reference counted by the system.

Each process has a fixed aize descriptor reference table, where the size is returned by the getdia-
blessze call:

nds == getdtablesize();
result int nds;

and guaranteed to be at least as large as the constant NOFILE defined in <param.h>. The
entries in the descriptor reference table are referred to by small integers; for example if there are
20 slots they are numbered 0 to 19.

5.2. Descriptor Properties

Each descriptor has a logical set of properties maintained by the system and defined by its type.
Each type supports a set of operations; some operations, such as reading and writing, are com-
mon to several abstractions, while others are unique. The generic operations applying to many
of these types are described in section 8. Naming contexts, files and directories are described in
section 9. Section 10 describes communications domains and sockets. Terminals and {struc-
tured and unstructured) devices are described in section 11.

5.3. Managing Descriptor References

A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;
returning a copy of descriptor reference old indistinguishable from the original. The new chosen

by the system will be the smallest unused descriptor reference slot. A copy of a descriptor refer-
ence may be made in a specific slot by doing

dup?(old, new);
int old, new;

The dupZ2 call causes the system to deallocate the descriptor reference current occupying slot
new, if any, replacing it with a reference to the same descriptor as old. This deallocation is also
performed by:

close(old);

int old;

14 Revision E of 7 January 1084

-

System Interface Overview Descriptors

5.4. Multiplexing Requests

The system provides a standard way to do synchronous and asynchronous multiplexing of
operations.

Synchronous multiplexing is performed by using the select call:

nds == select(nd, in, out, except, tvp);
result int nds; int &d; result *in, *out, *except;
struct timeval *tvp;

The select call examines the descriptors specified by the sets sn, out and ezcept, replacing the
specified bit masks by the subsets that select for input, output, and exceptional conditions
respectively (nd indicates the size, in bits, of the bit masks). If any descriptors meet the follow-
ing criteria, then the number of such descriptors is returned in nds and the bit masks are
updated.

e A descriptor selects for input if an input oriented operation such as read or receive is possi-
ble, or if a connection request may be accepted {see section 10.1.4).

e A descriptor selects for output if an output oriented operation such as write or send is possi-
ble, or if an operation that was “‘in progress”, such as connection establishment, has com-
pleted (see section 8.3).

e A descriptor selects for an exceptional condition if a condition that would cause a SIGURG
signal to be generated exists (see section 3.1).

If none of the specified conditions is true, the operation blocks for at most the amount of time
specified by tvp, or waits for one of the conditions to arise if fvp is given as 0.

Options affecting ifo on a descriptor may be read and set by the call:

dopt == fentl(d, emd, arg);
result int dopt; int d, cmd, arg;

/* interesting values for cmd */

ftdefine F_SETFL . 3 /#* set descriptor options */
#define F_GETFL 4 /* get descriptor options */
#define F_SETOWN 5 [+ set descriptor owner (pid/pgrp) */
#fdefine ¥ _GETOWN 6 /* get descriptor owner (pid/pgrp) */

The F_SETFL c¢md may be used to set a descriptor in non-blocking i/o mode and/or enable sig-
nalling when ifo is possible. F_SETOWN may be used to specify a process or process group to
be signalled when using the latter mode of operation.

Operations on non-blocking descriptors will' either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or
return an error EINPROGRESS noting that the requested operation is in progress, A descrip-
tor which has signalling enabled will cause the specified process and/or process group be sig-
naled, with a SIGIO for input, output, or in-progress operation complete, or a SIGURG for
exceptional conditions.

For example, when writing to a terminal using non-blocking cutput, the system will accept only
as much data as there is buffer space for and return; when making a connection on a socket, the
operation may return indicating that the connection establishment is “in progress’. The select
facility can be used to determine when further output is possible on the terminal, or when the
connection eatablishment attempt is complete.

Revision E of 7 January 1984 15

Resource Controls System Interface Overview

6. Resource Controls

6.1. Process Priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently.
This tends to favor interactive processes and processes that execute only for short periods. It is
possible to determine the priority currently assigned to a process, process group, or the processes
of a specified user, or to alter this priority using the calls:

#define PRIO_PROCESS 0 [+ process */
#define PRIO_PGRP 1 [+ process group */
fdefine PRIO_USER 2 /% userid #/

prio == getpriotity(which, who);
result int prio; int which, who;

setpriority{which, who, prio);

int which, who, prio;
The value prio is in the range —20 to 20. The default priority is 0; lower priorities cause more
favorable execution. The getpriority call returns the highest priority (lowest numerical value)
enjoyed by any of the specified processes. The selpriorsty call sets the priorities of all of the
specified processes to the specified value. Only the super-user may lower priorities.

6.2. Resource Utilization

The resources used by a process are returned by a getrusage call, returning information in a
structure defined in <sys/resource.h>>:

#define RUSAGE_SELF 0 /+ usage by this process +/
#idefine RUSAGE_CHILDREN -1/+ usage by all children +/

getrusage(who, rusage);
int who; result struct rusage *rusage;

struct rusage {

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; [+ system time used */

int ru_maxras; /* maximum core resident set size: kbytes +/
-int ru_ixrss; ~ /* integral shared memory size (kbytestsec) */

int ru_idrss; /* unshared data " #/

int ru_isras; /* unshared stack ” */

int ru_minflt; /* page-reclaims */

int ru_majflt; /* page faults +/

int ru_nswap; [+ swaps +/

int ru_inblock; /* block input operations */

int ru_oublock; /* block output " */

int ru_msgsnd;]* messages sent */

int ru_msgrey; /+ messages received »/

int ru_nsignals; /* signals received +/

16 Revision E of 7 January 1984

-

C

System Interface Overview Resource Controls

int FU_DnVCsw; /* voluntary context switches */
int ru_nivesw; /* involuntary " */
|8
The who parameter specifies whose resource usage is to be returned. The resources used by the
current process, or by all the terminated children of the current process may be requested.

6.3. Resource Limits

The resources of a process for which limits are controlled by the kernel are defined in
<sys/resource.h>>, and controlied by the getrlimit and setriimit calls:

$fdefine RLIMIT_CPU 0 /* cpu time in milliseconds */
d##define RLIMIT_FSIZE 1 /* maximum file size */

#define RLIMIT DATA 2 /* maximum data segment size */
¥define RLIMIT_STACK 3 /* maximum stack segment size */
#tdefine RLIMIT_CORE 4 /# maximum core file size */
#define RLIMIT_RSS 5 /* maximum resident set size */

#define RLIM_NLIMITS 6
#define RLIM_INFINITY Ox7ffiftif

struct rlimit {
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */

b

getrlimit(resource, rip);
int resource; result struct rlimit *rlp;

setrlimit({resource, rip);
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to riim_maz or (irreversibly) lower rlim_maz.

Revision E of 7 January 1984 17

System operation support System Interface Overview

-

7. System operation support

The calls in this section are permitted only to a privileged user.

7.1. Bootstrap Operations

The call

mount{blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX
file system to be made available starting at dir. If ronly is set then the file system is read-only;
writes to the file system will not be permitted and access times will not be updated when files
are referenced.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

7.2. Shutdown Operations

The call - ' @

unmount{dir);
char +dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call
sync();

schedules input /output to clean all system buffer caches.
The call

reboot{how);
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB_AUTOBOOT, or that the machine be halted with RB_HALT. These constants are defined

in <sys/reboot.h>.
7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on the
system. The format of this record is beyond the scope of this document. The accounting may
be enabled to a file name by doing

18 Revision E of 7 January 1984

System Interface Overview System operation support

O ' acct{path);

char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting
file.

@ Revision E of 7 January 1984 19

System Facilities System Interface Overview

<

Part I — System Facilities

This part of the document discusses the system facilities that are not considered part of the ker-
nel.

The system abstractions described are:

A difectory context is a position in the UNIX file system name space. Operations on files
and gther named objects in a file system are always specified relative to such a context.

Filea
Files are used to store uninterpreted sequence of bytes on which random access reads and
writes may occur. Pages from files or devices may also be mapped into process address
space. A directory may be read as a filet.

Dircctor& Contezts

Communications Domains
A communications domain represents an interprocess communications environment, such as
the communications facilities of the UNIX system, communications in the INTERNET, or the @

resource sharing protocols and access rights of a resource sharing system on a local network.

Sockets

A socket is ar endpoint of communication and the focal point for IPC in a communications
domain. Sockets may be created in pairs, or given names and used to rendezvous with
other sockets in a communications domain, accepting connections from these sockets or
exchanging messages with them. These operations model a labeled or unlabeled communi-
cations graph, and can be used in a wide variety of communications domains. Sockets can
have different fypes to provide different semantics of communication, increasing the flexibil-
ity of the model.

Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output flow

control and editing, magnetic tapes, disks and other peripherals. They often support the
generic read and write operations as well as a number of ioctls,

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in this release,

20 Revision E of 7 January 1984

System Interface Overview . Generic Operations

8. Generic Operations

Many system abstractions support the operations read, write and ioctl. We describe the basics
of these common primitives here. Similarly, the mechanisms whereby normally synchronous
operations may occur in a non-blocking or asynchronous fashion are common to all system-
defined abstractions and are described here.

8.1. Read and Write

The read and write systemn calls can be applied to communications channels, files, terminals and
devices. They have the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc = write(fd, buf, nbytes);

result int cc; int fd; caddr_t buf; int nbytes;
The read call transfers as much data as possible from the object defined by fd to the buffer at
address buf of size nbytes. The number of bytes transferred is returned in cc¢, which is -1 if a

return occurred before any data was transferred because of an error or use of non-blocking
operations.

The write call transfers data from the buffer to the object defined by fd. Depending on the type
of fd, it is possible that the write call will accept some portion of the provided bytes; the user
should resubmit the other bytes in a later request in this case. Error returns because of inter-
rupted or otherwise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of
input /output vector descriptors. The type for the descriptors is defined in <sys/uic.h> as:

struct iovec {
caddr_t iov_msg; /* base of a component */
int iov_len; /* length of a component */

b

The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);

result int cc; int {d; struct iovec *iov; int iovlen;

c¢ == writev({d, iov, iovlen);

result int cc; int {d; struct iovec *iov; int iovlen;

Here fovlen is the count of elements in the fov array.

8.2. Input/QOutput Control

Control operations on an object are performed by the sectl operation:

ioctl{fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The requeat
parameter specifies whether the argument buffer is to be read, written, read and written, or is

Revision E of 7 January 1084 21

Generic Operations System Interface Overview

not needed, and also the size of the buffer, as well as the request. Different descriptor types and
subtypes within descriptor types may use distinct soct! requests. For example, operations on
terminals control flushing of input and cutput queues and setting of terminal parameters; opera-
tions on disks cause formatting operations to occur; operations on tapes control tape position-
ing.

The names for basic control operations are defined in <sysfioctlL.h>.

8.3. Non-Blocking and Asynchronous Operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor
in non-blocking mode as described in section 5.4. Thereafter the read call will return a specific
EWOULDBLOCK error indication if there is no data to be read. The process may select the
associated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of
the provided data, returning a shorter than normal length, or return an error indicating that
the operation would block. More output can be performed as soon as a select call indicates the
object is writeable.

Operations other than data input or output may be performed on a descriptor in a non-blocking
fashion. These operations will return with a characteristic error indicating that they are in pro-
gress if they cannot return immediately. The descriptor may then be selected for write to find
out when the operation can be retried. When select indicates the descriptor is writeable, a
respecification of the original operation will return the result of the operation.

29 Revision E of 7 January 1984

-

System Interface Overview File System

9. File System

The file system abstraction provides access to a hierarchical file system structure. The file sys-
tem contains directories {each of which may contain other sub-directories) as well as files and
references to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related infor-
mation is present in a file. Files may be read and written in a random-access fashion. The user
may read the data in a directory as though it were an ordinary file to determine the names of
the contained files, but only the system may write into the directories. The file system stores
only a small amount of ownership, protection and usage information with a file.

9.1. Naming

The file vstem calls take path name arguments. These consist of a zero or more component file
names separated by ‘/”’ characters, where each file name is up to 255 ASCII characters exclud-
ing null gad /™.

Each pro'ei‘ess always has two naming contexts: one for the root directory of the file system and
one for the current working directory. These are used by the system in the filename translation
process. If a path name begins with a **/", it is called a full path name and interpreted relative
to the root directory context. If the path name does not begin with a /" it is called a relative
path name and interpreted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.
The file name “..” in each directory refers to the parent directory of that directory.
The calls

chdir{path);
char *path;

chyroot(path);

chpr *path;
change the current working directory and root directory context of a process. Only the super-
user can change the root directory context of a process.

9.2. Creation and Removal

The file system allows directories, files and special devices, to be created and removed from the
file system.

9.2.1. Directory Creation and Removal

A directory is created with the mkdir system call:

mkdir(path, mode);
char #path; int mode;

and removed with the rmdir aystem call:

Revision E of 7 January 1984 23

File System System Interface Overview

rmdir{path);
char *path;

A directory must be empty if it is to be deleted.

9.2.2. File Creation

Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be created. The oflag parameter must
include Q_CREAT from below to cause the file to be created. The protection for the new file is
specified jn mode. Bits for oflag are defined in <sys/fileh>:

#fdefine O_RDONLY 000 /+ open for reading */

##define O_WRONLY 001 /# open for writing */

#define O_RDWR 002 /+ open for read & write +/
#define O_NDELAY 004 /+ non-blocking open #/
#tdefine O_APPEND 010 /+ append on each write */
¥define O_CREAT 01000 /+ open with file create */
ftdefine O_TRUNC 02000 /* open with truncation */
ftdefine O_EXCL 04000 /* error on create if file exists »/

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of
operations are desired to be performed on the open file. The operations will be checked against
the user's access rights to the file before allowing the open to succeed. Specifying O_APPEND
causes writes to automatically append to the file. The flag O_CREAT causes the file to be
created if it does not exist, with the specified mode, owned by the current user and the group of
the containing directory.

If the open specifies to create the file with O_EXCL and the file already exists, then the open
will fail without affecting the file in any way. This provides a simple exclusive access facility.

9.2.3. Creating References to Devices

The file system allows entries which reference peripheral devices. Peripherals are distinguished
as block or character devices according by their ability to support block-oriented operations.
Devices are identified by their “major’” and “minor” device numbers. The major device number
determines the kind of peripheral it is, while the minor device number indicates one of possibly
many peripherals of that kind. Structured devices have all operations performed internally in
“block” quantities while unstructured devices often have a number of special foct operations,
and may have input and output performed in large units. The mknod call creates special
entries:

mknod{path, mode, dev);
char #path; int mode, dev;

where mode is formed from the object type and access permissions. The parameter dev is a
configuration dependent parameter used to identify specific character or block i/o devices.

24 Revision E of 7 January 1084

System Interface QOverview File System

9.2.4. File and Device Removal

A reference to 3 file or special device may be removed with the unlink call,
unlink(path);
char #path;

The caller must have write access to the directory in which the file is located for this call to be
successful.

9.3. Reading and Modifying File Attributes

Detailed information about the attributes of a file may be obtained with the calls:
#finclude <sys/stat.h>

stat(path, stb);
char ¢path; result struct stat *sth;

fstat(id, stb);
int fd; result struct stat *stb;

- The e#tat structure includes the file type, protection, ownership, access times, size, and a count of
hard links. If the file is a symbolic link, then the status of the link itself (rather than the file
the link references) may be found using the lstat call:

Istat(path, stb);
char *path; result struct stat ¥stb;

Newly created files are assigned the user id of the process that created it apd the group id of the
directory in which it was created. The ownership of a file may be changed by either of the calls

chpwn(path, owner, group);
chpar #path; int owner, group;

fchown(fd, owner, greup);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it. These
levels are owner relative, group relative, and global (all users and groups). Each level of access
has separate indicators for read permission, write permission, and execute permission. The pro-
tection bits associated with a file may be set by either of the calls:

chmod(path, mode};
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

where mode is a value indicating the new protection of the file. The file mode is a three digit
octal number. Each digit encodes read access as 4, write access as 2 and execute access as 1,
or'ed together. The 0700 bits describe owner access, the 070 bits describe the access rights for
processes in the same group as the file, and the 07 bits describe the access rights for other
processes.

Revision 11 of 7 January 1984 25

File System System Interface Overview

Three additional bits exist: the 04000 ‘‘set-user-id"’ bit can be set on an executable file to cause
the eflective user-id of a process which executes the file to be set to the owner of that file; the
02000 bit has a similar effect on the effective group-id. The 01000 bit causes an image of an
executable program to be saved longer than would otherwise be normal; this “sticky’ bit is a
hint to the system that a program is heavily used.
Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp);

char *path; struct timeval +tvp{2);

This is particularly useful when moving files between media, to preserve relationships between
the times the file was modified.

9.4. Linkq and Renaming

Links allow multiple names for a file to exist. Links exist independently of the file linked to.

Two types of links exist, hard links and symbolic links. A hard link is a reference counting
mechanism that allows a file to have multiple names within the same file system. Symbolic
links cause string substitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists
for a symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path®, to patht:

link(path1, path?2);
char *pathl, spath2;

symlink(pathl, path2);
char *pathl, spath2;
The unlink primitive may be used to remove either type of link.
If a file is a symbolic link, the ‘‘value” of the link may be read with the readlink call,
leg == readlink(path, buf, bufsize);
result int len; result char #path, *buf; int bufsize;

This call returns, in duf, the null-terminated string substituted into pathnames passing through
path.
Atomic renaming of file system resident objects is possible with the rename call:

rename(oidname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is a
directory, then it must be empty.

9.5, EXtension and Truncation

Files are created with zero length and may be extended simply by writing or appending to
them. While a file is open the system maintains a pointer into the file indicating the current
location in the file associated with the descriptor. This pointer may be moved about in the file
in a random access fashion. To set the current offset into a file, the leeek call may be used,

26 Revision E of 7 January 1084

-

System Interface Overview File System

oldoffset = lseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of,

jfdefine L_SET 0 [+ set absolute file offset */
#define L_INCR 1] * set file offset relative to current position */
#define L_XTND 2 /* set offset relative to end-of-file */

~The call “iseek(fd, 0, L_INCR)” returns the current offset into the file.

Files may have “holes” in them. Holes are void areas in the linear extent of the file where data
has never been written. These may be created by seeking to a location in a file past the current
end-of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:
truncate(path, length);
char #path; int length;
ftruncate(fd, length};
int fd, length;
reducing the size of the specified file to length bytes.

9.8. Checking Accessibility
A process running with different real and effective user ids may interrogate the accessibility of a
file to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or’ing the following bits, defined in <sys/file.h>:

#tdefine F_OK 0 /* file exists +/
ftdefine X_OK 1 /* file is executable */
#define W_OK 2 /* file is writable */
#define R_OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of access.

9.7. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their
access to shared files. A process may place an advisory read or write lock on a file, so that other
cooperating processes may avoid interfering with the process’ access. This simple mechanism
provides locking with file granularity. More granular locking can be built using the IPC facili-
ties to provide a lock manager. ‘The system does not force processes to obey the locks; they are
of an advisory nature only.

Locking is performed after an open call by applying the flock primitive,

flock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in <sys/file.h>:

Revision q of 7 January 1984 27

File System System Interface Overview

/* shared lock */

ftdefine LOCK_SH
/* exclusive lock */

#tdefine LOCK_EX
f#define LOCK_NB /* don’t block when locking */
#define LOCK_UN /* unlock »/

Successive lock calls may be used to increase or decrease the level of locking. If an object is
currently locked by another process when a flock call is made, the caller will be blocked until the
current lock owner releases the lock; this may be avoided by including LOCK_NB in the how
parameter. Specifying LOCK_UN removes all locks associated with the descriptor. Advisory
locks held by a process are automatically deleted when the process terminates.

CO s 0O

9.8. Disk Quotas

As an optional facility, each file system may be requested to impose limits on a user’s disk
usage. Two quantities are limited: the total amount of disk space which a user may allocate in
a file system and the total number of files a user may create in a file system. Quotas are
expressed as hard limits and soft limits. A hard limit is always imposed; if a user would exceed
a hard limit, the operation which caused the resource request will fail. A soft limit results in the
user receiving a warning message, but with allocation succeeding. Facilities are provided to turn
soft limits into hard limits if a user has exceeded a soft limit for an unreasonable period of time.

To enable disk quotas on a file system the setquota call is used:

setquota(special, file);
char *apecial, #file;

‘where special refers to a structured device file where a mounted file system exists, and file refers
to a disk quota file (residing on the file system associated with special) from which user quotas
should be obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:
#include <sys/quotah>
quota(cmd, uid, arg, addr);
int ¢cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command
specific. The file <sys/quota.h>> contains definitions pertinent to the use of this call.

28 Revision E of 7 January 1984

-

-

System Interface Overview Interprocess Communications

10. Interprocess Communications
10.1. Interprocess Communication Primitives

10.1.1. Communication Domains

The system provides access to an extensible set of communication domains. A communication
domain is identified by a manifest constant defined in the file <sys/socket.h>>. Important
standard domains supported by the system are the UNIX domain, AF_UNIX, for communication
within the system, and the “internet” domain for communication in the DARPA internet,
AF_INET. Cther domains can be added to the system.

10.1.2. Socket Types and Protocols

Within a domain, communication takes place between communication endpoints known as sock-
cts. Each socket has the potential to exchange information with other sockets within the
domain.

Each socket has an associated abstract type, which describes the semantics of communication
using that socket. Properties such as reliability, ordering, and prevention of duplication of mes-
sages are determined by the type. The basic set of socket types is defined in <sys/socket.h>:

/* Standard socket types #/

ftdefine SOCK_DGRAM 1 /* datagram */

#define SOCK_STREAM 2 [+ virtual circuit */

ffdefine SOCK_RAW 3 /* raw socket */

#define SOCK_RDM 4 /* reliably-delivered message */
fidefine SOCK_SEQPACKET 5 /* sequenced packets */

The SOCK_DGRAM type models the semantics of datagrams in network communication: mes-
sages may be lost or duplicated and may arrive out-of-order. The SOCK_RDM type models the
semantics of reliable datagrams: messages arrive unduplicated and iu-order, the sender is
notified if messages are lost. The send and receive operations (described below) generate
reliable/unreliable datagrams. The SOCK_STREAM type models connection-based virtual cir-
cuits: two-way byte streams with no record boundaries. The SOCK_SEQPACKET type models
a connection-based, full-duplex, reliable, sequenced packet exchange; the sender is notified if
messages are lost, and messages are never duplicated or presented out-of-order. Users of the
last two abstractions may use the facilities for out-of-band transmission to send out-of-band
data.

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it has no
specific semantics.

QOther socket types can be defined.}

Each socket may have a concrete protocol associated with it. This protocol is used within the
domain to provide the semantics required by the socket type. For example, within the

1 This release does not support the SOCK_RDM and SOCK_SEQPACKET types.

Revision E of 7 January 1984 29

Interprocess Communications System Interface Overview

“‘internet” domain, the SOCK_DGRAM type may be implemented by the UDP user datagram
protocol, and the SOCK_STREAM type may be implemented by the TCP transmission control
protocol, while no standard protocols to provide SOCK_RDM or SOCK_SEQPACKET sockets

exist.

10.1.3. Socket Creation, Naming, and Service Establishment
Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the
socket call:

s == socket{domain, type, protocol);
result int s; int domain, type, protocol;

A1n unconnected socket descriptor may yield a connected socket descriptor in one of two ways:
either by actively connecting to another socket, or by becoming associated with a name in the
communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the communications
domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket's bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result caddr, t name; result int *namelen;

while the peer's name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

10.1.4. Accepting Connections

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultanecusly queued
awaiting acceptance.

An accept call:

t == accept(s, name, anamelen);
result int t; int s; result caddr_t name; result int *anamelen;

returns a descriptor ;'or a new, connected, socket from the queue of pending connections on a.

30 Revision E of 7 January 1984

-

System Interface Overview Interprocess Communications

10.1.5. Making Connections

An active connectior to a named socket is made by the connect call:

connect(s, name, namelen);
int 8; caddr_t name; int namelen;

It is also possible to create connected pairs of sockets without using the domain’s name space to
rendezvous; this is done with the socketpair callt:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and connect.
The call

pipe(pv);
result int pv[2);

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv{0] only writeable and
pv[1] only readable.

10.1.6. Sending and Receiving Data

Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int 5; caddr_t buf; int len, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc; int 8; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

maglen == recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result caddr_t from; result int «fromlenaddr;

and
msglen == recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or source of the
message, while the from parameter stores the source of the message, and #fromlenaddr initially
gives the size of the from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length len bytes,
starting at address buf. The flags specify peeking at a message without reading it or sending or
receiving high-priority out-of-band messages, as follows:

t This release supports socketpeir creation only in the “‘unix’ communication domain.

Revision E of 7 January 1984 31

Interprocess Communications System Interface Overview

#tdefine MSG_PEEK 0x1 [+ peek at incoming message */
#define MSG_0O0OB 0x2 [+ process out-of-band data */

10.1.7. Scatter/Gather and Exchanging Access Rights

It is possible to scatter and gather data and to exchange access rights with messages. When
either of these operations is involved, the number of parameters to the call becomes large. Thus
the system defines a message header structure, in <sys/socket.h>, which is used to contain the
parameters to the calls:

struct msghdr {

caddr_t msg_name; /#* optional address #/

int msg_namelen; [* size of address */

struct iov *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_jov */
caddr_ t msg_accrights; /* access rights sent /received */
int msg_accrightslen; [+ size of msg_accrights +/

E
Here mzg_name and masg namelen apecify the source or destination address if the socket is
unconnected; mag_name may be given as a null pointer if no names are desired or required. The
mag_tov and masg_sovien describe the scatter/gather locations, as described in section 8.3. Access
rights to be sent along with the message are specified in mag_accrights, which has length
mag_accrightslen. In the *unix” domain these are an array of integer descriptors, taken from
the sending process and duplicated in the receiver.

This structure is used in the operations sendmag and recvmag
sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

10.1.8. Using Read and Write with Sockets

The normal UNIX read and write calls may be applied to connected sockets and translated into
send and receive calls from or to a single area of memory and discarding any rights received. A
process may operate on a virtual circuit socket, a terminal or a file with blocking or non-
blocking input/output operations without distinguishing the descriptor type.

10.1.9. Shutting Down Halves of Full-Duplex Connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read
from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the

32 Revision E of 7 January 1984

C

System Interface Overview Interprocess Communications

connection down.

10.1.10. Socket and Protocol Options

Sockets, and their underlying communication protocols, may support options. These options
may be used to manipulate implementation specific or non-standard facilities. The getsockopt
and sctoockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen);
int s, level, optname; result caddr_t optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen);
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is
specified with optval and optlen, it is interpreted by the software operating at the specified level,
The level SOL_SOCKET is reserved to indicate options maintained by the socket facilities.
Other level values indicate a particular protocol which is to act on the option request; these
values are normally interpreted as a “protocol number”,

10.2. UNIX Domsain

This section describes briefly the properties of the UNIX communications domain.

10.2.1. Types of Sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while
SOCK_DGRAM provides datagrams — unreliable message-style communications.

10.2.2, Naming

Socket names are strings and may appear in the UNIX file system name space through portalst.

10.2.3. Access Rights Transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of service
within the system and allows user processes to be used in building system facilities.

10.3. INTERNET Domain

This section describes briefly how the INTERNET domain is mapped to the mode] described in
this section. More information will be found in the Networking Implementation Notes in the
System Internals Manual.

t The current implementation of the UNIX domain embeds bound sockets in the UNIX file system
name space; this is a side eflect of the implementation.

Revision E of 7 January 1984 33

Interprocess Communications System Interface Overview

10.3.1. Socket Types and Protocols

SOCK_STREAM is supported by the INTERNET TCP protocol; SOCK_DGRAM by the UDP
protocol. The SOCK_SEQPACKET has no direct INFTERNET family analogue; a protocol
based on one from the XEROX NS family and layered on top of IP could be implemented to fill

this gap.

10.3.2. Socket Naming

Sockets in the INTERNET domain have names composed of the 32 bit internet address, and a
16 bit port number. Options may be used to provide source routing for the address, security
options, or additional addresses for subnets of INTERNET for which the basic 32 bit addresses

are insufficient,

10.3.3. Access Rights Transmission

No access rights transmission facilities are provided in the INTERNET domain.

10.3.4. Raw Access

The INTERNET domain allows the super-user access to the raw facilities of the various net-
work interfaces and the various internal layers of the protocol implementation. This allows
administrative and debugging functions to occur. These interfaces are modeled as SOCK_RAW

sockets.

34 Revision E of 7 January 1984

-

-

System Interface Overview Devices

11. Devices

The system uses a collection of device-drivers to access attached peripherals. Such devices are
grouped into two classes: structured devices on which block-oriented input/output operations
occur, and unstructured devices (the rest).

11.1. Structured Devices

Structured devices include disk and tape drives, and are accessed through a system buffer-
caching mechanism, which permits them to be accessed as ordinary files are, performing reads
and writes as necessary to allow random-access,

The mount command in the system allows a structured device containing a file system volume
to be accessed through the UNIX file system calls.

Tape drives also typically provide a structured interface, although this is rarely used.

11.2. Unstructured Devices

Unstructured devices are those devices which do not support a randomly accessed block struc-
ture.

Communications lines, raster plotters, normal magnetic tape access (in large or variable size
blocks), and access to disk drives permitting large block transfers and special operations like
disk formatting and labelling all use unstructured device interfaces.

The writing of devices for unstructured devices other than communications lines is described in
the Device Driver Manual in the System Internals Manual.

Revision E of 7 January 1984 35

Debugging Support System Interface Overview

12. Debugging Support

The ptrace facility of version 7 UNIX is provided in this release. Planned enhancements which
would allow a descriptor-based process control facility have not been implemented.

36 Revision E of 7 January 1984

-

-

System Interface Overview Summary of Facilities

Part IIl — Summary of Facilities

Appendix A. Summary of Facilities
A.l. Kernel Primitives

A.l1.1. Process Naming and Protection

sethostid set UNIX host id

gethostid get UNIX host id

sethostname set UNIX host name
gethostname get UNIX host name

getpid get process id

fork create new process

exit terminate a process

execve execute a different process
getuid get user id

geteuid get effective user id

setreuid set real and effective user id’s
getgid get accounting group id
getegid get effective accounting group id
getgroups get access group set

setregid set real and effective group id's
setgroups set access group set

getpegrp get process group

setpgrp set process group

A.1.2, Memory Management

<mman.h> memory management definitions
sbrk change data section size
sstkt change stack section size

1 Not supported in the 1.1 Sun release,

Revision E of 7 January 1984

37

Summary of Facilities

getpagesize
mmapt
mremapt
munmapt
mprotectt
madviset
mincoret

A.1.3. Signals

<signal. h>
sigvec

kill

killpgrp
sigbhlock
sigsetmask
sigpause
sigstack

get memeory page size
map pages of memory
remap pages in memory
unmap memory

change protection of pages

give memory management advice
determine core residency of pages

signal definitions

set handler for signal

send signal to process

send signal to process group
block set of signals

restore set of blocked signals
wait for signals

set software stack for signals

A.l.4. Timing and Statistics

<sys/time.h>
gettimeofday
settimeofday
getitimer
setitimer

profil

A.1.5. Descriptors

1 Not supported in the 1.1 Sun release.

38

getdtablesize
dup

dup2

close

select

fentl

time-related definitions

get current time and timezone
set current time and timezone
read an interval timer

get and set an interval timer
profile process

descriptor reference table size
duplicate descriptor
duplicate to specified index
close descriptor

multiplex input/output
control descriptor options

Revision E of 7 January 1984

System Interface Overview

-

-

System Interface Overview Summary of Facilities

@ A.1.8. Resource Controls

<sys/resource.h> resource-related definitions
getpriority get process priority
setpriority set process priority
getrusage get resource usage
getrlimit get resource limitations
setrlimit set resource limitations

A.1.7, System Operation Support

mount mount a device file system
swapon add a swap device
umount umount a file system

syne flush system caches
reboot reboot a machine

acct specify accounting file .

A.2. System Facilities

O A.2.1. Generic Operations

read read data

write write data

<sysfuio.h> scatter-gather related definitions
readv scattered data input

writev gathered data output
<sys/ioctL.h> standard control operations
ioctl device control operation

A.2.2. File System

Operations marked with a * exist in two forms: as shown, operating on a file name, and operat-
ing on a file descriptor, when the name is preceded with a “f"".

<sys/file.h> file system definitions
chdir change directory
chroot change root directory
mkdir make a directory
rmdir remove a directory
open open a new or existing file
mknod make a special file
unlink remove a link

O stat* return status for a file

Revision E of 7 January 1984 39

Summary of Facilities

Istat
chowns
chmods
utimes
link
symlink
readlink
rename
Iseek
truncates
access
flock

System Interface Overview

returned status of link
change owner

change mode

change access/modify times
make a hard link

make a symbolic link

read contents of symbolic link
change name of file
reposition within file
truncate file

determine accessibility

lock a file

A.2.3. Interprocess Communications

<sys/socket.h>
socket

bind
getsockname
listen

accept
connect
socketpair
sendto

send
recvirom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

A24. ngices

¥

A.2.5. Debugging Support

40

standard definitions

create socket

bind socket to name

get socket name

allow queueing of connections
accept a connection

connect to peer socket

create pair of connected sockets
send data to named socket

send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive acattered data and/or rights
partially close full-duplex connection
get socket option

set socket option

Revision E of 7 January 1984

-

O

INTRO(2) SYSTEM CALLS INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
##include <errno.h>

DESCRIPTION
Chis section describes all of the system calls. Most of these calls have one or more error returns,
an error condition is indicated by an otherwise impossible return value. This is almost always -1;
she individual descriptions specify the details.

ﬁu with normal arguments, all return codes and values from functions are of type integer unless
jtherwise noted. An error number is also made available in the external variable errno, which is
niot cleared on successful calls. Thus errno should be tested only after an error has occurred.

The following is a complete list of the errors and their names as given in <errno.h>.

Qi Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to
its owner or super-user. It is also returned for attempts by ordinary users to do things
allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
& The process whose number was given to kilf and pirace does not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such 28 interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition,

5 EIO I/O error
Some physical IO error occurred during a read or write. This error may in some cases
occur ont a call following the one to which it actually applies.

6 ENXIO No such device or address
1/O on a special file refers to a subdevice which does not exist, or beyond the limits of the
device. It may also occur when, for example, an illegal tape drive unit number is selected
or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to ezecve,

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a.0ui(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a
file which is open only for writing (resp. reading).

10 ECHILD No childrén
Wait and the process has no living oz unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any more
processes.)

Sun Release 1.1 _ Last change: 15 March 1984 1

INTRO(2)

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

SYSTEM CALLS INTRO(2)

ENOMEM Not enough core
During an ezecve or break, a program asks for more core or swap space than the system is

able to supply. A lack of swap space is normally a temporary condition, however a lack
of core is not a temporary condition; the maximum size of the text, data, and stack seg-
ments is a system parameter.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a sys-
tem call.

ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current directory,
mounted-on file, active text segment). -

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. fink.

EXDEV Cross-device link
A hard link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
ot as an argument to chdir.

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argament
Some invalid argument: dismounting a non-mounted device, mentioning an unknown sig-
nal in signal, reading or writing a file for which #¢ck has generated a negative pointer.
Also set by math functions, see intro(3).

ENFILE File tabie overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

EMFILE Too many open filed
Customary configuration limit is 20 per process.

ENOTTY Not a typewriter
The file mentioned in an ioctl is not a terminal or one of the other devices to which these
calls apply.

ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or
reading!). Also an attempt to open for writing a pure-procedure program that is being
executed.

EFBIG File too large
The size of a file exceeded the maximum {(about 10° bytes).

ENOSPC No space left on device
During a wrile to an ordinary file, there is no feee space left on the device,

Last change: 15 March 1984 Sun Release 1.1

-

INTRO(2) SYSTEM CALLS INTRO(2)

29 ESPIPE Iilegal seek
An [seek was issued to a pipe. This error may also be issued for other non-seekable dev-
ices,

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no precess to read the data. This condition
normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math library (as described in section 3M) is out of the
domain of the function.

34 ERANGE Result too large
The value of a function in the math library (as described in section 3M) is unrepresent-
able within ma;chine precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non-
blocking mode (see focti(2)).

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect(2)) was attempted
on a non-blocking object (see doct/(2)).

37 EALREADY Operation already in progress ,
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSock Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A requited address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
-requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENCPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it exists,

44 ESOCKTNOSUPI-;‘QRT Socket type not supported
The support for the socket type has not been configured into the system or no implemen-
tation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for it
exists.

Sun Releasg 1.1 Last change: 15 March 1984 3

INTRO(2)

47

48

49

50

51

52

53

54

55

57

58

59
60

61

62

63

64

SYSTEM CALLS INTRO(2)

EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn’t necessarily expect to be able to use PUP Internet addresses with ARPA Inter-

net protocols.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL Can’t assign requested address
Normally results from an zttempt to create a socket with an address not on this machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer execut-
ing a shutdown(2) call.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked sufficient
buffer space.

EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendlo or sendmsy
request on a connected socket specified a destination other than the connected party.

ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown(2) call.

unused

ETIMEDGUT Connection timed out ‘
A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent on the communication protocol.)

ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usu-
ally results from: trying to connect to a service which is inactive on the foreign host.

ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name exceeded
1023 characters.

ENOTEMPTY Directory not empty
A directory with entries other than ".”” and “.."” was supplied to a remove directory or
rename call.

Last change: 15 March 1984 Sun Release 1.1

-

INTRO(2) SYSTEM CALLS INTRO(2)

O

DEFINITIONS
Descriptor
An integer assigned by the system when a file is referenced by open(2), dup(2), or pipe(2) or
a socket is referenced by sockel(2) or socketpair(2) which uniquely identifies an access path
to that file or socket from a given process or any of its children,

Directory
A directory is a special type of file which contains entries which are references to other files.
Directory entries are called links, By convention, a directory contains at least two links, .
and .., referred to as dof and dot-dot respectively. Dot refers to the directory itself and dot-
dot refers to its parent directory.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the effective
group ID, and the group access list,

The eflective user ID and effective group ID are initially the process’s real user ID and real
group ID respectively. Either may be modified through execution of a set-user-ID or set-
group-ID file (possibly by one its ancestors); see ezecve(2).

The group access list is an additional set of group ID’s used only in determining resource
acceasibility. Access checks are performed as described below in “File Access Permissions”.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used in
determining whether a process may perform a requested operation on the file {such as open-
ing a file for writing). Access permissions are established at the time a file is created. They
may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes
of uzers: the owner of the file, those users in the file's group, anyone else. Every file has an
independent set of access permissions for each of these classes, When an access check is
made, the system decides if permission should be granted by checking the access informa-
tion applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the owner
permissions allow the access,

The process’s effective user ID does not match the user ID of the owner of the file, and
eithet the procesa’s effective group ID matches the group ID of the file, or the group ID of
the file is in the process’s group access list, and the group permissions allow the access.

Neither the effective user ID nor eflective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for “other
users’”’ allow access.

Otherwise, permission is denied.

File Name .
Names consisting of up to 255 characters may be used to name an ordinary file, special file,
or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null) and
the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

O Note that it is generally unwise to use *, ?, | or | as part of file names because of the special

Sun Release 1.1 Last change: 15 March 1984 5

INTRO(2) SYSTEM CALLS INTRO(2)

-

meaning attached to these characters by the shell.

Parent Process ID
A new process is created by a currently active process; see fork(2). The parent process ID of

a process is the process ID of its creator.

Path Name
A path name is a null-terminated character string starting with an optional stash (/), fol-

lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME_MAX} characters.

If a path name begins with a slash, the path search begins at the root directory. Otherwise,
the search begins from the current working directory. A slash by itsell names the root
directory. A null pathnamne refers to the current directory.

Process Group ID
Each active process is 3 member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping per-
mits the signalling of related processes (see killpg(2)) and the job contrel mechanisms of
eeh(1).

Process ID
Each active process in the system is uniquely identified by a positive integer called a process
ID. The range of this ID is from 0 to 30000.

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished from
others and used in implementing accounting facilities. The positive integer corresponding to
this distinguished group is termed the real group ID. O

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process’s root directory need
not be the root directory of the root file system.

Sockets and Address Families
A socket is an endpoint for communication between processes. Each socket has queues for
sending and receiving data. ‘

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2) for
more information about the types available and their properties.

Each ipstance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols, Each socket has an address chosen from the
address family in which the socket was created.

Special Processes
The processes with a process ID’s of 0, 1, and 2 are special. Process 0 is the scheduler. Pro-
cess 1 is the initialization process init, and is the ancestor of every other process in the sys-
tem. It is used to control the process structure. Process 2 is the paging daemon.

Super-user
A process is recognized as a super-user process and is granted special privileges if its

6 Last change: 15 March 1984 Sun Release 1.1

INTRO(2) SYSTEM CALLS INTRO(2)

effective user ID is 0.

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between multiple jobs
cortending for the same terminal; see coh(1), and tiy(4).

SEE ALSO
inteo(3), perror(3)

Sun Release 1.1 Last change: 15 March 1984 7

ACCEPT(2) SYSTEM CALLS ACCEPT(2)

C

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s3

struct sockaddr *addr;

int *addrlens

DESCRIPTION

The argument 3 is a socket which has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Accept extracts the first connection on
the queue of pending connections, creates a new socket with the same properties of # and allocates
a new file descriptor, ns, for the socket. If no pending connections are present on the queue, and
the socket is not marked as non-blocking, accept blocks the caller until a connection is present. If
the socket is marked non-blocking and no pending connections are present on the queue, accept
returns an error as described below. The accepted socket, ns, is used to read and write data to
and from the socket which connected to this one; it is not used to accept more connections. The
original socket # remains open for accepting further connections.

The argument addr iz a result parameter which is filled in with the address of the connecting
edtity, as known to the communications layer. The exact format of the addr parameter is deter-
mjned by the domain in which the communication is occurring. The addrien is a value-result
parameter; it should initially contain the amount of space pointed to by addr; on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection-
based socket types, currently with SOCK_STREAM. O

It is possible to select(2) a socket for the purposes of doing an acezp! by selecting it for read.

RETURN VALUE
The call returns -1 ou error. If it succeeds it returns a non-negative integer which is a descriptor
for the accbbged socket.

ERRORS :
The aceept will fail if:
|EBADF]| -The descriptor is invalid.
|[ENOTSOCK] The descriptor references a file, not a socket.
|[EOPNOTSUPP) The referenced socket is not of type SOCK_STREAM.
|EFAULT] The addr parameter is not in 2 writable part of the user address space,
[EWOULDBLOCK]| The socket is marked non-blocking and no connections are present to be
accepted.
SEE ALSO

bind(2), connect(2), listen(2), select(2), socket(2)

-

8 Last change: 29 August 1983 Sun Release 1.1

O

>

ACCESS(2)

NAME

SYSTEM CALLS ACCESS(2)

access — determine accessibility of file

SYNOPS[S

#include <sys/file.h>

##define R_OK
#F#define W_OK
#deflne X_OK
#fdefine F_OK

4 [* test for read permission */

2 [* test for write permission */

1 /* test for execute (search) permission */
0 /* test for presence of file */

accessible = access(path, mode)

int accessible;
char *path;
int mode;

DESCRIPTION

Access checks the given file path for accessibility according to mode, which is an inclusive or of

the bits R_OK,

W_OK and X_OK. Specifying mode as F_OK (i.e. 0) tests whether the direc-

tories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying per-
mission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access, but
an attempt to open it for writing will fail (although files may be created there); a file may look
executable, but ezecve will fail unless it is in proper format.

RETURN VALUE

If psth cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS

Access to the file is denied if one or more of the following are true:

[ENOTDIR]
[ENOENT|
[ENOENT)

[EPERM]
[ELOOP
[EROFS)
[ETXTBSY]

[EACCES]

[EFAULT]
SEE ALSO

A component of the path prefix is not a directory.
The argument path name was too long.

Rea.d,' write, or execute (search) permission is requested for a null path name or
the named file does not exist.

The argument contains a byte with the high-order bit set.
Too many symbolic links were encountered in translating the pathname.
Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure {shared text) file that is being exe-
cuted.

Permission bits of the file mode do not permit the requested access; or search
permission is denied on a component of the path prefix. The owner of a file has
permission checked with respect to the “owner’ read, write, and execute mode
bits, members of the file's group other than the owner have permission checked
with respect to the ‘‘group’ mode bits, and all others have permissions checked
with respect to the “other” mode bits.

Path points outside the process’s allocated address space.

chmod(2), stat(2)

Sun Release 1.1

Last change: 2 July 1983 9

ACCT(2) SYSTEM CALLS ACCT(2)

NAME
acct — turn accounting on or off

SYNOPSIS
acct(file)
char *file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a nuli-terminated string naming an existing file as argument, turns on accounting;
records for each terminating process are appended to file. An argument of 0 causes accounting to
be turned off.

The accounting file format is given in acct(5).

-

I This call is permitted only to the super-user.

NOTES
Accounting is automatically disabled when the file system the accounting file resides on runs out
of space; it is enabled when space once again becomes available.

'RETURN VALUE
On error —1 is returned. The file must exist and the call may be exercised only by the super-user.
It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acct will fail if one of the following is true:
[EPERM] The caller is not the super-user.
|[EPERM] The pathname contains a character with the high-order bit set.

{ENOTDIR] A component of the path prefix is not a directory.
IENOENT) The named file does not exist.

|EISDIR) The named file is a directory.
|[EROF§] The named file resides on a read-only file system.
[EFAULT) File points outside the process’s allocated address space.
|[ELOCP] Too many symbolic links were encountered in translating the pathname.
[EACCES) The file is a character or block special file.
SEE ALSO ,
acet(5), sa(8)

BUGS
No accounting is produced for programs running when a crash occurs. In particular nonterminat-
ing programs are never accounted for.

10 Last change: 13 February 1983 Sun Release 1.1

BIND{(2) SYSTEM CALLS BIND (2)

© NAME
bind - bind a name to a socket
SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
bind(s, name, namelen)
Ipt o
struct sockaddr *name;
lgt namelen;
DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2} it exists in a

name space (address family) but has no name assigned. Bind requests the name, be assigned to
the socket.

NOTES
Binding a2 name in the UNIX domain creates a socket in the file system which must be deleted by
the caller when it is no longer needed (using unfink(2)).

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is
further specified in the global errne.

ERRORS
The bind call will fail if:

|EBADF] Sis not a valid descriptor.
[ENOTSOCK] Sis not a socket, A
|[EADDRNOTAVAIL] The specified address is not available from the local machine.
|EADDRINUSE] The specified address is already in use.

|[EINVAL] The socket is already bound to an address.
{EACCES)] The requested address is protected, and the current user has inadequate
‘permission to access it.
[EFAULT] The name parameter is not in a valid part of the user address space.
SEE ALSO
connect{2), listen(2), socket(2), getsockname(2)

BUGS
The file created is a side-effect of the current implementation and will not be created in future
versions of the UNIX ipe domain.

&

Sun Releasg 1.1 ' Last change: 4 January 1984 11

BRK (2) SYSTEM CALLS BRK({(2)

NAME

brk, sbrk - change data segment size
SYNOPSIS

caddr_t brk(addr)

caddr_t addr;

caddr_t sbrk(incr)

int Iner;
DESCRIPTION

Brk sets the system’s idea of the lowest data segment location not used by the program {called the
break) to addr (rounded up to the next multiple of the system’s page size). Locations greater
than sddr and below the stack pointer are not in the address space and will thus cause a memory
violation if acceszed.

In the alternate function sbrk, iner more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via ezecve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the data
segment; it will not be possible to set the break beyond the rlim_maz value returned from a call
to getrlimst, e.g. “etext + rlp—+rlim_max.” (See end{3) for the definition of etezt.)

RETURN VALUE

Zero is returned if the brk could be set; -1 if the program requests more memory than the system
limit. Sbrk returns -1 if the break could not be set.

ERRORS .

Sbrk will fail and no additional memory will be allocated if one of the following are true:
|[ENOMEM] The limit, as set by setrlimit(2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded.

[ENOMEM| Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

12

execve(2), getrlimit(2), malloc(3}, end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distinguish
this from a failure caused by exceeding the maximum size of the data segment without consulting
getriimil,

Last change: 29 August 1983 Sun Release 1.1

-

CHDIR (2) SYSTEM CALLS CHDIR (2)

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char *pathj

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with */".

In order for a directory to become the current directory, a process must have execute {search)
access to the directory.

RETURN VALUE
on successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
cf!:)-na is set to indicate the error.

ERRORS’
Chdir will fail and the current working directory will be unchanged if one or more of the following

are true:

[ENOTDIR) A component of the pathname is not a directory.
[ENOENT] The named directory does not exist.

|[ENCENT) The ai'gument path name was too long.

|EPERM] The arguement contains a byte with the high-order bit set.

|[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chroot(2)

Sun Release 1.1 L-ast change: 2 July 1983 13

CHMOD(2) SYSTEM CALLS CHMOD(2)

NAME

chmeod, fchmod - change mode of file .

SYNOPSIS

chmod(path, mode)
char *path;
int mode;

fchmod(fd, mode)
int £fd, mode;

DESCRIPTION

The file whose name is given by path or referenced by the descriptor fd has its mode changed to
mode. Modes are constructed by or'ing together some combination of the following:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner
00070 read, write, execute (search) by group

00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user
terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This makes
the system somewhat more secure by protecting set-user-id (set-group-id) files from remaining
set-user-id (set-group-id) if they are modified, at the expense of a degree of compatibility.

RETURN VALUE

Upon successful’ completion, a valee of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

14

Chmod will fail and the file mode will be unchanged if:

|EPERM] The argument contains a byte with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The pathname was too long.

[ENOENT) The named file does not exist.

|EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective user
, ID is not the super-user.

|[EROF S} The named fle resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space,

[ELOOP] Too many symbolic links were encountered in translating the pathname,

Fehmod will fail if:

{EBADF] The descriptor is not valid.

|EINVAL) Fd refers to a socket, not to a file.

|[EROFS] The file resides on a read-only file system.

Last change: 2 July 1983 Sun Release 1.1

O

O

CHMOD (2)

SEE ALSO
open(2), chown(2)

Sun Release 1.1

SYSTEM CALLS

L.ast change; 2 July 1983

CHMOD(2)

15

CHOWN(2) SYSTEM CALLS CHOWN(2)

NAME
chown, fchown — change owner and group of 2 file

SYNOPSIS
chown(path, owner, group)
char *path;
int owner, groups

fchown(fd, owner, group)
Int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as specified.
Only the super-user may execute this call, because if users were able to give files away, they could
defeat the file-space accounting procedures.

Chown clears the set-user-id and set-group-id bits on the file to preveat accidental creation of set~
user-id and set-group-id programs owned by the supet-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
flock(2)).
Only one of the owner and group id’s may be set by specifying the other as -1.

RETURN VALUE

Zero is returned it the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:
[EINVAL} The argument path does not refer to a file.

[ENOTDIR] .- A component of the path prefix is not a directory.
[ENOENT] The argument pathname is too long.

[EPERM| The argument contains a byte with the high-order bit set.
|[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The eflective user ID does not match the owner of the file and the eflective user
ID is not the super-user.
|EROFS] The named file resides on a read-only file system.
|[EFAULT] Path points outside the process’s allocated address space.
|[ELOOP} Too many symbolic links were encountered in translating the pathname.
Fehown will fail it:
[EBADF) Fd does not refer to a valid descriptor,
{EINVAL] Fd refers to a socket, not a file.
SEE ALSO

chmod(2), flock{2)

16 Last change: 29 August 1983 Sun Release 1.1

CHROOT(2) . SYSTEM CALLS CHROOT(2)

O NAME

chroot — change root directory

SYNOPSIS
chroot{dirname)
char *dirname;

DESCRIPTION
Dirngme is the address of the pathname of a directory, terminated by a null byte. Chroof causes
this directory to become the root directory, the starting point for path names beginning with “/"".
This root directory setting is inherited across ezecve(2) and by all children of this process created
with fork(2) calls.
In order for a directory to become the root directory a process must have execute (search) access
to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are true:

[ENOTDIR] A component of the path name is not a directory.
|ENOENT] The pathname was too long.

|[EPERM} The argument contains a byte with the high-order bit set.
[ENOENT] The named directory does not exist.
O [EACCES]) Search permission is denied for any component of the path name.
|[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO
chdir(2)

Sun Release 1.1 Last change: 29 August 1983 17

CLOSE(2) SYSTEM CALLS CLOSE(2)

NAME

close — delete a descriptor

SYNOPSIS

close(d)
int d;

DESCRIPTION

The cloge call deletes a descriptor from the per-process object reference table. It this is the last
reference to the underlying object, then it will be deactivated. For example, on the last close of a
file the current seek pointer associated with the file is lost; on the last close of a socket(2) associ-
ated naming information and queued data are discarded; on the last close of a file holding an
advisory lock the lock is released, see flock(2) for further information.

A close of all of a process’s descriptors is automatic on ezit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with many
descriptors.

When a process forks {see fork(2)), all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a mew process is then to be run using
ezecve(2), the process would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the ezecve is attempted, but if some of these
descriptors will still be needed if the execve fails, it is necessary to arrange for them to be closed
if the execve succeeds. For this reason, the call ‘‘fentl{d, F_SETFD, 1)" is provided which
arranges that a descriptor will be closed after a successful execve; the call “fentl{d, F_SETFD, 0)”
restores the default, which is to not close the descriptor.

Close unmaps pages mapped through this file descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, 2 value of -1 is returned and the
global integer variable errno is set to indicate the error.

ERRORS.

Clpse will fail if:
|EBADF) D is not an active descriptor.

SEE ALSO

18

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fent)(2), mmap{2), mun-
map(2)

Last change: 20 March 1983 Sun Release 1.1

O

CONNECT(2) SYSTEM CALLS CONNECT(2)

NAME ‘
connect — initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
Int »;

struet sockaddr *name;
Int namelen;

DESCRIPTION
The parameter 2 is a socket. If it is of type SOCK_DGRAM, then this call permanently specifies
the peer to which datagrams are to be sent; if it is of type SOCK_STREAM, then this call
attempts to make a connection to another socket. The other socket is specified by name which is
an address in the communications space of the socket. Each communications space interprets the
neme parameter iy its own way.

RETURN VALUE
It the connection or binding succeeds, then O is returned. Otherwise a -1 is returned, and a more
specific error code is stored in errno.

ERRORS
The call fails if:
{EBADF) S is not a valid descriptor.
{ENOTSOCK] S is a deseriptor for a file, not a socket,

|EADDRNOTAVAIL| The specified address is not available on this machine.
|EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.
[EISCONN]| The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connection.
[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH]| The network isn't reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] .The name parameter specifles an area outside the process address space.

[EWOULDBLOCK| The socket is non-blocking and the and the connection cannot be com-
pleted immediately. It is possible to select(2) the socket while it is con-
necting by selecting it for writing.

SEE ALSO S
accept(2), select(2), socket(2), getsockname(2)

Sun Release 1.1 . Last change: 7 July 1983 19

CREAT(2) SYSTEM CALLS ‘ CREAT(2)

NAME
creat — create a new file

SYNOPSIS
creat(name, mode)
char *name;j

DESCRIPTION
This Interface Is obsoleted by open(2).
Creat creates a new file or prepares to rewrite an existing file called rame, given as the address of
a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process's mode mask (see umask{2)). Also see chmod(2) for the construction of the mode argu-
ment.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned.

NOTES
The mode given is arbitrary; it need not allow writing., This feature has been used in the past by
programs to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL open
mode, or flock(2) facilitity.

RETURN VALUE
The value —1 is returned if an error occurs. Otherwise, the call returns a non-negative descriptor
which only permits writing.

ERRORS
Creat will fail and the file will not be created or truncated if one of the following occur:
|EPERM] The argument contains a byte with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.
|EACCES] A needed directory does not have search permission,
|EACCES] The file does not exist and the directory in which it is to be created is not writ-
able.
|EACCES] The file exists, but it is unwritable.
|EISDIR} The file is a directory.
[EMFILE] There are already too many files open.
[EROFS) The named file resides on a read-only file system.
[ENXI10] The file Is a character special or block special file, and the associated device does
not exist.
[ETXTBSY} The 2le is a pure procedure (shared text) file that is being executed.
[EFAULT] . Name points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EOPNOTSUPP)
The file was a socket {not currently implemented).
SEE ALSO

open(2), write(2), close(ﬁ), chmod(2), umask(2)

20 Last change: 2 July 1983 Sun Release 1.1

DUP(2) SYSTEM CALLS DUP(2)

NAME
dup, dup2 ~ duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
Int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table, which
is returned by getdtablesize(2). The new descriptor newd returned by the call is the lowest num-
bered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd and
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2), write(2)
and [seek(2) calls all move a single pointer into the file. If a separate pointer into the file is
desired, a different object reference to the file must be obtained by issuing an additional open{2)
call.

In the second form of the call, the value of newd desired is specified. If this descriptor is already
in use, the descriptor is first deallocated as if a close(2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indicates
the cause of the error.

ERRORS
Dup and dup? fail if:
|EBADF] Oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

SEE ALSO :

accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

»

Sun Release 1.1 Last change: 12 February 1983 21

EXECVE(2) SYSTEM CALLS EXECVE(2)

NAME
execve — execute a file
SYNOPSIS
execve(name, argv, envp)
char *name, *argv[], *envp(};

DESCRIPTION
Ezecve transforms the calling process into a new process. The new process is constructed from an
ordinary file called the new process file. This file is either an executable object file, or a file of
data for an interpreter. An executable object file consists of an identifying header, followed by
pages of data representing the initial program (text) and initialized data pages. Additional pages
may be specified by the header to be initialize with zero data. See a.0u?(5).

An interpreter file begins with a line of the form *‘##! inferpreter”; When an interpreter file is
ezecve ’d, the system ezecve's the specified interprefer, giving it the name of the originally exec'd
file as an argument, shifting over the rest of the original arguments,

There can be no return from a successful ezecve because the calling core image is lost. This is the
mechanism whereby different process images become active.

The argumetit a+gv is an array of character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention, at
least one argument must be present in this array, and the first element of this array should be the
pame of the executed program (i.e. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These strings
pass information to the new process which are not directly arguments to the command, see
environ(5).

Descriptors open in the calling process remain open in the new process, except for those for which
the close-on-exec flag is set; see close(2). Descriptors which remain open are unaffected by ezecve.

Ignored zignals remain ignored across am ezecve, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined; see #igvec(2) for more information.

Each process has a resl user ID and group ID and an cffective user ID and group ID. The real/ ID
identifies the person using the system; the effective ID determines his access privileges. FEzrecve
changes the effective user and group ID to the owner of the executed file if the file has the “‘set-
user-ID"’ or ‘“set-group-ID' modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

protess 1D see getpid(2)

parent process I
process group ID
access groups
working directory
root directory
control terminal
resource usages
interval timers
resource limits
file mode mask
signal mask

see getppid(2)
see getpgrp(2)
see gelgroups(2)
see chdir(2)

see chroot(2)
see tiy(4)

see getrusage(2)
see gelitimer(2)
see getrlimit(2)
see umask(2)
see sigvec(2)

Wkhen the executed program begins, it is called as follows:
main{arge, argy, envp)
int arge; '
char **argv, **envp;

22 Last change: 2 July 1983 Sun Release 1.1

-

O

O

EXECVE(2)

SYSTEM CALLS EXECVE(2)

where arge is the number of elements in argy (the *arg count”) and argv is the array of character
pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A pointer
to this array is also stored in the global variable “‘environ”. Each string consists of a name, an
“=" and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(1) passes an environment entry for each global shell variable defined when the program is
called. See environ(5) for some conventionally used names.

RETURN VALUE

I execve returns to the calling process an error has occurred; the return value will be —1 and the
global variable errno will contain an error code.

ERRORS

Ezecve will fail ard return to the calling process if one or more of the following are true:

[ENOENT]
[ENOTDIR]
[EACCES]

[EACCES)
[EACCES]
[ENOEXEC)

[ETXTBSY]
[ENOMEM]
[E2BIG]

[EFAULT]
[EFAULT]
CAVEATS

One or more components of the new process file’s path name do not exist,
A component of the new process file is not a directory.

Search permission is denied for a directory listed in the new process file's path
prefix,

The new process file is not an ordinary file,
The new process file mode denies execute permission.

The new process file has the appropriate access permission, but has an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file that is currently open
for writing or reading by some process.

The new process requires more virtual memory than is allowed by the imposed
maximum {getriimit(2)).

The number of bytes in the new process’s argument list is larger than the
system-imposed limit of {ARG_MAX} bytes.

The new process file is not as long as indicated by the size values in its header.
Path, argv, or envp point to an illegal address.

If a program is sefuid to 4 non-super-user, but is executed when the real uid is ‘‘root”, then the
program has the powers of a super-user as well.

SEE ALSO

exit(2), fork(2), execl(3); environ(s)

Sun Releaq% 1.1

Last change: 2 July 1933 23

EXIT(2) SYSTEM CALLS EXIT(2)

NAME

_exit — terminate a process

SYNOPSIS

_exit(status)
Int status;

DESCRIPTION

_pzit terminates a process with the following consequences:
Al of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD
signal, then it is notified of the calling process’s termination and the low-order eight bita of elatus
are made available to it; see waif(2). The low-order 8 bits of status are available to the parent
process.

The parent process D of all of the calling process's existing child processes are also set to 1. This

. means that the initialization process {see intro(2)) inherits each of these processes as well.

Most C programs will call the library routine ezit(3) which performs cleanup actions in the stan-
dard ifo library before calling _ezit.

RETURN VALUE

This call never returns.

SEE ALSO

24

fork(2), wait(2), exit(3)

Last change: 29 August 1983 Sun Release 1.1

-

FCONTL(2) SYSTEM CALLS FCNTL (2)

NAME
fentl — file control

SYNOPSIS
#include <fentlh>

res = fcnti{fd, emd, arg)
int res;
int £d, cmd, arg;

DESCRIPTION
Fentl provides for control over descriptors. The argument fd is a descriptor to be operated on by
emd as follows:

F_DUFFD Return a new descriptor as follows:
Lowest numbered available descriptor greater than or equal to arg.
Same object references as the original descriptor.
New descriptor shares the same file pointer if the object was a file,
Same access mode (read, write or read/write).
Same file status flags {i.e., both file descriptors share the same file status flags).

The close-on-exec Aag associated with the new file descriptor is set to remain
open across ezecve(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fd. If the low-order
bit is 0, the file will remain open across ezec, otherwise the file will be closed
upon execution of ezec.

F_SETFD Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1 as

above).
F_GETFL Get descriptor status flags, see fent!(8) for their definitions.
F_SETFL Set descriptor status flags, see fenti(5) for their definitions,

F_GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG sig-
nals; process groups are returned as negative values,

F_SETOWN Set the process or process group to receive SIGIO and SIGURG signals; process
groups are specified by supplying arg as negative, otherwise arg is interpreted as
a process ID.

The SIGIO facilities are enabled by setting the FASYNC flag with F_SETFL.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFﬂ A new file descriptor.

F_GETF Value of flag (only the low-order bit is defined).
F_GETF Value of flags.
F_GETOWN Value of file descriptor owner.
other Value other than -1.
QOtherwise, a value of —1 is returned and errno is set to indicate the error.
ERRORS -
Fentl will fail if one or more of the following are true:
|[EBADF} Fildes is not a valid open file descriptor.
|[EMFILE} Cmd is F_DUPFD and the maximum allowed number of file descriptors are

currently open.

Sun Release 1.1 Last change: 29 August 1983 25

FCNTL (2) SYSTEM CALLS FCNTL(2)

. |
[EINVAL) Cmd is F_DUPFD and arg is negative or greater the maximum allowable number @ :
(see getdtablesize(2)).

SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

-

26 Last change: 20 August 1983 Sun Release 1.1

FLOCK (2) SYSTEM CALLS FLOCK (2)

NAME

flock — apply or remove an advisory lock on an open file

SYNOPSIS

#irclude <sys/file.h>

#define LOCK SH 1 /* shared lock */

#define LOCK EX 2 /* exclusive lock */

#define LOCK NB 4 /* don't block when locking */
#define LOCK_UN B8 /* unlock */

flock(fd, operation)
l,f’pt fd, operation;

DESCRIPTION

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A lock
is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (i.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and ezclusive locks, At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
{possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked until
the lock may be acquired. If LOCK_NB is included in opersiion, then this will not happen;
instead the call will fail and the error EWQULDBLOCK will be returned.

NOTES

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup{2) or
Jork(2) do pot result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the parent
will lose its lock. :

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE

Zero is returned if the operation was successful; on an error a -1 is returned and an error code is
left in the global location errno.

ERRORS
The flock call fails if:
|[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.
|[EBADF] The argument fd is an invalid descriptor.
|E1NVAL‘ The argument fd refers to an object other than a file.
SEE ALSO N

open(2), close(2), dup(2), execve(2), fork(2)

Sun Release 1.1 Last change: 27 July 1983 27

FORK(2) " SYSTEM CALLS FORK(2)

NAME
fork — create a new process

SYNOPSIS
pid = fork(}
int pid;
DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro-
cess).

The child process has its own copy of the parent's descriptors. These descriptors reference
the same underlying objects, so that, for instance, file pointers in file objects are shared
between the child and the parent, so that a lseek(2) on a descriptor in the child process can
affect a subsequent read or write by the parent. This descriptor copying is also used by the
shell to establish standard input and output for newly created processes as well as to set up

pipes.

The child processes resource utilizations are set to 0; see sefriimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the global variable errno is set to indicate the error.

ERRORS
Fork will tail and no child process will be created if one or more of the following are true:
[EAGAIN] The system-imposed limit {PROC_MAX} on the total number of processes
under execution would be exceeded.
|[EAGAIN] The system-imposed limit {KKID_MAX} on the total number of processes under
execution by a single user would be exceeded.
SEE ALSO

execve(2), wait(2)

28 Last change: 12 February 1983 Sun Release 1.1

-

FSYNC({2) SYSTEM CALLS FSYNC(2)

O

fsyne — synchronize a file's in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;

DESCRIPTION
Fayne causes all modified data and attributes of f4 to be moved to a permanent storage device: all
in-core modified copies of buffers for the associated file have been written to a disk when the call
returns. (Note that this is different than sync(2) which schedules disk-io for all files (as though an
Jfeync had been done on all files) but returns before the ifo completes.)

Feaync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

RETURN VALUE

A 0 value is returned on success. A -1 value indicates an error.
ERRORS

The foync fails if:

{EBADF] Fd is not a valid descriptor.

[EINVAL) Fd refers to a socket, not to a file.
SEE ALSO

syne(2), sync{8), cron(8)

BUGS
' The current implementation of this call is expensive for large files.

_

@

Sun Release 1.1 Last change: 29 August 1983 29

w

GETDTABLESIZE (2) SYSTEM CALLS GETDTABLESIZE(2)

NAME
getdtablesize — get descriptor table size

SYNOPSIS
nds == getdtablesize()
Int nds;

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at 0. The call getdta-

blegize returns the size of this table,

SEE ALSO
close(2), dup(2), open(2)

30 L ast change: 12 February 1983 Sun Release 1.1

-

GETGID{2) SYSTEM CALLS GETGID (2)

NAME
getgid, getegid — get group identity

SYNOPSIS
gld = getgld()
Int glds

egld = getegid()
int egld;

DESCRIPTION
Getgid returns the real group ID of the current process, getegid the effective group ID.

Tke real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during exe-
cution of a “set-group-ID"’ process, and it is for such processes that gelgid is most useful,

SEE ALSO
getuid(2), setregid(2), setgid(3C)

{

Sun Release 1.1 Last change: 12 February 1983 31

-

GETGROUPS(2) SYSTEM CALLS GETGROUPS(2)

-

NAME
getgroups — get grouvp access list

SYNOPSIS
#include <sys/param.h>

ngroups = getgroups(n, &gidset)
Int ngroups;
int n, *gldset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gidset.
The parameter n indicates the number of entries which may be placed in gidsel and getgroups
returns the actual number of entries placed in the gidsef array. No more than NGRPS, as defined
in <sys/param.h>, will ever be returned.

RETURN VALUE

A return value of greater than zero indicates the number of entries placed in the gidset array. A
return value of -1 indicates that an error occurred, and the error code is stored in the global vari-

able errno.
ERRORS .

The possible errors for getgroup are:

|EFAULT] The arguments ngroups or gidset specify invalid addresses.
SEE ALS{

setgroups(2}, initgroups(3)

32 Last change: 13 March 1984 Sun Release 1.1

GETHOSTID(2) SYSTEM CALLS GETHOSTID(2)

NAME
gethostid — get unique identifier of current host

SYNOPSIS
hostld = gethostid()
int hostlid;

DESCRIPTION
Gethostid returns the 32-bit identifier for the current host, which is unique across all hosts.

SEE ALSO
hostid{1)

Sun Release 1.1 Last change: 12 February 1983 33

GETHOSTNAME (2) SYSTEM CALLS GETHOSTNAME (2)

NAME
gethostname, sethostname — get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
Int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

Sethostname sets the name of };he host machine to be name, which has length namelen. This call
is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the cali succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and an
error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address,
[EPERM] The caller was not the super-user.

SEE ALSO
gethostid(2)

BUGS
Host names are limited to 255 characters.

34 Last change: 12 February 1983 Sun Release 1.1

-

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

NAME
 getitimer, setitimer — get/set value of interval timer
SYNOPSIS .
#include <sys/time.h>
#define ITIMER_REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

getitimer(which, value)
int which;
struct itimerval *value;

setitimer{which, value, ovalue)
Int which;
struct itimerval *value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sysftime.h>. The geti-
timer call returns the current value for the timer specified in which, while the setitimer call sets
the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
|5
If it_valuc is non-zero, it indicates the time to the next timer expiration. If §t_interval is non-zero,
it specifies a value to be used in reloading it_value when the timer expires, Setting if_value to O
disables a timer. Setting i interval to 0 causes a timer to be disabled after its next expiration
(assuming it_value is non-zero). ‘

Time values smaller than the resolution of the system clock are rounded up to this resolution.

The ITIMER_REAL timer dectements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process
is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling the
execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIGPROF
signal is delivered. Because this signal may interrupt in-progress system calls, programs using this
timer must be prepared to restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time
value to zero, timerisset tests if a time value is non-zero, and timeremp compares two time values
(beware that >== and. <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a
more precise error code is placed in the global variable errno.

ERRORS -
The possible errors are:

[EFAULT] The value structure specified a bad address.

Sun Release 1.1 Last change: 29 August 1983 35

GETITIMER (2} SYSTEM CALLS
|[EINVAL] A value structure specified a time was too large to be handled.
SEE ALSO

sigvec(2), gettimeofday(2)

36 Last change: 29 August 1983

GETITIMER (2)

Sun Release 1.1

C

C

GETPAGESIZE(2) SYSTEM CALLS GETPAGESIZE(2)

NAME
getpagesize - get system page size
SYNOPSIS
pagesize = getpagesize()
izt pagenlze;
DESCRIPTION
Gelpagesize returns the number of bytes in a page. Page granularity is the granularity of many of
the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk(2), pagesize{1)

Sun Release 1.1 Last change: 29 August 1983 37

GETPEERNAME (2) SYSTEM CALLS

NAME
getpeername — get name of connected peer

SYNOPSIS
getpeername(s, name, namelen)
int s;
struct sockaddr *name;
Int *namelen;

DESCRIPTION

GETPEERNAME(2)

Getpeernome returns the name of the peer connected to socket . The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains the

actual size of the name returned (in bytes).

DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails,
ERRORS

The call succeeds unless: -

(EBADF] The argument # is not a valid descriptor.

[ENOTSOCK] The argument ¢ is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.
|[EFAULT]) The name parameter points to memory not in a valid part of the process address

space.

SEE ALSO
bind(2), socket(2), getsockname(2)

BUGS

Names bound to sockets in the UNIX domain are inaccessible; gefpeername returns a zero length

name.

38 Last change: 31 October 1983

Sun Release 1.1

GETPGRP (2) SYSTEM CALLS GETPGRP(2)

NAME
getpgrp — get process group
SYNOPSIS
pgrp = getpgrp(pid)
int prgp;
int pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their
input: processes which have the same process group as the terminal are foreground and may read,
while others will block with a signal if they attempt to read.

This call is thus used by programs such as czh(1) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in #fy(4) are used to get/set the
process group of the control terminal.

SEE ALSO :
setpgrp(2), getuid(2), tty(4)

Sun Releasp 1.1 Last change: 2 July 1983 39

GETPID(2) SYSTEM CALLS GETPID(2)

NAME

getpid, getppid — get process identification
SYNOPSIS

pld = getpid()

long pid;

ppld = getppld()
long ppid;

DESCRIPTION
Gelpid returns the process ID of the current process. Most often it is used with the host identifier
gethostid(2) to generate uniquely-named temporary files.
Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

40 Last change: 12 February 1983 Sun Release 1.1

-

©

O

®

GETPRIORITY (2) SYSTEM CALLS GETPRIORITY{2)

NAME

SYNOPSIS

getpriority, setpriority — get/set program scheduling priority
#include <sys/resource.h>

fdeflne PRIO_FPROCESS 0 /* process */
##define PRIO_PGRP 1 /* process group */
#defilne PRIO_USER 2 /* user 1d */

prlo = getprlority(which, who)
Int prio, which, who

setpriority{which, who, prio)
int which, who, prio;

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the gelpriority call and set with the setpriority calll Which is ome of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a pro-
cess identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for
PRIO_USER). Prio is a value in the range -20 to 20. The default priority is 0; lower priorities
cause more {avorable scheduling.

