Part Number 800-1115-01
Revision: E of 7th January 1984
For: Sun System Release 1.1

Programmer’s Reference Manual

for

SunCore

The Sun Workstation

Core Graphics Package

Sun Microsystems, Inc.,
2550 Garcia Avenue
Mountain View
California 94043
(415) 960-1300

Acknowledgements

The software in SunCore is an extended version of a merging of two software packages,
namely LEGS and CLICS. LEGS (Library of Engineering Graphics Software) was built at Sun
Microsystems between May 1982 and August 1982. LEGS consisted of 3-D transformations,
clipping, and region fill, plus text, line, and marker output primitives for the Sun Workstation.
CLICS (C Language Implementation of the Core System) was a 2-D implementation of the Core
written by Mike Garrett, Drew Greenholt, and others. CLICS supported dynamic segment han-
dling, error handling, and device independence, but lacked input primitives, 3-D capabilities,
textured lines, and device independent text. CLICS was released to the public via the UNIX
User's Group (the precursor of USENIX) software distribution chanrel. CLICS plus LEGS
became the SunCore graphics package at Sun Microsystems by November 1982, bringing the
package up to output level 3C, input level 2, and dimension level 3-D, with raster extensions for
polygons and bitmaps.

Copyright © 1982, 1083, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
trapsmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

(33

-

Revision History

Rev Date Comments

A 15 December 1982 | First release of this Programmer's Reference Manual.

B 1 March 1983 Many minor corrections. Added set_viewport_9 function to view-
ing operations. Added inguire_inverse_composite_matriz function
to viewing operations. Added saving and restoring segments on
disk to segmentation and naming. Added get_mousec_state func-
tion to input primitives. Added discussions on 3-D polygon shad-
ing parameters.

C 15 May 1983 Many minor corrections. Made changes to SunCore routines to

bring SunCore into strict compliance with the ACM Core
specification. The following list of items is a guide: 1- Normal-
ized device coordinates are now float values in the range 0.0 to
1.0. 2- initialize_view_surface takes different arguments — surface
names were character strings, now they are pointers to the device
drivers for the specified view surface. 3- routines for creating and
closing segments now match the Core specification. 4- the
set_color_index function is replaced by the color raster extensions
sct_line_indez, set_fill_indez, and set_tezt _indez. 5- the display list
(pseudo display file) is now a virtual memory array of 500,000
bytes. Therefore, disk space must be available for these pages
when running SunCore programs. The z-buffer is also a virtual
array, hence more disk is used. 8- set_smage_transformation_type
now replaces sef_segment_type. 7- Defined constants for the
set_char_precision argument have changed.

- i -

Revision History, continued

Rev

Date

Comments

1 November 1983

7 January 1984

— r—

Many minor corrections. Changed viewsurface names to reflect
use of new low-level device-interface routines and window system
support. Old name sunbitmap replaced by bwidd when running
program without window system, and pizwindd for use in win-
dows. Old name suncolor replaced by cgidd. Changed
initialize: view_surface — adding 2 to type argument value

suppresses clearing the screen. awasil_keyboard returns |

input_string null-terminated ‘after’ the newline character instead
of before the newline character. Bitmap Frame-Buffer RasterOps
of Appendix B replaced by pixrect operations. See Sun Window
System Manual for details. Documentation for COP routines was
confusing and has been clarified. Fixed all bugs reported to date.
Also fixed some reported capability shortcomings.

Added new types of view surfaces. View-surface names are now
structures to support multiple windows. See appendix B for
details, Low-level device-dependent routines for the color frame-
buffer have been replaced by pixrect operations. See the Sun Win-
dow System Programmer’s Reference Manual for details of pix-
rects. SunCore now supports an interface from Pascal programs.
See appendix D for details of the Pascal interface. A higher per-
formance Core library is now available for use on machines with
the hardware floating-point option. See appendix E for details.

—ijv -

7Y
s’

Table of Contents

Chapter 1 INtroduction ... e sessesesmses s smseosssssssersssnsssines

Chapter 2 Control

Chapter 3 Viewing Operations and Coordinate Transforms

Chapter 4 Segmentation and Naming ...

Chapter 5 Output Primitives ...

Chapter 68 Attributes ...t

Chapter 7 Input Primitives ... |

Chapter 8 Programming Examples ...

Appendix A Deviﬁi’ions from ACM SIGGRAPH Core ..o

Appendix B SunCore View Surfaces ...

Appendix C Using SunCore with Fortran-77 Programs ...

Appendix D Using SunCore with Pascal Programs ...

Appendix B Higher Performance SunCore Library

1-1

3-1

4-1

5-1

8-1

7-1

8-1

Table of Contents

Chapter 1 Introduction ...

1.1. Overview and Terminologyooorsimsecsmmscsenn

1.1.1. Basics of Drawing Picturesot sesesssssisressiins
1.2. Getting Started With SURCOTEcc...ocmccineccememne e
1.3. The SunCore Lint Library
1.4. The Coordinate Systems ..
1.5. Details of Using SunCore ..

1.5.1. Classification of Funetlonal Capabxlmes

1.5.2. Error RePOTtING ...o..ooooooooooeoeveevevesmmssmm st sssssssssssss st

1.5.3. Useful Constants in the usercore.h Include Flle ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.8. Further Reading

Chapter 2 Control
2.1. Initialization and Termination .. -
2.1.1. initialize_core — Initialize the SunCore Systemooccoooonrrins
2.1.2. terminate_core — Close Down the SunCore System ._..............
2.2. Initializing and Selecting View Surfaces .. -
2.2.1. initialize_view_surface — Initialize a Vlew Surface
2.2.2. terminate_view_surface — Close Down a View Surface
2.2.3. select_view_surface — Add View Surface to Selected Set
2.24. deaelect_new_purf&ce — Remove Vle_w Surface from
Selected Set ..
2.3. Batching of Updates eeeeessensmasos s eeAbb A SRR amt R SRR RS ErEA
2.3.1. begin_batch_of updates —_ Indma.te Start of a Batch of
Updates ... "
2.3.2. end batch of updat.ea — lnd:cate End of a Batch of
Updates ..o,
2.4. Frame Control .
2.4.1. new_frame — Start New Frame Actxon for Selected View
Surfacea
2.5. Error Control . ..o
2.5.1. report_most_FECEMt_BITOT ...ttt ssss s sssssssesssssens
2.5.2. print_error .
2.6. Drag Control (SunCore Extenmon)
2.6.1, set_drag .

- vii -

1-1

2-3
2-3

2-4
2-4

2-4

2-4
2-5

2-5
2-5
2-5
2-5
2-5
2-5

Chapter 3 Viewing Operations and Coordinate Transforms ... 3.1
3.1. Windows, View Volumes, and Clipping .. . 31
3.2. Default Values of Viewing Operation Parameten ... 33
3.3. Setting 3D Viewing Operation Parameters ... 34

3.3.1. set_view_reference _point. — Establish Reference Point for
Viewing .. 35
3.3.2. set v1ew_plane normal — Estabhsh Vlew Plane Normal
Vector .. " 3-5
3.3.3. set v:ew._plane dlstance — Estabhsh Vlew Plane Dlstance 3-5
3.3.4. set_projection — Select Projection Type ORI . |
3.3.5. set_view_up_2 — Establish 2D View Up Vector 38
3.3.6. set_view_up_3 — Establish 3D View Up Vector ... 36
3.3.7. set_ndc_space_2 — Establish Size of NDC Space ... 3.7
3.3.8. set_ndc_space_3 — Establish Size of NDC Space ... 3-8
3.3.9. set_window — Establish a Window in the View Plane ... 39
3.3.10. set_view_depth — Specify Planes for Depth Clipping 39
3.3.11. set_viewport_2 — Establish Limits of Two-Dimensional
Viewport . cerremenne 3=10
3.3.12. set v:ewport 3 — Estabhsh ants of Thrce-Dlmenslonal
Viewport 3-10
3.3.13. »set wewmg_parameters eereet e et aestsar SRS AR RO R AR e e rebeAstA bR b 3-11
3.4. Viewing Control . . 312
3.4.1. set_window_clipping — Enable Chppmg in the Vnew Plane ,,,,,,,, 3-12
3.4.2. set_front_plane_clipping — Enable Depth Clipping 3-12
3.4.3. set_back_plane_clipping — Enable Depth Clippingccoo.... 3-12
3.4.4. set_output_clipping (SunCore extension) ..., 3-13
3.4.5. set_coordinate_system_type . e eeene e eeent amrovemesene et SRSt reR TR en 3-13
3.4.6. set_world_coordinate_matrix_2 — Specify World or
Modelling Transform ... SRR & I
3.4.7. set_world_coordinate_matrix_3 — Specify World or
) Modelling Transform _. SEUONIBNOROE . 23§
3.4.8. map_ndc_td_world_2 — ~ Convert NDC to World
Coordinates vemesrensressssenssensnenses =14
3.4.9. map_ndc_to_ world 3 — Convert NDC t.o World
Coordinates . " . 3-14
3.4.10. map_world_ to_ “nde 2 ~ Gonvert World to NDC
COOTAIBALER | oot e sssssmesseneeessossessessss e isn 3-14
3.4.11. map_world_f to ndc 3 — Convert. World to NDC
Coordinates .. . e 3-14
3.5. Inquiring Viewing Characterlstlcs SEUOVSSROOUSIOUUURROOR- 73 1
3.5.1. 1nquu-e_ﬂew_reference_pomt TSROSO OUU P UTOTNONOOUOTRUOUORRIOORORE °N |
3.5.2. inquire_view_plame_normal ... 3-16
3.5.3. inquire_view_plane_adistanceoisnoeremnn: 3=18
3.5.4. inquire_view_deptho————— 3-16
3.5.5. InQUIre_projection ... e 3-16
3.5.6. Inquire_vIeW_UP_2 smmssssssissssssnsonss | 3= 10

- viii -

S

3.5.7. INQUIFE_VIEW_UP_3ottt esre e omeesessssensssssssnen

3-17
3.5.8. inquire_nde_sSpace_2 ... =17
3.5.9. inquire_nde_space_3 3217
3.5.10. InQuire_VIEWPOTt_2 . _....ooeeomciriorsrsesseessesmesmmesssesseseseesenssens 3217
3.5.11. InQUIre_YEEWPOTt_3 . . oo reres s 3-17
3.5.12. InQUITE_WIDAOW e es e 3-17
3.5.13. inquire_ v:ewmg_parameters 3-18
3.5.14. mqmre_world_coordmate_matnx__2 3-19
3.5.15. inquire_world_coordinate_matrix_3 3-19
3.5.16. inquire_inverse_composite_matrix (SunCore Extension) 3-19
3.5.17. inquire_viewing control_parameters ..., 3-19
Chapter 4 Segmentation and Naming ..o 4-1
4.1. Retained Segment Attributes 4-1
4.2. Retained Segment Opera.tlons » U =5
4.2.1. create_retained_segment — Create a Newr Segment __________________________ 4-2
4.2.2. close_retained_segment — Close a Segment 4-3
4.2.3. delete_retained_segment — Delete a Retained Segment . . . 4-3
4.2.4. rename_retained_segment — Rename a Retained Segment . 4-4
4.2.5. delete_all_retained_segments 4-4
4.2.6. inquire_retained_segment_surfaces 4-4
4.2.7. inquire_retained_segment_names ... 45
4.2.8. inquire_open_retained_segment ... 45
4.3. Temporary or Non-Retained Segments ... 48
4.3.1. create_temporary_segment .. 4-5
4.3.2. close_temporary_segment .. S &
4.3.3. inquire_open_temporary_t uegment. — Get. Temporary
Segment Status 4-8
4.4. Saving and Restoring Segments on Dlsk (SunCore Extensxon) ,,,,,,,,,,,, 46
4.4.1. save_segment — Save Segment on Disk File (SunCore
Extension) ... 46
4.4.2. restore segment — Rest.ore Segment from Disk File
(SunCore Extension) 4-6
Chapter 8 Output Primitives 5-1
5.1. Moving the Current Posmon - 5-9
5.1.1. move_abs_2 — Move to Absolute 2D Po.-nt:on U 55,
5.1.2. move_abs_3 — Moave to Absolute 3D Position ... 53
6.1.3. move_rel_2 — Move to Relative 2D Position _ R |
5.1.4. move_rel_3 — Move to Relative 3D Posltlon __ B-4
5.2. Position Enquiry Functions ... 5-4
5.2.1. inquire_i current.,_posnt,non 2 — Enqulre 2D Position b-4
5.2.2. inquire_t¢ current_pos:t.lon_3 — Enquire 3D Position ... 5-4
5.3. Line Routines .. " . b-5
5.3.1. line abs_2 — Descnbe Lme in Absolute 2D Coordmates ST

5.3.2. line_abs_3 — Describe Line in Absolute 3D Coordinates 5-5
5.3.3. line_rel_2 — Describe Line in Relative 2D Coordinates 5-5
5.3.4. line_rel_3 — Describe Line in Relative 3D Coordinates _............. 5-5
5.4. Polyline Routines . s s13313+ R 41 14014 AR SRR BB RSSO RS 5-0
5.4.1. polyline_abs_ 2 — Descrlbe Lme Sequence in Absolute 2D
COOTAIDALES ...t sssss s ems s et anr s easn s e 5-8
5.4.2. polyline_abs__ 3 —_ Descrlbe Llne Sequence in Absolute 3D
COOTAINALESo i arrre e v sar e ssr bbbt st sass AR R s e st eSS 5-6
5.4.3. polyline_rel_2 -— Describe Line Sequence in Relative 2D
. Coordinates .. - 8-7
5.4.4. polyline_rel_: 3 — Descnbe Lme Sequence in Relatlve 3D
Coordinates .. bt e RRR RS ER AR s e e it 57
5.5. Text Routines | . 5-7
5.5.1. text — Draw Cha.racter Strmg In World Coordmates 5-7
5.6. Text Enquiry Functions . 5-8
5.8.1. inquire_text_extent 2 . 5-8
5.0.2. inquire_text_extent_3 e e e £pAA et et ettt 5-8
5.7. Marker Functions 5.0
5.7.1. marker_abs_2 — Plot Marker at. Absolute 2D Coordmates 59
5.7.2. marker_abs_3 — Plot Marker at Absolute 3D Coordinates . 5-0
5.7.3. marker_rel_2 — Plot Marker at Relative 2D Coordinates ... 59
5.7.4. marker_rel_3 — Plot Marker at Relative 3D Coordinates _....... 5-10
5.7.5. polymarker_abs_2 -— Plot Marker Sequence at Absolute 2D
Coordinates ... wereeen =10
5.7.8. polymarker_abs_3 — Plot Marker Sequence at. Absolute 3D
COOPAINBLES ...ttt ereees s s s eens st bbb s sssssseir s sssasonnsns §-10
5.7.7. polymarker_rel_2 — Plot Marker Sequence at Relative 2D
Coordinates ... o 8=10
5.7.8. polymarker_ rel 3 — Plot Marker Sequence at Relatwe aD
COOTAINALESo e sssessssssssmsssss s sermeses s e sitrmsaaseseni §-11
5.8. Three-Dimensional Polygon Shsdlng Parameters (SunCore
Extension) ... T : = § |
5.8.1. set sha.dmg _para.meters . e B-11
5.8.2. set_light_direction — Specxfy Dnrection of nght Source e B-12
5.8.3. set_vertex_normalsoooimcnniciiionnn S 5 §
5.8.4. set_vertex_indices ..o et et st 5-12
8.8.5. set_thuffer_cut ...t seestans 5-13
5.9. Polygon Functions (SunCore Extenslon) ... 5-13
5.9.1. polygon_abs_2 — Describe Polygon in Absolute 2D
Coordinates . . 5-14
5.9.2. polygon_abs_3 — Describe Polygon in Absolute 3D
COoOTAIMALEN oot bbbt sarsssti s 5-14
5.9.3. polygon_rel_2 -— Describe Polygon in Relative 2D
Coordinates _ cervverermessensierennns D= 14
5.9.4. polygon_rel_3 — Describe Polygon in Relative 3D
Coordinates . 5-14

N

O

-

5.10. Raster Primitive Functions {SunCore Extension)

5.10.1. put_raster — Raster Output Primitive ...
5.10.2. get_raster — Read Raster from Bla.ck/White or Color
Frame Buffer ..

5.10.3. size_raster — Set. Slze“of Raster in NDC

5.10.4. allocate_raster — Allocate Space for a Raster

5.10.5. free_raster — Free Space of a Raster

5.10.0. raster_to_file — Copy a Raster to a Disk Raster File ...
5.10.7. file_to_raster — Get a Raster from a Disk File

Chapter 8 Attributes

8.1. Primitive Static Attributes

6.1.1. Using Texture for Color Attnbutes on t.he Monochrome

Display
6.1.2. define_color_indices — Asa:gn Colors to Indlces

6.1.3. set_line_index — Select a Line Color Attribute
0.1.4, set_fill_index — Select a Polygon and Raster Color ...
6.1.5. set_text_index — Select a Text and Marker Color

6.1.6. set_linewidth

6.1.7. set_linestyle

6.1.8. set_polygon_interior_style — Select Plain or Shaded
Polygons ...

0.0, st polygon. g e (4o Bir)

6.1.10. set_font .. e e e eSSt SRS et

6.1.11. set_pen — Selcct a Dence Dependent Pen

6.1.12. set_charsize ...

8.1.13. set_charspace — Define Character Spacing for Output
Primitives ...

6.1.14. set_charup 2

6.1.15. set_charup_ B ..o ————

6.1.16. set_charpath_2 ...

6.1.17. set_charpath 3 ...

6.1.18. set_charjust — Specify Text Justification (No Effect) ...

8.1.19. set_charprecision ...

6.1.20. set_marker_t symbol

6.1.21. set_pick_id .. eeeereet e een e et e eenr et b0

6.1.22, set _ra.st.erop —_ Select Raaterop to Display Memory
(SunCore Extension) ...

6.1.23. set_primitive_; a.ttnbutes — Speclfy All Prumtwe

ABTIDULES o s s
8.2. Inquiring Primitive Static Attribute Values ...

6.2.1. inquire_color_indices

6.2.2. inquire line_indexorcerccireeeine.

6.2.3. inquire_fill_index

6.2.4. inquire_text_index

—xi—

6-3
6-0
6-7
6-7
6-7
6-8
6-8

6-8
6-8
6-9
6-9
6-9

6-9
6-9

6-10
. 6-10

8-10
6-10
6-11
6-11
6-11

6-11

6.2.5. inquire_linewidth 0218
6.2.8. inquire_lNestyle ... ————————s 6-13
6.2.7. inquire_polygon_interior, style — Obtain Polygon Shading
Method ... U o B
6.2.8. inquire _polygon edge style ... 6-14
6.2.9. INGUITE_PBILcorrceurrcrusesrones eceeeostocsssmssssssresass b s s e sosssest s s sasessbssssssasas 8-14
6.2.10. inquire_font ... e B8-14
8.2.11. inquire_charsize, e B-14
6.2.12. inquire_charspace ... s 8-14
8.2.13. inquire_charup_2 6-14
8.2.14. inquire_Charup 3 ..o =18
8.2.15. inquire_charpath_2 . . 5 ¢
6.2.16. inquire_charpath_: 3 SO : = 1]
6.2.17. inquire_charjust — Obtaln Justlﬁcatmn Attnbute ,,,,,,,,,,,,,,,,,,,,,,,,,, 6-15
6.2.18. inquire_rasterop — Obtain Current Rasterop (SunCore
Extension) e B=15
6.2.19. inquire_charprecision 6-15
6.2.20. inquire_pick_id ... 6-16
6.2.21. inquire_marker_symbol 8-16
6.2.22. inquire_primitive_attributes — Obtain All Primitive
Attributes . . 6-16
6.3. Retained Segment Statnc Attrlbutes .. 8-16
6.3.1. set_image_transformation_t¥Pe ..., 6-17
6.3.2. inquire_image_transformation type . 8-17
6.3.3. inquire_segment_image_| tramformatmn type .. 6-17
6.4. Setting Retained Segment Dynamic Attributes ... 6-17
6.4.1, set_visibility ... e 818
6.4.2. set_highlighting . 8-18
6.4.3. set_detectability ... 8-18
6.4.4. set_image_translate_2 8=19
6.4.5. set_image_transformation_2 . .. 6-19
6.4.6. set_image_translate_3 019
6.4.7. set_image_transformation_3 ... 820
6.4.8. set_segment_visibility ... cerenssecmssssimenins G20
6.4.9. set_segment_highlightingo e 8-20
8.4.10. set_segment_detectability . o 8220
6.4.11. set_segment_jmage_ translate 2 . 8-21
6.4.12. set_segment_image_transformation_2 ..o 821
6.4.13. set_segment_image_translate_3 8-21
6.4.14. set_segment_image_transformation_3 _..............cmmmeeeessnnnes 6-22
6.5. Inquiring Retained Segment Dynamic Attributescrcennn. 6-22
6.5.1. inquire_visibility o 823
6.5.2. inquire_highlighting 823
6.5.3. inquire_detectability ... R % =
6.5.4. inquire_image_translate_2 . 893

- xii -

- xiil -

8.5.5. inquire_image_transformation 2 . 6-23
6.5.8. inquire_image_translate_3 ... 6-24
6.5.7. inquire_image_transformation_3 ..o, 6024
6.5.8. inquire_segment_visibility ... 0-24
6.5.9. inquire_segment_highlighting ..., 6-24
8.5.10. inquire_segment_detectability ... 6-24
6.5.11. inquire_segment_image_translate_2 ... 8228
6.5.12. inquire_segment_image_transformation_2 . 6-25
6.5.13. inquire_segment_jmage_translate_3 .. 6-25
6.5.14. inquire_segment_image_transformation_3 6-25
Chapter 7 Input Primitives 7-1
7.1. Initializing and Termmatlng Input Dev:ces 7-1
7.1.1. initialize_device — Initialize a Specific Devnce 7-2
7.1.2. terminate_device — Disable a Specific Device 7-2
7.2, Device EChOIDEo.ooooocooeericeesnrarsssssesssnmssmseseessee essssssssssss s s s sessssssssssssss 7-3
7.2.1. set_echo — Define Type of Echo for Device T O ;)
7.2.2. set_echo_group — Define Type of Echo for a Group of
Devices S £ :
7.2.3. set echo__posmon — Deﬁne Echo Reference Pomt ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 7-8
7.2.4. set_echo_surface — Define View Surface for Echo ... 7-6
7.3. Setting Input Device Parameters ., eteeeeveesoeee oo b oot abe AR e s g e 7-7
7.3.1. set_locator_2 — Initialize Locator Posltlon -7
7.3.2. set_valuator — Initialize Value and Range for Valuator
Device . 7-7
7.3.3. set keyboard —_ Inltlahze Keyboard Pa.ramet.ers 7-7
7.3.4. set_stroke — Initialize Stroke Device 7-8
7.4. Reading From Input Devices _ . 7.8
7.4.1. await_any_button — Walt for Mouse Button 7-8
7.4.2. await_pick — Wait for Pick Device .. » 7.8
7.4.3. await_keyboard — Wait for Input from the Keyboard 7-9
7.4.4. await_stroke_2 — Wait for User to Draw a Line .. S (¢
7.4.5. await_any_button_get_locator_2 — Read Locator When
Button Clicked ... 7-10
7.4.8. await, any_button _get_valuator — Read Valuator When
Button Clicked NV £3 £}
7.4.7. get_mouse_state — Low Level Mouse Support. (SunCore
extension) 7-11
7.5. Inquiring Input Sta.tus Parameters ceees et ner et b ass e e er R s s TR e 7-11
7.5.1. inquire_echo — Obtain Type of Echo for Device ... 7-11
7.5.2. inquire_echo_position — Obtain Echo Reference Point ... 7-11
7.5.3. inquire_echo_surface — Obtain View Surface for Echo 7-12
7.5.4. mqunre_locat.or 9 — Obtain Initial Locator Position . e 1419
7.5.5. inquire_valuator — Obtain Value and Range for Va.!uator
Device .. . 7-12

7.5.8. inquire_keyboard — Obtain Keyboard Parameters ... 7-12
7.5.7. inquire_stroke — Obtain Stroke Device Parameters ... 7-13

Chapter 8 Programming Examples ... RN - = |
8.1. The Sun Workstation Factory ... e 81
8.1.1. Declarations and the Main Program, 81
8.1.2. The factory Drawing Functioncomoonreieereesrs 85
8.1.3. The Workstation Drawing Functioncivcccs. 88

8.1.4. The Chip Drawing Function ... 8.8
8.1.5. The Cloud Drawing Functionconensnsens 8T

Appendix A Deviations from ACM SIGGRAPH Core ..., A=l
A.l. Unimplemented Functionseeeeeecensnneenes Al
A.2. Other Differences SOOI . T

Appendix B SunCore View Surfaces ... RO - 3 |
B.1. The vwsurf Structure ..., SSTRORIOI © 5 |
B.2. View Surface TYPESooooocccsscecsmsecssssesssessssssssseessesseseoseeoeesesssssesseeseseees B-2
B.3. Choosing a View Surface Type within an Application Program B-3

B.3.1. Using SHell Variables to Determine the Environment ... B-3
B.3.2. The get_view_surface Function ..o . B-4
B.4. Specifying a View Surface for Initialization ... B-9
B.4.1. View Surface Specification for Raw Devices ..., B-10
B.4.2. View Surface Specification for Window Devices _ ... B-11
B.5. Input Considerations . SRRSO & =3 b
B.6. Notes on Window Devxce Vlew Surfaces RSSO - 5 b

Appendix C Using SunCore with Fortran-77 Programs ... C-1
C.1. Programming Tips .. VPRI & |
C.2. Example Program . SRR &5
C.3. Correspondence Bet.ween C Names and FORTRAN Nameﬂ C-5
C.4. FORTRAN Interfaces to SunCore . VORI &1 |1

Appendix D Using SunCore with Pascal Programs D1
D.1. Programming Requirements SRR) % |
D.2. Limitations of SunCore-Pascal Interface ... D-2

D.2.1. Routines Using View Surface Names @@ b-2
D.2.2. Routines Using Rasters and Colormaps ... D-3
D.3. Example Progra.m D-3
D.4. Correspondence Between C Names and Pa.scal Names SR b XX
D.5. Declarations for SunCore-Pascal Interface ..o .. D-12
D.5.1. Type Declarations ..., D12
D.5.2. Function Declarations ..., D=15

Appendix E Higher Performance SunCore Library ... E.1

- Xiv -

List of Tables

Table 1-1 Output Capabilities .. s s 12
Table 1-2 Input Capabilities . R I
Table 1-3 Dimension Levels Supported R £
Table 3-1 Default Values of Viewing Operatlon Parameters 3-3
Table 3-2 Default Values of Viewing Control Parameters 3.3
Table 3-3 World Coordinate Matrix Parameters 33
Table 3-4 Image Transformation Parameters ... eesssoones 3-4
Table 5-1 Useful PHONG Parameters . . . i, . 512
Table 8-1 Structure of a Fill-Index Value ..o, B4
Table 6-2 Texture Selection Values ..o 8o
Table 6-3 Useful Texture Selection Values ... 68
Table 7-1 Echoing for Pick Device BSOS £
Table 7-2 Echoing for Keyboard Device ... T3
Table 7-3 Echoing for Button Device ... 13
Table 7-4 Echoing for Stroke Device _.......ooccoeeeeeeeeeeoeoss Tk
Table 7-5 Echoing for Locator Device ... T4
Table 7-6 Echoing for Valuator Dewce SO (.
Table A-1 Unimplemented Primitive Attrlbute Functlona SO S |
Table A-2 Unimplemented Synchronous Input Functions ..., A-1
Table A-3 Unimplemented Asynchronous Input Funct.iona _____________________________________ A-1
Table A-4 Unimplemented Control Functions ..., A-2
Table A-6 Unimplemented Escape Functions ... A-2

List of Figures

Figure 3-1 Components of Viewing System

Figure 5-1 Flow Diagram of Qutput Primitive Processing

- xvil —

Chapter 1

Introduction

Welcome to the SunCore graphics package and its Programmer's Reference Manual. Sun
Microsystems offers a comprehensive package of engineering graphics software providing the
underlying support for interactive graphics applications programs. The SunCore software is an
implementation of the ACM Core graphics specification’, plus extensions. SunCore is imple-
mented to level 3C of the ACM Core specification for output primitives, and to level 2 of the
ACM Core specification for input primitives.

Extensions to the Core include textured polygon fill algorithms, raster primitives, rasterop attri-
butes, shaded surface polygon rendering, and hidden surface elimination.

This graphics package supports both the high resolution monochrome bitmap displays and the
Sun color displays. Device-dependent routines support all these displays under SunCore.

NOTE that this manual is a reference manual for the SunCore graphics package. It is not a
tutorial for the programmer without knowledge of graphics principles. It assumes that the
reader is familiar with the concepts of graphics, and has some familiarity with the ACM Core
specification. Those who are new to graphics should consult one of the publications listed in
Jurther reading at the end of this chapter.

Where to Start

If you are an applications programmer who is familiar with the ACM Core specification, but are
new to SunCore, it is recommended that you read appendix A in order to become familiar
with the arcas where SunCore deviates from and provides extensions to the ACM Core
specification. i

Note that SunCore supports the ACM Core output level 3C, that is, dynamic output is sup-
ported, including two and three-dimensional translation, scaling, and rotation. SunCore sup-
ports the ACM Core input level 2, that is, synchronous input, including the PICK device. Sun-
Core supports dimension level 2, that is, three-dimensional operations.

1.1. Overview and Terminology

The objective of a graphics application program is drawing pictures and text on some display
device, be it an ephemeral display device such as TV monitor or terminal, or a hard copy device
such as a plotter or printer.

—
As defined in Computer Graphics, the ACM SIGGRAPH Quarterly, Volume 13, #3, August 1979.

Revision E of 7 January 1084 1-1

Introduction SunCore Reference Manual

There is a need for a device-independent way of representing graphics images in the computer,
and having a collection of software routines map the device-independent representations into
the physical representations that the output device can handle. SunCore is an implementation
of one of the “standard” packages of graphics software that have appeared recently. This sec-
tion introduces some of the terminology of SunCore. This terminology is used throughout this
manual. It is somewhat easier to describe the terminology from the point of view of the physi-
cal device working backwards to the application program, rather than starting at the software
and working out to the device.

There are two quite distinct points of view for looking at a system running a graphics applica-
tion:
o The physical device (monitor, printer, and so on) on which the final pictures appear, and

» The internal world which the programmer uses to describe the pictures, and which (because of
SunCore) is independent of the physical device.

A view surface is a physical surface on which the final picture appears.
“There are two interdependent sets of coordinate systems in use in the graphics package:

World Coordinates
is a coordinate system which is device-independent. The applications programmer con-

structs all graphical objects in terms of world coordinates.

Normalized Device Coordinates
(often abbreviated to NDC) is a fixed coordinate system which is independent of physical
output devices. World coordinates are transformed to normalized device coordinates for
clipping and other operations. Each physical output device driver then transforms from
normalized device coordinates to the physical device coordinates for each view surface.

A viewport is a region of NDC space which the programmer selects and on which the pictures
will appear.

It is the job of the viewing transformations to perform the correct mapping between world coor
dinates and normalized device coordinates.

A window is a region defined in world coordinates within which the images that the application
program defines appear. The selection of the coordinates for the window are arbitrary — the
graphics package maps the window into the viewport.

In two dimensions, the transformation from the window to the viewport is a relatively straight-
forward process. In three dimensions, another level of complexity is introduced with the notion
of a view plane which is positioned arbitrarily in world coordinates.

An output primitive, or often just a primstive, is a part of a picture {(such as a line or a character
string). The appearance of primitives (such as solid or dotted lines) is determined by primitive
attributes. A primitive atiribute is a general characteristic of an output primitive, and affects the
appearance of that primitive. Examples of primitive attributes are color, linestyle, and
linewidth.

Each output primitive may be assigned a name, called the pick-¢d, which is used to identify that
primijtive when an input. operation (such as pointing at the primitive with the mouse) is applied.
The Current Position is a SunCore system value that defines the current location for drawing.
At startup time, the Current Position is set to the origin of the world coordinate system. Func-
tions that create output primitives (move, line, and so on) can alter the Current Position.

Output primitives are collected together in segments. A segment defines an image which is a
part of the picture on a view surface.

1-2 Revision E of 7 January 1984

-

SunCore Reference Manual Introduction

Segments are divided into two classes, namely: temporary and retained. A retained segment has
a name, and can have segment attributes associated with it. A temporary segment is nameless,
and furthermore, the image that a temporary segment defines only remains visible as long as
information is only being added to the view surface. As soon as a new frame action (one which
repaints view surface) occurs, the temporary segment's image disappears from the view surface.

Each retained segment has one static attribute, its image transformation type. The value of
this attribute can be none, tranaslatable, or transformable. Translatable and transformable
retained segments can be translated or transformed in either two or three dimensions.

Segments also have dynamic aitributes. The visibility and highlighting attributes control the
appearance of the image. The detectability attribute determines if the segment can be detected
by the pick device. Dynamic attributes for translatable and transformable segments include the
segment's image transformation. Depending on the image transformation type, the image
transformation may contain translation, rotation, and scaling components.

A viewing operation is an operation that maps positions in world coordinates to positions in nor-
malized device coordinates. The viewing operation also determines the portion of the world
coordinate space that is visible if window clipping or depth clipping is enabled.

The applications program can obtain user interaction by means of input primitives, which pro-
vide facilities for pointing at objects, entering data from the keyboard, and causing events.

1.1.1. Basics of Drawing Pictures

The general sequence of actions that an application program goes through to create a picture on
a device is this:

1. Instialize SunCore.
2, Initialize o view surface upon which the picture will be drawn.
3. Select a view surface upon which the picture will be drawn.

4. Specify the viewing operation parameters (sizes of windows in world coordinates, size of
viewport, and so on).

5. Set an image transformation type.

6. Create segment. The created segment becomes the currently open segment until it is
" closed. .

7. Set attributes for the segment, if required.
8. Draw objects in the segment using output primitives.
9. Cloase the segment.

10. Repeat steps 4 through 9 as often as required, for as many segments as needed to build the
picture.

11. Apply image transformations (translation, scaling, and rotation) to a given segment, to
achieve the required picture on the display device.

12. Deaelect the view surface.
13. Terminate SunCore.

In providing the application programmer with the capébilities needed to draw pictures, Sun-
Core breaks the interface into six functional areas:

Control ,
directs the major actions of SunCore, such as startup, shutdown, selection and deselection

Revision E of 7 January 1984 1-3

Introduction SunCore Reference Manual

of view surfaces, and so on.

Segments
control the creation, closing, and removal of segments. Segments are then used to collect

sets of:

Output Functions
also known as output primitives, which describe the drawing of lines and line sequences,

shaded regions, text, and markers.

Attributes
control the way in which output primitives actually appear in the final image (solid or dot-
ted lines, for instance).

Tranafogmations
control the major appearances of pictures, such as orientation (rotation), scaling, and trans-
latiop. Transformations also control projection type and clipping.

Input Functions
handle the interaction with the user via the keyboard and the mouse.

1.2. Getting Started With SunCore

This section .provides a very simple example of a SunCore application program. The program
draws a martini glass on the screen. This program demonstrates the use of:

e Creating a temporary segment (sce Segmentation and Naming),
e Moving to an absolute position (see Oulput Primitives),

e Using the polyline drawing routines (see Output Primitives),

¢ Using the absolute line drawing routines (see Output Primitives),

The annotated code of glass.c is shown below, followed by the cc compiler call used to create
the executable program.

The firat thing in the program is an include statement to get the definitions of conatanta:
ffinclude <usercore.h>

Then there are the definitions of the relative points for the polyline function to draw the glase:

static float glassdx[} = {-10.0,9.0,0.0,-14.0,30.0,-14.0,0.0,9.0,~10.0};
static float glassdy[] = {0.0,1.0,19.0,15.0,0.0,-15.0,-19.0,~1.0,0.0};
int bwldd(); /% Device driver name for Sun-1 Monochrome %/

© |+ display — see appendiz B for details */
struct vwsurf vwsurf = DEFAULT_VWSURF(bw1dd);

Then comes the main program with some initialization code:

1-4 ' Revision E of 7 January 1984

O

SunCore Reference Manual Introduction

main()

[* Firat initialize the SunCore Package */
if (initialize_core(BASIC, NOINPUT, TWOD))
exit(1);
/% Elements of vwsurf may be set up here *f
/% See Appendiz B for details */

[* Then initialize the monochrome display */
if (initialize_view_surface(&vwsurf, FALSE))
exit(2);
/* Then we must select that view surface */
if (select_view_surface(&vwsurf))
exit(3);
/* Then define the limits of the viewport */
set_viewport_2(0.125, 0.875, 0.125, 0.75);
/* Then sct a convenient window */
set_window(-50.0, 50.0, -10.0, 80.0); _
_J* Create a temporary segment */
create_temporary_segment();

Here is the actual code that draws the picture:

/* Now move to our origin point */
move_abs_2(0.0, 0.0);

J* And draw the outline of the glass */
polyline_rel_2(glassdx, glassdy, 9);

/* Then move to draw the liquid surface */
move_rel_2(-12.0, 33.0);

/* Draw the liquid surface */
line_rel_2(24.0, 0.0);

Finally, we closc things and ezit the program:

[* Now close the segment */

close_temporary_segment();
. [% Wait for 10 scconds */
sleep(10);
[+ Before closing the view surface 7
deselect_view_surface(&vwaurf);
/* and closing down SunCore */
terminate_core();

}

Now we compile this prograin using the C compiler:

% ce glass.c -lcore —lsunwindow -—lpixrect —Im

In the above example, the options:
~lcore selects the SunCore run-time library from [uar/lib/libcore.a,

Revision E of 7 January 1984 1-5

Introduction SunCore Reference Manual

—lsunwindow selects the window system library,
—lpixrect selects the pixrect library,
—lm selects the correct math library.

When the compilation is complete, the final program is in the file a.out and may be run by typ-
ing its name.

This is a very simple example, using the bare minimum of SunCore's capabilities. There are
many improvements that could be made, such as adding an olive on a cocktail stick and so on.
The Programming Ezampies section of this manual will cover other arcas of the graphics pack-
age.

1.3. The SunCore Lint Library

SunCore provides a lint iibrary which provides type checking beyond the capabilities of the C
compiler. For example, you could use the SunCore lint library to check the martini-glass
drawing program with command like this:

% lint glass.c -lsuncore

but note that the error messages that lint generates are mostly warnings, and may not neces-
sarily have any effect on the operation of the program. For a detailed explanation of lint, see
the lint manual in the Programming Tools manual.

1.4. The Coordinate Systems

Applications programs which draw pictures using SunCore communicate in world coordinates.
World coordinates are a device-independent, two or three-dimensional, Cartesian coordinate sys-
tem for describing objects. Output primitives are given to SunCore routines in World Coordi-
nates (WC). However, if the world_coordinate matrix is used, SunCore concatenates this
matrix with the view transform so that output primitives are first transformed by this matrix
from ‘model’ or ‘object’ coordinates to world coordinates. This means that the user can supply
primitives in ‘model’ coordinates, each model or object being moved into world coordinates
according to the current world_coordinate_mairiz.

