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Networking Implementation Notes

The Sun Workstation runs a version of the UNIX} operating system which has strong support
for network communications. This document describes the internals of the networking support
subsystem. See the System Interface Overview in the Sun System Interface Manual for a
description of the user interface to the networking facilities.

1. Introduction

This report describes the internal structure of the networking facilities of the Sun Workstation
version of the UNIX operating system. These facilities are derived from the networking facili-
ties added at U.C. Berkeley in the Berkeley 4.2 release of the system. The system facilities pro-
vide a uniform user interface to networking and a structure which may be used by system
implementors to add new networking facilities. The internal structure is not visible to the user,
rather it is intended to aid implementors of communication protocols and network services by
providing a framework which promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system interface, as
described in the System Interface Overview at the beginning of the Sun System Interface
Manual. Basic understanding of network communication concepts is assumed; where required
any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding, when
possible, those portions which are utilized only by the interprocess communication facilities.

1 UNIX is a trademark of Bell Laboratories.
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2. Overview

If we consider the International Standards Organization's (ISO) Open System Interconnection
(OSI} model of network communication [[SO81] [Zimmermann80], the networking facilities
described here correspond to a portion of the session layer (layer 3) and all of the transport and
network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal addressing
structure, Addressing at this level is normally host to host, with implicit or explicit routing
optionally supported by the communicating agenta.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and service
addressing are normally included. Reliability is usually managed by explicit acknowledgement
of data delivered. Failure to acknowledge a transfer results in retransmission of the data.
Sequencing may be handled by tagging each message handed to the network layer by a sequence
number and maintaining state at the endpoints of communication to utilize received sequence
numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into formats

required by the transport layer, service authentication and client authentication, etc. Various

systems also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility rou-
tines, then examine the internal layering. The contents of each layer and its interface are con-
sidered. Certain of the interfaces are protocol implementation specific. For these cases exam-
ples have been drawn from the Internet {Cerf78] protocol family. Later sections cover routing
issues, the design of the raw socket interface and other miscellaneous topics.
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3. Goals

The networking system was designed with the goal of supporting multiple protocol families and
addressing styles. This required information to be “hidden” in common data structures which
could be manipulated by all the pieces of the system, but which required interpretation only by
the protocols which “controlled” it. The system described here attempts to minimize the use of
shared data structures to those kept by a suite of protocols (a protocel family), and those used
for rendezvous between “‘synchronous” and “asynchronous” portions of the system (e.g. queues
of data packets are filled at interrupt time and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deal of effort has been extended to
create utility routines which hide many of the more complex and/or hardware dependent chores
of networking. Later sections describe the utility routines and the underlying data structures
they manipulate.
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4. Internal Address Representation

Common to all portions of the system are two data structures. These structures are used to
represent addresses and various data objects, Addresses, internally are described by the
sockaddr structure, -

struct sockaddr {
shortsa_family; /+ data format identifier +/
char sa_data[l4]; /+ address s/
)
All addresses belong to one or more address families which define their format and interpreta-
tion. The sa_family field indicates which address family the address belongs to, the sa_data field
contains the actual data value, The size of the data field, 14 bytes, was selected based on a
study of current address formats

4 Revision C of 7 January 1984
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5. Memory Management

A single mechanism is used for data storage: memory buffers, or mbuf's. An mbuf is a structure
of the form:

struct mbuf {

struct mbuf *m_next; /* next buffer in chain */

u_long m_off; /+ offset of data +/

short m_len; [+ amount of data in this mbuf »/
short m_type; /* mbuf type (accounting) */

u_char  m_dat{MLEN]}; /* data storage */

struct ~ mbuf *m_act; /* link in higher-level mbuf list +/

b
The m_nezt field is used to chain mbufs together on linked lists, while the m_act field allows
lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the m_nezt field, while groups of objects are linked
via the m_act field (possibly when in a queue).

Each mbuf has a small data area for storing information, m_dat. The m_len field indicates the
amount of data, while the m_off field is an offset to the beginning of the data from the base of
the mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbuf to a
pointer to the data stored in the mbuf, has the form

#fdefine  mtod(x,t) ((tN(int)x) + (x)->m_off))

(note the ¢ parameter, a C type cast, is used to cast the resultant pointer for proper assign-
ment).

In addition to storing data directly in the mbuf’s data area, data of page size may be also be
stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for
this purpose and manipulate a private page map for such pages. The virtual addresses of these
data pages precede those of mbufs, 50 when pages of data are separated from an mbuf, the
mbuf data offset is a negative value. An array of reference counts on pages is also maintained
so that copies of pages may be made without core to core copying (copies are created simply by
duplicating the relevant page table entries in the data page map and incrementing the associ-
ated reference counts for the pages). Separate data pages are currently used only when copying
data from a user process into the kernel, and when bringing data in at the hardware level.
Routines which manipulate mbufs are not normally aware if data is stored directly in the mbuf
data array, or if it is kept in separate pages.
The following utility routines are available for manipulating mbuf chains:
m = m_copy({m0, off, len);
The m_copy routine create a copy of all, or part, of a list of the mbufs in m0. Len bytes of
data, starting off bytes from the front of the chain, are copied. Where possible, reference
counts on pages are used instead of core to core copies. The original mbuf chain must have
at least off + len bytes of data. If len is specified as M_COPYALL, all the data present,
offset as before, is copied.
m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is performed.
m_adj(m, diff);
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed from
back to front. No space is reclaimed in this operation, alterations are accomplished by
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changing the m_len and m_off fields of mbufs.

m = m_pullup(mO, size); '
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is
guaranteed to have at least size bytes of data in contiguous memory (allowing access via a
pointer, obtained using the mtod macro). If the original data was less than #ize bytes long,
len was greater than the size of an mbuf data area (112 bytes), or required resources were
unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid
packet header are present at the head of the list of mbufs representing the packet, the
remaining 8 bytes may be “pulled up” with a single m_pullup call. If the call fails the
invalid packet will have been discarded.
By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the mbuf
associated with a data area by masking off the low bits of the virtual address. This allows
modules to store data structures in mbufs and pass them around without concern for locating
the original mbuf when it comes time to free the structure. The dfom macro is used to convert
a pointer into an mbuf’s data area to a pointer to the mbuf,

#define  dtom(x) ((struct mbuf +}(int)x & “(MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets, as well as memory
allocated for packets, Statistics are maintained on mbuf usage and can be viewed by users
using the netstaq1) program.

8 Revision C of 7 January 1984
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6. Internal Layering

The internal structure of the network system is divided into three layers. These layers
correspond to the services provided by the socket abstraction, those provided by the communi-
cation protocols, and those provided by the hardware interfaces. The communication protocols
are normally layered into two or more individual cooperating layers, though they are collectively
viewed in the system as one layer providing services supportive of the appropriate socket
abstraction.

The following sections describe the properties of each layer in the system and the interfaces each
must conform to.

8.1. Socket Layer

The socket layer deals with the interprocess communications facilities provided by the system.
A socket is a bidirectional endpoint of communication whick is “typed” by the semantics of
communication it supports. The system calls described in the System Interface Overview are
used to manipulate sockets.

A socket consists of the following data structure:

struct socket {

short so_type; /* generic type */

short so_options; J* from socket call #/

short so_linger; /* time to linger while closing +/

short so_state; /* internal state flags +/

caddr_t  so_pch; ]+ protocel control block +/

struct protosw *so_proto; [+ protocol handle +/
struct socket *so_head; /+ back pointer to accept socket */

struct socket *so_q0; /* queue of partial connections +/
short so_qOlen; /* partials on so_q0 */

atruct socket *so_q; /* queue of incoming connections /
short so_qlen; /* number of connections on so_q */

short so_glimit; /* max number queued connections */

struct sockbuf so_snd; /* send queue */

struct sockbuf so_rcv; /* receive queue #/

short so_timeo; /# connection timeout */

u_short  so_error; /* error affecting connection */

short so_oobmark; /* chars to cob mark +/

short so_pgrp; /* pgrp for signals +/

|5

Each socket contains two data queues, #0_rcv and so_snd, and a pointer to routines which pro-
vide supporting services. The type of the socket, so_type is defined at socket creation time and
used in selecting those services which are appropriate to support it. The supporting protocol is
selected at socket creation time and recorded in the socket data structure for later use. Proto-
cols are defined by a table of procedures, the protosw structure, which will be described in detail
later. A pointer to a protocol specific data structure, the ‘“‘protocol control block” is also
present in the socket structure. Protocols control this data structure and it normally includes a
back pointer to the parent socket structure(s) to allow easy lookup when returning information
to a user (for example, placing an error number in the ao_error field). The other entries in the
socket structure are used in queueing connection requests, validating user requests, storing
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socket characteristics (e.g. options supplied at the time a socket is created), and maintaining a
socket’s state,

Processes “rendezvous at a socket’ in many instances. For instance, when a process wishes to
extract data from a socket’s receive queue and it is empty, or lacks sufficient data to satisfy the
request, the process blocks, supplying the address of the receive queue as an *‘wait channel’ to
be used in notification. When data arrives for the process and is placed in the socket’s queue,
the blocked process is identified by the fact it is waiting “‘on the queue”.

6.1.1. Socket State

A socket’s state is defined from the following:

#tdefine SS_NOFDREF 0x001
##define SS_ISCONNECTED 0x002

/* no file table ref any more 3/
/* socket connected to a peer +/

#define SS_ISCONNECTING  0x004
#define SS_ISDISCONNECTING

#define SS_CANTSENDMORE 0x010
#define SS_CANTRCVMORE 0x020
#define SS_CONNAWAITING 0x040

/* in process of connecting to peer */
0x008/+ in process of disconnecting */
[/ can’t send more data to peer 3/

/* can’t receive more data from peer #/
/#* connections awaiting acceptance */

##define SS_RCVATMARK 0x080  /+ at mark on input */
#define SS_PRIV 0x100 [+ privileged ¢/
fdefine SS_NBIO 0x200  /* non-blocking ops */
##define SS_ASYNC 0x400  /+ async i/o notify +/

The state of a socket is manipulated both by the protocols and the user (through system calls).
When a socket is created the state is defined based on the type of input/output the user wishes
to perform. ‘*Non-blocking” I1/O implies a process should never be blocked to await resources.
Instead, any call which would block returns prematurely with the error EWOULDBLOCK (the
service request may be partially fulfilled, e.g. a request for more data than is present).

If a process requested “asynchronous’ notification of events related to the socket the SIGIO »sig-
nal is posted to the process. An event is a change in the socket's state, examples of such occu-
rances are: space becoming available in the send queue, new data available in the receive queue,
connection establishment or disestablishment, etc.

A socket may be marked ‘‘priviledged” if it was created by the super-user. Only priviledged
sockets may send broadcast packets, or bind addresses in priviledged portions of an address
space.

6.1.2. Socket Data Queues

A socket's data queue contains a pointer to the data stored in the queue and other entries
related to the management of the data. The following structure defines a data queue:

8 Revision C of 7 January 1984
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struct sockbuf {
short sb_cc; /* actual chars in buffer +/
short sb_hiwat; /+ max actual char count s/
short sh_mbcnt; /+ chars of mbufs used #/
short sb_mbmax; /* max chars of mbufs to use */
short sb_lowat; [+ low water mark */
short sb_timeo; /+ timeout */
struct mbuf *sb_mb; /# the mbuf chain #/
struct proc *sb_sel; [+ process selecting read/write */
short sb_flags; [+ flags, see below +/

¥

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as high
and low water marks are used by the protocols in controlling the flow of data. The socket rou-
tines cooperate in implementing the flow control policy by blocking a process when it requests
to send data and the high water mark has been reached, or when it requests to receive data and
less than the low water mark is present (assuming non-blocking I/O has not been specified).

When a socket is created, the supporting protocol “reserves’ space for the send and receive
queues of the socket. The actual storage associated with a socket queue may fluctuate during a
socket's lifetime, but is assumed this reservation will always allow a protocol to acquire enough
memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing various
portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources;

f#define  SB_LOCK 0x01 /* lock on data queue (so_rcv only) */
##define SB_WANTOx02 [+ someone is waiting to lock #/
fdefine SB_WAIT 0x04 /+ someone is waiting for data/space */
#define SB_SEL 0x08 [+ buffer is selected +/

#tdefine SB_COLL 0x10 /# collision selecting /

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket Connection Queueing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are considered
distinct. One side is termed aciive, and generates connection requests, The other side is called
pasasive and accepts connection requests.

From the passive side, a socket is created with the option SO_ACCEPTCONN specified, creat-
ing two queues of sockets: so_g0 for connections in progress and so_g for connections already
made and awaiting user acceptance. As a protocol is preparing incoming connections, it creates
a socket structure queued on so0_g0 by calling the routine sonewconn(). When the connection is
established, the socket structure is then transfered to s0_g, making it available for an accept.

If an SO_ACCEPTCONN socket is closed with sockets on either 20 qU or so_g, these sockets
are dropped.

Revision C of 7 January 1984 9
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6.2. Protocol Layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics, some
of which are used in deciding which socket type(s) they may support.

An entry in the “protocol switch” table exists for each protocol module configured into the sys-
tem. It has the following form:

struct protosw {

short pr_type; |+ socket type used for +/
short pr_family; [+ protocol family +/
short pr_protocol; /* protocol number */
short pr_flags; /#* socket visible attributes +/
]+ protocol-protocol hooks */
int (*pr_input)); /* input to protocol (from below) +/
int (*pr_output)); /* output to protocol (from above) */

int (*pr_ctlinput)(); /* control input (from below) */
int (*pr_ctloutput)); [+ control output (from above) »/
[# user-protocol hook */

int (*pr_usrreq)); /* user request */
/* utility hooks #/
int (+pr_init)); /* initialization routine */

int (*pr_fasttimo)(); /+ fast timeout (200ms) +/
int (+pr_slowtimo)();/+ slow timeout (500ms) */
int (*pr_draink); /* flush any excess space possible +/

b
A protocol is called through the pr_¢nit entry before any other. Thereafter it is called every 200
milliseconds through the pr_fasttsmo entry and every 500 milliseconds through the pr_slowtimo
for timer based actions. The system will call the pr_drain entry if it is low on space and this
should throw away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the pr_snput and pr_ouiput
routines. Pr_gnput passes data up (towards the user) and pr_output passes it down (towards the
network); contro! information passes up and down on pr_ctlinput and pr_ctloutput. The proto-
col is responsible for the space occupied by any the arguments to these entries and must dispose
of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.
The pr_flags field is constructed from the following values:

ftdefire PR_ATOMIC 0x01 /* exchange atomic messages only +/

#fdefine PR_ADDR0x02 /* addresses given with messages */

#define PR_CONNREQUIRED  0x04 /* connection required by protocol */
#tdefine PR_WANTRCVD  0x08 /* want PRU_RCVD calls */

#define PR_RIGHTS 0x10 /* passes capabilities +/

Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket
routines will never attempt to send data before a connection has been established. If the
PR_WANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
removed data from the socket's receive queue. This allows the protocol to implement ack-
rnowledgement on user receipt, and also update windowing information based on the amount of
space available in the receive queue. The PR_ADDR field indicates any data placed in the
socket’s receive queue will be preceded by the address of the sender. The PR_ATOMIC flag
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specifies each user request to send data must be performed in a single protocol send request; it is
the protocol's responsibility to maintain record boundaries on data to be sent. The
PR_RIGHTS flag indicates the protocol supports the passing of capabilities; this is currently
used only the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an appropriate
protocol to support the type of socket being created. The pr_type field contains one of the pos-
sible socket types (e.g. SOCK_STREAM), while the pr_family field indicates which protocol
family the protocol belongs to. The pr_protocol field contains the protocol number of the proto-
col, normally a well known value.

6.3. Network-Interface Layer

Each network-interface configured into a system defines a path through which packets may be
sent and received. Normally a hardware device is associated with this interface, though there is
no requirement for this (for example, all systems have a software “loopback™ interface used for
debugging and performance analysis). In addition to manipulating the hardware device, an
interface module is responsible for encapsulation and deencapsulation of any low level header
information required to deliver a message to it's destination. The selection of which interface to
use in delivering packets is a routing decision carried out at a higher level than the network-
interface layer. Each interface normally identifies itself at boot time to the routing module so
that it may be selected for packet delivery.

An interface is defined by the following structure,

struct ifnet {

char *if_name; /*+ name, e.g. “en” or “lo” &/

short if_unit; /# sub-unit for lower level driver */
short if_mtu; /* maximum transmission unit */
int if_pet; /* network number of interface ¢/
short if_flags; /* up/down, broadcast, etc. */

short if_timer; /#* time 'til if_watchdog called #/

int  if_host[2]; /# local net host number */

struct sockaddr if_addr; [+ address of interface */
union {

struct sockaddr ifu_broadaddr;
struct sockaddr ifu_dstaddr;

} if_ifu;

struct ifquene if_snd; /#* output queue +/

int  (*if_init)); /# init routine */

int (*if _outputX); [+ output routine /

int  (*if_toctlX); [/ * ioctl routine */

int (*if_reset)(); /* bus reset routine */

int (+if_watchdog)();/* timer routine %/

int if_jipackets; /* packets received on interface */
int if_jerrors; /* input errors on interface */

int if_opackets; : /* packets sent on interface */
int  if_oerrors; /* output errors on interface */

int if_collisions; ]+ collisions on csma interfaces */
struct ifnet +if_next;

}i

Revision C of 7 January 1984 11



Networking Implementation Notes Sun System Internals Manual

Each interface has a send quene and routines used for imitialization, if_ini?, and ontput,
if_output. If the interface resides on a system bus, the routine if_reset will be called after a bus
reset has been performed. An interface may also specily a timer routine, if watchdog, which
should be called every if_timer seconds (if non-zero).

The state of an interface and certain characteristics are stored in the if flags field. The follow-
ing values are possible:

#define IFF_UP Ox1 [+ interface is up */

##define IFF_BROADCAST 0x2 [* broadcast address valid */
f#define IFF_DEBUG  Ox4 /* turn on debugging */

#define IFF_ROUTE 0x8 [+ routing entry installed +/

#define  IFF_POINTOPOINT 0x10 /+ interface is point-to-point link */
#define IFF_NOTRAILERS 0x20 /+ avoid use of trailers +/

#tdefine IFF_RUNNING 0x40 /# resources allocated +/

i the interface is connected to a network which supports transmission of broadcast packets, the
IFF_BROADCAST flag will be set and the if_broadaddr field will contain the address to be used
in sending or accepting a broadcast packet. If the interface is associated with a point to point
hardware link (for example, a DEC DMR-11), the IFF_POINTOPOINT flag will be set and
if_dstaddr will contain the address of the host on the other side of the connection. These
addresses and the local address of the interface, if_addr, are used in filtering incoming packets.
The interface sets IFF_RUNNING after it has allocated system resources and posted an initial
read on the device it manages. This state bit is used to avoid multiple allocation requests when
an interface’s address is changed. The IFF_NOTRAILERS flag indicates the interface should
refrain from using a trasler encapsulation on outgoing packets.+

The information stored in an ifnet structure for point to point communication devices is not
currently used by the system internally. Rather, it is used by the user level routing process in
determining host network connections and in initially devising routes (refer to chapter 10 for
more information).

Various statistics are also stored in the interface structure. These may be viewed by users using
the netstaf{1) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS ioctls.
SIOCSIFADDR is used to initially define each interface's address; SIOGSIFFLAGS can be used
to mark an interface down and perform site-specific configuration.

* Trailer protocols are normally disabled on the Sun Workstation.
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7. Socket/Protocol Interface

The interface between the socket routines and the communication protocols is through the
pr._usrreg routine defined in the protocol switch table. The following requests to a protocol
module are possible:

#tdefine PRU_ATTACH 0 [+ attach protocol */

#define PRU_DETACH 1  /+ detach protocol +/

#define PRU_BIND 2 /#* bind socket to address s/

fidefine PRU_LISTEN 3 [+ listen for connection /

##define PRU_CONNECT 4 [+ establish connection to peer */
#define PRU_ACCEPT 5  /+ accept connection from peer */
#define PRU_DISCONNECT 6 /+ disconnect from peer ¢/

##define PRU_SHUTDOWN 7  /+ won't send any more data */
ftdefine PRU_RCVD 8 /* have taken data; more room now */
#define PRU_SEND 9  /* send this data ¢/

fkdefine PRU_ABORT 10 [+ abort (fast DISCONNECT, DETATCH) */
#define PRU_CONTROL 11  /#+ control operations on protocol */
##define PRU_SENSE 12  [/# return status into m /

#define PRU_RCVOOB 13 /s retrieve out of band data /

#define PRU_SENDOOB 14 [+ send out of band data +/
jtdefine PRU_SOCKADDR 15 /# fetch socket’s address +/
##define PRU_PEERADDR 16 [+ fetch peer’s address +/

ffdefine PRU_CONNECT2 17  /#* connect two sockets */

/* begin for protocols internal use +/

#define PRU_FASTTIMO 18 /+ 200ms timeout */
f#defire PRU_SLOWTIMO 19  /+ 500ms timeout */
#define PRU_PROTORCV 20 [+ receive from below */
#define PRU_PROTOSEND 21 /# send to below #/

A call on the user request routine is of the form,

error == {+protosw[].pr_usrreq)Xup, req, m, addr, rights);
int error; struct socket *up; int req; struct mbuf *m, *rights; caddr_t addr;

The mbuf chain, m, and the address are optional parameters. The rights parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the sendmsg and
recvmag system calls). The protocol is responsible for disposal of both mbuf chains. A non-zero
return value gives a UNIX error number which should be passed to higher level software. The
following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socket system call) the protocol module is
called with this request. It is the responmsibility of the protocol module to allocate any
resources necessary. The “attach’ request will always precede any of the other requests,
and should not occur more than once.

PRU_DETACH _
This is the antithesis of the attach request, and is used at the time a socket is deleted. The
protocol module may deallocate any resources assigned to the socket.

PRU_BIND
When a socket is initially created it has no address bound to it. This request indicates an
address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.
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PRU_LISTEN
The “listen’ request indicates the user wishes to listen for incoming connection requests on
the associated socket. The protocol module should perform any state changes needed to
carry out this request (if possible). A “listen’ request always precedes a request to accept a
connection.

PRU_CONNECT

The ‘“connect™ request indicates the user wants to a establish an association. The addr
parameter supplied describes the peer to be connected to. The effect of a connect request
may vary depending on the protocol. Virtual circuit protocols, such as TCP [Postel80b],
use this request to initiate establishment of a TCP connection. Datagram protocols, such as
UDP [Postel79)], simply record the peer’s address in a private data structure and use it to
tag all outgoing packets. There are no restrictions on how many times a connect request
may be used after an attach. If a protocol supports the notion of multi-casting, it is possi-
ble to use multiple connects to establish a multi-cast group. Alternatively, an association
may be broken by a PRU_DISCONNECT request, and a new association created with a
subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more connections,
this request is made to indicate the user has accepted the first connection on the queune of
pending connections. The protocol module should fill in the supplied address buffer with
the address of the connected party.

PRU_DISCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parameter
indicates the direction of the shutdown, as encoded in the soshutdown system call). The
protocol may, at its discretion, deallocate any data structures related to the shutdown.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes the
PR_WANTRCVD flag. When a user removes data from the receive queue this request will
be sent to the protocol module. It may be used to trigger acknowledgements, refresh win-
dowing information, initiate data transfer, etc.