The getpriority call returns the highest priority {lowest numerical value) enjoyed by any of the
specifled processes. The eelpriority call sets the priorities of all of the specified processes to the
specifled value. Only the super-user may lower priorities.

RETURN VALUL

Since getpriority can legitimately return the value -1, it is necessary to clear the external variable
errng prior to the call, then check it afterward to determine if a -1 is an error or a legitimate
value. The seipriority call returns O if there is no error, or -1 if there is.

ERRORS

Getpriority and selpriority may return one of the following errors:
[ESRCH] No process(es) were located using the which and who values specified.
[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, selpriorifty may fail with one of the following errors
returned:

IEACCES] A process was located, but neither its effective nor real user ID matched the
- effective user ID of the caller.

|EACCES) A non super-user attempted to change a process priority to a negative value.

SEE ALSO

BUGS

nice(1), fork(2), renice(8)

It is not possible for the process executing selpriority {) to lower any other process down to its
current priority, without requiring superuser privileges.

Sun Release 1.1 _ Last change: 20 March 1984 41

GETRLIMIT(2) ‘ SYSTEM CALLS GETRLIMIT(2)

NAME

getrlimit, setrlimit — control maximum system resotirce corsuimption

SYNOPSIS

#include <sys/time.h>
#include <_-ya/resource.l_1>

getrlimit(resource, rip)
int resource;
struct riimit *rlp;

setriimit(resource, rip)
int resource; :
struct rlimit *rip;

DESCRIPTION

42

Limits on the consumption of systein resources by the current process and each process it creates
may be obtained with the gefrfimit call, and set with the sefrlimil call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by each pro-
cess,

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call,

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program's stack segment may be extended automatically by the sys-

tem,
RLIMIT_CORE the largest size, in bytes, of a core file which inay be created.
RLIMIT_RSS the maximum size, in bytes, a process’s resident set size may grow to. This

imposes a limit on the amount of physical memofy to be given to a process; if
memory is tight, the system will prefer to take memiory from processes which
are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a pro-
cess may receive a signal (for example, if the cpu time is exceeded), but it will be allowed to con-
tinue execution until it reaches the hard limit (or modifies its resource limit). The riimi? structure
is used to specify the hard and soft limits on a resource,

struct rlimit {
int tlim_cur; /¥ current (soft) limit */
iat rlim_max; /* hard limit */
5 \
Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_maz or (irreversibly) lower rlim_maz.

An “infinite’’ ¥alue for a limit is defined as RLIMIT_INFINITY (OxTHL1I1MT).

Because this information is stored in the per-process information, this system call must be exe-
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to cah(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signall).

Last change: 29 August 1983 Sun Release 1.1

@ .

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT(2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to be
generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE _
‘A 0 return value indicates that the call succeeded, changing or returning the resource limit. A
return value of -1 indicates that an error occurred, and an error code is stored in the global loca~
tion errno.

ERRORS .
The possible errors are:

[EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to scirlimit would have
raised the maximum limit value, and the caller is not the super-user.
SEE ALSO
csh{l), quota(2}
BUGS
There should be limit and unkimit commands in #4(1) as well as in csh.

Sun Release 1.1 Last change: 29 August 1983 43

GETRUSAGE (2) SYSTEM CALLS GETRUSAGE(2)

NAME

getrusage — get information about resource utilization

SYNOPSIS

#include <sysfiime.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0 /* calling process */
#define RUSAGE_CHILDREN -1 /* terminated child processes */

getrusage(who, rusage)
int whoy
struct rusage *rusage;

DESCRIPTION

44

Getrusage returus information about the resources utilized by the current process, or all its ter-
minated child processes. The whe parameter i3 one of RUSAGE_SELF or
RUSAGE_CHILDREN. If rusage is non-zero, the bufler it points to will be filled in with the fol-
lowing structure:

struct rusage {

struct timeval ru_utime; /* user time used */
struct timeval ru_stime; [* system time used */
int ‘TU_IMaxrss;
int ru_ixrss; J* integral shared memory size */
int ru_jdrss; J* integral unshared data size */
int ru_jsrss; /* integral unshared stack size */
int ru_minfit; J* page reclaims */
int ru_majfit; J* page faults */
int ru_nswap; J* swaps */
int ru_jinblock; /* block input.operations */
int ru_oublock; /* block output operations */
int ru_msgspd; /* messages sent */
int ru_masgrev; /* messages received */
int ru_nsignals; [* sigoals received */
int TI_Dvesw; /* voluntary context switches */
int ru_pivesw; /* involuntary context switches */
¥
The fields are interpreted as follows:
Tu,_utime the total amount of time spent executing in user mode. Time is given in
seconds:microseconds.
rue_stime the total amount of time spent in the system executing on behalf of the
process(es). Time is given in seconds:microseconds.
TU_maxrss the maximum resident set size utilized. Size is given in pages {1 page =
2Kbytes). -
Tu_jxrss an “integral” value indicating the amount of memory used which was also

shared among other processes. This value is expressed in units of pages * clock
ticks (1 tick = 1/50 second). The value is calculated by summing the number of

shared memory pages in use each time the internal system clock ticks, and then
averaging over 1 second intervals.

ru_idrss an integral value of the amount of unshared memory residing in the data seg-
ment of a process, The value is given in pages * clock ticks.

Tu_isrss an integral value of the amount of unshared memory residing in the stack seg-
ment of a process. The value is given in pages * clock ticks,

Last change: 20 February 1984 Sun Release 1.1

-

>

©

O

GETRUSAGE(2)

ru_minflt

ru_majflt
ru_nswap
ru_inblock
ru_outblock
ru_msgsnd
ru_msgrev
ru_nsignals
ru_nvesw

ru_nivesw

NOTES

SYSTEM CALLS GETRUSAGE(2)

the number of page faults serviced without any ifo activity; here ifo activity is
avoided by “‘reclaiming” a page frame from the list of pages awaiting realloca-
tion.

the number of page faults serviced which required i/o activity.

the number of times a process was “swapped’” out of main memory.
the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messages sent.

the number of ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily giving
up the processor before its time slice was completed (usually to await availability
of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real ifo; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO

gettimeofday(2), wait(2)

BUGS

There is no way to obtain information about a child process which has not yet terminated.

Sun Release 1.1

Last change: 20 February 1984 45

GETSOCKNAME(2) SYSTEM CALLS GETSOCKNAME(2)

NAME
getsockname — get gocket name

SYNOPSIS
getsockname(s, name, namelen)
int 83
struct sockaddr *name;
int *namelen;
DESCRIPTION
Gelsockname returns the current name for the specified socket. The namelen parameter shonld be
initialized to indicate the amount of space pointed to by name. On return it contains the actual
size of the name returned {in bytes). '

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument 2 is a file, not a socket.
|[ENOBUF S} Insufficient resources were available in the system to perform the operation.

[EFAULT| The name parameter points to memory not in a valid part of the process address
space.

SEE ALSO .
bind(2), socket(2), getpeername(?2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero length
name.

46 Last change: 24 October 1983 Sun Release 1.1

-

-

-

©

O

GETSOCKOPT (2) | SYSTEM CALLS GETSOCKOPT(2)

NAME

getsockopt, setsockopt — get and set options on sockets

SYNOPSIS

#include <sysftypes.h>
#inciude <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
Int 5, level, cptname;

char *optvaly

int *optlens

setrockopt(s, level, optname, optval, optlen)
int g, level, optname;

char *optval;

int optlens

DESCRIPTION

Getsockopt and sgefsockopt manipulate oplione associated with a socket. Options may exist at
multiple protocot ievels; they are always present at the uppermost ‘‘socket” level.

When manipulating socket options the level at which the option resides and the name of the
optice must be specified. To manipulate options at the ‘‘socket’ level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropriate
protocol controlling the option is supplied. For example, to indicate an option is to be inter-
preted by the TCP protocol, level should be set to the protocol number of TCP; see
getprotoeni(3N).

The parameters opfval and optlen are used to access option values for sefsockopt. For geleockopt
they identify a buffer in which the value for the requested option(s} are to be returned. For get-
sockopt, optlen is a value-result parameter, initially containing the size of the buffer pointed to by
optval, and modifled on return to indicate the actual size of the value returned. If no option
value is to be supplied or returned, opival may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file <ays/sockel.h> contains definitions for ‘‘socket” level
options; see socket(2). Options at other protoco) levels vary in format and pame, consult the
appropriate entries in {4P}.

RETURN VALUE

A 0 is returned if the call succeeds, -1 if it fails,
ERRORS -

‘The call succeeds unless: :

{EBADF] The argument ¢ is not a valid descriptor.

[ENOTSOCK)] The argument ¢ is a file, not a socket.

[ENCPROTOOPT] The option is unknown.

[EFAULT)] The options are not in a valid part of the process address space.
SEE ALSO

socket(2), getprotoent{3N)

Sun Release 1.1 Last change: 7 July 1983 47

GETTIMEOFDAY (2) SYSTEM CALLS GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday — get/set date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tsp)
struct timeval *tpj
struct timesone *tap;
DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time and the current time
zone. Time returned is expressed in seconds and microseconds since midright January 1, 1970.

The structures pointed to by ip and ¢zp are defined in <sys/time.h> as:

struct timeval {
u_long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

|5

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; J* type of dst correction to apply */
|6
The timezone structure indicates the local time zone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year,

It fp and/or ¢zp is a zero pointer, the corresponding information will not be returned or set.
Only the super-user m'ay set the time of day.’

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred,

and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:
[EFAULT) An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.
SEE ALSO

date(1), ctime(3)

BUGS
Time is never correct enough to believe the microsecond values. There should a mechapism by
which, at least, local clusters of systems might synchronize their clocks to millisecond granularity.

48 Last change: 20 March 1984 Sun Release 1.1

GETUID(2) SYSTEM CALLS GETUID(2)

NAME
getuid, geteuid — get user identity

SYNOPSIS
uid == getuld()
int uld;
euld == geteutd()
int euld;
DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The eflective user ID gives the process
additional permissions during execution of ‘‘set-user-ID" mode processes, which use gefuid to
determine the real-user-id of the process which invoked them,

SEE ALSO
getgid(2), setreuid{2}

Sun Release 1.1 Last change: 12 February 1983 49

IOCTL (2) SYSTEM CALLS JOCTL(2)

NAME
ioct]l — control device

SYNOPSIS
#include <sys/loctlLh>

loetl(d, request, argp)
Int d, request;
char *argp;
DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating charac-

teristics of character special files (e.g. terminals) may be controlled with focil requests. The write-
ups of various devices in section 4 discuss how focll applies to them.

An ioctl request has encoded in it whether the argument is an “‘in"’ parameter or ‘‘out” parame-
ter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file <eysfioctlLh>.

RETURN VALUE
It an error has occurred, a value of -1 is returned and errno is set to indicate the error.

If no error has occurred (using a STANDARD device driver), a value of 0 is returned.

ERRORS
Tocti will fail if one or more of the following are true:
[EBADF| D is not a valid descriptor.

|[ENOTTY] D is not associated with a character special device.

|[ENOTTY]| The specified request does not apply to the kind of object which the descriptor d
‘ references, .

[EINVAL] Regquest or argp is not valid.

SEE ALSO
execve(2), fentl(2), mtio(4), tty(4)

50 Last change: 20 March 1984 Sun Release 1.1

-

KILL (2) SYSTEM CALLS KILL (2)

NAME
kill - send signal to a process

SYNOPSIS
kill(pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal #ig to a process, specified by the process number pid. Sig may be one of the
signals specified in sigvec(2), or it may be 0, in which case error checking is performed but no sig-
nal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call is
restricted to the super-user. A single exception is the signal SIGCONT which may always be sent
to any child or grandchild of the current process. :

If the process number is 0, the signal is sent to all other processes in the sender’s process group;
this is a variant of killpg(2).

It the process number is -1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of O is returned, Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:
[EINVAL) Sig is not a valid signal number.
[ESRCH] No process can be found corresponding to that specified by pid.
[EPERM] The sending process is not the super-user and its effective user id does not match
the effective user-id of the receiving process.
SEE ALSO

getpid(2), getpgrp(2), killpg(2), sigvec(2)

Sun Release 1.1 Last change: 29 August 19583 51

KILLPG(2) SYSTEM CALLS KILLPG(2)

NAME
killpg — send signal to a process group

SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;
DESCRIPTION
Killpg sends the signal aig to the process group pgrp. See sigvec(2) for a list of signals.
The sending process and members of the process group must have the same effective user ID, oth-

eywise this call is restricted to the super-user. As a single special case the continue signal
S%CONT may be sent to any process which is a descendant of the current process.

RETURM VALUE _
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the

global variable errno is set to indicate the error.

ERRORS
Killpg will fail and no signal witl be sent if any of the following occur:
|EINVAL] Sig is not a valid signal number.
[ESRCH] No process were found in the specified process group.
|EPERM] The sending process is not the super-user and one or more of the target processes
has an effective user ID different from that of the sending process.
SEE ALSO

ki!l(Z), getpgrp(2), sigveci2)

52 Last change: 16 February 1984 Sun Release 1.1

-

-

O

LINK (2) SYSTEM CALLS LINK(2)

NAME
link — make a hard link to a file

SYNOPSIS
link(namel, name2)
char *namel, *name2;

DESCRIPTION

A hard link to namel is created; the link has the name name2. Name! must exist.

With hard links, both name! and name2 must be in the same file system. Unless the caller is the
super-user, name! must not be a directory. Both the old and the new link share equal access and
rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:
[EPERM] Either pathname contains a byte with the high-order bit set.

[ENOENT] Either pathname was too long.
[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A component of either path prefix does not exist.

|[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name? does exist.

[EPERM] The file named by namel is a directory and the effective user ID is not super-
user,

[EXDEV] tThe link named by name2 and the file named by name! are on different file sys-

ems.

[EACCES) The l:eq.ueated link requires writing in a directory with a mode that denies write
permission.

[EROFS] The requested link requires writing in a directory on a read-only file system.

|EFAULT]} One of the pathnames specified is outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO

symlink(2), unlink(2)

Sun Release 1.1 Last change: 12 February 1983 53

LISTEN(2) SYSTEM CALLS LISTEN(2)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen(s, backlog)
Int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for incoming connections
is specified with lisfen(2) and then the connections are accepted with accept(2). The listen call
applies only to sockets of type SOCK_STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the quene of pending connections may grow
to. If a connection request arrives with the queue full the client will receive an error with an indi-

cation of ECONNREFUSED.

RETURN VALUE

A 0 return value indicates success; -1 indicates an error.
ERRORS

The call fails if:

|EBADF]| The argument 2 is not a valid descriptor.

[ENOTSOCK] The argument 2 is not a socket.

[EOPNOTSUPP) The socket is not of a type that supports the operation fisten.
SEE ALSO

accept(2), connect(2), socket(2)

BUGS
The backlop is currently limited (silently) to 5.

54 Last change: 12 February 1983 Sun Release 1.1

O

LSEEK(2) SYSTEM CALLS LSEEK (2)

NAME
1seek, tell - move read/write pointer

SYNOPSIS
fidefine L_ SET O /* set the seek pointer */
#define L_INCR 1 /* increment the seek polnter */
#idefine L XTND 2 /* extend the file size */

pos == lseek(d, offset, whence)
int pos;
int d, offset, whence;

DESCRIPTION
The deecriptor d refers to a file or device open for reading andfor writing. Laseek sets the file

pointer of d as follows:
If whence is L_SET, the pointer is set to offset bytes,
It whence is L_INCR, the pointer is set to its current locaticn plus offaet.
It whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from beginning of
the file is returned. Some devices are incapable of seehng The value of the pointer associated
with such a deviee is undefined.

The obsolete function fellffildes) is identical to lscek(fildes, OL, L_INCR).
NOTES ;
Seeking far beyond the end of a file, then writing, creates a gap or ‘‘hole”, which occupies no phy-
sical space and reads as zeros.
RETURN VALUE

Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Leceek will fail and the file pointer will remain unchanged if:
[EBADF] Fildes is not an open file descriptor.
|ESPIPE] Fildes is associated with a pipe or a socket.
|EINVAL] Whence is not a proper value.
|[EINVAL] The resulting file pointer would be negative.
SEE ALSO
dup(2), open(2)

Sun Releasg 1.1 Last change: 29 August 1983 55

MKDIR (2) SYSTEM CALLS MKDIR (2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char *path;
int mode;
DESCRIPTION
Mtkdir creates a new directory file with name patk. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process’s mode mask; see umask(2)).

The directory’s owner ID is set to the process’s eflective user ID, The directory’s group ID is set
to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits set in
the process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE
A O return value indicates success. A -1 return value indicates an error, and am error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:
|EPERM] The process’s effective user ID is not super-user.
[EPERM] The path argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
|[ENOENT)] A component of the path prefix does not exist.

[EROFS} The named file resides on a read-only fle system.
|[EEXIST] The named file exists.
|[EFAULT] Path points outside the process’s allocated address space. ,
[ELOOP] Too many symbolic links were encountered in translating the pathname.
|[E10] An 1/O error occured while writing to the file system.

SEE ALSO

chmod{2), stat(2), umask(2)

56 Last change: 20 August 1983 Sun Release 1.1

O

MEKNOD (2) ‘ SYSTEM CALLS MKNOD(2)

NAME
mknod — make a special file

SYNOPSIS
mknod{path, mode, dev)
char *path;
Int mode, dev;

DESCRIPTION
Mknod creates a new file whose name is pafh, The mode of the new file (including special file bits)
is initislized from mode. (The protection part of the mode is modified by the process’s mode
mask; see umazk(2)). The first block pointer of the i-node is initialized from dev and is used to
specify which device the special file refers to.

It mode indicates a block or character special file, dev is 2 configuration dependent specification of
a2 character or block I/O device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE .
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and

errne is set to indicate the error.

ERRCRS
MkEnod will fail and the file mode will be unchanged if:
[EPERM] The process's effective user ID is not super-user.
|EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist,

[EROF S} The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP]| Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chmod(2), stat(2), umask(2)

Sun Release 1.1 Last change: 2 July 1983 57

MMAP (2) SYSTEM CALLS MMAP (2)

NAME

mmap — map pages of memory

SYNOPSIS

#include <sys/mman.h>
#include <sys/types.h>

mmap(addr, len, prot, share, fd, off)
caddr_t addr; int len, prot, share, fd; off_t off;

DESCRIPTION .

N.B.: This call s not completely implemented in 4.2.

Mmap maps the pages starting at addr and continuing for /[en bytes from the object represented
by the descriptor fd, at the current file position of offset off. The parameter share specifies
whether modifications made to this mapped copy of the page are to be kept privale or are to be
shared with other references. The parameter prot specifies the accessibility of the mapped pages.
The addr and len parameters and the sum of the current position in fd and the off parameters
must be multiples of the page size (found using the gelpagesize(2) call).

Pages are automatically unmapped at close.

RETURN VALUE

The call returns 0 on success, —1 on failure.

ERRORS

The mmap call will fail if:

|[EINVAL)] The argument address or length is not a multiple of the page size as returned by
getpagesize(2),or the length is negative.

[EINVAL] The entire range of pages specified in the call is not part of data space.

|[EINVAL] The specified fd does not refer to a character special device which supports mapping
(e.g. a frame bufler).

[EINVAL] The specified f4 is not open for reading and read access is requested, or not open for
writing when write access is requested,

[EINVAL] The sharing mode was not specified as MAP_SHARED.

SEE ALSO

58

getpagesize(2), munmap(2), ¢close(2)

Last change: 20 March 1984 Sun Release 1.1

-

O

MOUNT(2) SYSTEM CALLS MOUNT (2)

NAME
mount, umount — mount or remove file system

SYNOPSIS
mount(special, name, rwilag)
char *speclal, *name;
int rwitag;

. umount(special)
char *speclal;
DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special file special; from now on, references to file name will refer to the root file on the
newly mounted file system. Special and name are pointers to null-terminated strings containing
the appropriate path names,

Name must exist already. Name must be a directory. Its old contents are inaccessible while the
file system is mounted. :

The rwflag argument determines whether the file system can be written on; if it is 0 writing is

allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems

must be mounted read-only or errors will occur when access times are updated, whether or not
~ any explicit write is attempted. '

Umount announces to the system that the apecial file is no longer to contain a removable file sys-
tem. The associated file reverts to its ordinary interpretation.

RETURN VALUE
Mount returns O if the action occurred, -1 if special is inaccessible or not an appropriate file; if
name does not exist; if special is already mounted; if name is in use; or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred; —1 if if the special file is inaccessible or does not have a
mounted file system, or if there are active files in the mounted fil¢ system.

ERRORS
Mount will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV) Special does not exist.

[ENOTBLK] Special is not a block device.

|[ENXIO| The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

IEPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in name is not a directory.

|EROF §] Name resides on a read-only file system,

|[EBUSY] Name is not a directory, or another process currently holds a reference to it.

|[EBUSY] No space remains in the mount table.

[EBUSY] The super block for the file system had a bad magic number or an out of range
block size.

{EBUSY] Not enough memory was available to read the cylinder group information for the
file system.

[EBUSY] An ifo error occurred while reading the super block or cylinder group informa-
tion.

Sun Release 1.1 Last change: 29 August 1983 50

MOUNT (2) SYSTEM CALLS MOUNT(2)

-

Umount may fail with one of the following errors:

[NODEV] The caller is not the super-user,
|NODEV] Special does not exist.
[ENOTBLK| Special is not a block device. _
IENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).
[EINVAL} The requested device is not in the mount table.
[EBUSY} A process is holding a reference to a file located on the file system.
SEE ALSO

mount(8), umount{8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

-

60 Last change: 29 August 1083 Sun Release 1.1

©

MUNMAP (2) SYSTEM CALLS MUNMAP (2)

NAME

munmap — unmap pages of memory
SYNOPSIS
#include <mman,h>

munmap(addr, len})
caddr_t addr; Int len;

DESCRIPTION
N.B.: This call is not completely implemented in 4.2.

Munmap causes the pages starting at addr and continuing for len bytes to refer to private pages
which will be initialized to zero on reference.

RETURN VALUE
The call returns —1 on error, 0 on success.

ERRORS
The call fails if any of the following:

[EINVAL] The argument address or length is not a multiple of the page size as returned by
getpagesize(2),or the length is negative.

[EINVAL] The entire range of pages specified in the call is not part of data space.

SEE ALSO
brk (2), mmap(2), close(2)

Sun Release 1.1 Last change: 20 March 1984 61

OPEN(2) SYSTEM CALLS OPEN(2)

NAME
open — open a file for reading or writing, or create a new file

SYNOPSIS
#include <sys/file.h>

open(path, flags, mode)
char *path;
int fiags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and returns
a descriptor for that file. The flags argument may indicate the file is to be created if it does not
already exist (by specifying the O_CREAT flag), in which case the file is created with mode mode
as described in chmod(2) and modified by the process’ umask value (see umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated by a null
character. The flags specified are formed by- or’ing the following values

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing.
O_NDELAY do not block on open
O_APPEND append on each write
O_CREAT create file if it does not exist
O_TRUNC truncate size to 0

O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with O_CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the O_NDELAY flag is specified and
the open call would result in the process being blocked for some reason (e.g. waiting for carrier on
a dialup line), the open returns immediately. The first time the process attempts to perform ifo
on the open file it will block (not curreatly implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close(2).

There is a system enforced limit on the number of open file descriptors per process, whose value is
returned by the getdtabiesize(2) call.

RETURN VALUE
The value -1 is returned if an error occurs, and external variable errne is set to indicate the cause
of the error. Otherwise a non-negative numbered file descriptor for the new open file is returned.

ERRORS
Open fails if:

|[EPERM] The pathname contains a character with the high-order bit set.
|[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES} The required permissions {for reading and/or writing) are denied for the named
file.

[EISDIR] The named file is a directory, and the arguments specify it iz to be opened for
writing.

62 Last change: 17 February 1984 Sun Release 1.1

OPEN(2) SYSTEM CALLS OPEN(2)

[EROF §] The named file resides on a read-only file system, and the file is to be medified.
[EMFILE] {OPEN_MAX]} file descriptors are currently open.

|[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and the open
call requests write access.

[EFAULT} Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

|EEXIST] O_EXCL was specified and the file exists.

{ENXIO] The O_NDELAY flag is given, and the file is a communications device on which
there is no carrier present. :

[EOPNOTSUPP]

An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2}

Sun Releasg 1.1 L ast change: 17 February 1984 63

PIPE(2) '* SYSTEM CALLS PIPE(2)

NAME
pipe — create an interprocess communication channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can be
used in read and write operations. When the pipe is written using the descriptor fildes|1] up to
4096 bytes of data are buffered before the writing process is suspended. A read using the descrip-
tor fildes|0] will pick up the data.
It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end {all write file descriptors closed)
returns an end-of-file.

Pipes are really a special case of the sockefpair(2} call and, in fact, are implemented as such in

the system.

A signal is generated if a write on a pipe with only one end is attempted.
RETURN VALUE

The function value zero is returped if the pipe was created; -1 if an error occurred.
ERRORS

The pipe calt will fail if:

[EMFILE) Too many descriptors are active.

[EFAULT] The fildes bufler is in an invalid area of the process’s address space.
SEE ALSO

sh(1), read(2), write(2), fork(2), socketpair(2)
BUGS

Should more than 4006 bytes be necessary in any pipe among a loop of processes, deadlock will

oceur,

64 Last change: 12 February 1983 Sun Release 1.1

C

-

-

PROFIL (2) SYSTEM CALLS PROFIL (2)

@ NAME
profil - execution time profile

SYNOPSIS
profll(buff, bufsis, offset, scale)
char *buff;
Int bufsls, offset, scale;

DESCRIPTION
Buff points to an area of core whoee length (in bytes) is given by bufeiz. After this call, the user’s
program counter (pc) is examined each clock tick (20 milliseconds); offset is subtracted from it,
and the result muitiplied by scale. If the resulting number corresponds to a word inside duff, that
word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: O0x10000
gives a 1-1 mapping of pc's to words in buff; 0x8000 maps each pair of instruction words together,
0x2 maps all instructions onto the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1, It is rendered imeffective by giving a bufsiz of 0.
Profiling is turned off when an erecve is executed, but remains on in child and parent both after a
Jork. Profiling is turned off if an update in duff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

©

Sun Release 1.1 Last change: 16 March 1984 65

PTRACE(2) SYSTEM CALLS PTRACE(2)

NAME

ptrace — process trace

SYNOPSIS

#include <signal.h>>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION

66

Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of breakpoint
debugging. There are four arguments whose interpretation depends on a request argument. Gen-
erally, pid is the process ID of the traced process, which must be a child (no more distant descen-
dant) of the tracing process. A process being traced behaves normally until it encounters some
signal whether internally generated like ‘‘illegal instruction™ or externally generated like “inter-
rupt’’. See sigvec(2) for the list. Then the traced process enters a stopped state and its parent is
notified via waif(2). When the child is in the stopped state, its core image can be examined and
modified using pfrace. If desired, another pirace request can then cause the child either to ter-
minate or to continue, possibly ignoring the signal.

The value of the reguesf argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. Addr must be
even. The child must be stopped. The input data is ignored. '

3 The word of the system’s per-process data area corresponding to addr is returned. Addr must
be even and less than 512. This space contains the registers and other information about the
process; its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process’s address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request 4
indicates I space, 5 D space. Attempts to write in pure procedure fail if another process is
executing the same file.

6 The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child’s execution continues at loca-
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process’s image indicating which signal caused the stop. If addr is (int *)I then execution
continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at least
one instruction, execution stops again. The signal number from the stop is SIGTRAP. (On
the Sun and VAX-11 the T-bit is used and just one instruction is executed.) This is part of
the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the “termina-
tion” status returned by wail has the value 0177 to indicate stoppage rather than genuine termi-
nation.

Last change: 15 March 1984 Sun Releasze 1.1

o

-

©

PTRACE(2) | SYSTEM CALLS PTRACE(2)

To forestall possible fraud, pirace inhibits the set-user-id and set-group-id facilities on subsequent
ezecve(2) calls. If a traced process calls ezecve, it will stop before executing the first instruction
of the new image showing signal SIGTRAP.

On the Sun and VAX-11, “word” also means a 32-bit integer, but the ‘‘even” restriction does not
apply. :
RETURN VALUE .

A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable errno i5 set to indicate the error.

ERRORS
|[EINVAL) The request code is invalid.
[EINVAL] The specified process does not exist.
[EINVAL} The given signal number is invalid.
[EFAULT] The specified address is out of bounds.
{EPERM] The specified process cannot be traced.
SEE ALSO
wait(2), sigvec(2), adb(18)
BUGS

Pirace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with socti(2) calls on this file.
This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use “illegal
instruction’ signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, see intro(2), can be used to disam-
biguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

Sun Release 1.1 Last change: 15 March 1984 67

QUOTA(2) SYSTEM CALLS QUOTA(2)

NAME

quota — manipulate disk quotas

SYNOPSIS

#include <sys/quota.h>>

quota(emd, uld, arg, addr)
int emd, uld, arg;
caddr_t addr;

DESCRIPTION

The guota call manipulates disk quotas for file systems which have had quotas enabled with set-
quota(2). The ¢md parameter indicates a command to be applied to the user ID uid. Argis a
command specific argument and addr is the address of an optional, command specific, data struc-
ture which is copied in or out of the system. The interpretation of arg and addr is given with
each command below.

Q_SETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dgblk structure
(defined in < sys/quota.h>>). This call is restricted to the super-user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remaining parame-
ters are as for Q_SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID uid. Arg is 3 major-minor device indicating a
particular file system. Addr is a pointer to a struct dqusage structure (defined in
< sysfquota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are ignored.

Q_SETUID
Change the calling process’s quota limits to those of the user with ID uid. The arg and
addr parameters are ignored. This call is restricted to the super-user,

Q_SETWARN .
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor device
indicating a particular file system. Addr is a pointer to a struct dqwarn structure (defined
in <sysfquota.h>). This call is restricted to the super-user.

Q_DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the system to
check its current disc usage information and print a message on the terminal of the caller
for each file system on which the user is over quota, If the arg parameter is specified as
NODEV, all file systems which have disc quotas will be checked. Otherwise, arg indicates
a specific major-minor device to be checked. This call is restricted to the super-user.

RETURN VALUE

A successful call returns 0 and, possibly, more information specific to the emd performed; when an
error occurs, the value -1 is returned and errne is set to indicate the reason.

ERRORS

68

A quota call will fail when one of the following occurs:

|[EINVAL] Cmd is invalid.

|ESRCH] No disc quota is found for the indicated user.

{EPERM] The call is priviledged and the caller was not the super-user.

Last change: 7 July 1983 Sun Release 1.1

-

QUOTA(2) SYSTEM CALLS QUOTA(2)

[EINVAL) The arg parameter is being interpreted as a major-minor device and it indicates
an unmounted file system.
[EFAULT] An invalid addr is supplied; the associated structure could not be copied in or
out of the kernel.
|[EUSERS] The quota table is full,
SEE ALSO
setquota{2), quotaon(8), quotacheck(8)

BUGS
There should be someway to integrate this call with the resource limit interface provided by

setrlimii(2) and getriimit(2).
The Australian spelling of disk is used throughout the quota facilities in horor of the implemen-
tors.

©

Sun Release 1.1 Last change: 7 July 1983 69

READ(2) SYSTEM CALLS READ(2)

NAME

read, readv — read input

SYNOPSIS

ec == read(d, buf, nbytes)
int ce, d;

char *buf}

int nbytes;

#include <sysftypes.h>
#include <sys/ulo.h>

cc = readv(d, lov, lovent)
Int ece, d;

struct lovec *lov;

int lovent;

DESCRIPTION

Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf. Readv performs the same action, but scatters the input data into the
fovent buffers specified by the members of the fovec array: iov[0}, iov[l}, ..., iov[iovent -1},

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
&
Each jovec entry specifies the base address and length of an area in memory where data should be
placed. Readv will always fill an area completely before proceeding to the next,

On objects capable of seeking, the read starts at a position given by the pointer associated with d,
see {seek(2). Upon return from read, the pointer is incremented by the number of bytes actually
read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and placed
in the bufler. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE

If successful, the number of bytes actually read is returned. Othewise, a -1 is returned and the
global variable errno is set to indicate the error.

ERRORS

70

Read and readv will fail if one or more of the following are true:

[EBADF} Fildes is not a valid file descriptor open for reading.

[EFAULT) Buf points cutside the allocated address space.

[EINTR] A read from a slow device was interrupted before any data arrived by the

delivery of a signal.

In addition, readv may return one of the following errors:

[EINVAL| Tovent was less than or equal to 0, or greater than 16.
[EINVAL| One of the foy_len values in the iov array was negative.
{EINVAL)| The sum of the jou_{en values in the jov array overflowed a 32-bit integer.

Last change: 29 August 1983 Sun Release 1.1

-

O

-

READ({2) SYSTEM CALLS

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

Sun Release 1.1 Last change: 29 August 1983

'READ(2)

71

READLINK (2) SYSTEM CALLS READLINK (2)

NAME : O

readlink — read value of a symbolic link

SYNOPSIS
cc == readlink(path, buf, bufsis)
Int ce; .
char *path, *buf;
int bufsls;
DESCRIPTION

Beadlink places the contents of the symbolic link neme in the buffer buf which has size bufssz.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Readlink will fail and the file mode will be unchanged if:
|[EPERM] The path argument contained a byte with the high-order bit set.

[ENOENT] The pathname was too long.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT) The named file does not exist.

|[ENXIO] The named file is not a symbolic link.
[EACCES) Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective user
ID is not the super-user. O
[EINVAL) The named file is not a symbolic link. '
|[EFAULT) Buf extends outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

stat(2), Istat(2), symlink(2)

72 Last change: 2 July 1983 Sun Release 1.1

O

REBOOT (2) . SYSTEM CALLS REBOOT(2)

NAME
reboot — reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

reboot(howto)
int howtos

DESCRIPTION . :

Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call interface
permits only RB_LHALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap procedures.
When none of these options {e.g. RB_AUTOBOOT) is given, the system is rebooted from file
‘‘ymunix'’ in the root file system of unit 0 of a disk chosen imn a processor specific way. An
automatic consistency check of the disks is then normally performed.

The bits of howlo are:

RB_HALT
the processor is simply halted; mo reboot takes place. RB _HALT should be used with
caution,

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should be
booted. Normally, the system is booted from the file “vmunix” without asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply boot~
ing the system with a single-user shell on the console. RB_SINGLE is interpreted by the
init(8) program in the newly booted system. This switch is not available from the system
call interface. '

Only the super-user may rcboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a —1 is returned and an error is returned in the
global variable errno.

ERRORS
|[EPERM] The caller is not the super-user.

SEE ALSO
crash(8S), halt(8), init(8), reboot(8)

Sun Release 1.1 Last change: 12 February 1933 73

RECV(2) SYSTEM CALLS RECV(2)

recv, recvfrom, recvmsg — receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

cc == recv(s, buf, len, flags)
int ec, 83

char *buf;

Int len, flags;

ce = recvfrom(s, buf, len, flags, from, fromlen)
Int cc, 83

char *buf;

int len, flags;

struct sockaddr *froms;

int *fromlen;

cc == recvmsg(s, msg, fiags)
int ce, 83

struct msghdr msg[};

int flags;

DESCRIPTION

Recv, recufrom, and recomsg are-used to receive messages from a socket.

The recv call may be used only on a connecled socket (see connect(2)}, while recufrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

It from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to. the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in cc.
If 2 message is too long to fit in the supplied buffer, excess bytes may be discarded depending on
the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the

socket is nonblocking (see ioctl{2)) in which case a cc of -1 is returned with the external variable
errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The flags argament to 2 send call is formed by or'ing one or more of the values,

#define MSG_PEEK 0xl /* peek at incoming message */
#define MSG,_OOB 0x2 /* process out-of-band data */

The recvmasg call uses a meghdr structure to minimize the number of directly supplied parameters.
This structure has the foﬂowing form, as defined in < sys/socket.h>:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; J* size of address */

struct iovec *msg iov; [* scatter/gather array */

iat msg_iovlen; [* # elements in msg_jov *f
caddr_t msg_accrights; [* access rights sent/received */
int msg_accrightslen;

b
Here msg_name and msg _namelen specify the destination address if the socket is unconnected;

msg_name may be given as a null pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter gather locations, as described in read(2). Access rights to be sent

Last change: 4 January 1984 Sun Release 1.1

-

RECV(2) SYSTEM CALLS RECV(2)

along with the message are specified in mag_accrights, which has length mag_accrightslen.
RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred. -
ERRORS
The calls fail if:
|[EBADF] The argument 2 is an invalid deseriptor.
[ENOTSOCK] The argument # is not a socket.
[EWOULDBLOCK| The socket is marked non-blocking and the receive operation would block.
[EINTR} The receive was interrupted by delivery of a signal before any data was
available for the receive.
|EFAULT]| The data was specified to be received into a non-existent or proteeted part

of the process address space,

SEE ALSO
read(2), send(2), socket(2)

©

Sun Release 1.1 Last change: 4 January 1984 75

RENAME(2) SYSTEM CALLS © 7T RENAME(2)

NAME
rename — change the name of a file

SYNOPSIS .
rename(from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as fo. If fo exists, then it is first removed.
Both from and f¢ must be of the same type (that is, both directories or both non-directories), and
must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in the
middle of the operation.

CAVEAT :
The system can deadlock if a loop in the file system graph is present. This loop takes the form of
an entry in directory “a’’, say “affoo’", being a hard link to directory “b”, and an entry in direc-
tory “b’; say “b/bar’’, being a hard link to directory ‘a”. When such a loop exists and two
separate processes attempt to perform ‘‘rename affoo b/bar” and *rename b/bar affoo”, respec-
tively, the system may deadlock attempting to lock both directories for modification. Hard links
to directories should be replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returna -1 and the global vari-
able errno indicates the reason for the fajlure.

ERRORS :
Rename will fail and neither of the argument files will be affected if any of the following are true:

|[ENOTDIR] A component of either path prefix is not a directory.

|[ENOENT| A component of either path prefix does not exist.

|[EACCES] A compouent of either path prefix denies search permission.

[ENOENT] The file named by from does not exist.

|[EPERM] The file named by from is a directory and the effective user ID is not super-user.
|[EXDEV] The link named by o and thke file named by from are on different logical devices

(file systems). Note that this error code will not be returned if the implementa-
tion permits cross-device links.

|[EACCES] The requested link requires writing in a directory with 2 mode that denies write
permission.
|[EROFS] The requested link requires writing in a directory on a read-only file system.
|EFAULT) Path points outa_ide the process’s allocated address space.
[EINVAL] From is a parent directory of {o.
SEE ALSO
open(2)
76 Last change: 12 February 1983 Sun Release 1.1

RMDIR(2) SYSTEM CALLS RMDIR (2)

NAME
, rmdir — remove a directory file

SYNOPSIS
rmdir(path)
char *path;

DESCRIPTION _
Rmdir temoves a directory file whose name is given by path, The directory must not have any
entries other than *.” and “.."".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a —~1 i3 returned and an error code is stored in
the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY] The named directory contains files other than *-.” and *..” in it.
|[EPERM] The pathname contains a character with the high-osder bit set.
[ENOENT] The pathname was too long. -

|[ENOTDIR]" A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

|[EACCES] A component of the path prefix denies search permission.
{EACCES} Write permission is denied on the directory containiug the link to be removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
|EROF's} The directory entry to be removed resides on a readsonly file system.
@ [EFAULT) Pathk points outside the process’s allocated address space.
{ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

mkdir(2), unlink(2)

@)

Sun Release 1.1 Last change: 2 July 1983 77

SELECT(2) SYSTEM CALLS SELECT (2)

NAME
select — synchropous I/O multiplexing

SYNOPSIS
#include <sys/time.h>

nfds == select(width, readfds, writefds, execptfds, timeout)

int width, *readfds, *writefds, *execptfds;
struct timeval *timeout;

DPESCRIPTION

Select examines the 1O descriptors specified by the bit masks readfds, writefds, and execpifds to
gee if they are ready for reading, writing, or have an exceptional condition pending, respectively.
Width is the number of significant bits in each bit mask that represent a file descriptor. Typically
width has the value returned by getdiablesize (2] for the maximum number of file descriptors or is
the constant 32 (number of bits in an int). File descriptor fis represented by the bit “1< <f" in
the mask. Select returns, in place, 2 mask of those descriptors which are ready. The total
number of ready descriptors is returned in nfds.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to com-~
plete. If timeout is a zero pointer, the select blocks indefinitely. To effect a poll, the timeout
argument should be non-zero, pointing to a zero valued timeval structure.

Any of readfds, writefds, and ezecptfds may be given as 0 if no descriptors are of interest.

RETURN VALUE
Select returns the number of descriptors which are contained in the bit masks, or -1 if an error

occurred. If the time limit expires then select returns 0.

ERRORS
An error return from select indicates:
|[EBADF} One of the bit masks specified an invalid descriptor.
[EINTR} An signal was delivered before any of the selected events occurred or the time
limit expired.
SEE ALSO
accept{2), connect(2), gettimeofday(2), read(2), write(2}, recv(2), send(2), getdtablesize(2)
BUGS '
The descriptor masks are always modified on return, even if the call returns as the result of the

" timeout, ‘

78 Last change: 1 March 1084 Sun Release 1.1

-

O

SEND (2) SYSTEM CALLS SEND (2)

NAME

send, sendto, sendmsg — send a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>>

cc = send(s, msg, len, flags)
Int ec, 53

char *masg;

jot len, flags;

gc = sendto(s, msg, len, flags, to, tolen)
nt ce, 8§

ghar *msg;

lat len, flags;

struct sockaddr *to;

int tolen;

c¢ == sendmsg(s, msg, flags)
int cc, 8§

struct msghdr msgff;

int flags;

DESCRIPTION

S is a socket created with socket(2). Send, sendto, and sendmsg are used to transmit a message to
another socket. Send may be used only when the socket is in a conneclfed state, while sendto and
sendmeg may be used at any time.

The address of the target is given by fo with folen specifying its size. The length of the message
is given by len. If the message is too long to pass atomically through the underlying protocol,
then the error EMSGSIZE is returned, and the message is not trapamitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some locally
detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then send
normally blocks, unless the socket has been placed in non-blocking ifo mode. The select(2) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF_OOB to send “out-of-band’’ data cn sockets which sup-
port this notion (e.g. SOCK_STREAM]J.

See recy(2) fo} a description of the msghdr structure.

RETURN VALUE) _ , :
The call returns the number of characters sent, or -1 if an error occurred.
ERRORS :
[EBADF} An invalid descriptor was specified.
[ENOTSOCK]} The argument ¢ is not a sockét,
|EFAULT] ~An invalid user space address was specified for a parameter.
[EMSGSIZE) The socket requires that message be sent atomically, and the size of the

message to be sent made this impossible,

[EWOULDBLOCK] -The socket is marked hob-blocking and the requested operation would
‘ biock.

SEE ALSO

recv(2), sbcket(2)

Sun Release 1.1 Last change: 4 January 1984 79

SETGROUPS (2) SYSTEM CALLS SETGROUPS(2)

NAME
setgroups — set group access list
SYNOPSIS
#include <sys/param.h>
setgroups(ngroupe, gidset)
Int ngroups, *gidset;
DESCRIPTION

Setgroupe sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than

NGRPS, as defined in <ays/param.h>.
Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, —1 on error, with a error code stored in errno.

ERRORS
The zetgroups call will fail if:
|EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space,

SEE ALSO
getgroups(2), initgroups(3)

80 Last change: 7 July 1983 Sun Release 1.1

-

SETPGRP (2) SYSTEM CALLS SETPGRP(2)

NAME
setpgrp — set process group
SYNOPSIS
setpgrp(pld, pgrp)
int pid, pgrp;
DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero, then
the call applies to the current process.

It the invoker is not the super-user, then the affected process must have the same eflective user-id
as the invoker or be a descendant of the invoking process.
RETURN VALUE

Setpgrp returns when the operation was successful. If the request failed, ~1 is returmed and the
global variable errno indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:
[ESRCH] The requested process does not exist.
[EPERM] The eflective user ID of the requested process is different from that of the caller
and the process is not a descendent of the calling process.
SEE ALSO
getpgrp(3)

Sun Release 1.1 Last change: 12 February 1983 81

SETQUOTA(2) SYSTEM CALLS SETQUOTA (2)

NAME
setquota ~ enable/disable quotas on a file system

SYNOPSIS
setquota(speclal, file)
char *special, *flle;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block special device
on which a mounted file system exists. If fife is nonzero, it specifies a file in that fle system from
which to take the quotas. If file is 0, then quotas are disabled on the file system. The quota file
must exist; it is normally created with the guetacheck(8) program.

Quly the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(8), quotaon(8)

RETURN VALUE
A O return value indicates a successful call. A value of -1 is returned when an error occurs and
errno is set to indicate the reason for failure.

ERRORS
Selgquota will fail when one of the following occurs:
[NODEV| The caller is not the super-user.
[NODEV] Special does not exist.
[ENOTBLK] Special is not a block device.
|ENXIO] The major device number of special is out of range (this indicates no device
. driver exists for the associated hardware).
|EPERM] The pathname contains a character with the high-order bit set.
|[ENOTDIR] A component of the path prefix in file is not a directory.
[EROFS] File resides on a read-only file system.
[EACCES] File resides on a file system different from special.

[EACCES] File is not a plain file.

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

82 Last change: 29 August 1983 Sun Release 1.1

O

©

SETREGID (2) SYSTEM CALLS SETREGID (2)

NAME
setregid — set real and effective group ID

SYNOPSIS
setregid(rgid, egid)
Int rgid, egid;

DESCRIPTION .
The real and effective group ID's of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute the
current ID in place of the -1 parameter,

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, & value of -1 is returned and
errno is set to indicate the error.

ERRORS
|EPERM] The current process is not the saper-user and a chapge other than changiag the
effective group-id to the real group-id was specified.
SEE ALSO

getgid{2), setreuid(2), setgid(3C)

Sun Release 1.1 Last change: 12 February 1983 83

SETREUID (2) SYSTEM CALLS SETREUID (2).

NAME
setreuid — set real and effective user ID's

SYNOPSIS
setreuld(ruid, euld)
int ruld, euld;

DESCRIPTION
The real and effective user ID's of the current process are set according to the arguments. If ruid
or euid is -1, the current uid is filled in by the system. Only the super-user may modify the real
uid of a process. Users other than the super-user may change the effective uid of a process only to
the real uid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the supet-user and a change other than changing the
effective user-id to the real user-id was specified.
SEE ALSO

getuid(2), setregid(2), setuid{3)

84 Last change: 12 February 1983 Sun Release 1.1

Q

 SHUTDOWN(2) SYSTEM CALLS SHUTDOWN (2}

NAME
shutdown - shut down part of a full-duplex connectica

SYNOPSIS
shutdown(s, how)
int s, how}
DESCRIPTION
The shutdouwn call causes all or part of a full-duplex connection on the socket associated with 2 to

be shut down. ¥ how is 0, then further receives wil be disallowed. If howis 1, then further sends
will be disallowed. I how is 2, then further sends and receives will be disallowed.

DPIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS . '

The call succeeds unless:

|EBADF] Sis not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket..
{ENOTCONN] - The specified socket is not connected.

SEE ALSQ
connect(2); socket(2)

BUGS
The how values should be defined constants,

O Sun Release 1.1 Last change: 29 August 1983 85

SIGBLOCK (2) SYSTEM CALLS SIGBLOCK (2)

NAME
sighlock — block signals @

SYNOPSIS
oldmask == sigblock(mask);
int mask;

DESCRIPTION
Sighlock adds the signals specified in maosk to the set of signals currently being blocked from
delivery. Signal i is blocked if the i—1'th bit in maek is a 1. The previous mask is returned, and
may be restored using #igeetmask(2).
It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed
by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2),

<3

86 Last change: 4 January 1984 Sun Release 1.1

-

SIGPAUSE(2) SYSTEM CALLS SIGPAUSE(2)

NAME
sigpause — atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
Int sigmask;

DESCRIPTION :
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually O to indicate that no signals are
now to be blocked. Sigpouse always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the cccurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using sigpsuse with the mask returned by sighlock.

SEE ALSO .
sigblock(2}, sigvec(2)

Sun Release 1.1 Last change: 7 July 1933 87

SIGSETMASK (2) SYSTEM CALLS SIGSETMASK(2)

NAME
sigsetmask — set current signal mask

SYNOPSIS
sigsetmask(mask);
int mask;
DESCRIPTION ’
Sigactmask sets the current signal mask (those signals which are blocked from delivery). Signal ~
is blocked if the s—1'th bit in maak is a 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO .
kill(2), sigvec(2), sighlock(2), sigpause(2)

88 Last change: 4 January 1984 Sun Release 1.1

SIGSTACK(2) SYSTEM CALLS SIGSTACK(2)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS
¥#include <signal.h>>

struct sigstack {
caddre_t ss_sp;
Int ss_onstack;
h
sigstack(ss, oss)
struct sigstack *ss, Yoss;

DESCRIPTION

Sigstack allows users to define an alternate stack on which signals are to be processed. H s is—
nen-zero, it specifies a signal stack on which to deliver signals and tells the system if the process is
currently executing on that stack. When a signal’s action indicates its handler should execute on
the signal stack (specified with a sigvec(2) call), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stack,
the system arranges a switch to the signal stack for the duration of the signal handler’'s execution.
It ose is non-zero, the current signal stack state is returned.

- -

NOTES o
Signal stacks are not “‘grown” automatically, sk is done for the normal stack. If the stack
overflows unpredictable results may occur. :

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error,

c ERRORS | -
Sigatack will fail and the signal stack context will remain unchanged if one of the following
' occurs.
|GFAULT] Either ## or ose points to memory which is not a valid part of the process
: address space.
SEE ALSO

sigvec(2), setjmp(3)

C

|
|
Sun Release 1.1 Last change: 20 August 1983 ' 89

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

NAME

sigvec — software signal facilities

SYNOPSIS

#include <signal.h>
struct sigvee {

int (*sv_handler)();
int sv_mask;
int sv_onstack;

h

sigvec(sig, vec, ovece)

int sig;

struct sigvee *vec, *ovec}

DESCRIPTION

The system defines a set of signals that may be delivered to a process. Signal delivery resembles
the occurence of a hardware interrupt: the signal is blocked from further occurrence, the current
process context is saved, and a new ome is built. A process may specify a handler to which a sig-
nal is delivered, or specify that a signal is to be blocked or ignored. A process may also specify
that a default action is to be taken by the system when a signal occurs. Normally, signal
handlers execute on the current stack of the process. This may be changed, on a per-handler
basis, so that signals are taken on a special signal stack.

All signals have the same prierity. Signal routines execute with the signal that caused their invo-
cation blocked, but other signals may yet occur. A global signal mask defines the set of signals
currently blocked from delivery to a process. The signal mask for a process is initilized from that
of its parent (normally 0). It may be changed with a #igblock(2) or sigsetmaek(2) call, or when a
signal ic delivered to the process.

When a sighal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process then it is delivered to the process.
When a signal is delivered, the current state of the proceas is saved, a new signal mask is calcu-
lated (as described below), and the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally the process will resume execution in the
context from before the signal's delivery. If the process wishes to resume in a different context,
then it must arrahge to restore the previous context itself,

When a signal is deliveréd to a process a new signal mask is installed for the duration of the pro-
cess' signal handler (or until a sigblock or #igsetmaek call is made). This mask is formed by taking
the current signal mask, adding the signal to be delivered, and or'ing in the signal mask associ-
ated with the handler to be invoked. . '

Stgvec assigns a: band!gr. for a specific signal. If vee is non-zero, it specifies a handler routine and
mask to be used when delivering the specified signal. Further, if su_onstack is 1, the system will
deliver the signai to the process on a signal stack, specified with sigstack(2). If ovec is non-zero,
the previous handling information for the signal is returned to the user.

The following is a list of all signals with names as in the include file <signalh>:
SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3% quit

SIGILL 4* illegal instruction
SIGTRAP 5% trace trap

SIGIOT 6* IOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8% floating point exception

SIGKILL 9 kill (cannot be caught, blocked, or ignored)

Last change: 7 July 1983 Sun Release 1.1

-

-

SIGVEC (2) SYSTEM CALLS SIGVEC(2)

SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket

SIGSTOP 17 stop (cannot be caught, blocked, or ignored)
SIGTSTP 181 stop signal generated from keyboard

SIGCONT 19e continue after stop (cannot be blocked)
SIGCHLD 20e child status has changed

SIGTTIN 211 background read attempted from control terminal
SIGTTOU 221 background write attempted to control terminal
SIGIO 23 ifo is possible on a descriptor (see fcnti(2))
SIGXCPU 24 cpu time limit exceeded {see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setriimit{2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))

SIGPROF 2T proflling timer alarm (see setitimer(2))
SIGWINCH 28 window changed (see win(4S))

The starred signils in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvee call is made, or an
ezecve(2) is performed. The default action for a signal may be reinstated by setting su_kandler to
SIG_DFL; this default is termination (with a core image for starred signals) except for signals
marked with o or . Signals marked with e are discarded if the action is SIG_DFL; signals
marked with ¢ cause the process to stop. If sv handler is SIG_IGN the signal is subsequently
ignored, and pending instances of the signal are discarded.

It a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a slow
device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or ufork{2) the child inherits all signals, the signal mask, and the signal stack.

The execve(2) call resets all caught signals to default action; ignored signals remain ignored; the

signal mask remains the same; the signal stack state is reset.

NOTES - '
The mask specified ln vee is not allowed to block SIGKHLL, SIGSTOP, or SIGCONT. This is
done silently by the system.

RETURN VALUE

A O value indicated that the call succeeded. A —1 return value indicates an error occured and
errno is set to indicated the reason.

ERRORS :
Sigvee will fail and no new signal handler will be installed if one of the following oceurs:

[EFAULT] Either vec or .ovec points to memory which is not a valid part of the process
. address space.

[EfNVAL} Sig is not a valid signal number.
[E VAL} An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP,
[EENVAL) An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptracefi), lul!(2), sigblock(2), sigsetmask(2), sigpause(2) sigstack(2), sigvec(2), setjmp(3),
tty(4)

Sun Release 1.1 Last change: 7 July 1983 91

SIGVEC (2)

NOTES (VAX-11)
The handler routine can be declared:

BUGS

92

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

SYSTEM CALLS

SIGVEC(2)

Here #ig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from the
other SIGILL traps by having PSL_CM set in the psl). Scp is a pointer to the sigcontest struc-

ture {defined in <signal.h>}, used. to restore the context from before the signal.

The following defines.the mapping of hardware traps to signals and codes. All of these symbola

are defined in < signalh>:
Hardware condition

Arithmetic traps:
Integer overflow .
Integer division by zero
Floating overflow trap

Signal

SIGFPE
SIGFPE
SIGFPE

Floating/decimal division by zero SIGFPE

Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero faulf
Floating underflow fault
Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Ckmu

This manual page is confusing.

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

Code

FPE_INTOVF_TRAP
FPE_INTDIV_TRAP
FPE_FLTOVF_TRAP
FPE_FLTDIV_TRAP
FPE_FLTUND_TRAP
FPE_DECOVF_TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF_FAULT
FPE_FLTDIV_FAULT
FPE_FLTUND_FAULT

ILL_RESAP_FAULT
ILL_PRIVIN_FAULT
ILL,_RESOP_FAULT

hardware supplied code

Last change: 7 July 1983

Sun Release 1.1 O

-

SOCKET(2) SYSTEM CALLS SOCKET(2)

socket — create an endpoint for communication

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

s == socket(af, type, protocol)
int », af, type, protocol;

DESCRIPTION

Socket creates an endpoint for communication and returns a descriptor.

The of parameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include fle
< sysfsocket.h>. The currently understood formats are

AF_UNIX (UNIX path names),
AF_INET (ARPA Internet addresses),
AF_PUP (Xerox PUP-I Internet addresses), and

AF_IMPLINK (IMP ““host at IMP"* addresses).

The socket has the indicated type whith specifies the semanties of communication. Currently-
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically emall} maximum length). SOCK_RAW
sockets provide access to internal network interfaces. The types SOCK_RAW, which is available
only to the super-uset, and SOCK_SEQPACKET and SOCK_RDM, which are planned, but not
yet implemented, are pot described here.

The protocol Bpecifies a particular protocol to be used with the socket. Normally only a single
protocol existd to support a particular socket type using a given address format. However, it is
possible that many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the “communication domain’’ in which
commurication is to take place; see services(3N) and protocols(3N). :

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket
must be in a connected state before any data may be sent or received on it. A connection to
another socket is created with a connect(2) call. Once connected, data may be transferred using
read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a session has
been completed a close(2) may be performed. Out-of-band data may also be transmitted as
described in #end(?) and received as described in recv(2).

The communications protocols used to implement 2 SOCK_STREAM insure that data is not lost
or duplicated. If h piece of data for which the peer protocol has buffer space cannot be success-
fully transmittbd within’ a reasonable length of time, then the connection is considered broken and
calls will indicate an error with 1 returns and with ETIMEDOUT as the specific code in the glo-
bal variable errno. The protocols optionally keep sockets “warm' by forcing transmissions
roughly every minute in the absence of other activity. An error is then indicated if no response
can be elicited on an otherwise idle connection for a extended period {(e.g. 5 minutes). A SIG-
PIPE signal is raised if a process sends on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

Sun Release 1.1 Last change: 29 August 1983 093

SOCKET({2) SYSTEM CALLS SOCKET(2)

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recy(2).

An fentl{2) call can be used to specify a process group to receive a SIGURG signal when the out-
of-band data arrives,

The operation of sockets is controlled by socket level options. These options are defined in the
file <sysfsocket.h> and explained below. Selzockopt and gefaockopt(2) are used to set and get
options, respectively.

SO_DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse

SO_KEEPALIVE keep connections alive

SO_DONTROUTE do no apply routing on cutgoing messages
SO_LINGER linger on close if data present

SO _DONTLINGER do not linger on close

S0O_ DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates
the rules used in validating addresses supplied in a &ind(2) call should allow reuse of local
addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected socket.
Should the connected party fail to respond to these messages, the connection is considered broken
and processes using the socket are notified via a SIGPIPE signal. SO_DONTROUTE indicates
that outgoing messages should bypass the standard routing facilities. Instead, messages are
directed to the appropriate network interface according to the network portion of the destination
address. SO_LINGER and SO_DONTLINGER control the actions taken when unsent messags
are queued on socket and a close(2) is performed. If the socket promises reliable delivery of data
and SO_LINGER is set, the system will block the process on the close attempt until it is able to
transmit the data or until it decides it is unable to deliver the information (a timeout period,
termed the linger interval, is specified in the sctsockopt call when SO_LINGER is requested). If
SO_DONTLINGER is specified and a close is issued, the system will process the close in a
tnanner which allows the process to continue as quickly as possible.

RETURN VALUE

A -1 is retutned if an error occurs, otherwise the return vaji,le is a descriptor referencing the
socket.

ERRORS

The socket call fails if:
|[EAFNOSUPPORT| The specified address family is not supported in this version of the system.

|[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.
[EPROTONOSUPPORT‘
The specified protocol is not supported
[EMFILE] " The per-process descriptor table is full,
|[ENOBUF] No buffer space is available. The socket cannot be created.
SEE ALSO |

BUGS

94

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), focti(2), listen(2), recv(2), select(2),
send(2), shutdown(2), socketpair(2)
“A 4.2BSD Interprocess Communication Primer"'.

The use of keepalives is a questionable feature for this layer.

Last change: 29 August 1983 Sun Release 1.1

SOCKETPAIR (2) SYSTEM CALLS SOCKETPAIR (2)

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

socketpalr(d, type, protocol, sv)

int d, type, protocol;
int sv[2);

DESCRIPTION
The socketpair system call creates an unnamed pair of connected sockets in the specified domain
d, of the specified fype and using the optionally specified protocol. The deseriptors used in
referencing the new sockets are returned in sv[0] and #v[1]. The two sockets are indistinguishable..

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:.

[EMFILE] " Poo many descriptors are in use by this process.
[EAFNOSUPPORT] The specified address family is not supportedon this machine.

[EPROTONOSUPPORT)
The specified protocol is not supported on this machine.

{EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.
{EFAULT] The address sv does not specify a valid part of the process address space.
SEE ALSO :
read(2), write(2), pipe(2)
BUGS
This call is currently implemented only for the UNIX domain.

Sun Release 1.1 Last change: 29 August 1983 95

STAT(2)

NAME

SYSTEM CALLS STAT(2)

stat, Istat, fatat — get file status

SYNOPSIS
#include <sys/types.h>>

##nclude <sys/stat.h>

stat(path, buf)
char *path;
struct stat *buf;

Istat(path, buf)
char *path;
struct stat *buf;

fatat(fd, buf)

Int £d;
struct stat *buf;

DESCRIPTION
Stet obtains information about the file path. Read, write or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be reachable,

Latat is like stat except in the case where the named file is a symbolic link, in which case lstat
returns information about the link, while siat returns information about the file the link refer-

96

ences.

Fstat obtains the same information about an open file referenced by the argument descriptor, such
as would be obtained by an open call,

Buf is a pointer to a #laf structure into which information is placed concerning the file. The con-
tents of the structure pointed to by buf

struct stat k
dev_t
ino_t
u_short
short
short
short
dev_t
off t
time_t
int
time_t
int
time_t
int
long
long
long

5

st_dev; /* device inode resides on */

st_ino; /* this inode’s number */

st_mode; /* protection */

st_nlink; /* number or hard links to the file */

st_nid; /* user-id of owner */

st_gid; /* group-id of owner */

st_rdev; /* the device type, for inode that is device */
st_size; /* total size of file */

st_atime; /* file last access time */

st_sparel;

st_mtime; /* file last modify time */

st_spare2;

st_ctime; /* file last status change time */

st_spared;

st_blksize; /* optimal blocksize for file system ifo ops */
st_blocks; /* actual number of blocks allocated */
st_spare4|2];

st_atime Time when file data was last read or modified. Changed by the following system
calls: mknod(2), utimes(2), read(2), write(2), and truncate(2). For reasons of
efficiency,. st_atime is not set when a directory is searched, although this would be

more logical.

st_mtime Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mknod(2), utimes(2),

Last change: 6 March 1984 Sun Release 1.1

U

o

-

STAT(2) SYSTEM CALLS STAT(2)

write(2).
st_ctime Time when file status was last changed. It is set both both by writing and changing

the i-node. Changed by the following system calls: chmod(2) chown(2), link(2),
mknod(2), unlink(2), utimes(2), write(2), truncate(2).

The status information word sf_mode has bits:
fidefine S_IFMT 0170000 [* type of file */
#define S_IFDIR 0040000 [* directory */
##define S_IFCHR 0020000 /* character special */
#fdefine S_IFBLK 0060000 /* block special */
fidefine S_IFREG 0100000 /* regular */
gidefine S_IFLNK 0120000 /* symbolic link */
fidefine S_IFSOCK 0140000 /¥ socket */

#fdefine S_ISUID 0004000 [/* set user id on execution */

ffdefine S_ISGID 0002000 J* set group id on execution */
ftdefine S_ISVTX 0001000 /* save swapped text even after use */
#define S_IREAD 0000400 /* read permission, owner */

ffdefine S_IWRITE 0000200 /* write permission, owner */

ydefine S_IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When /d is associated with a pipe, felsat reports an ordinary file with an i-node number, restricted
permissions, and a not necessarily meaningful length.

RETURN VALUE
Upon successful completion a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Stol and letot will fail if one or more of the following are true:

|ENOTDIR} A component of the path prefix is not a directory.

[EPERM| The pathname contains a character with the high-order bit set.
[ENOENT] The pathname was too long.

[ENOENT] The named file does not exist.

|[EACCES)] Search permission is denied for a component of the path prefix.
|EFAULT] Buf or name pointa to an invalid address.

Fetat will fail if one or imt‘h of the following are true: .

|EBADF} Fildes Is not a valid open file descriptor.

[EFAULT] Bufpoints to an invalid address.

|ELOOP] Too many symbolic links were encountered in transtating the pathname.
CAVEAT ‘

The fields in the stat structure currently marked el_sparel, ot_spareZ, and 3f_spared are present
in preparation for inodg time stamps expanding to 64 bits. This, however, can break certain pro-
grams which depend on the time stamps being contiguous (in calls to utimes(2)).

SEE ALSO .
chmod(2), ci:own(2), utimes(2)

BUGS
Applying fetal to a socket returns a zero'd buffer,

Sun Release 1.1 ‘ Last change: 6 March 1984 97

SWAPON(2) SYSTEM CALLS SWAPON(2)

NAME
swapon — add a awap device for interleaved paging/swapping

SYNOPSIS '
swapon(special)
char *speclal)

DESCRIPTION
Swapon makes the block device special available to the system for allocation for paging and swap-
ping. The names of potentially available devices are known to the system and defined at system
configuration time. The size of the swap area on special is calculated at the time the device is
first made available for swapping.

SEE ALSO .
s?vapon(s), config(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

98 Last change: 29 August 1983 Sun Release 1.1

-

-

o

SYMLINK (2) SYSTEM CALLS SYMLINK{2)

NAME |
symlink — make symbolic lick to a file
SYNOPSIS

symliink(namel, name2)
char *namel, *name2;

DESORIPTION
A symbolic link name? is created to namel (nsme? is the name of the file created, namel is the
string used in creating the symbolic link). Either name may be an arbitrary path name; the fles
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored
in errno 2nd a -1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:
|EPERM] Either name! or name2 contains a character with the high-erder bit set.

[ENOENT] One of the pathnames specified was too long,
[ENOTDIR) A component of the name? prefix is not a directory.

|EEXIST] Name?2 already exists,

|EACCES] A component of the name? path prefix denies search permission.

[EROFS] - The file name? would reside on a read-only file system.

[EFAULT] Nemel ot ngmef points outside the process’s allocated address space.

|ELOOP] Too may symbolic links were encountered in translating the pathname.
SEE ALSO

link{2), In(1), unlink(2)

Sun Release 1.1 Last change: 29 August 1983 99

SYNC(2) SYSTEM CALLS SYNC(2)

NAME
syne — update super-block

SYNOPSIS
syne()

DESCRIPTION _
Sync causes all information in core memory that should be on disk to be written out. This

includes modified super blocks, modified i-nodes, and delayed block I/O.

Sync should be used by programs which examine a file system, for example fock, df, etc. Sync is
mandatory before a beot.

SEE ALSQ
fsync(2), sync(8), cron(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from ayne.

-

100 Last change: 12 February 1983 Sun Release 1.1

' SYSCALL(2) SYSTEM CALLS SYSCALL (2)

NAME
O syscall - indirect system call

SYNOPSIS -
syseall{number, arg, «.)

DESCRIPTION
Syecall performs the system call whose assembly language interface has the specified number, and
grguments arg ...
'.Phe register d0 value of the system call is returned..

DIAGNQGSTICS

When the C-bit-is set, syscall returns -1 and sets the external variable errno (see intro(2)).
- BUGS

There is no way to simulate system calls such as pipe(2), which return values in register d1.

-

Sun Release 1.1 Last change: 20 August 1983 101

TRUNCATE(2) SYSTEM CALLS TRUNCATE(2)
NAME

truncate, ftruncate — truncate a file to a specified length
SYNOPSIS

truncate(path, length)
char *path;
int length;

ftruncate(fd, length)
int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length bytes
in size. If the file previously was larger than this size, the extra data is lost. With ftruncate, the
file must be open for writing.

RETURN VALUES

A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global vari-
able errno specifies the error.

ERRORS
Truncate succeeds unless:
IEPERM] The pathname contains a character with the high-order bit set.

[ENOENT)] The pathname was too long.
[ENOTDIR) A component of the path prefix of path is not a directory.
[ENOENT] The named file does not exist.

{EACCES] A component of the pafh prefix denies search permissicn.
|EISDIR] The aamed file is a directory.
[EROFS) The named file resides on a read-only file system. Q
[ETXTBSY) The file is a pure procedure (shared text) file that is being executed.
|EFAULT] Name points outside the process's allocated address space.
Firuncate succeeds unless:
|EBADF] The fd is not a valid descriptor.
|[EINVAL] The fd references a socket, not a file.
SEE ALSO
open(2)

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

<

102 Last change: 7 July 1983 Sun Release 1.1

UMASK(2) . SYSTEM CALLS ‘ UMASK (2) |

O NAME _ ' .
umask — set file creation mode mask .

SYNQPSIS
' oumask == umask(numask)
int oumask, numask;
DESCRIPTION
Umaoak sets the process’s file mode creation mask to numask and returns the previous value of the
mask, The low-order 9 bits of numask are used whenever a file is created, clearing corresponding
bits in the file mode (see chmod(2)). This clearing allows eack user to restrict the default access
tﬂ his files.

'ljgle valye is initially 022 (write accesa for owner only). The mask is inherited by child processes.

RET URN! VALUE o
The-previous value of the file mode mask is returned by the call.

SEE ALSD
ch::;nod(2), mknod(2), open(2)
S:,

Sun Release 1.1 Last change: 12 February 1983 ' 103

UNLINK (2) : SYSTEM CALLS UNLINK (2)

NAME .
uelink - remove directory entry

SYNOPSIS
unlink(path)
char *path;

DESCRIPTION
Unlink temoves the entry for the file path from its directory. If this entry was the last link to the
file, and no process has the file open, then all resources associated with the file are reclaimed. If,
however, the file was open in any process, the actual resource reclamation is delayed until it is
closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The uniink succeeds unless:
|[EPERM] The path contains a character with the high-order bit set.

|ENOENT] The path name is too long.
|[ENOTDIR} A component of the path prefix is not a directory.
|[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.
[EACCES] Write permission is denied on the directory containing the link to be removed.
|EPERM] The named file is a directory and the effective user ID of the process is not the
super-user,
[EBUSY] The entry to be unlinked is the mount point for a mounted file system.
|EROF 8] The named file resides on a read-only file system.
|EFAULT) Path points outside the process’s allocated address space,
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALS

close(2), link(2), rmdir{2)

104 Last change: 2 July 1983 Sun Release 1.1

UTIMES (2} ~

- NAME

SYSTEM CALLS UTIMES(2)

utimes ~ set file times

SYNOPSIS

#inelude <sys/types.h>
utimes(file, tvp)

char *file;

struct timeval *tvp{2];

DESCRIPTION

The utimes call uses the “accessed’’ and ““updated” times in that order from the tvp vector to set
the corresponding recorded times for file ‘

The caller must be the owner of the file or the super-user, The “inode-changed” time of the file is
set to the current time.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to-indicate the error.

ERRORS

Utime will fail.if one or more of the following are true:

|EPERM]
[ENOENT]
[ENOENT)
[ENOTDIR}
[EACCES]
[EPERM]
|[EACCES]

[EROF'S]
[EFAULT]
[ELOOP}

SEE ALSO
stst(2)

Sun Release 1.1

The pathname contained a character with the high-order bit set.
The pathname was too long.

The named file does not exist.

A component of the path prefix is not a directory.

A cdmponent of the path prefix denics search permission.

The process is not super-user and not the owner of the file.

Fhe eflective user ID is not super-user and not the owner of the file and times is
NULL and write access is denied.

The file system containing the file is mounted read-only.
Tup points outside the process’s allocated address space.
Too many symbolic links were encountered in translating the pathname.

Last change: 2 July 1983 105

VADVISE(2) SYSTEM CALLS VADVISE(2)

NAME

vadvise — give advice to paging system @
SYNOPSIS

#include <sys/vadvise.h>

vadvise(param)

int param;

DESCRIPTION
Vadvise is used to inform the system that process paging behavior merits special consideration.
Parameters to vadvise are defined in the file < vadvise.h>, Currently, two calls t vadvise are
implemented.

The call
vadvise(VA_ANOM);

advises that the paging behavior is not likely to be well handled by the system’s defauit algo-
rithm, since reference information is collected over macroscopic intervals (e.8. 10-20 seconds) will
not serve to indicate future page references. The system in this case will choose to replace pages
with little emphasis placed on recent usage, and more emphasis on referenceless circular behavior.
It is eszential that processes which have very random paging behavior (such as LISP during gar-
bage collection of very large address spaces) call vadvise, as otherwise the system has great
diﬂiculty dealing with their page-consumptive demands.