In three dimensions, the user may choose to use right-handed or left-handed world coordinates.
In a right-handed system, if (for example) the z coordinate increases to the right and the y coor-
dinate increases upwards, then the z coordinate increases towards the viewer. In the
corresponding left-handed system, the z coordinate increases to the right, the y coordinate
increases upwards, and the z coordinate increases away from the viewer.

The composite viewing transform is formed from the world_coordinate_matriz and the viewing
parameters. SunCore routines transform the output primitives from world (or model) coordi-
nates to Normalized Device Coordinates (NDC), which are a left-hand coordinate system
bounded as follows:

00<294:<10
Since current Sun view surfaces have four-to-three aspect ratios, the default normalized device
coordinate space has the y extent bounded to 0.0 < y < 0.75. Primitives are stored in the
Display List (also called the Pseudo Display File or PDF), in Normalized Device Coordinates.

The user-specified window in world coordinates is mapped (and optionally clipped) to the user-
specified viewport within normalized device coordinate space. The entire normalized device

1-8 Revision E of 7 January 1984

Surlore Reference Manual Introduction

coordinate space is then mapped to the selected physical view surfaces.

1.5. Details of Using SunCore

This section describes the details of creating applications programs to run with SunCore.

1.5.1. Classification of Functional Capabilities

The ACM Core specification defines levels of functional capability for a graphics package which
implements the specification. The table below shows the classification. Terms such as BUF-
FERED and DYNAMICA are defined as constants in the file usercore.h, discussed below.

Table 1-1: Output Capabilities

Output Capabilities
Functional Capability = BASIC BUFFERED DYNAMICA DYNAMICB DYNAMICC
Qutput Primitives and es es es es es
Primitive Attributes. y y y y y
Viewing yes yes yes yes yes
Control yes yes ¥yes yes yes
Temporary Segments yes yes yes yes yes
Retained Segments no yes yes yes yes
Highlighting Segment
Attribute no yes yes yes yes
Visibility Segment o es es es es
Attribute ¥ 4 4 ¥
Image Transformation o 10 es es es
Segment Attribute ¥y ¥ Y
Detectability Segment no es” es” es* *
Attribute ¥ ¥ ¥ yes

* This feature is only available if input levels SYNCHRONOUS or COMPLETE are supported.
Note that SunCore supports all output levels up to DYNAMICC,

Revision E of 7 January 1984 1-7

SunCore Reference Manual

Introduction
Table 1-2: Input Capabilities
Input Capabilitics
Functional Capability NOINPUT SYNCHRONOUS COMPLETE
Device Initialization and Termination no yes yes
Synchronous Interaction Functions no yes yes
Echo Control no yes yes
Explicit Enable or Disable no no yes
Event Queue Management no no yes
Sampled Device Functions no no yes
Associations no no yes

Note that SunCore supports up to the SYNOCHRONOUS input level.

Table 1-3: Dimension Levels Supported

Dimension Levels Supported
Functional Capability TWOD THREED

Two Dimensional Primitives, es e
Attributes, and Viewing. y y

Three Dimensional Primitives,

Attributes, and Viewing. no yes

Note that SunCore supports the THREED dimension level.

1.5.2. Error Reporting

SunCore performs consistency checks on arguments passed to its various routines. Any time
an error is detected, the name of the routine which raised the error condition and the text of

the error message are printed on the standard error (stderr).

All SunCore interfaces are functions that return a value. If a function completes successfully,
it returns the value zero. If the function raises any error conditions, it returns a non-zero value.
SunCore always identifies the name of the routine which raised the error condition. The ACM
Core specification defines specific error numbers. These do not correspond to SunCore's error

numbers in the current release.

1-8

Revision E of 7 January 1984

@

O

=}

SunCore Reference Manual Introduction

1.56.3. Useful Constants in the usercore.h Include File

The file uzercore.h defines a collection of constants which the application proegrammer should
use in lien of hardwired constants in code. The constants are described here (but their values
are not stated).

Useful Constants:

TRUE A universal value denoting the truth value.

FALSE A universal value denoting the false value.

MAXVSURF The maximum number of view surfaces which may be initialized at any one time.

Initiglization Constants. These constants describe the levels of the SunCore facilities which
the application program will use. These constants should be used when calling the
snitialize_core function.

BASIO Denotes the basic output level. See the tables above for the classifications.
BUFFERED Denotes the buffered output level. See the tables above for the classifications.

DYNAMICA Indicates that the application package wishes to use two-dimensional translation
' facilities. See the tables above for the classifications.

DYNAMICB Indicates that the application package wishes to use two-dimensional scaling, rota-
tion, and translation facilities. See the tables above for the classifications.

DYNAMICC Indicates that the application package wishes to use three-dimensional scaling, rota-
' tion, and translation facilities. See the tables above for the classifications.

NOINPUT Indicates that this application package will not use any input facilities. See the
tables above for the classifications.

SYNCHRONOQUS -
Indicates that this application program will use synchronous input facilities. See the
tables above for the classifications.

COMPLETE SunCore does not support this input level. See the tables above for the
classifications.

TWOD Indicates that the application package will only use two-dimensional functions. See
the tables above for the classifications.

THREED Indicates that the application package will use both two-dimensional and three-
dimensional functions. See the tables above for the classifications.

Character Quality Constants. These constants should be used when calling the set_charprecision
function. o

STRING Denotes low quality text.

CHARACTER
Denotes medium quality text.

Transform Constants. These constants should be used when calling the sei_projection and
set_coordinate_system_type functions.

PARALLEL Value to indicate parallel projection.

PERSPECTIVE
Value to indicate perspective projection,

Revision E of 7 January 1984 1-9
| .

b
I

Introduction SunCore Reference Manual

RIGHT Value to indicate right-handed world coordinate system.
LEFT Value to indicate left-handed world coordinate system.

Image Transformation Type Constants. These constants are used when calling the
sct_image_transformation_type and set_segment_image_transformation_type functions.

NONE Indicates a retained segment which cannot be transformed.
XLATEZ2 Indicates a retained segment which may be translated in two dimensions.

XFORM2 Indicates a retained segment which may be fully translated, scaled, and rotated, in
: two dimensions.

XLATES Indicates a retained segment which may be translated in three dimensions.

XFORM3 Indicates a retained segment which may be fully translated, scaled, and rotated, in
three dimensions.

Line Style Constants. These constants should be used when calling the sef_lineatyle attribute
for output primitives.

SOLID Solid line.
DOTTED Dotted line.
DASHED Daphed line.

DOTDASHED
Dashed and dotted line.

Tezt Font Selection Constants. These constants should be used when calling set_font.
ROMAN For character precision, a Roman font; for siring precision, a raster font.

GREEK For character precision, a Greek font; for string precision, the default raster font.
SCRIPT For character precision, a Script font; for string precision, a small raster font.

OLDENGLISH
For character precision, an Old English font; for string precision, equivalent to
ROMAN.

STICK For character precision, a stick font; for 2tring precision, equivalent to GREEK.

SYMBOLS For character precision, a set of symbols; for string precision, equivalent to SCRIPT.

Input Device Constants. These constants should be used when calling the snitialize_device and
terminate_device functions and other input functions.

PICK The Pick device. The mouse in SunCore.

KEYBOARD
The Keyboard device.

STROKE The freehand stroke device., The mouse in SunCore.
LOCATOR The Locator device. The mouse in SunCore.

VALUATOR .
The Valuator device. The mouse in SunCore.

BUTTON The Button device. The mouse in SunCore.

1-10 . Revision E of 7 January 1984

-

o

O

-

SunCore Reference Manual Introduction

Rasterop Constants. These constants should be used when calling the set_rasterop function.

NORMAL Indicates normal copy mode.
XORROP Indicates bitwise exclusive or of source and destination.
ORROP Indicates bitwise or of source and destination.

Polygon Rendering Style Constants. These constants should be used when calling the
set_polygon_interior_style and set_shading parameters functions.

PLAIN Indicates area fill with the color indicated by the fill indez primitive attribute.

SHADED Indicates shading according to the current shading parameters (for 3-D polygons
only).

CONSTANT Indicates constant user-specified shade.
GOURAUD Indicates Gouraud shading.
PHONG Indicates Phong shading.

1.6. Further Reading

J. D. Foley and A. Van Dam:
Fundamentals of Interactive Computer Graphics, Addison-Wesley, 1982.

W. M. Newman and R. F. Sproull:
Principles of Interactive Computer Graphics (2nd edition), McGraw-Hill, 1979.
ACM SIGGRAPH:
Conference Proceedings.
IEEE Computer Graphics and Applications Magazine
Computer Graphics ACM SIGGRAPH Quarterly, Vol 13, #3, August 1979
Status Report of the Graphics Standards Planning Committee.
ACM Computing Surveys, Vol 10, #4, Dec 1978
Special Issue on Graphic Standards.

Computer Graphics World, Vol 5, #8, August 1982
The SIGGRAPH Core System Today.

Revision E of 7 January 1984 1-11

Chapter 2

Control

The SunCore graphics package provides several functions for controlling the system. These
functions are discussed here, and the sections and subsections which follow describe the indivi-
dual functions in detail.

Initialization and termination
of SunCore provide for the initialization of the package to a specific and predetermined
state, and for closing it down when the applications program has finished using the graphics
package.

View surface control
provides for the initialization, termination, and selection of view surfaces. A view surface
must be initialized before it can be used. A view surface should be terminated when the
applications package has finished with it. Functions are provided to add view surfaces to
the set of selected view surfaces, and to remove view surfaces from that set. View surface
names in SunCore are structures. The vwsurf structure is declared in usercore.h and is
described in appendix B. SunCore supports several view surfaces to date; see appendix B
for details of view surfaces.

Picture change control
provides for the “batchiing” of changes to dynamic segment attributes so that the applica-
tion program may force the simultaneous occurrence of a group of cha.nges

Frame control
denotes the function called new frame, which clears the view surface and redraws all seg-
ments except temporary segments.

Error handling
is that part of SunCore concerned with reporting errors to the application program.

2.1. Initialization and Termination

There are two functions provided for initializing and terminating SunCore. The application
program should call initialize_core before making any other calls upon the graphics system.
terminate_core should be the last call to SunCore before the application program itself is

finished.

Revision E of 7 January 1984 2-1

Ceontrol SunCore Reference Manual

2.1.1. initialize_core — Initialize the SunCore System

initialize_core initializes the Core graphics package to a known state.

initialize_core{output_level, input_level, dimension)
int output_level; /» SunCore Level for Output */
/+ BASIC, BUFFERED, DYNAMICA 3/
/* DYNAMICB, DYNAMICC #/
int input_level; /* SunCore Level for Input */
/% NOINPUT, SYNCHRONOUS, COMPLETE +/
int dimension; /*+ Number of Dimensions Required */
[+ TWOD, THREED #/

SunCore supports up to output level DYNAMICC of the ACM Core specification, up to input
level SYNCHRONOUS of the ACM Core, and dimension level THREED of the ACM Core.

Errors returned from initsalize_core:
¢ The SunCore system is already initialized.
¢ The specified output level cannot be supported.
¢ The specified input level cannot be supported.
o The specified dimension cannot be supporied.

2.1.2. terminate_core — Close Down the SunCore System

terminate_core closes down the Core graphics package.

terminate_core()

2.2. Initializing and Selecting View Surfaces

View surface control provides for the initialization, termination, and selection of view surfaces.
A view surface must be initialized before it can be used. A view surface should be terminated
when the applications package has finished with it. Examples of view surfaces are the Sun color
display and the Sun monochrome bitmap display. Functions provided in this category are:
initialize_view_surface

performs the functions required to gain access to a specified view surface,
terminate_view_surface

terminates access to the specified view surface.

select_view_surface
adds the specified view surface to the set of selected view surfaces for output,

deselect_view surface
removes the specified view surface from the set of selected view surfaces.

inguire_selected_surfaces
determines which view surfaces are currently selected (not yet implemented).

9.9 Revision E of 7 January 1984

SunCore Reference Manual Control

2.2.1. initialize_view_surface — Initialize a View Surface

initialize_view_surface initializes the Core package for a specific view surface.

initialize_view_surface(surface_name, type)
struct vwsurf{ *surface_name; /* See appendix B #*/
int type; /* TRUE for hidden surface removal */
/* FALSE otherwise */

The surface_name argument to the function specifies a physical view surface. View surface
names in SunCore are structures. The vwsurf structure is defined in the usercore.h header file.
Only color devices support hidden-surface removal.

Errors returned from snitialize_view _surface:
e The view surface specified by surface_name is already initialized.
e The view surface specified by surface_name does not have any output device associated
with it.
¢ No other view surfaces can be initialized at this time.
o The specified view surface does not support hidden surface removal.

2.2.2. terminate_view_surface — Close Down a View Surface

terminate_view_surface closes down the specified view surface.

terminate_view_surface(surface_name)
struct vwsurf{ *surface_name; /* See appendix B */

_Errors returned from terminate_view_surface:

e The view surface specified by surface_name is not initialized.

2.2.3. selec‘:_view_surface — Add View Surface to Selected Set

adcct_vfciv__wrfacé adds a specified view surface to the list of selected view surfaces.

select_view_surface(surface_name)
struct vwsurfl *surface_name; /* See appendix B */

A segment is only drawn on those view surfaces marked as “selected” at the time that the seg-
ment is created.

Errors returned from select_view_aurface:
¢ A segment is open.
o The view surface specified by surface_name is not initialized.
o The view surface specified by surface_name is already selected.
e The view surface specified by surface_name cannot be selected.

Revision E of 7 January 1984 9.3

Control SunCore Reference Manual

Selected Set

deselect_view_surface removes a specified view surface from the list of selected view surfaces.

2.2.4. deselect_view_surface — Remove View Surface from @ ;
|
|

deselect_view_surface{surface_name)
struct vwsurf ssurface_name; /* See appendix B #/

Segments created after deselect_view_surface is called will not be drawn on the deselected view
surface,

Errors returned from deselect_view_surface:
e A segment is open.
e The view surface specified by surface_name is not selected.

2.3. Batching of Updates

SunCore provides the facility for the application program to indicate that a sequence of
updates is being started, and the graphics package stacks up these picture changes uatil an
end_batch_of updates function call indicates that the end of the sequence of updates has
occurred. Picture changes or ‘‘updates” include dynamic segment attributes such as visibility,
detectability, translate, rotate, and scale.

2.3.1. begin_batch_of_updates — Indicate Start of a Batch of @
Updates

begin_batch_of updates indicates the beginning of a batch of updates to the picture. All
modifications to dynamic attributes of segments between calls to begin_batch_of updates and
end_batch_of updates are saved up and executed simultaneously.

begin_batch_of updates()

Errors returned from begin_batch_of_updates:

e There has been no end_batch_of updates function call since the last
begin_batch_of_updates function call.

2.3.2. end_batch_of updates — Indicate End of a Batch of |
Updates :

end_batch_of_updates indicates the end of a batch of updates. The batch of changes to dynamic
attributes of segments is executed,

end_batch_of updates()

Errors returned from end_batch_of _updates:
¢ There has been no corresponding begin_batch_of_updates function call.

9.4 Revision E of 7 January 1984 ’

SunCore Reference Manual _ Control

2.4. Frame Control

2.4.1. new_frame — Start New Frame Action for Selected View
Surfaces

new_frame starts new frame action for currently selected view surfaces. The view surface is
cleared, and all visible retained segments are redrawn.

new_frame()

Errors returned from new_frame:
¢ The set of currently selected view surfaces is empty.

2.5. Error Control

2.5.1. report_most_recent_error

report_most_recent_error obtains a copy of the most recently detected error number.

report_most_recent_error{error_number)
int *error_number;

A value of tero returned to error_number indicates that there has been no error since the last
call on report_most_recent_error.

2.5.2. print_error

To print the message associated with this error_number on the standard error file (stderr), use
the function call:

print_error(" Your message”, error_number);
int error_number;

where ““Your measage” is any character string that the user wants printed. The error message
is printed on the line following *“Your message™.

2.8. Drag Control (SunCore Extension)

2.6.1. set_drag

An additional function, sef_drag, writes all output to the bitmap or color framebuffer with
exclusive or'ing.

Revision E% of 7 January 1984 2.5

Control SunCore Reference Manual

set_drag{mode)
int mode; [+ FALSE = uses the rasterop */
/* set by set_rasterop +/
/* TRUE = enable XOR'ing */

If dragging is enabled, all output to the device drivers is done with exclusive OR’s to the data
in the displays. This feature makes dragging more convenient. For example, if you want to
drag segment A across segment B, leaving segment B’s image unaffected, do the following
sequence of operations:

e Set A visibility off,

o Set dragging on,

o Set A visibility on,

s Drag segment A to the desired location,
e Set A visibility off,

Set dragging off;

* Set A visibility on.

See also; set_rasterop,

2-6 Revision E of 7 January 1984

O

-

Chapter 3

Viewing Operations and Coordinate Transforms

Specifying a viewing operation may be thought of as specifying the arbitrary orientation of a
synthetic camera. The resulting view of the object (the snapshot) can appear on one or more
view surfaces. The viewing operations are provided for two reasons:

1. To specify how much of the world coordinate space should be visible, and

2. To specify a mathematical transformation between the world coordinate system and the nor-
malized device coordinate system.

A viewing operation is specified by a view volume that defines the portion of world coordinate
space which is to be projected onto a view plane (also called a projection plane), and a rectangu-
lar viewport in normalized device coordinate space to which the projected image will be
mapped. The viewing operation is sufficiently general as to support both parallel and perspec-
tive projections. The parallel projection includes the orthographic, axonometric, isometric,
cavalier, and cabinet projections, as special cases.

Once the camera model is specified via calls to set_view _reference_point, set_view_plane_normal,
and so on, a 4 X 4 view transform matrix is constructed. Then the process of generating an
image on a view surface is:

1. View-transforming the output primitives (using the view transform preceded by any model-
ling transform the user has specified) to normalized device coordinates.

Optional clipping to the window.
Scale the output to map the window to the v1ewport

Optional image transformation as specified by dynamic segment attributes.
Optional clipping to the viewport.
Convert to device coordinates and draw the picture.

® o o

3.1. Windows, View Volumes, and Clipping

The window is the bounded portion of the view plane eontaining projected objects which will
appear within the viewport on the view surface. The view surface corresponds to the physical
device on which the picture is drawn. The window is the logical region, specified in world coor-
dinates, in which the image appears.

Specifying a window involves defining a coordinate system for the view plane. The coordinate
system for the view plane is called the UVW coordinate system, to distinguish it from the world
coordinate system and the normalized device coordinate system, both of which are XYZ coordi-
nate systems.

Revision E of 7 January 1984 31

Viewing Operations and Coordinate Transforms SunCore Reference Manual

The origin of the UVW coordinate system is at the point where the line through the view refer-
ence point parallel to the view plane normal vector intersects the view plane. In the default
casge, the view plane distance is zero, and so the view reference point lies in the view plane and
is the origin of the UVW coordinate system.

The direction of the V axis is determined from the view up vector. The view up vector is
specified in world coordinates relative to the view reference point.

The positive U axis of the UVW coordinate system is 90 degrees clockwise from the positive V
axis, as viewed in the direction of the view plane normal vector. The positive U and V axes,
together with the view plane normal vector, form a left handed coordinate system. The window
is specified in terms of maximum and minimum u and v values (see the set_window function).

The diagram below shows the various components of the viewing system.

Front Clipping Plane

View Plane

View Plane Distance

Front Distance View Up Veclor

N\

Back Clipping Plane

\

View Plane Normal

Cenler Of Projection Back Distance

View Reference Point

Figure 3-1: Components of Viewing System

3-2 Revision E of 7 January 1984

-

-

©

SunCore Reference Manual Viewing Operations and Coordinate Transforms

3.2. Default Values of Viewing Operation Parameters

Table 3-1: Default Values of Viewing Operation Parameters

Viewing Operation Parameters
Parameter ' : Default Value
View Reference l"oi-_t-u_:‘== (0, 0, 0)
View Plane Normal (0, 0, -1)
View Distance 0
Front Distance 0
Back Distance 1 .
Type of Projection Parallel (0, 0, 1) (perpendicular to the UV plane)
Window (0, 1,0, 0.75)
View Up Vector (0,1,0)
Normalized Device 00<7:<10
Coordinate Space 00< y<07
Viewport (0.0, 1.0, 0.0, 0.75, 0.0, 1.0)

Table 3-2: Default Values of Viewing Control Parameters

Viewing Control Parameters
" Parameter Default Value
m

Window Clipping On
Output Clipping of
Front Plane Clipping off
Back Plane Clipping off
World Coordinate System _ Right handed

Revision E of 7 January 1934 3-3
3

Viewing Operations and Coordinate Transforms SunCore Reference Manual

Table 3-3: World Coordinate Matrix Parameters C; i

World Coordinate Matriz Parameters (Modelling Transform)

Parameter Default Value
1000
. . 0100 . oy
World Coordinate Matrix 0010 (identity)
0001

Table 3-4: Image Transformation Parameters

Image Transformation Parameters
Parameter Default Value
W
$X, SY, §Z 1, 1, 1 {no scaling)
AX, AY, AZ 0, 0, 0 {no rotation)
TX, TY, TZ 0, 0, 0 (no translation)
3.3. Setting 3D Viewing Operation Parameters - O

SunCore provides a number of functions for setting parameters of the viewing operations.
There are a number of separate calls available for setting individual parameters, then there is a
composite set_viewsng_parameters function which sets all the viewing parameters in one fell
swoop. The individual calls provided are summarized here and described in detail in the subsec-
tions following.

set_view_reference_point
Sets the view reference point in world coordinates.
set_view_plane_normal
Defines a vector which determines the view plane, relative to the view reference point.
cet_vfew‘_dictanécl
Defines the view plane distance from the view reference point along the view plane normal
vector,
aet_view_dcpth
Defines the distance from the view reference point to the ‘front’ clipping plane (also known
as the ‘hither’ or ‘near’ clipping plane) and the distance from the view reference point to the
‘back’ clipping plane (also known as the ‘yon’ or ‘far’ clipping plane).
set_projecfion
Selectl' perspective or parallel projection, and defines the center of projection (for PERSPEC-
TIVE projection) or direction of projection (for PARALLEL projection).

Establish the view up direction in the view plane for two or three-dimensional viewing.

|

|

|

|

|

set_view_up_2, set_view_up_$ ©
\

3-4 Revision E of 7 January 1984

SunCore Reference Manual Viewing Operations and Coordinate Transforms

set_window
Establishes the window boundaries in the view plane.

sct_viewport_2, set_viewport_3
Establish the viewport boundaries in normalized device coordinates for two or three-
dimensional viewing. '

sct_viewing_parameters
is a composite functior which does all of the above functions at one time.

None of the above calls have any effect until the next call upon the create_retained_segment or
create_temporary_segment functions.

3.3.1. set_view_reference_point — Establish Reference Point for
Viewing

set_view_reference_point sets the view reference point in world coordinates.

set_view_reference_point(x, y, z)
float x,y,7; /% x,y,and z coordinates */

z, y, and z are the coordinates of the view reference point. In the absence of a specified refer-
ence point, the default view reference point is (0, 0, 0). The new reference point does not take
effect until a new segment is created.

3.3.2. set_view _plarie_norma.l — Establish View Plane Normal
Vector

set_view_plane_normal defines a vector relative to the view reference point, in world coordinates.

set_view_plane_normal(dx_norm, dy_norm, dz_norm)
float dx_norm, dy_norm, dz_norm;

The view plane is perpendicular to the view plane normal vector. In the absence of any infor-
mation to the contrary, SunCore establishes the view plane normal vector as (0, 0, -1). The
new vector does not take effect until a new segment is created.

Errors returned from aet_view_plane_normal:

e No view plane normal direction can be established because dz_norm, dy _norm, and
di_norm are all zero.

3.3.3. set_view_plane_distance — Establish View Plane Distance

sel_view_plane_distance establishes the view plane distance.

set_view __plane_dist.qﬁce(distance)
float distance;

set_view_plane_distance establishes the view, or projection, plane. The view plane is perpendicu-
lar to the view plane normal vector, and is distance from the view reference point along the view
plane normal vector. Distances are measured in world coordinate units from the view reference
point. Positive values of distance correspond to the direction of the view plane normal vector,

Revision E of 7 January 1984 35

Viewing Operations and Coordinate Transforms SunCore Reference Manual

and negative values correspond to the opposite direction. In the absence of any information to
the contrary, distance is set to zero, which means that the viewing plane is located at the view

reference point.

3.3.4. set_projection — Select Projection Type

sct_projection selects the projection system for displaying.

set_projection{projection, dx_proj, dy_proj, dz_proj)
int projection; f* Projection type #/
/% PARALLEL; PERSPECTIVE * /
float dx_proj, dy_proj, dz_proj; [+ x,y, and z Deltas of Projection Point */

The arguments dz_proj, dy_proj, and dz_proj specify a world coordinate point relative to the
view reference point. If projection is PARALLEL, objects project onto the view plane along lines
parallel to the vector specified by dz_projs, dy_pros, and dz_pros. If projection is PERSPECTIVE,
(dz_proj, dy_pros, dz_proj) specify a point in world coordinates called the center of projection
(often abbreviated to COP). Objects project onto the view plane along lines travelling towards
this point. Thus the center of projection is the apex of a pyramid whose edges pass through the
four corners of the view window.

Errors re}urned from set_projection:

o The direction of projection cannot be established because dz, dy, and dz are all zero. Note
that this error is only applicable if parallel projection was selected.

3.3.5. set_view_up_2 — Establish 2D View Up Vector

set_view_up_2 establishes a view up vector in two dimensions. This vector defines the direction
of ‘up’ for the window in world coordinates.

set_view_up_2(dx, dy)
float dx,dy; [+ dx and dy coordinates */
Errors returned from sct_view_up_2
o The view up vector cannot be established because dz, and dy are both zero.

3.3.6. set_view_up_3 — Establish 3D View Up Vector

set_view_up_J establishes a view up vector in three dimensions.

set_view_up_3(dx_up, dy_up, dz_up)
float dx_up, dy_up,dz_up; /[* x, ¥, and z Deltas of View Up Vector #/

The three arguments dz_up, dy_up, and dz_up establish a view up vector relative to the view
reference point. The view up vector, when projected onto the view plane in the direction of the
view plane normal vector, specifies the positive V-axis of the UVW coordinate system in the
view plane. The U-axis is also in the view plane, such that the U-axis, the V-axis, and the view
plane normal vector form a left handed coordinate system. The V-axis is vertical and the U-
axis increases to the right when the view plane is mapped onto the view surface.

SunCore establishes the default view up vector as (0, 1, 0), which means that the Y-axis is up.

3-6 Revision E of 7 January 1984

-

SunCore Reference Manual Viewing Operations and Coordinate Transforms

If the view plane normal vector is parallel to the Y-axis, this does not work and s0 SunCore
checks the view transforms for validity when creating a segment. SunCore may generate the
€ITOr message:

‘The current viewing specification is inconsistent’

Errors returned from set_view _up_3:

¢ No view plane normal direction can be established because dz_up, dy_up, and dz_up are all
Zero.

3.3.7. set_ndc_space_2 — Establish Size of NDC Space

sct_ndec_space_2 defines the size of the Normalized Device Coordinate space which can be
addressed on the view surface of all display devices available to the applications program and
within which viewports may be established.

set_ndc_space_2(width, height)
float width, height;

Both width and height must be in the range of 0.0 to 1.0, and at least one of the parameters
must have a value of 1.0. Normalized Device Coordinates range from 0.0 to width in the hor-
izontal direction and from 0.0 to Aeight in the vertical direction. The rectangle defined by this
function is mapped to the viewable area of any display device available to the application pro-
gram so that the entire rectangle is visible. Only uniform scaling of the rectangle is allowed; no
changes can be made to the viewport aspect ratio. SunCore maximizes the usable area of the
dislay and centers NDC space on each view surface.

The default Normalized Device Coordinate specification is width==1.0 and height=0.75. Either
of the set_ndc_space_2 or set_ndc_space_3 (see below) functions may be used at most once per
initialization of SunCore, and the Normalized Device Coordinate space established applies to
all view surfaces which the application program might use.

Ten SunCore functions réquire that Normalized Device Coordinate space be established before
they complete execution. If Normalized Device Coordinate space has not been explicitly defined
before any of these functions are executed, they implicitly define the Normalized Device Coordi-
nate space using defiult values. Functions which implicitly define Normalized Device Coordi-
Date space are;

o initialize_device

o initialize_group

& create_retained_segment
e create_temporary_segment

o et _viewport £
o set_viewport_8
o set_viewing_paramelers

e inquire_viewport_2

e inquire_viewport_$3

* inguire_viewing_parameiers

The depth of Normalized Device Coordinate space is set to 0.0 if set_ndc_space_2 is used in a
three-dimensional implementation.

Revision E of 7 January 1984 3.7

Viewing Operations and Coordinate Transforms SunCore Reference Manual

Errors returned from set_ndc_space_£:

o set_ndc_space_2 or set_ndc_space_8 has already been called since the system was initial-
ized.

e set_ndc_space_2 or set_ndc_space_$ has been called too late —— the default values have
already been defined implicitly.

e A parameter is outside the range 0.0 to 1.0.
e One of width or height must have a value of 1.0.
o width or height has a value of 0.0.

3.3.8. set_ndc_space_3 — Establish Size of NDC Space

set_ndc_space_8 defines the size of the Normalized Device Coordinate space which can be
addressed on the view surface of all display devices available to the applications program and
within which viewports may be established. Three-dimensional Normalized Device Coordinate
space is a rectangular parallelepiped lying within the Normalized Device Coordinate system.
This coordinate system is always left-handed, with the z-axis increasing to the right, the g-axis
increasing upwards, and the :-axis increasing away from the viewer.

set_nde _ppace_3(wid£h, height, depth)
float width, height, depth;

All of the parameters width, height, and depth must be in the range of 0.0 to 1.0, and at least
one of width or height must have a value of 1.0. Normalized Device Coordinates range from 0.0
to width in the horizontal direction, from 0.0 to Aeight in the vertical direction, and from 0.0 to
depth in the direction away from the viewer. The rectangle of size width by hesght in the =0
plane of Normalized Device Coordinate space is mapped to the viewable area of any display dev-
ice available to the application program so that the entire rectangle is visible. Only uniform
scaling of the rectangle is allowed — no changes can be made to the viewport aspect ratio.
SunCore maximizes the usable arca of the display and centers NDC space on each view sur
face.

The default Normalized Device Ooordinate specification is width=1.0, height==0.75, and
depth=1.0. Either of the set_ndc_space_3 or sct_nde_space_2 (see above) functions may be used
at most once per initialization of SunCore, and the Normalized Device Coordinate space esta-
blished applies to all view surfaces which the application program might use.

Ten SunCore functions require that Normalized Device Coordinate space be established before
they complete execution. If Normalized Device Coordinate space has not been explicitly defined
before any of these functions are executed, they implicitly define the Normalized Device Coordi-
nate space using default values. Functions which implicitly define Normalized Device Coordi-
nate space are:

o initialize_device

e initialize_group

® create_retained_segment
e creatle_temporary_scgment

set_viewport_2
set_viewport 3

3-8 Revision E of 7 January 1984

O

-

SunCore Reference Manual Viewing Operations and Coc-dinate Transforms

o zet_viewing _paramelers

e inquire_viewport_2
e inquire_viewport_8
e inguire_viewing parameters

Errors returned from set_nde_space_9:

o set_nde_space_g or sel_nde_space_$ has already been called since the system was initial-
ized.

e set_ndc_space_2 or :Aet_ndc_apace_.? has been called too late — the default values have
already been defined implicitly.

e A parameter is outside the range 0.0 to 1.0,
e One of width or height must have a value of 1.0.
o width or height has a value of 0.0.

3.3.9. set_window — Establish a Window in the View Plane

set_window establishes a window, defined by four coordinates in the UV coordinate aystem, in
the view plane.

set_window(umin, umax, vmin, vmax)
float umin, umax; /+ Left and Right sides of window #/
float vmin, vmax; /* Bottom and Top of window #/

SunCore establishes the default window as (0.0, 1.0, 0.0, 0.75).

Errors returned from cet_tdi'ndow:

e umin is greater than or equal to umaz, which means that the left side of the window is
congruent with or to the right of the right side of the window.

e vmin is greater than or equal to vmaz, which means that the top of the window is
congruent with or below the bottom of the windaw.

3.3.10. set_view_depth — Specify Planes for Depth Clipping

set_view_depth defines the f;'ont and back planes for depth clipping.

set_view_depth(front_distance, back_distance)
float front_distance, back_distance; /# Distances to Front and Back Planes */

Clipping to these depth bounds is controlled by set_front_planc_clipping and
sct_back_plane_clipping. The front and back planes determine the 3-D view volume which is
mapped to the 3-D viewport.

SunCore initializes the front distance to 0.0 and the back distance to 1.0.
Errors returned from set_view_depth:

e froni_distance is greater than back_distance, so that the back clipping plane is in front of
the front clipping plane.

Revision ﬁ of 7 January 1984 _ 39

I

Viewing Operations and Coordinate Transforms SunCore Reference Manual

3.3.11. set_viewport_2 — Establish Limits of Two-Dimensional
Viewport

set_viewport_2 establishes the limits of the viewport in two-dimensional normalized device coor-
dinate space. The limits must lie in the range:

0 < 2 < NDC width and 0 £ y NDC height

set_viewport_2(xmin, xmax, ymin, ymax)
float xmin, xmax; [+ Left and Right sides of Viewport */
float ymin, ymax; [+ Bottom and Top of Viewport %/

SunCore establishes the viewport to (0.0, 1.0, 0.0, 0.75) at initialization time.
Errors returned from set_viewport_£:

e zmin is greater than or equal to zmaz, which means that the left side of the viewport is
congruent with or to the right of the right side of the viewport.

e ymin is greater than or equal to ymaz, which means that the top of the viewport is
congruent with or below the bottom of the viewport.

o Viewport exceeds Normalized Deviced Coordinate space.

3.3.12. set_viewport 3 — Establish Limits of Three-Dimensional
Viewport

set_viewport 8 establishes the limits of the viewport in three-dimensional normalized device
coordinate space. The limits must lie in the range:

0 < z < NDC width, 0 < y NDC height, snd 0 < z NDC depth

set_viewport_3{xmin, xmax, ymin, ymax, zmin, zmax)
float xmin, xmax; /* Left and Right sides of Viewport */
float ymin, ymax; /* Bottom and Top of Viewport */
float zmin, smax; /+ Front and Back of Viewporti 7
SunCore establishes the viewport to (0.0, 1.0, 0.0, 0.75, 0.0, 1.0) at initialization time.
Errors returned from set_vicwport_3:

e zmin is greater than or equal to zmaz, which means that the left side of the viewport is
congruent with or to the right of the right side of the viewport.

e ymin is greater than or equal to ymaz, which means that the top of the viewport is
congruent with or below the bottom of the viewport.

e zmin is greater than or equal to zmaz, which means that the front of the viewport is
congruent with or behind the back of the viewport.

e Viewport exceeds Normalized Deviced Coordinate space.

3-10 Revision E of 7 January 1984

-

C

SunCore Reference Manual Viewing Operations and Cou. dinate Transforms

3.3.13. set_viewing_parameters

2et_viewing_parameters specifies all the viewing parameters with a single function call.

set_viewing_parameters(view_parameters)

struct {
float vwrefpt[3]; /* x,¥,2 */
float vwplnorm(3]; /+ dx, dy,dz */
float viewdis; /+ View Reference Point to View Plane #/
float frontdis; /+ View Reference Point to Front Clip Plane #/
float backdis; /% View Reference Point to Back Clip Plane */
int projtype; [+ PARALLEL or PERSPECTIVE #/
float projdir[3); /# Meaning depends on projection type */
float window[4]; /* umin, umax, vmin, vmax */
float vwupdirf3]; [+ dx,dy,dz */
float viewport[6]; /* xmin, xmax, ymin, ymax, zmin, zmax */

} #view_parameters;

The view parameters argument is a pointer to a structure as defined above.
sel_viewing_parameters fills in the associated structure with the current values of the viewing
parameters. The parameters are:

vwrefpt
An array of three floats describing the coordinates of the view reference point.

vwpinorm

An array of three floats describing the direction of the view plane normal vector.
viewdis

A float describing the distance of the view plane from the view reference pomt

Jrontdis
A float describing the front clipping distance.

backdis
A float describing the back clipping distance.

projtype
A int describing the projection type.
progdir
An array of three floats describing the direction of projection. The meamng of projdir is
dependent on the projection type:
PARALLEL
projdir specifies the direction of projection.
PERSPECTIVE
projdir specifies the center of projection.

window
An array of four floats describing the boundaries of the viewing window.

vwupdir
An array of three floats describing the view up direction.

viewport
An array of six floats describing the boundaries of the viewport,

Revision F of 7 January 1984 3-11

Viewing Operations and Coordinate Transforms SunCore Reference Manual

3.4. Viewing Control @

3.4.1. set_window_clipping — Enable Clipping in the View Plane

sct_window_clipping enables or disables clipping against the window in the view plane.

set_window_clipping(on_off)
int on_off; /+# TRUE = turn clipping on */
/* FALSE = turn clipping off */

The on_off argument specifies whether window clipping is enabled or not. A value of FALSE dis-
ables window clipping, whereas a value of TRUE enables window clipping.

When window clipping is off, objects described to SunCore are not checked to insure that they
lie within the window when projected onto the view plane. When window clipping is on, objects
described to SunCore are clipped to the window.

SunCore initializes window clipping to TRUE.

Note that window clipping is done before segment primitives are written to the pseudo display
file. This means that subsequent image transformations may extend images beyond the bounds
of the viewport. SunCore has optional output clipping (an extension to the ACM Core
specification) to correct for this. See the set_output_clipping function described below.

3.4.2. set_front_plane_clipping — Enable Depth Clipping Q
set_front_plane_clipping enables or disables clipping against the front clipping plane. -

set_front_plane_clipping(front_on_off)
int front_on_off;

The front_on_off argument specifies clipping enabled or disabled for the front clipping plane. A
value of FALSE means disable the clipping, and a value of TRUE enables the clipping. Clipping is
disabled by default.

3.4.3. set_back_plane_clipping — Enable Depth Clipping
set_back_plane_clipping enables or disables clipping against the back clipping plane.

set_back_plane_clipping(back_on_off)
int back_on_off;

The back_on_off argument specifies clipping enabled or disabled for the back clipping plane. A
value of FALSE means disable the clipping, and a value of TRUE enables the clipping. Clipping is
disabled by default.

-

212 Revision E of 7 January 1984

SunCore Reference Manual Viewing Operations and Coc linate Transforms

3.4.4. set_output_clipping (SunCore extension)

SunCore supports output clipping, which is done after image transformations on segments, as
an option in addition to window clipping. The set_output_clipping function enables or disables
output clipping.

set_output_clipping{on_off)
int on_off; /* TRUE == turn on clipping */
/* FALSE == turn off clipping */

If output clipping is enabled, it places a clipping process after the image transformation specified
by the dymamic segment attribute. This ensures that everything is correctly clipped to the
viewport.

