Part Number 800-1118-01
Revision: D of 7 January 1984
For: Sun System Release 1.1

Programmer’s Reference Manual

for

SunWindows

the Sun Window System

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View
California 94043
(415) 960-1300

Credits and Acknowledgements

A preliminary implementation of the Sun Window System was written at Sun Microsystems,
Inc. in December 1982 and January 1983. It incorporated a number of low-level operations and
data, including raster operations and fonts, provided by Tom Duff of Lucasfilm, Ltd.

Trademarks

Sun Workstation, SunWindows, SunCore and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.
Sun Microsytems and Sun Workstation are registered trademarks of
Sun Microsystems, Inc.
UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks of Bell Laboratories.

Copyright © 1982, 1983, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems. '

Revision History

Rev Date Comments
A 15 July 1983 Preliminary draft release of this Programmer’s Reference Manual.
B 15 September 1983 | 0.9 release of this Programmer’s Reference Manual.
C 1 November 1983 Additions to pixrect creation, input handling, and tool facilities.
D 7 January 1084 Many corrections; additions, changes, and deletions to user inter-

face, option subwindow, graphic subwindow, and window
manager; changes to sunwindow library to accommodate color and
multiple screens and to the pixrect library to support color pix-
rects.

- iii -

Changes in the 1.1 Release of SunWindows

This notice describes changes, deletions, and additions to SunWindows from release 1.0 to
release 1.1. The main differences in 1.1 center around adding support for multiple screens and
color displays. _

SunWindows includes sources for window application -programs in [usr/suntoolf ¢, the suntool
library fusr/libflibauntool.a, the sunwindow library [uar/lib/libsunwindow.a, and the pixrect
library [usrf/lib/libpizrect.a. For suntools(1) user information, refer to the User’s Manual for the
Sun Workstation. For more detalled SunWindows programming information, refer to the refer-
ence section of the Programmer’s Reference Manual for SunWindows .

Upgrading from 1.0 to 1.1 SunWindows

1.0 programs must be recompiled to run in 1.1.

User Interface Differences — Changes to /usr/suntool/

Additions to the User Interface

Additions to the user interface are:

suntools i
Now takes an extensive argument list to control the environment of the window system.
This includes indicating color, which screen, inversion, and so on. See OPTIONS in sun-
tools(1) in the User’s Manual for the Sun Workstation for details.

spheresdemo
Now produces multiple colored spheres. A —g command line argument produces varying

shades of gray spheres. These grays may not appear gray until the cursor is positioned in
the.window in which the spheres are being drawn.

Jumpdemo B
Now produces colored vectors. A —c command line argement causes the vectors to sparkle
via colormap rotation.:

System Fonts | |
More fonts are available for use as the DEFAULT_FONT. See [usr/suntoolf fixedwidthfonts/ +

Revision D of 7 January 1984 Changes-1

Release 1.1 SunWindows Reference Manual

and suntools(1) in the User’s Manual for the Sun Workstation.

Exiting suntools
Typing "D followed by a “Q to the Root Window exits suntools.

New Programs

adjacentscreens(l)
Tells the window system the physical relation of screens.

lockscreen(1)

Puts a “lock” on and hides the current window context so logging out is no longer neces-

sary.
perfmon(1)
A graphic performance monitor.

Suntool Library

The changes to the suntool library involve several changes to the option subwindow interface,

making the graphics subwindow more robust, and simplifying window management utilities.

Option Subwindow Changes

Three routines now take different arguments, return different values, and/or behave differently

than they used to. These are:
oplaw_text

Takes a fifth argument, the address of a notify procedure, exactly as for the other item-
creation routines, The notify procedure is called whenever the value of the text item is
changed, except by a call to optsw_setvalue. It will be called with handles for the option
subwindow and the item which changed. Optsw_getvalue should be used to actually retrieve
the new value. This parameter to optsw_test may be NULL to indicate ‘‘no notification.”

optsw_getvalue

Behaves differently for text items; its second (destination) argument should now be a
pointer to a struct string_buf, as defined in optionsw.h. This protects against the case where
the value of the item is longer than the client's buffer. In such a case, the buffer is filled,
and the max count is returned; no terminating NULL is written in the client’s buffer. A sub-
sequent call to optsw_getvalue for that item will return the next fragment, until the whole
value has been reported. A terminating NULL is written in the buffer when there is room for
it, and a subsequent call to optaw_getvalue will start anew at the beginning of value.

optaw_setplace

Has had its arguments changed to be parallel with optsw_getplace. It third argument is now
a pointer to a struct item_place, instead of the struct rect pointer it used to take; the struct
contains a rect, and four boolean bit flags indicating that a value is to be fixed for that
item. ' :

Changey-2 Revision D of 7 January 1984

O

O

SunWindows Reference Manual Release 1.1

Option Subwindow Deletions

The struct opt_item is no longer defined in a public header file. Routines which used to return a
pointer to such a struct (all of the item-creation routines, for instance) now return an opaque
pointer {caddr_t). Routines which took a pointer to such a struct as an argument now accept
the opaque pointer. Inquiry and manipulation functions are provided to support access to the

_items without commitment to their internal representation.

Option Subwindow Additions

Two new structs are defined, one for optaw_getplace and optsw_setplace, one for optsw_getvalue
on text items:

struct item_place
Encodes the information about an item's size and location which the client may see and
modify. A pointer to such a struct is passed to optsw_getplace (which fills it in) and
optaw_setplace, which uses it to establish an item’s location, size, and willingness to change.

struct atring_buf i
Provides a counted buffer for text items' values to be stored into. Limit should be the size
of the buffer on a call to optew_getvalue.

The following new routines. are also provided:

optew_getcaret{osw)
Returns an item handle for the item which currently has the caret in osw, or NULL if there
is no text item in osw.
optew_setceretf{osw, ip)
Makes the optionsw text item referred to by ip be the one which has the caret in the indi-
cated optionsw.
optaw,_geifont{osw)
Returns a pointer to the struct pizfont which is currently being used by the optionsw.
optaw_geiplace(osw, ip, place) .
Stores into the stem_place struct pointed to by place a description of the size, position, and
fixedness of the item indicated.
optew_ncztitemfosw, ip)
Given an item in an optionsw, returns a handle for the next item in sequence.
optaw_removeitems(osw, ip, count, reformat) _
Removes at most count items from osw, making them inaccessible to the user, but not des-
troying them.
optsu_restoreitems(osw, ip, count, reformat)
Restores at most count items in osw, starting at the item indicated by ip; returns the
nuryber restored.

Graphic Sunwindow Changes

Graphic sunwindow changés to the interface are:

Revision D of 7 January 1984 Changes-3
!_

Release 1.1 SunWindows Reference Manual

gfzew_setinputmask
Should be called instead of win_setinputmask. This call takes additional arguments as well. ©

Graphic Sunwindow Deletions

The graphics sunwindow procedure gfzsw cleanup was removed from the interface because it is
now obsolete due to the new implementation of the graphic subwindows. Graphics subwindows
now use blanket windows instead of the old window takeover mechanism. You can instead call
gfzew_done, or do nothing at all, from SIGINT and SIGHUP handling routines.

Graphic Sunwindow Additions

Graphic sunwindow additions to the interface are:

@fzsw_catchsigwinch
Catches and handles SIGWINCH.

gfzew_catchaigtatp
Catches and handles siGTSsTP.

@fzaw_catchaigcont
Catches and handles SIGCONT.

gfzew_notusingmouse
May be called if your program doesn’t use the mouse; this is optional.

A substitute utility for tty process control while using the window input mechanism.

gfzsw_inputinterrupts , @ f

Window Management Deletions

Window management interface deletions include:

Wmgr_changelevelonly
Removed in favor of the similar procedure wmgr_changelevel.

Wmgr_changestate
Was removed in favor of the similar procedures wmgr_open and wmgr_close.

Wingr_setupmenus
Removed in favor of wmgr_sctupmenu. The interface no longer supports wmgr_rootmenu
(moved into client code, see the suntools.c source), thus, the change of plurality.

Window Management Additions

Window management additions to the interface are:

wmgr_open, wmgr_close, wmgr_move, wmgr_stretch, wmgr_top, wmgr_bottom,
“wmgr_refreshwindow Are the highest level window management routines and
correspond exactly to tool menu operations,

O

Changes-4 Revision D of 7 January 1984

o

SanWindows Reference Manual Release 1.1

wmgr_changerect
Provides finer control of moving and stretching user interaction.

wmgr_confirm
A standard confirmation utility.

wmgr_handletoolmenuitem
Switch to call top level window management routines based on wmgr_toolmenuy menu
item chosen.

wmgr_setrectalloc and wmgr_getrectalloc
Global storage of next default window position.

Sunwindow Library

The changes to the suntool library center around keeping up with the pixrect library
changes by providing a pixwin operation to match each pixrect operation and cleaning up
the interface to screen structures.

Changes to the Interface

The screen struct waé, completely overhauled to accommodate color and multiple screens.
However, the scr_rect was left untouched and is the field that high level clients most often
use. Therefore, no source changes should probably be required by most programs.

Win_screennew
Now has a different calling sequence. It now takes a struct screen pointer and returns a
window file descrlptor It used to take a window file descriptor and and struct screen
pointer.

Wm_acreenpoutiom
Was renamed win:setscreenpositions,

Deletions from the Interface

With the advent of blanket windows, using win_sctowner to temporarily change ownership
of windows is no longer recommended.

Additions to the Interface

The pixwin additions that correspond to the equivalent pixrect additions are:

pw_region :
“Pixwin region operation.

pu_tiezt
Pixwin transparent text operation.

pw. patchrop
Plxwm batchrop operatlon.

ReViSion D Of 7 January 1984 Changes-s

Release 1.1 SunWindows Reference Manual

pw_stencsl
Pixwin stencil operation.

pw_putatiributes and pw_getatiributes
Pixwin attributes control.

pw_puteolormap and pw_getcolormap
Pixwin colormap control.

The pixwin additions that extend pixrect functionality are:

pw_setcmaname and pw_getcmsname
Pixwin colormap segment name access.

pw_preparesurface
Pixwin surface preparation (colormap segment related).

pw_cyclecolormap
Pixwin colormap utility.

The pixwin font utilities that share the system font are:

pw_pfaysopen and pw_pfaysclose
Sharing of the default system font is provided.

The screen-related additions are:

win_getacreenpositions
Retrieve neighbors of the window's screen.

win_setkbd and win_setma
Change keyboard and mouse devices used by the screen.

win_initacreenfromargy
Standard command line to screen specification ‘parser.

These are the additions related to the new blanket window mechanism:

win_tnacrtblanket
Insert window into display tree and treat as a “blanket” window (one that always cov-
ers its parent).

win_removeblanket
Remove blanket window from display tree.

win_isblanket
Check ‘is a window a blanket window?'

Pixrect Library

Pixrects features a slightly modified interface to support color pixrects. Also, the font for-
mat and memory pixrect format has changed.

Deletions from the Interface

The create operation is removed from the pixrect operations vector. Pr_open, mem_create
and pr_region define the available pixrect creation alternatives.

Changes-6 Revision D of 7 January 1984

O

>

SunWindows Reference Manual Release 1.1

Changes to the Interface

A new frame buffer naming convention now exists:

[deo/fb
The default frame buffer for a machine. This replaces /dev/console which has other
tty-related functions, and /dev/bw0 which no longer exists.

Frame Buffer Naming Convention
The general naming convention for a frame buffer follows the form /dev/ CTU in which:

C is either “bw" (for monochrome displays) or “cg” (for color displays).
" Tis the type of the display, such as “one” or “two’ for Sun-1 or Sun-2 respectively.
U is the unit number starting from 0, indicating which specific frame buffer.
Some examples of frame bufler names are: [dev/bwone0, [dev/ bwtwo0 and [dev/ cgoneO.

The font format used in pf_open has been changed. The old format was in VAX byte order.
The new format is in Motorola 68000 byte order (reversed from the VAX). You can tell if a
font is in the new format by using the file1) program on the font file in question. The font
file should be listed as “vfont definition”. The program vswap(l) converts a font file from
the old format to the new.

Tke structure format of mpr_data (the memory pixrect internal data format) has changed
slightly. The Bint md_primary field has been split into short md_primary and short
md_fiags. The overall length of mpr_data remains the same.

Additions to the Interface

pr_stencil
Provides spatial masking of the destination pixrect for control of the areas of the desti-
nation pixrect to be painted by the source pixrect.

pr_putcolormap and pr_getcolormap
Provides a unified colormap and reversevideo interface for both color and menochrome
pixrects.

pr_putattributes and pr_getatiributes _
Provides access to a bitplane mask which specifies the modifiable bits in destination
pixrect pixels.
pl_ttext :
Uses character bitmap as a stencil through which the specified color is squirted, hence
background shows through around the characters.

Reviuioﬂ D of 7 January 1984 Changes-7

Table of Contents

Chapter 1 OVEIVIEW ... e e et s s

Chapter 2 Pixel Data and OPerations ...

Chapter 3 Overlapped Windows: Imaging Facilities

Chepter 4 Window Manipulation ...

Chapter 6 Input to Application Programs

Chapter 8 Suntool: Tools and Subwindows

Chapter 7 Suntool: Subwindow Packages

Chapter 8 Suntool: User Interface Utilities

Appendbc A Rects and Rectlists ..o e

Appendix B Sample Tools ... esessesssmmsss s ssssissisiness

Appendix C Sample Graphics Programs ...

Appendix D Programming NOtes ...

1-1

2-1

Table of Contents

Preface

Chapter 1 Overview . .

o hat & Sunvﬁndowsf

1.2. Hardware and Software Support
1.3. Layers of Implementation
1.3.1. Pixrect Layer

1.3.2. Sunwindow Layer ...

1.3.3, Suntool LAaFer ... e sasss s ssmsssenssenes

Chapter 2 Pixel Data and Operations ...,

2.1. Pixrects

2.1.1, Pixels: Coordinates and Interpretatlon N

2.1.2. Geometry Structs

2.1.3. The Pixrect Struct

2.2. Operations on Pixrects

2.2.1. The Pixrectops Struct

2.2.2. Conventions for Nammg Arguments to Plxrect Operat.nons

2.2.3. Creation and Destruction of Pixrects

2231, Open: Create Primary Display plxre;t eerreun ottt et

2.2.3.2. Region: Create a Secondary Pixrect

2.2.3.3. Close / Destroy: Release a Pixrect’s Resources

2.2.4. Single-Pixel Operations

2.2.4.1. Get: Retrieve the Value of a Single Pixel
2.2.4.2, Put: Store a Value into a Single Pixel,
2.2.5. Constructing an Op ATGUMENtt
2.2.5.1. Specifying a RasterOp Function ..o

2.2.5.2. Ops with a Constant Source Value

2.2.5.3. Controlling Clipping in the RasterOp

2.2.5.4. Examples of Complete Op Argument Specification ...

2.2.8. Multi-Pixel Operations

2.2.6.1. Rop: RasterOp Source tc;Destlnatlon

2.2.6.2. Stencil: RasterOps through a Mask |

2.2.6.4. Batch RasterOp: Multiple Source to the Same

DEStINALIOI | ... ssss s s s semsenissoness

— vii -

XV

1-1
1-1

1-2
1-2

2-1

2-2
2-3
2-3
2-4
2-4
2-5
2-5

2-6
2-6
2-6
2-7
2.7
2-7
2-8
2-8
2-9
2-9
2-9

2.2.6.3. Replrop: Replicating the Source Pixrect

2-10

2-11

2.2.8.5. Vector: Draw a Straight Line ...
2.2.7. Colormap ACCessoovvremesssssssinen

2.2.7.1. Get Colormap _.

2.2.7.2. Put Colormap ...
2.2.7.3. Provision for Inverted V:deo Plxrects

2.2.8. Attributes for Bitplane Control

2.2.8.1. Get Attnibutesc.cocoviivenrn,

2.2.8.2. Put Attributes

2.3. Text Facilities for Pixrects ...

2.3.1. Pixfonts and Pixchars ...

..

2.3.2. Operations on Pixfonts ..
2.3.3. Pixrect Text Display

2.4. Memory Pixrects ...

2.4.1. The Mpr_data Struct

...

2.4.2. Pixel Layout in Memory Plxrects ___________________

2.4.3. Creating Memory Pixrects
2.4.3.1. Mem_create

2.4.3.2. Static Memory Plxrects

Chapter 3 Overlapped Windows: Imaging Facilities .

3.1. Window Issues: Controlled Display Generation
- 3.1.1. Clipping and Locking ...

...

3.1.2. Damage Repair and Fixups .

3.1.3. Retained Windows

3.1.4. Colormap Sharing

3.1.5. Process Structure

3.1.6. Imaging with Windows

* 3.1.7. Libraries and Header Files

3.2. Data Structures

3.2.1. Rects .

3.2.2. Pixwins

3.2.3. Pixwin_clipdata Struct ...
3.2.4. Pixwin_clipops Struct
3.3. Pixwin Creation and Destruction ___. .

3.3.1. Region Creation

3.4. Locking and Clipping

3.4.1. Locking ..

3.4.2. Chpplng
3.5. Accessing a Plxwm s Plxels

. 3-10

... 3-11

3.5.1. Write Routimesomrseeseenenenn, . 3-11
3.5.2. Read and Copy Routines - 5 ¥
3.5.3. Bitplane Control, 313
3.6, Damage . . 3-14

3.0.1. Handllng a SIGWINCH Slgnal

3. Colormap Manipulation

— viii -

e 3-14
v 310

3.7.1. Initialization _.
3.7.2. Background and Foreground
3.7.3. A New Colormap Segment .

3.7.4. Colormap Access ...
3.7.5. Surface Preparation ..o

. 3-16

Chapter 4 Window Manipulation ... s

4.1. Window Data ..o

4.2. Window Creation, Destruction, and Reference

4.2.1. A New Window

4.2.2. An Existing WIDAOW __.......cc.cmsrincrimerssmnsies s sssssmss s e sesssons
4.2.3. References t0 WInAOWS ..o eneoemsssissssssssssssssmssnsssssss

4.3. Window Geometry ...

4.4. The Window Hierarchy

4.4.1. Setting Window Links

4.4.2. Activating the Window —
4.4.3. Modifying Window Relatlonshlps
4.5. User Data

4.6. Minimal-Repaint Support

4.7. Multiple Screens ..

4.8. Cursor and Mouse Mampulatmns o
4.8.1, Cursors ...

4.8.2. Mouse Position ..

4.9. Providing for Naive Programs

" 4.9.1. Which Window to Useoocooooccovcccrrceas

4.9.2. The Blanket Window ...

4.10. Window Ownership ...
4.11. Error Handling ...

Chapter § Input to Application Programs

5.1. The Virtual Input Devicecccocommocriiusmmmmmmamsiumssssssssmssmsessmssssessseonssonssomsssssnseens
5.1.1, Uniform Input Events ... s

5.1.2. Event Codes ..o

5.1.2.1. ASCII Events ...

................................

5.1.2.2. Function Events

5.1.2.3. Pseudo EVEDLS . ..o rsenres e vttt sessn s sssen s ssnnasess
5.1.3. Event FIAESot sit st isss s s sss s ssnne

5.1.4. Shift Codescccee...

5.2. Reading Input Events ...

5.3. Input Serialization and Distribution ...

5.3.1. IDPUL MASKS oooeerrc s mmsmsss e st
5.3.2. Seizing AN IRPULS | ...t

5.4. Event Codes Defined ...

Chapter 8 Suntool: Tools and Subwindows ...

e 3-16
s 3-10
e 317
. 3-18

6.1. Tools Deengn e s enanrrees 6-2

6.1.1. Non-Pre-emptwe Operatlon coeetiest s ba e baa e e e et e ren 8-2
6.1.2. Division of Labor ... 6-2
6.2. Tool Creation .. ; 6-2
6.2.1. Passing Parameters to the Tooi SR . o+
6.2.2. Forking the Tool ... siesssemsssssisossmsssssssssssssssones 6-4
6.2.3. Creating the Tool WIndoOw ... sosseseensinsseseeseesooees 6-4
6.2.4. The Tool Struct corsveeataeee b E e ea e Aa R aRAS SE A ROt o BB
6.2.5. Subwindow Creationoooooiioeeieessissesmssssessssssess 6-6
6.2.6. Subwindow Layout 67
6.2.7. Subwindow Initialization ... 6-8
6.2.8. Tool Installation .. , 6-8
0.2.9. ToOl DEStTUCLIONoooooeoeeee e essese s mnesenesssmssessssmmsnnes 6-8
8.3. Tool Processing ... e erare e eebe st s oo sttt st s smrssessmsss s stpsasssnssssssrassnnesnns | O=0)
8.3.1. Toolio Structure et seet e <21 erem e et e e e eeeeeeesseee e oo 6-9
6.3.2. File Descriptor and Tlmeout Notlﬁcatlons .. 6-10
6.3.3. Window Change Notifications ... 6-10
8.3.4. Child Process Maintenance e R 6-11
6.3.5. Changing the Tool’s Image eeeremerrenrereeeee e B6-11
8.3.6. Terminating Tool Processingc.oiomeceeesmmmeecses 8-11
6.3.7. Replacing Toolio Operations 6-11
Chapter 7 Suntool: Subwindow Packages ... 7-1
7.1. Minimum Standard Subwindow Interface ..., 7-1
7.2. Empty Subwindow e arseee e e e R AR e RRRR e e 7-3
7.3. Graphics Subwindow et eees e Aot et 8 et e A re 54 st o i st reen 7-3
731 InaTool WIRAOW ..o 7-4
7.3.2. Overlaying an Existing Window ________________________________ 7-5
7.4. Message Subwindow 7-7
7.5. Option Subwindow 7-8
7.5.1. Option Subwindow Standard Procedures 7-9
7.5.2. Option Items bt e tbamse s e s s e e s 2 e85 7-10
7.5.2.1. Boolean Items ettt e R RR R AR SO AR eSS bbbt et 7-11
7.5.2.2. Command ltems Y 5 § |
7.5.2.3. Enumerated Items 7-12
7.5.2.4. Label Items 7-12
7.5.2.5. Text Items . 7-12

7.5.3. Item Layout and Relocatlon — SIGWINCH Handhng
7.5.4. Client Notification Procedures . o
7.5.5. Explicit Client Reading and Wntmg of It.em Values ... 7-15

7.5.6. Miscellany . bbb e s s e 2ok b0 bt s ememere 7-16
7.6. Terminal Emulat.or Subwmdow ,,,,,,,,, 7-17
7.8.1. ETY-Based Programs in TTY Subwindows 7-19

Chapter 8 Suntool: User Interface Utilities oo 8-1

8.1. Full Screen Access

8.2. Icon Display Facility ...

83. Pop-upMenus

8.3.1. Prompt Facility

8.4. Selection Managemento

8.5. Window Management

8.5.1. Window Manipulation ... nssssseessssees
8.5.2. To0l INVOCALIONcooceee et eessses st e ress s s s

8.5.3. Utilitiescocmmmmmnicneeccrssssscsssssssnsesss s

Appendix A Rects and Rectlists ...
A.l. Rects .

81
8-2
83
8-5
85
87
8-7
8-9
8-10

. A-l

o Macros o Rects .

A.12. Procedu_res and External Data for Rectso

A.2. Rectlists

A2l Ma.cro& and Constants Deﬁned on Rectllsts
A.2.2. Procedures and External Data for Rectlists

Appendix B Sample Tools

B.1. gfxtoole Codecccooccc......... i

B.2. panetool.c Code

B.3. optiontool.c Code ...

B.4. icontool.c Code

G Appendix C Sample Graphics Programs

C.1. bouncedemo.c COAE ... eesssesseeeesssssessssanme s msesssseessssrees
C.2. framedemo.c Codeooooeeicesis oo cossmnsesasnsmesssssoeeeesssemsssensseeesrees

Appendix D Programming Notes

D.2. Program By Example '

A-1

A-4

v D=1
D.1. What Is Supported? ...t

D.3. Header Files Needed

D.4. Lint Libraries

D.5. Library Loading OFder ...
D.B. SRhared TeXD ... eeesreersseosesestsermeessssessmssesseese setesesessereseneessmmstesesrssssssesons

D.7. Error Message Decodingcnnn.

D.8. Debugging Hints

D.9. Sufficient User Memory ...
D.10. Coexisting with UNIX

D101, Teel [mtmhmt,mn 3nd Pm - Gmups

D.10.1.1. Signals from the Control Terminal

D.10.1.2. Job Control and the C-Shell _

— xi -

D-1
b-1
D-1
D-2
D-2
D-2

D-3
D-4

D-5
D-5

List of Tablies

Table 2-1 Argument Name COnVENtIONSc...covvuevesmermesrmmiesmsrssesrssesesesssssssenns
Table 2-2 Useful Combinations of RasteTOPS ... reeessss
Table 31 CHPPINZ SLALE ..o ssss st mssssess st sisiesansoes
Table 7-1 Option Image TYPEs ... s s

Table A-1 Rectlist Predicates ..

Table D-1 Header Files Required ...

Table D-2 sunwindow Variables for Dmabhng Lockmg

— xiii -

Preface

The Programmer’s Reference Manual for SunWindows provides primarily reference material on
SunWindows, the Sun window system. It is intended for programmers of applications using
window system facilities.

Manual Contents

The contents of the manual are:

Chapter 1 — Overview — Describes basic hardware and software support and the layers of
implementation of SunWindows, the pizrect layer, the sunwindow layer, and the suntool layer.

Chapter 2 — Pizel Data and Operations — Describes pixel data and operations in the lowest
level output facilities of SunWindows, pixrects, pixrectops, memory pixrects, and text facilities
for pixrects.

Chapter 3 — Overlapped Windows: Imaging Facilitics - Explains image generation on windows
which may overlap other windows.

Chapter 4 — Window Manipulation — Describes the sunwindow layer facilites for creating, posi-
tioning, and controlling windows.

Chapter 5 — Input to Application Programs — Discusses how user input is made available to
application programs, '

Chapter § — Suntool: Tools and Subwindows — Discusses how to write a tool, and covers crea-
tion and’destruction of a tool and its subwindows, the strategy for dividing work among
subwindows, and the use of routines provided to accomplish that work.

Chapter 7 — Suntool: Subwindow Packages — Discusses subwindows as building blocks in the
construction of a tool, covers the currently existing subwindows, and suggests the approach for
creating new kinds of subwindows.

Chapter 8 — Suntool: User Interface Utilites Covers user interface utilities, the independent
packages for use with the suntools environment, includes the actual window manipulation rou-
tines used by tool windows, the icon facility, the selection manager, the fullscreen access
mecharism, and menus and prompts.

Appendix A — Rects and Rectlists — Describes the geometric structures used with the sunwin-
dow layer and provides a full description of the operations on these structures.

Appendix B — Sample Tools — Provides an annotated collection of some simple tools to be
used both as illustrations and as templates for client programmers; includes a graphics tool, a
window pane tool, an option tool, and an icon tool. :

Appendix C — Sample Graphics Programs — Provides an annotated selection of several graph-
ics programs for writing your own graphics programs; includes code for a bouncing ball

demonstration and for a ‘‘movie camera” program that displays files as frames from a movie.

Note: The reference section of the Programmer’s Reference Manual for SunWindows is neither a
user guide nor an explanation of the internals of the window system. It presents the material in
a bottom-up fashion with primitive concepts and facilities described first. It is not intended to
be read linearly front-to-back; glance at the table of contents and the chapters on tools to get a
general idea of how to use the rest of the material.

The User's Manual for the Sun Workstation provides user information under suntools(1) for

SunWindows and under the appropriate entry for the particular application programs. The
Beginner’s Guide to the Sun Workstation provides a brief tutorial on general use of the mouse

and the SunWindows pop-up menus.

A Note About Special Terms

Several terms in this manual have meanings distinct from their common definitions or introduce
concepts that are specific to programming in the SunWindows environment. We discuss the
most important here.

The word client indicates a program that uses window system facilities. This is in contrast to
user, which refers to a human.

Terms referring to display hardware, such as framebuffer, pizel, and rasterop, are used in well-
established senses; novices who are confused should consult one of the standard texts, such as
Fundamentals of Interactive Computer Graphics by J.D. Foley and A. Van Dam, Addison-
Wesley, 1083,

The position of the mouse is indicated by a cursor on the screen; this is any small image that
moves about the screen in response to mouse motions. The term “cursor” is used elsewhere to
indicate the location at which type-in will be inserted, or other editor functions performed. The
two concepts are not -often distinguished. To keep them distinct, we use the term caret to refer
to the type-in location.

A menu is a list of related choice items displayed on the screen in response to a user mouse-
action. The user chooses one menu item by pointing at it with the cursor. Such menus are
called transient or pop-up; they are displayed only while a mouse button is depressed, and are
typically used for invoking parameterless operations.

A rect is a structure that defines a rectangle.

A rectlist is a structurt that defines a list of rects.

Up-down encoded keyboards are devices from which it is possible to receive two distinct signals
when a key is pressed and then released.

An icon is a small form of a window that typically displays an identifying image rather than a
portion of the window contents; it is frequently used for dormant application programs. For
example, the default icon for a closed Shell Tool is a conch shell, representing the UNIX “C-
Shell”.

Note: The code examples show the proper case of letters for the names of macros, procedures,
arguments, flags, and so on. The first letter in a sentence is capitalized as a courtesy to English,
although the word may not then be technically correct. :

~-xvi -

Chapter 1

Overview

1.1. What is SunWindows?

SunWindows is the Sun window system. It is a tool boz and parts kit, not a closed, finished, end
product. Its design emphasizes extensibility, accessibility at multiple layers, and provision of
appropriate parts and development tools, Specific applications are provided here both as exam-
ples and because they are valuable for further development. The system is designed to be
expanded by clients,

The system is explicitly layered with interfaces at several levels for client programs. There is
open access to lower levels, and also convenient and powerful facilities for commeon requirements
at higher levels. For instance, it is always possible for a client to write directly to the screen,
although in most circumstances it is preferable to employ higher-level routines.

1.2. Hardware and Software Support

The Sun Microsystems Workstation provides hardware and software support for the construc-

tion of high-quality user interfaces. Hardware features include:

e provision of a processor for each user, a prerequisite for powerful, responsive, cost-eflective
systems; :

e a bit-mapped display which allows arbitrary fonts and graphics to be used freely to make
applications programs easier to learn and use;

e hardware support of fast and convenient manipulation of image data;

¢ a mouse pointing device for selecting operations from menus or for pointing at text, graph-
ics and icons; and

e an up-down encoded keyboard that supports sophisticated function-key interfaces at once

Sun software is similarly structured to support high-quality interactions. The software features

are:

LY

e a uniform interface to varied pixel-oriented devices that allows convenient incorporation of
new devices into the system, and clean access to all these devices by application programs;

¢ an extended device independence for input such as function keys and locators, to user-
interface features;

¢ a window management facility that keeps track of multiple overlapping windows, allowing
their creation and rearrangement at will. The facility arbitrates screen access, detects des-

tructive interactions such as overlapping, and initiates repairs. It also serializes and distri-
butea user inputs to the multiple windows, allowing full type-ahead and mouse-ahead; and

Revision D of 7 January 1984 1-1

Overview SunWindows Reference Manual

e built on all these facilities, an executive and application environment that provides a system
for running existing UNIX programs and new applications, taking advantage of icons, menus,
prompts, mouse-driven selections, interprocess data exchange, a forms-oriented interface
and useful cursor manipulations.

1.3. Layers of Implementation

There are three broad layers of SunWindows. These layers may be identified by the libraries
that contain their implementations. The organization of the reference part of this manual
reflects the three layers as described below.

1. The pizrect level provides a device-independent interface to pixel operations.

2. The sunwindow! level implements a manager for overlapping windows, including imaging
control, creation and manipulation of windows, and distribution of user inputs.

3. The suntool level implements a multi-window executive and application environment. In its
user interface, it includes a number of relatively independent packages, supporting, for
instance, menus and selections.

1.3.1. Pixrect La.yér

Chapter 2 describes the pizrect layer of the system. This level generalizes RasterOp display
functions to arbitrary rectangles of pixels. Peculiarities of specific pixel-oriented devices, such
as dimensions, addressing schemes, and pixel size and interpretation, are encapsulated in
device-specific interfaces, which all present the same uniform interface to clients.

The concept of a pixrect is quite general; it is convenient for referring to a whole display, as well
as to the image of a single character in a font. It may also be used to describe the image which
tracks the mouse.

There is a balance between functionality and efficiency. All pixrects clip operations that extend
beyond their boundaries. Since this may require substantial overhead, clients which can guaran-
tee to stay within bounds may disable this feature. Where hardware support exists, it is taken
advantage of without sacrificing generality: All pixrects support the same set of operations on
their contents.

These operations include general raster operations on rectangular areas, vectors, batch opera-
tions to handle common applications like text, and compact manipulation of constant or
regularly-patterned data. A stencil operation provides spatial, two-dimension masking of the
source pixrect with a mask pixrect to control the areas of the destination pixrect to be written.

Color pixrects, as well as monochrome pixrects, are well supported. There are uniform opera-
tions for accessing a pixrect’s colormap. A colormap maps a pixel value to a screen color. The
pixel planes affected by other operations can be controlled as well. Monochrome pixrects sup-
port the same interface as color pixrects. Programs intended primarily for color pixrects usually
produce reasonable images on monochrome pixrects, and vice versa.

1 Note that the term ‘sunwindow’ refers to the layer or level of implementation while the word
‘SunWindows' is the name of the Sun window system.

1-2 Revision D of 7 January 1984

O

SunWindows Reference Manual Overview

1.3.2. Sunwindow Layer

Chapters 3 through 5 introduce windows and operations on them. A window is a rectangular
display area, along with the process or processes responsible for its contents. This layer of the
system maintains a database of windows which may overlap in both time and space. These win-
dows may be nested, providing for distinct subwindows within an application’s screen space.

Windows existing concurrently may all access a display; the window system provides locking
primitives to guarantee that these accesses do not conflict.

Arbitration between windows is also provided in the allocation of display space. Where one
* window limits the space available to another, it is necessary to provide clipping, so neither inter-
feres with the other’s image. One such conflict handled by the sunwindow layer arises when
windows share the same coordinates on the display: one overlaps the other.

When one window impacts another window's image without any action on the second window’s
part, SunWindows informs the affected window of the damage it has suffered, and the areas
that ought to be repaired. Windows may either recompute their contents for redisplay, or they
may elect to have a full backup of their image in main memory, and merely copy the backup to
the display when required.

On color displays, colormap entries are a scarce resource. When shared among multiple applica-
tions, they become even more scarce. Arbitration between windows is provided in the allocation
of colormap entries. Provisions are made to share portions of the colormap.

Windows may be created, destroyed, moved, stretched or shrunk, set at different levels in the
overlapping structure, and otherwise manipulated. The sunwindow level of the system provides
facilities for performing all these operations. It also allows definition of the image which tracks
the mouse while it is in the window, and inquiry and control over the mouse position.

Separate collections of windows may reside on separate screens. The user interacts with these
multiple screens with his single keyboard and mouse.

User inputs are umified into a single stream at this level, so that actions with the mouse and
keyboard can be coordinated. This unified stream is then distributed to different windows,
according to user or programmatic indications. Windows may be selective about which input
events they will process, and rejected events will be offered to other windows for processing.
This enables terminal-based programs to run within windows which will handle mouse interac-
tions for them.

1.3.3. Suntool Layer

Chapters 6 through B of the reference part of this manual describe the suntool level of the sys-
tem. While the first two layers provide client interfaces, the suntool level provides the user
interface..

We refer to an application program that is a client of this level of the window system as a tool.
This term covers the one or more programs and processes which do the actual application pro-
cessing. It also refers to the collection of windows through which the tool interacts with the
user. This collection often includes a special icon, which is a small form the tool may take to be
unobtrusive on the screen but still identifiable. Simple examples of tools may include a calcula-
tor, a bitmap editor, and a terminal emulator. Sun provides a few ready-built tools, several of
which are illustrated in Appendix B. Customers are expected to develop their own tools to suit
their specific needs.

Revision D of 7 January 1984 ‘ 1-3

Overview SunWindows Reference Manual

SunWindows provides some common components of tools:

e an executive framework that supplies the usual “‘main loop” of a program and coordinates
the activities of the various subwindows;

e a standard too! window that frames the active windows of the tool, identifying it with a
name stripe at the top and borders around the subwindows. Each tool window has a facil-
ity for manipulating itself in the overlapped window environment. This includes adjusting
its size and position, including layering, and moving the boundaries between subwindows;

e several commonly used subwindow types that can be instantiated in the tool;

¢ a standard scheme for laying out those subwindows; and

e a facility that provides a default icon for the tool.

The suntools program initializes the window environment. It provides for:

¢ automatic startup of a specified collection of tools;

¢ dynamic invocation of standard tools;

e management of the default window called the root window, which underlies all the tools;
and

e the user interface for leaving the window system.

Users who wish some other form of environment management can replace the suntosls program,

while retaining the tools and supporting utilities.

The facilities provided in the suntool library are relatively independent; they can be used with
window contexts other than suntools. The icon facility mentioned above is in this category, as
are the window manipulation facilities of auntools. There is also a package for presenting menus
to the user and interpreting the response.

1-4 Revision D of 7 January 1984

-

Chapter 2

Pixel Data and Operations

This section discusses pixel data and operations in the lowest-level output facilities of SunWin-
dows. These facilities will frequently be accessed indirectly, through higher-level abstractions
déscribed in chapters 3 through 8. However, some client implementors will deal at this level, for
instance to include new display devices in the window system. The header file
[uar]include] pizrect/pizrect_ha.h includes the header files that you need to work at this level of
the window system. It will also- suffice to include [uar/include/suntoolfasuntool ho.h or
[tiar]include/ sunwindow/ sunwindow_hs.h.

2.1. Pixrects

The fundamental object of pixel manipulation in the window system is the pfzrect. A pixrect
encapsulates a rectangular array of pixels along with the operations which are defined on that
data. Pixrects are designed along the model of objects in an object-oriented programming sys-
tem. They combine both data and operations, presenting their clients with a simple interface: a
well-defined set of operations produces desired results, and details of representation and imple-
mentation are hidden inside the object.

The pixrect presents only its dimensions, a pointer to its operations, and a pointer to private
data which those operations may use in performing their tasks, Further, the set of operations is
the same across all pixrects, though of course their implementations must differ. This object-
oriented style allows similar things which differ in small details to be gathered into a unified
framework; it allows clients to use the same approach to all of them, and allows implementors
to add new members or improve old ones without disturbing clients.

The pixrect facility satisfies two broad objectives:

o To provide a uniform interface to a variety of devices for independence from device charac-
teristics whete they are irrelevant. Such characteristics include the actual device (pixrects
may exist in memory and on printers as well as on displays), the dimensions and addressing
schemes of the device, and the definition of the pixels, that is, how many bits in each, how
they are aligned, and how interpreted. Color and monochrome devices use the same interface.
Programs intdnded primarily for color pixrects usually produce reasonable images on mono-
chrome pixrects, and vice versa. '

e To provide a proper balance of functionality and efficiency for a full range of pixel operations
with performance close to that achieved by direct access to the hardware. Pixrect operations
include generalized rasterops, vectors, text and other batch operations, compact manipulation
of uniform and regularly-patterned data, as well as single-pixel reads and writes. All provide
for clipping to the bounds of the rectangle if desired; this facility may be bypassed by clients
which can perform it more efficiently themselves. A stencil function provides spatial masking
of the source pixrect with a stencil pixrect to control the areas of the destination pixrect to
be written. Where specialized hardware exists and can be used for a particular operation, it
is, but not at the expense of violating the device-independent interface.

Revision la of 7 January 198_4 2.1

Pixel Data and Operations SunWindows Reference Manual

2.1.1. Pixels: Coordinates and Interpretation

Pixels in a pixrect are addressed in two dimensions with the origin in the upper left corner, and
z and y increasing to the right and down. The coordinates of a pixel in a pixrect are integers
from 0 to the pixrect’s width or height minus 1.

A pixrect is characterized by a depth, the number of bits required to hold one pixel. A large
class of displays uses a single bit to select black or white (or green or orange, depending on the
display technology). On these monochrome displays and in memory pixrects one bit deep, a 1
indicates foreground and a 0 background. No further interpretation is applied to memory. The
default interpretation on Sun displays is a white background and a black foreground.

Other displays use several bits to identify a color or gray level. Typically, though not neces-
sarily, the pixel value is used as an index into a colormap, where colors may be defined with
higher precision than in the pixel. A common arrangement is to use an 8- bit pixel to choose one
of 256 colors, each of which is defined in 24 bits, 8 each of red, green and blue. Pixrect depths

less than or equal to 16 are supported.

2.1.2. Geometry Structs

As a preliminary to the discussion of pixrects, it is convenient to define a few structs which col-
lect useful geometric information.

The struct that defines a position in coordinates (2, y) is:
struct pr_pos {
int X, ¥;

b

Leaving a pixrect undefined for the moment, this struct defines a point within a specified pix-
rect:
struct pr_prpos {
struct pixrect *pr;
struct Pr_pos pos;
Y
It contains a pointer to the pixrect and a position within it.
The following struct defines the width and height of an area:
struct pr_size t
int X, Y;
b
The following struct defines a sub-area within a pixrect:

struct pr_subregion {

struct pixrect *pr;
struct pr_pos pos;
struct pr_size size;

b

It contains a pointer to the pixrect, an origin for the area, and its width and height.