The call
vadvise(VA_NORM);

restores defanlt paging replacement behavior after a call to
vadvise(VA_ANOM);

BUGS
Will go away soon, being replaced by a per-page madvise tacility. Q

106 Last change: 20 August 1983 Sun Release 1.1 ;

-

o

VFORK (2) SYSTEM CALLS VFORK (2)

NAME
viork — spawn new process in a virtual memory eflicient way

SYNOPSIS
pid = vfork()
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old pro-
cess, which is horrendously ineflicient in a paged environment. It i3 useful when the purpose of
Jork(2) would have been to create a new system context for an ezecve. Vfork differs from fork in
that the child borrows the parent’s memory and thread of control until a call to ezecve(2) or an
exit (either by a call to e2it(2) or abnormally.) The parent process is suspended while the child is
using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork, It does not work, however, to return while running in
the childs context from the procedure which called ufork since the eventual return from ufork
would then return to a no longer existent stack frame. Be careful, also, to call _ezit rather than
ezit if you can't ezecve, since ezit will flush and close standard I/O channels, and thereby mess up
the parent processes standard 1/O data structures. (Even with fork it is wrong to call exif since
buffered data would then be flushed twice.}

SEE ALSO _

fork(2), execve(2), sigvec(2), wait(2),
DIAGNOSTIOS '

Same as for fork.

BUGS :
This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or iocils are allowed and input attempts
result in ap end-of-file indication.

Sun Release 1.1 Last change: 2 July 1983 107

VHANGUP (2) SYSTEM CALLS VHANGUP (2)

NAME

vhangup — virtually “hangup' the current contro] terminal
SYNOPSIS

vhangup()
DESCRIPTION

Vhangup is used by ¢he initialization process init(8) (among others) to arrange that users are given
“clean”’ terminals at login, by revoking access of the previous users’ processes to the terminal.
To eflect this, vhangup searches the system tables for references to the cortrol terminal of the
invoking process, revoking access permissions on each instance of the terminal which it finds.
Further attempts to access the terminal by the affected processes will yield ifo errors (EBADF).
Finally, a hangup signal (SIGHUP) is sent to the process group of the control terminal.

SEE ALSO
init (8)
BUGS
Access to the control terminal via /dev /tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

108 Last change: 12 Febuary 1983 Sun Release 1.1

-

O

O

WAIT(2) ‘ SYSTEM CALLS WAIT(2)

NAME

wait, wait3 — wait for process to terminate or stop

SYNOPSIS

#include <sys/walt.h>

pld == walt(status)
int pld;
unlon wait *status;

pid == walt(0)
int pld;

#inelude <sys/time.h>
#include <sys/rescurce.h>

pid == walt3(status, options, rusage)
Int pid;

union walt *status;

int optlons;

struct rusage *rusage;

DESCRIPTION

NOTE

Wait causes its caller to delay until a signal is received or one of its child processes terminates or
stops due to tracing. If any child has died or stopped due to tracing and this has not been
reported via wail, retern is immediate, returning the process id and exit status of one of those
children. If that child had died, it is discarded. If there are no children, return is immediate with
the value -1 returned. If there are only running or stopped but reported children, the calling
processes is suspended.

On return from a successful wait call, slatue is nonzero, and the high byte of stafus contains the
low byte of the argument to exit supplied by the child process; the low byte of stafus contains the
termination status of the process. A more precise definition of the slatus word is given in
< syef wait.h2>. '

Wait8 is an alternate interface which allows both non-blocking status collection and the status of
children stopped by any means. The stalus parameter is defined as above. The options parame-
ter is used to indicate the call should not block if there are no processes which have status to
report (WNOHANG), and/or that children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal are eligible to have their status reported as
well (WUNTRACED). A terminated child is discarded after it reports status, and a stopped pro-
cess will not report its status more than once. If rusage is non-zero, a summary of the resources
used by the terminated process and all its children is returned. (This information is currently not
available for stopped processes.)

When the WNOHANG option is specified and no processes have status to report, wai!® returns a
pid of 0. The WNOHANG anti WUNTRACED options may be combined by or'ing the two
values. :

5

See sigvec(2) for a list of termination statuses (signals); O status indicates normal termination, A
special status (0177) is returned for a stopped process which kas not terminated and can be res-
tarted; see pirace(2) and sigvec(2). If the 0200 bit of the termination status is set, a core image of
the process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (process
ID = 1) inherits the children.

Wit and waif? are automatically restarted when a process receives a signal while awaiting termi-
nation of a child process.

Sun Release 1.1 Last change: 22 December 1983 109

WAIT(2) SYSTEM CALLS WAIT(2)

RETURN VALUE
If wait returns due to a stopped due to tracing or terminated child process, the process ID of the
child is returned to the calling process. Otherwise, a value of -1 is returned and errno is set to

indicate the error.

Wait8 returns —1 if there are no children not previously waited for; 0 is returned if WNOHANG
is specified and there are no stopped or exited children.

ERRORS
Wait will fail and retura immediately if one or more of the following are true:
lECHILD] The calling process has no existing unwaited-for child processes.
;EFAULT] The afatus or rusage arguments point to an illegal address,

SEE ALSO
exit(2)

110) Last change: 22 December 1983 Sun Release 1.1

C

C

C

WRITE(2) SYSTEM CALLS WRITE(2)

NAME
write, writev - write on 4 file

SYNOPSIS
write(d, buf, nbytes)
Int d;
char *buf;
Int nbytes;

#include <sysftypes.h>
#include <sys/ulo.h>

writev(d, fov, loveclen)
int dj
struct lovee *lov)
int loveclen;
DESCRIPTION
Write attempts to write nbyles of data to the object referenced by the descriptor d from the buffer
pointed to by buf. Wrifev performs the same action, but gathers the output data from the iovlen
buffers apecified by the members of the iov array: iov|0}, iov[1], ete.

On objects capable of seeking, the write starts at a position given by the pointer associated with
d, see lzeck(2). Upon return from write, the pointer is incremented by the number of bytes actu-
ally written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with. such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This prevents
penetration of system security by a user who “captures’ a writable set-user-id file owned by the
super-user.

RETURN VALUE

Upon successful completion the number of bytes actually writen is returned. Otherwise a -1 is
returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are true:
|[EBADF) D is not a valid descriptor open for writing.
|EPIPE] An attempt is made to write to a pipe that is not open for reading by any pro-
cess,
|EPIPE) An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket,
|[EFBIG]) An attempt wag made to write a file that exceeds the process’s file size limit or
. the maximum fBle size.
[EFAULT] Part oi fov or data to be written to the file points outside the process's allocated
address space.
SEE ALSO

lseek(2), open(2), PEPF(-'-‘?.}_

Sun Release 1.1 ‘ Last change: 29 August 1983 7 111

O

-

INTRO(3)

NAME

SUBROUTINES | INTRO(3)

jntro — introduction to library functions

DESCRIPTION
Section 3 describes functions found in libraries.

This section describes subroutines found in the system libraries.

The main C library is /lib/libc.a, and contains all the system call entry points described in sec-
tion 2 as well as functions described in several subsections here. The primary functions in the C
library are described in the main section 3. Functions associated with the “standard 1/0 library”
used by many C programs are found in section 3S. The libe library also includes the Internet net-
work functions described in section 3N and routines providing compatibility with other UNIX sys-
tems as described in section 3C as well as all the system entry points from section 2.

Other sections here are:

(3F) The 3F functions are all functions callable from FORTRAN. These functions perform
the same jobs as the straight “‘3" functions do for C programmers. There are in fact
three FORTRAN libraries, namely ~1U77 which contains the system interface routines,
—1177 which is the I/O interface library, and —IF77 which is everything not contained in
the other two. 'These libraries are searched automatically by the loader when loading
FORTRAN programs.

(3M) These functions constitute the math library. C declarations for the types of functions
may be obtained from the include file <math.h>. To use these functions with C pro-
grams use a —lm option with cc(1). They are automatically loaded as needed by the For-
tran and Pascal compilers f77(1) and pe(1).

(3X) Various specialized libraries have not been given distinctive captions. Files in which such
libraries are found are named on appropriate pages if they don’t appear in the libc library.

FILES

Jlib/libe.a) C Library {(2), (3), (3N) and (3C) routines)

Just/lib/libe_p.a Profiling C library (for gprof(1))

Jusr/lib/libm.a Math Library —im (see section 3M)

[ust/lib/libm_p.a Profiling version of ~lm

Jusr/1ib/libU77.2 FORTRAN eystem interface (see section 3F)

Juseflib/libI77.a FORTRAN I/O (see section 3F)

JustflibJlibF77.a - FORTRAN everything else (see section 3F)

Junt/lib/libeurses.a screen management routines {see curses(3X)

[usr/lib/libdbm.a data base management routines (see dbm(3X))

[usr/lib/libmp.a multiple precision math library (see mp(3X))

Jusr/lib/libtermcap.a terminal handling routines (see fermeap(3X))

Jusr/lib/libtermeap_p.a .

Juse/lib/libtermlib

ust/lib/libtermlib_p.a

Juse/lib/libplot.a plot routines (see plo?(3X))

Jusr/lib/1ib300.a ”

Jusr/1ib/lib300s.3 ”

Jusr/lib/lib4014.a ”

Juer/lib/lib450.a »

SEE ALSO :

intro(3C), intro(38), intfo(3F), intro(3M), intro(3N), nm(1), 1d{1), cc(1), £77(1), intro(2)

DIAGNOSTICS

Functions in the math library (section 3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM (domain error) or ERANGE (range

Sun Release 1.1

Last change: 12 January 1984 1

INTRO(3) SUBROUTINES INTRO(3)

error). The values of EDOM and ERANGE are defined in the include file <errno.b>.
LIST OF FUNCTIONS

Neme Appears on Page Deacription

abort abort.3 generate a fault

abs abs.3 integer absolute value

alarm alarm.3¢ schedule signal after specified time
alloca malloc.3 memory allocator

alphkasort scandir.3 scan a directory

asctime ctime.3 convert date and time to ASCII
assert assert.3 program verification

atof atof.3 convert ASCII to numbers

atoi atof.3 convert ASCII to numbers

atol atof.3 convert ASCII to numbers
bemp bstring.3 bit and byte string operations
beopy bstring.3 bit and byte string operations
bzero bstring.3 bit and byte string operations
calloc malloc.3 memory allocator

clree malloc.3 memory allocator

clearerr ferror.3s stream status inquiries:

closedir. directory.3 directory operations

closelog syslog.3 control system log

crypt crypt.3 DES encryption

ctime: ctime.3 convert date and time to ASCIL
dysize ctime.3 convert date and time to-ASCII
ecvt ecvt.3 output conversion

edata end.3 last locations in program
encrypt crypt.3 DES encryption

end end.3 last locations in program
endlsent getfsent.3: get file system descriptor file entry
endgrent getgrent.3 get group file entry

endhostent gethostent.3n. get network host entry
endnetent getnetent.3n: get network entry

endprotoent getprotoent.3n. get protocol entry

endpwent getpwent.3 get password file entry
endservent getservent.3n: get service entry

environ execl.3 execute a file

errno perror.3 system error messages

etext end.3 last locations in program

execl execl.3 execute a file

execle execl.3 execute a file

execlp exec).3 execute a file

execy execl.3 execute a file

execvp execl.3 execute a file

exit exit.3 terminate a process after flushing any pending output
fclose fclose.3s close or flush a stream

fevt. ecvt.3 output conversion.

fdopen fopen.3s open a stream

feof ferror.3s. stream status inquiries

ferror ferror.3s stream status inquiries

fllush. fclose.3s close or flush a stream.

fls bsetring.3 bit and byte string operations
fgetc getc.3s get character or integer from stream
fgets gets.3s get a siring from a stream

Last change: 12 January 1984

Sun Release 1.1

O

INTRO(3) SUBROUTINES INTRO(3)
O fileno ferror.3s stream status inquiries
fopen fopen.3s open a stream
fprintf printf.3s formatted output conversion
fpute putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
free malloc.3 memeory allocator
freopen fopen.3s open a stream
frexp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion
fseek feeek 35 reposition a stream
ftell fseek.3s reposition a stream
ftime time.3c get date and time
fwrite fread.3s buffered binary input/output
gevt ecvt.3 output conversion
gete gete.3s get character or integer from stream
getchar gete.3s get character or integer from stream
getenv getenv.3 value for environment name
getfsent getfsent.3 get file system descriptor file entry
getfsfile getfsent.3 get file system descriptor file entry
getfsapec getfsent.3 get file system descriptor file entry
) getfstype getfzent.3 get file system descriptor file entry
getgrent getgrent.3 get group file entry
getgrgid getgrent.3 get group file entry
getgrnam getgrent.3 get group file entry
gethostbyaddr gethostent.3n get network host entry
gethostbyname: gethostent.3n get network host entry
(l} gethostent gethostent.3n get network host entry
getlogin getlogin.3 " get login name
getnetbyaddr getnetent.3n get network entry
getnetbyname getnetent.3n get network entry
getnetent getnetent.3n get network entry
getopt getopt.3c get option letter from argv
getpass getpass.3 read a password
getprotobyname getprotoent.3n get protocol entry
getprotobynumber getprotoent.3n get protocol entry
getprotoent getprotoent.3n get protocol entry
getpw getpw.3 get name from uid
getpwent getpwent.3 get password file entry
getpwnam getpwent.3 get password file entry
setpwuid getpwent.3 get password file entry
gets gets.3s get a string from a stream
getservbyname getservent.3n get service entry
getservbyport getservent.3n get service entry
getservent getservent.3n get service entry
getw gete.3s get character or integer from stream
getwd getwd.3 get current working directory pathname
gmtime ctime.3 convert date and time to ASCII
gty stty.3c set and get terminal state
htonl byteorder.3n convert values between host and network byte order
htons byteorder.3n convert values between host and network byte order
index string.3 string operations
inet_addr inet.3n Internet address manipulation

O

Sun Release 1.1

" Last change: 12 January 1984

INTRO(3)

inet_Inaof

inet_makeaddr

inet_netof
inet_network
inet_ntoa
initgroups
initstate
insque
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
isinf
islower
isnan
isprint
ispunct
isspace
isupper
Idexp
localtime
longjmp
malloc
mktemp
modf
moncontrol
monitor
monstartup
nice

nlist
ntohl
ntohs
opendir
openlog
optarg
optind
pause
pclose
perror
popen
printf
psignal
putc
putchar
puts
putw
qsort
rand
random
remd

inet.3n
inet.3n
inet.3n
inet.3n
inet.3n
initgroups.3
random.3
insque.3
ctype.3
ctype.3
ctype.3

" ttyname.3

ctype.3
ctype.3
ctype.3
isinf.3

ctype.3

_ isinf.3
ctype.3

ctype.3
ctype.3
ctype.3
frexp.3
ctime.3
setjmp.3
malioc.3
mktemp.3
frexp.3
monitoer.3
monitor.3
monitor.3
nice.3¢c
nlist.3
byteorder.3n
byteorder.3n
directory.3
syslog.3
getopt.3c
getopt.3c
pause.3¢
popen.3s
perror.3
popen.3s
printf.3s
psignal 3
pute.3s
pute.3s
puts.3s
pute.3s
qsort.3
rand.3¢c
random.3
rcmd.3n

Last change: 12 January 1984

SUBROUTINES INTRO(3)

Internet address manipulation

Internet address manipulation

Internet address manipulation

Internet address manipulation

Internet address manipulation

initialize group access list

better random number generator; routines for changing generators
insert/remove element from a queue
character classification macros

character classification macros

character classification macros

find name of a terminal

character classification macros

character classification macros

character classification macros

test for indeterminate floating point values
character classification macros

test for indeterminate floating point values
character classification macros

character classification macros

character classification macros

character classification macros

split into mantissa and exponent

convert date and time to ASCII

non-local goto

memory allocator

make a unique file name

split into mantissa and exponent

prepare execution profile

prepare execution profile

prepare execution profile

set program priority

get entries from name list

convert values between host and network byte order
convert values between host and network byte order
directory operations

control system log

get option letter from argv

get option letter from argv

stop until signal

initiate I/O toffrom a process

system error messages

initiate I/O to/from a process

formatted output conversion

system signal messages

put character or word on a stream

put character or word on a stream

put a string on a stream

put character or word on a stream

quicker sort

random number generator

better random number generator; routines for changing generators
routines for returning a stream to a remote command

Sun Release 1.1

o

-

INTRO(3) SUBROUTINES INTRO(3)

O re_comp regex.3 regular expression handler
Te_exec ‘ regex.3 regular expression handler
readdir directory.3 directory operations
realloc malloc.3 memory allocator
remaque : insque.3 insert/remove element from a queue
rewind feeek.3s reposition a stream
rewinddir directory.3 directory operations
texec rexec.3n retern stream to a remote command
rindex string.3 string operations
stesvport remd.3n routines for returning a stream to a remote command
ruserok remd.3n routines for returning a stream to a remote command-
scandir scandir.3 scan a directory
scanf scanf.3s formatted input conversion
seekdir directory.3 directory operations
setbuf .. setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
getegid setuid.3 set user and group ID
i setenid getuid.3 set-user and group II¥.

setfzent getfsent.3 get file system descriptor file entsy
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry
setimp setjmp.3 non-local goto
setkey erypt.3 DES encryption
setlinebuf setbufl.3s assign buffering to a stream
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry

@ setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
setstate random.3 better random number generator; routines for changing generators
setuid setuid.3 set user and group ID
signal signal.3 - simplified software signal facilities
sleep sleep.3 suspend execution for interval
sprintf printl.3s formatted output conversion
srand rand.3¢ random number generator
srandom random.3 better random number generator; routines for changing generators
sscanf scanf.3s formatted input conversion
stdio intro.3s standard buffered input/output package
strcat string.3 string operations
strcmp string.3 string operations
strepy string.3 string operations
strlen string:3 string operations
strncat string.3 string operations
stracmp string.3 string operations
stroepy string.3 string operations
stty stty.3¢ set and get terminal state
swab swab.3 swap bytes
sys_errlist perror.3 system error messages
sys_perr perror.3 system error messages
sys_siglist psignal.3 system signal messages
syslog syslog.3 control system log

O

Sun Release 1.1 Last change: 12 January 1984 5

INTRO(3)

system
telldir
time
times
timezone
tmppam
ttyname
ttyslot
ulimit
ungete
utime
valloe
varargs
vlimit
vtimes

system.3
directory.3
time.3¢
times.3c
ctime.3
tmppam.3c
ttyname.3
ttyname.3
ulimit.3¢
ungetc.3s
utime.3¢
valloc.3
varargs.3
viimit.3c
vtimes.3¢

Last change: 12 January 1984

SUBROUTINES

issue a shell command

directory operations

get date and time

get process times

convert date and time to ASCII

create a name for a temporary file

find name of a terminal

find name of a terminal

get and set user limits

push character back into input stream
set file times o
aligned memory allocator

variable argument list *

control maximum system resource consumption
get information about resource utilization

INTRO(3)

Sun Release 1.1

-

O

-

ABORT(3) |) SUBROUTINES 'ABORT(3)

NAME , -
abort - generate a fault
DESCRIPTION :

Abort executes an instruetion which is illegal in user mode. This causes a signal that mormally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO .
adb(15), signal(3), exit(2)
DIAGNOSTICS
Usually ‘1OT teap — core dumped’ fyom the shell.
The abost function doer wot flusk standard 1/0 buffers. Use [ush as described in felose(3S).

Sun Release 1.1 Last change: 26 August 1983 7

ABS(3) SUBROUTINES ABS(3)

NAME
abs — integer absolute value _ @

SYNOPSIS
abs(1)
int 3;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO .
floor(3M) for fabe

BUGS
Applying the abs function to the most negative integer generates a result which is the most nega-
tive integer. That is, abs(0x80000000) returns 0x80000000 as a result,

-

8 Last change: 27 August 1983 i Sun Release 1.1

ASSERT(3) SUBROUTINES ASSERT(3)

NAME .
aseert — program verification

SYNOPSIS
‘ #¥include <assert.k>>
assert(expression)
DESCRIPTION
Aseerl is a macro that indicates ezpreseion is expected to be true at this point i the program. It
causes an erit{2) with a diagnostic comment on the standard output when ezpression is false (0).
Compiling with the c¢(1) option ~-DNDEBUG effectively deletes assert from the program.
DIAGNOSTICS '

‘Assertion failed: file fline n.’ F is the source file and n the source line number of the asser! state-
ment.

Sun Release 1.1 Last change: 23 August 1983 9

_ ATOF(3) | SUBROUTINES ATOF (3)

NAME

atof, atoi, atol - convert ASCII to numbers
SYNOPSIS

double atof(nptr)

char *nptr;

atoi(nptr)

char *nptr;
long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer represen-
tation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of spaces, then an optional sign, then a string of digits option-
ally containing a decimal point, then an optional ‘¢’ or ‘E’ followed by an optionally signed
integer.

Atoi and afol recognize an optional string of spaces, then an optional sign, then a string of digits,

SEE ALSO
scanf(3S)

BUGS
There are no provisions for overfiow.

Currently, alof performs highly inaccurate conversions of very large or very small numbers — on
the order of 10**32 or its reciprocal.

10 Last change: 19 March 1984 Sun Release 1.1

-

BSTRING(3) SUBROUTINES BSTRING(3)

3 NAME
-’ beopy, bemp, bzero, fls — bit and byte string operations

SYNOPSIS
beopy(bl, b2, fength)
char *bl, *b2;
Int length;
bemp(bl, b2, length)
char *bl, *b2;
int length;
bzero(b, length)
char *bs
Int length;

s (1)
Int

DESCRIPTION
The functions dcopy, bemp, and bzero operate on variable length strings of bytes. They do mot
check for null bytes as the routines in 2fring(3) do.

Beopy copies length bytes from string b! to the string b2.

Bemp compares byte string b! against byte string b2, returning zero if they are identical, non-zero
otherwise. Both strings are assumed to be length bytes long.

Bzero places length O bytes in the string b.

Ffs finds the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at 1 from the right. A return value of -1 indicates the value passed is zero.

BUGS ,
@ The bemp and bcopy routines take parameters backwards from sfremp-and strepy.

O

Sun Release 1.1 Last change: 4 March 1983 11

CRYPT(3) SUBROUTINES CRYPT(3)

NAME

crypt, setkey, encrypt — DES encryption

SYNOPSIS

char *crypt(key, salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, edflag)
char *block;

DESCRIPTION

Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, with
variations intended (among other things) to frustrate use of hardware implementations of the DES
for key search.

The first argument to cryp? is normally a user's typed password. The second is a 2-character
string chosen from the set {2-zA-Z0-9./]. The salt string is used to perturb the DES algorithm in
one of 4006 different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password, in the same alphabet as
the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument of
setkey is a character array of length 64 containing only the characters with numerical value 0 and
1. If this string is divided into groups of 8, the low-~order bit in each group is ignored, leading to
a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing 0’s and
1's. The argument array is modified in place to a similar array reprezenting the bits of the argu-
ment after having been subjected to the DES algorithm using the key set by setkey. If edflag is 0,
the argument is encrypted; il non-zero, it is decrypted.

SEE ALSO

BUGS

12

passwd(1), passwd(5), login(1), getpass(3)

The return value pointa to static data whose content is overwritten by each call.

Last change: 25 February 1083 Sun Release 1.1

-

C

CTIME(3) SUBROUTINES CTIME(3)

NAME

ctime, localtime, gmtime, asctime, timezone, dysize -~ convert date and time to ASCI

SYNOPSIS

char *ctime(clock)

fong *clocks

#include <sys/time.h>>
struct tm *localtime(clock)
long *clocks-

struct tm *gmtime(clock)
long *clocks

char *asctime(tm)

struct tm *tmy

char *timezone(zone, dat)

int dysize(y)
int y;

DESCRIPTION

Ctime converts a time pointed to by clock such as returned by getfimeofdag(2) into ASCIHI and
returns a pointer to a 26-character string in the followmg form. All the fields have constant
width.

Sun Sep 16 01:03:52 1973\n\0

Laocaltime and gmiime return pointers to structures containing the broken-down time. Localiime
corrects for the time zone and possible daylight savings time; gméime converts directly to GMT,
which is the time UNIX uses. Asciime converts a broken-down #ime to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {
int tm_sec;
int tm_min;

int tm_hour;
int tm_mday;
int tm_mon;
int - tm_year;
int - tm_wday;
int tm_yday;
int tm_isdst;
b

These quantities give the time on a 24-hour clock, day of month (1-81), month of year (0-11), day
of week (Sunday == 0), year - 1900, day of year (0-365), and 2 flag that is nonzero-if daylight sav~
ing time is in eﬂ'eet. o

When local hme is called for, the program consults the system to determine the time zone and
whether the U.S.A., Australian, Eastern European, Middle European, or Western European day-
light saving time adjustment is appropriate. The program knows about various peculiarities in
time conversion ovlr the past 10-20 years.

Timezone returns the name of the time zone associated with its first argument, which is measured
in minutes westward from Greenwich. If the second argument is 0, the standard name is used,
otherwise the Daylight Saving version. If the required name does not appear in a table built into
the routine, the difference from GMT is produced; e.g. in Afghanistan timezone(-(60*4+ 80), 0) is
appropriate because it is 4:30 ahead of GMT and the string GMT-{-4:30 is produced,

Sun Release. 1.1 Last change: 23 August 1983 13

CTIME(3) _ SUBROUTINES

Dysize returns the number of days in the argument year, either 365 or 366.

SEE ALSO
gettimeofday(2), time(3C)

BUGS
The return values point to static data whose content is overwritten by each call.

14 -Last change: 23 August 1983

CTIME(3)

Sun Release 1.1

-

O

O

CTYPE(3) SUBROUTINES : CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii, isgraph,
toupper, tolower, toascii — character classification and conversion macyos

SYNOPSIS
ffinclude <ctype.h>

Isalpha(c)

CHARACTER CLASSIFICATION MACROS
These macros classify ASCIH-coded integer values by table lockup. Each is a predicate returning
nonzero for true, zero for false. lsasciiis defined on all integer values; the rest are defined only.
where isascii(¢) is true and on the single non-ASCII value EOF (see stdio(35)).

isalpha(c) cis = letter

isupper{c) ¢ is an upper case letter

islower(c) cisa lower case letter

isdigit{c} cis a digit

isxdigit(c) ¢ is a hexadecimal digit

isalnum(e) ¢ is an alphanumeric character

isspace(c) cis a space, tab, carriage return, newline, or formfeed

ispunct(c) cis a punctuation character (neither control nor alphanumeric)

isprint(c} cis a printing character, code 040(8) (space) through 0176 (tilde)
iscntrl(c) cis a delete character (0177) or ordinary control character {less than 040).
isascii{c) cis an ASCII character, code less than 0200

isgraph(c) cis a visible graphic character, code 041 (exclamation mark) through 0176 (tilde).

CHARACTER CONVERSION MACROS -
These macrce perform simple conversions on single characters.

toupper(e) converts ¢ to its upper-case equivalent. Note that this only works where ¢ is
known to be a lower-case character to start witk (presumably checked via
sslower).

tolower{c) converts ¢ to its lower-case equivalent. Note that this only works where c is
known to be a upperecase character to start with (presumably-checked via

. isupper). :

toasciifc) masks ¢ with the corgect value so that c is guaranteed to be an ASCH chasacter

in the range O thru Ox7f.
SEE ALSO
ascii(7)

Sun Release 1.1 Last change: 9 March 1984 15

DIRECTORY (3) . SUBROUTINES DIRECTORY (3)

NAME.
opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations O

SYNOPSIS
#include <sys/di=.h>

DIR *opendir(filename)
char *fllename;:

gtruct direct *readdir(dirp)
DIR *dirps

long telldir(dirp)
DIR *dirp;

seekdir(dlrp, loc)
DIR *dirps:
lIong locs

rewinddir(dirp)
DIR *dirp;.

closedir(dirp)
DIR *dirp;

DESCRIPTION :
Opendir opens the directory named by filename and associates a directory siream with it. Opendir
returns a pointer to be used: to identify the directory stream in subsequent operations. The
pointer NULL is returred. if filename cannot be accessed or is not a directory, or if it cannot mal-
loc(3) enough. memory to hold the whole thing.

Readdir returns a pointer to the pext directory entry. It returns NULL upon reaching the end of
the directory or detecting an invalid seekdir operation. @

Telldir returns the current location associated with the named directory stream.

Seckdir. sets the position of the next readdir operation on the directory stream. The new position
reverts to the one associated with the direclory eiream when the telldir operation was performed.
Values returned by felldir are good only for the lifetime of the DIR pointer from which they are
derived. If the directory is closed and then reopened, the telldir value may be invalidated due to
undetected directory compaction, It is safe to use a previous {elldir value immediately after a call
to opendir and before any calls to readdir.

Rewinddir resets the position of the zamed directory stream to the beginning of the directory.

Closedir closes the mamed directory stream and frees the structure associated with the DIR
pointer,

Sample code which searchs a directory for entry “name" is:

len == strlen(name);
dirp = opendir(”.”);
for (dp == readdir(dirp); dp != NULL; dp = readdir(dirp))
if {dp->d_namlen === len && !stremp(dp->d_name, name)) {
closedir(dirp);
return. FOUND;

closedir(dirp);
return NOT_FOUND;

SEE ALSO .
open(2), close(2}, read(2), Iseek(2), dir(5}

16 Last change: 25 February 1983 Sun Release 1.1

O

DIRECTORY(3) SUBROUTINES DIRECTORY (3)

BUGS
Old UNIX programs which examine directoriés should be converted to use this package, as the

new directory format is non-obvious.

Sun Releaqq i1 Last change: 25 February 1983 17

ECVT(3) SUBROUTINES ECVT(3)

NAME ' @
ecvt, fcvt, gevt — output conversion

SYNOPHIS
shar *ecvt(value, ndigit, deept, sign)
double value;

Int ndigit, *decpt, *sign;

char *fevt(value, ndigit, decpt, sign)
double value;

Int ndigit, *decpt, *sign;

char ""gcvt(value, ndigtt, buf)
double value;

char *buf

DESCRIPTION
Ecut converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through decp! (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by #ign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Feut is identical to ecvt, except that the correct digit has been rounded for Fortran F-format out-
put of the number of digits specified by ndigits.

Geut converts the value to a null-terminated ASCII string in duf and returns a pointer to buf. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
, ready for printing. Trailing zeros may be suppressed.

SEB ALSO ,
isinf(3), printf(3S) Q

BUGS .
The return values point to static data whose content is overwritten by each call.

C

18 Last change: 23 August 1983 ' Sun Release 1.1

END(3) SUBROUTINES END(3)

NAME
end, etext, edata-— last locations in program

SYNOPSIS
extern end;
extern etexts
extern edatas

DESCRIPTION
These names refer neither to routines nor to locations with interesting comtents. The address of
etezt s the Srst address above the program text, edata above the initialized data region, and end
above the uninitialized data region.

When execution begins, the program break coincides with end, but # is reset by the routines
brk(2), malloc(3), standard inputfoutput (stdio(3S)), the profile (—p) option of cc(l), etc. The
curzent value of the program break is reliably returned by ‘sbrk(0), see brk(2).

SEE ALSO ‘
brk(2), malloc(3)

Sun Release 1.1 Last change: 19 January 1983 19

EXECL (3) SUBROUTINES EXECL (3)

NAME @
execl, execv, execle, execlp, execvp, environ — execute a file

SYNOPSIS
execl(name, arg0, argl, ..., argn, 0)
char *name, *argD, *argl, ..., *argn;

execv(name, argv)
char *name, *argv|];

execle(name, arg0, argl, ..., argn, 0, envp)
char *name, *arg0, *argl, ..., *argn, *envp| J;
execlp(name, arg0, argl, ..., argn, 0, envp)
char *name, *arg0, *argl, ..., *argn, *envp| };
execvp(name, argv, envp)

char *name, *argv|], *envp|[];

extern char **environ;

DESCRIPTION
These routines provide various interfaces to the ezecve system call. Refer to ezecve(2) for a
description of their properties; only brief descriptions are provided here.

Ezec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling core
image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0],
org|?] ... address null-terminated strings. Conventionally arg|0] is the name of the file.

called; the arguments to ezecl are the character strings constituting the file and the arguments;
the first argument is conventionally the same as the file name (or its Jast component). A 0 argu-
ment must end the argument list.

Two interfaces are available. ezect is useful when a known file with known arguments is being O

The ezccy version is useful when the number of arguments is unknown in advance; the argaments
to execv are the name of the file to be executed and a vector of strings containing the arguments.
The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(arge, argy, envp)
int arge;
char **argv, **envp;

where argc is the argement count and argv is an array of character pointers to the argumenta
themselves. As indicated, arge is conventionally at least one and the first member of the array
points to a string containing the name of the file,

Argy is directly usable in another ezecv because argv[arge] is 0.

Envp is a pointer to an array of strings that cohstitute the environment of the process. Each
string consists of a name, an ‘=", and a null-terminated value, The array of pointers is ter-
mirated by a null pointer. The shell #h(1) passes an environment entry for each global shell vari-
able defined when the program is called. See environ(5) for some comventionally used names,
The C run-time start-off routine places a copy of envp in the global cell environ, which is used by
ezecv and ezecl to pass the environment to any subprograms executed by the current program.

Ezeclp and ezecyp are called with the same arguments as ezec! and ezeey, but duplicate the shell’s
actions in searching for an executable file in a list of directories. The directory list is obtained
from the environment.

20 : Last change: 20 March 1984 Sun Release 1.1

-

EXECL(3) ' SUBROUTINES EXECL (3)

FILES
/bin/sh shell, invoked if command file found by ezeclp or ezecvp

SEE ALSO
execve(2), fork(2), environ(5), csh(1), sh{1)
“UNIX Programming”’ in Programming Tools for the SUN Workstation, pp. 1-3. -
DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5)), if maximum memory is exceeded, or if the arguments tequire too much space, a
zeturn constitutes the diagnostic; the retura value is —1. Even for the super-user, at least one of
the execute-permission bits must be set. for a file to be executed.

BUGS
It ezecup is called to execute a file that turns out to be a shell command file, and if it is impossi-
ble to execute the shell, the values of argyf0] and argvf~1] will be modified before return..

Sun Release 1.1 Last change: 20 March 1984 21

EXIT(3): SUBROUTINES EXIT(3)

NAME
exit — terminate a process after flushing any pending output

SYNOPSIS
exit(status)
int status;

DESCRIPTION
Ezit terminates a process by calling ezit(2) after calling the Standard I/O library function
_cleanup to flush any buffered output. Ezit never returns.

SEE ALSO
exit(2), intro(3S)

O

22 Last change: 23 August 1983 Sun Release 1.1

FREXP (3) SUBROUTINES FREXP(3)

NAME
frexp, 1dexp, modf — split into mantissa and exponent
SYNOPSIS
double frexp(value, eptr)
double value;
int Yeptr;
double ldexp(value, exp)
double value;
double modf{value, iptr)
double value, *iptr;
DESCRIPTION

Frezp returns the mantissa of a double value as a double quantity, z, of magnitude less than 1 and
stores an integer n such that value = 2*2" indirectly through eptr.

L dezp returns the quantity value* 2°%.

Modf returns the positive fractional part of value and stores the integer part indirectly through
iptr.

SEE ALSO
isinf{3)

BUGS

The identity claimed for the results of frezp cannof hold when the valze argument is an IEEE
indefinite quantity — infinity or not-a-number.

Sun Release 1.1 Last change: 23 August 1983 23

.

GETDATE(3) o SUBROUTINES o GETDATE(3)

NAME

getdate — convert time and date from ASCH

SYNOPSIS

#include <sys/types.h>
#include <sys/timeb.h>

time_t getdate(buf, now)
char *buf;
struct timeb *now;

DESCRIPTION

FILES

Getdate converts most common time specifications to standard UNIX format. The first argument
is the character string containing the time and date; the second is the assumed current time (used

for relative specifications); if NULL is passed, ftime(2) is used to obtain the current time and -

timezone.
The character string consists of 0 or more specifications of the following form:

tod A fod is a time of day, which is of the form hh:mm[:ss] (or hhmm) [meridian] |zone]. It
no meridian — am or pm — is specified, a 24-hour clock is used. A fod may be specified as
just kA followed by a meridian.

date A date is a specific month and day, and possibly a year. Acceptable formats are
mm/dd|/yy) and monthname dd], yy) It omitted, the year defaults to the current year; if a
year is specified as a number leas than 100, 1900 is added. I a number not followed by a
day or relative time unit occurs, it will be interpreted as a year if a tod, monthname, and
dd have already been specified; otherwise, it will be treated as a tod. This rule allows the
output from date(1) or ctsme(3) to be passed as input to getdate.

day A day of the week may be specified; the current day will be used if appropriate. A day
may be preceeded by a number, indicating which instance of that day is desired; the
default is 1. Negative numbers indicate times past. Some symbolic numbers are
accepted: last, next, and the ordinals first through twelfth (second is ambiguous, and
is not accepted as an ordinal number). The symbolic number next is equivalent to 2;
thus, next monday refers not to the immediately coming Monday, but to the one a week
later.

relative time
Specifications relative to the current time are also accepted. The format is [number] unit;
acceptable units are year, month, fortnight, week, day, hour, minute, and second.

The actual date is formed as follows: first, any absolute date and/or time is processed and con-
verted. Using that time as the base, day-of-week specifications are added; last, relative
specifications are used. If a date or day is specified, and no absolute or relative time is given,
midnight is used. Finally, a correction is applied so that the correct hour of the day is produced
after allowing for daylight savings time differences.

Getdate accepts most common abbreviations for days, months, etc.; in particular, it recognizes
them with upper or lower case first letter, and recognizes three-letter abbreviations for any of
them, with or without a trailing period. Units, such as weeks, may be specified in the singular or
plural. Timezone and meridian values may be in upper or lower case, and with or without
periods.

fust/lib/libu.a

SEE ALSO

24

ctime(3}, time(2)

.Last change: 6 January 1984 Sun Release 1.1

-GETDATE(3) SUBROUTINES GETDATE(3)

BUGS

@ Because yacc(l)} is used to parse the date, gefdate cannot be used a subroutine to any program
that also needs yace.
The grammar and scanner are rather primitive; certain desirable and unambiguous constructions
are not accepted. Worse yet, the meaning of some legal phrases is not what is expected; nezi
week is identical to £ weeks,
The daylight savings time correction is not perfect, and can get confused if handed times between
midnight and 2:00 am on the days that the reckoning charges.
Because localtime{2)} accepts an old-style time format without zome information, attempting to
pass getdale a current time containing a different zone will probably fail.

&

Sun Release 1.1 Last change: 6 January 1984 25

GETENV (3) SUBROUTINES GETENV(3)

NAME :
getenv — value for environment name

SYNOPSIS
char *getenv(name)
char *name;
DESCRIPTION
Geteny searches the environment list (see environ(5)) for a string of the form namea==value and

returns a pointer to the string value if such a string is present, otherwise gefenv returns the value
0 (NULL).

SEE ALSO
environ(5), execve(2)

26 Last change: 19 January 1983 Sun Release 1.1

C

-

O

-

GETFSENT(3) SUBROUTINES GETFSENT(3)

NAME

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent — get file system descriptor file entry

SYNOPSIS

f#include <fstab.h>
struct fatab *getfsent()

struct fatab *getfsspec(spec)
char *spec;

struct fatab *getfsfile(flle)
char *filey

struct fatab *getfatype(type)
char *type;

int setfeent()

int endfeent()

DESCRIPTION

FILES

Getfeent, geifsapee, getfotype, and geifafile each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file, <fstab.h>.

struct fatab{
char *fs_spec;
char *fs_file;
char *Is_type;
int fs_freq;
int fs_passno;
b
The fields have meanings described in fofab(5).
Getfeent reads the next l_ine of the file, opening the file if necessary.
Seifeent opens and rewinds the file.
Endfsent closes the file.

Getfsapee and getfsfile sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getfstype does likewise,
matching on the file system type field.

[ete/fstab

SEE ALSO

tstab(5)

DIAGNOSTICS

BUGS

Nell pointer (0} returned on EOF or efros.

The return valae points to static information which is overwritten im each call.

Sun Releaqﬂ 1.1 Last change: 23 August 1983 . a7
!

GETGRENT|(3) SUBROUTINES GETGRENT|(3)

. NAME ‘ @
getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent()
struct group *getgrgid(gid)
int glid;

struct group *getgrnam(name)
char *name;

setgrent()

endgrent()

DESCRIPTION)
Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
centaining the broken-out fields of a line in the group file: '

struct group {
char *gr_name;
char *gr_passwd;
int gr_gid;
char **gr mem;
b
The members of this structure are:
gr_name The name of the group.

gr_passwd The encrypted password of the group.
gr_gid The numerical group-ID. @
gr_mem Null-terminated vector of pointers to the individual member names.

Geigrent simply teads the next line while gelgrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave off so
successive calls may be used to search the entire file.

A call to sctgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.
FILES
[etc/group
SEE ALSO
getlogin(3), getpwent(3), group(5)
DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
The return value points to static information which is overwritten on each call.

-

28 Last change: 23 August 1983 Sun Release 1.1

o

GETLOGIN(3) SUBR OUTINES GETLOGIN(3)

NAME
getlogin — get login name

SYNOPSIS
char *getlogin()

DESCRIPTION
Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc-
tion with getpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call getlogin and if it fails, to call
getpwuid(getuid(}).

FILES
[etefutmp

SEE ALSO
getpwent(3), getgrent(3), utmp(5)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

Getlogin does not work for processes running under a pty (for example; emacs shell buffers, or shell
tools) unless the program “fakes” the login name in the [etc/utmp file.

Sun Release 1.1 Last change: 20 March 1984 29

GETPASS (3) _ SUBROUTINES | GETPASS(3)

NAME
getpass — read a password
SYNOPSIS
char *getpass(prompt)
char *prompt;
DESCRIPTION
Getpaes reads a password from the file /dev/ity, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters.
FILES
[dev ftty
SEE ALSO
erypt(3)
BUGS
The return value points to static data whose content is overwritten by each call.

30 Last change: 19 January 1983 Sun Release 1.1

-

-

'GETPW(3) SUBROUTINES GETPW (3)

NAME
getpw ~ get name from uid
SYNOPSIS
' getpw(uld, buf)
char *buf}
DESCRIPTION
Getpw is obsoleted by getpwent(3).

Getpw searches the password file for the (numerical) uid, and Blls in duf with the corresponding
line; it returns non-zero if uid could not be found. The line is null-terminated.

FILES
[fete/passwd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zeto return on etrror.

Sun Release 1.1 Last change: 26 August 1983 31

GETWD(3) SUBROUTINES GETWD(3)

NAME '
getwd — get current working directory pathname @

SYNOPSIS
#include <sys/param.h>

char *getwd(pathname)
char pathname[MAXPATHLEN];

DESCRIPTION
Getwd copies the absolute pathname of the current working directory to pathname and returns a

pointer to the result.

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs,

BUGS
G'etwd may fail to return to the current directory if an error occurs.

32 Last change: 25 February 1983 Sun Release 1.1 @

O

INITGROUPS (3) SUBROUTINES INITGROUPS(3)

NAME

initgroups - initialize group access list
SYNOPSIS

initgroups(name, basegid)

char *name;

int basegid;

DESCRIPTION .
Initgroups reads through the group file and sets up, using the eetgroups(2) call, the group access
list for the user specified in name. The basegid is automatically included in the groups list. Typi-
cally this value is given as the group number from the password file.

FILES
[ete/group

SEE ALSO
setgroups(2)

DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on geigrent(3). If the invoking program uses any of these rou-
tines, the group structure will be overwritten in the call to initgroups.

Noone seems to keep fetc/group up to date.

Sun Release 1.1 Last change: 23 August 1983 33

INSQUE(3) . SUBROUTINES INSQUE(3)

NAME
insque, remque — insert/remove element from a queue

SYNOPSIS
struct qelem {
struet qelem *q forw;
struct qelem *q back;
char q dataf];

h

Insque(elem, pred)
struct qelem *elem, *pred;

remque(elem)
struct qelem *elem;

DESCRIPTION
Insque and remgue manipulate queues built from doubly linked lists. Each element in the queue

must be in the form of ‘‘struct qelem’. Ineque inserts elem in a3 queue imediately after pred;
remgue removes an entry elem from a queue.

SEE ALSO
“VAX Architecture Handbook”’, pp. 228-235. It does work on SUNS.

34 Last change: 20 March 1984 Sun Release 1.1

C

ISINF (3) SUBROUTINES ISINF (3)

NAME

O isinf, isnan - test for indeterminate floating point values

SYNOPSIS
Int isinf(value)
double value;
Int Isnan(value)
double value;
DESCRIPTION :
Isinf returns a value of 1 if its value is an IEEE format infinity (two words Ox7ff00000
0x00000000) or an IEEE negative infinity, and returns a zero otherwise.

Isnan returns a value of 1 if its vslue is an IEEE format ‘not-a-number’ (two words
O0x7fl nnnnn0x nnnnnnnn) where n is not zero) or its negative, and returns a zero otherwise.

Some library routines such as ecvt(3) do not handle indeterminate floating point values gracefully.
Prospective arguments to such routines should be checked with isinf or isnan before calling these
routines.

BUGS .
Need a manual section describing the format of JEEE numbers in detail,

O Sun Release 1.1 Last change: 23 August 1983 35

MALLOC(3) SUBROUTINES 'MALLOC(3)

NAME)
malloc, free, realloc, calloc, cfree, alloca — memory allocator

SYNOPSIS
char *malloc(size}

unsigned size;
free(ptr)

char *ptr;

char *realloc{ptr, size)
char *ptr;

unsigned size;

char *calloc(nelem, elsise)
-unsigned nelem, elsize;
cfree(ptr)

char *ptr;

char *alloca(size)

Int slze;

malloc_ok(slze)
Int size;

DESCRIPTION
Malloc and free provide a general-purpose memory allocation package. Malloc returns a pointer to
a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by matioe is overrun or if some
random number is handed to free,

Malloc maintains a cartesian tree of free blocks. It calls sbrk (see 8rk2)) to get more memory
from ‘the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by pir to size bytes and returns a pointer to the
{poseibly moved) block. The contents will be unchanged up.to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of malloc, realloc or ecalloe.

Calloc allocates space for an array of nelem elements of size -efsize. The space is initialized to
zeros, and can be freed with cfree.

Alloca allocates size bytes of space in the stack frame of the caller. This temporary space is
avtomatically freed on return.

Ocassionally a program will overun the storage allocated from Malloc . Malloe_ok helps determine
when this has happened. It checks all blocks (free or allocated) looking for duplicates, strange
addresses and absurd sizes. Malloc_ok returns true if everything is is found. The size parameter
specifies the maximum acceptable size of a block. A block with a larger size is considered bad. If
#ize is zero a maximum of 10000 is assumed.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO
Fast Fita by C. J. Stephenson

DIAGNOSTICS
Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the arena
has been detectably corrupted by storing outside the bounds of a block.

36 Last change: 21 March 1984 Sun Release 1.1

-

-

O

MALLOC(3) SUBROUTINES

BUGS
When resfloc returns 0, the block pointed to by pir may be destroyed.

Alloca is machine dependent; it’s use is discouraged.

Sum Releasp 1.1 Last change: 21 March 1984

MALLOC(3)

37

MKTEMP{3) ‘ ~ SUBROUTINES MKTEMP (3)

NAME
mktemp — make a unique file pame

SYNOPSIS
char *mktemp(template)
char *template;

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address of the template, The
template should look like a fille name with six trailing X's, which will be replaced with the current
process id and a unique letter.

Notes:

® Mktemp actually changes the template string which you pass, this means that ¥You cannot use
the same template string more than once — you need a fresh template for every unique file you
want to open.

® When mktemp is creating a new unique filename it checks for the prior existence of a file with
that name. This means that if you are creating more than one unique filename, it is bad prac-
tice to use the same root template for multiple invocations of mktemp.

‘SEE ALSO
getpid(2)

38 ‘Last change: 6 January 1984 Sun Release 1.1

-

O

MONITOR (3) SUBROUTINES MONITOR (3)

NAME
monitor, monstartup, moncontrol — prepare execution profile

SYNOPSIS
monltor(lowpe, highpe, buffer, bufsize, nfunc)

Int (*lowpe)(), (*highpe)()s
short buffer);

monstartup(lowpe, highpe)
int (*lowpe)(), (*highpe)()s

moncontrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

¢C-p...
automatically includes calls for the prof{1) monitor and includes an initial call to its start-up rou-

tine monstartup with default parameters; monitor need not be called explicitly except to gain fine
control over profll buffer allocation. An executable program created by:

“¢C ~Pg ...
sutomatically includes calls for the gprof(1} moritor.

Monztartup is a high level interface to profil(2). Lowpe and highpe specify the address range that
is to be sampled; the lowest address sampled is that of lowpe and the highest is just below highpe.
Monstartup allocates space using #brk(2) and passes it to monitor (see below) to record a histo-
gram of periodically sampled values of the program counter, and of counts of calls of certain func-

. tions, in the buffer. Only calls of functions compiled with the profiling option ~p of ec(1) are
recorded.

To profile the entire program, it is sufficient to use
extern etext();

Ho;stutup((fxsooo, ctext);

Etexi lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use
monitor(0);

then prof(1) can be used to examine the results.

Moneontrol is used to selectively control profiling within a prograny. This works with either
prof(1) or gprof(1) type profiling. When the program starts, profiling begins. To stop the collec-
tion of histogram ticks and call counts use moncontrol(0); to resume the collection of histogram
ticks and call counts use moncontrol{1). This allows the cost of particular operations to be meas-
ured. Note that an cutput file will be preduced upon program exit irregardless of the state of
moncontrol.

Monitor is a low level interface to profil(2). Lowpe and highpc are the addresses of two functions;
buffer is the address of a (user supplied) array of dufsize short integers. At most nfunc call counts
can be kept. For the results to be significant, especially where there are small, heavily used rou-
tines, it is suggested that the buffer be no more than a few times smaller than the range of loca-
tions sampled. Monitor divides the buffer into space to record the histogram of program counter
samples over the range lowpe to highpe, and space to record call counts of functions compiled with
the —p option to ce(1):

To profile the entire program, it is sufficient to use

Sun Release 1.1 Last change: 19 January 1933 39

MONITOR (3) SUBROUTINES ' MONITOR (3)

extern etext();

monihr(ﬂxéﬂoo, etext, buf, bufsize, nfunc);

FILES
mon.out

SEE ALSO
cc(1), prof(1), gprof(1), profil(2), sbrk(2)

40 Last change: 19 January 1983 Sun Release 1.1

o

NLIST(3) SUBROUTINES NLIST(3)

|

NAME
nlist — get entries from name list

SYNOPSIS
#include <nlist.h>

nlist(ilename, nl)
char *filename;
struct nlist nl[};

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values. The
list is terminated with a null name. Each name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted in the next two fields. If the name is
not found, both entries are set to 0. See a.0ut(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /vmunix. In this
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

Sun Release 1.1 Last change: 19 January 1983 41

PERROR{3) o SUBROUTINES PERROR (3)

NAME

perror, sys_errlist, sys_nerr, errno — system error messages

SYNOPSIS

perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

Int errnoj

DESCRIPTION

Perror produces a short error message on the standard error file describing the last error encoun-
tered during a call to the system from a C program. First the argument stnng # is printed, then
a colon, then the message and a new-line. Most usefully, the argument string is the name of the
program which incurred the error. The error number is taken from the external variable errno
(see intro(2)), which is set when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sya_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO

42

intro(2), peignal(3)

Last change: 19 January 1983 Sur Release 1.1

-

PSIGNAL (3) SUBROUTINES PSIGNAL (3)

NAME
psignal, sys_siglist — system signal messages
SYNOPSIS
psignal(sig, &)
unsigned sig;
char *s;
char *sys_siglist[};
DESCRIPTION

Peignal produces a short message on the standard error file describing the indicated signal. First
the argument string # is printed, then a colon, then the name of the signal and a new-line. Most
usefully, the argument string is the name of the program which incurred the signal. The signal
number should be from among those found in <esgnalh>.

To simplify variant formatting of signal names, the vector of message strings sye_siglist is pro-
vided; the signal number can be used as an index in this table to get the signal name without the
newline. The deflne NSIG defined in < eignal.A> is the number of messages provided for in the
table; it should be checked because new signals may be added to the system before they are added
to the table.

SEE ALSO
perror(3), signal(3)

O :

Sun Release 1.1 Last change: 26 August 1983 43

QSORT(3) | SUBROUTINES QSORT(3)

NAME
qsort — quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char “base;
Int (*compar)();

DESCRIPTION
Q@oort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of clements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal to,
or greater than 0 according as the first argument is to be considered less than, equal to, or greater
than the second. '

SEE ALSO
sort(1)

44 Last change: 19 January 1983 Sun Release 1.1

-

RANDOM(3) SUBROUTINES RANDOM(3)

NAME
O random, srandom, initstate, setstate — better random number generator; routines for changing
generators

SYNOPSIS
long random()

srandom(seed)
Int seed;

long *Initstate(seed, state, n)
unsigned seed;

long “state;

Int n;

long "setstate(state)
long *state;

DESCRIPTION .
Random uses a non-linear additive feedback random number generator employing a default table
of size 31 long integers to return successive pseudo-random numbers in the range from 0 to 2"-1.
The period of this random number generator is very large, approximately 16%(2°'-1).

Randomfsrandom have (almost) the same calling sequence and initialization properties as
randfsrand. The difference is that rand(3C) produces a much less random sequence — in fact, the
low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random
are usable. For example, ‘‘random()&01" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of state
information used is much more than a single word. (Two other routines are provided to deal with
restarting/changing random number generators). Like rand(3C), however, random will by default
produce a sequence of numbers that can be duplicated by calling srandom with I as the seed.

O The initstale routine allows a state array, passed in as an argumeni, tc be initialized for future
use. The size of the state array (in bytes) is used by initstale to decide how sophisticated a ran-
dom number generator it should use ~ the more state, the better the random numbers will be.
(Current "optimal” values for the amount of state information are 8, 32, 64, 128, and 256 bytes;
other amounts will be rounded down to the nearest known amount. Using less than 8 bytes will
cause an error). The seed for the initialization (which specifies a starting point for the random
number sequence, and provides for restarting at the same point) is also an argument. [Inilstste
returns a pointer to the previous state information array.

Once a staté lias been initialized, the setstate routine 'provides for rapid switching between states.
Setstate returns a pointer to the previous state array; its argument state array is used for further
random number generation until the next call to initstate or setstate.

Once a state array has been initializét; ét may be testarted at a different point either by calling
initotate, (with the desired seed, the state array, and its size) or by calling both sefetate (with the
state arrgy) and srapdom (with the desired seed). The advantage of calling both setstate and
srandom is that the size of the state array does not have to be remembered after it is initialized.

With 25G bytes of ﬁtﬁg{iiiformation,l the period of the random number generator is greater than
. 2%, which should be iittldlébt for most biurposes.
DIAGNOSTICS ‘ :
on '{m'lstale is called with less than 8 bytes of state information, or if setstate detects that the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand(3C)

@]

Sun Release 1.1 . Last change: 9 March 1984 45

RANDOM{3) | SUBROUTINES

BUGS

46

About 2/3 the speed of rand(3C).

Last change: 9 March 1984

RANDOM(3)

Sum Release 1.1,

-

REGEX (3) SUBROUTINES REGEX(3)

‘ J NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char *re_comp(s)
char *s;
re_exec(s)
char *s;

- DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern matching. Re_ezec checks
the argument string against the last string passed to re_comp.

Re_comp returns 0 if the string # was compiled successfully; otherwise a string containing an error
message is returned, If re_comp is passed 0 or a null string, it returns without changing the
currently compiled regular expression.

Re_ezee returns 1 if the string # matches the last compiled regular expression, 0 if the string o
failed to match the last compiled regular expression, and -1 if the compiled regular expression was
invalid (indicating an internal error).

The strings passed to both re_comp and re_ezec may have trailing or embedded newline charac-
ters; they are terminated by nulls. ‘The regular expressions recognized are described in the
manual entry for ed(1), given the above difference.

SEE ALSO

ed(1), ex(1), egrep(1), fgrep(1), grep(1)
DIAGNOSTICS

Re_cxec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:
@ No previous regular ezpreesion '

Regular expression too long

unmatched \{

mizsing |

too many \(\) paire

unmatched \}

-

Sun Releaqf 11 Last change: 4 March 1983 47
i :

NAME é

scandir, alphasort — scan a directory

SYNOPSIS
#include <sys/types.h>
#inelude <sys/dir.h>

scandir(dirname, namelist, select, compar)
char *dirname;

struct direct *(*namelist(]);

int (*select)()s

Int (*compar)();

alphasort(d1l, d3)
| struct direct **d1, **d3;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries using mal-
loc(3). The third parameter is a pointer to a routine which is called with a pointer to a directory
entry and should return a non zero value if the directory entry should be included in the array. If
this pointer is null, then all the directory entries will be included. The last argument is a pointer
to a routine which is passed to gsort(3) to sort the completed array. If this pointer is null, the :
array is not sorted. Alphasort is a routine which will sort the array alphabetically. [

Scandir returns the number of entries in the array aad a pointer to the array through the parame-
ter namelist,

SEE ALSO ‘
directory(3), malloc(3), qsort(3)

: ' SCANDIR(3) SUBROUTINES SCANDIR (3)
|

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allocate enough O
memory to hold all the data structures.

-

48 Last change: 19 January 1983 Sun Release 1.1

SETJIMP (3) SUBROUTINES SETJMP (3)

NAME.
g setjmp, longimp — non-local goto

SYNOPSIS
#include <setjmp.h>

val == setjmp(env)
Jmp_buf env; ‘

long)mp(env, val)
Jmp_buf env;

val == _setimp(env)
Jmp_buf env;

Jongimp(env, val)
Jmp_buf env;

DESCRIPTION
Setjmp and longjmp are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a programi:

Seéfmp saves its stack environment in env for later use by longimp. Setjmp also saves the register
environment. Seifmp returns the value 0. It a longimp call will be made, the routine which called
seljmp should not return until after the longjmp has returned control (see below).

Longimp restores the environment saved by the last call of setjmp, and then returns in such a
way that execution continues as if the call of sefjmp had just returned the value val to the func-
tion that invoked eetjmp. The calling function must not itself have returned in the interim, oth-
etwise longimp will be returning control to a possibly non-existent environment. Al memory-
bourd data have values 28 of the time [ongimp was called. The machine registers.are restored to

O the values they had at the time that setjmp was called. But, because the reglster storage class is
only a hint to the C compiler, variables declared as reglster variables may not necessarily be
assigned to machine registers, so their values are unpredictable after a longfmp. This is especially
a problem for programmers trying to write machine-independent C routines.

The following code fragment indicates the flow of control of the setjmp and longimp combination:

.. . Junction decloration
jmp_buf - my_environment;

...code ...
if (setjmp (my_environment}) {
this is-the code after the return from longimp
...more code... ..
reglster variables have unpredictable valucs
...morecode....
Felse {
this is the return from setimp
...morecode. ...
Do not modify regiater variables
. in thig leg of the code
...morecode

}

Seljmp and longimp save and restore the signal mask sigsetmask(2), while _setymp and: _longimp
manipulate only the C stack and registers.

O

Sun Release 1.1 Last change: 26 August 1983 49

SETJMP(3) SUBROUTINES SETIMP (3)

SEE ALSO
sigsetmask(2), sigvec(2), signal(3) ' ('

BUGS
Setimp does not save current notion of whether the process is executing on the signal stack. The

result is that a longjmp to some place on the signal stack leaves the signal stack state incorrect.

50 Last change: 26 August 1983 Sun Release 1.1

©

SETUID(3) | SUBROUTINES SETUID(3)

- NAME

setuid, seteuid, setruid, setgid, setegid, setrgid — set user and group ID

SYNOPSIS
setuld(uld)
seteuld(euld)
setruid(ruld)

setgid(gld)
setegid(egld)
sotrgid(rgid)

DESCRIPTION
Setuid (sctgid) sets both the real and effective user ID (group ID) of the current process to as

specified.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.

Setruid (eetruid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid(2), setregid(2), getuid(2), getgid(2)

DIAGNOSTIOS _
Zero is returned if the user (group) ID is set; -1 is returned otherwise, with the global variable
errno set as for setreuid or setregid.

Sun Release 1.1 . Last change: 1 April 1983 51

SIGNAL (3) SUBROUTINES SIGNAL (3)

NAME

signal — simplified software signal facilities -

SYNOPSIS

#include <signalhk>

(*signal(sig, func))()
vold (*func)();

DESCRIPTION

52

Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal {quit, interrupt,
stop), by a program error {bus error, ete.), by request of another program (kill), or when a process
is stopped because it wishes to access its control terminal while in the background (see tiy(4)).
Signals are optionally generated when a process resumes after being stopped, when the status of
child processes changes, or when input is ready at the control terminal. Most signals cause termi-
nation of the receiving process if no action is taken; some signals instead cause the process receiv-
ing them to be stopped, or are simply discarded if the process has not requested otherwise.
Except for the SIGKILL and SIGSTOP signals, the signal call allows signals either to be ignored
or to cause an interrupt to a specified location. The following is a list of all signals with names as

-in the include file <asignal.h>:

SIGHUP 1 hangup

SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* jllegal instruction

SIGTRAP 5% trace trap

SIGIOT 6* IOT instruction

SIGEMT 7* EMT instruction

SIGFFPE 8* floating point exception

SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket
SIGSTOP 17t stop (carnot be caught or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 10 continue after stop

SIGCHLD 20e child status has changed

SIGTTIN 21} background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO ! 23 i/o is possible on a descriptor (see fonti(2))
SIGXCPU 24 cpu time limit exceeded (see sefrlimit(2))
SIGXFS2Z 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see sctitimer(2))
SIGWINCH 28 window changed

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal &g is reinstated; this default is termination (with
a core image for starred signals) except for signals marked with or t. Signals marked with e are
discarded if the action is SIG_DFL; signals marked with t cause the process to stop. If func is
SIG_IGN the signal is subsequently ignored and pending instances of the signal are discarded.

Last change: 15 June 1983 Sun Release 1.1

-

O

SIGNAL (3) SUBROUTINES SIGNAL (3)

Otherwise, when the signal occurs further occurences of the signal are automatically blocked and
June is called.

A return from the function unblocks the handled signal and continues the process at the point it
was interrupted. Unlike previous signal facllities, the handler func remains installed after
a signal has been dellvered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a slow
device (such as a terminal; but not a file) and during a wait(2).

The value of #ignal is the previous (or initial) value of fune for the particular signal.

After a fork(2) or ufork(2) the child inherits all signals. An ezecve(2) resets all caught signals to
the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, —1 is returned and errno is set to
indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:
[EINVAL) Sig is not a valid signal number.
|EINVAL) An attempt is made to ignore or supply-a handler for SIGKILL or SIGSTOP.
|[EINVAL) An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3),
tty(4)

NOTES (VAX-11)
The handler routine can be declared:

- handler(sig, code, scp)

Here 2ip is the signal number, into which the hardware faults and traps are mapped as defined

below. Code is a parameter which is either a constant as given below or, for compatibility mode

fauilts, the code provided by the hardware. Scp is a pointer to the siruct sigcontext used by the

system to restore the process context from before the signal. Compatibility mode faults are die-
" tinguished from the other SIGILL traps by having PSL_CM set in the pal.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in < signal.h>;

Hardware condition Signal Code

Arithmetic traps:
Integer overflow SIGFPE FPE_INTOVF_TRAP
Integer division by zero SIGFPE FPE_INTDIV_TRAP
Floating overflow trap SIGFPE FPE_FLTOVF_TRAP
Floating/decimal division by zero SIGFPE FPE_FLTDIV_TRAP
Floating. underflow trap : SIGFPE FPE_FLTUND_TRAP
Decimal overflow trap SIGFFE FPE_DECOVF_TRAP
Subscript-range SIGFFE FPE_SUBRNG_TRAP
Floating overflow fault SIGFPE FPE_FLTOVF_FAULT
Floating divide by zero fault SIGFPE FPE_FLTDIV_FAULT
Floating underflow fault SIGFPE FPE_FLTUND_FAULT

Length access control - SIGSEGV

Protection violation ‘ SIGBUS

Reserved instruction SIGHLL ILL_RESAD_FAULT

Sun Release 1.1 Last change: 15 June 1983 53

SIGNAL (3)

54

Customer-reserved instr.

Reserved operand -
Reserved addressing
Trace pending

Bpt instruction
Compatibility-mode
Chme

Chms

Chmu

SUBROUTINES

SIGEMT

SIGILL ILL_PRIVIN_FAULT
SIGILL ILL_RESOP_FAULT
SIGTRAP

SIGTRAP

SIGILL hardware supplied code
SIGSEGV

SIGSEGV

SIGSEGV

Last change: 15 June 1983

SIGNAL (3)

Sun Release 1.1

-

O

SLEEP (3) SUBROUTINES SLEEP (3)

NAME
sleep — suspend execution for interval

BYNOPSIS
sleep(seconds)
unsigned seconds)

DESCRIPTION
Sleep suspends the current process from execution for the number of seconds specified by the
argument. The actual suspension time may be up to 1 second less than that requested, because
scheduled wakeups occur at fixed l-second intervals, and may be an arbitrary amount longer
because of othet activity in the system. -

Sleep is implemented by setting an interval timer and pausing until it expires. The previous state
of this timer is saved and restored. If the sleep time exceeds the time to the expiration of the
previous value of the timer, the process sleeps only until the timer would have expired, and the
signal which occurs with the expiration of the timer is sent one second later.

SEE ALSO *
setitimer(2), sigpause(2)

BUGS
An interface with finer resolution is needed.

Sun Release 1.1 Last change: 13 June 1983 55

STRING (3) SUBROUTINES STRING(3)

NAME

strcat, strncat, stremp, strnemp, strepy, stracpy, strlen, index, rindex — string operations

SYNOPSIS

#include <strings.h>
char *strcat(sl, e2)
char *sl, *“s2;

char *strncat(sl, s3, n)
char *sl, *a2;
stremp(sl, 2}

char *sl, *s2;
strncmp(sl, s3, n)
char *sl, *s2;

char *strepy(st, s2)
char *sl, *s3;

char *strncpy(sl, s2, n)
char *s1, ¥s3;

strlen(s)

char *s;

char *index(s, c)

char *s, ¢

char *rindex(s, ¢)

char *s, ¢;

DESCRIPTION

BUGS

56

These functions operate on null-terminated strings. They do not check for overflow of any receiv-
ing string.

Streat appends a copy of string 22 to the end of string 1. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as ol is lexicographically greater than, equal to, or less than 22. Strncmp makes the
same comparison but looks at at most n characters.

Strepy copies string 22 to 2/, stopping after the null character has been moved. Strnepy copies
exactly n characters, truncating or null-padding #2; the target may not be null-terminated if the
length of 22 is n or more. Both return ef.

Strien returns the number of non-null characters in ».

Indez (rindez) returns a pointer to the first (last) occurrence of character ¢ in string #, or zero if ¢
does not occur in the string.

Stremp uses native character comparison, which is signed on the Sun.

On the Sun processor (and on some other machines), you can NOT use a zero pointer to indicate
a null string. A zero pointer is an error and results in an abort of the program. If you wish to
indicate a null string, you must have a pointer that points to an explicit null string. On PDP-11's
and VAX'en, a source pointer of zero (0) can generally be used to indicate a null string. Program-
mers using NULL to represent an empty string should be aware of this portability issue,

Last change: 19 January‘ 1983 Sun Release 1.1

-

O

SWAB(3) | SUBROUTINES SWAB(3)

. NAME

swab - swap bytes
SYNOPSIS

swab({from, to, nbytes)

ehar *from, *to;

DESCRIPTION

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between high-ender machines (IBM
360's, MC68000’s, etc) and low-ender machines (PDP-11's and VAX'es).

Nbytes should be even, .
The from and o addresses should not overlap in portable programs.

Sun Release 1.1 Last change: 20 March 1984 57

SYSLOG(3) | SUBROUTINES SYSLOG(3)

NAME
syslog, openlog, closelog — control system log

SYNOPSIS
#include <syslog.h>
openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters ...)
char *message}

closelog()

DESORIPTION :
Syslog arranges to write the message onto the system log maintained by syslog(8). The message is
tagged with priorily. The message looks like a prin#f(3S) string except that % m is replaced by
the current error message (collected from errno). A trailing newline is added if needed. This
message will be read by sysiog(8) and output to the system console or files as appropriate.

It special processing is needed, openlog can be called to initialize the log file. Parameters are ident

which is prepended to every message, and logetat which is a bit fleld indicating special status;

current values are:

LOG_PID log the process id with each message: useful for identifying instantiations of dae-
mons,

Openiog returns zero on success. If syslog cannot sepd datagrams to syelog(8), then it writes on

[/ dev/console instead. If [devfconsole cannot be written, standard error is used. In either case, it

returns -1.

Closelog can be used to close the log file. It is automatically closed on a successful exec system

call {see ezecve(2)).

EXAMPLES
syslog(LOG_SALERT, "who: internal error 23”);

openlog(”serverftp”, LOG_PID);
syslog(LOG_INFO, ”Connection from host %d”, CallingHost);

SEE ALSO
syslog(8)

58 Last change: 15 March 1984 Sun Release 1.1

SYSTEM(3) : SUBROUTINES SYSTEM(3)

NAME
system — issue a shell command

SYNOPSIS
system(string)
char *string;
DESORIPTION _
System causes the string to be given to sk(1) as input as if the string had been typed as a com-

mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn’t be executed.

Sun Release 1.1 Last change: 19 January 1983 59

TTYNAME(3) SUBROUTINES TTYNAME(3)

NAME
ttyname, isatty, ttyslot — fird name of a terminal

SYNOPSIS
char *ttyname(filedes)

isatty(fledes)
ttyslot()

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the terminal device associated

with file descriptor filedee.
Isatty returns 1 il filedes is associated with a terminal device, O otherwise.
Ttyslot returns the number of the entry in the fiys{5} file for the control terminal of the current

process.
FILES '
[dev/*
Jete[ttys
SEE ALSO
ioctl(2), ttys(5}
DIAGNOSTICS
Tiyname returns a null pointer {0) if fileder does not describe a terminal device in directory
‘fdev’.
Ttyelot returns 0 if ‘ fetc[ttys’ is inaccessible or if it cannot determine the control terminal.
BUGS
The return value points to static data whose content is overwritten by each call.
60 Last change: 19 January 1983 Sun Release 1.1

-

»

VALLOC(3) SUBROUTINES VALLOC(3)

NAME
vallos - aligned memory allocator
SYNOPSIS _
char *valloe(size)
- unsigned slze;
DESCRIPTION
Valloc allocates aize bytes aligned on a page boundary. It is implemented by calling malloc(3)
with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.
PIAGNOSTIOS :
Valioe returns s null pointer (0) if there is no available memory or if the arena has been detect-
ably corrupted by storing outside the bounds of a block.
BUGS ‘
Vfree izn't implemented.

" Sun Release 1.1 Last change: 19 January 1983 61

VARARGS (3) SUBROUTINES VARARGS(3)

NAME)
varatgs — variable argument list

SYNOPSIS
#include <varargs.h>
Junction(va_allst)
va_del
va_list prar;
va_start(pvar);
f s va_arg(pvar, type);
va_end(puar);
DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argument
lists. Routines having variable argument lists (such as printf{3S)) that do not use varargs are
inherently nonportable, since different machines use different argument passing conventions,

va_allst is used in a function header to declare a variable a.rgumeni list.
va_del is a declaration for va_alist. Note that there is no semicolon after va_del,

va_list is a type which can be used for the variable puar, which is used to traverse the list. One
such variable must always be declared.

va_start{pvar) is called to initialize pvar to the beginning of the list.
va_arg(pvar, {ype) will return the next argument in the list pointed to by pvar. Type is the type

the argument is expected to be. Different types can be mixed, but it is up to the routine to know
what type of argument is expected, since it cannot be determined at runtime.

va_end(pvar) i used to Anish up.
Multiple traversals, each bracketed by,vn_ttatt . va_end, are possible._

EXAMPLE
#include <varargs.h>»
execlva, _alist)
va_del

va_list ap;
chay *file;

chap *arga{100];
it argno == 05

;;—-.—M?v);(chay *Ji-
va._avg(a
whille (am[usl:o-b-l-L- va_geg(ap, chas *))

va, end(a.p)tr
, return uecv(ﬂb.am}}
BUGS
It is up to the calling routine to determine how many arguments there are, since it is not possible
to deteymine this from the stack frame. Far example, ezecl passes a O to signal the end of the
list, Prinifcan tell how many arguments are supposed to be there by the format.