3.4.5. set_coordinate_system_type

set_coordinate_system_type selects a left-handed or right-handed world coordinate system.

set_coordinate_system_type(type)
int type; /*# RIGHT = right handed coordinates */
/* LEFT = left handed coordinates */

3.4.6. set_world_coordinate_matrix_2 — Specify World or Model-
ling Transform

set_world_coordinate_matriz_£ specifies a 3 X 3 matrix containing the ‘world transform’ or
modelling transform. This matrix is concatenated with the ‘viewing transform’ to give the
‘composite viewing transform’. The composite viewing transform is the transform that is actu-
ally used for all SunCore viewing transform operations. The default world coordinate matrix
is the identity matrix. Currently, this function does not modify column 2 of the matrix. This
function may be called at any time, even in the midst of putting output primitives into a seg-
ment.

set_world_coordinate_matrix_2(array)
float array[3] [3]; /* [row] [column] #/

Note that the matrix order is such that:

znew == g % array[0}[0] + y+* array[1][0] + array(2][0]
ynew == z % array[O][l) + y* array{l][l] + array(2](1]

3.4.7. set_world_coordinate_matrix_3 — Specify World or Model-
ling Transform

set_world_coordinate_matriz 8 specifies a 4 X 4 matrix containing the ‘world transform’ or
modelling transform. This matrix is concatenated with the ‘viewing transform’ to give the
‘composite viewing transform’. The composite viewing transform is the transform that is actu-
ally used for all SunCore viewing transform operations. The default world coordinate matrix
is the identity matrix. Currently, this function does not modify column 3 of the matrix. This

Revision E of 7 January 1984 3-13

Viewing Operations and Coordinate Transforms SunCore Reference Manual

function may be called at any time, even in the midst of putting output primitives into a seg-
ment.

set;world__coordinate_matrix_3(array)
float array[4] [4]; /* [row] {column] */
Note that the matrix order is such that:

znew = z * array[0}[0] + y* array[l}[0] + z % array[2]{0] + array[3][0]
ynew == z * array[0][t] + y* array(l]{l] + =+ array[2][1] + array[3][1]
new = z * array[0][2] + y* array(l][2] + z % array[2][2] + array[3][2]

3.4.8. map_ndc_to_world_2 — Convert NDC to World Coordi-

nates
map_ndc_to_world_2 maps a point in normalized device coordinate (NDC) space to its world
coordinates.

map_ndc_to_world_2(ndex, ndcy, widx, widy)
float ndcx, ndey;
float swldx, *widy;

3.4.9. map_ndc_to_world_3 — Convert NDC to World Coordi-
nates

map_nde_to_world 8 maps a point in normalized device coordinate (NDC) space to its world
coordinates.

map_ndc_to_world_3(ndcx, ndcy, ndcz, widx, widy, widz)
float ndcx, ndcy, ndez;
float *widx, swidy, swide;

3.4.10. map_world_to_ndc_2 — Convert World to NDC Coordi-
nates

map_world_to_ndc_2 maps a point in world coordinates to its normalized device coordinates

(NDC).

map_world_to_nde_2(wldx, widy, ndcx, ndcy)
float wldx, widy;
float *ndcx, *ndcy;

3.4.11. map_world_to_ndc_3 — Convert World to NDC Coordi-
nates

map_world to_nde_8 maps a point in world coordinates to its normalized device coordinates

(NDC).

3.-14 Revision E of 7 January 1984

O

SunCore Reference Manual Viewing Operations and Coordinate Transforms

map_world_to_ndc_3(wldx, widy, wldz, ndcx, ndey, ndcz)
float widx, widy, widz;
float #*ndcx, *ndcy, *ndcz;

3.5. Inquiring Viewing Characteristics

SunCore provides a number of functions for inquiring about parameters of the viewing opera-
tions. There are a number of separate calls available for inquiring about individual parameters,
then there is a composite snguire_viewing_parameters function which obtains all the viewing
parameters in one fell swoop. The individual calls provided are summarized here and described
in detail in the subsections following.

inquire_view reference_point
Obtains the view reference point in world coordinates.
inquire_view_plane_normal
Obtains a vector which determines the view plane, relative to the view reference point.

inquire_u’(ew_plane_diatancg
Obtains the distance from the view reference point to the view plane.
inquire_view_depth
Obtains the distance from the view reference point to the ‘front’ clipping plane (also known
as the ‘hither’ or ‘near’ clipping plane}, and the distance from the view reference point to
the ‘back’ clipping plane (also known as the ‘yon’ or ‘far’ clipping plane).
inquire_projection
Determines which projection type is in use, and returns either the center of projection (for
PERSPECTIVE projection) or direction of projection (for PARALLEL projection).
ingqusre_view_up_2 .
Determines the view up direction in two dimensions.
inquire_view_up_3
Determines the view up direction in three dimensions.

 tnquire_viewport_2

Obtains the coordinates of the two-dimensional viewport.

inguire_vicwport_3
Obtains the coordinates of the three-dimensional viewport.

ingquire_window

Obtain the boundaries of the viewing window,
inguire_viewing_parameters

is a composite function which does all of the above functions at one time.

inguire_ngec_space_2
Deterinine the size of the normalized device coordinate space in two dimensions.

inquire_ndc_space_3
Determine the size of the normalized device coordinate space in three dimensions.

Revision E of 7 January 1984 3-15

Viewing Operations and Coordinate Transforms SunCore Reference Manual

3.5.1. inquire_view_reference_point

inquire_view_reference_point obtains the coordinates of the view reference point.

inquire_view_reference_point(x, y, z)
float *x, *y, #z; [+ x,y, and z Coordinates */

3.5.2. inquire_view_plane_normal

inquire_view_plane_normal obtains the coordinates of the view plane normal vector.

inquire_view_plane_normal(dx, dy, dz)
float *dx, *dy, *dz; [+ x, Yy, and £ deltas */

3.56.3. inquire_view_plane_distance
inquire_view_planc_distance obtains the distance of the view plane from the view reference
point. ‘

inquire_view_plane_distance{view_distance)
float *view_distance;

3.5.4. inquire_view_depth
inquire_view_depth obtains the distances of the front and back clipping planes from the view
reference point.

inquire_view_depth(front_distance, back_distance)
float *front_distance, sback_distance;

3.5.5. inquire_projection
snquire_profection obtains the current projection type and the coordinates of the center of pro-
jection (for PERSPECTIVE projections) or the direction of projection (for PARALLEL projections).

inquire_projection(projection_type, dx, dy, dz)
int +*projection_type;
float *dx, *dy, *dz; [+ x,y, and z deltas »/

3.6.8. inquire_view_up_2

fnguire_view_up_2 obtains the view up direction in two dimensions.

inquire_view_up_2(dx, dy)
float *dx, *dy; /* x and y directions */

3-16 Revision E of 7 January 1984

.

0

SunCore Reference Manual Viewing Operations and Cocrdinate Transforms

3.5.7. inquire_view_up_3

inguire_view_up_9 obtains the view up direction in three dimensions.

inquire_view_up_3(dx, dy, dz)
float *dx, *dy, *dz; /* x,y, and 2 directions */

3.5.8. inquire_ndc_space_2
ingquire_ndc_space_£ obtains the dimensions of the Normalized Device Coordinate space in two
dimensions.

inquire_ndc_space_2(width, height)
float ¥width, *height;

3.5.9. inquire_ndc_space_3

inquire_ndc_space_3 obtains the dimensions of the Normalized Device Coordinate space in three
dimensions.

inquire_ndc_space_3(width, height, depth)
ﬂon_.t swidth, sheight, *depth;

3.5.10. inquire_viewport_2

inquire_viewport_£ obtains the coordinates of the two-dimensional viewport.

inquire_viewport_2(xmin, xmax, ymin, ymax)
float *xmin, ¥xmax;
float *ymin, symax;

3.5.11. inquire_viewport_3

ingqusre_viewport_$ obtains the coordinates of the three-dimensional viewport.

inquire_viewport_3(xmin, xmax, ymin, ymax, tmin, zmax)
float *xmin, *xmax;
float *ymin, *ymax;
float *:min, *rmax;

3.5.12. inquire_winfiow

inquire_window obtains the boundaries of the viewing window.

Revision E of 7 January 1984 3-17

Viewing Operations and Coordinate Transforms SunCore Reference Manual

inquire_window(umin, umax, vmin, vmax)
float *umin, *umax;
float *vmin, *vmax;

3.5.13. inquire_viewing_parameters

s'nquire_viewina_parametch returns a collection of information pertaining to the current parame-
ters of the viewing system. :

inquire_viewing_parameters{view_parameters)

struct {
float vwrefpt[3]); /* x,y,z */
float vwplnorm(3]; /* dx, dy, dz */
float viewdis; /+ View Reference Point to View Plane +/
float frontdis; /* View Reference Point to Front Clip Plane #/
float backdis; /+ View Reference Point to Back Clip Plane /
int projtype; /% PARALLEL or PERSPECTIVE #/
float projdir[3]; /* Meaning depends on projection type */
float window[4]; /* umin, umax, vmin, vmax */
float vwupdir(3]; /+ dx,dy,dz */
float viewport[8]; /+# xmin, xmax, ymin, ymax, zmin, smax */

} *view_parameters;

The view_parameters argument is a pointer to a structure as defined above.
inquire_viewing_parameters fills in the associated structure with the current values of the view-
ing parameters. The parameters are:

vuwrefpt 7
An array of three floats describing the coordinates of the view reference point.

vwplnorm

An array of three floats describing the direction of the view plane normal vector.
viewdis

A float describing the distance of the view plane from the view reference point.

Jrontdis
A float describing the front clipping distance.

backdis
A float describing the back clipping distance.

projtype
A int describing the projection type.
projdir
An array of three floats describing the direction of projection. The meaning of projdir is
dependent on the projection type:
PARALLEL
projdir specifies the direction of projection.
PERSPECTIVE
projdir specifies the center of projection.

3-18 Revision E of 7 January 1984

O

SunCore Reference Manual Viewing Operations and Coordinate Transforms

window

An array of four floats describing the boundaries of the viewing window.
vwupdir

An array of three floats describing the view up direction.
viewport

An array of six floats describing the boundaries of the viewport.

3.5.14. inquire_world_coordinate_matrix_2

ingquire_world_coordinate_matriz_2 returns a 3 by 3 matrix containing the ‘world transform’ or
modelling transform. This matrix is concatenated with the ‘viewing transform’ to give the
‘composite viewing transform’. The composite viewing transform is the transform that is actu-
ally used for all SunCore viewing transform operations. The default world coordinate matrix
is the identity matrix.

inquire_world_coordinate_matrix_2(array)
float array(3][3]; /+ array[row]icol] +/

3.56.156. inquire_world_coordinate_matrix_3

inquire_world_coordinate_matriz_38 returns a 4 by 4 matrix containing the ‘world transform’ or
modelling transform. This matrix is concatenated with the ‘viewing transform' to give the
‘composite viewing transform’. The composite viewing transform is the transform that is actu-
ally used for all SunCore viewing transform operations. The default world coordinate matrix
is the identity matrix.

inquire_world_coordirate_matrix_3(array)
float array[4]{4); /¢ array[row][col] +/

3.5.16. inquire_inverse_composite_matrix (SunCore Extension)

SunCore uses the matrix inverse of the composite viewing transform internally for operations
such as map_nde_to_world. This matrix may at times be useful to the applications program.

inquire_inverse_composite_matrix(array)
float array(4][4); /+ array[row][col] */

3.5.17. inquire_viewing_control_parameters

inguire_viewing_control_parameters obtains the enabled status of clipping, and the type of world
coordinates in use.

Revision E of 7 January 1984 3-19

Viewing Operations and Coordinate Transforms SunCore Reference Manual

inquire_viewing_control_parameters(windowclip, frontclip, backclip, type) p=
int swindowelip; /* TRUE if window clipping enabled */ (;)
int sfrontclip; [+ TRUE if front plane clipping enabled #/
int *backelip; /* TRUE if back plane clipping enabled #*/
int *type; /* RIGHT or LEFT world coordinate system type */

o

3-20 Revision E of 7 January 1084

Chapter 4

Segmentation and Naming

All output primitives for a graphical object are placed in a segment by SunCore on request
from the application program. Each segment defines an fmage which is a view of the object and
which is part of the picture displayed on the view surface. An application program describes an
object by creating a segment, calling output primitive functions (the results of which are placed
in the segment), and then closing the segment.

There are two kinds of segments, namely: temporary segments and refained segments. Retained
segments have an image_transformation_type which specifies how they can be transformed.
Retained segments can be made visible or invisible, detectable (via the pick input function) or
undetectable, highlighted, and may be transformed, depending on their type.

Retained segments have rnames (actually numeric identifiers) so that by placing output primi-
tives in such segments, the application programmer can selectively modify parts of the picture
by deleting and recreating segments {which effectively replaces them)} so that their images
change. Retained segments are stored in the display list for later dynamic modification.

Temporary segments are not saved in the display list, are only drawn once, and may not be
modified dynamically. A new _frame action deletes all portions of any temporary segments
whicH have already been drawn.

4.1. Retained S'efﬁr'nent Attributes

In the same way that pi‘imitiﬂe attributés affect the output primitives, retained segment dynamic
atiributes affect the characteristics of retained segments. From now on, the term dynamic attri-
butes means the dynamic attributes of retained segments.

As well as being identified by the name of the retained segment into which they have been
placed, output primitives may also be assigned a primitive attribute known as a pick tdentifier
or pick-id. This means that within the single level of segmentation, another level of naming is
provided. An example of the use of pick-id might be that all the character strings for (say) a
menu could appear in a single segment, where each character string is assigned a different pick-
id. Then when the user is using the mouse to select a specific item from the menu, the applica-
tion program uses the PICK mput function to find out which menu item was selected

Retained segments have one static attribute and four dynamic attributes. Attributes, and the
means of setting them and enquiring their values, are described in detail in chapter 6.

The only static attribute of retained segments is the image_transformation_type. This attribute
can have one of five values:

Revision E of 7 January 1984 4-1

Segmentation and Naming SunCore Reference Manual

None
The segment is a retained segment on which no transformations may be applied.

Tranalatable 2-D
The segment is a retained segment which may be translated in two dimensions.

Transformable 2-D
The segment is a retained segment which may be fully translated, scaled, and rotated, in
two dimensions.

Translatable 3-D
The segment is a retained segment which may be translated in two or three dimensions.

Transformable 3-D
The segment is a retained segment which may be fully translated, scaled, and rotated, in

two or three dimensions.

SunCore sets image_tranaformation_type to the default value of NONE at initialization time.

The four dynamic attributes of retained segments are defined here.

Visibility indicates whether the segment should have a visible image. There are only two
values of this attribute, namely: TRUE and FALSE.
SunCore.sets the default value of visshility to TRUE at initialization time.

Highlighting indicates whether the segment’s image should be higﬁlighted. In SunCore,
highlighting is done by blinking. There are only two values of the kighlighting
attribute, namely: TRUE and FALSE. When highlighting is turned on, the
segment is blinked once.
SunCore sets the default value of kighlighting to FALSE at initialization time.

Detectability indicates whether the retained segment can be detected by the pick device
(mouse pointing device). See the await_pick function. The values for the

detectability attribute, are: 0 through 2,147,483,647. SunCore sets the defaunlt
value of detectability to 0 at initialization time.

Image_transformation . .
indicates how the image of a rétained segment, in normalized device coordi-
nates, is scaled, rotated, or translated. A segment’s static
image_transformation_type attribute limits the values which its
image_transformation attribute may have. See the set of functions called
set_segment_smage_zzz in chapter 6.

SunCore sets the default value of image_transformation to the identity
transformation at initialization time.

4.2. Retained Segment Operations

4.2.1. create_retaihed_segment — Crea:te a New Segment

creale_retained_scgment creates a new, empty, open segment.

create_retained_segment{segment_name)
int segment_name; /* Segment Identifier */

4-2 Revision E of 7 January 1984

@

SunCore Reference Manual Segmentation and Naming

The segment_name argument defines a segment number in the range 1 through 2,147,483,847.

The image transformation type for the newly created segment is obtained from the current
attribute value for image_transformation_type. The dynamic attribute values for the newly
created segment are obtained from the default values of the dynamic attributes for retained seg-
ments. ‘

Use the sef_smage_transformation_type function, before calling create_retained_segment, to
specify whether the created segment is translatable or transformable. After calling
create_retained_segment, the specified segment is said to be “open”. This means that output
primitives can now be called upon to add graphics primitives (lines, text, polygons, and so on)
to this segment.

Only one segment can be open at a time.
Errors returned from crcate_rctained__aegment:
e The set of currently selected view surfaces is empty.
¢ The current viewing specification is inconsistent.
e There is already an open segment.
o A retained segment named segment_name already exists.

e The default value of image_transformation is invalid for the current
image_transformation_type.

4.2.2. close_retained_segment — Close a Segment

close_retained_segment closes the currently open segment. Dynamic segment attributes may be
changed both before and after closing the segment.

close_retained_segment()

Errors returned from close_segment
o There is no open retained segment.

4.2.3. delete_retaiﬁed_segment — Delete a Retained Segment

delete_retained_segment deletes a specifically named segment.

delete_retained_segment(segment_name) N
int segment_name; /* Segment Identifier #*/

The segment specified by the segment_name argument is deleted. If the segment being deleted
is the currently open segment, it is closed before it is deleted. The deleted segment is erased
from all view surfaces.

Errors returned from delete_retained_segment:
e There is no retained segment with the name segment_name.

Revision E of 7 January 1984 4-3

Segmentation and Naming SunCore Reference Manual

4.2.4. rename_retained_segment — Rename a Retained Segment

rename_retained_segment changes the name of a retained segment.

rename_retained_segment(segment_name, newname)
int segment_name; /* Old Segment Identifier 3/
int newname; /* New Segment Identifier */

The segment whose identity is segment_name is renamed as newname, and this name must be
used in any future references to that segment. The segment segment_name is no longer accessi-
ble. '

Errors from rensme_retained_segment:
o There is no retained segment with the name segment_name.

o There is an existing retained segment named new_name.

4.2.6. delete_all_retained_segments

delete_all_retained_scgments deletes all retained segments.

delete_all_retained_segments()

All retained segments are deleted. If there is a currently open retained segment, it is closed
before it is deleted.

4.2.6. inquire_retained_segment_surfaces

inquirc_retained_scgment_surfaces obtains the number and names of the view surfaces upon
which this segment gets drawn. These view surfaces were ‘selected’ when the segment was
created.

inquire_retained_segment_surfaces(segment_name, array_size,
view_surface_array, number_of_surfaces)
int segment_name; /* Name of Segment */
int array_size; /* Site of View Surface Array */
struct vwsurl view_surface_array[]; /¢ Array of view surface names s/
int ¢number_of surfaces; /+ Returned number of surfaces s/

The number of view surfaces selected at the time the retained segment name given by
segment_name was created is copied into number_of_surfaces. The names of those surfaces are
copied into view_surface_array, where the array is an array of view surface names. array_size is
specified by the caller, and is the size of view_surface_array. The view surface structure is
defined in the usercore.h header file.

If number_of surfaces is gréater than array_size, only array_size view surface names are copied
into view_surface_array. If array_size is less than or equal to zero, no names are returned.

Errors from inquire_retained_segment_surfaces:

e There is no retained segment with the name segment_name.

4-4 _ Revision E of 7 January 1984

-

SunCore Reference Manual Segmentation and Naming

4.2.7. inquire_retained_segment_names

snquire_retained_segment_names obtains a list of the retained segments names.

inquire_retained_segment_names(array_size, name_array, number_of_segments)
int array_size; /% Size of Array */
int name_array[]; /* Segment Identifiers /
int *number_of_segments; /¢ Number of Segments */

The name_array argument is an array which is to receive a list of the existing retained seg-
ments. array size specifies the number of elements in name_array. The number_of _segments
argument is returned to the caller, and is the number of existing retained segments. If the
number of existing retained segments is greater than the size of the array, only array_size seg-
ment names are copied into the array. If array_size is less than or equal to zero, no segment
identifiers are returned.

4.2.8. inquire_open_retained_segment

inquire_open_retained_segmeént obtains the name of the currently open retained segment.

inquire_open_retained_segment(segment_name)
int *segment_name; /% Segment Name */

The name of the currently open retained segment (if there is one) is copied into the
segment_name variable, If there is no currently open retained segment, segment_name is set to
zero.

4.3. Temporary or Non-Retained Segments

Temporary segments are used for transient images. Temporary segments cannot be modified
dynamically, and all portions of temporary segments which have already been drawn are deleted
upon any new frame action. Primitives placed in temporary segments are not stored in the
display list. ' '

4.3.1. create_temporary_segment

create_temporary_scgment creates a new, empty, nonretained or temporary, segment.

create_temporary_s;.gment()
4.3.2. close_temporary_segment

close_temporary_scgment closes the currently open temporary segment.

close_temporary_segment()

Revision E of 7 January 1984 4-5

Segmentation and Naming SunCore Reference Manual

4.3.3. inquire_open_temporary_segment — Get Temporary Seg-
ment Status

inquire_open_temporary_segment determines whether there is a currently open temporary seg-
ment. .
inquire_open_temporary_segment{open)
int *open; [+ Receives status of temporary segment */
The open argument receives the status of whether there is a currently open temporary segment:
FALSE There is no currently open temporary segment.
TRUE There is a currently open temporary segmeut.

4.4. Saving and Restoring Segments on Disk (SunCore Extension)

The two functions described in this section provide for saving segments on disk files and restor-
ing segments from disk files. Only one segment is saved in a given file.

4.4.1. save_segment — Save Segment on Disk File (SunCore
Extension) '

save_scgment saves the named retained segment on a spacified disk file.

save_segment(segment_name, filename)
int segment_name; /* Name of segment to save */
char #filename; /* Pointer to a UNIX filename #/

Saved primitives are in normalized device coordinates. Dynamic segment attributes are also
saved,

4.4.2. restore_segment — Restore Segment from Disk File (Sun-
Core Extension)

restore_segment vestores the named retained segment from a specified disk file. A new segment
is created and the segment from the disk file is copied into it. The segment is then closed.

restore_segment(segment_name, filename) :
int segment_name; /* Name of segment to create */
char sfilename; /* Pointer to a UNIX filename #+/

4-6 Revision E of 7 January 1984

Chapter 5

Output Primitives

Output Primitives serve to describe objects in the world coordinate system. When the output
primitive functions are called, primitives are placed in the currently open segment via drawing
commands which eventually produce line and character output.

SunCore supports six kinds of cutput primitives, namely moves, lines and polylines, polygona,
tezt, markers and polymarkers, and rasters.

Move
primitives alter the value of the Current Position (described below).

Line
primitives deacribe lines in world coordinates.
Polyline
primitives describe sequences of connected lines in world coordinates.
Polygon
primitives describe a cloued polygon which will be filled with a color. The polygon primi-
tives are a SunCore extension to the ACM Core specification.

Tezt
primitives deacribe character strings on the display.

Marker
primitives describe markers which are written on' the display in a constant orientation,
independent of any transtormatlom ‘Wh.lch may be in effect.

Polymarker
primitives describe a sequence of markers which are written on the display in a constant
orientation, independent of any transformations which may be in effect.

Raaters
primitive describes an array of one-bit or eight-bit pixels.

All primitive operations use world coordinates. Some of these operations affect the value known
as the Current Position. The Current Position defines the current drawing location in the world
coordinate system. SunCore maintains the value of the Current Position at all times. At ini-
tialization time, the Current Position is initialized to the origin of the world coordinate system.

In both two dimensions and ‘three dimensions, coordinate positions can be specified in terms of
absolute world coordinates, or coordinates can be specified relative to the Current Position.

A segment must be open (see the create_zzzzz_segment functions) before any output primitives
may be used. A segment contams a set of output primitives which can subsequently be manipu-
lated as a unit.

Revision ﬂ of 7 January 1984 5-1

Output Primitives SunCore Reference Manual

An output primitive is processed as follows:

1. The primitive is transformed to clipping coordinates using the composste viewing transform.
This places the window boundaries at umin=-3£767, umaz=+ 92767, vmin=-82767, and
vmaz==+ 82767. The front clipping plane is at z=0 and the back clipping plane is at
z=+ 82767

2. The primitive is then clipped to the boundaries just mentioned if window clipping is
enabled.

3. The output primitive is then output scaled to the viewport which is specified in normalized
device coordinate space. ’

4. The resulting primitive is then copied to the display list or pseudo display file (PDF) if the
open segment is a retained segment.

5. Next, the primitive is transformed using the fmage transform which is an attribute of
retained translatable or retained transformable segments. _

6. The output primitive is then clipped again to the viewport boundaries if output clipping is
enabled.

7. For each view surface which was selected when the segment was created, the primitive is
then converted to physical device coordinates and drawn on the view surface.

If a change is made to certain dynamic segment attributes of a retained segment, the primitives

in that segment are recovered from the PDF and used to erase the segment (if necessary) and

redraw the segment following steps 5 through 7 above. The diagram below shows the above
process in a graphical form.

Output primitives are drawn with the static primitive attributes set by the primitive attribute

functions (see chapter 6).

5.1. Moving the Current Position

There are four functions for moving the Current Position. move_abs_g and move_abs_3 change
the Current Position to an absolute position in world coordinates, whereas move_rel_¢ and
move_rel_3 change the Current Position by a delta relative to the Current Position.

Note that move_abs_2 and move_rel @ are simply short forms of the corresponding three-

dimensional functions. The z coordinate of move_abs_£ is the z coordinate of the Current Posi-
tion. The z delta of move_rel £ is taken as zero.

5.1.1. move_abs_2 — Move to Absolute 2D Position

move_abs_£ moves the Current Position to an absolute position.

5-2 Revision E of 7 January 1984

-

-

SunCore Reference Manual Output Primitives

Output
Primitives

!

View Transform

{Composits)
r—-ﬂ_—i
i
I Window Clip
{Optional)

-]

Viewport Scale
{to NDC space)

ld—b Display List

Image Transform

o]

Output Clip
{Optional)

=]

Convert to Device
Coords and Draw

[———

Figure 5-1: Flow Diagram of Qutput Primitive Processing

move_abs_2(x, ¥)
float x,y; /* x and y coordinates to move to */

The Current Position is set to the values of # and y in two-dimensional world coordinates.
move_abs_2 only sets the Current Position; no drawing commands are output.

5.1.2. move_abs 3 — Move to Absolute 3D Position

move_abs_3 moves the Current Position to an absolute pesition.

Revision E of 7 January 1984 5-3

Output Primitives SunCore Reference Manual

move_abs_3(x, ¥,)
float x, 7y, z; /* x,y, and z coordinates to move to ¥/

The Current Position is set to the values of z, g, and z in three-dimensional world coordinates.
move_abs_3 only sets the Current Position; no drawing commands are output.

5.1.3. move_rel_2 — Move to Relative 2D Position

move_rel_2 increments the Current Position by the values given.

move_rel_2(dx, dy)
float dx, dy; /* x and y coordinate deltas +/

The Current Position is set to the value of Current Position plus dz and dy in two-dimensional
world coordinates. move_rel_2 only sets the Current Position; no drawing commands are out-
put.

5.1.4. move_rel_3 — Move to Relative 3D Position

move_rel_8 increments the Current Position by the values given.

move_rel_3(dx, dy, dz)
float dx, dy, dz; /* X, ¥, and 2 coordinate deltas »/

The Current Position is set to the value of Current Position plus dz, dy, and dz in three-
dimensional world coordinates. move_rel 8 only sets the Current Position; no drawing com-
mands are output.

5.2, Position Enquiry Functions

The position enquiry functions return the coordinates of the Current Position to the caller.

5.2.1. inquire_current_position_2 — Enquire 2D Position

tngquire_current_position_2 returns the two-dimensional world coordinates of the Current Posi-
tion to the caller,

inquire_current_position_2(x, y)
float x, *y;

5.2.2. inquire_current_position_3 — Enquire 3D Position

inquire_current_position_$ returns the three-dimensional world coordinates of the Current Posi-
tion to the caller.

inquire_current_position_3(x, ¥y, 2)
float *x, +y, #z;

5-4 Revision E of 7 January 1984

o

SunCore Reference Manual OCutput Primitives

5.3. Line Routines

The line routines draw lines on the currently selected SunCore view surfaces. Attributes of the
line can be specified with additional calls to primitive attribute setting routines.

The primitive attributes of line indez, lincstyle, linewidth, and pick_id are applicable for lines.
Error Codes from the Line Functions:
e There is no open segment.

5.3.1. line_abs_2 — Describe Line in Absolute 2D Coordinates

line_aba_2 describes a line in two-dimensional world coordinates.

line_abs_2(x, y)
float x,y;

The line that line_abs_2 describes extends from the Current Position to the position specified by
the z and y coordinates.

The Current Position is updated to the coordinates specified by z and y.

5.3.2. line_abs_3 — Describe Line in Absclute 3D Coordinates

line_abs_3 describes a line in three-dimensional world coordinates.

line_abs_3(x, y, z)
float x, y, z;

The line that line_abs_8 describes extends from the Current Position to the position specified by
the 2, y, and z coordinates.

The Current Position is up_da.ted to the coordinates specified by z, y, and 2.

5.3.3. line_rel_2 — Describe Line in Relative 2D Coordinates

line_rel 2 describes a line in two-dimensional world coordinates.

line_rel_2(dx, dy)
float dx, dy;

The line that line_rel_¢ describes extends from the Current Position to the position specified by
the Current Position plus the dz and dy coordinates.

The Current Position is updated by the deltas specified by dz and dy.

5.3.4. line_rel_3 — Describe Line in Relative 3D Coordinates

line_rel_2 describes a line in three-dimensional world coordinates.

line_rel_3(dx, dy, dz)
float dx, dy, dz;

The line that line_rel_8 describes extends from the Current Position to the position specified by
the Current Position plus the dz, dy, and d2 coordinates.

Revision E of 7 January 1984 5.5

Output Primitives SunCore Reference Manual
The Current Position is updated by the deltas specified by dz, dy, and dz.

5.4. Polyline Routines
The polyline functions describe connected sequences of lines. The first two or three arguments

to a polyline function are arrays of the appropriate coordinates. Consider the polyline function:

polyline_abs_3(x_array, y_array, z_array, n)
float x_array|[], y_array|[], z_array[]; /* x,y, and g coordinate arrays */
int n; /*+ Number of coordinates */

The sequence of lines that these arrays of coordinates describe starts at the current position,
then draws to:

(z_arrayl0), y_array[0], z_array(0]),
then runs through the intermediate array values and ends at

(z_array|n-1), y_array[n-1), z_array[n-1]),

where n is the number of elements in each of the coordinate arrays. There are thus » lines in
the figure described.

Error Codes from the Polyline Functions:
¢ The number of coordinates, n, is less than or equal to zero.
o There is no open segment.

5.4.1. polyline_abs_2 -— Describe Line Sequence in Absolute 2D
Coordinates
polyline_abs_2 describes a line sequence in absolute two-dimensional world coordinates.

polyline_abs_2(x_array, y_array, n)
float x_array]], y_array|]; /* x and y coordinate arrays */
int n; /* number of array elements #/

The Current Position is updated to the end of the last line drawn.

5.4.2. polyline_abs_3 — Describe Line Sequence in Absolute 3D
Coordinates
polyline_abs_2 describes a line sequence in absolute three-dimensional world coordinates.

polyline_abs_3(x_array, y_array, z_array, n}
float x_array [], y_array[|, z_array []; /* x,y, and ¢ coordinate arrays */
int n; /* number of array elements */

The Current Position is updated to the end of the last line drawn.

5-8 Revision E of 7 January 1984

-

SunCore Reference Manual Output Primitives

5.4.3. polyline_rel 2 — Describe Line Sequence in Relative 2D
Coordinates
polyline_rel_2 describes a line sequence in relative two-dimensional world coordinates.

polyline_rel_2(dx_array, dy_array, n)
float dx_array{], dy_array[]; /* x and y coordinate delta arrays */
int n; /* number of array elements */

The sequence of lines that this function describe starts at the current position, moves to:
current position + (dz_array[0], dy_array|[0])

then draws to:
current position + (dz_array[0], dy_array[0]) + (dz_array(l], dy_array(l])

and so on. The Current Position is updated to the end of the last line drawn.

5.4.4. polyline_rel_ 3 — Describe Line Sequence in Relative 3D
Coordinates
polyline_rel_8 describes a line sequence in relative three-dimensional world coordinates.
polyline_rel_3{(dx_array, dy_array, dz_array, n)
float dx_array[], dy_array|], dz_array{]; /* x, ¥, and z coordinate delta arrays */
int n; /* number of array elements */
The sequence of lines that this function describe starts at the current position, moves to:
current position + (de_array(0], dy_array[0], dz_array[0])
then draws to:

current position + (dz_array[0], dy_array[0), dz_array[0]) +
(dz_array[1), dy_array[l], dz_array(1])

ﬁnd so on. The Current Position is updated to the end of the last line drawn.

5.6. Text Routines

5.6.1. text — Draw Character String In World Coordinates

text draws a character string in world coordinates.
text(string);
char *string;

The character string specified by string is drawn from the Current Position. The Current Posi-
tion is unchanged. The font, size, orientation, and so on, are set by calls to the set primitive
attribute functions.

Error Codes from the Text Function:

Revision E of 7 January 1984 5-7

Output Primitives SunCore Reference Manual

e There is no open segment.
e The character string contains one or more characters which cannot be drawn.
e The vectors that the current charpath and charup attributes describe are parallel.

5.8. Text Enquiry Functions

Text enquiry functions obtain the length that a character string would extend, in world coordi-
nates, if the character string were actually drawn according to the current text primitive attri-

butes,
Error Codes from the Text Enquiry Functions:

e inquire_test_eatent_2 was used to obtain the Current Position when snguire_text_cztent $
should have been used in order to avoid loss of information.
o The character string contains one or more characters which cannot be drawn.

o The vectors that the current charpath and charup attributes describe are parallel.

5.6.1. inquire_text_extent_2

inquire_tezl_catent_2 obtains the two-dimensional extent, in world coordinates, of the specified
character string.

inquire_text_extent_2(string, dx, dy)
char #string;
float *dx, *dy;

inquirc_text_catent_g returns the extent of the character string specified by atring, if the charac-
ter string were drawn, unjustified, from the Current Position. The extent is returned in dz and
dy in world coordinates relative to the Current Position.

The specified character string, and the values of the primitive attributes font, charup, charaize,
charpath, charspace, and charprecision are used to calculate the vector which represents the
extent of the character string.

In the current implementation of SunCore, this function only returns meaningful values if char-
precision is CHARACTER.

5.6.2. inquire_text_extent_3

inquire_tezt_catent_8 obtains the three-dimensional extent, in world coordinates, of the specified
character string.

inquire_text_extent_3(string, dx, dy, dz)
char +*string;
float +dx, *dy, *dz;

inquire_tezl_eztent 8 returns the extent of the character string specified by string, if the charac-
ter string were drawn, unjustified, from the Current Position. The extent is returned in dz, dy,
and dz in world coordinates relative to the Current Position.

The specified character string, and the values of the primitive attributes font, charup, charsize,
charpath, charapace, and charprecision are used to calculate the vector which represents the

5-8 Revision E of 7 January 1984

-

SunCore Reference Manual Output Primitives

extent of the character string.

In the current implementation of SunCore, this function only returns meaningful values if char-
precision is CHARACTER.

5.7. Marker Functions
The marker functions place a character at a specific location on the display. The polymarker

functions place a character at a sequence of locations on the display.

The marker character is any printable ASCII character, and is the value of the marker_symbol
primitive attribute. The marker_symbol primitive attribute is set by the set_marker_symbol
function described in chapter 6.

The markers are placed on the display without any of the rotations, translations, or scaling
which is applied to text strings. Markers use the default orientation attributes.

Error Codes from the Marker Functions:

o There is no open segment.

5.7.1. marker_abs_2 — Plot Marker at Absolute 2D Coordinates

marker_abs_2 plots a marker at specified absolute two-dimensional world coordinates.

marker_abs_2(x, y)
float x, y; /* Absolute x and y Coordinates */

marker_abs_2 plots the marker at the absolute two-dimensional coordinates specified by the z
and y arguments. The Current Position is updated to be this point.

5.7.2. marker_abs_3 — Plot Marker at Absolute 3D Coordinates

marker_abs_3 plots a marker at specified absolute three-dimensional world coordinates.

marker_abs_3(x, y,“z)
float x,y, z; /* Absolute x, y, and z Coordinates */

marker_abs_8 plots the marker at the absolute three-dimensional coordinates specified by the z,
¥, and 2 arguments. The Current Position is updated to be this point.

5.7.3. marker_rel_2 — Plot Marker at Relative 2D Coordinates

marker_rel_2 plots a marker at a specified relative two-dimensional position.

marker_rel_2(dx, dy)
float dx,dy; -~ /*+ x and y Coordinate Deltas */

marker_rel_2 plots the marker at the position relative to the Current Position, specified by the
deltas dz and dy. The Current Position is updated to be this point.

Revision E of 7 January 1984 5-9

Output Primitives SunCore Reference Manual

5.7.4. marker_rel_3 — Plot Marker at Relative 3D Coordinates

marker_rel_8 plots a marker at a specified relative three-dimensional position.

marker_rel_3(dx, dy, dz)
float dx, dy, dz; /* x,y, and z Coordinate Deltas */

marker_rel_3 plots the marker at the position relative to the Current Position, specified by the
deltas dz, dy, and dz. The Current Position is updated to be this point.

5.7.56. polymarker_abs_2 — Plot Marker Sequence at Absolute 2D
Coordinates

polymarker_aba_2 plots a sequence of markers at specified absolute two-dimensional positions.

polymarker_absj(i_array, y_array, n)
float x_array|), y_array|}; /* Absolute x and y Coordinates */
int n; /* Number of Coordinates */

polymarker_abs_2 plots a sequence of markers at the absolute positions specified by the z_array
and y array arguments. n specifies the number of coordinates in the arrays. The Current Posi-
tion is updated to be the last point.

5.7.6. polymarker_abs_3 — Plot Marker Sequence at Absolute 3D
Coordinates

polymarker_abs_$ plots a sequence of markers at specified absolute three-dimensional positions.

polymarker_abs_3(x_atray, y_array, z_array, n)
float x_array|}, y_array{], 2_array[]; /% Absolute x, y, and z Coordinates #*/
int n; [+ Number of Coordinates */

polymarker_abs_3 plots a sequence of markers at the absolute positions specified by the z_array,
y_array, and z_array arguments. The number of coordinates in the array is given by the
argument. The Current Position is updated to be the last point. '

5.7.7. polymarker_rel_ 2 — Plot Marker Sequence at Relative 2D
Coordinates

polymarker_rel_2 plots a sequence of markers at specified relative two-dimensional positions.

polymarker_rel_2(dx_array, dy_array, n)
float dx_array(], dy_array [|; /* x and Coordinate Deltas #*/
int n; [+ Number of Coordinates */

polymarker_rel_2 plots a sequence of markers at the positions relative to the Current Position,
specified by the deltas dz_array and dy_array. The number of deltas in the arrays is specified
by n. The Current Position is updated to be the last point.