2.2 Revision D of 7 January 1984

@

O

SunWindows Reference Manual Pixel Data and Operations

2.1.3. The Pixrect Struct

A particular pixrect is described by a pizrect struct. This combines the definition of a rectangu-
lar array of pixels and the means of accessing operations for manipulating those pixels:

struct pixrect {

struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;

caddr_t pr_data;

b

The width and height of the rectangle are given in pr_size, and the number of bits in each pixel
in pr_depth. For programmers more comfortable referring to “width’ and “height,” there are
also two convenient macros:

#define pr_width (p;-;aize.x)
¥ define pr_height (pr_size.y)

All other information about the pixrect (in particular, the location and values of pixels), is data
private to it. Pixels are manipulated only by the set of pizrect operations described below.
These operations will generally use information accessed through pr_data to accomplish their

tasks.

(This restriction is relaxed somewhat in the case of pixrects whose pixels are stored in memory;
this provides an escape to mechanisms outside the pixrect facility for constructing and convert-
ing pixrects of differing types. Memory pixrects are described in Memory Pizrects.)

2.2. Operations on Pxxrects

Procedures are provided to perform the following operations on pixrects:
o create and destroy them {open, region and destroy)
o read and write the values of single pixels (get and put)

e use RasterOp functions to affect multiple pixels in a single operation:
write from a source to a destination pixrect (rop)
write from a source to a destination under control of a mask (atencil)
replicate a constant source pattern throughout a destination (replrop)
write a batch of sources to different locations in a single destination (batchrop)
draw a straight line of a single source value (vector)

e read and write a colormap (getcolormap, putcolormap)
o select particular bit-planes for manipulation on a color pixrect (getattributes, putattributes)

Some of these operations are the same for all pixredts, and are implemented by a single pro-
cedure. These device-independent procedures are called directly by pixrect clients. Other
operations must be implemented differently for each device on which a pixrect may exist. Each
pixrect includes a pointer (in its pr_ops) to a pizrectops structure, that holds the addresses of
the particular device-dependent procedures appropriate to that pixrect. This allows clients to
access those procedures in a device-independent fashion, by calling through the procedure
pointer, rather than naming the procedure directly. To facilitate this indirection, the pixrect
facility provides a set of macros which look like simple procedure calls to generic operations, and
expand to invocations of the corresponding procedure in the pixrectops structure.

Revision L) of 7 January 1984 2.3

Pixel Data and Operations SunWindows Reference Manual

The description of each operation will specify whether it is a true procedure or a macro, since
some of the arguments to macros are expanded multiple times, and could cause errors if the
arguments contain expressions with side effects. (In fact, two sets of parallel macros are pro-
vided, which differ only in whether their arguments use the geometry structs defined above.
Each is described with the operation.)

2.2.1. The Pixrectops Struct

The pixrectops struct is a collection of pointers to the device-dependent procedures for a partic-
ular device: '

struct pixrectops {

int (*pro_ropX);

int {#*pro_stencil)();

int (*pro_batchrop));

int (*pro_nopX);

int (*pro_destroy)();

int (*pro_get));

int (*pro_put));

int {+pro_vectorX);
struct pixrect *(+pro_region)X);
int (*pro_putcolormap)X);
int {+pro_getcolormap)();
int (*pro_putattributes)();
int (*pro_getattributes)();

}

All other operations are i'mpi'emented by device-independent procedures.

2.2.2. Conventions for Naming Arguments to Pixrect Operations

In general, the following conventions are used in naming the arguments to pixrect operations:

Table 2-1: Argument Name Conventions

Argument Meaning

1d destination
s source

lzand y left and top origins
wand A width and height

2.2.3. Creation and Destruction of Pixrects

Pixrects are created by the procedures pr_open and mem_create, by the procedures accessed by
the macro pr_region, and at compile-time by the macro mpr_static. Pixrects are destroyed by
the procedures accessed by the macro pr_destroy. Mem_create and mpr_static are discussed
under Memory Pizrects below; the rest of these are described here.

2.4 Revision D of 7 January 1984

O

SunWindows Reference Manual Pixel Data apd Operations

2.2.3.1. Open: Create a Primary Display Pixrect

The properties of a non-memory pixrect are described by a UNIX device. Thus, when creating
the first pixrect for a device you need to open it by a call to:

struct pixrect *pr_open(devicename)
char +devicename;

The default device name for your display is /dev/fb (fb stands for framebuffer). Any other dev-
ice name may be used provided that it is a display device, the kernel is configured for it, and it
has pixrect support, such as, /dev/bwone0, [dev/buwtwo0, [dev/cgoneo.

Pr_open does not work for creating a pixrect whose pixels are stored in memory; that function
is served by the procedure mem_create, discussed under Memory Pizrects below.

Pr_open returns a pointer to a pixrect struct which covers the entire surface of the named dev-
ice. If it cannot, it returns NULL, and displays an error on standard error.

2.2.3.2. Region: Create a Secondary Pixrect

Given an existing pixrect, it is possible to create another pixrect which refers to some or all of
the same pixels on the same device. This is called a secondary pizrect, and is created by a call
to the procedures invoked by the macros pr_region and pra_region:

ftdefine struct pixrect *pr_region{pr, x, y, W, h)
struet pixrect *pr;
int X, ¥, W, h;

#:define struct pixrect *prs_region(subreg)
struct pr_ subregion subreg;

The existing plxrcct is addressed by pr; it may be a pixrect created by pr_open, mem_create or
mpr_static (o primary pixrect); or it may be another seconda.ry pixrect created by a previous call
to & reg:on operation. The rectangle to be included in the new pixrect is described by z, y, w
and b in the existing pixrect; (z,) in the existing pixrect will map to (0, 0) in the new one.
Pra_region does the same thing, but has all its argument values collected into the single struct
eubreg. Each region procedure returns a pointer to the new pixrect. If it fails, it returns NULL,
and displays an error on standard error.

If an existing secondary pixrect is provided in the call to the region operatlon, the result is
another secondary pixrect referring to the underlying primary pixrect; there is no further con-
nection between the two secondary pixrects. Generally, the distinction between primary and
secondary pixrects is not important; however, no secondary pixrect should ever be used after its
primary pixrect is destroyed,

2.2.3.3. Close / Destroy: Release a Pixrect’s Resources

The folloﬁ'lng macros invoke device-dependent procedures to destroy a pixrect, freeing resources
that belong to it:

Revision D of 7 January 1984 9.5

Pixel Data and Operations SunWindows Reference Manual

#tdefine pr_close(pr)
struct pixrect *pr;

##define pr_destroy(pr)
struct pixrect *pr;

#define prs_destroy(pr)
struct pixrect *pr;
The procedure returns O if successful, -1 if it fails. It may be applied to either primary or
secondary pixrects. If a primary pixrect is destroyed before secondary pixrects which refer to
its pixels, those secondary pixrects are invalidated; attempting any operation but destroy on
them is an error. The three macros are identical; they are all defined for reasons of history and
stylistic cpnsistency.

2.2.4. Single-Pixel Operations

The next two operations are used to manipulate the value of a single pixel.

2.2.4.1. Get: Retrieve the Value of a Single Pixel

The following macros invoke device-dependent procedures to retrieve the value of a single pixel:

#tdefine pr_get(pr, x, y)
struct pixrect *pr;
int X, ¥;

#define prs_get(srcprpos)
struct PT_PTpO8 srcprpos;

Pr indicates the pixrect in which the pixel is to be found; z and y are the coordinates of the
pixel. For prs_get, the same arguments are provided in the single struct srcprpos. The value of
the pixel is returned as a 32-bit unsigned integer; if the procedure fails, it returns -1.

2.2.4.2. Put: Store a Value into a Single Pixel

The following macros invoke device-dependent procedures to store a value in a single pixel:

##define pr_put(pr, x, y, value)
struct pixrect *pr;
int X, y, value;

##define prs_put(dstprpos, value)
struct pr_prpos dstprpos;
int value;
Pr indicates the pixrect in which the pixel is to be found; z and y are the coordinates of the
pixel. For prs_put, the same arguments are provided in the single struct dstprpos. Value is

truncated on the left if necessary, and stored in the indicated pixel. If the procedure fails, it
returns -1.

2.6 Revision D of 7 January 1984

SunWindows Reference Manual Pixel Data and Operations

2.2.5. Constructing an Op Argument

Tie muiti-pixel operations described in the next section all use a uniform mechanism for speci-
fying the operation which is to produce destination pixel values. This operation is given in the
op argument and includes several components.

Generally, op identifies a RasterOp. This is a logical function of two or three inputs; it com-
putes the value of cach pixel in the destination as a function of the previous value of that desti-
nation pixel, of a corresponding source pixel, and possibly a corresponding pixel in a mask.

Two other facilities are also specified in the op argument:
¢ a single, constant, source value may be specified as a color in op, and

o the clipping which is normally performed by every pixrect operation may be turned off by set-
ting the PIX_DONTCLIP flag in the op.

We describe these three components of the op argument in order.

2.2.5.1. Specifying a RasterOp Function

Four bits of the op are used to specify one of the 18 distinct logical functions which combine

monochrome source and destination pixels to give a monochrome result. This encoding is gen-

eralized to pixels of arbitrary depth by specifying that the function is applied to corresponding

bits of the pixels in parallel. This emphasizes that the pixrects must be of the same depth.

Some functions are much more common than others; the most useful are identified in the table
Useful Combinations of Raster Ops.

A convenient and intelligible form of encoding the function into four bits is supported by the
following definitions: .

ftdefine PIX_SRC 0x18
fédefine PIX_DST 0x14
#define PIX_NOT(op) (0x1E & ("op))

PIX_SRC and PIX_DST are defined constants, and PIX_NOT is a macro. Together, they allow a
desired function to be specified by performing the corresponding logical operations on the
appropriate constants. (The explicit definition of PD{NOT is required to avoid inverting non-
function bits of op).

A particular application of these logical operations allows definition of set and clear operations.
The definition of the set operation that follows is always true, and hence sets the result:

#define PIX_SET (PIX_SRC | PIX_NOT(PIX_SRC))

The definition of the clear operation is always false, and hence clears the result:

fidefine PIX_CLR (PIX_SRC & PIX_NOT(PIX_SRC))

Other common RasterOp functions are defined in the following table:

Revision D of 7 January 1984 2.7

Pixel Data and Operations SunWindows Reference Manual

Table 2-2: Useful Combinations of RasterOps

Op with Value Result
PIX_SRC write (same as source argument)
PIX_DST no-op (same as destination argument)
PIX_SRC | PIX_DST paint (OR of source and destination)
PIX;_SRC & PIX_DST mask {AND of source and destination)
PIX_NOT(PIX_SRC) & PIX_DST erase (AND destination with negation of source)
PIX_NOT(PIX_DST) invert area (negate the existing values)
PIX_SRC " PIX_DST ‘ inverting paint (XOR of source and destination)

2.2.5.2. Ops with a Constant Source Value

In certain cases, it is desirable to specify an infinite supply of pixels, all with the same value.
This is done by using NULL for the source pixrect, and encoding a color in bits 5 - 31 of the op
argument. The following macro supports this encoding:

gdefine PIX_COLOR(color){(color)< <5)

If no color is specified in an op, 0 appears by default; it remains necessary for the source pixrect
specification to be NULL before this value is actually used.

Note that the color is not part of the function component of an op argument; it should never be
part of an argument to PIX_NOT,

2.2.56.3. Controlling Clipping in the RasterOp

Pixrect operations normally clip to the bounds of the operand pixrects. Sometimes this can be
done more efficiently by the client at a higher level. If the client can guarantee that only pixels
which ought to be visible will be written, it may instruct the pixrect operation to bypass clip-
ping checks, thus speeding their operation. This is done by setting the following flag in the op
argument:

#define PIX_DONTCLIP 0x1

The result of a pixrect operation is undefined if PIX_DONTCLIP is set and the operation goes out
of bounds.

Note that the PIX_DONTCLIP flag is not part of the function component of an op argument; it
should never be part of an argument to PIX NOT.

2.8 Revision D of 7 January 1984

o

O

SunWindows Reference Manual Pixel Data and Operations

2.2.5.4. Examples of Complete Op Argument Specification

A very simple op argument will specify that source pixels be written to a destination, clipping as
they go:
op == PIX_SRC;

A more complicated example will be used to affect a rectangle (known to be valid) with a con-
stant red color defined elsewhere. (The function is syntactically correct; it's not clear how useful
it is to XOR a constant source with the negation of the OR of the source and destination):

op = (PIX_SRC * PIX_NOT(PIX_SRC | PIX_DST) } | PIX_COLOR(red) | PIX_DONTCLIP

2.2.8. Multi-Pixel Operations

The following operations all apply to multiple pixels at one time: rop, stencil, replrop, batchrop,
and vector. With the exception of vector, they refer to rectangular areas of pixels. They all use
a common mechanism, the op argument described in the previous section, to specify how pixels
are to be sct in the destination.

2.2.6.1. Rop: RasterOp Source to Destination
Device-dependent procedures invoked by the following macros perform the indicated raster
operation from a source to a destination pixrect:

s#define pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, #spr;

int dx, dy, dw, dh, op, sx, sy;

fidefine prs_rop{dstregion, op, srcprpos)
struct pr_subregion dstregion;
int op;

struct Pr_prpos srcprpos; '
Dpr addresses the destination pixrect, whose pixels will be affected; (dz, dy) is the origin (the
upper-left pixel) of the affected rectangle; dw and dk are the width and height of that rectangle.
Spr specifies the source pixrect, and (s, sy) an origin within it. Spr may be NULL, to indicate a
constant source specified in the op argument, as described above; in this case sz and ay are
ignored. Op specifies the operation which is performed; its construction is described in preced-
ing sections. .
For pra_rop, the dpr, dz, dy, dw and dh arguments are all collected in a pr_subregion struct,
defined above under Geometry Structe.
Raster operations are clipped to the source dimensions, if those are smaller than the destination
size given. Rop procedures return -1 if they fail, 0 if they succeed.
Source and destination pixrects generally mus be the same depth. The only exception allows
depth-1 pixrects to be sources to a destination of any depth. In this case, source pixels = 0 are
interpreted as 0 and source pixels = 1 are written as the maximum value which can be stored
in a destination pixel. '

Revision Ia of 7 January 1984 _ 9-9

Pixel Data and Operations SunWindows Reference Manual

2.2.6.2. Stencil: RasterOps through a Mask Q

Device-dependent procedures invoked by the following macros perform the indicated raster
operation from a source to a destination pixrect only in areas specified by a third (stencil) pix-
rect:

#define pr_stencil{dpr,dx,dy,dw,dh,op,stpr,stx,sty,spr,sx,sy)

struct pixrect *dpr, *stpr, #spr;
int dx,dy,dw,dh,op,stx,sty,sx,sy;
ffdefine prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;

struct Pr_prpos stenprpos, srcprpos;

Stencil is identical to rop except that the source pixrect is written through a stencil pixrect
which functions as a spatial write-enable mask. The stencil pixrect must have depth equal to 1.
The indicated raster operation is applied only to destination pixels where the stencil pixrect is
non-zero. Other destination pixels remain unchanged. The rectangle from (sz,sy) in the source
pixrect apr is aligned with the rectangle from (stz,sty) in the stencil pixrect atpr, and written to
the rectangle at (dzdy} with width dw and height dh in the destination pixrect dpr. The source
pixrect spr may be NULL, in which case the color specified in op is painted through the stencil.
Clipping restricts painting to the intersection of the destination, stencil and source rectangles.

2.2.6.3. Replrop: Replicating the Source Pixrect Q

Often the source for a raster operation consists of a pattern that is used repeatedly, or repli-
cated to cover an area. If a single value is to be written to all pixels in the destination, the best
way is to specifly that value in the color component of a rop operation. But when the pattern is
larger than a single pixel, a mechanism is needed for specifying the basic pattern, and how it is
to be laid down repeatedly on the destination. The pr_repirop procedure replicates a source
pattern repeatedly to cover a destination area:

pr_replrop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;

#define prs_replrop(dsubreg, dp, sprpos)
struct pr_subregion dsubreg;
struct Pr_Drpos sprpos;

Dpr indicates the destination pixrect. The area affected is described by the rectangle defined by
dz, dy, dw, dh. Spr indicates the source pixrect, and the origin within it is given by az, ay. The
corresponding prs_replrop macro generates a call to pr_replrop, expanding its dsubreg into the
five destination arguments, and sprpos into the three source arguments. Op specifies the opera-
tion to be performed, as described above under Constructing Op Arguments.

The effect of replrop is the same as though an infinite pixrect were constructed using copies of
the source pixrect laid immediately adjacent to each other in both dimensions, and then a rop
was performed from that source to the destination. For instance, a standard gray pattern may
be painted across a portion of the screen by constructing a pixrect that contains exactly one tile ‘
of the pattern, and by using it as the source pixrect. ©

2-10 Revision D of 7 January 1084

SunWindows Reference Manual Pixel Data and Operations

The alignment of the pattern on the destination is controlled by the source origin given by sz,
ey. If these values are 0, then the pattern will have its origin aligned with tue position in the
destination given by dz, dy. The most common other alignment is used to preserve a global
alignment with the destination, for instance, to repair a portion of a gray. In this case, the
source pixel which should be aligned with the destination position is the one which has the same
coordinates as that destination pixel, modulo the size of the source pixrect. Replrop will per-
form this modulus operation for its clients, so it suffices in this case to simply copy the destina-
tion position (dz, dy) into the source position (a2, sy).

2.2.6.4. Batch Ra.si:erOp: Maultiple Source to the Same Destination

Applications such as displaying text perform the same operation from a number of source pix-
rects to a single destination pixrect in a fashion that is amenable to global optimization.
Device-dependent procedures invoked by the following macros perform raster operations on a
sequence of sources to successive locations in a common destination pixrect:

struct batchitem {

struct pixrect *bi_pr;
struct pr_pos bi_pos;

b

#define pr_batchrop(dpr, dx, dy, op, items, n)
struct pixrect *dpr;
int dx, dy, op, n;

struct batchitem itemsf];

ftdefine prs_batchrop(dstpos, op, items, n)
struct pr_prpos dstpos;
int op, n;
struct batchitem items {};

The sequence of sources used by a batchrop procedure is an array of batchitem structures. Each
item specifies a source pixrect and an advance in z and y. The whole of each source pixrect is
used, unless it needs to be clipped to fit the destination pixrect: the elements of bi_pos are used
to update the destination position, not as an origin in the source pixrect.

Batchrop procedures take a destination, specified by dpr, dz and dy, or by dstpos in the case of
prs_batchrop; an operation specified in op, as described in Constructing Op Arguments above,
and an array -of batchitems addressed by the argument items, and whose length is given in the
argument n. -

The destination position is initialized to the position given by dr and dy. Then, for each batchs-
tem, the offsets given in bi_pos are added to the previous destination position, and the operation
specified by op is performed on the source pixrect and the corresponding rectangle whose origin
is at the current destination position. Note that the destination position is updated for each
item in the batch, and these adjustments are cumulative.

The most common application of batchrop procedures is in painting text; additional facilities to
support this application are described below under Teszt Facilities for Pizrects. Note that the
definition of batchrop procedures supports variable-pitch and rotated fonts, and non-roman writ-
ing systems, as well as simpler text.

Revision la of 7 January 1984 2.11

Pixel Data and Operations SunWindows Reference Manual

2.2.8.5. Vector: Draw a Straight Line

Device-dependent procedures invoked by the following macros draw a vector of unit width
between two points in the indicated pixrect:

#define pr_vector(pr, x0, y0, x1, y1, op, value}

struct pixrect *pr;

int x0, y0, x1, y1, op, value;
#kdefine prs_vector{pr, pos0, posl, op, value)

struct pixrect *pr;

struct pr_pos pos0, posl;

int op, value;

Vector procedures draw a vector in the pixrect indicated by pr, with endpoints at (z0, y0) and
{21, y1), or at pos0 and posl in the case of pra_vector. Portions of the vector lying outside the
pixrect are clipped as long as PDX_ DONTCLIP is 0 in the op argument. The op argument is con-
structed as described above under Constructing Op Arguments; and value specifies the resulting
value of pixels in the vector. If the color in op is non-zero, it takes precedence over the value
argument.

2.2.7. Colormap Access

A colormap is a table which translates a pixel value into 8-bit intensities in red, green, and blue.
For a pixrect of depth n, the corresponding colormap will have 2 entries. The two most com-
mon cases are depth-1 (monochrome with two entries) and depth-8 (with 256 entries). Memory
pixrects do not have colormaps.

2.2.7.1. Get Colormap

The following macros invoke device-dependent procedures to read all or part of a colormap into
arrays in memory:

#define pr_getcolormap(py, index, count, red, green, blue)

struct pixrect *pr;
int index, count;
unsigned char red [], green{), blue] J;
ffdefine prs_getcolormap(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red |], green|[], blue!);

These two macros have identical definitions; both are defined to allow consistent use of one set
of names for all operations.

Pr identifies a pixrect whose colormap is to be read; the count entries starting at indez are read
into the three arrays.

For monochrome pixrects the same value is written to corresponding elements of the red, green
and blue arrays. These array elements will have their bits either all cleared, indicating black, or
all set, indicating white. By default, the Oth (background) element is white, and the 1st ({fore-
ground) element is black.

212 Revision D of 7 January 1984

SunWindpws Reference Manual Pixel Data and Operations

2.2.7.2. Put Colormap

The following macros invoke device-dependent procedures to store from memory into all or part
of a colormap:

#define pr_putcolormap(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red [], green|], blue |;

#hdefine prs_putcolormap(pr, index, count, red, green, blue)
ptruct pixrect *pr;
int index, count;
unsigned char red [], green[], blue| |;

These two macros have identical definitions; both are defined to allow consistent use of one set
of names for all operations.

The count elements starting at indez (zero origin) in the colormap for the pixrect identified by
pr are loaded from corresponding elements of the three arrays.

For monochrome pixrects, the only value considered is red[0]. If this value is 0, then the pix-
rect will be set to a dark background and light foreground. If the value is non-zero, the fore-
ground will be dark, e.g. black-on-white. Monochrome pixrects are dark-on-light by default.

Note: Fuq functionality of the colormap is not supported for depth-1 pixrects. Colormap
changes tp depth-1 pixrects apply only to subsequent operations whereas a colormap change to
a color de";rice instantly changes all affected pixels on the display pixrect.

2.2.7.3. Provision for Inverted Video Pixrects

Video inversion is accomplished by manipulation of the colormap of a pixrect. The colormap of
a depth-1 pixrect has two elements. The following procedures provide video inversion control:

pr_blackonwhite(pr, min, max)
struct pixrect *pr;
int min, max;

pr.whiteonblack(pr, min, max)
struct pixrect *pr;
jnt min, max;

pr_reversevideo(pr, fain, max)
struct pixrect *pr;
int min, max;

In each procedure, pr identifies the pixrect to be affected; min is the lowest index in the color-
map, specifying the background color, and maz is the highest index, specifying the foreground
color. These will most often be 0 and 1 for monochrome pixrects; the more general definitions
allow colormap-sharing schemes, such as the one described below in Colormap Sharing, in the
chapter Overlapped Windowa: Imaging Facilitics.

“Black-on-white'’ means that zero (background) pixels wiil be painted at full intensity, which is
usually white. Pr_blackonwhite sets all bits in the entry for colormap location min and clears all

Revision Ia of 7 January 1984 2.13

Pixel Data and Operations ' SunWindows Reference Manual

bits in colormap location maz.

“White-on-black' means that zero (background) pixels will be painted at minimum intensity,
which is usually black. Pr_whitconblack clears all bits in colormap location min and sets all bits
in the entry for colormap location maz.

Reversevideo exchanges the msn and maz color intensities.

These procedures are ignored for memory pixrects.

2.2.8. Attributes for Bitplane Control

In a color pixrect, it is often useful to define bitplanes which may be manipulated indepen-
dently; operations on one plane leave the other planes of an image unaffected. This is normally
done by assigning a plane to a constant bit position in each pixel. Thus, the value of the sth bit
in all the pixels defines the sth bitplane in the image. It is sometimes beneficial to restrict pix-
rect operations to affect a subset of a pixrect’s bitplanes. This is done with a bitplane mask. A
bitplane mask value is stored in the pixrect's private data and may be accessed by the attribute
operations.

2.2.8.1. Get Attributes

Device-dependent procedures. invoked by the following macros retrieve the mask which controls
which planes in a pixrect are affected by other pixrect operations:

¥tdefine pr_getattributes(pr, planes)
struct pixrect *pr;
int_ splanes;

#define prs_getattributes(pr, planes)
struct pixrect *pr;
int *planes;
Pr identifies the pixrect; its current bitplanes mask is stored into the word addressed by planca.
If planes is NULL, no operation is performed.

The two macros are identically defined; both are provided to allow consistent use of the same
style of names.

2.2.8.2. Put Attributes

Device-dependent procedures invoked by the following macro manipulate a mask which controls
which planes in a pixrect are affected by other pixrect operations:

#defire pr_putattributes(pr, planes)
astruct pixrect *pr;
int splanes;

#define prs_putattributes(pr, planes)

struct pixrect *pr;
int splanes;

2-14 Revision D of 7 January 1984

Q

SunWindows Reference Manual Pixel Data and Operations

Pr identifies the pixrect to be affected; its mask is set so that only the planes identified by 1-bits
in the value of planes will be read or written by subsequent pixrect operations. If planes is
NULL, no operation is performed.

The two macros are identically defined; both are provided to allow consistent use of the same
style of names.

Flanes may be used to enforce that no pixel values outside of a pixrects colormap section are
written. In other words, the planes argument is a bitplane write-enable mask. Only those bits
of the pixel corresponding to a 1 in the same bit position of #planes will be affected by pixrect
operations. For example, if #planes = 1 in a destination pixrect, subsequent operations will
only modify bit 0 of the destination pixels.

Note: It any planes are masked off by a call to pr_putattributes, no further read or write access
to those planes is poasible until a subsequent call to pr_putattributes unmasks them.

2.3. Text Facilities for Pixrects

Displaying text is an important task in many applications, so pixrect-level facilities are provided
to address it directly. These facilities fall into two main categories: a standard format for
describing fonts and character images, with routines for processing them; and a set of routines
which take a string of text and a font, and handle various parts of painting that string in a pix-
rect.

%

2.3.1. Pixfonts and Pixchars

The following two structs are used to describe fonts and character images for pixrect-level text
facilities:
struct pixchar {
struct pixrect *pc_pr;
struct pr_pos pc_home;
struct pr_pos pc_adv;

B

struct pixfont {
struct pr_site pf_defaultsize;
struct pixchar pf_char[256];

|5

A pizfont contains an array of pizchars, indexed by the character code; it also contains the size
(in pixels) of its characters when they are all the same. (If the size of a font’s characters varies
in one dimension, that value in pf defaultsize will not have anything useful in it; however, the
other may still be useful. Thus, for non-rotated variable-pitch fonts, pf _defaultsize.y will still
indicate the unleaded interline spacing for that font.)

Note: The definition of a pizfont is expected to change.

The pizchar defines the format of a single character in a font, The actual image of the charac-
ter is stored in a pixrect (a separate pixrect for each character) addressed by pc_pr. Characters
that do not have a displayable image will have NULL in their entry in pe_pr. Pe_hkome is the
origin of that image (its upper left corner) relative to the character origin. Characters are nor-
mally placed relative to a baseline, which is the lowest point on characters without descenders.

Revision D of 7 January 1984 2.15

Pixel Data and Operations SunWindows Reference Manual

The leftmost point on a character is normally its origin, but kerning or mandatory letter spac-
ing may move the origin right or left of that point. Pc_adv is the amount the destination posi-
tion is changed by this character; that is, the amounts in pc_adv added to the current origin will
give the origin for the next character. While normal text only advances horizontally, rotated
fonts may have a vertical advance. Both are provided for in the font.

2.3.2. Operations on Pixfonts

Before a process may use a font, it must ensure that font has been loaded into virtual memory;
this is done with pf open:

struct pixfont *pf_open(name)
char *name;

This procedure opens the file with the given name. The file should be a font file as described in
vfont(5): The file is converted to pixfont format, allocating memory for its associated structs and
reading in the data for it from disk. A NULL is returned if the font cannot be opened.

The procedure:
struct pixfont *pf_default()

performs the same function for the system default font, normally a fixed-pitch, 16-point sans
serif font with upper-case letters 12 pixels high. I the environment parameter DEFAULT FONT
is set, its value will be taken as the name of the font file to be opened by pf_default.

Note: pf _open and pf_default load a new copy of the font every time they are called, even if the
font has already been loaded. To conserve memory, clients may use pw_pfsysopen, described in
Overlapped Windows: Imaging Facilities, or take care only to open a font once in a process.

When a process is finished with a font, it should call pf _close to free the memory associated with
it:

pf_close(pf)
struct pixfont *pf;

Pfshould be the font handle returned by a previous call to pf_open or pf_default.

2.3.3. Pixrect Text Display

Characters are written into a pixrect with the pf tezt procedure:

pf_text(where, op, font, text)
struct pr_prpos where;

int op;
struct pixfont *font;
char *text;

Where is the destination for the start of the text (nominal left edge, baseline; see Pizfonts); op is
the raster operation to be used in writing the text, as déescribed in Constructing Op Arguments;
Jont is a pointer to the font in which the text is to be displayed; and tezt is the actual null-
terminated string to be displayed.

The following procedure paints ‘‘transparent” text: it doesn't disturbing destination pixels in
blank areas of the character's image:

2-16 _ Revision D of 7 January 1984

O

O

SenWindows Reference Manual Pixel Data and Operations

pi_ttext{where, op, font, text)

struct pr_prpos where;
int - op; -

struct pixfont *font;
char stext;

'I'se arguraents to this proce‘dure are the same as for pf_tezt. The characters’ bitmaps are used
z2 a stencil, and the color specified in op is squirted through the stencil.

(For mencchrome pixrects, the same effect can be achieved by using PIX_SRC | PIX_DST as the
forction in the op; this procedure is required for color pixrects.)

Auxilicry procedures used with pf_text include:

struct pr_size pf_textbatch(where,lengthp, font, text)

struct batchitem wheref);
int slengthp;

struct pixfont *font;
chey stext;

struct pr_size pf_textwidth{len, font, text)

int len;
struct pixfont *font;
char *text;

Pf textbatch is used internally by pf_tezt; it constructs an array of batchitems and records its
length, as required by batchrop (see Batch Raster Op). Where should be the address of an array
to be filled in, 2nd lengthp should point to a maximum length for that array. Test addresses the
null-serminated string to be put in the batch, and font the pixfont to be used to display it. On
its rcturn, #lengthp will have been modified to be the number of batchitems actually used for
text. -

Pf_teztwidth returns a pr__u:;é which contains the total dimension of the string of the first len
characters in text, when formatted in the indicated font.

2.4, Memory Pixrects

Pixrects which store their pixels in memory, rather than displaying them on some display, have
several special properties. Like all other pixrects, their dimensions are visible in the pr_size and
pr_depth elements of their pixrect struct, and the device-dependent operations appropriate to
manipulating them are available through their pr_ops. Beyond this, however, the format of the
data which describes the particular pixrect is also public: pr_dats will hold the address of a
mpr_data struct, described below. There is also a public procedure, mem_create, which dynami-
cally allocates a new memory pixrect, and a macro, mpr_astatic, which can be used to generate
an icitialized memory pixrect in the code of a client program. Thus, a client may construct and
manipulate memory pixrects using non-pixrect operations.

2.4.1. The Mpr_da.fé Struct

The pr_deta element of a ui_emory pixrect points to an mpr_data struct, which contains the
information needed to deal with a memory pixrect:

Revision D of 7 January 1984 217

Pixel Data and Operations SunWindows Reference Manual

struct mpr_data {
int md_linebytes;
short *md_image;
struct pr_pos md_offset;
short md_primary;
short md_flags;

b

f#define MP_DISPLAY

#define MP_REVERSEVIDEO

Lincbytes is the number of bytes stored in a row of the primary pixrect. This is the difference
in the addresses between two pixels at the same zcoordinate, one row apart. Because a secon-
dary pixrect may not include the full width of its primary pixrect, this quantity cannot be com-
puted from the width of the pixrect — see Region. The actual pixels of a memory pixrect are
stored someplace else in memory, usually an array, which md_image points to; the format of
that area is described in the next section. The creator of the memory pixrect must ensure that
md_smage contains an even address. Md_offset is the z-y position of the first pixel of this pix-
rect in the array of pixels addressed by md_image. Md_primary is 1 if the pixrect is primary
and had its image allocated dynamically (e.g. by mem_create). In this case, md_image will point
to an area not referenced by any other primary pixrect. This flag is interrogated by the destroy
routine: if it is 1 when that routine is called, the pixrect's image memory will be freed.

(Md_flags & MP_DISPLAY) is non-zero if this memory pixrect is in fact a display device. Other-
wise, it is 0. (Md_flags & MP_REVERSEVIDEO) is 1 if reversevideo is enabled for the display dev-
ice. Md_flags is present to support memory-mapped display devices like the Sun—2 black-and-
white video device. : :

2.4.2. Pixel Layout in Memory Pixrects.

In memory, the upper-left corner pixel is stored at the lowest address. This address should be
even. That first pixel is followed by the remaining pixels in the top row, left-to-right. Pixels
are stored in successive bits without padding or alignment. For pixels more than 1 bit deep, it is
possible for a pixel to croas a byte boundary. However, rows are rounded up to 16-bit boun-
daries. After any padding for the top row, pixels for the row below are stored, and so on
through the whole rectangle. -

2.4.3. Creating Memory Pixrects

2.4.3.1. Mem_create

A new primary pixrect is created by a call on the procedure mem_create:
struct pixrect *mem_create{w, h, depth)
int w, h, depth;

W, h, and depth specify the width and height in pixels, and depth in bits, of the new pixrect.
Sufficient memory to hold those pixels is allocated and cleared to 0, new mpr_data and pizrect
structs are allocated and initialized, and a pointer to the pixrect is returned. If this can not be
done, the return value is NULL.

2-18 Revision D of 7 January 1984

O

-

SunWindows Reference Manual Pixel Data and Operations

2.4.3.2. Static Memory Pixrects

A memory pixrect may be created at compile time by using the mpr_static macro:

fidefine mpr_static(name, w, h, d, image)

char *name;
int w, h,d;
short simage;

where name is a token to identify the generated data objects; w, A, and d are the width and
height in pixels, and depth in bits of the pixrect; and image is the address of an even-byte
aligned data object that contains the pixel values in the format described above.

The macro generates two structs:

struct mpr_data name_data ;
struct pixrect name ;

The mpr_data is initialized to point to all of the image data passed in; the pixrect then refers to
mem_ops and to name_data.

Note: Contrary to its name, this macro generates structs whose storage class is eztern.

Revision D of 7 January 1984 2-19

" Chapter 3

Overlapped Windows: Imaging Facilities

This chapter and the following two deal with the sunwindow layer of the window system, which
provides facilities for managing windows with overlap and concurrency. This chapter is
specifically concerned with generating images in such an environment. Chapter 4 deals with
control of the windows, manipulating their size, location, and other structural characteristics.
Chapter 5 describes the facilities for serializing multiple input streams and distributing them
appropriately to multiple windows. The term “sunwindow layer” comes from the name of the
library that contains its implementation.

At this level of the system, a window is treated as a device: it is named by an entry in the /dev
directoty; it is accessed by the open(2) system call; and the usual handle on the window is the
file descriptor (or fd) returned from that call.

For this chapter, however, a window may be considered as simply a rectangular area with con-
tents maintained by some process. Multiple windows, maintained by independent processes,
may coexist on the same screen; SunWindows allows them to overlap, sharing the same (2, ¥)
coordinates, and proceeding concurrently, while maintaining their separate identities.

Window system facilities may also be used to construct a non-overlapped environment; the win-
dow system facilities required are much the same as for constructing on overlapping environ-
ment.

3.1. Window Issues: Controlled Display Generation

Multiple windows on a display introduce two new issues, which may be broadly characterized
as: 1) preventing the window from painting where or when it shouldn't, and 2) ensuring that it
does paint whenever and wherever it should. The first includes clipping and locking; the latter
covers damage repair and fizups.

3.1.1. Clipping and Locking

Clipping constraits a window to draw only within the boundaries of its portion of the screen.
This area is subject to changes beyond the control of a window’s process — another window
may be opened on top of the first, covering part of its contents, or a window may be shrunk to
make room for another alongside it. Thus, it is convenient for the window system to maintain
up-to-date information on which portions of the screen belong to which windows, and for the
windows to consult that information whenever they are about to draw on the screen.

Locking prevents window processes from interfering with each other in several ways:

Revision D of 7 January 1984 3-1

Overlapped Windows: Imaging Facilities ' SunWindows Reference Manual

e Raster hardware may require several operations to complete a change to the display; one
process’ use of the hardware should be protected from interference by others during this

critical interval.
e Changes to the arrangement of windows must be prevented while a process is painting, lest
an area be removed from a window as it is being painted.

e A software cursor that the window process does not control (the kernel is usually responsi-
ble for the cursor) may have to be removed so that it does not interfere with the window’s
image.

Clipping and locking are described in more detail in Locking and Clipping.

3.1.2. Damage Repair and Fixups

A window whose image does not appear entirely as it should on the screen is said to be dam-
aged. A common cause of damage is being first overlaid, and then uncovered, by another win-
dow. When a window is damaged, a portion of the window’s image must be repaired. Note
that the requirement for repairing damage may arise at any time; it is completely outside the
window’s control.

When a process performs some operation which includes reading a portion of its window, for
instance copying a part of the image from one region to another to implement scrolling, it may
find the source pixels obscured. This necessitates a fizup, in which that portion of the image is
regenerated, similar to repairing damage. Unlike damage generation, the need to do some fixup
is provoked only in response to an action of the window's process, e.g., scrolling.

3.1.3. Retained Windows

Either form of regeneration may be done by recomputing the image; this approach is reasonable
for applications like text where there is some underlying representation from which the display
can be recomputed easily. For images which require considerable computation, SunWindows
provides a retained window, whose image is maintained in memory as well as on the display.
Such a window may have its image recopied to the display as needed to repair damage. The
mechanism for making a window retained is described in Pizwina.

3.1.4. Colormap Sharing

On color displays, colormap entries are a constrained resource. When shared among multiple
applications, colormap usage requires arbitration. For example, consider the following applica-
tions running on the same display at the same time in different windows:

¢ Application program X needs 64 colors for rendering VLSI images.
e Application program Y needs 32 shades of gray for rendering black and white photographs.

o Application program Z needs 256 colors (assume this is the entire colormap) for rendering full
color photographs.

Colormap usage control is handled as follows: .

¢ To determine how X and Y figure out what portion of the colormap they should use so they
don’t access each others’ entries, SunWindows provides a resource manager that allocates a

colormap segment to each window from the shared colormap. To reduce duplicate colormap
segments, they are named and can be shared among cooperating processes.

3-9 Revision D of 7 Jaimary 1984

©

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

» To hide concerns about knowing the correct offset to the start of a colormap segment from
routines that access the image, SunWindow initializes the image of a window with the color-
map segment offset. This effectively hides the offset from the application.

o To accommodate Z if its large colormap segment request cannot be granted, Z’s colormap is
loaded into the hardware, replacing the shared colormap, whenever input is directed towards
Z's window. Z's request is not denied even though it is not allocated its own segment in the
shared colormap.

o To control the blanking that occurs when colormap swapping causes all but Z's image to
disappear. Given an unfortunate choice of colors, SunWindow ensures that the background
(colormap segment entry 0) and foreground (colormap segment entry size-1) for all segments
in shared colormap are the same. This colormap content restriction has the aflect of eliminat~
ing blanking.

3.1.5. Process Structure

In SunWindows, access to the screen is performed in each user process, instead of in a single,
central, fully' debugged screen management process. This increases the possibility of an
incorrect user process damaging the display area of other application processes. Several com-
pensating factors justify this approach:

e Clients may access this open system at whichever fevel is most convenient. Clients who
require the ultimate efficiency of direct screen access need not sacrifice the window manage-
ment functions of the window system.

e Leaving processing in user processes promotes efficiency in both implementation and execu-
tion: making and testing extensions and modifications is much easier in user code than in the
kernel.

3.1.6. Imaging with Windows

A detailed discussion of imaging with windows follows. We begin with a description of the basic
data structures that are used in this level of Sunwindows. These are a primitive geometric facil-
ity, the rect, for describing rectangles, and the basic structure, the pizwin, that describes a win-
dow on the screen with its associated state and operation vectors.

Following is a brief discussion of the simple process of creating and destroying pizwins. This is
followed by a detailed description of the approach to locking and clipping, which leads naturally
into a discussion of library routines that access a pizwin’s pixels. Detecting and repairing dam-
age is treated next. '

3.1.7. Libraries and Header Files

The procedures described in this chapter are provided in the asunwindow library
(Just/libjkibsunwindow.a). The header file [usr/include/sunwindow/window_ks.h contains all the
sncludes that are required by a program using the facilities described in this chapter.

Revision D of 7 January 1984 33

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3.2. Data Structures

Here are some data structures used in the implementation of pixwins. Be sure you understand
rects before proceding. Descriptions of the data structure internals are also provided for addi-

tional information.

3.2.1. Rects

Throughout Sunwindows, images are dealt with in rectangular chunks; where complex shapes
are required, they are built up out of groups of rectangies. The basic description of a rectangle
is the rect struct, defined in the header file /usr/include/sunwindow/rect.h. The same file con-
tains definitions of several usefu! macros and procedures for dealing with rects.

Where a window is partially obscured, its visible portion generally cannot be described by a sim-
ple rectangle; instead a list of non-overlapping rectangular fragments which together cover the
visible area is used. This rectliat is declared, along with its associated macros and procedures in
the file /usr/include/sunwindow/rectlist.h.”