62 Last change: 19 January 1983 Sun Release 1.1

-

-

INTRO (3C)

NAME

COMPATIBILITY ROUTINES

intre — introduction to compatibility library functions

DESCRIPTION

These functions constitute the compatibility library portion of lidbe.

tions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Appears on Page Description

Name

alarm
ftime
getopt
gtty
nice
optarg
optind
pause
rand
srand
sity
time
times
tmpnam
ulimit
utime
vlimit
vtimes

Sun Release 1.1

alarm.3¢
time.3c
getopt.3¢
stty.3¢
nice.3¢
getopt.3¢
getopt.3c
pause.3¢
rand.3c
rand.3c
stty.3c
time.3¢
times.3¢
tmpnam.3c
ulimit.3¢
utime.3¢
vlimit.3¢
viimes.3¢

schedule signal after specified time

get date and time

get option letter from argv

set and get terminal state

set program priority

get option letter from argv

get option letter from argv

stop until signal

random number generator

random number generator

set and get terminal state

get date and time

get process times

create a name for a temporary file

get and set user limits

set file times

control maximum system resource consumption
get information about resource utilization

. g

Last change: 12 January 1984

INTRO (3C)

They are automatically
loaded as needed by the C compiler cc(1). The link editor searches this library under the “-lc”
option. Use of these routines should, for the most part, be avoided. Manual entries for the func-

ALARM(3C) COMPATIBILITY ROUTINES ALARM(3C)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm(seconds)
unsigned seconds;

DESCRIPTION
This interface Is obsoleted by setitimer(2).
Alarm causes signal SIGALRM, sce sigvec(2), to be sent to the invoking process in a number of
seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is canceled. Because of scheduling delays, resumption of execution of when the sig-
nal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3), sleep(3)

2 Last change: 26 August 1983 Sun Release 1.1

»)

GETOPT(3C) COMPATIBILITY ROUTINES GETOPT (3C)

NAME

getopt, optarg, optind — get option letter from argv
SYNOPSIS

Int getopt(argc, s¥gv, optstring)

Int args;

char **argv;
char *optstring;

extern char *optargs
extern int optind;

DESCRIPTION
This routine Is Included for compatibility with UNIX system-III. It is of marginal
value, and should not be used in new programs.

Getopt retumns the next option letter in argy that matches a letter in optstring. Oplstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to have
an argument that may or may not be separated from it by white space. Optarg is set to point to
the start of the option argument on return from gefopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getop!.

When all options have been processed (i.e., up to the first non-option argument), getop? returns
EOF. The special option — may be used to delimit the end of the options; EOF will be returned,
and — will be skipped.

DIAGNOSTICS
Getopt prints an error message on slderr and returns a question mark (?) when it encounters an
~aption letter not included in optatring.

EXAMFPLE :

The following code fragment shows how one might process the arguments for a command that can
take the mutually exclusive options a and b, and the options f and o, both of which require argu-
ments:

main(arge, argv)

int arge;

char **argv;

{
int ¢;
extern int optind;
extern char *optarg;

while ((¢ = getopt(argc, argv, "abf:0:”)) !== EOF)

switch (¢) {
_case 'a’:
if (bfig)
errfig+ + ;
else
afig+ +;
break;
case 'b":
if (aflg)
errfig+ +;
else

Sun Release 1.1 Last change: 26 August 1083 3

GETOPT(3C)

}
it (erefig) {

COMPATIBILITY ROUTINES

bproc();
break;
case [’
infile = optarg;
break;
o’

1)

case
ofile = optarg;
bufsiza = 512;
break;

case '

errfig+ +;

tprintf(stderr, "usage: . . . ");
exit(2);

for {; optind < arge; optind+ +) {

if (access(argv[optind}, 4)) {

Last change: 26 August 1983

GETOPT (3C)

Sun Release 1.1

-

-

NICE(3C) COMPATIBILITY ROUTINES NICE (3C)

O NAME
nice — set program priority

SYNOPSIS
nice(iner)

DESCRIPTION
This interface Is obsoleted by setpriority(2).

The scheduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to the
range —20 (most urgent) to 20 {least).

The priority of a process is passed to a child process by fork(2). For a privileged process to return
to normal priority from an unknown state, nice should be called successively with arguments -40
(goes to priority —20 because of truncation), 20 (to get to 0), then O (to maintain compatibility
with previous versions of this call).

SEE ALSO
nice(1), getpriority(2), setpriority(2), fork(2), renice(8}

©

Sun Releasg 1.1 Last change: 20 March 1984 5

A
i
H

PAUSE (3C) COMPATIBILITY ROUTINES PAUSE(3C)

NAME
pause — stop until signal
SYNOPSIS
pause()
DESCRIPTION
This funciion Is obsoleted by sigpause(2).

Pause never returns normally. It is used to give up control while waiting for a signal from kill(2)
or an interval timer, see setitimer{2). Upon termination of a signal handler started during a
pausge, the pause call will return.

RETURN VALUE

Always returns -1,
ERRORS

Pause always returns:

[EINTR] The call was interrupted.
SEE ALSO

kil}(2), select(2), sigpause(2)

6 Last change: 23 August 1953 ' Sun Release 1.1

-

C

RAND(3C) COMPATIBILITY ROUTINES RAND({3C)

O NAME
rand, srand - random number generator

SYNOPSIS
srand(seed)
int seed;

rand()

DESCRIPTION

The newer random(3) should be used In new applications; rand remains for compati-
bikty.

Rand uses a multiplicative congruential random number generator with period 2*2 to return suc-
cessive psendo-random numbers in the range from 0 to 2%-1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

SEE ALSO
random(3)

BUGS

The low bits of the numbers generated are not very random; use the middle bits. In particular
the lowest bit is deterministically alternatingly 0 and 1.

O

Sun Release 1.1 Last change: 23 August 1983 7

STTY(3C) COMPATIBILITY ROUTINES STTY (3C)

NAME
stty, gtty — set and get terminal state @

SYNOPSIS
#lnclude <lstty.h>

stty(fd, buf)
Int fd;
struct sgttyb *buf}

gtty(fd, buf)
Int fd;
struct sgttyb *buf;

DESCRIFTION
This Interface is obsoleted by foctl(2).
Stiy sets the state of the terminal associated with fd. Gity retrieves the state of the terminal asso-
ciated with fd. To set the state of a terminal the call must have write permission.

The sty call is actually “ioctl(fd, TIOCSETP, buf)”, while the gity call is “ioctl{fd, TITOCGETP,
buf)’. See ioctl{2) and ty(4) for an explanation.

DIAGNOSTICS o
If the call is successful O is returned, otherwise -1 is returned and the global variable errno con-
tains the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

-

.3 Last change: 26 August 1083 Sun Release 1.1

TIME(8C) COMPATIBILITY ROUTINES TIME (3C)

NAME
time, ftime — get date and time

SYNOPSIS
timeofday = time(0)

timeofday == time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)

struct timeb *tp;

DESCRIPTION
These Interfaces are obsoleted by gettimeofday(2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

It tioc is nonnull, the return value is also stored in the place to which tloc points.

The ftime entry fills in a structure pointed to by its argument, as defined by <sysftimeb.h>:
struct timeb

{
~ time_t time;
unsigned short millitm;
short timezone;
y short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-
precise interval, the local time zone (measured in minutes of time westward from Greenwich), and
a flag that, if nonzero, indicates that Daylight Saving time applies locally during the appropriate
part of the year. :

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), ctime(3)

Sun Release 1.1 Last change: 1 April 1983 9

!
N

TIMES (3C) COMPATIBILITY ROUTINES - TIMES (3C)

NAME
times — get process times

SYNOPSIS
#include <sys/types.h>
#Include <sys/times.h>

times(buffer)
struct tms *buffer;

DESCRIPTION
This Interface Is obsoleted by getrusage(2).

Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/HZ seconds, where HZ is 60.

This is the structure returned by {imes:
struct tms {

time_t tms_utime; /* user time */
time_t tms_stime; /* system time */
time_t tms_cutime; /* user time, children */
time_t tms_cstime; /* system time, children */
ki
The children times are the sum of the children’s process times and their children’s times.
SEE ALSO

time(1), getrusage(2), wait3(2), time(3C)

i0 Last change: 3 November 1983 Sun Release 1.1

C

-

-

TMPNAM(3C) COMPATIBILITY ROUTINES TMPNAM({3C)

NAME

tmpnam - create a 2zame for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam(s)

char *s3

DESCRIPTION

. This routine Is Included for system-III compatibility.

Tmpnam generates a file name that can safely be used for a temprary file. If (int)s is zero,
tmpnam leaves its result in an internal static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If (int)s is nonzero, s is assumed to be the
address of an array of at least L_tmpnam bytes; ¢mpnam places its result in that array and
returns # as its value.
Tmpnom generates a different file name each time it is called.
Files created using ¢mpnam and either fopen or creat are only temporary in the sense that they
reside in a directory intended for temporary use, and their names are unique. It is the user’s
responsibility to use unlink(2) to remove the file when its use is ended.

SEE ALSO .
creat(2), unlink(2), mktemp(3), fopen(3S)

BUGS

I called more than 17,5676 times in a single process, impnam will start recycling previously used
names.

Between the time a file name is created and the file is opened, it is possible for some other process
to create a file with the same name. This can never happen if that other process is using tmpnam
or mktemp, and the file names are chosen so 28 to render duplication by other means unlikely.

Sun Release 1.1 Last change: 26 August 1983 11

ULIMIT (3C) . COMPATIBILITY ROUTINES ULIMIT (3C)

NAME
ulimit - get and set user limits @

SYNOPSIS
long ulimit(cmd, newlimit)
int cmd;

DESCRIPTION
This function is Included for system-IIl compatibllity, and is obsoleted by scirlimit(2).

This function provides for control over process limits. The ¢md values available are:

1 Get the process's file size limit. The limit is in units of 512-byte blocks and is inherited
by child processes. Files of any size can be read.

2 Set the process’s file size limit to the value of newlimil. Any process may decrease this
limit, but only a process with an effective user ID of super-user may increase the limit.
Ulimss will fail and the limit will be unchanged if a process with an effective user ID other
than the super-user attempts to increase its file size limit,

3 Get the maximum possible break value. See brk(2).

RETURN VALUE N
Upon successful completion, a non-negative value is returned. Otherwise a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO -
brk(2), setrlimit(2), write(2)

.

12 Last change: 27 August 1983 Sun Release 1.1

UTIME(3C) COMPATIBILITY ROUTINES UTIME (3C)

O' NAME

utime — set file times

SYNOPSIS
#include <sysftypes.h>

utime(file, timep)
char *file;
time_t timep{2];

DESCRIPTION |
This interface is obsoleted by utimes(2).

The utime call uses the ‘accessed’ and ‘updated’ times in that order from the timep vector to set
the corresponding.recorded times for file. '

The calier must be the owner of the file or the super-user. The ‘inode-changed’ time of the file is
set to the current time.

SEE ALSO
utimes(2), stat{2)

C

Sun Relea.st 1.1 Last change: 1 April 1983 13

VLIMIT (3C) . COMPATIBILITY ROUTINES o VLIMIT (3C)

NAME
vlimit - control maximum systers resource consumption O

SYNOPSIS
#include <sys/viimit.h>

viimit(resource, value)
DESCRIPTION
This facllity 1s superseded by getriimit(3).

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. It value is specified as -1, then the current limit is returned
and the limit is unchanged. The resources which are currently controllable are:

LIM_NORAISE _
A pseudo-limit; if set non-zero then-the limits-may nrot be raised. Only the
super-user may remove the noraize restriction.

LIM_CPU . the maximum number of cpu-seconds to be used by each process
LIM_FSIZE the largest single file-which can Be created
LIM_DATA. the maximum growth of the data- stack region via #drk(2) beyond the end of
' the program text.
LIM_STACK the maximum size of the automatically-extended stack region
LIM_CORE the size of the largest core dump that will be created.
LIM. MAXRSS
a soft limit for the amount of physical memory (in bytes) to be given to the pro-

gram. If memory is tight, the system will prefer to take memory from processes
which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be exe-
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to ceh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space kimit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signall).

A file ifo operation which would create a file which is too large will cause a signal SIGXFSZ to be
generated, this normally terminates the process, but may be caught. When the cpu time limit is
exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process the signal
it is given 5 seconds grace by raising the epu-time lmit.

SEE ALSC
csh(1}

BUGS
It LIM. NORAISE is set, then mo grace should be given when tle cpu-time limit is exceeded.

These should be fiméit and snlimit commands in sA{1} as well a8 in coh.

-

14 Last change: 13 June 1983 _ Sun Release 1.1

C

VTIMES (3C) COMPATIBILITY ROUTINES VTIMES (3C)

NAME
vtimes — get information about resource utilization

SYNOPSIS

vtimes(par_vm, ch_vm)

struct vtimes *par_vm, *ch_vm;
DESCRIPTION

This facllity is superseded by getrusage(2).

Viimes returns accounting information for the current process and for the terminated child
processes of the current process. Either par_vm or ch_vm or both may be 0, in which case only
the information for the pointers which are noan-zero is returned.

After the call, each buffer contains information as defined b_y the contents of the include file

< syefvtimes.h>:
struct vtimes { o
int vm_utime; J* user time (*HZ) */
int vm_stime; - /* system time (*HZ) */
/* divide next two by utime+ stime to get averages */
_unsigned vm_idsrss; /* integral of d+ s rss */
_ unsigned vm_ixrss; /* integral of text rsa */
int Ym_maxrss; /* maximum rss *f
int vm_majfit; - |* major page faults */
int vm_minfit; /* minor page faulta */
int vym_nswap; /* number of swaps */
int vm_jnblk; /* block reads */
\ int vm_oublk; /* block writes *f
H

The vm_utime and vm_stime fields give the user and aystem time respectively in 60ths of a second
(or 50ths if that is the frequency of wall current in your locality.} The vm_idrss and vm_izras
measure memory usage. They are computed by integrating the number of memory pages in use
each over cpu time. They are reported as though computed discretely, adding the current
memory usage (in 512 byte pages) each time the clock ticks. If a process used 5 core pages over 1
cpu-sccond for its data and stack, then wvm_iderse would have the value 5%60, where
ym_utime+ vm_stime would be the 60. Vm_ideree integrates data and stack segment usage, while
vm_szrae integrates text segment usage. Vm_mazrse reports the maximum instantaneous sum of
the text+ data+ stack core-resident page count.

The ym_majfit fleld gives the number of page faults which resulted in disk activity; the vm_minfli
fleld gives the number of page faults incurred in simulation of reference bits; vm_noswap is the
number of swaps which occurred. The number of file system input/output events are reported in
vm_inblk and vm_oublk These numbers account only for real ifo; data supplied by the caching
mechanism is charged only to the first process to read or write the data,

SEE ALSO
getrusage(2), wait3(2)

Sun Releasp 1.1 Last change: 13 June 1983 15

O

INTRO (3M)

NAME

MATHEMATICAL FUNCTIONS

intro - introduction to mathematical library functions

DESCRIPTION

These functions constitute the math library, libm. They are automatically loaded as needed by
the Fortran compiler f77(1). The link editor searches this library under the “~lm” option.
Declarations for these functions may be obtained from the include file < math.h>>.

LIST OF FUNCTIONS

Name Appears on Page

acos sin.3m
asin sin.3m
atan sin.3m
atan2 sin.3m
cabs hypot.3m

ceil floor.3m
cos sin.3m
cosh sinh.3m
exp exp.3m
fabs floor.3m
floor floor.3m

gamma gamma.3m
kypot hypot.3m

i0 j0.3m
i1 i0.3m
jn j0.3m
log exp.3m
fogl0 exp.3m
pow exp.3m
sin + 8in.3m
sinh sinh.3m
Bqrt exp.3m
tan sin.3m
tanh sinh,3m
¥0 " j0.3m
yl j0.3m
yn j0.3m

Sun Release 1.1

Deascription
trigonometric functions
trigonometric functions
trigonometric functions
trigonometric functions
Euclidean distance
absolute value, floor, ceiling functions
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
absolute value, floor, ceiling functions
ahsolute value, floor, ceiling functions
log gamma function
Euclidean distance
bessel functions
bessel functions
bessel functions
exponential, logarithm, power, square root
exponential, logarithm, power, square root
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
bessel functions.
bessel functions
bessel functions

Last change: 12 January 1984

INTRO (3M)

EXP (3M) MATHEMATICAL FUNCTIONS EXP (3M)

NAME

exp, log, logld, pow, sqrt — exponential, logarithm, power, square root

SYNOPSIS.

#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double x, y;

double sqrt(x)
double x;

DESCRIPTION

Ezp returns the exponential furction of z.

Log returns the natural logarithm of z; logl0 returns the base 10 logarithm.
Pow returns 2.

Sgrt returns the square root of z.

SEE ALSO

bypet(3M), sinh(3M}, intro(2)

DIAGNOSTICS

Ezp and pow return a huge value when the correct value would overflow; errnc is set to
ERANGE. Pow returns 0 and sets errno to EDOM when the second argument is negative and
non-integral and when both arguments are 0.

Log returns 0 when z is zero or negative; errno is set to EDOQOM.
Sgrt returns 0 when z is negative; errno is set to EDOM.

Last change: 19 January 1983 Sun Release 1.1

-

C

FLOOR (3M) MATHEMATICAL FUNCTIONS FLOOR (3M)

O NAME

SYNOPSIS
#include <math.h>

double floor({x)
double x;

double cell(x)
double x;

double fabs(x)
double x;-

DESCRIPTION | _
Fabs returns the absolute value | z |.

fabs, floor, ceil - absolute value, Roor, ceiling functions

Floor returns the largest integer not greater than 2.

Ceil returne the smallest integer not less than z.
SEE ALSO

abs(3)

BUGS
 The fabs function is actually in the standard C library, and should be moved to the math library.

O

Sun Release 1.1 Last change: 26 August 1983 3

GAMMA (3M) MATHEMATICAL FUNCTIONS GAMMA (3M)

NAME
gamma — log gamma function @

SYNOPSIS
#include <math.h>>

double gamma(x)
double x;
DESCRIPTION
Gsmma returns In |[T'(|z})}|. The sign of I'(|z|) is returned in the external integer signgam.
The following C program might be used to calculate I':

y == gamma(x};
FEidef vax

i {y > 88.0)
Fendif
fifdef sun

it (y > 706.0)

#endif
error();

y == exp(y);
iffsigngam)
y=-Y;
DIAGNOSTICS
A huge value is returned for negative integer arguments.

BUGS
There should be & positive indication of error.

O

4 Last change: 23 August 1983 Sun Release 1.1

HYPOT(3M) MATHEMATICAL FUNCTIONS HYPOT (3M)

‘) NAME
hypot, cabs - Euclidean distance

SYNOPSIS
#include <math.h>

doubls hypot(x, y)
double x, ¥

double cabs(s)
struct { double x, y;} 53

DESCRIPTION
Hypot and cabs return

sqrt{x*x + y'y),
taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for egrt

-

Sun Release 1.1 Last change: 19 January 1983 5

J0(3M) MATHEMATICAL FUNCTIONS Jo(3M)

NAME) O
j0, j1, jn, ¥0, y1, y¥n ~ besse! functions

SYNOPSIS
#include <math.h>

double JO(x)
double x3-
double j1(x)
double x;
double jn(n, x)
double x;

double y0(x)
double x;

double y1(x)
double x3
double yn(n, x)
double x;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and

integer orders.

DIAGNOSTICS
Negative arguments cause y0, pf, and yn to return a huge negative value and set errno to EDOM,

-

-

6 Last change: 19 January 1933 Sun Release 1.1

O

C

O

SIN(3M) MATHEMATICAL FUNCTIONS SIN(3M)

NAME
gin, cos, tam, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS
#lnclude <math.h>

double sin{x)
double x3

double cos(x)
double x3

double asin(x)
dcuble x;

double acos(x)
double x3

double atan(x)
double x3

double atan2(x, ¥)
double x, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the argu-
ment should be checked by the caller to make sure the resuit is meaningful.

Asin returns the arc sin in the range -7/2 to x/2.

Acos returns the arc cosine in the range 0 to 7.

Atan returns the arc tangent of z in the range —7/2 to 7/2.
Atang returns the arc tangent of z/y in the range —x to m.

DIAGNOSTICS 3 :
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set to
EDOM. The value of {an at its singular points is a huge number, and errno is set to ERANGE.

BUGS
The value of {an for arguments greater than about 2**31 is garbage.

Sun Release 1.1 Last change: 19 January 1983 7

SINH (3M) MATHEMATICAL FUNCTIONS ~ SINH(3M)

NAME :
sinh, cosh, tanh — hiyperbolic functions @

SYNOPSIS
#include <math.h>

double sinh(x)

double cosh(x)
double x3

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS .
Sinb and cosh return a huge value of appropriate sign when the correct value would overflow.

-

8 Last change: 19 January 1983 Sun Release 1.1

O

INTRO(3N)

NAME

NETWORK FUNCTIONS

INTRO(3N)

intro - introduction to network library functions

DESCRIPTION

This section describes functions that are applicable to the DARPA Internet network, which are
part of the standard C library.

LIST OF FUNCTIONS
Name -

endhostent
endnetent
endprotoent
endservent
gethostbyaddr
gethostbyname
gethostent
getnetbyaddr
getnetbyname
getnetent
getprotobyname
getprotobynumber
getprotoent
gotservbyname
getservbyport
getservent
htonl

htons
inet_addr
inet_Inaof
inet_makeaddr
inet_netof
inet_network
inet_ntoa
atohl

ntohs

remd

rexec

rresvport
ruserok
sethostent
setnetent
setprotoent
setservent

‘Sun Releasge 1.1

Appears on Page

gethostent.3n
getnetent.3n
getprotoent.3n
geiservent.3n
gethostent.2n
gethostent.3n
gethostent.3n
getnetent.3n
getnetent.3n
getnetent.3n
getprotoent.3n
" getprotoent.3n
getprotoent.3n
getservent.3n
getservent.3n
getservent.3n

byteorder.3n

byteorder.3n
inet.3n
inet.3n
inet.3n
inet.3n
inet.3n
inet.3n
byteorder.3n
byteorder.3n
remd.3n
rexec.3n
remd.3n
remd.3n
gethostent.3n
getnetent.3n
getprotoent.3n
getservent.3n

Last change: 12 January 1934

Description

get network host entry
get network entry

get protocol entry

get service entry

get network host entry
get network host entry
get network host entry
get network entry

get network entry

get network entry

get protocol entry

get protocol entry

get protocol entry

get service entry

get service entry

_ get service entry

convert values between host and network byte order
convert values between host and network byte order
Internet address manipulation

Internet address manipulation

Internet address manipulation

Internet address manipulation

Internet address manipulation

Internet address manipulation

convert values between host and network byte order
convert values between host and network byte order
routines for returning a stream to a remote command
return stream to a remote command

routines for returning a stream to a remote command
routines for returning a stream to a remote command
get network host entry

get network entry

get protocol entry

get service entry

BYTEORDER (3N) NETWORK FUNCTIONS BYTEORDER (3N)

NAME .
htonl, htons, ntohl, ntohs ~ convert values between host and metwork byte order C

SYNOPSIS :
#include <sys/types.h>
#include <netinet/in.h>
netlong == htonl(hostlong);
u_long netlong, hostlong;
netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong == ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order.
On machines such as the Sun these routines are defined as null macros in the include file
< netinetfin.h>. :
These routines are most often used in conjunction with Internet addresses and ports as returned
by gethostent(3N) and getservent(3N).

SEE ALSO _
gethostent(3N), getservent(3N)

BUGS
The VAX handles bytes backwards from most everyone else in the world. This is not expected to

be fixed in the near future,

-

2 ' Last change: 4 March 1983 Sun Release 1.1

)

GETHOSTENT (3N) NETWORK FUNCTIONS GETHOSTENT (3N)

NAME

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent — get network host entry

SYNOPSIS
finclude <netdb.h>

struct hostent *gethostent()

struct hostent "gqthostbyname(nsme)

char *name;

struct hostent *gethostbyaddr(addr, len, type)
char “addr; Int len, type;

sethostent(stayopan)

int stayopen

endhostent()

DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the follow-
ing structure containing the broken-out fields of a line in the network host data base, fetc/hosts.

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; J* length of address */
char *h_addr; /* address */

)i
The members of this structure are:
b _name Official name of the host.
h_sliases A zero terminated array of alternate names for the host,
h_addrtype The type of address being returned; currently always AF_INET,
h_Jength The length, in bytes, of the address.

h_addr A pointer to the network address for the host. Host addresses are returned in net-
work byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will not
be closed after each call to gethostent (either directly, or indirectly through one of the other
“‘gethost'’ calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until 2 match-
ing host name or host address is found, or until EOF is encountered. Host addresses are supplied
in network order.

[ete[hosts

SEE ALSO

hoets(5)

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

Sun Releass 1.1 1.ast change: 9 February 1983 3

GETHOSTENT (3N) NETWORK FUNCTIONS - GETHOSTENT(3N)

BUGS - B _
All information is contained in a static area so it must be copied if it is to be saved. Only the ©
Internet-address format is currently understood. ~

-

4 Last change: 9 February 1983 Sun Release 1.1

O

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT (3N)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get network entry

SYNOPSIS

#include <netdb.h>
struct netent *getnetent()

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;

setnetent(stayopen)

int stayopen

endnetent()

DESCRIPTION

FILES

Getnelent, getnetbyname, and petnetdysddr each return a pointer to an object with the following
structure containing the broken-out felds of a line in the network data base, [etc/networks.

struct nmetent {

char *n_pname; /* official name of net */
char **n_aliases; J* alias list *f
int n_addrtype; /* net number type */
long n_net; /* net number */
Y .
The members of this structure are:
n_hame The official name of the network.

n_sliases A zero terminated list of alternate names for the network.

p_sddrtype The type of the network number returned; currently only AF_INET.

n_net The network number. Network numbers are returned in machine byte order.
Getnelent reads the next line of the fille, opening the file if necessary.

Seinetent opens and rewinds the file. If the afayopen flag is non-zero, the net data base will not be
closed after each call to getnetent (either directly, or indirectly through one of the other “‘getnet”
calls). '

Endnetent closes the file.

Getnetbyname and geinetbyaddr sequentially search from the beginning of the file until a matching
net name or net address is found, or until EQOF is encountered. Network numbers are supplied in
host order.

Jete/networks

SEE ALSO

networks(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only Internet network numbers are currently understood.

Sun Release 1.1 Last change: 9 March 1984 5

GETPROTOENT (2N) NETWORK FUNCTIONS ' GETPROTOENT(3N)

NAME

getprotoent, getprotobynumber, getprotobyname; setprotoent, ehdpro_t.oent — get protocol entry o @

SYNOPSIS

#include <netdb.h>>
struct protoent *getprotoent()

steruct protoent *getprotobyname(name)
char *name;

struct protoent *getpretobynumber(proto)
int proto;

setprotoent(stayopen)

Int stayopen

endprotoent(}

DESCRIPTION

Getprotoent, geiprotobyname, and geiprotobynumber each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network protocol data base,
[ete}protocols.

struct protoent {

char *p_name; * official name of protocol */
char *®p_aliases; /* alias list */
long p_proto; /* protocol number */

5
The members of this structure are:
p_name Tihe official name of the protocol.
p_aliases A zero terminated list of alternate names for the protocol. @
p_proto The protocel number.
Getprotoent reads the next line of the file, opening the file if necessary.

Selprotoent opens and rewinds the file. If the stayopen Aag is non-zero, the net data base will not
be closed after each call to getprotoent (either directly, or indirectly through one of the other
“getproto’ calls).

Endprotoent cicaes the file,

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until EOF is encountered,

FILES
/ete/protocols
SEE ALSO
protocols(5)
DIAGNOSTICS
Null pointer (0) returned on EOF or error.
BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.
6 Last change: 9 February 1983 Sun Release 1.1]

©

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT (3N)

NAME

getservent, getservbyport, getservbyname, setservent, endservent — get service entry

SYNOPSIS

#include <netdb.h>
struct servent *getservent()

struct servent *getservbyname(nams, proto)
char *name, *proto;

struct servent "getlervbyport(port, proto)
Int port; char *proto;

setservent(stayopen)
int stayopen

endservent()

DESCRIPTION

FILES

Geetservent, getservbyname, and getservbyport each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network services data base,
[etefaervices,

struct servent {

char *s_name; /* official name of service *f
char **5_aliases; /* alias list */

long s_port; /* port service resides at */
char *s_proto; /* protocol to use */

|5
The members of this structure are:
s_name The official name of the service,
s_alinses A zero terminated list of alternate names for the service,

s_port The port number at which the service resides. Port numbers are returned in network
byte order.

s_protc The name of the protocol to use when contacting the service.
Getservent reads the next line of the file, opening the file if necessary.

Seteervent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to gefservent {either directly, or indirectly through one of the other “get-
serv’’ calls).

Endservent closes the file.

QGetaervbyname and getservbyport sequentially search from the beginning of the fille until a match-
ing protocol name or port number is found, or until EOF is encountered. If a protocol name is
also supplied (non-NULL), searches must also match the protocol.

[ete [services

SEE ALSO

getprotoent(3N), services(5)

DIAGNOSTICS

BUGS

Null pointer {0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Expecting
port numbers to fit in a 32 bit quantity is probably naive.

Sun Release 1.1 Last change: 9 February 1983 7

INET (3N) NETWORK FUNCTIONS : INET(3N)

NAME ‘
inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa — Internet address

manipulation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addre
inet_addr(ep)
char *cp;

Int
inet_network{cp)
char *eps

struct In_addr
inet_makeaddr(net, Ina)
int net, Ina;

int

Inet_Inaof(in)
struct In_addr Ing
Int
inet_netof(in)
struct In_addr inj

char *
inet_ntoa(in)
struct in_addr In;

DESCRIPTION
The routines inef_addr and inef_network each interpret character strings representing numbers
expressed in the Internet standard .’ notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The routine inet_makeaddr takes an Inter-
net network number and a local network address and constructs an Internet address from it. The
routines inel_netof and inel_inaof break apart Internet host addresses, returning the network
number and local network address part, respectively.

The routine ineé_ntoa returns a pointer to a string in the base 256 motation ‘‘d.d.d.d" described
below.

All Internet address are returned in network order {bytes ordered from left to right). Al network
numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES

Values specified using the “."" notation take one of the following forms:

a.b.c.d

a.b.c

a.bh

a .
When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed as a
32-bit integer quantity on the VAX the bytes referred to above appear as “d.c.b.a”. That is,
VAX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed
jn the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as “128.net.host".

8 Last change: 29 August 1983 Sun Release 1.1

-

INET(3N) NETWORK FUNCTIONS INET{3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as ‘‘net.host”.

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

Al numbers supplied as “parts’” in a "’ notation may be decimal, octal, or hexadecimal, as
specified in the C language (i.e. a leading Ox or 0X implies hexadecimal; otherwise, a leading 0
implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(5), networks(5),

DIAGNOSTICS
The value 1 is returned by inet_addr and inet_network for malformed requests.

BUGS
The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is needed.

The return value from inef_nioa points to static information which is overwritten in each call.

Sun Release 1.1 Last change: 29 August 1983 9

ROMD (3N) NETWORK FUNCTIONS | RCMD (3N)

NAME :
remd, rresvport, ruserok — routines for refurning a stream to a remote command

SYNOPSIS .
rem == remd(ahost, Inport, locuser, remuser, cmd, fd2p);
char **ahost;
u_short inport;
char *locuser, *remuser, *cmd;
int *fd2p;

s == rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;

int superuser;

char *ruser, *luser;

DESORIPTION
Remd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rreevport is a routine which returns a
descriptor to a socket with an address in the privileged port space. Ruserok is a routine used by
servers to authenticate clients requesting service with remd. All three functions are present in the
same file and are used by the rshd(8C) server (among others).

Remd looks up the host *ahost using gethostbyname(3N), returning -1 if the host does not exist.
Otherwise *ahost is set to the standard name of the host and a connection is established to a
server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdln and stdout. If fdfp is non-zero, then an auxiliary channe] to a control
process will be set up, and a descriptor for it will be placed in *fdfp. The control process will
return diagnostic output from the command (unit 2) on this channel, and will also accept bytes on
this channel as being UNIX signal numbers, to be forwarded to the process group of the com-
mand. If fd2p is 0, then the stderr (unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to the remote process, although you
may be able to get its attention by using out-of-band data.

The protocol is described in detail in rehd(8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This
socket is suitable for use by rcmd and several other routines. Privileged addresses consist of a
port in the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a
socket.

Ruserck takes a remote host’s name, as returned by a gethostent(3N}) routine, two user names and
a flag indicating if the local user's name is the super-user. It then checks the files /etc/hosts. equiv
and, possibly, .rhosts in the current working directory (normally the local user's home directory)
to see if the request for service is allowed. A 1 is returned if the machine name is listed in the
‘“‘hosts.equiv’ file, or the host and remote user name are found in the “‘.rhosts” file; otherwise
ruscrok returns 0, If the superuser flag is 1, the checking of the ‘*host.equiv” file is bypassed.

SEE ALSO
rlogin(1C), rsh(1C), rexec(3N), rexecd(8C), rlogind(8C), rshd(8C)

BUGS
There is no way to specify options to the socket call which remd makes,

10 Last change: 17 March 1982 Sun Release 1.1

C

-

C

©

REXEC(3N) NETWORK FUNCTIONS REXEC{3N)

NAME

rexec — return stream to a remote command

SYNOPSIS

rem = rexee(ahost, Inport, user, passwd, emd, fd2p);
char **ahost;

u_short Inport;

char *user, *passwd, *cmd;

int *fd3p;

DESCRIPTION

Rezec looks up the host *ahost using gethoatbyname(3N), returning -1 if the host does not exist.
Otherwise ®ahost is set to the standard name of the host. If a username and password are both
specified, then these are used to authenticate to the foreign host; otherwise the environment and
then the user's .netre file in his home directory are searched for appropriate information. If all
this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection; it will
normally be the value returned from the call ‘‘getservbyname("exec”, "tcp”)” (see
getservent(3N)). The protocol for connection is described in detail in rezecd(8C).

It the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdin and stdout. If fdfp is non-zero, then a auxiliary channel to a control
process will be setup, and a descriptor for it will be placed in *fd2p. The control process will
return diagnostic output from the command (unit 2) on this channel, and will also accept bytes on
this channel as being UNIX signal numbers, to be forwarded to the process group of the com-
mand. If fd€p is O, then the stderr (unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to the remote process, although you
may be able to get its attention by using out-of-band data.

SEE ALSO

BUGS

rcmd(3N), rexecd(8C)

There is no way to speéify options to the zocket call whick rezec makes.

Sun Release 1.1 Last change: 17 March 1982 1

©

-

INTRO(35) STANDARD I/O LIBRARY INTRO (3S)

NAME

stdio - standard buffered input/output package

SYNOPSIS

#include <stdio.h>

FILE *stdin;
FILE *stdouts
FILE *stderr;

DESCRIPTION

The functions described in section 3S constitute a user-level buffering scheme. The in-line macros
getc and putc(3S) handle characters quickly. The higher level routines gefs, fgets, scanf, focanf,
fread, puto, fputs, printf, fprintf, furite all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type
FILE. A fopen(3S) creates certain descriptive data for a stream and returns a pointer to desig-
nate the stream in al) further transactions. There are three normally open streams with constant
pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant ‘pointer’ NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions that deal
with streams.

Any routine that uses the standard inputfoutput package must include the header file < stdio.A>
of pertinent macro deflnitions. The functions and constants mentioned in sections labeled 3S are
declared in the include flle and need no further declaration. The constants, and the following
‘functions’ are implemented as macros; redeclaration of these names is perilous: gete, getchar,
pule, pulchar, feof, ferror, filens, cirerr.

SEE ALSO

open(2), close(2), read(2), write(2), fread(3S), faeek(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uriformly to indicate that a FILE pointer has not been initialized
with fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line
buffer output to a terminal by default and attempts to do this transparently by flushing the out-
put whenever a resd(2) from the standard input is necessary. This is almost always transparent,
but may cause confusion or malfunctioning of programs which use standard ifo routines but use
read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an outpaut
terminal, it is necessary to fflush (see felose(35)) the standard output before going off and comput~
ing so that the output will appear.

The standard buffered functions do not interact well with certain other library and system func-
tions, especially vfork and abort.

LIST OF FUNCTIONS
Name Appears on Page Description
clearerr ferror.3s stream status inquiries
felose {close.3s close or fush a stream
fdopen fopen.3s open a stream

Sun Release 1.1 Last change: 12 January 1984 1

INTRO(35)

feof
ferror
fflush
fgete
fgets
fileno
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
ftell
fwrite
gete
getchar
gets
getw
pclose
popen
print{
pute
pufchar
puts
putw
rewind
scanf
setbuf
setbuffer
setlinebuf
sprintf
sscanf
stdio
ungete

ferror.3s
ferror.3s
fclose.3s
gete.3s
gets.3s
ferror.3s
fopen.3s
printf.3s
putc,3s
puts.3s
fread.3s
fopen.3s
scanf.3s
fseek.3s
fseek.3s
fread.3s
getc.3s
getc.3s
gets.3s
gete.3a
popen.3s
popen.ds
printf.3s
putc.3s
pute.3s
puts.3s
pute.3s
fseek.3s
scanf.3s
sethuf.3s
sethuf.3s
setbul.3s
printf.3s
scan{.3s
intro.3s
ungete.3s

STANDARD 1/0 LIBRARY INTRO (35)

stream status inquiries

stream status inquiries

close or flush a stream

get character or integer from stream
get a string from a stream

stream status inquiries

open a stream

formatted output conversion

put character or word on a stream
put a string on a stream

buffered binary input/output

open a stream

formatted input conversion
reposition a stream

reposition a stream

buffered binary input/output

get character or integer from stream
get character or integer from stream
get a string from a stream

get character or integer from stream
initiate 1/O to/from a process
initiate I/O to/from a process
formatted output conversion

put character or word on a stream
put character or word on a stream
put a string on a stream

put character or word on a stream
reposition a stream

formatted input conversion

_ assign buffering to a stream

assign buffering to a stream

assign buffering to a stream

formatted output conversion

formatted input conversion

standard buffered input/output package
push character back into input stream

Last change: 12 January 1984 Sun Release 1.1

FCLOSE(35) STANDARD /0 LIBRARY FCLOSE(3S)

NAME
felose, fllush - close or flush a stream

SYNOPSIS
##include <stdlo.h>>

fclose(stream)
FILE *stream;

fllush(stream)
FILE *stream;

DESCRIPTION
Feclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Feloze is performed automatically upon calling ezit(3).

Fflush eauses any buffered data for the named output giream to be written to that file. The
stream remains open.

SEE ALSO
close(2), fopen(3S), setbuf(3S)

DIAGNOSTICS
These routines return EOF if sfream is not associated with an output file, or if buffered data can-
not be transferred to that flle,

Sun Release 1.1 Last change: 19 January 1983 3

FERROR (35) STANDARD 1/0 LIBRARY FERROR (35)

NAME .
ferror, feof, clearérr, fileno — stream status inquiries

SYNOPSIS
#include <stdlo.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr(stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION
Feof teturns non-zero when end of file is read on the named input sireom, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named #fream, other-
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.
Fileno returns the integer file descriptor associated with the stream, see open(2).
These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

4 Last change: 19 January 1983 Sun Release 1.1

O

o

>

FOPEN(35) STANDARD 1/0 LIBRARY FOPEN(35)

fopen, {reopen, fdopen ~ open a stream

SYNOPSIS

¥include <stdio.h>
FILE *fopen(filename, type)
char *fillename, *type;

FILE *freopen(filename, type, stream)
char *fillename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION

Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r” open for reading

"w” create for writing
"a” append: open for writing at end of file, or create for writing

In addition, each fype may be followed by a '+ ' to have the file opened for reading and writing.
"r+ 7 positions the stream at the beginning of the file, "w+ " creates or truncates it, and "a+”
positions it at the end. Both reads and writes may be used on read/write streams, with the limi-
tation that an feeek, rewind, or reading an end-of-file must be used between a read and a write or
vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the original value of
eiream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specifled files.

Fdopen associates 3 stream with a file descriptor obtained from open, dup, creat, or pipe(2). The
fype of the stream must agree with the mode of the open file,

SEE ALSO

open(2), fclose(35)

DIAGNOSTICS

Fopen and freopen return the pointer NULL if filename carnot be accessed.

Féopen is not portable to systems other than UNIX,

The read/write fypes do not exist on all systems. Those systems without read/write modes will
probably treat the fype as if the '+’ was not present. These are unreliable in any event.

Sun Release 1.1 Last change: 9 June 1981 5

FREAD(38) STANDARD 1/0 LIBRARY FREAD(35)

NAME . '
fread, fwrite — buffered binary input/output _ : O

SYNOPSIS
#include <stdlo.h>

fread(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

fwrite{(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

DESCRIPTION
Fread reads, into a block beginning at pir, nitems of data of the type of *ptr from the named

input efream. It returns the number of items actually read.

If stream is stdin and the standard output is line buffered, then any partial oﬁtput line will be
flushed before any call to read(2) to satisfy the fread.

Furite appends at most niteme of data of the type of *pir beginning at pir to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(35), getc(3S), pute(3S), gets(3S), puts(3S), printf(35), scanf(35)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

-

6 Last change: 19 January 1983 Sun Release 1.1

FSEEK (35) STANDARD 1/0O LIBRARY FSEEK (35)

O NAME
fseek, ftell, rewind — reposition a stream

SYNOPSIS
#include <stdio.h>

facek({stream, offset, ptrname)
FILE *stream;
long offact;

long ftell(stream)
FILE *stream;

rewind(stream)

DESCRIPTION
Fseck sets the position of the next input or output operation on the stream. The new position is
at the signed distance offsel bytes from the beginning, the current position, or the end of the file,
according as pitrname has the value 0, 1, or 2.

Faeek undoes any effecta of ungete(3S).

Flell returns the current value of the offset relative to the beginning of the file associated with the
named sfream. It is measured in bytes on UNIX; on some other systems it is a magic cookie, and
the only foolproof way to obtain an offaet for fzeek.

Rewind(stream) is equivalent to feeck(stream, OL, 0).

SEE ALSO
lseek(2), fopen(3S)

DIAGNOSTIOS
O Fgeck returns -1 for improper seeks.

O

Sun Release 1.1 Last change: 19 January 1983 7

GETC(38) | STANDARD 1/0 LIBRARY GETC(35)

NAME

SYNOPSIS

gete, getchar, fgete, getw — get character'oq integer fronrstream

finclude <stdlo.h>

Int getc(stream)
FILE *stream;

int getchar()

Int fgetc(stream)
FILE *stream;
Int getw(stream)
FILE *stream;

DESCRIPTION

Getereturns the next character from thie named input sircam.

Getchar() is identical to gete(atdin).

Fgetc behaves like gete, but is a genuine function, not s macro; it may be used to save object
text..

Getw returns the next C Int (word)from. the named input siream. It returns the constant-EOF
upon end of file or error, but since that is 2 good integer value, feof and. ferror{3S) should be wsed
to check the success of gelw. Getw assumes no special alignment in the file,

SEE ALSO

fopen(35), pute(38), gets(3S), scanf(3S), fread(3S), ungete(3S)

DIAGNOSTICS :

BUGS

These fanctions return the integer constant-EOF at end of file or upon read error.

A stop with message, ‘Reading bad file’, means an attempt has been made to read from a stream
that has not been apened for reading by fepen.

The end-of-ile return from getchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a maero, gotc treats a streem argument with side effects incorrectly.
In particular, ‘gete(*I+ +);’ doesn’t work sensibly.

Data files written and read with pafir and getw are not portable; the size of an Int and the order
in which data bytes are stored within an Int varies between machines.

Last change; 23 August 1983 Sun Release 1.1

<

-

O

GETS(35) STANDARD 1/0 LIBRARY GETS(39)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#include <stdioh>
char *geta(s)
char *s;
char *fgets(s, n, stream)
char *s;
FILE *stream;
DESCRIPTION
Gets reads 2 string into # from the standard input stream atdin. The string is terminated by a
newline character, which is replaced in # by a null character. Gele returns its argument.

Fgets reads n-1 characters, or up to a newline character, whichever comes first, from the siream
into the string s. The last character read into s is followed by a null character. Fgets returns its
first argument.

SEE ALSO
puts(35), getc(35), scant(385), fread(3S), ferror(3S)

DIAGNOSTICS
Gels and fgefs return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, fgets keeps it, all in the name of backward compatibility,

Sun Release 1.1 Last change: 19 January 1983 9

POPEN(3S) STANDARD 1/0 LIBRARY : POPEN(3S)

" NAME

popen, pclose — initiate 1/O toffrom a process

. SYNOPSIS : :

finclude <stdlo.h>
FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE "stresam;

DESCRIFPTION

The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an I/O mode, either ”r” for reading or "w” for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by papen should be closed by pelose; which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type "r” command may be used to filter stdin, and a type "w” to
filter stdout.

SEE AESCO

pipe(2), fopen(35), fclose(3S), system(3), wait(2), sh(})

DIAGNOSTICS

BUGS

10

Popen returns a null pointer it files or processes cannot be ereated, or the shell cannot be
accessed.

Peloge returns -1 il giream is not associated with a ‘popened” comnrand.

Buffered reading before opening an input. filter may leave the standard input of that filter misposi-
tioned. Similar problems with an output filter may be forestalled by careful buffer flushing, for
instance, with flush, see felose(3S).

Popen always calls sk, never calls ceh.

Last change;: 19 January 1983 Sun Release 1.1

-

-

©

>

PRINTF (35)

NAME

STANDARD 1/O LIBRARY PRINTF (35)

printf, fprintf, sprintf - formatted output conversion

SYNOPSIS

#include <stdlo.h>
printf{format [, arg | ...)

char *format;

fprintf{stream, format |, arg | ...)

FILE *stronmy
char *format;

sprintf(s, format [, arg | ...)
cher s, format;
#include <varargs.h>

_doprnt{format, args, stream)
char “format;

va_lint

*arge)

FILE “stream;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprinif places output on the named
output sfream. Sprintf places ‘output’ in the string s, followed by the character ‘\0’. All of these
routines work by calling the implementation-dependent routine _doprnt, using the variable-length
argument facilities of varargs(3).

Eack of these functions converts, formats, and prints its arguments after the first under control of
the first argument. The first argument is a character string which contzins two types of objects:
plain characters, which are simply copied to the output stream, and conversion specifications,
each of which causes conversion and printing of the next successive arg

Eeach conversion specification is introduced by the character 9%. Following the 93, there may be

Sun Release 1.1

an optional mious sign ‘-’ which specifies leff adjustment of the converted value in the
indicated fleld;

an optional digit string specifying a field width; if the converted value has fewer charac-
ters than the fleld width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given} to make up the field width; if the field width begins
with a zero, zero-padding will be done instead of blank-padding;

an optional period ‘.’ which serves to separate the field width from the next digit string;

an optional digit string specifying a precision which specifies the number of digits to
appear afier the decimal point, for e- and f-conversion, or the maximum number of char-
acters to be printed from a string;

an optional ‘#’ character specifying that the value should be converted to an ‘‘alternate
form”. For ¢, d, s, and u, conversions, this option has no effect. For o conversions, the
precision of the number is increased to force the first character of the output string to a
zero. For x{X) conversion, a non-zero result has the string 0x(0X) prepended to it. For
e, E, f, g, and G, conversions, the result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point only appears in the results of those
conversions if a digit follows the decimal point). For g and G conversions, trailing zeros
are not removed from the result as they would otherwise be.

the character 1 specifying that a following d, o, x, or u corresponds to a long integer arg.

. a character which indicates the type of conversion to be applied.

Last change: 1 April 1981 11

PRINTF (35)

A field width or precision may be ‘*' instead of a digit string. In this case an integer arg supplies

STANDARD 1/0 LIBRARY ' PRINTF (35)

the field width or precision.

The conversion characters and their meanings are

dox
1 §

The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

The float or double arg is converted to decimal notation in the style ‘[-]ddd.ddd’ where
the number of d’s after the decimal point is equal to the precision specification for the
argument. If the precision. is missing, 6 digits are given; if the precision is explicitly 0, no
digits and no decimal point are printed.

The float or double arg is converted in the style ‘{~]d.dddex dd’ where there is one digit
before the decimal point and the number after is equal to the precision specification for
the argument; when the precision is missing, 6 digits are produced.

The float or double arg is printed in style d, in style f, or in style e, whichever gives full
precision in minitnum space. -

The %e, %f, and %g formats print IEEE indeterminate values (infinity or not-a-number) as
“Infinity’’ or ‘‘Nan" respectively.

L -

%

The character arg is printed.

Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a null
are printed.

The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 through MAXUINT, where MAXUINT equals 4294867295 on a VAX-11 or Sun
and 655635 on a PDP-11).

Frint a ‘%’; no argument. is converted.

In no case does a non-existent or small fleld width cause truncation of a field; padding takes place
only if the specified field width exceeds the actual width. Characters generated by prinif are
printed by pufc(3S).

Examples
To print a date and time in the form ‘Sunday, July 3, 10:02’, where weekday and month are
pointers to null-terminated strings:

printf(”%s, %s %d, %02d:%024", weekday, month, day, hour, min);

To print # ¢v & decimals:

SEE ALSO

printf{®pi = %.51", 4*atan{1.0));

pute(38), scanf(35), ecvt(3)

BUGS

Very wide flelds (> 128 characters} fail.
The values “Infinity” and ‘‘Nan’’ cannot be read by acanf(38).

12

Last change: 1 April 1981 Sun Releaze 1.1

o

C

-

PUTC(3S) STANDARD I/O LIBRARY PUTC(3S)

NAME

pute, putchar, fpute, putw — put character or word on a stream

SYNOPSIS

#include <stdio.h>

int pute(e, stream)
char ¢}
FILE *stream;

putchar(e)

fpute(e, stream)
FILE *stream;

putw(w, stream)
FILE *streamy

DESCRIPTION

Pute appends the character ¢ to the named output stream. It returns the character written.
Putehar(c) is defined as puic(c, stdout).
Fpute behaves like pufe, but is a genuine function rather than a macro.

Putw appends C int (word) w to the output stream. It returns the integer written. Putw neither
assumnes nor causes special alignment in the file.

SEE ALSO

fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, ferror(3S)
should be used to detect pufw errors.

Because it is implemented as a macro, pulc treats a siream argument with side effects improperly.
In particular “‘pute(c, *{+ +)’ doesn’t work sensibly.

Errors can occur long after the call to pute.

Data files written and read with putw and gefw are not portable; the size of an int and the order
in which data bytes are stored within an Int varies between machines.

Sun Release 1.1 Last change: 23 August 1983 13

PUTS{3S) STANDARD 1/O LIBRARY PUTS(35)

NAME
puts, fputs — put a string on a stream @

SYNOPSIS
#include <stdlo.k>

puts(s)
char *s3

fputs(s, stream)
char *s}
FILE *stream;

DESCRIPTION
Puts copies the null-terminated string # to the standard output stream stdout and appends a

newline character. _
Fputs copies the null-terminated string # to the named output stream.
Neither routine copies the terminal null character.

SEE ALSO
fopen(3S), gets(38), pute(3S), printf(3S), ferror(3S)
fread(3S) for fwrite
BUGS
Puts appends a newline, fpute does not, all in the name of backward compatibility.

-

14 , Last change: 19 January 1983 Sun Release 1.1

C

>

SCANF (35) STANDARD 1/0O LIBRARY SCANF (35)

NAME

scanf, facanf, sscanf - formatted input conversion
SYNOPSIS

#include <stdlo.h>

scanf(format | , pointer]...)

char *format; :

fecanf(stream, format |, pointer| ...)

FILE *stream;
char *format;

sscanf(s, format | , pointer] ...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fascanf reads from the named input stream.
Sscanf reads from the character string ». Each function reads characters, interprets them accord-
ing to a format, and stores the results in its arguments. Each expects as arguments a control
string format, described below, and a set of pointer arguments indicating where the converted in~
put should be stored.

The control string usually contains conversion specifications, which are used to direct interpreta-
tion of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.
2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion apecifications, consisting of the character 93, an optional assignment suppressing
character *, an optional numerical maximum fleld width, and a conversion character.

A conversion specification directs the conversion of the next input fleld; the result is placed in the
variable pointed to by the corresponding argument, unless assignment suppression was indicated
by *. An input fleld is defined as a string of non-space characters; it extends to the next inap-
propriate character or until the fleld width, if specified, is exhausted.

The conversion character indicates the interpretation of the input fleld; the corresponding pointer
argument must usually be of a restricted type. The following conversion characters are legal:

% a single ‘%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x 2 hexadecimal iv;teger is expected; the corresponding argument should be an integer pointer.
(]

a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating \0',
which will be added. The input field is terminated by a space character or a newline.

¢ a character is expected; the corresponding argument should be a character pointer. The nor-
mal skip over space characters is suppressed in this case; to read the next non-space charac-
ter, try ‘%1s’. If a field width is given, the corresponding argument should refer to a charac-
ter array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored

£ through the corresponding argument, which should be a pointer to a float. The input format
for floating point numbers is an optionally signed string of digits possibly containing a de-
cimal point, followed by an optional exponent field consisting of an E or e followed by an op-
tionally signed integer. ‘

[indicates a string not to be delimited by space characters. The left bracket is followed by a

Sun Release 1.1 Last change: 15 March 1984 15

SCANF (3S) STANDARD I/O LIBRARY ' SCANF (3S) °

set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex { *), the input fleld is
all characters until the first character not in the set between the brackets; if the first charac- O
ter after the left bracket is °, the input fleld is all characters until the first character which is
in the remaining set of characters between the brackets. The corresponding argument must
point to a character array.

The conversion characters d, o and x may be capitalized or preceded by 1 to indicate that a

pointer to long rather than to Int is in the argument list. Similarly, the conversion characters e

or f may be capitalized or preceded by 1 to indicate a pointer to double rather than to float.

The conversion characters d, o and x may be preceded by h to indicate a pointer to short rather

than to Int.
The scanf functions return the number of suecessfully matched and assigned input items. This
can be used to decide how many input items were found. The constant EQF is returned upon
end of input; note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.
For example, the call
int i; float x; char name|50};
scanff’ %d%1%s”, &3, £x, name);
with the input-line
256 54.32E-1 thompson
will assign to { the value 25, z the value 5.432, and name will contain ‘thompaon\0’. Or,
int i; float x; char name[50};
scanf(” %2d %1%*d%[1234567890|", &i, &x, name);

with input

587890 0123 56a72
will assign 56 to §, 789.0 to z, skip ‘0123', and place the string '‘56\0' in name. The next call to @
getehar will return ‘a'.

SEE ALSO
atof(3), getc(3S), printf(3S)

DIAGNOSTICS
The ecanf functions return EOF on end of input, and a short count for missing or illegal data

items,

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

Scanf cannot read the strings which printf(35) generates for IEEE indeterminate floating point
values.

Secanf provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on
the traditional C conventions (leading 0 or Ox).

16 Last change: 15 March 1984 Sun Release 1.1 @

C

SETBUF (35) STANDARD 1/0O LIBRARY SETBUF{3S)

NAME
eethuf, setbuffer, setlinebuf — assign buffering to a stream

SYNOPSIS
#include <stdlo.h>

setbuf{stream, buf)
FILE “stream; ‘
char *buf;

setbuffer (stream, buf, size)
FILE *stream;

char *buf;

int elze;

setlinebuf(stream)
FILE *stream;

DESCRIPTION

The three types of buffering available are unbuffered, block buffered, and line buffered. When an
output stream is unbuffered, information appears on the destination file or terminal as soon as
written; when it is block buffered many characters are saved up and written as a block; when it is
line buffered characters are saved up until a newline is encountered or input is read from stdin.
Fflueh (see fclose(3S)) may be used to force the block out early. Normally all files are block
buffered. A buffer is obtained from malloc(3) upon the first getc or putc(3S) on the file. If the
standard stream stdout refers to a terminal it is line buffered. If the standard stream stderr
refsrs to a terminal it is line buffered.

Setbuf is used after a stream has been opened but before it is read or written. The character ar-
ray buf is used instead of an automatically allocated buffer. If dufis the constant pointer NULL,
input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big an array
is needed:
char buf[BUFSIZ];

Setbuffer, an alternate form of sctbuf, is used after a stream has been opened but before it is read
or written. The character array buf whose size is determined by the size argument is used instead
of an automatically allocated buffer. If buf is the constant pointer NULL, input/output will be
completely unbuffered.

Setlinebyf is used to change stdout or stderr (only) from block buffered or unbuffered to line
buflered. Unlike setbuf and setbuffer it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using freopen (see
Jopen{3S)). A file can be changed from block buffered or line buffered to unbuffered by using freo-
pen followed by eetbuf with a buffer argument of NULL.

SEE ALSO
fopen(3S), gete(3S), putc(3S), malloc(3), felose(3S), puts(3S), printf(3S), fread(35)

Sun Release 1.1 Last change: 23 August 1983 17

UNGETC(35) STANDARD 1/0 LIBRARY UNGETC(3S)

NAME
ungete — push character back into input stream : @

SYNOPSIS
ffinclude <stdio.h>

ungete(c, stream)
FILE “stream;

DESCRIPTION
Ungetc pushes the character ¢ back on an input stream. That character will be returned by the

next geic call on that stream. Ungelc returns ¢,

One character of pushback is guaranteed provided something has been read from the stream and
the stream is actually buffered. Attempts fo push EOF are rejected.

An freek{3S) erases all memory of pushed back characters.

SEE ALSO :
getc(3S), setbuf(3S), fseek{3S)

DIAGNOSTICS.
Ungete returns EOF if it can’t push a character back.

-

18 Last change: 19 January 1983 Sun Release 1.1

-

INTRO (3X) MISCELLANEOUS FUNCTIONS INTRO (3X)

NAME :
intro — introduction to other libraries

DESCRIPTION
This section contains manual pages describing other libraries, which are available only from C.
The list below includes libraries which provide device independent plotting functions, terminal
independent screen management routines for two dimensional non-bitmap display terminals, and
functions for managing data bases with inverted indexes. All functions are located in separate
libraries indicated in each manual entry.

FILES :
Just/lib/libcurses.a screen management routines (see curses(3x))
Jusr/lib/libdbm.a data base management routines (see dbm(3x))
Just/lib/libmp.a multiple precision math library (see mp(3x))
Just/lib/libplot.a plot routines (see plot(3x))

Just/lib/lib300.a "

[Jusr/lib/lib300s.a »

[fust/lib/lib450.3 ”

Jusr/lib/lib4014.a ”

Jusrflib/libtermecap.a terminal handling routines (see termecap(3x))
/usr/lib/libtermeap_p.a

Jusr/lib/libtermlib.a

Jusr/lib/libtermlib_p.a

" Sun Release 1.1 Last change: 12 January 1984 1

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

NAME
curses — screen functions with “optimal’’ cursor motion

SYNOPSIS
ce | flags | files —lcurses —ltermcap | libraries }

DESCRIPTION ‘
These routines give the user a method of updating screens with reasonable optimization. They

keep an image of the current screen, and the user sets up an image of a new one. Then the
refreeh() tells the routines to make the current screen look like the new one. In order to initialize
the routines, the routine initscr{) must be called before any of the other routines that deal with
windows and screens are used. The routine endwin(j should be called before exiting.

SEE ALSO
ioctl{2), getenv(3), tty(4), termcap(5)

FUNCTIONS
addch(ch) add a character to aidser
addstr{str) add a string to stdscr
box(win,vert,hor) draw a box around a window
crmode() set cbreak mode
clear() clear stdecr
clearok(scr,boolf) set clear flag for scr
clrtobot() clear to bottom on stdscr
clrtoeol() clear to end of line on stdascr
delch() delete a character
deleteln() delete a line
delwin(win) delete win
echof) set echo mode
endwin() end window modes
erase() erase stdser
getch() get a char through sidecr
getcap(name) get terminal capability name
getstr(str) get a string through stdecr
gettmode() get tty modes
getyx(win,y x) get (v,x} co-ordinates
inch() get char at current (y,x) co-ordinates
initscr() initialize screens
insch(c) insert a char
insertin(} insert a line
‘leaveok(win,boolf) set leave flag for win
longname(termbuf,name) get long name from termbuf
move(y,x) move to (y,x) on stdscr
mvcur(lasty lastx,newy,newx) actually move cursor
newwin(lines,cols,begin _y,begin_x) create a new window
nl{) , set newline mapping
rocrmode() unset cbreak mode
noecho() unset echo mode
noal() unset newline mapping
noraw() unset raw mode
overlay{winl,win2) ' overlay winl on win2
overwrite(winl,win2) overwrite winl on top of win2
printw(fmt,argl,arg2,...) printf on stdscr
raw() set raw mode
refresh() make current screen look like stdecr
resetty() reset tty flags to stored value

2 Last change: 16 February 1984 Sun Release 1.1

-

-

C

C

CURSES (3X)

savetty()
scanw({fmt,argl,arg2,...)
scroll{win})

scrollok (win,boolf)
setterm({name)
standend()

standout()

subwin(win, lines,cols,begin_y,begin_x)

touchwin(win)
unctri{ch)
waddch{win,ch)
waddstr(win,str)
wclear{win)
welrtobot(win)
welrtoeol{win)
wdeleh{win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winach{win,c)
winsertin(win)
wmove(win,y x)

wprintw(win,fmt,argl,arg2,...)

wrefresh{win)
wscanw(win,fmt,argt arg?2,...)
wstardend(win)
wstandout(win)

Sun Release 1.1

MISCELLANEOUS FUNCTIONS

stored current tty Hags
scanf through stdscr

scroll win one line

set scroll flag

set term variables for name
end standout mode

start standout mode

create a subwindow
“change” all of win
printable version of ch

add char to win

add string to win

clear win

clear to bottom of win
clear to end of line on win
delete char from win

delete line from win

erase win

get a char through win

get a string through win
get char at current {y,x) in win
insert char into win

insert line into win

set current (y,x) co-ordinates on win
printf on win

make screen look like win
scanf through win

end standout meode on win
start standout mode on win

L ast change: 16 February 1984

CURSES (3X)

DBM (3X) MISCELLANEOUS FUNCTIONS DBM(3X)

NAME

dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines

SYNOPSIS

typedef struct {
char *dptr;
Int dslse;

} datum;

dbminit(flle)
char *file;

datum fetch(key)
datum key;

store(key, content)
datumn key, content;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION

These functions maintain key/content pairs in a data base. The functions will handle very large
(a billion blocks) databases and will access a keyed item in one or two file system accesses, The
functions are obtained with the loader option ~ldbm.

Keys and contents are described by the datum typedef. A dafum specifies a string of dzize bytes

pointed to by dpfr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data
base is stored in two files. One file is a directory containing a bit map and has ‘.dir’ as its suffix.-
The second file contains all data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files
Jile.dir and file.pag must exist. (An empty database is created by creating zero-length ‘.dir' and
‘pag’ files.) :

Once open, the data stored under a key is accessed by fefch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in a
database may be made, in an (apparently) random order, by use of firstkey and neztkey. Firstkey
will return the first key in the database. With any key neztkey will return the next key in the
database. This code will traverse the data base:

for (key == firstkey(); key.dptr == NULL; key == nextkey(key))

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates ok.
Routines that return 2 datum indicate errors with a null {0) dptr.

The ‘.pag’ file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files cannot
be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes,

Dptr pointers returned by these subroutines point into static storage that is changed by subse-
quent calls.

The sum of the sizes of a key /content pair must not exceed the internal block size (currently 1024
bytes). Moreover all key/content pairs that hash together must fit on a single block. Store will
return an error in the event that a disk block fills with inseparable data.

Last change: 20 March 1984 Sun Release 1.1

C

DBM(3X) MISCELLANEOUS FUNCTIONS DBM(3X)

O Deleie does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firatkey and neztkey depends on a hashing function, not on any-
thing interesting.

There are no interlocks and no provisionunreliable cache flushing; thus concurrent updating and
reading is risky.

-

Sun Release 1.1 Last change: 20 March 1984 5

MP {3X) MISCELLANEOUS FUNCTIONS MP (3X)

NAME . .
itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow — multiple precision integer arithmetic @

SYNOPSIS
#include <mp.h>>

madd(a, b, c)
MINT *a, *b, *c3

msub(a, b, c)
MINT *a, *b, *c;

mult(a, b, e}
MINT *a, *b, *¢;

mdiv(a, b, q, r)
MINT *a,.*b, *q, *r}

min(a)
MINT *a3

mout(a)
MINT *aj

pow(a, b, c, d)
MINT *a, *b, "c, *dj

ged(s, b, ¢)
MINT *a, *b, *e; ©

rpow(a, n, b)
MINT *a, *b;
short nj

msqrt(a, b, r)
MINT *a, *b, *r}

sdiv(a, n, q, r)
MINT *a, *q}
short n, *rj

MINT *itom(n)
short n;

DESCRIFTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using
the defined type MINT. Pointers to a MINT should be initialized using the function itom, which
sets the initial value to n. After that space is managed automatically by the routines.

Madd, msub and mult assign to their third arguments the sum, difference, and product, respec-
tively, of their first two arguments. Mdiv assigns the quotient and remainder, respectively, to its
third and fourth arguments. Sdiv is like mdiv except that the divisor is an ordinary integer.
Magrt produces the square root and remainder of its first argument. Rpow calculates g raised to
the power b, while pow calculates this reduced modulo m. AMin and mout do decimal input and

6 Last change: 15 March 1984 Sun Release 1.1

MP (3X) MISCELLANEOUS FUNCTIONS MP (3X)

O output.

Use the —lmp loader option to obtain access to these functions. —lmp.

DIAGNOSTICS
Ilegal operations and running out of memory produce messages and core images,

FILES
[useflib/libmp.a

C

Sun Release 1.1 Last change: 15 March 1984 7

PLOT(3X) MISCELLANEOUS FUNCTIONS PLOT (3X)

NAME

openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl — graphics interface @

SYNOPSIS

openpl()
erase()

tabel(s)
char s[J;

line(x1, y1, x2, y2)
circle(x, y, r)

arc(x, y, x0, y0, x1, y1)
move(x, ¥)

cont(x, ¥)

point(x, y)

bnemod(s)
charsfls

space(x0, y0, x1, y1)
closepi(y

DESCRIPTION

These subroutines generate graphic output in a relatively device-independent manner. See plo¢(5)
for a description of their eflect. Openplmust be used before any of the others to open the device
for writing. Closepl flushes the output.

String arguments to label and finemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the fol- O
lowing /d(1) options:

~lplot device-independent graphica stream on standard output for plot(1G) filters
-1300 GSI 300 terminal

-1300s GSI 300S terminal

-1450 DASI 450 terminal

-14014 Tektronix 4014 terminal

SEE ALSO

FILES

plot(5), plot(1G), graph(1G).

Jusr flib/libplot.a
Jusr/1ib f1ib300.a
Jusr/Iib/lib300s.a
Jusr flib/lib450.a
Juer [lib/lib4014.2

-

Last change: 19 January 1983 - Sun Release 1.1

o

o

O

TERMCAP (3X) MISCELLANEOQOUS FUNCTIONS TERMCAP (3X}

NAME

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS

char PC;
char *BC;
char *UP;
short ospeed)

tgetent{bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetfizg(ld)
char *1d;

char *
tgotstr(id, area)
char *id, **area

char *
tgoto(cm, destcol, destline)
char *cm;

tputs(ep, affent, oute)
register char *cp)

Int affent;

int (*oute)()s

DESCRIPTION

These functions extract and use capabilities from the terminal capability data base termeap(5).
These are low level routines; see curaea(?_.X) for a higher level package.

Tgetent extracts the entry for terminal ngme into the buffer at bp. Bp should be a character buffer
of size 1024 and must be retained through all subsequent calls to tgetnum, (getflag, and tgetstr.
Tgetent returns —1 if it cannot open the fermeap file, 0 if the terminal name given does not have
an entry, and 1 if all goes well. It will look in the environment for a TERMCAP variable. I
found, and the value does not begin with a slash, and the terminal type name is the same as the
environment string TERM, the TERMCAP string is used instead of reading the termecap file. If
it does begin with a slash, the string is used as a path name rather than [eteftermeap. This can
speed up entry into programs that call {gefent, as well as to help debug new terminal descriptions
or to make one for your terminal if you can't write the file [ete/fermeap.

Tgeinum gets the numeric value of capability ¢4, returning -1 if is not given for the terminal.
Tgetflag veturns 1 if the specified capability is present in the terminal’s entry, 0 if it is not.
Tgetstr gets the string value of capability id, placing it in the buffer at area, advancing the grea
pointer. It decodes the abbreviations for this field described in termcap(5), except for cutsor
addressing and padding information.

Tgoto returns & cursor addressing string decoded from ¢m to go to column destcol in line destline.
It uses the external variables UP (from the up capability) and BC (if be is given rather than bs)
it necessary to avoid placing \n, "D or “@ in the returned string. (Programs which call tgoto
should be sure to turn off the XTABS bit(s), since fgoto may now output a tab. Note that pro-
grams using termcap should in general turn of XTABS anyway since some terminals use control 1
for other functions, such as nondestructive space.) If a % sequence is given which is not under-
stood, then {gato returns ‘‘OOPS".

Sun Release 1.1 Last change: 9 February 1983 9

TERMCAP (3X) MISCELLANEOUS FUNCTIONS TERMCAP (3X)

Tpute decodes the leading padding information of the string cp; affent gives the number of lines
affected by the operation, or 1 if this is not applicable, oute is a routine which is called with each O
character in turn., The external variable ospeed should contain the encoded output speed of the
terminal as described in ¢y(4). The external variable PC should contain a pad character to be

used (from the pe capability) if a null {*@) is inappropriate.

FILES
[ust/lib/libtermcap.a —ltermcap library
[ete/termeap data base

SEE ALSO

ex(1), curses(3X), tty(4), termcap(5)

@

10 Last change: 9 February 1983 Sun Release 1.1

¢

INTRO(4) SPECIAL FILES INTRO (4)

NAME

intro - introduction to special files and hardware support

DESCRIPTION

This section describes device interfaces to the operating system for disks, tapes, serial commmunica-
tions, high-speed network communications, and other devices such as mice, frame buffers and win-
dows.

The operating system can be built with or without many of the devices listed here; we show for
most devices the syntax in a description to config(8) to cause the device to be included in a sys-
tem. For mose devices we also give a DIAGNOSTICS section which lists the error messages
which the device may produce to appear on the system console, and in the system error log file
Jusr/adm/messages.

Section 4 has been broken up according to machine independent device interfaces, “4’" entries,
Sun specific devices ‘458", Vax specific devices “4V", manual pages for protocol families “‘4F",
and manual pages for protocols and raw interfaces “4P"’.

Most devices on the Sun workstation exist on the Multibus, whose common properties are
described in mb(45). '

Devices which are present in every kernel include a driver for the paging drum drum(4), drivers
for accessing physical, virtual and ifo memory mem(4S) and the drivers for the data sink
[dev [null, nuli(4).

Communications lines are most often used with the terminal driver described in #£y(4). The ter-
minal driver runs on commaunications lines provided either by a communications driver such as
oct{4S) or zs(4S) or on a more virtual terminal, either provided by the Sun console monitor
¢one(4S) or a true pseudo-terminal pty(4) used in applications such as windowing or remote net-
working.

Magnetic tapes all provide the interface described in mtio(4). Tape devices for the Sun include
ar{48) and tm{4S).

Disk controllers provide standard block and raw interfaces, as well as a set of ioctl’s defined in
dkio(4S) supporting disk formatting and bad block handling. Drivers available for the Sun
include zy(4S) and ip(4S).

The operating system supports one or more protocol families supporting local network communi-
cations. The only complete protocol family in this version of the system is the Internet protocol
family inet(4F). Each protocol family provides basic services to each protocol implementation
such as packet fragmentation and reassembly, routing, addressing and basic transport. A protocol
family is normally composed of a number of protocols, one per socket(2) type. It is not required
that a protocol family support all socket types.

The primary network support is for the Internet protocol family described in inef{4F). Major pro-
tocols in this family include the Internet Protocol ip(4P) describing the universal datagram for-
mat, the stream Transport Control Protocol tep(4P), the User Datagram Protocol udp(4P), the
Address Resolution Protocol arp(4P), and the Internet Control Message Protocol iemp(4P). The
primary network interface is for the 10 Megabit Ethernet ec(4S); a software loopback interface
{o(4) also exists. General properties of these (and all) network interfaces are described in if(4N).

The general support in the system for local network routing is described in routing(4N); these
facilities apply to all protocol families.

Miscellaneous devices include color frame buffers cg*(4S), monochrome frame buffers bu*(4S), the
console frame buffer, f6(4S), the console mouse mouse(4S) and the window devices win(4S).

Sun Release 1.1 Last change: 21 March 1984 1

AR (48) SPECIAL FILES AR (45)

NAME
ar — Archive 1/4 inch Streaming Tape Drive ©

SYNOPSIS
device ar0 at mb0 car 0x200 priority 3

DESCRIPTION
The Archive tape controller is a Sun ‘QIC-II' interface to an Archive streaming tape drive. It
provides a standard tape interface to the device, see miio{4), with some deficiencies listed under

BUGS below.