PRU_SEND
Each user request to send data is translated into one or more PRU_SEND requests (a proto-
col may indicate a single user send request must be translated into a single PRU_SEND
request by specifying the PR_ATOMIC flag in its protocol description). The data to be
sent is presented to the protocol as a list of mbufs and an address is, optionally, supplied in
the addr parameter. The protocol is responsible for preserving the data in the socket’s send
queue if it is not able to send it immediately, or if it may need it at some later time (e.g. for
retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any
existing association(s).

PRU_CONTROL
The “control” request is generated when a user performs a UNIX soctl system call on a
socket (and the joctl is not intercepted by the socket routines). It allows protocol-specific
operations to be provided outside the scope of the common socket interface. The sddr
parameter contains a pointer to a static kernel data area where relevant information may be
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obtained or returned. The m parameter contains the actual soetl request code (note the
non-standard calling convention).

PRU_SENSE
The “sense” request is generated when the user makes an fatat system call on a socket; it
requests status of the associated socket. There currently is no common format for the status
returned. Information which might be returned includes per-connection statistics, protocol
state, resources currently in use by the connection, the optimal transfer size for the connec-
tion (based on windowing information and maximum packet size). The addr parameter con-
tains a pointer to a static kernel data area where the status buffer should be placed.

PRU_RCVOOB
Any “out-of-band" data presently available is to be returned. An mbuf is passed in to the
protocol module and the protocol should either place data in the mbuf or attach new mbufs
to the one supplied if there is insufficient space in the single mbuf.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The address
format (protocol specific) is returned in the addr parameter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be
in a SS_ISCONNECTED state for this request to be made to the protocol. The address for-
mat (protocol specific) is returned in the addr parameter.

PRU_CONNECT?
The protocol module is supplied two sockets and requested to establish a connection
between the two without binding any addresses, if possible. This call is used in implement-
ing the socketpair(2) system call.

The following requests are used internally by the protocol modules and are never generated by
the socket routines. In certain instances, they are handed to the pr_usrreg routine solely for
convenience in tracing a protocol’s operation (e.g. PRU_SLOWTIMO}.
PRU_FASTTIMO
A “fast timeout” has occured. This request is made when a timeout occurs in the protocol’s
pr_fastimo routine. The addr parameter indicates which timer expired.
PRU_SLOWTIMO
A “slow timeout” has occured. This request is made when a timeout occurs in the
protocol’s pr_slowtimo routine. The eddr parameter indicates which timer expired.
PRU_PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests
reception of data destined for the protocol and not the user. No protocols currently use this
facility.
PRU_PROTOSEND
This request allows a protocol to send data destined for another protocol module, not a
user. The details of how data is marked *addressed to protocol” instead of “‘addressed to
user” are left to the protocol modules. No protocols currently use this facility.
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8. Protocol/Protocol Interface

The interface between protocol modules is through the pr_usrreq, pr_input, pr_outpul,
pr_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_usrreg routine
are expected to be specific to the protocol modules and are not guaranteed to be consistent
across protocol families. We will examine the conventions used for some of the Internet proto-
cols in this section as an example.

8.1. pr_output
The Internet protocol UDP uses the convention,

error = udp_output(inp, m};
int error; struct inpcb *inp; struct mbuf *m;

where the inp, “internet protocol control block”, passed between modules conveys per connec-
tion state information, and the mbuf chain contains the data to be sext. UDP performs con-
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on to
the IP module: S

error = ip_output(m, opt, ro, allowbroadcast);
int error; struct mbuf *m, *opt; struct route +ro; int allowbroadcast;

The call to IP’s output routine is more complicated than that for UDP, as befits the additional
work the IP module must do. The m parameter is the data to be sent, and the opt parameter is
an optional list of IP options which should be placed in the IP packet header. The ro parameter
is is used in making routing decisions (and passing them back to the caller). The final parame-
ter, allowbroadcast is a flag indicating if the user is allowed to transmit a broadcast packet.
This may be inconsequential if the underlying hardware does not support the notion of broad-
casting.

All output routines return 0 on success and a UNIX error number if a failure occured which
could be immediately detected (no buffer space available, no route to destination, etc.).

8.2. pr_input

Both UDP and TCP use the following calling convention,

(void) (*protosw]).pr_input Xm);
struct mbuf *m;

Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a software interrupt level routine, and so is not called with any parame-
ters. It instead communicates with network interfaces through a quene, ipintrg, which is identi-
cal in structure to the queues used by the metwork interfaces for storing packets awaiting
transmission.

8.3. pr_ctlinput

This routine is used to convey “control” information to a protocol module (i.e. information
which might be passed to the user, but is not data). This routine, and the pr_ctloutput routine,
have not been extensively developed, and thus suffer from a “‘clumsiness” that can only be
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improved as more demands are placed on it.
The common calling convention for this routine is,

(void) (*protosw|].pr_ctlinput)req, info);
int req; caddr_t info;

The req parameter is one of the following,

ftdefine PRC_IFDOWN
#define PRC_ROUTEDEAD
#define PRC_QUENCH

0 /* interface transition */

1

4
ftdefine PRC_HOSTDEAD 6

7

8

/* select new route if possible +/
[+ some said to slow down */

/* normally from IMP */

/# ditto #/

/* no route to network */

/* no route to host #/

#define PRC_HOSTUNREACH
#define PRC_UNREACH_NET
#define PRC_UNREACH_HOST 9

ffdefine PRC_UNREACH_PROTOCOL
#define PRC_UNREACH_PORT 11
#fdefine PRC_MSGSIZE 12
#define PRC_REDIRECT_NET 13
#define PRC_REDIRECT_HOST 14
#define PRC_TIMXCEED_INTRANS

#define PRC_TIMXCEED_REASS 18

10/ dst says bad protocol +/

/* bad port # ¢/

/% message size forced drop */

/#* net routing redirect */

/* host routing redirect +/

17/+ packet lifetime expired in transit ¢/
/# lifetime expired on reass q */

#define PRC_PARAMPROB 19

while the info parameter is a “catchall” value which is request dependent. Many of the requests
have obviously been derived from ICMP (the Internet Control Message Protocol), and from
error messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist to con-
vert control requests to UNIX error codes which are delivered to a user.

/#* header incorrect */

8.4. pr_ctloutput

This routine is not currently used by any protocol modules.
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9. Protocol/Network-Interface Interface

The lowest Jayer in the set of protocols which comprise a protocol family must interface itself to
one or more network interfaces in order to transmit and receive packets. It is assumed that any
routing decisions have been made before handing a packet to a network interface, in fact this is
absolutely necessary in order to locate any interface at all (unless, of course, one uses a single
“hardwired” interface). There are two cases to be concerned with, transmission of a packet,
and receipt of a packet; each will be considered separately.

9.1. Packet Transmission

Assuming a protocol has a handle on an interface, i/p, a (struct ifnet #), it transmits a fully for-
matted packet with the following call,

error = (+ifp->if_output)ifp, m, dst)
int error; struct ifnet #ifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the metwork interface transmits the packet m to the dst address, or
returns an error indication (a UNIX error number). In reality transmission may not be immedi-
ate, or successful; normally the output routine simply queues the packet on its send queune and
primes an interrupt driven routine to actually transmit the packet. For unreliable mediums,
such as the Ethernet, “‘successful” transmission simply means the packet has been placed on the
cable without a collision. On the other hand, an 1822 interface guarantees proper delivery or an
error indication for each message transmitted. The model employed in the networking system
attaches no promises of delivery to the packets handed to a network interface, and thus
corresponds more closely to the Ethernet. Errors returned by the output routine are normally
trivial in nature (no buffer space, address format not handled, etc.).

9.2. Packet Reception

Each protocol family must have one or more “lowest level” protocols. These protocols deal with
internetwork addressing and are responsible for the delivery of incoming packets to the proper
protocol processing modules. In the PUP model [Boggs78] these protocols are termed Level 1
protocols, in the ISO model, network layer protocols. In our system each such protocol module
has an input packet queue assigned to it. Incoming packets received by a network interface are
queued up for the protocol module and a software interrupt is posted to initiate processing.

Three macros are available for queueing and dequeueing packets,
IF_ENQUEUE(ifq, m)
This places the packet m at the tail of the quene ifg.
IF_DEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue ¢fgin m. A zero value will be
returned in m if the queue is empty.
IF_PREPEND(ifq, m)
This places the packet m at the head of the queue ifg.
Each queue has a maximum length associated with it as a simple form of congestion control.
The macro IF_QFULL(ifq) returns 1 if the queue is filled, in which case the macro
IF_DROP(ifq) should be used to bump a count of the number of packets dropped and the
offending packet dropped. For example, the following code fragment is commonly found in a
network interface’s input routine,
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if (IF_QFULL(inq)) {
G IF_DROP(ing);
} m_freem(m);
else

[F_ENQUEUE(ing, m);

o
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10. Gateways and Routing Issues

The system has been designed with the expectation that it will be used in an internetwork
environment. The “canonical” environment was envisioned to be a collection of local area net-
works connected at one or more points through hosts with multiple network interfaces (one on
each local area network), and possibly a conmection to a long haul network (for example, the
ARPANET). In such an environment, issues of gatewaying and packet routing become very
important. Certain of these issues, such as congestion control, have been handled in a simplistic
manner or specifically not addressed. Instead, where possible, the network system attempts to
provide simple mechanisms upon which more involved policies may be implemented. As some of
these problems become better understood, the solutions developed will be incorporated into the
system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms
provided for congestion control are described in chapter 12.

10.1. Routing Tables

The network system maintains a set of routing tables for selecting a network interface to use in
delivering a packet to its destination. These tables are of the form:

struct rtentry {
u_long  rt_hash; /#+ hash key for lookups #/
struct sockaddr rt_dst; /+ destination net or host #/
struct sockaddr rt_gateway; [+ forwarding agent */

short rt_flags; /* see below 3/

short rt_refcnt; /* no. of references to structure */

u_long  rt_use; ~ /* packets sent using route */
struct ifnet *rt_ifp; /* interface to give packet to #/

)

The routing information is organized in two separate tables, one for routes to a host and one for
routes to a network. The distinction between hosts and networks is necessary so that a single
mechanism may be used for both broadcast and multi-drop type networks, and also for net-
works built from point-to-point links (e.g DECnet [DECB80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by
routines defined for each address family; one based on the destination being a host, and one
assuming the target is the network portion of the address. Each hash value is used to locate a
hash chain to search {by taking the value modulo the hash table size) and the entire 32-bit
value is then used as a key in scanning the list of routes. Lookups are applied first to the rout-
ing table for hosts, then to the routing table for networks. If both lookups fail, a final lookup is
made for a ‘‘wildcard” route (by convention, network 0). By doing this, routes to a specific host
on a network may be present as well as routes to the network. This also allows a “fall back”
network route to be defined to an “smart” gateway which may then perform more intelligent
routing.

Each routing table entry contains a destination (who’s at the other end of the route), a gateway
to send the packet to, and various flags which indicate the route’s status and type (host or net-
work). A count of the number of packets sent using the route is kept for use in deciding
between multiple routes to the same destination (see below), and a count of ‘‘held references’ to
the dynamically allocated structure is maintained to insure memory reclamation occurs only
when the route is not in use. Finally a pointer to the a network interface is kept; packets sent
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using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as “direct” or “indirect”. The
host/network distinction determines how to compare the ré_dst ficld during lookup. If the route
is to a network, only a packet's destination network is compared to the ri_dat entry stored in
the table. If the route is to a host, the addresses must match bit for bit.

The distinction between “direct” and “indirect” routes indicates whether the destination is
directly connected to the source. This is needed when performing local network encapsulation.
If a packet is destined for a peer at a host or network which is not directly connected to the
source, the internetwork packet header will indicate the address of the eventual destination,
while the local network header will indicate the address of the intervening gateway. Should the
destination be directly connected, these addresses are likely to be identical, or a mapping
between the two exists. The RTF_GATEWAY flag indicates the route is to an “indirect” gate-
way agent and the local network header should be filled in from the rt_gateway field instead of
rt_dst, or from the internetwork destination address.

It is assumed multiple routes to the same destination will not be present unless they are deemed
equal in cost (the current routing policy process never installs multiple routes to the same desti-
nation). However, should multiple routes to the same destination exist, a request for a route
will return the ‘‘least used” route based on the total number of packets sent along this route.
This can result in a “ping-pong” effect (alternate packets taking alternate routes), unless proto-
cols “hold onto” routes until they no longer find them useful; either because the destination has
changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table entries
as well as dynamically create new routing table entries. On hosts where exhaustive routing
information is too expensive to maintain (e.g. work stations), the combination of wildcard rout~
ing entries and routing redirect messages can be used to provide a simple routing management
scheme without the use of a higher level policy process. Statistics are kept by the routing table
routines on the use of routing redirect messages and their affect on the routing tables. These
statistics may be viewed using netstat(1).

Status information other than routing redirect control messages may be used in the future, but
at present they are ignored. Likewise, more intelligent ‘“‘metrics” may be used to describe
routes in the future, possibly based on bandwidth and monetary costs.

10.2. Routing Table Interface

A protocol accesses the routing tables through three routines, one to allocate a route, one to free
a route, and one to process a routing redirect control message. The routine rtalloc performs
route allocation; it is called with a pointer to the following structure,

struct route {
~ struct rtentry *ro_rt;
struct sockaddr ro_dst;

b
The route returned is assumed “*held” by the caller until disposed of with an rifree call, Proto-
cols which implement virtual circuits, such as TCP, hold onto routes for the duration of the
circuit's lifetime, while connection-less protocols, such as UDP, currently allocate and free routes
on each transmission.

The routine reredirect is called to process a routing redirect control message. It is called with a
destination address and the new gateway to that destination. If a non-wildcard route exists to
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the destination, the gateway entry in the route is modified to point at the new gateway sup-
plied. Otherwise, a new routing table entry is inserted reflecting the information supplied.
Routes to interfaces and routes to gateways which are not divectly accesible from the host are
ignored.

10.3. User-Level Routing Policies

Routing policies implemented in user processes manipulate the kernel routing tables through
two soctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries,
respectively; the tables are read through the /dev/kmem device. The decision to place policy
decisions in a user process implies routing table updates may lag a bit behind the identification
of new routes, or the failure of existing routes, but this period of instability is normally very
small with proper implementation of the routing process. Advisory information, such as ICMP
error messages and IMP diagnostic messages, may be read from raw sockets (described in the
next section).

One routing policy process has already been implemented. The system standard ‘‘routing dae-
mon” uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up to
date routing tables in our local environment. Interaction with other existing routing protocols,
such as the Internet GGP (Gateway-Gateway Protocol), may be accomplished using a similar
process.
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11. Raw Sockets

A raw socket is a mechanism which allows users divect access to a lower level protocol. Raw
sockets are intended for knowledgeable processes which wish to take advantage of some protocol
feature not directly accessible through the normal interface, or for the development of new pro-
tocols built atop existing lower level protocols. For example, a new version of TCP might be
developed at the user level by utilizing a raw IP socket for delivery of packets. The raw IP
socket interface attempts to provide an identical interface to the one a protocol would have if it
were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly) augmented
by protocol-specific processing routines. This section will describe the core of the raw socket
interface.

11.1. Control Blocks

Every raw socket has a protocol control block of the following form,

struct rawcb {
struct rawch *rcb_next; /+ doubly linked list +/
struct rawcb *rch_prev;
struct socket *rcb_socket; /* back pointer to socket */
struct sockaddr reb_faddr;  /+ destination address +/
struct sockaddr reb_laddr;  /# socket's address #/
caddr_t  rch_peb; J* protocol specific stuff +/
short rcb_flags;
¥
All the control blocks are kept on a doubly linked list for performing lookups during packet
dispatch. Associations may be recorded in the control block and used by the output routine in
preparing packets for transmission. The addresses are also used to filter packets on input; this
will be described in more detail shortly. If any protocol specific information is required, it may
be attached to the control block using the rcb_pcb field.

A raw socket interface is datagram oriented. That is, each send or receive on the socket
requires a destination address. This address may be supplied by the user or stored in the con-
trol block and automatically installed in the outgoing packet by the output routine. Since it is
not possible to determine whether an address is present or not in the control block, two flags,
RAW_LADDR and RAW_FADDR, indicate if a local and foreign address are present. Another
flag, RAW_DONTROUTE, indicates if routing should be performed on outgoing packets. If it
is, a route is expected to be allocated for each “new’’ destination address. That is, the first time
a packet is transmitted a route is determined, and thereafter each time the destination address
stored in rcb_route differs from reb_faddr, or reb_route.ro_rt is zero, the old route is discarded
and a new one allocated.

11.2. Input Processing

Input packets are “‘assigned’ to raw sockets based on a simple pattern matching scheme. Each
network interface or protocol gives packets to the raw input routine with the call:
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raw_jnput{m, proto, src, dst)
struct mbuf *m; struct sockproto *proto, struct sockaddr #src, *dst; @

The data packet then has a generic header prepended to it of the form

struct raw_header {

struct sockproto raw_proto;
struct sockaddr raw_dst;
struct sockaddr raw_src;

b
and it is placed in a packet queue for the ‘‘raw input protocol” module. Packets taken from

this queue are copied into any raw sockets that match the header according to the following
rules,

1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that found in the
packet header.

3) i a local address is defined for the socket, the address format of the local address is the
same as the destination address's and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket’s foreign address and the packet’s source address.

A basic assumption is that addresses present in the control block and packet header (as con-

structed by the network interface and any raw input protocol module) are in a canonical form
which may be “block compared”.

11.3. Output Processing O

On output the raw pr_usrreq routine passes the packet and raw control block to the raw proto-
col output routine for any processing required before it is delivered to the appropriate network
interface. The output routine is normally the only code required to implement a raw socket
interface.
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12. Buffering and Congestion Control

One of the major factors in the performance of a protocol is the buffering policy used. Lack of
a proper buffering policy can force packets to be dropped, cause falsified windowing information
to be emitted by protocols, fragment host memory, degrade the overall host performance, etc.
Due to problems such as these, most systems allocate a fixed pool of memory to the networking
system and impose a policy optimized for ‘normal’ network operation.

The networking system developed for UNIX is little different in this respect. At boot time a
fixed amount of memory is allocated by the networking system. At later times more system
memory may be requested as the need arises, but at no time is memory ever returned to the
system. It is possible to garbage collect memory from the network, but difficult. In order to
perform this garbage collection properly, some portion of the network will have to be ‘turned
off’ as data structures are updated. The interval over which this occurs must kept small com-
pared to the average inter-packet arrival time, or too much traffic may be lost, impacting other
hosts on the network, as well as increasing load on the interconnecting mediums. In our
environment we have not experienced a need for such compaction, and thus have left the prob-
lem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given
of the allocation mechanisms, and policies used by the protocols in performing connection level
buffering.

12.1. Memory Management

The basic memory allocation routines place no restrictions on the amount of space which may
be allocated. Any request made is filled until the system memory allocator starts refusing to
allocate additional memory. When the current quota of memory is insufficient to satisfy an
mbuf allocation request, the allocator requests enough new pages from the system to satisfy the
current request only. All memory owned by the network is described by a private page table
used in remapping pages to be logically contiguous as the need arises. In addition, an array of
reference counts parallels the page table and is used when multiple copies of a page are present.

Mbufs are 128 byte structures, 18 fitting in a 2048 byte page of memory. When data is placed
in mbufs, if possible, it is copied or remapped into logically contigzous pages of memory from
the network page pool. Data smaller than the size of a page is copied into one or more 112 byte
mbuf data areas.

12.2. Protocol Buffering Policies

Protocols reserve fixed amounts of buffering for send and receive queunes at socket creation time.
These amounts define the high and low water marks used by the socket routines in deciding
when to block and unblock a process. The reservation of space does not currently result in any
action by the memory management routines, though it is clear if one imposed an upper bound
on the total amount of physical memory allocated to the network, reserving memory would
become important.

Protocols which provide connection level flow control do this based on the amount of space in
the associated socket queues. That is, send windows are calculated based on the amount of free
space in the socket’s receive queue, while receive windows are adjusted based on the amount of
data awaiting transmission in the send queue. Care has been taken to avoid the ‘silly window
syndrome’ described in [Clark82] at both the sending and receiving ends.
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12.3. Queue Limiting

Incoming packets from the network are always received unless memory allocation fails. How-
ever, each Level 1 protoco! input queue has an upper bound on the gueue’s length, and any
packets exceeding that bound are discarded. It is possible for a host to be overwhelmed by
excessive network traffic (for instance a host acting as a gateway from a high bandwidth net-
work to a low bandwidth network). As a ‘defensive’ mechanism the queue limits may be
adjusted to throttle network traffic load on a host. Consider a host willing to devote some per-
centage of its machine to handling network traffic. If the cost of handling an incoming packet
can be calculated so that an acceptable ‘packet handling rate’ can be determined, then input
queue lengths may be dynamically adjusted based on a host’s network load and the number of
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a
problem such as this (simply dropping packets is likely to increase the load on a network); the
queue lengths were incorporated mainly as a safeguard mechanism.

12.4. Packet Forwarding

When packets can not be forwarded because of memory limitations, the system generates a
‘source quench’ message. In addition, any other problems encountered during packet forwarding
are also reflected back to the sender in the form of ICMP packets. This helps hosts avoid
unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of
network development, broadcast packets were forwarded and a ‘routing loop’ resulted in net-
work saturation and every host on the network crashing.
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13. Out of Band Data

Out of band data is a facility peculiar to the stream socket abstraction defined. Little agree-
ment appears to exist as to what its semantics should be. TCP defines the notion of “‘urgent
data” as in-line, while the NBS protocols {Burruss81] and numerous others provide a fully
independent logical transmission channel along which out of band data is to be sent. In addi-
tion, the amount of the data which may be sent as an out of band message varies from protocol
to protocol; everything from 1 bit to 16 bytes or more.

A stream socket’s notion of out of band data has been defined as the lowest reasonable common
denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band
data is expected to be transmitted out of the normal sequencing and flow control constraints of
the data stream. A minimum of 1 byte of out of band data and one outstanding out of band
message are expected to be supported by the protocol supporting a stream socket. It is a proto-
cols prerogative to support larger sized messages, or more than one outstanding out of band
message at a time,

Out of band data is maintained by the protocol and usually not stored in the socket's send
quene. The PRU_SENDOOB and PRU_RCVOOB requests to the pr_usrreq routine are used in
sending and receiving data.
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Appendix A. Acknowledgements and References

The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79],
while in certain places the Internet protocol family has had a great deal of influence in the
design. The use of software interrupts for process invocation is based on similar facilities found
in the VMS operating system. Many of the ideas related to protocol modularity, memory
management, and network interfaces are based on Rob Gurwitz’s TCP/IP implementation for
the 4.1BSD version of UNIX on the VAX [Gurwitz81).
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Writing Device Drivers for the Sun Workstation

This document is a guide to adding software drivers for new devices to the kernel.

One of the UNIX{ Operating System's major services to application software is a device-
independent view of the hardware that stores and retrieves data and communicates with the
outside world. The interface between UNIX application software and a given piece of raw
hardware is provided by a device driver for that piece of hardware. A device driver provides an
interface between the UNIX operating system's device-independent scheme of things and the spe-
cial characteristics of a particular piece of hardware.