At this point we only discuss the rect struct and its most usefu! macros; a full description of
both rects and rectlists is in Appendix A.

##define coor.d short

struct rect {
coord r_left;
coord r_top;
short r_width,
short r_height;

|5

In the context of a window, the rectangle lies in a coordinate system whose origin is in the
upper left-hand corner, and whose dimensions are given in pixels. Two macros determine an
edge not given explicitly in the rect. These macros are:

#define rect_right(rp)
#define rect_bottom(rp)

struct rect *rp;

These macros return the coordinate of the last pixel within the rectangle on the right or bot-
tom, respectively.

3.2.2. Pixwins

Pizwins are the basic imaging elements of the overlapped window system. The window layer of
the system uses pixwins to represent pixrects on a window surface. The pixwin thus describes
the window image and a set of routines to operate on the window.

A client of the window system has a rectangular window in which it displays information for the
user. Because of overlapping, however, it is not always possible to display information in all
parts of a client’s window. Parts of an image may have to be displayed at some point long after
they were generated, as a portion of the window is uncovered. The clipping and repainting
necessary to preserve the identity of the rectangular image across interference with other objects
on the screen is handled by manipulations on pixwins.

3-4 Revision D of 7 January 1984

O

=

o

SunWindows Reference Manual Overlapped Windows: I[maging Facilities

The pixwin struct is defined in [usr/include/ sunwindow/ pizwin.h:

struct pixwin {

struct pixrectops *pw_ops;
caddr_t pw_opshandle;
int pW_OpsX;
int PW_OpSsy;
struct rectlist pw_fixup;
struct pixrect *pw_pixrect;
struct pixrect *pw_prretained;
struct pixwin_clipops *pw_clipops;
struct pixwin_clipdata *pw_clipdata;
char pw_cmsname[20];

b

The pizwin refers to a portion of some device, typically a display; the device is identified by
pu_pizrect.

If the image displayed in the pizwin required a large effort to compute, it will be worth saving a
backup copy of the whole image, making the window a retained window. This is done by creat-
ing an appropriate memory pizrect as described in Memory Pizrects, and storing a pointer to it
in pw_prretained.

Portions of the image which could not be accessed by an operation which attempted to read
pixels from the pizwin are indicated by pw_fizup.

Pw_ops is a pointer to a vector of operations in screen access macros to call either the pizwin
software level or as an optimization, the pizrect software directly. The structure pizrectops was
discussed in Pizrectops. The pw_opshandle is the data handle passed to the operations of
pw_opa. Pw_opez and pw_opsy are additional offset information that screen access macros use.
These three fields are dynamically altered based on locking and clipping status.

Pw_clipdata is a collection of information of apecial interest to locking and clipping. Pw_elipops
points to a vector of operations which are used in locking and clipping. The declarations of
these last two structs are discussed more fully in Pizwin_clipdata Struct, Pizwin_clipops Struct,
and subsequent sections.

Pw_cmsname the identifier of the colormap segment that this pixwin is currently using. This
value should only be accessed via pw_setcmsname and pw_getemsname procedures described
below.

Revision Ij of 7 January 1984 35

Overlapped Windows: Imaging Facilities

3.2.3. Pixwin_clipdata Struct

struct pixwin_clipdata {

int
short
struct
int
int
int
struct
struct
struct
struct
struct

h

ftdefine PWCD_NULL

#define PWCD_MULTIRECTS
#define PWCD_SINGLERECT
F#define PWCD_USERDEFINE

pwed_windowfd;
pwcd_state;

rectlist pwed_clipping;
pwed_clipid;
pwed_damagedid;
pwed_lockcount;

pixrect *pwcd_prmulti;
pixrect *pwcd_prsingle;
pixwin_prlist *pwcd_prl;

SunWindows Reference Manual

rectlist pwed_clippingsortedRECTS_SORTS);

rect *pwcd_regionrect;

W =0

struct pixwin_prlist. {

struct
struct
int

)

pixwin_prlist *prl_next;
pixrect *prl_pixrect;
prl_x, prly;

Pwecd_windowfd is a file descriptor for the window being accessed. Within the owning process, it
is the standard handle on a window. A description of the interplay between windows and
pizwins continues in Pizwin Creation and Destruction. The portions of the window's area acces-
.sible through the pizwin are described by the pwcd_clipping rectlist. Pwed _regionrect, if not
NULL, points to a rect that is intersected with pwed_clipping to further restrict the portions of
the window's area accessible through the pizwin. Pwcd_clipid and pwed_damagedid identify the
most recent rectlists retrieved for a window. Pwed_lockeount is a reference count used for
nested locking, as described in Locking below. Copies of this pwed_clipping, sorted in directions
convenient for copy operations, are stored in pwed_clippingsorted.

3-6

Revision D of 7 January 1984

O

o

o

SunWindows Reference Manua! Overlapped Windows: Imaging Facilities

Puwcd_state can be one of tile following:

Table 3-1: Clipping State

State Meaning

PWCD_NULL no part of window visible
PWCD_MULTIRECTS must clip to multiple rectangles
PWCD_SINGLERECT need clip to only one rectangle

PWCD_USERDEFINE the client program will be
responsible for setting up the

clipping

Puwed_prmults is the pizrect for drawing when there are multiple rectangles invelved in the clip-
ping. Pwecd_prasingle is the pizrect for clipping when there is only one rectangle visible.

Pwed_prl is a list of pizrects that may be used for clipping when there are multiple rectangles
involved. For vector drawing, these clippers must be used maintain stepping integrity across
abutting rectangle boundaries. The prl z and prl_y fields in the pizwin_prlist structure are
offsets from the window origin for the associated pri_ptzrect.

3.2.4. Pixwin_clipops Struct

struct pixwin_clipops {

int (*pwceo_lock)),

int (*pweo_unlock)),

int (*pwco_reset)(),

int (*pwco_getclipping)();

b

The pw_clipops struct is a vector of pointers to system-provided procedures that implement
correct screen access, These are accessed through macros described in Locking and Clipping.

3.3. Pixwin Creation and Destruction

To create a pszwin, the window to which it will refer must already exist. This task is accom-
plished with procedures like win_getnewwindow and win_setrect, described in Window Manipula-
tion, or, at a higher level, tool_create and tool_createsubwindow, described in Suntool: Tools and
Subwindows. The pizwin is then created for that window by a call to pw_open:

struct pixwin *pw_open(fd)
int fd; -
Pw_open takes a file descriptor for the window on which the pizwin is to write. A pointer to a
pizwin struct is returned. At this point the pizwin describes the exposed area of the window. If

the client wants a retained. pizwin, pw_prretained should be set to point to an appropriately-
sized memory pizrect after pw_open returns.

Revision D of 7 January 1984 a.7

Overlapped Windows: Imaging Facilities . SunWindows Reference Manual

When a client is finished with a window, it should be released by a call to:

pw_close(pw) Q

struct pixwin pw;

Puw_close frees any dynamic storage associated with the pizwin, including its pw_prretained pix-
rect if any. If the pizwin has a lock on the screen, it is released.

3.3.1. Region Creation
One can use pixwins to clip rectangular regions within a window’s own rectangular area. The
region operation creates a new pixwin that refers to an area within an existing one:

struct pixwin *pw_region(pw, x, y, w, h}
struct pixwin *pw;
int x,¥, W, h;

The pixwin which is to serve as the source is addressed by pw; z, y, w and h describe the rectan-
gle to be included in the new pixwin. The upper left pixel in the returned pixwin is at coordi-
nates (0,0); this pixel has coordinates (z, y) in the source pixwin.

3.4. Locking and Clipping

Before a window process reads from or writes to the screen, it must satisfy several conditions:
e It should obtain exclusive use of the display hardware,

e The position of windows on the screen should be frozen, {f)
o The window’s description of what portions of its window are visible should be up-to-date,
and

o The window should confine its activities to those visible areas.

The first three of these requirements is met by locking; the last amounts to clipping the image
the window will write to the bounds of its ezposed area. All are handled implicitly by the access
routines described in Accessing a Pizwin’s Pizels. Some clients will use those routines, but for
efficiency’s sake, lock explicitly around a body of acreen access operations.

3.4.1. Locking

The pw_lock macro:

pw_lock(pw, r)
struct pixwin *pw;
struct rect #r;

uses the lock routine pointed to by the window's pw_clipops to acquire a lock for the user pro-
cess that made this call. Pw addresses the pizwin to be used for the ouput; r is the rectangle in
the window’s coordinate system that bounds the area to be affected. Pw_lock blocks if the lock
is unavailable, for example, if another process currently has the display locked.

Lock operations for a single pizwin may be nested; inner lock operations merely increment a
count of locks outstanding, pwed lockcount in the window's pw_clipdata struct. Their affected
rectangles must lie within the original lock’s. Q

3-8 Revision D of 7 January 1984

SunVWindows Reference Manual Overlapped Windows: Imaging Facilities

A similar macro is:

pw_unlock(pw)
struct pixwin *pw;

which decrements the lock count. If this brings it to 0, the lock is actually released.

Since locks may be nested, it is possible for a client procedure to find itself especially in error
kandiing with a lock whick may require an indefinite number of unlocks. To handle this situa-
tion cleanly, another routine is provided. The following macro sets pw's lockcount to 0 and
release its lock:

pw_reset(pw)
struct pixwin *pw;
Like pw_lock and pw_unlock, pw_lock calls a routine addressed in the pizwin's pizwin_clipops
struct, in this case the one addressed by pwco_reaet.

Acquisition of a lock has the following effects:

o If the cursor is in conflict with the affected rectangle, it is removed from the screen. White
the screen is locked, the cursor will not be moved in such a way as to disrupt any screen
accessing.

s Access to the display is restricted to the process acquiring the lock.

e Modification of the database that describes the positions of all the windows on the screen is
prevented.

e The id of the most recent clipping information for the window is retrieved, and compared
with that stored in pwed_clipid in the window’s pw_clipdata. If they differ, the routine
addressed by pweo_getclipping is invoked, to make all the fields in pw_clipdata accurately
describe the area which may be written into.

e Once the correct clipping is in hand, the pwcd_state variable's value determines how to set
pw_ops, pw_opshandle, pw_opsz and pw_opsy. This setting is done in anticipation of further
screen access operations being done before a subsequent unlock. These values can often be
set to bypass the pizwin software by going directly to the pizrect level.

Locking is both moderately expensive as it involves two system calls, and capable of impacting

other processes. Clients with a recognizable group of screen updates to do can gain noticeably .

by surrounding the group with lock - unlock brackets; then the locking overhead will only be

incurred once. An example of such a group might be a line of text, or a series of vectors which
have all been computed. '

While it has the screen locked, a process should not:
e do any significant computation unrelated to displaying its image;
» invoke any system calls, including other 1/O, which might cause it to block; or

¢ invoke any pixwin calls except pw_unlock and those described in Accessing a Pizwin’s Piz-
els. In any case, the lock should not be held longer than about a quarter of a second, even
following all these guidelines.

As a deadlock resolution approach, when a display lock is held for more than 10 seconds, the

lock is broken. However, the offending process is not notified by signal; the idea is that a pro-

cess shouldn’t be aborted for this infraction. A message is displayed on the console.

Revision D of 7 January 1984 2.9

Overlapped Windows: [maging Facilities SunWindows Reference Manual

3.4.2. Clipping

Output to a window is clipped to the window's pwed_clipping rectlist; this is a series of rectan- ()
gles which, taken together, cover the valid area that this window may write to. There are two
routines which set the przwin’s clipping:

pw_exposed(pw)
struct pixwin *pw;

pw_damaged(pw)
struct pixwin *pw;

Pw_damaged is discussed in Damage. Pw_czposed is the normal routine for discovering what
portion of a window is visible. It retrieves the rectlist describing that area into the pizwin’s
pwed._ clipps’ny, and stores the id identifying it in pwed _clipid. It also stores its own address in
the pizwin's pwco_gctchppmg, s0 that subsequent lock operations will get the correct area
description.

Clipping, even more than locking, should normally be left to the library output routines. For
the intrepid, the strategy these routines follow is briefly sketched here; the rectlist data struc-
tures and procedures in Appendix A are required reading.

Some procedure will set the pizwin’s pwed_clipping so that it contains a rectlist describing the
region which may be painted. This is done by a lock operation which makes a call through
*pweo_gelclipping, or an explicit call to one of pw_open, pw donedamaged, pw ezposed or
pw_damaged. This rectlist is essentially a list of rectangular fragments which together cover the
area of interest. As an image is generated, portions of it which lie outside the rectangle list
must be masked off, and the remainder written to the window through a pizrect.

The clipping aid pwed_prmulti is set up to be a pizrect which clips for the entire rectangular ":)
area of the window. Any clipping using this pizrect must utilize the information in
pwed_clipping to do the actual clipping to multiple rectangles.

Pwed_prl is set up to parallel each of the rectangles in pwed_clipping. Thus, if one draws to
each of the pizrects in this data structure, the image will be correctly clipped. Puwed_state is set
by examining the makeup of the pwed_clipping. If pwed_state is PWCD_SINGLERECT, a piz-
rect is set up in pwed praingle also. When this case exists, after pw_lock and before pw_unlock,
most screen accesses will directly access the pizrect level of software. Thus, in this common
case, screen access is as fastin the window system as it is on the raw pizrect software outside of
the window system. Also, pwed_praingle is set up with a zero height and width pizrect when
pwed_state is PWCD_NULL.

As an escape, hone of the pizrect setup described above takes pla.ce when pwed_state is
PWCD_USERDEFINE. This means that clipping is the responsibility of higher level software.
A client may write to the display with an operation whickh specifies no clipping (op |
PIX_DONTCLIP). This means that it is doing the clipping at a higher level. Note that clip-
ping data is only valid during the time the client may write to the screen, that is when the
window's owner process holds a lock on the screen. If the clipping is done wrong, it is possible
to damage another window's lmage

H
H
i

3-10 Revision D of 7 January 1984

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

3.5. Accessing a Pixwin’s Pixels

Procedures described in this section provide all the normal facilities for output to a window and
should be used unless there are special circumstances. Each contains a call to the standard lock
procedure, described in Locking. Each takes care of clipping to the rectlist in pw_clipping. Since
the routines are used both for painting new material in a window and for repairing damage,
they make no assumption about what clipping information should be gotten. Thus, there
should be some previous call to either pw_open, pw_donedamaged, pw_eczposed or pw_damaged, to
initialize pwo_getclipping correctly.

The procedures described in this section will maintain the memory pizrect for a retained pixwin.
That is, they check the window's pw_prretained, and if it is not null, perform their operation on
that data in memory, as well as on the screen.

3.5.1. Write Routines

pw_write(pw, xd, yd, width, height, op, pr, xs, ys)

struct pixwin *pw;
int op, xd, yd, width, height, xs, ys;
struct pixrect *pr;

pw_writebackground(pw, xd, yd, width, height, op)

Pixels arg written to the pixwin pw in the rectangle defined by zd, yd, width, and height, using
rasterop function op (as defined in Constructing Op Arguments for Rop and Batchrop Pizrec-
tops). They are taken from the rectangle with its origin at zs, ys in the source pixrect pointed
to by pr. Pw_writebackground simply supplies a null pr which indicates that an infinite source
of pixels, all of which are set to zero, is used. The following draws a pixel of value at (z, y) in
the addressed pizwin:

pw_put(pw, X, y, value)
struct pixwin *pw;
int x, ¥, value;

The next draws a vector of pixel value from (x0, y0) to (x1, y1) in the addressed pszwin using
rasterop op:

pw_vector(pw, x0, y0, x1, y1, op, value)
struct pixwin *pw;

int op, x9, y0, x1, y1, value;
pw_replrop(pw, xd, yd, width, height, op, pr, xs, ys)

struct pixwin *pw;

int op, xd, yd, width, height;

struct pixrect *pr;

int Xs, ¥9;

This procedure uses the indicated raster op function to replicate a pattern (found in the source
pizrect) into a destination in a pixwin. For a full discussion of the semantics of this procedure,
refer to the description of the equivalent procedure pr_replrop in Pizel Data and Operationa.

Revision D of 7 January 1934 3-11

1

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

The following two routines:

pw_text(pw, x, y, op, font, s)

struct pixwin *pw;
int X, ¥, Op;
struct pixfont #font;
char #a;

pw—Chm'(pwr X, ¥, op, font’: c)

struct pixwin *pw;
int X, ¥, op;
struct pixfont *font;
char c;

write a string of characters and a single character respectively, to a pizwin, using rasterop op as
above. Pw_tezt and pw_char are distinguished by their own coordinate system: the destination
is given as the left edge and baseline of the first character. The left edge does not take into
account any kerning (character position adjustment depending on its neighbors), so it is possible
for a character to have some pixels to the left of the x-coordinate. The baseline is the y-
coordinate of the lowest pixel of characters without descenders, ‘L’ or ‘o’ for example, so pixels
will frequently occur both above and below the baseline in a string. Font may be NULL in
which case the aystem font is used.

The system font is the same as the font returned from pf default. In addition, the system font
is reference counted and shared between software packages. To get the system font call

pw_pfsyzopen:
struct pixfont *pw_pfsysopen()

When you are done with the system foﬁt call pw_pfaysclose:
pw_pfsysclose()

Note: A font to be used in pw_tezt is required to have the same pc_home.y and character height
for all characters in the font.

The following routine:

pw_ttext(pw, x, y, op, font, s)

struct pixwin *pw;
int X, ¥, op;
struct pixfont *font;
char *g5;

is just like pw_tezt except that it writes transparent text. Transparent text writes the shape of
the letters without disturbing the background behind it. This is most useful with color pixwins.
Monochrome pixwins can use pw_tezt and a PIX_SRC|PIX_DST op, which is faster.

Applications such as displaying text perform the same operation on a number of pixrects in a
fashion that is amenable to global optimization. The batchrop procedure is provided for these
situations:

pw_batchrop(pw, dx, dy, op, items, n)

struct pixwin *pw;
int dx, dy, op, n;
struct batchitem items| |;

3-12 Revision D of 7 January 1984

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

Py batchrop is exactly analogous to pr_batchrop described in Pizel Data and Operations. Refer
there for a detailed explanation of pw_batchrop.

Stencil ops are like raster ops except that the source pixrect is written through a stencil pixrect
which functions as a spatial write erable mask. The indicated raster operation is applied only
to destination pixels where the stencil pixrect is non-zero. Other destination pixels remain
unchanged.

prw_stencil(dpw, dx, dy, dw, dh, op, stpr, stx, sty, spr, sx, sy)

i struct pixwin *dpw;
struct pixrect #stpr, *spr;
int dx,dy,dw,dh,op,stx,sty,sx,sy;

Pw_stencil is exactly analogous to pr_stencil described in Psizel Daota and Operations. Refer
there for a detailed explanation of pw_stencil.

3.5.2. Read and Copy Routines

The following routines use the window as a source of pixels. They may find themselves
thwarted by trying to read from a portion of the pizwin which is hidden, and therefore has no
pixels. When this happens, pw_fizup in the pizwin structure will be filled in by the system with
the description of the source areas which could not be accessed. The client must then regen-
erate this part of the image into the destination. Retained pizwins will always return ri_null in
pw_fizup because the image is refreshed from pw_prretained. The following returns the value of
the pixel at (2, y) in the addressed pixwin:

pw_get(pw, X, ¥) .
struct pixwin *pw;
int X, ¥

Pixels are read from the pa':t';vin into a pixrect by:

pw_read(pr, xd, yd, width, height, op, pw, xs, ys)

struct pixwin *pw;
int op, xd, yd, width, height, xs, ys;
struct pixrect *pr;

Pixels are read from the rectangle defined by zs, ys, width, height, in the pixwin pointed to by
pw, using rasterop function op. The pixels are stored in the rectangle with its origin at zd, yd in
the pizrect pointed to by pr.

Copy is used when both source and destination are pizwins:

pw_copy(dpw, xd, yd, width, height, op, spw, xs, ys)
struct pixwin *dpw, *spw;
int op, xd, yd, width, height, xs, ys;

Note: Currently dpw and spw must be the same pixwin.

3.5.3. Bitplane Control

For pixwins on color display devices, one must be able to restrict access to certain bitplanes.

Revision D of 7 January 1984 3-13

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

pw_putattributes{pw, planes)
struct pixwin *pw;
int #planes;

Planes is a bitplane access enable mask. Only those bits of the pixel corresponding to a 1 in the
same bit position of #plancs will be affected by pixwin operations. Pw_putatiributes sets the
access enable mask of pw. If the planes argument is NULL, that attribute value will not be writ-
ten.

Note: Use pw_putattributes with care; it changes the internal state of the pixwin until
pw_putatiributes is next called. Don't forget to restore the internal state once through accessing
in this special mode.

pw_getattributes(pw, planes)
struct pixwin *pw;
int #planes;

retrieves the value of the access enable mask into #plancs.

3.6. Damage

When a portion of a client’s window becomes visible after having been hidden, it is damaged.
This may arise from several causes. For instance, an overlaying window may have been
removed, or the client’s window may have been stretched to give it more area. The client is
notified that such a region exists by the signal SIGWINCH; this simply indicates that something
about the window has changed in a fashion that probably requires repainting. It is possible that
the window has shrunk, and no repainting of the image is required at all, but this is a degen-
erate case. It is then the client’s responsibility to repasr the damage by painting the appropriate
pixels into that area. The following section describes how to do that.

3.6.1. Handling a SIGWINGH Signal

There are several stages to handling a SIGWINCH. First, in almost all cases, the procedure that
catches the signal should net immediately try to repair the damage indicated by the signal.
Since the signal is a software interrupt, it may easily arrive at an inconvenient time, halfway
through a window's repaint for some normal cause, for instance. Consequently, the appropriate
action in the signal handler is usually to set a flag which will be tested elsewhere. Conveniently,
a SIGWINCH is like any other signal; it will break a process out of a select system call, so it is
possible to awaken a client that was blocked, and with a little investigation, discover the cause
of the SIGWINCH. See the select(2) system call and refer to the tool_sclect mechanism in Tool
Processing for an example of this approach.

Once a process has discovered that a SIGWINCH has occurred and arrived at a state where it's
safe to do something about it, it must determine exactly what has changed, and respond
appropriately. There are two general possibilities: the window may have changed size, and/or
a portion of it may have been uncovered.

Win_getsize (described in Windew Manipulation) can be used to inquire the current dimensions
of a window. The previous size must have been remembered, for instance from when the win-
dow was created or last adjusted. These two sizes are compared to see if the size has changed.
Upon noticing that its size has changed, a window containing other windows may wish to

3-14 Revision D of 7 January 1984

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

rearrange the enclosed windows, for example, by expanding one or more windows to fill a newly
opened space.

Whether a size change occurred or not, the actual images on the screen must be fixed up. It is
possible to simply repaint the whole window at this point — that will certainly repair any dam-
aged areas — but this is often a bad idea because it typically does much more work than neces-
sary.

Therefore, the window should retrieve the description of the damaged area, repair that damage,
and inform the system that it has done so: The pw_damaged procedure:

pw_damaged{pw)
struct pixwin *pw;

is & procedure much like pw_czposed. It fills in pwed_clipping with a rectlist describing the area
of intcrest, stores the id of that rectlist in the pizwin's opsdata and in pwed_damagedid as well.
It also stores its own address in pwco_getclipping, so that a subsequent lock will check the
correct rectlist. All the clippers are set up too. Colormap segment offset initialization is done,
a9 described in Surface Preparation.

Now is the time for the client to repaint its window — er at least those portions covered by the
damaged rectliast; if the regeneration is relatively expensive, that is if the window is large, or its
contents complicated, it may be worth restricting the amount of repainting before the clipping
that the rectlsst will enforce. This means stepping through the rectangles of the rectliat, deter-
mining for each what data contributed to its portion of the image, and reconstructing only that
portion. Sece Appendix A for details about rectlists.

For retained pixwins, the following call can be used to copy the image from the backup pixrect
to the window:

pw_repairretained{pw)
struct pixwin *pw;

When the image is repaired, the client should inform the window system with a call to:

pw_donedamaged(pw)
struct pixwin *pw;

Pw_donedamaged allows the system to discard the rectlist describing this damage. It is possible
that more damage will have accumulated by this time, and even that some areas will be
repainted.more than once, but that will be rare.

After calling pw_donedamaged, the pizwin describes the entire visible area of the window.

A process which owns more than one window can receive a SIGWINCH for any of them, with no
indication of which window generated it. The only solution is to fix up all windows. For-
tunately, that should not be overly expensive, areas are completely and exactly specified by the
returned value for pw_damaged.

o, T
3.7. Colormap Manipulation

Pixwins provide an interface to a basic colormap sharing mechanism. Portions of the colormap,
colormap segments, are named and can be shared among cooperating processes. Use of a color-
map segment, as opposed to the entire colormap, is essentially invisible to clients. Routines
that access a pixwin's pixels do not distinguish between windows which use colormap segments
and those which use the entire colormap.

Revision D of 7 January 1984 3.15

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3.7.1. Initialization

Pw_open and puw_region both create and return a pixwin. If a colormap segment is already
defined for the window of the pixwin, this is the colormap segment used in the new pixwin.
However, if the window has no colormap segment defined for it, a monochrome colormap seg-
ment is setup for the pixwin by default. The default segment is defined in
Jusr/ include/ sunwindow/cms_mono.h.

3.7.2. Background and Foreground

Every colormap segment has two distinguished values, its background and foreground. The
background color is defined as the value at the first position of a colormap segment. The fore-
ground color is defined as the value at the last position of a colormap segment (the colormap

segment's size minus 1).

The foreground is important in terms of color/monochrome compatibility. Any source color,
other than 0, that is written on a monochrome pixrect is translated to the foreground color.

Pw_open and pw_region set the background and foreground of the returned pixwin to be those
of the overall screen (see win_screenget). In addition, if the screen is defined as being inverted,
the background and foreground are reversed. For reasons involving image blanking, invisible
cursors, merged boundaries, color/monochrome compatibility, relative colormap segment place-
ment, and so on, this pre-emption is vital to the overall integrity of color displays doing color-
map sharing. Monochrome displays have many of these problems, although they are less severe
than on color displays.

Here are handy utilities to set two specific colormap segment entries:

pw_reversevideo(pw, min, max)
struct pixwin *pw;
- . 1
int min, max;

pw_blackonwhite(pw, min, max)
struct pixwin *pw;
int min, max;

pw_whiteonblack(pw, min, max)
struct pixwin *pw;
int min, max;

Min and maz are the first and last entries in the colormap, respectively. If min is the back-
ground and maz is the foreground and pw is a color pixwin, these calls do nothing.

3.7.3. A New Colormap Segment

For a different colormap segment for a pixwin, a new name must be created. If the colormap
segment's usage is to be static in nature, by all means try to use a shared colormap segment
definition. The colormap segment definitions that could be shared with other windows are in
[uer/include/sunwindow/cms_».h. These are cms.h, cms_rgh.h, cms_grays.h, cms_mono.h, and
cms_rasnbow.h. Even if no other program shares your colormap segment, at least multiple
instances of your program could share it. Remember that colormap entries are scarce.

3-16 Revision D of 7 January 1984

-

O

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

If this new colormap segment should not be shared by another window then the name should be
unique. A common way to generate a unique name is to append your process id to a more
meaningful string that describes the usage of the colormap segment.

pw_setcmsname(pw, cmsname)
struct pixwin *pw;
char cmsname[20];

Cmaname is the name that pw will call its window’s colormap segment. Just setting the name
has the effect of resetting the colormap segment to a NULL entry. Usually, the very next call
after pw_setemsname should be pw_putcolormap as described in the next section.

Colormap segments are associated with windows, not pixwins. Each window can have only one
colormap segment. Pixwins provide an interface for managing that one colormap segment.
Since more than one pixwin may exist per window, care should be taken to avoid changing the
colormap segment definition out from underneath another pixwin on the same window.

pw_getcmsname(pw, cmsname)
struct pixwin *pw;
char cmsname(20};

The colormap segment name of pw is copied into cmaname.

3.7.4. Colormap Access

pw_putcolormap(pw, index, count, red, green, blue)
struct pixwin *pw;
int index, count;
unsigned char red [], green[], blue{ J;

The count clements of the pixwin's colormap segment starting at indez (zero relative) are loaded
with the first count values in the three arrays. A colormap has three components each indexed
by a given pixel value to preduce an RGB color. Monochrome pixwins assume red equals green
equals blue. Pixrects of depth 8 have colormaps with 256 (2 to the eighth) entries. Background
and foreground values are forced to the values defined by the screen.

pw_getcolormap(pw, index, count, red, green, blue)
struct pixwin *pw;
int index, count;
unsigned char red [], green|], blue| |;

finds out the state of the colormap segment. The arguments are analogous to those of
pw_putcolormap.

The utility:
pw_cyclecolormap(pw, cycles, index, count)
struct pixwin *pw;
int cycles, index, count;

is handy for taking a portior of pu's colormap segment, starting at fndez for count entries, and
rotating those entries among themselves for cycles. A cycle is defined as the count shifts it takes
one entry to move through every position once.

Revision D of 7 January 1984 3.17

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3.7.5. Surface Preparation

In order for a client to ignore the offset of his colormap segment the image of the pixwin must

be initialized to the value of the offset. This surface preparation is done automatically by

pixwins under the following circumstances:

e The routine pw_damaged does surface preparation on the area of the pixwin that is dam-
aged. '

e The routine pw_putcolormap does surface preparation over the entire exposed portion of a
pixwin if a new colormap segment is being loaded for the first time.

For monochrome displays, nothing is done during surface preparation. For color displays, when

the surface is prepared, the low order bits (colormap segment size minus 1) are not modified.

This mean that surface preparation does not clear the image. Initialization of the image (often

clearing) is still the responsibility of client code.

There is a case in which surface preparation must be done explicitly by client code. When win-

dow boundaries are knowingly violated (see win_grabio), as in the case of pop-up menus, the fol-

lowing procedure must be called to prepare each rectangle on the screen that is to be written

upon:

pw_preparesurface(pw, rect)
struct pixwin *pw;
struct rect *r;

Rect is relative to pu's coordinate system. Most commonly, a saved copy of the area to be writ-
ten is made so that it can be restored later.

3.18 Revision D of 7 January 1984

O

O

Chapter 4

Window Manipulation

This chapter describes the sunwindow facilities for creating, positioning, and controlling win-
dows. It continues the discussion begun in Overlapped Windows: Imaging Facilities, on the
sunwindow level that allows displaying images on windows which may be overlapped.

The structure that underlies the operations described in this chapter is maintained within the
window system, and is accessible to the client only through system calls and their procedural
envelopes, it will not be described here. The window is presented to the client as a device; it is
represented, like other devices, by a file descriptor returned by open. It is manipulated by other
I1/O calls, such as select, read, foctl, and close. Write to a window is not defined, since all the
facilities of the previous chapter on Overlapped Windows: Imaging Facilitics are required to
display output on a window.

The header file /usr/include/sunwindow/window_hs.h inctudes the header files needed to work at
this level of the window system.

4.1. Window Data

The information about a window maintained by the window system includes:
e two rectangles which refer to alternative sizes and positions for the window on the screen;

e a series of links that describe the window’s position in a hierarchical database, which deter-
mines its overlapping relationships to other windows;

e clipping information used in the processing described in Overlapped Windows: Imaging Facil-
sties; . _
o the image used to track the mouse when it is in the window;

o the id of the process which should receive SIGWINCH signals for the window (this is the
owner process); '

e a mask that indicates what user input actions the window should be notified of;
o another window, which is given any input events that this window does not use; and
32 bits of data private to the window client.

4.2. Window Creation, Destruction, and Reference

As mentioned above, windows are devices. As such, they are special files in the /dev directory
with names of the form */dev/winn", where n is a decimal number. A window is created by
opening one of these devices, and the window name is simply the filename of the opened device.

Revision D of 7 January 1984 4-1

Window Maripulation SunWindows Reference Manual

4.2.1. A New Window @

The first process to open a window becomes its owner. A process can obtain a window it is
guaranteed to own by cailing:

int win_getnewwindow()

This finds the first unopened window, opens it, and returns a file descriptor which refers to it.
If none can be found, it returns —-1. A file descriptor, often called the windowfd, is the usual
handle for a window within the process that opened it.

When a process is finished with a window, it may close it, This is the standard close(3) system
call with the window’s file descriptor as argument. As with other file descriptors, a window left
open when its owning process terminates will be closed automatically by the operating system.

Another procedure is moat appropriately described at this point, although in fact clients will
have little use for it. To find the next available window, win_getnewwindow uses:

int win_nextfree(fd)
int fd;

where fd is a file descriptor it got by opening /dev/win0. The return value is a window number,
as described in References to Windows below; a return value of WIN_NULLLINK indicates

there is no available unopened window.

4.2.2. An Existing Window

It is possible for more than one process to have a window open at the same time; Providing for

Naive Programs presents one plausible scenario for using this capability. The window will Q
remain open until all processes which opened it have closed it. The coordination required when

several processes have the same window open is described in Providing for Naive Programas.

4.2.3. References to Windows

Within the process which created a window, the usual handle on that window is the file descrip-
tor returned by open and win_getnewwindow. Outside that process, the file descriptor is not
valid; one of two other forms must be used. One form is the window name (e.g., /dev/winl2);
the other form is the window number, which corresponds to the numeric component of the win-
dow name. Both of these references are valid across process boundaries. The window number will
appear in several contexts below.

Procedures are supplied for switching the various window identifiers back and forth.
Win_numbertoname stores the filename for the window. whose number is winnumber into the
buffer addressed by name:;

win_numbertoname{winnumber, name)
int winnumber;
char *name;

Name should be WIN_NAMESIZE long as should all the name buffers in this section.
Win_nametonumber returns the window number of the window whose rame is passed in name:

int win_dametonumber(name)
char *name;

@

4-2 Revision D of 7 January 1984

SunWindows Reference Manual Window Manipuiation

Given a window file descriptor, win_fdtoname stores the corresponding device name into the

buffer addressed by name:

win_fdtoname(window{d, name)
int window{d;
char *name;

The following returns the window number for the window whose file descriptor is windowfd:

int win_fdtonumber{windowfd)
" int windqwfd;

4.3. Window Geometry

Once a window has been opened, its size and position may be set. The same routines used for

_this purpose are also helpful for adjusting the screen positions of a window at other times, when
user-interface actions indicate that it is to be moved or stretched, for instance. The basic pro-
cedures are:

win_getrect(window!d, rect)

int windowfd;
struct rect *rect;

win_getaize(windowfd, rect)
int windowfd;
struct rect *rect;

short win_getheight{windowfd)
int windowfd;

short win_getwidth(windowfd)
int windowfd;

Win_getrect stores the rectangle of the window whose file descriptor is the first argument into
the rect addressed by the second argument; the origin is relative to that window's parent. Set-
ting Window Links explains what is meant by a window's ‘‘parent.”

Win_getsize is similar, but the rectangle is self-relative — tha is, the origin is (0,0).

Win_getheight and win_getwidth return the single requested dimension for the indicated window.
Win_setrect copies the rect argument's data into the rect of the indicated window:

win_setrect(windowfd, rect)
int windowfd;
struct rect *rect;

This changes its size and/or position on the screen. The coordinates are in the coordinate sys-
tem of the window’s parent.

Revision I of 7 January 1984 4-3

Window Manipulation SunWindows Reference Manual

win_getsavedrect{window{d, rect)

int windowfd;

struct rect *rect;
win_setsavedrect(windowfd, rect)

int windowi{d;

struct rect srect;

A window may have an alternate size and location; this facility is useful for ¢cons, for example
(see F'ull Screen Access). The alternate rectangle may be read with win_getsavedrect, and writ-
ten with win_setsavedrect. As with win_getrect and win_setrect, the coordinates are relative to
the window's parent.

4.4. The Window Hierarchy

Position in the window database determines the nesting relationships of windows, and therefore
their overlapping and obscuring relationships. Once a window has been opened and its size set,
the next step in creating a window is to define its relationship to the other windows in the sys-
tem. This is done by setting links to its neighbors, and inserting it into the window database.

4.4.1. Setting Window Links

The window database is a strict hierarchy. Every window (except the root) has a parent; it also
has 0 or more aiblings and chsldren. In the terminclogy of a family tree, age corresponds to
depth in the layering of windows on the screen: parents underlie their offspring, and older win-
dows underlie younger siblings which intersect them on the display. Parents also enclose their
children, which means that any portion of a child's image that is not within its parent's rectan-
gle is clipped. Depth determines overlapping behavior: the uppermost image for any point on
the screen is the one that gets displayed. Every window has links to its parent, its older and
younger siblings, and to its oldest and youngest children.

Windows may exist outside the structure which is being displayed on a screen; they are in this
state as they are being set up, for instance.

The links from a window to its neighbors are identified by link selectors; the value of a link is a
window number. An appropriate analogy is to consider the link selector as an array index, and
the associated window number as the value of the indexed element. To accommodate different
viewpoints on the structure there are two sets of equivalent selectors defined for the links:

WL_PARENT - == WL_ENCLOSING
WL_OLDERSIB == WL_COVERED
WL_YOUNGERSIB == WL_COVERING
WL_OLDESTCHILD == WL_BOTTOMCHILD
WL_YOUNGESTCHILD === WL_TOPCHILD

A link which has no corresponding window, a child link of a “leaf”” window, for instance, has
the value WIN_NULLLINK.

When a window is first created, all its links are null. Before it can be used for anything, at least
the parent link must be set. I the window is to be attached to any siblings, those links should
be set in the window as well. The individual links of a window may be inspected and changed
by the folljowing procedures, -

4-4 Revision D of 7 January 1984

O

-

SuaWindows Reference Manual Window Manipulation

Wiss_getlink returns a window number.

int win_getlink(windowfd, link_selector)
int windowfd, link_selector;

This number is the value of the selected link for the window associated with windowfd.

win_setlink(windowfd, link_selector, value)
int windowfd, link_selector, value;

Win_setlink sets the selected link in the indicated window to be value, which should be another
window number. The actual window number to be supplied may come from one of several
soupces: if the window is one of a related group, all created in the same process, file descriptors
will be available for the other windows. Their window numbers may be derived from the file
descriptors via win_fdtonumber. The window number for the parent of a new window or group
of windows is not immediately obvious, however. The solution is a convention that the
WINDOW_PARENT environment parameter will be set to the filename of the parent. See
Pasoing Parameters to a Tool for an example of this environment parameter’s usage.

4.4.2, Activating the Window

Once a window's links have all been defined, the window is inserted into the tree of windows
and attached to its neighbors by a call to

win_insert(windowfd) .
int windowf{d;

This call causes the window to be inserted into the tree, and all its neighbors to be modified to
point to it. This is the point at which the window becomes available for display on the screen.
Every window should be inserted after its rectangle(s) and link structure have been set, but the
insertion need not be immediate: if a subtree of windows is being defined, it is appropriate to
create the window at the root of this subtree, create and insert all of its descendants, and then,
when the subtree is fully defined, insert its root window. This activates the whole subtree in a
single action, which typically will result in a cleaner display interaction.

Once a window has been inserted in the window database, it is available for input and output.
At this point, it is appropriate to call pw_open and access the screen.

4.4.3. Modifying Wiildow Relationships

Windows may be rearranged in the tree. This will change their overlapping relationships. For
instance, to bring a window to the top of the heap, it should be moved to the “youngest™ posi-
tion among its siblings. And to guarantee that it is at the top of the display heap, each of its
ancestors must likewise be the youngest child of sta parent.

To accomplish such a modification, the window should first be removed:

win_remove(windowfd)
int windowfd;

After the window has been removed from the tree, it is safe to modify its links, and then rein-
sert it.

Revision D of 7 January 1984 4-5

Window Manipulation SunWindows Reference Manual

A process doing multiple window tree modifications should lock the window tree before it
begins. This prevents any other process from performing a conflicting modification. This is
done with a call to:

win_lockdata(windowfd)
int windowfd;

After all the modifications have been made and the windows reinserted, the lock is released with
a call to:

win_unlockdata(windowfd})
int window{d;

Most routines described in this chapter, including the four above, will block temporarily, if
another process either has the database locked, or is writing to the screen, and the window

adjustment has the possibility of conflicting with the window that is being written.

As a method of deadlock resolution, SIGXCPU is sent to a process that spends more that 10
seconds of real time inside a window data lock, and the lock is broken.

4.5. User Data

Each window has 32 bits of uninterpreted client data associated with it. This is not touched by
the basic window system; typically the client uses it to store flags. Higher levels of the system
may implement minimal inter-window status-sharing through this facility. This data is manipu-
lated with the following procedures:

win_getuserflags(window{d)

int window{d;
win_setuserflags(windowfd, flags)

int windowfd;

int flags;
win_setuserflag(windowfd, flag, value)

int windowfd;

int flag;

int value;

Win_getuserflags returns the user data. Win_asetuserflags stores its flags argument into the win-
dow struct. Win_sctuserflag uses flag as a mask to select one or more flags in the data word,
and sets the selected flags on or off as value is TRUE or FALSE.

4.6. Minimal-Repaint Support

This section has strong connections to the preceding chapter and to Appendix A on Rects and
Rectlists. Readers should refer to both from here.

Moving windows about on the screen may involve repainting large portions of their image in
new places. Often, the existing image can be copied to the new location, saving the cost of
regenerating it. Two procedures are provided to support this function:

win_computeclipping{window{d)
int windowfd;

4-6 Revision D of 7 January 1984

O

-

SunWindows Reference Manual Window Manipulation

. causes the window system to recompute the ezposed and damaged rectlists for the windows on

the screen while withholding the SIGWINCH that will tell each owner to repair damage.