The maximum blocksize for the raw device is limited only by available memory.
FILES

/dev/rar0

[dev /nrar0 non-rewinding
SEE ALSO.

mtio(4), tm(4S)

Archive Intelligent Tape Drive Theory of Operation, Archive Corporation (Sun 8000-1058-01}
Archive Product Manual (Sidewinder 1/4” Streaming Cartridge Tape Drive) (Sun 800-0628-01)
Sun 1/4” Tape Interface — User Manual (Sun- 800-0415-01)

DIAGNOSTICS
ar%dr would not Inttialize.

ar%d: already open. The tape can be open by only one process at a time.

ar%d: no such drive.

ar%d: no cartridge In drive.

ar%d: cartridge Is write protected.

ar: Interrupt from unitialized controller %9x. =
ar%d: many retrles, consider retiring this tape.
ar%d: %b error at block # %d punted.

ar%d: b error at block # %d.

ar: giving up on Rdy, try again.

BUGS
The tape cannot reverse direction soc BSF, BSR and FSR are not available.

The system will hang if the tape is removed while running.

When using the raw device, the number of bytes in any given transfer must be a multiple of 512
bytes.. If it is not, the device driver returns an error.

-

2 Last change: 20 March 1984 Sun Release 1.1

C

ARP(4P) SPECIAL FILES ARP (4P)

arp — Address Resolution Protocol

SYNOPSIS

pseudo-device ether

DESCRIPTION

ARP is a protocol used to dypamically map between DARPA Internet and 10Mb/s Ethernet
addresses. It is used by all the 10Mb/s Ethernet interface drivers.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an
address not in the cache, ARP queues the message which requires the mapping and broadcasts a
message on the associated network requesting the address mapping. If a response is provided, the
new mapping is cached and any pending messages are transmitted. ARP will queue at most one
packet while waiting for a mapping request to be responded to; only the most recently ‘“transmit-
ted" packet is kept.

To enable communications with systems which do not use ARP, ioctls are provided to enter and
delete entries in the Internet-to-Ethernet tables, Usage:

#include <sys/loctLh>
#include <sys/socket.h>
#include <net/if.h>
struct arpreq arpreq

loctl(s, SIOCSARP, (caddr_t)&arpreq);

loctl(s, SIOCGARP, (caddr_t)&arpreq);

loctl(s, SIOCDARP, (caddr_t)&arpreq);
Each ioctl takes the same structure as an argument. SIOCSARP sets an ARP entry, SIOCGARP
gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be applied to any
socket descriptor s, but only by the super-user. The arpreg structure contains:

/* ,
* ARP ioctl request.

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */
|5 :
/* arp_flags fetd values ¥/
#tdefine ATF_COM 2 /* completed entry (arp_ha valid) */
ftdefine ATF_PERM 4 /* permanent entry */
Ftdefine ATF_PUBL 8 /* publish (respond for other host) */

The address family for the arp_pa sockaddr must be AF_INET; for the arp_ka sockaddr it must
be AF_UNSPEC. The only flag bits which may be written are ATF_PERM and ATF_PUBL.
ATF_PERM causes the entry to be permanent if the ioctl call succeeds. The peculiar nature of
the ARP tables may cause the ioctl to fail if more than 4 (permanent) Internet host addresses
hash to the same slot. ATF_PUBL specifies that the ARP code should respond to ARP requests
for the indicated host coming from other machines. This allows a Sun to act as an "ARP server”
which may be useful in convincing an ARP-only machine to talk to a nor-ARP machine,

ARP watches passively ‘for hosts impersonating the local host (i.e. a host which responds to an
ARP mapping request for the local host’s address).

DIAGNOSTICS

duplicate IP address!! sent from ethernet address: 29x:9%x:90x:%%x:%ox:%x. ARP has
discovered another host on the local network which responds to mapping requests for its own

Sun Release 1.1 Last change: 11 January 1984 3

ARP {4P) SPECIAL FILES ARP (4P)

Internet address.

SEE ALSO

BUGS

ec(4S), ie(49), inet(4F), arp(8C), ifconfig(8C) @
An Ethernet Address Resolution Protocol, RFC826, Dave Plummer, MIT (Sun 800-1059-01)

ARP packets on the Ethernet use only 42 bytes of d:;ta, however, the smallest legal Ethernet
packet is 60 bytes (not including CRC). Some systems may not enforce the minimum packet size,
others will,

Last change: 11 January 1984 Sun Release 1.1 @

-

BK(4) SPECIAL FILES BK(4)

i

NAME
bk - line discipline for machine-machine communication

SYNOPSIS
pseudo-device bk

DESCRIPTION
This line discipline provides a replacement for the tty driver téy(4) when high speed output to and
especially input from another machine is to be transmitted over an asynchronous communications
line. The discipline was designed for use by a (now obsolete) store-and-forward local network run-
ning over serial lines. It may be suitable for uploading of data from microprocessors into the sys-
tem. If you are going to send data over asynchronmous communications lines at high speed into
the system, you must use this discipline, as the system otherwise may detect high input data rates
on terminal lines and disable the lines; in any case the processing of such data when normal ter-

minal mechanisms are involved saturates the system.

The line discipline is enabled by a sequence: *

#include <sgtty.h>
int 1dise = NETLDISC, fildes; ...
joctl(fildes, TIOCSETD, &ldisc);

A typical application program then reads a sequence of lines from the terminal port, checking
header and sequencing information on each line and acknowledging receipt of each line to the
sender, who then transmits another line of data. Typically several hundred bytes of data and a
smaller amount of control information will be received on each handshake.

The old standard teletype discipline can be restored by doing:

Idise = OTTYDISC;
foctl(fildes, TIOCSETD, &ldisc);

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output
data path is desired, it is necessary to prepare the output line by putting it into RAW mode using
joctl(2). This must be done before changing the discipline with TIOCSETD, as most ioct(2)
ealls are disabled while in network line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the input
path is only 7 bits wide, with newline the only character terminating an input record, Each input
record must be read and acknowledged before the next input is read as the system refuses to
accept any new data when there is a record in the buffer. The buffer is limited in length, but the
system guarantees to always be willing to accept input resulting in 512 data characters and then
the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee
accurate data transfer.

SEE ALSO
tty(4)

DIAGNOSTICS
None.

Sun Release 1.1 L.ast change: 17 August 1983 5

BWONE (4S) SPECIAL FILES BWONE(4S)

NAME .
bwone — Sun one black and white frame buffer. O

SYNOPSIS
device bwone0 at mb0 csr 0xc0000 priority 3

DESCRIPTION
The bwone interface provides access to Sun-1 black-and-white graphics controller boards. It sup-
ports the FBIOGTYPE ioctl which a program can use to inquire as to the characteristics of the
display device; see fbio(4S)
It supports the FBIOGPIXRECT ioct] which allows SunWindows to be run on it; see fbio(4S)

Reading or writing to the frame buffer is not allowed — you must use the mmap(2) system call to
map the board into your address space. '
FILES
Jdev/bwone[0-9]
SEE ALSO
mmap(2), IH(4S), fbio{4S)
Sun 1024 Video Board — User Manual (Sun 800-0420)

DIAGNOSTICS
Neone.

BUGS
Use of vertical-retrace interrupts is not supported.

6 . Last change: 21 March 1984 Sun Release 1.1 @

O

BWTWO (45) SPECIAL FILES BWTWO (45)

NAME
bwtwo — Sun two black and white frame buffer

SYNOPSIS
device bwitwo0 at mb0 csr 0x700000 priority 3

DESCRIPTION
The bwiwo interface provides access to Sun-2 Monochrome Video Controller boards. It supports
the FBIOGTYPE ioct] which a program can use to inquire as to the characteristics of the display
device; see fbio(45) :

It supports the FBIOGPIXRECT ioctl which allows SunWindows to be run on it; see fbio(4S)

Reading or writing to the frame buffer is not allowed — you must use the mmap(2) system call to
map the board into your address space. :
FILES
/dev [bwtwo|0-9]
SEE ALSO
mmap(2), fb{4S), fbio(48)

DIAGNOSTICS
None.

BUGS
Use of vertical-retrace interrupts is not supported.

Sun Release 1.1 Last change: 21 March 1984 7

CGONE(45) SPECIAL FILES CGONE (45)

NAME
cgone — Sun-1 color graphics interface

SYNOPSIS
device cgonel at mb0 csr 0xe8000 priority 3

DESCRIPTION
The cgone interface provides access to the Sum-1 color graphics controller board, which is nor-
mally supplied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer

interface as defined in fbio(4S).
It supports the FBIOGPIXRECT ioctl which allows SunWindows to be run on it; see fbio(4S)
The hardware consumes 16 kilobytes of Multibus memory space. The board starts at standard
addresses OxES000 or 0xEC000. The board must be configured for interrupt level 3.
FILES
Jdev fegone]l-9}
SEE ALSO
mmap(2), fbio{4S)
Sun Color Video Board User’s Manual (Surr 8000-0398, Rev B)

Barco GD33 Color Display 120VAC Operation Instructions (13”) (Sun 800-1002-01)
Barco Color Display CD 252 120/220VAC Operation Guide (19”) (Sun 800-1003-01})

DIAGNOQSTICS
None.

BUGS.
Use of color board vertical-retrace interrupts is not supported.

8 Last change: 21 March 1984 Sun Release 1.1

-

C

O

CONS(45) SPECIAL FILES CONS(45)

NAME
cons — driver for Sun console

SYNOPSIS
None; included in standard system.

DESCRIPTION
Cong is an indirect driver for the Sun workstation console, which implements a standard UNIX
terminal. Cones is implemented by calling the PROM resident monitor to perform 1/O to and
from the current system console, which is either a Sun frame buffer or an R 5232 port.

When the Sun window system win{45) is active, console input is directed through the window sys-
tem rather than being read from /dev/console.

An joctl TIOCCONS may be applied to serial devices other than the console to cause output
which would normally appear on the console to instead be routed to the other devices. This is
used by the window system which does a TIOCCONS on a pseudo-terminal to eause console out-
put to be routed there rather than to the screen through the PROM monitor, since routing output
through the PROM destroys the integrity of the screen.

FILES
Jdev fconscle
Jdev [ttya alternate console (serial port)

SEE ALSO |
oct(48), tty(4), zs(4S)

BUGS .
TIOCCONS should be restricted to the owner of /dev/console.

Sun Release 1.1 " Last change: 21 March 1984 9

DKIO(4S)

NAME

dkio — generic disk control operations

DESCRIPTION
All Sun disk drivers support a set of ioctl’s for disk formatiting and labelling operations. Basic to

these ioctl's are the definitions in <\sun/dkio.k>:

10

lt

SPECIAL FILES

* Structures and definitions for disk io control commands

*

/* Disk identification */
struct dk_info {
int dki_ctlr;
short dki_unit;
short dki_ctype;
short dki_flags;

/* controller types */
#fdefine DKC_UNKNOWN
#tdefine DKC_SMD2180
ftdefine DKC_XY440
#tdefine DKC_DSD5215
#define DKC_XY450
ftdefine DKC_SCSI

/* flags */

ftdefine DKI_BAD144 01
ftdefine DKI MAPTRK 02
#define DKI_FMTTRK 04

#define DKI_FMTVOL 0x08

[* Definition of a disk’s geometry */f

struct dk_geom {

~N DO

/* use DEC std 144 bad sector fwding */

J* controller address */
/* unit {slave) address */
/* controller type */

J* flags */

/* controller does track mapping */

/* formats only full track at a time */
/* tormats only full volume at a time */

unsigned short dkg_ncyl;
unsigned short dkg_acyl;
unsigned short dkg_beyl;

" unsigned short dkg nhead;
unsigned short dkg_bhead;
unsigned short dkg_nsect;
unsigned shorf dkg_intrlv;
unsigned short dkg_gapl;
unsigned short dkg_gap2;
unsigned short dkg_extra{10];

h

/* Disk format request */
struct dk_fmt {
daddr_t dkf_blkno;
daddr_t dkf nblk;
u_char dkf_fill;

b

/* Disk re-map request */

/* # of data cylinders */

/* # of alternate cylinders */
/* cyl offset (for fixed head area) */

[* # of heads */

/* head offset (for Larks, etc.) */

/* # of sectors per track */
/* interleave factor */

/* gap 1 size *f

/* gap 2size */

/* for compatible expansion */

/* starting block */
/* # of blocks */
/* fill data */

Last change: 20 March 1984

DKIO(4S)

Sun Release 1.1

-

-

O

-

o

DKIO(4S) ' ' SPECIAL FILES DKIO (45)

struct dk_mapr {

daddr_t dkm_fblk; /* trom block */

daddr_tdkm_tblk; /* to block */

daddr_t dkm_nblk; /* # blocks */

u_char dkm_£fill; /* fill data */
i
/* disk io control commands */
#define DKIOCHDR _Io(g, 1) /* next I/O will read /write header */
#define DKIOCGGEOM _IOR(d, 2, struct dk_geom}) /* Get geometry */
#define DKIOCSGECM _IOW(d, 3, struct dk_geom} /* Set geometry */
#idefine DKIOCGPART _IOR(d, 4, struct dk_map) /* Get partition info */
ftdefine DKIOCSPART _low(d, 5, struct dk_map} /* Set partition info */
Ffdefine DKIOCFMT _JOw(d, 6, struct dk_fmt) /* Format */
ftdefine DKIOCMAP _low(d, 7, struct dk_mapr) /* Map */
#tdefine DKIOCINFO _IOR(4, 8, struct dk_info) [* Get info *f

The DKIOCGINFO ioctl returns a dk_info structure which tells the kind of the controller and
attributes about how bad-block processing is done on the controller. Bad sectors can then be pro-
cessed using either the DKIOCMAP request, which causes a sector to be re-mapped on the disk,
ot the DKIOCFMT request which causes a sector to be re-formatted. To read or write the header
on a disk sector the DKIOCHDR ioctl can be used, it causes the next read or write request to also
read or write the (drive-type-specific) header data.

The DKIOCGPART and DKIOCSPART get and set the controllet’s current notion of the parti-
tion table for the disk (without changing the partition table on the disk itself), while the
DKIOCGGEOM and DKIOCSGEOM ioctl's do similar things for the per-drive geometry informa-
tion. These can be used to format a drive, where the label dces not exist before the drive is for-
matted.

SEE ALSO

ip(4S), Xy(4S)

The DKIOCMAP and DKIOCFMT request are incompletely implemented.

Sun Release 1.1 Last change: 20 March 1984 11

DRUM(4) . SPECIAL FILES DRUM(4)

NAME
drum - paging device
SYNOPSIS
None; included with standard system.

DESCRIPTION
This file refers to the paging device in use by the system. This may actually be a subdevice of
one of the disk drivers, but in a system with paging interleaved across multiple disk drives it pro-
vides an indirect driver for the multiple drives.

FILES
Jdev/drum

BUGS
Reads from the drum are not allowed across the interleaving boundaries. Since these only occur

every .5Mbytes or so, and since the system never allocates blocks across the boundary, this is usu-
ally not a problem. ‘

12 Last change: 17 August 1083 Sun Release 1.1

-

NSRRI T R T T

@]

-

EC(4S) SPECIAL FILES EC(4S)

NAME :
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS _
device ecO at mb0 csr Oxe0000 priority 3

DESCRIPTION .
The ¢c interface provides access to a 10 Mb/s Ethernet network through a 3COM controller. For
a general description of network interfaces see if(4N).
The hardware consumes 8 kilobytes of Multibus memory space. This memory is used for internal

buffering by the board. The board starts at standard addresses OXE0000 or 0xE2000. The board
must be configured for interrupt level 3.

The interface software implements an exponential backofl algorithm when notified of a collision
on the cable.

The interface handles the Internet protocol family, with the interface address maintained in Inter-
net format. The Address Resolution Protocol arp(4P) is used to map 32-bit Internet addresses
uzed in ined(4F) to the 48-bit addresses used on the Ethernet.

DIAGNOSTICS
ee%d: Ethernet Jammed. After 16 failed transmissions and backoffs using the exponential
backofl algorithm, the packet was dropped.

ec%%d: can’t handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was drapped.

SEE ALSO
arp(4N), if(4N), inet{4F)
3COM 30400 Multibus Ethernet Controller Reference Manual (Sun 800-0398}

BUGS
The interface hardware is not capable of talking to itself, making diagnosis more difficult.

Sun Relea.sﬁ 11 Last change: 12 January 1984 13

EN(45) SPECIAL FILES EN(45)

NAME

en — Sun 3 Mb/s experimental Ethernet interface

SYNOPSIS

device en0 at mb0 csr 0x100 priority 3

DESCRIPTION

The en interface provides access to a 3 Mb/s Ethernet network. The host’s address is discovered
at boot time by probing the Ethernet address register. For a general description of network inter-
faces, see §f(4N).

The board consumes 256 bytes of Multibus 1/O space starting at standard address 0x100.

The interface handles both Internet and PUP protocol families, with the interface address main-
tained in Internet format. PUP addresses are converted to Internet addresses by subsituting PUP
network and host values for Internet network and imp values, and setting the Internet host
number to zero.

DIAGNOSTICS

en%d: output error. The hardware indicated an error on the previous transmission.
en%d: send error. After 16 retransmissiona the packet was dropped.
en%d: Input error. The hardware indicated an error in reading a packet off the cable.

en%d: can't handle af%d. The interface was handed a message with addresses formatted in
an unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

14

if (4N}, inet(4F)
Sun 3Mbit Ethernet Board, User’s Manual (Sun 800-0392)

This hardware and driver are not supported.

Last change: 11 August 1083 Sun Release 1.1

-

-

FB(4S) SPECIAL FILES FB(4S)

NAME
th — driver for Sun console frame buffer

SYNOPSIS
None; included in standard system.

DESCRIPTION
The fb driver provides indirect access to a Sun graphics controller board. It is an indirect driver
tor the Sun workstation console’s frame buffer. At boot time, the workstation’s frame buffer dev-
ice is determined from information from the Monitor Proms and set to be the one that fb will
indirect to. The device driver for the console’s frame buffer must be configured into the kernel so
that this indirect driver can access it.

The idea behind this driver is that user programs can open a known device, query its characteris-
tics and access it in a device dependent way, depending on the type. Fb redirects open(2),
close(2), iocti(2), and mmap(2) calls to the real frame buffer. All of the Sun frame buffers support
the same general interface; see fbio(45)

FILES
[dev/fb

SEE ALSO
fhio(4S), bwone(45), bwtwo(4S)

©

Sun Release 1.1 Last change: 21 March 1984 15

FBIO (45) SPECIAL FILES FBIO(45)

NAME c

fbio — general properties of frame buffers

DESCRIPTION
All of the Sun frame buffers support the same general interface. Each responds to a FBIOGTYPE

iocti(2) which returns information in a structure defined in <sun/fbio.h>:

struct fbtype {
int tb_type; /* as defined below */
int fb_height; [* in pixels */
int tb_width; [* in pixels */

int. tb_depth; /* bits per pixel */
int fb_cmsize; J* size of color map (entries) */
int fb_size; J* total size in bytes */

13 _

fdefine FBTYPE_SUNIBW o

yidefine FBTYPE_SUNI1COLOR 1

fdefine FBTYPE_SUNZ2BW 2

Each device has a FBTYPE which is used by higher-level software to determihe how to perform
raster-op and other functions. Each device is used by opening it, doing a FBIOGTYPE {ocil to

see which frame buffer type= is present, and thereby selecting the appropriate device management
routines.

Full fledged frame buffers, i.e., those that expect to run SunWindows, implement an FBIOGPIX-

RECT ioecti(2), which returns a pixrect. This call is made only from inside the kernel. The
returned pixrect is used by win(4S) for cursor tracking and colormap loading. ©

SEE ALSO
mmap(2), fb(4S), bwone(4S), bwtwo(45), cgone(4S), win(4S)

-

16 Last change: 21 March 1984 Sun Release 1.1

>

ICMP (4P) SPECIAL FILES ' ICMP (4P)

NAME
icmp - Internet Control Message Protocol

SYNOPSIS
None; included automatically with inet(4F).

DESCRIPTION
The Internet Control Message Protocol ICMP is used by gateways and destination hosts which
process datagrams to communicate errors in datagram processing to source hosts. (The datagram
level of Internet is discussed in $p(4P).) ICMP uses the basic support of IP as if it were a higher
level protocol, however ICMP is actually an integral part of IP.

ICMP messages are sent in several situations: for example when a datagram, cannot reach its des-
tination, when the gateway does not have the buffering capacity to forward a datagram, and when
the gateway can direct the host to send traffic on a shorter route.

The Internet protocol is not designed to be absolutely reliable. The purpose of these control mes-
sages is to provide feedback about problems in the communication environment, not to make IP
reliable. There are still no guarantees that a datagram will be delivered or a control message wili
be returned. Some datagrams may still be undelivered without any report of their loss. The
higher level protocols which use IP must implement their own reliability procedures if reliable
communication is required.

The ICMP messages typically report errors in the processing of datagrams. To avoid the infinite
regress of messages about messages etc., no ICMP messages are sent about ICMP messages. Also
ICMP messages are only sent about errors in handling fragment 0 of fragmented datagrams.

There are 11 types of ICMP packets which can be received by the system. They are defined in
this excerpt from <netinet/ip_icmp.h>, which also defines the values of some additional codes
further specifying the cause of certain errors.

*

* Definition of type and code fleld values

*/
ftdeflne ICMP_ECHOREPLY 0 /* echo reply */
#define ICMP_UNREACH 3 /* dest unreachable, codes: *f
Ffdefine ICMP_UNREACH_NET 0 /* bad net */
fdefine ICMP_UNREACH_HOST 1 /* bad host */
fhdefine ICMP_UNREACH_PROTOCOL 2 /* bad protocol *f
spdefine ICMP_UNREACH_PORT 3 /* bad port */
fhdefine ICMP_UNREACH_NEEDFRAG 4 /* IP_DF caused drop */
fhdefine ICMP_UNREACH_SRCFAIL b /* src route failed */
#define ICMP_SOURCEQUENCH 4 /* packet loat, slow down */
#define ICMP_REDIRECT 5 [* shorter route, codes: */
yhdefine ICMP_REDIRECT_NET 0 . [* for network */
sdefine ICMP_REDIRECT_HOST 1 /* for host */
#define ICMP_REDIRECT _TOSNET 2 [* for tos and net */
#define ICMP_REDIRECT_TOSHOST 3 J* for tos and host */
#define ICMP_ECHO 8 /* echo service */
#define ICMP_TIMXCEED 11 /* time exceeded, code: */
#define ICMP_TIMXCEED_INTRANS 0 /* ttl==0 in transit */
#tdefine ICMP_TIMXCEED_REASS 1 /* tt}==0in reass */
#define ICMP_PARAMPROB 12 /* ip header bad */
#define ICMP_TSTAMP 13 /* timestamp request */
##define ICMP_TSTAMPREFPLY 14 /* timestamp reply */
#define ICMP_IREQ 15 /* information request */
#define ICMP_IREQREPLY 16 /* information reply */

Sun Release 1.1 Last change: 17 August 1983 17

ICMP (4P) SPECIAL FILES ICMP (4P)

Arriving ECHO and TSTAMP packets cause the system to generate ECHOREPLY and
TSTAMPREPLY packets. IREQ packets are not yet processed by the system, and are discarded.
UNREACH, SOURCEQUENCH, TIMXCEED and PARAMPROB packets are processed inter-
nally by the protocols implemented in the system, or reflected to the user if a raw socket is being
used; see ip(4P). REDIRECT, ECHOREPLY, TSTAMPREPLY and IREQREPLY are also
reflected to users of raw sockets. In addition, REDIRECT messages cause the kernel routing

tables to be updated; see routing(4N).

SEE ALSO

BUGS

18

inet(4F), ip(4P)
Internet Control Message Protocol, RFC792, J. Postel, USC-ISI (Sun 800-1064-01)

IREQ messages are not processed properly: the address fields are not set.

Messages which are source routed are not sent back using inverted source routes, but rather go
back through the normal routing meckanisms.

Last ckange: 17 August 1983 Sun Release 1.1

-

-

o

IF (4N) SPECIAL FILES IF (4N)

NAME
if — general properties of network interfaces

DESCRIPTION
Each network interface in a system corresponds to a path through which messages may be sent
and received. A network interface usually has a hardware device associated with it, though cer-
tain interfaces such as the loopback interface, {o(4), do not.

At boot time each interface which has underlying hardware support makes itself known to the
system during the autoconfiguration process. Once the interface has acquired its address it is
expected to install a routing table entry so that messages may be routed through it. Most inter-
faces require some part of their address specified with an SIOCSIFADDR ioctl hefore they will
allow traflic to flow through them. On interfaces where the network-link layer address mapping is
static, only the network number is taken from the ioctl; the remainder is found in a hardware
specific manner. On interfaces which provide dynamic network-link layer address mapping facili-
ties (e.g. 10Mb/s Ethernets using arp(4P),), the entire address specified in the ioctl is used.

The following socti calls may be used to manipulate network interfaces. Unless specified other-
wige, the request takes an ifreq structure as its parameter. This structure has the form

struct ifreq {
‘char ifr_name[16}; /* name of interface (e.g. "ec0”) */
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
short ifru_flags;
} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* address */

##define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#tdefine ifr_fiags ife_ifru.ifru_flags /* fags */

b

SIOCSIFADDR

Set interface address. Following the address assignment, the ‘‘initialization’ routine for
the interface is called.

SIOCGIFADDR _
Get interface address,

SIOCSIFDSTADDR
Set point to point address for interface.

SIOCGIFDSTADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently routing
packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf structure (see below) as a
value-result parameter. The ife_len field should be initially set to the size of the buffer
pointed to by ife_buf. On return it will contain the length, in bytes, of the configuration
* list.

*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration

Sun Release 1.1 Last change: 15 August 1983 19

IF (4N) " SPECIAL FILES

* for machine (useful for programs which
* must know all networks accessible).

*

struct ifconf {
int ifc_len; [* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifeu_req;
} ife_jfeu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
b
SEE ALSO

arp(4P), ec(45}, en(45), lo(4)

20 Last change: 15 August 1983

IF (4N)

Sun Release 1.1

-

-

INET (4F) B SPECIAL FILES INET(4F)

NAME
inet — Internet protocol family

SYNOPSIS
options INET
pseudo-device lnet -

DESCRIFTION
The Internet protocol family is a collection of protocols layered atop the Internet Protocol {IP)
transport layer, and utilizing the Internet address format. The Internet family provides protocol
support for the SOCK_STREAM, SOCK_DGRAM, and SOCK _RAW socket types; the
SOCK_RAW interface"-provides access to the IP protocol.

ADDRESSING
Internet addresses are four byte quantities, stored in network standard format (on the VAX these
are word and byte reversed). The include file <neclinetfin.h> defines this address as a discrim-
inated union.

Sockets in the Internet protocol family utilize the following addressing structure,

struct sockaddr_jin {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

I

(Library routines to teturn and manipulate structures of this form are in section 3N of the
manual; see intro(3N) and the other section 3 entries mentioned under SEE ALSO below.) Each
socket has a local address specifiable in this form, which can be established with bind(2); the get-
sockname(2) call returns this address. Each socket also may be bound to a peer socket with an
address specified in this form; this peer address can be specified in a connect(2) call, or transiently
with a single message in a sendlo or sendmeyg call; see send(2). The peer address of a socket is
returned by the gelpeername(2) call.

The sin_addr field of the socket address specifies the Internet address of the machine on whick the
socket is located. A special value may be specified or returned for this fleld,
sin_addr.s_addra==INADDR_ANY. This address is a “‘wildcard” and matches any of the legal
internet addresses on the local machine. This address is useful when a process neither knows (nor
cares) what the local Internet address is, but even more useful for server processes with which to
service all requests to.the current machine. Since a machine can have several addresses (one per
hardware network interface), specifying a single address would restrict access to the service to
those clients which specified the address of that interface. By specifying INADDR_ANY, the
server can arrange to service clients from all interfaces.

When s socket address is bound, the networking system checks that there is an interface with the
address specified available on the current machine _(unless, of course, a wildcard address is
specified), and returns an error EADDRNOTAVAIL if no such interface is found.

The local port address specified in a #ind(2) call is restricted to be greater than
IPPORT_RESERVED (=1024, in <netinet/in.h>) unless the creating process is running as the
super-uset, providing a space of protected port numbers. The local port address is also required
to not be in use in order for it to be assigned. This is checked by looking for another socket of
the same type which has the same local address and local port number. If such a socket already
exists, you will not be able to create another socket at the same address, and will instead get the
error EADDRINUSE. 1f the local port address is specified as 0, then the system picks a unique
port address not less than IPPORT_RESERVED and assigns it to the port. A unique local port
adgyess is also picked for a socket which is not bound but which is used with connect(2) or

Sun Release 1.1 Last change: 17 August 1983 21

INET (4F) INET (4F)

sendto(2); this allows tcp(4p) connections to be made by simply doing socket(2) and then con-
nect(2) in the case where the local port address is not significant; it is defaulted by the system.
Similarly if you are sending datagrams with udp(4P) and do not care which port they come from,
you can just do sockef(2) and sendto(2) and let the system pick a port rumber.

Let us say that two sockets are incompatible if they have the same port number, are not conected
to other sockets, and do not have different local host addresses. (It is possible to have two sockets
with the same port number and different local host addresses because a machine may have several
local addresses from its different network interfaces.) The Internet system does not allow such
incompatible sockets to exist on a single machine. Consider a socket which has a specific local
host and local port number on the current machine. I another process tries to create a socket
with a wildcard local host address and the same port number then that request will be denied.
For connection based sockets this prevents these two sockets from attempting to connect to the
same foreign host/socket, and thereby causing great havoc. For connectionless sockets this
prevents the dilemma which would result from trying to determine who to deliver an incoming
datagram to (since more than one socket could match an address given on a datagram). The
same restriction applies if the wildcard socket exists first. (If both sockets are wildcard, then the
normal restrictions on duplicate addresses apply.)

A socket option SO_REUSEADDR exists to allow incompatible sockets to be created. This
option is needed to implement the File Transfer Protocol (FTP) which requires that a connection
be made from an existing port number (the port number of its primary connection) to a different
port number on the same remote host. The danger here is that the user would attempt to con-
nect this second port to the same remote host/port that the primary connection was using. In
using SO_REUSEADDR the user is pledging not to do this, since this will cause the first connec-
tion to abort.

When a connect(2) is done, the Internet system first checks that the socket is not already con-
nected. If does not allow connections to port number 0 on another host, nor does it allow connec-
tions to a wildcard host (sin_addr.s_addr==INADDR_ANY); attempts to do this yield EAD-
DRINUSE. If the socket from which the connection is being made currently has a wildcard local
address (either because it was bound to a specific port with a wildcard address, or was never sub-
jected to bind(2)), then the system picks a local Internet address for the socket from the set of
addresses of interfaces on the local machine, If there is an interface on the local machine on the
same network as the machine being connected to, then that address is used. Otherwise, the
“first” local network interface is used {this is the one that prints out first in ‘‘netstat -i”’; see
netstai(8)). Although it is not supposed to matter which interface address is used, in practice it
would probably be better to select the address of the interface through which the packets are to
be routed. This is not currently done (as it would involve a fair amount of additional overhead
for datagram transmission}. '

PROTOCOLS
The Internet protocot family supported by the operating system is comprised of the Internet
Datagram Protocol (IP) ip{4P}, Address Resolution Protocol {ARP) arp(4P), Internet Control
Message Protocol (ICMP) iemp(4P), Transmission Control Protocol (TCP) tep(4P), and User
Datagram Protocol (UDP) udp(4P).

TCP is used to support the SOCK_STREAM abstraction while UDP iz used to support the
SOCK_DGRAM abstraction. A raw interface to IP is available by creating an Internet socket of
type SOCK_RAW; see ip(4P). The ICMP message protocol is not directly accessible, and is used
by the system to handle and report errors in protocol processing. The ARP protocol is used to
translate 32-bit Internet host numbers into the 48 bit addresses needed for an Ethernet.

SEE ALSO
intzo(3N), byteorder(3N), gethostent(3N), getnetent(3N), getprotoent(3N), getservent(3N),
inet(3N), network(3N}, arp(4P), tcp(4P), udp(4P), ip(4P)
Internet Protocol Transition Workbook, Network Information Center, SRI (Sun 800-1056-01)

22 Last change: 17 August 1983 Sun Release 1.1

INET (4F) SPECIAL FILES INET (4F)

Internet Protocol Implementation Guide, Network Information Center, SRI (Sun 800-1055-01)
A 4.2BSD Interprocess Communication Primer

o

Sun Release 1.1 Last change: 17 August 1983 23

IP{4P) SPECIAL FILES IP(4P)
NAME
ip — Internet Protocol
SYNOPSIS
None; included by default with inet{4F).
DESCRIPTION

24

The Internet Protocol is designed for use in interconnected systems of packet-switched computer
communication networks. It provides for transmitting blocks of data called datagrams from
sources to destinations, where sources and destinations are hosts identified by fixed length
addresses. It also provides for fragmentation and reassembly of long datagrams, if necessary, for
transmission through ‘‘small packet’ networks.

IP is specifically limited in scope. There are no mecharpisms to augment end-to-end data reliabil
ity, low control, sequencing, or other services commonly found in host-to-host protocols. IP can
capitalize on the services of its supporting networks to provide various types and qualities of ser-
vice.

IP is called on by host-to-host protocols, including tcp(4P) a reliable stream protocol, udp(4P) a
socket-socket datagram protocol, and nd(4P) the network disk protocol. Other protocols may be
layered on top of IP using the raw protocol facilities described here to receive and send datagrams
with a specific [P protocol number. The IP protocol calls on local network drivers to carry the
internet datagram to the next gateway or destination host. :

When a datagram arrives at a UNIX host, the system performs a checksum on the header of the
datagram. If this fails, or if the datagram is unreasonably short or the header length specified in
the datagram is not within range, then the datagram is dropped. {Checksumming of Internet
datagrams may be disabled for debugging purposes by patching the kernel variable ipcksum to
have the value 0.) :

Next the system scans the IP options of the datagram. Options allowing for source routing (see
routing(4N})) and also the collection of time stamps as a packet follows a particular route (for net-
work monitoring and statistics gathering purposes) are handled; other options are ignored. Pro-
cessing of source routing options may result i an UNREACH icmp{4P) message because the
source routed host is not accessible,

After processing the options, IP checks to sce if the current machine is the destination for the
datagram. If not, then IP attempts to forward the datagram to the proper host. Before forward-
ing the datagram, IP decrements the time to live field of the datagram by IPTTLDEC seconds
(currently 5 from <netinet/ip.h>>), and discards the datagram if its lifetime has expired, sending
an ICMP TIMXCEED error packet back to the source host. Similarly if the attempt to forward
the datagram fails, then ICMP messages indicating an unreachable network, datagram too large,
unreachable port {datagram would have required broadcasting on the target interface, and IP does
not allow directed broadcasts), lack of buffer space (reflected as a source quench), or unreachable
host. Note however, in accordance with the ICMP protocol specification, ICMP messages are
returned only for the first fragment of fragmented datagrams,

It is possible to disable the forwarding of datagrams by a host by patching the kernel variable
ipforwarding to have value 0.

If a packet arrives and is destined for this machine, then IP must check to see if other fragments
of the same datagram are being held. If this datagram is complete, then any previous fragments
of this datagram are discarded. If this is only a fragment of a datagram, it may yield a complete
set of pieces for the datagram, in which case IP constructs the complete datagram and continues
processing with that. If there is yet no complete set of pieces for this datagram then we hold onto
as much data as we have received (but only one copy of each data byte from the datagram) in
hopes that the rest of the pieces of the fragmented datagram will arrive and we wiil be able to
proceed. We allow IPFRAGTTL (currently 15 in <netinet/ip.h>>) seconds for all the fragments
of a datagram to arrive, and discard partial fragments then if the datagram has not yet been

L:ast change: 17 August 1983 Sun Release 1.1

©

IP(4P)

SPECIAL FILES P (4P)

completely assembled.

When we have a complete input datagram it is passed out to the appropriate protocol’s input rou-
tine: either tcp(4P), udp(4P), nd(4P), iemp(4P) or a user process through a raw IP socket as
described below.

Datagrams are output by the system implemented protocols fcp{4P), udp(4P), nd(4P), and
temp(4P) as well as by packet forwarding operations and user processes through raw IP sockets.
Output packets are normally subjected to routing as described in routing(4N); special processes
such as the routing daemon routed(8C) occasionally use the SO_DONTROUTE socket option to
cause the packets to avoid the routing tables and go directly to the network interface which has
the same network number as the packet is addressed to. This is used to be able to test the ability
of the hardware to transmit and receive packets even when we believe that the hardware is bro-
ken and have therefore deleted it from the routing tables.

If there is no route to a destination address or if the SO_DONTROUTE option is given and there
is no interface on the network specified by the destination address, then the IP output routine
returns a ENETUNREACH error. (This and the other IP output errors are reflected back to user
processes through the various protocols, which individually describe how errors are reported.)

In the (hopefully normal) case where there is a suitable route or network interface, the destination
address is checked to see if it specifies a broadcast (address INADDR_ANY,; see inet(4F)); if it
does, and the hardware interface does not support broadcasts, then an EADDRNOTAVAIL is
returned; if the caller is not the super-user then a EACCESS error will be returned. IP also does
not allow broadcast messages to be fragmented, returning a EMSGSIZE error in this case.

If the datagram passes all these tests, and is small erough to be sent in one chunk, then the sys-
tem calls the output routine for the particular hardware interface to transmit the packet. The
interface may give an error indication, which is reflected to IP output’s caller; see the various
interface’s documentation for a description of the errors which they may encounter. If a
datagram is to be fragmented, it may have the IP_DF (don't fragment) flag set (although
currently this can happen only for forwarded datagrams). If it does, them the datagram will be
rejected (and result in an ICMP error datagram). If the system runs out of buffer space in frag-
menting a datagram then a ENOBUF'S error will be returned.

IP provides a space of 255 protocols. The known protocols are defined in <netinetfin.h>. The
ICMP, TCP, UDP and ND protocols are processed internally by the system; others may be
accessed through a raw socket by doing:

s = socket(AF_INET, SOCK_RAW, IPPROTO_xxx);

Datagrams sent from this socket will have the current host’s address and the specified protocol
number; the raw IP driver will construct an appropriate header. When IP datagrams are received
for this protocol they are queued on the raw socket where they may be read with recufrom; the
source IP address is reflected in the received address.

SEE ALSO

BUGS

send(2), recv(2), inet(4¥)
Internet Protocol, RFC791, USC-ISI (Sun 800-1063-01)-

One should be able to send and receive IP options.

Raw sockets should receive ICMP error packets relating to the protocol; currently such packets
are simply discarded.

Sun Release 1.1 Last change: 17 August 1983 25

IP (45)

NAME

SPECIAL FILES IP(45)

ip — Disk driver for Interphase 2180 SMD Disk Controller

SYNOPSIS :

controller ipcD at mb0 car 0x40 priority 2
disk 1p0 at ipcO drive 0
disk 1pl at 1pe0 drive 1

DESCRIPTION

Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8
through 15 refer to drive 1, and so on. The standard device names begin with “ip”’ followed by
the drive number and then a letter a-h for partitions 0-T respectively. The character ? stands
here for a drive number in the range 0-7.

The block file's access the disk via the system’s normal buffering mecharism and may be read and
written without regard to physical disk records. There is also a ‘raw’ interface which provides for
direct transmission between the disk and the user’s read or write buffer. A single read or write
call results in exactly one IfO operation and therefore raw I1/O is considerably more effficient
when many words are transmitted. The names of the raw files conventionally begin with an extra
lr.l

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seck calls should
specify a multiple of 512 bytes.

DISK SUPPORT

This driver handles all SMD drives, by reading a label from sector 0 of the drive which describes
the disk geometry and partitioning.

The ip?a partition is normally used for the root file system on a disk, the ip?b partition as a pag-
ing area, and the ip?c partition for pack-pack copying (it normally maps the entire disk). The
rest of the disk is normally the ip?h partition.

FILES
/dev [ip[0-7]|a-h} block files
Jdev [rip[0-7]|[a-h] raw files
SEE ALSO

dkio(48), xy(45)
“Interphase SMD2180 Storage Module Controller/Formatter — User's Guide” (Sun 800-0274)

DIAGNOSTICS

26

ip%d: SMD-2180. When booting tells the controller type.

ip%ds Inltialization falled. Because the controller didn't respond; perhaps another device is at
the address the system expected 2n Interphase controller at.

ip%d: error %x reading label on head %d. Error reading drive geometry/partition table
information.

ip%d: Corrupt label on head 25d. The geometry /partition label checksum was incorrect.

ip%d: Misplaced label on head %%d. A disk label was copied to the wrong head on the disk;
shoudn't happen.

ip%d: Unsupported phys partition # %6d. This indicates a bad label,
1p%d: unit not online.

Ip%d%ec: cmd how (msg) blk %5d. A command such as read, write, or format encountered a
error condition (how): either it failed, the unit was restored, or an operation was refry’ed. The
meg is derived from the error number given by the controller, indicating a condition such as
‘‘drive not ready’’, ‘“‘sector not found" or *‘disk write protected’.

Last change: 20 March 1984 Sun Release 1.1

o

o

IP(45) SPECIAL FILES IP (45)

BUGS _
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles
on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read,
write and lseek(2) should always deal in 512-byte multiples.

The driver no longer supports versions of the 2181.

Sun Release 1.1 Last change: 20 March 1984 27

KB(45) SPECIAL FILES KB(4S)

NAME

kb - Sun keyboard

SYNOPSIS

peeudo-device kb3

DESCRIPTION

FILES

Kb provides access to the Sun workstation keyboard translation. Definitions for alterring key-
board translation are in <sundev/kbio.h> and <sundev/kbd.h>.

The call KIOCTRANS controls the presence of keyboard translation:

int x; '
err = ioctl(fd, KIOCTRANS, &x);

where if zis 0 the keyboard tranlation is turned off and up/down key codes are reported. Speci-
fying z as 1 restores normal keyboard translations.

The call KIOCSETKEY changes a keyboard {ranslation table entry:

struct kiockey {
int kio_tablemask; /* Translation table (one of: 0, CAPSMASK,
SHIFTMASK, CTRLMASK, UPMASK) */
u_char kio_station; /* Physical keyboard key station {0-127) */
u_char kio_entry; /* Translation table station’s entry */
char kio_string[10]; /* Value for STRING entries (null terminated) */

b

struct kiockey key;
err = joct}(fd, KIOCSETKEY, &key);

Set kio_tablemask table's kio_station to kio_entry. Copy kio_string to string table if kio_entry is
between STRING and STRING+ 15. This eall may return EINVAL if there are invalid argu-
ments.

The call KIOCGETKEY determines the current value of a keyboard translation table entry:

struct kiockey key;
err = joctl(fd, KIOCGETKEY, &key);

Get kio_tablemask table's kio_sialion to kio_eniry. Get kio_string from string table if kio_eniry is
between STRING and STRING+ 15. This call may return EINVAL if there are invalid argu-
ments.

[dev/kbd

SEE ALSO

28

kbd(5)

Last change: 21 March 1984 Sun Release 1.1

LO(4N) ' SPECIAL FILES LO(4N)

NAME
lo - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop device is a software loopback network interface; see #f(4N} for a general description of
network interfaces. :

The loop interface is used for performance analysis and software testing, and to provide
guaranteed access to Internet protocols on machines with no local aetwork interfaces. A typical
application is the comeat{8C) server which accepts notification of mail delivery through a particu-
lar port on the loopback interface.

By default, the loopback interface is accessible at Internet address 127.0.0.1 (non-standard); this
address may be changed with the SIOCSIFADDR ioctl.

DIAGNOSTICS
109%d: can't handle af9%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO
if(4N), inet(4F)

BUGS .
It should handle all address and protocol families. An approved network address should be
reserved for this interface.

Sun Release 1.1 Last change: 17 August 1983 29

MB (4S) SPECIAL FILES MB(45)

NAME @

mb — Multibus

SYNOPSIS
controller mb0 at nexus T

DESCRIPTION
The mb device is the driver for the Intel Multibus(R), which provides support functions to the
varjous devices which can reside there. It vectors interrupts to the Multibus devices according to
the pricrity level of the interrupt received and queues requests for dma when there are insuflicient
resources to service the request or to allow certain dma’s to proceed exclusively. It also imple-

ments byte swapping to/from deficient devices.

DIAGNOSTICS
Ncene.

SEE ALSO
ar(48), cg(4S), ip(4S), ms(4S), oct(4S), tm{4S), vp{4S), xy(4S), 28(4S)
Intel Multibus(R) Specification, Order Number 9800683-04 (Sun 800-1057-01)

30 Last change: 11 August 1983 Sun Release 1.1

MEM(4S) SPECIAL FILES MEM(4S)

NAME

mem, kmem, mbmem, mbio — mair memory and IfO space
SYNOPSIS

None; included with standard system.
DESCRIPTION

These devices are special files that map memory and bus ifo space. They may be read, written,
seek’ed and (except for kmem) mmap(2)ed.

Mem is a special file that is an image of the physical memory of the computer. It may be used,
for example, to examine (and even to patch) the system.

Kmem is a special file that is an image of the kernel virtual memory of the system.

Mbmem is a special file that is an image of the Multibus memory of the system. Multibus
memory is in the range from 0 to 1 Megabyte.

Mbio is a special flle that is an image of the Multibus 1/O space. Multibus 1/O space extends
from 0 to 64K,

When reading and writing mbmem and mbio odd counts or offsets cause byte accesses and even
counts and offsets cause word accesses.

DIAGNOSTICS
None,

FILES
Jdev/mem
/dev [kmem
/dev/mbmem

O Jdev/mbio

-

Sun Release 1.1 Last change: 11 August 1983 31

MOUSE (45) SPECIAL FILES MOUSE (4S)

NAME

mouse - Sun mouse

SYNOPSIS

pseudo-device ms3

DESCRIPTION

FILES

‘The mouse interface provides access to the Sun Workstation mouse.

The mouse incorporates a microprocessor which generates a byte-stream protocol encoding mouse
motions.

Each mouse sample in the byte stream consists of three bytes: the first byte gives the button state
with value 0x87| but, where but is the low three bits giving the mouse buttons, where a 0 (zero)
bit means that a button is pressed, and a 1 (one) bit means a button is not pressed. Thus if the
left button is down the value of this sample is 0x83, while if the right button is down the byte is
0x886.

The next two bytes of each sample give the z and y delia's of this sample as signed bytes. The
motuse uses a lower-left coordinate system, so moves to the right on the screen yield positive 2
values and moves down the screen yield pegative y values.

The beginning of a sample is identifiable because the delta’s are constrained to not have values in
the range Ox80-0x87. :

Jdev Jmouse

SEE ALSO

32

win(4S5)
Mouse System Mouse Manual {Sun 800-0419)
User's Guide for the Sun Workstation Mouse Subsystem (Sun 800-0402)

Last change: 21 March 1984 Sun Release 1.1

-

@

O

MTI(45) SPECIAL FILES MTI(45)

NAME
mti — Systech MTI-800/1600 multi-terminal interface

SYNOPSIS
device mti0 at mb0 car 0x620 flags OxfTiY priority 4

DESCRIPTION
The Systech MTI card provides 8 {MTI-800) ot 16 (MTI-1600) serial communication lines with
modem control. Each line behaves as described in #y(4). Input and output for each line may
independently be set to run at any of 16 speeds; see f#y(4) for the encoding.

Bit i of flage may be specified to say that a line is not properly connected, and that the line &
should be treated as hard-wired with carrier always present. Thus specifying “flags 0x0004" in
the specification of mti0 would cause line tty02 to be treated in this way.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing
calls, a special feature, controlled by the minor device number, has been added. Minor device
numbers in the range 0 ~ 127 correspond directly to the normal tty lines and are named ¢ty
Minor device numbers in the range 128 — 256 correspond to the same physical lines 28 those above
{i.e. the same line as the minor device number minus 128) and are (conventionally) named cug®.
The cus lines are special in that they can be opened even when there is no carrier on the line.
Once a cua line is opened, the corresponding tty line can not be opened until the cus line is
closed. Also, if the tiy line has been opened successfully (usually only when carrier is recognized
on the modem) the corresponding cua line can not be opened. This allows a modem to be
attached to /devfity00 (usually renamed to [dev/ttyd0) and used for dialin (be enabling the line
for login in /efc/tiys) and also used for dialout (by tip(1C) or uucp(1C)) as /dev/cuad when no one
is logged in on the line. Note that the bit in the flags word in the config file (see above) must be
zero for this line.

WIRING ‘
The Systech requires the CTS modem control signal to operate.. If the device does not supply
CTS then RTS should be jumpered to CTS at the distribution panel. Also, the CD (carrier
detect) line does not work properly. When connecting a2 modem, the modem’s CD line should be
wired to DSR, which the software will treat as carrier detect.

FILES
[dev/tty0[0-9a-f] hardwired tty lines
/dev /ttyd[0-9a-f] dialin tty lines
/dev/cua[0-9a-f] dialout tty lines
SEE ALSO
tty(4), zs(4S)

DIAGNOSTICS
Most of these diagnostics ‘‘should never happen’ and their occurrence usually indicates problems
elsewhere in the system.

mt1%d,%d: silo overflow. More than 512 characters have been received by the mti hardware
without being read by the software. Extremely unlikely to occur.

mti%5ds error %x. The mti returned the indicated error code. See the mti manual.
mti%d: DMA. output error. The mti encountered an error while trying to do DMA output.

mti%d: impossible response %x. The mti returned of flags may be specified to say that a line
is not From marty@ufo Sat Feb 25 16:04:52 1984

Sun Release 1.1 Last change: 16 February 1984 as

MTIO (4) SPECIAL FILES MTIO(4)

NAME

mtio - UNIX magnetic tape interface

SYNOPSIS

#include <sysfioetLh>
#include <sys/mtio.h>

DESCRIPTION

34

The files mtd, ..., mt15 refer to the UNIX magtape drives, which read and write magnetic tape in
2048 byte blocks. (The 2048 is actually BLKDEV_IOSIZE in <sys/param.h>.) The following
description applies to any of the transport/controller pairs. The files mt0, ..., mt8 and mi8, ...,
mtll are rewound when closed; the others are not. When a file open for writing is closed, two
end-of-files are written. If the tape is not to be rewound it is positioned with the head between
the two tapemarks,

The mi Bles discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records are
to be read or written, the ‘raw' interface is appropriate. The associated files are named rmit0, ...,
rmti5, but the same minor-device considerations as for the regular files still apply. A number of
other ioct] operations are available on raw magnetic tape. The following definitions are from
< sys/mtio.h>:

*

* Structures and definitions for mag fape io control commands

*f

[* structure for MFIOCTOP - mag tape op command */
struct mtop {

short mt_op; /* operations defined below */
daddr_tmt_count; /* how many of them */

b

/* operations */

ffdefine MTWEOF /* write an end-of-file record */
fidefine MTFSF /* forward space file */
#define MTBSF /* backward space file */
##define MTFSR /* forward space record */

ftdefine MTBSR
#tdefine MTREW
#define MTOFFL
#define MTNOP

[* backward space record */

[* rewind */

J* rewind and put the drive offline */
J* no operation, sets status only */

ST W= O

/* structure for MTIOCGET - mag tape get status command */

struct mtget {

short mt_type; /* type of magtape device */
/* the following two registers are grossly device dependent */
short mt_dsreg; /* “drive status’’ register */
short mt_erreg; J* “error” register */
/* end device-dependent registers */
short mt_resid; /* residual count */
/* the following two are not yet implemented */
daddr_t mt_fileno; /* file number of current position */
daddr_t mt_blkno; /* block number of current position */
/* end not yet implemented */

5

Last change: 20 March 1984 Sun Release 1.1

-

&

FILES

MTIO (4) SPECIAL FILES MTIC (4)

L]
* Constants for mt_type byte

L

#define MT_ISTS 0x01 [* vax: unibus ts-11 */

f#define MT_ISHT 0x02 /* vax: massbus tu77, etc */

#define MT_ISTM 0x03 /* vax: unibus tm-11 */

#fdefine MT_ISMT 0x04 /* vax: massbus tu78 */

#fdefine MT_ISUT 0x05 /* vax: unibus ger */

##define MT_ISCPC 0x08 /* sun: Multibus tapemaster */
¥tdefine MT_ISAR 0x07 /* sun: Multibus archive */

/® mag tape io control commands */

¥fdefine MTIOCTOP _IOW(m, 1, struct mtop) /* do a mag tape op */
#define MTIOCGET _IOR(m, 2, struct mtget) /* get tape status */
#ifndef KERNEL

#define DEFTAPE " [dev/rmt12”

#endif

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buffer given. During a read, the record size is passed back 2s the
number of bytes read, provided it is no greater than the bufler size. In raw tape 1fO seeks are
ignored. A zero byte count is returned when a tape mark is read, but another read will fetch the
first record of the new tape file.

[dev /mt?
Jdev/rmt?
[dev [rar?

SEE ALSO

mt(1), tar(1), ar(4S), tm(4S)

Sun Release 1.1 Last change: 20 March 1984 35

ND(4P) SPECIAL FILES ND(4P)

NAME
nd — network disk driver

SYNOPSIS
pseudo-device nd

DESCRIPTION
The network disk device, /dev/nd*, allows a client workstation to perform disk IO operations on a
server system, over the network. To the client system, this device looks like any normal disk
driver: it allows read/write operations at a given block number and byte count. Note that this
provides a network digk block access service rather than a network file access service.

Typically the client system will have no disks at all. In this case /dey/nd0 contains the client’s
root file system (including fusr files), and nd! is used as a paging area. Client access to these dev-
ices is converted to net disk prolocol requests and sent to the server system over the network.
‘The server receives the request, performs the actual disk 10, and sends a response back to the
client.

‘The server contains a table which lists the net address of each of his clients and the server disk
partition which corresponds to each client unit number (nd0,1,...). This table resides in the server
kernel in a structure owned by the nd device. The table is initialized by running the program
[ete[nd with text file [etc/nd.local as its input. [etc/nd then iasues iocti(2) functions to load the
table into the kernel.

In addition to the read/write units [devfnd®, there are public read-only units which are named
[dev/ndp*. The correspondence to server partitions is specified by the [etc/nd.local text file, in a
similar manner to the private partitions. The public units can be used to provide shared access to
binaries or libraries (/bin, fusr/bin, fust/ucb, fust/lib) so that each diskless client does not have
to waste space in his private partitions for these files. This is done by providing a public file sys-
tem at the server (/dev/ndp0) wkich is mounted on ‘/pub’ of each diskless client. The clients
then use symbolic links to read the public files: /bin -> /pub/bin, fusr/uch -> [pub/usr/uch.
One requirement in this case is that the server (who has read/write access to this file system)
should not perform write activity with any public filesystem. This is because each client is locally
cacheing blocks.

Onpe last type of unit is provided for use by the server. These are called local units and are
named [dev/ndi*. The Sun physical disk sector 0 label only provides a limited number of parti-
tions per physical disk (eight). Since this number is small and these partitions have somewhat
fixed meanings, the nd driver itself has a subpartitioning capability built-in. This allows the large
server physical disk partition {e.g. /dev/zy0g)} to be broken up into any number of diskless client
partitions. Of course on the client side these would be referenced as fdev/nd0,1,... ; but the
server needs to reference these client partitions from time to time, to do mkfs(8) and fack(8) for
example. The /dev/ndi* entries allow the server ‘local’ access to his subpartitions without causing
any net activity. The actual local unit number to client unit number correspondence is again
recorded in the [etc/nd.local text file.

The nd device driver is the same on both the client and server sides. There are no user level
processes associated with either side, thus the latency and transfer rates are close to maximal.

The minor device and ioctl encoding used is given in file <sun/ndio.hA>. The low six bits of the
minor number are the unit number. The 0x40 bit indicates a public unit; the 0x80 bit indicates a
{ocal unit.

INITIALIZATION
No special initialization is required on the client side; he finds the server by broa.dcaatmg the ini-
tial request. Upon getting a response, he locks onto that server address.

At the server, the nd(8c) command initializes the network disk service by issuing ioctl’s to the
kernel.

36 Last change: 20 March 1984 Sun Release 1.1

©

ND(4P) SPECIAL FILES ND (4P)

ERRORS

Generally physical disk 10 errors detected at the server are returned to the client for action. If
the server is down or unaccessable, the client will see the console message file server not respond-
ing: olill trying. The client continues (forever) making his request until he gets positive ack-
nowledgement from the server. This means the server can crash or power down and come back
up without any special action required of the user at the client machine. It also means the pro-
cess performing the 10 to nd will block, insensitive to signals, since the process is sleeping inside
the kernel at PRIBIC.

PROTOCOL AND DRIVER INTERNALS

The protocol packet is defined in < sun/ndio.h> and also included below:
»

* 'nd’ protocol packet format.
*

struct ndpack {
struct ip np_ip; /* 1p header, proto IPPROTO_ND */

u_char np_op; /* operation code, see below */
u_char np_min; /* minor device */

char np_error; /* b_error */

char np_verj /* version number */

long np_seq; /* sequence number */

long np_blkno; /* b_blkno, disk block number */

long np_beount; /* b_beount, byte count */

long np_resld; /* b_resld, residual byte count */

long np_eaddr;]* current byte offset of this packet */
long np_ccount; /* current byte count of this packet */

b /* data follows */

/* np_op operation codes. */

#define NDOPREAD 1 J* read */

#define NDOPWRITE 3 1 write ¥/

#define NDOPERROR] /* exror */

#define NDOPCODE 7 [/* opcode mask */

#defilne NDOPWAIT 010 /* walting for DONE or next request */
#define NDOPDONE 020 /* operation done */

/* mise protocol defines. ¥/
#deflne NDMAXDATA 1024 /* max data per packet */
#define NDMAXIO 083%1034 J* max np_beount */

IP datagrams were chosen instead of UDP datagrams because only the IP header is checksummed,
not the entire packet as in UDP. Also the kernel level interface to the IP layer is simpler. The
min, blkno, and beount fields are copied directly from the client's strategy request. The sequence
number field #¢¢ is incremented on each new client request and is matched with incoming server
responses. The server essentially echos the request header in his responses, altering certain flelds.
The caddr and ccount fields show the current byte address and count of the data in this packet, or
the data expected to be sent by the other side.

The protocol is very simple and driven entirely from the client side. As soon as the client ndstra-
tegy rouiine is called, the request is sent to the server; this allows disk sorting to occur at the
server as soon as possible. Transactions which send data (client writes on the client side, client
reads on the server side) can only send a set number of packets of NDMAXDATA bytes each,
before waiting for an acknowledgement. The defaults are currently set at 6 packets of 1K bytes
each; the NDIOCETHER ioct]l allows setting this value on the server side. This allows the

Sun Releasp 1.1 Last change: 20 March 1984 a7

ND(4P) SPECIAL FILES ND (4P)

normal 4K byte case to occur with just one ‘transaction’. The NDOPWAIT bit is set in the op
field by the sender to indicate he will send no more until acknowledged (or requested) by the
other side. The NDOPDONE bit is set by the server side to indicate the request operation has
completed; for both the read and write cases this means the requested disk IO has actually
occured,

Requests received by the server are entered on an active list which is timed out and discarded if
not completed within NDXTIMER seconds. Requests received by the server allocate a bcount size
buffer to minimize buffer copying. Contiguous DMA disk IO thus occurs in the same size chunks
it would if requested from a local physical disk.

BOOTSTRAP

The Sun workstation has PROM code to perform a net boot using this driver. Usually, the boot
files are obtained from public device 0 (/dev/ndp0) on the server with which the client is
registered; this allows multiple servers to exist on the same net {even running different releases of
kernel and boot software). If the station you are booting is not registered on any of the servers,
you will have to specify the hex Internet host number of the server in the boot command atring
(e.g.): ‘bec(0,5,0)vmunix’.

This booting performs exactly the same steps involved in a real disk boot which are:

1) user types ‘b' to PROM monitor.

2) PROM loads blocks 1 thru 15 of /dev/ndp0 (bootpr).

3) bootnd loads ‘/boot’.

4) [boot loads ‘/vmunix’.

SEE ALSO

BUGS

ioct}(2), nd(8C)

The operations described in dkio(4) are not supported,

The local host’s disk buffer cache is not used by network disk access. This means that if either a
focal host or a remote host is writing, the changes will be visible at random based on the cache hit
frequency on the local host. If both the local and remote hosts are writing to the same filesysiem,
one machine’s changes can be randomly lost, based again on cache hit and deferred write timings.

It an R/O remote file system is mounted R/W by mistake, it is impossible to umount it.

Last change: 20 March 1984 Sun Release 1.1

-

NULL (4) SPECIAL FILES NULL (4)

NAME
null - data sick

SYNOPSIS
None; included with standard system.

DPESCRIPTION i
Data written on a null special file is discarded.

Reads from a null special file always return an end-of-file indication.

FILES
Jdev fnull

-

Sun Releasp 1.1 Last change: 17 August 1983 39
o

OCT(4S) SPECIAL FILES , OCT(4S)

NAME
oct — Central Data octal serial card

SYNOPSIS o _
device oct0 at mb0 csr 0x520 flags Oxff priority £

DESCRIPTION '
The Central Data card provides 8 serial communication lines with modem confrol. Each line
behaves as. described in ty(4). Input and output for each line may independently be set to rum at
any of 16 speeds; see tip(4) for the encoding. - ' '
Bit ¢ of flags may be specified to say iliat a line is not properly connected, and that the line ¢
should he treated as hard-wired with carrier always present. Thus specilying “flags 0x0004” in
the specification of octd would cause line ttym2 to be treated in this way.

FILES
[dev/tiy[mnol[0-0a-f]
[dev fttyd{0-9a-f]
SEE ALSO-

tty(4), zs(4S)
Hardware Reference Manual; Octal Serial Interface; Central Data Corporation (Sun 800-0418)

DIAGNOSTICS
None.

BUGS
Input data overruns are silently ignored.

This interrupt-per-character, non-buffered device is expensive in terms of system overhead.

This driver is not supported.

40 " Last change: 11 August 1983 Sun Release 1.1

LT BTG TAL GRS B RN

-

PTY(4) SPECIAL FILES PTY (4)

NAME ;
pty — pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The piy driver provides support for a pair of devices collectively known as a peeudo-terminal.
The two devices comprising a pseudo-terminal are known as a msster and a slgve. The slave dev-
ice provides an interface identical to that described in fty{4), but instead of having a hardware
interface such as the Zilog chip and associated hardware used by z8(4S) supporting the terminal
functions, the functions of the terminal are lmplemented by another process mampula.tmg the
master side of the pseudo-terminal.

The master and the slave sides of the pseudo-terminal are tightly connected. Any data written on
the master device is given to the slave device as input, as though it had been received from a
hardware interface. Any data written on the slave terminal can be read from the master device
(rather than being transmitted from a UART).

In configuring, if no optional ‘'count™ is given in the specification, 16 pseudo terminal pairs are
configured.

A few special ioctl's are provided on the control-side devices of pseudo-terminals to provide the
functionality needed by applications programs to emulate real hardware interfaces:

TIOCSTOP
Stops output to a terminal (that is, like typing "S). Takes no parameter.

TIOCSTART
Restarts output {stopped by TIOCSTOP or by typing “Q). Takes no parameter.

There are also two independent modes which can be used by applications programs:

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a
nonzero parameter and disabled by specifying (by reference) a zero parameter. When
applied to the master side of a pseudo terminal, each subsequent resad from the terminal
will return data written on the slave part of the pseudo terminal preceded by a zero byte
(symbolically defined as TIOCPKT_DATA), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT_FLUSHREAD
whenever the read queue for the terminal is flushed.

' TIOCPKT_FLUSHWRITE
whenever the write queue for the terminal is filushed.

TIOCPKT_STOP'
whenever sutput to the terminal is stopped a Ia °S.

TIOCPKT_START
whenever output to the terminal is restarted.

TIOCPKT_DOSTOP
whenever t_stopcis °S and ¢_starteis "Q.

TIOCPKT_NOSTOP
whenever the start and stop characters are not “S/"Q.

This mode is used by rlogin(1C) and rlogind(8C) to implement a remote-echoed, locally
*S/°Q flow-controlled remote login with proper back-flushing of output when interrupts
occur; it can be used by other similar programs.

TIOCREMOTE

Sun Release 1.1 Last change: 20 March 1984 43

PTY(4) SPECIAL FILES PTY(4)

FILES

BUGS

42

A mode for the master half of a pseudo terminal, independent of TIOCPKT. This mode
causes input to the pseudo terminal to be flow controlled and not input edited (regardless
of the terminal mode). Each write to the control terminal produces a record boundary for
the process reading the terminal. In normal usage, a write of data is like the data typed
as a line on the terminal; a write of 0 bytes is like typing an end-of-file character.
TIOCREMOTE can be used when doing remote line editing in a windew manager, or
whenever flow controlled input is required.

[dev/pty[p-r]|0-9a-f] master pseudo terminals
/dev ftty|p-r][0-9a-f] slave pseudo terminals

1t is apparently not possible to send an EOT by writing zero bytes in TIOCREMOTE mode.

Last change: 20 March 1984 Sun Release 1.1

C

C

ROUTING (4N) SPECIAL FILES ROUTING (4N)

NAME

routing — system supporting for local network packet routing

DESCRIPTION

The network facilities provided gemeral packet routing, leaving routing table maintenance to
applications processes.

A simple set of data structures comprise 2 ‘‘routing table” used in selecting the appropriate net-
work interface when transmitting packets. This table contains a single entry for each route to a
specific network or host. A user process, the routing daemon, maintains this data base with the
aid of two socket specific ioctl{2} commands, SIOCADDRT and SIOCDELRT. The commands
allow the addition and deletion of a single routing table entry, respectively. Routing table mani-
pulations may only be carried out by super-user.

A routing table entry has the following form, as defined in <net/route.h>;

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
‘u_long rt_use;
struct ifnet *rt_ifp;

h
with ri_flags defined from,

ftdefine RTF_UP ox1 [* route usable */
fidefine RTF_GATEWAY 0x2 /* destination is a gateway */
#define RTF_HOST Ox4 /* host entry (net otherwise) */

Routing table entries come in three flavors: for a specific host, for all hosts on a specific network,
for any destination not matched by entries of the first two types (a wildcard route). When the
gystem is booted, each network interface autoconfigured installs a routing table entry when it
wishes to have packets sent through it. Normally the interface specifies the route through it is a
“direct” connection to the destination host or network. If the route is direct, the transport layer
of a protocol family usually requests the packet be sent to the same host specified in the packet.
Otherwise, the interface may be requested to address the packet to an entity different from the
eventual recipient {i.e. the packet is forwarded).

Routing table entries installed by a user pfocess may not specify the hash, reference count, use, or
interface fields; these are filled in by the routing routines. If a route is in use when it is deleted
{rt_refent is non-zero), the resources associated with it will not be reclaimed until further refer-
ences to it are released.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if requested
to delete a non-existant entry, or ENOBUFS if insufficient resources were available to install a
new route.

User processes read the routing tables through the /dev/kmem device.

The ri_use field contains the number of packets sent along the route. This value is used to select
among multiple routes to the same destination. When multiple routes to the same destination
exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are
used only when the system fails to find a route to the destination host and network. The combi-
pation of wildeard routes and routing redirects can provide an economical mechanism for routing

Sun Release 1.1 Last change: 15 August 1983 43

ROUTING{ 4N) SPECIAL FILES ROUTING (4N)

traffic. @

SEE ALSO
route(8C), routed(8C)

44 Last change: 15 August 1983 Sun Release 1.1

C

SD{45) SPECIAL FILES SD(4S)

NAME
sd - Disk driver for Adaptec ST-506 Disk Controllers

SYNOPSIS
controller sc0 at mb0 esr 0x80000 priority 2
disk sd0 at sc0 drive O flags 0
disk sdl at scO drive 1 flags 0

DESCRIPTION
Files with minor device numbers O through 7 refer to various portions of drive 0. The standard
device names begin with “‘sd’’ followed by the drive number and then a letter a-h for partitions
0-7 respectively. The character ? stands here for a drive number in the range 0-7.

The block file’s access the disk via the system’s normal buflering mechanism and may be read and
written without regard to physical disk records. There is also a ‘raw’ interface which provides for
direct transmission between the disk and the user’s read or write buffer. A single read or write
call results in exactly one IfO operation and therefore raw 1/O is considerably more effficient
when many words are transmitted. The names of the raw files conventionally begin with an extra
lr.l

In raw 1/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPORT
This driver handles all ST-506 drives, by reading a label from sector O of the drive which
describes the disk geometry and partitioning.

The sd?a partition is normally used for the root file system on a disk, the sd?b partition as a pag-
ing area, and the sd?c partition for pack-pack copying (it normally maps the entire disk). The
. test of the disk is normally the sd?h partition.

FILES

/dev [sd[0-7][a-h] block files

/dev fred[0-7][a-h] raw files
SEE ALSO

dkio(4S)

Adaptec ACB 4000 and 5000 Series Disk Controllers OEM Manual
DIAGNOSTICS

sd%d%%c: cmd how (msg) blk %5d. A command such as read or write encountered a error condi-
tion (how): either it failed, the unit was restored, or an operation was reiry'ed. The msg is
derived from the error number given by the controller, indicating a condition such as “drive not
ready"” or “sector not found"'.

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles
on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read,
write and lseek(2) should always deal in 512-byte multiples.

Sun Release 1.1 Last change: 9 March 1934 45

i

ST(45) SPECIAL FILES ST(4S)

NAME
st — Driver for Sysgen SC 4000 (Archive) Tape Controller

SYNOPSIS
controller sc0 at mb0 car 0x80000 priority 2
tape st0 at scO drlve 32 flags 1

DESCRIPTION
The Sysgen tape controller is a SCSI bus interface to an Archive streaming tape drive. It pro-
vides a standard tape interface to the device, see mtio(4), with some deficiencies listed under
BUGS below.

FILES
Jdev ftst0
Jdev /nrst0 non-rewinding

SEE ALSO
mtio(4), tm(4S)
Sysgen SC4000 Intelligent Tape Controller Product Specification
Archive Intelligent Tape Drive Theory of Operation, Archive Corporation (Sun 8000-1058-01}
Archive Product Manual (Sidewinder 1/4” Streaming Cartridge Tape Drive) (Sun 800-0628-01)

DIAGNOSTICS
st%%d: tape not online.

st%ds no cartridge in drive.
st%%d: eartridge is write protected.

BUGS
The tape cannot reverse direction so BSF and BSR are not available.

Disk I/O over the SCSI bus will be mostly blocked out when the tape is in use. This is because
the controller does not free the bus while the tape is in motion (even during rewind).

When using the raw device, the number of bytes in any given transfer must be a multiple of 512
bytes. If it is not, the device driver returns an error.

46 Last change: 9 March 1984 Sun Release 1.1

C

C

TCP (4P) SPECIAL FILES TCP (4P)

NAME
tcp — Internet Transmission Control Protocol

SYNOPSIS
None; comes automatically with inet(4F).

DESCRIPTION

TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarch
of protocels which support multi-network applications. TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to distinct but intercon-
nected computer communication networks. Very few assumptions are made as to the reliability
of the communication protocols below TCP layer. TCP assumnes it can obtain a simple, poten-
tially unreliable datagram service from the lower level protocols. In principle, TCP should be
able to operate above a wide spectrum of communication systems ranging from hard-wired con-
nections to packet-switched or circuit switched networks.

TCP fits into a layered protocol architecture just abave the basic Internet Protocol {IP) described
in ip(4P) which provides a way for TCP to send and receive variable-length segments of informa-
tion enclosed in Internet datagram ‘“‘envelopes.”” The Internet datagram provides a means for
addressing source and destination T'CPs in different networks, deals with any fragmentation or
reassembly of the TCP segments required to achieve transport and delivery through multiple
netwokrs and interconnecting gateways, and has the ability to carry information on the pre-
cedence, security classification and compartmentalization of the TCP segments (although this is
not cusrently implemented under UNIX.)

An application process interfaces to TCP through the sockef(2) abstraction and the related calles
bind(2), listen(2), accept(2), connect(2), send(2) and recv(2). The primary purpose of TCP is to
provide a reliable bidirectional virtual circuit service between pairs of processes, In general, the
TCP's decide when to block and forward data at their own convenience. In the UNIX implemen-
tation, it is assumed that any buffering of data is done at the user level, 2nd the TCP’s transmit
available data as soon as possible to their remote peer. They do this and always set the PUSH bit
indicating that the transferred data should be made available to the user process at the remote
end as soon as practicable.

To provide reliable datza TCP must recover from data that is damaged, lost, duplicated, or
delivered out of order by the underlying internet communications system. This is achieved by
assigning a sequence number to each byte of data transmitted and requiring 2 positive ack-
nowledgement from the receivicg TCP. If the ACK is not received within an (adaptively deter-
mined) timeout interval the data is retransmitted. At the receiver, the sequence numbers are
used to correctly order segments that may be received out of order and to eliminate duplicates.
Damage is handled by adding a checksum to each segment transmitted, checking it at the
receiver, and discarding damaged segments. As long as the TCP's continue to function properly
and the internet system does nqt become completely partitioned, no tranmission errors will affect
the correct delivery of data, as TUP recovers from communications errors.

TCP provides flow control ove; the transmitted data. The receiving TCP is allowed to specify
the amount of data which may be sent by the sender, by returning a window with every ack-
nowledgement indicating a range of acceptable sequence numbers beyond the last segment suc-
cessfully received. The window indicates an allowed number of bytes that the sender may
transmit before receiving further permission.