1. Introduction

The kernel supplied with the Sun system is a configurable kernel, meaning that it is possible
(within limits) to make changes to the kernel and to add new device driver modules. A detailed
explanation of how to configure and build a kernel is in Building UNIX Systems with Config in
the System Manager’s Manual.

This document is aimed at the Sun user who has some expertise in writing UNIX device drivers,

and who wishes to connect a new Multibus device to the Sun system. The UNIX system that
runs on the Sun Workstation supports several different types of devices, and the scope of this

"document is limited to writing device drivers for the kinds of devices not already supplied by

Sun. If you have no previous experience writing UNIX device drivers, you should expect to seek
some advice from the Sun technical support organization or an outside consultant experienced
in writing UNIX drivers. We can classify devices and their drivers into seven major categories:

Co-processors,

Disks and tapes.

Network interface drivers such as Ethernet or X.25.

Serial communications multiplexors.

General DMA devices such as driver boards for raster-oriented printers or plotters.
Programmed 1/0O devices.

Frame buffers. '

This manual only addresses devices and drivers in categories 5, 6, and 7. There is a wide range
of devices which Sun does not support for which you might want to write a device driver. This
document is primarily concerned with creating device drivers for devices such as parallel inter-
faces, analog to digital (A/D) converters, digital to analog (D/A) converters, interfaces to special
outboard processors, frame buffers, memory-mapped graphics boards, and so on. Such devices
can be cast into the model of unstructured or character I/O devices in the UNIX I/O system

NP e

{1 UNIX is a Epdema.rl: of Bell Laboratories.
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scheme, as opposed to block 1/O devices that support a UNIX file system. Character I/O dev-
ices may support read and write operations, and may provide an ioctl interface for controlling
the devices. Such devices may also provide for being mapped into the user's virual address
space by supporting the mmap system call.

This document does not address devices and drivers in categories 1 thru 4. In particular, the
considerations in writing device drivers for disks, tapes, serial communication devices, and local
network interface drivers are quite involved — we do not discuss the construction of such
drivers in this document. Most Sun customers should find that the extensive use of standards
in the Sun product line should allow them to use hardware interfaces already provided by Sun
to drive such peripherals. ‘

To add a new hardwate device-controller and its device driver to the system you must:

1. Get the device controller hardware into a state where you know it works as advertised — it
is eztremely difficult to debug your device driver software (step 4 below) if the hardware is
not known to be working,

2. Write the device driver itself,

3. Add it to the system configurator's data base, describe a system containing the driver, and
compile this system containing the new device driver,

4. Debug the driver. |

Chapter 2 is a general overview of the hardware and software environment provided by the Sun

Workstation.

Chapter 3 is a description of the I/O system and device drivers. Chapter 3 provides a model of
a very simple device driver and describes the issues involved in programming device drivers on
the Sun system.

Chapter 4 is a description of how to add a new device driver to the kernel.

Finally, samples of actual drivers are included with this document so that the reader can see
how the actual code is used, The drivers we have included as samples are:

cgone A simple memory-mapped driver for the black and white framebuffer.
sky A simple programmed 1/O driver for the SKY floating-point board.
vp A DMA device driver for the Versatec printer/plotter.

Hint: Spend as much time as you need in the Sun Workstation PROM monitor poking, prod-
ding and cajoling your device until you are thoroughly familiar with its behavior. This will save
you a lot of grief later. There is a discussion a little later on the kinds of things you can do
with the PROM monitor.
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2. General Hardware and Software Topics

2.1. Device Names ahd Device Numbers — The /dev Directory

All devices and special files are defined externally in the /dev directory. Devices are character-
ized by a major device number, a minor device number, and a class (block or character). When
a file of any type is opened, the device driver to call is obtained from the entry in the [ dev
directory. Entries in the /dev directory are created via the minod(8) (make a node) adminis-
tration command. Here is a fragment of what the /dev directory looks like from an ls -l
command:

Table 1: A sample listing of the /dev Directory

T per- & own- maj- min

[T} mis- i er or or date name
p sions 5 ¥ #

1e ¢

Feb 21 00:45 console
Dec 28 16:18 kmem
-Jan 13 23:07 mbio
Jan 13 23:07 mbmem
Dec 28 16:18 mem
Dec 28 16:13 mouse
Feb 22 18:40 null
Dec 28 16:19 rxy0a
Dec 28 18:19 rxyOb

.

rw-—-w—--w- 1 henry
rW-r--r-- 1 root
W 1 root
IW----—-~ 1 root
-r--r~= 1 root
rw-rw-rw- 1 root
rw-rw-rw— 1 root
IW————=—=- 1 root
W ——————— 1 root

- o w e

|
DO 00 MWK O
—ONOOWR=O

-

o000 aaosd

C IW—m————~ 1 root 8, 6 Feb25 1984 rxylg
C IW——————— 1 root 9, 7 Dec2816:19 rxyOh
b rw-—————-- 1 root 3, 0 Feb25 1984 xy0la
brw-ee——- 1 root 3, 1 Jan1720:12 «xyCb
b rweoo———-— 1 root 3, 6 Dec2816:19 xyOg
b rwe-—eeun 1 root 3, 7 Dec2816:19 xyOh

The connection between the specific device name in the /dev directory is made through two C
structures named bdevsw (block device switch table) and cdevsw (character device switch table)
in the file called conf.c. When you add a new device driver you must add entries to the
corresponding structure. Since we are discussing only character-oriented devices in this manual,
you can ignore the bdevsw structure and concentrate on the cdevaw structure.

Application programs make calls upon the operating system to perform services such as opening
a file, closing a file, reading data from a file, writing data to a file, and other operations that are
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done in terms of the file interface. The operating system code turns these requests into specific
requests on the device driver involved with that particular file. The glue between the specific
file operation involved and the device driver entry-point is through the bdevsw and edevaw
tables.

Entries in bdevsw or cdevsw contain an array of entry points into the device drivers. The posi-
tion in the structure corresponds to the major device number assigned to the device. The minor
device number is passed to the device driver as an argument. The minor number has no
significance other than that attributed to it by the driver. Usually, the driver uses the minor
number to access one of several identical physical devices.

The cdevsw table specifies the interface routines present for character devices, Each character
device may provide seven functions: open, close, read, write, soctl, sclect, and mmap. If a call
on the routine should be ignored, (for example open on non-exclusive devices that require no
setup) the cdevsw entry can be given as nulldev; if it should be considered an error, (for example
write on read-only devices) nodev is used. For terminals, the cdevsw structure also contains a
pointer to the array of tty structures associated with the driver.

Here is what the declaration of the character device switch looks like. Each entry (row) is the
only link between the main unix code and the driver. The initialization of the device switches is
in the file conf.c. .

?truct cdebrsw

int (*d_open)); . /* routine to call to open the device */
int (*d_close)); . /* routine to call to close the device +/
int (sd_read)); = /% routine to call to read from the device */
int (*d_write)(); . /% routine to call to write to the device ¢/
int (+d_joctl)(); [+ epecial intesface routine */

int (*d_stop)(); /% routine to call to open the device */
int (*d_reset)(); /% routine to call to open the device */
struct tty +d_ttys; [+ ity structure %/

int (*d_select)(); [+ routine to call to sclect the device +/
int (*d_mmapX); ./* routine to call to mmap the device */

’

Only the console driver uses the ity structure. All other devices set this field to zero.

And here is a typical line from the conf.c fi's which fills in the requisite pointers in the cdevsw
structure:
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All the other cdevew entries between 0 and 13 appear first
{ |
cgoneopen, cgoneclose, nodev, nodev, [3143/
cgoneioctl, nodev, nodev, 0,
seltrue, cgonemmap,

'}

Then all the other cdevaw entrice from 15 upwards

In the Sun system, a number of devices in cdevsw are preassigned. The table below shows the
assignments to date. Those major device numbers shown as ‘For Local Use’ are available for
user-written device drivers.
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Table 2: Character Device Number Assignments

Major Device

DO =IO b =D

29
30-1?

Number

Character-Device Number Assignments

Device

8y

Not available
ip

tm

vp

Not available
ar

Xy

mti

unused

7

- ms

cg

win

il

sd

st

nd

pts

pte

bw
ropc
sky

pi
bwone
bwtwo
vpe
kbd
For Local Usé

Device

Sun Console
Central Data Octal Board
Indirect TTY

Raw Interphase Disk Device
Raw Tapemaster Tape Device
Ikon Versatec Parallel Controller

Archive Tape Controller

Raw Xylogics Disk Device
Systech MTI

no device

Sun-2 UARTS

Mouse

Color Graphics Board

Window Pseudo Device
INGRES lock device

SCSI disk

SCSI tape

Raw Network Disk Device
Pseudo TTY

Pseudo TTY

Monochrome Video board
RasterOp Chip

no device

Parallel input device

Sun-1 Monochrome frame buffer
Sun-2 Monochrome frame buffer
Parallel driver for Versatec printer
Sun keyboard driver

2.2. The Sun Hardware and the Multibus

The Sun systemt hardware is built around the IEEE-P798 Multibus. This section diacu.saea

several issues relevant to the Multibus and devices that ¢an be obtained for it.
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2.2.1. Multibus Memory Address Space and I/O Address Space

Although Sun uses Motorola MC68000 family processors for its products, the systems are actu-
ally built around the IEEE-P706 Multibus. The MCB68000 processors do what is known as
‘memory-mapped’ input-output in that you just store data somewhere or fetch data from some-
where to transfer data to or from a peripheral device or memory — there is no distinction
between the memory and peripherals. The Multibus, on the other hand, was originally designed
for processors that have one kind of instruction for storing data in memory or fetching data
from memory (instructions such as MOV), and a different kind of instruction (such as IN and
OUT) for transferring data to or from peripheral devices. Thus the Multibus has the notion of
two separate address spaces:

Multibus memory space
is simply used for memory or devices that look like memory, in that you talk to such dev-
ices simply by writing data to memory locations or reading from memory locations. The
Sun color controller board is a good example of a device that is addressed as memory in the
Multibus memory address space. Devices that look like memory are called ‘memory
mapped’ devices. T ' :

Multibus I/ O address space. ..
' is another ‘space’ that is typically used for device control registers. Devices using the 1/O
address space are said to be ‘I/O mapped’ devices.

This concept of two different address spaces derives from the Intel 8080 family of processors.
The MCO68000 family doesn't have this separation of memory and I1/O, but treats the entire
universe as one address space. The Sun memory management hardware can map any portion of
the system's address space to the Multibus memory space or the Multibus I/O address space.
Ultimately, the different kinds of address-space end up just waggling different control lines on
the Multibus.

Be aware though, that the memory space of the Multibus is designed for a 20-bit r or a 24-bit
addressing scheme {Sun uses 20-bit addresses), whereas the 1/O space of the Multibus is only an
8-bit or & 16-bit addressing scheme (Sun uses 16-bit addresses), and some older Multibus boards
only accept 8-bit 1/O addresses.

2.2.2. Byte Orderiﬁé Issues

The Sun processor is a Motorola MC68000 processor, built on an IEEE-P766 Multibus board.
IEEE-P706 and Motorola do not agree on the addressing of bytes in a word. IEEE-P796 and
Motorola both agree that there are 16 bits in a word and that is about all they agree on. The
disagreement about which end of the word contains byte 0 leads us into two separate problems,
with two separate fixes you must apply:

1. You are moving a single byfe across the interface between the MC68000 and the P798 Bus.
Because of the disagreement about which end of the word the byte actually appears in, you
have to toggle the least significant bit of the byte address.

2. You are moving a whole 16-bit word across the interface between the MC68000 and the
P796 Bus. This word actually contains a byte structure destined for the device on the other
side of the bus. The device will interpret the byte-order different from what you thought,
and so in this case you must physically swap the bytes in the word before you ship the
word pacross the bus interface.

Here are a few pictures describing the problem in detail:
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Motorola Byte Ordering
bit 15 bit 0
Byte 0 Byte 1
IEEE-P796 Byte Ordering
bit 15 bit 0
Byte 1 Byte 0

That is, Motorola places byte 0 in bits 8 thru 15 of the word, whereas IEEE-P798 places byte 1
in those bits. The only place where this causes trouble is when you are moving a single byte
across the interface between the MC68000 and the Multibus. If you did everything with the
68000, or everything on the Multibus, there would never be any conflict, since things would be
consistent. However, as soon as you cross the boundary between them, the byte order is
reversed. What this means in practice is that you have to toggle the least significant bit of the
address of any byte destined for the Multibus.

To clarify this, consider an interface for a hypothetical Multibus board contairing only two 8-
bit I/O registers, namely a control and status register (csr) and a data register (we actually use
this design later on in our example of a simple device driver). In this board, we place the com-
mand and status register at Multibus byte location 600, and the data register at Multibus byte
location 601. The Multibus picture of that device looks like this:

" Hypothetical Board Registers

bit 15 bit 0
_ Location 601 | Location 600
DATA CSR

But the 68000 processor views that device as looking like this:

Hypothetical Board Registers

bit 18 bit ©
Location 600 | Location 801
CSR DATA

so that if you were to read location 800 from the point of view of the 68000 processor, you'd
really end up reading the DATA register off the Multibus instead. So, when we define the akdey-
tce data structure for that board, we define it like this:
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struct skdevice {
char sk_data; /* 01: Data Register +/
char sk_csr; - [+ 00: command(w) and statusfr) +/

b

This rule (flipping the least significant bit of the address) holds good for all byte transfers which
cross the line between the MC68000 and the Multibus.

Take special care when a Multibus device structure contains mixed bytes and words. Many of
the Multibus device controllers on the market are geared up for the 8-bit 8080 and Z80 style
chips, and don't understand 16-bit data transfers. Because of this, such controllers are quite
happy to place what is really a word quantity (such as a 16-bit address which must be two-byte
aligned in the MC68000) starting on an odd byte boundary. Some of the device drivers use 16-
bit or 20-bit addresses (many don't know about 24-bit addresses), and it often happens that you
have to chop an address into bytes by shifting and masking, and assign the halves or thirds of
the address one at a time, because the device controller wants to place word-aligned quantities
on odd byte boundaries. Note also that many Multibus boards are geared up for the 3086 fam-
" ily with its segmented adress scheme. An 8086 (20-bit) address really consists of a 4-bit segment
number and a 16-bit address. You usually have to deal with the 4-bit part and the 16-bit part
separately. For a good example of what we're talking about here, look at the code for vp.c,

(attached as an appendix to this decument). .-

2.2.3. :Th'ingd to Ws;tch for in Multibus Boards

Although there are a myriad of vendors offering Multibus products, be aware that the Multibus
is a ‘standard’ that evolved from a bus for 8-bit systems to a bus for 16-bit systems. Read ven-
dors’ product literature carefully (especially the fine print) when selecting a Multibus board.
The memory address space:of the Multibus is supposed to be 20 bits wide or 24 bits wide and
the 1/O address space of the Multibus is supposed to be 18 bits wide. In practice, some older
boards are limited to 16 bits of address space and only 8 bits of 1/O space. In particular, watch
for the following things: -

e For a memory-mapped board, ensure that the board can actually handle a full twenty bits of
addressing. Older Multibus boards often can only handle sixteen address lines. The Sun
system assumes there is a 20-bit Multibus memory space out there. If the Multibus board
you're talking at can only handle 16-bit addresses, it will ignore the upper four address lines,

" and this means that such a board ‘wraps around’ every 64K, which means that in our sys-
tem, the addresses that such a board responds to would be replicated sixteen times through
the one-Megabyte address space on the Multibus.

¢ A memory-mapped Multibus board that uses 24-bit addressing (thereby using the P2 bus on
the backplane) must use a P2 bus that is physically isolated from the P2 bus that any Sun
boards use. See the Sun Configuration Guide for information on configuring boards in the
backplane.

‘s For an 1/O-mapped board (one that uses 1/O registers), make sure that the board can han-
dle 16-bit I/O addressing. Some older boards can’t cope and only use eight-bit I/O address-
ing. In our system, the address spaces of such boards would find themselves replicated every
256 bytes in the I/O address space. Trying to fit such a board into the Sun System would
severely curtail the number of 1/O addresses available in the system.

e Watch out for boards containing PROM code that expects to find a CPU busmaster with an
_Intel 8080, 8085, or 8086 on it. Such boards are of course useless in the Sun System.
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o Take special care to determine how the board generates interrupts. A board should put up
an interrupt when the device it is controlling is ready for more data and the board is ready
for more data — we have experienced designs where the interrupt indicated that the board
waa ready, or the device was ready, but not both at once. A board should ideally come up
in its power up state with interrupts disabled and only start interrupting when told to.
There should also be a way to determine that a board has actually generated an interrupt.
Finally, an interrupting board should shut off its interrupt when it is told to.

2.3. DMA Devices

Many device controller boards are capable of what is known as Direct Memory Access or DMA.
This means that the processor tells the device controller the address in memory where a data
transfer is to take place, plus the length of the data transfer, and then tells the device controller
to start the transfer. The data transfer then takes place without further intervention on the
part of the processor. When the transfer is complete, the device controller interrupts to say
that the transfer is finished.

2.3.1. Sun Multibus DVMA

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun memory manage-
ment unit that allows DMA from devices on the Multibus to Sun processor memory, or from
Multibus master devices directly to Multibus slaves without going through processor memory.
DVMA uses the first 256K bytes of the Multibus address memory address space to map
addresses between Sun processor memory and the Multibus memory address space.

On the Sun-2, the memory management unit is always listening to the Multibus for memory
references. When a request to read or write Multibus memory between addresses 0 and 256K
comes up, the DVMA hardware takes the address, adds 0xF00000 to it,! and goes through the
kernel memory map to find the location in processor memory that will be used. Thus if you
wish to do DMA over the Multibus, you must make the appropriate entries in the kernel
memory map. As you might expect, there are functions to help with this chore.

2.4. Allocation of Multibus Memory and I/O in the Sun System

Here are some simple rules for the way that Multibus memory resources are doled out in the
Sun system. .

No devices may be assigned- addresses below 256K in Multibus memory space; the CPU uses
these addresses for DVMA. . - .

Devices that interface to the Sun system do so either through 1/O registers in Multibus address
space, or through the Multibus memory space. In some cases, a device may have both I/O
registers and memory on the Multibus. The Sun system makes the assumption that any
address lower than 64K is a Multibus I/O address. This is a reasonable assumption given that
user-installed Multibus memory cannot appear in this region of the address space anyway. This
assumption is carried through into the autoconfiguration routines in that addresses less than
64K are automatically mapped to the Multibus I/O address space.

1 The system places the Multibus memory address space at location 0xF00000 in the virtual ad-
dress space. '
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To configure such a device,

O 1. the probe function for the device driver must return the amount of Mu.ltibus memory space
that the device uses,

2. Multibus I/O address space is at ‘mbio’ and may be addressed as such,

3. the autoconfiguration utility (config) can not deal with I/O address space at the same time
' as memory address space for the same device.

The table on the next page shows a map of how Multibus memory is laid out in the Sun sys-
tem. :

O
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Table 3: Sun-2 Multibus Memory Map

l Address Device ‘

0x 00000 DVMA Space
. (256 Kbytes)
0x 31800 i)VMA Space
0x 40000 Sun Ethernet Memory (#1)
: (268 Kbytes)
0x 7800 :“aun Ethernet Memory (#1)
0x80000 SOSI (#1)
: (16 Kbytes)
0x83800 SCSI (#1)
0x84000 SCSI (#2)
- (16 Kbytes)
0x87800 SCSI (#2)
0x 88000 Sun Ethernet Control Info (#1)
- (16 Kbytes)
0x8b800 .Sun Ethernet Control Info (#1)
0x8c000 Sun Etheraet Control Info (#2)
- (16 Kbytes)
0x 81800 -Sun Ethernet Control Info (#2)
0x90000 s++ FPREE #ss
: (64 Kbytes
0x 9800 rer FREE ##+
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. l Address Device

0x=a0000 Sun Ethernet Memory (#2)
- (84 Kbytes)
0Oxaf800 :‘."un Ethernet Memory (#2)
0xb0000 ss+ FREE 2
- (64 Kbytes)
0xbf800 s+ FREE ++s
0xc0000 Sun Model 100 or Model 150 Frame Buffer
: (128 Kbytes)
0xdfso0 Sun Model 100 or Model 150 Frame Buffer
0x 0000 3COM Ethernet (#1)
0xe0800 3COM Ethernet {#1)
Oxel000 . 3COM Ethernet (#1)
Oxel800 3COM Ethernet (#1)
Ox¢2000 3COM Ethernet (#2)
0x 02800 3COM Ethernet (#2)
0xe3000 3COM Ethernet (#2)
0Oxe3800 3COM Ethernet (#2)
0xe4000 s4s FREE ¢+
(16 Kbytes)
Oxe7c00 ;** FREE s+
Oxe8000 Sun Color
- (84 Kbytes)
0x{7800 :“:un Color
Oxf8000 43 FREE ###
- (16 Kbytes)
0xfr800 +4+ FREE #++
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2.5. Multibus Resource Management

The following data structures in fact reflect the layout of information in the configuration file
which we describe in a later part of this paper. Controllers and devices can be thought of as
being attached to the Multibus Certain kinds of devices (disks and tapes) are then thought of as
being slaves to their controllers. This layout gives rise to three data structures whose descrip-
tions exist in the header file fusr/include/sundev/ mbvar.h.

Multibus The first data structure is the Multibus header data structure. The fact that it is
called ‘Multibus’ is a complete red herring — it is simply a hook to hang all the
other data structures on. The Multibus data structure contains a list of controll-
ers using this resource.

Controller  Contains a list of structures that describe controllers. There is sometimes consid-
erable confusion as to exactly what is a controller and what is a device. Essen-
tially a controller is a piece of hardware that can contrcl more than one device,
but only one data transfer can be active at o time. Each device controller on the
Maultibus has a structure associated with it. The structure is called mb_ctlr and
can be found in /usr/include/sundev/mbuar.h.