Win_partialrepair:
win_partialrepair(windowfd, r)
int windowfd;
struct rect *r;

tells the window system to remove the rectangle r from the damaged area for the window
identificd by windowfd. This operation is a no-op if windowfd has damage accumulated from a
previous window database change, but has not told the window system that it has repaired that
dumaga.

Any window manager can use these facilities according to the following strategy:
o The old exposed areas for the affected windows are retrieved and cached. {pw_ezposed)

o The window database is locked and manipulated to accomplish the rearrangement.
(win_lockdats, win_remove, win_setlink, win_setrect, win_insert ...)

e The new area is computed, retrieved, and intersected with the old. (win_computeclipping,
pw_ezposed, rl_intersection)

o Pixels in the intersection are copied, and those areas are removed from the subject window’s
damaged area. (pw_lock, pr_copy, win_partialrepair) '

e The window database is unlocked, and any windows still damaged get the signals informing
them of the reduced damage which must be repaired.

4.7. Multiple Screens

Multiple displays may be simultaneously attached to a workstation, and clients may want win-
dows on all of them. Therefore, the window database is a forest, with one tree of windows for
each display, Thus, there is no overlapping of window trees that belong to different screens.
For displays that share the same mouse device, the physical arrangement of the displays can be
passed to the window system, and the mouse cursor will pass from one screen to the next as
though they were continuous.

Revision D of 7 January 1984 4-7

Window Manipulation SunWindows Reference Manual

struct singlecolor {
u_char red, green, blue;
};

struct screen {

char scr_rootname[SCR_NAMESIZE);
char scr_kbdname[SCR_NAMESIZE];
char scr_msname[SCR_NAMESIZE];

char scr_fbname[SCR_NAMESIZE];
struct singlecolor scr_foreground;
struct singlcolor scr_background;

int scr_flags;

struct rect scr_rect;

b

#define SCR_NAMESIZE 20
#define SCR_SWITCHBKGRDFRGRD 0x1

The screen structure describes a client’s notion of the display screen. There are also fields indi-
cating the input devices associated with the screen. Secr_rootname is the device name of the
window which is at the base of the window display tree for the screen; the default is
“/devf winG'. Scr_kbdname is the device name of the keyboard associated with the screen; the
default is *‘/dev/kbd". Scr_maname is the device name of the mouse associated with the screen;
the default is */dev/mouse”. Secr_fbname is the device name of the frame buffer on which the
screen is displayed; the default is *‘/dev/fd". Scr_kbdname, scr_msename and scr_fbname can
bave the string “NONE” if no device of the corresponding type is to be associated with the
screen. Secr_foreground is three RGB color values that define the foreground color used on the
frame buffer; the default is {colormap size-1, colormap size-1, colormap size-1}.
Ser_background is three RGB color values that define the background color used on the frame
buffer; the default is {0, 0, 0}. The default values of the background and foreground yield a
black on white image. Ser_flags contains boolean flags; the default is 0.
SCR_SWITCHBKGRDFRGRD is a flag that directs any client of the background and fore-
ground data to switch their positions, thus providing a video reversed image (usually yielding a
white on black image). Scr_rect is the size and position of the screen on the frame buffer; the
default is the entire frame buffer surface.

Win_screennciv:

int win_screennew(screen)
struct screen *screen;

opens and returns a window file ciescriptor for a root window. This new root window resides on
the new screen which was defined by the specifications of #acreen. Any zeroed field in #screen
tells win_screennew to use the default value for that field (see above for defaults). Also, see the
description of win_tnitscreenfromargy below. If -1 is returned, an error message is displayed to
indicate that there was some problem creating the screen.

There can be as many screens as there are frame buffers on your machine and dtop devices
configured into your kernel. The kernel calls screen instances desktops or dtopas.

Win_ascreenget:

4-8 Revision D of 7 January 1984

O

O

SunWindows Reference Manual Window Manipulation

win_screenget(windowfd, screen}
int windowfd;
struct screen *screen;

fills in the addressed struct screen with information for the screen with which the window indi-
cated by windowfd is associated.

Win_screendestroy:

win_screendestroy{window{d)
int windowfd;

causes each window owner process (except the invoking process) on the screen associated with
windowfd to be sent a SIGTERM signal.

Win_setscreenpositions informs the window system of the logical layout of multiple screens:

win_setscreenpositions(windowfd, neighbors)

int windowfd, neighbors[SCR_POSITIONS];
#tdefine SCR_NORTH 0
ftdefine SCR_EAST 1
#tdefine SCR_SOUTH 2
ftdefine SCR_WEST 3

#define SCR_POSITIONS 4

This enabl-s the cursor to cross to the appropriate screen. Windowfd's window is the root for
its acreen; the four slots in neighbors should be filled in with the window numbers of the root
windows for the screens in the corresponding positions. No diagonal neighbors are defined, since
they are not strictly neighbors.

Win_getacreenpoaitions fills in neighbors with windowfd's screen's neighbors:

win_getscreenpositions(windowfd, neighbors)
int windowfd, neighbors [SCR_POSITIONS];

Win_setkbd:

int win_setkbd(windowfd, screen)
int windowfd;
struct screen *screen;

is used to change the keyboard associated with windowfd's screen. Only the data relative to the
keyboard is used (i.e., screen-> scr_kbdname).
Win_sctme:

int win_setms(window{d, sacreen)

int windowfd;
struct screen *screen;

is used to change the mouse associated with windowfd's screen. Only the data relative to the
mouse is used (i.e., screen->> scr_maname).
Win_initscreenfromargw

int win_initscreenfromargv(screen, argv)

struct screen *screen;
char **argy;

Revision D of 7 January 1984 4-9

Window Manipulation SunWindows Reference Manual

can be used to do a standard command line parse of argv into *acreen. *Screen is first zeroed.
The syntax is:

[-d display device] [-m mouse device] |-k keybosrd device] [H] [-f red green blue] [-b red green blue)

See suntools(1) for semantics and details.

4.8. Cursor and Mouse Manipulations

This section describes the interface to the mouse and the cursor that follows the mouse. Both
of which are maintained by the window system internals.

4.8.1. Cursors

The cursor is the image which tracks the mouse on the screen:

struct cursor {

short cur_xhot, cur_yhot;
int cur_function;
struct pixrect *cur_shape;

b
#tdefine CUR_MAXIMAGEWORDS16

Cur_shape points to a memory pixrect which holds the actual image for the cursor. The win-
dow system supports a cur_shape.pr_data->md_image up to CUR_MAXIMAGEWORDS words.

The “hot spot” defined by (cur_zhot, cur_yho!) associates the cursor image, which has height
and width, with the mouse position, which is a single point on the screen. The hot spot gives
the mouse position an offset from the upper-left corner of the cursor image. .

Most cursors have a hot spot whose position is dictated by the image shape, the tip of an arrow,
the center of a bullseye, the center of a cross-hair. Cursors can also be used as a status feed-
back mechanism, an hourglass to indicate that some processing is occurring for instance. This
type of cursor should have the hot spot located in the middle of its image so the user has a
definite spot for pointing and does not have to guess where the hot spot is.

The function indicated by cur_function is a rasterop (as described in Constructing Op Argu-
ments for Rop and Batchrop Pizrectops), which will be used to paint the cursor.
PIX_SRC | PIX_DST is generally effective on light backgrounds, for example in text, but invisi-
ble over solid black. PIX_SRC * PIX_DST is a reasonable compromise over many different
backgrounds, although it does poorly over a gray pattern.

win_getcursor{window{d, cursor)
int windowfd;
struct cursor *clUrsor;

stores a copy of the cursor that is currently being used on the screen into the buffer addressed
by cursor. '

Win_selcursor:

win_setcursor{windowfd, cursor})
int windowfd;
struct cursor *cursor;

4-10 Revision D of 7 January 1984

A

-

i
5

Sun\’Vindoﬁs Reference Manual Window Manipulation

sets the cursor and function that will be used whenever the mouse position is within the indi-
cated window.

If a window process does not want a cursor displayed, the appropriate mechanism is to set the
cursor to one whose dimensions are both 0.

4.8.2. Mouse Position

Determining the mouse’s current position is treated under Input to Application Programs. We
note here that the standard procedure for a process to track the mouse is to arrange to receive
an input event every time the mouse moves; and in fact, the mouse position is passed with every
user input a window receives.

The mouse position can be reset under program control; that is, the cursor can be moved on the
screen, and the position that is given for the mouse in input events can be reset without the
mouse on the table top being physically moved:

win_setmouseposition(window{d, x, y)
int windowfd, x, y;

puts the mouse position at (z, y) in the coordinate system of the window indicated by windowfd.
The result is a jump from the previous position to the new one without touching any points
between. Input events occasioned by the move, window entry and exit and cursor changes, will
be generated. This facility should be used with restraint, as users are likely to lose a cursor that
moves independently of their control.

Qccasionally it is necessary to discover which window underlies the cursor, usunally because a
window is handling input for all its children. The procedure used for this purpose is:

int win_findintersect{window{d, x, y)
int windowf{d, x, y;

where windowfd is the calling window's file descriptor, and (z, y) define a screen position in that
window’s coordinate space. The returned value is a window number. X and y may lie outside
the bounds of the window.

4.9. Providing for Naive Programs

There is a large class of applications that are relatively unsophisticated about the window sys-
tem, but want to run in windows anyway. For example, a simple-minded graphics program
may want a window in which to run, but doesn’t want to know about all the details of creating
and positioning it. This section describes a way of allowing for these applications.

4.9.1. Which Window to Use

SunWindows defines an important environment parameter, WINDOW_GFX. By convention,
WINDOW_GFX is set to a string that is the device name of a window in which graphics pro-
grams should be run. This window is already opened and installed in the window tree. Rou-
tines exist to read and write this parameter:

. Revision D of 7 January 1984 4-11

Window Manipulation SunWindows Reference Manual

int we_getgfxwindow(name)

char sname @

we_setgixwindow(name)
char *name

We_getgfrwindow returns a non-zero value if it cannot find a value.

4.9.2. The Blanket Window

A good way to take over an existing window is to create a new window that becomes attached
to and covers the existing window. Such a covering window is called a blanket window. The
covered window will be called the parent window in this subsection because of its window tree
relationship with a blanket window. Note: It's a bad idea to take over an existing window using
win_sctowner.

Using the parent window name from the environment parameter WINDOW_GFX (described
above), open(2) the parent window. Get a new window to be used as the blanket window using
win_geinewwindow. Now call:

int win_insertblanket(blanketfd, parentfd)
int blanketfd, parent{d;

A non-zero return value indicates success. As the parent window changes size and position the
blanket window will automatically cover the parent.
To remove the blanket window from on top of the parent window call:

win_removeblanket(blanketfd) Q
int blanketfd;

If the process that created the blanket window dies before win_removeblanket can be called, the
blanket window will automatically be removed and destroyed upon automatic closure of the
window device. This automatic closure happens because the only open file descriptor on it will
be in the creating process.

A non-zero return value from win_isblanket indicates that blanketfd is indeed a blanket window.

int win_isblanket(blanketfd)
int blanket{d;

4.10. Window Owhership

Note: Do not use the two routines in this section for temporarily taking over another window.
These routines are included for backwards compatibility reasons.

SIGWINCH signals are directed to the process that owns the window, the owner normally being
the process that created the window. The following procedures may read from and write to the
window:

o

4-12 Revision D of 7 January 1984

-

-

SurWindows Reference Manual _ Window Manipulation

int win_getowner(window{d)
int windowfd;

win_setowner{windowfd, pid)
int windowfd, pid;

Win_getowner returns the process id of the indicated window owner. If the owner doesn’t exist,
2270 is returned. Win_setowner makes the process identified by pid the owner of the window
indicated by windowfd. Win_setowner causes a SIGWINCH to be sent to the new owner.

4.11. Error Handling

Except as explicitly noted, the procedures described in this section do not return error codes.
The standard error reporting mechanism inside the sunwindow library is to call a procedure that
displays a message, typically identifying the foct! call that detected the error. After the message
display, the calling process resumes execution.

This default error handling routine may be replaced by calling:

int (*win_errorhandler{win_error)))
int (*win_error)();

The win_errorhandler procedure takes the address of one procedure, the new error handler, as
an argument and returns the address of another procedure, the old error handler, as a result.
Any error handler procedure should be a function that returns an int.

win_error(errnum, winopnum)
int errnum, winopnum;

Errnum will be -1 indicating that the actual error number is found in the global errne. Winop-
num is the foct! number that defines the window operation that generated the error. See Error
Message Decoding in Programming Notes in the appendix.

Revision D of 7 January 1984 4-13

o

Chapter 5

Input to Application Programs

This chapter continues the description of the sunwindow level of the Sun window system. Here
we discuss how user input is made available to application programs. Unless otherwise noted,
the structures and procedures discussed in this section are found in the header file
[usr/ includef sunwindow/ win_input.h. '

The window system provides facilities which meet two distinct needs regarding input to an

application program:

e A ugiform interface to multiple input devices allows programs to deal with varying key-
boards and positioning devices, ignoring complexities due to facilities which the programs
do not use.

e Several different keyboards are available with Sun systems; they differ in the number and
arrangement of keys. At a minimum, some clients will require ASCII characters, one per
keystroke. More sophisticated clients will assign special values to non-standard keys (such
as “META" characters in the range 0x80 and above). Some clients will assign functions to
particular keys on the keyboard, and will distinguish key-down from key-up events.

e The standard positioning device on a Sun is the mouse, which reports a location and the
state of three buttons. Alternatively, some clients may use a tablet and stylus, or in place
of the stylus, a “puck’” with as many as 10 buttons on it.

e In some client systems, the time between input events is significant; for example, when
smoothing a user’s stylus trace, or assigning special meaning to multiple clicks of a button
within a short period.

The window system allows clients with only the simplest requirements to ignore all the compli-
cations, while providing more sophisticated clients the facilities they require. The mechanism
for accomplishing this is called the virtual input device. This mechanism with its input events is
described in Virtual Input Device.

o The second major section of this chapter describes how user inputs are collected from multi-
ple sources, serialized, and distributed among multipie consumers. Multiple clients are able
to accept inputs concurrently, and a slow consumer does not affect other clients’ ability to
receive their inputs. Type-ahead and mouse-ahead are fully supported.

e Client programs operate under the illusion that they have the user’s full attention, leav-
ing the window system to handle the multiplexing. Therefore, a client sees precisely
those input events that the user has directed to that application.

& Conversely, the client may require inputs from multiple devices, where the exact
sequences across all those devices is significant. The order of mouse and function key
events is likely to be significant, for instance. This is provided for via a single unified
input stream, rather than requiring polling of multiple streams, which would be

Revision D of 7 January 1984 : 5-1

Input to Application Programs SunWindows Reference Manual

unacceptable in a multi-processed environment.

e The distribution of input events takes into account the window’s indication of what
events it is prepared to handle; other events are redirected, allowing a division of labor
among the various components of a system.

5.1. The Virtual Input Device

This section describes the virtual device which generates user input, and how the imput is
presented to the client process. The device appears as an extended keyboard, different from
existing keyboards, but incorporating the common features of most of them. It also incor-
porates a locator which indicates a screen position, and a clock which reports a time in seconds
and microseconds.

65.1.1. Uniform Input Events

Each user action generates an snput event, which is reported in a uniform format regardless of
the event. An event is reported in the following struct:

struct inputevent {

short ie_code;

short ie_flags;

short ie_shiftmask;

short ie_loex;

short ie_locy;

struct timeval ie_time;
|5

le_code identifies the source of the event, as a switch position on a Virtual Input Device. The
exact definition of the codes is given in Event Codes. In general, the input events fall into one of
three classes: events that generate a single ASCH character; events related to locator motion and
window geometry; and events identified with invocation of a special function, usually involving
the depression or release of a single special button on the mouse or keyboard. These classes are
known as ASCII, pseudo, and function events, respectively.

The information provided by the code in fe_code is interpreted according to event flags in
se_flags. (See Event Flags below.)

The remaining elements of the struct provide general status information which may be useful on
any event:

fe_shiftmask is used to report the state of certain shift-keys that is, to modify the meaning of
other eventas.

s¢_locz and

te_locy provide the pesition of the locator in the window’s coordinate system at the time
the event occurred.

te_time provides a timestamp for the event, in the format of a system tfmeval, as defined
in fuer/include/sys/time.h.

5-2 Revision D of 7 January 1984

SanWindows Reference Manual Input to Application Programs

5.1.2. Event Codes

Event codes can take on any value in the range from 0 to 65535 inclusive. Of the codes defined
in the header file, 256 are assigned to the ASCI event class and the other 128 are partitioned
between the pseudo and function event classes. The following constants define the number of
codes and the first and last code in the latter two classes:

#define VKEY_CODES 128
#define VKEY_FIRST 32612
fdefine VKEY_LAST VKEY_FIRST+ VKEY_CODES-1

5.1.2.1. ASCII Events

The event codes in the range 0 to 511 inclusive are assigned to the ASCI event class. This class
is further sub-divided:

#define ASCII_FIRST 0
ffdefine ASCII_LAST 127

In particular, striking a key which has an obvious ASCH meaning causes the Virtual Input Device
to enqueue for the client an event whose code is the 7-bit ASCII character corresponding to that
key. Such a key with an obvious ASCIl meaning is one in the main typing array labelled with a
single letter of the alphabet. This is independent of the physical keyboard actually used. A
slight complication occurs because of the presence of both upper- and lower-case characters in
ASCI: if the user “‘shifts’ the physical keyboard by depressing the CAPS-LOCK, SHIFT-LOCK,
or SHIFT key the fe_code contains the shifted ASOI character corresponding to the struck key.

For physical keystations that are mapped to cursor comtrol keys, the current implementation
trapsmits a series of events with codes that correspond to the ANSI X3.64 7-bit ASCH encoding
for the cursor control function. For physical keystations that are mapped to function keys, the
current implementation transmits a series of events with codes that correspond to an ANSI X3.64
user-definable escape sequence. For further details, see kbd(5).

#define META_FIRST 128
#tdefine META_LAST 255

Event codes from 128 to 255 inclusive are generated when the client has META translation
enzbled and the user strikes a key that would generate a 7-bit ASCI code while the META key
is also depressed. In this case, the event code is the 7-bit ASCI code added to META_FIRST.

5.1.2.2. Function Events

Event codes in the function ciass correspond to button strikes that do not result in generation
of an event code in the ASCH class.

In the function class are the event codes associated with locator buttons:
##define BUT(i)

A physical locator often has up to 10 buttons connected to it. Alternatively, even though the
physical locator does not have any buttons physically available on it, it may have buttons on
another device assigned to it. A light pen is an example of such a locator. In either case, each of
the n buttons (where 0 < n <= 10) associated with the Virtual Input Device’s locator are

Revision D of 7 January 1984 5-3

Input to Application Programs SunWindows Reference Manual

assigned an event code; the ¢th button is assigned the code BUT(i). Thus a 3-button mouse
reports x and y and buttons 1 - 3.

In the function class are the event codes associated with keyboard function keys that don't gen-
erate single ASCIH charaters:

#define KEY_LEFT(i)

#define KEY_RIGHT(i)

#define KEY_TOP(i)

#define KEY_BOTTOMLEFT
#defire KEY_BOTTOMRIGHT

The function keys in the Virtual Input Device define an idealized standard layout that groups
keys by location: 18 left, 16 right, 16 top and 2 bottom. While the actual position on the key-
board may be different, it is convenient to provide some grouping for the large number of func-
tion keys. The mapping to physical keys on various keyboards is defined in
[usr/includef sundev/kbd.h and discussed in kbd(5).

65.1.2.3. Pseudo Events

#define VKEY_FIRSTPSEUDO
#define VKEY_LASTPSEUDO

Event codes in the pseudo class are events that involve locator movement instead of physical
button striking. The physical locator constantly provides an (x, y) coordinate position in pixels;
this position is transformed by the Virtual Input Device to the coordinate system of the window
receiving an event. In order to watch actual locator movement (or lack thereof), the client must
be enabled for the events with codes.

#define LOC_MOVE
#define LOC_MOVEWHILEBUTDOWN
#define LOC_STILL

A LOC_MOVE is reported only when the locator actually moves. Since fast motions may yield
non-adjacent locations in consecutive events, the locator tracking mechanism reports the current
position at a set sampling rate currently 40 times per second.

LOC_MOVEWHILEBUTDOWN is like LOC_MOVE but happens only when a button on the
locator is down.

A single LOC_STILL evert is reported when the locator has been still for a moment, currently
1/5 of a second.

Clients can be notified when the locator has entered or exited a window via the event codes:

#define LOC_WINENTER
#define LOC_WINEXIT

5.1.3. Event Flags

Only one event flag is currently defined:
ftdefine IE_NEGEVENT

indicates the event was ‘‘negative.” Positive events include depression of any button or key,

5-4 Revision D of 7 January 1984

© i
|

)

3

;

i

i

SunWindows Reference Manual Input to Application Programs

including buttons on the locator, motion of the locator device while it is available to this client,
and entry of the cursor into a window. The only currently defined negative event is the release
of a depressed button. Stopping of the locator and locator exit from the window are positive
events, distinct from locator motion and window entry. This asymmetry allows a client to be
informed of these events without the performance penalty associated with receiving all negative
events and then discarding all but these two.

Two macros are defined to inquire about the state of this flag:
#define win_inputnegevent(ie) |
ftdefine win_inputposevent(ie)

struct inputevent *ie;

These are TRUE or FALSE if the IE_NEGEVENT bit is 1 or 0 respectively in the input event
pointed to by se.

5.1.4. Shift Codes

Ie_shiftmask contains a set of bit flags which indicate an interesting state when an input event
occurs. The most obvious example is the state of the Shift or Control keys when some other
key is preszed. Eventually, clients will be able to declare any Virtual Input switch as an
“interesting’’ shift switch. For now, only the following bits are reported:

ftdefine CAPSMASK 0x0001
#define SHIFTMASK 0x000E
f#define CTRLMASK 0x0030
#define UPMASK 0x0080

These are defined in /usr/include/ sundev/kbd.h, and described in kbd(5).

5.2. Reading Input Events

A library routine exists for reading the next input event for a window:

int input_readevent(fd, ie)
int fd; -
struct inputevent *ie;

This fills in the indicated struct, and returns 0 if all went well. In case of error, it sets the glo-
bal variable errno, and returns ~1; the client should check for this case.

A window can be set to do blocking or non-blocking reads via a standard fent! system call, as
described in fetnl(2) and fentl(5). A window is defaulted to blocking reads. The blocking status
of a window can be determined by the fentl system call.

The recommended normal style for handling input uses blocking 1/0 and the select(2) system
call to await both input events and signals such as SIGWINCH. This allows a signal handler to
merely set a flag, and leave substantial processing to be performed synchronously when the
select returns. The tool select mechanism described in chapter 7 illustrates this approach.
Using blocking 1/O and read(2) without a prior select forces the client to process SIGWINCHes
entirely in the asynchronous interrupt handler. This necessitates extra care to avoid race condi-
tions and other asynchronous errors.

Revision D of 7 January 1984 5-5

Input to Application Programs SunWindows Reference Manual

Non-blocking I/O may be useful in a few circumstances. For example, when tracking the mouse
with an image which requires significant computation, it may be desirable to ignore all but the
last in a queued sequence of motion events. This is done by reading the events, but not process-
ing them until a non-motion event is found, or until all events are read. Then the most recent
mouse location is displayed, but not all the points covered since the last display. When all
events have been read and the window is doing non-blocking I/O, input_readevent returns ~1
and the global variable errno is set to EWOULDBLOCK.

5.3. Input Serialization and Distribution

With the exception of some of the pseudo event codes, the Virtual Input Device described in
preceding sections is not logically tied to the Sun window system; the scheme could be used by
any system desiring that form of unification. This section is more specific to the window sys-
tem, since it discusses how events are selected and distributed among the various windows

which might use them.

Each user input event is formatted into an inputevent, which is then assigned to some recipient.
There are three ways a process gets to receive an input event:

¢ Most commonly, it reads the window which lies under the cursor, and that window has an
input mask which matches the event. Input masks are described in Input Masks. If several
windows are layered under the cursor, the event is tested first against the input mask of the
topmost window.

e If the event does not match the input mask of one window, other windows will be given a
chance at it, as described below.

e Much less frequently, a window will be made the recipient of all input events; this is dis-
cussed under win_grabio, in section 5.3.2 below.

Each window designates another window to be offered events which the first will not accept. By
default this is the window's parent; another backstop may be designated in a call to
win_sctinputmask, described in the next section. If an event is offered unsuccessfully to the root
window, it is discarded. Windows which are not in the chain of designated recipients never
have a chance to accept the event. _

If a recipient is found, the locator coordinates are adjusted to the coordinate system of the reci-
pient, and the event is appended to the recipient’s input stream. Thus, every window sees a
single stream of input events, in the order in which the events happened (and time-stamped, so
that the intervals between events can also be computed), and including only the events that
window has declared to be of interest.

5.3.1. Input Masks

The input masks facilitate two things:

e [Events can be accepted or rejected by classes; for instance, a process may want only Ascn
characters.

e The times when events are accepted can be controlled, minimizing the processing required
to accept and ignore uninteresting events. For instance, a process may track the mouse
only when it is inside one of its windows, or when one of the mouse buttons is down.

Clients specify which input events they are prepared to process by setting the input mask for
eack window being read.

5-6 Revision D of 7 January 1084

-

SunWindows Reference Manual Input to Application Programs

struct inputmask {

short im_flags;
char im_inputcode[IM_CODEARRAYSIZE};
short im_shifts;

short im_shiftcodesIM_SHIFTARRAYSIZE];
b
#define IM_CODEARRAYSIZE (VKEY_CODE/((sizeof char*BITSPERBYTE))
#define IM_SHIFTARRAYSIZE ((sizeof short)*BITSPERBYTE)

Im_flags specifies the handling of related groups of input events:
##define IM_UNENCODED

indicates that no translation of physical device events should be performed. The Virtual Input
Device should mot intervene between the window and the user input. In this case, the most
significant byte of ie_code in an input event is the id number of the device that generated the
event, and the least significant byte contains the physical keystation number of the keystation
that the user struck. The current device ids are those assigned to the supported keyboards and

‘the id assigned to the mouse

#define MOUSE_DEVID 127

For unencoded mouse input, the least significant byte of the event code is identical to the least
significant byte of the corresponding encoded input event. Note that unencoded pseudo events
are associated with the physical locator; that is, a button-push on a tablet puck will generate a
different code from a corresponding button-push on a mouse.

#define IM_ASCIT
indicates that the Virtua! Input Device translation should occur.
F#define IM_ANSI ~

indicates that the process wants keystrokes to be interpreted as ANSI characters and escape
sequences: normal ASCH characters are represented by their ASCI code in fe_code, described in
Uniform Input Events. Function keys with a standard interpretation, such as the cursor control
keys, are represented by a sequence of input events, whose ie_codes are ASCII characters starting
with ESC. See kbd(5) for further details.

#fdefine IM_POSASCII
indicates that the client only wants to be notified of positive events for ASCIHI class events, even
though IM_NEGEVENT is enabled.

Note: The current implemeﬁtation automatically enables both IM_ANSI and IM_POSASCII
when IM_ASCII is specified.

Requesting a particu'ar function event in addition turns off any ANSI escape-coding for that
function event.

#define IM_META

indicates that META-translation should occur. This means ASCI events that occur while the
META key is depressed are reported with codes in the META range. Note that IM_META does
not make sense unless IM_ASCII is enabled.

Revision D of 7 January 1984 5.7

Input to Application Programs SurWindows Reference Manual

#define IM_NEGEVENT

indicates that the client wants to be notified of negative events as well as positive ones. See
Event Flags for a discussion of positive and negative events.

Im_snputcode is an array of bit flags indexed by biased event codes. A 1 in the sth position of
the bit array indicates that the event with code VKEY_FIRST+ ¢ should be reported. This

filter applies in both IM_UNENCODED and IM_ASCII modes.

There are two routines which are of interest here.

win_setinputmask(windowfd, acceptmask, flushmask, designee)

int windowfd;
struct inputmask *acceptmask, *fushmask;
int designee;

sets the input mask for the window identified by windowfd. Acceptmask addresses the new
mask — events it passes will be reported to this window after the call to win_setinputmask.

Flushmask specifies a set of events which should be flusked from this window's input queue.
These are events which were accepted by the previous mask, and have already been generated,
but not read, by this window. This is a dangerous facility; type-ahead and mouse-ahead will
often be lost if it is used. The most obvious application is for confirmations, but these can be
better implemented by requiring the confirmation within a short time-out.

Note: If flushmask is non-NULL, the current implementation flushes all events from the queue,
not, just those specified in flushmask.

Designee is the window number, which specifies the next potential recipient for events rejected
by this window. If it is set to WIN_NULLLINK (defined in
[usr/include/ sunwindow/win_struct.k), it is interpreted as designating the window's parent.

Note: Changing masks in response to some input should be done with caution. There will be a
lapse of time between the event which persuades the client it wants a new mask and the time
the system interprets the resulting call to win_setinputmask. Events which occur in this interval
will be passed or discarded according to the old input mask. Thus, it is probably not appropri-
ate to wait for a button down before requesting the corresponding button-up; the button-up
may arrive and be discarded before the mask is changed. It’s less dangerous to wait until a but-
ton goes down to start tracking the mouse, since the client will be caught up as soon as the first
motion event arrives. But even here, it's better to ask for the LOC_MOVEWHILEBUTDOWN
event, and never change the mask.

The input mask for a window is read with

win_getinputmask(windowfd, im, designee)

int windcw{d;
struct inputmask *im;
int *designee;

The input mask for the window identified by windowfd is copied into the buffer addressed by
im. The number of the window that is the next possible recipient of input is copied into the int
addressed by designee,

We return to win_snput.h for these routines useful for manipulating input masks. The first
three are macros:

5-8 Revision D of 7 January 1984

O

@

-

SanWindows Reference Manual Input to Application Programs

#tdefine win_setinputcodebit{im, code)
struct inputmask #im;
char code;

sets the bit indexed by code in the input mask addressed by ¢m to 1.

#define win_unsetinputcodebit{im,code)
struct inputmask *im;
char code;

resets the bit to zero. The routine:

#define win_getinputcodebit(im, code)
struct inputmask #im;
char code;

returns non-zero if the bit indexed by code in the input mask addressed by sm is set.
input_imnull{mask)
struct inputmask *mask;

is a procedure which initializes an input mask to all zeros. It is critical to initialize the input
mask explicitly when the mask is defined as a local procedure variable.

5.3.2. Seizing All Inputs

Normally, input events are directed to the window which underlies the cursor at the time the
event occurs. Two procedures modify that behavior. A window may temporarily seize all
inputs by calling:

win_grabio{windowfd)
int windowfd;

The caller’s input mask still applies, but it receives input events from the whole screen; no win-
dow other than the one identified by windowfd will be offered an input event or allowed to write
on the screen after this call.

win_releaseio(windowfd)
int windowfd;

undoes the effect of a win _y}abio, restoring the previous state.

5.4. Event Codes Defined

In the following table are collected together all of the special event code names discussed above.
These names define values which appear in the ie_code field of an inputevent. As the system
evolves, the particular value bound to a name is likely to change, thus event codes should be
compared to the symbolic names below, not to the current values of those names.

Revision D of 7 January 1984 5.9

Input to Application Programs

#fdefine ASCII_FIRST
#define ASCII_LAST
#define META_FIRST
##define META_LAST

#define VKEY_CODES
#tdefine VKEY_FIRST

ftdefine VKEY_FIRSTPSEUDO

#define LOC_MOVE

ftdefine LOC_STILL

#define LOC_WINENTER

f#define LOC_WINEXIT

#define LOC_MOVEWHILEBUTDOWN
#tdefine VKEY_LASTPSEUDO

#tdefine VKEY_FIRSTFUNC

#define BUT_FIRST
##define BUT(i)
#define BUT_LAST

#define KEY_LEFTFIRST

fkdefine KEY_LEFT(i)
#idefine KEY_LEFTLAST

#define KEY_RIGHTFIRST
#define KEY_RIGHT(i)
#define KEY_RIGHTLAST

#define KEY_TOPFIRST
#define KEY_TOP(i)
ftdefine KEY_TOPLAST

fdefine KEY_BOTTOMLEFT
#define KEY_BOTTOMRIGHT

#define VKEY_LASTFUNC
#define VKEY_LAST

#define MS_LEFT BUT(1)
#tdefine MS_MIDDLE BUT(2)
#tdefine MS_RIGHT BUT(3)

SunWindows Reference Manual

(0)

(127)
(128)
(255)

(128)
(32512)

(VKEY_FIRST)
(VKEY_FIRSTPSEUDO+ 0)
(VKEY_FIRSTPSEUDO+ 1)
(VKEY_FIRSTPSEUDO+ 2)
(VKEY_FIRSTPSEUDO+ 3)
(VKEY_FIRSTPSEUDO+ 4)
(VKEY_FIRSTPSEUDO+ 15)

(VKEY_LASTSHIFT+ 1)

(VKEY_FIRSTFUNC)
((BUT_FIRST)+ (i)-1)
(BUT_FIRST+ 9)

((BUT_LAST)+1)
((KEY_LEFTFIRST)+ (i)-1)
((KEY_LEFTFIRST)+ 15)

((KEY_LEFTLAST)+ 1)
((KEY_RIGHTFIRST)+ (i}-1)
((KEY_RIGHTFIRST)+ 15)

((KEY_RIGHTLAST)+ 1)
((KEY_TOPFIRST)+ (i)-1)
((KEY_TOPFIRST)+ 15)

((KEY_TOPLAST)+ 1)

* ((KEY_BOTTOMLEFT)+ 1)

(VKEY_FIRSTFUNC+ 101)
VKEY_FIRST+ VKEY_CODES-1

There are 3 synonyms for the common case of a 3-button mouse:

Revision D of 7 January 1984

O

Chapter 6

Suntool: Tools and Subwindows

This chapter introduces the third and highest level of SunWindows, suntools. It discusses how
to write a tool: it covers creation and destruction of a tool and its subwindows, the strategy for
dividing work among them, and the use of routines provided to accomplish that work.

At the suntools level, the lower-level facilities are actually used to build user interfaces. This
chapter also describes a model for building applications, a number of components that imple-
ment commonly-needed portions of such applications, an executive and operating environment
that supports that model, and some general-purpose utilities that can be used in this and simi-
lar environments. '

We refer to an application program that is a client of this SunWindows level as a tool. T'ool cov-
ers the one or more processes that do the actual application work. This term also refers to the
collection of typically several windows through which the tool interacts with the user. Simple
tools might include a calculator, a bitmap editor, and a terminal emulator. Sur Microsystems
provides a few ready-built tools, several of which are illustrated in Appendix B. Others may be
developed to to suit particular needs.

Common SunWindows tool components and their functions include:

e An executive framework that supplies the usual “‘main loop" of a program, and which coor-
dinates the activities of the various subwindows;

e A standard tool window that frames the subwindows of the tool, identifying it with a name
stripe at the top and borders around the subwindows. Each tool window can adjust its size
ard position, including layering, and subwindow boundary movement.

e Several standard subwindows that can be instantiated in the tool;
o A standard scheme for laying out those subwindows; and

o A facility that provides. a default icon, which is a small form the tool takes to be unob-
trusive but still identifiable.

The suntools program initializes and ¢versees the window environment. It provides for:
e automatic startup of a specified collection of tools;
e dynamic invocation of standard tools;

e management of the window, called the root window, which underlies all tools and paints a
simple solid color;

e the user interface for leaving the window system.

Users desiring another interface to these functions can replace the suntools program, while
retaining specific tools.

Revision D of 7 January 1984 8-1

Suntool: Tools and Subwindows SunWindows Reference Manual

The procedures that sepport the facilities described in this chapter and the following two are in
the suntool library, /usr/lib/libsuntool.a). These procedures and their data structures are
declared in a number of distinct header files, all of which can be included in
[usr/includefsuntoolftool_hs.h. :

6.1. Tools Design

A typical tool is built as a tool window, and contained within that, a set of subwindows, which
incorporate most of the user interface to the tool’s facilities. Each subwindow is a “window” in
the sense described in Window Manipulation; the subwindows form a tree rooted at the tool win-
dow, and the various tool windows are all children of the root window associated with the
screen.

6.1.1. Non-Pre-emptive Operation

In general, tools should be designed to function in a non-pre-emptive style: they should wait
without consuming resources until given something to do, perform the task expeditiously, and
promptly return control to the user. If some task requires extensive processing, a separate pro-
cess should be forked to run it without blocking the user interface.

This non-pre-emptive style implies that the tool is built as a set of independent procedures,
which are invoked as appropriate by a standardized control structure. The basic advice to
client programs is, ‘‘Wait right there; we'll let you know as soon as we have something for you
to do.” From a programming point of view, the main function that the tool mechanism provides
is the provision of the control structure to implement this non-pre-emptive programmieg style.
The tool window and its subwindows all have the same interface to this control mechanism.

6.1.2. Division of Labor

The tool window performs a few functions directly. These are the user interface functions,
which are common to all tools.

Subwindows are the workhorses of the suntco!l environment, but most of the work they do is
specific to their own tasks, and of little interest here. It is important to understand that a
subwindow corresponds to a data type: there will be many instantiations of particular subwin-
dows, quite possibly several in a single tool.

Various types of subwindows are developed as separate packages that can be assembled at a
high level. In addition to programmer convenience, this approach promotes a consistent user
interface across applications.

The remainder of this chapter divides a tool's existence into two large areas: creation and des-
truction, and tool-specific aspects of processing.

6.2. Tool Creation

All of the following processing must be done as a tool is started:

e Parameters for this invecation of the tool must be passed to it. Every tool must be given
the name of its parent window; other parameters that may be given to the tool include a
position for it on the screen, whether it should be open or iconic, specification of data files,

6-2 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Tools and Subwindows

such as fonts, to be used in this invocation, and initializations to be performed.

o The tool should be given its own process and process group. In contrast to the usual pro-
cedure in which a program is invoked under the shell, the parent process should generally
be allowed to proceed before the child exits.

e ‘The tool window should be created with space allocated for it and its various options
defined; similarly, its subwindows should be created and positioned in the tool window.

e The UNIX signal system should be initialized to pass appropriate signals to the tool.

o The tool's window should be installed into the display structure.

¢ Finally, the too] may start its normal processing.

6.2.1. Passing Parametérs to the Tool

There are at least three ways parameters may be passed to a tool that is starting up:
¢ Command-line arguments.
e Relatively stable options may be stored in a file like a user profile.

o Environment parameters may be used for well-established values. They have the valuable
property that they can communicate information across several layers of processes, not all
of which have to be involved.

The first two parameters passing mechanisms need no special attention here, since they are used
just as in non-window UNIX programs. However, SinWindows itself uses a few environment
variables for tool startup. WINDOW_PARENT is set to a string that is the device name of a
window's parent; for a tool, this will usually be the name of the root window of the window sys-
tem. WINDOW_INITIALDATA is set to the coordinates of two rectangles plus one flag. The
rectangles are the regions for the window while open and closed, and the flag is a boolean that is
non-zero if the tool should start out iconic.

we_setparentwindow(windevname)
char swindevname;

sets WINDOW_PARENT to windevname.

int we_getparentwindow(windevname)
char swindevname;

gets the value of WINDOW_PARENT into windevname. The length of this string should be at
least WIN_NAMESIZE characters long, a constant found in
fusr/include/ sunwindow/ win_structh. A non-zero return value means that the
WINDOW_PARENT parameter couldn’t be found.

The process that is starting the tool should set WINDOW_INITIALDATA before it forks
(wmgr_forktool does this; see Suntools: User Interface Utilities). After the fork, the newborn tool
may interrogate these variables. The routines to do this are in the library
[uar/libflibsunwindow.a.

we_setinitdata(rnormal, riconic, iflag)
struct rect *rnormal, *riconic;
int iflag; -

sets the environment variable in the parent process, and

Revision D of 7 January 1984 6-3

Suntool: Tools and Subwindows SunWindows Reference Manual

we_getinitdata(rnormal, riconic, iflag)
struct rect *rnormal, *riconic;
int *iflag;
reads those values in the child process. A non-zero return value means that the
WINDOW_INITIALDATA parameter couldn’t be found.
A procedure is provided for unsetting WINDOW_INITIALDATA for tools that are going to pro-

vide windows for other processes to run in. This procedure prevents a wayward child process
from being confused by the an incorrectly set variable:

we_clearinitdata()

68.2.2. Forking the Tool

A tool will normally have its own process. The creation of that process does not differ
significantly from the normal paradigm for process creation. If it is to be started by a menu
command or some other procedural interface, it is appropriate for the creating process to do the
fork and return from the procedure call. When the child process dies, the parent process should
catch the SIGCHLD signal and clean up. See the waif(2) system call. SIGCHLD indicates to a
parent process that a child process has changed state.

6.2.3. Creating the Tool Window

The pair of procedures tool_create and tool createsubwindow carry out the main work of creat-
ing a tool with its subwindows. These take a series of parameters that define the object to be
created, and return a pointer to an object that encapsulates the information about the tool or
its subwindow. That pointer is then passed to a number of other routines that manipulate the
object; the client is usually not concerned with the exact definition of the structure.

These create routines include a large part of the processing described in the earlier parts of this
manual, so that client programmers need not necessarily concern themselves much with the
details of pizrects and pizwina.