5-10 Revision E of 7 January 1984

-

SunCore Reference Mannal Output Primitives

5.7.8. polymarker_rel_3 — Plot Marker Sequence at Relative 3D
Coordinates

polymarker_rel_3 plots a sequence of markers at specified relative three-dimensional positions.

polymarker_rel_3{dx_array, dy_array, dz_array, n)
float dx_array|], dy_array[], dz_array|]; /* x,¥, and z Coordinate Deltas */
int n; /* Number of Coordinates #*/

polymarker_rel_3 plots a sequence of markers at the positions relative to the Current Position,
specified by the deltas dz_array, dy_array, and dz_erray. The number of deltas in the arrays is
specified by n. The Current Position is updated to be the last point.

. Three-Dimensional Polygon Shading Parameters (SunCore
Extensmn)

When drawing three-dimensional polygons on the Sun color displays, several shading options are
available. The routines deseribed in this section provide shading control. These shading param-
eters may be changed at any time and are not stored in the display list. Therefore a segment
may be drawn with fast shading at one time, and then drawn again later with smooth shading.

5.8.1. set_shading parameters

set ahadt’ng_paramctm speclﬁes the parameters for rendering three-dimensional polygons on the
color display.

set_shading_parameters(ambient, diffuse, specular, flood, bump, hue, style)

float ambient; [+ percent background light #*/
float diffuse; /+ percent diffuse reflection */
float specular; [+ percent specular reflection */
float flood; /# percent flood lighting */
float bump; /+ specular power 2..9 #/
int hue; /+ color index range to generate */

J* 0=1.255 1==1.63 %/

J+ 2=64.127, 3=128..191 */

b 4=192.. 265 +f

‘int style; /% Type of surface shading to do */

/* CONSTANT, GOURAUD, PHONG #/

See set_polygon_interior_style for the ways in which these shading parameters are used. CON-
STANT style shading gives constant intensity over the polygon using the color set by
sct_fill_indez. GOURAUD style shading linearly interpolates between vertices (use only convex
polygons) where the intensity at each vertex is set by the set_vertez_indices function. PHONG
style shading produces smooth shading using the other parameters (only with convex polygons).

The shading equation with PHONG is:
pixelshade = ambient + diffuse(LeN) + apecular(HON)b'""' ~ (flood * z)

where L is the direction vector of the light source, N is the surface normal vector, H is a vector
which is the average of L and E (the eye direction vector), and z is depth in NDC.

Revision E of 7 January 1984 ' 5-11

Output Primitives SunCore Reference Manual

Here are some useful sets of PHONG parameters:

Table 5-1;: Useful PHONG Parameters

ambient 0.05 0.05
diffuse 0.94 0.74
specular 0.0 0.20
flood 0.0 0.0
bump 0.0 7.0
hue 0 0

atyle PHONG PHONG

5.8.2. set_light_direction — Specify Direction of Light Source

set_light_direction specifies the direction of the light source from the object.

set_light_direction{dx, dy, dz)
float dx, dy, dz;

This assumes normalized device coordinate space where the direction from object to viewer is
always (0.0, 0.0, -1.0). Hence, to place the light source at the viewer, the light direction is
(0.0, 0.0, -1.0). The light direction vector is onrly used if the shading style is GOURAUD or
PHONG. A useful light direction is (0.2, 0.2, -1.0).

5.8.3. set_vertex_normals

set_vertex_normals sets the surface normal vectors for each vertex of the subsequent three-
dimensional polygon primitives (polygon_abs_8 or polygon_rel 9). These normals are used for
PHONG style shading. For GOURAUD style shading, use set_vertex_indices.

set_vertex_normala(sclist, ylist, zlist, n)
float xlist[], ylist]], zlist[);
int n;

The number of elements in the list, n, must be equal to the number of vertices in the subse-
quent call to polygen_zaz 8. :

5.8.4. set_vertex_indices

sct_vertex_sndices specifies a color index for each vertex of the next polygon_zzz_$ primitive,

GOURAUD shading llnearly interpolates these color indices for smooth shading in the interior
of the polygon.

5-12 Revision E of 7 January 1984

-

SunCore Reference Manual Output Primitives

set_vertex_indices(coldr__index,_list., n)
int color_index_list [];
int n;

The number of elements in the list, n, must be equal to the number of vertices in the subse-
quent call to polygon_zzz_3.

5.8.6. set_zbuffer_cut

set_zbuffer_cut specifies a cutaway view of 3-D polygon objects when hidden surfaces are being
removed. set_zbuffer_cut specifies an array of depths in Normalized Device Coordinate space.
Any parts of objects which are closer to the viewer than this piecewise-linear function are
clipped away.

set_zbuffer_cut({surface_name, xlist, zlist, n)
struct vwsurf ssurface_name; [+ See appendix B */
float xlist[], zlist[];
int n;

zlist is assumed to be monotonically increasing. This function specifies a piecewise-linear cuta-
way threshold in the z coordinate, which, given any x coordinate, is constant in y. The default
cutaway depth is 0 for all values of x. Values of x less than zlist[0] or greater than zlist(n - 1]
will have the default depth. The view surface must have been initialized with the Aidden flag
on,

5.9. Polygon Functions (SunCore Extension)

The polygon functions are a SunCore extension to the ACM Core specification. The polygon
functions describe connected sequences of lines which form closed figures. The polygons are
filled in with color as specified by the set_fill_indez primitive attribute, or are shaded according
to the current shading parameters, depending on the polygon_tnterior_style primitive attribute.
Only polygons created by the three-dimensional polygon functions may be shaded.

The first two or three arguments to a polygon function are arrays of the appropriate coordi-
nates. Consider the polygon function:

polygon_abs_3(x_array, y_array, z_array, n)
float x_array|(], y_amray|], z_array[}; /* x,y, and z coordinate arrays */
int n; /* Number of coordinates */

The bounding sequence of edges that these arrays of coordinates describe pass from the first
point

(z___array[O], y_array[ﬂ], z_array|[0]),
then runs through the intermediate array values to

(2_array(n-1], y_array[n-1), z_array[n-1]),

and then back to the first point. nis the number of elements in each of the coordinate arrays.
There are thus n sides in the figure described.

Note that the polygon functions describe a closed figure. The last coordinate in the array of
points is connected to the first point.

Revision q of 7 January 1984 5-13
¥ _

Output Primitives SunCore Reference Manual

Error Codes from the Polygon Functions:
o The number of coordinates, n, is less than or equal to two.

o There is no open segment.

5.9.1. polygon_abs_2 — Describe Polygon in Absolute 2D Coordi-
nates

polygon_abs_2 describes a polygon in absolute two-dimensional world coordinates.

polygon_abs_2(x_array, y_array, n)
float x_array[), y_array|{]; /* x and y coordinate arrays */
int n; /* number of array elements #/

The Current Position is set to the first point.

5.9.2. polygon_abs_3 — Describe Polygon in Absolute 3D Coordi-
nates

polygon_abs_9 describes a polygon in absolute three-dimensional world coordinates.

polygon_abs_3(x_array, y_array, :_array, n)
float x_array|], y_array[], z_array [}]; /* x,y, and z coordinate arrays */
int n; /* number of array elements */

The Current Position is set to the first point.

5.9.3. polygon_rel_2 — Describe Polygon in Relative 2D Coordi-
' nates

polygon_rel_2 describes a polygon in relative two-dimensional world coordinates. The first array
value specifies a displacement from the Current Position; remaining array values specify dis-
placements from the preceding point.

polygon_rel_2(dx_array, dy_array, n)
float dx_array [], dy_array []; J* x and y coordinate Delta arrays */
int n; /* number of array elements */

The Current Position is set to the first point.

5.9.4. polygon_rel_3 — Describe Polygon in Relative 3D Coordi-
nates

polygon_rel_9 describes a pblygon in relative three-dimensional world coordinates. The first
array value specifies a displacement from the Current Position; remaining array values specify
displacements from the preceding point.

polygon_rel_3(dx_array, dy_array, dz_array, n)

float dx_array{), dy_array [}, dz_array|]; /* x, 7y, and 2z coordinate Delta arrays */

int n; /* number of array elements */

5-14 Revision E of 7 January 1984

SunCore Reference Manual Output Primitives

The Current Position is set to the first point.

5.10. Raster Primitive Functions (SunCore Extension)

5.10.1. put_raster — Raster Output Primitive

put_raster draws a rectangular 1-bit or 8-bit deep raster and enters it into the current segment.
The raster may not be used in transformable segments, because rasters cannot be scaled or
rotated in the current release of SunCore. A raster primitive may, however, be picked or
dragged if it is entered in a translatable segment. The Current Position is at the lower left-
hand corner of the raster.

Note that put_raster is device dependent in that it is written to the right and upward from the
Current Position a specified number of PIXELS in height and width. The Current Position is
unchanged.

put_raster{raster)
struct {
int width, height, depth;
short +bits;
} *raster;

The depth parameter can be 1 or 8 bits per pixel.

The bita of the raster are stored in the following order fordepth = 1: The first word is the upper
left 18 horizontal bits, with the high order bit being the leftmost bit. The first (width+ 15)/16
words comprise the top row of the rectangle. The number of words of storage that bits points
to is:

{(width+ 15) / 16) height

for depth == 1,

Rasters of depth = 8 are stored as successive bytes in row order. The number of bytes that bsta
points to is:

width * height
for depth == 8.

If a 1-bit deep raster is written to a color view surface, ‘0’ bits select the background color and
*1? bits select the color specified by the fill indez primitive attribute.

Note that output clipping is always done on raster primitives.

5.10.2. get_raster — Read Raster from Black/White or Color
Frame Buffer

get_raster reads a specified region of the black and white or color frame buffer into a storage
area.

Revision E of 7 January 1984 5-15

Output Primitives SunCore Reference Manual

get_raster(surface_name, xmin, xmax, ymin, ymax, X, ¥, raster)
struct vwsurf #*surface_name; /* See appendix B #*/
float xmin, ymin, xmax, ymax; [* Region of NDC space to get */
int x,y; /#* starting point pixel offsets in raster relative top left */
struct {
int width, height, depth;
short +bits;
} #raster; [+ Returned Raster */

get_raster requires an area of memory large enough to hold the raster region that it returns. It
is the user’s responsibility to allocate this storage area before calling get_raster. The size_raster
and allocate_raster functions may be used to do this:

size_raster(surface_name, xmin, xmax, ymin, ymax, &raster);
allocate_raster(&raster);
if (raster.bits === NULL)
error case — the raster could not be allocated
else

continue with the processing
To free the area when finished with the raster, call the free_raster function:
free_raster{&raster);

Hence, a large raster may be allocated and then portions of it filled with data using get_raater
with various 2, g offsets, in pixel coordinates from the top left hand corner of the raster.

5.10.3. size_raster — Set Size of Raster in NDC

size_raster returns the raster with the pixel coordinates width, height, and depth, for a specified
region of Normalized Device Coordinate space and a specified view surface.

size_raster(surface_name, xmin, xmax, ymin, ymax, raster)
struct vwsurl *surface_name;
float xmin, xmax, ymin, ymax;
struct {
int width, height, depth;
short +bits;
} #raster;

On return, rester.bits is set to NULL.

5.10.4. allocate_raster — Allocate Space for a Raster

Given a raster whose widih, height, and depth fields were filled by the size_raster function
(described above), allocate_raster allocates the memory required for that raster and sets the
raster.bits pointer.

5-16 Revision E of 7 January 1984

-

SunCore Reference Manual Output Primitives

allocate_raster(raster)
struct {
int width, height, depth;
short *bits;
} #*raster;

allocate_raster returns a NULL pointer value in raster.bits if it is unable to obtain enough
memory for the raster structure.

5.10.5. free_raster — Free Space of a Raster

Jree_raster frees the memory used by a specified raster, if raster.bits is not NULL.

free_raster(raster)
struct {
int width, height, depth;
short +*bits;
} #raster;

5.10.8. raster_to_file — Copy a Raster to a Disk Raster File

raster_to_file copies a raster to a disk file in Sun’s standard raster file format.

raster_to_file(raster, map, fd, replicate)
struct { ‘
int width, height, depth;
short #*bits;
} *raster;
struct { _
int type; /+ 1 for RGB color table */
int nbytes; /+ 3 times number of color table elements */
char *data; /* ptr to nbytes/3 red, blue, and green bytes */
} *map; -
int fd; [+ standard UNIX file descriptor for C programs */
“ [+ Fortran logical unit number for Fortran programs */
~ [* Pascal file variable for Pascal programs */
int replicate; /* magnification factor */

If map.nbytes = 0, no color map data will be written. This would normally be the case for ras-
ters copied from the bitmap display.

The replicate parameter specifies whether the raster should be magnified on transmission to the
file. The raster is transmitted without magnification if replicate = 1, and is transmitted with
pixel-replication zoom for a factor of 2 magnification if replicate = 2.

The format of the generated disk file can be found in the include file in
Jusr/include/rasterfile.h.

Revision E of 7 January 1984 5-17

Qutput Primitives SunCore Reference Manual

5.10.7. file_to_raster — Get a Raster from a Disk File

file_to_raster allocates enough memory for a raster stored on a disk file, then fills in all fields of
the raster and map structures.

file_to_raster(fd, raster, map)
int fd; /* standard UNIX file descriptor for C programs +/
/+ Fortran logical unit number for Fortran programs */
/+ Pascal file variable for Pascal programs +/
struct { :
int width, height, depth;
short #*bits;
} #raster;
struct { :
int type; /+ 1 for RGB color table */
int nbytes; /+ 3 times number of color table elements */
char *data; /+ ptr to nbytes/3 red, blue, and green bytes +/
} *map; :

Note that this function frees map.data, unless data is NULL, and allocates map.data each time
it is called — therefore map.data is only valid in the last call to this function. The raster.bits
field is set to NULL if there is not enough room to allocate the raster.

The format of the disk file can be found in the include file in /usr/include/rasterfile.h.

5.18 Revision E of 7 January 1984

)

Chapter 6

Attributes

Attributes in SunCore specify general characteristics for segments and for output primitives.

There are two major divisions of attributes. One set of attributes is called segment attributes
and applies only to retained segments. The other set is called primitive attributes and applies
only to output primitives. There are no attributes which apply to both retained segments and
to output primitives.

Attributes are further subdivided into static and dynamic. Static attributes specify characteris-
tics of retained segments or output primitives which apply for the entire lifetime of those
objects. Dynamic attributes specify characteristics of segments which can change during the
lifetime of those segments. Static primitive attributes are stored in the display list so that sub-
sequent manipulation of a segment is performed with the appropriate attributes.

6.1. Primitive Static Attributes

The list below defines the primitive static attribute values.

line index
is an index into three float arrays which determine the red, green, and blue components of
the color displayed for line and polyline output primitives. Index value 0 corresponds to the
background color. For lines and polylines on monochrome displays, a non-zero line indez
gives black lines on a white background. SunCore initializes line indez to 1. The range of
possible values is 0 to 265,

fill indez
is an index into three float arrays which determine the red, green, and blue components of
the color displayed for polygon and raster output primitives. Index value 0 corresponds to
" the background color. For monochrome displays, the values form a set of definitions for
texture, described later. SunCore initializes fill indez to 1. The range of possible values is
0 to 255,

teat index
is an index into three float arrays which determine the red, green, and blue components of
the color displayed for markers and text. Index value 0 corresponds to the background
color. For text and markers on monochrome displays, a non-zero text sndez gives black on a
white background. SunCore initializes tezt sndez to 1. The range of possible values is 0 to
255,

linestyle)
is an int value which controls the appearance of lines drawn. Linestyle can assume the

Revision E of 7 January 1984 6-1

Attributes . SunCore Reference Manual

values:

SOLID Solid lines,
DOTTED Dotted lines,
DASHED Dashed lines,

DOTDASHED
Dotdashed lines.

The definitions of these constants can be found in usercore.h. SunCore sets linestyle to
SOLID at initialization time.

polygon intersor style .
is an int value which controls the interior filling style for polygons. polygon interior
style can have the values:

PLAIN Solid color polygon

SHADED Shading style is set dynamically by set_shading parameters. Only 3-D
polygons may be shaded.

SunCore sets polygon interior atyle to PLAIN at initialization time.

polygon edge style
is not implemented in the current release of SunCore.

linewidth is a float value which describes, in world coordinates, the width of drawn lines.
SunCore sets linewidth to 0.0 (the minimum) at initialization time.

pen is an int value which is passed to the device driver to select a particular device
dependent pen. SunCore initializes pen to 0.

Jont is an int value which determines the character font in which text will be written.
‘Font can assume the following values (for charprecision=CHARACTER):

ROMAN If charprecision=STRING, this gives a raster font.

GREEK If charprecision=STRING, this gives the default raster font.
SORIPT If charprecision=STRING, this gives a small raster font.
OLDENGLISH If charprecision~STRING, this is equivalent to ROMAN,
STICK It charprcciaionésmn\re, this is equivalent to GREEK.

SYMBOLS Currently holds some electronics symbols {character values 32 through
47). If charprecisionu=STRING, this is equivalent to SCRIPT.

SunCore sets font to STICK at initialization time.

charsize i3 a pair of float values which determine the size of characters, in world coordinates.
SunCore sets the default character width to 11.0 and the default character height
to 11.0 at initialization time.

charup attribute consists of three float values which represent a vector giving the direction
of ‘up’ for characters:

(dz_charup, dy_charup, dz_charup)

in world coordinates. Usually, ckarup is normal to charpath. SunCore establishes
the default as a vector in the positive y direction (0.0, 1.0, 0.0) at initialization time.

charpath consists of three float values which represent a vector:

(dz_charpath, dy_charpath, dz_charpath)

6-2 Revision E of 7 January 1984

SunCore Reference Manual Attributes

that determines the direction, in world coordinates, in which character strings will
extend. SunCore sets the charpath attribute to (1.0, 0.0, 0.0) at initialization time.

charspace is a single float value specifying the space, in world coordinates, whickh should be
inserted between characters in a text string. SunCore establishes charspace with
the value 0.0 at initialization time. : :

charjust is not implemented in the current release of SunCore.

charprecision
is an int value which controls the quality of the text drawing operation. Charpreci-
sion can have the values:

STRING Fast raster fonts, fixed size, and fixed orientation.
CHARACTER Hershey vector fonts.

marker_symbol .
determines the character which is plotted on the displays by the marker and poly-
marker functions described in the chapter on Output Primitives. Any printable
ASCII character can be used as the marker character.

Note: The ACM Core specifies that the integer values 1 through 5 represent specific
characters. SunCore does not implement this feature.

pick_id is an int value identifying the next output primitive. The input primitives use this
number for user interaction with segments and primitives within segments.

rasterop specifies the rasterop used when writing to the display. It can be one of:
NORMAL Source value is written to the display.

XORROP Source value is exclusive or'ed with the value already in the display
before being written to the display.

ORROP Source value is or'ed with the value already in the display before being
written to the display.

This attribute is ignored if act_drag was specified as TRUE.
The functions listed in the subaections below each set the specified attribute value for the indi-
cated primitive attribute!
Errors returned from the px:iinitive attribute setting functions:
e One or more of the attribute values is incorrect.

e No character orientation can be established because dz_charpath, dy charpath, and
dz_charpath are all zero.

o No character up direction can be established because dz_charup, dy_charup, and
dz_charup are all zero.

6.1.1. Using Texture for Color Attributes on the Monochrome
Display

When a monochrome display is used, the fill indez attribute is used to determine how a region of
the screen is textured when using the polygon output primitives. Texturing is done in terms of
16 X 16 pixel regions of the screen. There are 16 rows of 16 pixels each. The fill indez attri-
bute selects an entry from each of three arrays of float values in the range 0.0 through 1.0,
representieg red, green, and blue. In the case of the monochrome display, each of these three
float numbers is converted to an integer between 0 and 255. Each of the 8-bit numbers is

Revision E of 7 January 1984 8-3

Attributes

divided into two four-bit quantities, which we can call A and B.

SunCore Reference Manual

Table 6-1: Structure of a Fill-Index Value

Select

B

Red

Select

A

Length

B

Green

Length

A

Rotate J Rotate

Blue

A

B

Select A and Select B are four-bit values which are used to select an A pattern and a B pattern
out of the table of numbers shown below.

Revision E of 7 January 1984

-

-

SunCore Reference Manual Attributes

Table 6-2: Texture Selection Values
frolii ey By Patera

0 0000 0o 0 0 0 0 0 0 0 0 0O O 0 O O O
1 8000 1 0 0 0 0 0 6 0D 0 O O O O 0 O
2 8080 1 0 6 0 0 0 0 0 1 0 O O O O O
3 8410 1 0 0 0 0 1 0 0O 0 0 O 1 0 O O
4 8888 1 0 0 0 1 0 0 01 0 0 0 1 0 0
5 9124 1 6 60 1 6 6 0 1 © 0 1 0 O 1 O
6 9494 1 0o ¢ 1 0 1 0 0 1 0 O 1 0 1 O
7 A552 1 0 1. 0 0 1 0 1 0 1 0 1t 0 O 1
8 AAAA 1 06 10 1 0 1 0 1 0 1 0 1 0 1

@ 9 EBGE 1 Tt 1.0 1 0 1 1 0 1 1 0 1 1 1
10 DDDD 1 1 0 1t 1 1 0 1 1 1 O 1 1 1 0O
10 F7F7 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
12 FFFF 1 1.1 1 1 1 1 1 1 1 1 1 1 1 1
13 E3E3 1 1. 1.0 0 0 1 1 1 1 1 0 0 0 1
14 - FF00 1 1.1 1 1 1 1 1 06 0 0 0 0 O O
15 COFF © 0 0 0 0 0 0 0 1 1 1 1t 1 1 1

The patterns are then laid down in the texture field, pixels, as described in the pseudo code
below.

O

Revision E of 7 January 1984 6-5

Attributes SunCore Reference Manual

let 2 == y == Pattern A

for index == 0 to Length A- 1
pixelsfindex] = z| y
if Rotate A & 1 then rotate z one bit right
if Rotate A & 2 then rotate z one bit left
if Rotate A & 4 then rotate y one bit right
if Rotate A & 8 then rotate y one bit left

let z =y = Pattern B _
for index == Length A to Length A + Length B- 1
pixelsfindex) = z | y
if Rotate B & 1 then rotate z one bit right
if Rotate B & 2 then rotate z one bit left
if Rotate B & 4 then rotate yone bit right
if Rotate B & 8 then rotate y one bit left

If the value of

length A + length B

is less than 16, the processes described above are repeated as many times as required to fill the
16 line region.

The above encoding provides for an enormous number of textures. Here are a few of the useful
ones.

Table 8-3: Useful Texture Selection Values

Red Green Blue Reaultant
Value Value Value Tezture

0.1334 05020 0.3529 | Hatched Left
0.1334 0.5020 0.8471 | Hatched Right
0.4667 0.5334 0.2118 | Wallpaper
0.0000 0.2667 0.3882 | White
0.8001 0.2667 0.4001 | Black
0.1334 0.3334 0.4001 | Wavy Lines
0.5334 0.5334 0.4001 | Grey Tone
0.1334 0.5334 0.4001 | Cross Hatched

6.1.2. define_color_indices — Assign Colors to Indices

define_color_indices defines gntries in the color lookup table of a view surface.

6-6 Revision E of 7 January 1984

-

-

-

SunCore Reference Manual Attributes

define_color_indices(surface_name, i1, i2, red_array, green_array, blue_s-ray)
struct vwsurf *surface_name; /+ See appendix B #/
int il, i2; /* indices range from 0 through 255 #/
float red_array{], green_array[], blue_array|);

The three arrays provide the values for red, green, and blue respectively. The value of each ele-
ment in the color arrays is in the range 0.0 through 1.0. The function defines all the indices in
the color index table between i1 and 2 inclusive, using the first §2-¢1+ 1 elements from each of
the three arrays,

Subsequent calls to the set_zzz_sndez function selects a color from the lookup table to use as a
color attribute.

Location 0 in the color tables is the background color for the view surface. For the mono-
chrome displays, lines, text, and markers are drawn black for any color index other than 0.

SunCore initializes the lookup table for monochrome view surfaces such that for the sth entry,
red[f] =i, green[s] =256-4, and blue[{] ==+. SunCore initializes color view surfaces which have
a full 256-element lookup table such that entry O is gray, entry 1 is black, entries 2 through 63
contain an intensity ramp in red, entries 64 through 127 contain an intensity ramp in green,
entries 128 through 191 contain an intensity ramp in blue, and entries 192 through 255 contain
an intensity ramp in yellow (red+ green). See appendix B for details of color view surfaces with
fewer than 256 entries in the lookup table.

6.1.3. set_line_iridex — Select a Line Color Attribute

set_line_indez selects a color by providing an index into the tables defined by the
define_color_indices function. This color attribute is applied to subsequent line and polyline
output primitives.
~ set_line_index(index)
int index; /* range O through 255 »/

6.1.4. set_fill_index — Select a Polygon and Raster Color

set_fill indez selects a é;!pr by providing an index into the tables defined by the
define_color_indices function. This color attribute is applied to subsequent polygon and raster
output primitives.
set_fill_index(index)
int index; /* range O through 255 */

6.1.5. set_text_inde:ﬁ — Select a Text and Marker Color

sct_tezt_sndez selects a color by providing an index into the tables defined by the
define_color_sndices function. This color attribute is applied to subsequent text and marker
output primitives.

Revision E of 7 January 1984 6-7

Attributes SunCore Reference Manual

set_text_index(index)
int index; /* range O through 255 */

6.1.6. set_linewidth

act_linewidth specifies the linewidth attribute for the output primitives.

set_linewidth(linewidth) '
float linewidth; /+ unit of width is 1 percent of NDC space #/

SunCore initializes linewidth to 0.0, which results in a one pixel wide line.

If XOR'ing is enabled (via the seé_rasterop or set_drag functions), lines whose pixel width is
greater than one may partially overwrite themselves, resulting in poorly drawn wide lines.
Redrawing the lines with XOR'ing off will draw the lines correctly (until this problem is fixed).

6.1.7. set_linestyle

set_linestyle specifies the linestyle attribute for output primitives.

set_linestyle(linestyle)
int linestyle; /+ SOLID, DOTTED, */
/* DASHED, DOTDASHED #*/

SunCore initializes linestyle to SOLID.

6.1.8. set_polygon_interior_style — Select Plain or Shaded
Polygons

aet_polygon_snterior_astyle sbeciﬁes the method of filling for polygons.

set_polygon_interior_style(style)
int style; /* PLAIN, SHADED »*/

If the filling method is SHADED, polygons are shaded according to the parameters set by the
set_shading_parameters function. Only 3-D polygons may be shaded.

6.1.9. set_polygon_edge_style (No Effect)

set_polygon_edge_style specifies the method of drawing the edges of a polygon.

set_polygon_edge_style(style)
int style; /+ SOLID, INTERIOR */

This function has no effect in the current release of SunCore.

6-8 Revision E of 7 January 1984

-

-

SunCore Reference Manual Attributes

6.1.10. set_font

act_font specifies the font attribute for the output primitives.

set_font(font)
int font; /* ROMAN, GREEK, SCRIPT, OLDENGLISH, */
/% STICK, SYMBOLS */

SunCore initializes font to STICK. If the charprecision attribute is set to STRING, ROMAN gives
a small Roman font, GREEK gives a stick figure font, and SCRIPT gives a tiny stick figure font.
The STRING precision fonts are ‘raster’ fonts and are not scalable or rotatable, hence they are in
pixel coordinates and are larger on the color surface than on the monochrome bitmap display.

6.1.11. set_pen — Select a Device Dependent Pen

This function has no effect on the standard SunCore view surfaces,

set_pen{pen)
int pen;

6.1.12. set_charsize

set_charssze specifies the charsize attribute for the text output primitive, in world coordinates.

set_charsize(charwidth, charheight)
float charwidth, charheight;

If the charprecision attribute is set to STRING, sef_charsize has no effect, except to control the
target extent of the text for the awast_pick function. If the charprecisson attribute is set to
CHARACTER, set_charsize sets the average size of a character, given that each character has its
own size.

8.1.13. set_charspace — Define Character Spacing for Output
Primitives

sci_charspace specifies the space attribute for the text output primitive, in world coordinates. It
is used to insert additional space between characters in text strings.

set_charspace(charspace)
float charspace;.

If the charprecision attribute is set to STRING, sct_charspace has no effect.

6.1.14. set_charup_2

set_charup_2 specifies the charup attribute for the text output primitive, in world coordinates.

set_charup_2(dx, dy)
float dx, dy;

Revision E of 7 January 1984 6-9

Attributes ' . SunCore Reference Manual

Note that the dz offset is set to 0.0 for this function. If the charprecision attribute is set to
STRING, set_charup_2 has no effect; otherwise it specifies the upward direction for the characters.
This provides for slanting, mirror imaging, and so on, for characters.

6.1.15. set_charup_3

set_charup_$ specifies the charup attribute for the text output primitive, in world coordinates.

set_charup_3{(dx, dy, dz)
float dx, dy, dz;

If the charprecision attribute is set to STRING, set_charup_8 has no effect; otherwise it specifies
the direction of upward for the characters. This provides for slanting, mirror imaging and such,
for characters.

6.1.16. set_charpath_2

set_charpath_g specifies the charpath attribute for the text output primitive, in world coordi-
nates,

set_charpath_2(dx, dy)
float dx, dy;

Note that the dz offset is set to 0.0 for this function. If the charprecision attribute is set to
STRING, set_charpath_£ has no effect; otherwise the character string is written in this direction.

6.1.17. set_charpath_3

set_charpath_8 specifies the charpath attribute for the text output primitive, in world coordi-
nates. : '

set_charpath_3(dx, dy, dz)
float dx, dy, dz;

If the charprecizion attribute is set to STRING, aet_charpath_3 has no effect; otherwise the char-
acter string is written in this direction.

6.1.18. set_charjust — Specify Text Justification (No Effect)

aet_charjuat specifies how text strings should be justified.

set_charjust(just)
int just;

This function has no effect in the current release of SunCore.

6-10 Revision E of 7 January 1984

-

-

SunCore Reference Manual Attributes

6.1.19. set_charprecision

set_charpreciaion selects the method of drawing text.
set_charprecision(charprecision) -
int charprecision; /+ STRING, CHARACTER »*/

STRING Specifies characters of fixed size and orientation, which are drawn rapidly using
raster operations.

CHARACTER Specifies Hershey vector fonts, which can be clipped and transformed.

6.1.20. set_marker_symbol

set_marker_symbol establishes the marker_symbol primitive attribute.

set_marker_symbol(marker) :
int marker; [+ Character to use as Marker — 32 .. 127 »/

The character specified by the marker argument in the set_marker_symbol function call is subse-
quently used as the marker character by the marker and polymarker functions.

6.1.21. set_pick_id

set_pick_id specifies the pick_id attribute for output primitives.
set_pick_id(pick_id}
int pick_id;

The pick_sd attribute is only used by the await_pick input function. Subsequent output primi-
tives are identified by the specified pick_id when they are detected by the mouse pointing dev-
ice, via the await_pick input function.

6.1.22. set_rasterop — Select Rasterop to Display Memory (Sun-
Core Extension)

set_rasterop selects Xor'ing or or'ing of primitives to display memory.

set_rasterop(rop)
int rop; /* XORROP, ORROP, NORMAL #/

6.1.23. set_primitive_attributes — Specify All Primitive Attri-
butes

set_primitive_attributes is a composite function which provides a means to set all the primitive
attributes in a single function call.

Revision E of 7 January 1984 6-11

Attributes SunCore Reference Manual

set_primitive_attributes(attributes)

struct {
int lineindx, fllindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwidth;
int pen, font;
float charwidth, charheight;
float charupx, charupy, charups, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacesz, charspacew;
int chjust, chquality;
int marker, pickid, rasterop;

} *attributes;

Note that the function call:
set_primitive_attributes(ZPRIMATTS)
sets all the primitive attributes to their default values. PRIMATTS is defined in uaercore.h.

6.2. Inquiring Primitive Static Attribute Values

Errors returned from the primitive static attribute enquiry functions:

e A two dimensional inquiry function was used when a three dimensional inquiry function
should have been used to avoid loss of information.

6.2.1. inquire_color_indices

inquire_color_indices obtains the color lookup table for the specified view surface.

inquire_color_indices(surface_name, il, i2, red_array, green_array, blue_array)
struct vwsurfl *surface_name; [+ See appendix B #*/
int i1, i2; /* Start and end table indices */
float red_array[]; /* Range of each element is 0.0 thru 1.0 +/
float green_array[]; /+ Range of each element is 0.0 thru 1.0 »/
float blue_array[]; /+ Range of each element is 0.0 thru 1.0 »/

surface_name is the name of the view surface for which the color lookup tables should be
obtained.

ingusre_color_sndices takes entries from the color lookup tables, starting at index 1 (relative to
zero) and ending at index 12, The color lookup tables for a given color are stored in

array|0] through array[i2- i1}

6.2.2. inquire_line_index

snquire_line_indez obtains the current color index for coloring line and polyline output primi-
tives,

8-12 Revision E of 7 January 1984

-

O

SunCore Reference Manual Attributes

inquire_line_index(index}
int »index;

6.2.3. inquire_fill_index

inguire_fill_sndez obtains the current color index for coloring polygon and raster output primi-
tives.

inquire_fill_index(index)
int *index;

8.2.4. inquire_text_index

‘inquire_tezt_indez obtains the current color index for coloring marker and text output primi-

tives. :

inquire_text_index(index)
Int *index;

6.2.6. inquire_linewidth
inquire_linewidth obtains the lincwidth attribute, in percent of normalized device coordinate
space, for the output primitives.

inquire_linewidth(linewidth)
float slinewidth;

6.2.6. inquire_linestyle

inquire_linestyle obtains the lincatyle attribute for the output primitives.

inquire_linestyle(linestyle)
int #linestyle; /¢ SOLID, DOTTED, */
/% DASHED, DOTDASHED #/

6.2.7. inquire_polygon_interior_style — Obtain Polygon Shading
Method :

t'nquirc__polygou,_czntcrior_atylc obtains the method of filling for polygons.

inquire_polygon_interior_style(style)
int *style; /+ PLAIN, SHADED #/

Revision E of 7 January 1984 6-13

Attributes ' SunCore Reference Manual

6.2.8. inquire_polygon_edge_style

tnquire_polygon_edge_style obtains the current method of drawing polygon edges.

inquire_polygon_edge_style(style)
int #style; [+ SOLID, INTERIOR #*/

6.2.9. inquire_pen

inquire_pen(pen)
int s*pen; /* Device dependent pen selector »/

6.2.10. inquire_font

inquire_font obtains the font attribute for the text output primitive.

inquire_font({font)
int *font; /+ ROMAN, GREEK, SORIPT, OLDENGLISH, #*/
/% STICK, SYMBOLS #/

6.2.11. inquire_charsize

inquire_charsize obtains the charsize attribute for the text output primitive.

inquire_charsize(charwidth, charheight)
float *charwidth, *charheight;

6.2.12. inquire_charspace

inguire_charspace obtains the charspace attribute for the text output primitive.

inquire_charspace(charspace)
float *charspace;

6.2.13. inquire_charup_2

inquire_charup_2 obtains the charup attribute for the text output primitive.

inquire_charup_2(dx, dy)
float *dx, «dy;

6-14 Revision E of 7 January 1984

SunCore Reference Manual _ Attributes

6.2.14. inquire_charup_3

inguire_charup_$ obtains the charup attribute for the text output primitive.

inquire_charup_3(dx, dy, dz)
float *dx, *dy, *dz;

6.2.15. inquire_charpath_2

inquire_charpath_g obtains the charpath attribute for the text output primitive.

inquire_charpath_2(dx, dy)
float #dx, *dy;

6.2.16. inquire_charpath_3

inquire_charpath_$ obtains the charpath attribute for the text output primitive.

inquire_charpath_3(dx, dy, dz)
float *dx, *dy, *dz;

6.2.17. inquire_charjust — Obtain Justification Attribute

inguire_charjuat obtains the justification attribute for text strings.

inquire_charjust(just)
int *just;

6.2.18. inquire_rasterop — Obtain Current Rasterop (SunCore
Extension)

fnquire_rasterop determines the current setting of the rasterop attribute.

inquire_rasterop{rop}
int srop; /* XORROP, ORROP, NORMAL #/

6.2.19. inquire_cha:rprecision

inquire_charprecision obtains the charprecision attribute for the text output primitive.

inquire_charprecision(charprecision)
int scharprecision; /# STRING, CHARACTER #*/

Revision E of 7 January 1984 6-15

Attributes : SunCore Reference Manual

6.2.20. inquire_pick_id
inquirc_pick_id obtains the pick_id attribute for output primitives.

inquire_pick_id(pick_id)
int #*pick_id;

6.2.21. inquire_marker_symbol

inguire_marker_symbol obtains the current value of the marker symbol.

inquire_marker_symbol(symbol)
int *symbol; /+ 32. 127 #/

6.2.22. inquire_primitive_attributes — Obtain All Primitive Attri-
butes

inguire_primitive_attributes is a composite function which provides a means to obtain all the
primitive attributes in a single function call.

inquire_primitive_attributes(attributes)

struct {
int lineindx, fillindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwidth;
int pen, font;
float charwidth, charheight;
float charupx, charupy, charups, charupw;
float charpathx, charpathy, charpathsz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chjust, chquality; ‘
int marker, pickid, rasterop;

} +attributes;

6.3. Retained Segment Static Attributes

There is only one static attribute for segments. This is the image_transformation_type attri-
bute. This attribute can take on one of five values:

NONE Retained segment on which no translation, scaling, or rotation can be performed.

XLATE2 Translatable retained segment. The segment can be moved (translated) in two
dimensions (x and y of NDC space).

XFORM2 Fully transformable retained segment. The segment can be moved (translated),
rotated, and scaled (have its size changed) in two dimensions (x and y of NDC
space).

XLATE3 Translatable retained segment. The segment can be moved (translated) in three
dimensions (x, y and z of NDC space).

6-16 Revision E of 7 January 1984

SunCore Reference Manual _ Attributes

XFORMS3 Fully transformable retained segment. The segment can be moved (translated),
rotated, and scaled (have its size changed) in three dimensions (x, y and z of NDC
space).

The image_transformation_type attribute is set when a segment is created and cannot be

changed at any time during the life of the segment. The default value of

tmage_transformation_type is NONE.

The functions described below are used to set and enquire about the values of
tmage_transformation_type.

6.3.1. set_image_transformation_type

set_tmage_transformation_type specifies the image_transformation_type attribute for subse-
quently created segments. :

set_image_transformation_type(type)
int type; /* NONE, XLATE2, XFORM2, XLATE3, XFORM3 #/

6.3.2. inquire_image_transformation_type

inguire_image_transformation_type obtains the current value of the image transformation_type
attribute.

inquire_image_transformation_type(type)
int *type; /+ NONE, XLATE?, XFORM2, XLATE3, XFORM3 #/

6.3.3. inquire_segment_image_transformation_type

inguire_segment_smage_transformation_type obtains the image_transformation_type for a
specified segment.
inquire_segment_image_transformation_type{segment_name, type)

int segment_pame; {* Name of segment for inquiry */
int *type; /+ NONE, XLATE2, XFORM2, XLATE3, XFORM3 +/

6.4. Setting Retained Segment Dyna.mié Attributes

In addition to the one static attribute described above, there are a number of dynamic attri-
butes which apply to segments. Each retained segment has its own set of dynamic attributes,
as listed below.