Device Contains a list of devices. Each device driver has a data structure describing how
the Multibus resource-management routines view the driver. The per-driver data
structure is called mb_driver and can be found in [uar/include/sundev/mbuar.h.
The device data structures are either hooked directly onto the Multibus header
structure, or they are hooked to controller structures in which case the devices are
said to be slaves to their controllers. The device structure, mb_driver, is the
really important data structure that you need to be concerned with when writing
a driver. Here is the layout of the mb_driver structure:

struct mb_driver { 7
int (smdr_probe)(); /s see if a driver is really there +/
int (smdr_slave){); /[ see if a slave is there ¢/
int (*mdr_attach)(); /* setup driver for a slave */
int (*mdr_go));  /* routine to start transfer +/
int (*mdr_done)); /* routine to finish transfer */
int (smdr_intr)); /* interrupt routine %/
u_long  *mdr_joaddr; [+ device csr addresses +/
u_long smdr_maddr; [+ device memory address +/
int mdr_size; /4 amount of memory space needed */
char *mdr_dname; /* name of a device */
struct mb_device +#mdr_dinfo;  /+ backpointers to mbdinit structs */
char *mdr_cname; /+ name of a controller +/
struct - mb_ctlr +»mdr_cinfo; /+ backpointers to mbeinit structs ¢/
short mdr_flags; /# want exclusive use of Multibus +/
struet - mb_driver ¢+mdr_link; /# interrupt routine linked list +/

L

Here is a brief discussion of the fields in the mb_driver structure and what parts of it you need
to fill in when declaring mb_driver:

mdr_probe
is a pointer to a probe function within your driver. Probe determines if the device for
which this driver is written is really there in the system. Fill in this field only if your driver
has a probe routine (it generally will).
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- mdr_slave _ '
is a pointer to a slave function within your driver. Fill in this field for controllers that have
more than one device. The slave function always returns a 1.

mdr_attach
‘ is a pointer to an attach function within your driver. The attack function does preliminary
- setup work for a slave device. Typical applications include reading the label from a disk.
'Fill in this field only if there is an attach routine in your driver. In general the drivers we
are considering in this paper don’t have attach routines, and so you fill in a zero (0) in this
field.
mdr_go
mdr_done
- are pointers to go and ‘done functions within your driver. These fields are usually zero for
- the types of drivers we talk about in this paper. They are normally for disk drivers who
can't afford to wait for mbutup. _

mdr_intr ‘
is a pointer to an mterrupt routine (funetlon) within your dnver Fill in this field if your
driver actuall has an interrupt routine (in general it should). If your driver doesn’t have an
interrupt routine, fill in a zero (0) in this field.

mdr_soaddr
- points to an array of unllgned long's declared within your driver. The array contains the
address(es) of the device in Multibus 1/O space. The last entry in the array should be a
zero. If your device actually exists in Multibus I/O space, you must fill in this field with
the name of the array in your driver, otherwise place a zero (0) here. The system uses the
array of addresses as parameters to the driver's probe function at system startup time.

mdr_maddr

. points to an array of unligned long’s declared within your driver. The array contains the
address{es) of the device in Multibus Memory space. The last entry in the array should be
a zero. If your device actually exists in Multibus Memory space, you must fill in this field
with the name of the array in your driver, otherwise place a zero (0) here. The system uses
the array of addresses as pmmeters to the driver's probe function at system startup time.

- . mdr_, nz‘

is the size in bytes of the amo bf memory that a memory-mapped device requires. This
field must be filled in if mdr ma Jr is used for a memory-mapped device.

mdr_dname
is the name of the devnee for which this driver is written. This field takes the form of a reg-
ular null-terminated C string.

mdr_dinfo
' an array of pointers to mb device structures. Auto configuration fills in the pointers, then
the driver can access mb_device structures if it wants to.

mdr_ename o
is the name of the controller for which this driver is written. This field takes the form of a
regular null-termmated*@ string. Fill in this field if you actually have a controller.
mdr_cinfo
an array of pointers to’ mb controller structures. Auto configuration fills in the pointers,
then the driver can access mb_controller structures if it wants to.

mdr_,ﬂaga
consists of some flags, aafollows
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MDR _XCLU
needs exclusive use of bus
MDR_DMA
device does Muitibus DMA
MDR_SWAB :
Multibus buffer must be swabbed
MDR_OBIO
device in on-board 1/O space
These flags must be OR'ed together if you wish to place any of that information there.
Place a zero (0) in this field if none of the flags apply to this driver.
mdr_link .
This field is used by the autoconfiguration routines and is not for the driver’s use.

2.6. Getting the Board Working and in a Known State

This section discusses getting the hardware device controller operational and in a known state,

Before you even think about writing any code you should check out the Multibus board by per-
forming various tests.

First, make sure that the board is properly set up as defined in the vendor’s manual. Things
you have to select in general are:

e 1/0 register addresses for those boards that use 1/O ports on the Multibus,
¢ Memory base address for those boards that use memory space on the Multibus,
o I[nterrupt level selection.

Then, take your system down and power it off. Plug your Multibus board into the card cage
and attempt to bring the system back up. If you cannot boot the system, then there is a prob-
lem such as the board not really working or the board responding at an address used by other
boards in the system. You must resolve this problem before proceeding further.

Next take your system down again and see if the device responds. from the monitor, try some
of the following things:

¢ Try reading front the board status register(s) if there are any.

¢ Try writing to t i board control or data register(s) if there are any. Then try reading the
data back to see if it got written properly (assuming that the board can read back what you
wrote). ' '

e Try sending datai; & the actual device itself through the board if this is possible.

e Switch, the actual device ofline and onliné and watch the status bits go on and off (if this is
possibid).

For example, if you have a line printer, try to print a line with a few characters. Be aware that
bit and byte ordering issues are critical in The section just below on Using the Sun CPU PROM
Monitor has some hints on reading and writing device registers. Be aware that bit and byte
ordering issues are critical in this process; the main reason for doing this step is to discover
what the board really does. When you have developed confidence in how the board works you
can proceed to write a driver for it.
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2.6.1. Using the Sun CPU PROM Monitor

To do some of the poking around as described in the previous paragraphs, you can use the CPU
PROM monitor whose commands are described in detail in the System Internals Manual. The
PROM monitor has commsands for looking at memory locations. So if you have located your
pew Multibus board at a specific place in the address space, you could use the monitor to look
at that place to see if there's anything there. For example, if you think your board has an 1/O
control register at location OxﬁGO, you could use the monitor's ‘open a byte location’ command
to look at that place in memory:

>0 ebﬁ&)d
and so on. If you get a bus error timeout, the board isn't there and you have to go back to the
manual to see if you've set the address jumpers correctly.

Here are a couple of notes about using the monitor to look at devices. When you use the
Monitor's ‘o’ command to open a location, the Monitor reads the contents of that location and
displays them before asking you what you want to put there (if anything). Now some devices
(the Intel 8251A and the Signetics 2651 immediately spring to mind) use the same location
(register) to address two separate internal mode registers, and the chip has internal state-logic
that sequences around them in 1-2-1-2... order. So suppose you want to put something in mode
register 1 of the 8251! You open that location, the Monitor displays the contents, and you then
write the byte. Being cautious, you then open that location again and bingo! the data you
wrote isn't there — it's in the second register because the action of reading that location
sequenced you on to the second register. To do this thing right you have to use the Monitor’s
‘write without looking’ facility and then read the locations back later to check.

Another chip that has internal sequencing logic of this type is the NEC PD7201 PCC. This
chip has a a bunch of interial data registers. You load data-register 0 with the number of the
data register into whikh the next byte of data will go, then you send the byte of data and it
goes into that specific dats register, and then you are back to data-register 0 again, all done
with internal seqiencing logic. '

Another chip of § similar ilk is the AMD 9513 timer. This chip has a data pointer register for
pointing at the daia-regiat.er into which a data byte will go. When you send a byte to the data
~ register, the pointer gets incremented. The design of the chip is such that you can’t read the
pointer register to find out what's in it}
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3. Device Drivers

This section discusses the major issues in creating a device driver for the system.

A first step in writing a device driver is deciding what sort of interface the device should pro-
vide to the system. The way in which read and write operations should occur, the kinds of con-
trol operations provided via foctl, and whether the device can be mapped into the user’s
address space using the mmap system call, should be decided early in the process of designing
the driver. -

Device drivers have access to the memory management and interrupt handling facilities of the
UNIX system. The device driver is called each time the user program issues an open, close,
read, write, mmap, or foct! system call. The device driver can arrange for I/O to happen syn-
chronously, or it can allocate buffers so that output can proceed while the user process runs, or
gather input while the user process is not waiting.

3.1. User Address Space versus Kernel Address Space

A device driver is a part of the kernel. The kernel uses a completely different virtual address
space from the virtual address space that a user process uses. When a device driver function is
invoked through a system call, the driver must often map data from the user virtual address
space to the kernel's virtual address space ( most oftyen in the case of some DMA devices).
Functions and macros are provdied to allow this ‘dual’ mapping of data. Normally the kernel
can only access data that is addressable in its own address space.

3.2. User Context and Interrupt Context

A device driver has a top half and a bottom half. The top half is the part of the driver that runs
only in the context of a user process making requests on the driver. The top half of a driver
can start tasks which can cause long delays during which the system would want to switch to
another process and continue doing useful work. When this happens the driver uses the slcep
primitive to wait for a particular event to occur. Thus if a user program issues a read on (say)
an A/D converter, the process would normally sleep until some input arrived. The driver could
also use the fowait call for transfers that have already started.

The bottom half 8t a device driver is the part that runs at interrupt level. Thus in an A/D con-
verter driver, the converter might interrupt when a sample was available. The bottom half of
the driver could then store the data in a buffer and wakeup any user process sleeping in the top
half so that that process could retrieve the data. If there was no user process sleeping in the
top half, the wakeup would do nothing, but the next process to read the A/D driver would find
the data already there and would not have to aleep. .

3.3. Device Interrupts

Each hardware device interrupts (that is, the device should interrupt) at some priority level,
trapping from wherever the system is currently executing, into the bottom half of the device
driver at that priority level. This means that the top half of the device driver can be inter-
rupted at any time by the bottom half of the driver. The top half and the bottom half share
data structures which they wish to keep consistent. An example of such a data structure might
be a pointer to a current buffer and a character counter. The top half of the driver must

18 - " Revision C of 7 January 1984




. Sun System Internals Manual Device Drivers for the Sun Workstation

protect itself so that data structures can be updated as atomic actions, that is, the bottom half
must not be allowed to interrupt during the time that the top half is updating some shared data
structure. The way this protection is done is to bracket the critical sections of code (that
updates or examines shared data structures) with a subroutine call that raises the processor
priority to a level where the bottom half cannot interrupt. Such a piece of code looks like:

s == splx(hardware_priority);
eritical section of code which cannot be interrupted

(void)splx(s);

Note here that we raised the processor priority level and then restored the processor priority
level after the protected section of code. (Determining the correct hardware_priority will be dis-
cussed later.) One section of code that almost always needs to be protected is the section where
the top half checks to see if there is any data ready for it to read, or whether it can write data
‘or start the device. Since the device can interrupt at any time, the section of code that checks
for input in this fashion is wrong: :

if (no input ready) . '
sleep (awamns mput. software__pnonty)

because the device might :gell interrupt while the if condition is being tested, or while the
preamble code for the sleep Tunction is being executed.

The above section of code must be rewritten to look like this:

s == splx(hardwarc_éfi’nn‘ty);
while (no input ready) '
sleep (awaiting mput software_priority)

(void)splx(s);

If the top half executes tl.l: sleep system call, the bottom half will be allowed to interrupt,
because the hardware prlonty level is reset to 0 as soon as the sleep context switches away
- from this process.

- 4 Interrupt Levels

In many cases it is posslble to set the :nterrupt level a device will mterrupt. at by setting
switches on the board. If so, you must decide what level this device is going to interrupt at. At

- first it may seem that your device is very high priority, but you must consider the consequences

of locking out other devices:

e If you lock out the clock (level 5) time will not be accurate, and the UNIX scheduler will be
suspended.

e If you lock out the on-board UARTS {level 8) characters may be lost.

o If you lock out the Ethernet (level 3), packets may be lost and retransmissions needed.
e If you lock out the disks (level 2), disk rotations may be missed.
o Level 1 is used for software interrupts and cannot be used for real devices.

In general, it is best to use level 2 to avoid the consequences of locking out other important sys-
tem activities, =
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3.5. Some Common Service Functions

The kernel provides clusters of common service functions which device drivers can take advan-
tage of. The common service functions fall into these major catagories:

Timeout Facilitics
are available when a device driver needs to know about real-time intervals.

Sleep and Wakeup Facilitics
suspend and resume execution of a process.

Raising and Lowering Interrupt Prioritics _
Lock out devices by raising processor priority leve to stop the devices interrupting during
critical operations (such as accessing shared data structures).

Multibus Resource Management
includes the routines mbsetup and mbrelse for scheduling the Multibus resources.

Buffer Header Management
Manages the in-memory disk buffer cache. We aren’t dealing with disk drivers here so this
needn’t concern us.

There is also a kernel-speciﬁc‘veraion of the printf routine. The kernel printfis

3.5.1. Timeout Mechanisms

If a device needs to know about real-time intervals, timeout{func, arg, interval) is useful.
Timeout arranges that after interval clock-ticks (fiftieths of a second) , the func is called with
arg as argument, in the style {#func)(arg). Timeouts are used, for example, to provide real-time
delays after function characters like new-line and tab in typewriter output, and to terminate an
attempt to read a device if there is no response within a specified number of seconds (that is,
there was a lost interrupt). Also, the specified func is called at clock-interrupt time, so it should
conform to the requirements of interrupt routines in general (you can't call sleep from within
June for instance). .

3.5.2. Sleep and Wakeup Mechanism

The other major help available to device haadlers is the sleep-wakeup mechanism. The call
sleep(event, aoftware_priority) causes the process to wait (allowing other processes to run) until
the event occurs; at that time, the process is marked ready-to-run and the call returns when
there is no process with higher software_priority.

The call wakeupfevent) indicates that the event has happened, that is, canses processes sleeping
on the event to be awakened. The event is an arbitrary quantity agreed upon by the sleeper
and the waker-up. By convention, it is the address of some data area used by the driver (for a
specific device if there is more than one minor device), which gnarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened when they
are awakened; they should theck that the conditions which caused them to sleep no longer hold.

Software priorities can range from 0 to 127; a higher numerical value indicates a less-favored
scheduling situation. A distinction is made between processes sleeping at priority less than the
parameter PZER O and those. at numerically larger priorities. The former cannot be interrupted
by signals. Thus it is a bad idea to sleep with priority less than PZERO on an event which
might never occur. On the other hand, calls to sleep with larger priority may never return if
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the process is terminated: by some signal in the meantime. In general, sleeps at less than
PZERO should only be waiting for fast events like disk and tape i/o completion. Waiting for
human activities like typing characters should be done at priorities greater than PZERO.
Incidentally, it is a gross error to call sleep in a routine called at interrupt time, since the pro-
cess which is running is almost certainly not the process which should go to sleep. Likewise,
none of the variables in the user area ‘u.’ should be touched, let alone changed, by an interrupt
routine.

3.5.3. Raising and Lowering Interrupt Priorities

At certain places in a device driver it is necessary to raise the hardware interrupt priority so
that a section of critical code cannot be interrupted, for example, while adding or removing
entries from a queue, or modifying a data structure common to both halves of a driver.

The splz function changes the interrupt priority to a specified level, and returns a value which is
‘what the level was before it changed.

For configuration reasons, the routine:
pritospl(mec->me_intpri) -

must be used to convert from the Multibus hardware interrupt level to the CPU hardware
priority level. Here is how you normally use the pritospl and splz functions in a hypothetical
strategy routine:

hypo_strategy(bp)
register struct buf *bp;

register struct .mb_ctlr smc = hypoinfoﬁninor(bp—)»b_dev)];
int s; -
s == splx(pritospl{me->mc_jntpri));
while (bp->b_flags & B_BUSY)

sleep({caddr_t)bp, PRIBIO);

'agre is sole critical code acction
oot , .
splx{s); [+ Set priority to what it was previovsly */

L J o

}

3.5.4. Multibus Resource Management Routines

The routine mbsetup is called when the device driver wants to start up a transfer to the device
using Multibus resource management.

At some later time, when the transfer is complete, the device driver calls the mbrelse routine to
inform the Multibus resource manager that the transfer is complete and the resources are no
longer required.

.:",‘
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3.6. Kernel printf Function

The kernel provides a prinf function analogous to the printf function supplied with the stan-
dard 1/O package for user programs. The kernel prinif writes directly to the console however.
When using the kernel printf, you should not use any floating-point conversions. The kernel
printf function can be used to debug a driver.

3.6.1. Macros to Manipulate Device Numbers

A device number (in this system) is a 16-bit number divided into two parts called the major
device number and the minor device number. There are macros provided for the purpose of iso-
lating the major and minor numbers from the whole device number. The macro

major(dev)
returns the major portion of the device number dev, and the macro

minor{dev)
returns the minor portion of the device number. Finally, given a major and a minor number 2
and g, the macro

makedev(x,y)

creates a device number from the two portions.

3.7. Overall Layout of a Device Driver

Here is a summary of the kit of parts that comprises a typical device driver. In any given
driver, some routines may be missing. In a complex driver, all of these routines may well be
present. A typical device driver consists of a number of major sections, containing the routines
described below. "
Auto Configuration
called by the kernel at system startup time to determine if the devices actually exist. This
section contains the probe Eoutine.
Opening and Closing the Devie

The open routine is called for each instance of an open or create request against that file.
The close routine is called when a close request is made against that file for the last time.

Reading and Writing from or to the Device
Tke read and write routines are called to get data from the device, or to send data to the
device. The read and write routines may use the tty interfaces for devices such as terminals,
or they might use a strafegy routine to handle devices that transfer data in chunks. Stre-
tegy is most often used for DMA (Direct Memory Access) transfers, where the actual data
buffer must be mapped in for the duration of the transfer.

Start Routine . _
The start routine is called to actually initiate the 1/O operation. Start is needed in drivers
that queue requests; it is called from the read, write or strategy routine to start the queue
and is also called from the interrupt routine to start the next element on the queue.

Mmap Routine E _
The mmap routine is present in cases where it is required to map the device into user
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memory — a frame buffer for instance.

Interrupt Routine
The interrupt routine of a device driver is called to service interrupts, possibly from the
device for which this driver exists. However, there can be more than one device sharing the
same interrupt level, and it is then also the task of the interrupt routine to determine if the
interrupt is actually destined for this driver, or for some other driver.

Ioctl Routine
The fectl routine is called when the user process does an ioctl system call. A typical use is
to change the baud-rate for a serial interface.

3.8. A Very Basic Skeleton Device Driver

At this stage, we quit discussing the 1/O system and start writing a very simple device driver.
This mode!l will be one of the simplest drivers we can produce. There is a complete version of
this driver in the attachments to this manual -~ the parts are presented piecemeal here with
some discussion on their functions.

What we do here is to invent an interface board called a Skeleton controller. The Skeleton
board is a very simple 1/O mapped board, that is, it uses I/O ports in the Multibus /O address
space. The Skeleton board has a single-byte command/status register, and a single-byte data
register. You can only write data to the outside world from the Skeleton board. This board is
not a slow teletype style interface — you can provide vasi blocks of data and the board seands it
all out very fast. The Skeleton board interrupts when it is ready for a data transfer. The
board comes up in the power on state with interrupts disabled and everything else in a ‘normal’
state.

Thé status register of the Skeletod interface is located at 0x600 in Multibus I/O space, and the
data register at 0x801. The status register is both a read and a write register. The bit assign-
ments are as shown in the tables below.

i

BIT 8 "7 8 5 4 3 2 1
tater Device Interface Interrapt
Rad . i
rupt ’ Ready Ready : Enabled
BIT 8 7 ) 5 4 3 2 1
Write s . Reset Enable
: Interrupt

Here is a brief description of what the bits mean:
Whken reading from the st.at_im register
bit 8 is a 1 when the board is interrupting, 0 otherwise.
bit4isal wilcn the device that the boatd controls is ready for data transfers.
bit 3 is a 1 when the Skeleton board itself is ready for data transfers.
bit 1 is a 1 when interrupts are enabled, 0 when interrupts are disabled.
When writing to the status register
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bit 3 resets the Skeleton board to its startup state — interrupts are disabled and the
board should indicate that it is ready for data transfers.

bit 1 enables interrupts by writing a 1 to this bit, disables interrupts by writing a 0.

The header file for this interface is in skreg.h. By convention, we put the register and control
information for a given device (say zy) in a file called zyreg.h. The actual C code for the zy
driver would by convention be placed in a file called zy.c. The header file for the Skeleton
board looks like this:
/*
& Registers for Skeleton Multibua If O Interface
+/
struct sk_reg {
char sk_data; [+ 01: Data Register [
charsk_csr; [+ 00: command{w) and statuafr) +/

|5

/* ok_car bits (read) +/

ftdefine SK_INTR O0x80 /+ I if device is interrupting s/
fdefine SK_DEVREADY  0x08 [+ Device is Ready +/
#define SK_INTREADY 0x04 /+ Interface is Ready +/
#define SK_INTENAB 0x01 /+ Interrupts are enabled +/

/* sk_car bits fwritef s/
#define SK_RESET 0x04 /* reset the device and interface «/
#define SK_ENABLE 0x01 /+ Enable interrupts */

The complete device driver for the Skeleton board consists of the following parts:

skprobe
is the autoconfiguration routine called at system startup time to determine if the sk board
is actually in the system.

skopen and skclose
routines for opening the device for each time the file corresponding to that device is opened,
and far closing down after the last file has been closed.

skwrite
routine which is called to send data to the device.

skatrategy .

routine which is called from the write routine via physio to initiate transfers of data.

skstart ' '
routine which is called for every byte to be transferred.

skintr '
the interrupt routine which services interrupts and arranges to transfer the next byte of
data to the device.

The subsections to follow describe these routines in more detail.
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3.9. General Declarations in Driver

In addition to including a bunch of system header files, there are some data structures which

‘the driver must define.

ginclude "skh® /% header file generated by config (defines NSK) +/
fdefine SKPRI  (PZERO-1)/# software aleep priority for ok */
#define SKUNIT(dev) (minor{dev))

struct  buf rskbuf[NSK];

int skprobe(), skintr();

u_Jong skaddrs|] = { 0x600, 0};

struct  mb_device sskdinfo[NSK);

struct mb_driver skdriver == { skprobe, 0, 0, 0, 0, skintr,
skaddrs, 0, 0, 0, 0, "sk", skdinfo, 0,

b

struet sk_device {
struct buf ssk_bp; /* current buf +/
int sk_count; /* number of bytes to send */
char ssk_cp; [+ nezt byte to send +/
char sb_busy; /+ true if device ia busy +/
} skdevice[NSK];

Here's a brie discussion on the declarations in the above example.

sk.h file is generated by the config program (discussed later). It contains the definition of
NSK, the number of sk devices configured into the system.

SKPRI  declaration declares the software priority level at which this device driver will sleep.

- SKUNIT macro is & common way of obtaining the minor device number in a driver. Study

just about any device driver and you will find a declaration like this — it is a styl-
ived way of referring to the minor device number. One reason for this is that some-
times a driver will encode the bits of the minor device number to mean things other
than j\m?:he device number, s0 using the SKUNIT convention is an easy way to make
sure tha is things change, the code will not be affected.

rakbuf array is necessary so that there will be buf structures to pass to the physio routine.
Physio will fill in certain fields before calling our strategy routine with the buf struc-
ture as the argument.
e Then there is a definition of the system dependent entry points into the device driver. In this
driver, the only eniry points we use are skprobe .(probes the Multibus during system
configuration time) 4itd skintr (interrupt routine).

skaddra  is the list of addresses that this device appears on in the Multibus address space.
The address of this array appears in the skdriver strucure defined below.
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akdinfo  is the device structure for this driver. The system autoconfiguration routines fill in
the apporpriate fields in this structure at startup time.

skdriver is a definition of the driver structure for this driver. An explanation of the fields in
this structure and when they should be filled in appears earlier in this chapter.

sk_device is a definition of a structure that holds state information for each unit. T'his is infor-
mation specific to this driver that needs to be remembered between subroutine calls.

3.10. Autoconfiguration Procedures

Part of a device driver's work is handling the automatic determination of the system
configuration. When the Sun UNIX system boots up, it determines the peripheral configuration
details by probing the Multibus memory space and Multibus I/O space of the machine.