A tool is created by a call to:

struct tool *tool_create{name, flags, normalrect, icon)

char *name;
short flags;
struct rect *normalrect;
struct icon *icon;
#define TOOL_NAMESTRIPE 0x01
#define TOOL_BOUNDARYMGR 0x02
name is the name of the tool. This is what will be displayed in the tool's name stripe if
TOOL_NAMESTRIPE is set in the flag's argument. It also appears on the default
icon.
flags has the flags TOOL_NAMESTRIPE and/or TOOL_BOUNDARYMGR set as

those properties are desired. (TOOL_BOUNDARYMGR enables boundaries that
the user can move between subwindows.)

6-4 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Tools and Subwindows

Normalrect describes the initial position and size of the tool in its normal open state in the
coordinate system of the tool's parent, which is typically the window for the
screen. '

icon is a pointer to an icon struct, if the client wants a special icon.

 Normalrect and the icon may be defaulted by passing NULL for their arguments. The default

icon is described, along with considerations for making custom icons, in Suntool: User Interface

Utilities; the choice is strictly a matter of convenience vs. ambition. A tool’s starting position

should almost always be left NULL; it could be the result of WE_GETINITDATA that is going

into normalrect.

Creating the tool does not cause it to appear on the screen; a separate step is used for that pur-

pose after the full tool structure is constructed, as described in Tool Installation. Most tool pro-

grammers can skim the following information to Subwindow Initialization and ignore the details
of the tool and toolsw data structures.

6.2.4. The Tool Struct

The tool struct is defined in /usr/includefsuntool/tool.h. 1t is:

struct tool {
short tl_flags;

int tl_windowf{d;
char *t]_name;
struct icon *tl_icon;
struct toolio t]_io;
struct toolsw *tl_sw:
struct pixwin *tl_pixwin;
struct rect tl_rectcache;
}

Ti_flags holds state information. Currently, there are 6 defined flags:
#define TOOL_NAMESTRIPE 0x01
##define TOOL_BOUNDARYMGR 0x02
¥#define TOOL_ICONIC 0x04
#define TOOL_SIGCHLD 0x03
¥%define TOOL_SIGWINCHPENDING 0x10
¥#define TOOL_DONE 0x20

Their actions are as follows:

TOOL_NAMESTRIPE
indicates that the tool is to be displayed with a black stripe holding its name at the
top of its window.

TOOL_BOUNDARYMGR
enables the option that allows the user to move inter-subwindow boundaries.

TOOL_ICONIC .
indicates the current state of the tool: 1 = small (iconic); 0 = normal (epen).

TOOL_SIGCHLD and

TOOL_SIGWINCHPENDING
mean that the tool has received the indicated signal and has not yet performed the
processing to deal with it.

Revision I} of 7 January 1984 6-5

Suntool: Tools and Subwindows : SunWindows Reference Manual

TOOL_DONE
indicates the tool should exit the tool_select notification loop.

The last three flags are used during tool select processing described below and should be con-

sidered private to the too! implementation.

Tl windowfd holds the file descriptor for a tool's window. This is used for both input and
outpus. It also identifies the window for manipulations on the window data-
base, such as medifying its position or shape. Windowfds' uses are discussed in
chapters 3 through 5.

Tl name addresses the string that can be displayed in the tool's namestripe and default
icon.

Tl rectcache holds a rectangle that indicates the size of the tool's window. Because the rec-
tangle is in the tool's coordinate system, the origin will always be (0, 0). This
size information is cached so that the tool can tell when its size has changed by
comparing the cached rect with the current rect.

Tl icon holds a pointer to the icon struct for this tool.

T!_pizwip addresses the window's pixwin, which is the structure through which the tool
accesses the display.

Tl sw points to the first and oldest of the tool's subwindows. The following section
discusses these structs.

The tool uses tl_io to conirol notification of input and window change events to itself. Toolio
Structure details this structure type. During tool creation, the fields of this structure are set up
with values to do default tool processing.

6.2.5. Subwindow Creation

After the tool is created, its subwindows are added to it.

struct toolsw *tool_createsubwindow(tool, name, width, height)
struct tool *tool;
char *pame;
short width, height;

#define TOOL_SWEXTENDTOEDGE -1

makes a new subwindow, adds it to the list of subwindows for the indicated tool, and returns a
pointer to the new toolsw struct. The width and height parameters are hints to the layout
mechanism indicating what size the windows should be if there is enough room to accommodate
them. There are no guarantees about maintaining subwindow size because changing window
sizes can ruin any scheme. TOOL_SWEXTENDTOEDGE may be passed for width and/or
height; it allows the subwindow to stretch with its parent in either or both directions. Subwin-
dow Layout details the subwindow layout. The name is currently unused; it may eventually
support the capability to refer to subwindows by name.

The remaining subwindow initialization requires reference to the data structure:

6-6 Revision D of 7 January 1984

O

©

>

SunWirdows Reference Manual Suntool: Tools and Subwindows

struct toolsw {

struct toolsw *ts_next;
int ts_window{d;
char *ts_name;

short ts_width;
skort ts_height;
struct toolio t3_io;
int (#ts_destroyX);
caddr_t ts_data;

b

The subwindows of a tool are chained on a list with ta_nest in one subwindow pointing to the
next in line, until the list is terminated with a null pointer.

Like the tool window, each subwindow must have an associated open window device;
tool_createaubwindow stores the file descriptor in ts_windowfd.

Ts_name, ts_width and ts_height are exactly as in the call to tool createsubwindow.

The tool uses £s_io to control notification of input and window change events to the subwindow.
Upon subwindow creation, the ts_io structure has null values in it that need to be set. This is
normally done by the create routine for a standard subwindow type. Toolio Structure details
this structure.

Ts_destroy gets called when the tool is being destroyed by tool_destroy so that the subwindow
may terminate cleanly.

Ts_data provides 32 bits of uninterpreted data private to the subwindow implementation. Typi-
cally, it will be a pointer to information for this instance of the subwindow. That is, all subwin-
dows of the same type will share common interrupt handlers and layout characteristics. Win-

_ dow contents and other information specific to one particular window will all be accessed

through this pointer. This is discussed at more length in Reguirements for Subwindows in
Chapter 7.

F e

6.2.6. Subwindow Layout

By default, subwindows are laid out in their tool's area in a simple left-to-right, top-to-bottom
fashion, in the order they are created. A subwindow is placed as high as it can be, and in that
space, as far to the left as it can be.

Subwindows that should be arranged in a more controlled fashion may be rearranged after they
have all been created, using the rectangle manipulation facilities described in Window Geometry.
Three functions return numbers useful to tools doing their own subwindow layout explicitly:

short tool_stripeheight(tool)
struct too] *tool;

returns the height in pixels of the tool's name stripe.

short tool_borderwidth(tool)
struct tool *#tool;

returns the width in pixels of the tool’s outside border.

Revision D of 7 January 1984 67

Suntool: Tocls and Subwindows SunWindows Reference Manual

short tool_subwindowspacing(tool) :
struct tool *tool; ()

returns the number of pixels that should be left as a margin between subwindows of a tool,
currently the same as the cutside border of the tool.

6.2.7. Subwindow Initialization

By the time tool_createsubwindow has returned, the subwindow is already inserted in the tree
growing out of the tocl window; however, the subwindow will not perform any interesting func-
tion until #s_io and ts_data have been initialized. Normally, tool_createsubwindow is not directly
called. Instead, the tool subwindow creation procedure for a subwindow type is called. The
subwindow specific routine will call tool_createsubwindow and then initialize ts_so and ts_data.

6.2.8. Tool Installation

Once the tool is created and its subwindows have been created and installed, the software inter-
rupt system should be turned on via a call to signal as described in Window Change
Notifications. At least SIGWINCH should be caught; if there are inferior processes in any of the
subwindows, SIGCHLD should be added with any others as appropriate. Finally, the tool is
installed into the display window tree by a call to:

tool_install(tool)

struct tool *tool;
At this point, the tool is operating; in fact, it will probably shortly receive a SIGWINCH asyn- Q
chronously to paint its window(s) for the first time.

6.2.9. Tool Destruction

Explicitly destroying a tool as it reaches the end of its processing allows the system to reclaim
resources and remove the windows gracefully. The procedure to invoke this cleanup is:

tool_destroy(tool)
struct tool *tool;

Tool_destroy will destroy every subwindow of the indicated tool as part of its processing, so the
subwindows need not be destroyed explicitly. Each subwindow's ts_destroy procedure gets
called, so they can clean up gracefully. The pointer passed to tool destroy must never be
dereferenced after that call, since it is no longer valid.

A single subwindow can be destroyed by an explicit call to:

tool_destroysubwindow(tool, subwindow)
struct tool #tool;
struct toolsw *subwindow:

A tool may use this procedure to change its subwindows, while continuing to run.

-

8-8 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Tools and Subwindows

6.3. Tool Processing

The main loop of a normal tool is encapsulated inside a call to:

tool_select{tool, waitprocessesdie)
struct tool *tool;
int waitprocessesdie;

This procedure is the notification distributer used for event-driven program control low. When
some input evemt, timeout or signal interrupt is detected inside tool_select, a call to a
notification handler is made, passing in the toolio structures of the tool and its subwindows.
Whenr: the handler returns, tool _select awaits another event. The waitprocessesdie argument is
discussed below in Child Process Management.

6.3.1. Toolio Structure

The toolio data structure in each foolsw structure holds what is needed for a subwindow to wait
for something to happen in the tool select call. The tool structure uses the toolio data structure
within itself to wait for input too. It is defined in fusr/include/suntool/tool.h.

struct toolio {

int tio_inputmask,

int tio_outputmask,

int tio_exceptmask;

struct timeval #tio_timer;

int (*tio_handlesigwinch) ();
int (stio_selected) ();

Y
Tio_inputmask, tio_outputmask, tio_ezceptmask and tio_timer fields are analogous to the last
four arguments to the select system call. Tio_inputmask has the bit “1 < <f" set for each file
descriptor f on which a window wants to wait for input. Similarly, tio_outputmask and
tio_ezceptmask indicate an interest in f being ready for writing and having an exceptional condi-
tion pending, respectively. There are currently no “exceptional conditions” implemented; this
field provides compatibility with the select system call.

If tio_timer is & non-zero pointer, it specifies a maximum interval to wait for one of the file
descriptors in the masks to require attention. If tio_timer is a zero pointer, an infinite timeout
is assumed. To effect a poll, the #io_timer argument should be non_zero, pointing to a timeval
structure with all zero fields.

Toolio also contains pointeis to the procedures that are called when the tool has received some
notification. Tio_handlesigwinch addresses the procedure that responds to the SIGWINCH sig-
nal. This procedure handles repaint requests and window size changes. The general form for
such a procedure is:

sigwinch_handi_er(da.ta)
caddr_t data;

Such procedures take a single argument data whose type is context-dependent. For a tool this
data i3 2 pointer to the tool structure. For a subwindow this data is the ts_data value in the
toolsw structure.

Tio_selected addresses the procedure which responds to notifications from the select system call.
The procedure's calling sequence is:

Revision D of 7 January 1934 6-9

Suntool: Tools and Subwindows sunWindows Reference Manual

io_handler(data, ibits, obits, ebits, timer)
caddr_t data;

int *jbits,
int *obits,
int *ebits,
struct timeval **timer;

In such procedures, the data argument is like that of the SIGWINCH handlers described above.
The three integer pointers indicate which file descriptors are ready for reads (#ibits), writes
(*obits), or exception-handling (#ebsts). If timer is NULL, this window was not waiting on any
timeout. If #fimer points to a valid struct timeval then this window is waiting for a timeout. If
both the {#imer)->tv_sec and {#imer)-> tu_usec are zero, the timeout has just happened for
this window and should be serviced. The data in the file descriptor masks is not defined if a
timeout has occurred.

Before returning from a procedure of this type, the masks and timer must be reset by storing
through the pointers passed in the arguments; the values should be consistent with the discus-
sion of the masks and timer pointer above. You may not want to reset the timer if you are
using it as a countdown timer, and it still has time remaining on it.

6.3.2. File Descriptor and Timeout Notifications

Tool_select generates three composite masks from each of the three toelio structures in the tool.
The input mask is special in that if all the masks in a particular toolio structure are zero, an
entry in the composite input mask is made for the associated window anyway. Tool select also
determines the shortest timeout that any of the windows is waiting on. The composite masks
and shortest timeout are passed to the select system call.

When the select system call returns normally, windows that have a match between their masks
and the mask of ready file descriptors that have timed out, are notified via their tio_selected
procedure. The tio_selected procedures are called with the complete ready masks, not just the
intersection of its own masks and the ready masks. However, a tio_sclected procedure is called
with its own window's timer value.

Each window that has been selected as a result of the select system call is notified. The order of
notification is not defined. Problems will arise if there are multiple non-cooperating windows
waiting on the same device. '

It should be noted that timers in this implementation are only approximate. When the select
system call returns and a timeout hasn't occurred, the select is assumed to have been instan-
taneous. Also, the time taken up with handling notifications is not deducted from the timers.

6.3.3. Window Change Notifications

Clients of the tool interface must catch the SIGWINCH signal. A signal catcher can be set up
via the signalf8} library call. That catcher is then responsible for notifying the tool package
that the signal has arrived. This is done by calling:
tool_sigwinch(tool)
struct tool *tool;

This procedure simply sets the TOOL_SIGWINCHPENDING flag in tool. The receipt of any
signal has the side effect of causing the select system call in tool_select to return abnormally.

6-10 Revision D of 7 January 1984

-

SunWindows Reference Manual Suntool: Tools and Subwindows

The TOOL_SIGWINCHPENDING flag is noticed and the tool's tio_handlesigwinch procedure is
called. . The default étio_handlesigwineh procedure does some processing, which may include
changing the subwindow layout, and eventually calls all its subwindows’ tie_handlesigwinch pro-
cedures.

6.3.4. Child Process Maintenance

Tool_select also gathers up dead children processes of the tool. The waitprocessesdie argument
to tool _select is provided for tools which have separate processes behind some of their subwin-
dows. Such tools must explicitly catch SIGCHLD, the signal that indicates to a parent process
that a child process has changed state. Then the signal handler, parallel to a SIGWINCH
catcher and tool_sigwinch, should call:

tool_sigchld(tool)
struct tool *tool;

This call causes tool_select to try to gather up a dead child process via a wait3 system call (see
wait(2)). When as many child processes have been gathered up as indicated by the waistpro-
cessesdie argument to tool_select, tool_selcct returns.

6.3.6. Changing the Tool’s Image

During processing, a call to:

tool_display(tool)
struct tool *tool;
redisplays the entire tool. This is useful if some change has been made to the image of the tool
itself, for instance if its name or its icon's image have been changed. Normal repaints in

response to size changes or damage should not use this procedure. They will be taken care of
by SIGWINCH events and their handlers.

6.3.6. Terminating Tool Processing

During the time that tool_seclect is acting as the main loop of the program, a call to:

tool_done(tool)
struct tool *tool;

causes the flag TOOL_DONE to be set in tool. Tool select notices this flag, and then returns
gracefully.

6.3.7. Replacing Toolio Operations

Since the #oolio structure contains procedure pointers in variables, it is possible to customize the
behavior of a window by replacing the default values,

Icons that respond to user inputs or that update their image in response to timer or other
events, may be implemented by replacing the tool’s tool_selected procedure. A different subwin-
dow layout scheme may be implemented in a replacement procedure for tio_handlesiguwinch.
Note that these modifications do not require changes to existing libraries; the address of the

Revision D of 7 January 1934 6-11

Suntool: Tools and Subwindows SunWindows Reference Manual

substitute routine is simply stored in the appropriate slot at run-time. However, the substitute
routine must either do all of the processing handled by the original library routine, or the sub-
stitute routine should do its special processing and then call the original library routine.

8-12 Revision D of 7 January 1984

O

Chapter 7

Suntool: Subwindow Packages

This chapter describes subwindow packages, the building blocks for constructing a feol It
presents a guide for building new subwindow packages of general utility and describes the avail-
able standard subwindow packages for use with suntools. Refer to Suntool: Tools and Subwin-
dows for a description of the overall structure of tools and the general notion of a subwindow.

Subwindows, as presented here, are designed to be independent of the particular framework in
which they are used. That is, a subwindow is a merger of window handling and application
processing which should be valid in frameworks other than the tool structure and suntool
environment described in the preceding chapter. The design avoids any dependence on those
constructs. Thus, a subwindow package can be used in another user interface system written on
top of the sunwindow basic window system. However, subwindow packages all provide a utility
for creating a subwindow in the tool context.

7.1. Minimum Stafldard Subwindow Interface

This section describes the minimum programming interface one should define when writing a
new subwindow package. A subwindow implementation should provide all the facilities
described here. This section presents the arguments to the following standard procedures. Each
subwindow package need only document any additional arguments passed to its create/init pro-
cedures. There is a set of naming conventions that provides additional consistency between
subwindow package interfaces,

For the purpose of example, we use foo as the prefix. Other prefixes used in existing subwin-
dow packages include tty, gfz and may.

Each subwindow package has a structure definition that contains all the data required by a sin-
gle instance of the subwindow.

struct foosubwindow {

int fsw_windowld;
struct pixwin *fsw_pixwin;
L

The structure definition typically has a pizwin for screen access and a window handle for
identification as part of this data. The information that the subwindow’s procedures need
should be stored in this data structure; this may entail redundantly storing some data that is in
the associated containing data structure, such as the toolsw struct. Having an object per
subwindow allows multiple instantiations of a subwindow package in a single-user process. The
following gtruct creates new instances of a foo subwindow:

Revision D of 7 January 1984 7.1

Suntool: Subwindow Packages SunWindows Reference Manual

struct foosubwindow *foosw_init{windowfd, ...)
int windowfd;

Windowfd is to be a foo subwindow. The *...” indicates that many subwindow packages will
require additional set-up arguments. This routine typically opens a pizwin, sets its input mask

as described in Jnput to Application Progrems, and dynamically allocates and fills the

subwindow’s data object. If the returned value is NULL then the operation failed.

foosw_done(foosw})
struct foosubwindow *foosw;

destroys subwindow instance data. Once this procedure is called, the foosw pointer should no
longer be referenced.

foosw_handlesigwinch({foosw}
struct foosubwindow *foosw;

This procedure handles repéint. requests and must also detect and deal with changes in the win-
dow size. It is called as an eventual result of some other procedure catching a SIGWINCH.

foosw_selected(foosw, ibits, obits, ebits, timer)

struct foosubwindow *foosw;
int *ibits,

int *obits,

int *ebits,

struct timeval *+timer;

handles event notifications. Subwindow packa.ges' that don’t accept input may not have a pro-
cedure of this type. The semantics of this procedure are fully described in the preceding
chapter in the section entitled T'oclio Structure.

struct toolsw *foosw_createtoolsubwindow(tool, name, width, height, ...)
struct tool *tool;
char *pame;
short width, height;

creates a struct toolsw that is a foo subwindow. Foosw_createtoolsubwindow is only applicable
in the tool context. It is often the only call that an application program need make to set up a
subwindow of a given type. Toolis the handle on the tool that has already been created. Name
is the name that you want associated with the subwindow. Width and Aeight are the dimensions
of the subwindow as wanted by the tool_createsubwindow call. The “...” indicates that many
subwindow packages will require additiopal arguments. These additional arguments should
parallel those in foosw_snit. If the returned value is NULL then the operation failed.

Foosw_ercatetoolsubwindow takes the window file descriptor it gets from tool_createsubwindow,
passes it to foosw_snit, and stores the resulting pointer in the tool subwindow’s ta_data slot.
The addresses of foosw_handlesigwinch and foosw_selected are stored in the appropriate slots of
the toolio structure for the tool subwindow, and the address of foosw_done is stored in the tool
subwindow’'s ts_destroy procedure slot.

Of course, most subwindow packages define functions that perform application-specific process-
ing; the ones described here are merely the permissible minimum.

7-2 Revision D of 7 January 1984

C

SunWindows Reference Manual Suntool: Subwindow Packages

7.2. Empty Subwindow

The empty subwindow package simply serves as a place holder. It does nothing but paint itself
gray. It expects the window it is tending to be taken over by another process as described in
Graphics Subwindow. When the other process is done with the empty subwindow package, the
carctaker process resumes control.

A private data . definition that contains instance-specific data defined in
[uar/include/ suntoolf emptysw.h is:

struct emptysubwindow {
int em_windowfd;
struct pixwin *em_pixwin;

b

Em_windowfd is the file descriptor of the window that is tended by the empty subwindow.
Em_pizwin is the structure for accessing the screen.

struct toolsw *esw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char *name;
short width, height;

sets up an empty subwindow in a tcol window. If the returned value is NULL then the opera-
tion failed. Since esw_createtoolsubwindow takes care of setting up the empty subwindow, the
reader may not be interested in the remainder of this section.

struct emptysubwindow *esw_init(windowfd)
int windowfd;

creates a new instance of an empty subwindow. Windowfd is the window to be tended. If the
returned value is NULL then the operation failed.

esw_handlesigwinch(esw)
struct emptysubwindow *esw;

handles SIGWINCH signals. If the process invoking this procedure is the current owner of
esw-> em_windowfd, gray is painted in the window. If it is not the current owner, it checks to
see if the current owner is still alive. If the current owner is dead, this process takes over the
windows again and paints gray in the window.

esw_done(esw)
strudt emptysubwindow *esw;
destroys the subwindow's instance data.

Processes that take over windows should follow guidelines discussed in Overlapped Windows:
Imaging Facilities concerning the use of the win_getowner and win_setowner procedures. Prefer-
ably, the graphics subwindow interface described below should be used for this activity.

7.3. Graphics Subwindow

The graphics subwindow package is for programs that need a single window in which to draw.
Using this subwindow package insulates programmers of this type of program from much of the
complexity of the window system.

Revision D of 7 January 1984 7-3

Suntool: Subwindow Packages SunWindows Reference Marual

Users of this interface have the additional benefit of being able invoke their programs from out-
side the window system. Thus, you can write one program and have it run both inside and out-
side the window system. This situation is actually an illusion. What really happens when run-
ning outside the window system is that the window system is actually started up and that a sin-
gle window is created in which the graphies subwindow package runs.

The graphics subwindow can also manage a retained window for the programmer. The pro-
grammer need not worry about the fact that he is in an overlapping window situation. A
backup copy of the bits on the screen is maintained from which to service any repaint requests.

The graphics subwindow can be used in tool building like any of the other subwindow packages
described in this chapter. However, the graphics subwindow also provides the ability for a pro-
gram to run on top of an existing window by using the blanket window mecharism.

The data definition for the instance-specific data defined in /usr/include/ suntoolf gfzsw.h is:

struct gfxsubwindow {

int gfx_windowfd;

int gfx_flags;

int gix_reps;

struct pixwin *gfx_pixwin;
struct rect gfx_rect;
caddr_t gfx_takeoverdata;

}

#define GFX_RESTART 0x01
##define GFX_DAMAGED 0x02

Gfz_windowfd is the file descriptor of the window that is being accessed. Gfz_reps are the
number of repetitions that continuously running (non-blocking) cyclic programs are to execute.
Gfz_pizwin is the structure for accessing the screen. Gfz_rect is a cached copy of the window’s
current self relative dimensions. Gfz_takeoverdata is data private to the graphics subwindow
package.

Gfz_flags contains bits that the client program interprets. The GFX_DAMAGED bit is set by
the graphics subwindow package whenever a SIGWINCH has been received. In addition, the
GFX_RESTART bit is set if the size of the window has changed or the window is not retained.
The client program must examine these flags at the times described below.

GFX_DAMAGED means that gfzaw__hamﬂcaigwinch should be called. This flag should be exam-
ined and acted upon before looking at GFX_RESTART. GFX_RESTART is often interpreted
by a graphics program to mean that the image should be scaled to a new window size and that
the image should be redrawn. Many continuous programs, graphics demos for instance, redraw
from the beginning of a cycle. Other event-driven programs, graphics editors and status win-
dows, for example, redraw from their underlying data descriptions. The GFX_RESTART bit
needs to be reset to 0 by the client program before actually doing any redrawing.

7.3.1. In a Tool Window

A graphics subwindow in a teol context is only applicable for event-driven programs that use
the tool_select mechanism. Any subwindow in a tool must use this notification mechanism so
that all the windows are able to cooperate in the same process.

7-4 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Subwindow Packages

struct toolsw *gfxsw_createtoolsubwindow(tool, name, width, height, argv)

struct tool *tool;
char *name;

short width, height;
char sdargv;

sets up a graphics subwindow in a tool window. If argv is not zero, this array of character
pointers is processed like a command line in a standard way to determine whether the window
should be made retained *~r" and/or what value should be placed in gfz_reps “-—n ###4#". If
the returned value is NULL then the operation failed. It is the responsibility of the client to set
up toolsw->>ts_io.tio_selected if the client is to process input through the graphics subwindow.

It is also the responsibility of the client to replace toolsw->>ts_fo.tio_handlesigwinch with the
client’s own routine to notify the client when something about his window changes. The client
tio_handlessigwinch will call gfzaw_interpretesigwineh described below.

gfxsw_getretained(gfxsw);
struct gfxsubwindow *gfxsw;

can be called to make a graphics subwindow retained if you choose not to do the standard com-
mand line parsing provided by gfzaw_createtoolsubwindow. It should be called immediately after
the graphics subwindow is created. Destroying gfzew->>gfz_prretained has the effect of making
the window no longer retained.

The procedure:
gfxsw_interpretesigwinch(gfxsw)
struct gfxs_ul?window sgixsw;

is called from the client tio_handlesigwinch to give the graphics subwindow package a chance to
set the bits in gfzew->gfz_flage. The code in the client tio_kandlesigwinch then checks the flags
and responds appropriately, perhaps by calling the gfzew_handlesigwinch procedure that handles
SIGWINCH signals:

gfxsw_handlesigwinch(gfxsw)
struct gixsubwindow *gfxsw;

If the window is retained and the window has not changed size, this routine fixes up any part of
the image that has been damaged. If the window is retained and the window has changed size,
this routine frees the old retained pixrect and allocates one of the new size. If the window is
not retained, the damaged list associated with the window is thrown away. The
GFX_DAMAGED flag is reset to zero in this routine.

The procedure:

gfxsw_done(gfxsw)

struct gfxsubwindow *gfxsw;

destroys the subwindow’s instance data.

7.3.2. Overlaying an Existing Window

The graphics subwindow provides the ability for a program to overlay an existing window. The
empty subwindow described above is designed to be overlayed.

The following procedure creates a new instance of a graphics subwindow in something other
than the tool context:

Revision D of 7 January 1984 7-5

Suntool: Subwindow Packages SunWindows Reference Manual

struct gfxsubwindow *gfxsw_init(windowfd, argv)
int windowfd;
char F43rgv;

Windowfd should be zero; the assumption is that there is some indication in the environment as
to which window should be overlayed. See we_getgfzwindow in Window Manipulation for more
information. Argv is like argv in gfzsw_createtoolsubwindow. In addition, arguments similar to
the ones recognized by win_snitscreenfromargy are parsed. Thus, the program can be directed
to run on a particular screen. If the returned value is NULL then the operation failed.

When a screen is created from scratch, window system keyboard and mouse processing are not
turned on. Gfzsw_setinputmask should be called instead of win_setinputmask when defining win-
dow input (see below) in order to enable window system keyboard and mouse processing. This
mechanism is used to allow programs that listen to the standard input to still run when started
from outside the window system.

Gfz_takoverdata in the returned gfzsubwindow data structure is not zero in this case. The struc-
ture of the data that this pointer refers to is private to the implementation of the graphics
subwindow,

When a graphics subwindow has overlayed another window, various signal catching routines are
set up if the corresponding signals have no currently defined handler routines.

The gfzaw_catchsigwinch procedure is set up as the signal catcher of SIGWINCH:
gfxsw_catchsigwinch()

It, in turn, calls gfzaw__inter;prctcaigwinch.
The gfzew_catchsigtstp procedure is set up as the signal catcher of SIGTSTP:

gfxsw_catchsigtstp()

The graphics subwindow is removed from the display tree. The pixwin of the graphics subwin-
dow is reset. SIGSTOP is sent to the the graphics subwindow's own process.

The gfzsw_catchsigcont procedure is set up as the signal catcher of SIGCONT:
gfxsw_catchsigcont()

The graphics subwindow is inserted back into the display tree (presumably after
gfzsw_catchsigtstp removed it).

Continuous programs that. never use a select mechanism should examine gfzaw-> gfz_flags in
their main loop. Other programs that would like to use a select mechanism to wait for
input/timeout should call:

gixsw_select(gfxsw, selected, ibits, obits, ebits, timer)

struct gfxsubwindow *gfxsw;
int (*sclected)(), ibits, obits, ebits;
struct timeval *timer;

as a substitute for the tool_select. Selected is the routine that is called when some input or
timeout is noticed. Its calling sequence is exactly like foosw selected described at the beginning
of this chapter. The only difference in the semantics of this routine and Joosw_selected is that
the gfrsw->gfz flags should be examined and acted upon in selected. Selected may be called
with no input pending so that you are able to see the flags when they change.

Ibits, obits, ebits and timer, as well as gfzsw and selected, can be thought of as initializing an
internal ¢oolio structure, which is then fed to the tool_select mechanism.

7.8 ' Revision D of 7 January 1984

C

SunWindows Reference Manual Suntool: Subwindow Packages

A substitute for the tool done is:

gfxsw_selectdone(gfxsw)
struct gfxsubwindow *gfxsw;

Gfzsw_selectdone is called from within the selected procedure passed to gfzsw select.

Programs that are not using the mouse can call:

gfxsw_notusingmouse(gfx)
struct gfxsubwindow *gfxsw;

In certain cases, when the graphics subwindow is the only window on the display for instance,
some efficiency measures can be taken. In particular, pixwin locking overhead can be reduced.

gfxsw_setinputmask(gfx, im_set, im_flush, nextwindownumber, usems, usekbd)

struct gfxsubwindow *gfxsw;

int nextwindownumber;

struct inputmask *im_set, *im_flush;
int usems, usekbd;

The calling sequence is essentially that of win_setinputmask. Usems being non-zero means that
mouse input is wanted and so the mouse is turned on for the screen (if currently off). Usekbd
being non-zero means that keyboard input is wanted and so the keyboard is turred on for the
screen (if currently off). See gfzaw_init (above) for a rationale for using Gfzsw_sctinputmask
instead of win_setinputmask.

gfxsw_inputinterrupts(gfx, ie)
struct gfxsubwindow *gfxsw;
struct inputevent *ie;

This utility looks at #e. If #cis a character that (on a tty) normally does process control (inter-
rupts the process, dumps core, stops the process, terminates the process), it does the similar
action. This routine is meant to be a primitive substitute for tty process control while using the
window input mechanism.

7.4. Message Subwindow

The messé.ge subwindow package displays simple ASCII strings.

A private data definition that contains instance-specific data defined in
Jusr/ include/ suntool/ magsw.h is:

struct msgsubwindow {

int msg_windowfd;
char smsg_string;

struct pixfont *msg_font;
struct rect msg_rectcache;
struct pixwin *msg_pixwin;

b
Msg_windowfd is the file descriptor of the window that is the message subwindow. Msg_string is
the string being displayed using msg font. Only printable characters and blanks are properly
dealt with, not carriage returns, line feeds or tabs. The implementation uses mag_rectcache to
help determine if the size of the subwindow has changed. Masg_pizwin is the structure that
accesses the screen.

Revision D of 7 January 1984 7-7

Suntool: Subwindow Packages SunWindows Reference Manual

struct toolsw *msgsw_createtoolsubwindow(tool, name, width, height, string, font)

struct tool *tool;
char +name;
short width, height;
char *string;
struct pixfont *font;

is the call that sets up a message subwindow in a tool window. String is the string being
displayed wusing font. If the returned value is NULL ther the operation failed. Since
magsw_createtoolsubwindow takes care of the set-up of the message subwindow, the reader may
not be interested in the remainder of this section, except for magsw_setstring.

The following struct creates a new instance of a message subwindow:

struct messagesubwindow *msgsw_init(windowfd, string, font)

int windowfd;
char *string;
struct pixfont *font;

Windowfd identifies the window to be used. String is the string being displayed using font. If
the returned value is NULL then the operation failed.

msgsw_setstring(msgsw, string)
struct messagesubwindow *msgsw;
char *string;

changes the existing msgsw->>msg_string to string and redisplays the window.

msgsw_display{msgsw)
struct messagesubwindow *msgsw;

redisplays the window.

msgsw_handlesigwinch(msgsw)
struct messagesubwindow *magsw;

is called to handle SIGWINCH signals. It repairs the damage to the window if the window hasn’t
changed size. If the window has changed size, the string is reformatted into the new size.

msgsw_done(msgsw)
struct messagesubwindow *msgsw;

destroys the subwindow’s instance data.

7.5. Option Subwindow

An option subwindow (optionsw) presents a mouse-and-display-oriented user interface for setting
parameters and invoking commands in an application program. It is the window system analog
to entering command-line arguments and typing mnemonic commands to an application.

An option subwindow contains a number of items of various types, each of which corresponds to
one parameter. Existing item types include labels, booleans, enumerated choices, text parame-
ters, and command buttons. Note: New item types and extensions to these existing types are
contemplated.

The program optiontool is provided as a simple example of the features discussed here. Familiar-
ity with the behavior of the program, and with its source file [usr/suntoolf srcfoptiontaol.c, are

7.8 Revision D of 7 January 1984

-

o

©

-

SunWindows Reference Manual Suntool: Subwindow Packages

helpful in reading this section. See the source code for the icontool in appendix B for a good
example.

The declarations for the optionsw package are found in the header (file
[uer/include/ suntoolf optionsw.h. The file [usr/includefsuntoolftool _hs.h can be included to
provide the support header files for optionsw.h. Optionsw.h includes declarations of all the pub-
lic procedures, as well as the following structures and their associated defined constants. The
first provides a counted buffer for a text item’s value to be stored into:

struct string_buf {
u_int limit;
char sdata;
}i
Data should point to an array of chars to be used as the buffer, and limit should be set to the

size of that buffer. Use of this structure is described with optaw_getvalue in Ezplicit Client
Reading and Writing or Item Values below.

The second is used to identify the type as well as the value of a reference:
struct typed_pair {

u_int type;
caddr_t value;

Y |
fdefine IM_GRAPHIC 2
ftdefine IM_TEXT 3

ypdefine IM_TEXTVEC 4

Type indicates what kind of object value points to. The current choices are indicated in the fol-
lowing table:

Table 7-1: Option Image Types

Type Value Should Be

e ——

IM_GRAPHIC (struct pixrect*)
IM_TEXT (char *)
IM_TEXTVEC (char #+)

. In the TEXTVEC case, value points to the first element of an array of string pointers; the last

element of the array should be a NULL pointer. These are currently used only in enumerated
items described in Enumerated Itema.

7.5.1. Option Sub\;findow Standard Procedures

This section describes the routines needed to conform to subwindow package norms. These rou-
tines follow the general procedures provided in Minimum Standard Subwindow Interface.

Revision D of 7 January 1984 7-9

Suntool: Subwindow Packages SunWindows Reference Manual

struct toolsw *optsw_createtoolsubwindow(tool, name, width, height})
struct too! +tool;
char *name;
short width, height;

creates an option subwindow within a tool The handle toolsw->>ts_data is used for the optsw
argument in calls to other procedures of the optionsw package to identify the affected window
and its private data. If the returned value is NULL then the operation failed. The remainder
of this section is of interest only to clients outside the tool system.

In contexts other than a tool, optsw_sinit must be called explicitly. Similarly, provisions must be
made for using the rest of the routines in this section.

caddr_t optsw_init{fd}
int fd;

Optaw_init takes an fd that identifies the window to be used for the optionsw, and returns an
opaque pointer, which identifies the created optionsw in future calls to the package. If the
returned value is NULL then the operation failed.

optsw_handlesigwinch(optsw)
caddr_t optaw;

is called to handle SIGWINCH signals. It repairs the damage to the window, and if the window
has changed size, reformats the options as described below.

optsw_selected(optaw, ibits, obits, ebits, timer)
caddr t optsw;
int +ibits, *obits, *ebits;
struct timevalue *#timer;

is called to handle user inputs.
The cleanup routine for an optionsw is:

optsw_done(optsw)
caddr_t optsw;

It frees all storage allocated for the subwindow and its items. Of course, the client should not
attempt to use any pointer associated with the optionsw or its items after a call to this routine.

7.5.2. Option Items

Once an optionsw is created, it may be populated with option items. Each item is created by a
call to the create routine for the desired type; this creates the item, adds it to the items for the
optionsw, and returns an item handle (an opaque pointer which identifies it).

In some general aspects, all items in the optionsw exhibit the same behavior. The left or middle
mouse button indicates an item to be manipulated; the right button is left to the menu func-
tion. Pressing one of the first two buttons gets the optionsw's attention, and releasing it actually
completes a user-input event to which some item may respond. While the button is held down,
the cursor may be slid around over the window, and each item it passes over will indicate its
readiness to respond, typically by a reverse video display. Any such indication may be canceled
simply by moving the cursor off the item before letting up on the button.

Each item is identified on the screen by a label, which may be either text or a picture provided
by the client. This label is passed to the item creation routine in a typed_pair struct. In the

7-10 Revision D of 7 January 1984

O

SunWindows Reference Manual Suntool: Subwindow Packages

graphic case (fype == IM_GRAPHIC), the pixrect passed pointer is used without further con-
sideration by the optionsw implementation — the client may even change the image after the
item is created. For text labels (¢ype == IM_TEXT), several defaults provide a uniform style
with minimal client effort. Text labels are displayed in a bold-face version of the current font.
(The current font for the option subwindow starts as the window's default font, and may be
reset for each item, as described under optsw_setfont in Miacellany below.) The text of the label
is modified to indicate the type of the item visually:

Boolean items are surrounded by square brackets: “[text]”

Commands are surrounded by parentheses: ‘‘(text)”

Enumerated items have a colon appended to their label, and braces surrounding the
set of their values: ‘“‘text: { choicel choice2 choice3 }"

Text items have a colon appended to their label: “text: <value>"

Label items have their exact text presented in the bold face: “‘text’.

The text of the label is copied by the optionsw implementation; it may not be modified by the
client after the item is created. -

Clients which find these defaults too restrictive are free to generate their own labels (by using
pf_tezt into a memory pixrect, for example) and pass them in as type IM_GRAPHIC.

7.5.2.1. Boolean Items

The following procedure créates an item which maintains a boolean (TRUE or FALSE) value:

caddr_t optsw_bool{optsw, label, init, notify)

caddr_t optsw;

struct typed_pair *label;

int init;

int (*notifyX);
Its label contains a pointer to a fyped_pair as described above. The label is displayed in reverse
video whenever the item is TRUE. The value of the item is initially set to ¢nst, and is toggled
whenever the user selects the item. (It may also be set by a call to optaw_sctvalue, as described
below.) Whenever user action changes the value of the item, the procedure notify is called with
the new value, as described in Client Notification Procedures. This argument may be NULL to
indicate that no notification is desired.

7.56.2.2. Command Ttems

The following procedure creates an item that invokes the client procedure notify when selected
by the user:

caddr_t optsw_command(optsw, label, notify)
caddr_t optsw;
struct typed_pair #label;
int (*notify));

The created item has no value. All three arguments are the same as their couterparts in
optsw_bool.

Revision D of 7 January 1984 7.11

Suntocl: Subwindow Packages SunWindows Reference Manual

7.56.2.3. Enumerated Items

The following procedure creates an item in which exictly one of a set of choices is in effect at O
any time:
caddr_t optsw_enum(optsw, label, choices, flags, init, notify)
caddr_t optsw;

struct typed_pair *label;
struct typed_pair *choices;

int flags;
int init;
int (*notify)();

The value is interpreted as a 0-based index into the choices for the selection. Optaw, label, and
notify are as above. Choices is a vector of images to be displayed for the choices; for now its
type must be ITEM_VEC. This means that the data pointer for choices addresses an array of
string pointers, one for each possible choice plus a NULL indicating the end of the array. Initis
the initial value of the item; it should be at most the size of the choices array minus 2 (to avoid
the null pointer which terminates the array). Flags will eventually indicate layout options, but
for now should be 0.

7.5.2.4. Label Items

The following procedure creates an item which does nothing but paint itself. This item type
may be used to include labeling information in the option subwindow.

caddr_t optsw_label(optsw, label) @
caddr_t optsw;
struct typed_pair *label;

Optsw and label are as above.

7.56.2.5. Text Items

The following procedures create an item which holds a text value:

caddr_t optsw_text{optsw, label, default_value, flags, notify)
caddr_t optsw;
struct typed_pair *label;

char *default_value;
int - flags;
int (*notify)();

##define OPT_TEXTMASKED

Optaw, label, and notify are as above. Default_value is the inmitial value of the item. Flaga
specify attributes of the created item; currently, only the masked attribute is supported. If
OPT_TEXTMASKED in flags is set, each character of the text item will be displayed as an asterisk,
This feature is useful for text parameters which should not be displayed, such as passwords.
The true value of the item is returned by optsw_getvalue described below. Notify is like the pro-
cedures of the other item-creation routines. It is called whenever the value of the text item is
changed, except by a call to optsw_setvalue. Its arguments are handles for the optionsw and the O

7-12 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Subwindow Packages

item. Optow_getvalue should be used to actually retrieve the new valve. This parameter to
eptew_tex! may be NULL to indicate 'no notification.’

There may be multiple text items in an option subwindow. At any time, one of them *‘has the
caret.”” Any keystrokes directed to the option subwindow will be directed to this item. The
item that has the caret is indicated by a box around its label. Imitially, this is the first text
item created in the option subwindow. The user may set the caret in another item by clicking
either the left or middle mouse button while the cursor is pointing at the new item’s label.