TCP extends the standard 32-bit Internet host addresses with a 16-bit port number space; the
combined addresses are available at the UNIX process level in the standard seckaddr_in format
described in inet(4F).

Sockets utilizing the tcp protocol are either ‘‘active’” or 'passive”. Active sockets initiate connec-
tions to passive sockets. By default TCP sockets are created active; to create a passive socket the
listen(2) system call must be used after binding the socket to an address with the dind(2) system

Sun Release 1.1 Last change: 17 August 1933 47

TCP (4P) SPECIAL FILES TCP (4P)

call. Only passive sockets may use the accepé(2) call to accept incoming conmections. Only
active sockets may use the connect(2) call to initiate connections.

Passive sockets may “underspecify'’ their location to match incoming connection requests from
multiple networks. This technique, termed “wildcard addressing’, allows a single server to pro-
vide service to clients on multiple networks. To create a socket which listens on all networks, the
Internet address INADDR_ANY must be bound. The TCP port may still be specified at this
time; if the port is not specified the system will assign one. Once a connection has been esta-
blisked the socket’'s address is fixed by the peer entity's location. The address assigned the
socket is the address associated with the network interface through which packets are being
transmitted and received. Normally this address corresponds to the peer entity’s network. See
inet(4F) for a complete description of addressing in the Internet family.

A TCP connection is created at the server end by doing a sockef(2), a bind(2) to establish the
address of the socket, a listen(2) to cause connection queucing, and then an accep?(2) which
returns the descriptor for the socket. A client connects to the server by doing a socket(2) and
then a connect(2). Data may then be sent from server to client and back using read{2) and
write(2).

TCP implements a very weak out-of-band mechanism, which may be invoked using the out-of-
band provisions of send(2). This mechanism allows setting an urgent pointer in the data stream;
it is reflected to the TCP user by making the byte after the urgent pointer available as out-of-
band data and providing a SIOCATMARK ioct] which returns an integer indicating whether the
stream is at the urgent mark. The system never returns data across the urgent mark in a single
read. Thus when a SIGURG signal is received indicating the presence of out-of-band data and
the out-of-band data indicates that the data to the mark should be flushed (s in remote terminal
processing) it suffices to loop checking whether you are at the out-of-band mark, and reading data
while you are not at the mark.

SEE ALSO

BUGS

48

inet(4F), ip(4P)

It should be possible to send and receive TCP options.

The system always tries to negotiates the maximum. TCP segment size to be 1024 bytes. This
can result in poor performance if an intervening network performs excessive fragmentation.

SIOCSHIWAT and SIOCGHIWAT ioctl’'s to set and get the high water mark for the socket
queue, and so that it can be changed from 2048 bytes to be larger or smaller, have been defined
(in <sysfioctl.h>) but not implemented.

Last change: 17 August 1983 Sun Release 1.1

-

-

-

TM(45) SPECIAL FILES TM(4S)

NAME
tm - tapemaster 1/2 inch tape drive

SYNOPSIS
controller tm0 at mb0 csr 0xa0 priority 3
tape mt0 at tm0 drive O flags 1

DESCRIPTION
The Tapemaster tape controller controls Pertec-interface 1/2” tape drives such as the CDC Key-
stone, providing a standard tape interface to the device, see mtio(4).

SEE ALSO
mt(1), tar(1}, ar(4S)
CPC Tapemaster Product Specification (Sun 800-0620-01)
CPC Tapemaster Application Note (Sun 800-0622-01)
CDC Sireaming Tape Unit 9218X Reference Manual (Sun 800-0623-01)

DIAGNOSTICS
tm%d: no response from ctlr.

tm%d: error %d during conflg.

mt%d: not online.

mt%d: no write ring.

tmgo: gate wasn't open. Controller lost synch.
tmintr: can't clear interrupts.

tm%ds stray Interrupts.

mt%ds hard error bn==%d er==%x.

mt%%ds lost interrupt.

BUGS
The Tapemaster controller does not provide for byte-swapping and the resultant system overhead
prevents streaming transports from streaming.

If a non-data error is encountered on non-raw tape, it refuses to do anything more until closed.

The system should remember which controlling terminal has the tape drive open and write error
messages to that terminal rather than on the console.

Sun Release 1.1 Last change: 11 August 1983 49

TTY(4) SPECIAL FILES TTY (4)

NAME

tty — general terminal interface

SYNOPSIS

None; included by default.

DESCRIPTION

50

This section describes both a particular special file /dev/tty and the terminal drivers used for
corversational computing by serial interfaces such as oct{(4S), 23(4S), as well as cone{4S) and

pty(4).
Line disciplines.

The system provides different line disciplines for controlling communications lines. In this version
of the system there are three disciplines available:

old The old (standard) terminal driver. This is used when using the standard shell s5(1) and
for compatibility with version 7 UNIX systems,

new A newer terminal driver, with features for job control; this must be used when using
csh(L).

net A line discipline used for networking and loading data into the system over communica-
tions lines. it allows high speed input at very low overhead, and is described in bk{4).

Line discipline switching is accomplished with the TIOCSETD {oct!: .

int ldise = LDISC; loctl(f, TIOCSETD, &ldisc);

where LDISC is OTTYDISC for the standard tty driver, NTTYDISC for the new driver and
NETLDISC for the networking discipline. The standard {currently old) tty driver is discipline 0
by convention. The current line discipline can be obtained with the TIOCGETD ioctl. Pending
input is discarded when the line discipline is changed.

All of the low-speed asynchronous communications ports can use any of the available line discip-
lines, no matter what hardware is involved, The remainder of this section discusses the *‘old”* and
“new"” disciplines :

The control terminal.

When a terminal file is opened, it causes the process to wait until a connection is established. In
practice, user programs seldom open these files; they are opened by inif(8) and become a user’s
standard input and output file.

If a process which has no control terminal opens a terminal file, then that terminal file becomes

the control terminal for that process. The control terminal is thereafter inherited by a child pro-
cess, during a fork(2), even if the control terminal is closed.

The file /dev /tty is, in each process, a synonym for a controf terminal associated with that pro-
cess. It is useful for programs that wish to be sure of writing messages on the terminal no matter
how output has been redirected. It can also be used for programs that demand a file name for
output, when typed output is desired and it is tiresome to find out which terminal is currently in
use.

A process can remove the association it has with its controlling terminal by opening the file
/dev/tty and issuing a

foetl(f, TIOCNOTTY, 0);
This is often desirable in server processes.
Process groups.

Command processors such as csh(1) can arbitrate the terminal between different jobs by placing
related jobs in a single process group and associating this process group with the terminal. A
terminal’s associated process group may be set using the TIOCSPGRP ioctl(2):

Last change: 17 August 1983 Sun Release 1.1

-

WL ai

JLLLIIT

C

TTY(4) SPECIAL FILES TTY (4)

loctl(fildes, TIOCSPGRP, &pgrp)

or examined using TIOCGPGRP, returning the current process group in pgrp. The new terminal
driver aids in this arbitration by restricting access to the terminal by processes which are not in
the current process group; see Job access control below,

Modes.

The terminal drivers have three major modes, characterized by the amount of processing on the
input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is done.
The edited line is made available when it is compieted by a newline or when the
t_brkc character, normally an EOT (control-D, hereafter “D), is entered. A carriage
return is usually made synonymous with newline in this mode, and replaced with a
newline whenever it is typed. All driver functions (input editing, interrupt generation,
output processing such as delay generation and tab expansion, etc.) are available in
this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making the
input character available to the user program as it is typed. Flow control, literal-next
and interrupt processing are still done in this mode. Output processing is done.

RAW This mode eliminates all input processing and makes all input characters available as
they are typed; no output processing is done either.

The style of input processing c¢an also be very different when the terminal is put in non-blocking
ifo mode; see the FNDELAY fiag as described in fent{(2). In this case a read(2) from the control
terminal will never block, but rather return an error indication (EWOULDBL OCK) if there it no
input available. :

A process may also request a SIGIO signal be sent it whenever input is present. To enable this
mode the FASYNC flag should be set using fentl(2).

Input editing.

A UNIX terminal ordinarily operates in full-duplex mode. Characters may be typed at any time,
even while output is occurring, and are only lost when the system’s character input buffers
become completely choked, which is rare, or when the user has accumulated the maximum
allowed number of input characters that have not yet been read by some program. Currently this
limit is 256 characters. In the old terminal driver all the saved characters are thrown away when
the limit is reached, without notice; the new driver simply refuses to accept any further input,
and rings the terminal bell,

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped off before the character is given to the program. By clearing either the EVEN or ODD
bit in the Bags word it is possible to have input characters with that parity discarded (see the
Summary below.)

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioctl,
which takes, as its third argument, the address of a character. The system pretends that this
character was typed on the argument terminal, whick must be the control terminal except for the
super-user (this call is not in standard version 7 UNIX).

Input characters are notmélly echoed by putting them in an output queue as they arrive. This
may be disabled by clearing the ECHO bit in the flags word using the stty(3C) call or the
TIOCSETN or TIOCSETP ioctls (see the Summary below).

In cooked mode, terminal input is processed in units of lines. A program attempting to read will
normally be suspended until an entire line has been received (but see the description of SIGTTIN
in Modes above and FIONREAD in Summary below.) No matter how many characters are
requested in the read call, at most one line will be returned. It is not, however, necessary to read

Sun Release 1.1 Last change: 17 August 1983 51

TTY (4) SPECIAL FILES TTY(4)

52

a whole line at once; any number of characters may be requested in a read, even one, without los-
ing information.

During input, line editing is normally done, with the DELETE character logically erasing the last
character typed and a U (control-U) logically erasing the entire current input line. These charac-
ters never erase beyond the beginning of the current input line or an “D. These characters may
be entered literally by preceding them with ‘\”; in the old teletype driver both the ‘A’ and the
character entered literally will appear on the screen; in the new driver the ‘\’ will normally disap-
pear, .

The drivers normally treat either a carriage return or a newline character as terminating an input
line, replacing the return with a newline and echoing a return and a line feed. If the CRMOD bit
is cleared in the local mode word then the processing for carriage return is disabled, and it is sim-~
ply echoed as a return, and does not terminate cooked mode input.

In the new driver there is a literal-next character “V which can be typed in both cooked and
CBREAK mode preceding any character to prevent its special meaning. This is to be preferred
to the use of ‘\ ' escaping erase and kill characters, but *\’ is (at least temporarily) retained with
its old function in the new driver for historical reasons.

The new terminal driver also provides two other editing characters in normal mode. The word-
erase character, normally "W, erases the preceding word, but not any spaces before it. For the
purposes of "W, a word is defined as a sequence of non-blank characters, with tabs counted as
blanks. Finally, the reprint character, normally "R, retypes the pending input beginning on a
new line. Retyping occurs automatically in cooked mode if characters which would normally be
erased from the screen are fouled by program output.

Input echolng and redisplay

In the old terminal driver, nothing special occurs when an erase character is typed; the erase char-
acter is simply echoed. When a kill character is typed it is echoed followed by a new-line (even if
the character is not killing the line, because it was preceded by a ‘\)

The new terminal driver has several modes for handling the echoing of terminal input, controlled
by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA bit is normally set in the
local mode word. Characters which are logically erased are then printed out backwards preceded
by °\" and followed by ‘/* in this mode.

Crt terminals. When a crt terminal is in use, the LCRTBS bit is normally set in the local mode
word. The terminal driver then echoes the proper number of backspace characters when input is
erased to reposition the cursor. If the input has become fouled due to interspersed asynchronous
output, the input is automatically retyped. :

Erasing charactere from a eri. When a c¢rt terminal is in use, the LCRTERA bit may be set to
cause input to be erased from the screen with a “backspace-space-backspace’’ sequence when
character or word deleting sequences are used. A LCRTKIL bit may be set as well, causing the
input to be erased in this manner on line kill sequences as well.

Echoing of control characters. It the LCTLECH bit is set in the local state word, then non-
printing (control) characters are normally echoed as *X (for some X) rather than being echoed
unmodified; delete is echoed as *?.

The normal modes for using the new terminal driver on crt terminals are speed dependent. At
speeds less than 1200 baud, the LCRTERA and LCRTKILL precessing is painfully slow, so
stty(1) normally just sets LCRTBS and LCTLECH; at speeds of 1200 baud or greater all of these
bits are normally set. The s!ty(1) command summarizes these option settings and the use of the
new terminal driver as “pewcrt.”

Last change: 17 August 1983 Sun Release 1.1

C

LAy L

®

O

TTY (4) SPECIAL FILES TTY (4)

Output processing.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. (As noted above, input characters are nor-
mally echoed by putting them in the output queune as they arrive.) When a process produces char-
acters more rapidly than they can be typed, it will be suspended when its output queue exceeds
some limit. When the queue has drained down to some threshold the program is resumed. Even
parity is normally generated on output. The EOT character is not transmitted in cooked mode to
prevent terminals that respond to it from hanging up; programs using raw or cbreak mode should
be careful.

The terminal drivers provide necessary processing for cooked and CBREAK mode output includ-
ing delay generation for certain special characters and parity generation. Delays are available
after backspaces “H, form feeds "L, carriage returns "M, tabs "I and newlines “J. The driver will
also optionally expand tabs into spaces, where the tab stops are assumed to be set every eight
columns. These functions are controlled by bits in the tty flags word; see Summary below.

The terminal drivers provide for mapping between upper and lower case on terminals lacking
lower case, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is an output flush character, normally ~O, which sets
the LFLUSHO bit in the local mode word, causing subsequent output to be flushed unmtil it is
cleared by a program or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any pending input. An ioctl
to Bush the characters in the input and output queunes, TIOCFLUSH, is also available.

Upper case terminals and Hareltines

If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the
corresponding lower-case letter. The upper-case letter may be generated by preceding it by \". If
the new terminal driver is being used, then upper case letters are preceded by a ‘\’ when output.
In addition, the following escape sequences can be generated on output and accepted on input:

- .

for | { }

uwse \° ! \©NC)

To deal with Hazeltine terminals, which do not understand that ~ has been made into an ASCII
character, the LTILDE bit may be set in the local mode word when using the new terminal
driver; in this case the character ~ will be replaced with the character * on output.

Flow control.

There are two characters (the stop character, normally “S, and the start character, normally “Q)
which cause output to be suspended and resumed respectively. Extra stop characters typed when
output is already stopped have no effect, unless the start and stop characters are made the same,
in which case output resumes,

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the
system produces a stop character {default S} when the input queue is in danger of overflowing,
and a start character (default "Q) when the input has drained sufficiently. This mode is useful
when the terminal is actually another machine that obeys the conventions.

Line control and breaks.

There are several iocll calls available to control the state of the terminal line. The TIOCSBRK
ioct! will set the break bit in the hardware interface causing a break condition to exist; this can
be cleared (usually after a delay with aleep(3)) by TIOCCBRK. Break conditions in the input are
teflected as a null character in RAW mode or as the interrupt character in cooked or CBREAK
mode. The TIOCCDTR ioct] will clear the data terminal ready condition; it can be set again by
TIOCSDTR.

Sun Release 1.1 Last change: 17 August 1983 53

TTY(4) SPECIAL FILES TTY(4)

54

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a SIGHUP hangup signal is sent to the processes in the distinguished process group of the ter-
minal; this usually causes them to terminate (the SIGHUP can be suppressed by setting the
LINOHANG bit in the local state word of the driver.} Access to the terminal by other processes is
then normally revoked, so any further reads will fail, and programs that read a terminal and test
for end-of-file on their input will terminate appropriately.

When using ap ACU it is possible to ask that the phone line be hung up on the last close with the
TIOCHPCL ioctl; this is normally done on the cutgoing line,

Interrupt characters.

There are several characters that generate interrupts in cooked and CBREAK mode; all are senrt
to the processes in the control group of the terminal, as if a TIOCGPGRP ioct]l were done to get
the process group and then a killpg(2) system call were done, except that these characters also
flush pending input and output when typed at a terminal {4*fa TIOCFLUSH). The characters
shown here are the defaults; the field names in the structures (given below) are also shown. The
characters may be changed.

“C t_Intre (ETX) generates a SIGINT signal. This is the normal way to stop a process
which is no longer interesting, or to regain control in an interactive program.

"\ t_quite (FS) generates a SIGQUIT signal. This is used to cause a program to terminate
and produce a core image, if possible, in the file core in the current directory.

*Z t_suspc (EM) generates a SIGTSTP signal, which is used to suspend the current process
group.

Y t_dsuspe (SUB) generates a SIGTSTP signal as “Z dces, but the signal is sent when a
program attempts to read the "Y, rather than when it is typed.

Job access control.

When using the new terminal driver, if a process which is not in the distinguished process group
of its control terminal attempts to read from that terminal its process group is sent a SIGTTIN
signal. This signal normally causes the members of that process group to stop. If, however, the
process is ignoring SIGTTIN, has SIGTTIN blocked, is an orphan process, or is in the middle of
process creation using uferk(2)), it is instead returned an end-of-file. (An orphan process is a pro-
cess whose parent has exited and has been inherited by the init(8) process.) Under older UNIX
systems these processes would typically have had their input files reset to /dev/null, so this is a
compatible change.

When using the new terminal driver with the LTOSTOP bit set in the local modes, a process is
prohibited from writing on its control terminal if it is not in the distinguished process group for
that terminal. Processes which are holding or ignoring SIGTTOU signals, which are orphans, or
which are in the middle of a ufork(2) are excepted and allowed to produce output.

Summary of modes,

Unfortunately, due to the evolution of the terminal driver, there are 4 different structures which
contain various portions of the driver data. The first of these (sgttyb) contains that part of the
information largely common between version 6 and version 7 UNIX systems. The second contains
additional control characters added in version 7. The third is a word of local state peculiar to the
new terminal driver, and the fourth is another structure of special characters added for the new
driver. In the future a single structure may be made available to programs which need to access
all this information; must programs need not concern themselves with all this state.

Basic modes; sgity, -

The basic {octls use the structure defined in < agéip.h:

Last change: 17 August 1983 Sun Release 1.1

TTY (4) SPECIAL FILES TTY{4)

struct sgttyb {
char ag_lspeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
short sg_flags;

b

g The sg_ispeed and ag_ospeed fields describe the input and output speeds of the device according to
4 the following table, which corresponds to the DEC DH-11 interface. If other hardware is used,
f impossible speed changes are ignored. Symbolic values in the table are as defined in <sgtty.h>.

B0 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
; B110 3 110 baud
B134 4 134.5baud
: B1560 & 150 baud
: B200 6 200 baud
i B300 7 300 baud
; B600 8 600 baud
Bi1200 9 1200 baud
: B1800 10 1800 baud
a B2400 11 2400 baud

B4800 12 4800 baud
B96C0 13 9600 baud

EXTA 14 [External A

O EXTB 15 External B
In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 2741's (134.5 baud} must be imple-

mented by the user’s program. The half-duplex line discipline required for the 202 dataset (1200
baud) is not supplied; full-duplex 212 datasets work fine.

The sg_ersse and sg_kill fields of the argument structure specify the erase and kill characters
respectively. (Defaults are DELETE and “U.)

The #g_flags field of the argument structure contains several bits that determine the system’s
treatment of the terminal:

ALLDELAY 0177400 Delay algorithm selection
BSDELAY 0100000 Selsct backspace delays (not implemented):

BSO 0

BS1 0100000

VTDELAY 0040000 Select form-feed and vertical-tab delays:
FFoO 0 ‘
FF1 0100000

CRDELAY 0030000 Select carriage-return delays:
CRO 0

CR1 0010000

CR2 0020000

CR3 0030000

TBDELAY 0006000 Select tab delays:

TABO 0

TAB1 0001000

TAB2 0004000

O XTABS 0006000

Sun Release 1.1 Last change: 17 August 1983 55

TTY (4) SPECIAL FILES TTY(4)

NLDELAY 0001400 Select new-line delays:

NLoO 0

NL1 0000400

NL2 0001006

NL3 0001400

EVENP 0000200 Even parity allowed on input (most terminals)
ODDP 0000100 Odd parity allowed on input

RAW 0000040 Raw mode: wake up on all characters, 8-bit interface
CRMOD 0000020 Map CR into LF; echo LF or CR as CR-LF

ECHO 0000010 Echo {fult duplex)

LCASE 0000004 Map upper case to lower on input
CBREAK 0000002 Return each character as soon as typed
TANDEM 0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay,

Backspace delays are currently ignored but might be used for Terminet 390's.
It a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is suit-
able for the concept-100 and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37's.
Type 2 is uzseful for the VTOS5 2nd is about .10 seconds. Type 3 is unimplemented and is 0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model
37. Type 8, called XTABS, is not 2 delay at all but causes tabs to be replaced by the appropriate
sumber of spaces on output,

Input characters with the wrong parity, as determined by bits 200 and 100, are ignored in cooked
and CBREAK mode. -

R AW disables all processing save output flushing with LFLUSHO; full 8 bits of input are given as
soon as it is available; all 8 bits are passed on output. A break condition in the input is reported
as a null character. If the input queue overflows in raw mode it is discarded; this applies to both
pew and old drivers.

CRMOD causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed {for terminals with a new-line function).

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a full line; all processing is done except the input editing: character
and word erase and line kill, input reprint, and the special treatment of \ or EOT are disabled.

TANDEM mode causes the system to produce a stop character (default “S) whenever the input
queue is in danger of overflowing, and a start character (default "Q) when the input queue has
drained sufficiently. It is useful for flow control when the ‘terminal’ is really another computer
which understands the conventions. :

Basic ioctls

In additidn to the TIOCSETD and TIOCGETD disciplines discussed in Line diseiplines above, a
large number of other focti{2) calls apply to terminals, and have the general form:

#include <sgtty.h>>

locti(fildes, code, arg)
struct agttyb *arg;

56 Last change: 17 August 1983 Sun Release 1.1

O

TTY(4) SPECIAL FILES TTY (4)

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the
pointed-to egtiyb structure.

TIOCSETP Set the parameters according to the pointed-to sgilyb structure. The interface
delays until output is quiescent, then throws away any unread characters, before
changing the modes.

TIOCSETN Set the parameters like TIOCSETP but do not delay or flush input. Input is not
preserved, however, when changing to or from RAW.

With the following codes the arg is ignored.

TIOCEXCL Set “‘exclusive-use’” mode: no further opens are permitted until the file has been
closed.

TICCNXCL Turn off “exclusive-use’’ mode.

TIOCHPCL When the file is closed for the last time, hang up the terminal. This is useful
when the line is associated with an ACU used to place outgoing calls.

TIOCFLUSH Al characters waiting in input or output queues are flushed.

The remaining calls are not available in vanilla version 7 UNIX. In cases where arguments are .
required, they are described; arg should otherwise be given as 0.

TIOCSTI the argument is the address of a character which the system pretends was typed
on the terminal.

TIOCSBRK the break bit is set in the terminal,
TIOCCBRK the break bit is cleared.
TIOCSDTR data terminal ready is set,
TIOCCDTR data terminal ready is cleared.

TIOCGPGRP arg is the address of a word into which is placed the process group number of the
control terminal,

TIOCSPGRP arg is a word (typically a process id) which becomes the process group for the
control terminal.

FIONREAD returns in the long integer whose address is arg the number of immediately read-
able characters from the argument unit. This works for files, pipes, and termi-
nals.

Ichars
The second structure associated with each terminal specifies characters that are special in both

the old and new terminal interfaces: The following structure is defined in < sys/ioctl.h>, which is
automatically included in <egtiy.h>:

struct tchars {

char t_intre; /* interrupt ¥/

char t_quitc; /* quit */

char t_starte; /* start output */

char t_stope; /* stop output */

char t_eofc; /* end-of-file */

char t_brkcj /* input delimiter (like nl) */

h

The default values for these characters are “C, *\, "Q, 'S, "D, and -1. A character value of -1
eliminates the effect of that character. The f_brkc character, by default -1, acts like a new-line in
that it terminates a ‘line,’ is echoed, and is passed to the program. The ‘stop’ and ‘start’ charac-
ters may be the same, to produce a toggle effect. It is probably counterproductive to make other

Sun Release 1.1 Last change: 17 August 1983 57

TTY (4) SPECIAL FILES TTY(4)

58

special characters (including erase and kill) identical. The applicable ioctl calls are:
TIOCGETC Get the special characters and put them in the specified stracture.
TIOCSETC Set the special characters to those given in the structure,

Local mode

The third structure associated with each terminal is a local mode word; except for the
LNOHANG bit, this word is interpreted only when the new driver is in use. The bits of the local
mode word are:

LCRTBS 000001 Backspace on erase rather than echoing erase
LPRTERA 000002 Printing terminal erase mode

LCRTERA 000004 Erase character echoes as backspace-space-backspace
LTILDE 000010 Convert ~ to * on output {for Hazeltine terminals)
LMDMBUF 000020 Stop/start output when carrier drops

LLITOUT 000040 Suppress output translations

LTOSTCOP 000100 Send SIGTTOU for background output

LFLUSHO 000200 Output is being flushed

LNOHANG 000400 Don’t send hangup when carrier drops

LETXACK 001000 Diablo style buffer hacking {unimplemented)
LCRTKIL 002000 BS-space-BS erase entire line on line kill

LCTLECH 010000 Echo input control chars as "X, delete as "t
LPENDIN 020000 Retype pending input at next read or input character
LDECCTQ 040000 Only "Q restarts output after *S, like DEC systems

The applicable toct! functions are:

TIOCLBIS arg is the address of a mask which is the bits to be set in the local mode word.
TIOCLBIC arg is the address of 2 mask of bits to be cleared in the local mode word.
TIOCLSET arg is the address of a mask to be placed in the local mode word.

TIOCLGET arg is the address of a word into which the current mask is placed.

Loca] specia] chars

The final structure associated with each terminal is the lfchars structure which defires interrupt
characters for the new terminal driver. Its structure is:

struct ltchars {
char t_suspc; /* stop process signal */
char t_dsuspe; /* delayed stop process signal */
char t_rprate; /* reprint line */

char t¢_flushe; /* flush output (toggles) */
char t_weraecy /* word erase */
char t_lnexte; /* literal next character */

b

The default values for these characters are “Z, “Y, "R, "0, "W, and "V, A value of -1 disables
the character.

The applicable foct! functions are;

TIOCSLTC args is the address of a ltchars structure which defines the new local special charac-
ters.

TIOCGLTC args is the address of a !chars structure into which is placed the current set of local
special characters,

Last change: 17 August 1983 Sun Release 1.1

i
i
]
:

TTY (4) SPECIAL FILES TTY(4)

FILES
[dev [ty
Jdev/tty*
/dev [console
SEE ALSO
csh(1), stty(1), ioctl(2), sigvec(2), stty(3C), getty(8), init(8)

BUGS
Half-duplex terminals are not supported.

<

Sun Release 1.1 Last change: 17 August 1983 59

UDP (4P) SPECIAL FILES UDP (4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
None; comes automatically with inet(4F).

DESCRIPTION
The User Datagram Protocol (UDP) is defined to make available a datagram mode of packet
switched computer communicaton in the environment of an interconnected set of computer net-
works, The protocol assumes that the Internet Protocol (IP) as described in ip(4P) is used as the

underlying protocol.

The protocol provides a procedure for application programs to send messages to other programs
with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and
duplicate protection are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) as described in tcp(4P).

The UNIX implementation of UDP makes it available as a socket of type SOCK_DGRAM. UDP
sockets are normally used in a connectionless fashion, with the sendto and recufrom calls described
in send(2) and recv(2).

A UDP socket is created with a socket(2) call:
s = socket(AF_INET, SOCK_DGRAM, 0);

The socket initially has no address associated with it, and may be given an address with a bind{(2)
call as described in inet(4F). If ro dind call is done, then the address assignment procedure
described in inet(4F) is repeated as each datagram is sent.

When datagrams are sent the system encapsulates the user supplied data with UDP and IP
headers. Unless the invoker is the super-user datagrams which would become broadcast packets
on the network to which they are addressed are not allowed. Unless the socket has had a
SO_DONTROUTE option enabled (see socket(2)) the outgoing datagram is routed through the
routing tables as described in routing(4N). If there is insufficient system buffer space to tem-
porarily hold the datagram while it is being trasmitted, the sendto may result in a ENOBUFS
error. Other errors (ENETUNREACH, EADDRNOTAVAIL, EACCES, EMSGSIZE) may be gen-
erated by icmp(4P) or by the network interfaces themselves, and are reflected back in the send
call.

As each UDP datagram arrives at a host the system strips out the IP options and checksums the
data field, discarding the datagram if the checksum indicates that the datagram has been dam-
aged. If no socket exists for the datagram to be sent to then an ICMP error is returned to the
originating socket. If a socket exists for this datagram to be sent to, then we will append the
datagram and the address from which it came to a queue associated with the datagram socket.
This queue has limited capacity (2048 bytes of datagrams) and arriving datagrams which will not
fit within its Aigh-weler capacity are silently discarded.

UDP processes ICMP errors reflected to it by iemp(4P). QUENCH errors are ignored (this is well
considered a bug); UNREACH, TIMXCEED and PARAMPROB errors cause the socket to be
disconnected from its peer if it was bound to a peer using bind(2} so that subsequent attempts to
send datagrams via that socket will give an error indication.

The UDP datagram protocol differs from IP datagrams in that it adds a checksum over the data
bytes and contains a 16-bit socket address on each machine rather than just the 32-bit machine
address; UDP datagrams are addressed to sockets; IP packets are addressed to hosts.

SEE ALSO
recv(2), send(2), inet{4F)
“User Datagram Protocol”’, RFC768, John Postel, USC-ISI (Sun 800-1054-01)

60 Last change: 17 August 1033 Sun Release 1.1

o d

e ot e et e e

o

UDP (4P) SPECIAL FILES UDP (4P)

BUGS
SIOCSHIWAT and SIOCGHIWAT ioctl’s to set and get the high water mark for the socket
queue, and so that it can be changed from 2048 bytes to be larger or smaller, have been defined

(in <sysfioctLh>} but not implemented.
Something sensible should be done with QUENCH errors if the socket is bound to a peer socket.

Sun Release 1.1 Last change: 17 August 1983 61

VP (45)

NAME

SPECIAL FILES VP (45)

vp — Ikon 10071-5 Multibus Versatec parallel printer interface

SYNOPSIS

device vp0 at mb0 csr 0x400 priority 2

DESCRIPTION :

FILES

The Sun Multibus interface to the Versatec printer/plotter is supported by the Ikon parallel inter-
face board, a word DMA device, which is output only.

The Versatec is normally handled by the line printer spooling system and should not be accessed
by the user directly.

Opening the device /dev/upl may yield one of two errors: ENXIO indicates that the device is
already in use. EIO indicates that the device is offline.

The printer operates in either print or plot mode. To set the printer into plot mode you should
include <vemd.h> and use the soct(2] call

joctl(f, VSETSTATE, plotmd);
where plotmd is defined to be
Int plotmd}] = { VPLOT, 0,0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT
after putting into print mode:

Int primd[] = { VPRINT, 0, 0 };
il"iush(vp);

ioctl(f, VSETSTATE, prtmd);
write(f, "\04”, 1);

[dev/vpo

SEE ALSO

BUGS

62

Multibus/Versatec Interface, Ikon Corp (Includes Versatec Manual) (Sun 800-1065-01)

If you use the standard ifo library on the Versatec, be sure to explicitly set a buffer using setbuf,
since the library will not use buffered output by default, and will run very slowly.

This driver is not supported.
Writes must start on even byte boundaries and be an even number of bytes in length.

Last change: 11 August 1983 Sun Release 1.1

-

St B WL AW N SR

VPC(45) SPECIAL FILES VPC(45)

NAME
vpe ~ Systech VPC-2200 Versatec printer/plotter and Centronics printer interface

SYNOPSIS
device vpcO at mb0 car 0x480 prlority 2

DESCRIPTION
The Sun Multibus interface to the Versatec printer/plotter and to Centronics printers is sup-
ported by the Systech parallel interface board, an output-only byte-wide DMA device. The device
has one channel for Versatec devices and one channel for Centronics devices, with an optional
long lines interface for Versatec devices.

Devices attached to this interface are normally handled by the line printer spooling system and
should not be accessed by the user directly.

Opening the devices /dev/vp0 [dev/ip0 may yield one of two errors: ENXIO indicates that the
device is already in use. EIO indicates that the device is offline.

The Versatec printer/plotter operates in either print or plot mode. To set the printer into plot
mode you should include <vemd.h>> and use the socti(2) call: '

ioctl(f, VSETSTATE, plotmd);
where plotmd is defined to be
int plotmd|] = { VPLOT, 0,0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT
after putting into print mode:

int prtmd|[] = { VPRINT, 0,0 };

O ii.iush(vpc);

ioctl{f, VSETSTATE, prtmd);
write(f, "\04”, 1);
FILES
Jdev fvp0
[dev /150
SEE ALSO
Systech VP C-2200 Versatec Printer/Plotter Controller Technical Manual

BUGS
If you use the standard I/O library on the Versatec, be sure to explicitly set a buffer using setbuf,
since the library will not use buffered output by default, and will run very slowly.

Currently only 8 bit IO is supported in the driver, even though the device supports 16 bit 1/0.

Sun Release 1.1 Last change: 6 January 1984 63

WIN (45) SPECIAL FILES WIN(45)

NAME

win - Sun window system

SYNOPSIS

pseudo-device winl28
pseudo-device dtop4

DESCRIPTION

FILES

The win device accesses the system drivers supporting the Sun window system.

Each window in the system is represented by a /dev/win* device. The windows are organized as
a tree with windows being subwindows of their parents, and covering/covered by their siblings.
Each window has a position in the tree, a position on a display screen, an input queue, and infor-
mation telling what parts of it are exposed.

The window driver multiplexes keyboard and mouse input among the several windows, tracks the
mouse with a cursor on the screen, provides each window access to information about what parts
of it are exposed, and notifies the manager process for a window when the exposed area of the
window changes so that the window may repair its display. '

The dtop4 pseude device line in a kernel configuration file indicates the number of separate
‘‘desktops’’ {frame buffers) that can be actively running the Sun window system at once.

Full information on the window system functions is given in the Programmer's Reference Manual
Jor SunWindows.

/dev [win[0-9]
Jdev [win|[0-9][0-9]

SEE ALSO

64

Programmer’s Reference Manual for SunWindows

Last change: 21 March 1934 ' Sun Release 1.1

-

&

XY (48) SPECIAL FILES XY (45)

NAME
xy - Disk driver for Xylogics SMD Disk Controllers

SYNOPSIS
controller xyeQ at mb0 csr Oxee40 priority 2
disk xy0 at xyc0 drive 0
disk xy1 at xycO drive 1

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8
through 15 refer to drive 1, and so on. The standard device names begin with “xy" followed by
tke drive number and then a lettes a-h for partitions 0-7 respectively. The character ? stands
here for a drive number in the range 0-7.

The block file’s access the disk via the system’s normal buffering mechanism and may be read and
writter without regard to physical disk records. There is also a ‘raw’ interface which provides for
direct transmission between the disk 2nd the user's read or write buffer. A single read or write
call results in exactly one I/O operation and therefore taw I/O is considerably more efificient
when many words are transmitted. The names of the raw files conventionally begin with an extra
ir-!

In raw 1/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specifly a multiple of 512 bytes.

DISK SUPPORT
This driver handles all SMD drives, by reading a label from sector 0 of the drive which describes
the disk geometry and partitioning,

The xy?a partition is normally used for the root file system on a disk, the xy?b partition as a pag-
ing area, and the xy'c partition for pack-pack copying {it normally maps the entire disk). The
rest of the disk is normally the xyTh partition.

FILES
[dev /xy[0-7][a-h} block files
/dev /rxy[0-7]{a-h] raw files

SEE ALSO
dkio(45), xy(4S)
Xylogies Model 440 Peripheral Processor SMD Disk Subsystem Maintenance and Reference
Manual (Sun 800-1005-01)
Xylogics Model 450 Peripheral Processor SMD Disk Subsystem Maintenance and Reference
Manual (Sun 800-1025-01)

DIAGNOSTICS
xyc%ds self test error %x - 968, Self test error in controller, see the Maintenance and Refer-
ence Manual,

xyc%d: address mode Jumper Is wrong. The controller is strapped for 24-bit Multibus
addresses; the Sun uses 20-bit addresses. See the Hardware Configuration and Expansion section
of the System Manager's Manual for your Sun Workstaiton for instructions on setting the jumpers
on the 450,

xyattach: can't get bad sector info. The bad sector forwarding information for the disk,
which i3 kept on the last cylinder, could not be read.

xy%ds drive type %d clash with xy%d. The 450 does not suppert mixing the drive types
found on these units on a single controller.

xy%&ds inftialization falled.

Sun Release 1.1 ' Last change: 11 August 1983 ' 65

XY (45) SPECIAL FILES XY(45)

BUGS

xy%d: error 9x reading label on head %d. Error reading drive geometry/partition table
information.

xy%d: Corrupt label. The geometry/partition label checksum was incorrect.
xy%d: Unsupported phys partition # %d.
xy%d;: offiine.

xy%d%e: emd how {msg) blk %d. A command such as read, write, or format encountered a
error condition (how]): either it failed, the unit was restored, or an operation was refryed. The
mag is derived from the error number given by the controller, indicating a condition such as
“drive not ready’’, “‘sector not found” or “'disk write protected''.

In raw 1O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles
on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read,
write and lseek(2) should always deal in 512-byte multiples.

Last change: 11 August 1983 Sun Release 1.1

-

S (45) SPECIAL FILES ZS(4S)

NAME
28 — zilog 8530 SCC serial comunications driver

SYNOPSIS
device £a0 at mb0 csr 0xf52000 flags 3 priority 6

DESCRIPTION
The Zilog 8530 provides 2 serial communication lines with full modem control. Each line behaves
as described in #ty(4). Input and output for each line may independently be set to run at any of
16 speeds; see tty(4) for the encoding.

FILES
/dev [tiya-d]

SEE ALSO
tty(4)
Zilog 28030/Z8530 SCC Serial Communications Controller (Sun 800-1052-01)

DIAGNOSTICS
28%5d%es sllo overflow. The character input silo overflowed before it could be serviced,

Sun Release 1.1 Last change: 11 August 1983 67

P gt 1

T

-

A.OUT(5) FILE FORMATS ~ A.OUT(5)

NAME
a.out — assembler and link editor output

SYINOPSIS
#include <a.out.h>
#include <stab.h>
#include <nlist.h>

DESCRIPTION
A.out is the output file of the assembler as(15) and the link editor {d(1). The latter makes a.out
executable if there were no errors and no unresolved external references. Layout information as
given in the include file for the Sun system is:

*
"/Header prepended to each a.out file.
™
struct exec {
long a_magic; /* magic number */
unsigned a_text; /* size of text segment */
unsigned a_data; ~ /* size of initialized data */
unsigned a_bss; [* size of uninitialized data */
unsigned a_syms; [* size of symbol table *f
unsigned a_entry; /* entry point */
unsigned a_trsize; [* size of text relocation */
unsigned a_drsize; /* size of data relocation */
b '

#define OMAGIC 0407 /* old impure format */
##define NMAGIC 0410 J* read-only text */
#tdefine ZMAGIC 0413 /* demand load format */

#define PAGSIZ 2048
ftdefie SEGSIZ 0x8000
#define TXTRELOC SEGSIZ
-

* Macros which take exec structures as arguments and tell whether
* the file has a reasonable magic number or offsets to text |symbols|strings.
* el
#define N_BADMAG(x) \
(((x).a_magic)l=OMAGIC && ((x).a_magic))=NMAGIC && ((x).a_magic)}=ZMAGIC)

#define N_TXTOFF{(x) \
({x).a_magic==ZMAGIC ? PAGSIZ : sizeof (struct exec))
#define N_SYMOFF(x) \
(N_TXTOFF(x) + (x).a_text+ (x).a_data + (x).a_trsize+ (x).a_drsize)
#define N_STROFF(x)\
(N_SYMOFF(x) + (x).a_syms)
*
* Macros which take exec structures as arguments and tell where the
* various pieces will be loaded.
*
##define N_TXTADDR(x) TXTRELOC
#define N_DATADDR (x} \
{{(x).a_magic==OMAGIC)? (N_TXTADDR (x}+ (x).a_text) \
: (SEGSIZ+ ((N_TXTADDR((x}+ (x).a_text-1} & "SEGRND)))

Sun Release 1.1 Last change: 15 January 1983 1

A.OUT(5) FILE FORMATS A.OUT(5)

#define N_BSSADDR(x) (N_DATADDR(x)+ (x).a_data)

The a.cut file has five sections: a header, the program text and data, relocation information, a
symbol tzble and a string table (in that order}). The last three may be omitted if the program was
loaded with the ‘-8’ option of {d or if the symbols and relocation have been removed by aérip(l).

In the header the sizes of each section are given in bytes. The size of the header is not included
in any of the other sizes.

When an a.oul file is executed, three logical segments are set up: the text segment, the data seg-
ment (with uninitialized data, which starts off as all 0, following initialized data), and a stack.
The header is not loaded with the text segment. If the magic number in the header is OMAGIC
(0407), it means that this is a non-sharable text which is not to be write-protected, so the data
segment is immediately contigucus with the text segment. This is rarely vsed. If the magic
number is NMAGIC (0410) or ZMAGIC (0413), the data segment begins at the first segment
boundary following the text segment, and the text segment is not writable by the program; other
processes executing the same file will share the text segment. For ZMAGIC format, the text seg-
ment begins on a page boundary in the s.0u! file; the remaining bytes after the header in the first
block are reserved and should be zero. In this case the text and data sizes must both be multiples
of the page size, and the pages of the file will be brought into the running image as needed, and
not pre-loaded as with the other formats, This is especially suitable for very large programs and
is the default format produced by [d(1). The macros N_TXTADDR, N_DATADDR, and
N_BSSADDR give the core addresses at which the text, data, and bss segments, respectively, will
be loaded.

The stack starts at the highest possible location in the memory image, and grows downwards,
The stack is automatically extended as required. The data segment is extended as requested by
brk(2) or sbrk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table and
string table in that order. The text begins at byte PAGSIZ in the file for ZMAGIC format or just
after the header for the other formats. The N_TXTOFF macro returns this absolute file position
when given the name of an exec structure as argument. The data segment is contiguous with the
text and immediately followed by the text relocation and then the data relocation information.
The symbol table follows all this; its position is computed by the N_SYMOFF macro. Finally,
the string table immediately follows the symbol table at a position which can be gotten easily
using N_STROFF. The first 4 bytes of the string table are not uzed for string storage, but rather
contain the size of the string table; this size INCLUDES the 4 bytes, the minimum string table
size is thus 4,

RELOCATION

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If a
byte in the text or data involves a reference to an undefined external symbol, as indicated by the
relocation information, then the value stored in the file is an offset from the associated external
symbol. When the file is processed by the link editor and the external symbol becomes defined,
the value of the symbol is added to the bytes in the file.

1t relocation information is present, it amounts to eight bytes per relocatable datum as in the fol-
lowing structure:
*
* Format of a relocation datum.
*
str{mt relocation_info {
int r_address; /* address which is relocated */

2 Last change: 15 January 1983 Sun Release 1.1

C

C

A.OUT(5) FILE FORMATS A.OUT(5)

unsigned r_symboloum:24, /* local symbol ordinal */

r_perel:i, /* was relocated pe relative already */
r_length:2, /* 0=byte, 1=word, 2=long */

r_extern:1, /* does not include value of sym referenced */
4; /* nothing, yet *f

&
There is no relocation information if a_trsize+ a_drsize===0. If r_extern is 0, then r_symboloum
is actually a n_type for the relocation (i.e. N_TEXT meaning relative to segment text origin.)

SYMBOL TABLE

The layout of a symbol table entry and the principal flag values that distinguish symbol types are
given in the include file as follows:
/* o

* Format of a symbol table entry.

*
struct nlist {
union {
char *n_name; /* for use when in-memory */
long n_strx; /* index into file string table */
} n_un;
unsigned char n_type; /* type flag, i.e. N_TEXT etc; see below *f
char n_other;
short n_desc; /* see <stab.h> */

unsigned . n_value; /* value of this symbol (or adb offset) */

I

#tdefine n_hash n_desc /* used internally by 1d */
*
* Simple values for n_type.
*/

#define N UNDF 0x0 /* undefined */

#define N_ABS 0x2 /* absolute */

#define N_TEXT Ox4 [* text *f

#define N_DATA O0x6 /* data *f

#define N_BSS 0x3 [* bss */

##define N_COMM = 0x12 /¥ common (internal to 1d) */
#define N_FN . Ox1f /* file pame symbol */
#fdefine N_EXT 01 /* external bit, or'ed in */
#define N_TYPE Ox1le /* mask for all the type bits */

]

* Other permanent symbol table entries have some of the N_STAB bits set.
* These are given in <stab.h>
‘ .

ftdefine N_STAB ~'Oxe0 /* if any of these bits set, don’t discard */

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx value
of 0 indicates that no name is associated with a particular symbol table entry. The field
D_un.n_pame can be used to refer to the symbol name only if the program sets this up using
n_strx and appropriate data from the string table. Because of the union in the nlist declaration,
it is impossible in C to statically initialize such a structure. If this must be done (25 when using
nlist(3)) the file <nlist.h> should be included, rather that <a.out.h>: this contains the

Sun Release 1.1 Last change: 15 January 1983 3

A.OUT(5) FILE FORMATS A.OUT(5)

-

declaration without the union.

If 2 symbol’s type is undefined external, and the value field is non-zero, the symbol is interpreted
by the loader /d as the name of a common region whose size is indicated by the value of the sym-
bol.

STAB SYMBOLS

Stgb.h defines some values of the n_type field of the symbol table of a.out files. These are the
types for permanent symbols (that is, not local labels, etc.) used by the debuggers adb(1S) and
dbz{1) and the Berkeley Pascal compiler pe(1). Symbol table entries can be produced by the
-8tabs assembler directive. This allows one to specify a double-quote delimited name, a symbol
type, one char and one short of information about the symbol, and an unsigned long (usually an
address). To avoid having to produce an explicit label for the address fleld, the .sfabd directive
can be used to implicitly address the current location. If no name is needed, symbol table entries
can be generated using the .stabn directive. The loader promises to preserve the order of symbol
table entries produced by .séab directives.

The n_value field of a symbol is relocated by the link editor as an address within the appropriate
segment. N_value fields of symbols not in any segment are unchanged by the linker. In addition,
the linker will discard certain symbols, according to rules of its own, unless the n_type field has
one of the bits masked by N_STAB set,

This allows up to 112 (7 * 16) symbol types, split between the various segments, Some of these
have already been claimed. The debugger, adb(1S), uses the following n_type values;

ftdefine N_GS5YM 0x20 /* global symbol: name,,0,type,0 */

ffdefine N_FNAME 0x22 /* procedure name {f77 kiudge): name,,0 */
#define N FUN 0x24 /* procedure: name,,0,linenumber,address */
#define N_STSYM 0x26 /* static symbol: name,,0,type,address */ @
Fdefine N_LCSYM 0x28 /* .lcomm symbol: name,,0,type,address */
f#define N_RSYM 0x40 /* register sym: name,,0,type,register */
#define N_SLINE 0Ox44 /* src line: 0,,0,linenumber,address */

#fdefine N_SSYM 0x60 /* structure elt: name,,0,type struct_offset */
#define N_SO 0x64 [* source file name: name,,0,0,address *f
#define N LSYM 0x80 /* local sym: name,,0,type,offset */

#define N_SOL 0x84 /* #tincluded file name: name,,0,0,address */
#fdefine N_PSYM 0xa0 /* parameter: name,,0,type,offset */

#define N_ENTRY Oxa4 /* alternate entry: name,linenumber,address */
#define N_LBRAC 0xc0 /* left bracket: 0,,0,nesting leve), address */
#define N_RBRAC 0Oxe0 /* right bracket: 0,,0,nesting level,address */
#define N_BCOMMOxe2 /* begin common: pame,, *

#define N_.ECOMMOxe4 /* end common: name,, * /

#define N_ECOML 0xe8 /* end common (local name): ,,address */
#define N_LENG Oxfe /* second stab entry with length information */

where the comments give the adb conventional use for .sfabs and the n_name, n_other, n_desc,
and n_value fields of the given n_type. Adb uses the n_desc field to hold a type specifier in the
form used by the Portable C Comopiler, cc(1), in which a base type is qualified in the following
structure:

struct desc {
short ¢6:2,
q5:2,
q4:2,
q3:2,

q2:2,
O

4 Last change: 15 January 1983 Sun Release 1.1

C

C

C

A.OUT(5) FILE FORMATS A.OUT(5)

basic:4;
B

There are four qualifications, with qt the most significant and g6 the least significant:

0 none
1 " pointer
2 function
3 array
The sixteen basic types are assigned as follows:
0 undeflned
1 function argument
2 character
3 short
4 int
5 long
6 float
7 double
8 structure
9 union
10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int

15 unsigned long
The Berkeley Pascal compiler, pc(1), uses the following n_type value:
#define N_PC 0x30 /* global pascal symbol: name,,0,subtype,line */

and uses the following subtypes to do type checking across separately compiled files:
source file name
included file name
global label

global constant
global type

global variable
global function
global procedure
external function
10 external procedure
11 hibrary variablé

12 library routina

O 00 =1 OB

The new dbz(1) deb{xgger uses an entirely different interpretation for the stabs symbol-table
entries. Currently, this is understood only by dbz and cc, but its use should supplant the current
interpretation as soon as adb and pc¢ can be modified to use it.

SEE ALSO
adb(15), as(1S), 1d(1); nm(1), dbx(1), strip(1)
BUGS

There are currently two interpretations of the stabs symbol-table information. This creates great
confusion when trying to build a program for debugging.

Due to the amount of symbolic information necessary for high-level debugging, the whole s.out
structure has been streched well beyond its original design, and should be replaced by something
with a more sophisticated symbol-table mechanism. The demands of future languages will only

Sun Release 1.1 Last change: 15 January 1983 5

A.QUT(5)

compound the probiems.

FILE FORMATS

Last change: 15 January 1983

A.QUT(5)

Sun Release 1.1

-

-

C

ALIASES(5) | FILE FORMATS ALIASES(5)

NAME

aliases — aliases file for sendmail

SYNOPSIS

Jusr/lib/aliases
Jusr /lib/aliases.dir
Jusr /lib/aliases.pag

DESCRIPTION

These files describe user id aliases used by [usr/libfsendmail. [usr/lib/alicses is formatted as a
series of lines of the form _

" name: hame_l, name2, name_3, . . .
The name is the name to alias, and the name_n are the aliases for that name. Lines beginning
with white space are continuation lines. Lines beginning with ‘'# ’ are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any
person more than once.

After aliasing has been done, local and valid recipients who have a “.forward” file in their home
directory have messages forwarded to the list of users defined in that file.

[uer/lib/alisses is only the raw data file; the actual aliasing information is placed into a binary
format in the files /usr/lib/aliases.dir and [usr/lib/alicses.pag using the program newaliases(8). A
newalisses command should be executed each time that fusr/libfaliases is changed for the change
to take effect.

Several kinds of name's are special:

owner-mary: fred
any errors resulting from a mail to mary are directed to fred instead of back to the person
who sent the message. This is most useful when mary is a mailing list rather than an
individual.

beer: :include: /ust/cyndi/beer;
All colone and semicolons are required as shown. The list of names in [usr/cyndifbeer is
included in the name_n list for the beer alias, in addition to any other names in the
name_n list. ' This mechanism is for setting up a mailing list so that [usr/lib/aliases
doesn't have to be changed when people are added to or removed from the list. The
included file (that is, fusr/cyndifbeer in this case) may be changed at any time, and
changes take eflect immediately.

SEE ALSO

BUGS

newatiases(8), dbm(3X}, sendmail(8)
SENDMAIL Installation and Operation Guide.
SENDMAIL An Internetwork Mail Router.

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 bytes of
information. You can get longer aliases by ‘‘chaining’’; that is, make the last name in the alias be
a dummy name which is a continuation alias.

Sun Release 1.1 Last change: 3 January 1984 7

AR (5) FILE FORMATS AR (5)

NAME
ar — archive (library) file format

SYNOPSIS
#include <ar.,h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as libraries to
be searched by the link-editor {4,

A file produced by ar has a magic string at the start, followed by the constituent files, each pre-
ceded by a file header. The magic number and header layout as described in the include file are:

I* @(s#)ar.h 1.1 83/08/01 SMI; from UCB 4.1 83/05/03*/

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "*\n”

struct ar_hdr {

char ar_name[16};
char ar_date[12];
char ar_uid{6};
char ar_gid{6};
char ar_mode[8];
char ar_size[10];
char ar_fmag[2];

b
The name is a blank-padded string. The ar_fmag fleld contains ARFMAG to help verify the pres-
ence of a header. The other fields are left-adjusted, blank-padded numbers. They are decimal

except for ar_mode, which is octal. The date is the modification date of the file at the time of its
insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files, the
archive itself is printakle.

SEE ALSO
ar(1), 1d(1), nm(1)
BUGS

File names lose trailing blanks. Most software dealing with archives takes even an included blank
as a name terminator,

8 Last change: 15 January 1983 Sun Release 1.1

-

C

C

CORE(5) . FILE FORMATS CORE(5)

' NAME

core — format of memory image file

SYNOPSIS
#include <machine/param.h>

DESCRIPTION
The UNIX System writes out 2 memory image of a terminated process when any of various errors
occur. See sigvec(2) for the list of reasons; the most commonr are memory violations, illegal
instructions, bus errors, and user-generated quit signals. The memory image is called ‘core’ and is
written in the process’s working directory (provided it can be; normal access controls apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger than the
limit are not created.

Set-user-id programs do not produce core files when they terminate as this would be a security
loophole.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES manifest in
the <machinefparam.h> file. The u. area starts with a wuser structure as given in
< sysfuser.k>. The remainder of the core file consists first of the data pages and then the stack
pages of the process image. The amount of data space image in the core file is given (in pages) by
the variable u_dsize in the u. area. The amount of stack image in the core file is given (in pages)
by the variable u_ssize in the u. area, :

SEE A1.80
adb(1), dbx(1), sigvec(2), setrlimit{2}

Sun Release 1.1 Last change: 9 March 1984 9

CPIO(5) FILE FORMATS CPIO(5)

NAME

cpio - format of cpio archive

DESCRIPTION

The old format header structure, when the ¢ option is not used, is:

struct {
short h_magic,
h_dev,
b_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
b_mtime[2],
h_namesize,
h_filesize[2];
char h_name[h_namesize rounded to a word];
} Hdr;

but note that the byte order here is that of the PDP-11 and the VAX, and that for the Sun you
have to use swab(3} after reading and before writing headers,

When the ¢ option is used, the header information is described by the statement below:

sscanf(Chdr, " %60%60%60%60%60%60%560%60%1110%60% 60%s”,
&Hdr.h_magic, £Hdr.h_dev, £Hdr.h_ino, &Hdr.h_mode,
&Hdr.b_unid, &Hdr.h_gid, £Hdr.h_nlink, £Hdr.h_rdev,

&Hdr h_mtime, &Hdr.h_namesize, £Hdr.b_filesize, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_miime and Hdr.h_filesize, respectively. The con-
tents of each file is recorded in an element of the array of varying length structures, asrchive,
together with other items describing the file. Every instance of h_magic contains the constant
070707 {octal). The items h_dev through A_mtime have meanings explained in atat(2). The
length of the null-terminated path name A_name, including the null byte, is given by A_namesize,

The last record of the archive always contains the name TRAILER!!. Special files, directories,
and the trailer, are recorded with h_filesize equal to zero.

SEE ALSO

10

cpio(1), find(1), stat(2)

Last change: 8 February 1983 Sun Release 1.1

o

C

C

-

CRONTAB(5) FILE FORMATS CRONTAB(5)

NAME

crontab — table of times to run periodic jobs

DESCRIPTION

FILES

The [etcfcron utility is a permanent process, started by [etefre.local, that wakes up once every
minute. [efc/cron consults the file [usrflib/crontab to find out what tasks are to be done, and at
what time.

Each line in [usr/libf crontab consists of six fields, separated by spaces or tabs, as follows:
minutes field, which can bave values in the range 0 through 59.

hours field, which can have values in the range 0 through 23.

day of the month, in the range 1 through 31.

month of the year, in the range 1 through 12.

day of the week, in the range 1 through 7. Monday is day 1 in this scheme of things.

@ | e

(the remainder of the line) is the command to be run. A percent character in this field is
translated to a new-line character. Only the first line {up to a % or end of line) of the
command field is executed by the Shell. The other lines are made available to the com-
mand as standard input.

Any of fields 1 through 5 can be a list of values separated by commas. A field can be a pair of
numbers separated by a hyphen, indicating that the job is to be done for all the times in the
specified range. If a field is an asterisk character (*) it means that the job is done for all possible
values of the field.

Jusr/lib/crontab

SEE ALSO

cron(8), re{8)

EXAMPLE

00 ** * calendar -

160** % fete/sa -8 > [dev /null

154 * * * find fust/preserve -mtime + 7 -a -exec rm -f {} ;
404 * * * find / -name '#*' -atime + 3 -exec rm -f {} ;
0,15,30,45 * * * * Jete/atrun

0,10,20,30,40,50 * * ¥ * /ete/dmesg - > > fusr/adm/messages
54***sh [etc/newsyslog

The calendsr command run at minute 0 of hour 0 (midnight) of every day. The fetc/sa command
runs at 15 minutes after midnight every day. The two find commands run at 15 minutes past
four and at 40 minutes past four, respectively, every day of the year. The atrun command (which
processes shell scripts users have set up with at) runs every 15 minutes. The [etc/dmesg com-
mand appends kernel messages to the [usrfadm/messages file every ten minutes, and finally, the
[uerfadmfsyslog script runs at five minutes after four every day.

Sun Release 1.1 Last change: 27 Qctober 1983 11

DIR (5) FILE FORMATS DIR (5)

NAME ' @

dir — format of directories

SYNOPSIS
#include <sysftypes.h>
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry; see
f3(5). The structure of a directory entry as given in the include file is:
*

* A directory consists of some number of blocks of DIRBLKSIZ

* bytes, where DIRBLKSIZ is chosen such that it can be transferred

* to disk in a single atomic operation {e.g. 512 bytes on most machines).

*

* Each DIRBLKSIZ byte block contains some number of directory entry

* structures, which are of variable length. Each directory entry has

* a struct direct at the front of it, containing its inode number,

* the length of the entry, and the length of the name contained in

* the entry. These are followed by the name padded to a 4 byte boundary
* with null bytes. All names are guaranteed null terminated.

* The maximum length of a name in a directory is MAXNAMLEN.

*

* The macro DIRSIZ{dp} gives the amount of space required to represent
* a directory entry. Free space in a directory is represented by

* entries which have dp->>d_reclen > DIRSIZ{dp). All DIRBLKSIZ bytes
* in a directory block are claimed by the directory entries. This ©
* usually results in the last entry in a directory having a large

* dp->d_reclen. When entries are deleted from a directory, the

* space is returned to the previous entry in the same directory

* block by increasing its dp->d_reclen. If the first entry of

* a directory block is free, then its dp->d_ino is set to 0.

* Entries other than the first in a directory do not normally have

* dp~->d_ino set to 0.

=

#itdef KERNEL ;
#tdefine DIRBLKSIZ DEV_BSIZE
Ftelse

#define DIRBLKSIZ 512
F#endif

#define MAXNAMLEN 255

*®

* The DIRSIZ macro gives the minimum record length which will hold

* the directory entry. This requires the amount of space in struct direct

* without the d_name field, plus enough space for the name with a terminating
* null byte (dp->>d_namlen+ 1), rounded up to a 4 byte boundary.

* .

#undef DIRSIZ
s#define DIRSIZ(dp) ((sizeof {struct direct) - (MAXNAMLEN+ 1)) + (((dp)->d_namlen+1 + 3%

struct direct { O

12 Last change: 15 January 1983 Sun Release 1.1

DIR (5) FILE FORMATS DIR(5)

u_long d_ino;

short d_reclen;
short d_namlen;
char d_name{MAXNAMLEN + 1J;
[* typically shorter */

b

struct _dirdesc {
int dd_{d;
long dd_loc;
long dd_size;
char dd_buf|DIRBLKSIZ];

b

By convention, the first two entries in each directory are for *." and *..’. The first is an entry for

the directory itself. The second is for the parent directory. The meaning of ‘..’ is modified for
the root directory of the master file system (‘‘/”), where ‘..’ has the same meaning as ‘.’

SEE ALSO
1s{5), readdir(3)

Sun Release 1.1 Last change: 15 January 1983 13

DUMP(5) FILE FORMATS
NAME

dump, dumpdates — incremental dump format
SYNOPSIS

#include <sys/types.h>
#include <sys/inode.h>>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dump and restore(8) contain:

a header record

two groups of bit map records

a group of records describing directories
a group of records describing files

DUMP (5)

The format of the header record and of the first record of each description as given in the include

file < dumprestor.h> is:

dfdefine NTREC 10
ftdefine MLEN 16
Fdefine MSIZ 4096
f#define TS_TAPE 1

#tdefine TS_INODE 2

#define TS_BITS 3

#define TS_ADDR 4

f#define TS_END 5

#define TS_CLRI 6

##defilne MAGIC (int) 60011

Ftdefine CHECKSUM (int) 84446

struct spel {

int ¢_type;
time_t o_date;
time_t c_ddate;
int ¢_volume;
daddr_t c_tapea;
ino_t ¢_inumber;
int c_magic;
int ¢_checksum;
struct dinode c_dinode;
int c_count;
char c_addr[BSIZE];
} spel;
struct idates {
char id_name|16};
char id_incno;
time_t id_ddate;
I §
#defire DUMPOQUTFMT ”%-16s %c %os” /* for printf */

/* name, incno, ctime(date) */
/* inverse for scanf */

#define DUMPINFMT "%16s %c %[\n]\n"

14 Last change; 15 January 1983

Sun Release 1.1

-

i
|
i
i

O

DUMP (5) FILE FORMATS DUMP (5)

FILES

NTREC is the default number of 1024 byte records in a physical tape block, changeable by the b
option to dump. MLEN is the number of bits in a bit map word. MSIZ is the number of bit map
words.

The TS_ entries are used in the ¢ _type field to indicate what sort of header this is. The types and
their meanings are as follows:

TS_TAPE Tape volume !abel
TS_INODE A file or directory follows. The ¢_dinode field is a copy of the disk inode and con-
tains bits telling what sort of file this is.

TS_BITS A bit map follows. This bit map has a one bit for each inode that was dumped.

TS_ADDR A subrecord of a file description. See ¢_addr below.

TS_END End of tape record. ‘

TS_CLRI A bit map follows. This bit map contains a zero bit for all inodes that were empty
‘ on the file system when dumped. 4

MAGIC All header records have this number in ¢_magic.

CHECKSUM Header records checksum to this value.

The flelds of the header structure are as follows:

c_type The type of the header.

c_date The date the dump was taken.

c_ddate The date the file system was dumped from,

c¢_volume The current volume number of the dump.

c_tapea The current number of this (1024-byte) record.

c_inumber The number of the inode being dumped if this is of type TS_INODE.
c_magic This contains the value MAGIC above, truncated as needed.

¢_checksum This contains whatever value is needed to make the record sum to CHECKSUM.

c_dincde This is a copy of the inode as it appears on the file system; see f2(5).

c_count The count of characters in ¢_addr.

c_addr An array of characters describing the blocks of the dumped file. A character is
zero if the block associated with that character was not present on the file system,
otherwise the character is non-zero, If the block was not present on the file sys-
tem, no block was dumped; the block will be restored as a hole in the file. If there
is not sufficient space in this record to describe all of the blocks in 2 file,
TS_ADDR records will be scattered through the file, each one picking up where the
last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends
with a TS_END record and then the tapemark.

The structure sdates describes an entry in the file [ete/dumpdates where dump history is kept.
The fields of the structure are:

id_name The dumped filesystem is ‘/de\r/id_nam’.
id_incno The level number of the dump tape; see dump(8).
id_ddate The date of the incremental dump in system format see {ypes(5).

[etc/dumpdates

SEE ALSO

BUGS

dump(8), restore{8), fs{5), types(5)

Should more explicitly describe format of dumpdates file.

Sun Release 1.1 Last change: 15 January 1983 15

ENVIRON(5) FILE FORMATS ENVIRON{5)

NAME

environ — user environment

SYNOPSIS

extern char **environ;

DESCRIPTION

An array of strings called the ‘environment’ is made available by ezecve(2) when a process begins.

By convention these strings have the form ‘name==valuc’. The following names are used by vari-

ous commands:

PATH The sequence of directory prefixes that ah, time, nice(1), etc., apply in searching for a
file known by an incomplete path name. The prefixes are separated by :'. The
login(1) process sets PATH=:/usr/ucb:/bin:/usr/bin.

HOME A user's login directory, set by login(1) from the password file passwd(5).

TERM The kind of terminal for which output is to be prepared. This information is used by
commands, such as nroff or plot{1G), which may exploit special terminal capabilities.
See [etcftermeap (termeap(5)) for a list of terminal types.

SHELL The file rame of the user's login shell.

TERMCAP The string describing the terminal in TERM, or the name of the termcap file, see
termeap(3),termeap(5),

EXINIT A startup list of commands read by ez(1), edit(1), and vi{1).
USER The login name of the user.

Further names may be placed in the environment by the ezport command ard ‘name==value’
arguments in #h(1), or by the sefenv command if you use csh(1). Arguments may also be placed
in the environment at the point of an ezecue(2). It is unwise to conflict with certain 2h(1} vari-
ables that are frequently exported by ‘.profile’ files: MAIL, P51, PS2, IFS,

SEE ALSO

16

csh(1), ex(1}, login(1), sh{1), getenv(3), execve(2), system(3), termeap(3X), termeap(5)

Last change: 13 June 1983 Sun Release 1.1

-

-

O

FCNTL (5) FILE FORMATS

NAME

fentl - file control options

DESCRIPTION

#tinclude <fentlh>

DESCRIPTION
The fent!(2) function provides for control over open files. This include file describes requests and

argumente to fentl and open{2) as shown below:
/* @{#){cntl.h 1.2 83/12/08 SMI; from UCB 4.2 83/09/25 */

*

* Flag values accessible to open{2} and fentl(2)

* (The first three can only be set by open)

="

ftdefine O_RDONLY O

ffdeflne O_WRONLY 1

#define O_RDWR 2

#define O_NDELAY FNDELAY /* Non-blocking IO */

ffdefine O_APPEND FAFPEND /* append (writes guaranteed at the end) ¥/

#ifndet F_DUPFD

/* tentl(2) requests */

#define F_DUPFD 0 /* Duplicate fildes */
#tdefine F_GETFD 1 J* Get fildes flags */
#define F_SETFD 2 /* Set fildes flags */
#define F_GETFL 3 /* Get file flags */
#define F_SETFL 4 /* Set file flags */

#define F_GETOWN § /* Get owner */
##define F_SETOWN 6 /* Set owner */

/* Bags for F__GETFL , F_SETFL— copied from <sys/fileh> */

#define FNDELAY 00004 /* non-blocking reads */
#define FAPPEND 00010 /* append on each write */
fdefine FASYNC 00100 /* signal pgrp when data ready */
#endif

SEE ALSO

fentl(2), open(2)

Sun Release 1.1 Last change: 1 September 1983

FCNTL (5)

17

FS(5)

NAME

FILE FORMATS FS(5)

fs, inode - format of file system volume

SYNOPSIS

#include <sys/types.h>
#include <sys/filsys.h>
#include <sys/inode.h>

DESCRIPTION

18

Every file system storage volume {disk, mine-track tape, for instance) has a common format for
certain vital information. Every such volume is divided into a certain number of blocks. The
block size is a parameter of the file system. Sectors 0 to 15 on a file system are used to contain
primary and secondary bootstrapping programs.

The actual file systera begins at sector 16 with the super Mock. The layout of the super block as
defined by the include file <sys/fe.A> is:

#define FS_MAGIC 0x011954

struct s {
struct s *fs_link; /* linked list of file systems */
struct s *f5_rlink; /* used for incore supet blocks */
daddr_t fs_sblkno; /* addr of super-block in filesys */
daddr_t fs_cblkno; /* offset of cyl-block in filesys */
daddr_tfs_iblkno; /* offset of inode-blocks in filesys */
daddr_tfs_dblkno; [* offset of first data after cg */
long fs_cgofiset; /* cylinder group offset in cylinder */
long fs_cgmask; /* used to calc mod fs_ntrak */
time_t fs_time; /* last time written */
long fs_size; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fs_neg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs *f
long fs_fsize; /* size of frag blocks in fs */
long fs_frag; /* number of frags in a block in fs */
/* these are configuration parameters */
long fs_minfree; /* minimum percentage of free blocks */
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second */
/* these fields can be computed from the others */
long fs_bmask; /* “blkofl” calc of blk offsets */
long fs_fmask; /* “fragofi” cale of frag offsets */
long fs_bshift; /* “Iblkno’ calc of logical blkno */
long fs_fshift; /* “numfrags’ calc number of frags */
[* these are configuration parameters */
long fs_maxcontig; /* max number of contiguous blks */
long fs_maxbpg; /* max number of blks per ¢yl group */
/* these fields can be computed from the others */
long fs_fragshift; J* block to frag shift */
long fs fsbtodb; /¥ fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */
long fs_csmask; /¥ csum block offset */
long fs_csshift; /* csum block number */
leng fs_nindir; /* value of NINDIR */
long fs_inoph; J* value of INOPB */
long fs_nspf; J* value of NSPF */
long fs_sparecon[6]; [* reserved for future constants */

Last change: 3 April 1983 Sun Release 1.1

-

C

FS(5)

FILE FORMATS FS(5)
/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area *{
long fs_cgsize; /* cylinder group size */
/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_nsect; /* sectors per track */
long fs_spc; J* sectors per cylinder */
/* this comes from the disk driver partitioning */
long fs_ncyl; /* cylinders in file system */
/* these fields can be computed from the others */
long fs_cpg; [* cylinders per group */
long fa_ipg; [* inodes per group */
long fIs_{pg; /* blocks per group * fs_frag */

J* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */
/* these fields are cleared at mount time */

char {5 _fmod; /* super block modified flag */
char fs_clean; J* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; [* currently unused flag */
"char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
/* these fields retain the current block allocation info */
long fs_cgrator; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
long [s_cpe; /* ¢yl per cycle in postbl */
short fs_postb[MAXCPG][NRPOS];/* head of blocks for each rotation */
long [s_magic; /* magic number */
u_char fs_rotbl|1]; J* list of blocks for each rotation */

/¥ actually longer */

»

Each disk drive contains some number of file systems. A file system consists of a number of
cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does net change,
so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of ‘blocks’. File system blocks of
at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is address-
able; these pieces may be DEV_BSIZE, or some multiple of a DEV_BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a small file is allocated as only as many fragments of a large block as are necessary.
The file system format retains only a single pointer to such a fragment, which is a piece of a sin-
gle large block that has been divided. The size of such a fragment is determinable from informa-
tion in the inode, using the ‘‘blksize(fs, ip, 1bn)”’ macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

The root inode is the root of the file system. Inode 0 can’t be used for normal purposes and his
torically bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer used for
this purpose, however numerous dump tapes make this assumption, so we are stuck with it). The
lost+ found directory is given the next available inode when it is initially created by mkfs.

Sun Release 1.1 Last change: 3 April 1983 19

FS(5)

20

FILE FORMATS FS(5)

fa_minfree gives the minimum acceptable percentage of file system blocks which may be free. If
the freelist drops below this level only the super-user may continue to allocate blocks. This may
be set to 0 if no reserve of free blocks is deemed necessary, however severe performance degrada-
tions will be observed if the file system is run at greater than 90% full; thus the default value of
fo_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a load-
ing of 90% comes with a fragmentation of 4, thus the default fragment size is a fourth of the
block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. With NRPOS 8 the reso-
lution of the summary information is 2ms for a typical 3600 rpm drive.

fa_rotdeloy gives the minimum number of milliseconds to initiate another disk tramsfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within a
file; the default value for fa_rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI
bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the struc-
ture simpler by having the only a single variable size element (the free bit map).

N.B.t MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4006 it is possible to create
files of size 2°32 with only two levels of indirection. MINBSIZE must be big enough to hold a
cylinder group block, thus changes to (struct ¢g) must keep its size within MINBSIZE. MAXCPG
is limited only to dimension an array in (struct cg); it can be made larger as long as that
structure's size remains within the bounds dictated by MINBSIZE. Note that super blocks are
never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fs_fomnt. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the amount
of summary information per file system is defined by MAXCSBUFS. It is currently parameterized
for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's
data blocks. These blocks are read in from fs_ceaddr (size fo_cssize) in addition to the super
block.

N.B.1 sizeof (struct csum) must be a power of two in order for the *‘fs_cs” macro to work.