Note that the autoconfiguration routines make some assumptions about where things are in the
system: ‘

¢ Any address less than 64K is assumed to be Multibus 1/O address space.

e Addresses less than 250K are assumed to be for DVMA purposes.

e The autoconfiguration routines search the addresses specified in the configuration file as well
as the addresses specified in the driver.

3.11. Probe Routine

There should be a probe function in every driver. Probe is called at system initialization time
with an address to be probed. Probe has two functions:

1. To determine if the device that this driver is written for exists at the specified address, and:
2. To make the kernel aware of how much of the system's resources to reserve for that device.

Under normal circumstafices, addressing non-existent memory or 1/O space on the Multibus
generates a bus error in the' CPU. The kerne! provides some functions to probe the address
space, recover from possible bus errors, and return an indication as to whether the attempt to
address a specific location generated a bus error.

Determining whether s device actually exists or ot is assisted by the functions peek, peeke,
poke, and pokec. These functions provide for accessing possibly non-existent addresses on the
bus without generating bus errors that would terminate the process trying to access those
addresses. Peck and poke read and write, respectively, 18-bit words (short's in the Sun system).
Pecke and pokec read and write 8-bit characters. In general, you will use the character routines
for pr:ging single-byte 1/O registers. See the section Summary of Functions for details on these
routines.

Havinﬂ determined ivhether’_t.h"’e device exists in the system, the probe function returns either:

o the size (in bytes) of the device structure if it does exist. The kerne) uses the value returned
from probe to reserve memory resources for that device. For 1/O mapped devices, probe
returns the amount of Multibus 1/O space that the device registers consume. For memory-
mapped devices, probe returns the amount of memory that the device consumes.

e a value of 0 (zero) if the device does not exist.
Now we can write skprobe:
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skprobe{reg, unit)

caddr_t reg;
int unit;
{ .

registor struct sk_reg ssk_reg;
register int c;

sk_reg == (struct sk_reg *)reg;
¢ == peeke{(char *)&sk_reg->sk_csr);
if (¢ smem 1)

retura (0);

return (sizeof (struct sk_reg));

}

The reg argument is the purported address of the device. The unit argument is usually ignored.

If the probe routine determines that the device actually exists and it returns the amount of
resources that the deevice uses, the system startup routines set the md_alive field in the device
structure to non-gero. The md_alive field is then used subsequently by other driver functions to
check that the device was probed successfully at startup time.

3.12. Open and Close Routines

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on
the data-terminal-ready lead of a modem, ete.). However, the close routine is called only when
the last process closes a file; that is, when the i-node table entry is being deallocated. Thus it is
not feasible for a device driver to maintain, or depend.on, a count of its users, although it is
quite possible to implement an exclusive-use device which cannot be reopened until it has been
closed. -

The Open routine for the sk driver is simple. Skopen is called with two arguments, ramely, the
device which must be opened, and a flag indicating whether the device should be opened for

~ reading, writing, or both. The first task is to check whether the device number to be opened

actually exists — skopen returns an error indication if not. The second check is whether the
open is for writing. Since sk is a ‘write only’ device, it is an error to open it for reading only. If
all the checks succedd, skopen enables interrupts from the device, and then returns a zero (0) as
an indieation of suétess. Here is the code for the akopen routine:

c
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skopen(dev, flags)
dev_t dev;
int flags;

register struct mb_device +md;
register struct sk_reg *sk_reg;

if (SKUNIT(dev) >= NSK ||
(md = skdinfo[SKUNIT(dev)]) s== 0 || md->md_alive === 0)
return (ENXIO);

if (lags & FREAD)
return (ENODEV);

|+ enable interrupts */
sk_reg == (struct sk_reg *)md->md_addr;
sk_reg->sk_csr = SK_ENABLE;

return (0);

The first if statement check-'s,if the device actually exists. Note the use of the SKUNIT macro to
obtain the minor device number -— we discussed this earlier on.

The closc routine for the sk driver is very simple — all it does is disable interrupts:-

J*ARGSUSED#/

skclose(dev, flags)
dev_t dev;
int flags;

register struct mb_device *md;
register struct sk_reg *sk_reg;
md == skdinfo[SKUNIT(dev));

' /+ disable interrupts */
sk_reg == (struct sk_reg *)md->md_addr; -
sk_reg~>sk_csr {= "SK_ENABLE;

Skelose could in fact be more complicated than this. Some of the actions that could take place
in a close routine might be to deallocate any resources that were allocated for this device driver,
and possibly to sleep on completion of I/O transfers for that device.

3.13. Read and Write Routines

When a read or write takes place, the user's arguments and the file table entry are used to set
up the variables fovec.fou_base, fovec.iov len, and uio.uio_offset which respectively contain the
(user) address of the 1/O target area, the byte-count for the transfer, and the current location in
the file, If the file referred to is a character-type special file, the appropriate read or write rou-
tine is called — this read or write routine is responsible for transferring data and updating the
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count and current location appropriately as discussed below.

The write routine for the skeleton driver is very simple. Write simply calls the strategy routine
through the physio system routine. Physio ensures that the user’s memory space is available to
the driver for the duration of the data transfer. Physio also takes care of updating the count
and current location as appropriate. The write routine looks like this:

skwrite(dev, uio)
dev_t dev; _
struct uio *uio; see below for some notes on this

if (SKUNIT(dev) >= NSK)
return (ENXI10);
return (physio(skstrategy, &rskbuf[SKUNIT(dev)), dev, B_WRITE,
skminphys, uio));

}

The ekminphys routine is called by physio to determine the largest reasonable blocksize to
transfer at once. If the user has requested more bytes than this, physio will call sketrategy
repeatedly, requesting no more than this blocksize each time. The case where this is important
is when DVMA transfers are done. (DVMA is covered in more detail below.) The reasoning is
that only a finite amount of address space is available for DMVA transfers and it is not reason-
able for any device to tie up too much of it. A disk or a iape might reasonably ask for as much
as 64 Kbytes; slow devices like printers should only ask for one to four Kbytes since they will tie
up the resource for a relatively long time.

Here is the skminphys routine.

skminphys(bp)
struct buf *bp;.

if (bp->b_beount > MAX_SK_BSIZE)
bp->b_count = MAX_SK_BSIZE;
: cot

Note that if you don’t suppy you own minphys routine, you can simply place a zero (0) as the
argument to the strategy routine at that place, and the system supplied minphy routine gets
used instead.

3.13.1. Some Notes "About the UIO Structure

When the system is reading and writing data from or to a device, the uio structure is used
extensively. The uio structure is a general structure to allow for what is called gather-write
and scatter-read. That is, when writing to a device, the blocks of data to be written don’t have
to contiguous in the user's memory but can be in physically discontiguous areas. Similarly,
when reading from a device into memory, the data comes off the device in a continuous stream
but can go into physically discontiguous reas of the user's memory. Each discontiguous area of
memory is described by a structure called an fovec (I/O vector). Each fovec contains a pointer
to the data area to be transferred, and a count of the number of bytes in that area. The uio
structure describes the complete data transfer. Uio contains a pointer to an array of these
fovec structures. Thus when you want to write a number of physically discontiguous blocks of
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memory to a device, you'can set up an array of fovec structures, and place a pointer to the
start of the array in the uio structure. In the trivial case, there is generally just one block of
data to be transferred, and so the uio structure is fairly simple.

3.14. Skeleton Strategy Routine

The strategy routine is called by physio after the user buffer has been locked into memory. The
strategy routine must check that the device is ready and initiate the data transfer. Strategy will
then wait for the the completion of the data transfer, which will be signaled by the interrupt
routine. '

skstrategy(bp)
register struct buf *bp;
{

reglster struct mb_device *md;
register struct sk_reg *sk_reg;
register struet sk_device ¥sk;
int s;

md = skdinfo{SKUNIT{(bp->b_dev))
sk_reg == (struct sk_reg *)md->md_addr;
sk = &sk_device[SKUNIT(dev)};
s == splx(pritospl{md->md_intpri));
while (sk->>sk_busy)

sleep((caddr_t) sk, SKPRI);
si:—>sk_busy == ];
sk->sk_bp = bp;
sk->sk_cp == bp->b_un.b_addr;
sk->sk_count == bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr,);
sk->sk_busy == 0;
wakeyp((caddr_t) sk);
splx(:;f

3.15. Skeleton Start Routine — Initiate Data Transfers

The start routine is responsible for getting the actual data bytes out to the device itself. Start
is called once by strategy to get the very first byte out to the interface. After that, it is
assumed that the device will interrupt every time it is ready for a new data byte, and so start is
thereafter called from the interrupt routine. Here is the start routine:
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| skstart(sk, sk_reg) _
struct sk_device #sk;
struct sk_reg *sk_reg;

sk_reg->uk_cf£ta w 4sk->sk_cp+ +;
sk->sk_count——; '
sk_reg->sk_csr == SK_ENABLE;

}

This routine will work, but there is a lot of overhead in taking an interrupt from the device on
every character. Since we know that the device can take characters very quickly. it would be
more efficient to try to give characters quickly. What we will do is to check after each character
and give another one if the device is ready. Here is the new, more efficient skatart routine.

skatart(sk, sk_reg) ‘
struet sk_device ssk;
struct sk_reg :ak_reg;

do { a '
sk_reg->sk_data == ssk->sk_cp+ +;
sk->sk_count——;
~ } while (sk->sk_count && sk_reg->sk_csr & SK_DEVREADY);
if (sk->sk_count) /¢ more characters to go ¢/
sk_reg->sk_csr = SK_ENABLE;
elso { |
sk_reg->sk_csr == 0; [+ disable interrupts +/
iodone(sk->sk_bp);
}
}

We give chhracters to the deﬁce as long as there are more characters and the device is ready to
receive them. If we run out of characters, we disable interrupts to keep the device from bother-
ing us and call fodons to mark the buffer as done.

It may be that ’ﬁhe device is not duite quick enough to take a character and raise the
SK_DEVREADY ¥it in the time we can decrement and test the counter. If so, it would be very
worthwhile to busy wait for a short time. The reasoning is that while busy waiting is a waste,
servicing an interrupt costs lots more CPU time, and if busy waiting works fairly often it is a
big win. There is » macro DELAY which takes an integer argument which is approximately the
number of microseconds to delay, so we could add

DELAY(10); -

just before the while. Clearly this is an area where experimentation with the real device is
called for. .

- 3.16. Interrupt Ro;itines

Each device should have appropriate interrupt-time routines. When an interrupt occurs, it is
turned into a C-compatible call on the devices's interrupt routine. After the interrupt has been
processed, a return from the interrupt handler returns from the interrupt itself.

" Revision C of 7 January 1984 31



Device Drivers for the Sun Workstation Sun System Internals Manual

The address of the interrupt routine for a particular device driver is contained in the per-driver
(that is, mb_driver) data structure for that device driver. The address of the interrupt routine
is filled in statically at the time the data structure is declared and initialized.

Since there may be many devices sharing a common interrupt level, it is the specific driver's
responsibility to determine if the interrupt is intended for it or not. If the interrupt is for this
driver, t.}:|e driver must service the interrupt and return a non-zero value to indicate that the
interrupt has been serviced. If the interrupt is not for this device driver, the interrupt routine
must return a zero value.

It is expected that the device actually indicates when it is interrupting. If there are any more
bytes to transfer, the interrupt routine calls the start routine to transfer the next byte. If there

are no more bytes to transfer, the interrupt routine disables the interrupt (so that the device -

won't keep interrupting when there is nothing to do), and finishes up by calling sodone.
skintr()
{

register struct mb_device smd;
register struct sk_reg *sk_reg;
register struct sk_device *sk;
int serviced;

serviced == 0;
for (i = 0;i < NSK; i++){
md == &skdinfoli];
sk_reg == (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {°
serviced == 1;
sk == &sk_deviceli;
- if (sk->sk_count wwa= 0) {
sk_reg->sk_csr = 0; [+ disable interrupts &
~ iodone(sk->>sk_bp);
"} else
skatart(sk, sk_reg);

}

return (serviced);

3.17. Ioctl Routine:

The ioctl routine is used to perform any tasks that can't be done by the regular open, close,
read, or write routines. Typical applications are: ‘what is the status of this device’, or ‘tell me
the partitions on disk xy1'. This device does not need any special functions so we don't have
an foctl routine,
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3.18. Devices That Do DMA

Devices that are capable of doing DMA are treated a little differently than the skeleton device
we have been working with so far. Let us assume that we have a new version of the skeleton
board; call it the Skeleton II. It can do DMA transfers and we want to use this feature since it
is much more efficient. First we must describe DMA on the Sun-2.

3.19. Multibus‘ DVMA

On the Sun-2, the processor board is always listening to the Multibus for memory references.
When a request to read or write Multibus memory between addresses 0 and 256K comes up, the
DVMA hardware takes the address, adds OxF00000 to it, and goes through the kernel memory
map to find the location in processor memory that will be used. Thus if you wish to do PMA
over the Multibus, you must make the appropriate entries in the kernel memory map. As you
might expect, there are subroutines to help with this chore. Mbsetup sets up the map and
mbrelse releases the map.

3.20. Changes to the Driver

The changes to the driver are surprisingly simple. Flrst we must extend the sk_reg structure
which defines the device registers. We assume that the Skeleton II supports the following struc-
ture.

struct sk_reg {

char sk_data; [+ 01: Data Register 3/

char sk_csr; [+ 00: command(w) and status{r) +/
short sk_count; [+ bytcs to be transferred +/
caddr_t sk_addr; /* DMA address */

1} |
Next we assume another bit in the csr.
fhdefine SK_DMA 0x10 /+ Do DMA transfer +/

And we must ald another element in the ak_device structure for use by msetup and mbdone.
int - sk_mbinfo;

Now we change the skatralegy routine to use the DMA feature.
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skstrategy({bp)

{

}

register struct buf sbp;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct struct sk_device #sk;
int s;

md = skdinfo{SKUNIT(bp~>>b_dev)]
sk_reg == (struct sk_reg *)md->md_addr;
sk = &sk_device[SKUNIT(dev));
s == splx(pritospl{md->md_intpri));
while (sk->sk_busy)
sleep((caddr_t) sk, SKPRI);
sk—->sk_busy == 1;
sk->sk_bp = bp; _
/% thia is the part that is changed ¢/
sk—>sk_mbinfo = mbsetup(md->md_hd, bp, 0);
sk_reg->>sk_count == bp—>>b_count;
sk_reg- >sk_addr == MBI_ADDR(sc->sc_mbinfo);
sk_reg—>sk_csr = SK_ENABLE | SK_DMA;
/% end of changes +/
iowait{bp);
sk->sk_busy == 0;
wakeup((caddr_t) sk);
splx(s); :

Sun System Internals Manual

The need for the sketart roufine is completely gone and thus we will delete it. All the i/o now is
started by skstrategy and continues until skintr is called. Thus we can delete the sk _cp and
sc_count variables from the sk_device structure.

Skintr is also simplified. There is no longer any need to check the count since all the data goes
out through DMA. Therefore iodone will always be called. Also, we need to free up the Mul-
tibus resources, so we will call the mbrelse routine. Here is the new skintr routine:

34
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skintx()
{

‘register struct mb_device +md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;
int serviced;

serviced == 0;
for (i == 0; i < NSK;i++) {
md = &skdinfoli];
sk_reg == (struct sk_reg +)md->md_addr;
it (sk_reg->sk_csr & SK_INTR) {
serviced == 1;
sk = &sk_deviceli);

| this ia the part that is changed +/

" sk_reg->sk _csr == 0; [+ disable interrupts ¥/
mbrelse(md->md_hd, &sk->sk_mbinfo);
iodone(sk->sk_bp);

- |v end of chinges s/

}

refurn (urﬁeed);

3.21. Errors

We have been pretty casual about errors up till now. Most devices have at least an error bit in
the car, and usually more detailed error information is available. Also, we should check whether

~ the DMA count is exhausted,

Detection and treatment of errors varies greatly from device to device and is not very generalis-
able, so it wouldn't add much to this tutorial to show some elaborate error checking. Nonethe-
less, error checking is important because if you don't check for errors and they do happen your
users will be very unhappy.

You should read the Prociu’é't} Specification manual for your device very carefully to determine
what error indications can be given and what you should do when they do come up. At the
very least, check for errors and if you can’t figure out what to do about them, printf a message
to the console just to let the world know that everything is not perfectly OK.

3.23. Memdiy Ma.pped Devices

Devices such as frame buffers aré frequently accessed by mapping the buffer into the user
address space and allowing the user to update them at will. The user accomplishes this through
a mmap(2) system call. This call is translated by the kernel into a call to the driver's mmap
routine. The call has three parameters, dev, off and prot. Devis of course the device major and
‘minor number, off is the offset into the frame bufler from the user’s mmap system call, and prot
is a flag indicating whether write protection applies to the page(s). The constants
PROT_READ, PROT_WRITE and FROT_EXEC are defined in the header file mman.h. Each
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constant is a bit turned on to indicate that the appropriate access is allowed.
Here is the mmap routine from the Sun Color Graphics driver.

cgmmap(dev, off, prot)
dev_t dev;
ofl_t off;
int prot;

register caddr_t addr;
register int page, uc;

addr == cginfo{minor(dev)]->md_addr;
if (off >== CGSIZE)
return (-1);
page = getkpgmap{addr + off) & PG_PFNUM;
return (page); -

}

The PG_PFNUM constant gets rid of extraneous bits that getkpgmap returns and just leaves the
page number, which is what we have to return.

The routine first gets the address of the frame buffer from the Multibus device structure.
Remember that this is generated by config based on the user’s input as to where devices are
configured. Next the offset is checked to be sure the user isn't mapping beyond the end of the
frame buffer. Next comes a call to getkpgmap to do the actual mapping. The page number
returned by getkpgmap is then returned by egmap. In this case, prot is not checked since the
driver permits open to succeed only if the user is opening for both read and write, thus all
access are permitted.
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4. Configuring the System to Add Skeleton Driver

Now we've written the Skeleton driver, we'll go through the steps required to add it to the sys-
tem. A detailed description of how to configure and build a kernel is in the document Building
UNIX Systems With Configin the System Manager’s Manual. Here we just cover what is needed
to add a new driver.

New device drivers require entries in [eysfsun/conf.c and in [sys/conf/files.sun. They are
included by mentioning the device name in the configuration file.

The examples to follow assume that you are adding a driver for the Skeleton board (sk) to the
system. The new system will be called SKELETON. Here is a representative section from
aunfconf.c:

#tinclude "sk.h"

#if NSK > 0 |

int  skopen(), skclose(), skread(), skwrite(), skmmap();
fielse

ffdefine sLopen nodev

ffdefine  skclose  nodev

$tdefine  skread - nodev

#define skwrite nodev

#define okmap ~ nodev

#endif
{ .
skopen, skclose, skread, skwrite, /% 30 4/
nodev, . nodev, nodev, 0,
seltrue, ! skmmap,
}’ -

If NSK is greater than 0, this will add the driver routines into the cdevsw table so the kernel
knows where they are. (NSK is set by the config program based on the kernel configuration file
discussed below.) The entres added are, in order, the open, close, read, write, ioctl, stop and
reset routines, a {ty structure address and finally the select and mmap routines. We do not have
an foct! routine so this entry calls nodev which is a special routine that always returns an error.
Since we are not a tty we do not have a stop routine which would be used for flow control, nor
do we have a tly structure. The reset routine is not used so all devices use nodev for this one.
The select routine is called when a user process does a sefect(2) system call; it returns true if the
device can be immediately selected. Since our sk device is write oaly and fast, it is always
selectable so we use the default scltrue routine which always returns true.

Here is the line you must add to ﬁlea‘.'mn:
sundev/sk.c  optional sk device-driver

This says that the file sundev/sk.c contains the source code for the optional sk device and that it
is a device driver.

Now, you can go through the process of building the system just as described in the chapter on
configuration: Choose a name for your configuration of the system — in our case it will be
called SKELETON. Then create the configuration file and directory:

gaia# cp GENERIC SKELETON
gaia# mkdir ../SKELETON
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Edit SKELETON to reflect your system — you must add a description of the device to the SKELE-
TON file:

device sk0 at mb0 csr 0x600 priority 3

This entry says we have an sk device (the first device is always number 0) on the Multibus, the
control/status register (device register) is at Multibus address 0x600 (this is passed to out probe
routine at boot time), and that this deivce will interrupt at level 3.

Then you can run [usr/etc/config to make the configuration files for the new device driver:
gaiaf# fusr/etc/config SKELETON

Jusr/ etc/ config uses SKELETON, filea, and files.sun as input, and generates a number of files in
the ../SKELETON directory.

Now you can change directory to the new configuration directory, ../SKELETON in this case,
and make the new system:

gaiagh ed ../SKELETON
gaiak make depend
gaiaf## make ‘

The make depend command creates the dependency tree for any new C source files you might
have created during the process of adding new drivers or whatever to the system.

Now you must add a new device entry to the /dev directory. The connections between the
UNIX operating system kernel and the device driver is established through the entries in the
/dev directory. Using the example above as our model, we want to install the device for the
Skeleton driver.

Making new device entries is done via a shell script called MAKEDEV in the [dev directory. It is
worth while looking inside MAKEDEV to find out the kinds of things that go on in there. The
lines of shell script below reflect what you would add to MAKEDEV for the new Skeleton device.
First, there are li‘pes of commentary at the start of the MAKEDEYV file:

#4 [bin/sh

% MAKEDEV 43 83/03/31
¥ Graphics

#  sk+* Skeleton Board

Then there is the actual shell ‘code’ which makes the device entries:

skeleton|sk(sk0) :
Jete/mknod sk ¢ 30 0 ; chmod 666 sk0

”

This makes the special inode /dev/sk0 as a character special device with major device number
30 and minor device number 0, and then sets the mode of the file so that anyone can read or
write the device.

Having added the new device entry, you can install the new system and try it out.
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gaia} ep vmunix /vmunbx+
- gaish Jete/halt
The system goes through the halt sequence, then
the monitor displays ite prompt, at which point you
can boot the syatem in single-user state '
> b vmunix+ -s
The aystem boots up in single user stale and
then you can try things out '
gaial
If the system appears to work, save the old kernel under a different name and install the new
one in /vmunix:

gaiah cd /
gaia$ mv vmunix ovmunix
gaiap mv vmunix+ vmunix

goisg

Make sure that the new version of the kernel is actually called vmuniz — because programs
such as ps and nefstat use that exact name to look for things, and if the running version of the
kernel is called something other than vmunis the results from such programs will be wrong.

o
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5. Summary of Functions

6.1. Standard Error Numbers

The system has a collection of standard error numbers that a driver can return to its callers.
These numbers are described in detail in intro(2), the introductory pages of the System Inter-
face Manual. A complete listing of the error numbers appears in <sysferrno.h>.

5.2. Device Driver Routines
5.2.1. Autoconfiguration Routines

5.2.1.1. Probe — Determine if Hardware is There

probe(reg)
caddr_t reg;

Probe determines whether t.he device at address reg actually exists and is the correct device for
this driver. If the device exists and is correct, probe returns

return (sizeof (struct device));

If the device does not exist, or is the wrong device for this driver, probe returns 0 (zero).