The caret may also be determined and reset programmatically by calls to the following pro-
cedures:

caddr_t optsw_getcaret{optsw)
caddr_t optsw;

returns an item handle for the item that currently has the caret.

caddr_t optsw_setcaret(optaw, ip)
caddr_t optaw;
caddr_t ip;

sets the caret on the item indicated by ip, and returns ip if successful. Otherwise, it returns
NULL. Ip should be a handle on a text item.

Only displayable characters will be accepted in the item (ASCH codes 040-0176 inclusive). The
user's erase (character delete) and kill (line delete) characters are available for editing existing
text. The first will delete the last character of the text; the latter will delete the whole string.
Other characters will be discarded.

Text items will expand to fit the remainder of their option subwindow’s width. This may be
more polymorphism than clients desire. See the discussion under ftem Layout and Relocation
below.

Note: This release of text items includes the following restrictions:

o Vazlues of text parameters are restricted to a single line of text, less than 1000 characters long.
Characters which extend beyond the item's right edge will not be displayed, although they
are entered and edited the same as visible characters.

o Text items may be edited only at their ends. The available operations are: add a character to
the end, delete a character from the end, and delete the whole value.

While significant extension to the functionality of text items is planned, the actual interface
(the external procedure definitions and data structures) are designed to accommodate those
extensions without change.

7.5.3. Item Layout and Relocation — SIGWINCH Handling

As each item is created, its width and height are determined and stored in the item’s private
data. No left and top positions are assigned at this time. Later, whenever a signal is received
which indicates that the size of the subwindow has changed (in particular, when the tool is first
displayed, and the size grows from 0 to the initial window), a layout procedure determines posi-
tions for all the items in the window.

The default layout procedure starts in the upper-left corner of the subwindow and places items
in successive positions to the right, and then in successive rows down the window. Item posi-
tions are not normally fixed; items may be repositioned if the window is later laid out again
with a different size.

Revision D of 7 January 1984 7-13

Suntool: Subwindow Packsages SunWindows Reference Manual

If an item is encountered with either of its top or left edges fixed, that specification is accepted

without further consideration — it is possible to lay one item down on top of a previously posi-

tioned item, or to position it out of sight to the right or below the subwindow boundary.

Positioning of subsequent items after an item with a fixed position may be affected in three

ways: :

1. The top of the row in which the item appears may move dowsn, but not up, for the rest of
the items in the row.

2. Subsequent items in the same row will not be positioned to the left of the item's right edge.

3. Items in subsequent rows will not be positioned above the bottom of the fixed item.

If an item is encountered which does not have fixed width (currently, only a text item), an

attempt will be made to expand the item to fill the remaining width in the option subwindow.

This is done through a rather simple-minded negotiation between the general layout procedure

and the flexible item. If both the position and width of the item are flexible, the result of this

negotiation may not be very satisfactory to observers. In most cases, the position, the width, or

both should be fixed.

At any time between an item’s creation and its destruction, the client may inquire or modify its

current size and position. This is done via the following two procedures:

optsw_getplace(optsw, ip, place)

caddr_t optsw;
caddr_t ip;
struct item_place *place;

optsw_setplace{optaw, ip, place, reformat)

caddr_t optsw;

caddr_t ip;

struct item_place *place;
int reformat;

Optsw is the handle returned by optsw_inst. Ipis the pointer to an opf_item struct returned by
the item’s create routine. Place is a pointer to a atruct stem_place described below.

The optsw_setplace arguments are parallel to those of optsw_getplace. Place is a pointer to a
struct stem_place, which contains a rect and four boolean flags indicating that a value is to be
fixed for that item. The reformat argument indicates that the window is to be laid out and
displayed anew, taking the changed item into account. This should generally be done any time
after the window has been opened, since the item is already displayed, but it may be postponed
if a series of adjustments are to be made; in that case, it is appropriate to reformat only after
the last item's place is set.

The following struct is also described in optionsw.b:

struct item_place {

struct rect rect;
struct {

x:1;

Yy

w:l;

h:1;
} fixed;

}i

7-14 Revision D of 7 January 1984

-

~

SunWindows Reference Manual Suntool: Subwindow Packages

Rect indicates the current size and position of the item, and the four bit-fields fized.z, fized.y,
fized.w, and fized.h are TRUE if the corresponding dimension may not be adjusted by the layout
procedure. '

For convenience in laying out string items, two functions convert character columns and lines to
the appropriate pixel coordinates:

int optsw_coltox(optsw, col}
caddr t optsw;
int col;

int optaw_linetoy(optsw, line)
caddr_t optsw;
int line;
The dimensions used in calculating these coordinates are the width of the character ‘a’ in the
optionsw’s default font and the nominal height of that font, that is, the distance between base-
lines of successive unleaded lines of text. Both columns and rows start at 0.

7.5.4. Client Notification Procedures

Most item types provide a mechanism for notifying clients that the value of an item has been
changed by the user. The same general mechanism is used to specify the procedure to be
invoked in response to selection of a command button.

In each case, a pointer to a procedure is passed to the item-creation routine and stored with the
item. This procedure pointer may be zero, in which case there is no client notification. When
appropriate, this notification procedure is invoked by optionsw code with arguments to identify
the affected subwindow and item, and the new value assigned to the item. The general form for
these procedures is:

notify(optsw, item, value)
caddr_t optsw;
caddr t item; .
int value;.
{ ... processing to respond to item's new value.}

Proccdures to be invoked im response to a command button-push have the same form, except
there is no value parameter. Notification of changes to text items also omit the value parameter.

Note that the notification procedure is provided by the client and fnvoked by the optionsw pack-
‘age.

7.5.5. Explicit Client Reading and Writing of Item Values

Clients may read the current value of an item by calling the procedure:

int optsw_getvalue(ip, dest)
caddr_t ip;
caddr_t dest;

Ip is the item handle which identifies the item whose value is sought; dest is the address of the
destination in which the value is to be stored. For items with a numeric value, dest should actu-
ally be a pointer to an inf; the value will be stored in the indicated int, and returned as the

Revision D of 7 January 1984 7-15

Suntool: Subwindow Packages SunWindows Reference Manual

value of the function. Items which have no value (commands, labels) store and return -1. @

For text items, dest should be a pointer to a struct string_buf, whose limit is the length of the
associated data array. Optsw_getvalue will store characters from the value of the indicated item
into {#dest-> data), and return the number of characters stored. If there is room, a terminating
NULL character will be written, and a later call to optsw_getvalue will store characters starting
at the beginning of the item’s value. Otherwise, the data buffer will be filled and the returned
count will be equal to dest->limit; the next call to optsw_getvalue for this item will resume stor-
ing characters with the first character not reported in the previous call. Multiple calls to
oplaw_getvalue may thus be used to retrieve a long value through a short buffer. Eventually,
there will be room to store a null character, and the whole value will have been reported; the
nex$ call to eplew_getvalue for this item will restart at the beginning of the value.

Clients may set the value of an item by calling:

optsw_setvalue(optsw, ip, value)
caddr_t optsw;
caddr_t ip;
caddr_t value;

Optsw is the opaque handle on the option subwindow; it enables repainting of the modified item.
Ip indicates the item to be modified, Value should be an appropriate value for the item, which is
then cast to caddr_t. That is, booleans and enumerateds should provide an int {or unsigned);
text items should provide a (char *). For example, if optaw_sctvalue is being used to change a
boolean item, value could be:

(caddr_t) FALSE

O

7.56.6. Miscellany

Clients may inquire and set the font that is being used for displaying item labels and values.
Fonts for these objects are determined at the time the object is created; different items may use
different fonts. Thus, the client may create an object, change the font, create more objects
which will use the new font, and then change the font back (or to a third value) for succeeding
items.

struct pixfont *optsw_getfont{optsw)
caddr_t optsw;

returns the current font for the indicated optew.

optsw_setfont(optsw, font)
eaddr_t optsw;
struct pixfont *font;

sets the optaw's font to be font.
Given an item in an optionsw, the routine:
optsw_nextitem(optsw, ip)

caddr_t optsw;
caddr_t ip;

returns a handle for the next item in sequence. If ip is NULL, the first item in the window will
be returned; if ip refers to the last item in the optionsw, NULL is returned. Q

7-16 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Sebwindow Packages

The routine:

optsw_removeitems(optsw, ip, count, reformat)
caddr_t optsw;
caddr_t ip;
int count;
int reformat:

" removes at most count items from optsw, making them inaccessible to the user, but not destroy-
ing them. They may be restored later by a call to optsw_restorcitems. The subwindow is
redisplayed without them if reformat is TRUE. The number of items so removed is returned;
this may be less than count if the items in the subwindow are exhausted before count has been
removed.

Starting at the item indicated by ip, the routine:

optsw_restoreitems{optsw, ip, count, reformat)
caddr_t optaw;

caddr_t ip;
int count;
int reformat:

‘ ‘vestores at most count items in osw and returns the number restored. This may be left than
count if all extant for the optionsw are exhausted, or an item which is not currently removed is
encountered, first. The subwindow is redisplayed with the restored items if reformat is TRUE.

For assistance in implementing applications which use option subwindows, two routines are pro-
vided which print s formatted display of the optionsw and/or its items, to a stream of the
client's choice:

optsw_dumpsw(stream, optsw, verbose)

FILE *ptream;
caddr_t optsw;
bool verbose;

optsw_dumpitem(ﬁl;, ip)
FILE sfile;
caddr t *ip;

For each procedure, the client says where to write the dump with the stream argument, and
identifies the object to be dumped with the optsw or ip argument. If verbose is true,
optaw_dumpsw will dump all the items of the optionsw.

7.6. Terminal Emﬁlator Subwindow

This is the subwindow package that provides a Sun Terminal emulator.

The private data definition that contains instance-specific data defined in
[uar/include/suntoolfttysw.h is:

struct ttysubwindow {

b
Note: Only one TTY subwindow per process.

/* Private data*/

Revision D of 7 January 1984 7-17

Suntool: Subwindow Packages SunWindows Reference Manual

struct toolsw *ttysw_createtoolsubwindow(tool, name, width, height)
struct tool *tool; @
char *npame;

short width, height;

is the call that sets up a terminal emulator subwindow in a tool window.
Ttysw_createtoolsubwindow takes care of setting up the terminal emulator subwindow except for
the forking of the program. If the returned value is NULL then the operation failed. Thus,
clients of this routine may want to ignore the remainder of this section except for the discussion
of ttysw_fork and perhaps ttysw_becomeconsole.

struct ttysubwindow #ttysw_init(windowfd)
int windowfd;

creates a new instance of a tty subwindow. Windowfd is the window that is to be used. If the
returned value is NULL then the operation failed.

ttysw_becomeconsole(ttysw)
struct ttysubwindow *ttysw;

sets up the terminal emulator to receive any output directed to the console. This should be
called after calling ttyaw_gnit.

ttysw_saveparms(ttyfd)
int ttyfd;

should be called by the screen initialization program, e.g., suntools(1). This saves the charac-
teristics of the terminal #yfd in an environment variable. Terminal emulation processes forked

from the screen initialization process will get their characteristics from this environment vari- @
able; terminal emulation processes started directly from shells get their characteristics from the
standard error tty. Tiysw_saveparms is needed because a screen initialization program is often
started from the console, whose characteristics can change due to console redirection.

ttysw_handlesigwinch(ttysw)
struct ttysubwindow *ttysw;

is called to handle SIGWINCH signals. On a size change, the terminal emulator’s display space is
reformatted. Also, its process group is notified via SIGWINCH that the size available to it is
different. Refer to TTY-Based Programs in TTY Subwindows. If there is display damage to be
fixed up, the terminal emulator redisplays the image by using character information from its
screen desacription.

ttysw_sclected(ttyaw, ibits, obits, ebits, timer)

struct ttysubwindow *ttysw;
int *ibits, *obity, *ebits;
struct timeval *+timer;

reads input and writes output for the terminal emulator. #/bits, *obits and #timer are modified
by ttysw _selected. See the general discussion of tio_selected type procedures in Minimum Stan-
dard Subwindow Interface.

int ttysw_fork(ttysw, argv, inputmask, outputmask, exceptmask)

struct ttysubwindow *ttysw;
char *4argv;
int *inputmask, *outputmask, *exceptmask; O

7-18 Revision D of 7 January 1984

SunWindows Reference Manual Suntool: Subwindow Packages

forks the program indicated by #argv. The identifier of the forked process is returned. If the
returned value is ~1 then the operation failed and the global variable errno contains the error
code. There are the following possibilities:

e If #argv is NULL, the user SHELL environment value is used. If this environment parameter is
not available, /bin/sh is used.

e If *argvis “—¢”, this flag and argv[1] are passed to a shell as arguments. The shell then runs
argefl]. The argument list for this case becomes shell/-c/argu[1]/f0.

o If #argy is not NULL, the program named by argvf0] is run with the arguments given in the
rest of arge. The argument list should be NULL terminated.

The arguments *inputmask, *ouputmask, *ezceptmask are dereferenced by ttysw_fork and set to
the values that the terminal eumlator subwindow manager wants to wait on in a subsequent
select call.

ttysw_done(ttysw)
struct ttysubwindow *ttysw;

destroys the subwindow’s instance data.

7.6.1. TTY-Based Programs in TTY Subwindows

TTY-based programs, such as ceh, sh, and vi, which use the termcap to determine the size of
their screen, need not know about windows to run reasonably under the terminal emulator.
The termeap library will return the current number of lines and columns of the terminal emula-
tor. However, if the user changes his window's size while one of these programs is running, the
terminal emulator and the program may disagree about what the terminal size is.

In the case of a size change, the terminal emulator sends a SIGWINCH signal to its process group.
If a child process doesn't catch the signal, no harm is done because the default action for
SIGWINCH is that the signal be ignored. A child process can catch the signal, and then requery
the termcap library for the correct terminal size. Unfortunately, no TTY-based programs do
this now.

The terminal emulator and the lermecap library communicate size information through soct sys-
tem calls on the pseudo-tty shared by both. The terminal emulator makes a TIOCSSIZE ioctl
call to set the size of the pseudo-tty. The fermcap library or some other TTY-based program
makes a TIOCGSIZE ioct! call to get the size of the pseudo-tty. These constants and the data
that they pass in the foct! call are further defined in /usr/include/aysfioctl.h.

int we_getmywindow(windowname)
char swindowname;

can be called by programs running under a window system pseudo-tty to find out the terminal
emulator's window name. This information is passed from the terminal emulator process to a
child process through the environment variable WINDOW_ME, which is set to be the
subwindow's device name, for example /dev/win5. We_getmywindow reads WINDOW_ME's
value into windowname. A return value of 0 indicates success. Windowname should point to at
least WIN_NAMESIZE characters. This information could be the handle needed for a program
to perform some sort of special window mapagement functior not provided by the default wip-
dow manager.

Revision D of 7 January 1984 7.19

Chapter 8

Suntool: User Interface Utilities

This chapter describes the programming interface to a variety of separate packages that imple-
ment the user interface of the suntool layer. Because these utilities are not tied to the notions
of tool and subwindow as described in a previous chapter, they can be used as is, in another user
interface system written on top of the sunwindow basic window system. For convenience, these
utilities are associated directly with the suntool software layer.

8.1. Full Screen Access

To provide certain kinds of feedback to the user, it may be necessary to violate window boun-
daries. Pop-up menus, prompts and window management are examples of the kind of opera-
tions that do this. The fullscreen interface provides a mechanism for gaining access to the
entire screen in a safe way. The package provides a convenient interface to underlying sunwin-
dow primitives. The following structure is defined in /usr/include/suntool/fullscreen.h:

struct fullacreen {

int fs_windowfd;

struct rect fa_screenrect;
struct pixwin #fs_pixwin;
struct curacr fs_cachedecursor;
struct inputimask fs_cachedim;

int fs_cachedinputnext;
b -
Fs_windowfd is the window that created the fullscreen object. Fa_screenrect describes the entire
screen's dimensions. Fs_pizwin is used to access the screen via the pixwin interface. The coor-
dinate space of fullscreen access is the same as fs_windowfd's. Thus, pixwin accesses are not
necessarily done in the screen's coordinate space. Also, fs_screenrect is in the window’s coordi-
nate space. If, for example, the screen is 1024 pixels wide and 800 pixels high, fo_windowfd has
its left edge at 300 and its top edge at 200, that is, both relative to the screen’s upper left-hand
corner, then fo_screenrect is {-300, -200, 1024, 800}.

The original cursor, fs_cachedcuraor, input mask, fo_cachedim, and the window number of the
input redirection window, fs_cachedinputneat, are cached and later restored when the fullscreen
access object is destroyed.

struct fullscreen *fullscreen_init{window{d)
int windowf{d;

gains full screen access for windowfd and caches the window state that is likely to be changed
during the lifetime of the fullscreen object. Windowfd is set to do blocking I/O. A pointer to
this object is returned although a global pointer named sunwindow will keep multiple processes
from gaining fullscreen access at the same time.

During the time that the full screen is being accessed, no other processes can access the screen,
and all user input is directed to fa->fs_windowfd. Because of this, use fullscreen access

Revision D of 7 January 1984 81

Suntool: User Interface Utilities SunWindows Reference Manual

infrequently and for only short periods of time.
Fullscreen_destroy restores fa's cached data:

fullscreen_destroy(fs)
struct fullscreen *fs;

It releases the right to access the full screen and destroys the fullscreen data object.
Fs->fs_windowfds input blocking status is returned to its original state.

8.2. Icon Display Facility

This section describes an icon display facility. The icon structure is simply a stylized descrip-
tion of a useful class of images. Icons normally serve more to identify an object than display its
contents. A typical use of an icon is to identify a currently unused but available tool. Another
use might be a graphical depiction of an object, a document, database element, or resource for
instance, that a user might want to point at with his mouse. The icon structure is declared in
the file /usr/include/suntoolficon.h:

struct icon {
short ic_width;
short ic_height;

struct pixrect *ic_background;
struct rect ic_gfxrect;

struct pixrect *ic_mpr;
struct rect ic_textrect;

char *ic_text;

struct pixfont #ic_font;

int ic_flags;

b

##define ICON_BKGRDPAT 0x02
#define ICON_BKGRDGRY 0x04
#define ICON_BKGRDCLR 0x08
f#define ICON_BKGRDSET 0x10

Ic_width and ic_height describe the full size of the icon. Ie_background is an optional pattern
with which to prepare the image background. Je_gfzrect and ic_teztrect describe two subareas
of the icon (icon coordinate system relative), which may overlap. Je_mpr addresses a memory
pixrect as described in Memory Pizrects. Ic_mpr has the graphic portion of the icon, sc_text
points to a string, and ic_font a font in which to display it. The bits of ic_flags are defined
above and indicate different ways to prepare the background of the image before adding tc_mpr
and the text:

ICON_BKGRDPAT
use t¢_background

ICON_BKGRDGRY
use a standard gray pattern used by the background window (this back-
ground is the memory pixrect tool_bkgrd defined in
[uer/include] suntoolftool.h).

ICON_BKGRDCLR
: clear {white out) the image

8-2) Revision D of 7 January 1984

O

SunWindows Reference Manual Suntool: User Interface Utilities

ICON_BKGRDSET
set (solid black) the image.

The function:

icon_display(icon, pixwin, x, y)

struct icon *icon;
struct pixwin *pixwin;
int X, ¥;

displays scon offset (z, y) from the origin of pizwin. The background is prepared according to
tcon->ic_flaps. The graphic portion of the icon is displayed next, followed by the text; thus, if
they overlap, the text will come out on top.

There are no strict restrictions on the size of an icon. However, the facility becomes relatively
pointless if the icon is too large. Non-uniform icons have esthetic and placement defects.
Therefore, a set of standard dimensions should be provided for any particular class of icons.
Here are the standards used by clients of tools defined in [usr/include/suntool/tool.k:

ftdefine TOOL_ICONWIDTH 64
#define TOOL_ICOHEIGHT 64
#define TOOL_ICONMARGIN 2

#define TOOL_ICONIMAGEWIDTH
#define TOOL_ICONIMAGEHEIGHT
#define TOOL_ICONIMAGELEFT
#define TOOL_ICONIMAGETOP

¥ define TOOL_ICONTEXTWIDTH
#define TOOL_ICONTEXTHEIGHT
#define TOOL_ICONTEXTLEFT
#define TOOL_ICONTEXTTOP

These constants put the icon in a 64-pixel square, including a two-pixel margin all around. The
graphics and text regions are defined relative to the size of the icon and its margin; the graphics
area covers the whole icon inside the margin, and the text overlies the bottom 3/4 of that
region. The TOOL_ICONIMAGE#* and TOOL_ICONTEXT* constants hold defaults for gen-
erating reasonable images when ic_gfzrect and fe_teztrect respectively are initialized to them.

8.3. Pop-up Menus

A pop-up menu is a collection of items that a user can choose among by pointing the cursor at
the desired item. It is quickly displayed in response to a button push, remains visible as long
as the user holds the button down, and disappears as soon as the button is released.

Several menus can be presented at once. They appear to the user as a stack of images with the
header of each menu visible, along with the items of the top menu in a vertical list. The user
can bring other menus to the top by the same mechanism as choosing an item in the top menu.

A single menu is described by the following structure defined in [usr/include/suntool/ menu.h:

Revision D of 7 January 1984 3.3

Suntool: User Interface Utilities SunWindows Reference Manual

struct menu {

int m_imagetype;
caddr_t m_imagedata;

int m_itemcount;
struct menuitem *m_items;
struct menu *m_next;

caddr_t m_data;

b
ffdefine MENU_IMAGESTRING 0x0

M_imagetype describes the data type of m_smagedata. M_imagedata is a pointer to the data
displayed in the header of the menu. MENU_IMAGESTRING is the only currently defined
image data type and is a character pointer. M_nezt addresses the next menu in a stack; it is
NULL if this menu is the last or only one in the stack. M_data is private data utilized by the
menu package while displaying menus. M_items is an array of menuitems whose length is
m_stemcount,

struct menuitem {
int . mi_imagetype;
caddr_t mi_imagedata;
caddr_t mi_data;

}i

A menuitem consists of a display token/data pair. Mi_imagetype describes the data type of
mi_stmagedata. Mi_imagedata is a pointer to the data displayed in this item.
MENU_IMAGESTRING is the only defined image data type and is a character pointer.
Mi_data is private to the creator of the item. Typically, it is an identifier that differentiates this
item from others.

A client of the menu package constructs a stack of menus or several, for different situations by
allocating menu structures and menuitem arrays and initializing all the fields in them. This
involves hooking up all the data structures by setting the various pointers. An example of a
menu set is found in Sample Tools in the panetool program. Button-down on the right mouse
button is the standard invocation. Then when a user action initiates menu processing, the
client calls:

struct menuitem *menu_display(menuptr, event, iowindow{d)

struct menu **menuptr;
struct inputevent *event;
int iowindowf{d;

Menuptr is the address of a menu pointer that points to the first or “top” menu structure in a
menu stack. If the user causes the stack order to be rearranged, this indirection allows the
menu package to leave the new top of the stack in *menuptlr upon returning from menu_display.
The menu package shuffles the stack’s m_nezt values to rearrange the stack order. This enables
the menu stack to be redisplayed in the order it was left in the last invocation.

Event is the inputevent which provoked the menu. The location information, event-> ie_locz,
event->>4e_locy, in the event controls where the menus will be displayed. Event->>ie_code is the
event that is treated as the “menu button;” that is, the menu is displayed until this button goes
up. The right mouse button is the usual menu button. The left mouse button is always used
as the accelerator to bring rear menus forward. If it wasn't an explicit user action that pro-
voked the call to menu_display, these three event fields must be Joaded with the desired values

8-4 Revision D of 7 January 1984

-

-

SunWindows Reference Manual Suntool: User Interface Utilities

beforehand.

Iowindowfd is the file descriptor for the window that is displaying the menu. It is also the win-
dow that is read for user input. The event location values are relative to this window.
Menu_display currently uses the mechanism described in Full Sereen Access. Menu_display tem-
porarily modifies fowindowfd's input mask to allow mouse motion and buttons to be placed on
this window's input queue. All the menus in the stack are displayed, and there can only be one
stack on the screen at a time. The font used for strings is that returned from pw_pfsysopen.

Menu_display returns the menuitem, which was under the cursor when the user released the
mouse button, or NULL if the cursor was not over an item.

8.3.1. Prompt Facility

A prompt facility is sometimes used with menus to tell the user to proceed from his current
state. Prompting can also be done without menus. The definitions for the prompt facility are
found in fusr/include/suntool/ menu.h:

struct prompt {

struct rect pri_rect;
struct pixfont *prt_font;

char *prt_text;

b
#define PROMPT_FLEXIBLE -1

Prt_rect is the rectangle in which the text addressed by prt_text will be displayed using pr¢_font.
Only printable characters and blanks are properly dealt with. Carriage returns, line feeds or
tabs are not. If any of prt_rect's fields are PROMPT_FLEXIBLE, that dimension is automati-
cally chosen by the prompt mechanism to accommodate all the characters in prt_test.

menu_prompt{prompt, event, iowindow{d)

struct prompt *prompt,
struct inputevent *event;
int iowindowfd;

Menu_prompt displays the indicated prompt (prompt->prt_rect is sowindowfd relative), and
then waits for any input event other than mouse motion. It then removes the prompt, and
returns the event which ended the prompt’s existence in event. lowindowfd is the window from
which input is taken while the prompt is up. The fullscreen access method is used during
prompt display.

8.4. Selection Management

This section describes an interface to a aclection manager that is used to coordinate access to a
single data entity called the current selection. The current selection is globally accessible by any
process, thus providing an inter-tool data exchange mechanism.

A commop style of operation/operand command specification is a non-modal one in which the
operand is specified first. I the window system, the operand is called the selection since it usu-
ally requires that the user select something with the pointing device. A selection is highlighted
in some way and persists until an operation removes it programmatically or the user performs
some action that causes the selection to be removed.

Revision D of 7 January 1984 85

Suntool: User Interface Utilities SunWindows Reference Manual

The header file /usr/ includefsuntool/ selection.h contains the definition necessary for using selec-
tions. The object that describes a selection is:

struct selection {

int sel_type,

int sel_items,

int sel_itembytes,
int sel_pubflags;

caddr_t sel_privdata;

3

##define SELTYPE_NULL 0
#fdefine SELTYPE_CHAR 1

Sel_type indicates the type of the selection. Currently, SELTYPE_NULL (no selection) and
SELTYPE_CHAR (ASCII characters) are the only selection types defined. Sel items is the
number of items in the selection data. Sel_itembytes is the number of bytes each item occupies
in the selection data. Sel pubflags is used to contain publicly understood flags that further
describe the selection. Sel privdata is used to contain 32 bits worth of privately understood
data that is only understood between implementations of a particular selection type.

The selection structure is not to be confused with actual selection data itself, the characters in a
SELTYPE_CHAR selection, for instance.

selection_set(sel, sel_write, sel_clear, window{d)

struct selection *sel

int (*sel_write));
int (*sel_clear)();
int window{d;

sel_write(sel, file)

struct selection *sel;
FILE file;
sel_clear(sel, windowfd)
struct selection *sel;
int windowfd;

Selection_set is used to change the current selection. Sel describes the selection. Sel write is a
procedure that is called to store information into the selection. Currently, only selection_set
calls sel_write, but in the future sel_write might be called at any time. The sel_write procedure
takes as arguments ael, the selection description handed to selection_set, and file, a standard
I1/0O FILE pointer. The standard I/O library is used to write the selection data to file. Win-
dowfd is the window that is making the selection.

Sel_clear is a procedure that the selection manager would call when it wanted the selection
currently being set to be dehighlighted. This could happen when another selection had been
made. Thiz clear feature is not currently implemented. When implemented thés call could come
at any time after retirning from selection_set.

selection_clear(windowfd)
int window{d;

is called when windowfd wants to clear the current selection. Ideally, there is only one selection
on the scygen at a time so that the user doesn’t become confused about which operand will be

8-6 , Revision D of 7 January 1984

l'p\l

N’

-

SunWindows Reference Manual Suntool: User Interface Utilities

affected by his next command.

Since the acl_clear feature is not currently implemented, it is the selection maker’s decision as to
when to dehilight his selection feedback. The only existing use of the selection mechanism waits
for the user to move his cursor out of the window that made the selection before dekilighting it.

selection_get(sel_read, windowfd) -
int (*sel_read)();
int windowid;

sel_read(sel, file)
struct selection *sel;
FILE *file;

Selection_get is used to find out the current selection. Sel read is a procedure that selection_get
calls to enable the client to retrieve the selection. Windowfd is the window that wants to find
out about the selection.

The sel_read procedure takes as arguments sel, the selection description of the current selection,
and flle, a standard I/O FILE pointer. The standard io library is used to read the selection
data from file. Sel_read should check the type of the selection and make sure that it is a type
with which it can deal.

8.6. Window Management

The procedures in this section implement common functions for managing windows.

8.5.1. Window Manipulation

These routines provide the standard window management user interface presented by tool win-
dows: '

Revision D of 7 January 1984 8-7

Suntool: User Interface Utilities SunWindows Reference Manual

wmgr_open(toolfd, rootfd)
int toolfd, rootfd;

wmgr_close(toolfd, rootfd)
int toolfd, rootfd;

wmgr_move(toolfd)
int toolfd;

wmgr_stretch(toolfd)
int toolfd;

wmgr_top(toolfd, rootfd)
int toolfd, rootfd;

wmgr_bottom(toolfd, rootfd)
int toolfd, rootfd;

wmgr_refreshwindow{window{d)
int windowfd;

In each of the above routines, toolfd is a file descriptor for a tool window and rootfd is a file
descriptor for the root window. Wmgr_open opens a tool window from its iconic state to normal
size. If the window is already open, wmgr_open does nothing. Wmgr_close closes a too! window
from its normal size to its iconic size. If the window is already closed, wmgr_close does nothing.
Wmgr_move prompts the user to move the tool window or cancel the operation. If confirmed,
the rest of the move interaction, including dragging the window and moving the bits on the
screen, is done. Wmgr_stretch is like wmgr_move, but it stretches the window instead of moving
it. Wmgr_top places the tool window on the top on the window stack. Wmgr_bottom places the
tool window on the bottom on the window stack. Wmgr_refreshwindow causes windowfd and all
its descendant windows to repaint.

The routine wmgr_changerect:

wmgr_changerect{feedbackfd, windowfd, event, move, noprompt)

int feedbackfd, windowfd;
struct inputevent *event;
bool move, nOprompt;

implements wmgr_move and wmgr_stretch, including the user interaction sequence. Windowfd is
moved (1) or stretched (0) depending on the value of move. To accomplish the user interaction,
the input event is read from the feedbackfd window (usually the same as windowfd). The
prompt is turned off if nopromptis 1.

int wmgr_confirm(windowfd, text)
int windowfd;
char *text;

Wmgr_confirm implements a layer over the prompt package for a standard confirmation user
interface. Text is put up in a prompt box. If the user confirms with a left mouse button press,
then -1 is returned. Otherwise, 0 is returned.

8-8 Revision D of 7 January 1984

-

StnWindows Reference Manual Suntool: User Interface Utilities

Note: The up button event is not consumed.

The window management package provides menu handling code that ties all the routines in this
subsection into the wmgr_toolmeny. This provides a convenient way of getting access to the
same menu that is presented by a tool window. If you don’t like the menu provided (you want
to add/subtract/change menu items), define and use a new one. The routines in this section
should be all you need to put together a functionally similar window manipulation interface.

struct menu *wmgr_toolmenu;

wmgr_setupmenu(toolfd)
int toolfd;

wmgr_handletoolmenuitem(menu, mi, toolfd, rootfd)

struct menu *menu;
struct menuitem *mi;
int toolfd, rootfd;

To use the default tool menu, call wmgr_sctupmenu just before you put up wmgr toolmenu.
Wmgr_setupmenu arranges the menu items depending on the tool state (iconic vs. normal).
Passing the menu item returned from menu_display to wmgr_handletoolmenustem causes the
appropriate menu action to be done. As an example, refer to the Pane Tool code provided in
ponetool.c in appendix B. :

8.5.2. Tool Invocation

The routines in this section provide tool invocation and default position control.

#define WMGR_SETPOS -1

wmgr_figuretoolrect(rootfd, rect)
int rootfd;
strict rect *rect;

wmgr_figureiconrect(rootfd, rect)
int rootfd;
struct rect #rect;

These routines allow windows to be assigned initial positions that don't pile up on top of one
another. The rootfd window maintains a “next slot’ position for both normal tool windows and
icon windows (see wmgr_setrectalloc below). These procedures assign the next slot to the rect if
rect—>r_left or reét->r_top is equal to WMGR_SETPOS. A new slot is chosen and is then
available for the next window with an undefined position.

These procedures also assign a default width and height if WMGR_SETPOS is given, again for
both normal (tool) and iconic rects. Wmgr_figuretoolrect currently assigns tool window slots
that march from near the top middle of the screen towards the bottom left of the screen. It
assigns a window size correct for am 80-column by 34-row terminal emulator window.
Wingr_figureiconrect currently assigns icon slots that march from the left bottom towards the
right of the screen. It assigns icon sizes that are 64 by 64 pixels.

Revision D of 7 January 1984 89

Suntool: User Interface Utilities SunWindows Reference Manual

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic)

char *programname, *otherargs;
struct rect *rectnormal, *recticon;
int iconic;

is used to fork a new tool that has its normal rectangle set to rectnormal and its icon rectangle
set to recticon. If sconic is not zero, the tool is created iconic. Programname is the name of the
file that is to be run and otherargs is the command line that you want to pass to the tool. A
path search is done to locate the file. Arguments that have embedded white space should be
enclosed by double quotes.

8.5.3. Utilities

The utilities described here are some of the low level routines that are used to implement the
higher level routines. They may be used to put together a window management user interface
different from that provided by tools. If a series of calls is to be made to procedures that mani-
pulate the window tree, the whole sequence should be bracketed by win_lockdata and
win_unlockdata, as described in The Window Hierarchy.

wmgr_completechaﬁgergct(windowfd, rectnew, reetoriginal, parentprleft, parentprtop)

int windowfd;
struct rect *rectnew, #rectoriginal;
int parentprleft, parentprtop;

does the work involved with changing the position or size of a wirdow’s rect. This involves sav-
ing as many bits as possible by copying them on the screen so they don’t have to be recom-
puted. Wmgr_completechangerect would be called after some programmatic or user action deter-
mined the new window position and size in pixels. Windowfd is the window being changed.
Rectnew is the window's new rectangle. Rectoriginal is the window’s original rectangle.
Parentprleft and parentprtop are the upper-left screen coordinates of the parent of windowfd.

wmgr_winandchildrenexposed(pixwin, rl)
struct pixwin *pjxwin;
struct rectlist #rl;

computes the visible portion of pizwin->pw_clipdate.pwed_windowfd and its descendants and
stores it in #. This is done by any window management routine that is going to try to preserve
bits across window changes. For example, wmgr_completechangerect calls
wmgr_winandchildrenezposed before and after changing the window size/position. The intersec-
tion of the two rectlists from the two calls are those bits that could possibly be saved.

wmgr_changelevel{windowfd, parentfd, top)
int windowfd, parent{d;
bool top;

moves a window to the top or bottom of the heap of windows that are descendants of its
parent. Windowfd identifies the window to be moved; parentfd is the file descriptor of that
window’s parent, and top controls whether the window goes to the top (TRUE) or bottom
(FALSE). Unlike wmgr_top and wmgr_bottom, no optimization is performed to reduce the
amount of repainting. Wmgr_changelevel is used in conjunction with other window rearrange-
ments, which make repainting unlikely. For example, wmgr_close puts the window at the bot-
tom of the window stack after changing its state.

8-10 ' Revision D of 7 January 1984

-

C

SunWindows Reference Manual Suntool: User Interface Utilities

#define WMGR_ICONIC WUF_WMGRI

wmgr_iswindowopen(windowfd)
int window{d;

The user data of windowfd reflects the state of the window via the WMGR_ICONIC flag.
WUF_WMGRI1 is defined in /usr/includefsunwindow/win_ioctlh and WMGR_ICONIC is
defined in [usr/include/suntool/wmgr.h. Wmgr_iswindowopen tests the WMGR_ICONIC flag
(see above) and returns TRUE or FALSE as the window is open or closed.

The rootfd window maintains a “next slot’ position for both normal tool windows and icon win-
dows in its unused iconic rect data. Wmgr_asetrectalloc stores the next slot data and
wmgr_getrecialloc retrieves it:

wmgr_setrectalloc(rootfd, tool_left, tool_top, icon_left, icon_top)
int rootfd;
short tool_left, tool_top, icon_left, icon_top;

wmgr_getrectalloc(rootfd, tool_left, tool_top, icon_left, icon_top)
int rootfd;
short stool_left, *tool_top, *icon_left, *icon_top;

If you do a wmgr_setrectalloc, make sure that all the values you are not changing were retrieved
with wmgr_getrectalloc. In other words, both procedures affect all the values.

Revision D of 7 January 1984 8-11

Appendix A

Rects and Rectlists

This appendix describes the geometric structures used with the sunwindow layer and a full
description of the operations on these structures. Throughout sunwindow, images are dealt with
in rectangular chunks. Where complex shapes are required, they are built up out of groups of
rectangles. A rectis a structure that defines a rectangle. A rectlist is a structure that defines a
list of rects.

The header files rect.h and rectlist.h are found in [usr/includefsunwindow/. The library that
provides the implementation of the functions of these data types are part of
[uer/lib] libsunwindow.a. :

Although these structures are presented in terms of sunwindow usage with pixel units, they are
really separate and can be thought of as a rectangle algebra package. Any application that
needs such a facility should consider using rects and rectlists.

A.1l, Rects

The rect is the basic description of a rectangle, and there are macros and procedures to perform
common manipulations on a rect.

#define coord short

siruct rect {

coord r_left;
coord r_top;
short r_width;

short r_height;
}s
The rectangle lies in a coordinate system whose origin is in the upper left-hand corner and
whose dimensions are given in pixels.

A.1.1. Macros on Rects

The same header file defines some interesting macros on rectangles. To determine an edge not
given explicitly in the rect:

Revision D of 7 January 1984 A-1

Rects and Rectlists SunWindows Reference Manual

#define rect_right(rp)
#define rect_bottom(rp) @

struct rect *rp;
returns the coordinate of the last pixel within the rectangle on the right or bottom, respectively.
Useful predicates returning TRUE or FALSE are:

#define bool nnsigned

#define TRUE 1
#tdefine FALSE 0
rect_isnull(r) r's width or height is 0
rect_includespoint(r,x,y) (x,y) lies in r
rect_equal(rl, r2) r1 and r2 coincide exactly
rect_includesrect(rl, r2) every point in r2 lies in r1
rect_intersectsrect(rl, r2) at least one point lies in both rf and r2
struct rect ir, *rl, *r2;
coord X, ¥;

Macros which manipulate dimensions of rectangles are:

rect_construct(r, x, y, w, h)
struct rect *r;
int X, Yy, w, b

This fills in r with the indicated origin and dimensions.

rect_marginadjust(r, m) Q
struct rect *r;
int m; '

adds a margin of m pixels on each side of r; that is, r becomes 2#m larger in each dimension.

rect_passtoparent(x, ¥, r)

rect_passtochild(x, y, r}
coord X, ¥;
struct rect *r;

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child
rectangle, so that its points are now located relative to the parent or child's origin. X and y are
the origin of the parent or child rectangle within its parent; these values are added to, or
respectively subtracted from, the origin of the rectangle pointed to by r, thus transforming the
rectangle to the new coordinate system.

A.1.2. Procedures and External Data for Rects

A null rectangle, that is one whose origin and dimensions are all 0, is defined for convenience:
extern struct rect rect_null;
The following procedures are also defined in rect.k

struct rect rect_bounding(rl, r2)

struct rect *rl, *r2;
This returns the minimal rect that encloses the union of r1 and r2 The returned value is a O

A-2 Revision D of 7 January 1984

©

SunWindows Reference Manual Rects and Rectlists

struct, not a pointer.

rect_intersection(rl, r2, rd)
struct rect *rl, sr2, *rd;

computes the intersection of rf and r2, and stores that rect into rd.

bool rect_clipvector(r, x0, y0, x1, y1)
struct rect *r;
coord #x0, +y0, *x1, *yl;
modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that
excludes the whole vector, otherwise it returns TRUE.

Note: This procedure should not be used to clip a vector to multiple abutting rectangles. It
may not cross the boundaries smoothly.

bool rect_order{rl, r2, sortorder)
struct rect *rl, *r2;
int sortorder;

returns TRUE if r1 precedes or equals r2 in the indicated ordering:

#define RECTS_TOPTOBOTTOM 0

jtdefine RECTS_BOTTOMTOTOP 1

#define RECTS_LEFTTORIGHT 2

ftdefine RECTS_RIGHTTOLEFT 3
Two related defined constants are:

ftdefine RECTS_UNSORTED 4
indicating a “‘don’t-care' order, and

#tdefine RECTS_SORTS 4

giving the number of sort orders available, for use in allocating arrays and so on.