Super bock for a file system: MAXBPC bounds the size of the rotational layout tables and is lim-

ited by the fact that the super block is of size SBSIZE. The size of these tables is Inversely pro-

portional to the block size of the file system. The size of the tables is increased when sector sizes

are not powers of two, as this increases the number of cylinders included before the rotational
" pattern repeats (fa_cpc). The size of the rotational layout tables is derived from the number of

bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data pet cylinder group, and is limited by the fact that

cylinder groups are at most one block. The size of the free block table is derived from the size of
blocks and the number of remaining bytes in the cylinder group structure (struct cg).

Inode: The inode is the focus of all file activity in the UNIX file system. There is a unique inode
allocated for each active file, each current directory, each mounted-on file, text file, and the roct.
An inode is ‘named’ by its device/i-number pair. For further information, see the include file
< sysfinode.h>.

Last change: 3 April 1983 Sun Release 1.1

C

LT I/l B B 241G

FSTAB(5) FILE FORMATS FSTAB(5)

NAME
fstab - static information about the Blesystems

SYNOPSIS
#include <fstab.h>

DESCRIPTION .
The file [eic/fstab describes the file systems and swapping partitions on the local machine. It is
created by the system administrator using a text editor and processed by commands which
mount, unmount, check consistency of, dump and restore file systems, and by the system in pro-
viding swap space.

It consists of a number of lines of the form:
fs_spec:fs_file:fs_type:fs_freq:fs_passno
an example of whick would be:
[dev [xy0a:/:rw:1:1

The entries from this file ate accessed using the routines in geifzent(3), which returns a structure
of the following form:

struct fstab {
char *fs_spec; [* block special device name */
char *fs_file; /* file aystem path prefix */
char *fs_type; /* rw,ro,sw or xx */
int fs_freq; /* dump frequency, in days *f
int fs_passno; /* pass number on parallel damp */

b

@ The lines in the file give for each file system or swap area on the local machine the disk partition
it is contained in fa_spec and the directory on which it is to be mounted (unless it is a swap area)
in fa_file. The fe_spec special file name is the block special file name, and not the character spe-
cial file name which the rest of the entry refers to. If a program needs the character special file
name, the program must create it by appending a ‘“r"’ after the last “/” in the special file name.

The fa_type indicates whether it it to be read-only “‘ro”, readable and writable ‘“‘rw”, or readable
and writable subject to quotas “rq”. If fo_type is ‘'sw” then the special file is made available as a
piece of swap space by the swapon(8) command at the ¢nd of the system reboot procedure. The
fields other than fa_speec and fa_type are not used in this case, If f3_lype is *‘rq” then at boot time
the file system is automatically processed by the guotacheck{8) command and disk quotas are then
enabled with gquotson(8). File system quotas are maintained in a file “‘quotas’, which is located
at the root of the associated file system. If fo_type is specified as ‘‘xx” the entry is ignored. This
is useful to show disk partitions which are currently not used.

The field fo_freq indicates how often each partition should be dumped by the dump(8) command
(and triggers that commands w option which tells which file systems should be dumped). Most
systems set the fo_freq field to 1 indicating that the file systems are dumped each day.

The final field fo_paseno is used by the disk consistency check program feck(3) to allow overapped
checking of file systems during a reboot. All file systems with fs_passno of 1 are first checked
simultaneosly, then all file systems with fs_pazeno of 2, and so on. It is usual to make the
fe_paseno of the root file system have the value 1 and then check one file system on each available
disk drive in each subsequent pass to the exhaustion of file system partitions,

[etc/fstab is only read by programs, and not written; it is the duty of the system administrator to
properly create and maintain this file. The order of records in [ete/fstab is important because
feck, mount, and smount process the file sequentially; file systems must appear gfter file systems

@ they are mounted within.

Sun Release 1.1 : L ast change: 18 September 1983 21

FSTAB(5) FILE FORMATS

FILES

[etc/istab

SEE ALSO

22

getfsent(3), quotacheck(8), quotaon(8)

Last change: 18 September 1983

FSTAB(5)

Sun Release 1.1

C

-

GETTYTAB(5) FILE FORMATS GETTYTAB(5)

NAME

gettytab — terminal configuration data base
SYNOPSIS

[etefgettytab
DESCRIPTION

Getiytad is a simplified version of the termcap(5) data base used to describe terminal lines. The
initial terminal login process getty(8) accesses the geftytab file each time it starts, allowing simpler
reconfiguration of terminal characteristics. Each entry in the data base is used to describe one
class of terminals.

There is a default terminal class, defauli, that is used to set global defaults for all other classes.
(That is, the default entry is read, then the entry for the class required is used to override particu-
lar settings.)

CAPABILITIES
Refer to termcap(5) for a description of the file layout. The default column below lists defaults

obtained if there is no entry in the table obtained, nor one in the special default table,

Name Type Default Description

ap bool false terminal uses any parity

bd num 0 backspace delay

bk str 0377 alternate end of line character (input break)
¢cb bool false wuse crt backspace mode

ed pum O carriage-return delay

ce bool false use crt erase algorithm

ck bool false use crt kill algorithm

cl str NULL screen clear sequence

¢o bool false console - add \n after login prompt
ds str Y delayed suspend character

ec bool [false leave echo OFF

ep bool false terminal uses even parity

er str ! erase character

et str ‘D end of text (EOF) character

ev str NULL initial enviroment

f0 num unused tty mode flags to write messages
f1 num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd noum O form-feed (vertical motion) delay

i str O output flush character

be bool false do NOT hangup line on last close
he str NULL hostname editing string

hn str hostname hostname

ht bool false terminal has real tabs

ig bool false ignore garbage characters in login name
im stt NULL initial (banner) message

in str “C interrupt character

is num unused input speed

kl str U kill character

le bool false terminal has lower case

Im str login: login prompt

In str "V “literal next” character
lo str /binflogin program to exec when name obtained
nd nam O newline (line-feed) delay

nl bool false terminal has (or might have) a newline character

Sun Release 1.1 Last change: 27 October 1983 23

GETTYTAB(5) FILE FORMATS GETTYTAB(5)

24

nx str default next table {for auto speed selection)

op bool false terminal uses odd parity

o8 num upused output speed

pe sttt \0 pad character

pe bool false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and following flush (seconds)
ps bool false line connected to a MICOM port selector
qu stt "\ quit character

Ip str "R line retype character .

Iw bool false do NOT use raw for input, use cbreak

sp num unused line speed {input and output)

84 str % suspend character
te str none table continuation
tp num O timeout (seconds)

tt str NULL terminal type (for enviroment)

ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case only

we str W word erase character

xc bool ftalse do NOT echo control chars as "X

xf str *S XOFF (stop output) character

xp str "Q XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getfy is
entered. Specifying an input or cutput speed overrides line apeed for stated direction only.

Terminal medes to be ured for the output of the message, for input of the login name, and to
leave the terminal set as upon completion, are derived from the Boolean flags specified. If the
derivation should prove inadequate, any (or all) of these three may be overriden with one of the
f0, f1, or f2 numeric specifications, which can be used to specify {usually in octal, with a leading
‘0’} the exact values of the flags. Local (new tty) flags are set in the top 16 bits of this (32 bit)
value.

Should getty receive a null character (presumed to indicate a line break) it will restart using the
table indicated by the nx entry. If there is none, it will re-use its original table,

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be
used. Should greater certainty be desired, delays with values 0, 1, 2, and 3 are interpreted as
choosing that particular delay algorithm from the driver,

The cl screen clear string may be preceded by a (decimal) number of milliseconds of delay
required (a Ia termcap). This delay is simulated by repeated use of the pad character pe.

The initial message, and login message, im and lm may include the character sequence %%h to
obtain the hostrame. {95%% obtains a single ‘%’ character.) The hostname is normally obtained
from the system, but may be set by the hn table entry. In either case it may be edited with he.
The he string is a seguence of characters, each character that is neither ‘@’ nor '#’' is copied into
the final hostname. A ‘@’ in the he string, causes one character from the real hostname to be
copied to the final hostname. A ‘#’ in the he string, causes the next character of the real host-
name to be skipped. Surplus ‘@' and ‘#' characters are igonored.

When geity execs the login process, given in the lo string (usually ”/bin/login”), it will have set
the enviroment to include the terminal type, as indicated by the tt string (if it exists). The ev
string, can be used to enter additional data into the environment. It is a list of comma separated
strings, each of which will presumably be of the form name=value.

If a non-zero timeout is specified, with to, then getiy will exit within the indicated number of
seconds, either having received a login name and passed control to fogin, or having received an
alarm signal, and exited, This may be useful to hangup dial in lines.

Last change: 27 October 1983 Sun Release 1.1

-

-

 GETTYTAB(5) FILE FORMATS GETTYTAB(5)

Output from gelly is even parity unless op is specified. Op may be specified with ap to allow
any parity on input, but generate odd parity output. Note: this only applies while getfy is being
run, terminal driver limitations prevent a more complete implementation. Getty does not check
parity of input characters in RAW mode,

SEE ALSO
termeap(5), getty(8).

Sun Release 1.1 Last change: 27 Qctober 1983 25

GROUP(5) FILE FORMATS GROUP(5)

NAME

group — group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCH! file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

This file resides in directory fete. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical group ID’s to names.

[ete/group

SEE ALSO

BUGS

26

setgroups(2), initgroups(3), crypt(3), passwd(1), passwd(5)

The pasewd(1) command won't change the passwords.

Last change: 15 January 1983 Sun Release 1.1

-

HOSTS(5) FILE FORMATS HOSTS (5)

C

NAME
hosts — host name data base

DESCRIPTION
The kostz file contains information regarding the known hosts on the DARPA Internet. For each
host a single line should be present with the following information:

official host name

Internet address

aliases

Items are separated by any number of blanks andfor tab characters. A *'# indicates the begin-
ning of a comment; characters up to the end of the line are not interpreted by routines which
eearch the file. This file is normally created from the official host data base maintained at the
Network Information Control Center (NIC), though local changes may be required to bring it up
to date regarding unofficial aliases and for unknown hosts.

Network addresses are specified in the conventional “."’ notation using the inei_sddr{) routine
from the Internet address manipulation library, snef{3N). Host names may contain any printable
character other than a field delimiter, newline, or comment character.

FILES
Jetc/hostd

SEE ALSO
gethostent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be

@ available for fast access,

O .

Sun Release 1.1 Last change: 15 January 1983 27

KBD(5) FILE FORMATS KBD(5)

NAME

kbd — keyboard translation table format and default table

SYNOPSIS

#include <sundev/kbd.h>

DESCRIPTION

28

Keyboard translation is done in the UNIX kernel via a set of tables. A translation table is 128
bytes of ‘entries’, which are bytes (unsigned chars). The top 4 bits of each entry are decoded by a
case statement in the keyboard translator. If the entry is less than 0x80, it is sent out as an ASCII
character (possibly with the META bit OR-ed in). ‘Special’ entries are 0x80 or greater, and
invoke more complicated actions.

struct keymap {
unsigned char keymap[128]; /* maps keycodes to actions */
b

A keyboard is defined by its keymaps.

struct keyboard {
struct keymap *k_normal; /* Unshifted */
struct keymap *k_shifted; /* Shifted */

struct keymap *k_caps; /¥ Caps locked */

struct keymap *k_control; /* Controlled */

struct keymap *k_up; [* Key went up */

int k_idleshifts; /* Shifts ¥/

int k_idlebuckys; /* Bucky bits ¥/

unsigned char k_abortl; /* 1st key of abort sequence */
unsigned char k_abort2; [* 2nd key of abort sequence */

b
The following defines the bit positions used within k_idleshifts to indicate the ‘pressed’ (1) or
‘released’ {0) state of shift keys. The bit numbers and the aggregate masks are defined.

Since it is possible to have more than one bit in the shift mask on at once, there is an implied
priority given to each shift state when determining which translation table to use. The order is
{from highest priority to lowest) UPMASK, CTRLMASK, SHIFTMASK, and lastly CAPSMASK.

ddefine CAPSLOCK 0 /* Caps Lock key */

#define SHIFTLOCK 1 /* Shift Lock key */

#define LEFTSHIFT 2 /* Left-hand shift key */

#define RIGHTSHIFT 3 /* Right-hand shift key */

#define LEFTCTRL 4 /* Left-hand {or only) control key */
##define RIGHTCTRL 5 /* Right-hand control key */
F#define CAPSMASK 0x0001 /* Caplock transtation table */
#define SHIFTMASK 0x000E /* Shifted translation table */
Fdefine CTRLMASK 0x0030 /* Ctrl shift translation table */
Fdefine UPMASK 0x0080 /* Key up translation table */

Special Entry Keys

The ‘special’ entries’ top 4 bits are defined below, Generally they are used with a 4-bit parameter
(such as a bit number) in the low 4 bits. The bytes whose top 4 bits are 0x0 thru 0x7 happer to
be ASCII characters. They are not special cased, but just normal cased.

#define SHIFTKEYS 0x30

thru 0x8F. This key helps to determine the translation table used. The bit position of
its bit in ‘shiftmask’ is added to the entry, for example, SHIFTKEYS+ LEFTCTRL. When

Last change: 19 March 1984 Sun Release 1.1

-

KBD(5) FILE FORMATS KBD(5)

@ . this entry is invoked, the bit in ‘shiftmask’ is toggled. Depending which tables you put it
in, this works well for hold-down keys or press-on, press-off keys.

#define BUCKYBITS 0x900

thru Ox9F. This key determines the state of one of the ‘bucky’ bits above the returned
ASCII character. This is basically a way to pass mode-key-up/down information back to
the caller with each ‘real’ key depressed. The concept, and name ‘bucky’ (derivation
unknown) comes from the MIT/SAIL ‘TV’ system — they had TOP, META, CTRL, and a
few other bucky bits. The bit position of its bit in ‘buckybits’, minus 7, is added to the
entry; for example, bit 0x00000400 is BUCKYBITS+ 3. The ‘-7’ prevents us from messing
up the ASCI char, and gives us 168 useful bucky bits. When this entry is invoked, the
designated bit in ‘buckybits’ is toggled. Depending which tables you put it in, this works
well for hold-down keys or press-on, press-off keys.

fdefine METABIT 0

Meta key depressed with key. This is the only user accessible bucky bit. This value is
added to BUCKYBITS in the translation table.

1
&

L

#define SYSTEMBIT 1

‘System’ key was down w/key. This is a kernel-accessible bucky bit. This value is added
to BUOKYBITS in the translation table. The system key is currently not used except as a
place holder to indicate the key used as the k_abort! key: (as defined above).

#define FUNNY OxAQ /* thru OxAF. This key does one of 16 funny
@ things based. on the low 4 bits: */

#fdefine NOP 0XAO /* This-key does nothing. */

##define OOPS 0xAl /* This key exists but is'undefined. */

f#define HOLE OxA2 /* This key does not exist on the keyboard.

Its position code should never be
generated. This indicates-a software/
! hardware mismatch, or bugs. */
#define NOSCROLL 0xA3 /* This key alternately sends “S or "Q */

#define CTRLS 0xA4 /* This sends *S and lets NOSCROLL know */
#define CTRLQ OxA5 [* This sends "Q anrd lets NOSCROLL know */
#define RESET O0xA6 /* Kbd was just reset */

#define ERROR 0xA7 /* Kbd just detected an internal error */
#define IDLE 0xA8 /* Kbd is idle (no keys down) */

Cu_mbinﬁions 0xAQ to OXAF are reserved for non-parameterized functions,

ftdefine STRING 0xB0

thru OxBF. The low-order 4 bits index a table select a string to be returned, char by
char. Each entry in the table is null terminated.

#define KTAB_STRLEN 10 /* Maximum string length {including null) */
Definitions for the individual string numbers:
##define HOMEARROW 0x00
#define UPARROW 0x01
#define DOWNARROW 0x02
#define LEFTARROW 0x03
@ f#define RIGHTARROW 0x04

Sun Release 1.1 Last change: 19 March 1984 29

KBD(5) FILE FORMATS KBD(5)

String numbers 5 thru F are available to users making custom entries.

Function Key Groupings
In the following function key groupings, the low-order 4 bits indicate the function key number
within the group:

#define LEFTFUNC 0xCO0 /* thru OXCF. The ‘left’ group. */
##define RIGHTFUNC 0xDO /* thru 0xDF. The ‘right’ group. */
#define TOPFUNC OXxEO /* thru OxEF. The ‘top’ group. */
##define BOTTOMFUNC 0xFO /* thru OxFF. The ‘bottom’ group. */
##define LF(n) (LEFTFUNC+ (n)}1)

jtdefine RF (n} (RIGHTFUNC+ (n)1)

#define TF(n) (TOPFUNC+ (n}-1)

##define BF(n) (BOTTOMFUNC+ {n)-1)

The actual keyboard positions may not be on the left/right/top/bottom of the physical keyboard
(although they usually are), What is important is that we have reserved 64 keys for function

keys.
Normally, when a function key is pressed, the following escape sequence is sent through the char-

acter stream:
ESC[0..92
where ESC is a single escape character and 0..9 indicate some number of digits needed to encode

the function key as a decimal number.

DEFAULT TABLES

30

The kernel has 3 sets of initial translation tables, one set for each type of keyboard supported.
#ifndef lint

static char scesid[] = "@(d#)keytables.c 1.3 83/10/25 Copyr 1683 Sun Micro™;

#tendif

*
* Copyright (C) 1983 by Sun Microsystems, Inc.
*

L
* keytables.c
]

* This module contains the translation tables for the up-down encoded

* Sun keyboards.
&

#include .. /sur/kbd.h”

/* handy way to define control characters in the tables */
#define c(char) (char&0x1F)
f#define ESC 0x1B

/* Unshifted keyboard table for Micro Switch 103SD32-2 */

static struct keymap keytab_ms_le = {
/* 0 */HOLE, BUCKYBITS+ SYSTEMBIT,
LF(2), LF(3), HOLE, TF(1), TF(2}, TF(3),
/* 8*/TF(4), TF(5), TF(6), TF(7), TF(8), TF(9}, TF{10), TF(11),
J* 16 %/ TF(12), TF(13}, TF{14),¢(’['), HOLE, RF(1), '+’, -,

Last change: 19 March 1984 Sun Release 1.1

C

-

KBD (5)

J* 24

J* 324/
J* 404
J* 484/

[*56%/
J* 64/
/"' 72 "/

[*80%/
J* 88 %/
1+ 964

[*104 %/
[e112 %/
J*120 %/

};.

FILE FORMATS KBD(5)

HOLE, LF(4), '\, LF(6), HOLE, SHIFTKEYS+ CAPSLOCK,

1 :, 12r,
!3') ’4,’ ?51 !6’, !7! 18!, ’9!, 101’
!_l’ "‘", H! !\bl HOLE 17!' ,8,, 19!’

HOLE, LF(7), STRING+UPARROW,
LF(9), HOLE, \t, ‘v, 'w,

e, v, "+, y , 'll’, &l , ,0', 1pr,
', ¥, ', HOLE,'¢#, '§, ¢, HOLE,
STRING+ LEFTARROW,
STRING+ HOMEARROW,
STRING+ RIGHTARROW,
HOLE, SHIFTKEYS+ SHIFTLOCK,
'a’, s, adr
lr! s , Jh! j , 'k’, 1[:’ s,”
I, \r, HOLE 1, 2, '3, HOLE, NOSCROLL
STRING+DOWNARROW,
LF(97), HOLE, HOLE, SHIFTKEYS+ LEFTSHIFT,
7, %', e,
v, 'p’, n’, 'm’, ", v I SHIFTKEYS+ RIGHTSHIFT,

NOP, Ox7F, '0, NOP, '/, HOLE HOLE, HOLE,
HOLE, HOLE, SHIFTKEYS+ LEFTCTRL,

', SHIFTKEYS+ RIGHTCTRL,

HOLE, HOLE, IDLE,

/* Skifted keyboard table for Micro Switch 1035D32-2 */

static struct keymap keytab_ms_uc =
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

LF(2), LF(3), HOLE, TF(1), TF(2), TF(3),

/* 8*/TF(4), TF(5), TF(6), TF(7), TF(8), TF(9), TF(10), TF(ll)

/*16%
/% 24%

[*32%/
[*40%/
/*48%/

[*56%/
[*64%/
[*72%/

[*80%/
[*88%/
[re8*/

/4104 */
[*112 %/
J+120 %/

Sun Release 1.1

TF(12), TF(13), TF(14),c('[), HOLE, RF(1), e,
HOLE, LF(4), '\, LF(6), HOLE, SHIFTKEYS+ CAPSLOCK,
I'? !”1
9#!’ l"' ,%!’ F&!’ 1\1!, !(), F)’ !0”
!=!' T", ’@I’ ?\bi, HOLE, l7l’ 18’ !9!,
HOLE, LF(7), STRING+ UPARROW,
LF(9), HOLE, '\t, 'Q, 'W,
IEY TR!’ !Tl, YY!’ IU!’ !I?, lO!, !P!,

v[f 1]! l-l HOLE 141, !51, '6', HOLE,
STRING+ LEFTARROW,
STRING+ HOMEARRGW,
STRING+ RIGHTARROW,
HOLE, SHIFTKEYS+ SHIFTLOCK,
!A!, ?S! !D!

lFl, 7G!' !Hl, IJ,, ’K!’ !LI, ’+ H !*!
\V, '\, HOLE,'l' '2, '3 HOLE, NOSCROLL,
STRING+ DOWNARROW,
LF(97), HOLE, HOLE, SHIFTKEYS+ LEFTSHIFT,

. !zl, IX!, !Cl,
v, B, N, M, <, '>', %, SHIFTKEYS+RIGHTSHIFT,
NOP, Ox7F, '0", NOP, ’’, HOLE, HOLE, HOLE,
HOLE, HOLE, SHIFTKEYS+ LEFTCTRL,

Last change: 19 March 1984 31

KBD(5) FILE FORMATS KBD(5)

a2

, SHIFTKEYS+ RIGHTCTRL,
HOLE, HOLE, IDLE,

h

/* Caps Locked keyboard table for Micro Switch 1035D32-2 */

static struct keymap keytab_ms_cl = {
/* ©*/HOLE, BUCKYBITS+ SYSTEMBIT,

LF(2), LF(3), HOLE, TF(1), TF(2), TF(3),
/* 8+/TF(4), TF(5), TF(6), TF(7), TF(8), TF(9), TF(10), TF(1L),

J* 16 %/ TF{12), TF(13), TF(14),¢(), HOLE, RF{1), '+’, ',
J*24%f HOLE, LF(4), '\f’, LF(6), HOLE, SHIFTKEYS+ CAPSLOCK,
’1', :2:,

/* 32 tl r31’ 141 :5: :63 !7! ’8’)9:) 10|,
/t 40 t/ LR l !""l !Il l\bl HOLE 171 vsl. 191,
[* 484/ HOLE, LF(7), STRING+UPARROW,

LF(9), HOLE, '\t, 'Q, 'W’,
/t 56 :t/ ’E,, ’R’, 1Ti’ !Yl ’U', ,I', 101’ spr,
[*64%/ ", 'y, ', HOLE,'#, '8, '6, HOLE,
[* 724/ STRING+ LEFTARROW,

STRING+ HOMEARROW,
STRING+ RIGHTARROW,

HOLE, SHIFTKEYS+ SHIFTLOCK,
!A” IS! YD?

[*80%/ P, ', W, ', K, 'L, '}
[+ 88%/ !, \r, HOLE,'r, '2, '3, HOLE, NOSCROLL
/* 96/ STRING-+ DOWNARROW,

LF(97), HOLE, HOLE, SHIFTKEYS+ LEFTSHIFT,

) Iz’ ’_xl 10?

/*104 %/ v, B, N, M, ', ', 'f, SHIFTKEYS+RIGHTSHIFT,
[*112 %/ NOP, OX7F, ', NOP, '', HOLE, HOLE, HOLE,
*120 */ HOLE, HOLE, SHIFTKEYS+ LEFTCTRL,

BRA SHIFTKEYS+ RIGHTCTRL,
HOLE, HOLE, IDLE,

b
/* Controlled keyboard table for Micro Switch 1035D32-2 */

static struct keymap keytab_ms_ct = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

LF(2), LF(3), HOLE, TF(1), TF(2), TF(3),
/* 8*/TF(4), TF(5), TF(6), TF(7), TF(8), TF(9), TF(10), TF(11),

/* 164/ TF(12), TF(13), TF(14),¢(’)) HOLE, RF(i), OOPS, OOPS,
[*24%) HOLE, LF(4), '\f, LF(6), HOLE, SHIFTKEYS+ CAPSLOCK,

OOPS, OOPS,
[*32%/ OOPS, OOPS, OOPS, OOPS, OOPS, OOPS, OOPS, OOPS,
/* 10%/ QOPS, c(™"), <('@'), "\b’, HOLE, OOPS, OOPS, OOPS,
/%48 %/ HOLE, LF(7), STRING+UPARROW,

LF(9), HOLE, '\t, CTRLQ, o('W’),

J*56%/ (B), (R, of'T"), ('Y, c('U), <(P), ¢('0’), c('P"),
1* 644/ o), <), <), HOLE, OOPS, OOPS, OOPS, HOLE,
J*72%) STRING+ LEFTARROW,

Last change: 19 March 1984 Sun Release 1.1

b &l SR LT T

C

o

KBD(5) FILE FORMATS KBD(5)

STRING+ HOMEARROW,
STRING+ RIGHTARROW,
HOLE, SHIFTKEYS+ SHIFTLOCK,
c¢(’A’), CTRLS, ¢('DY),
[*80%/ (F), o('G"), e(H), ¢('3), <('’K'), (L), OOPS, OOPS,
fe88¢ c(\V),
\r’, HOLE, OOPS, OOPS, OOPS, HOLE, NOSCROLL,
J*96%/ STRING+ DOWNARROW,
LF(97), HOLE, HOLE, SHIFTKEYS+ LEFTSHIFT,
. c{!Z!)’ c(lX,), C(’C’),
J*104 */ e('V’), ¢('B’), <('N’), ¢('M’), OOPS, GOPS, OOPS, SHIFTKEYS+ RIGHTSHIFT,
[r112 %/ NOP, Ox7F, OOPS, NOP, OOPS, HOLE, HOLE, HOLE,
J*120 %/ HOLE, HOLE, SHIFTKEYS+ LEFTCTRL,
\0’, SHIFTKEYS+ RIGHTCTRL,
HOLE, HOLE, IDLE,
b

/* "Key Up” keyboard table for Micro Switch 1035D32-2 */

static struct keymap keytab_ms_up = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

NOP, NOP, HOLE, NOP, NOP, NOPF,
/* 8 ¥/NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,

/*16%/ NOP, NOP, NOP, NOP, HOLE, NOP, NOP, NOP,
J*24%/ HOLE, NOP, NOP, NOP, HCLE, SHIFTKEYS+ CAPSLOCK,
NOP, NOP,
[¥32%f NOP, NOP, NOF, NOP, NOP, NOP, NOP, NOP,
/"‘ 40¢%/ NOP, NOP, NOP, NOP, HOLE, NOP, NOP, NOP,
J* 48 %/ HOLE, NOP, NOP, NOP, HOLE, NOP, NOP, NOP,
[* 56 %/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
Jr64%/ NOP, NOP, NOP, HOLE, NOP, NOP, NOP, HOLE,
Jr12%/ NOP, NOP, NOP, HOLE, SHIFTKEYS+ SHIFTLOCK,
NOP, NOP, NOP,
J*80%/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOF,
J*88%/ NOP, NOP, HOLE, NOP, NOP, NOP, HOLE, NOP,
Jro6%/ NOP, NOP, HOLE, HOLE, SHIFTKEYS+ LEFTSHIFT,
. NOP, NOP, NOP,
[*¥104 %/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, SHIFTKEYS+ RIGHTSHIFT,
Jr12 %/ NOP, NOP, NOP, NOP, NOP, HOLE, HOLE, HOLE,
[*120 */ HOLE, HOLE, SHIFTKEYS+ LEFTCTRL,

NOP, SHIFTKEYS+ RIGHTCTRL,
HOLE, HOLE, RESET,

L

/* Index to keymaps for Micro Switch 1035D32-2 */
static struct keyboard keyindex_ms = {
&keytab_ms_le,
&keytab_ms_nc,
&keytab_ms_cl,
&keytab_ms_ct,
&Lkeytab_ms_up,

Sun Release 1.1 Last change: 19 March 1984 33

KBD(5)

34

FILE FORMATS KBD(5)

CTLSMASK, /* Shift bits which stay on with idle keyboard */

0x0000,
1,

5

/* Bucky bits which stay on with idle keyboard */
7, /* abort keys */f

/* Unshifted keybeard table for Sun-2 keyboazd */

static struct keymap keytab_s2_le = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

LF(2), LF(3), HOLE, TF(1), TF(2), TF(3),

/* 8*/TF(4), TF(5), TF(6), TF(7), TF(8), TF(9), TF(10), TF(11),

[*16%]
1+ 244
[* 324
/*40%
/* 8%
156/
/* 64+
Jt72%]
/*80%/
J* 88+
I+ 96+
[*104 %/
J*¥112 %/

J*¥120 */

5

TF(12), TF(13), TF(14), TF(15), HOLE, RF(1), RF(2), RF(3),
HOLE, LF(4) LF(5) LF(6), HOLE, ('), 'Y,

131 6, 171 8' |g| lol
'=', w’ AW, HOLE, RF(4), RF(S), RF(G),

HOLE, LF(7), LF(8), LF(9), HOLE, '\t, ‘¢, ',

!ei, ’l", ’t,, y !u‘l 1y , 0 , yp:,
F,). Ox7F, HOLE, RF(7), STRING+UPARROW,
RF(9), HOLE,

LF(10), LF(11), LF(12), HOLE, SHIFTKEYS+ LEFTCTRL,

a, ’8’, ldi’

'r’, lg?, lhl j , !k' !ll r, 1 ’\ﬂ'

AV, ‘\f, HOLE, STRING+LEFTARROW,
RF(11), STRING+ RIGHTARROW,
HOLE, LF(13),
LF(14), LF(15}, HOLE, SHIFTKEYS+ LEFTSHIFT,

'z, x', e v,
v, n’, m', ', ", SHIFTI\EYS-{-RIGHTSHIFT
"\n’,

RF(13), STRING+ DOWNARROW,
RF(15), HOLE, HOLE, HOLE, HOLE, HOLE,

BUCKYBITS+ METABIT,
', BUCKYBITS+ METABIT,
HOLE, HOLE, HOLE, ERROR, IDLE,

[* Shifted keyboard table for Sun-2 keyboard */

static struct keymap keytab_s2_ue = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

LF(2), LF(3), HOLE, TF(1), TF(2), TF(3),

[* 8*/TF(4), TF(5), TF(8), TF(7), TF(8), TF(9), TF(10), TF(11),

/*16%/
/*24%/
1+ 32+
1*10%/
J* 48%]
[56*/
J* 64+

[*12%/

/* 80+

TF(12), TF(13), TF(14), TF(15), HOLE, RF(1), RF(2), RF(3),
HOLE, LF(4), LF(5), LF(s), HOLE o(l), 1,

!#, s % , (v 1):
o, AP, HOLE RF(4), RF(5), RF(6),
HOLE, LF(7), LF(8), LF(9), HOLE, \t, 'Q, 'W',
'E’, 'R', ’T', Yy :’ tUl rI: ’0', !P!’
", 'Y, Ox7F, HOLE, RF(?) STRING+ UPARROW,

RF(9), HOLE,
LF(i0), LF(i1), LF(12), HOLE, SHIFTKEYS+ LEFTCTRL,
!Al, ’S!' PDI'

!F!, !Gl’ IH!’ |Jl’ IK', TL!, ’:l’ My

Last change: 19 March 1984 Sun Release 1.1

-

-

o

O

/*88%/ ', '\r, HOLE, STRING+LEFTARROW,
RF(11), STRING+ RIGHTARROW,
HOLE, LF(13),

jro6*/ LF(14), LF(15), HOLE, SHIFTKEYS+ LEFTSHIFT,

1zr, ’X!’ 101’ sv:’
J*104 ¥/ 'B', N, ™', <, >, SHIFTKEYS+ RIGHTSHIFT,

!\n:,
J*112 %/ RF(13), STRING+ DOWNARROW,
RF(15), HOLE, HOLE, HOLE, HOLE, HOLE,
[*120 %/ BUCKYBITS+ METABIT,
T, BUCKYBITS+ METABIT,
HOLE, HOLE, HOLE, ERROR, IDLE,

15

/* Controlled keyboard table for Sun-2 keyboard */

static struct keymap keytab_s2 ot = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

LF(2), LF(3), HOLE, TF(1), TF(2), TF(3),
/* 8*/TF(4), TF(5), TF(6), TF(7), TF(8), TF(9), TF(10), TF(11),

[*16%/ TF(12), TF(13), TF(14), TF(15), HOLE, RF(1), RF(2), RF(3),
/* 24/ HOLE, LF(4), LF(5), LF(6), HOLE, ('), 'l ('@,
/# 32 t/ r3r’ !4!, 151’ C("'), !—‘n’ 181' :9:, ,01,
J*40*/ (), '=', ("), '\, HOLE, RF(4), RF(5), RF(6),
Je 48/ HOLE, LF(7), LF(8), LF(8), HOLE, '\t, <('q), c<{'w’),
788 o), ofr), (V) ofy), (), o), <(o), o)
Jr 64 %/ (') ('), Ox7F, HOLE, RF(7), STRING+UPARROW,
RF(9), HOLE,
[*72%f LF{10), LF(11), LF{12), HOLE, SHIFTKEYS+ LEFTCTRL,
c'a’), ('), c('d),
/& 80 *I C('r‘), c(isr)’ c(lhr)' c(!jl), c(!k)), C(’l,), 1;:, ’\n’

/*88%/ e('\\),
\r, HOLE, STRING+LEFTARROW,
RF(11), STRING+ RIGHTARROW,
HOLE, LF(13),

J*96*/ LF(14}, LF(15), HOLE, SHIFTKEYS+ LEFTSHIFT,
c('z’), c(’x'), c’¢)), (V)
/*104 %/ ¢('b’), c{'n’), <(m’), '), ', ¢(’_"), SHIFTKEYS+ RIGHTSHIFT,
‘l\n,’
[*112 %/ RF(13), STRING+ DOWNARROW,
RF(15), HOLE, HOLE, HOLE, HOLE, HOLE,
J*120 %/ BUCKYBITS+ METABIT,
¢(’’), BUCKYBITS+ METABIT,
HOLE, HOLE, HOLE, ERROR, IDLE,
}

/* "Key Up” keyboard table for Sun-2 keyboard */

static struct keymap keytab_s2 ap = {
/* 0 */HOLE, BUCKYBITS+ SYSTEMBIT,

Sun Release 1.1 Last change: 19 March 1984

KBD(3) FILE FORMATS KBD(5)

35

KBD(5)

/* & */OOPS, OOPS,

/* 16 %
/* 24 ¥
I*32*
[+ 40 %/
/* 48%/
[* 56+
[*64*/
J*12¥

[*80%/
[*88%/
[*96*f
[¥104 %/
[H112%/
/4120 %/

Y

0O0PS,
HOLE,
NOP,
NOP,
HOLE,
NOP,
NOP,
0O0PS,

NOP,
NOP,
OO0PS,
NOP,

OOFS,

OO0PS,
OQPS,
OQPS,
NOP,
NOP,
OOPS,
NOP,
NOP,
QOPS,

NOP,
NOP,
ooPs,
NOP,

010) -

FILE FORMATS

OOPS,
OOPS,
0O0PSs,
0OPS,
NOP,
NOP,
OOPS,
NOP,
NOP,
0OPSs,

NOP,
HOLE,
HOLE,
NOP,

NOP,

OOPS, HOLE, OOPS, OOPS,
OOPS, OOPS, OOPS, OOPS,
OOPS, HOLE, OOPS, OOPS,
OOPS, HOLE, NOP, NOP,
NOP, NOP, NOP, NOP,
NOP, HOLE, OOPS, OOFS,
OOPS, HOLE, NOP, NOP,
NOP, NOP, NOP, NOP,
HOLE, OOPS, OOPS, NOP,

0O0PS,

NOP,
NOP,
NOP,
NOP,
NOP,
NOP,
HOLE,

HOLE, SHIFTKEYS+ LEFTCTRL,

NOP, NOP,

NOP, NOP, NOP, NOP,

OOPS, OOPS, NOP, HOLE,
SHIFTKEYS+ LEFTSHIFT,
NOP, NOP, NOP,

NOP,
NOP,
OO0PS,

NOP,

KBD(5)

NOP, NOP, NOP, SHIFTKEYS+ RIGHTSHIFT,

NOP,

HOLE, HOLE, HOLE, HOLE, HOLE,

BUCKYBITS+ METABIT,
NOP, BUCKYBITS+ METABIT,

HOLE, HOLE, HOLE, HOLE,

/* Index to keymaps for Sun-2 keyboard */
static struct keyboard keyindex_s2 = {

RESET,

&keytab_s2_le,
&keytab_s2_uc,
0,

&keytab_s2_ct,

Zkeytab_s2_up,

0x0000, /* Shift bits which stay on with idle keyboard */
0x0000, /* Bucky bits which stay on with idle keyboard */
1, 71, /* abort keys */

|5

/* Unshifted keyboard table for "VT100 style” */

static struct keymap keytab_vt_lc = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/* 8 */HOLE, HOLE, STRING+ UPARROW,

STRING+ DOWNARROW,
STRING+LEFTARROW,
STRING+ RIGHTARROW,
: HOLE, TF(1},
[*16%/ TF(2), TF(3), TF@4), <), ' 2, '3, ’4',()
/# 24 t/ ?5:, 16!’ 17v, ’8’, '9', !Dl’ !_!’ !=,,
J*32%) W ¢'H'), BUCKYBITS+METABIT,
!7!, 181’ !9!’ !-l’ t) t!,
/t 40 tl‘ sqs, lwl‘ ,el’ !rl’ ?tl’ !yr’ ’ll', ’i\',
/t 48 t/ 301, Ipl’)[1’ 'Il’ 0x7F, !4!, !5!, ’6’,
J*56%f ', SHIFTKEYS+ LEFTCTRL,
SHIFTKEYS+ CAPSLOCK,

36

Last change: 19 March 1984

Sun Release 1.1

AMCCILEL.

KBD(5)

[*64%/
[*72*/

[+80%/
/*88%/

[*96*/
J¥104 %/
[r12 %/
[*120 */

/* Shifted keyboard table for "VT100 style” */

FILE FORMATS
lal, :51' ’d', sr:’ 1 !
lhl, Ijll ’k’, ’l', !;f’ 1\:!) ,\l", \\
1, 2, '3, NOP, NOSCROLL,
SHIFTKEYS+ LEFTSHIFT,
lz!’ sx!,
’C', 'V', lbl, ln!’ |m!’ l,l, I'Y’ s/:,
SHIF TKEYS+ RIGHTSHIFT,
\n, 0, HOLE, ', \r, HOLE, HOLE,

HOLE, HOLE, ',

HOLE, HOLE HOLE, HOLE, HOLE,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HCLE, IDLE,

static struct keymap\i:‘eytab_vt_uc = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,

/* 8 */HOLE, HOLE, STRING+ UPARROW,

/*16*/
[*24%/
/*32%/

/*40*/
/* 48/
/* 56/

[* 643/
/727

[*80%/
/*88*/

/2 96%/
J*104 ¥/
J*112 ¢/
[*120 %/

.
?

STRING+ DOWNARROW,

TF(2). TF(3), TF(‘!) ()

STRING+ LEFTARROW,

STRING+ RIGHTARROW,

HOLE, TF(1),
’!l, rgl :#,, rsr’
i(’) LI])_'_ !,

= (HY), BUCKYBITS+ METABIT,

:7:
,Q,, - !wr va, :Rl
l()!"I e lPl !{I !}!'

!8, lg‘l !‘P’ r\tl’
ITl IYS' ’UI. II!.
0x7F 141, !5!' !6!,

" SHIFTKEYS+ LEFTCTRL,

SHIFTKEYS+ CAPSLOCK,
’A’ ss) 'D, ’F’, 'G',
’H‘, ’J’, 'K’, ’L, . v ”n ’\l", sr’
', 2, '3, NOP, NOSCROLL
SHIFTKEYS+ LEFTSHIFT,
1zr’ IXF,
!Cl 1V! lBl le ’M', !<!, 1>-, :?:.
SHIFTKEYS+ RIGHTSHIFT,
~\m’, 04 HOLE, ', \r’, HOLE, HOLE,
HOLE, HOLE, ', HOLE, HOLE, HOLE, HOLE, HOLE,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,

/* Caps Locked keybo;;d table for "VT100 style” */

static struct keymap keytab_vt_cl = {
/* 0 */HOLE, BUCKYBITS+ SYSTEMBIT,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,

/* 8*/HOLE, HOLE, STRING-+ UPARROW,

Sun Release 1.1

Last change: 19 March 1984

KBD (5)

37

KBD(5) FILE FORMATS KBD(5)
STRING+ DOWNARROW,
STRING+ LEFTARROW,
STRING+ RIGHTARROW,
HOLE, TF(3),
[* 16 */ TF(2) TF(3), TF(4) c(0oz w8,
/* 24 ¢/ :95’ lol !_l’ :=|,
[*32%/ c(’H), BUCKYBITS+ METABIT,
17! !81 19! !_7’ '\t',
/* 40 t/ ’Q’, !wl 'E’, :Rn ’T' IYI, 'U', 'I',
/* 48 t/ 10:' :Ps !ll !]l OX7F :4|’ v5|’ '6',
[* 56%/ "), SHIFTKEYS+ LEFTCTRL,
SHIFTKEYS+ CAPSLOCK,
)Al lsr ID, 1Fl, ’G’,
/t 64 t/ ’H,, !Jl, ’K', IL: ! r |\n ,\!", v\\:,
[*12%/ 1, 2, '3, NOP, NOSCROLL
SHIFTKEYS+ LEFTSHIFT,
!Zl, ’X,,
/* 80 t/ 'C’, !v:, IBI, !NT, 'M., |”’ v-:’ s/r,
/*88¢%/ SHIFTKEYS+ RIGHTSHIFT,
\n', 0, HOLE, ", '\, HOLE, HOLE,
[*96*/ HOLE, HOLE, ’ ', HOLE, HOLE, HOLE, HOLE, HOLE,
J*104 ¥/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
J*112 */f HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
[*120 */ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,
|

/* Controlled keyboard table for "VT100 style” */

static struct keymap keytab_vi_ct = {
/* 0*/HOLE, BUCKYBITS+ SYSTEMBIT,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,

/* 8 */HOLE, HOLE, STRING+ UPARROW,

STRING+ DOWNARROW,
STRING+ LEFTARROW,
STRING+ RIGHTARROW,
HOLE, TF(1),

[* 164/ TF(2), TF{(3), TF(4), c(l), ", o(@), '8, 4,
J* 24/ 5, o), 7, o, 0, o), =
[*32%/ ("), <(H), BUCKYBITS+ METABIT,
|7v ’8’ tgs' :_1’ l\tl'
J* 40%/ CTRLQ, o('WY), ¢(E), <(R'), ¢('T), <('Y'), <('U"), (1),
/% 48%/ (0", <(P), () o(]), OXTF, '4, &, '8,
J* 56 %/ '}, SHIFTKEYS+ LEFTCTRL,
SHIFTKEYS+ CAPSLOCK,
¢(’A"), CTRLS, (DY), <(F), <('Q),
/* 64 t/ c(:Hv)’ C(’J,), c(rKl)’ c(iL)' !'1’ r”l s\rt’ c(a\\,).
[*72%/ 1, 2 '3, NOP, NOSCROLL
SHIFTKEYS+ LEFTSHIFT,
C(,Z'), C(’X’),
/*80'/ c(‘lcr), C(,V'), C(,B'), C(,NI), c(lMl}, r,!, r.!’ C(,_’,
/%88 %/ SHIFTKEYS+ RIGHTSHIFT,
"', ', HOLE,'', '\r, HOLE, HOLE,
J* 96 %/ HOLE, HOLE, ¢(’’), HOLE, HOLE, HOLE, HOLE, HOLE,

38 Last change: 19 March 1984

Sun Release 1.1

.

KBD(5) FILE FORMATS KBD(5)

-

/*104 %/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
J*112 %/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
J*120 */ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,
5

/* "Key up” keyboard table for "VT100 style” */

[WA WL

static struct keymap keytab_vt_up = {
/* 0 */HOLE, BUCKYBITS+ SYSTEMBIT,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/* 8 */HOLE, HOLE, NOP, NOP, NOP, NOP, HOLE, NOP,

L

LTI IR 20 IA Falhd

/4 16%/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
%244/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/* 324/ NOP, NOP, BUCKYBITS+METABIT,
NOP, NOP, NOP, NOP, NOP,
[* 404/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
[+ 48 %/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/% 56/ NOP, SHIFTKEYS+ LEFTCTRL,
SHIFTKEYS+ CAPSLOCK,
NOP, NOP, NOP, NOP, NOCP,
J*64%/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/r 2%/ NOP, NOP, NOP, NOP, NOP, SHIFTKEYS+ LEFTSHIFT,
NOP, NOP,
: /*80%/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
— c /* 88 %/ SHIFTKEYS+ RIGHTSHIFT,
: NOP, NOP, HOLE, NOP, NOP, HOLE, HOLE,
[298%/ HOLE, HOLE, NOP, HOLE, HOLE, HOLE, IOLE, HOLE,
i /4104 */ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
J¥112 %/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/%120 */ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, RESET,
b

/* Index to keymaps for "VT100 style” keyboard */
static struct keyboard keyindex_vt = {

&keytab_vt_le,

&keytab_vt_uc,

&keytab_vt_cl,

&keytab_vt_ct,

&keytab_vt_up,

CAPSMASK+ CTLSMASK, /* Shift keys that stay on at idle keyboard */
0x0000, /* Bucky bits that stay on at idle keyboard */
1 : 1, 59, /* abort keys */

: ¥

*##tt##t**##t**tt*t*t********##***tt**#tt#tt##t**#‘***tt*********i#*tttt***/

g /* Index table for the whole shebang */
E /**‘****‘**************‘***‘**t********t**“t***********t*******************/

_ int nkeytables = 3; /* max 16 */
: struct keyboard *keytables|] = {

&keyindex_ms,
é &keyindex_vt,

Sun Relea.s? 11 Last change: 19 March 1934 39

KBD(5) FILE FORMATS KBD(5)

&Xkeyindex_s2,

|7

/*
Keyboard String Table
This defines the strings sent by various keys (as selected in the
tables above}.

*/

#define kstescinit(c) {"\033’, [, '¢’, '\0'}

char keystringtab[16][KTAB_STRLEN] = {
kstescinit(H) /*home*/,
kstescinit(A) /*up*/,
kstescinit(B) /*down*/,
kstescinit(D) /*left*/,
katescinit(C) /*right*/,

b

SEE ALSO
cons{4S)

BUGS
This keyboard tramslation implementation is essentially the PROM monitor mechanism moved
into the kernel. It will almost certainly be reworked in the future to take advantage of the
greater flexibility available to the kernel that was not available in the PROM.

40 Last change: 19 March 1984 Sun Release 1.1

i el A LA

e

rm g

VT o R0 e 1 € 1 0 i e I

O

MTAB(5) FILE FORMATS MTAB(5)

NAME
mtab — mounted file system table

SYNOPSIS
#include <fstab.h>
#include <mtab.h>

DESCRIPTION

Mtab resides in directory [efc and contains a table of devices mounted by the mount command.
Umount removes entries.

The table is a series of misb structures, as defined in <mtabh>. Each entry contains the null-
padded name of the place where the special file is mounted, the null-padded name of the special
file, and a type field, one of those defined in <fstab.k>. The special file has all its directories
stripped away; that is, everything through the last '/ is thrown away. The type fleld indicates if
the file system is mounted read-only, read-write, or read-write witk disk quotas enabled.

This table is present only so people can look at it. It does not matter to mount if there are dupli-
cated entries nor to umount if a name cannot be found.

FILES
[ete/mtab

SEE ALSO
mount(8)

Sun Release 1.1 Last change: 26 June 1983 41

NETWORKS (5) FILE FORMATS NETWORKS (5}

NAME
networks — network name data base

DESCRIPTION
The networks file contains information regarding the known networks which comprise the DARPA

Internet. For each network a single line should be present with the following information:

official network name

network number

aliases .

Items are separated by any number of blanks and/or tab characters. A “#’’ indicates the begin-
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file. This file is normally created from the official network data base maintained at the
Network Information Control Center (NIC), though local changes may be required to bring it up
to date regarding unofficial aliases and for unknown networks.

Network number may be specified in the conventional *'.”” notation using the inef_nefwork{) rou-
tine from the Internet address manipulation library, ine¢(3N). Network names may contain any
printable character other than a field delimiter, newline, or comment character.

FILES
[etc/networks

SEE ALSO
getnetent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be

available for fast access. i

42 Last change: 15 January 1983 Sun Release 1.1 .

bt T 111 LA LS VTl I Il I

LALL

TUNY &AL

-

-

NEWS(5) FILE FORMATS NEWS(5)

NAME

news — USENET network news article, utility files

DESCRIPTION

There are two formats of news articles: A and B. A format is the only format that version 1 net-
news systems can read or write, Systems ruanning the version 2 netnews can read either format
and there are provisions for the version 2 netnews to write in A format. A format looks like this:

Aarticle-ID
newsgroups
path

date

title

Body of article

Only version 2 netnews systems can read and write B format., B format contains two extra pieces
of information: receival date and expiration date. The basic structure of a B format file consists
of a series of headers and then the body. A header field is defined as a line with a capital letter in
the 1st column and a colon somewhere on the line. Unrecognized header fields are ignored. News
is stored in the same format transmitted, see ‘*Standard for the Interchange of USENET Mes-
sages’’ for a full description. The following flelds are among those recognized:

Header Information
From: userQhosl.domainf.domain ...] (Full Name)
Newsgroups: Newsgroupa

. Message-ID: < Unigue Identifier>>

Subjects deacriptive title
Dates Date Posted
Date-Recelved: '

Date received on local machine
Expires: Ezpiration Date
Reply-To: Address for mail replics
Referencess Article ID of article thie iz
Controls Text of a control message
Here is an example of an article:

Relay-Version: B 2.10 2/13/83 chosgd UUCP
Posting-Version: B 2.10 2/13/83 eagle.UUCP
Path: chosgd!mhuxj!mhuxt!eagle!jerry

From: jerry@eagle.uucp (Jerry Schwarz)
Newsgroups: net.general

Subject: Usenet Etiquette — Please Read
Message-ID: <642@eazle, UUCP>

Date: Friday, 10-Nov-82 16:14:55 EST
Followup-To: net.news

Expires: Saturday, 1-Jan-83 00:00:00 EST
Date-Received: Friday, 19-Nov-82 16:59:30 EST
Organization: Bell Labs, Murray Hill

The body of the article comes here, after a blank line.

Sun Releagf 1.1 Last change: 6 January 1984 43

NEWS(5) FILE FORMATS NEWS(5)

A sye file line has four fields, each seperated by colons:
system-name:subscriptions.flags:trangmission command
Of these fields, on the system-name and subscriptions need to be present.

The system name is the name of the system being sent to. The subscriptions is the list of news-
groups to be transmitted to the system. The flage are a set of letters describing how the article
should be transmitted. The default is B. Valid flags include A (send in A format), B (send in B
format), N (use ihave/sendme protocol), U (use uux -c and the name of the stored article in 2 %%s
string).

The transmission command is executed by the sheli with the article to be transmitted as the stan-
dard input. The default is uux — —s —r sysnameirnews. Some examples:

xyzmet.all

oldsys:net.all,fa.all,to.cldsys:A
berksys:net.allucb.all;;/usr/llb/news/sendnews —b berksysrnews
arpasysinet.all,arpa.allis/usr/lib/news/sendnews —a rnewsQGarpasys
old2:net.all,fa.allzAz/usr /lib/sendnews —o oldZrnews
uszrifa.sf-loversumall user

Somewhere in a sys file, there must be a line for the host system. This line has no flage or com-
mands. A # as the first character in a line denotes a comment.

The history, active, and ngfle files have one line per item.

SEE ALSO

44

inews(1), postnews(1), sendnews(8), uurec(8}, readnews(1}

I.ast change: 6 January 1984 Sun Release 1.1

-

NEWSRC(5) FILE FORMATS NEWSRC(5)

NAME

newsrc — information file for readnews(1) and checknews(1)

DESCRIPTION

FILES

The .neware file contains the list of previously read articles and an optional options line for read-
news(1l) and checknews(l). Each newsgroup that articles have been read from has a line of the
form:

IR newsgroup : ” range”
Range is a list of the articles read. It is basically a list of numbers separated by commas with
sequential numbers collapsed with hyphens. For instance:

general: 1-78,80,85-90

fa.Info-cpm: 1-7

net.news: 1

fa.info-vax! 1-6

If the : is replaced with an ! (as in info-vax above) the newsgroup is not subscribed to and is not
be shown to the user.

An options line starts with the word options (left-justified). Then there are the list of options
just as they would be on the command line. For instance:

options —n all fasf-lovers fa.human-nets —r

optlons -¢ -r

A string of lines beginning with a space or tab after the initial options line are considered con-
tinvation lines.

"] .newsre options and list of previously read articles

SEE ALSO

readnews(1), checknews(1)

Sun Release 1.1 Last change: 6 January 1984 45

PASSWD{5) FILE FORMATS PASSWD(5)

NAME

passwd — password file

DESCRIPTION -

FILES

Pgsswd contains for cach user the following information:

name (login name, ¢ontains no upper case)
encrypted password

numerical user ID

numerical group ID

user’s real name, office, extension, home phone.
initial working directory

program to use as Shell

The name may contain ‘&’, meaning insert the login name.

The password file is an ASCII file. Each field within each user's entry is separated from the next
by a colon. Each user is separated from the next by a new-line. If the password field is null, no
password is demanded; if the Shell field is aull, /binfsh is used.

The password file resides in directory fetc. Because of the encrypted passwords, it can and does
have general read permission and can be used, for example, to map numerical user ID’s to names.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a
text editor; vipw(8) does the necessary locking.

[ete/passwd

SEE ALSO

BUGS

46

getpwent(3), login(1), crypt(3), passwd(1), group(5), vipw(8), adduser(8)

A binary indexed file format should be available for fast access.

User information (uame, office, etc.) should be stored elsewhere.

Last change: 13 June 1983 Sun Release 1.1

C

S

-

-

PHONES(5) FILE FORMATS PHONES(5)

NAME
phones - remote host phone number data base

DESCRIPTION

The file fetc/phones contains the system-wide private phone numbers for the tip(1C) program.
This file is normally unreadable, and so may contain privileged information. The format of the
file is a series of lines of the form: <system-name>>[\t{*<phone-number>>. The system name is
one of those defined in the remote(5) file and the phone number is constructed from (0123456789
=*%)]. The “==" and ‘*" charactets are indicators to the auto call units to pause and wait for a
second dial tone (when going through an exchange). The ‘=" is required by the DF02-AC and
the “*" is required by the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one line in the file contains
the same system name tip{1C) will attempt to dial each one in turn, until it establishes a connec-
tion.

FILES
[ete/phones

SEE ALSO
tip(1C), remote(5)

Sun Release 1.1 Last change: 15 January 1983 47

PLOT(5)

NAME

FILE FORMATS PLOT(5)

plot — graphics intezface

DESCRIPTION
Files of this format are produced by routines described in plof(3X), and are interpreted for various

devices by commands described in plot{(1G). A graphics file is a stream of plotting instructions.
Each instruction consists of an ASCII letter usually followed by bytes of birary information. The
instructions are executed in order. A point is designated by four bytes representing the x and y
values; each value is a signed integer. The last designated point in an 1, m, n, or p instruction

bec

omes the ‘current point’ for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in plot(3X).

p
1

SEE ALSQ

move: The next four bytes give a new current point.

cont; Draw a line from the current point to the point given by the next four bytes. See
plot(1G).

point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point given by the follow-
ing four bytes,

label; Place the fdllowing ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

arc: The first four bytes give the center, the next four give the starting point, and the last four
give the end point of a circular arc. The least significant coordinate of the end point is used
only to determine the quadrant. The arc is drawn counter-clockwise.

circle: The first four bytes give the center of the circle, the next two the radius.
erase: Start another frame of output.

linemod: Take the following string, up to a newline, as the siyie for drawing further lines.
The styles are ‘dotted,’ ‘solid,’” ‘longdashed,’ ‘shortdashed,’ and ‘dotdashed.’ Eﬂ'ectwe only in
plot 4014 and plot ver.

space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as closely
a3 poasible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plat(lG) The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points outside may be dlsplayable on dev-
ices whose face isn't square.

4014 space(0, 0, 3120, 3120);
ver space(C, 0, 2048, 2048);
300, 300s space{0, 0, 4096, 4096);
450 space(0, 0, 4096, 4096);

plot(1G), plot(3X], graph(1G)

48

Last change: 15 January 1983 Sun Release 1.1

-

IR

AR T T

Lo 111l

A IC A L IR

TR

\®

PRINTCAP (5) FILE FORMATS PRINTCAP (5)

NAME :

printcap — printer capability data base
SYNOPSIS

Jete/printcap
DESCRIPTION

Printcap is a simplified version of the termeap(5) data base for describing printers. The spooling
system accesses the prinfcap file every time it is used, allowing dynamic addition and deletion of
printers. Each entry in the data base describes one printer. This data base may not be substi-
tuted for, as is possible for termcap, because it may allow accounting to be bypassed.

The default printer is normally /p, though the environment variable PRINTER may be used to
override this. Each spooling utility supports a —Pprinter option to explicitly name a destination
printer.

Refer to the Line Printer Spooler Manual in the Sun System Manager’s Manual for a discussion of
how to set up the database for a given printer.

Each entry in the prinicap file describes a printer, and is a line consisting of a number of fields
separated by ‘.’ characters. The first entry for each printer gives the names which are known for
the printer, separated by ‘|’ characters. The first name is conventionally a number. The second
name given is the most common abbreviation for the printer, and the last name given should be a
long name fully identifying the printer. The second name should contain no blanks; the lasi
name may well contain blanks for readability. Entries may continue onto multiple lines by giving
a2\ as the iast character of a line, and empty fields may be included for readability.

Capabilities in printeap are all introduced by two-character codes, and are of three types:

Boolean capabilities indicate that the printer has some particular feature. Boolean capabilities
are simply written between the ‘:' characters, and are indicated by the word ‘bool’ in
the type column of the capabilities table below.

Numeric capabilities supply information such as baud-rates, number of lines per page, and so
on. Numeric capabilities are indicated by the word ‘num’ in the type column of the
capabilities table below. Numeric capabilities are given by the two-character capabil-
ity code followed by the ‘4%’ character, followed by the numeric value. For example:
:br#1200: is a numeric entry stating that this printer should run at 1200 baud.

Siring capabilities give a sequence which can be used to perform particular printer operations
such as cursor motion. String valued capabilities are indicated by the word ‘str’ in the
type column of the capabilities table below. String valued capabilities are given by

the two-character capability code followed by an ‘=" sign and then a string ending at
the next following “:'. For example, :rp==spinwriter: is a sample entry stating that
the remote printer is named ‘spinwriter’.
CAPABILITIES .

Name Type Default Description

af str NULL name of accounting file

br num ncne if Ip is a tty, set the baud rate (ioctl call)

cf str NULL cifplot data filter

dr str NULL TeX data filter (DVI format)

du str 0 User ID of user ‘daemon’.

fc num 0 if Ip is a tty, clear flag bits (sgity.h)

i § str Y i string to send for a form feed

fo bool false print a form feed when device is opened

fs Bum 0 like ‘fc’ but set bits

sl str NULL graph data filter (plot (3X) format})

ic bool false driver supports (non standard) ioctl

Sun Releasp 1.1 Last change: 20 December 1983 49

PRINTCAP(5)

it
it
lo
Ip
me
mx
nd
nf
of
pl
W
1.4
Py
f
rm
rp
™
rw
sb
se
sd
sf
sh
st
tf
tr
vl
xc
X8

str
str
str
str
num
num
str
str
str
num
num
num
num
str
str
str
bool
bool
bool
bool
str
bool
bool
str
str
str
str
num
num

FILE FORMATS

NULL

“/dev [console”
“lock”
“[dev[1p”

0

1000

- NULL

NULL
NULL
66

132

0

0
NULL
NULL
”lp"
false
false
false
false

* fusr fspool fIpd”
false
falge
‘'status”
NULL
NULL
NULL
0

o

PRINTCAP (5)

call for indenting printout

pame of text filter which does accounting
error logging file pame

name of lock file

device name to open for output
maximum number of copies

maximum file size (in BUFSIZ blocks), zero = unlimited

next directory for list of queues (unimplemented})
ditroff data filter (device independent troff)
name of output fltering program

page length {in lines)

page width (in characters)

page width in pixels (horizontal)

page length in pixels (vertical)

filter for printing FORTRAN style text files
machine name for remote printer

remote printer name argument

restrict remote users to those with local accounts
open printer device read/write instead of read-only
short banner (one line only)

suppress multiple copies

spool directory

suppress form feeds

suppress printing of burst page header

status file name

troff data filter (cat phototypesetter)

trailer string to print when queue empties

raster image filter ‘

if Ip is a tty, clear local mode bits (tty (4)}

like ‘x¢’ but set bits

Error messages sent to the console have a carriage return and a line feed appended to them,
rather than just a line feed. '

It the local line printer driver supports indentation, the daemon must understand how to invoke

it.
SEE ALS()

termeap(5), Ipc(8), Ipd(8), pac(8), Ipr(1), Ipa(1), Iprm(1)
The Line Printer Spooler Manual in the Sun System Manager’s Manual.

50

Last change: 20 December 1983

Sun Release 1.1

o

C

ISR TLITTRTARRR T LTI

“ILT LE NI T

B VAL G B e el

C

O

PROTOCOLS (5) FILE FORMATS PROTOCOLS(5)

NAME
protocols — protocol name data base
SYNOPSIS ’
[ete/protocols
DESCRIPTION

The protocole file contains information regarding the known protocols used in the DARPA Inter-
net. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Jtems are separated by any number of blanks and/or tab characters. A “#'" indicates the begin-
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or com-
ment character.

EXAMPLE

The following example is taken from the Sur UNIX system.

v
Internet (IP) protocols

ip 0 IP # internet protocol, pseudo protocol number
icmp - 1 ICMP # internet control message protocol
£Ep 2 GGP % gateway-gateway protocol
tep 6 TCP # transmission conttol protocol
pup 12 PUP # PARC universal packet protocol
udp 17 uDp # user datagram protocol

FILES
[etc/protocols

SEE ALSO
getprotoent(3N)

BUGS

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

Sun Release 1.1 Last change: 13 December 1983 51

REMOTE(5) FILE FORMATS REMOTE(5)

NAME

remote — remote host description file

DESCRIPTION :

The systems known by #ip(1C) and their attributes are stored in an ASCII file which is structured
somewhat like the termcap(5) file. Each line in the file provides a description for a single system.
§'ields are separated by a colon (*“:’"). Lines ending in a \ character with an immediately follow-
ing newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a system,
the names are separated by vertical bars. After the name of the system comes the fields of the
description. A field name followed by an ‘="' sign indicates a string value follows. A field name
followed by a ‘#’ sign indicates a following numeric value.

Entries named ‘‘tip*"’ and ‘‘cu®’ are used as default entries by tip, and the cu interface to tip, as
follows. When tip is invoked with only a phone number, it looks for an entry of the form
“‘tip300”, where 300 is the baud rate with which the connection is to be made. When the cu
interface is used, entries of the form ““cu300' are used.

CAPABILITIES

52

Capabilities are either strings (str), numbers (num), or boolean flags {bool). A string capability is
specified by capability=value; e.g. ‘‘dve=/dev/harris”. A numeric capability is specified by
capability7f value; e.g. “xa#99”. A boolean capability is specified by simply listing the capability.

at {str) Auto call unit type.

br (num) The baud rate used in establishing a connection to the remote host. This is a
decimal number. The default baud rate is 300 baud.
em (str} An initial connection message to be sent to the remote host. For example, if a host

is reached through port selector, this might be set to the appropriate sequence required to
switch to the host.

cu (str} Call unit it making a phone call. Default is the same as the ‘dv’ field.
dl (str) Disconnect message sent to the host when a disconnect is requested by the user.
du (bool) This host is on a dial-up line,

dv (str) UNIX device(s) to open to establish a connection. If this file refers to a terminal line,
tip{1C) attempts to perform an exclusive open on the device to insure only one user at a
time has access to the port.

el (str) Characters marking an end-of-line. The default is NULL. *’ escapes are only recog-
nized by tip after one of the characters in ‘el’, or after a carriage-return.
fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (bool) The host uses half-duplex communication, local echo should be performed.
Ie (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a file, this.

string is sent at end-of-file.

pa {str) The type of parity to use when sending data to the host. This may be one of
“‘even”, “odd”, “none", “zero” {always set bit 8 to zero), “one” (always set bit 8 to 1).
The defanlt is even parity.

PR (str) Telephone number(s) for this host. If the telephone number field contains an @ sign,
tip searches the file /etc/phones file for a list of telephone numbers; c.f. phones(5).

te (str) Indicates that the list of capabilities is continued in the named description. This is
used primarily to share common capability information.

Last change: 1 March 1983 Sun Release 1.1

O

C

REMOTE(5) FILE FORMATS

Hel'é is a short example showing the use of the capability continuation feature:
UNIEX-1200:\

REMOTE(5)

:dv=/dev [caul:el="D"U"C"§"Q OQ@:du:at=ventel:ie=5$%:0e="D:br#1200:

arpavax|ax:\
1pn=T654321%:tc="NIX-1200

FILES
[etc/remote

SEE ALSO
tip(1C), phones(5)

~ Sun Release 1.1 Last change: 1 March 1983

53

SCCSFILE(5) FILE FORMATS SCCSFILE(5)

NAME

scesfile — format of SCCS file

DESCRIPTION

54

An SCCS file is an ASCII file. It consists of six logical parts: the checksum, the delia table (con-
tains information about each delta), user names (contains login names and/or numerical group
IDs of users who may add deltas), flage (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading) char-
acter {octal 001). This character is hereafter referred to as the control character and will be
represented graphicaily as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string {a number between 00000 and 99999).
Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is;

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line. The
@h provides a magic number of (octal) 064001,

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <SCCSID> yr/mo/da hrimiise <pgmr> DDDDD DDDDD
@1 PDDDD ...
@x DDDDD ...
&g DDDDD ...
@m <MR number>

@e <comments> ...

Qe

The first line (@s) contains the number of lines inserted/deleted /unchanged respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the delta, the login name
corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @1, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional,

The @m lines (optional) each contain one MR number associated with the delta; the @c
lines contain comments associated with the delta.

The @e line ends the delta table entry.

Last change: 15 March 1983 Sun Release 1.1

LTINS

DT A PR Sitah o i 0 0 0T BT 10

XY SNPGRS SoAY TSP IR0k | N ed] L T2 T £ T2

COMETNIT

C

o

SCCSFILE(5)

FILE FORMATS SCCSFILE(5)

User names

Flage

The list of login names and for numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @u and @U. An empty list allows any-
one to make a delta,

Keywords used internally (see admin(1) for more information on their use). Each Rag line
takes the form:

Gf <flag> < optional text>

The following flags are defined:
aft <type of program>>
O6fv <program name>>
ari
ofb
Ofm <module name>
off <floor>
Gf ¢ <ceiling>
@fd <default-sid>
€efn
afj
Qf1 <lock-releases>
Gfq <user deflned>

The t flag defines the replacement for the identification keyword. The v flag controls
prompting for MR numbers in addition to comments; if the optional text is present it
defines an MR number validity checking program. The 1 fag controls the warningferror
aspect of the “No id keywords’’ message. When the 1 flag is not present, this message is
only a warning; when the 1 flag is present, this message will cause a “fatal” error (the file
will not be gotten, or the delta will not be made). When the b flag is present the -b
keyletter may be used on the get command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of the sccsfile.5 identification key-
word. The £ Bag defines the ‘‘loor” release; the release below which no deltas may be
added. The c flag defines the ‘‘ceiling” release; the release above which no deltas may be
added. The d flag defines the default SID to be used when none is specified on a get com-
mand. The n flag causes delts to insert a “null” delta (a delta that applies no changes)
in those releases that are skipped when a delta is made in a new release (for example,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence of the
n fiag causes skipped releases to be completely empty. The J flag causes get to allow con-
current edits of the same base SID. The 1 flag defines a list of releases that are locked
against editing (ge(1) with the —e keyletter). The q flag defines the replacement for the
22Q% identification keyword.

Comments

Body

Sun Release 1.1

Arbitrary text surrounded by the bracketing lines @t and GT. The comments section
typically will contain a description of the file’s purpose.

The body consists of text lines and control lines. Text lines don't begin with the control
character, control lines do. There are three kinds of control lines: inger?, delete, and end,
represented by:

¢I bDDDD

Last change: 15 March 1983 55

SCCSFILE(5) FILE FORMATS SCCSFILE(5)

€D pPDDDD
@E DDDDD

respectively. The digit string is the serial number corresponding to the delta for the con-
trol line.

SEE ALSO
admin(1), delta(1), get(1), prs(1).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

56 Last change: 15 March 1983 Sun Release 1.1

C

o

SERVERS (5) FILE FORMATS SERVERS(5)

NAME
servers — inet server data base

DESCRIPTION
The servers file contains the list of servers that inetd(8) operates. For each server a single line
should be present with the following information:

name of server
protocol
server location

Items are separated by any number of blanks and/or tab characters. A “‘#” indicates the begin-
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file.

The name of the server should be the official service name 2s contained in services(5). The proto-
col entry is either udp or tcp. The server location is the full path name of the server program.

EXAMPLE
The following example is taken from the Sun UNIX system.

tep tep [fusrfetefin.tepd
telnet tep [usr/etcfin.telnetd
shell tep [ete/in.rshd
login tep fetefin.rlogind
exec tcp fusrfetefin.rexecd
ttep udp /fusrfetefin.ttepd
syslog udp /usr/etcfin.syslog
comsat udp /fusr/etc/in.comsat
talk udp /fusr/etcfin.talkd
time tep fusrfetefin.timed
FILES
[eic/servers
SEE ALSO

services(5), inetd(8)

Sun Release 1.1 Last change: 13 December 1983 57

SERVICES (5) FILE FORMATS SERVICES (5)

NAME

services — service name data base

SYNOPSIS

Jete/services

DESCRIPTION

The services file contains information regarding the known services available in the DARPA Inter-
net. For each service a single line should be present with the following information:

official service name

port number

protocol name

aliases

Items are separated by any number of blanks and/or tab characters. The port number and proto-
col name are considered a single item; a /" is used to separate the port and protocol (for
instance, “512/tcp”). A “‘44” indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file.

Service names may contain any printable character cther than a field delimiter, newline, or com-
ment character.

EXAMPLE

58

Here is an example of the [etefservices file from the Sun UNIX System.

#

Network services, Internet style

A

echo 7/udp

discard 9/udp sink null
systat 11/tep

daytime 13/tep

netstat 15/tep

ftp 21ftep

telnet 23ftcp

smtp 25/tep mail
time 37 ftep timserver
name 42/tep nameserver
whois 43 [tep

mtp 57 ftep # deprecated
#

Host specific functions

#

titp 69/udp

rje 77 [tep

finger 79/tcp

link 87/tep ttylink
supdup 95/tep

#

UNIX specific services

#

exec 512ftep

login 513/tcp

shell 514ftcp emd

efs 520/tep

biff 512/udp comsat
who 513fudp whod

Last change: 13 December 1983 Sun Release 1.1

-

SERVICES (5)

syslog
talk
route

FILES
Jetc/services

SEE ALSO
getservent(3N)

BUGS

FILE FORMATS

514fudp
517/udp
520/udp

SERVICES(5)

router routeds# 521 also

A name server should be used instead of a static file. A binary indexed file format should be

available for fast access.

Sun Release 1.1

Last change: 13 December 1983

59

TAR (5) FILE FORMATS TAR(5)

NAME

tar — tape archive file format

DESCRIPTION

60

Tar, (the tape archive command) dumps several files into one, in a medium suitable for transpor-
tation.

A “tar tape” or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is
represented by a header block which describes the file, followed by zero or more blocks which give
the contents of the file. At the end of the tape are two blocks filled with binary zeros, as an end-
of-file indicator.

The blocks are grouped for physical 1/O operations. Each group of n blocks (where n is set by
the b keyletter on the tar(1l) command line -— default is 20 blocks) is written with a single system
call; on nine-track tapes, the result of this write is a single tape record. The last group is always
written at the full size, so blocks after the two zero blocks contain random data. On reading, the
specifled or default group size is used for the first read, but if that read returns less than a full
tape block, the reduced block size is used for further reads, unless the B keyletter is used.