5.2.2. Open and Close Routines

5.2.2.1. Open — Cpen a Device for Data Transfers

open(dev, flags)
dev_t dev;
int flags;

Open checks that the minor device number passed in the dev argument is in range. The integer
argument flags contains bits telling whether the open is for reading, writing, or both. The con-
stants FREAD and FWRITE are available to be and’ed with flags. Open returns:

return (EINXIO);

(meaning a non-existent device) if the minor device number is out of range. Then open
attempts to initialize the device, and if there are any errors, open returns:

return (EIO);
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to mean an IO error. If the open is successful, open returns 0 (zero).

- 6.2.2.2. Close — Close a Device
close(dev)

dev_t dev;
int flags;

"Close does whatever it has to do to indicate that data transfers cannot be made on this device
until it has been reopened. Flags is the same as for open.

5.2.3. Read, Writé; a.ndE Strategy Routines

5.2.3.1. Read — Réa.d Data from Device

read(dev, uio)
dev_t dev;
struet uio *uio;

Read is the Nigh-level routine called to perform data tramsfers from the device. Read must
check that the minor device number passed to it is in range. If the minor device number is out
of range, resd returns: |

return (ENXIO);

meaning thdt the device is non-existent. Subsequent actions of read differ depending on
whether the device is a character-at-a-time device such as a teletype, or is a block transfer dev-
ice. '

“For the block-transfer devici_aa, read simply calls on the strategy function via physio:
return {physio{strategy, &rbuf[minor(dev)], dev, B_READ, minphys, uio));

5.3.3.2. Wrife — Write Data to Device

write{dev, uio)
dev_t dev;
struet uio suio;

Write is the high-level routine called to perform data transfers to the device. Write must check
that the minor device number passed to it is in range. If the minor device number is out of
range, write returns: ‘_

it (VPUNIT(dev) >= NVP)

"~ return (ENXIO);

Subsequent actions of write differ depending on whether the device is a character-at-a-time dev-
ice such a8 teletype, or is a block transfer device.
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For the block-transfer devices, write simply calls on the strategy function via physio:

return (physio(strategy, &rbuf[minor{dev)], dev, B WRITE, minphys, uio));

5.2.3.3. Strategy Routine

strategy{bp)
register struct buf +bp;

Strategy is the high level routine responsible for getting the data to the actual device. For DMA
devices, strategy calls on mbgo to schedule the Multibus resources. strategy does not return any
value.

5.2.3.4. Minphys — Determine Maximum Block Size

int block == some ‘reasonable’ block size for transfers
muat be a multiple of 1024 byies

unsigned minphys(bp)
register struct buf sbp;

Minphys determines a ‘reasonable’ block size for transfers, so as to avoid tying up too many
resources. Minphys is passed as an argument to physio. In the absence of a minphys functions
supplied by the device driver itself, a system supplied version of minphys is used instead. Min-
phys shoulld perform the calculation:

if {(bp->b_bcount > block)
bp->b_bcount == block;

5.2.4. Ioctl — Special Interface Function

ioctl(dev, cmd, data, flag)
dev_t dev;
int emd;
caddr_t data;
int flag;

Toct! differs for every device and covers the functions that aren’t done by read and write. Joctl
does whatever it has to do, then returns 0 (zero) if there were no errors, and returns:

return (ENOTTY);

in the case that the command requested did not apply to this device. Note that ENOTTY gives
rise to the error message ‘Not a typewriter', which may be misleading.
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5.2.5. Low Level Routines

Routines in this area are low level and can potentially be called from the interrupt side of the
driver. Sleep calls may never be made from the routines described here.

5.2.6.1. Intr — Handle Interrupts

inte()

Intr is responsible for fielding interrupts from the device. In situations where more than one
device share the same interrupt level, intr must determine if the interrupt was actually detsined
for this driver or not. Intr returns O (zero) to indicate that the interrupt was not serviced by
this driver, and non-zero to indicate that the interrupt was serviced. It is a gross error for intr
to say that it serviced an interrupt when it really did not.

5.3. Common Ser\fige Routines

5.3.1. Sleep — Sleep on an Event

sleep(address, priority)
caddr_t address;
int priority;

Sleep is called to put a process to sleep. The address argument is typically the address of a
location in memory: Priority is the software priority the process will have after it is woken up.
The process which has been put to sleep can be woken up again by issuing a wakeup call with
the same address. Sleep should never be called from the low level side of a driver.

5.3.2. Wakeup — Wake Up a Process Sleeping on an Event

wakeup(address)
caddr_t address;

Wakeup is called when a process waiting on an event must be awakened. Address is typically
the address of a location in memory. Wakeup is typically called from the low level side of a
driver when (for instance) all data has been transferred to or from the user's buffer and the pro-
cess waiting for the transfer to complete must be awakened.

5.3.3. Mbsetup — Set Up to Use Multibus Resources
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mbsetup(md_hd, bp, flag)
struct mb_hd +mb_hd;
struct buf +bp;
int flag;

Mbsctup is called to set up the memory map for a Multibus DVMA transfer. flag is
MB_CANTWAIT if the caller desires not to wait for map resources if none are available. Nor-
mally this will be zero which means the driver will wait. Mbaetup returns an integer which must
be saved for the call to mbrelse. :

5.3.4. Mbrelse — Free Multibus Resources

mbrelse(md_hd, mbinfop)
struct mb_hd +mb_hd;
int smbinfop;

Mbrelse releases the Multibus DVMA resources allocated by mbsetup. Note that the second
parameter is a pointer to the integer returned by mbsetup.

5.3.5. Physio — Lock in User’s Buffer Area

physio(strat, buf, dev, flag, minphys, uio)
void (#strat) ();
struct buf sbuf;
dev.t dev;
Int flag;
void (*minphys) ();
struct uio suio;

5.3.6. Iowait — Wait for I/O to Complete
iowait(bp)
struct buf *bp;

Iowast waits on the buffer header addressed by bp for the DONE flag to be set. Jowait actually
does a sleep on the buffer header.

5.3.7. Iodone — Indicate I/O Complete

iodone(bp}
struct buf #*bp;

lodone is called to indicate that I/O associated with the buffer header bp is complete. lodene
sets the DONE flag in the buffer header, then does a wakeup call with the buffer pointer as argu-
ment.
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5.3.8. Pritospl — Convert Priority Level

pritospl(value)
int value;

Pritospl converts the hardware priority level given by value, which is a Multibus priority level,
to a CPU hardware priority level used by splz. Pritospl is used to parameterize the setting of
priority levels. ‘

5.3.9. spln() — Set Specific Priority Level

The apin() functions are available for setting the priority level to n, where n ranges from 0 to 7.
These routines should probably never be used in any device driver.

5.3.10. splx — Reset Priority Level

splx(s)
fnt .

Splz called with an argument s sets the priority level to . Splz is typically used to restore the
priority level to a previously remembered level.

5.3.11. uiomove ——"11‘.'nove data to or from the uio structure

viomove{cp, B, rw, uio)
register caddr_t cp;
register int n;
enum uio_rw rw;
roglster struct *uio;

Device drivers use ufomeve to move a specified number of bytes between an area defined by a
yio structure (normally passed to the driver when it is called) and an area in the kernel’s
address space (where it can be used by the driver). Uiomove moves n bytes from or to the sovec
pointed to by the uio structure out of or into the area specified by cp. The read/write flags
(which specify the direction of the data transfer) are defined in <wio.h>. Uiomove replaces the
older copyin and éopyout routines which are no longer supported. Uiomove can also be used to
copy kernel uio sthuctures — it checks uio-> uio_scgfiag.

5.3.12. ureadc and uwritec — transfer bytes to or from a uio
structure

uréadctc, uio)

int c;
reglster struct *uio;
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Uread: transfers a character represented by ¢ in the definition into the iovec pointed at by the
ufo structure (normally passed to the driver when it is called). Ureadc is normally used when
‘reading’ a character in from a device, @

char
uwritec(uio)
register struct *uio;

Uwritec Ureade returns the next character in the fovec pointed at by the uio structure (nor-
mally passed to the driver when it is called). Uwritec is normally used when ‘writing’ a charac-

ter out to a device.

Note that ‘read’ and ‘write’ are slightly confusing in the above contexts, since ureade actually
obtains a character from somewhere and places the character into the fovec pointed to by the
ufo structure, whereas uwritec obtains a character from the sovec and ‘writes’ the character

somewhere.
Ureadc and uwritec replace the routines cpass and passe, which are no longer supported.

5.3.13. peek, peekc — Check Whether an Address Exists and
Read

peek(address)
short *address;

peekc(address)

char *address; <| )

peek and pecke are called with an address from which you want to read. Both peek and pecke
return -1 .if the addressed location doesn't exist, otherwise they return the value which was
fetched from that location.

5.3.14. poice, pokec — Check Whether an Address Exists and
Write

poke{address, value)
short *address;
short value;

pokec(address, value)

char *address;
char value;

poke and pokec are called with an address you want to store into, and value is the value you
want to store there. Both poke and pokee return 1 if the addressed location doesn’t exist, and 0
if the addressed location does exist.

-
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5.3.15. geteblk — Allocate Dynamic Buffer

struct buf sgeteblk(size)
int ssize;

geteblk sllocates a buffer dynamically. The sise of the block is limited to a maximum of 8K
bytes, and must be a multiple of 512 bytes.

5.3.18. brelse — Free Dynamic Buffer

brelse(bp)
struct buf bp;

brelse frees a buffer previously allocated by getebik.

5.3.17. swab — Swap Bytes

swab{from, to, nbytes)
caddr_t from;
caddr_t to;

int nbytes;

swab swaps bytes within words. nbytes is the number of bytes to swap, and is rounded up to a
multiple of two. The from and fo areas can overlap each other since the bytes are swapped one
at a time.
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Appendix A. Sample Drivers

The C code listings suppiled here are sample drivers for devices that the Sun system supports. @
There are three drivers listed here:

CGONE
is a device driver for the Sun-1 color graphics board. It is one of the simplest drivers

around, being memory mapped.

SKY
is a programmed 1/O driver for the SKY floating-point board.

VP is a fairly good example of a DMA device driver.

-
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e
/%

e(#)cgreg.h 1.2 83/08/168 SMI

*/

# Copyright (c¢) 1983 by Sun Microsystems, Inc.

./
/%

* Register definitions for Sun Color Board

»/

#define CGSIZE (16%1024)

# define
define
define
define
define
define

- ‘

define

define
define

%%

define

define
define

define
define
define

R E K

define

define

GR_bd_sel CGXBase
020800
0x0000
0x0200
0x2000
0X1b80

GR_x _select
GR_y select
GR_y_fudge
GR_update
GR_x rhaddr
GR_x rladdr 0x1b00
0x1ibed
0x1b40

GR_y_rhaddr
GR_y rlsddr

0x0000
0x0400

GR_set0
GR_setl

0x1000
0x1100
0x1200

GR_red_cmap

GR_grn_cmap
GR_blu_cmap

GR_sr_select 0x1800
GR_cr_select 0x1900
GR_Ir_select 0x1a00

/% The following are pointers

Fi
/*

/%
/%
/%
/%
/*

/%
VL.
/T

/*
/=

Vi
/»
/"

J*

/*
/e

to t

16X of address space */
Select Color Board %/

Access a column in the frame buffer */
Access a rov in the frame buffer */
Bit 9 not used at all */

Update frame buffer 1f this bit set */
Location to read X address bits A9-A8.
Data put into D1-DO. *»/

Location to read X address bits A7-A0.
Data put into D7-DO. %/

Location to read Y addrass bits A9-AS8.
Location to read Y address bits A7-AO.

*/
*/

Address Register pair 0. */
Address Register pair 1. */

Address to select Red Color Map */
Addr for Green Color Map */
Addr for Blue Color Map */

Addr to sslect status register */

Addr to select mask (color) register */
Addr to select function register */

he mask{color), status, and function regs. */

# define GR_creg (u_char %) (GR_bd_sel + GR_cr_select)
- # define GR_mask (u_char *) (GR_bd_sel + GR_cr_select)

' # define GR_sreg (u_char *) (GR_bd_sel + GR_sr_select)

# define GR_freg (u_char *) (GR_bd_sel + GR_fr_select)

/¢ These assignments are for bits in the Status Register */

# define GRWO_cplane 0x00 /* Select CMap Plane number zeroc for R/W */
# define GRWi_cplane 0x01 /* Select CMap Plane number ome for R/W #*/

# define GRW2_cplane 0x02 /* Select CMap Plane number two for R/W */

# define GRW3_cplane 0x03 /* Select CMap Plane number three for R/W */
# define GRVO_cplane 0x04 /* Select CMap Plane number zero for video */
# define GRV1_cplane 0x06 /% Select CMap Plane number one for video */
# define GRVZ_cplane 0x06 /% Belect CMap Plane number two for video */
# define GRV3_cplane 0x07 /* Select CMap Plane number three for video */
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# define GR_inten 0x10

# define GR_paint 0x20
# define GR_disp on 0x40

# define GR_vretrace 0x80

/x

Vi
I+

/*

Enable Interrupt to start at start
of next vertical retrace. Must clear bit to {ii)
clear interrupts. */

Enable Writing five pixels in parallel */
Enable Video Display */

Unused on write. On read, true if monitor in
vertical retrace. */

/* This define returns true if the board 1s in vertical retrace »/
# define GR_retrace (*GR_sreg & GR_vretrace)

/* The following are function register encodings */

define GR_copy

define GR_copy_invert
define GR_wr_creg
define GR_wr_mask
define GRinv_wr creg
define GRinv_wr_mask
define GR_ram_invert
define GR_cr_and_dr
define GR_clear
define GR_cr_xor_fb

HERHHUERAETER

0xCC
0x33
0xF0
0xF0
OxOF
OxOF
0x66
0xC0
0x00
OxEBA

Vi
/*
J®
/*
/*
/¥
VL
Fi
FL
Fi

Copy data reg to Frame buffer %/
Copy inverted data reg to FB #/
Copy color reg to Frame buffer %/
Copy mask to Frame buffer */

Copy inverted Creg to FB */

Copy inverted Mask to FB */

*Invert’ color in Frame buffer */
Bitwise and of color and dats Tregs %/
Clear frame buffer */

Xor frame buffer data and Creg */
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#ifndet lint

‘static char sccaid[] v@(#)cgone.c 1.8 84/03/06 Copyr 1883 Sun Micro";

#endi?

/e ' '
* Copyright (c) 1883 by Sun Hicrosyetens Inc.
./

#include "cgone.h"®
#include "win.h*
#1f NCGONE > O

/
* Sun One Color Graphics Board(s) Driver
*/

#include '../michino/pto.h'

. #include "../h/param.h*
" #include *,./h/systu.h"
#include *../h/dir.h"
#include *../h/user.h”
#include *../h/proc.h®
#include *,./h/but.h*
#include *../h/cont.n*
#include *../h/f1le.0h"*
#include *../h/ulo.h*
#include *../R/loctl . h"*

#include *../sun/mmu.h* "

#include *../sun/fblo.h"
#include v../sundev/mbvar.h’
#include *../pixrect/pixrect.h*
#include "../pixrect/pr_util.h"
#include "../pixrect/cgireg.h®
#include °. ﬁ/pixrcct./cglnr .h*

#12 WIN > d

#define CG1_OPS &cgl opu

struct pixrectops cgl_ops = {
cgl_rop,
cgl_putcolormap,

#oll.

#define CG1_OPS (struct pixroctopa *)0

#ondif

#define CGISIZE (sizeof (struct cglfd))
struct cgipr cgoneprdatadefault =

- {0, 0, 256, 0, 0 };

struct pixrect cgonepixrectderault

{ ¢Gt_OPS, { CGi_WIDTH, CG1_HEIGHT }, CG1_DEPTH,

.

/¥ £11led 1in later */ 0O };:
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* Driver information for auto-configuration stuff.

*/
iat
suruct
struct
struct
u_long
struct

};
/*

cgoneprodbe(), cgoneintr();

pixrect cgonepixrect{NCGONE];

cgipr cgoneprdata[NCGONE] ;

md_device *cgoneinfo[NCGONE];

cgonestd[] = { 0xe8000, 0xec000, O };

mb_driver cgonedriver = {

cgoneprobe, 0, 0, 0, O, cgoneintr, cgonestd, O, CGIBIZE,
*cgone®, cgoneinfe, 0, 0, O, ,

* Only allow opens for writing or reading and writing
* because reading is nonsensicsal.

s/
cgonsopen(dev, flag)
dev_t dev;
< _
return(fbopen(dev, flag, NCGONE, cgoneinfo));
}
/» :
% When close driver destroy pixract.
»/ :
cgoneclose(dev, flag)
dev_t dev;
{ .

register int unit = minor{dev);

12 ((caddr_t)&cgoneprdata[unit] == cgonepixrectiunit] .pr_dats) {
bzero((caddr_t)&cgoneprdatalunit], sizeof (struct cgipr));
bzero((caddr_ _t)&cgonepixrect[unit], sizeof (struct pixrect));

}

}
/*ARGEBUSEDs/

cgoneloctl (dev, cmd, data, flag)

dev_t dev;
caddr_t data;

register int unit = minor(dev);
svitch (cemd) {

case FBIOGTYPE: {

register struct fbtype *fb = (struct fbtype *)data;

fb->1b_type = FBTYPELSUNiCDLOR:
fb->1b_height = 480;
fb->fb_width = 640;
fb->fb_depth = 8;
fb->fb_cmsize = 266;
fb->1b_size = 512%640;
break;

}
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L

- eage FBIOGPIXRECT: {

register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cgifb *cgifd = :
(struct cgifd *)cgoneinfol(unit)l->md sddr;

/*
* *Allocate" and initialize pixrect dats with default.
®/
. fbpr->tbpr_pixrect = &cgonepixrectlunit];
cgonepixrect[unit] = cgonepixrectdefault;
fbpr->fbpr_pixrect->pr_dats = (caddr_t) &cgoneprdstalunit);
cgoneprdataunit] = cgoneprdatadefault;
/* “
» Fixup pixrect data.
L 7 .
cgoneprdatalunit] .cgpr_va = cgifb;
/+ ‘

* Enadble video

./

cgl_setreg(cgltd, CG_FUNCREG, CG_VIDEOENABLE) ;
/e

% Clear intsrrupt

»/
ogl_inteclear(ogitd);
break; :
}
defanlt: -
return (ENOTTY);
)3 :
returs (0);
}
i , : :
. % We need to handle vertical retrace interrupts hers.
- » The color map(s) can only be loaded during vertical
* retrace; ve should put in icctls for this to synchronize
¢ vith the interrupts.
* FOR NOW, see comments in the code.
./ :
cgoneintelear(cgith)
struct cglifd =cgilfd;
/s - -
% The Sun | color frame buffer doesn’'t indicate that an
* interrupt is pending on itself so we don’t know if the interrupt
* {8 for our device. BSo, just turrn off interrupts on the cgone board.
* This routine can be called from any level.
»/ =
- egi_intclear(cgifd);
. /‘ L
* We return O so that if the interrupt is for some other device
# then that device will have a chance at it.
»/
. return(0);
b
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int
cgoneintr()
{
return(fbintr (NCGONE, cgoneinfo, cgoneintclear));
>
| /+ARGSUSED*/
cgonenmap (dov, off, prot)
dev_t dev;
oftf_t off;
int prot;
{
return(fbmmap(dev, off, prot, NCGONE, cgoneinfo, CGISIZE));
b4
#include *../gundev/cgreg.h"
/+ -
» Note: using old cgreg.h to peek and poke for now.
*/

/*
# We determine that the thing we're addressing is a color
* board by setting it up to invert the bits we write and then writing
» and reading back DATAl, making sure to deal with FIFOs going and coming.
*/
#define DATAL OxEBC
#define DATAZ 0x33
cgoneprodbe (reg, unit)
caddr_t reg;
int unit;

register caddr_t CGXBase:
register u_char *xaddr, *yaddr;

CGXBase = Treg;
1f (pokec((caddr_t)GR_freg, GR_copy_invert))
Teturn (0);
1f (pokec((caddr_ t)GR_mask, 0))
return (0);
xaddr = (u_char *) (CGXBase + GR_x selact + GR updabe + GR_set0) ;
yaddr = (u_char *) (CGXBase + GR_y select + GR_set0);
1f (pokec((caddr_t)yaddr, 0))
return (0);
i? (pokxec((caddr_t)xaddr, DATA1))
return (0);
peekc((caddr_t)xaddr) ;
pokec((caddr_t)xaddr, DATA2):
if (peskc((caddr_t)xaddr) == ("DATA1 & OxFF)) {
/*

*

The Sun 1 color frame buffer doesn’'t indicate that an
interrupt is pending on itself,.

Also, the interrupt level 1s user program changable.
Thus, the kernel never knows what level to expect an
interrupt on this device and doesn't kuow is an interrupt
1s pending.

S0, we add the cgoneintr routine to a2 list of interrupt -

* % ¥ # % *
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' _ * handlers that are called if no cne handles an interrupt.
(::) : * Add_default_intr screens out multiple calls with the same
* interrupt procedure.
*/
add_defsult_intr(cgoneintr);
return (CG1§IZE);
}
return (0);

#endif
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/v e(#)skyreg.h 1.1 83/09/26 SMI  */

/+ ,
* Copyright (c) 1983 by Sun Microsystems, Inc.
*/ o

A
% Sky FFP
./

struct skyreg {
u_short sky_command;
u_short sky_status;
union {
short  skyu_dword[2]:
long skyu_dlong:

} skyu;
#define gky_data skyu.skyu_dlong
#define sky direg skyu.skyu_dvord[0]

long sky_ucode;
b -

/% commands &/

#define SKY_SAVE 0x1040
#define SKY RESTOR ~ 0x1041
#define SKY_NOP 0x1083
#define SKY_STARTO 0x1000
#define SKY_START1 0x1001
/% status bits »/

#define SKY_IHALT 0x0000
#define SKY_INTRPT 0x0003
#define SKY_INTENB 0x0010
#define SKY_RUNENB 0x0040
#define SKY_SNGRUN 0x0060
#define BKY RESET 0x0080
#define SKY_IODIR 0x2000
#define SKY_IDLE 0x4000

#define SKY_IORDY 0x8000






C
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#ifndef lint

- static char scesid[] = "@(#)sky.c 1.3 83/10/27 Copyr 1883 Sun Micro*;

#ondift
Fi)

* Copyright (¢) 1983 by Sun Microsystems, Inc.

*/

/*

* _8ky FFP

*/

#include °*../h/paras.h*
#includg *../h/buf.h*
#include *../h/file.h"
#include *../h/dir.h*
#include *../h/uger.h"
#include *../sun/pte.h"
#include *../sundev/mbvar.h*
#include *../sundev/skyreg.h®
Fi

& Driver informstion for suto-configuration stuff.