A.2. Rectlists

A rectliat is a structure that defines a list of rects. A number of rectangles may be collected into
a list that defines an interesting portion of a larger rectangle. An equivalent way of looking at
it is that a large rectangle may be fragmented into a number of smaller rectangles, which
together comprise all the larger rectangle’s interesting portions. A typical application of such a
list is to define the portions of one rectangle remaining visible when it is partially obscured by
others,

Revision D of 7 January 1934 A-3

Rects and Rectlists SunWindows Reference Manual

struct rectlist {

coord rl_x, rl_y;

struct rectnode *rl_head;
struct rectnode #*rl_tail,
struct rect rl_bound;

|5

struct rectnode {
atruct rectnode *rn_next;
struct rect rn_rect;

}i

Each node in the rectlist contains a rectangle which covers one part of the visible whole, along
with a pointer to the next node. Rl_bound is the minimal bounding rectangle of the union of all
the rectangles in the node list. All rectangles in the rectlist are described in the same coordinate
system, which may be translated efficiently by modifying rl_z and rl y.

The routines that manipulate rectlists do their own memory management on rectnodes, creating
and freeing them as necessary to adjust the area described by the rectlist.

A.2.1. Macros and Constants Defined on Rectlists

Macros to perform common coordinate transformations are provided:

rl_rectoffset(rl, rs, rd)
struct rectlist *rl;
struct rect *rs, *rd;

copies ra into rd, and then adjusts rd's origin by adding the offsets from rl.

rl_coordoffset(rl, x, ¥)
struct rectlist srl;
coord X, Y;

offsets z and y by the offsets in ¢/, For instance, it converts a point in one of the rects in the
rectnode list of a rectlist to the coordinate system of the rectlist’s parent.

Parallel to the macros on rect’s, we have:

rl_passtoparent(x, y, rl)

rl_passtochild(x, y, rl}
coord X, ¥;
struct rectlist *rl;

which add or subtract the given coordinates from the rectlist’s rl_z and rl y to convert the rl A

into its parent’s or child’s coordinate system.

A.2.2, Procedures and External Data for Rectlists

An empty rectlist is defined, which should be used to initialize any rectlist before it is operated
on:

extern struct rectlist rl_null;

A-4 Revision D of 7 January 1984

-

SunWindows Reference Manual Rects and Recthlists

Procedures are provided for useful predicates and manipulations. The following declarations
G apply uniformly in the descriptions below:

struct rectlist rl, #rll, #r12, *rld;
struct rect *r;
coord X, ¥;

Predicates return TRUE or FALSE. Refer to the following table for specifics.

Table A-1: Rectlist Predicates

Macro Returns TRUE if
rl_empty(rl) Contains only null rects
rl_equal(rll, ri2) The two rectlists describe the same space identically —
same fragments in the same order
rl_includespoint(rl,x,y) (2, y) lies within some rect of rl
rl_equalrect(r, rl) rl has exactly one rect, which is the same as r
rl_boundintersectsrect(r, rl) Some point lies both in r and in #I's bounding rect

Manipulation procedures operate through side-effects, rather than returning a value. Note that
it is legitimate to use a rectlist as both a socurce and destination in one of these procedures. The
0 source node list will be freed and reallocated appropriately for the result.

-

Revision I} of 7 January 1984 A-5

Rects and Rectlists

SunWindows Reference Manual

Refer to the following table for specifics.

Procedure

Effect

rl_intersection(rll, rl2, rid)
rl_union(rll, ri2, rid)
rl_difference{rll, rl2, rid)

rl_coalesce(rl)

rl_sort(r], rld, sort)
int sort;

rl_rectintersection(r, rl, rld)
rl_rectunion(r, rl, rld)
rl_rectdifference(r, rl, rld)

rl_initwithrect(r, rl)
rl_copy(rl, rid)
rl_free(rl)

rl_normalize(rl)

Stores into rid a rectlist which covers the intersection
of rit and ri2.

Stores into rid a rectlist which covers the union of rif
and rl2.

Stores into rid a rectlist which covers the area of rif
not covered by ri2

An attempt is made to shorten rl by coalescing some of
its fragments. An r! whose bounding rect is completely
covered by the union of its node rects will be collapsed
to a single node; other simple reductions will be found;
but the general solution to the problem is not attempt-

ed.

rl is copied into rld, with the node rects arranged in
sort order.

rld is filled with a rectlist that covers the intersection
of r and rl.

rid is filled with a rectlist that covers the union of r
and rl.

rld is filled with a rectlist that covers the portion of r/
which is not in r.

Fills in rl so that it covers the rect r
Fills in rld with a copy of rl.
Frees the storage allocated to rl

Resets rl's offsets (rl_z, rl_y) to be 0 after adjusting the
origins of all rects in r! accordingly.

A-6

Revision D of 7 January 1984

-

O

-

Appéndix B

Sample Tools

This appendix contains sample tool code for writing your own tools. Code is provided for the
graphics window (gfztool.c), which produces a sheil subwindow and an empty subwindow in
which graphics programs can run, the pane tool (panetool.c), which produces multiple subwin-
dows, the option tool {(optiontool.c), which tests the option subwindow library, and the icon tool
{scontool.c), which is a bitmap editor for painting icons and cursors. The source files for these
and other tools are found in /uasr/suntool/src/ *tool.c.

B.1. gfxtéol.c Code

Code for gfztool.c follows.
gifndef lint

static char scemid[] == " @ (4)gfxtool.c 1.6 83/10/18 Sun Micro”;

sdendif
/*
» Sun Microsystems, Inc.

¢/
I*

* Overview: Graphics Window: A shell subwindow and an empty

s subwindow in which graphics programs can run.

+/

#include <ays/types.h>

sinclude <signalh>

ginclude " pixrect/pixrect.h”
stinclude " pixrect/pixfont.h”
shinclude "pixrect/pr_util.h”
winclude "pixrect/memvar.h”
sinclude "sunwindow/rect.h"
sinclude "sunwindow/rectlist.h”
winclude "sunwindow/pixwin.h”
finclude "sunwindow/win_struct.h”
#include "sunwindow/win_environ.h”
#include "suntoolficon.h”

#include ?suntool/tool.h”

#include "suntool /emptyew.h”
#include "suntool/ttysw.h”

static short ic_jmage[256]={
#include " gfxtool.icon”

1
mpr_static(gfxic_mpr, 64, 64, 1, ic_image);

Revision D of 7 Yanuary 1984

B-1

Sample Tools SunWindows Reference Manual

static struct icon icon =a {64, 84, (struct pixrect)0, 0, 0, 84, 64,

>xic_mpr, 0, 0, 0, 0, (char)0, (struct pixfont)0, f
ICON_BKGRDGRY}; '

static int sigwinchcatcher(), sigchldcatcher();
static struct tool stool;

gfxtool_main(arge, argv)
int arge;
char s*argv;

char *toolname == ”Graphics Tool 1.07;
struct toolsw sttysw, semptysw;
char name{WIN_NAMESIZE};

E]
» Create tool window
»
tool == vool_create(toolname, TOOL __NAMESTRIPEITOOL__BOUNDARYMGR,
(struct rect *)0, &icon);
.
s Create subwindows

+/
ttysw == ttysw_createtoolsubwindow(tool, Tttysw”,
TOOL_SWEXTENDTOEDGE, 200);
emptysw == eaw_createtoolsubwindow{tool, "emptysw”,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGEY);
]
» Setup gfx window environment value.

[3
win_fdtoname(emptysw->ts_windowld, name); Q
we_setgfxwindow(name); :

[a

+ Install too! in tree of windows

]

signal(SIGWINCH, sigwinchcatcher);

signal{SIGCHLD, sigchldcateher);

tool_install{tool);

/ .

Start tty process

*/

it (ttysw_fork(ttysw->ts_data, + + argv, &ttysw- > ts_io.tio_inputmask,

&ttysw->ts_jo.tio_outputmask, &ttysw->ts_in.tio_exceptmask) e -1} {

perror(” gfxtool);
exit(1);

}

+ Handle input

[]

tool_select(tool, 1 /+ means wait for child process to dies/);
/e

+ Cleanup

*

tool_destroy(tool);
exit(0);

}

static O

B-2 Revision D of 7 January 1984

SuntVindows Reference Manual

sigchidzatcher()
tos]_sigehld(tool);

static

sigwincheatcher(}

tool_sigwinch(tool);

B.2. panetool.c Code

Code for the panetool.c follows.
$ifndef lint

static char sccaid]] == " @(#)panetool.c 1.8 83/10/18 Sun Micro”;

#endif

[a
* Sun Microsystems, Inc.

s/
I*

. subwindows.

o/

#include <eys/types.h>

#include <sysftime.h>

$include <signal.h>

ginclude " pixrect/pixrect.h”
#include " pixrect/pixfont.h”
#include "sunwindow/rect.h”
#tinclude "sunwindow/rectlint.h”
ghinclude "sunwindow/pixwin.h"
finclude "sunwindow/win_input.h”
#include *sunwindow/win_struct.h”
#include "suntool/icon.h”

#include "suntool/tool.h"

#include "suntool/magaw.h”
#include "suntool/menu.h”

static int sigwincheatcher();
static struct tool *tool;

static char charbufl4];

struct menuitem m3_items[} = { MENU_MAGESTRING, "Menu Item”, 0);

gtruct menu m3_menubody == {

MENU_IMAGESTRING, "M3”, sizeof(m3_items) / sizeof(struct menuitem), m3_items, 0, 0 b
struct menuitem m2_items{] = { MENU_IMAGESTRING, "Menu Item”, o};

struct menu m2_menubody = {

MENU_IMAGESTRING, "M2”, sizeof(m2_items) / sizeof(struct menuitem),
m2_jtems, &m3_menubody, 0};
struet menuitem ml_jtems]] = { MENU_IMAGESTRING, "Menu Item”, 0};

struct menu ml_menubody = {

Revision D of 7 January 1984

. Overview: Pane Tool: Sample program to illustrate multiple

Sample Tools

B3

Sample Tools . SunWindows Reference Manual

MENU_IMAGESTRING, "M1”, sizeof(m]_items) / sizeof(struct menuitem),
m1_items, &m2_menubody, 6}; @

struct menu *stacklmenutop = &ml_menubody;

struct menuitem m4_items[] = { MENU_IMAGESTRING, "Menu Item”, 0};

struct menu m4_menubody == {
MENU_IMAGESTRING, "M#4", sizeof(m4_items) / sizeof{struct menuitem),
m4_jtems, 0, 0 };

struct menuitem m5_jtemsf] = { MENU_IMAGESTRING, "Menu Item”, 0};

struct menu m5_menubody o= {
MENU_IMAGESTRING, "M5", sizeof(m5_items) / siseof{struct menuitem),
m5_jtems, &m4_menubody, 0};

struct menuitem m6_jtems[] = { MENU_IMAGESTRING, "Menu Item”, 0};

struct menu mbé_menubody == {
MENU_IMAGESTRING, "M8", sizeof(mB_items) / sizeof(struct menuitem),
m6_jtems, &£m5_menubody, 0};

struct menu *stack2menutop = &mb_menubody;

int menutoggle; '

main(arge, argv)
int arge;
char ssargv;

char stoolname == "Pane Tool 1.0 (A sampla tool)";
struct toolsw ¢paneNW, spaneNE, spaneSW, s#paneSE;
extern struct pixfont #pf_sys;

/*

» Create tool window

-

tool == tool_create{toolname, TOOL_NAMESTRIPE|TOOL_BOUNDARYMGR,
(struct rect) 0, (struct icon *) 0);
/e
¢ Create msg subwindows
o
paneNW == msgsw_createtoolsubwindow(tool, " paneNW”,
100, 100, "Raw keyboard input”, pf_sys);

paneNE = msgsw_createtoclsubwindow(tool, "paneNE",
TOOL_SWEXTENDTOEDGE, 100,
*Key input here redirected to NW subwindow”, pf_sys);

paneSW a= magsw_createtooisubwindow({tool, " paneSW™,

100, TOOL_SWEXTENDTOEDGE, "Display alternating menu stacks”,pf,_sys);

paneSE == msgsw_createtoolsubwindow(tool, "paneSE",

TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,

*Try moving subwindow boundaries”, pf_sys);

/-
« Raw input and flushing
o]

{

struct inputmask im;

int paneNW_selected();

input_imnull{&im);

im.im_flags = IM_UNENCODED;
win_getinputmask (paneNW- >ts_windowfd, &im, &im, WIN_NULLLINK};
paneNW->>ts_io.tio_selected = paneNW_selected;

}

/l‘

+ Input redirection O

B-4 Revision D of 7 January 1984

SunWindows Reference Manual Sample Tools

o ¢

struct inputmask im;

win_getinputmask({paneNE- > ts_windowld, &im, 0);

win_setinputmask(paneNE->ts_windowld, &im, (struct inputmask) 0,
win_{dtonumber(paneNW- > ts_windowfd));

}

/o

¢ Multi menu stacks

s/

{

struct inputmask im;

int paneSW_gelected();

input_imnull{&im);

win_setinputeodebit(&im, MENU_BUT);
win_setinputmask{paneSW->ts_windowfd, &im, &im, WIN_NULLLINK};
paneSW- > ts_io.tio_selected we pancSW_selected;

}

[]

» Install tool in tree of windows

L]
signal(SIGWINCH, sigwinchcatcher);
tocl_install{tool);

[]

s Handle input

E
tool_select{tool, 0);

@ /: Cleanup

»
tool_destroy(tool);
exit(0);

}

paneNW_gelected(magsw, ibits, obita, ebits, timer)
struct msgaubwindow smagsw;
int «ibits, sobits, sebits;
struct timeval s*timer;

struct inputevent event;
int error;

error s= input_readevent{msgsw- >msg_windowfd, &event);
if (srror < 0) {

perror(” panetool™);

return;

}

charbuf(0] == 'c’;

charbuff1] = "

charbuf]2] == (char) event.ie_code&O0XTT;
charbuff3] == ' *;
megsw_getstring(magsw, charbuf});

*ibits s= *obits + =cbits + 0;

}

= paneSW_selected(msgsw, ibits, obits, ebits, timer)
' struct megsubwindow *msgsw;

Revision D of 7 January 1884 B-5

Sample Tools

int »ibits, *obits, sebits;
struct timeval *stimer;

struct inputevent event;
int error;
extern struct menuitem *menu_display();

error = input_readevent(msgsw- >msg_windowld, &event};
if (error < 0) {

perror(” panetool™ };

return;

(void) menu_display((menutoggle)! &stacklmenutop: &stack2menutop,
Levent, megsw- >msg_windowld);

menutoggle == Imenutoggle;

*ibits == sobita + »ehits + 0;

}

static
sigwincheatcher()
{

tool_sigwinch(teol);

B.3. optiontool.c Code

Code for the optiontool.c follows.

#ifndef lint
static char scesid]] = " @(#)optiontool.c 1.10 84/01/17 Sun Micro”;
hendif

»
s Sun Microsystems Ine.

o/
/:

* optiontool: test optionsw library
+/

ginclude <stdio.h>»

gkinclude <suntool/tocl_hs.h>

#include <suntoolfoptionsw.h>

static struct tool *tool;

static char sname == "Option Tool 1.17;
static struct toolsw stsw;
static caddr_t oNw;

static struct pixwin opt_pixwin;

static caddr_t items [32);

statie struct pixfont *font;

static struct rect 1;

static unsigned dump_glyph[16] = {

0x 00002000, 9x00007000, 0x0000D800, 0x00018C00,
0x00030500, 0x00060C1F, 0x300C1819, 0x0C183019,

B-6

SunWindows Reference Manual

Revision D of 7 January 1984

-

-

C

SunWindows Reference Manual

0x0330701F, 0x00EOCSTF, 0x0031847F, 0x029B0261,
0x07EF6FED, 0x 1FE49012, 0x7FF89012, 0xFFF8600C

H
static mpr_static{dump_pr, 32, 18, 1, dump_glyph);

static struct typed_pair title = { IM_TEXT, "Option Subwindow Demo” };
static struct typed_pair confirm_label = { IM_TEXT, "Quittable” };

static struct typed_pair quit_label == { IM_TEXT, ”Quit® %

static struct typed_pair verbose_label == { IM_TEXT, "Verbose” }

static struct typed_pair dump_label = { IM_GRAPHIC, (caddr_t)&dump_pr};
static struct typed_pair x_label == { IM_TEXT, "Flag X" };

static struct typed_pair y_label == { IM_TEXT, "Flag Y" };

gtatic struct typed_pair z_label == { IM_TEXT, "Flag 2" };

static struct typed_pair $1_label == { IM_TEXT, "Type here” %

static struct typed_pair t2_label == { IM_TEXT, "Secret” };

static struct typed_pair t3_label = { IM_TEXT, "line 1”};

static struct typed_pair t4_label == { IM_TEXT, "line 2"};

static struct typed_pair txtemd_label == { IM_TEXT, "Report Text” h

static struct typed_pair enum_lab;l = { IM_TEXT, "Choose” };
gtatic char ¢choice_values[] = { ”Zera”, "One”, "Many”, 0 }
static struct typed_pair enum_choices == { IM_TEXTVEQ, {caddr_t)choice_values };

static int n,
confirmed = FALSE,
remove_which,
chooser(),
confirmer(},
dumper(),

quitter(},

reporter(),
sigwinched(),
verbose,

verboser(),

texter();

FILE *sysout == stderr;
int removed_ttems;
main{)

struct item_place p;

L]
» Create tool window
[]
tool == tool_create(name, TOOL_NAMESTRIPE, NULL, NULLY;
[+ !
s Create subwindow and fill it out
*/

tew == optsw_createtoolsubwindow(tool, "optsw”,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE);

osw == taw->ts_data;

n = 0;

itemsfn+ +) == optsw_labei(osw, &title);

items[n+ + | == optsw_bool(osw, &confirm_label, FALSE, confirmer);

items[n+ +] == optsw_command(osw, &quit_label, quitter);

items|n+ +] = optew_bool{osw, &verbose_label, FALSE, verboser);

Revision D of 7 January 1984

Sample Tools

B-7

Sample Tools SunWindows Reference Manual

itema[n+ +] == optsw_command{osw, &dump_label, dumper);

items|n+ +] == optsw_enum(osw, &enum_label, &enum_choices, 0, 0, chooser);
items[n+ + | = optsw_booi{osw, &x_label, TRUE, reporter); @
items|[n+ + | = optaw_bool{osw, &y_label, FALSE, reporter);

items[n+ +] == optsw_bool{osw, &3_label, TRUE, reporter);

iterns[n+ + | == optsw_text{osw, &t1_label, "A text parameter”, 0, NULL);

items[n+ +] = optsw_text{osw, &t2_label, "Shhhhh..."”, OPT_TEXTMASKED, NULL);
remove_which = n;

itemsn+ +] = optaw_text{osw, &t3_label, "7, 0, NULL});

items{n+ + | = optsw_text(osw, &t4_label, ””, 0, NULL);

items|n+ + | == optsw_command(osw, &txtemd_label, texter);

rect_construct{&p.rect, 128, 12, -1, -1); /*» pixel positioning ¢/
p.fixed.x = TRUE; p.fixed.y = TRUE;
optaw_setplace{osw, items|0], &p, FALSE);

p.rect.r_left = optaw_coltox{osw, 0}; /* character positioning +/
p.rect.r_top == -1;

p.fixed.y == FALSE;

optsw_setplace{osw, items{1], &p, FALSE);

removed_items == optsw_removeitems{osw, items|remove_which), 2, FALSE);

s

¢ Inatall tool in tree of windows

*/
signal(SIGWINCH, sigwinched);
win_insert(tool- >tl_windowfd);

IE/ main loop : . Q

tool_select{tool, 0);

* Oleanup

L]
tool_destroy(tool);
exit(0);

}

static
sigwinched()

tool_sigwinch(tool);

}

static

confirmer(sw, ip, value)
caddr_t w;
caddr_¢ ip;

int value;

{

int resuls;
confirmed = value;

if {verbose) {
printf{” Confirmation set to %d\n”, confirmed);

B-8 Revision D of 7 January 1984

-

SunWindows Reference Manual

}
static
reporter(sw, ip, value)
eaddr_t w;
caddr_t ip;
int value;
.
int result;
int count;
count == (int)optaw_getvalue(items[6], &result) +
(int)optew_getvalue(items(7], &result) +
(int)optew_getvalue(items(8], &result);
if (count s 3) {
count = 2;
optsw_setvalue(sw, iteme[5], count);
}
static
chooser{sw, ip, value)
caddr_t W}
caddr_t ip;
int value;
{
int result;
if (verbose) {
printd(" Choice set to %d\n", value);
}
static
dumper{sw, ip)
caddr t ew;
caddr_t ip;
{
int result;
it (verboee) {
optsw_dumpsw(stdout, sw, TRUE);
}
}
static
quitter(sw,ip)
caddr_t W}
caddr_t ip;
{

int result;

if (verbose) {
printf(” Quit invoked\n");

i}f {lconfirmed) {

if (verbose) {
printf(" but not confirmed.\n");
}

Revigsion D of 7 January 1984

Sample Tools

B-$

Sample Tools SunWindows Reference Manual

return;

}

tool_done(tool);
}
static char buf1[1024];
static char buf2[1024];

static struct string buf strl == { 1024, bufl };
statie struct string_buf str2 == { 1024, buf2 };

static

texter{sw, ip)
caddr_t asw;
caddr_t ip:

{

int result;

if (verbose) {

result == optaw_getvalue{items[9], &strl);

result == optsw_getvalue(items[10], &str2);

switch (optsw_getvalue(items[5], Zresult)) {
case 0: printf("Mum’s the word.\n");

break;

case 2: printf("First fleld: %s\n”, bufl);
case 1: printf(” Second fleld: %s\n", bul2);

if (removed_items 1= 0) {
optsw_restoreitems(osw, items[remove_whichl,

removed_items, TRUE); ‘
removed_items == 0; \f‘\‘,
} eloe {
removed_items s= optaw_removeitems(osw, itemsfremove_which],
2, TRUE);
}
}
static
verboser(sw, ip, val)
caddr_$ sw, val;
caddr_t ip;
verbose == (int) val;
}

B.4. icontool.c Code

Code for the fcontool.c follows,

#ifndef lint

static char scesid[] = " @(#)icontool.c 1.8 84/01/18 Sun Micro™;
#endif

/*

* Sun Microsystems Inc.

* icontool: bitmap editor for icons & cursors
! -

B-10 Revision D of T January 1984

SunWindows Reference Manual

ftinclude <suntoolftool_hs.h>>
#include <sys/stat.h>
fHnclude <stdioh>

ftinclude <errno.h>

#include " patches.h”

#include < suntool/msgsw.h>
#include < suntool/optionsw.h>

extorn char *sys_errlist]];
extern int eITno;

#define ICONIC 1

#define ICON_SIZE 8

¥#define CURSOR 0

gdefine CURSOR_SIZE (ICON_SIZE » 4)

#define MSG_HEIGHT 24

#define PROOF_SIDE 96

#define PROOF_MARGIN 18

¥ define OPTIONS_HEIGHTPROQF_SIDE
f#define CANVAS_DISPLAY(CURSOR_SIZE + 16)
#define CANVAS_MARGIN 18

fhdefine CANVAS_SIDE {CANVAS DISPLAY + 2 CANVAS_MARGIN)

wdefine BIG 2048

static u_int icon_array{128];
mpr_static{icon_pr, 84, 84, 1, icon_array);
static u_int new_cursor_array[8};
mpr_static(new_cursor_pr, 16, 18, 1, new_cursor_array);
static struct cursor new_cursor = {
0, 0,
PIX_SRC “ PIX_DST,
&new_cursor_pr

b

static u_int main_cursor_array[8] = {
0x C000E000, 0xF000F 800,
0xFCO0F000, 0x90001800,
0x 18000:C00, Nx0C000800,
0x06000309, 0x03000100
)
mpr_static(ma}in_curuor _pr, 16, 18, 1, main_cursor_array);
static struct cursor main_cursor == {

0,0
PIX_SRC | PIX_DST,
&main_cursor_pr

h

/* general tool area »/

#tinclude "icontool.icon”

mpr_static(my_icon_pr, 64, 64, 1, icon_data);

static struct icon my_icon = {
TOOL_ICONWIDTH, TOOL_ICONHEIGHT, NULL,
{0, 0, TOOL_ICONWIDTH, TOOL_ICONHEIGHT},
&my_icon_pr, {0, 0, 0, 0}, NULL, NULL, 0

h

Revision D of 7 January 1984

Sample Tools

B-11

Sample Tools SunWindows Reference Manual

static char tool_name[] = "Icon Tool 1.07;

static struct rect tool_rect;

statie struct tool *tool; ©
static sigwinched(};

/e error message area s/

static struct toolsw *meg sw;
struct magsubwindow smsw;

/e painting area s/

static struct toolsw scanvas_sw;
static struct pixwin *canvas_pixwin;
static struct pixrect scanvas pr;
static struct pixrect *fll_pr;

statie int (*canvas_reader)();
static eanvas_sighandler();
statie canvas_selected();
static canvas_basereader();
statie canvas_tracker();
static set_canvas_tracker();
static reset_canvas_reader();
static canvas_feedback();
static wait_legal_mouse();

/* result-display ares +/ :

static struct toolsw *proof_sw;
static struct pixwin *proof_pixwin;
etatic struct pixrect sproof_pr;
static proof_sighandler();

/s commande and optiona area xf

static struct toolsw soptions_sw;
caddr_t osw;

/* labels for items in the order they occur; enum values appear below ¢/

caddr_t mode_jtem;

struct typed_pair mode_label == {IM_TEXT, "Draw a” };
void mods_proe();

caddr_t Iabel_item;

struct typed_pair name_label ==
{IM_TEXT, "Left paints, Middle erases " };

caddr_t quit_item;

struct typed_pair quit_label == {IM_TEXT, "Quit" };

void quit_proc();

caddr_t load_item;

struct typed_pair load_label = {IM_TEXT, "Load” }; Q

B-12 Revision D of T January 1984

SunWindows Reference Manual

void load_proe();

caddr_t store_itein;

struct typed_pair store_label == {IM_TEXT, "Store” };
void stare_proc();

caddr_t fname_item;

struct typed_pair file_label = {IM_TEXT, "File” };

caddr_t fill_item;

struct typed_pair fill_label = {IM_TEXT, "Fill" };

void fill_proe();

caddr_t fill_value_item;

struct typed_pair £ill_value_Jabel == {IM_TEXT, "with” };
void fill_value_proc();

caddr_t invert_item;

struct typed_pair invert_label == {IM_TEXT, "Invert” };
void invert_proe();

caddr_t fill_op_item;

struct typed_pair fill_op_label == {IM_TEXT, "Load / Fill should” };
void fill_op_proc();

caddr_t paint_op_item;

struct typed_pair paint_op_label =« {IM_TEXT, "Cursor op” };
void paint_op_proe();

int paint_op_removed = FALSE;

caddr_t bkgrnd_value_item;

struct typed_pair bkgrnd_value_label == {IM_TEXT, "Proof background” %
void bkgrnd_proc(); '

J* Values for enums above of

fdefine OP OR 0 ' /* paint ops 74
s¥deflne OP_XOR 1

Wdefine OP_REPLACE 0 J* load [fillops s/
#define OP MERGE 1

#deflne GR_WHITE 0 J* gray codes »f
#deflne GR_GRAY25 1

gdefine GR_ROOT_GRAY 2

#deflne GR_GRAYS0 3

#define GR_GRAYTH 4

¥define GR_BLACK 5

void

mode_proc{optew, ip, val)
caddr_t oplsw;
caddr_t ip;

u_jnt val;

set_state{val);

#idefine IC_MODECOUNT 2

Revision D of 7 January 1984

Sample Tools

B-13

Sample Tools

char smode_valuesC_MODECOUNT+ 1] = { "Cursor”, "Icon” };
struct typed_pair mode_choices == {IM_TEXTVEC, (caddr_tjmode_values |5

#define IC_GRAYCOUNT &
char +gray_values[f[C_GRAYCOUNT+ 1] = {
"White”, "25%", "Root Gray”, "50%”, "75%", "Black” };
struct typed_pair gray_choices = {IM_TEXTVEC, (caddr_t)gray_values %

#define IC_FOPCOUNT 2
char sfill_op_values[IC_FOPCOUNT+ 1] = { "Replace”, "Merge” };
struct typed_pair fill_op_choices == {IM_TEXTVEC, {caddr_t}fill_op_values h

#define IC_POPCOUNT 2
char spaint_op_values[[C_POPCOUNT+ 1] = {”OR”,"XOR" };
gtruct typed_pair paint_op_choices = {IM_TEXTVEC, {caddr_t)paint_op_values };

/* general globals «/
int errno;

static u_int cur_x, cur. y,
cur_op,
cell_count,
cell_size,
state == -1; /e so first set_state really does */

char file_default]] == "test.icon”;
char file_name[1024];

struct pixfont #font;

FILE *gysout == stderr;
main(arge,argv)

int arge;

char ®*argy;

{

tool == tool_create{tool_name, TOOL_NAMESTRIPE, NULL, &my_icon);

font == pf_defanlt();
meg_sw == megsw_createtoolsubwindow(tool, ”", -1, MSG_HEIGHT, "~, font);
mew == (struct megrubwindow *)meg. sw-2>ta_data;

proof_sw == taol_createsubwindow(tool, "", PROOF_SIDE, PROOF_SIDE);
init_proof();

options_sw == optsw_createtoolsubwindow(tool, ", -1, OPTIONS_HEIGHT);
init_optiona{};

canvas_sw == tool_createsubwindow(tool, *7, -1, CANVAS_SIDE});
init_canvas{);

fix_tool_rect();

set_state(CURSOR);

fill_value_pro¢(NULIL, NULL, GR_ROCGT_GRAY);
bkgrnd_proc{NULL, NULL, GR_ROOT_GRAY);
signal(SIGWINCH, sigwinched);

tool_install(tool);

B-14

SunWindows Reference Manual

Revision D of 7 January 1984

-

©

SunWindows Reference Manual Sample Tools

tool_select{tool, 0);

tool_destroy(tool);
exit(0);

fix_tool_rect()

if {(wmgr_iswindowopen({tool->tl_windowld)) {
win_getrect(tool- > tl_windowfd, &tool_rect);
} else {

win_getsavedrect(tool > t]_windowfd, &tool_rect);

tool_rect.r_width == 2¢too)_borderwidth(tool} +
max{PROOF _SIDE + optsw_coltox{osw, 64) +
too]_subwindowspacing(tool},
CANVAS_SIDE);
tool_rect.r_height == MSG_HEIGHT
+ CANVAS_SIDE + PROOF_SIDE
+ tool_stripeheight{tool)
+ tool_borderwidth{tool)
+ 2¢tool_subwindowspacing(tool);
it (rect_bottom(&tool_rect) > == 800) {
tool_rect.r_top -== rect_bottom{&tool_rect) - 799;

it (wmgr_iswindowopen(tool- >tl_windowfd)) {
win_petrect(took >tl_windowfd, &tool_rect);

} else {
win_getsavedrect(tool- >tl_windowfd, &tool_rect);
}
}
set_state(which)

if (state === which) {
return;

}
if ((state == which) === CURSOR) {
canvas_pr == &new_cursor_pr;
cell_size == CURSOR_SIZE;
if (paint_op_removed) {
optsw_restoreitems{osw, paint_op_item, 1, TRUE);
paint_op_removed == FALSE;

}
} elee {
canvas_pr == &icon_pr;
cell_size == JOON_SIZE;
if (Ipaint_op_removed) {
optsw_removeitems(osw, paint_op_jtem, 1, TRUE);
paint_op_removed == TRUE;

optew_setvalue(osw, mode_item, which);
set_cursor();

cell_ount == CANVAS_DISPLAY / cell_size;
paint_proof();

paint_canvas();

Revision D of T January 1984 B-15

Sample Tools

}

set_cursor()

}

static

if (state ==== ICONIC) {
win_setcursor(proof_sw->ts_windowfd, &main_cursor);

} else {

win_setcursor(proof_sw->ts_windowfd, &new_cursor);
}

sigwinched()

tool_sigwinch(tool);

nullproc()

return;

int (*saved_handler)(};

int
int

saved_mask;
clear_message();

bitch{format, argl, arg2, arg3, arg4, argh, argh, arg7, arg8)
char sformat, *argl, *arg2, *argd, *arg4, *argd, sargh, *argl, +args;

{
char buf[258);
sprintf{buf,format, argl, arg2, argd, arg4, arg5, argh, arg?, argB);
msgaw_setstring(mew, buf);
saved_mask == tool->tl_jo.tio_inputmask;
tool- >t_jo.tio_inputmask == {1 << tool->tl_windowld) +
(1 << canvas_sw->ts_windowld) +
_ {1 << options_gw->>ts_windowld});
if (tool->t]_jo.tio_selected !mm clear_meseage) {
saved_handler == tool->tl_io.tio_selected;
tool->tl_jo.tio_selected == clear_message;
}
clear_message(datum, ibits, obits, ebits, timer)
caddr_t datum;
u_int sihits, sobits, sebits;

struct timeval sstimer;

{

msgsw_setstring(msw, "");
tool- > tl_jo,tio_gelected == saved_handler;
tool- >tl_io.tio_inputmask == saved_mask;

/a
. Proof Section
*f

init_proof()

B-16

SunWindows Reference Manual

Revision D of 7 January 1984

-

-

-

SunWindows Reference Manual Sample Tools

{
strugt inputmask mask;
input_imnull(&mask);
win_,sebinputmnsk(proof_pw-)t.s__windowl‘d, &mask, NULL, WIN_NULLLINK);
progf_sw->ts_jo. tio_handlesigwinch == proofl_sighandler;
prog]_pw->>ts_destroy w= nullproc;
proq, rpixwin - pw_open(proof_pw—>tu_windowfd);
} r
static
proof_sishq“dler(sw_data)
caddr_t - sw_data;
{ :
pw_damaged{proof, '_pixwin);
pain&_proof();
pw_donedamaged(proof_pix win);
proof_sw->ts_width == win_getwidth(proof_sw->ta_windowfd);
prooﬂ,pw-)ta_hei;ht = win_getheight(proof_sw-> ts_windowld);
} f-’
paint_proofn
{ Y
int . x¥;
for {y = 0; y < proof_sw->>ts_height; y + = 64) {
.. for (x == 0; x < proof_sw->ta_width; x + == 64} {
: pw_write(proof_pixwin, x, y, 84, 84,
. PIX_SRC, proof_pr, 0, 0);
}
}
if (state see= JCONIC) {
‘ paint_proof_jcon();
} .
}
paint_proof_jcon()
pw._write{proof_pixwin, PROOF_MARGIN, PROOF_MARGIN, 64, 64,
PIX_SROC, &icon_pr, 0, 0);
}
I*
. Options subwindow section
o/
init_options{)
{

win_setcursor{options_sw->>ts_window{d, &main_cursor);

oaw == options_sw-2»ta_dats;

mode_jtem == optsw_enum(osw, &mode_label, &mode_choices,
0, CURSOR, mode_proc);

start_new_line(mode_jtem};

label_jtem == optsw_label(osw, &name_label);

quit_item == optsw_command(osw, &quit_label, quit_proc);

Revision D of 7 January 1984 B-17

Sample Tools SunWindows Reference Manual

load_jtem == optsw_command(osw, &load_label, load_proe);

start_new_line(load_jtem); @

store_jtem == optsw_command(osw, &store_label, store_proc);
fname_jtem == optew_text(osw, &file_label, file_default, 0, NULL};

ﬁll_jtem == optsw_command(osw, &B11_label, fill_proe);
start_new_line(fill_item};

fill_value_item == optsw_enum{osw, &fill_value_label,
&gray_choices,
0, 2, fill_value_proc);

invert_item == optsw_command(osw, &invert_label, invert_proc);

fill_op_item == optsw_enum(osw, &fill_op_label,
ZAll_op_choices,

, 0, 0, NULL);

start_new_line(fill_op_item};

pzint_op_item == optsw_enum(osw, &paint_op_label,
&paint_op_choices,
0, 1, paint_op._proc);

bkgrnd_value_item == optsw_enum(osw, &bkgrnd_value_]abel,
&gray _choices,
0, 2, bkgrnd_proc);
start_new_line(bkgrnd_value_item);

} C

start_new_line(item) J* epecial-case routine for legibility +/
caddr_t item;

{

struct item_place p;

rect_construct(&p.rect, 0, -1, -1, -1);

p.fixed.x = TRUE;

p.fixed.y == p.fixed.w = p.fixed.h == FALSE;
optaw_setplace(osw, item, &p, 0);

}
/e handlers for the various option items, in their creation order */
void
quit_proc(optsw, ip)
caddr_t oplaw;
caddr_t ip;
{
msgsw_setstring(msw,
"Please confirm with the left mouse button, or cancel with right or middle.”);
if {cursor_confirm{canvas_sw->ts_windowfd)) {
tool_done{tool);
} else {
bitch(" Quit cancelled.”);
}

void Q

B-18 Revision D of 7 January 1984

-

SunWindowe Reference Manual

load_proc(optsw, ip)

caddr_t optsw;
caddr_t ip;
{ -
: mt €;
u_int count, data256], sdp, result;
u_int op, mode, chunks;

fdefine SHORT_CHUNKS 2

Wdefine LONG_CHUNKS 1
struct string _buf file_name_buf;
FILE +fd;

file_name_buf.limit == 1024;

file_name_buf.data == file_name;

result == optsw_getvalue(fname_item, &fle_name_buf);

if {result < 0} {
biteh(" Trouble: icontoo! couldn’t read the filename”);
sleep(10);
exit{-1);

fd == fopen(file_name, "z");

if (fd ==e= NULL) {
bitch(" Sorry, couldn’t open %", file_name);
return;

} .
while [{cm= gete(fd)) tm '{") { J+ matching) s/
if (com=EOF) {
bitch(” Sorry, I need an array of shorts or unsigneds”);
return;

}

dp == dats;

count s=0;

do { result == facanf{td, " 0x%X,", dp+ +);
count+ + ;

} while (result emsm 1);

felose(td);

switch (--count} {
case 8: mode = CURSOR;
chunks = LONG_CHUNKS;
break;
case 16: mode = CURSOR;
chunks == SHORT_CHUNKS;
break;
case 128: mode == JCONIC;
chunks == LONG_CHUNKS;
break;
case 256: mode = ICONIC;
chunks = SHORT_CHUNKS;
break;
default: bitch("Sorry, I don’t understand that array.”);
return;
}

op == optsw_getvalue(fill_op_item, &result);
it (mode === CURSOR) {
dp == new_cursor_array;

} ¢lee {

dp == jcon_array;

Revision D of 7 January 1984

Sample Tools

B-19

Sample Tools

}
if {(chunks === LONG_CHUNKS) {
if {op ==== OP_REPLACE) {
replace_longs(dp, data, count);

} else {
merge_longs(dp, data, count);

} else {
if (op ==== OP_REPLACE) {
replace_shorts{dp, data, count);

} else {
merge_shorts{dp, data, count);
}
}
state == -1;
set_state(mode);
}
static

replace_longs(target, source, count)
int starget, *source, count;

while {count-- > 0) {
target|count] == source[count];

}

static
merge_longs(tarset, source, count)
int starget, *source, count;

whils (count-- > 0) {
target{count] |== scurcejcount};

}

static
replace_shorts{target, source, count)
int starget, ssource, count;

while (¢ount-- > 0) {
targetjcount /2] == sourcefcount);
target[count /2] |= (source[count-1] < < 18);
count -m= 1;

}

static
merge_shorts{target, source, count)
int starget, ®source, count;

while (count-- > 0} {
target|count/2] |= sourcefcount};

target[count /2] [= (source[count-1] << 16);
count -== 1;

void

B-20

SunWindows Reference Manual

Revision D of 7 January 1984

O

O

SunWindows Reference Manual

store_proc(optsw, ip)

caddr_t optaw;

ceddr b ip;

{ int i, limit, result, size;
u_int sdata;
char stoken;
struct string, buf file_name_buf;
FILE *{d;
struct stat stat_buf;

}

void

file_name_buf.limit == 1024;
file_name_buf.data == file_name;
if {state s=es CURSOR) {

gize == 186;

data == new_cursor_array;

token == " cursor”;
} elee {

pize == 84;

dats == icon_array;

token = "icon®;

}

result == optsw_getvalue{fname_item, &file_name_buf);
if (stat{file_name, &stat _buf) m= -1) {
if (errno l== ENOENT) {
bitch(” Sorry, %s", sys_errlist[errno]);
retumn;

} elee { /* stat succeeded; file exists sf
bitch(” % exists; pleass confirm overwrite.”, file_name);
if (feursor_confirm{canvas_sw->ts_windowld)) {

return; |
}

{d == fopan(file_name, "w");

if (fd =ems NULL) { .
bitch(” Sorry, can’t write to %6”, fils_name);
return;

}
fprintf(fd, "\nstatic unsigned%s, data|%d] = {\n",
token, size © sise / 32);

limit == ige size / 128;
for (i==0; i <limit;) {
tprintf(fd, *0x%5-08X, 0x%-08X, 0x%-08X, 0x%-08X",
datal0], data[1], data[2], dataf3]);
dats + o= 4;
it (+ +1 < limit) {
fputs(” \n", fd);

¥pu=ﬂ('\n};\n", 1d);
fclose(td);

fill_proc{optaw, ip, val)

Revision D ﬂ_f 7 January 1984

Sample Tools

B-21

Sample Tools SunWindows Reference Manual

int op, x, ¥, resuli;

switch (optsw_getvalue{fill_op_item, &result)) { O
case OP_REPLACE: op == PIX_SRC; break;
case OP_MERGE: op = PIX_SRC | PIX_DST; break;
default: bitch(" Trouble: fill doesn’t know what to do.”);