Visibility indicates whether the segment should have a visible image. There are only two
' values of this attribute, namely: TRUE and FALSE.

SunCore sets viashility to TRUE at initialization time.

Highlighting indicates whether the segment’s image should be highlighted. In SunCore,
highlighting is done by briefly blinking the segment. There are only two values of
the highlighting attribute, namely, TRUE and FALSE.

Revision E of 7 January 1984 8-17

Attributes SunCore Reference Manual

SunCore sets highlighted to FALSE at initialization time.

Detectability indicates whether the retained segment can be detected by the awast_pick input
primitive. A value of 0 means that the segment is not pickable. If two segments
overlap, the one with the greatest value of detectability is the one that gets picked.
SunCore sets defectability to the default value of © at initialization time.

Image_transformation ,
indicates how the image of a retained segment is scaled, rotated, or translated.
Image transformations are done in NDC space, ie. after all viewing operations have
been performed. Image transformations do not compose and do not cumulate.
Whenever any function affecting a segment’s image transformation is called, the
transformation is reset to reflect only the values specified by the call. The
tmage_transformation attribute of a segment must be consistent with its

image_transformation_type attribute (for instance, if the
tmage_transfermation_type is XLATE2, it is an error to attempt to rotate the seg-
ment). ‘

SunCore sets the default image_transformation to the identity transformation
(that is, no translation, scaling, or rotation) at initialization.

There are two classes of functions for setting retained segment dynamic attributes. One class
sets the default attributes for subsequently created segments; the other sets attributes on a
named segment basis.

Errors which can be returned from the retained segment dynamic attribute setting routines are:
o There is no retained segment called segment_name.
¢ One or more of the attributes is incorrect.

o The segment’s image_transformation_type attribute value is incompatible with the
requested function.

6.4.1. set_visibi_lity

set_visibility specifies the default visibility attribute for subsequently created segments. This
does not affect the visibility of existing segments or the currently open segment.

set_visibility(visibility)
int visibility; /* TRUE or FALSE #/
6.4.2. set_highlighting

set_highlighting specifies the default kighlighting attribute for subsequently created segments.

set_highlighting(highlighting)
int highlighting; /* TRUE or FALSE s/

6.4.3. set_detectability

set_detectability specifies the default detectability attribute for subsequently created segments.

6-18 Revision E of 7 January 1984

-

SunCore Refe;ence Manual Attributes

set_detectability(detectability)
int detectability; /* 0 thru 2%-1 */

6.4.4. set_image_translate 2

set_image_tranaslate_g sets the default image transformation attribute for subsequently created
segments.

set_image_translate_2(tx, ty)
float tx,ty; [+ x and y translation values in NDC */

The default image transformation is set to a two-dimensional translate by ¢z and ty.

6.4.5. set_image_tx:hnsformation_2

set_image_transformation_2 sets the default image transformation for subsequently created seg-
ments.

set_image_transformation_2(sx, sy, a, tx, ty)
float sx,sy; /*x and y Scale Factors ¥/
float a; /* Rotation Value in radians clockwise about the z axis */
float tx,ty; /* x and y Translation Values in normalized device coordinates */

The default transformation’is set to a two-dimensional scale by sz and sy, rotation by a, and
translation by ¢tz and ¢y. The order of transformation is:

1. Sgale about the origin of NDC space.

2. Rotate about the origin of NDC space (about the » axis). A positive rotation of x/2
radians will rotate the x axis into the y axis.

3. Translate.
To scale and rotate about a point z, y, add dz to ¢z and add dy to ty, where

dx = x — (x * 5x * cos(a) - y * sy * sin(a))
dx == y - (x # sx * sin(a) + y * sy * cos(a))

6.4.6. set_image_translate_3

sct_image_translate_3 sets the default image transformation attribute, in normalized device
coordinates, for subsequently created segments.

set_image_translate_3(tx, ty, tz)
float tx,ty,tz; /*Xx,y, and 7 Translation Values in NDC » /

The default image transformation is set to a three-dimensional translate by ¢z, ty, and ¢z.

'Revision E of 7 January 1984 6-19

Attributes SunCore Reference Manual

6.4.7. set_image_transformation_3

set_image_transformation_3 sets the default image transformation attribute for subsequently
created segments.

set_image_transformation_3(sx, sy, sz, ax, ay, az, tx, ty, tz)
float sx,sy,ss; /+#x,y, and z Scale Factors +/
float ax, ay, az; [+ Rotation Values in radians clockwise */
/% about the x, y, and z axes. */
float tx, ty,tz; /% x,y, and ¢ Translation Values in NDC #/

The default image transformation is set to a three-dimensional scale by a2, sy, sz, a three-
dimensional rotation by az, ay, a4z, and a three-dimensional translation by tz, ty, ¢z. The order
of transformation is:

1. Scale about (0.0, 0.0, 0.0) in NDC space,

2. Rotate about (0.0, 0.0, 0.0) in NDC space, first about the z-axis, then about the y-axis, and
then about the z-axis. Since NDC space is a left-handed coordinate system, rotations are
computed using the left-hand rule. When the origin is viewed from the positive side of the
axis of rotation, clockwise rotations correspond to positive rotations.

3. Tranalate.

6.4.8. set_segment_visibility

set_segment_visibility specifies the vissbility attribute for the named segment.

set_segment_visibility(segment_name, visibility)
int segment_name; .
int visibility; =~ /* TRUE or FALSE #/

When visibility is set to FALSE, the segment is erased from the view surfaces. The segment is
redrawn again when visibility is set to TRUE.

6.4.9. set_segment_highlighting

sct_segment_highlighting specifies the highlighting attribute for the named segment.

set_segment_highlighting{segment_name, highlighting)
int segment_name; .
int highlighting; /* TRUE or FALSE s/

When highlighting is set to TRUE, the segment is blinked once.

6.4.10. set_segment_detectability

sct_segment_detectability specifies the detectability attribute for the named segment.

set_segment_detectability(segment_name, detectablhty)
int segment_name;
int detectability; J* 0thru 2®-1 +/

6-20 Revision E of 7 January 1984

SunCore Reference Manual Attributes

When detectability is set to 0, the segment cannot be picked by the await_pick input function. If
two segments overlap, the segment with the greatest detectabslity is picked.

6.4.11. set_segment_image_translate_2

set_segment_image_translate_2 sets the image transformation attribute for the named segment.

set_segment_image_translate_2(segment_name, tx, ty)
int segment_name;
float tx; /% x Translation Value in NDC #/
float ty; /*y Translation Value in NDC #/

The image transformation is set to a two-dimensional translate by ¢z, ty. The named segment is
erased from the view surface and them redrawn after the new image transformation is applied.
This may be done while the segment is open.

6.4.12. set_segment_image_transformation_2

sel_segment_image_transformation_2 sets the image transformation attribute for the named seg-
ment. :

set_segment_image_transformation_2(segment_name, sx, sy, a, tx, ty)
int segment_name;
float ax; /* x Scale Factor */
float sy; /*y Scale Factor */
float a; /% Rotation Value in radians clockwise about the z axis*/
float tx; /* x Translation Value in NDC #/
float ty; /+y Translation Value in NDC #/

The image transformation s set to a two-dimensional acale by sz and sy, a two-dimensional
rotation by g, and a two-dimensional translation by ¢z and ty. The order of transformation is:
1. Scale about the origin of NDC space. '

9. Rotate about the origin of NDC space {about the z axis). A positive rotation of /2 radians
will rotate the x axis into the y axis.

3. Translate.
To scale and rotate about & point z, y, add dz to fz and add dy to ty, where

dx = x - (x * s& * cos(a) - y * sy # sin(a))
dx ==y - (x * sx * sin(a) + y * sy * cos(a))

The named segment is erased from the view surface and then redrawn after the new image
transformation is applied. This may be done while the segment is open.

6.4.13. set__segment_;_ima.ge_translate_3

set_segment_image_translate_3 sets the image transformation attribute for the named segment.

Fire

Revision E of 7 January 1984 6-21

Attributes SunCore Reference Manual

set._segment_image__translate__3(segment__name, tx, ty, tz)
int segment_name; @
float tx; /* x Translation Value in NDC +/
float ty; /¢y Translation Value in NDC */
float tz; /* z Translation Value in NDC #/

The image transformaticn is set to a three-dimensional translate by ?z, ty, tz. The named seg-
ment is erased from the view surface and then redrawn after the new image transformation is
applied. This may be done while the segment is open.

6.4.14. set_segment_image_transformation_3

set_segment_image_transformation_3 sets the image transformation attribute for the named seg-
ment.

set_segment_image_transformation_3(segment._name, sX, sy, sz, aX, ay, az, tx, ty, tz)
int segment_name;
float sx; /* x Scale Factor */
float sy; /*y Scale Factor */
float sz; /* z Scale Factor #/
float ax; [+ Rotation Value in radians clockwise about the x axis +/
float ay; /* Rotation Value in radians clockwise about the y axis /
float az; /+ Rotation Value in radians clockwise about the z axis #/
float tx; /% x Translation Value in NDC */
float ty; /*y Translation Value in NDC #/ .
float tz; /+ z Translation Value in NDC #/ @

The image transformation s set to a three-dimensional scale by sz, sy, 8z, a three-dimensional
rotation by @z, ay, 6z, and a three-dimensional translation by ¢z, ty, tz. The order of transfor-
mation is: :

1. Scale about (0.0, 0.0, 0.0) in NDC space.

2. Rotate about (0.0, 0.0, 0.0) in NDC space, first about the z-axis, then about the g-axis, and
then about the z-axis. Since NDC space is a left-handed coordinate system, rotations are
computed using the left-hand rule. When the origin is viewed from the positive side of the
axis of rotation, clockwise rotations correspond to positive rotations.

3. Translate.

The pamed segment is erased from the view surface and then redrawn after the new image
transformation is applied. This may be done while the segment is open.

6.5. Inquiring Retained Segment Dynamic Attributes
The functions described below are for imquiring the settings of the dynamic attributes for
retained segments. There are two classes of functions for inquiring retained segment dynamic

attributes. One class obtains the default attributes for subsequently created segments and the
other obtains attributes on a named segment basis.

Errors which can be returned from these functions are:

6-22 Revision E of 7 January 1984

©

SunCore Reference Manual Attributes

e There is no segment called segment_name.

.o The default image transformation attribute value is of a more complex type than the
inquiry function used.

o The segment's smage_transformation_type attribute value is incompatible with the
requested function. '

o The segment's image_transformation_type attribute value is of a more complex type than
tre inquiry function used.

8.5.1. inquire_visibility

inquire_visshility obtains the default visibility attribute for subsequently created segments.

inquire_visibility(visibility)
int *visibility; /* TRUE or FALSE #/

6.5.2. inquire_highlighting
inquire_highlighting obtains the default highlighting attribute for the subsequently created seg-
ments. '

inquire_highlighting{highlighting)
int *highlighting; /* TRUE or FALSE +#/

6.6.3. inquire_detectability
inquire_detectability obtains the default detectabslity attribute for the subsequently created seg-
ments.

inquire_detectability{detectability)
int *detectability; /+ 0thru 2™-1 »/

8.5.4. inquire_image_translate_2

inquire_image_{ranslate_2 obtains the two-dimensional translation components of the default
image transformation for subsequently created segments.

inquire_image_translate_2(tx, ty)
float *tx, *ty; [+ x and y Traunslation Values in NDC #/

8.5.5. inquire_image_transformation_2

fnquirc_image_transformation_2 obtains the two-dimensional scale factor, rotation, and transla-
tion components of the default image transformation attribute for subsequently created seg-
ments.

Revision E of 7 January 1984 ‘ 6-23

Attributes . ' SunCore Reference Manual

inquire_image_transformation_2(sx, sy, a, tx, ty)
float +*sx, *sy; /+'x andy Scale Factors +/
float *a; [+ Rotation Value in radians clockwise about the z axis+/
float *tx, *ty; ~ /* x and y Translation Values in NDC #/

6.5.6. inquire_image_translate_3
inquire_image_transiate_9 obtains the three-dimensional translation components of the default
image transformation attribute for subsequently created segments.

inquire_image_translate_3(tx, ty, tz)
float +*tx, sty, tz; /* x, y, and & Translation Values in NDC +/

6.5.7. inquire_image_transformation_3

inqutre_image_transformation_3 obtains the three-dimensional scale factor, rotation, and trans-
lation components of the default image transformation attribute for subsequently created seg-
ments.

inquire_image_transformation_3(sx, sy, sz, ax, ay, as, tx, ty, tz)
float =*sx, +sy, #sz; [+x,y,and: Scale Factors */
float +ax, #ay, *az; /+ Rotation Values in radians clockwnse about the */
/* x, y, and z axes /
float *tx, sty, stz; [+ x,y, and ¢ Translation Values in NDC +/

6.5.8. inquire_segment;visibility

inquirc_aeﬁmcnt_m’as'ba'h'ty obtains the viasbility attribute for the named segment.

inquire_segment_visibility(segment_name, visibility)
int segment_name;
int *visibility; /* TRUE or FALSE s/

6.5.8. inquire_segment_highlighting

inquire_segment_highlighting obtains the highlighting attribute for the named segment. |

inquire_segment_highlighting(segment_name, ilighlighting)
int segment_name;
int *highlighting; /* TRUE or FALSE #/

6.5.10. inquire_segment_detectability

inquire_scgment_detectability obtains the detectability attribute for the named segment.

6-24 Revision E of 7 January 1984

SunCore Refe_rence Manual Attributes

inquire_segment_detectability(segment_name, detectability)
int segment_name; :
int *detectability; /+ 0thru2®-1 #/

6.5.11. inquire_segment_image_translate_2

inquire_segment_image_translate_£ obtains the two-dimensional translation components of the
named segment’s image transformation attribute,

inquire_segment_image_translate_2(segment_name, tx, ty)
int segment_name;
float *tx; /* x Translation Value in NDC #/
float *ty; /+*y Translation Value in NDC #/

6.5.12. inquire_segment_image_transformation_2

inquire_segment_image_traniformation_g obtains the two-dimensional scale factor, rotation, and
translation components of the named segment's image transformation attribute.

inquire_segment_image_transformation_2(segment_name, sx, sy, a, tx, ty)
int segment_name;
float *sx; [+ x Scale Factor +/
float #sy; [+ y Scale Factor %/
float *a; /* Rotation Value in radians clockwise about the z axis+/
float *tx; /#+ x Translation Value in NDC #/
float *ty; [+ y Translation Value in NDC */

6.56.13. inquire_segment_image_translate_3

inquire_segment_image_translate_8 obtains the three-dimensional translation components of the
named segment's image transformation attribute.

inquire_segment_image_translate_3(segment_name, tx, ty, tz)
int segment_name;
float *tx; /¢ x Translation Value in NDC #/
float sty; [+ y Translation Value in NDC #/
float *tz; [+ z Translation Value in NDC #/

16.5.14. inquire_segment_image_transformation_3

ingquire_segment_image_transformation_3 obtains the three-dimensional scale factor, rotation,
and translation components of the named segment's image transformation attribute.

Revision & of 7 Januaxy 1984 6-25

Attributes

6-28

SunCore Reference Manual

inquire_segment_image_transformation_3(segment_name, sx, sy, sz,

ax, ay, az, tx, ty, tz)

int segment_game;

float
float
float
float
float
float
float
float
float

*8x ;
*3y;
*8g;
tax;
*ay;
*az;
*tx;
*ty;
*t2;

/* x Scale Factor #/

/* ¥ Scale Factor */

/* z Scale Factor */

/* Rotation Value in radians clockwise about the x axis +/
/* Rotation Value in radians clockwise about the y axis #/
/* Rotation Value in radians clockwise about the z axis +/
/#* x Translation Value in NDC #/

/* y Translation Value in NDC */

/* z Translation Value in NDC #/

Revision E of 7 January 1984

-

Chapter 7

Input Primitives

SunCore supports several logical input devices providing for interactive use of the graphics sys-
tem. The physical input devices provided are the keyboard and the mouse. The mouse is ver-
satile in that it can be used both as a pointer and a button device.

In the terminology of the ACM Core specification, input devices fall into two distinct classes,
namely: devices that generate events, and devices that may only be sampled for position or
numerical values. SunCore supports the ACM Core standard level 2 input {syrchronous);
hence no event generation or event queue is supported. The supported logical devices in Sun-
Core are:
Pick
identifies (picks out) a segment or a primitive within a segment. SunCore uses the mouse
as a pick device.
Keyboard
provides alphanumeric information to the application program.
Button
provides a means of choosing among several alternatives. In SunCore, the three button
devices are on the mouse.
Stroke
gencrates a sequence of positions in normalized device coordinates. In SunCore, the stroke
device is the mouse.

o

Locator -
provides a position in normalized device coordinates. SunCore uses the mouse as the loca-
tor device.

Valuator
provides a scalar value to the application program which samples it. SunCore uses the
‘mouse as the valuator device.

A logical input device must be initialized before it can be used.

- 7.1. Initializing and Terminating Input Devices

Revision E of 7 January 1984 71

Input Primitives

SunCore Reference Manual

7.1.1. initialize_device — Initialize a Specific Device

initialize_device initializes a specific logical device. This routine must be called before accessing

any of the input devices.

initialize_device(device_class, device_number)

int device_class;

/+ PICK, KEYBOARD, STROKE #/
/*+ LOCATOR, VALUATOR, BUTTON #/

int device_number; /* There are: */

/* 1PICK device */

/+ 1 KEYBOARD device */
/* 1 STROKE device */

/*+ 3 BUTTON devices #/
/* 1 LOCATOR device #/
/* 1VALUATOR device */

An initialized input device which uses position information from the mouse must be associated
with an initialized view surface (as an echo surface} before valid data can be read from the dev-

ice. See appendix B for details.

Errors returned from initialize_device:
e The device specified by device_number is not initialized.
¢ The device specified by device_number is already initialized.

Note; that if the KEYBOARD device is initialized and the program crashes before the
KEYBOARD device is terminated, the tty will not echo and cbreak will be set. To
recover from this condition, type ‘reset’ followed by a carriage return.

7.1.2. terminate_device — Disable a Specific Device

terminate_device disables a specific device.

terminate_device(device_class, device_number)

int device_class; [+ PICK, KEYBOARD, STROKE #/
/* LOCATOR, VALUATOR, BUTTON +/

int device_number; /% There are: *f
/* 1PICK device */
/* 1 KEYBOARD device #/
/* 1STROKE device */
/* 3 BUTTON devices */
/* 1 LOCATOR device */
/* 1 VALUATOR device */

Errors returned from terminate_device:

o The device specified by device_number is not enabled.

Revision E of 7 January 1984

‘s

-

SunCore Reference Manual Input Primitives

7.2. Device Echoing.

Device echoing means that SunCore can provide a visible indication to the user that the sys-
tem has seen the input from a specific input device.

SunCore provides the means whereby the application programmer can control the way in
which input devices are echoed to the user of the graphics system.

Firstly, the types of echoing for each device are defined here. The tables below describe the
types of echoing for specific devices.

Table 7-1: Echoing for Pick Device

Pick Device
Echo Type Actions Performed
0 No echo
1 SunCore blinks the picked segment briefly. A printer’s fist (pointing finger)

indicates the position of the pick device.

2 ' A printer’s fist (pointing finger) indicates the position of the pick device. Sun- |
Core does not blink the picked segment.

‘Table 7-2: Echoing for Keyboard Device

Keyboard Device

Echo Type Actions Performed
0 ' No echo
1 The string which the user typed at the keyboard is echoed on the screen start-

ing at the echo reference position.

| Revision E of 7 January 1984 7-3

Input Primitives

SunCore Reference Manual

Table 7-3: Echoing for Button Device

@

Buiton Device
Echo Type Actions Performed
0 " No echo
1 No echo
Table 7-4: Echoing for Stroke Device
Stroke Device
Echo Type Actions Performed
0 No echo
1 a printers fist (pointing finger) sign is displayed at the cursor position.
2 A string of dots is drawn to follow the path of the cursor. (not implemented) ©
3 A solid line is drawn to follow the path of the cursor. (not implemented) |
4 a printers fist sign is displayed at the final position of the cursor. (not imple-
mented)
-
7-4

Revision E of 7 January 1984

-

©

SunCore Reference Manual Input Primitives

Table 7-5: Echoing for Locator Device

Locator Device

Echo Type Actions Performed

0 No echo

1 JL printers fist (i)ointing finger) sign is displayed at the position of the locator.

2 A solid line is drawn connecting the echo reference point with the locator.

3 A solid line is drawn connecting the echo reference point with the z coordinate
of the locator.

4 A solid line is drawn connecting the echo reference point with the y coordinate
of the locator.

5 A solid line is drawn connecting the echo reference point with either the z coor-
dinate, or the y coordinate, of the locator, whichever is farthest from the echo
reference point.

6 A box is drawn with the position of the locator as one corner, and the echo
reference point as the opposite corner.

Table 7-6: Echoing for Valuator Device
N Valuator Device
Echo Type Actions Performed
0 No echo
1 The current value of the valuator is displayed on the screen starting at the
echo reference point.

2-11 SunCore does not perform the actions as described in the ACM Core
specification, which sets the values of the valuator into various parameters of -
the image_transformation_type attribute of retained segments. SunCore
leaves this up to the application program.

Revision E of 7 January 1984 7.5

Input Primitives SunCore Reference Manual

7.2.1. set_echo — Define Type of Echo for Device O

set_echo(device_class, device_number, echo_type)
int device_class; /% PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON «/
int device_number;
int echo_type;

7.2.2. set_echo_group — Define Type of Echo for a Group of Dev-
ices

set_echo_group(device_class, device_number_array, n, echo_type)
int- device_class; /* PICK, KEYBOARD, STROKE, #/
/+ LOCATOR, VALUATOR, BUTTON #/
int device_number_array(];
int n; /* number of devices in array */
int echo_type;

7.2.3. set_echo_position — Define Echo Reference Point

set_echo_position specifies the position, in normalized device coordinates, which will be used as

the echo reference point. The coordinates must lie within the bounds of NDC space, or
set_echo_position will set the echo reference point to be the point in NDC space closest to the .

specified point.

set_echo_position(device_class, device_number, echo_x, echo_y)
int device_class; /+ PICK, KEYBOARD, STROKE, */
' /+ LOCATOR, VALUATOR, BUTTON +/
int device_number;
float echo_x; /* x Coordinate of Echo Point */
float echo_y; /* ¥y Coordinate of Echo Point */

The echo reference point that this function defines is used for certain types of echo such as
rubber band locator echo.

7.2.4. set_echo_surface — Define View Surface for Echo

set_echo_surfate specifies the viewing surface on which echoing will be done.

set_echo_surface(device_class, device_number, surface_name)
int device_class; [+ PICK, KEYBOARD, STROKE, #*/
/* LOCATOR, VALUATOR, BUTTON */
int device_number;
struct vwsurf *surface_name; [+ See appendix B %/

An initialized input device which uses position information from the mouse must be associated
with an initialized view surface (as an echo surface) before valid data can be read from the ©

7-6 Revision E of 7 January 1984

SunCore Reference Manual Input Primitives

device. See appendix B for details. If a NULL pointer is given for the surface_name argument,
any association of the specified input device with an echo surface is ended.

7.3. Setting Input Device Parameters

7.3.1. set_locator_;z — Initialize Locator Position

set_locater_2 sets the initial locator position in normalized device coordinates.

set_locator_2(locator_number, x, ¥)
int locator_number;
float x; ’

- float ¥;

SunCore currently does not use this initial position of the locator.

7.3.2. set_valuator — Initialize Value and Range for Valuator
Device

sct_valuator sets the value and range for the valuator device.

set_valuator{valuator_number, initial_value, low, high)
int valuator_number;
float initial_value;
float low;
float high;

The default values are: initial_value == 0.0, low == 0.0, and high == 1.0.

7.3.3. set_keyboard — Initialize Keyboard Parameters

set_keyboard sets the size of the character buffer for the keyboard, the initial character string,
and the initial character cursor counting from the echo reference position.

set_keyboard(keyboard_number, buffer_size, initial_string, initial_cursor_position)
int keyboard_number;
-int buffer_size;
char #initial_string;
int initial_cursor_position;

SunCore uses default values of buffer_size = 80, initial_string = "enter:”, and
initial_cursor_position =7, The maximum buffer_size and the maximum length of
initial_string are 80 characters.

Revision E of 7 January 1984 7.7

Input Primitives SunCore Reference Manual

7.3.4. set;_stroke — Initialize Stroke Device

set_stroke sets parameters for the stroke device.

set_stroke(stroke_number, buffer_size, distance, time)

int stroke_number; /* Device Number #/

int buffer_size; /* Number of x, y points - not used +/
float distance; /* Minimum distance to move */

int time; /* Not used */

The buffer_size argument is the maximum number of 7, y points in a stroke. The distance argu-
ment is the minimum distance, in normalized device coordinates, which the mouse must move
before a mew point is added to the z, y list comprising the stroke. The default setting is dis-
tance=0.01.

7.4. Reading From Input Devices

7.4.1. await_any_button — Wait for Mouse Button

swast_any_butlon waits for the user to click any of the mouse buttons.

await_any_button(time, button_number)
int time; [+ Time in microseconds to wait %/
int ¢button_number; /+ Button which was hit +/

await_any_button waits for the user to click any initialized button on the mouse, or until the
time specified by the {ime parameter expires. If the time argument is exactly zero, the buttons
are checked once, then the function returns to the caller immediately.

If a button is clicked before time expires, the number of the button is returned in the
button_number parameter. If the user does not click any mouse button before time expires, the
function returns a button number of zera.

For the mouse, button numbers 1, 2, anci 3 represent the left, middle, and right buttons, respec-
tively, when the buttons are facing away from the user.

7.4.2. await_ pick — Wait for Pick Device

awast_pick waits for the user to pick an output primitive within a visible and detectable
retained segment.

await_pick(time, pick_number, segment_name, pick_id)
int time; /* Time in microseconds to wait */
int pick_number;
int #*segment_name;
int *pick_id;

await_pick waits for the user to click the left hand button on the mouse, or until the time
specified by the time parameter expires. If the #fme argument is exactly zero, the function tests
the button once, and if the button has been clicked, performs the pick operation.

7-8 Revision E of 7 January 1984

SunCore Reference Manual Input Primitives

If the button is clicked before time expires, the function returns the segment_name of the seg-
ment that the pick device is pointing at, and the pick_id parameter is set to the value of the
pick_id attribute of the primitive that was picked. If the user does not click any mouse button
before ¢ime expires, or no segment is found where the user points, the function sets the
segment_name and pick_id parameters to zero.

await_pick only searches those segments which are visible and detectable and appear on the echo
surface of the specified PICK device. Primitives within a segment have bounded volume descrip-
tors. The mouse cursor must be inside one of these ‘extents’ in order for the segment and pick-
id to be picked. If more than one segment is at the point, the segment with the highest value of
the detectability attribute is returned. Detectability may be set to zero to prevent a segment
from being picked.

Errors returned from awast psck:
e The specified pick device does not exist.

74.3. await__keybéard — Wait for Input from the Keyboard

await_keyboard waits for the user to type a line of input on the keyboard.

await_keyboard(time, keyboard_number, input_string, length)
int time; /+ Time in microseconds to wait */
int keyboard_number;
char #*input_string;
int *length;

swait_keyboard waits for the user to enter data at the keyboard, or until the time specified by
the time parameter expires. If the time argument is exactly zero, the function tests once to see
if a character has been typed, and then returns to the caller.

If any data is entered at the keyboard before time expires, the function returns the typed char-
acters in an array pointed to by input_string. The length of this character string is returned in
length. The string is null terminated. If the user does not enter any data before time expires,
the function sets the length parameter to zero. If a carriage-return or newline character is
typed, the function returns with the input string containing a newline character as the last
non-null character.

Errors returned fro:m awast_keyboard:
e The specified keyboard does not exist.

7.4.4. await_stroke_2 — Wait for User to Draw a Line

await_stroke_2 waits for the user to draw a line, consisting of a list of points in normalized dev-
ice coordinate space, using the mouse.

Revision E of 7 January 1984 7.9

Input Primitives SunCore Reference Manual

await_stroke_2(time, stroke_number, array_size, x_array, y_array, number_points)
int time; /* Time in microseconds to wait */
int stroke_number; [+ Stroke device to wait for */
int array_size; /* Maximum size of x and y arrays */
float x_array[);

float y_array[};
int *number_points; /+ Number of x, y coordinates actually read */

await_stroke waits for the user to draw a line using the mouse, or until the time specified by the
time parameter expires. If the time argument is exactly zero, the function tests once to see if a
line has been drawn, and then returns to the caller.

The line starts at the current position of the locator, and finishes when the user clicks button 3
on the mouse. When the function returns, the number of z, y coordinates actually read is
returned in the number_points argument. When the number of points read equals array_size
the function returns before time expires.

7.4.6. await_any_button_get_locator_2 — Read Locator When
Button Clicked

awast_any_button_get_locator_2 waits for the user to click any of the mouse buttors. When the
button is clicked, the function returns the current normalized device coordinates of the locator.

await_any_button_get_locator_2(time, locator_number, button_number, x, y)
int time; /* Time in microseconds to wait */
int locator_number; /* Locator device to wait for */
int *button_number; /+ Button which was clicked +/
float *x, y; [+ Returned point in NDC #/

awast_any_button_get_locator_2 waits for the user to click any mouse button, or until the time
specified by the time argument expires. If the time argument is exactly zero, the function
checks if any buttons have been clicked immediately and then returns,

If the time expires before tie user has clicked any of the mouse buttons, the function returns a
zero in the button_number argument.

7.4.6. await_any_button_get_valuator — Read Valuator When
Button Clicked

awast_any_button_get_valuator waits for the user to click any of the mouse buttons, or for a
specified time. When the button is clicked, the function returns the current value of the valua-
tor: :

await_any_button_get_valuator(time, valuator_number, button_number, value)
int time; /* Time in microseconds to wait */
int valuator_number; /# Valuator number to read from #/
int *button_number; /+ Button which was clicked */
float #value; [# Value of valuator #/

awast_any_button_get_valuator waits for the user to click any mouse button, or until the time
specified by the time argument expires. If the time argument is exactly zero, the function

7-10 ‘ Revision E of 7 January 1984

-

-

SunCore Reference Manual Input Primitives

checks if any buttons have been clicked and then returns immediately.

H the user clicks one of the mouse buttons, the function returns with the value of the valuator,
and the number of the button which was clicked. If the time expires before the user has clicked
any of the mouse buttons, the function returns a zero in the button_number argument. Move-
ment of the mouse left or right lowers or raises the value of the valuator.

7.4.7. get_mouse_state — Low Level Mouse Support (SunCore
extension)

get_mouse_stale reads the low level mouse z, y, and button information corresponding to a par-
ticular input device. The buttons are up-down encoded, and the location of the mouse is in nor-
malized device coordinates.

get_mouse_state{device_class, device_number, x, y, buttons)
int device_class; [+ PICK, STROKE, #/
/+ LOCATOR, VALUATOR, BUTTON 3/
int device_number;
float *x, *y;
int *buttons;
Bit 0 of buttons is the right-hand mouse button.
Bit 1 of buttons is the middle mouse button.
Bit 2 of buttons is the left-hand mouse button.

A zero bit means that the button is up, while a one bit means that the button is down.

7.56. Inquiring Input Status Parameters

7.5.1. inquire_echo -—— Obtain Type of Echo for Device

inquire_echo obtains the echo_type Tor the specified device.

inquire_echo(device_class, device_number, echo_type)
int device_class; [+ PICK, KEYBOARD, STROKE, #/
/* LOCATOR, VALUATOR, BUTTON 7
int device_number;
int +echo_type;

' 7.5.2. inquire_echo_position — Obtain Echo Reference Point

inguire_echo_position obtains the position, in normalized device coordinates, of the echo refer-
ence point for the specified device.

Revision E of 7 January 1984 7-11

Input Primitives SunCore Reference Manual

inquire_echo _position(device_class, device_number, echo_x, echo_y) @
int device class; /* PICK, KEYBOARD, STROKE, #/
/4 LOCATOR, VALUATOR, BUTTON #/

int device_number;
float *echo_x; /+ x Coordinate of Echo Point */

float *echo_y; /+ y Coordinate of Echo Point */

7.5.3. inquire_echo_surface — Obtain View Surface for Echo

inquire_echo_surface obtains the viewing surface on which echoing is done for the specified dev-
ice.

inquire_echo_surface(device_class, device_number, surface_name)
int device_class; /* PICK, KEYBOARD, STROKE, #/
/* LOCATOR, VALUATOR, BUTTON #/

int device_number;
struct vwswrf *surface_name;

7.5.4. inquire_locator_2 — Obtain Initial Locator Position

inquire_locator_2 obtains the initial position of the specified locator in normalized device coordi-

nates.
inquire_locator_2(locator_number, x, y) _ Q
int locator_number;
float *x;
float *y;

7.5.5. inquire_valuator — Obtain Value and Range for Valuator
Device

inquire_valuator obtains the value and range for the specified valuator device.

inquire_valuator(valuator_number, initial _value, low, high)
int valuator_number;
float +initial_value;
float #*low;
float *high;

7.5.6. inquire_keyboard — Obtain Keyboard Parameters

inquire_keyboard obtains the size of the character buffer, the initial character string, and the ini-
tial character cursor for the specified keyboard.

-

7-12 Revision E of 7 January 1984

SunCore Reference Manual Input Primitives

inquire_keyboard(keyboard_number, buffer_size, initial_string, initial_cursor_position)
int keyboard_number;
int sbufler_size;
char +initial_string;
int #initial_cursor_position;

7.5.7. inquire_stroke — Obtain Stroke Device Parameters
inqm're_a‘troke obtains the buffer size, distance, and time parameters for the specified stroke dev-
ice.

inquire_stroke(stroke_number, buffer_size, distance, time)
int stroke_number; /+ device number */

int *buffer_size; /+ number of x, y points in buffer - not used+/
float sdistance; /* minimum distance to move in NDC #/
int *time; J* Not used #*/

Revision E of 7 January 1984 7-13

Chapter 8

Programming Examples

8.1. The Sun Workstation Factory

This example provides a relatively simple programming example that nevertheless uses a goodly
number of SunCore's facilities. The example is called factory. It has a factory building with a
smokestack and a cloud of smoke puffing out. Silicon chips move in at one end of the building,
and Sun Workstations come out of the other end.

Facilities displayed by this simple example include texturing, translation, scaling, and output
clipping. The example is presented in pieces, with a narrative accompanying each of the pieces.

@ 8.1.1. Declarations and the Main Program

First there is an include of the file usercore.h which containa the definitions required for using the
graphics package: '

-

Revision F, of 7 January 1984 81
8| .

Programming Examples SunCore Reference Manual

#include <userccre.h>

/* Define segment numbers */

##define FACTORY 10
#define CLOUD 9
#define WORKSTATION_1 1
ftdefine WORKSTATION_2 2
#tdefine WORKSTATION_3 3
ftdefine CHIP_1 4
ftdefine - CHIP_2 5
#define CHIP_3 8

static float deltaj] = {0.0, .025, 2+.025, 3+.025, 4+.025, 5+.025, 6+.025,
7+.025, 84,025, 0+.025, 10+.025, 11+.025, 12+.025};

static float redtex|] == {.9961,.1765,.1334,.1334,.4667,.1334,.1334,
.1334,.8001,.2667,.5334,.0};

static float grntex[] = {.5334,.2079,.5334,.5334,.5334,.5020,.5020,
.3334,.2667,.5334,.5334,.2667};

static float blutex|] = {0.,0.,.4001,0.,.2118,.3529,.6471,.4001,
.4001,.4001,.4001,.3882);

int bw2dd(); /* Device driver name for the Sun-2 #/

/* monochrome display — see appendix B #/
struct vwsurf vsurf = DEFAULT_VWSURF(bw2dd);

/* The DEFAULT_VWSURF macro is defined */

- /* in usercore.h */

Then we have the main program:

main()

short i, p0, pl, p2, p3;
int error;

float scale;

float clx, cly;

The firat call in the program is to initialize SunCore, with an appropriste ezit if there is an
error returned:

error = initialize_core(DYNAMICB, NOINPUT, TWOD);
if (error)
exit(0);

Then we initialize and select a view surface. Again, we ezit if there was an error returned:

error = initialize_view_surface(&vsurf, FALSE);
error |= select_view_surface(&vsurf);
if (error)

exit(1);

8-2 Revision E of 7 January 1984

-

-

SunCore Reference Manual Programming Examples

Then we eatablish a viewport and a window. Note that we can sct clipping on output — this is a
SunCore eztension to the ACM Core.

set_viewport_2(0.05, 0.95, 0.05, 0.7);
set_window(30.0, 225.0, 30.0, 225.0);
set_output_clipping(TRUE);
set_window_clipping(F ALSE);

Set up the color lookup table.
define_color_indices(&vsurf, 1, 12, redtex, gratex, blutex);

Now make a temporary segment for a title and border.

create_temporary_segment();
move_abs_2(30., 30.);
line_rel_2(0., 196.);
line_rel_2(195., 0.);
line_rel_2(0., -195.);
line_rel_2(-195., 0.);
set_charprecision(CHARACTER);
set_charsize(14., 14.);
set_text_index(1);
move_abs:_2(40., 200.);

text(" SunCore”);
close_temporary_segment();

Nezt we cotablish a segment for the factory. This segment is the simplest type, since we perform
no transfoimations of any kind on it.

set_image_transformation_type(NONE);

create_retained_segment(FACTORY);

factory(110.0, 60.0);

close_retained_segment();

Nezt we eatablish a segment Jor the cloud above the factory. This segment is subject to scaling, 20
we muast allow for transformationa.

aet_image_tranafbrmation'_type(XFORM2);

create_retained_segment(CLOUD);

map_world_to_nde_2(120., 100., &clx, &cly);

set_segment_image_transformation_2(CLOUD, 0.05, 0.1,
0.0, clx, cly + 0.02);

cloud(0., 0.); ...

close_retained_segment();

Lastly, we establish segments for the chips and the workstations. The chips and workstations will
be moving across the picture, so these segments must allow translation.

Revision E of 7 January 1984 8-3

Programming Examples SunCore Reference Manual

set_image_transformation_type{XLATE2); '
/* Do the Sun Workstation Segment */ ©
create_retained_segment{WORKSTATION_1);
sunws{160.0, 60.0);
close_retained_segment();
create_retained_segment(WORKSTATION_2};
sunws{160.0, 60.0);
close_retained_segment();
create_retained_segment(WORKSTATION_3);
sunws(160.0, 60.0);
close_retained_segment();
/* Do the Chip Segment */
create_retained_segment(CHIP_1);
chip(20.0, 70.0);
close_retained _segment();
create_retained_segment(CHIP_2);
¢hip(20.0, 70.0);
close_retained_segment();
create_retained_segment{CHIP_3);
chip(20.0, 70.0);
close_retained_segment();

Notice that we created the workstations all on top of each other, and also all the chips on top of
each other. The actual spatial separation of the individual segments is handled in the main body
of the animation code.