The header block looks like:

#define TBLOCK 512
#tdefine NAMSIZ 100

union hblock {
char dummy|TBLOCK];
struct header {
char name|NAMSIZ);
char mode(8];
char vid[8];
char gid(8];
char size[12];
" char mtime[12];
char ¢chksum(8];
char linkflag;
char linkname|NAMSIZ|;
} dbuf;
L
Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII. Each
field {of width w) contains w-2 digits, a space, and a null, except size and mtime, which do not
contain the trailing null. Name is the name of the file, as specified on the f{ar command line.
Files dumped because they were in a directory which was named in the command line have the
directory name as prefix and /flename as suffix. Mode is the file mode, with the top bit masked
off. Uid and gid are the user and group numbers which own the file. Size is the size of the file in
bytes. Links and symbolic links are dumped with this field specified as zero. Mtime is the
modification time of the flle at the time it was dumped. Chksum is a decimal ASCII value which
represents the sum of all the bytes in the header block. When calculating the checksum, the
chksum field is treated as if it were all blanks, Linkflag is ASCII ‘0’ if the file is *‘normal” or a
special file, ASCII *1' if it is an hard link, and ASCII ‘2’ if it is a symbolic link. The name
linked-to, if any, is in linkname, with a trailing null. Unused fields of the header are binary zeros
(and are included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second and
subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but
not the file it was linked to, an error message is printed and the tape must be manually re-
scanned to retrieve the iinked-to file.

Last change: 15 January 1983 Sun Release 1.1

O

TAR (5) FILE FORMATS

The encoding of the header is designed to be portable across machines.

SEE ALSO
tar(1)

BUGS

TAR(S5)

Names or linknames longer than NAMSIZ produce error reports and cannot be dumnped.

Sun Release 1.1 Last change: 15 January 1983

61

TERM(5) FILE FORMATS TERM(5)

NAME | :
term — terminal driving tables for nroff O

DESCRIPTION

Nroff{1) uses driving tables to customize its output for various types of output devices, such as
printing terminals, special word-processing terminals (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output filter programs. These driving tables are written as C programs,
compiled, and installed in /usr/lib/term/tabname , where name is the name for that terminal
type as given in Zerm(7).

Here's how to comstruct a driver table for USG UNIX “nroff”, in 25 easy lessons. The only
changes for the V7 nroff (on 4.XBSD as well) are that the "iton” and ”itofi” entries are missing,
the "bset” and "breset” entries affect the "sg_flags” word in the "agtty” structure, and the pro-
cedures for making the table are different.

Special thanks to the people at AT&T responsible for the UNIX documentation, without whose
help this posting would not have been necessary. The structure of the tables is as follows:

f#define INCH 240

struct {
int bset;
int breset;
int Hor;
int Vert;
int Newline;
int Char;
int Em;
int HalMline;

int Adj; .

char *twinit; @

char *twrest;

char *twnl;

char *hlr;

char *hif;

char *fir;

char *bdon;

char *bdoff;

char *iton;

char *itoff;

char *ploton;

char *plotoff;

char *up;

char *down;

char *right;

char *left;

char *codetab|256-32];

char *zzz;
It
The meanings of the varions fields are as follows:
bset bits to set in the c_oflag field of the termio structure (see ity(4)) before output.
breset bits to reset in the ¢_oflag field of the termio structure before output.
Hor horizontal resolution in fractions of an inch,

Vert vertical resolution ir fractions of an inch, i

62 Last change: 14 March 1984 Sun Release 1.1

o

>

TERM(5)

Newline
Char

Em
Halfline

Adj

tuinit
twrest
twnl
hlr

hif

fr
bdon
bdoff -
iton
stoff

plolon

plotoff

up
down
right
left
codetad

b£14

Sun Release 1.1

FILE FORMATS TERM(5)

space moved by a newline {linefeed) character in fractions of an inch,

quantum of character sizes, in fractions of an inch. (that is, a character is a multiple
of Char units wide)

size of an em in fractions of an inch.

space moved by a half-linefeed (or half-reverse-linefeed) character in fractions of an
inch.

quantum of white space, in fractions of an inch. (that is, white spaces are a2 multiple
of Adj units wide)

Note: if this is less than the size of the space character (in units of Char; see below for
how the sizes of characters are defined), nroff will output fractional spaces using plot
mode. Also, if the —e switch to nroff is used, Adj is set equal to Hor by nroff.

get of characters used to initialize the terminal in a mode suitable for nroff.
set of characters used to restore the terminal to normal mode.

set of characters used to move down one line.

set of characters used to move up one-half line,

set of characters used to move down one-half line,

set of characters used to move up one line.

set of characters used to turn on hardware boldface mode, if any.

et of characters used to turn off hardware boldface mode, if any.

set of characters used to turn on hardware italics mode, if any.

set of characters used to turn off hardware italics mode, if any.

set of characters used to turn on hardware plot mode (for Diablo type mechanisms), if
any.)

set of characters used to turn off hardware plot mode (for Diablo type mechanisms), if
apy.

set of characters used to move up one resolution unit (Vert) in plot mode, if any.

set of characters used to move down one resolution unit (Vert) in plot mode, if any.
set of characters used to move right one resolution unit (Hor} in plot mode, if any.

set of characters used to move left one resolution unit {Hor) in plot mode, if any.

definition of characters needed to print an nroff character on the terminal. The first
byte is the number of character units (Char) needed to hold the character; that is,
“\001" is one unit wide, “\002" is two units wide, etc. The high-order bit (0200) is
on if the character is to be underlined in underline mode (.ul). The rest of the bytes
are the characters used to produce the character in question. If the character has the
sign {0200) bit on, it is a code to move the terminal in plot mode. It is encoded as:

0100 bit on_ . vertical motion.

0100 bit off horizontal motion.

040 bit on negative (up or left) motion.

040 bit off positive (down or right) motion.
037 bits number of such motions to make,

a Zero terniinator at the end.

Last change: 14 March 1984 ’ 63

TERM(5) FILE FORMATS TERM(5)

All quantities which are in units of fractions of an inch should be expressed as
INCH*num/denom, where num and denom are respectively the numerator and denominator of
the fraction; that is, 1/48 of an inch would be written as “INCH/48"".

If any sequence of characters does not pertain to the output device, that sequence should be given

as a null string.

The source code for the terminal name is in Jusr/ere/cmd/text/roff.d/terms.d/tabname.c.
When a new terminal type is added, the file maketerms.c should be updated to ‘#include’ the
source to that driving table; note that the various terminal types are grouped into ‘'parts”
Jabelled PART1, PART2, and PARTS3. If necessary, more parts can be added. Other changes
necessary to maokelerme.c are left as an exercise to the reader. The makefile lerms.mk in that

directory should then be updated.

FILES
Jusr/lib/term ftabrame driving tables
tabname.c source for driving tables
SEE ALSO

64

troff(1), term(7)

Last change: 14 March 1984 Sun Release 1.1

TERMCAP (5) | FILE FORMATS TERMCAP (5)

NAME

termcap — terminal capability data base
SYNOPSIS

[eteftermcap
DESCRIPTION

Termeap is a data base describing terminals, used, for example, by vi(1) and curaes(3X). Termi-
nals are described in fermcap by giving a set of capabilities which they have, and by describing
how operations are performed. Padding requirements and initialization sequences are inctuded in
termcap.

Each entry in the termeap file describes a terminal, and is a line consisting of a rumber of fields
separated by ' characters. The first entry for each terminal gives the names which are known
for the terminal, separated by ‘|’ characters. The first name is always 2 characters long and is
used by older version 6 systems which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbreviation for the terminal, and the
last name given should be a long name fully identifying the terminal. The second rame should
contain no blanks; the last name may well contain blanks for readability. Entries may continue
onto multiple lines by giving a \ as the last character of a line, and empty fields may be included
for readability.

Capabilities in termesp are all introduced by two-character codes, and are of three types:

Doolean capabilities indicate that the terminal has some particular feature. Boolean capabili-
ties are simply written between the ' characters, and are indicated by the word ‘bool’
in the type column of the capabilities table below.

Numeric capabilities supply information such as the size of the terminal or the size of particular
delays. Numeric capabilities are indicated by the word ‘num’ in the type column of
the capabilities table below. Numeric capabilities are given by the two-character
capability code followed by the ‘4’ character and then the numeric value. For exam-
ple: :co#80: is a numeric entry stating that this terminal has 80 columns.

String capabilities give a sequence which can be used to perform particular terminal opera-
tions such as cursor motion. String valued capabilities are indicated by the word ‘str’
in the type column of the capabilities table below. String valued capabilities are
given by the two-character capability code followed by an ‘=’ sign and then a string
ending at the next following “’. For example, :ce==16\E"S: is a sample entry for
clear to end-of-line.

CAPABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on the number of lines affected

Name Type Pad? Description
ae str (P) End alternate character set

al stt (P*) Add new blank line

am bool Terminal has automatic margins

as str (P) Start alternate character set

be str Backspace if not "H

bs bool Terminal can backspace with "H

bt str (P) Backtab '

bw bool Backspace wraps from column 0 to last column

CC sir Command character in prototype if terminal settable

ed str (P*) Clear to end of display

ce stt (P) Clear to end of line

ch stt (P) Like cm but horizontal motion only, line stays same
el stt (P*) Clear screen

em str {P) Cursor motion

Sun Release 1.1 Last change: 16 December 1983 65

TERMCAP (5)
co num
cr str
] str
cY str
da bool
dB num
db hool
dC num
de str
dF num
dl str
dm sir
dN naum
do str
dT num
ed str
ei str
eo str
ft str
he. bool
hd str
ho str
hu Btr
hz str
ic str
it sir
im bool
in bool
ip str
is str
kO-k9 str
kb str
kd str
ke str
kh str
kl str
kn nam
ko str
kr str
ks str
ku str
10-19 str
li num
1l str
ma sir
md str
me str
mh str
mi bool
ml sty
mr str
ms bool
mu sir
66

{P*)

(P)

(P*)

(P*)

(P*)

(P)

(P*)

FILE FORMATS TERMCAP(5)

Number of columns in a lie

Carriage return, (default “M)

Change scrolling region (vt100}), like cm
Like ch but vertical only.

Display may be retained above

Number of millisec of bs delay needed
Display may be retained below

Number of millisec of c¢r delay needed
Delete character

Number of millisec of ff delay needed
Delete line

Delete mode (enter}

Number of millisec of n! delay needed
Down one line

Number of millisec of tab delay needed
End delete mode

End insert mode; give “:ei=:" if le

Can erase overstrikes with a blank
Hardcopy terminal page eject (default “L)
Hardecopy terminal

Half-line down (forward 1/2 linefeed)
Home cursor {if no cm)

Half-line up (reverse 1/2 linefeed)
Hazeltine; can't print *'s

Insert character

Name of file containing is

Insert mode (enter); give ‘:im=:" i le
Insert mode distinguishes nulls on display
Insert pad after character inserted
Terminal initialization string

Sent by ‘“‘other’’ function keys 0-9

Sent by backspace key

Sent by terminal down arrow key

Out of “‘keypad transmit’’ mode

Sent by home key

Sent by terminal left arrow key

Number of “‘other” keys

Termecap entries for other non-function keys
Sent by terminal right arrow key

Put terminal in “‘keypad transmit’’ mode
Sent by terminal up arrow key

Labels on “other’’ function keys
Number of lines on screen or page

Last line, first column (if no cm)

Arrow key map, used by vi version 2 only
Enter bold mode

Turn off al} attributes, normal mode
Enter dim mode

Safe to move while in insert mode
Memory lock on above cursor.

Enter reverse mode

Safe to move while in standout and underline mode
Memory unlock (turn off memory lock).

Last change: 16 December 1983 Sun Release 1.1

-

-

¢

TERMCAP (5) | FILE FORMATS TERMCAP (5)

ne boo! No correctly working carriage retura {DM2500,H2000)
nd str Non-destructive space (cursor right)

nl stt (P*) Newline character (default \n)

ns bool Terminal is a CRT but doesn’t scroll.

08 bool Terminal overstrikes

pe str Pad character (rather than null)

pt bool Has hardware tabs (may need to be set with Is)
se str End stand out mode

sf str {P) Scroll forwards

.34 num Number of blank chars left by so or se

80 str Begin stand out mode

4 sttr (P} Scroll reverse (backwards)

ta str (P) Tab (other than "I or with padding)

te str Entry of similar terminal - must be last

te str String to end programs that use em

ti str String to begin programs that use em

uc str Underscore one char and move past it

ue str End underscore mode

ug num Number of blank chars left by us or ue

ul bool Terminal underlines even though it doesn’t overstrike
up str Upline (cursor up)

us str Start underscore mode

vb str Visible bell (may not move cursor)

ve str Sequence to end open/visual mode

vs str Sequence to start open/visual mode

xb bool Beehive (f1==escape, f2=ctr] C)

xn hool A newline is ignored after a wrap (Concept)

xr bool Return acts like ce \r \n (Delta Data)

xs beol Standout not erased by writing over it (HP 264?)
xt bool Taba are destructive, magic so char (Teleray 1061)
A Sample Entry

The following entf'y, which describes the Concept-109, is among the more complex entries in the

termeap file as of this writing. This particular concept entry is outdated, and is used as an exam-

ple only. S

¢1}¢100 | concept100:is==\EU\Ef\E7\E5\E8\EI\ENH\EK\E\ 200\Eo&\ 200:\
:al=3*\E"R:am:bs:ed=16*\E"C:ce=16\E"S:c]=2*"L:ecm=\Ea%+ %+ :co#80:\
:de==16\E"A:dl=3*\E"B:ei=\E\200:c0:im==\E"P:in:ip=16*li#24:mi:nd=\E=:\
:se=\Ed\Ee:s0=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xu:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and empty

fields may be included for readability (here between the last field on a line and the first field on

the next). :

Types of Capnbﬂlﬂ.es

Capabilities in lermcap are of three types: Boolean capabilities which indicate that the terminal
has some particular feature, numeric capabilities giving the size of the terminal or the size of par-
ticular delays, and string capabilities, which give a sequence which can be used to perform partic-
ular terminal operations, All capabilities have two letter codes.

o
Boolean capabilitiés are introduced simply by stating the two-character capability code in the
field between ‘' characters. For instance, the fact that the Concept has ‘‘automatic
margins” {that is, an automatic return and linefeed when the end of a line is reached)
is indicated by the capability am. Hence the description of the Concept includes am.

Sun Release 1.1 Last change: 16 December 1983 67

TERMCAP (5) FILE FORMATS . TERMCAP (5)

68

Numeric capabilities are followed by the character ‘#’ and then the value, Thus co which indi-
cates the number of columns the terminal has gives the value ‘80’ for the Concept.

String valued capabilities, such as ce (clear to end of line sequence) are given by the two
character code, an ‘=", and then a string ending at the pext following *:'. A delay in
milliseconds may appear after the ‘=" in such a capability, and padding characters are
supplied by the editor after the remainder of the string is sent to provide this delay.
The delay can be either a integer, for instance, ‘20°, or an integer followed by an ‘¥,
that is, ‘3*’. A '* indicates that the padding required is proportional to the number
of lines affected by the operation, and the amount given is the per-affected-unit pad-
ding required. When a “*’ i3 specified, it is sometimes useful to give a delay of the
form ‘3.5’ to specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy
encoding of characters there. A \E maps to an ESCAPE character, “x maps to a
control-x for amy appropriate x, and the sequences \n \r \t \b \f give a newline,
return, tab, backspace and formfeed. Finally, characters may be given as three octal
digits after a \, and the characters " and \ may be given as * and \\. If it is neces-
sary to place a : in a capability it must be escaped in octal as \072. 1f it is necessary
to place a null character in a string capability it must be encoded as \200. The rou-
tines which deal with fermcap use C strings, and strip the high bits of the output very
late so that a \200 comes out as a \000 would.

Preparing Descr!pt!onl

We now outline how to prepare descriptions of termmals The most eflective way to prepare a
terminal description is by imitating the description of a similar terminal in {ermcap and to build
up a description gradually, using partial descriptions with ez to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the termeap file to
describe it or bugs in ez. To easily test a new terminal description you can set the environment
variable TERMCAP to a pathname of a file containing the description you are working on and
the editor will Jook there rather than in fetef/termecap. TERMCAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor.

Basic capabmtleh

The numiber of coidmns on eacll lidé for the terminal is gn'en by the co numeric capability. If
the terminal is a CRT, then the number of linez on the screen is given by the i capability. If the
terminal wraps around to the beginning of the next line when it reaches the right margin, then it
should have the am capability. H the terminal can clear its screen, then this is given by the el
string capability. If the terminal can backspace, then it should have the bs capability, unless a
backspace is accomplished by a character other than “H (ugh) in which case you should give this
character as the be string capability. H it overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capability.

A very important point bere is that the local cursor motions encoded in termeap are undefined at
the left and top edges of a CRT terminal. The editor will never attempt to backspace around the
left edge, nor will it attempt to go up locally off the top. The editor assumes that feeding off the
bottom of the screen will cause the screen to scroll up, and the am capability tells whether the
cursor sticks at the right edge of the screen. If the terminal has switch selectable automatic mar-
gins, the termcap file usually assumes that this is on, that i is, am.

These capabilities suffice to describe hardeopy and “glass—tty” terminals. Thus the model 33 tele-
type is described as

t3[33| tty33:co#72:08
while the Lear Siegler ADM-3 is described as

Last change: 16 December 1983 Sun Release 1.1

-

| BUSNN ALk §

B N

O |

¢

TERMCAP (5) FILE FORMATS : TERMCAP (5)

cl| adm3|3]lsi adm3:am:bs:cl="Z:1i#24:co#80
Cursor addressing

Cursor addressing in the terminal is described by a cm string capability, with prinff(3S}) like
escapes 9%x in it. These substitute to encodings of the current line or column position, while
other characters are passed through unchanged. If the em string is thought of as being a func-
tion, then its arguments are the line and then the column to which motion is desired, and the %
encodings have the following meanings:

%4 asin printf, O origin
%2 like %24
%3 like %3d
%. like %c¢
%+x adds z to value, then %.
%>xy if value > x adds y, no output,
%t reverses order of line and column, no cutput
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16%(x/10)) + (x%10), no output.
%D Reverse coding (x-2*(x%16)), no output, (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&al12c03Y pad-
ded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and that
the row and column are printed as two digits. Thus ijts em capability is
Yem=6\E&%r%2c¢%2Y". The Microterm ACT-IV needs the current row and column sent pre-
ceded by a T, with the row and column simply encoded in binary, “cm="T%.%."”. Terminals
which use “%.’" need to be able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary because it is not always safe to
transmit \t, \n "D and \r, as the system may change or discard them.

A final example is thé LSl ADM-3a, which uses row and column offset by a blank character, thus
“em=\E=%+ %+ ".

Cursor motions .

If the terminal can move the cursor one position to the right, leaving the character at the current
position unchanged, then this sequence should be given as nd (non-destructive space). If it can
move the cursor up a line on the screen in the same column, this should be given as up. If the
terminal has no cursor addressing capability, but can home the cursor (to very upper left comner
of screen) then this can be given as ho; similarly a fast way of getting to the lower left hand
corner can be given as II; this may involve going up with up from the home position, but the edi-
tor will never do this itself (unless 11 does) because it makes no assumption about the effect of
moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as ce. If the terminal can clear from the current position to the end of
the display, then this should be given a8 ed. The editor only uses ed from the first column of a
line, P

Insert/delete iine ° -

If the terminal can open a new blank line before the line where the cursor is, this should be given
as al; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dl; this is done only from the first position on the line to be deleted. If the terminal can
scroll the screen backwards, then this can be given as sb, but just al suffices, If the terminal can

Sun Release 1.1 Last change: 16 December 1983 69

TERMCAP (5) FILE FORMATS TERMCAP(5)

70

retain display memory above then the da capability should be given; if display memory can be
retained below then db should be given. These let the editor understand that deleting a line on
the screen may bring pon-blank lines up from below or that scrolling back with sb may bring
down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using fermeap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the lire rigidly. Other termi-
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks. You can find out which
kind of terminal you bhave by clearing the screen and then typing text separated by cursor
motions. Type “abc def” using local cursor motions (not spaces) between the ‘‘abc’’ and the
t'def". Then position the cursor before the “abe’” and put the terminal in insert mode, If typing
characters causes the rest of the line to shift rigidly and characters to fall off the end, then your
terminal does not distinguish between blanks and untyped positions. If the “‘abc’ shifts over to
the “*def” which then move together around the end of the current line and onrto the next as you
insert, you have the second type of terminal, and should give the capability In, which stands for
“insert null”. If your terminal does something different and unusual then you may have to
modify the editor to get it to use the insert mode your terminal defines. We have seen no termi-
nals which have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a sim-
ple sequence to open a blank position on the current line. Give as im the sequence to get into
insert mode, ol give it an empty value if your terminal uses a sequence to insert a blank position.
Give as el the sequence to leave insert mode (give this, with an empty value also if you gave im
80). Now give as l¢ any sequence needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not give le, terminals which send a
sequence to open a screen position should give it here. (Insert mode is preferable to the sequence
to open a position ofi the screen if your terminal has both.) If post insert padding is needed, give
this as a number of milliseconds in Ip (a string option). Any other sequence which may need to
be sent after an insert of a single character may also he given in Ip.

It is occasionally necessary to move around while in insert mode to delete characters on the same
line (for example, if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mi to speed up inserting in this case. Omitting
m} will affect only speed. Some terminals (notably Datamedia’s) must not have mi because of
the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and de
to delete a single character while in delete mode.

Highlighting, unde;ﬁning, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se
respectively. If there are several flavors of standout mode (such as inverse video, blinking, or
underlining — half bright is not usually an acceptable ‘‘standout” mode unless the terminal is in
inverse video mode constantly) the preferred mode is inverse video by itself. If the code to
change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If the
terminal has a code to underline the current character and move the cursor one space to the right,
such as the Microterm Mime, this can be given as uc. (If the underline code does not move the
cursor to the right, give.the code followed by a nondestructive space.)

Last change: 16 December 1983 Sun Release 1.1

-

TERMCAP (5) FILE FORMATS TERMCAP(5)

O Many terminals, such as the HP 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ez, this can be given as vs and ve, sent at the
start and end of these modes respectively. These can be used to change, for example, from a
urderline to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cursor,
the codes to enter and exit this mode can be given as ti and te. This arises, for example, from
terminals like the Concept with more than one page of memory. If the terminal has only memory
relative cursor addressing and not screen relative cursor addressing, a one screen-sized window
must be fixed into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

ANGSI terminals have modes for the character highlighting. Dim characters may be generated in
dim mode, entered by mh; reverse video characters in reverse mode, entered by mr; bold charac-
ters in bold mode, entered by md; and normal mode characters restored by turning off all attri-
butes with me.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be given. Note that it is not possible to handle terminals where the keypad only works in local

O (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit
or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as ki, kr, ku, kd, and kh respectively. If there are function keys such as 0, f1, ...,
{9, the codes they send can be given as k0, k1, ..., k8. If these keys have labels other than the
default 0 through f9, the labels can be given as 10, 11, ..., 19. If there are other keys that
transmit the same code as the terminal expects for the corresponding function, such as clear
screen, the tlermcap 2 letter codes cam be given in the ko capability, for example,
‘“:ko=cl,ll,8f,sb:"", which says that the terminal has clear, home down, scroll down, and scroll up
keys that transmit the same thing as the cl, 11, sf, and sb entries.

The ma entry is also-used to indicate arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomputers
due to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists of
groups of two characters. In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are h for ki, § for kd, k for
ku, 1 for kr, and H for kh. For example, the mime would be :ma=="Kj"Zk"Xl: indicating
arrow keys left ("H}, down ("K), up ("Z), and right (*X). (There is no home key on the mime.)

Miscellaneous ‘
If the terminal requires other than a null (zero) character as a pad, then this can be given as pe.

If tabs on the terminal require padding, or if the terminal uses a character other than I to tab,
then this can be given as ta.

Hazeltine terminals, which don’t allow “~’ characters to be printed should indicate hz. Datamedia
terminals, which echo carriage-return linefeed for carriage return and then ignore a following
linefeed should indicate ne, Early Concept terminals, which ignore a linefeed immediately after
an am wrap, should indicate xn. If an erase-eol is required to get rid of standout (instead of
merely writing on top of it), xs should be given. Teleray terminals, where tabs turn all characters

Sun Release 1.1 Last change: 16 December 1983 71

TERMCAP (5) FILE FORMATS TERMCAP (5)

FILES

moved over to blanks, should indicate xt. Other specific terminal problems may be corrected by
adding more capabilities of the form xz.

Other capabilities include s, an initialization string for the terminal, and If, the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both are given, 1s wil]l be printed
before §f. This is useful where i is fuer/lib/tabset/std but is clears the tabs first.

Similar Terminals

It there are two very similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability te can be given with the name of the similar terminal, This
capability must be last and the combined length of the two entries must not exceed 1024, Since
termiib routines search the entry from left to right, and since the tc capability is replaced by the
corresponding entry, the capabilities given at the left override the ones in the similar terminal. A
capability can be canceled with xx@ where xx is the capability. For example, the entry

bn|2621nl:ks®:ke®:tc=2621:

defines a 2621in! that does not have the ks or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or for
different user preferences.

[etc/termcap file containing terminal descriptions

SEE ALSO

BUGS

72

ex(1), curses(3X), termcap(3X), tset(1), vi(1), ul(1), more(1)

Ez allows only 256 characters for string capabilities, and the routines in termeap(3X) do not check
for overflow of this buffer. The total length of a single entry (excluding only escaped newlines)
may not exceed 1024,

The ma, vs, and ve entries are specific to the vi program,
Not all programs support all entries. There are entries that are not supported by any program.

Last change: 16 December 1983 Sun Release 1.1

C

-

TP(5) FILE FORMATS TP(5)

G NAME
tp - DEC/mag tape formats
DESCRIPTION

Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes are
the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

struct {
chaz pathname|[32);
unsigned short mode;
char uid;
char gid;
char unusedl;
char size[3];
long modtime;
unsigned short tapeaddr;
char unused2|16];

unsigned short checksum; i

g |

The path name entry is the path name of the file when put on the tape. If the pathname starts |

with a zero word, the entry is empty. It is at most 32 bytes long and erds in a null byte. Mode,

uid, gid, size and time modified are the same as described under i-nodes (see file system f5(5)). 3

O The tape address is the tape block number of the start of the contents of the file. Every file :
starts on a block boundary. The file occupies (size+ 511)/512 blocks of continuous tape. The

checksum entry has a value such that the sum of the 32 words of the directory entry is zero. |

Blocks above 25 (resp. 63) are available for file storage.
A fake entry has a size of zero.

SEE ALSO
1s(5), tp(1)
BUGS
The pathname, uid, gid, and size fields are too small.

o

C

Sun Release 1.1 Last change: 15 January 1983 73

TTYS(5) FILE FORMATS TTYS(5)

NAME

ttys — terminal initialization data

DESCRIPTION

FILES

The ftys file is read by the inil program and specifies which terminal special files are to have a
process created for them so that people ¢an log in. There is one line in the ftys file per special file
associated with a terminal.

The first character of a line in the {iys file is either ‘0’ or ‘1'. If the first character on the line is a
‘0", the init program ignores that line. If the first character on the line is a ‘1’, the inst program
creates 3 login process for that line,

The second character on each line is used as an argument to getty(8), which performs such tasks
as baud-rate recognition, reading the login name, and calling login. For normal lines, the second
character is ‘0’; other characters can be used, for example, with hard-wired terminals where speed
recognition is unnecessary or which have special characteristics. The remainder of the line is the
terminal’s entry in the device directory, /dev.

Getty uses the second character in the ¢ys file to look up the characteristics of the terminal in the
[ete gettytab file. Consult the gettytad(5) manual page for an explanation of the layout of
[etef gettytad.

el

[etefttys

SEE ALSO

74

init(8), getty(8), login{1), gettytab(5)

Last change: 28 October 1983 Sun Release 1.1

-

(

TTYTYPE(5) FILE FORMATS TTYTYPE(5)
NAME
ttytype — data base of terminal types by port _
SYNOPSIS
[ete/ttytype
DESCRIPTION

Tiytype is a database containing, for each tty port on the system, the kind of terminal that is
attached to it. There is one line per port, containing the terminal kind (as a name listed in
termeap (5)), a space, and the name of the tty, minus /dev/.

This information is read by fsef(1) and by login(1) to initialize the TERM variable at login time.

SEE ALSO
tset(1), login(1)

BUGS
Some lines are merely known as “dialup” or ‘‘plugboard”,

Sun Release 1.1 Last change: 256 October 1979 75

UUENCODE (5) FILE FORMATS UUENCODE(5)

NAME

nuencode — format of an encoded uuencode file

DESCRIPTION

Files output by uuencode{IC) consist of a header line, followed by a number of body lines, and a
trailer line. Uudecode will ignore any lines preceding the header or following the trailer. Lines
preceding a header must not, of course, look like a header,

The header line is distinguished by having the first 6 characters “‘begin . The word begin is fol-
lowed by a mode {in octal), and a string which names the remote file. Spaces separate the three
items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing
newline). These consist of a character count, followed by encoded characters, followed by a new-
line. The character count is a single printing character, and represents an integer, the number of
bytes the rest of the line represents. Such integers are always in the range from 0 to 63 and can
be determined by subtracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to
make the characters printing. The last line may be shorter than the normal 45 bytes. If the size
is not a multiple of 3, this fact can be determined by the value of the count on the last line.
Extra garbage will be included to make the character count a multiple of 4. The body is ter-
minated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of “end’’ on a line by itsell.

SEE ALSO

76

uunencode({1C), uudecode{1C), uusend(1C), uuep(1C), mail(1)

Last change: 1 June 1980 Sun Release 1.1

-

-

VFONT(5) FILE FORMATS VFONT(5)

NAME
viont - font formats

SYNOPSIS
#loclude <vfont.h>

DESCRIPTION
The fonts used by the window system and printer/plotters have the following format. Each font
is in a file, which contains a header, an array of character description structures, and an array of
bytes containing the bit maps for the characters. The beader has the following format:

struct header {

. short magic; J* Magic number VFONT_MAGIC */
unsigned short size; /* Total # bytes of bitmaps */
short maxx; J* Maximum horizontal glyph size */
short maxy; /* Maximum vertical glyph size */
short xtend; /* (unused) */

Y

#define YFONT _MAGIC 0436

Mazz and mazy are intended to be the maximum honzontal and vertical size of any glyph in the
font, in raster lines. {A glyph is just a printed representation of a character, in a particular size
and tont.) The size is the total size of the bit maps for the characters in bytes. The ziend field is
not currently used.

After the header is an array of NUM_DISPATCH structures, one for each of the possible charac-
ters in the font, Each element of the array has the form:

struct dispatch f

unsigned short addr; J* &(glyph) - &(start of bitmaps) */
short nbytes; /* # bytes of glyphs (0 if no glyph) */
char up, down, left, right; /* Widths from baseline point */
short width; /* Logical width, used by troff */
; .
#tdefine NUM_DISPATCH 256

The nbytee field is nonzero for characters which actually exist. For such characters, the addr field
iz an offset into the bit maps to where the character’s bit map begins. The up, down, left, and
right fields are offsets from the base point of the glyph to the edges of the rectangle which the bit
map represents. (The imaginary *‘base point’ is a point which is vertically on the ‘‘base line' of
the glyph (the bottom line of a glyph which doesn’t have a descender) and horizontally near the
left edge of the glyph; often 3 or so pixels past the left edge.) The bit map contains up+ down
rows of data for the character, each of which has left+ right columns (bits). Each row is rounded
up to a number of bytes. The width field represents the logical width of the glyph in bits, and
shows the horizontal displacement to the base point of the next glyph.

e

FILES
fusrflibfvfont/*
Just /suntool /fixedwidthfonts/*

SEE ALSO
trofi(1), pti(1), vfontinfo(1), vswap(1)

BUGS
A machine-independent font format should be defined. The shorts in the above structures con-
tain different bit patterns depending whether the font file is for use on a Vax or a Sun. The
vewap program must be used to convert one to the other.

Sun Release 1.1 - Last change: 23 February 1984 77

Interprocess Communication Primer

Table of Contents

...

2.1, Socket Types ...
2.2. Socket Creation . ..
2.3. Binding Names ...

2.4. Connection Establishmentcoomrrsmmrmssrsresmsin
2.5, Data TTARSTEr | ..o scsssessse s sscsssmess e ssesesmos s
2.8. DiScarding SOCKELSccccciiermreseemmessneerssesree et seesess st s s
2.7. Connectionless Sockets ..
2.8. Input/Output Multiplexing

...

3. Network Library ROUtines ... crsmssresmss o
3.1, Host Names ...
3.2. Network Names
3.3. Protocol Names
B4, SErvICe NAMIES . oot
3.5. Miscellanecus ...

...

4. Client/Server Model , e
QL. SEIVETB ..ot s s eeabt e e sssemsap Rt st s e b e e et g e e e sE e
4.2. Clients

...

..

Be AVANCEd TOPICS ..ottt o sesssssmsms s ot onast s sssss srsee

00 00 «1 =1 v O b 08 QO

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Out of Band Data ...

Signals and Process Groups ...

......

Pseudo Terminals oot stseeneee
Internet Address Binding ...

Broadcasting and Datagram Sockets

Signals eevtrensssemness i srtrmasas

—ii -

..................

22
22
23
24
26
26

Interprocess Communication Primer

This document provides an introduction to the interprocess communication facilities included in
the Sun Workstation version of the UNIX{ operating system.

It discusses the overall model for interprocess communication and introduces the interprocess
communication primitives which have been added to the system. The majority of the document
considers the use of these primitives in developing applications. The reader is expected to be
familiar with the C programming language as all examples are written in C.

o iayn

@ { UNIX is a trademark of Bell Laboratories.

Revision E of 7 January 1984 1

Interprocess Communication Primer Sun System Interface Manual

1. Introduction

One of the most important features added in the Berkeley 4.2 release of the UNIX operating
system is substantial new interprocess communication facilities. These facilities are the result of
more than two years of discussion and research. The facilities provided in this release incor-
porate many of the ideas from current research, while trying to maintain the UNIX philosophy
of simplicity and conciseness. We hope that these interprocess communication facilities will
establish a standard. From the response to the design, it appears that it is being adopted on
many systems.

UNIX has previously been very weak in the area of interprocess communication. Until recently,
the only standard mechanism which allowed two processes to communicate were pipes (the mpx
files which were part of Version 7 were experimental). Unfortunately, pipes are restrictive in
that the two communicating processes must be related through a common ancestor. Further,
the semantics of pipes makes them almost impossible to maintain in a distributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction. The
majority of the problems have been related to the fact these facilities have been tied to the
UNIX file system; either through naming, or implementation. Consequently, the ipc facilities
provided in this release have been designed as a totally independent subsystem, and allow
processes to rendezvous in many ways. Processes may rendezvous through a UNIX file system-
like name space (a space where all names are path names) as well as through a network name
space. In fact, new name spaces may be added at a future time with only minor changes visible
to users. Further, the communication facilities have been extended to included more than the
simple byte stream provided by a pipe-like entity. These extensions have resulted in a com-
pletely new part of the system which users will need time to familiarize themselves with, It is
likely that as more use is made of these facilities they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the new sys-
tem calls and the basic model of communication. Section 3 describes some of the supporting
library routines users may find useful in constructing distributed applications. Section 4 is con-
cerned with the client/server model used in developing applications and includes examples of
the two major types of servers. Section 5 delves into advanced topics which sophisticated users
are likely to encounter when using the ipc facilities.

2 Revision E of 7 January 1984

Sun System Interface Manual Interprocess Communication Primer

2. Basics

The basic building block for communication is the socket. A socket is an endpoint of communi-
cation to which a name may be bound. Each socket in use has a {ype and one or more associ-
ated processes. Sockets exist within communication domains. A communication domain is an
abstraction introduced to bundle common properties of processes communicating through sock-
ets. One such property is the scheme used to name sockets. For example, in the UNIX com-
munication domain sockets are named with UNIX path names; e.g. a socket may be named
“/dev/foo”. Sockets normally exchange data only with sockets in the same domain (it may be
possible to cross domain boundaries, but only if some translation process is performed). The ipc
supports two separate communication domains: the UNIX domain, and the Internet domain is
used by processes which communicate using the the DARPA standard communication protocols.
The underlying communication facilities provided by these domains have a significant influence
on the internal system implementation as well as the interface to socket facilities available to a
user. An example of the latter is that a socket “‘operating” in the UNIX domain sees a subset
of the possible error conditions which are possible when operating in the Internet domain.

2.1. Socket Types

Sockets are typed according to the communication properties visible to a user. Processes are
presumed to communicate only between sockets of the same type, although there is nothing
that prevents communication between sockets of different types should the underlying commun-
ication protocols support this.

Three types of sockets currently are available to a user. A astream socket provides for the
bidirectional, reliable, sequenced, and unduplicated flow of data without record boundaries.
Aside from the bidirectionality of data flow, a pair of connected stream sockets provides an
interface nearly identical to that of pipes#.

A dategram socket supports bidirectional flow of data which is not promised to be sequenced,
reliable, or unduplicated. That is, a process receiving messages on a datagram socket may find
messages duplicated, and, possibly, in an order different from the order in which it was sent. An
important characteristic of a datagram socket is that record boundaries in data are preserved.
Datagram sockets closely model the facilities found in many contemporary packet switched net-
works such as the Ethernet.

A raw socket provides users access to the underlying coinmunication protocols which support
socket abstractions. These sockets are normally datagram oriented, though their exact charac-
teristics are dependent on the interface provided by the protocol. Raw sockets are not intended
for the general user; they have been provided mainly for those interested in developing new
communication protocols, or for gaining access to some of the more esoteric facilities of an exist-
ing protocol.

Two potential socket types which have interestiig properties are the scquenced packet socket
and the reliably delivered message socket. A sequenced packet socket is identical to a stream
socket with the exception that record boundaries are preserved. This interface is very similar to
that provided by the Xerox NS Sequenced Packet protocol. The reliably delivered message
socket has similar properties to a datagram socket, but with reliable delivery. While these two
socket types have been loosely defined, they are not currently implemented. So, in this

» In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have
been implemented internally as simply s pair of connected stream sockets.

Reviéion E of 7 January 1984 3

Interprocess Communication Primer Sun System Interface Manual

document, we will concern ourselves only with the three supported socket types. @

2.2. Socket Creation

To create a socket the socket system call is used:
8 = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified
type. A particular protocol may also be requested. If the protocol is left unspecified (a value of
0), the system will select an appropriate protocol from those protocols which comprise the com-
munication domain and which may be used to support the requested socket type. The user is
returned a descriptor (a small integer number) which may be used in later system calls which
operate on sockets. The domain is specified as one of the manifest constants defined in the file
<ayefsocket.h>. For the UNIX domain the constant is AF_UNIX#; for the Internet domain
AF_INET. The socket types are also defined in this file and one of SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample
call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the communi- @
cation domain. For the Internet domain the available protocols are defined in <netinet/in.h>

or, better yet, one may use one of the library routines discussed in section 3, such as getproto-

byname:

#include < sys/types.h>
#include <sys/socket.h>
#include < netinet/in.h>
#include <netdb.h>

pp = getprotobyname(" tcp”);
s == socket(AF_INET, SOCK_STREAM, pp->p_proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

* The manifest constants are named AF_whatever as they indicate the “‘address format” to use in

interpreting names. @

4 Revision E of 7 January 1984

Sun System Interface Manual Interprocess Communication Primer

2.3. Binding Names

A socket is created without a name. Until a name is bound to a socket, processes have no way
to reference it and, consequently, no messages may be received on it. The bind call i3 used to
assign a name to a socket:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting
protocol(s). Its interpretation may vary from communication domain to communication domain
(this is one of the properties which comprise the “domain’). In the UNIX domain names are
path names while in the Internet domain names contain an Internet address and port number.
If one wanted to bind the name *‘/dev/foo” to a UNIX domain socket, the following would be
used:

#include <sysfun.h>

struct sockaddr_un sun;
sun.sup_family = AF_UNIX;
strepy(sun.sun_path, ” /dev/foo");
bind(s, &sun, strlen(” /dev/foo” }+ 2);

In binding an Internet address things become more complicated. The actual call is simple,
~ #finclude <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

b-i.x‘1d(s, &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come
back to the problem of formulating Internet addresses in section 3 when the library routines
used in name resolution are discussed.

2.4. Connection Establishment

With a bound socket it is possible to rendezvous with an unrelated process. This operation is
usually asymmetric with one process a “client” and the other a “server”. The client requests
services from the server by imitiating a ‘‘connection’ to the server's socket. The server, when
willing to offer its advertised services, passively “listens” on its socket. On the client side the
connect call is used to initiate a connection. Using the UNIX domain, this might appear as,

struct sockaddr_un server;
connect(s, &server, strlen(server.sun_path)+ 2);

while in the Internet domain,

struct sockaddr_in server;
connect(s, &server, sizeof (server}));

If the client process's socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket; c.f. section 5.41. An error is returned when

1 You muyst do a getsockname(2) call to retrieve the binding.

Revision E of 7 Janunary 1984 5

Interprocess Communication Primer Sun System Interface Manual

the connection was unsuccessful (any name automatically bound by the system, however,
remains). Otherwise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOQUT
After failing to establish a connection for a period of time, the system decided there was no
point in retrying the connection attempt any more. This usually occurs because the desti-
nation host is down, or because problems in the network resulted in transmissions being
lost.

ECONNREFUSED
The host refused service for some reason. When connecting to a host running the 0.9
release version of UNIX this is usually due to a server process not being present at the
requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client
host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route
to the network or host is present), or because of status information returned by intermedi-
ate gateways or switching nodes. Many times the status returned is not sufficient to distin-
guish a network being down from a host being down. In these cases the system is conserva-
tive and indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its socket.
The first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connec-
tions which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client would be unable to tell if
the server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,
though this is unlikely. The backlog figure supplied with the listen call is limited by the system
to a maximum of 5 pending connections on any one queue. This avoids the problem of
processes hogging system resources by setting an infinite backlog, then ignoring all connection
requests.

With a socket marked as listening, a server may aceept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the server
wishes to find out who its client is, it may supply a buffer for the client socket’s name. The
value-result parameter fromlen is initialized by the server to indicate how much space is associ-
ated with from, then modified on return to reflect the true size of the name. If the client’s name
is not of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is avail-
able or the system call is interrupted by a signal to the process. Further, there is no way for a
process to indicate it will accept connections from only a specific individual, or individuals. It is

6 Revision E of 7 January 1984

=

P S SR i 1

Sun System Interface Manual Interprocess Communication Primer

up to the user process to consider who the connection is from and close down the connection if
it does not wish to speak to the process. If the server process wants to accept connections on
more than one socket, or not block on the accept call there are alternatives; they will be con-
sidered in section 5.

2.5. Data Transfer

With a connection established, data may begin to flow. To send and receive data there are a
number of possible calls. With the peer entity at each end of a connection anchored, a user can
send or receive a message without specifying the peer. As one might expect, in this case, then
the normal read and wrile system calls are useable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), fiags);

While send and recv are virtually identical to read and write, the extra flags argument is impor-
tant. The flags may be specified as a non-zero value if one or more of the following is required:

MSG_OOB send /receive out of band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest
to the casual user. The ability to preview data is, however, of interest. When MSG_PREVIEW
is specified with a recv call, any data present is returned to the user, but treated as still
‘“unread”. That is, the next read or recv call applied to the socket will return the data previ-
ously previewed.

2.6. Discarding Sockets

Once a socket is no longer of interest, it may be discarded by applying a close to the descriptor,

close(s);
If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a
close takes place, the system will continue to attempt to transfer the data. However, after a
fairly long period of time, if the data is still undelivered, it will be discarded. Should a user
have no use for any pending data, it may perform a shutdown on the socket prior to closing it.
This call is of the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent,
or 2 if no data is to be sent or received. Applying shutdown to a socket causes any data queued
to be immediately discarded.

Revision E of 7 January 1984 7

Interprocess Communication Primer Sun System Interface Manual

2.7. Connectionless Sockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. However, there is also support for connectionless interactions typical of the datagram
facilities found in contemporary packet switched networks. A datagram socket provides a sym-
metric interface to data exchange. While processes are still likely to be client and server, there
is no requirement for connection establishment. Instead, each message includes the destination
address.

Datagram sockets are created as before, and each should have a name bound to it in order that
the recipient of a message may identify the sender. To send data, the sendto primitive is used,

sendto(s, buf, buflen, flags, &to, tolen);

The s, buf, buflen, and flags parameters are used as before. The {o and tolen values are used to
indicate the intended recipient of the message. When using an unreliable datagram interface, it
is unlikely any errors will be reported to the sender. Where information is present locally to
recognize a message which may never be delivered (for instance when a network is unreachable),
the call will return ~1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recufrom primitive is provided:
recvirom(s, buf, buflen, flags, &from, &{romlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the
size of the from bufler.

In addition to the two calls mentioned above, datagram sockets may also use the connect call to
associate a socket with a specific address. In this case, any data sent on the socket will
automatically be addressed to the connected peer, and only data received from that peer will be
delivered to the user. Only one connected address is permitted for each socket (i.e. no multi-
casting). Connect requests on datagram sockets return immediately, as this simply results in
the system recording the peer's address (as compared to a stream socket where a connect
request initiates establishment of an end to end connection). Other of the less important details
of datagram sockets are described in section 5.

2.8. Input/Output Multiplexing

One last facility often used in developing applications is the ability to multiplex i/o requests
among multiple sockets and/or files. This is done using the select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and
one for which exceptional conditions are pending. Bit masks are created by or-ing bits of the
form “1 << fd". That is, a descriptor fd is selected if a 1 is present in the fd'th bit of the
mask. The parameter nfds specifies the range of file descriptors (i.e. one plus the value of the
largest descriptor) specified in a mask.

A timeout value may be specified if the selection is not to last more than a predetermined
period of time. If timeout is set to 0, the selection takes the form of a poll, returning immedi-
ately. If the last parameter is a null pointer, the selection will block indefinitely*. Select

! » To be more specific, a return takes place only when a descriptor is selectable, or when a sig-
nal is receivzd by the caller, interrupting the system call.

8 Revision E of 7 January 1984

C

C

Sun System Interface Manual Interprocess Communication Primer

normally returns the number of file descriptors selected. If the select call returns due to the
timeout expiring, then a value of -1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output com-
pletion, input availability, and exceptional conditions is possible through use of the SIGIO and
SIGURG signals described in section 5.

Revision E of 7 January 1984 9

Interprocess Communication Primer Sun System Interface Manual

3. Network Library Routines

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment.
To aid in this task a number of routines have been added to the standard C run-time library.
In this section we will consider the new routines provided to manipulate network addresses.
While the Sun system release networking facilities support only the DARPA standard Internet
protocols, these routines have been designed with flexibility in mind. As more communication
protocols become available, we hope the same user interface will be maintained in accessing
network-related address data bases. The only difference should be the values returned to the
user. Since these values are normally supplied the system, users should not need to be directly
aware of the communication protocol and/or naming conventions in use,

Locating a service or a remote host requires many levels of mapping before client and server
may communicate. A service is assigned a name which is intended for human consumption; e.g.
“the login server on host monet”. This name, and the name of the peer host, must then be
translated into network addresses which are not necessarily suitable for human consumption.
Finally, the address must then used in locating a physical location and route to the service. The
specifics of these three mappings is likely to vary between network architectures. For instance,
it is desirable for a network to not require hosts be named in such a way that their physical
location is known by the client host. Instead, underlying services in the network may discover
the actual location of the host at the time a client host wishes to communicate. This ability to
have hosts named in a location independent manner may induce overhead in connection estab-
lishment, as a discovery process must take place, but allows a host to be physically mobile
without requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network names
to network numbers, protocol names to protocol numbers, and service names to port numbers
and the appropriate protocol to use in communicating with the server process. The file
<netdb.h> must be included when using any of these routines.

3.1. Host Names

A host name to address mapping is represented by the hostent structure:

struct hostent {

char +h_name; /* official name of host */
char ++h_aliases; [+ alias list +/

int h_addrtype; /* host address type +/
int h_length; /* length of address +/
char +h_addr; /* address */

b

Note that the h_addr field in the structure definition is defined as a pointer to char. In the
case of Internet addresses (the only case implemeted to date} you should cast this to a (struct
in_addr *) when using the item.

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine gethostbyname(3N) takes a host name and returns a hos-
tent structure, while the routine gethostbyaddr{3N) maps host addresses into a hostent structure.
It is possible for a host to have many addresses, all having the same name. Gethoatybyname
returns the first matching entry in the data base file /etc/hosts; if this is unsuitable, the lower
level routine gethosten3N) may be used. For example, to obtain a hostent structure for a host

10 Revision E of 7 January 1984

C

C

-

Sun System Interface Manual Interprocess Communication Primer

on a particular network the following routine might be used (for simplicity, only Internet
addresses are considered): .

#include <sys/types.h>
#include <sysfsocket.h>
#include <netinetfin.h>
#include <netdb.h>

struct hostent *
gethostbynameandnet{name, net)
char *name;
int net;

register struct hostent +hp;
register char ##cp;

sethostent(0);
while {(hp = gethostent()) == NULL) {
if (hp->h_addrtype !== AF_INET)
continue;
if (strcemp(name, hp->h_name)) {
for (cp = hp->h_aliases; cp && *cp != NULL; cp+ +)
if (stremp(name, *cp) === 0)
goto found;
continue;

found:
if (in_netof(*(struct in_addr *)hp->h_addr)) == net)
break;

endhostent(0);
return {hp);

}

(#n_netof(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network Names

As for host names, routines for mapping network names to numbers, and back, are provided.
These routines return a netent structure:

Revision E of 7 January 1984 11

Interprocess Communication Primer

/*
+ Assumption here is that a network number
+ fits in 32 bits - probably a poor one.

J

struct netent {
char *n_name; /#* official name of net */
char +*n_aliases; /* alias list s/
int n_addrtype; /* net address type ¢/
int n_net; /+ network # +/

};
The routines getnetbymame(3N), getnetbynumber(3N), and getnetent(3N) are the network coun-
terparts to the host routines described above.

3.3. Protocol Names

For protocols the protoent structure defines the protocol-name mapping used with the routines
getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

struct protoent {

char *p_name; /* official protocol name */
char +#p_aliases; [+ alias list ¥/
int p_proto; /* protocol # #/

};

3.4. Service Names

Information regarding services is a bit more complicated. A service is expected to reside at a
specific “port” and employ a particular communication protocol. This view is consistent with
the Internet domain, but inconsistent with other network architectures. Further, a service may
reside on multiple ports or support multiple protocols. If either of these occurs, the higher level
library routines will have to be bypassed in favor of homegrown routines similar in spirit to the
“gethostbynameandnet” routine described above. A service mapping is described by the servent
structure,

struct servent {

Sun System Interface Manual

char +3_name; /#* official service name */
char **3_aliases; /* alias list +/

int s_port; [* port # +/

char +s_proto; /* protocol to use +/

b
The routine getservbyname(3N) maps service names to a servent structure by specifying a ser
vice name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname(”telnet”, (char #)0);
returns the service specification for a telnet server using any protocol, while the call
sp = getservbyname{”telnet”, "tcp”);
returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N)

12 Revision E of 7 January 1984

-

Sun System Interface Manual Interprocess Communication Primer

and getservent(3N) are also provided. The getservbyport routine has an interface similar to that
provided by getservbyname; an optional protocol name may be specified to qualify lookups.

3.5. Miscellaneous

With the support routines described above, an application program should rarely have to deal
directly with addresses. This allows services to be developed as much as possible in a network
independent fashion. It is clear, however, that purging all network dependencies is very
difficult. So long as the user is required to supply network addresses when naming services and
sockets there will always some network dependency in a program. For example, the normal
code included in client programs, such as the remote login program, is of the form shown in Fig-
ure 1. (This example will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network
dependent aspects from the mainstream login code. For the current facilities available in the
system this does not appear to be worthwhile. Perhaps when the system is adapted to different
network architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines available in
the run-time library which are of interest to users. These are intended mostly to simplify mani-
pulation of names and addresses. Table 1 summarizes the routines for manipulating variable
length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses to be
supplied in network order. On a VAX, or machine with similar architecture, this is usually
reversed. Consequently, programs are sometimes required to byte swap quantities. The library
routines which return network addresses provide them in network order so that they may sim-
ply be copied into the structures provided to the system. This implies users should encounter
the byte swapping problem only when interpreting network addresses. For example, if an Inter
net port is to be printed out the following code would be required:

Revision E of 7 January 1984 13

Interprocess Communication Primer Sun System Interface Manual

#include <sys/types.h>
#include <sys/socket.h> @
#include <netinet/in.h>

#include <stdio.h>

#include <netdb.h>

main(arge, argv)
char *argv[];
{

struct sockaddr_in sin;
struct servent ¥sp;
struct hostent *hp;
int s;

sp = getservbyname(”login”, "tcp”);

if (sp === NULL) {
fprintf(stderr, "rlogin: tep/login: unknown service\n");
exit(1); '

}

hp = gethostbyname(argv|[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n”, argv][1]);
exit(2);

}
bzero{(char *)&sin, sizeof (sin)); 1
beopy(hp->>h_addr, (char *)&sin.sin_addr, hp->h_length); O
sin.sin_family = hp->h_addrtype;
sin.sin_port = sp->>s_port;
s = socket{AF_INET, SOCK_STREAM, 0);
if(s <0){

perror("rlogin: socket”);

exit{3);

if (connect(s, (char *)&sin, sizeof (sin)) < 0) {
perror(”rlogin: connect”);
exit(5);

Figure 1. Remote login client code.
printf(” port number %d\n”, ntohs(sp->s_port});
On machines other than the VAX these routines are defined as null macros.

-

Revision E of 7 January 1984

-

Sun System Interface Manual Interprocess Communication Primer

Call Synopsis

bemp(sl, s2, n) | compare byte-strings; 0 if same, not 0 otherwise
beopy(sl, s2, n) | copy n bytes from sl to s2

bzero{base, n) zero-fill n bytes starting at base

htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 18-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.

4. Client/Server Model

The most commonly used paradigm in constructing distributed applications is the client/server
model. In this scheme client applications request services from a server process. This implies an
asymmetry in establishing communication between the client and server which has been exam-
ined in section 2. In this section we will look more closely at the interactions between client and
server, and consider some of the problems in developing client and server applications.

Client and server require a well known set of conventions before service may be rendered (and
accepted). This set of conventions comprises a protocol which must be implemented at both
ends of a connection. Depending on the situation, the protocol may be symmetric or asym-
metric. In a symmetric protocol, either side may play the master or slave roles. In an asym-
metric protocol, one side is immutably recognized as the master, with the other the slave. An
example of a symmetric protocol is the TELNET protocol used in the Internet for remote termi-
nal emulation. An example of an asymmetric protocol is the Internet file transfer protocol,
FTP. No matter whether the specific protocol used in obtaining a service is symmetric or asym-
metric, when accessing a service there is a *“client process’ and a “server process’”. We will first
consider the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clogging
the system while remaining dormant most of the time. The Xerox Courier protocol uses the
latter scheme. When using Courier, a Courier client process contacts a Courier server at the
remote host and identifies the service it requires. The Courier server process then creates the
appropriate server process based on a data base and “splices” the client and server together,
voiding its part in the transaction. This scheme is attractive in that the Courier server process
may provide a single contact point for all services, as well as carrying out the initial steps in
authentication. However, while this is an attractive possibility for standardizing access to ser-
vices, it does introduce a certain amount of overhead due to the intermediate process involved.
Implementations which provide this type of service within the system can minimize the cost of
client server rendezvous.

4.1. Servers

In this release, most servers are accessed at well known Internet addresses or UNIX domain
pames. When a server is started at boot time it advertises it services by listening at a well
know location. For example, the remote login server’s main loop is of the form shown in Figure
2.

Revision E of 7 January 1984 15

Interprocess Communication Primer

main(arge, argv)
int argce;
char *+argv;

int f;

struct sockaddr_in from;

struct servent *sp;

sp = getservbyname("login”, "tcp”);
if (sp == NULL) {

Sun System Interface Manual

fprintf(stderr, "rlogind: tcp/login: unknown service\n");

exit(1);

}
#ifndef DEBUG

< < disassociate server from controlling terminal> >

Fendif
;i.n.sin _port = sp-2>s_port;
f = socket(AF_INET, SOCK_STREAM, 0);
if (bind(f, (caddr_t)&sin, sizeof (sin)) < 0) {

}

listen(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g8 < 0){
if (errno != EINTR)
perror("rlogind: accept”);
continue;

i}f (fork() == 0) {
close(f);
doit(g, &from);

close(g);

Figure 2. Remote login server.

The first step taken by the server is look up its service definition:

sp = getservbyname(”login”, "tcp”);
if (sp === NULL) {

Revision E of 7 January 1984

-

Sun System Interface Manual Interprocess Communication Primer

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

This definition is used in later portions of the code to define the Internet port at which it listens
for service requests (indicated by a connection).
Step two is to disassociate the server from the controlling terminal of its invoker. This is
important as the server will likely not want to receive signals delivered to the process group of
the controlling terminal.
Once a server has established a pristine environment, it creates a socket and begins accepting
service requests. The bind call is required to insure the server listens at its expected location.
The main body of the loop is fairly simple:

for (;;) {

int g, len == sizeof (from);

g = accept(l, &from, &len);
if (g < 0) {
if (errno != EINTR)
perror{”rlogind: accept”);
continue;

i}f (fork() == 0) {
close(f);
doit(g, &from};

}
close(g);
}

An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5).
Therefore, the return value from accept is checked to insure a connection has actually been esta-
blished. With a connection in hand, the server then forks a child process and invokes the main
body of the remote login protocol processing. Note how the socket used by the parent for
queueing connection requests is closed in the child, while the socket created as a result of the
accept is closed in the parent. The address of the client is also handed the dost routine because
it requires it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server clearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a
connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the server
process the first step is to locate the service definition for a remote login:

Revision E of 7 January 1984 17

Interprocess Communication Primer Sun System Interface Manual

sp = getservbyname(”login”, "tep”);
if (sp === NULL) {
fprint{(stderr, "rlogin: tcp/login: unknown service\n");

exit(1);

Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname(argv(l]);

if (hp === NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv|[l});
exit(2);

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then filled
in with the Internet address of the foreign host and the port number at which the login process
resides:

bzero{(char *)&sin, sizeof (sin));

beopy(hp->h_addr, (char #)sin.sin_addr, hp->h_length);
sin.sin_family = hp->h_addrtype;

sin.sin_port = sp->>s_port;

A socket is created, and a connection initiated.

s = socket(hp- >h_addrtype, SOCK_STREAM, 0);
if (s < 0){

perror("rlogin: socket”);

exit(3);

ifuiconnect(s, (char *)&sin, sizeof (sin)) < 0} {
perror{”rlogin: connect”);
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless Servers

While connection-based services are the norm, some services are based on the use of datagram
sockets. One, in particular, is the “rwho’ service which provides users with status information
for hosts connected to a local area network. This service, while predicated on the ability to
broadcast information to all hosts connected to a particular network, is of interest as an exam-
ple usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine
with the ruptime(l) program. The output generated is illustrated in Figure 3.

Status information for each host is periodically broadeast by rwho server processes on each
machine. The same server process also receives the status information and uses it to update a
database. This database is then interpreted to generate the status information for each host.
Servers operate autonomously, coupled only by the local network and its broadcast capabilities.

18 Revision E of 7 January 1984

C

Sun System Interface Manual Interprocess Communication Primer

arpa up 9:45, 5 users, load 1.15, 139, 1.31
cad up 2+ 12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, O users, load 0.27, 0.15, 0.14
dali up 2+ 06:28, 9 users, load 1.04, 1.20, 1.85
degas up 25+ 00:48, O users,load 1.49, 143, 141
ear up 5+ 00:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24

esvax down 17:04

ingres down 0:26

kim up 3+ 09:16, 8 users, load 2.03, 246, 3.11
matisse up 3+ 06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+ 09:39, 2 users, load 0.35, 037, 0.50
merlin down 19+ 15:37

miro ep 1407:20, 7 users,load 4.59, 3.28, 2.12
monet up 14 00:43, 2 users, load 0.22, 0.09, 0.07
oz down 16:09

statvax up 2+ 15:57, 3 users, load 1.52, 181, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.8, 3.28

Figure 3. ruptime output.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per-
formed by the server. The first task is to act as a receiver of status information broadcast by
other hosts on the network. This job is carried out in the main loop of the program. Packets
received at the rwho port are interrogated to insure they’ve been sent by another rwho server
process, then are time stamped with their arrival time and used to update a file indicating the
status of the host. When a host has not been heard from for an extended period of time, the
database interpretation routines assume the host is down and indicate such on the status
reports. This algorithm is prone to error as a server may be down while a host is actually up,
but serves our current needs.

The second task performed by the server is to supply information regarding the status of its
host. This involves periodically acquiring system status information, packaging it up in a mes-
sage and broadcasting it on the local network for other rwho servers to hear. The supply func-
tion is triggered by a timer and runs off a signal. Locating the system status information is
somewhat involved, but uninteresting. Deciding where to transmit the resultant packet does,
however, indicates some problems with the current protocol.

Status information is broadcast on the local network. For networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadcasting, One pos-
sibility is to enumerate the known neighbors (based on the status received). This, unfor-
tunately, requires some bootstrapping information, as a server started up on a quiet network
will have no known neighbors and thus never receive, or send, any status information. This is
the identical problem faced by the routing table management process in propagating routing
status information. The standard solution, unsatisfactory as it may be, is to inform one or
more servers of known neighbors and request that they always communicate with these neigh-
bors. If each server has at least one neighbor supplying it, status information may then pro-
pagate through a neighbor to hosts which are not (possibly) directly neighbors. If the server is
able to support networks which provide a broadcast capability, as well as those which do not,
then networks with an arbitrary topology may share status informations*.

1 s One must, however, be concerned about “loops’”. That is, if a host is connected to multiple
networks, it will receive status information from itself. This can lead to an endless, wastefu), ex-

Revision E of 7 January 1984 19

Interprocess Communication Primer Sun System Interface Manual

main()
| -
sp = getservbyname(”who”, "udp”);
net = getnetbyname(” localnet”);
sin.sin_addr = inet_makeaddr{INADDR_ANY, net);
sin.sin_port == sp->>s_port;

s = socket(AF_INET, SOCK_DGRAM, 0);
i;ind(s, &sin, sizeof (sin));

sigset(SIGALRM, onalrm);
onalrm();
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc <=0) {
if (cc < 0 && errno != EINTR)
perror("rwhod: recv”);
continue;

if (from.sin_port != sp->>s_port) { L
fprintf(stderr, "rwhod: %d: bad from port\n”, O
ntohs(from.sin_port)); \
continue;

}

if (tverify(wd.wd_hostname)) {
fprintf(stderr, "rwhod: malformed host name from %x\n”,
ntohl(from.sin_addr.s_addr));
continue;

}
(void) sprintf(path, " %s/whod.%s"”, RWHODIR, wd.wd_hostname);
whod = open(path, O_FWRONLY|O_FCREATE|O_FTRUNCATE, 0666);

(void) time(&wd.wd_recvtime);

(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4. rwho server.

change of information.
-

Revision E of 7 January 1984

C

Sun System Interface Manual Interprocess Communication Primer

The second problem with the current scheme is that the rwho process services only a single local
network, and this network is found by reading a file. It is important that software operating in
a distributed environment not have any site-dependent information compiled into it. This
would require a separate copy of the server at each host and make maintenance a severe
headache. The Sun system attempts to isolate host-specific information from applications by
providing system calls which return the necessary informationt. The rwho server performs a
lookup in a file to find its local network. A better, though still unsatisfactory, scheme used by
the routing process is to interrogate the system data structures to locate those directly con-
nected networks. A mechanism to acquire this information from the system would be a useful
addition.

1 t An example of such a system call is the gethostname(2) eall which returns the host’s “official”
name,

Revision E of 7 January 1984 21

Interprocess Communication Primer Sun System Interface Manual

5. Advanced Topics

A number of facilities have yet to be discussed. For most users of the ipc the mechanisms
already described will suffice in constructing distributed applications. However, others will find
need to utilize some of the features which we consider in this section.

5.1. Out of Band Data

The stream socket abstraction includes the notion of “out of band” data. Out of band data is a
logically independent transmission channel associated with each pair of connected stream sock-
ets. Out of band data is delivered to the user independently of normal data along with the
SIGURG signal. In addition to the information passed, a logical mark is placed in the data
stream to indicate the point at which the out of band data was sent. The remote login and
remote shell applications use this facility to propagate signals from between client and server
processes. When a signal is expected to flush any pending output from the remote process(es),
all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reliable
delivery of at least one out of band message at a time. This message may contain at least one
byte of data, and at least one message may be pending delivery to the user at any one time.
For communications protocols which support only in-band signaling (that is, the urgent data is
delivered in sequence with the normal data) the system extracts the data from the normal data
stream and stores it separately. This allows users to choose between receiving the urgent data
in order and receiving it out of sequence without having to buffer all the intervening data.

To send an out of band message the MSG_OOB flag is supplied to a send or sendte calls, while
to receive out of band data MSG_OOB should be indicated when performing a recvfrom or recv
call. To find out if the read pointer is currently pointing at the mark in the data stream, the
SIOCCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out
of band data has arrived), the next read will provide data sent by the client prior to transmis-
sion of the out of band signal. The routine used in the remote login process to flush output on
receipt of an interrupt or quit signal is shown in Figure 5.

5.2. Signals and Process Groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process
group (just as is done for terminals). This process group is initialized to the process group of its
creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

22 Revision E of 7 January 1984

C

C

-

Sun System Interface Manual Interprocess Communication Primer

oob()

int out = 1+ 1;
char waste[BUFSIZ], mark;

signal(SIGURG, oob);
/* flush local terminal input and output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (5;) {
if (ioct)(rem, SIOCATMARK, &mark) < 0) {
perror("ioct]”);
break;

)
if (mark)
break;
{void) read(rem, waste, sizeof (waste));

recv(rem, &mark, 1, MSG_OOB);

Figure 5. Flushing terminal ifo on receipt of out of band data.

ioctl{s, SIOCSPGRP, &pgrp);
A similar ioctl, SIOCGPGRP, is available for determining the current process group of a socket.

5.3. Pseudo Terminals

Many programs will not function properly without a terminal for standard input and output.
Since a socket is not a terminal, it is often necessary to have a process communicating over the
network do so through a pseudo terminal A pseudo terminal is actually a pair of devices, mas-
ter and slave, which allow a process to serve as an active agent in communication between
processes and users. Data written on the slave side of a pseudo terminal is supplied as input to
a process reading from the master side. Data written on the master side is given the slave as
input. In this way, the process manipulating the master side of the pseudo terminal has control
over the information read and written on the slave side. The remote login server uses pseudo
terminals for remote login sessions. A user logging in to a machine across the network is pro-
vided a shell with a slave pseudo terminal as standard input, output, and error. The server pro-
cess then handles the communication between the programs invoked by the remote shell and the
user’s local client process. When a user sends an interrupt or quit signal to a process executing
on a remote machine, the client login program traps the signal, sends an out of band message to
the server process who then uses the signal number, sent as the data value in the out of band
message, to perform a killpg(2) on the appropriate process group.

Revision E of 7 January 1984 23

Interprocess Communication Primer Sun System Interface Manual

5.4. Internet Address Binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communicating
processes are bound by an association. Am association is composed of local and foreign
addresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one
for each Internet protocol. Associations are always unique. That is, there may never be dupli-
cate <protocol, local address, local port, foreign address, foreign port> tuples. _

The bind system call allows a process to specify half of an association, <local address, loc
port>, while the connect and accept primitives are used to complete a socket’s association.
Since the association is created in two steps the association uniqueness requirement indicated
above could be violated unless care is taken. Further, it is unrealistic to expect user programs
to always know proper values to use for the local address and local port since a host may reside
on muitiple networks and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding the notion of a “‘wildecard” address has been provided. When
an address is specified as INADDR_ANY (a manifest constant defined in <metinet/in.h>), the
system interprets the address as “any valid address”. For example, to bind a specific port
number to a socket, but leave the local address unspecified, the following code might be used:

#include <sys/types.h>
#include <netinetfin.h>

struct sockaddr_in sin;

s = socket{AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind(s, (char *)&sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port
number, and addressed to any of the possible addresses assigned a host. For example, if a host
is on networks 46 and 10 and a socket is bound as above, then an accept call is performed, the
process will be able to accept connection requests which arrive either from network 46 or net-
work 10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the
system will select an appropriate port number for it. For example:

sin.sin_addr.s_addr = MYADDRESS;

sin.sin_port = 0;

bind(s, (char *)&sin, sizeof (sin)); _
The system selects the port number based on two criteria. The first is that ports numbered 0
through IPPORT_RESERVED-1 are reserved for privileged users (that is, the super user). The
second is that the port number is not currently bound to some other socket. In order to find a
free port number in the privileged range the following code is used by the remote shell server:

24 Revision E of 7 January 1984

Sun System Interface Manual _ Interprovess Communication Primer

struct sockaddr_in sin;

lport = IPPORT_RESERVED - 1;
sin.sin_addr.s_addr = INADDR_ANY;

for () {

sin.sin_port = htons{{u_short)lport});

if (bind(s, (caddr_t)&sin, sizeof (sin)) > = 0)
break;

if (errno != EADDRINUSE && errno !== EADDRNOTAVAIL) {
perror(”socket”);
break;

}

Iport--;

if (Iport === IPPORT_RESERVED/2) {
fprintf(stderr, "socket: All ports in use\n");
break;

}

The restriction on allocating ports was done to allow processes executing in a “secure’” environ-
ment to perform authentication based on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an
application. This is due to associations being created in a two step process. For example, the
Internet file transfer protocol, FTP, specifies that data connections must always originate from
the same local port. However, duplicate associations are avoided by conmecting to different
foreign ports. In this situation the system would disallow binding the same local address and
port number to a socket if a previous data connection’s socket were around. To override the
defauit port selection algorithm then an option call must be performed prior to address binding:

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char #)0, 0);
bind(s, (char *)&sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not
violate the uniqueness requirement as the system still checks at connect time to be sure any
other sockets with the same local address and port do not have the same foreign address and
port (if an association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a host is on
multiple networks. Logically, one would expect the system to bind the local address associated
with the network through which a peer was communicating. For instance, if the local host is
connected to networks 46 and 10 and the foreign host is on network 32, and traffic from net-
work 32 were arriving via network 10, the local address to be bound would be the host’s address
on network 10, not network 46. This unfortunately, is not always the case. For reasons too
complicated to discuss here, the local address bound may be appear to be chosen at random.
This property of local address binding will normally be invisible to users unless the foreign host
does not understand how to reach the address selecteds.

1 » For example, if network 48 were unknown to the host on network 32, and the local address
were bound to that located on network 48, then even though a route between the two hosts existed
through network 10, s connection would fail,

Revision E of 7 January 1984 95

Interprocess Communication Primer Sun System Interface Manual

5.5. Broadcasting and Datagram Sockets

By using a datagram socket it is possible to send broadcast packets on many networks sup-
ported by the system (the network itself must support the notion of broadcasting; the system
provides no broadcast simulation in software). Broadcast messages can place a high load on a
network since they force every host on the network to service them.

To send a broadcast message, an Internet datagram socket should be created:
s = socket{AF_INET, SOCK_DGRAM, 0);
and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:

dst.sin_family = AF_INET;
inet_makeaddr{net, INADDR_ANY);
dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:
sendto(s, buf, buflen, 0, &dst, sizeof {dst));

Received broadcast messages contain the senders address and port {datagram sockets are
anchored before a message is allowed to go out).

There are a couple of minor problems in the above example. One is created because
INADDR_ANY has two meanings:

1. Fill in my own address, and,
2. Broadcast.

Unfortunately, broadcast must at some time in the future be changed to -1 instead of 0, so that
broadcast will no longer be The second problem is how do you get your net number!? You could
use the SIOCGICONF ioctl call, or you could get your own address and do a inet_netof on that.
INADDR_ANY.

5.6. Signals

Two new signals have been added to the system which may be used in conjunction with the
interprocess communication facilities. The SIGURG signal is associated with the existence of an
“urgent condition”. The SIGIO signal is used with “interrupt driven ifo” (not presently imple-
mented). SIGURG is currently supplied a process when out of band data is present at a socket.
If multiple sockets have out of band data awaiting delivery, a select call may be used to deter-
mine those sockets with such data.

An old signal which is useful when constructing server processes is SIGCHLD. This signal is
delivered to a process when any children processes have changed state. Normally servers use
the signal to “reap” child processes after exiting. For example, the remote login server loop
shown in Figure 2 may be augmented as follows:

26 Revision E of 7 January 1984

C

Sun System Interface Manual Interprocess Commurication Primer {

int reaper();

signal(SIGCHLD, reaper);
listen(f, 10); ‘
for () {

int g, len = sizeof (from);

g = accept(f, &from, &len, 0);
if (g < 0) { |
if (errno != EINTR)
perror("rlogind: accept”);
continue;

}

#-i-nclude < wait.h>
reaper()

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

b

}

If the parent server process fails to reap its children, a large number of “zombie” processes may
be created.

Revision E of 7 January 1984 27