}
for (y = 0; y < cell_tount; y + == 64} {
for (x == 0; x < cell_count; x + == 64) {
pr_rop(canvas_pr, x, y, cell_count, cell_count,
op, fill_pr, 0, 0);
}

paint_canvas();
if (state ==== ICONIC) {

paint_proof_icon();
} else {
set_cursor();
}
}
void

fill_value_proc(optsw, ip, val)

switch (val) {
case GR_WHITE: fill_pr = &white_patch;

break;
case GR_GRAY25: fillpr = &gray25_patch;
break;
case GR_ROOT_GRAY: fill_pr == &root_gray_patch;
break; : ©
¢ase GR_GRAY50: fill_pr == &gray50_patch;
break;
case GR_GRAY7S: fill_pr == &gray75_patch;
break;
case GR_BLACK: fill_pr == &black_patch;
‘ break;
) default: fll_pr == &root_gray_patch;
}
void
invert_proef()
pr_rop(canvaa_pr, 0, 0, cell_count, cell_count,
PIX_NOT(PIX_DST), 0, 0, 0);
paint_canvas{);
if (state ===m ICONIC) {
paint_proof_jcon();
} eloe {
set_cursorf);
}
void
paint_op_ptoc(optsw, ip, val)
caddr_t optsw;
caddr_t ip;

u_jnt val; Q

B-22 Revision D of 7 January 1984

SunWindows Reference Manual Sample Tools

{
u_int op;

if (val === OP_XOR) {
new_cursor.cur_function == PIX_SRC ~ PDB{_DST;

} else {
new_cursor.cur_function == PIX_SRC { PIX_DST;

set_cursor{);

}

void
bkgrad_proc(optaw, ip, val)

switch {val) {
case GR_WHITE: proof_pr == &white_patch;

break;

cazxe GR_GRAY?25: proof_pr == &gray25_patch;
break;

cass GR_ROOT_GRAY: proof_pr me Sroot_gray_patch;
break;

case QR_GRAYS50: proof_pr == &gray50_patch;
break;

cagze GR_GRAYTS: proof_pr == &gray75_patch;

" braak;

cass GR_BLACK: proof_pr == &black_patch;
break;

defsule: proof_pr == &root_gray_patch;

@ y [};aint,,proof();

/o

® Canvas Section
¢/
init_canvas{)

struct inputmask maask;

canvas_reader == canvas_basereader;

canvag_pixwin == pw_open(canvas_sw->ts_window{d);
canvas_sw->ta_io.tio_selected =« canvas_selected;
canvas_sw->ts_io.tlo_handlesigwineh == canvas_sighandler;
canvas_sw->ts_destroy == nullproe;

input_imnull(£mask);

win_setinputeodebit{frmask, MS_LEFT);

win_setinputcodebit{&mask, MS_MIDDLE);

win_setinputcodebit{&mask, LOC_MOVEWHILEBUTDOWN);
win_setinputcodebit{&mask, LOC_STILL};

win_setinputcodebit(#mask, LOC_WINEXIT);

mask.im_flags [== IM_NEGEVENT;
win_setinputmask(canvas_sw->ts. windowfd, &mask, NULL, WIN_NULLLINK);
win_setcursor(canvas_sw->>ts_windowld, &main_cursor);

CUr_x s= cur y sa-1:

}

@ ~ static

Revision D of 7 January 1984 B-23

Sa.rﬁple Tools

canvas_selected(nullsw, ibits, obits, ebits, timer}

caddr_t snullsw;

int sibits, *obits, *ebits;
struct timeval stimer;

{

struct inputevent ie;

if (input_readevent(canvas_sw->>ts_window(d, &ie) === -1) {
perror(”icontool input failed”);
abort();

{*canvas_reader)(&ie);
¢ibits =ms #obits a= #ebits w= 0;

}

static .
canvas_basereader{ie)
struct inputevent *ie;
{
if (win_inputnegevent(ie)) {
return;

switch (ie->ie_code) {
case MS_LEFT:
break;
caze MS_MIDDLE: cur_op = 0;
break;
return;

cur_op == 1;

delault: /» ignore all other input »/
set_canvas_tracker{);
canvas_feedback(ie);

}

static
canvas_tracker(ie)
struct inputevent =ie;
{
it (win_inputnegevent(ie)) {
switch (ie->ie_code) {
case MS_LEFT:
case MS_MIDDLE:
reset_canvas_reader();
if (state ===a ICONIC) {
paint_proof_icon(};

/+ mouse button up o/

}

return;

awitch (ie- >ie_code) {
eass LOC_WINEXIT: reset_canvas_reader();
if (state ==== ICONIO) {
paint_proof_icon();
}

return;

case MS_LEFT:

case MS_MIDDLE: cur_op = -1;
canvas_reader = wait_legal mouse;
return;

case LOC_STILL:

/* two buttons down! +f

B-24

SunWindows Reference Manual

Revision D of 7 January 1984

-

-

&

©

SunWindows Reference Manua!

case LOC_MOVEWHILEBUTDOWN:

canvas_feedback(ie);
] return; -
} /¢ ignore all other input */
}
static
wait_legal_mouss(ie)

struct inputevent *ie;

if (ie->ie_code === LOC_WINEXIT) {
reset_canvag_reader();
return;

if (win_inputnegevent{ie)) {
switch (ie->ie_code) {

case MS_LEFT: cur_op == 0;
break;

case MS_MIDDLE: cur_op == 1;
break;

defsult: return;

set_canvas_tracker();
canvas_feadback(ie);

}

static
set_canvas_tracker()

CUr_x ws cur_y me -1;
canvas_reader =» canvas_tracker;

}

statie
reset_canvas_reader()

canvas_treader == canvas_basereader;
cur_op == -1:

}

static
canvas_feedback(ie)
struct inputevent sie;

register int new_x, new_y, color;

if (ie->le_code memm LOC_STILL && state == ICONIC) {

paint_proof_icon();
return; :

)
if (ie->ie_loex < CANVAS MARGIN || ie->ie_Jocy < CANVAS_MARGIN) {

return;

}

new_x == (ie->ie_locx - CANVAS_MARGIN) / cell_size;
new_y == (ie->ie_locy - CANVAS_MARGIN) / cell_size;
if (new_x > == cell_count || new_y >== cell_count) {

return;

}

Revision D of 7 January 1984

Sample Tools

B-25

Sample Tools

color = pr_get(canvas_pr, new_x, new_y});

if (new_x === cur_x && new_y ws== cur y && cur_op === color)
return,;

CUr_x == new_x;

cur_y = new.y;

paint_cell(new_x, new_y, cur_op);

pr_put{canvas_pr, new_x, new_y, cur_op);

if (state === CURSOR) {
set_cursor();

}

static
canvas_sighandler()

pw_damaged(canvas_pixwin);
paint_canvas();
pw_donedamaged(canvas_pixwin);

}
paint_canvas()

register int x, y;
struct rect T;

pw_writebackground(canvas_pixwin, 0, 0, BIG, BIG, PIX_CLR);
r.or_left == CANVAS_MARGIN;
r.r_width == cell_count » cell_size;
r.r_height == cell_size;
pw_vector(canvas_pixwin, CANVAS_MARGIN, CANVAS_MARGIN,
rect_right{&r), CANVAS_MARGIN,
PIX_SET, I);
pw_vector{canvas_pixwin, CANVAS_MARGIN, CANVAS MARGIN,
CANVAS_MARGIN, rect_right{&r),
PIX_SET, 1);
for (y == 0; y < cell_count; y+ +) {
r.r_top == CANVAS_MARGIN + cell_size * y;
pw_lock(canvas_pixwin, &r);
for (x == 0; x < cell_count; x+ +) {
it (pr_get(canvas_pr, x,¥)) {
paint_cell(x, ¥, 1}
}

pw_unlock(canvnl_pixwin);

:

}

r.r_top == CANVAS MARGIN;

r.r_width + ==l;

r.r_height == cell_count * cell_size + 1;

pw_lock(canvas_pixwin, &r);

pw_vector(canvas_pixwin, rect_right(%r), CANVAS_MARGIN,
rect_right{&r1), rect_bottom(&r),
PIX_SET, 1);

pw_vector(canvas_pixwin, CANVAS_MARGIN, rect_bottom(&r),
rect_right{&r), rect_bottom(&r),
PIX_SET, 1);

pw_unlock{canvas_pix win);
paint_cell(x, y, color}

int x,y, color;

{

B-26

SunWindows Reference Manual

Revision D of 7 January 1984

C

O

SunWindows Reference Manual Sample Tools

e : register int dx, dy, dim;
dx == CANVAS_MARGIN + cell_sizesx + 1;

dy == CANVAS_MARGIN + cell_sizesy + I;

dim == cell_size - 1;

pw_write(canvas_pixwin, dx, dy, dim, dim, PIX_SRC,
(color * Zgray50_patch : &white_patch), 1, 1);

b

o

Revision D of 7 January 1984 B-27

Appendix C

Sample Graphics Programs

Use these sample programs as templates for your own graphics programs. Included is code for a
bouncing ball demonstration (bouncedemo.c) and for a “movie camera” program (framedemo.c,
which displays files sequentially like movie frames for producing a rotating globe for example.
The source files for these and other graphics demos are found on fusr/suntoolf src/ +demo.c.

C.1. bouncedemo.c Code

Code for the bouncedemo.c follows.

#ifndef lint
static char sccaid[] == " @{#)bouncedemo.c 1.5 83/08/26 Sun Micro”;

#endif
/t

* Sun Microsystems, Ine.

s/
/*

. Overview: Bouncing ball demo in window

*/

#include <nys/typeah>
#include "pixrect/pixrect.h”
finclude "sunwindow/rect.h”
#include "sunwindow/rectlist.h”
#include "sunwindow/pixwin.h”
#include "suntool/gfxaw.h"

main(arge, argv)
int arge;
char seargv;

{

short x, y, vx, vy, 5, ylastcount, ylast;

short Xmax, Ymax, size;

struct rect rect; o

struct glxaubwindow *gfx = gfxsw_init(0, argv);
Restart:

win_getsize(gfx- > gfx_windowfd, &rect);
Xmax == rect_right(&rect);

Ymax == rect._bottom{&rect);

it (Xmax < Ymax)

Revision D of 7 January 1984 1

Sample Graphics Programs

Reset:

C-2

gize = Xmax[20+ 1;
else
size == Ymax /20+ 1;
x=mrect.r_left;
y==rect.r_top;
vXm=g;
vy=0;
ylast—o,
ylastcount=0; ‘
pw_writebackground(gfx- > gfx_pixwin, 0, 0, rect.r_width, rect.r_height,
PIX_SRC);
while (gfx-> gfx_reps) {
it (gfx-> gtx_flags&GFX_DAMAGED)
gixsw_handlesigwinch{gfx);
if (gfx->gix_flags&GFX_RESTART) {
gix->gix_flags &= “GFX RESTART;
goto Restart;

it (ymemmylast) {
if (ylastcount+ + > 5}
goto Reset;
} else {
ylaot == y;
ylastcount = 0;

pw_writebackground(gfx- > gfx_pixwin, x, ¥, size, sire,
PIX_NOT(PIX_DST));
X=X+ VX;

if (x >(;Gnax-size)) {

« Bounce off the right edge
*

x=2#(Xmax-size)-x;

VX -VX;

} else if (x <rect.r_left) {

* bounce off the left edge
+/

Xmm -X}

vXem -vX;

vys=vy+ 13

y=y+ VY;

it (y> =(Ymax-size)) {
[]

» bounce off the hottom edge
+/
ym=Ymax-size;
it (vy <size)
vyss1-vy;
else
vy=svy [size - vy;
it (vy==0)
goto Reset;
}
for (z=0; 3<==1000; z-+ +);
continue;

if (--gfx->glx_reps <= 0)

SunWindows Reference Manual

Revision D of 7 January 1984

O

-

Q

SunWindows Reference Manual

bresk;
xwarect.r,_eft;
ysurect.r_top;
vXmad;
vy=0;
ylast==0;
ylastcount=0;

éfxsw__done(gfx);

C.2. framedemo.c Code

Code for the framedemo.c follows.

ftifndet lint

static char scesid[] == " @{f)framedemo.c 1.10 84/01/11 SMI";
ftendif

I

* Sun Microsystems, Inc.

o/
I

. Overview: Frame displayer in windows. Reads in all the

® files of form "frame.xxx” in working directory &
. displays them like a movie.

» See constanta below for limits.

#include <stdio.h>

#include <sysftypes.h>

#include <sys/file.h>

¢include <sys/time.h>

dinclude ”pixrect/pixrect.h”
dinclude "pixrect/pr_util.h”
dinclude "pixrect/bwlvar.h”
#include "pixrect/memvar.h”
#include "sunwindow/rect.h”
sinclude " sunwindow/rectlist.h”
ginclude "sunwindowfpixwin.h”
#include *sunwindow/win_input.h”
#include "sunwindow/win_struct.h”
#include "suntool /gixaw.h"

¥ define MAXFRAMES 1000
#define FRAMEWIDTH .258
ddefine FRAMEHEIGHT 258
ddefine USEC_INC 50000
#deflne SEC_INC 1

static struct pixrect *mpr[MAXFRAMES]; :

static struct timeval timeout = {SEC_INC,USEC_INC}, timeleft;
static char sf] == "frame.xxx”;

statie struct glxsubwindow *gix;

static int frames, framenum, ximage, yimage;

static struct rect rect;

Revision D of 7 January 1984

Sample Graphics Programs

C-3

Sample Graphice Programs SunWindows Reference Manual

main(azge, argv)
int arge;

char #*argv; @
{

int fd, framedemo_selected();
struct inputmask im;

for (frames == 0; frames < MAXFRAMES; frames+ +) {
sprintf(&s[8], "%d", frames + 1); '
fd = open(s, 0_RDONLY, 0);
it (fd smw -1) {
break;

}

mpriframes] = mem_create(FRAMEWIDTH, FRAMEHEIGHT, 1);

read{fd, mpr_d(mpr(frames}}- >md_image,
FRAMEWIDTHsFRAMEHEIGHT/8);

close(fd);

if (frames === 0) {
printf(” Couldn’t find any 'frame.xx’ files in working directory\n"};
return;

}

»

* Initialize gfxsw ("take over” kind)
Ji
gix == gixsw_init{0, argv);
/t

+ Set up input mask

L]
input_imnull(&im);
im.im_flags [e= IM_ASCTI;
gfxew_setinputmask(gfx, &im, &im, WIN_NULLLINK, 1, 0); Q
/e

+ Main loop

L
framedemo_nextframe(1);
timeleft == timeout;
glxsw_select{glx, framedemo_selected, 0, 0, 0, &timeleft);

[}

¢ Cleanup
»

gtxsw_done(gfx);
}
framedemo_selected(gtx, ibits, obits, ebits, timer)
struct gfxsubwindow sgfx;
int wibits, *obits, *ebite;
struct timeval setimer;

it ((*timer && ((stimer)->tv_sec === 0) && ((*timer)->tv_usec smmm 0)) ||
(fx->gfx_flags & GFX_RESTART)) {
/t

» Our timer expired or restart is true so show next frame
*/
if (gfx->gfx_reps)
framedemo_nextframe(0);
else
gixsw_sgelectdone(gfx);

if (+ibits & (1 << gfx->gfx_windowfd)} {

-

C-4 Revision D of 7 January 1984

SunWindows Reference Manual Sample Graphics Programs

struet inputevent event;

/*

» Read input from window

*/

if (input_readevent{gfx- > gfx_windowld, &event)) {
perror{” framedemo”);
return;

switch (event.ie_code) {
case 'f': /+ faster usec timeout */
if (timeout.tv_usec >== USEC_INC)
timeout.tv_usec -== USEC_INC;
else {
if (timeout.tv_sec >== SEC_INC} {
timeout.tv_sec -== SEC_INC;
timeout.tv_usec == 1000000-USEC_INGC;

}
break;

came 'o’; [+ slower usec timeout *+/
if (timeout.tv_usec < 1000000-USEC_INC)
timeout.tv_usec + == USEC_INGC;
else {
timeout.tv_usec == 0;
timeout.tv_sec 4 == 1;
}
break;
case 'F': /o fnater sec timeout »/f
if (timeout.tv_sec > == SEC_INC)
timeout.tv_sec -== SEC_INC;
break;
cage 'S"; /v slower sec timeout ¢/
timeout.tv_sec + == SEC_INC;
break;
case '": /¢ Help ¢/
print!("’s’ slower usec timeout\n'f’ faster usee timeout\n’S’ slower sec timeout\n'F’ faster sec timeout\n");
/* .
+ Don’t reset timeout
s/
return;
default:
gixsw_inputinterrupts{gfx, &event);
}

#ibits w= sobits wm *ebits o= 0;
timeleft == timeout;
stimer = Ltimeleft;

}

framedemo_nextframe{firsttims)
int firsttime;
{

int restarting == gfx->glx_fags&GFX_RESTART;
it (Arsttime || restarting) {
glx->glx_flags &= “GFX_RESTART;

win_getsize(gfx- > gfx_windowld, &rect);
ximage = rect.r_width/2-FRAMEWIDTH/2;

Revision D of 7 January 1984 c5

Sample Graphics Programs SunWindows Reference Manual

yimage == rect.r_height/2-FRAMEHEIGHT/2;
pw_writebackground(gfx- > gfx_pixwin, 0, €,
rect.r_width, rect.r_height, PD{_CLR);

it (framenum > == frames) {
framenum == 0;

gix->glix_reps-;

}
pw_write(gfx- > gfx_pixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT,
PIX_SRC, mpr{framenum], 0, 0);
if {Irestarting)
framenum+ +;

C-6 Revision D of 7 January 1984

O

-

-

Appendix D

Programming Notes

Here are useful hints for programmers who use any of the pizrect, sunwindow or suntool
libraries.

D.1. What Is Supported?

In each release, there may be some difference between the documentation and the actual pro-
duet implementation. The documentation describes the supported implementation. In general,
the documentation indicates where features are only partially implemented, and in which direc-
tions future extensions may be expected. Any necessary modifications to SunWindows are
accompanied by a description of the nature of the changes and appropriate responses to them.

D.2. Program By Example

We recommend that you try to program by example whenever possible. Take an existing pro-
gram similar to what you need and modify it. Appendix B contains some sample tools and
Appendix C contains some sample graphics programs. The source for these and other sample
tools and /graphics programs are available on [uar/suntoolf arc/ +.c.

D.3. Header Files Needed

If you bave problems finding the necessary header files for compiling your program, using the
examples may help as many of the header files are already included. Moreover, there are certain
header files that include most of the header files necessary for working at a certain level. The
following table shows these header files:

Revision I} of 7 January 1984 D-1

Programming Notes . - SunWindows Reference Manual

Table D-1: Header Files Required @
Use When Working at the Level of
Juor/includef suntoolf tool_hs.h suntool tool-building facilities; includes headers

needed to work at the more primitive layers as well

Jusr/includef suntool] gfz_hs.h the suntool (standalone or “‘take over”) graphics
subwindow facilities; includes headers needed to
work at the more primitive layers as well

usr/includef sunwindow/window_hs.h sunwindow basic window facilities layer; includes
headers needed to work at the pixrect layer as well

[usr]include/ pizrect/ ps’zréct_hs.h pixrect display primitives layer

Include only one of the above header files plus whatever extra header files you need. In particu-
lar, you'll need to add the header file for each subwindow type that you use, the menu header
file if you use menus, the selection header file if you are going to use selections, and so on. How-
ever, you'll probably only have to add a single header file for each additional increment of high-
level functionality.

D.4. Lint Libraries

SunWindows provides lint libraries to help you run lint over your program source. Lint¢ catches O
argument mismatches and provides better type-checking than the C compiler. Llib-Ipizrect,
Hib-lsunwindow, and llib-lsuntool are the source files to make the actual binary lint(1) libraries:
lib-Ipizrect.In, llib-lsunwindow.In, and Uib-lsuntool.ln. These files are found on [usr/libflint/.

D.5. Library Loading Order

When loading programs, remember to load higher level libraries first, that is, -lsuntool -lsunwin-
dow -lpizrect,

D.8. Shared Text

The tools released with auntools rely on text sharing to reduce the memory working set. This is
accomplisked by placing the entire collection of tools in a single object file. This has the effect
of letting each separate process share the same object code in memory. With many windows
active at once this can achieve significant memory savings.

There are trade-offs using this approach. The main one is that the maximum number of per-
process and non-sharable initial data pages tends to be larger. However, the paged virtual
memory tends to reduce the effect of this by only having the working set paged in.

The upshot of this is that you may want to either add the tools that you create to the released
shared object file or to bundle a few tools together into their own object file. @

D-2 ~ Revision D of 7 Januvary 1984

-

SunWindows Reference Manual Programming Notes

D.7. Error Message Decoding

The default error reporting scheme described at the end of Window Manipulation displays a long
hex number which is the foctl number associated with the error. You can turn this number into
a more meaningful operation name by:

o turning the two least significant digits into a decimal number;
o searching [uer/include/sunwindow/win_foctl.h for occurrences of this number; and
o noting the foct! operation associated with this number.

This can provides a quick hint as to what is being complained about without resorting to a
debugger.

D.8. Debugging Hints

Wken debugging non-terminal oriented programs in the window system, there are some things
that you should know to make things easier.

As discussed in the section entitled Overlapped Windows: Imaging Facilities - Damage, a process
receives & SIGWINCH whenever one of its windows changes state. In particular, as soon as a tool
issues a tool_inatall, the kernel sends it a SIGWINCH. When running as the child of a debugger,
the SIGWINCH is sent to the parent debugger instead of to the tool. By default, dbz simply pro-
pagates the SIGWINCH to the tool, while adb traps, leaving the tool suspended until the user con-
tinues from adb. This behavior is not peculiar to SIGWINCH: adb traps all signals by default,
while dbz has an initial list of signals {(including SIGWINCH) that are passed on to the child pro-
cess. You can instruct adb to pass SIGWINCH on to the child process by typing 1ec:i followed by
RETURN. ‘lc’is the hex number for 28, which is SIGWINCH's number. Re-enable signal breaking
by typing 1c:t followed by RETURN. You can instruct dbz to trap on a signal by using the catch
command.

For further details, see the entries for the individual debuggers in the User’s Manual for the Sun
Workstation. In addition, ptrace(2) describes the fine points of how kernel signal delivery is
modified while a program is being debugged.

The two debuggers differ also in their abilities to interrupt programs built using tool windows.
Dbz knows how to do interrupt these programs, but adb doesn’t. See Signals from the Control
Terminal below for an explanation.

Another situztion specific to the window system is that various forms of locking are done that
can get in the way of smooth debugging while working at low levels of the system. There are
variables in the sunwindow library that disable the actual locking. These variables can be
turned on'from a debugger:

Revision D of 7 January 1984 D-3

Programming Notes SunWindows Reference Manual

Table D-2: sunwindow Variables for Disabling Locking

Variable Action

int pizwindebug) When not zero this causes the immediate release of the
display lock after locking so that the debugger is not con-
tinually getting hung by being blocked on writes to screen.
Display garbage can result because of this action.

int win_lockdatadebug When not zero, the data lock is never actually locked,
preventing the debugger from being continually hung due
to block writes to the screen. Unpredictable things may
result because of this action that can’t properly be
described in this context.

int win_grabiodebug When not zero will not actually acquire exclusive 1/0 ac-
cess rights so that the debugger wouldn't get hung by be-
ing blocked on writes to the screen and not be able to re-
ceive input. The debugged process will only be able to do
normal display locking and be able to get input only in the
pormal way.

t'nt_fulhcrcendebug Like win_grabiodebug but applies to the fullscreen access

package.

Change these variables only during debugging. You can set them anytime after main has been
called. :

D.9. Sufficient User Memory

To use the suntool environment comfortably requires adequate user memory for SunWindows
and the Sun UNIX operating system. To achieve the best performance, reconfigure your own
kernel, deleting unused device drivers. The procedure is documented in the System Manager’s
Manual for the Sun Workstation. For a workstation on the network with a single disk drive,
you will be able to reclaim significant nsable memory.

For the recommended amount of memory, see the Sun Workatation Configuration Guide.

D.10. Coexisting with UNIX

This section discusses how a SunWindows tool interacts with traditional UNIX features in the
areas of process groups, signal handling, job control and terminal emulation. If you are not
familiar with these concepts, read the appropriate portions (Process Groups, Signals) of the Sys-
tem Interface Querview and the signal(3) and tty(4) entries in the System Interface Manual for
the Sun Workstation.

This discussion explicitly notes those places where the shells and debuggers interact diflerently
with a tool.

D-4 Revision D of 7 January 1984

-

-

-

SunWindows Reference Manual Programming Notes

D.10.1. Tool Initialization and Process Groups

System calls made by the library code in a tool affect the signals that will be sent to the tool. A
tool acts like any program when first started: it inherits the process group and control terminal
group from its parent process. However, when a tool calls tool_create, tool_create changes the
tool's process group to its own process number. The following sections describe the effects of
this change.

D.10.1.1. Signals from the Control Terminal

When the C-Shell (see csk(1)) starts a program, it changes the process group of the child to the
child’s process number. In addition, if that program is started in the foreground, the C-Shell
also modifies the process group of the control terminal to match the child’s new process group.
Thus, if the tool was started from the C-Shell, the process group modification done by
tooi_create has no effect.

The Bourne Shell (see #4(1)) and the standard debuggers do not modify their child’s process and
control terminal groups. Furthermore, both the Bourne Shell and adb(1) are ill-prepared for the
child to perform such modification. They do not propagate signals such as SIGINT to the child
because they assume that the child is in the same control terminal group as they are. The
bottom-line is that when a tool is executed by such a parent, typing interrupt characters at the
parent process does not affect the child, and vice versa. For example, if the user types an inter-
rupt character at ¢db while it is debugging a tool, the tool is not interrupted. Although dbz(1)
does not modify its child’s process group, it is prepared for the child to do so.

D.10.1.2. Jeob Contfol and the C-Shell

The terminal driver and C-Shell job control interact differently with tools. First, let us examine
what happens to programs using the graphics subwindow library package. When the user types
an interrupt character on the control terminal, a signal is sent to the executing program. Often
the signal is a SIGTSTP. The gfzew library code sees this signal and tidies up by releasing any
SunWindows locks that it might have and by removing the graphics from the screen before it
actually suspends the program. If the program is later continued, the graphics are restored to
the screen.

However, when the user types the C-Shell’s stop command to interrupt the executing program,
the C-Shell scnds a SIGSTOP to the program and the gfzsw library code has no chance to clean
up. This causes problems when the code has acquired any of the SunWindows locks, as there is
no opportunity to release them. Depending on the lock timeouts, the kernel will eventually
break the locks, but until then, the entire screen is unavailable to other programs and the user.
To avoid this problem, the user sends the C-Shell kill command with the “FSTP option instead
of using stop. _

The situation for tools parallels that of the gfzsw code. Thus a tool that wants to interact nicely
with job control must receive the signals related to job control (SIGINT, SIGQUIT, and SIGTSTP)
and release any locks it has acquired. If the tool is later continued, the tool must receive a
~ SIGCONT so that it can reacquire the locks before resuming the window operations it was exe-
cuting. The tool will still be susceptible to the same problems as the gfzsw code when it is sent a
SIGSTOP. .

A final note: the user often r_;:lie; on job control without realizing it; the expectation is that typ-
ing interrypt characters will halt a program. Of course, even programs that do mnot use

Revision [? of 7 January 1984 D-5

Programming Notes SunWindows Reference Manual

SunWindows facilities, such as a program that opens the terminal ir “raw’ mode, have to pro-
vide a way to terminate the program. A program using the gfzsw package that reads any input
can provide limited job control by calling gfzsw_inputinterrupts.

D-8 Revision D of 7 January 1984

-

adb, D-5

ASCII_FIRST, 5-3
ASCII_LAST, 53
background, 2-2
batchitem, 2-11

bitplane, 2-14

bitplane mask, 2-14
blanket window, 4-12, 7-4
bool, A-2

Bourne Shell, D-5

BUT_», 5-9

BUT(i), 5-3

clipvector, A-3

coord, A-1

csh, D-6

C-Shell, D-5
CUR_MAXIMAGEWORDS, 4-10
curgor, 4-10

dbx, D-b

dumpitem, 7-17

dumpsw, 7-17
emptysubwindow, 7-3
esw_createtoolsubwindow, 7-3
esw_done, 7-3
esw_handlesigwinch, 7-3
esw_init, 7-3
EWOULDBLOCK, 5-6
FALSE, A-2

font, 3-12

foosubwindow, 7-1
foosw_createtoolsubwindow, 7-2
foosw_done, 7-2
foosw_handlesigwinch, 7-2
foosw_init, 7-2
foosw_selected, 7-2
foreground, 2-13
fullscreen, 8-1
fullscreen_destroy, 8-2
fullscreen _"jnit, 81

Index

GFX_DAMAGED, 7-4
GFX_RESTART, 7-4
gfxsw_catchsigcont, 7-6
gfxsw_catchsigtstp, 7-6
gfxsw_catchsigwinch, 7-6
gfxsw_createtoolsubwindow, 7-5
gfxsw_done, 7-5
gfxsw_getretained, 7-5
gfxsw_handlesigwinch, 7-5
gfxsw_init, 7-6
gfxsw_inputinterrupts, 7-7
gfxsw_interpretesigwinch, 7-5
gfxsw_notusingmouse, 7-7
gixsw_select, 7-6
gfxsw_selectdone, 7-7
gfxsw_setinputmask, 7-7
graphics subwindow, D-5
icon, 82
ICON_BKGRDCLR, 8-2
ICON_BKGRDGRY, 8-2
ICON_BKGRDPAT, 8-2
ICON_BKGRDSET, 82
icon_display, 8-3
IE_NEGEVENT, 5-4
IM_ANSI, 5-7

IM_ASCI, 5-7
IM_CODEARRAYSIZE, 5-7
IM_META, 5-7
IM_NEGEVENT, 5-8
IM_POSASCII, 5-7
IM_SHIFTARRAYSIZE, 5-7
IM_TEXT, 7-9
IM_TEXTVEC, 7-9
IM_UNENCODED, 5.7
IM_UNKNOWN, 7-9
inputevent, 5-5
input_imnull, 5-9
inputmask, 5-6
input_readevent, 5-5

item_place, 7-15

job control, D-4

KEY_#*, 5-9

LOC_#, 59

LOC_MOVE, 5-4
LOC_STILL, 5-4
LOC_WINENTER, 5-4
LOC_WINEXIT, 5-4
md_flags, 2-18
mem_create, 2-19

memory pixrects, 2-18
menu, 8-3

menu_display, 8-4
MENU_IMAGESTRING, 8-4
menuitem, 8-4
menu_prompt, 8-5
META_FIRST, 5-3
META_LAST, 5-3
MOUSE_DEVID, 5-7
mpr_data, 2-18

mpr_static, 2-19
msgsubwindow, 7-7
msgsw_createtoolsubwindow, 7-8
msgsw_display, 7-8
msgsw_done, 7-8
msgsw_handlesigwinch, 7-8
msgsw_init, 7-8
msgsw_setstring, 7-8
MS_LEFT, 5-10
MS_MIDDLE, 5-10
MS_RIGHT, 5-10
opt_item, 7-15

optsw _setvalue, 7-16
optsw_bool, 7-11
optsw_coltox, 7-15
optsw_command, 7-11
optasw_createtoolsunwindow, 7-10
optsw_done, 7-10
optsw_enum, 7-12
optsw_getcaret, 113
optsw_getfont, 7-16
optsw_getplace; 7-15
optsw_getvalue, 7-15
optsw_handlesigwinch, 7-10
optsw_init, 7-14
optsw_linetoy, 7-15
optsw_selected, 7-10

optsw_setcaret, 7-13
optsw_setfont, 7-16
optsw_setplace, 7-15
pf_default, 2-16
pf_open, 2-16
pf_text, 2-17
pf_textbatch, 2-17
pf_textwidth, 2-18
pf_ttext, 2-17
pixchar, 2-16
PIX_CLR, 2-8
PIX_COLOR, 2-8
PIX_DONTCLIP, 2-9
PIX_DST, 2-7
pixfont, 2-16
PIX_NOT, 2-7
pixrect struct, 2-3

* pixrectops, 2-4

—ii -

PIX_SET, 2-8
PIX_SRC, 2-7
pixwin, 3-4
pixwin_clipdata, 3-5
pixwin_clipops, 3-7
pixwin_prlist, 3-6
pr_batchrop, 2-11
pr_blackonwhite, 2-14
pr_destroy, 2-6
pr_get, 2-6
pr_getattributes, 2-15
pr_getcolormap, 2-13
pr_height, 2-3
primary pixrect, 2-5
prompt, 8-5
PROMPT_FLEXIBLE, 85
pr_open, 2-5

pr_pos, 2-2

pr_prpos, 2-2

pr_put, 2-7
pr_putattributes, 2-15
pr_putcolormap, 2-13
pr_region, 2-5
pr_reversevideo, 2-14
pr_rop, 2-9
prs_batchrop, 2-11
pra_destroy, 2-6
pra_get, 2-6
prs_getattributes, 2-15

prs_getcolormap, 2-13
pr_size, 2-2

prs_put, 2-7
prs_putattributes, 2-15
prs_putcolormap, 2-13
prs_region, 2-5

prs_rop, 2-9

prs_stencil, 2-10

pr_stencif, 2-10
pr_subregéon, 2-3
prs_vectoy, 2-12

pr_vector; 2-12
pr_whiteonblack, 2-14
pr_width, 2.3

pv_batchrop, 3-12
pw_blackonwhite, 3-16
PWCD_MULTIRECTS, 3-7
PWCD_NULL, 3-7
PWCD_SINGLERECT, 3-7

PWCD_USERDEFINE, 3-7 -

pw_char, 3-12
pw_close, 3-8

pw_copy, 3-13
pw_cyclecolormap, 3-17
pw_damaged, 3-15
pw_donedamaged, 3-15'
pw_exposed, 3-10
pw_gctattributes, 3-14
pw_getcmsname, 3-17
pw_getcolormap, 3-17
pw_lock, 3-8

pw_open, $-7
pw_pfsysclose, 3-13
pw_pfaysopen, 3-12
pw_preparesurface, 3-18
pw_put, 3-11
pw_putattributes, 3-13
pw_putcolormap, 3-17
pw_read, 3-13
pw_region, 3-16
pW_repairretained, 3-15
pw_replrop, 3-11
pw_reset, 8-9
pw_reversevideo, 3-16
pw_setcmsname, 3-17
pw_stencil, 3-13
pw_text, 3-12

pw_ttext, 3-12
pw_unlock, 3-9
pPw_vector, 3-11
pw_whiteonblack, 3-16
pw_write, 3-11
pw_writebackground, 3-11
rect, A-1

rect_bottom, A-2
rect_bounding, A-2
rect_construct, A-2
rect_equal, A-2

. rect_includespoint, A-2

- iii -

rect_includesrect, A-2
rect_intersection, A-3
rect_intersectsrect, A-2
rect_isnull, A-2

rectlist, A-3
rect_marginadjust, A-2
rectnode, A-4

rect_null, A-2

rect_order, A-3
rect_passtochild, A-2
rect_passtoparent, A-2
rect_right, A-2
RECTS_BOTTOMTOTOP, A-3
RECTS_LEFTTORIGHT, A-3
RECTS_RIGHTTOLEFT, A-3
RECTS_SORTS, A-3
RECTS_TOPTOBOTTOM, A-3
RECTS_UNSORTED, A-3
retained pixwin, 3-15
rl_boundintersectsrect, A-5
rl_coalesce, A-6

rl_coordofiset, A-4

rl_copy, A-6

ri_difference, A-8

rl_empty, A-5

rl_equal, A-5

rl_equalrect, A-5

rl_free, A-6

rl_includespoint, A-5
rl_initwithrect, A-0
rl_intersection, A-6
rl_normalize, A-6

rl_null, A-5

rl_passtochild, A-4
rl_passtoparent, A-4

rl_rectdifference, A-6
rl_rectintersection, A-6
rl_rectoffset, A-4
rl_rectunion, A-6
tl_sort, A-6

rl_union, A-0
SIGWINCH, D-3, 3-14
UNIX, D-4

SCR_EAST, 49

screen, 4-7
SCR_NAMESIZE, 4-8
SCR_NORTH, 49
SCR_POSITIONS, 4-9
SCR_SOUTH, 4-9
SCR_SWITCHBKGRDFRGRD, 4-8
SCR_WEST, 4-9
secondary pixrect, 2-5
sel_clear, 8-6

selection, 85
selection_clear, 8-6
selection_get, 8-7
selection_set, 8-6
sel_read, 8-7
SELTYPE_CHAR, 8-6
SELTYPE_NULL, 8-6
sel_write, 8-0

SHIFT_#, 5-9
SIGCHLD, 6-4

signal, D-4

signal handling, D-4
SIGXCPU, 4-6

stencil function, 2-2
system font, 3-12
termcap, 7-19

terminal emulation, D-4
TIOCGSIZE, 7-19
TIOCSSIZE, 7-19
tio_handlesigwinch, 6-9
tio_selected, 6-9

tool, 6-5
tool_borderwidth, 6-7
TOOL_BOUNDARYMGR, 6-5
tool_create, D-5, 6-4
tool_createsubwindow, 6-4
tool_destroy, 6-8
tool_destroysubwindow, 6-8
tool_display, 6-11

—jv -

TOOL_DONE, 6-6
TOOL_ICON%, 8-3
TOOL_ICONIC, 8-5
tool_install, D-3, 6-8

toolio, 6-9
TOOL_NAMESTRIPE, 6-5
tool_select, 6-9, 7-4
TOOL_SIGCHLD, 6-6
tool_sigwinch, 6-10
TOOL_SIGWINCHPENDING, 6-5
tool_stripeheight, 6-7
toolsw, 6-6
TOOL_SWEXTENDTOEDGE, 6-6
tool_wubwindowspacing, 6-8
tty, D-4

ttysubwindow, 7-17
ttysw_becomeconsole, 7-18
ttysw_createtoolsubwindow, 7-18
ttysw_done, 7-19
ttysw_fork, 7-19
ttysw_handlesigwinch, 7-18
ttysw_init, 7-18
ttysw_saveparms, 7-18
ttysw_selected, 7-18
typed__pa.i.r, 7-9

vi, 7-19

VKEY_#, 5-9
VKEY_CODES, 5-3
VKEY_FIRST, 5-3
VKEY_FIRSTPSEUDO, 5-4
VKEY_LAST, 5-3
VKEY_LASTPSEUDO, 5-4
we_clearinitdata, 6-4
we_getfxwindow, 4-12
we_getinitdata, 6-4
we_getparentwindow, 8-3
we_setgfxwindow, 4-12
we_setinitdata, 6-3
we_setparentwindow, 6-3
win_computeclipping, 4-7
WINDOW_GFX, 4-11
WINDOW_INITIALDATA, 6-3
WINDOW_ME, 7-19
WINDOW_PARENT, 6-3
win_error, 4-13
win_errorhandler, 4-13
win_fdtoname, 4-3

win_fdtonumber, 4-3
win_findintersect, 4-11
win_getcursor, 4-10
win_getheight, 4-3
win_getinputcodebit, 5-9
win_getinputmask, 5-8
win_getlink, 4-5
win_getnewwindow, 4-2
win_getowner, 4-13
win_getsavedrect, 4-4
win_getscreenpositions, 4-9
win_getsige, 4-3
win_getuperflags, 4-6
win__get:;dth, 4-3
win_grabie, 5-9
win_initsireenfromargv, 4-9
win_inquPosevent, 5-5
win_insery, 4-5
win_inser{blanket, 4-12
win_isblanket, 4-12
win_lockdata, 4-6
WIN_NAMESIZE, 4-2
win_nametonumber, 4-3
win_nextfree, 4-2
WIN_NULLLINK, 4-2
win_numbertoname, 4-2
win_partialrepair, 4-7
win_releaseio, 5-9
win_remove, 4-5
win_removeblanket, 4-12
win_screendestroy, 4-9
win_screenget, 4-9
win_screennew, 4-8
win_seteursor, 4-11
win_setinputcodebit, 5-9
win_setinputmask, 5-8
win_setkbd, 4-9
win_setlink, 4-5
win_setmouseposition, 4-11
win_setms, 4-9
win_setowner, 4-13
win_setrect, 4-3
win_setsavedrect, 4-4
win_setscreenpositions, 4-9
win_setuserflag, 4.6 '
win_setuserflags, 4-6
win_unlockdata, 4-8

win_unsetinputcodebit, 5-9
WL_BOTTOMCHILD, 4-4
WL_COVERED, 4-4
WL_COVERING, 4-4
WL_ENCLOSING, 4-4
WL_OLDERSIB, 4-4
WL_OLDESTCHILD, 4-4
WL_PARENT, 4-4
WL_TOPCHILD, 4-4
WL_YOUNGERSIB, 4-4
WL_YOUNGESTCHILD, 4-4
wmgr_bottom, 8-8
wmgr_changelevel, 8-10
wmgr_changerect, 8-8
wmgr_close, 8-8
wmgr_completechangerect, 810
wmgr_confirm, 8-8
wmgr_figureiconrect, 8-9
wmgr_figuretoolrect, 8-9
wmgr_forktool, 8-10
wmgr_getrectalloc, 8-11
wmgr_handletoolmenuitem, 8-9
WMGR_ICONIC, &-11
wmgr_iswindowopen, 8-11
wmgr_move, 8-8
wmgr_open, 8-8
wmgr_refreshwindow, 8-8
WMGR_SETPOS, 8-9
wmgr_setrectalloc, 8-11
wmgr_setupmenu, 8-9
wmgr_stretch, 8-8
wmgr_toolmenu, 8-9
wingr_top, 88

wmgr_winandchildrenexposed, 8-10

WUF_WMGR], 8-11