Now we get to the body of the code which animates the picture. The outer for loop is done 100 @
times. The calls on the translation routines make the chips and workstations move. The inner
for loop makes the cloud grow:

p0 = 0; pl == 4; p2 = 8;
for (i=0; i<100; i+ +) {
set_segment_jmage_translate_2(WORKSTATION_1, delta[p0], 0.0);
set_segment_image_translate 2(WORKSTATION_2, delta[p1], 0.0);
set_segment_jmage_translate_2(WORKSTATION_3, delta[p2}, 0.0);
set_segment_image_translate_2(CHIP_3, delta[p2], 0.0);
set_segment_image_translate_2(CHIP_2, delta[pl), 0.0);
set_segment_jmage_translate_2(CHIP_1, delta[p0], 0.0);
p0+ +; pl++; p2+ +;
if (p0 > 11)
p0 = 0;
if (p1 > 11)
pl =0;
if (p2 > 11)
p2 =0;
for (scale=0.1; scale<C1.0; scale + = 0.2)
set_segment_image_transformation_2(CLOUD, 0.5 # scale, scale,
0.0, clx, cly + scale * 0.2);

}

Finally, when everything is done, we desclect the view surface, and terminate SunCore:

-

8-4 Revision E of 7 January 1984

SunCore Reference Manual Programming Examples

@ deselect_view_surface(&vsurf);
terminate_core();
} /* End of the main program #/

The remainder of the demonstration program consists of the subroutines which fill in the details
in the individual segments.

8.1.2. The factory Drawing Function

First, here are the coordinates for the outline of the factory itself:

static float factdx[] = {0.0, 0.0, 8.0, 2.0, 3.0, 2.0, 3.0, 1.0, 3.0, 1.0, 17.0, 0.0, -40.0};
static float factdy[] == {0.0, 20.0, 0.0, 20.0, 0.0, —20.0, 0.0, 15.0, 0.0, -15.0, 0.0, ~20.0, 0.0};

The nezt act of declarations describe the outline of the windows in the factory:

static float winddx|] = {0.0, 0.0, 10.0, 0.0, -10.0};
static float winddy|[] = {0.0, 5.0, 0.0, -5.0, 0.0};
static int black = 3;

static int brick = 1;

Now we have the actual code of the factory drawing routine staclf:

factory(x0, y0)
float x0, y0;
C ..
The 20 and y0 arguments to the factory function describe the absolute position in world coordi-

riates ot which the factory should appear. The actual outline of the factory is described by the
array of coordinates declared above.

set_fill_index(brick);

move_abs_2(x0, y0); /+ Move to appropriate position */
polygon_rel_2(factdx, factdy, 12); /+ Draw the factory outline */

Now we draw the windows within the factory:

set_fill_index(black);
move_rel_2(5.0, 10.0); /*+ Move to position of first window #/
polygon_rel_2(winddx, winddy, 4); /+ and draw the window */

move_rel_2(15.0, 0.0); /* Move to position of second window */
polygon_rel_2(winddx, winddy, 4); /+ and draw the window */
set_fill_index(1); [+ reset fill index */

} /* End of the factory drawing function #/

The next function is the one which draws the Sun Workstations within the workstation seg-
ment. '

o

Revision q of 7 January 1984 85

Programming Examples StnCore Reference Manual

8.1.3. The Workstation Drawing Function

The declarations below describe the outline of the Sun Workstation. Tube describes the screen,
Cuase describes the outer outline of the case, base describes the base of the Workstation, and
keybd describes the appearance of the keyboard:

static float tubex{] = {0.0, 5.0, 0.0, -5.0};
static float tubey|] = {5.0, 0.0, -5.0, 0.0};

static float casex[] = {1.0, 7.0, 1.0, 1.0, -1.0, -7.0, -1.0};
static float casey[] = {7.0, 0.0, -7.0, 1.0, 7.0, 0.0, -1.0};

static float basex|[] = {9.0, -1.0, ~1.0, -5.0, -1.0};
static float basey[] = {0.0, 0.0, -2.0, 0.0, 2.0};

static float keybdx[] = {0.0, 10.0, 3.0, 0.0, -10.0, -3.0, 10.0, 3.0};
static float keybdy[] = {-1.0, 0.0, 2.0, 2.0, 0.0, -3.0, 0.0, 3.0};

sunws(x0, y0)
float x0, y0;

{

Then all we have to do is move to the coordinates that were supplied as function arguments, and
draw the lines:

move_abs_2(x0+ 5.0, y0O+ 8.0); /* Move to the position given +*/
polyline_rel_2(tubex, tubey, 4); /+ Draw the tube #*/

move_rel_2(-2.0, -1.0);
polyline_rel_2(casex, casey, 7); [+ Draw the case #/

move_rel_2(-1.0, -7.0);
polyline_rel_2(basex, basey, 8); /+ Draw the base */

move_abs_2(x0, y0+ 1.0);

polyline_rel_2(keybdx, keybdy, 8); /* Draw the keyboard #/
} /* End of the Workstation Drawing Function */

8.1.4. The Chip Drawing Function

The declarations below describe the outline of the chips. Plasti describes the outline of the chip
itself, while lead describes the outline of the leads on the chip:

2-8 Revision E of 7 January 1984

-

SunCore Reference Manual Programming Examples

static float plastix[] = {0.0, 16.0, 0.0, -16.0};
static float plastiy[] = {4.0, 0.0, -4.0, 0.0};

static float leadx[] = {-1.0, 2.0, -1.0, 0.0};
static float leady[] = {2.0, 0.0, -2.0, —4.0};

chip(x0, y0)
float x0, y0;

{

short i;

Then all we have to do 12 move to the coordinates that were supplied as function arguments, and
draw the lines:

set_rasterop(XORROP);
move_abs_2(x0, y0); /* Move to appropriate position */

polyline_rel_2(plastix, plastiy, 4); /* Draw the chip */
move_rel_2(2.0, 1.0);

for (i==0; i<5; i+ +){ [+ Draw the leads on the chip */
polyline_rel_2(leadx, leady, 4);
move_rel_2(3.0, 4.0);

@ set_rasterop(NORMAL); /* reset rasterop */
} /* End of the chip drawing function #*/

8.1.5. The Cloud Di'a.wing Function

The last function is the one that draws the cloud. The cloud function is easy: all we have to
do is draw its outline. The actual scaling of the cloud is done in the main program.

The declarations below describe the outline of the cloud:

static float cloudx[] = {0.0, 8.0, -8.0, 4.0, 2.0, 14.0, 8.0, 0.0, 12.0, 8.0, 4.0, 0.0,
-10.0, 10.0, 4.0, -2.0, -8.0, ~12.0, -6.0, ~12.0, ~10.0};

static float cloudy[] = {12.0, 8.0, 2.0, 6.0, 6.0, 10.0, -4.0, -6.0, 10.0, 0.0, -4.0,
-10.0, -10.0, -2.0, -6.0, -8.0, -4.0, 0.0, 4.0, -8.0, 4.0};

cloud(x0, y0)
float x0, y0;

{ ,

Then all we have to do ia move to the coordinates that were supplied as function arguments, and
draw the lincs:

move_abs_2(x0, yO);
polyline_rel_2(cloudx, cloudy, 21);
@ } /* End of the cloud drawing function */

Revision E; of 7 January 1984 87

Programming Examples

SunCore Reference Manual

Revision E of 7 January 1984

-

-

This appendix points out specific differences between the SunCore graphics package and the
ACM SIGGRAPH Core Specification. In addition to differences noted here, SunCore has
numerous extensions to the ACM Core which are documented in the main body of this manual.

Appendix A

Deviations from ACM SIGGRAPH Core

A.l. Unimplemented Functions

Here is a list of those functions which SunCore does not implement:

Table A-1: Unimplemented Primitive Attribute Functions

Primitive Attribute Funetions

set_charjust

tnquire_charjust

Table A-2: Unimplemented Synchronous Input Functions

Synchronous Input Functions

initialize_group

awast_stroke_3
set_echo_segment

set_button

set_locator_8

set_locport_3 -
inquire_input_device_charactersatics
inquire_locator_dimension
inguire_button
inguire_locport_2
tnguire_ccho_ascgmients

terminate_group
await_any_button_get_locator_8
set_pick

aet_all_buttons

set_locport_2
inquire_snput_capabilities
inquire_stroke_dimension
inquire_pick

inguire_locator_3
inguire_locport 3

Revision ¥ of 7 January 1984

Deviations from ACM SIGGRAPH Core

SunCore Reference Manual

Table A-3: Unimplemented Asynchronous Input Functions

Asynchronous Input Functions
o enable_device e enable_group
o disable_device o disable_group
o disable_all e read_locator_2
o read_locator 8 e read_valuator
e awail_cvent o flush_device_events
o flush_group_ecvents o flush_all_events
e aasociate e disassociate
e disassociate_device o disassociate_group
e disassociate_all e get_pick_data
o get _keyboard data e get_stroke_data 2
e get_stroke_data_8 o get_locator_data_2
o get_locator_dats_8 o get_valuator_data
e inguire_device_associations e inquire_device_status
Table A-4: Unimplemented Controf Functions
Control Functions
* inquire_output_capabilitics e inquire_selected_surfaces
o sel_immediate_visibility o make_picture_current
e inquire_control_status o set_visibilities
e log error
Table A-5: Unimplemented Escape Functions
Escape Functions
& escape e inquire_escape

A.2. Other Differences

Text: SunCore does not have the charplane primitive attribute; instead, the charpath,
charup, and charspace attributes are used to specify text orientation as described in the manual.
The current release of SunCore has no STROKE precision text and no text justification. The
inquire_text_extent_2 and s'nqm’re tezt_eztent_3 functions do not take a view surface name as an
argument. The text enquiry functions only return meaningful values when the current charpre-

ciston attribute is CHARACTER.

A-2

Revision E of 7 January 1984

-

-

SunCore Reference Manual Deviations from ACM SIGGRAPH Core

Raster Extensions: SunCore contains several of the proposed raster extensions to the
ACM Core and other raster functions. Thus there are no color or intensity primitive attributes.
Instead a color lookup table model is used. There are several primitive attributes which are
indices into lookup tables. In addition, hidden surfaces are supported on color view surfaces.
This requires a second parameter to the instialize_view_surface function.

Miscellaneous: SunCore adds these functions:
set_image_tranelate 3,
inquire_tmage_tranalate_3,
sct_segment_tmage_translate_3,
ingquire_segment_smage_transiate_3.

The functions: .
act_primitive_attributes_2,
aet_primitive_attributes_3,
ingquire_primitive_atiributes_g2, and
ingquire_primitive_attributes_3

are replaced by the functions set_primitive_attributes and inquire_primitive_attributes, which are
equivalent to the 3-D functions.

Default values for many SunCore system parameters differ from those of the ACM Core. .

There are restrictions on sel_world_coordinate_matriz_2 and set_world_coordinate_matriz_8 as
described in the manual,

As described in the manual, some of the echo types for input functions in the ACM Core are
not implemented.

The marker symbol primitive attribute deviates from the ACM Core as described in the
manual.

Batching of updates only applies to dynamic segment attributes as described in the manual.

View surfaces initialized for hidden-surface elimination do not support dynamic segment attri-
butes of highlighting, transformation, or translation. initialize_view_surface can optionally
suppress clearing the view surface when it is initialized.

Revision E of 7 January 1984 A-3

o

Appendix B

SunCore View Surfaces

SunCore supports several types of view surfaces and multiple simultaneous instances of any
type, subject to the hardware resources of the workstation on which a SunCore program is
being run. The current release allows up to five view surfaces to be active at any time. This
appendix gives implementation details of SunCore view surfaces and provides information on
initializing them.

- B.1. The vwsurf Structure

View surface names in SunCore are structures. The following declaration and definitions are
contained in the header file fuer/include/ usercore.h:

¥define DEVNAMESIZE 20

struct vwsurf {
char screenname[DEVNAMESIZE);
char windowname[DEVNAMESIZE];
~ int window{d;
int (*dd));
int instance;
int cmapsize;
char cmapname[DEVNAMESIZE};
int flags;
char *#ptr;

’

ftdefine NULL_VWSURF {"*,"", 0, 0,0,0,"", 0, 0}
#define DEFAULT_VWSURF(ddname) {"”, "", 0, ddname, 0, 0, **, 0, 0}
ftdefine VWSURF_NEWFLG 1

After initialization via the function snstialize_view_surface, a vwsurf structure represents a
specific instantiation of a particular type of view surface. The elements of the vwsurf structure
completely characterize that instantiation and/or provide information used to initialize the view
surface, This appendix refers to members of the vwsurf structure using the standard C nota-
tion, as if the declaration

struct vwsurf vwsurf;

~ Revision E of 7 January 1984 B-1

SunCore View Surfaces SunCore Reference Manual

had been given.

vwsurf.screenname _
is a character string which is the name of the physical device on which the view surface
appears (for example, " /dev/cgone0”).

vwaurf.wa'ndownamc
is a character string which is the name of a window device which has been opened for
display of the output prlmmves directed to the view surface (for example, " f{dev/winl0");

l vwsurf windowfd
is the file descriptor corresponding to this device. Since, for all current SunCore view sur-

face types, output display and input device echoing are accomplished through window sys-
tem routines, these members of the structure are valid even for raw output devices.

vwsurf dd
is the name of the devnce-lndependent/devnce-dependent interface routine through which
graphics output to the view surface will pass. This routine defines the view surface type.
The current SunCore view surface types are described below.

vwaurf.instance
identifies the instantiation of a view surface type. It should be set to @ prior to callmg
instialize_view_surface. SunCore will set this value appropriately if the initialization is
successful.

vwaurf.cmapeaize
defines the size of the color lookup table for the view surface, and the character string
vwaurf.cmapname gives its name, which can be used to share a color map between two or
more view surfaces on the same physical device. These elements of the vwsurf structure are
used only for view surfaces on color devices. Their use is described more fully below.

vwaurf flags
is a field of one-bit flags. Currently, only one ﬂag, VWSURF_NEWFLG, is defined; this flag is
described below.

vwsurf.ptr :
is a pointer to an array of character pointers. The array should be terminated by a null
pointer. The strings pointed to by the array contain optional information which may be
used to initialize the view surface. Details are provided below.

B.2. View Surface Types

A view surface type in SunCore is the name of the driver routine for the device-
independent /device-dependent interface. The name of the routine corresponding to the desired
view surface type should be put into vwsurf.dd prior to calling initialize_view_surface (see the
programming examples in Chapters 1 and 8).

The current release of SunCore has five view surface types:

bwidd
The Sun-1 monochrome bitmap display used as a raw device.

bw2dd
The Sun-2 monochrome bitmap display used as a raw device.

cgldd
The Sun Workstation color graphics display used as a raw device.

B-2 Revision E of 7 January 1984

-

-

O

SunCore Reference Manual SunCore View Surfaces

pizwindd
A monochrome (one-bit deep) graphics window within the Suntools window environment.
This window may appear on either a color or monochrome display.

cgpizwindd
A color graphics window within the Suntools window environment. This window must
appear on a color display.

Only view surfaces types cgldd and cgpizwindd support hidden surface removal.

The term ‘raw device' above implies that the physical device specified by vwsurf.screenname is
used completely and only for display of graphics output directed to one view surface. This
allows somewhat more efficient display of output primitives. It also implies that the user has
not started up a Suntools window environment using the device as a desktop.

Low-level device-dependent routines are not part of SunCore. For the sake of efficiency, such
routines are necessary for some applications. The Programmer's Reference Manual for the Sun
Window System contains information on low-level routines corresponding to bwidd, bw?2dd,
and cgldd (the ‘pixrect’ level) and pizwindd and cgpizwindd (the ‘pixwin’ level).

B.3. Choosing a View Surface Type within an Application Pro-
gram

It may be desirable to write application programs which use different view surface types depend-
ing on the environment. The next two subsections provide examples of ways to do this. The
next subsection illustrates using a Shell variable, and the subsection after that uses the
get_view_surface function to do the job in a more general way.

B.3.1. Using SHell Variables to Determine the Environment

Examining a Shell environment variable is one way to determine which environment a program
is running in. The following example illustrates using either a bw2dd (raw Sun-2 monochrome
display) or a pizwindd (monochrome window) view surface depending on whether the user is
currently in the Suntools window environment. The WINDOW_ME environment variable is nor-
mally defined in the user's environment if and only if the window system is being used.

Revision E of 7 January 1984 B-3

SunCore View Surfaces SunCore Reference Manual

/ »
+ an example of selecting a view surface
+ depending on the current environment
+/

int bw2dd();
struct vwsurf rawsurface = DEFAULT_VWSURF(bw2dd);

int pixwindd();
struct vwsurf windowsurface = DEFAULT_VWSURF{(pixwindd);

main()

{

struct vwsurf *surface, +get_surface();

surface == get_surface();
initialize_view_surface(surface, FALSE);
select_view_surface(surface);

}
struct vwsurf +get_surface() /*+ function to return pointer */
{ /#* to appropriate view surface +/
if (getenv(” WINDOW_ME"))
return(&windowsurface);
else

}

return(&rawsurface);

B.3.2. The get_view_surface Function

The SunCore library includes the get_view_surface function which a programmer can use to set
up a view surface structure using information from command-line arguments and the environ-
ment. A complete listing of get_view_surface appears at the end of this section.
get_view_surface has the following declarations for C, FORTRAN, and Pascal:

B-4 Revision E of 7 January 1984

SunCore Reference Manual SunCore View Surfaces

@ C Declaration:

get_view_surface(vsptr, argv)
struct vwsurf #vsptr;
char *targv;

FORTRAN Declaration:
getviewsurface(vwsurf, argv)
integer vwsurf{ VWSURFSIZE)
integer argv(s)

Pascal Declaration:
getviewsurface(var surfacename: vwsurf; var argv: iarr): integer; external;

The elements of argv are pointers to null-terminated strings which are extracted from the com-
mand line that started the application program. Since FORTRAN and Pascal do not have
pointer types, integer arrays are used instead.

The programmer is responsible for setting up the argyv array in FORTRAN and Pascal programs.
In the simple case where there are no command-line arguments, it is only necessary to set the
second element of the argv array to rero — the first element of the array is assumed to point to
the name of the program being run. The following fragment of C code illustrates the use of
get_view_surface for C programs:

@ main(arge, argv)
int arge;
char »wargv;

{

struct vwsurfl vwsaurf;

it (get_view_surface(&vwsurf, argv))

exit(1);
initialize_view_surface(&vwsurf, FALSE))
more code

o

Revision E of 7 January 1984 B-5

SunCore View Surfaces SunCore Reference Manual

get_view_surface returns zero (0) if it succeeds and non-zero otherwise. The vwsurf structure
will have vwsurf.dd and possibly vwaurf.screenname set to appropriate values. Other elements
of the structure will be null — the programmer may modify them to suit the application, but it
is not necessary.

The only command-line option that get_view_surface currently recognizes is the

~d display_device
option, where display_device is the name of the physical display device (/dev/fb or [dev/cgone0
for example). The vwsurf structure will be set up to run on this device. get_view_surface also
determines if the window system is running on the device, and chooses vwsurf.dd appropriately.

Using get_view surface has a disadvantage in that since it refers to all ive SunCore types of
view surfaces, any program using it will get the code for all five device-independent/device-
dependent driver routines linked in. For this reason, the code for get_view_surface is included
here. SunCore programmers may wish to tailor a version of this code for particular machine
configurations and applications.

The code of get_view_surface contains calls on several functions from Nbsunwindow.a — the
window system library. Details of these routines can be found in the Programmer’s Reference
Manual for the Sun Window System.
[* .
get_view_surface -- Determines from command-line arguments and
the environment a reasonable view surface
for a SunCore program to run on.

s/

#include <sys/fileh>

#include <sysfioctl.h>

#include <sun/fbio.h>

#include <stdio.h>

#include <sunwindow/window_hs.h>
finclude <usercore.h>

int bwidd(); /* All five device-independent /device-dependent */
int bw2dd(); /* routines are referenced in this function. */
int cgldd(); /* This means the linker will pull in all of them #/

int pixwindd();
int cgpixwindd();

static struct vwsurf nullvs = NULL_VWSURF;

static char *devchk;
static int devhaswindows;

int get_view_surface(vsptr, argv)
struct vwsurf *vsptr; -
char **argv;

int devfad, fd, chkdevhaswindows();

char *wptr, dev[DEVNAMESIZE], *getenv();
struct screen screen;

struct fbtype fbtype;

B-6 Revision E of 7 January 1984

-

-

Suanre Reference-Manual SunCore View Surfaces

@ *vsptr = nullvs;
devind = FALSE;
if (argv)
/t

If command-line arguments are passed, process them using
win_jnitscreenfromargv (see the Programmer's Reference Manual
for the Sun Window System). The only option used by
get_view_surface is the -d option, allowing the user to

specify the display device on which to run.

+/

{

win_initscreenfromargv(&screen, argv);

if (screen.scr_fbname[0] 1= "\0")

/# -d option was found */

devind = TRUE;

strncpy(dev, screen.scr_fbname, DEVNAMESIZE);

& .

Check to see if this device has a window system

running on it. If so devhaswindows will be TRUE

following the call to win_enumall. win_enumall is

a function in libsunwindow.a. It takes a function

as its argument, and applies this function to every

window being displayed on any screen by the window

: system. To do this it opens each window and passes

O the window{d to the function. The enumeration

continues until all windows have been tried or the

function returns TRUE.

+/ .

devchk = (ihﬂ

devhaswindows = FALSE; _
win_enumall(chkdevhaswindows);

}

if (1devfnd) :
/* No -d option was specified */
if (wptr == getenv("WINDOW_ME"))
{

/.
Running in the window system. Find the device from
which this program was started.

devhaswindows = TRUE;

if {{fd = open(wptr, O_RDWR, 0)) < 0)

fprintf(stderr, "get_view_surface: Can't oper %s\n",

wptr);
return(1);

O win_screenget(fd, &screen);

Revision E of 7 January 1984 B-7

SunCore View Surfaces

else

/+ Now have device name. Find device type. +f
if ((fd = open{dev, O_RDWR, 0)) < 0)

fprintf(stderr, " get_view_surface: Can’t open %s\n", dev);
return(1});

}
if (ioctl(fd, FBIOGTYPE, &fbtype) == -1)
{
fprintf(stderr, " get_view_surface: ioctl FBIOGTYPE failed on %s\n",

close(fd);
return(1); ‘ !

}
close(fd);

/% Now have device type and know if window system is running on i

SunCore Reference Manual

close(fd); .

strncpy(dev, screen.scr_fbname, DEVNAMESIZE); @
}

{

J*

Not running in the window system. Assume device is

/dev/ib.

3

devhaswindows == FALSE;
strncpy(dev, " /dev /{b", DEVNAMESIZE);

dev);

t. */ Q

if (devhaswindows) |
switch(fbtype.fb_type)

{. -
case FBTYPE_SUNI1IBW:
case FBTYPE_SUN2BW:

break;

case FBTYPE_SUN1COLOR:

vsptr->dd = cgpixwindd;

i
vsptr->dd = pixwindd; : t
break;

default:

else

tprintf(stderr, " get_view_surface: %s is unkrown fbtype\n”,
dev);

return(1);

switch(fbtype.fb_type)

{
case FBTYPE_SUNI1BW:

vsptr- >dd = bwldd;
break;

case FBTYPE_SUN2BW:

vspir->dd = bw2dd; @

Revision E of 7 January 1984

e i

C

SunCore Reference Manual SunCore View Surfaces

break;
case FBTYPE_SUNICOLOR:
vsptr->dd = cgldd;
break;
default; ‘
fprintf(stderr, " get_view_surface: %s is unknown fbtype\n”,
dev); :
return(l);

/* Now SunCore device driver pointer is set up. */
if ({devhaswindows || devfnd)
/*
If no window aystem on device or -d option was specified,
tell SunCore which device. Otherwise, let SunCore figure
out the device itself from WINDOW_GFX 3o the default
window will be used if desired.
+/
strnepy{vsptr- >screenname, dev, DEVNAMESIZE);
return(0);

static int chkdevhaswindows(window{d)
int windowfd;

{

struct screen windowscreen;

win_screenget(windowfd, &windowscreen);
if (stremp(devchk, windowscreen.ser_fbname) === 0)

» S .
If this window is on the display device we are checking, set
the flag TRUE. Return TRUE to terminate the enumeration.
*/

devhaswindows = TRUE;

return(TRUE);

return{FALSE);
} »

B.4. Specifying a View Surface for Initialization

It is not necessary to specify every member of the vwsurf structure in order to initialize the view
surface. If only vwsurf.dd is specified, SunCore will try to obtain a view surface of the
specified type according to a default sequence. A statically allocated vwsurf structure may be
set up to use this default by initializing the structure via the DEFAULT VWSURF macro defined
in usercore.h. This is a compile-time initialization. The user may exercise finer control over
view surfaces by setting other elements of the structure as described below. Any members
which are not specified by the user should be set to zero (the integer 0, the NULL pointer, or an

empty string, as appropriate).

Revision F of 7 January 1984 B-9

SunCore View Surfaces SunCore Reference Manual

B.4.1. View Surface Specification for Raw Devices

The defsult action for obtaining a new view surface of a raw device type is to try to open 2
sequence of devices until one is found which is of the right type and is not already being used.
The sequence always starts with " /dev/{b”. Then the following names are tried depending on
the view surface type: '

bwldd - "/dev/bwone0”, " /dev/bwonel”, ..., " /dev/bwone9”
bw2dd - "/dev/bwtwo0”,”/dev/bwtwol”, ..., " /dev/bwtwo9”
cgldd - ”/dev/cgone0”, " /dev/cgonel”, ..., " /dev/cgoned”

If none of the names in the sequence can be successfully opened and verified to be of the correct
type and not already in use, initialize_view_surface fails.

If the uyper wishes to specify a particular physical device for a view surface, he may set
vwsurf.screenname to be the device name of that device. The same steps will be taken to try to
open the device as for each name in the default sequence. However, if these steps fail, no other
names will be tried, and the initialization will fail.

vwsurf.cmapname and vwsurf.cmapsize are only used for color view surfaces. For cgidd,
vwsurf.cmapaize is set to 256. If vwsurf.cmapname is specified, this name is used as the name of
the color map; otherwise SunCore will provide a unique name.

No flags are currently defined for use with raw devices,

vwsurf.ptr provides a mechanism for passing optional initialization data to SunCore. In the
case of raw devices, one such option is currently available —— the passing of information about
the adjacencies of physical screens. When the user creates a Suntools window environment on a
screen, he is also responsible for specifying the relationship of that screen to other screens also
running Sumntools for purposes of tracking the mouse across multiple screens. The adja-
centscreens command may be used to do this (see the User's Mannal for the Sun UNIX Sys-
tem). However, when a SunCore program initializes a new view surface on a raw screen, the
user will not previously have been able to inform the system of this adjacency because the new
screen was previously not in use. vwsurf.ptr may be used to pass adjacency information for the
new screen.

If vwsurf.ptr is rot NULL, it should point to an array of character pointers. Only the first
pointer in this array will be used. It should point to a string which is the pathname of a file
containing information about the adjacencies of physical display devices. When the user sets up
his display devices on his desk he may create a file describing the layout of these devices. For
example, the following lines describe a system with two screens, the console frame buffer on the
left (which might be either a Sun-1 or a Sun-2 monochrome bitmap display)} and a Sun color
graphics display oid the right:

[dev/ib

R: /dev/cgone0

[dev/cgonel

L: /dev/fb

By convention, /dev/fb is the console frame buffer and /dev/cgone0 is the first Sun color graph-

ics display on a system. For each display device in the system, there should be one line giving

its name, followed by several lines giving the directions and names of all adjacent screens. Thus
all four lines above are necessary, not just the first two. Directions may be indicated as R, L,
T, and B for right, left, top, and bottom, or as N, S, E, and W for north, south, east, and west.

B-10 ‘ Revision E of 7 Janunary 1984

SunCore Reference Manual SunCore View Surfaces

B.4.2. View Surface Specification for Window Devices

The default action for obtaining a new view surface of type pizwindd or cgpizwindd is to first
test whether the window referred to by the Shell environment variable WINDOW_GFX is already
in use as a view surface. If not, a blanket window is inserted over the WINDOW_GFX window
and this blanket window becomes the view surface. If WINDOW_GFX has already been used in
this manner, the program /usr/suntool/coretool is invoked to create a new window on the same
physical display device as WINDOW_GFX. This new window becomes the view surface. Thus, if a
SunCore program is run from the tty subwindow of a Graphics Tool, the first default view sur-
face will occupy the display space covered by the graphics subwindow of the tool. Subsequent
default view surfaces will appear as graphics windows, each within a separate Core Tool on the
same screen as the Graphics Tool.

This default action may be circumvented in two ways. If vwaurf.flags has the VWSURF_NEWFLG
set, no attempt is made to take over WINDOW_GFX. A new window within a Core Tool is opened
on the same screen as WINDOW_GFX. If vwaurf.screenname is non-empty, a new window within a
Core Tool is opened on the screen specified by vwaurf.screenname, provided this device exists
and has a Suntools window environment running on it.

For view surfaces of type cgpizwindd, vwsurf.cmapsize and vwsurf.cmapname provide a means
of specifying and sharing color maps. The color map facilities of the Sun Window System are
used to control color maps for cgpizwindd view surfaces (see the Programmer’s Reference
Manual for the Sun Window System for details). The user may specify a color map size of 0, in
which case a color map of length 2 will be used. Otherwise, vwsurf.cmapeize should be a power
of 2 between 2 and 2566. The user may specify a null color map name, in which case SunCore
will provide a unique name. Otherwise, SunCore will check vwsurf.cmapname against the
names of the color maps for all windows currently displayed on the physical device on which the
new view surface is to appear. If a matching name is found, that color map will be used (even if
its size differs from vwourf.cmapsize) and this map is shared among all windows on the device
which reference that name. If the user specified a null name or the specified name does not
match any current window's color map name, a new color map is allocated with the given size.
The indices for each cgpizwindd view surface's color map run from 0 to vwsurf.cmapsize-1. The
current release of the Sun Window System enforces the restrictions that entry 0 of the color
map is the background color for the desktop -containing the window and entry
vwaurf.cmapsize-1 is the foregrouna color. The default background color for a desktop is
white, and the default foreground color is black.

Currently, one optional string of initialization data may be passed to initialize_view_surface. If
vwaurf.ptr is non-NULL, it should point to an array of character pointers, only the first of
which will be used. The pointer should point to a string containing position and size informa-
tion for a Core Tool which may be started up to provide a window for the new view surface. (If
the WINDOW_GFX window ‘is takep over by this new view surface and thus no Core Tool is
started, the string will be ignore?) The string should consist of nine integers, separated by
commas:

"nl,nt,nw,nh il it,iw Jih,I”

nl, and nt give the initial position of the top left corner of the Core Tool in its normal form. nw
and nh give the initial width and height. The numbers are given in screen coordinates, where
(0, 0) is the upper left corner. i, it, iw, and ih give the same initial information for the iconic
form of the tool. Iis a boolean flag which should be non-zero if the tool is to be started in its
iconic form. -

Revision K of 7 January 1984 ' B-11

SunCore View Surfaces SunCore Reference Manual

B.5. Input Considerations

SunCore uses window system routines to obtain user input from the keyboard and mouse, no
matter what mix of raw device view surfaces and window device view surfaces the user has ini-
tialized. For purposes of input, a raw device view surface behaves just like a window device
view surface; it exists as a window within the window system’s data structures, and the user
may direct input to the window simply by positioning the mouse over it. The facts that win-
dow system input is directed to different windows depending on the location of the mouse and
that the mouse position in the window system is reported in the coordinates of the window
underlying the mouse have implications for the SunCore input furctions.

For SunCore programs which are invoked from a window within the Suntools window environ-
ment, whenever the KEYBOARD device is initialized, swait_keyboard will return characters typed
when the mouse is located over any initialized view surface (belonging to a single user process)
or over the tty subwindow from which the program was started. For programs run from out-
side a window environment, await_keyboard will return all characters typed on the keyboard,
provided the KEYBOARD device is initialized.

The AOM Core specification defines input and output to be completely orthogonal functions.
Thus, it is possible to initialize a locator device and read from it without ever initializing a view
surface, SunCore uses the mouse as the LOCATOR, STROKE, PICK, VALUATOR, and BUTTON
devices. The only way SunCore can obtain mouse position and button click information to
emulate these logical devices is to take input from a window. SunCore will return valid data
in response to input requests for the LOCATOR, STROKE, PICK, and VALUATOR devices only when
the user has associated these devices with an initialized view surface via the set_echo_surface
function. Because all SunCore view surfaces are instantiations of generic view surface types,
there is no default echo surface for any input device. The set_echo_surface function will accept
a NULL pointer as its surface_name argument to allow the programmer to end the association of
an input device with a view surface. Any input device may be echoed on any view surface
independently of any other input device.

The input functions await_any_button_get_locator_2, await_siroke_2, ewast_pick, and
awast_any button_get_valuator will only use mouse input which the user directs to the window
which is the echo surface for the indicated LOCATOR, STROKE, PICK, or VALUATOR device. This
includes both position and button click input, so that the functions which are terminated by
button clicks will terminate only when a button click occurs within the proper window (or a
timeout occurs). Which buttons are listened to is still controlled by individually initializing or
terminating each BUTTON device.

The user may also use sef_ccho_surface to choose from which window button clicks should be
reported for a BUTTON device when the await_button function is called; alternatively, if the echo
surface for a BUTTON device is NULL, await_button will check for button clicks from any view
surface associated with a LOCATOR, STROKE, PICK, or VALUATOR device.

Note that the resolution obtained from a LOCATOR, STROKE, PICK, or VALUATOR device is lim-
ited by the width and/or height of its echo surface window, since mouse position information is
provided by window system input routines in terms of window coordinates.

B.8. Notes on Window Device View Surfaces
Graphics primitives drawn on a view surface as part of a temporary segment normally remain

visible op the view surface until a new-frame action occurs. For view surfaces which are win-
dows within the Suntools window environment, several user actions can cause the view surface

B-12 : Revision E of 7 January 1984

©

-

SunCore Reference Manual : SunCore View Surfaces

to be redrawn. Such actions include stretching the enclosing tool, exposing a previously
obscured portion of the tool, and changing from the iconic form of the tool to the normal form.
When the view surface is redrawn in this manner, all output primitives which previously
appeared as part of temporary segments will disappear.

When a SunCore program is run from a Shell Tool, WINDOW_GFX is normally set to be the
tool’s tty subwindow. If this window is taken over and blanketed to serve as a view surface,
output directed to the tty subwindow (for example, stdout and stderr, including SunCore error
messages) will not be visible because the blanket window obscures the tty subwindow. When
the program terminates or the view surface is terminated, any portion of this output which has
not scrolled out of the subwindow will be visible. The fact that the tty subwindow is obscured
also means that there is no way to type characters to that window, so that stdin will never see
any input. However, if the KEYBOARD device is initialized, special characters, such as interrupt
and suspend, typed to the blanket window will be recognized and will have their normal effect
on the user process.

Revision E of 7 January 1984 ' B-13

Appendix C

Using SunCore with Fortran-77 Programs

All functions provided in SunCore may be called from FORTRAN-77 programs by linking them
with the fusr/lib/libcore?7.a library. This is done by using the 77 compiler with a command
line such as:

% 177 —o grab grab.f —lcore77 -lcore —lsunwindow -lpixrect —-Im

~where grab.f is the FORTRAN source program. Note that fusr/lib/libcore.c must be linked
with the program (the —lecore option), and [uer/lib/libcore77.a must come before it (the
-lcore77 option).

Defined constants may be referenced in source programs by including
[usr/includef/usercore7?.h In a FORTRAN program, this must be done via a source statement

like:
include ”/usr/include/usercore77.h”

This include statement must be in each FORTRAN program unit which uses the defined con-
stants, not just. once in each source program file. The default primitive attribute structure PRI-
MATTS which is provided in usercore.h and is described in section 6.1.23 of this manual is not
provided in usercore?7.h because of FORTRAN'a restrictions on the ordering of specification
statements and data statements.

In the Sun release of FORTRAN-77, names are restricted to sixteen characters in length and may
not contain the underline character. For this reason, FORTRAN programs must use abbreviated
names to call the corresponding SunCore functions. The correspondence between the full
SunCore names and the FORTRAN names appears later in this appendix. In addition,
FORTRAN-77 declarations for all SunCore functions appear at the erd of this appendix.

C.1. Programming_ Tips

o The abbreviated names of the SunCore functions are less readable than the full length
names because the underline character cannot be used in the FORTRAN names. However,
since FORTRAN doesn't distinguish between upper-case and lower-case letters in names,
upper-case characters can.be used to 1mprove readability. There is an example of this later in
this appendix.

o Character strings passed from FORTRAN programs to SunCore cannot be longer than 256
characters.

Revision E of 7 January 1084 C-1

Using SunCore with Fortran-77 Programs SunCore Reference Manual

s FORTRAN passes all arguments by reference. Although some SunCore functions receive
arguments by value, the FORTRAN programmer need not worry about this. The interface
routines in [usr/iib/libcore77.a handle this situation correctly. When in doubt, look at the @
FORTRAN declarations for SunCore functions at the end of this appendix.

s SunCore uses pointers in some places. For instance, view surface structures contain pointers
to device driver functions. Also, the raster data type includes a pointer to an array of
short's containing the raster data. There are no pointer types in FORTRAN, but there are
ways to handle all uses of pointers required to use SunCore. For view surface names, the
following fragments of C code and FORTRAN code do the same thing:

C Code FORTRAN Code

struct vwsurf vsurf = NULL_VWSURF; integer vsurf(VWSURFSIZE)

integer bwldd

int VbWIdd() external bwildd
-) data vawrf /VWSURFSIZE*0/
vsurf.dd == bw1dd; vsurf(DDINDEX) == loc(bw1dd)

initialize_view_surface(&vsurf, FALSE); call InitializeVwsurf(vsurf, FALSE)

The constants VWSURFSIZE and DDINDEX are defined in usercore?7.h. The constant VWSURF-
NEWFLG is also defined in usercore77.h. See appendix B for more details on view surfaces. @

As shown above, all required pointer manipulation can be done with the FORTRAN loc library
function, which returns the address of its argument as an integer.

SunCore function arguments which are pointers to structures can be declared as arrays in
FORTRAN. For example, the C and FORTRAN declarations of the SunCore raster structure
are shown below:

C Oode FORTRAN Code

struct { integer raster(4)
int width, height, depth;
short *bits;
} raster;

Then the following fragments of C and FORTRAN code are equivalent:

-

C-2 Revision E of 7 January 1984

-

©

SunCore Reference Manual Using SunCore with Fortran-77 Programs

C Code FORTRAN Code
short data[l16); integer*2 data(16)
raster.width = 16; rasier(l) =16
raster.height == 16; raster(2) = 16
raster.depth = 1; ‘ raster(3) =1
raster.bits == data; raster(4) = loc(data)

e Some SunCore structures contain both int's and float’s. For instance, the argument to
inquire_viewing_parameters contains both int's and float’s. This can be handled in FORTRAN
by declaring a REAL array and an INTEGER array which are made to share storage by an
EQUIVALENCE statement. Then following the call to the inquiry function, the REAL com-
ponents can be accessed by using the REAL array and the INTEGER components accessed
via the INTEGER array.

e Since FORTRAN does not distinguish between upper-case and lower-case letters in identifiers,

any FORTRAN program unit which includes the usercore7?.h header file cannot use identifiers
with the same spelling as any constant defined in that header file (regardless of case).

e The filetoraster and rastertofile functions in C take an argument that is a UNIX? file descrip-
tor. The corresponding argument to the FORTRAN functions is a logical unit number (LUN).
This unit should be explicitly opened by using the FORTRAN open statement. I/O to the
opened file should be done only via the filetoraster and rastertofile fanctions.