*/
int skyprobe (), skyintr();
struct mb_device #skyinfo[1); /* XXX only supports i board =/
u_long skystd[] = { 0x2000, 0 };
struct mb_driver skydriver = {
skyprobe, 0, 0, 0, 0, skyintr, skystd, O,
sizeof (struct skyreg),
*sky*, skyinfo, 0, 0, 0
b

struct skyreg *skyaddr;
static int skyinit;

skyprobe(reg, unit)
caddr_t reg;
int unit;

register struct skyreg *skybase = (struct skyreg %)reg;
register int ¢;

1f ((c = peek((short *)skydase)) == -1)
return (0);
17 (poxe ((short *)&skybase->sky_status, SKY_IHALT))
return (0);
skyaddr = (struct skyreg *)reg;
return (sizeof (struct skyreg)):
}

" J*ARGSUSED*/

skyopen (dev, flag)
dev_t dev;
int flsg:
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if (skysddr == 0)
return (ENXIO);
if (skyinit == 2)
u.u_skyctx.usc_used = 1;
elge 1f (flag & FNDELAY)
skyinit = §;
else
return (ENXIO);
return (0);

)2
/*ARGSUSED*/
skyclose (dev, flag)
dev_t dev;
int flag:
{
it (sxyinit == 1)
skyinit = 2;
u.u_skyctx.usc_used = O;
retura (0);
}
/*ARGSUSED*/
skymmap (dev, off, prot)
dev_t dev:
off t off;
int prot;
{ :
1t (otf)
return (-1);
return (getkpgmap (skyaddr) & PG_PFNUM);
} :
skyintr ()
{
1f (skyaddr && (skyaddr->sky_statuskSKY_INTRPT)) {
skyaddr~->sky_status &= ~(8KY_INTENB|SKY_INTRPT);
return (1);
>
return (0);
}
skysave ()
{

register short i;
register struct skyreg ¥s = skyaddr;
register u_short stat;

for (1 = 0; 1 < 100; i++) {
: stat = s->gky_status;
it (stat & SKY_IDLE) {
u.u_skyctx.usc_cmd = SKY_NOP;
goto sky_save;

C
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' . ¥
O | 12 (stat & SKY_IORDY)
goto sky_ioready;
}
printf(*sky0: hung\n");
gkyiait = 0;
u.u_skyctx.usc_used = 0;

return;
. /‘ -
#* I/0 i8 ready, is it a read or write?
«/ - :
sky_loready:
s->gky status = SKY SNGRUN; /% set single step mode */

if (stat & SKY_IODIR)
i = g->sky_direg;

else
s->sky_direg = i;
/e
* Check agein since data may have bsen a long word.
»/ :

stat = g->gky_status;
i? (stat & SKY_IORDY)
17 (stat & SKY_IODIR)
1 = s->sky_direg:
else

- _ s->sky_direg = 1;
<. ) /.

Read and save the command register.
Decrement by i since command regisgter
is actually FFP prograz counter and we
vant to back it up.

% % & %

»/
t.u_skyctx.usc_cmd = s->sky_command - 1;

/%
* Reinitialize the FFP.
*/

. 8->sky_status = SKY_ RESET;
s->sky_command = SKY_STARTO;
s->gky_command = SKY_ STARTO;
s->sky_command = SKY START1;
s->sky_status = SKY RUNENB;

I/ , :
* Finally, actually do the context save function.
% (Unrolled loop for efficiency.)

/-
- sky_save:
' 8->sky_command = SKY_NOP; /* sat FFP in a clean mode ¥/
g->sky_command = SKY_SAVE;

S A u.4_skyctx.usc_regs[0] = s->sky_data;
\ u.u_skyctx.usc_regs[1) = s->sky_data;
{::) '  u.u_skyctx.usc_regs[2] = s->sky_data;
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u
1
1
i1
u
>
skyrestore()
{

.u_skyctx.usc_regs(3)
.u_skyctx.usc_regs{4]
.u_skyctx.usc_regs (6]
.u_skyctx.usc_regs(6]
.u_skyctx.usc_regs[7]

Tegister struct skyreg *s

1f (skyinit 1= 2) {
1.u_skyctx.usc_used = 0O;
return;

}

s->sky_command = SKY_NOP;

/%

s->gky_data;
s->gky_data;
s->sky_data;
s->sky_data;
g->ky_data;

= gkyaddr;

/* set FFP in a clean mods */

* Do the context restore function.

*/

s->sky_command = SKY RESTOR;

B->gky_data
s->sky_data
s->gky_data
s->gky_data
s->gky_data
g->gky_data
s->sky_dats
s->sky_data

nnwnnuun

[ I B - -

.u_skyctx.
.u_skyctx.
.u_skyctx.
.u_skyctx
.u_skyctx.
.u_skyctx.
.u_skyctx.
.u_skyctx.

usc_regs{0];
usc_regsfi];
usc_regs{2];

.usc_regsi3):

usc_regs(4]);
usc_regs(s];
usc_regs (6] ;
usc_regs (7]

s->sky_command = u.u_skyctx.usc_cmd;
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/* e(#)vpreg.h 1.3 83/08/168 SMI »/

/*
* Copyright (c) 1983 by Sun Microsystems, Inc.
*/

/%

"~ % Registers for Ikon 10071-5 Multibus/Versatec interface
* Only low byts of each word 1s used. (18 words total)
* Waraning - read hits are not identical to written bits,

»/
struct vpdevice {
u_short vp_status; /% 00: mode(w) and status(r) =/
u —short vp_cmd; /% 02: special command bits (w) */
u ahort vp_ploout; /* 04: PIO output data (w) */
u_short vp_hiaddr; /* 08: ni vord of Multibus DMA address (w) »/
u _short vp_icedo; /% 08: ad0 of 8269 iaterrupt controller %/
u_short vp_icadi; /* OA: adl of 8259 interrupt controller */
/* The rest of the fields are for the 8237 DMA controller »/
u_short vp_addr; /* 0C: DMA wvord address %/
y_short vp_we; /* OE: DMA word count »/
] short vp_dmacsar; /% 10: command and status »/
u_short vp_dmareq; /* 12: request »/
u_short vp_smb; /* 14: single mask bit */
u_uhorb vp_mods; /% 16: dma mode »/
u_short vp_clrff; /* 18: clear first/last flip-flop */
u_short vp_clear; /% 1A: DMA master clear »/
u_short vp_clrmask; /% 1C: clesr mask register »/
y u_short vp_sllmask; /% {E: all mask bits */
/* vp_status bits (reasd) *»/
#define VP_I58237 0x80 /#= 1 it 8237 (sanity checker) */
#define VP_REDY 0x40 /* printer ready */
#define VP_DRDY 0x20 /* printer and interface ready */
#define VP_IRDY 0x10 /* iaterface ready %/
#define VP_PRINT 0x08 /% print mode */
#define VP_NOSPP 0x04 /* not in SPP mode */
#define VF_ONLINE - 0x02 /% printer online */
#define VP_NOPAPER 0x01 /* printer out of paper */
/% vp_status bits (written) */ '
#define VP_PLOT. 0x02 /* enter plot mode %/
#define VP_SPP 0x01 /* enter SPP mode */
/% vp_cmd bits */ :
B #dotino VP_RESET 70x10 /% Teset the plotter and interface */
#define VP_CLEAR 0x08 /% clear the plotter */
#define VP_FF 0x04 /¢ form feed to plotter */
#define VP_EOT 0x02 /% EOT to plotter »/
#define VP_TERM 0x01 /* line terminate to plotter */
#define VP_DMAMODE _Ox47 /* magic for vp_mode */
#define VP_ICPOLL 0x0C

#define VP_ICEOI 0x20
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- #ifndef lint
static char scesid[] = "e(#)vp.c 1.9 83/09/08 Copyr 1983 Sun Micro®;
#ondif

/%
* Copyright (c) 1983 by Sun Microsystems, Inc.
»/ ' :
#include °"vp.h"
#i2 NVP > 0
/*

* Versatec matrix printer/plotter
* dpa interface driver for Ikon 1007:-5 Hultibus/Versatoc interface
*/

#include *../bh/param.h®
#include "../h/dir.n*
#include *../h/user.h”
#include °*../h/but.h*
#include *../h/systm.h®
#include *../h/kernel.h*
#include *../h/map.h*
#include *../h/10ctl.h"
#include *../h/vemd.h"®
#include *../h/uio.h*.
#include *../sun/psl.h*
#include *../sun/mmu.h®
#include "../sundev/vpreg.h*
#include *

../sundev/mbvar.h*
#define VPPRI {PZERO-1)

struct vp_softe {

int gc_state;
struct buf *sc_bp;
int sc_mbinfo;

) vp_softc[NVP];

#define VPSC_BUSY 0400000

/% sc_state bits - passed in VGETSTATE and VSETSTATE loctls */
#define VPSC_MODE 0000700

#define VPsc_SPP 0000400

#define VPSC_PLOT 0000200

#define VPSC_PRINT 0000100

#define VPSC_CMNDB 0000078

#detine VPSC_OPEN 0000001

#define VPUNIT(dev) (minor(dev))

struct buf rvpbuf [NVP],;
int vpprobo() vpintr();
u_long vpaddrs[] = { 0x400, 0x420, 0};

struct mb_device *vpdinfo[NVP];
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struct md_driver vpdriver = {

vpprobe, 0, 0, 0, O, vpintr,
vpaddrs, 0, O,
"yp", vpdinfo, 0, 0, O,

};
vpprobe (reg)
caddr_t reg;
{
register struct vpdevice *vpaddr = (struct vpdevice *)reg:;
register int x;
= peek ((short *)&vpaddr->vp_status);
1f (x == -1 il (x & VP_ISB237) == 0)
return (0);
if (poke ((short *)&vpaddr->vp_cmd, VP_RESET))
return (0);
/* initialize 8259 so ve don't get constant interrupte »/
vpaddr->vp_icad0 = 0x12; /% ICW1, edge-trigger */
DELAY(1) ;
vpaddr->vp_icadl = OxFF; /% ICW2 - don't care (non-zero) =/
DELAY(1) ; : '
vpaddr->vp_1icadl = OxFE; /# IRO - interrupt on DRDY edge */
/% Teset B237 %/
vpaddr->vp_clear = 1;
return (sizeof (struct vpdevice)):
>
vpopen (dev)
dev_t dev,;
{

Teglster struct vp_softc *sc¢;
register struct mb_device *md;
register int g;

static int vpvateh = O;

1¢ (VPUNIT(dev) >= NVP ||
((sc = &vp_softeminor(dev)))->sc_stateAVPSC_OPEN) ||
(md = vpdinfo[VPUNIT(dev)]) == 0 || md->md_alive == 0)
retura (ENXIO);
1 (tvpwateh) {
vpwatch = 1;
vptimo(};
b2
sc->sc_state = VPSC_OPEN|VPSC_PRINT | VPC_CLRCOM!VPC_RESET;
while (sc->sc_state & VPSC_CMNDS) {
8 = splx(pritospl (md->md_intpri));
1f (vpwait(dev)) {
‘vpclosge(dev);
return (EID);
}
vpemd (dev) ;
splx(s);
>
return (0);
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y
@ vpclose (dev)
dev_t dev;
{
register struct vp_softc *sc = &vp_softc [VPUNIT(dev)];
sc->sc_state = 0;
)
vpstrategy (bp)
_ register struct buf *bp;
{

register struct vp_softc *sc = Avp_softc[VPUNIT(bp->b_dev)];

register struct mb_device #md = vpdinfo [VPUNIT(bp->b_dev)];
 register struct vpdevice #vpaddr = (struct vpdevice *)md->nd_addr;

int s;

int mdinfo, ps, Vwe:

12 (((int)bp->b_un.b_addr & 1) 1! bp->b_beount < 2) {
bp->b_flags |= B_ERROR;
todons (bp);
return; -

3

s = splx(pritospl (md->md_1intpri));

vhile (sc->sc_bp I|= NULL) /% single thread */
sleep({caddr_t)sc, VPPRI);

: “sc~>sc_bp = bp; |
@ vpvait (bp->b_dev) ;
/ _ sc->sc_mbinfo = mbsetup(md->md_hd, bp, 0);

vpaddr->vp_clear = 1;

ps = MBI_ADDR(sc->sc_mbinfo);

vpaddr->vp_hiaddr = (pa >> 18) & OxF;

ps = (ps >> 1) & OX7FFF;

ve = (bp->b_beount > 1) ~ 1;

bp->b_resid = 0;

vpaddr->vp_sddr = ps & OXFF;

vpaddr->vp_addr = pa >> 8;

vpaddr->vp_wc = vc & OxFF;

vpaddr->vyp_vc = we >> 8;

vpaddr->vp_mode = VP_DMAMODE;

vpaddr->vp_clrmask = 1;

sc->sc_staté |= VPSC_BUSY;

) splx{s);

/%ARGSUSED*/

vpurite (dev, uio)
dev_t dev;
struect uio *uio;

. 12 (VPUNIT(dev) >= NVP)
return (ENXIO);
return (physio(vpstrategy, &rvpbuf{VPUNIT(dev)], dev, B_WRITE,
g ) . minphys, uio)):
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>
vpvait(dev)
dev_t dev;
{
roegister struct vpdevice *vpaddr =
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;
register struct vp_softc *sc = Evp_softc[VPUNIT(dev)]:
tor (033 {
if ((sc->sc_state & VPSC_BUSY) == 0 &
vpaddr->vp_status & VP_DRDY)
break;
sleep((caddr_t)sc, VPPRI);
}
return (C); /* NO ERRORS YET */
}
struct pair {
char soft; /+ software bit */
char hard; /* hardware bit %/
) wvppits[] = {
VPC_RESET, VP_RESET,
VPC_CLRCOM, VP_CLEAR,
VPC_EOTCOM, VP_EOT,
VPC_FFCOM, VP_FF,
VPC_TERMCOM, VP_TERM,
0, o,
)
vpemd (dev)
dev_t;
{
register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr =
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->nd_addr;
Tegister struct pair *bit:
for (bit = ¥pbits; bit->soft 1= 0; bit++) {
1t (se->sc_state & bit->soft) {
vpaddr->vp_cmd = bit->hard;
sc->sc_state &= “bit->solit;
DELAY (100) ; /* time for DRDY to drop */
return;
}
}
b4
/*ARGSUSED*/
vploctl (dev, cmd, data, fleg)
dev_t dev;
int omd;
caddr_t data;
int flag;

register int m;




o
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register struct mb_device *md = vpdinfo[VPUNIT(dev));
register struct vp_softc #*sc = Rvp softc[VPUNIT(dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;

int s=;

svitech (cmd) {

case VGETSTATE:

*(int *)data = sc->s8C_state;
break;

case VSETSTATE:

default:

}

2 = +(int *)data;
sc->8c_state =

(sc->sc_state & “VPSC_MODE) | (m&(VPSC_MODE|VPSC_CMND8));
break;

return (ENDTTY):'

s = splx(pritospl (md->md_intpri));
(void) vpwait(dev);

it (o>

elme if

 else

vhile (s

)

}
splx(s);
return {

/%ARGSUSEDs/

vpintr()
{

register
Tegister
register
Tegister
register

for (dev

sc_statesVPSC_SPP)
vpaddr->vp_status = VP_SPP{VP_PLOT;
(sc->sc_stateaVPSC_PLOT)
vpaddr->vp_status = VP_PLOT;

vpaddr->vp_status = 0;
c->8c_state & VPSC_CMNDS) {
(void) wpvait(dev);

vpend (dev) ;

0);

int dev;

-struct mb_device »nmd;
struct vpdevice *vpaddr;
struct vp_softc *sc;

int found = 0;

= 0; dev < NVP; dev++) {

i1f ((nd = vpdinfoldev]) == NULL)
continue;

vpaddr = (struct vpdevice *)md->md_addr;

vpaddr->vp_icad0 = VP_ICPOLL;

DELAY(1);

12 (vpaddr->vp 1cad0 & 0x80) ¢
found ='1;
DELAY(1): .
vpaddr->vp_icad0 = VP_ICEOI;
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sc = &vp_softc[dev];
it ((sc->sc_stateAVPSC_BUSY) A& (vpaddr->vp_status & VP_DRDY))
sc->sc_state &= “VPSC_BUSY;

11 (sc->sc_state & VPSC_SPP) {
sc->sc_state &= “VPSC_SPP;
sc->s¢_state |= VPSC_PLOT;
vpaddr->vp_status = VP_PLOT;

}

iodone(sc->sc_bp);

sc->gc_bp = NULL;

mbrelse (md->md_hd, &sc->sc_mbinfo);

>
wakeup ((caddr_t)sc);
}
return (found);
}
vptimo()
{
int s;
register struct md_device *md = vpdinfo[0]:
s = splx(pritospl(m3->nd_1ntpr1)):
vpintr();
splx(s):
timeout(vptimo, (caddr_t)O, hz);
}

#endif
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Using ADB to Debug the UNIX Kernel

This document describes the use of extensions made to the UNIXt{ debugger adb for the purpose
of debugging the UNIX kernel. It discusses the changes made to allow standard edb commands
to function properly with the kernel and introduces the basics necessary for users to write adb
command scripts which may be used to augment the standard adb command set. The examina-
tion techniques described here may be applied to running systems, as well as the post-mortem
dumps automatically created by the savecore(8) program after a system crash. The reader is
expected to have at least a passing familiarity with the debugger command language.

1. Introduction

Modifications have been made to the standard UNIX debugger adb to simplify examination of
post-mortem dumps automatically generated following a system crash. These changes may also
be used when examining UNIX in its normal operation. This document serves as an introduc-
tion to the use of these facilities, and should not be construed as a description of Aow to debug
the kernel,

1.1. Invocation

When examining the UNIX kernel a new option, -k, should be used:

adb -k /vmunix /dev/mem

This flag causes adb to partially simulate the Sun-2 virtual memory hardware when accessing
the core file. In addition the internal state maintained by the debugger is initialized from data
structures maintained by the UNIX kernel explicitly for debugging}. A post-mortem dump may
be examined in a similar fashion,

adb -k vmunix.? vmcore.?

where the appropriate version of the saved operating system image and core dump are supplied
in place of “1",

t UNIX is a trademark of Bell Laboratories.

t It the -k flag is not used when invoking sdb the user must explicitly calculate virtual sddresses,
With the -k option &db interprets page tables to automatically perform virtual to physical address
translation.

Revision C of 7 January 1984 1
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1.2. Establishing Context

During initialization adb attempts to establish the context of the “currently active process’ by
examining the value of the kernel variable panic_regs. This structure contains the register
values at the time of the call to the panic routine. Once the stack pointer has been located, the
command

$c

will generate a stack trace. An alternate method may be used when a trace of a particular pro-
cess is required: see section 2.3.

9 Revision C of 7 January 1984

-

-
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2. ADB Command Scripts

2.1. Extending the Formatting Facilities

Once the process context has been established, the complete adb command set is available for
interpreting data structures. In addition, a number of adb scripts have been created to simplify
the structured printing of commonly referenced kernel data structures. The scripts normally
reside in the directory /uer/lib/adb, and are invoked with the “$<" operator. A later table lists
the “standard” scripts.

As an example, consider the following listing which contains a dump of a faulty process’s state
{our typing is shown emboldened).

% adb -k vmunix.3 vmcore.3
sbr 50030 slr 5le
physmem 3c0

- $c
_panic[10fec)(5234d) + 3¢
_jalloc[16ea8)(d44a2,2,dff) + ¢8
_maknode[1d476](dff) + 44
_copen([1c480)(602,-1) + e
_creat() + 16
_syscall[2ea0a]() + 15e
level5() + B¢

5234d/s
_nldisp+ 175:  ialloc: dup alloc
u$<u
_u:
~u pe
4be0
_ut+ 4 d2 d3 d4 ds
13b0 0 0 0
u+ 14: de d7
0 2604
_u+ le: a2 a3 ad ab
0 €7800 5a958 d7160
_u+ 2c: a a?
3e62 3e48
_u+ 34: sr
27000000
_u+ 38: pObr pOlr plibr plir
105000 40000022 f£d714 Hfe
_ut 48: szpt 8SWap
1 0
u+ 50: procp ar0 - comm
d7160 3fb2 dtime"'0°6°Q@°@"0
_u+ 158: argd argl arg?
1001¢ -1 ffftad
u+ 178: nap geave error

2958 2eb46 1 0
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_u+ 1b2: rvl rv2 €0sys
0 14cac 0 @
_u+ lbe: uid gid
49 10
_u+ 1c0: groups
10 -1 -1 -1
-1 -1 -1 -1
_u+ le0: ruid rgid
49 10
_u+ led: tsize dsize ssige
7 1b 2
_u+ 344; odsize ossize outime
0 0 0
_u+ 350: signal
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
sigmask
0 0 0 0
0 0 0 0
0 0 0 0 @
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
_u+ 450: onstack oldmask code
0 80002 0
_u+ 45¢c: sigstack  onsigstack
0 0
_u+ 4484 ofile
d66b4 d66b4 d66b4 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
pofile
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0
_u+ 4¢8: cdir rdir ttyp ttyd cmask
d44a2 0 5¢68c 0 12

ra £ ecru @
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_u+ 4d8: utime
0 0
_u+ 4e8: maxrss
9 35
_u+ 418: minflt
0 5
_u+ 504: inblock
3 7
_u+ 514: nsignals
0 12
_u+ 520: © utime
0 0
_u+ 530; maxrss
0 0
_u+ 540: minflt
0 0
_u+ 54c¢: inblock
0 0
_u+ 5b¢c: nsignals
0 0
0d47160$ <proc
d7160: link
5680e0 0
d716¢: upri pri
066 024 020
d7173: cursig
0 0
d7178: mask
0 0
d7184: flag
8001 31
d7190: xstat
0 0
d719e: dsize
. 1b 2
d71ae: swrss
0 0
d71be: pObr
105000
d71c8: %cpu
0
d71d4: real itimer
0 0
d7le4: quota
0 51236
048418% <text
d8418: daddr
284 0
0 1]
0 0
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stime
0 35b60
ixrss idrss isrss
43
majflt pswap
0
oublock msgsnd
0 0
nvesw nivesw
4
stime
0 0
ixrss idrss isrss
0
majflt nswap
0
oublock msgsnd
0 0
nvesw nivesw
0
rlink addr
105714
cpu stat time nice slp
03 01 024 O
sig
ignore catch
0
uid pgrp pid ppid
oA 2o 23
r poip szpt tsize
0 1 7
ssize rasize maxrss
5 ijitd
swaddr wchan textp
0 ds41s8
xlink ticks
0 15
ndx idhash pptr
6 2 d7od4
0 1}
ctx
0 0
0 0
0 0

msgrev

msgrev
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ptdaddr size caddr iptr
184 7 d7160 d47e0
rssize swrss countccount flag slptim poip

4 0 01 01 042 0 0

The cause of the crash was a “panic” (see the stack trace) due to the a duplicate inode alloca-
tion detected by the salloc routine The majority of the dump was doune to illustrate the use of
the command scripts used to format kernel data structures. The ‘“u” script, invoked by the
command “u$<u", is a lengthy series of commands which pretty-prints the user vector. Like-
wise, “proc’ and ‘‘text’ are scripts used to format the obvious data structures. Let's quickly
examine the ‘‘text” script (the script has been broken into a number of lines for convenience
here; in actuality it is a single line of text).

.J"daddr"n12Xn\
” ptdaddr” 18¢"size” 16t” caddr” 16t”iptr” n4Xn\
" rssize” 8t” swrss” 8t” count” 8t” ccount” 8" flag” 8t slptim” 8t” poip” n2x4bx

The first line produces the list of disk block addresses associated with a swapped out text seg-
ment. The ‘‘a" format forces a new-line character, with 12 hexadecimal integers printed
immediately after. Likewise, the remaining two lines of the command format the remainder of
the text structure. The expression “16t"” causes adb to tab to the next column which is a mul-
tiple of 16.