'C.2. Example Program

This example is the FORTRAN equivalent of the very simple program for drawing a martini
glass. .

1 UNIX is a trademark of Bell Laboratories.

Revision E of 7 January 1984 C-3

Using SunCore with Fortran-77 Programs SunCore Reference Manual

include " fusr/include/usercore77.h" i

integer vsurf(VWSURFSIZE)

integer bwidd

external bwldd

integer InitializeCore, InitializeVwsurf, SelectVwsurfl
real glassdx(9), glassdy(9)

data glassdx /-10.0,9.0,0.0,-14.0,30.0,-14.0,0.0,9.0,-10.0/
data glassdy /0.0,1.0,19.0,15.0,0.0,~15.0,~19.0,-1.9, 0.0/
data vsurf /VWSURFSIZE+0/

vsurf(DDINDEX) == loc(bw1dd)

if (InitializeCore(BASIC, NOINPUT, TWOD) .ne. 0} call exit(1)

if (InitializeVwsurf(vsurf, FALSE) .ne. 0) call exit(2)

if (SelectVwsurf(vsurf) .ne. 0) call exit(3)

call SetViewport2(0.125, 0.875, 0.125, 0.75)

call SetWindow(-50.0, 50.0, -10.0, 80.0)

call CreateTempSeg()

call MoveAbs2(0.0, 0.0)

call PolylineRel2(glassdx, glassdy, 9)

call MoveRel2(-12.0, 33.0)

call LineRel2(24.0, 0.0)

call CloseTempSeg()

call sleep(10) :

call Deselect Vwsurf(vsurf) _
call TerminateCore{) O
end .

o

C-4 Revision F of 7 January 1984

O

-

SunCofe Reference Manual

C.3. Correspondence Between C Names and FORTRAN Names

Correspondence Between C Names and FORTRAN Names

Long Name . FORTRAN Equivalent
allocate_raster allocateraster
await_any_button awaitanybutton
await_any_button_get_locator_2 awtbuttongetloc2
await_any_button_get_valuator awtbuttongetval
await_keyboard awaitkeyboard
await_pick awaitpick
await_stroke_2 awaitstroke2
begin_batch_of updates beginbatchupdate
close_retained_segment closeretainseg

'| close_temporary_segment closetempseg
create_retained_segment createretainseg
create_temporary_segment createtempseg
define_color_indices defcolorindices
delete_all_retained_segments delallretainsegs
delete_retained_segment delretainsegment
deselect_view_surface deselectvwsurf
end_batch_of_updates endbatchupdate
file_to_raster filetoraster
free_raster B freeraster
get_mouse_state getmousestate
get_raster getraster
initialize_core initializecore
initialize_device initializedevice

1 initialize_view_surface initializevwsurf

1 inquire_charjust inqcharjust
inquire_ttarpathj inqcharpath2
inquire_charpath_3 inqcharpath3
inquire_charprecision ingcharprecision
inquire_charsize ingcharsize
inquire_charspace ingcharspace
inquire_charup_2 ingcharup?2
inquire_charup_3 ingcharup3
inquire_color_indices ingcolorindices
inquire_current_position_2 inqcurrpos2
inquire_current_position_3 ingcurrpos3
inquire_detectability inqdetectability
inquire_echo ingecho

Revision E of 7 January 1984

Using SunCore with Fortran-77 Programs

Using SunCore with Fortran-77 Programs

C-6

SunCore Reference Manual

Correspondence Between C Names anud FORTRAN Names

Long Name

FORTRAN Equivalent

inquire_echo_position
inquire_echo_surface
inquire_{fill_index

inquire_font

inquire_highlighting
inquire_image_transformation_2
inquire_image_transformation_3
inquire_image_transformation_type

inquire_image_translate_2
inquire_image_translate_3
inquire_inverse_composite_matrix
inquire_keyboard
inquire_line_index

inquire_linestyle
inquire_linewidth
inquire_locator_2
inquire_marker_symbol
inquire_ndc_space_2

inquire_ndc_space_3
inquire_open_retained_segment
inquire_open_temporary_segment
inquire_pen

inquire_pick_id

inquire_polygon_edge_style
inquire_polygon_interior_style
inquire_primitive_attributes
inquire_projection
inquire_rasterop

inquire_retained_segment_names
inquire_retained_segment_surfaces
inquire_segment_detectability
inquire_segment_highlighting

inquire_segment_image_transformation_2

inquire_segment_jmage_transformation_3
inquire_segment_image_transformation_type

inquire_segment_image_translate_2
inquire_segment_image_translate_3
inquire_segment_visibility

ingechoposition
ingechosurface
ingfillindex

ingfont
inqhighlighting
ingimgtransform2
ingimgtransform3
inqimgxformtype

ingimgtranslate2
ingimgtranslate3
inginvcompmatrix
ingkeyboard
inglineindex

inglinestyle
inglinewidth
inqlocator2
ingmarkersymbol
ingndespace?

inqndcspace3
inqopenretainseg
ingopentempseg
ingpen

inqpickid

ingpolyedgestyle
inqpolyintrstyle
ingprimattribs
inqprojection
ingrasterop

ingretainsegname
ingretainsegsurf
ingsegdetectable
ingseghighlight
ingsegimgxform2

ingsegimgxform3
ingsegimgxfrmtyp
inqsegimgxlate2
ingsegimgxlate3
ingsegvisibility

Revision E of 7 January 1084

-

-

-

o

SunCore Reference Manual

Correspondence Between C Names and FORTRAN Names

Long Name FORTRAN Equivalent
inquire_stroke . ingstroke
inquire_text_extent_2 ingtextextent?2
inquire_text_extent_3 inqtextextent3
inquire_text_index inqtextindex
inquire_valuator inqvaluator
inquire_view_depth inqviewdepth
inquire_view_plane_distance inqviewplanedist
inquire_view_plane_normal inqviewplanenorm
inquire_view_reference_point ingviewrefpoint
inquire_view_up_2 inqviewup?2
inquire_view_up_3 inqviewup3
inquire_viewing_control_parameters inqvwgentrlparms
inquire_viewing_parameters inqviewingparams
inquire_viewport_2 inqviewport2
inquire_viewport_3 ingviewport3
inquire_visibility inqvisibility
inquire_window inqwindow
inquire_world_coordinate_matrix_2 inqworldmatrix2
inquire_world_coordinate_matrix_3 inqworldmatrix3
line_abs_2 lineabs2
line_abs_3 lineabs3
line_rel_2 linerel2
line_rel_3 linerel3
map_nde_to_world_2 mapndctoworld2
map_nde_to_world_3 mapndctoworld3
map_world_to:ndc_2 mapworldtondc2
map_world_to_nde_3 mapworldtonde3
marker_abs_2 markerabs?
marker_abs_3 markerabs3
marker_rel_2 markerrel2
marker rel_3 markerrel3
move_abs_2 moveabs2
move_abs_3 moveabs3
move_rel_2 moverel2
move_rel_3 moverel3
new_frame . newframe
polygon_abs_2 " - polygonabs2
polygon_abs_3 polygonabs3
polygon_rel_2 polygonrel2

Revision E of 7 January 1984

Using SunCore with Fortran-77 Programs-

Using SunCore with Fortran-77 Programs ' SunCore Reference Manual

Correspondence Between C Names and FORTRAN Names ©
Long Name FORTRAN Equivalent

polygon_rel_3 polygonrel3
polyline_abs_2 polylineabs2
polyline_abs_3 polylineabs3
polyline_rel_2 polylinerel2
polyline_rel _3 polylinerel3
polymarker_abs_2 polymarkerabs2
polymarker_abs_3 polymarkerabs3
polymarker_rel_2 polymarkerrel2
polymarker_rel 3 polymarkerrel3
print_error printerror
put_raster putraster
raster_to_file rastertofile
rename_retained_segment renameretainseg
report_most_recent_error reportrecenterr
restore_segment restoresegment
save_segment savesegment
select_view_surface selectvwsurf
set_back_plane_clipping setbackelip @
set_charjust setcharjust
set_charpath_2 setcharpath2
set_charpath_3 setcharpath3
set_charprecision setcharprecision
set_charsize setcharsize
set_charspace setcharspace
set_charup_2 setcharup2-
set_charup_3 setcharup3
set_coordinate_system_type setcoordsystype
set_detectability setdetectability
set_drag setdrag
set_echo setecho
set_echo_group setechogroup
set_echo_position setechoposition
set_echo_surface setechosurface
set_fill_index setfillindex
set_font setfont
set_front _plane_clipping setfrontclip
set_highlighting sethighlighting
set_image_transformation_2 setimgtransform2 @

C-8 _ Revision E of 7 January 1984

-

-

SunCore Reference Manual

Long Name

Correspondence Between C Names and FORTRAN Names
FORTRAN Equivalent

e =
set_image_transformation_3
set_image_transformation_type
set_image_translate_2

set_image_translate_3
set_keyboard
set_light_direction
set_line_index
set_linestyle

set_linewidth
set_locator_2
set_marker_symbol
set_ndc_space_2
set_ndc_space 3

set_output_clipping
set_pen

set_pick_id
set_polygon_edge_style
set_polygon_interior_style

set_primitive_attributes
set_projection
set_rasterop
set_segment_detectability
set_segment_highlighting

set_segment_image_transformation_2
set_segment_image_transformation_3
sct_segment_image_translate_2
set_segment_image_translate_3
set_segment_visibility

set_shading_ parameters
set_stroke
set_text_index
set_valuator =
set_vertex_indices

set_vertex_normals
set_view_depth
set_view_plane_distance
set_view_plane_normal
set_view_reference_point

. setimgtransform3

setimgxformtype
setimgtranslate2

setimgtranslate3
setkeyboard
setlightdirect
setlineindex
setlinestyle

setlinewidth
setlocator2
setmarkersymbol
setndcspace?
setndcspaced

setoutputclip
setpen

setpickid
setpolyedgestyle
setpolyintrstyle

setprimattribs
setprojection
setrasterop
setaegdetectable
setseghighlight

setsegimgxform?2
setsegimgxform3
setsegimgxlate2
setsegimgxlate3
setsegvisibility

setshadingparams
setstroke
settextindex
setvaluator
setvertexindices

setvertexnormals
setviewdepth
setviewplanedist
setviewplanenorm
setviewrefpoint

Revision E of 7 January 1984

Using SunCore with Fortran-77 Programs

C-9

Using SunCore with Fortran-77 Programs

C.4. FORTRAN Interfaces to SunCore

Note: Although all SunCore procedures are declared here as functions, each may also be called as

SunCore Reference Manual

Long Name

Correspondence Between C Names and FORTRAN Names

FORTRAN Equivalent

set_view_up_2

set_view_up_3
set_viewport_32
set_viewport_3

set_visibility
set_window

set_zbuffer_cut
size_raster
terminate_core
terminate_device

text

set_viewing_parameters

set_window_clipping
set_world_coordinate_matrix_2
set_world_coordinate_matrix_3

terminate_view_surface

setviewup2
setviewup3
setviewingparams
setviewport2
setviewport3

setvisibility
setwindow
setwindowclip
setworldmatrix2
setworldmatrix3

setzbuffercut
sizeraster
terminatecore
terminatedevice
terminatevwsurf
text

a subroutine if the user does not want to check the returned value.

C-10

integer function allocateraster(raster)

integer raster(4)

integer function awaitanybutton(time, buttonnum)

integer time, buttonnum

integer function awibuttongetloc2(time, locatornum, buttonnum, x, y)

integer time, locatornum, buttonnum

real x, y

integer function awtbuttongetval(time,valuatornum,buttonnum,value)

integer time, valuatornum, buttonnum

real value

integer function awaitkeyboard(time, keyboardnum, inputstring, length)

integer time, keyboardnum

character*(#) inputstring
integer length

Revision E of 7 January 1984

-

-

SunCore Reference Manual Using SunCore with Fortran-77 Programs
@ integer function awaitpick(time, picknum, segname, pickid)
integer time, picknum, segname, pickid

integer function awaitstroke2(time, strokenum, arraysize, xarray, yarray, n}
integer time, strokenum, arraysize

real xarray, yarray '

integer n

integer function beginbatchupdate()

integer function closeretainseg()

integer function closetempseg()

integer function createretainseg(segname)
integer segname

integer function createtempseg()

integer function defcolorindices(surfacename, il, i2, red, green, blue)
integer surfacename{ *)
integer il, i2

0 real red(*), green(*), blue(*)

integer function delallretainsegs(}

integer function delretainsegment(segname)
integer segname

integer function deselectvwsurf(surfacename}
integer surfacename(*)

integer function endbatchupdate()

integer function filetoraster(rasfid, raster, map)
integer rasfid

integer raster(4)

integer map(3)

integer function freeraster(raster)
integer raster(4)

Revision E of 7 January 1984 C-11

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function getmousestate(x, y, buttons)
real x,y @
integer buttons

integer function getraster{surfacename, xmin, xmax, ymin, ymax, xd, yd, raster)
integer surfacename(*)

real xmin, xmax, ymin, ymax

integer xd, yd

integer raster(4)

integer function initializecore{outputlevel, inputlevel, dimension)
integer outputlevel, inputlevel, dimension

integer function initializedevice(deviceclass, devicenum)
integer deviceclass, devicenum

integer function initializevwsurf(surfacename, type)
integer surfacename(*)
integer type

integer function ingcharjust(just)
integer just

integer function inqcharpath2(dx, dy) ‘ ©
real dx, dy .

integer function inqcharpath3(dx, dy, dz)
real dx, dy, dz

integer function inqcharprecision(charprecision)
integer charprecision

integer function ingcharsize(charwidth, charheight)
real charwidth, charheight

integer function inqcharspace(charspace)
real charspace

integer function inqcharup2(dx, dy)
real dx, dy

integer function inqcharup3(dx, dy, dz)
real dx, dy, dz

-

C-12 Revision E of 7 January 1984

C

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function inqcolorindices(surfacename, il, i2, red, green, blue)
integer surfacename(*)

integer i1, i2

real red(*), green{*), blue(*)

integer function ingcurrpos2(x, y)
real x, y

integelj function inqcurrpos3(x, y, z)
real x,y, z

integer function inqdetectability(detectability)
integer detectability

integer function inqecho{deviceclass, devicenum, echotype)
integer deviceclass, devicenum, echotype

integer function ingechoposition(deviceclass, devicenum, echox, echoy)
integer deviceclass, devicenum
real echox, echoy

integer function inqechosurface(deviceclass, devicenum, surfacename)
integer deviceclass, devicenum

integer surfacename(*)

integer function inqfillindex(index)
integer index

integer function ingfont{font)
integer font

integer function inqhighlighting(highlighting)
integer highlighting

integer function inqimgtransform?2(sx, sy, a, tx, ty)
real sx, sy, 3, tx, ty

integer function inqimgtransform3(sx, sy, sz, ax, ay, az, tx, ty, tz)
real ax, sy, sz, ax, ay, az, tx, ty, tz

integer function inqimgxformtype{type)
integer type .

integer function ingimgtranslate2(tx, ty)
real tx, ty

Revision E of 7 January 1984 C-13

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function ingimgtranslate3(tx, ty, tz)
real tx, ty, tz O

integer function inqinvcompmatrix(array)
real array(4,4)

integer function inqkeyboard(keyboardnum, buffersize, initstring, initcursor)
integer keyboardnum, buffersize

character#(*) initstring

integer initcursor

integer function inglineindex(index)
integer index

integer function inqlinestyle(linestyle)
integer linestyle

integer function inglinewidth(linewidth)
real linewidth

integer function inglocator2(locatornum, x, y)
integer locatornum
real x, y

integer function ingmarkersymbol(symbol) @
integer symbol

integer function ingndcspace2(width, height)
real width, height

integer function inqndcspace3(width, height, depth)
real width, height, depth

integer function inqopenretainseg(segname)
integer segname

integer function inqopentempseg{open)
integer open

integer function inqpen(pen)
integer pen

integer function inqpickid(pickid)
integer pickid

C-14 Revision E of 7 January 1984 i

©

5

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function inqpolyedgestyle(style)
integer style

integer function inqpolyintrstyle(style)
integer style

integer function inqprimattribs(primattr)
integer primattr(28)

Note: The actual argument in the calling program correcsponding to primatir should be an array
which can be referenced both as a real array and as an integer array in order to access both
integer valued and real valued primitive attributes. This can be done using the equivalence state-
ment.

integer function inqprojection(projection, dxproj, dyproj, dzproj)
integer projection
real dxproj, dyproj, dzproj

integer function inqrasterop(rop})
integer rop

integer function inqretainsegname(arraysize, namearray, numberofsegments)
integer arraysize, namearray(*), numberofsegments

integer function ingretainsegsurf(segname, arraysize, vwsurfarray, numsurf)
integer segname, arraysize

integer vwaurfarray(*)

integer numsurf

Note: arraysize should give the number of view surface structures whick can be held in vweurfar-
ray. Each structure requires VWSURFSIZE elements of vwsurfarray.

integer function ingsegdetectable(segname, detectability)
integer segname, detectability

integer function inqseghighlight(segname, highlighting)
integer segname, highlighting

integer function ingsegimgxform2(segname, sx, sy, a, tx, ty)
integer segname
real sx, sy, a, tx, ty

integer function ingsegimgxform3(segname, sx, sy, sz, ax, ay, az, tx, ty, tz)
integer segname

real sx, sy, sz, ax, ay, az, tx, ty, tz

integer function ingsegimgxfrmtyp(segname, type)
integer segname, type

Revision E of 7 January 1984 C-15

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function ingsegimgxlate2(segname, tx, ty)
integer segname
real tx, ty

integer function ingsegimgxlate3(segname, tx, ty, tz)
integer segname
real tx, ty, tz

integer function ingsegvisibility(segname, visibility)
integer segname, visibility

integer function ingstroke(strokenum, bufsize, dist, time)
integer strokenum, bufsize

real dist

integer time

integer function inqtextextent2(string, dx, dy)
character#(*) string
real dx, dy

integer function inqtextextent3(string, dx, dy, dz)
characters(#) string
real dx, dy, dz

integer function inqtextindex(index)
integer index

integer function inqvaluator(valuatornum, initialvalue, low, high)
integer valuatornum
real initialvalue, low, high

integer function inqviewdepth(frontdistance, backdistance)
real frontdistance, backdistance

integer function inqviewplanedist(viewdistance)
real viewdistance

integer function inqviewplanenorm(dxnorm, dynorm, dznorm)
real dxnorm, dynorm, dznorm

integer function inqviewrefpoint(x, y, z)
real x, y, z

integer function inqviewup2(dxup, dyup)
real dxup, dyup

C-16 Revision E of 7 January 1984

-

-

O

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function inqviewup3(dxup, dyup, dzup)
real dxup, dyup, dzup

integer function inqvwgentriparms(windowclip, frontclip, backelip, type)
integer windowclip, frontclip, backclip, type

integer function inqviewingparams(view params)
real viewparams(268)

Note: The actual argument in the calling program corresponding to viewparams should be an
array which can be referenced both as a real array and as an integer array in order to access both
integer valued and real valued viewing parametera. This can be done using the equivalence atate-
ment.

integer function inqviewport2{xmin, xmax, ymin, ymax)
real xmin, xmax, ymin, ymax

integer function inqviewport3(xmin, xmax, ymin, ymax, zmin, zmax)
real xmin, xmax, ymin, ymax, tmin, zmax

integer function inqvisibility(visibility)
integer visibility

integer function inqwindow(umin, umax, vmin, vmax)
real umin, umax, vmin, vmax

integer function mqworldmatnx.‘!(array)
real array(3,3)

integer function inqwbrldmatrix3(array)
real array(4,4)

integer function linéabs2(x, y)
real X, y

integer function lineabs3(x, y, z)
real x, ¥, £

integer function linerel2(dx, dy)
real dx, dy

integer function hnerel3(dx dy, dz)
real dx, dy, dz

integer function mapndctoworld2(ndcx, ndey, widx, widy)
real ndex, ndey, wldx, widy

Revision E of 7 January 1984 C-17

Using SunCore with Fortran-77 Programs

C-18

SunCore Reference Manual

integer function mapndctoworld3(ndex, ndcy, ndcz, wldx, widy, widz)

real ndex, ndcy, ndez, widx, widy, widz

integer function mapworldtonde2(wldx, widy, ndex, ndcy)

real wldx, wldy, ndex, ndey

integer function mapworldtondc3(wldx, wldy, wldz, ndex, ndey, ndez)

real wldx, widy, wldz, ndex, ndcy, ndez

integer function markerabs2(x, y)
real x, y

integer function markerabs3(x, y, z)
real X, y, ¥

integer function markerrel2(dx, dy)

real dx, dy

integer function markerrel3{dx, dy, dz)
real dx, dy, dz

integer function moveabs2(x, y)
real X,y

integer function moveabs3(x, y,)
real x, ¥y, ¢

integer function moverel2(dx, dy)
real dx, dy

integer function moverel3{dx, dy, dz)
real dx, dy; dz

integer function newframe()

integer function polygonabs2(xarray, yarray, n)
real xarray(*), yarray(*)
integer n

integer function polygonabs3(xarray, yarray, tarray, n)
real xarray(*), yarray(*), zarray(*)
integer n

integer function polygonrel2(dxarray, dyarray, n)
real dxarray(*), dyarray(*)
integer n

Revision E of 7 January 1984

-

C

O

C

SunCore Reference Manual

integer function polygonrel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(+), dzarray(*)
integer n

integer function polylineabs2(xarray, yarray, n)
real xarray(*), yarray(*)
integer n

integer function polylineabs3(xarray, yarray, zarray, n)
real xarray(*), yarray(*), zarray(*)
integer n

integer function polylinerel2(dxarray, dyarray, n)
real dxarray(+*), dyarray(+)
integer n

integer function polylinerel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(+*), dzarray(+)
integer n

integer function polymarkerabs2(xarray, yarray, n}
real xarray(*), yarray(*)
integer n

integer function polymarkerabs3(xarray, yarray, zarray, n)
real xarray(+), yarray(#), zarray(»)
integer n

integer function polymarkerrel2(dxarray, dyarray, n)
real dxarray(+), dyarray(*)
integer n

integer function polymarkerrel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(*), dzarray(*)
integer n

integer function printerror(message, errornum)
characters(+) message
integer errornum

integer function putraster{raster)
integer raster(4)

Revision E of 7 January 1984

Using SunCore with Fortran-77 Programs

C-19

Using SunCore with Fortran-77 Programs

C-20

integer function rastertofile(raster, map, rasfid, n)
integer raster{4)

integer map(3)

integer rasfid, n

integer function renameretainseg(segname, newname)
integer segname, newname

integer function reportrecenterr{errornum)
integer errornum

integer function restoresegment(segname, filename)
integer segname
character#(*) filename

integer function savesegment(segname, filename)

integer segname
character#(*) filename

integer function selectvwsurf(surfacename)
integer surfacename(*)

integer function setbackelip(onoff)
integer onoff

integer function setcharjust(just)
integer just

integer function setcharpath2(dx, dy)
real dx, dy

integer function setcharpath3(dx, dy, dz)
real dx, dy, dz

integer function setcharprecision(charprecision)
integer charprecision

integer function setcharsize(charwidth, charheight)
real charwidth, charheight

integer function setcharspace(charspace)
real charspace

integer function setcharup2(dx, dy)
real dx, dy

SunCore Reference Manual

Revision E of 7 January 1984

-

-

O

C

SunCore Refe:ence Manual

integer function setcharup3(dx, dy, dz)
real dx, dy, d=

integer function setcoordsystype(type)
integer type

integer function setdetectability(detectability)
integer detectability

integer function setdrag(mode)
integer mode

integer function setecho{deviceclass, devicenum, echotype)
integer deviceclass, devicenum, echotype

integer function setechogroup(deviceclass, devicenumarray, n, echotype)
integer deviceclass, devicenumarray(*), n, echotype

integer function setechoposition(deviceclass, devicenum, echox, echoy)
integer deviceclass, devicenum
real echox, echoy

integer function setechosurface(deviceclass, devicenum, surfacename)
integer deviceclass, devicenum
integer surfacename()

integer function setﬁllindex(index)
integer index

integer function setfont(font)
integer font

integer function setfrontclip(onoff)
integer onoff

integer function sethighlighting(highlighting)
integer highlighting

integer function setimgtransform2(sx, sy, a, tx, ty)}
real sx, 8y, a, tx, ty

integer function setimgtransform3(sx, sy, sz, ax, ay, az, tx, ty, tz)
real sx, sy, 8z, ax, ay, az, tx, ty, tz

integer function setimgxformtype(type)
integer type

Revision E of 7 January 1984

Using SunCore with Fortran-77 Programs

C-21

Using SunCore with Fortran-77 Programs

C-22

integer function setimgtranslate2(tx, ty)
real tx, ty

integer function setimgtranslate3(tx, ty, tz)
real tx, ty, tz

SunCore Reference Manual

integer function setkeyboard(keyboardnum, buffersize, initstring, initcursor)

integer keyboardnum, buffersize
character#(#) initstring
integer initcursor

integer function setlightdirect{dx, dy, dz)
real dx, dy, dz

integer function setlineindex(index)

integer index

integer function setlinestyle(linestyle)
integer linestyle

integer function setlinewidth{linewidth)
real linewidth

integer function setlocator2(locatornum, x, y)
integer locatornum
real x, y

integer function setmarkersymbol(symbol)
integer symbol ‘

integer function setndespace2(width, height)
real width, height

integer function setndespace3(width, height, depth)
real width, height, depth

integer function setoutputclip(onoff)
integer onoff

integer function setpen(pen)
integer pen

integer function setpickid(pickid)
integer pickid

Revision E of 7 January 1984

-

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function setpolyedgestyle(style)
integer style

integer function setpolyintrstyle(style}
integer style .

integer function setprimattribs{primattr)
integer primattr(28)

Note: The actual argument in the calling program corresponding to primatir should be an array
which can be referenced both as o real array and as an integer array in order to access both
integer valued and rcal valued primitive attributes. This can be done ucsing the equivalence state-

meni.

integer function setprojection(projection, dxproj, dyproj, dzproj)
integer projection

. real dxproj, dyproj, dzpro}

integer function setrasterop(rop)
integer rop

integer function setsegdetectable{segname, detectability)

- integer segname, detectability

integer function setseghighlight(segname, highlighting)

integer segname, highlighting

integer function setsegimgxform?2(segname, sx, sy, a, tx, ty)
integer segname
real sx, sy, a, tx, ty

integer function setsegimgxform3(segname, sx, sy, sz, ax, ay, az, tx, ty, tz)
integer segname
real sx, sy, sz, ax, ay, ag, tx, ty, tz

~ integer function setsegimgxlate2(segname, tx, ty)

integer segname
real tx, ty

integer function setsegimgxlate3(segname, tx, ty, tz)
integer segname :
real tx, ty, tz

integer function setsegvisibility(segname, visibility)
integer segname, visibility

Revision E of 7 January 1984 C-23

Using SunCore with Fortran-77 Programs . SunCore Reference Manual

integer function setshadingparams{ambient, diffuse, specular, flood, bump, hue, style)
real ambient, diffuse, specular, flood, bump
integer hue, style

integer function setstroke(strokenum, buffersize, distance, time)
integer strokenum, buffersize

real distance

integer time

integer function settextindex(index)
integer index

integer function setvaluator(valuatornum, initialvalue, low, high)
integer valuatornum
real initialvalue, low, high

integer function setvertexindices(colorindexlist, n)
integer colorindexlist(*), n

integer function setvertexnormals(xlist, ylist, slist, n)
real xlist(*), ylist(*), zlist(*)
integer n

integer function setviewdepth(frontdistance, backdistance)
real frontdistance, backdistance

integer function setviewplanedist(distance)
real distance

integer function setviewplanenorm(dxnorm, dynorm, dznorm)
real dxnorm, dynorm, dznorm

integer function setviewrefpoint(x, y, 2)
real x, y, &

integer function setviewup?2(dx, dy)
real dx, dy

integer function setviewup3{dx, dy, dz)
real dx, dy, dz

integer function setviewingparams{viewparams)
real viewparams(26)

Note: The actual argument in the calling program corresponding to viewparams should be an
array which can be referenced both as a real array and as an integer array in order to access both

-

integer valued and real valued viewing paramecters. This can be done using the equivalence ©

C-24 Revision E of 7 January 1984

-

o

SunCore Reference Manual Using SunCore with Fortran-77 Programs

atatement.

integer function setviewport2(xmin, xmax, ymin, ymax)
real xmin, xmax, ymin, ymax

integer function setviewport3{xmin, xmax, ymin, ymax, zmir, zmax)
real xmin, xmax, ymin, ymax, zmin, zmax

integer function setvisibility{visibility)
integer visibility

integer function setwindow(umin, umax, vmin, vmax)
real umin, umax, virin, vinax

integer function setwindowelip(onoff)
integer onoff

integer function setworldmatrix2(array)
real array{3,3)

integer function setworldmatrix 3(array)
real array(4,4)

integer function setzbuffercut(surfacename, xlist, zlist, n)
integer surfacename(#)

real xlist(*), zlist(*)

integer n

integer function sizeraster(surfacename, xmin, xmax, ymin, ymax, raster)
integer surfacename{)

real xmin, xmax, ymin, ymax

integer raster(4)

integer function terminatecore()

integer function terminatedevice(deviceclass, devicenum)
integer deviceclass, devicenum

integer function terminatevwsurf(surfacename)
integer surfacename()

integer function text(string)
character*(*) string

Revision E of 7 January 1984 C-925

Using SunCore with Fortran-77 Programs SunCore Reference Manual

-

-

C-26 Revision E of 7 January 1984

Appendix D

Using SunCore with Pascal Programs

All functions provided in SunCore may be called from Pascal programs by linking them with
the /usr/lib/libcorepas.a library by using the Pascal compiler with a command line of the form:

% pc —o grab grab.p -lcorepas -lcore -Isunwindow -lpixrect —Im

where grab.p is the Pascal source program. Note that [usrf/libf/libcore.a must be linked with
the program (the —lcore option), and [usr/lib/libcorepas.a must come before it (the —lcorepas
option}. .

D.1. Programming Requirements

The files typedefspas.h, usercorepae.h, devincpas.h and asunpas.h from the
Jusrfinclude/pascal directory must be included in the user's source code to provide the neces-
sary declarations for the Pascal interface to SunCore. Pascal programs which call SunCore
functions must place these include files in the most global declaration section of the program:

program example (input,output)

#tinclude ’/usr/include/pascal/typedefspas.h’
#include ’/usr/include/pascal/usercorepas.h’

var
{user declarations}

#include */usr/ inclu de/pascal/devincpas.h’
#include ’/usr/include/pascal/sunpas.h’

If the Pascal program is composed of separately compiled files, these include statements must be
in each Pascal file which uvses SunCore functions and the corresponding defined constants.
Defined constants for SunCore (see section on Useful Constants in the introduction to this
manual) are set in the file /usr/include/pascal/usercorepas.h. The default primitive attribute
structure PRIMATTS provided in wusercore.k and described in the section describing
set_primitive_attributes is not provided in usercorepas.h.

The Sun release of Pascal does not support the passing of variable length arrays as arguments
in function or procedure calls. Therefore, fixed length arrays which are compatible with the
SunCore-Pascal interface are declared as predefined types in the fypedefspas.h file (see the
Declarations section of this appendix). The length of these arrays in 258. The length of char-
acter strings passed from Pascal programs to SunCore must also be 256 characters.

In the Sun release of Pascal, functior names may not contain the underline character (_). There-
fore, Pascal programs use abbreviated names to call the corresponding SunCore functions.
The correspondence between the full SunCore names and the Pascal names appears in the
Function Declarations section of this appendix. To provide a mechanism for returning the

Revision E of 7 January 1984 D-1

Using SunCore with Pascal Programs SunCore Reference Manual

status of calls to SunCore routines, all SunCore routines must be called as functions from
Pascal. Finally, although most SunCore functions use floats (32-bit reals), Pascal uses 64-bit
reals. However, the Pascal programmer is only required to provide reals. SunCore functions
which have structures as their arguments have corresponding predefined types in Pascal (see
the Type Declarations section of this appendix).

D.2. Limitations of SunCore-Pascal Interface

In addition to the requirements of calling SunCore routines as functions and using fixed length
character strings and arrays, two types of SunCore functions cannot be used in their standard
forms because Pascal provides a less flexible mechanism for using pointers than ‘C. In particu-
lar Pascal does not support the use of pointers within structures. The two types of routines
which accordingly require special treatment by the Pascal programmer are

1. routines using view surface names
2. routines concerning rasters and colormaps.

D.2.1. Routines Using View Surface Names

View surface names in SunCore are structures containing pointers to device driver routines.
The device driver names are supplied by the include file devincpas.h. The user may then simply
use one of these names:

bwidd for the Sun-1 monochrome display,
bw2dd for the Sun-2 monochrome display,
cgldd for the color monitor

pixwindd for windows on the Sun-1 monochrome display,
cgpixwindd for windows on the color monitor.

However, the device driver names must be inserted in the view surface structure. The pasloc
function (provided in the SunCore-Pascal interface) transforms the function corresponding to
the device driver into an integer which can then be inserted in the appropriate place in the dev-
ice driver structure (see following example).

D-2 Revision E of 7 January 1984

-

-

O

SunCore Reference Manual Using SunCore with Pascal Programs

C Code Pascal Code
struct vwsurf dsurf = NULL_VWSURF; var
int bwildd(); dsurf:vwsurf;
tstr:vwsurfst;
tstr == L
dsurf.dd = bwldd; 7 dsurf.dd := pasloc(bwldd);

dsurf.screenname := tstr;
dsurf.windowname := tstr;
dsurf.windowfd = 0;
dsurf.instance := 0;
dsurf.cmapsize := 0;
dsurf.cmapname := tstr;

dsurf.flags := 0;
dsurf.ptr := 0;
initialize_view_surface(&dsurf, FALSE); x ;= InitializeVwsurf(dsurf, FALSE);

Assigning a literal string of two spaces (blanks) to the tstr variable will initialize the character
array to all spaces.

D.2.2. Routines Using Rasters and Colormaps

For uses of SunCore functions which have rasters or colormaps as arguments which do not
involve arithmetic direct manipulation by the programmer (e.g., writing a raster to a file), the
following restrictions on the functions do not apply and the programmer is only required to call
the function. S8unCore raster and colormap structures contain pointers to variable length data
(that is, dynamic arrays). The SunCore-Pascal interface declares these varaibles as integers.

Pascal programmers wishing to alter the contents of the colormap or raster data within a pro-
gram must write a C function which uses the pointer value returned in Pascal to copy the
information into a fixed-length array. Arithmetic operations can then be performed on the data
using conventional Pascal statements. The programmer must then write another C function to
copy the information back into the array pointed to by the pointer returned by the SunCore-
Pascal interface. These C functions are not provided because the size of the fixed-length array
will vary greatly among different applications. Therefore, the individual Pascal programmer
must decide how large an array to declare for each application.

D.3. Example Program

The use of the SunCore-Pascal interface is illustrated by showing the text of a program for
drawing the martini glass used in previous tutorial examples.

program martiniglass (input,output);

#include '/usr/include/pascal fusercorepas.h’;
#include '/usr/include/pascal /typedefs.h’;

Revision E of 7 January 1984 D-3

Using SunCore with Pascal Programs

var

SunCore Reference Manual

glassdx, glassdy: parr {type parr is an array of reals of
length 256 declared in typedefs.h};

x:integer;

dsurf:vwsurf;

tatr:vwsurfst;

function sleep{x:integer):integer; external;

#inctude '/usr/include/pascal/sunpas.h’;
ftinclude '/usr/include/pascal/devincpas.kt’;

procedure loaddata;
begin
glassdx[l] := -10.0; glassdy[t] := 0.0;
glassdx{2] := 9.0; glassdy[2] := 1.0;
glassdx[3] ;= 0.0; glassdy(3] := 19.0;
glassdx[4] 1= -14.0; glassdy[4] := 15.0;
glassdx[5] := 30.0; glassdy([5] := 0.0;

glassdx[6] := -14.0; glassdy(8] := -15.0;

glassdx([7] := 0.0; glassdy[7] := -19.0;

glassdx[8] :== 9.0; glassdy[8] := -1.0;

glassdx[9) := -10.0; glassdy[9) := 0.0;
end;

begin {main program}

tstr ;="'
dsurf.screenname == tstr;
dsurf.windowname := tstr;
dsurf.windowfd :== 0;
dsurf.dd :== pasloc(bwldd);
dsurf.instance :== 0;
dsurf.cmapsize :== 0;
dsurf.cmapname == tatr;
dsurf.flags ;= ©;

dsurf.ptr ;= 0;

if (initializecore(BASIC, NOINPUT, TWOD) <> 0) then

writeln (* error 1)
else

if (initializevwsurf{dsurf, FALSE) <> 0) then

writeln (* error 2')
else
if (selectvwsurf(dsurf) <> 0) then
writeln (* error 3')
else

x = setviewport2(0.125, 0.875, 0.125, 0.75);

x := setwindow(-50.0, 50.0, —-10.0, 80.0);

X ;== createtempseg;
X := moveabs2(0.0, 0.0});
loaddata;

x :== polylinerel2(glassdx, glassdy,9);

Revision E of 7 January 1984

-

-

SunCore Reference Manual Using SunCore with Pascal Programs

== moverel2(-12.0, 33.0};
== linerel2(24.0, 0.0);

== closetempseg;

= sleep(10);

1= deselectvwsurf(dsurf);
== terminatecore;

-

R

end.

Revision E, of 7 January 1984 D-5

Using SunCore with Pascal Programs

D.4. Correspondence Between C Names and Pascal Names

D-6

SunCore Reference Manual

Correspondence Between C Names and Pascal Names

SunCore Name

Pascal Equivalent

allocate_raster allocateraster
await_any_button awaitanybutton
await_any_button_get_locator_2 awtbuttongetloc2
await_any_button_get_valuator - awtbuttongetval
await_keyboard awaitkeyboard
await_pick awaitpick
await_stroke_2 awaitstroke2
begin_batch_of _updates beginbatchupdate
close_retained_segment closeretainseg
close_temporary_segment closetempseg
create_retained_segment createretainseg
create_temporary_segment createtempseg
define_color_indices defcolorindices
delete_all_retained_segments delallretainsegs
delete_retained_segment delretainsegment
deselect_view_surface deselectvwsurf
end_batch_of updates endbatchupdate
file_to_raster filetoraster
free_raster freeraster
gel_mouse_state getmousestate
get_raster getraster
initialize_core initializecore
initialize_device initializedevice
initialize_view_surface initializevwsurf
inquire_charjust inqcharjust
inquire_charpath_2 inqgcharpath2
inquire_charpath_3 inqcharpath3
inquire_charprecision ingcharprecision
inquire_charsize inqcharsize
inquire_charspace inqcharspace
inquire_charup_2 ingcharup?2
inquire_charup_3 ingcharup3
inquire_color_indices ingcolorindices
inquire_current_position_2 inqcurrpos?
inquire_current_position_3 ingcurrpos3
inquire_detectability “inqdetectability
inquire_echo ingecho

Revision E of 7 January 1984

@

-

SunCore Reference Manual

Using SunCore with Pascal Programs

O Correspondence Between C Names and Pascal Names
SunCore Name Pascal Equivalent

inquire_echo_position inqechoposition
inquire_echo_surface ingechosurface
inquire_{ill_index ingfillindex
inquire_font ingfont
inquire_highlighting inqhighlighting
inquire_image_transformation_2 ingimgtransform?2
inquire_image_transformation_3 ingimgtransform3
inquire_image_transformation_type inqimgxformtype
inquire_image_translate_2 ingimgtranslate2
inquire_image_translate_3 ingimgtranslate3
inquire_jnverse_composite_matrix inginvcompmatrix
inquire_keyboard ingkeyboard
inquire_line_index inqlineindex
inquire_linestyle inqlinestyle
inquire_linewidth inqlinewidth
inquire_locator_2 inglocator2
inquire_marker_symbol inqmarkersym bol
inquire_ndc_space_2 inqndcspace2

@ inquire_ndc_space_3 inqndcspace3
inquire_open_retained_segment inqopenretainseg
inquire_open_temporary_segment ingopentempseg
inquire_pen . ingpen
inquire_pick_id ingpickid
inquire_polygon_edge_style ingpolyedgestyle
inquire_polygon_interior_style ingpolyintrstyle
inquire_primitive_attributes inqprimattribs
inquire_projection ingprojection
inquire_rasterop inqrasterop
inquire_retained_segment_names ingretainsegname
inquire_retained_segment_surfaces inqretainsegsurf
inquire_segment_detectability ingsegdetectable
inquire_segment_highlighting ingseghighlight
inquire_segment_image_transformation_2 ingsegimgxform2
inquire_segment_image_.transformation_3 ingsegimgxform3
inquire_segment_image_transformation_type ingsegimgxfrmtyp
inquire_segment_image_translate_2 inqsegimgxlate?
inquire_segment_image_translate_3 inqsegimgxlate3

@ inquire_segment_visibility ingsegvisibility

‘Revision E of 7 January 1984 D-7

Using SunCore with Pascal Programs

SunCore Reference Manual

Correspondence Between C Names and Pascal Names

SunCore Name Pascal Equivalent
inquire_stroke ingstroke
inquire_text_extent_2 ingtextextent2
inquire_text_extent_3 inqtextextent3
inquire_text_index inqtextindex
inquire_valuator inqvaluator
inquire_view_depth ingviewdepth
inquire_view_plane_distance inqviewplanedist
inquire_view_plane_normal inqgviewplanenorm
inquire_view_reference_point ingviewrefpoint
inquire_view_up_2 ingviewup?2
inquire_view_up_3 inqviewup3
inquire_viewing_control_parameters ingvwgentrlparms
inquire_viewing_parameters inqviewingparams
inquire_viewport_2 inqviewport2
inquire_viewport_3 inqviewport3
inquire_visibility inqvisibility
inquire_window ingwindow
inquire_world_coordinate_matrix_2 inqworldmatrix2
inquire_world_coordinate_matrix_3 inqworldmatrix3
line_abs_2 lineabs?2
line_abs_3 lineabs3
line_rel_2 linerel2
line_rel_3 linerel3
map_nde_to_world_2 mapndctoworld2
map_nde_to_world_3 mapndetoworld3
map_world_to_ndc_2 mapworldtondc2
map_world_to_ndc_3 mapworldtondc3
marker_abs_2 markerabs2
marker_abs_3 markerabs3
marker_rel_2 markerrel2
marker_rel_3 markerrel3
move_ahs_2 moveabs2
move_abs_3 moveabs3
move_rel_2 moverel2
move_rel _3 moverel3
new_frame newframe
polygon_abs_2 polygonabs2
polygon_abs_3 polygonabs3
polygon_rel_2 _polygonrel2

Revision E of 7 January 1984

-

-

©

O

SunCore Reference Manual

polygon_rel_3

polyline_abs_2
polyline_abs_3
polyline_rel_2
polyline_rel_3
polymarker_abs_2

polymarker_abs_3
polymarker_rel_2
polymarker_rel_3
print_error
put_raster

raster_to_file
rename_retained_segment
report_inost_recent_error
restore_segment
save_segment

select_view_surface
set_back_plane_clipping
set_charjust
set_charpath_2
set_charpath_3

set_charprecision
set_charsize
set_charspace
set_charup_2
set_charup_3

set_detectability
set_drag
set_echo
set_echo_group

set_echo_position
set_echo_surface
set_fill_index

set_font
set_front_plane_clipping

set_highlighting

SunCore Name

set_coordinate_system_type

set_image_transformation_2

Correspondence Between C Names and Pascal Names

Pascal Equivalent
—_———— |

polygonrel3

polylineabs2
polylineabs3
polylinerel2
polylinerel3
polymarkerabs2

polymarkerabs3
polymarkerrel2
polymarkerrel3
printerror
putraster

rastertofile
renameretainseg
reportrecenterr
restoresegment
savesegment

selectvwsurf
setbackelip
setcharjust
setcharpath?
setcharpath3

setcharprecision
setcharsize
setcharspace
setcharup?2
setcharup3

setcoordsystype
setdetectability
setdrag

setecho
setechogroup

setechoposition
setechosurface
setfillindex
setfont
setfrontclip

sethighlighting
setimgtransform?2

Revision E of 7 January 1984

Using SunCore with Pascal Programs

Using SunCore with Pascal Programs

D-10

SunCore Reference Manual

SunCore Name

Correspondence Between C Names and Pascal Names
Pascal Equivalent

set_image_transformation_3
set_image_transformation_type
set_image_translate_2

set_image_translate_3
set_keyboard
set_light_direction
set_line_index
set_linestyle

set_linewidth
set_locator_2
set_marker_symbol
set_ndc_space_2
set_ndc_space_3

set_output_clipping
set_pen

set_pick_id
set_polygon_edge_style
set_polygon_interior_style

-| set_primitive_attributes

set_projection
set_rasterop
set_segment_detectability
set_segment_highlighting

set_segment_image_transformation_2
set_segment_image_transformation_3
set_segment_image_translate_2
set_segment_image_translate_3
set_segment_visibility

set_shading_parameters
set_stroke
set_text_index
set_valuator
set_vertex_indices

set_vertex_normals
set_view_depth
set_view_plane_distance
set_view_plane_normal
set_view_reference_point

setimgtransform3
setimgxformtype
setimgtranslate2

setimgtransiate3

. setkeyboard

setlightdirect
setlineindex
setlinestyle

setlinewidth
setlocator2
setmarkersymbol
setndcspace?
setndcspace3

sevoutputclip
setpen

setpickid
setpolyedgestyle
setpolyintrstyle

- setprimattribs

setprojection
setrasterop
setsegdetectable
setseghighlight

setsegimgxform2
setsegimgxform3
setsegimgxlate2
setsegimgxlated
setsegvisibility

setshadingparams
setstroke
settextindex
setvaluator
setvertexindices

setvertexnormals
setviewdepth
setviewplanedist
setviewplanenorm
setviewrefpoint

Revision E of 7 January 1984

-

-

-

O

SunCorg Reference Manual

set_view_up

Correspondence Between C Names and Pascal Names

SunCore Name

Pascal Equivalent

2

set_view_up_3
set_viewing_parameters
set_viewport_2

set_viewport_3

set_visibility

set_window
set_window_clipping
set_world_coordinate_matrix_2
set_world_coordinate_matrix_3

set_rbuffer_cut
sire_raster
terminate_core
terminate_device
terminate_view_surface
text

setviewup2
setviewup3
setviewingparams
setviewport2
setviewport3

setvisibility
setwindow
setwindowclip
setworldmatrix2
setworldmatrix3

setzbuffercut
sizeraster
terminatecore
terminatedevice
terminatevwsurf
puttext

Revision E of 7 January 1984

Using SunCore with Pascal Programs

Using SunCore with Pascal Programs SunCore Referenc_c Manual

D.5. Declarations for SunCore-Pascal Interface

D.5.1. Type Declarations
type iarr = array[1..256] of integer;
type parr = array[l..256] of real;
type cct == array[1..257] of char;
type ivarray = array[l..4,1..4] of real;
type ivarrayl = array|[l1..3,1..3] of real;

type ptiype = record
X,y,z,w:real;
end;

type aspect = record
width, height:real;
end;

type primattr = record
lineindx: integer;
fillindx: integer;
textindx: integer;
linestyl: integer;
polyintstyl: integer;
polyedgstyl: integer;
linwidth: real;
pen: integer;
font: integer;
charsize: aspect;
chrup, chrpath, chrspace: pttype;
chjust: integer;
chqualty: integer;
marker: integer;
pickid: integer;
rasterop: integer;

end;

D-12 Revision E of 7 January 1984

-

-

SunCore Reference Manual Using SunCore with Pascal Programs

@ type rasttyp == record
width: integer;

' height: integer;
depth: integer;
bits: integer; {var}
end;

type cmap = record
typ: integer;
nbyt: integer;
dat :integer; {var}
end;

type windtype = record
xmin, xmax, ymin, ymax:real;
end;

type porttype = record
xmin,xmax,ymin,ymax,zmin,zmax:real;
end;

type vwprmtype == record

vwrefpt: array [1..3] of real;
@ vwplnorm: array [1..3] of real;

viewdis:real;

frontdis:real;

backdis:real;

projtype:integer;

projdir: array [1..3] of real;

window:windtype;

vwupdir: array [1..3] of real;

view port:porttype;

end;

type vwsurf = record
screenname: array [1.DEVNAMESIZE] of char;
windowname: array [1..DEVNAMESIZE] of char;
windowfd:integer;
dd:integer;
instance:integer;
cmapsize:integer;
c¢mapname: array [1.DEVNAMESIZE] of char;
flags:integer;
ptr: integer;

end; .

type vwsurfst = array [1. DEVNAMESIZE] of char;

O

Revision E of 7 January 1984 D-13

Using SunCore with Pascal Programs SunCore Reference Manual

type vwarr = array[l.MAXVSURF] of vwsurf;

-

-

D-14 Revision E of 7 January 1984

SunCore Reference Manual

D.5.2. Function Declarations

function allocateraster(var rptrirasttyp)integer; external;

function awaitanybutton(tim:integer;
var buttonnum:integer): integer, external;

function awtbuttongetloc2(time:integer; locatornum:integer;
var buttonnum:integer; var x:real;
var y:real):integer; external;

function awtbuttongetval(time:integer; valnum:integer;
var buttonnum:integer; var val:real):
integer; external;

_ function awaitkeyboard(tim:integer;keynum:integer;var sptricct;

var length:integer):integer; external;
function awaitpick(time:Integer; picknum:integer;

var segnam:integer; var pickid:integer)

:integer; external;

function awaltstroke2(t1m integer,plcknum integer;asize:integer;var x:parr;
var y:parr;numxy:integer):integer; external;

function beginbatchupdate:integer; external;

function cloueretaiﬁbeg:integer; external;

function closetempseg:integer; external;

function createretainseg(scgname:integer):integer; external;

function createtempseg:integer; external;

function defcolorindices(surfacename:vwsurf;
il:integer;i2:integer;
Var r:parr;var g:parr;var b:parr
)integer; external;

fu_nction delallretainﬁegs:integer; external;

function delretainsegment(segname:integer):integer; external;

function deselectvwsurf(surfacename:vwsurf

):integer; external;
function endbatchupdate:integer; external;

function filepas(fname:cct;sw:integer;fileid:integer).integer; external;

Revision E of 7 January 1984

Using SunCore with Pascal Programs

Using SunCore with Pascal Programs SunCore Reference Manual

function filetoraster{rasfid:integer;var rptrirasttyp;
var map:cmap):integer; external;

function freeraster{var rptrrasttyp)integer; external;

function getmousestate(var x:real;var y:real;var buttons:integer):
integer; external;

function getraster(surfacename :vwsurf;
xmin:real;xmax:real;ymin:real;ymax:real;
xd:integer;yd:integer;var rptrirasttyp)integer;
external;
function initializecore{outputlevel:integer;
inputlevel:integer;
dimension:integer):integer; external;

function initializedevice{deviceclass:integer;
devicenum:integer):integer; external;

function initializevwsurf(surfacename:vwsurf; typ:integer
):iinteger; external;

function inqcharjust(var chjust:integer):integer; external;
function ingcharpath2(var x:real;var y:real):integer; external;
function inqcharpath3(var x:feal;va.r y:real;var z:real)integer; external;
function inqcharprecision(var chquality:integer):integer; external;
function inqcharsize(var width:real;var height:real):integer; external;
function ingcharspace(var space:real)integer; external;
function ingcharup2(var x:real;var y:real):integer; external;
function ingcharup3(var x:real;var y:real;var z:real):integer; external,
function inqcolorindices(surfacename:vwsurf;

il:éinteger;i2:integer;

VAP IDaIT;VAr g:parr;var b:parr

)integer; external;
function ingcurrpos2(var x:real;var y:real):integer; external;

function inqcurrpos3{var x:real;var y:real;var z:real):integer; external;

function inqgdetectability(var detect:integer):integer; external;

D-18 Revision E of 7 January 1984

SunCore Reference Manual Using SunCore with Pascal Programs

@ function ingecho(devclass:integer;devrum:integer;
" wvar echotype:integer):integer; external;

function inqgechoposition(devclass:integer;devnum:integer;
var x:real;var y:real):integer; external;

function ingechosurface(devclass:integer;devnum:integer;
var surfacename:vwsurf):integer; external;

function ingfillindex(var color:integer):integer; external;
function inqfont(var font:integer):integer; external;
function inqhighlighting{var highlight:integer):integer; external;
function inqimgtransform2(var sx:real; var sy:real;var a:real
ivar tx:real; var ty:real
}integer; external;
function ingimgtransform3(var sx:real; var sy:real;var sz:real
ivar ax:real; var ay:real;var az:real
ivar tx:real; var ty:real;var tz:real
):integer; external;
function inqimgxformtype(var segtype:integer):integer; external;
G : function inqimgtranslate2(var tx:real; var ty:real):integer; external;

function inqgimgtranslate3(var tx:real; var ty:real;var tz:real
):integer; external;

" function inginvcompmatrix(var iarray:ivarray):integer; external;

function inqkeyboard(keynum:integer;var bufsize:integer;var string:cct;
var pos:integer):integer; external;

function inglineindex(var coior:lnteger):integer; external;
function inqlinestyle(var linestyle:integer):integer; external;
function inglinewidth(var linewidth:real):integer; external;

function inqlocator2(locnum:integer;
var x:real;var y:real):.integer; external;

function inqmarkersymbol(var mark:integer):integer; external;

function ingndcspace2(var width:real;var height:real):integer; external;

-

‘Revision E of 7 January 1984 D-17

Using SunCore with Pascal Programs SunCore Reference Manual

function ingndcspace3(var width:real;var height:real;var
depth:real):integer; external;

function inqopenretainseg(var segname:integer):integer; external;
function inqopentempseg(var open:integer):integer; external;
function inqpen(var pen:integer):integer; external;

function ingpickid(var pick:integer):integer; external;

function ingpolyedgestyle(var pestyle:integer):integer; external;
function inqpolyintrstyle(var pistyle:integer):integer; external;
function inqprimattribs(var defprim:primat.tr):integer; external;

function ingprojection(var ptype:integer; var dx:real; var dy:real;
var dz:real):integer; external;

function inqrasterop(var rastop:integer)integer; external;

function ingretainsegname(arraycnt:integer; var seglist:iarr;
var segent:integer):integer; external;

function inqretainsegsurf(segname:integer; arraycnt:integer; var surflist:vwarr;
var surfent:integer:integer; external;

Note: since vwarr i2 an array of MAXVSURF viewsurfaces, arraycnt should be MAXVSURF'.

function ingsegdetectable(segname:integer;var dtable:integer)
:integer; external;

function ingseghighlight(segname:integer;var highlight:integer)
:integer; external;

function inqsegimgxform2(segname:integer;var sx:real;var sy:real;
var arreal;var tx:real;var ty:real
):integer; external;

function ingsegimgxform3(segnrame:integer;var sx:real;var sy:real;
var sz:real;var rx:real;var ry:real;
var rz:real;var tx:real;var ty:real;var tz:real
):integer; external;

function ingsegimgxfrmtyp(segname:integer;var segtype:integer)
:integer; external;

function ingsegimgxlate2(segname:integer;var tx:real;var ty:real)
:integer; external;

D-18 Revision E of 7 January 1984

SunCore Reference Manual Using SunCore with Pascal Programs

function ingsegimgxlate3(segname:integer;var sx:real;var sy:real;
var sz:real):integer; external;

function inqsegvisibility(segname:integer;var visible:integer):
integer; external;

function ingstroke(strokenum:integer;var bufsize:integer;var
dist:real;var time:integer):integer; external;

function ingtextextent2(var string:cct;var dx:real; var dy:real
)iinteger; external;

function ingtextextent3{var string:cct;var dx:real; var dy:real
; var dz:real)integer; external;

function ingtextindex(var color:integer):integer; external;

function inqvaluator{valnum:integer;var init:real;var low:real;var high:real)
integer; external;

function inqviewdepth(var fdist:real;var bdist:real)
:integer; external;

function inqviewplanedist{var vdist:real):integer; external;

function inqviewplanenorm(var dx:real; var dy:real;
var dz:real):integer; external;

function inqviewrefpoint(var rx:real; var ry:real;
var rz:resl):integer; external;

function inqviewup2(var dx:real; var dy:real
)iinteger; external;

function inqviewuﬁS(var dx:real; var dy:real;
var dz:real)integer; external;

function inqvwgentrlparms(var wclip:integer;var {clip:integer;
var belip:integer;var typ:integer)
:integer; external;

function inqviewingparams(var viewparm:vwprmtype):integer; external;

function inqviewport2(var xmin:real; var xmax:real;var ymin:real;var ymax:real
)iinteger; external;

function ingviewport3(var xmin:real; var xmax:real;var ymin:real;var ymax:real

;jvar zmin:real,var zmax:real)
:iinteger; external;

Revision E of 7 January 1984 . D-19

Using SunCore with Pascal Programs SunCore Reference Manual

D-20

function inqgvisibility(var visible:integer)
:integer; external;

function inqwindow(var umin:real; var umax:real;var vmin:real;var vmax:real
)integer; external;

function inqworldmatrix 2(var iarray:ivarrayl}).integer; external;
function ingworldmatrix3(var iarray:ivarray):integer; external;
function lineabs2(x:real;y:real)integer; external;
function lineabs3(x:real;y:real;z:real):integer; external;
function linerel2(x:real;y:real):integer; external;
function linerel3(x:real;y:real;z:real):integer; external;
function mapndctoworld2(ndx:real; ndy:real;

var widx:real; var wldy:real)

:integer; external;
function mapndctoworld3(ndx:real; ndy:real; ndz:real;

var wildx:real; var widy:real

; var widz:real)

iinteger; external;

function mapworldtondc2(wldx:real; widy:real;

var ndx:real; var ndy:real)

dinteger; external;
function mapworldtondc3(wldx:real; widy:real; widz:real,

var ndx:real; var ndy:real

; var ndz:real
Jiinteger; external;
function markerabs2(mx:real;my:real):integer; external;
function markerabs3{mx:real; my:real;mz:real):integer; external;
function markerrel2(dx:real;dy:real).integer; external;
function markerrel3(dx:real; dy:real;dz:real):integer; external;
function moveabs2(x:real;y:real)integer; external;

function moveabs3(x_:rea.l;y:rea.l;z:rea.l):integer; external;

function moverel2(x:real;y:real):integer; external;

Revision E of 7 January 1984

-

-

-

-

SunCore Reference Manual

function moverel3(x:real;y:real;z:real):integer; external;
function newframe:integer; external;

function pasloc(function f:integer
):integer; external;

function polygonabs2(var xcoor:parr; var ycoor:parr;
n:integer):integer; external;

funetion polygonabs3(var xcoor:parr; var ycoor:parr;Var 1coor:part;
n:integer):integer; external;

function polygonrel2(var xcoor:parr; var ycoor:parr;
n:integer):integer; external;

function polygonrel3(var xcoor:parr; var ycoor:parr;var zcoOr:parr;
n:integer).integer; external;

function polylineabs2(var xcoor:parr; var ycoor:parr;
n:integer):integer; external; :

function polylineabs3(var xcoor:parr; var ycoor:parr;var rcoor:parr;
n:integer):integer; external;

function polylinerel2(var xcoor:parr;var ycoor:parr;
n:integer):integer; external;

function polylinerel3(var xcoor:parr; var yccor:parr;var zcoor:parr;
n:integer):integer; external;

function polymarkerabs2(var xcoor:patr; var ycoor:parr;
n:integer):integer; external;

function polymarkérabs3(var XCOOr:pary; VAF YCOOT:PArr;Var £Coor:parr;

n:integer):integer; external;

function polymarkerrel2(var xcoor:parr; var ycoor:parr;
n:integer):integer; external;

function polymarkerrel3(var xcoor:parr; var ycoor:parr;var zcoor:parr;

n:integer):integer; external;
function printerror(var string:cct;error:integer):integer; external;
function putraster{var rptrirasttyp):integer; external;

function puttext{var string:cct):integer; external;

Revision E of 7 January 1984

Using SunCore with Pascal Programs

D-21

Using SunCore with Pascal Programs SunCore Reference Manual

D-22

function rastertofile{var rptrirasttyp;var map:cmap;rasfid:integer O
):integer; external;

function renameretainseg(segname:integer;newname:integer):integer; external;
function reportrecenterr(var error:integer):integer; external;

function restoresegment(segname:integer;var frame:cct)integer; external;
function savesegment(segname:integer;var fname:cct)integer; external;

function selectvwsurf(surfacename:vwsurf
)integer; external;

function setbackclip(onoff:integer):integer; external;

function setcharjust{chjust:integer):integer; external;

function setcharpath2(dx:real; dy:real):integer; external;
function setcharpath3(dx:real; dy:realidz:real)integer; external;
function setcharprecision(chquality:integer):integer; external;
function setcharsize(chwid:real,chht:real):integer; external;
function setcharspace(space:real):integer; external; @
function setcharup2(dx:real; dy:real):integer; external;
function setcharup3(dx:real; dy:real;dz:real):integer; external;
function setcoordsystype(typ:integer):integer; external;
function setdetectability(detect:integer):integer; external;
function setdrag{drag:integer):integer; external;

function setecho{devclass:integer;devnum:integer;
echotype:integer):integer; external;

function setechogroup(devclass:integer;var devarray:iarr;n:integer;
echotype:integer):integer; external;

function setechoposition(devclass:integer;devnum:integer;
x:real;y:real):integer; external;

function setechosurface(devclass:integer;devnum:integer;
surfacename:vwsurf):integer; external;

function setfillindex(color:integer):integer; external; O

Revision E of 7 January 1984

©

&

SunCore Reference Manual Using SunCore with Pascal Programs

function setfont({font:integer):integer; external;
function setfrontclip(onoff:integer):integer; external;
function sethighlighting(highlight:integer):integer; external;

function setimgtransform?2(sx:real; sy:real;a:real
stx:real; ty:real).integer; external;

function setimgtransform3(sx:real; sy:real;sz:real;

ax:real; ay:real;az:real;

tx:real; ty:real;tz:real)

:integer; external;
function setimgxformtype(segtype:integer):integer; external;
function setimgtranslate?(tx:rea); ty:real):integer; external;

function setimgtranslate3(tx:real; ty:realtz:real):integer; external;

function setkeyboard(keynum:integer;bufsize:integer;var string:cct;
pos:integer):integer; external;

function setlightdirect{dx:real; dy:real;dz:real
):integer; external;

function setlineindex(color:Integer):integer; external;

function set.li:-xeatyle(st.yle:integer):integer; external;

function setlinewiciﬁﬁ(width:real):integer; external;

function setlocator2(locnum:integer;x:real;y:real):integer; external;
function setmarkersymbol(mark:integer):integer; external;
function setndcspace2(width:real;height:real).integer; external;

function setndespace3(width:real;height:real;depth:real)
:integer; external;

function setoutputclip(onoff:integer):integer; external;
function setpen(pen:integer):integer; external;

function setpickid(pickid:integer):integer; escternal;
function setpolyedgestyle(pestyle:integer):integer; external;

function setpolyintrstyle(pistyle:integer):integer; external;

Revision E of 7 January 1984 D-23 .

Using SunCore with Pascal Programs SunCore Reference Manual

function setprimattribs(var defprim:primattr):integer; external;

function setprojection(ptype:integer;dx:real; dy:real;dz:real)
:integer; external;

function setrasterop(rop:integer):integer; external;

funct:on setsegdetectab!e(segname integer; detectbl:integer)
:integer; external;

function setseghighlight(segname:integer; highlight:iﬂteger)
:integer; external;

function setsegimgxform2(segname:integer;sx:real; sy:real;a:real;
tx:real;ty:real):integer; external;

function setsegimgxform3(segname:integer; sx real; sy:real;
sz:real; rx:real; ry:real; rz:real

; tx:real; ty:real; tz:real
):integer; external;

function setsegimgxlate2(segname:integer;tx:real; ty:real
J:integer; external;

function setsegimgxlate3(segname:integer;tx:real; ty:real;tz:real
):integer; external;

function setsegvisibility(segrame:integer;visible:integer):integer; external;
function setshadingparams(amb:real;dif:real;spec:real;flood:real;
bump:real;hue:integer;style:integer
):integer; external;
function setstroke(strokenum:integer;bufsize:integer;
dist:realitime:integer)
:integer; external;

function settextindex(color:integer):integer; external;

function setvaluator{valnum:integer;init:real;low:real;high:real)
:integer; external;

function setvertexindices(var x:iarr;n:integer):integer; external;

function setvertexnormals(var Xcoor:part; VAr ycoor:parr;Var zcoOr:parr;
n:integer):integer; external;

function setviewdepth(near:real;far:real):integer; external;

function setviewplanedist(dist:real):integer; external;

D-24 Revision E of 7 January 1984

&/

SunCore Reference Manual Using SunCore with Pascal Programs

@ function setviewplanenorm(dx:real; dy:real;dz:real):integer; external;
function setviewrefpoint(x:real; y:real;z:real):integer; external;
function setviewup2(dx:real; dy:real):.integer; external;
function setviewup3(dx:real; dy:real;dz:real):integer; external;
function setviewingparams{var viewparm:vwprmtype):integer; external;

function setviewport2(xmin:real;xmax:real;ymin:real;ymax:real):
integer; external;

function setviewport3(xmin:real;xmax:real;ymin:real;ymax:real;zmin:real;zmax:real)
:integer; external;

function setvisibility(visibility:integer):integer; external;

function setwindow(umin:real;umax:real;vmin:real;vmax:real)
‘integer; external;

function setwindowclip(onoff:integer):integer; external;
function setworldmatrix2(var iarray:ivarrayl):integer; external;
0 function setworldmatrix3(var iarray:ivarray).integer; external;
function setzbuffercut{var surfacename:vwsurf;var x:parr;var z:parr;n:integer).integer; exterh
function sizeraster{var surfacename:;vwsurf;
xmin:real;xmax:real;ymin:real;ymax:real;
var rptrirasttyp k:integer; external;
function terminatecore:integer; external;

function terminatedevice(devclass:integer;devnum:integer).integer; external;

function terminatevwsurf(var surfacename:vwsurf):integer; external;

©

Revision E of 7 January 1984 D-25

|
|

C©

Appendix E

Higher Performance SunCore Library

SunCore programs which are to be run on machines with Sun’s hardware floating point option
may use an alternative SunCore library which provides higher floating point performance.
This library is in /usr/lib/libcoreiky.a. A program linked with this library will only run on a
machine with hardware floating point.

To use this library for C programs, use a C compiler command line like:
% cc —{sky -o grab grab.c -lcoresky -lsunwindow -lpixrect-lm
and to use this iibrary: for Fortran programs:
% 177 —tsky —o grab grab.f -lcore77 -lcoresky -lsunwindow -lpixrect —Im

Note that this library cannot be used with Pascal programs in the current release.

If compiling and linking are done in separate steps, the —fsky option must also be specified in
the linking stage. The ~fsky option may also be used in the compiling step. See the cc(1} and
J77(1) manual pages for details.

Revision E of 7 January 1984 E-1

allocate_raster, 5-16
attributes
dyvamic, 4-1, 6-1
image_transformation_type, 6-16
primitive, 6-1
retained segment dynamic
Detectability, 4-2
Highlighting, 4-2
Image_transformation, 4-2
Visibility, 4-2 , 4-1
retained segment static, 4-1
segment, 6-1
static, 4-1, 6-1 , 6-1
await_any_button, 7-8
await_any_button_get_locator_2, 7-10
await_any_button_get_valuator, 7-10
await_keyboard, 7-9
await_pick, 7-8
await_stroke_2, 7-9
begin_batch_of_updates, 2-4
black texture, 6-6
button input device
echoing, 7-3 , 7-1
bwldd view surface, B-2
bw2dd view surface, B-2
cgldd view surface, B-2
cgpixwindd view surface, B-3
clipping”, 3-1
close_retained_segment, 4-3
close_temporary_segment, 4-5
constants, 1-9
control
drag, 2-5
error handling, 2-1
frame, 2-1
initialization, 2-1
picture change, 2-1
termination, 2-1
view surface, 2-1 , 2-1

| Index

coordinate systems
normalized device, 1-6
world, 1-6 , 1-8
create_retained_segment, 4-2
create_temporary_segment, 4-5
cross hatched texture, 6-6
Current Position
Moving, 5-2
define_color_indices, 6-6
delete_all_retainred_segments, 4-4
delete_retained_segment, 4-3
deselect_view_surface, 2-4
drag control, 2-5
Dynamic Attributes
Detectability, 6-18
Highlighting, 6-17
Image_transformation, 6-18
Visibility, 6-17 , 6-17
echoing
button device, 7-3
keyboard device, 7-3
locator device, 7-4
pick device, 7-3
stroke device, 7-4
valuator device, 7-5 , 7-3
end_batch_of_updates, 2-4
error handling, 2-1
event-generating devices, 7-1
file_to_raster, 5-18
frame control, 2-1
free_raster, 5-17
functional capabilities
classification, 1-7
dimension levels, 1-8
input, 1-7
ouiput, 1-7
get_mouse_state, 7-11
get_raster, 5-15
grey tone texture, 6-6

- Xix -

hatched left texture, 6-8
hatched right texture, 6-6
image_transformation_type attribute

None, 4-1

Transformable 2-D, 4-2

Transformable 3-D, 4-2

Translatable 2-D, 4-2

Translatable 3-D, 4-2
initialize_core, 2-2
initialize_device, 7-2
initialize_view_surface, 2-3
initializing

input devices, 7-2
input devices

button, 7-1

echoing, 7-3

event generating, 7-1

initializing, 7-2

keyboard, 7-1

locator, 7-1

pick, 7-1

reading, 7-8

sampled, 7-1

stroke, 7-1

terminating, 7-2

valuator, 7-1 , 7-1
input primitives, 7-1
inquire_charjust, 6-15
inquire_charpath_2, 6-15
inquire_charpath_3, 6-15
inquire_charprecision, 6-15
inquire_charsize, 6-14
inquire_charspace, 6-14
inquire_charup_2, 6-14
inquire_charup_3, 6-15
inquire_color_indices, 6-12
inquire_current_position_2, 5-4
inquire_current_position_3, §-4
inquire_detectability, 6-23
inquire_echo, 7-11
inquire_echo_position, 7-11
inquire_echo_surface, 7-12
inquire_fill_index, 6-13
inquire_font, 0-14
inquire_highlighting, 6-23
inquire_image_transformation_2, 6-23
inquire_image_transformation_3, 6-24

inquire_image_transformation_type, 6-17
inquire_jimage_translate_2, 6-23
inquire_image_translate_3, 6-24
inquire_keyboard, 7-12
inquire_line_index, 6-12
inquire_linestyle, 6-13
inquire_linewidth, 6-13
inquire_locator_2, 7-12
inquire_marker_symbol, 6-16
inquire_open_retained_segment, 4-5
inquire_open_temporary_segment, 4-6
inquire_pick_id, 6-16 _
inquire_polygon_edge_style, 8-14
inquire_polygon_interior_style, 6-13
inquire_primitive_attributes, 6-16
inquire_rasterop, 6-15
inquire_retained_segment_names, 4-5
inquire_retained_segment_surfaces, 4-4

_inquire_segment_detectability, 6-24

inquire_segment_highlighting, 6-24

inquire_segment_image_transformation_2,
8-25

inquire_segment_image_transformation_3,
6-25

inquire_segment_image_transformation_type,
6-17

inquire_segment_image_translate_2, 6-25

inquire_segment_image_translate_3, 6-25

inquire_segment_visibility, 6-24

inquire_stroke, 7-13

inquire_text_extent_2, 5-8

inquire_text_extent_3, 5-8

inquire_text_index, 6-13

inquire_valuator, 7-12

inquire_visibility, 6-23

keyboard input device

echoing, 7-3 , 7-1

Line Routines, 5-5

line_abs_2, 5-5

line_abs_3, 5-5

line_rel_2, 5-5

line_rel_3, 5-5

lint library, 1-6

locator input device

echoing, 7-4 , 7-1
Marker Functions, 5-9
marker_abs_2, 5-9

-

-

marker_abs_3, 5-9
marker_rel_2, 5-9
marker_rel_3, 5-10
move_abs_2, 5-2
move_abs_3, 5-3
move_rel_2, 5-4
move_rel_3, 5-4
moving functions, 5-2
naming, 4-1
new_{rame, 2-5
normalized device coordinates, 1-6
output primitives

line, 5-1

marker, 5-1

move, 5-1

polygon, 5-1

polyline, 5-1

polymarker, 5-1

rasters, 5-1

text, 5-1
output Primitives, 5-1
pick input device

echoing, 7-3 , 7-1
picture change control, 2-1
pixwindd view surface, B-2
polygon shading parameters, 5-11
polygon_abs_2, 5-14
polygon_abs_3, 5-14
polygon_rel_2, 5-14
polygon_rel_3, 5-14
Polyline Routines, 5-6
polyline_abs_2, 5-6
polyline_abs_3, 5-6
polyline_rel_2, 5-7
polyline_rel_3, 5-7
polymarker_abs_2, 5-10
polymarker_abs_3, 5-10
polymarker_rel_2, 5-10
polymarker_rel_3, 5-11
primitive attributes, 6-1
primitive static attributes

charjust, 6-3

charpath, 6-2

charprecision, 6-3

charsize, 6-2

charspace, 6-3

charup, 6-2

fill index, 6-1

font, 6-2

line index, 6-1

linestyle, 6-1

linewidth, 6-2

marker_symbol, 6-3

pen, 6-2

pick_id, 6-3 _

polygon edge style, 6-2

polygon interior style, 6-2

rasterop, 6-3

text index, 6-1
put_raster, 5-15
Raster Functions, 5-15
raster_to_file, 5-17
reading

input devices, 7-8
rename_retained_segment, 4-4
report_most_recent_error, 2-5
restore_segment, 4-6
retained segment, 4-1
retained segment attributes, 4-1
retained segment dynamic attributes, 4-1
Retained Segment Dynamic Attributes, 6-17
retained segment static attributes, 4-1
Retained Segment Static Attributes, 6-16
sampled input devices, 7-1
save_segment, 4-0
segment attributes, 6-1
segmentation, 4-1
segments

retained, 4-1

temporary, 4-1 , 4-1
select_view_surface, 2-3
set_charjust, 6-10
set_charpath_2, 6-10
set_charpath_3, 6-10
set_charprecision, 6-11
set_charsize, 8-9
set_charspace, 6-9
set_charup_2, 6-9
set_charup_3, 6-10
set_detectability, 6-18
set_drag, 2-5
set_echo, 7-6
set_echo_group, 7-6
set_echo_position, 7-6

- xxi -

set_echo_surface, 7-6
set_fill_index, 6-7
set_font, 6-9
set_highlighting, 6-18
set_image_transformation_2, 6-19
set_image_transformation_3, 6-20
set_image_transformation_type, 6-17
set_image_translate_2, 6-19
set_image_transiate_3, 6-19
set_keyboard, 7-7
set_light_direction, 5-12
set_line_index, 6-7
set_linestyle, 6-8
set_linewidth, 6-8
set_locator_2, 7-7
set_marker_symbol, 6-11
set_pick_id, 6-11
set_polygon_edge_style, 6-8
set_polygon_interior_style, 6-8
set_primitive_attributes, 6-11
set_rasterop, 6-11
set_segment_detectability, 6-20
set_segment_highlighting, 6-20
set_segment_image_transformation_2, 6-21
set_segment_image_transformation_3, 6-22
set_segment_image_translate_2, 6-21
set_segment_image_translate_3, 6-21
set_segment_visibility, 6-20
set_shading_parameters, 5-11
set_stroke, 7-8
set_text_index, 6-7
set_valuator, 7-7
set_vertex_indices, 5-12
set_vertex_normals, 5-12
set_visibility, 6-18
set_zbuffer_cnt, 5-13
shading

CONSTANT, 5-11

GOURAUD, 5-11

PHONG, 5-11
shading parameters, 5-11
size_raster, 5-16
static attributes, 6-1
stroke input device

echoing, 7-4 , 7-1
SunCore

using, 1-7

temporary segment, 4-1
terminate_core, 2-2
terminate_device, 7-2
terminate_view_surface, 2-3
terminating

input devices, 7-2
text, 5-7 _
Text Routines, 5-7
texture

black, 6-6

cross hatched, 6-6

grey tone, 6-6

hatched left, 6-6

hatched right, 6-6

wallpaper, 6-8

wavy lines, 6-6

white, 6-6 , 6-3
three-dimensional polygon, 5-11
valuator input device

echoing, 7-5 , 7-1
view surface

initializing, 2-2

selecting, 2-2 , 2-2
view surface control, 2-1
view surface types

bwidd, B-2

bw2dd, B-2

cgldd, B-2

cgpixwindd, B-3

pixwindd, B-2
view surfaces, B-1
view volumes, 3-1
vwsurf structure, B-1
wallpaper texture, 6-6
wavy lines texture, 6-6
white texture, 6-6
windows, 3-1
world coordinates, 1-6

- xxii -

©

READER COMMENT SHEET

Dear Customer,

We who work here at Sun Microsystems wish to provide the best possible documentation for
our products, To this end, we solicit your comments on this manual. We would appreciate
your telling us about errors in the content of the manual, and about any material which you
feel should be there but isn't.

Typographical Errors:
Please list typographical Errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Did this guide meet your needs! If not, please indicate what you think should be
added or deleted in order to do so. Please comment on any material which you feel
should be present but is not. Is there material which is in other manuals, but would be
more convenient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange
things? Do you find the style of this manual pleasing or irritating? What would you
like to see different?