The majority of the scripts provided are of this nature. When possible, the formatting scripts
print a data structure with a single format to allow subsequent reuse when interrogating arrays
of structures. That is, the previous script could have been written

/" daddr"n12Xn
+ /" ptdaddr” 16t" size” 16t" caddr” 16t" iptr" n4Xn
+ /" rssize” 8t” swrss” 8t” count” 8t” ccount” 8t” flag” 8t” slptim” 8t” poip” n2x 4bx

but then reuse of the format would have invoked only the last line of the format.

2.2. Traversing Data Structures

The adb command language can be used to traverse complex data structures. One such data
structure, a linked list, occurs quite often in the kernel. By using adb variables and the normal
expression operators it is a simple matter to construct a script which chains down the list print-
ing each element along the way.

For instance, the queue of processes awaiting timer events, the callout queue, is printed with the
following two scripts:

6 Revision C of 7 January 1984
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callout:

calltodo/" time" 16¢" arg” 164" func”
*+(.+ 0t12)$ <callout.next

callout.next:

./D2p

*+ >l

FE<I8<

<1$ <callout.next

The first line of the script callout starts the traversal at the global symbol calltodo and prints a
set of headings. It then skips the empty portion of the structure used as the head of the queue.
The second line then invokes the script callout.next moving “.” to the top of the queue (“++ "
performs the indirection through the link entry of the structure at the head of the queue).

callout.next prints values for each column, then performs a conditional test on the link to the

next entry. This test is performed as follows,

¢+ >1  Place the value of the “link” in the adb variable “<I".

A <1$< If the value stored in “<1” is non-zero, then the current input stream (i.e. the script
callout.next) is terminated. Otherwise, the expression “#<1” will be zero, and the
“$ <" will be ignored. That is, the combination of the logical negation operator “#",
adb variable “<1", and “$<" operator creates a statement of the form,

if (fhink) exit;
The remaining line of callout.next simply reapplies the script on the next element in the linked

list.
A sample callout dump is shown below.

% adb —k /vmunix /dev/mem
sbr 50030 slr 5le

physmem 3c0

$ <callout

_calltodo: :

calltodo: time arg func

d9fc4; L 0 _roundrobin
d9fo4: 1 0 _if_slowtimo
dofd4: 1 0 _schedcpu
d9fad: 3 0 _pffasttimo
d9fe4: 0 0 .schedpaging
dofb4: 15 0 _pfslowtimo
doff4: 12 0 _arptimer
da044: 736 d7390 _realitexpire
da004: 206 défbe _realitexpire
da024: 649 d741c _realitexpire
da034: 176929 d7304 _realitexpire
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2.3. Supplying Parameters

If one is clever, a command script may use the address and count portions of an add command
as parameters, An example of this is the setproe script used to switch to the context of a pro-
cess with a known process-id;

0t993% <setproc

The body of setproc is

>4

*pproc >}
*proc >{

$ <setproc.nxt

while setproc.nxt is

(+( <+ 0642)&0x fHr)="pid "D

FH(((H{ <+ 0t42)&0x 1)) < 4)$ <setproc.done
<l-1>1]

<+ 0140 >1

<8<

$ <setproc.nxt

The process-id, supplied as the parameter, is stored in the variable “<4”, the number of
processes is placed in “<1”, and the base of the array of process structures in “<f".
setproc.nxt then performs a linear search through the array until it matches the process-id
requested, or until it runs out of process structures to check. The script setproc.done simply
establishes the context of the process, then exits.

2.4. Standard Scripts

The following table summarizes the command scripts currently available in the directory
[ uer/lib] adb.

Standard Command Scripts

Name Use Description
buf addr$ <buf format block I/O buffer
callout $ <callout print timer queue
clist addr$ < clist format character 1/O linked list
dino addr$ <dino format directory inode
dir addr$ < dir format directory entry
file addr$ < file format open file structure
filsys addr3<filsys format in-core super block structure
findproc pidd<findproc find process by process id
ifnet addr$ <ifnet format network interface structure
inode addr$ <inode format in-core inode structure
inpcb addr$ <inpcb format intercet protocoel control block
iovec addr$ <iovec format a list of iov structures

8 Revision C of 7 January 1984
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O Standard Command Scripts
Name Use Description

ipreass addr$ <ipreass format an ip reassembly queue
mact sddr$ <mact show “‘active” list of mbuf’s
mbstat $ <mbstat show mbuf statistics
mbuf sddr§ <mbuf show “next” list of mbuf’s
mbufs addr$ <mbufs show a number of mbuf's
mount  eddr§<mount format mount structure
peb sddr$ <pch format process context block
proc addr$ <proc format process table entry
protosw  addr$ <protosw format protocol table entry
rawch addr$ <rawch format a raw protocol control block
rtentry eddr$<rtentry format a routing table entry
rusage eddr$ <rusage format resource usage block
setproc  pid$ <setproc switch process context to pid
socket eddr$ <socket format socket structure
stat addr$ <stat format stat structure
tepch addr§ <tepcb format TCP control block
tcpip addr$ <tcpip format a TCP/IP packet header
tepreass addr$§ <tcpreass show a TCP reassembly queue

O text addr$ < text format text structure
traceall $<traceall show stack trace for all processes
tty addr§ < tty format tty structure
u addr$<u format user vector, including peb
uio addr$§ <uio format uio structure
vtimes addr$ <vtimes format vtimes structure

3. Generating ADB Scripts with Adbgen

The adbgen(8) program allows the scripts presented earlier to be written in a way that does not
depend on the structure member offsets of the items being referenced. For example, the "text”
script given above depended on the fact that all the members to be printed were located con-
tiguously in memory. Using adbgen, we could write the script as follows (again it is really on
one line, but broken apart here for ease of display):

©
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#finclude "sys/types.h”
#include "sys/text.h”

text

./"daddr"n{x_daddr,12X}n\

” ptdaddr” 16t"size” 16t” caddr” 16t”iptr” n\
{x_ptdaddr,X}{x_size,X}{x_caddr,X}{x_iptr,X}n\

"rssize” 8t" swrss” 8t” count” 8t” ccount” 8t” flag” 8" slptim” 8t” poip” n\

{x_rssize,x } {x _swrss,x}{x_count,b}{x_ccount,b}{x_flag,b}{x_slptime,b}{x_poip,x} {END}

The script starts with the names of the relevant header files, while the braces delimit structure
member names and their formats. This script is then processed through adbgen(8) to get the
adb script presented in the previous section. See adbgen(8) for a complete description of how to
write adbgen scripts. The real value of writing scripts this way becomes apparent only with
longer and more complicated scripts (for example, the ‘““u” script). Once the scripts are written
this way they can be rerun if a structure definition changes without any human effort put into
offset calculations.

4. Summary

The extensions made to adb provide basic support for debugging the UNIX kernel by eliminating
the need for a user to carry out virtual to physical address translation. A collection of scripts
have been written to nicely format the major kernel data structures and aid in switching
between process contexts. This has been carried out with only minimal changes to the
debugger.

More work is also required on the user interface to adb. It appears the inscrutable adb com-
mand language has limited widespread use of much of the power of adb. One possibility is to
provide a more comprehensible “adb frontend”, just as be{1) is used to frontend de(1). Another
possibility is to upgrade dbz(1) to understand the kernel.
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A Fast File System for UNIX

This document describes a reimplementation of the UNIX file system. The reimplementation

provides substantially higher throughput rates by using more flexible allocation policies, that

allow better locality of reference and that can be adapted to a wide range of peripheral and pro-

cessor characteristics. The new file system clusters data that is sequentially accessed and pro- -
vides two block sizes to allow fast access for large files while not wasting large amounts of space

for small files. File access rates of up to ten times faster than the traditional UNIX file system

are experienced. Long needed enhancements to the user interface are discussed. These include

a mechanism to lock files, extensions of the name space across file systems, the ability to use

arbitrary length file names, and provisions for efficient administrative control of resource usage.

1. Introduction

This paper describes the changes between the original §12 byte UNIX file system to the file sys-
tem implemented with the 0.9 release of the Sun UNIX system. It presents the motivations for
the changes, the methods used to affect these changes, the rationale behind the design decisions,
and a description of the new implementation. This discussion is followed by a summary of the
results that have been obtained, directions for future work, and the additions and changes that
have been made to the user visible facilities. The paper concludes with a history of the software
engineering of the project.

The original UNIX system that runs on the PDP-11} has simple and elegant file system facili-
ties. File system input/output is buffered by the kernel; there are no alignment constraints on
data transfers and all operations are made to appear synchronous. All transfers to the disk are
in 512 byte blocks, which can be placed arbitrarily within the data area of the file system. No
constraints other than available disk space are placed on file growth [Ritchie74)], [Thompson79).

When used together with other UNIX enhancements, the original 512 byte UNIX file system is
incapable of providing the data throughput rates that many applications require. For example,
applications that need to do a small amount of processing on a large quantities of data such as
VLSI design and image processing, need to have a high throughput from the file system. High
throughput rates are also needed by programs with large address spaces that are constructed by
mapping files from the file system into virtual memory. Paging data in and out of the file sys-
tem is likely to occur frequently. This requires a file system providing higher bandwidth than
the original 512 byte UNIX one which provides only about two percent of the maximum disk
bandwidth or about 20 kilobytes per second per arm [White80], [Smith81b).

Modifications have been made to the UNIX file system to improve its performance. Since the
UNIX file system interface is well understood and not inherently slow, this development retained
the abstraction and simply changed the underlying implementation to increase its throughput.

t DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.

Revision C of 7 January 1984 1



A Fast File System for UNIX System Internals Reference Manual

Consequently users of the system have not been faced with massive software conversion.

Problems with file system performance have been dealt with extensively in the literature; see
[Smith81a] for a survey. The UNIX operating system drew many of its ideas from Multics, a
large, high performance operating system [Feiertag71]. Other work includes Hydra [Almes78],
Spice [Thompson80], and a file system for a lisp environment [Symbolics81a].

A major goal of this project has been to build a file system that is extensible into a networked
environment [Holler73]. Other work on network file systems describe centralized file servers
[Accettag0], distributed file servers [Dion80], [Luniewski?7], [Porcar82], and protocols to reduce
the amount of information that must be transferred across a mnetwork [Symbolics8lb),
[Sturgis80]. '

2. Old File System

In the old file system developed at Bell Laboratories each disk drive contains one or more file
systems.f A file system is described by its super-block, which contains the basic parameters of
the file system. These include the number of data blocks in the file system, a count of the max-
imum number of files, and a pointer to a list of free blocks. All the free blocks in the system
are chained together in a linked list. Within the file system are files. Certain files are dis-
tinguished as directories and contain pointers to files that may themselves be directories. Every
file has a descriptor associated with it called an inode. The inode contains information describ-
ing ownership of the file, time stamps marking [ast modification and access times for the file,
and an array of indices that point to the data blocks for the file. For the purposes of this sec-
tion, we assume that the first 8 blocks of the file are directly referenced by values stored in the
inode structure itself*. The inode structure may also contain references to indirect blocks con-
taining further data block indices. In a file system with a 512 byte block size, a singly indirect
block contains 128 further block addresses, a doubly indirect block contains 128 addresses of
further single indirect blocks, and a triply indirect block contains 128 addresses of further dou-
bly indirect blocks.

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed by 148
megabytes of data. This organization segregates the inode information from the data; thus
accessing a file normally incurs a long seek from its inode to its data. Files in a single directory
are not typically allocated slots in consecutive locations in the 4 megabytes of inodes, causing
many non-consecutive blocks to be accessed when executing operations on all the files in a direc-
tory.

The allocation of data blocks to files is also suboptimum. The traditional file system never
transfers more than 512 bytes per disk transaction and often finds that the next sequential data
block is not on the same cylinder, forcing secks between 512 byte transfers. The combination of
the small block size, limited read-ahead in the system, and many secks severely limits file system
throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability and
throughput. The reliability was improved by changing the file system so that all modifications
of critical information were staged so that they could either be completed or repaired cleanly by
a program after a crash [Kowalski78]. The file system performance was improved by a factor of
more than two by changing the basic block size from 512 to 1024 bytes. The increase was
because of two factors; each disk transfer accessed twice as much data, and most files could be

1 A file system always resides on a single drive.
* The actual number may vary from system to system, but is usually in the range 5-13.
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described without need to access through any indirect blocks since the direct blocks contained
twice as much data. The file system with these changes will henceforth be referred to as the old
file aystem,

This performance improvement gave a strong indication that increasing the block size was a
good method for improving throughput. Although the throughput had doubled, the old file sys-
tem was still using only about four percent of the disk bandwidth. The main problem was that
although the free list was initially ordered for optimal access, it quickly became scrambled as
files were created and removed. Eventually the free list became entirely random causing files to
have their blocks allocated randomly over the disk. This forced the disk to seek before every
block access. Although old file systems provided transfer rates of up to 175 kilobytes per second
when they were first created, this rate deteriorated to 30 kilobytes per second after a few weeks
of moderate use because of randomization of their free block list. There was no way of restoring
the performance an old file system except to dump, rebuild, and restore the file system.
Another possibility would be to have a process that periodically reorganized the data on the
disk to restore locality as suggested by [Maruyama76).

3. New file system organization

As in the old file system organization each disk drive contains one or more file systems. A file
system is described by its super-block, that is located at the beginning of its disk partition.
Because the super-block contains critical data it is replicated to protect against catastrophic
loss. This is done at the time that the file system is created; since the super-block data does not
change, the copies need not be referenced unless a head crash or other hard disk error causes the
default super-block to be unusable.

To ensure that it is possible to create files as large as 2132 bytes with only two levels of indirec-
tion, the minimum size of a file system block is 4098 bytes. The size of file system blocks can be
any power of two greater than or equal to 4096. The block size of the file system is maintained
in the super-block so it is possible for file systems with differeat block sizes to be accessible
simultaneously on the same system. The block size must be decided at the time that the file
system is created; it cannot be subsequently changed without rebuilding the file system.

The new file system organization partitions the disk into ome or more areas called cylinder
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associ-
ated with each cylinder group is some bookkeeping information that includes a redundant copy
of the super-block, space for inodes, a bit map describing available blocks in the cylinder group,
and summary information describing the usage of data blocks within the cylinder group. For
each cylinder group a static number of inodes is allocated at file system creation time. The
current policy is to allocate one inode for each 2048 bytes of disk space, expecting this to be far
more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be on
the top platter. Thus a single hardware failure that destroyed the top platter could cause the
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping informa-
tion begins at a floating offset from the beginning of the cylinder group. The offset for each suc-
cessive cylinder group is calculated to be about one track further from the beginning of the
cylinder group. In this way the redundant information spirals down into the pack so that any
single track, cylinder, or platter can be lost without losing all copies of the super-blocks. Except
for the first cylinder group, the space between the beginning of the cylinder group and the
beginning of the cylinder group information is used for data blocks.t

t While it appears that the first cylinder group could be lsid out with its super-block at the
“known” location, this would not work for file systems with blocks sizes of 16K or greater, because
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3.1. Optimizing storage utilization

Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly increas-
ing file system throughput. As an example, consider a file in the new file system composed of
4098 byte data blocks. In the old file system this file would be composed of 1024 byte blocks.
By increasing the block size, disk accesses in the new file system may transfer up to four times
as much isformation per disk transaction. In large files, several 4096 byte blocks may be allo-
cated from the same cylinder so that even larger data transfers are possible before initiating a
seek.

The main problem with bigger blocks is that most UNIX file systems are composed of many
small files. A uniformly large block size wastes space. Table 1 shows the effect of file system
block size on the amount of wasted space in the file system. The machine measured to obtain
these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line storage.
The measurements are based on the active user file systems containing about 920 megabytes of
formated space.

Table 1: Wasted Space as a function of Block Size

Space used | % waste Organization

775.2 Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Mb 6.9 512 byte block UNIX file system

866.5 Mb 11.8 1024 byte block UNIX file system
948.5 Mb 224 2048 byte block UNIX file system
1128.3 Mb 45.6 4096 byte block UNIX file system

The space wasted is measured as the percentage of space on the disk not containing user data.
As the block size on the disk increases, the waste rises quickly, to an intolerable 45.6% waste
with 4096 byte file system blocks.

To be able to use large blocks without undue waste, small files must be stored in a more
efficient way. The new file system accomplishes this goal by allowing the division of a single file
system block into one or more fragments. The file system fragment size is specified at the time
that the file system is created; each file system block can be optionally broken into 2, 4, or 8
fragments, each of which is addressable. The lower bound on the size of these fragments is con-
strained by the disk sector size, typically 512 bytes. The block map associated with each
cylinder group records the space availability at the fragment level; to determine block availabil-
ity, aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024 file sys-
tem.

of the requirement that the cylinder group information must begin at a block boundary.
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Bits in map XXX XX00 00XX 0000
Fragment numbers 0-3 4-7 811 12-15
Block numbers 0 1 2 3

Figure 1: Example layout of blocks and fragments in a 4096/1024 file system

Each bit in the map records the status of a fragment; an “X'’ shows that the fragment is in use,
while a “O” shows that the fragment is available for allocation. In this example, fragments 0-5,
10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks
cannot be used as a block, even if they are large enough. In this example, fragments 6-9 cannot
be coalesced into a block; only fragments 12-15 are available for allocation as a block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
represented by zero or more 4098 byte blocks of data, and possibly a single fragmented block.
If a file system block must be fragmented to obtain space for a small amount of data, the
remainder of the block is made available for allocation to other files. As an example consider an
11000 byte file stored on a 4096/1024 byte file system. This file would uses two full size blocks
and a 3072 byte fragment. If no 3072 byte fragments are available at the time the file is
created, a full size block is split yielding the necessary 3072 byte fragment and an unused 1024
byte fragment. This remaining fragment can be allocated to another file as needed.

The granularity of allocation is the write system call. Each time data is written to a file, the
system checks to see if the size of the file has increased+. If the file needs to hold the new data,
one of three conditions exists:

1) There is enough space left in an already allocated block to hold the new data. The new
data is written into the available space in the block.

2) Nothing has been allocated. If the new data contains more than 4006 bytes, a 4096 byte
block is allocated and the first 4096 bytes of new data is written there. This process is
repeated until less than 4096 bytes of new data remain. If the remaining new data to be
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, other
wise a 4096 byte block is located. The new data is written into the located piece.

3) A fragment has been allocated. If the number of bytes in the new data plus the number of
bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The con-
tents of the fragment is copied to the beginning of the block and the remainder of the block
is filled with the new data. The process then continues as in (2) above. If the number of
bytes in the new data plus the number of bytes already in the fragment will fit in three or
fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096 byte block is
located. The contents of the previous fragment appended with the new data is written into
the allocated piece.

The problem with allowing only a single fragment on a 4096/1024 byte file system is that data
may be potentially copied up to three times as its requirements grow from a 1024 byte fragment
to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block. The frag-
ment reallocation can be avoided if the user program writes a full block at a time, except for a
partial block at the end of the file. Because file systems with different block sizes may coexist
on the same system, the file system interface been extended to provide the ability to determine

» A program may be overwriting data in the middle of an existing file in which case space will al-
ready be allocated.
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the ontimal size for a read or write. For files the optimal size is the block size of the file system
on which the file is being accessed. For other objects, such as pipes and sockets, the optimal
size is the underlying buffer size. This feature is used by the Standard Input/Output Library, a
package used by most user programs. This feature is also used by certain system utilities such
as archivers and loaders that do their own input and output management and need the highest
possible file system bandwidth.

The space overhead in the 4096/1024 byte new file system organization is empirically observed
to be about the same as in the 1024 byte old file system organization. A file system with 4098
byte blocks and 512 byte fragments has about the same amount of space overhead as the 512
byte block UNIX file system. The new file system is more space efficient than the 512 byte or
1024 byte file systems in that it uses the same amount of space for small files while requiring
less indexing information for large files. This savings is offset by the need to use more space for
keeping track of available free blocks. The net result is about the same disk utilization when
the new file systems fragment size equals the old file systems block size.

In order for the layout policies to be effective, the disk cannot be kept completely full. Each file
system maintains a parameter that gives the minimum acceptable percentage of file system
blocks that can be free. If the the number of free blocks drops below this level only the system
administrator can continue to allocate blocks. The value of this parameter can be changed at
apy time, even when the file system is mounted and active. The transfer rates to be given in
section 4 were measured on file systems kept less than 90% full. If the reserve of free blocks is
set to zero, the file system throughput rate tends to be cut in half, because of the inability of
the file system to localize the blocks in a file. If the performance is impaired because of
overfilling, it may be restored by removing enough files to obtain 10% free space. Access speed
for files created during periods of little free space can be restored by recreating them once
enough space is available. The amount of free space maintainred must be added to the percen-
tage of waste when comparing the organizations given in Table 1. Thus, a site running the old
1024 byte UNIX file system wastes 11.8% of the space and one could expect to fit the same
amount of data into a 4096/512 byte new file system with §% free space, since a 512 byte old
file system wasted 6.9% of the space.

3.2. File system parameterization

Except for the initial creation of the free list, the old file system ignores the parameters of the
underlying hardware. It has no information about either the physical characteristics of the mass
storage device, or the hardware that interacts with it. A goal of the new file system is to
parameterize the processor capabilities and mass storage characteristics so that blocks can be
allocated in an optimum configuration dependent way. Parameters used include the speed of
the processor, the hardware support for mass storage transfers, and the characteristics of the
mass storage devices. Disk technology is constantly improving and a given installation can have
several different disk technologies runring on a single processor. Each file system is parameter-
ized so that it can adapt to the characteristics of the disk on which it is placed.

For mass storage devices such as disks, the new file system tries to allocate new blocks on the
same cylinder as the previous block in the same file. Optimally, these new blocks will also be
well positioned rotationally. The distance between ‘‘rotationally optimal” blocks varies greatly;
it can be a consecutive block or a rotationally delayed block depending on system characteris-
tics. On a processor with a channel that does not require any processor intervention between
mass storage transfer requests, two consecutive disk blocks often can be accessed without
suffering lost time because of an intervening disk revolution. For processors without such chan-
nels, the main processor must field an interrupt and prepare for a new disk transfer. The
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expected time to service this interrupt and schedule a new disk transfer depends on the speed of
the main processor.

The physical characteristics of each disk include the number of blocks per track and the rate at
which the disk spins. The allocation policy routines use this information to calculate the
pumber of milliseconds required to skip over a block. The characteristics of the processor
include the expected time to schedule an interrupt. Given the previous block allocated to a file,
the allocation routines calculate the number of blocks to skip over so that the next block in a
file will be coming into position under the disk head in the expected amount of time that it
takes to start a nmew disk transfer operation. For programs that sequentially access large
amounts of data, this strategy minimizes the amount of time spent waiting for the disk to posi-
tion itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary infor-
mation includes a count of the availability of blocks at different rotational positions. Eight
rotational positions are distinguished, so the resolution of the summary information is 2 mil-
liseconds for a typical 3600 revolution per minute drive.

The parameter that defines the minimum number of milliseconds between the completion of a
data transfer and the initiation of another data transfer on the same cylinder can be changed at
any time, even when the file system is mounted and active. If a file system is parameterized to
lay out blocks with rotational separation of 2 milliseconds, and the disk pack is then moved to a
system that has a processor requiring 4 milliseconds to schedule a disk operation, the
throughput will drop precipitously because of lost disk revolutions on nearly every block. If the
eventual target machine is known, the file system can be parameterized for it even though it is
initially created on a different processor. Even if the move is not known in advance, the rota-
tional layout delay can be reconfigured after the disk is moved so that all further allocation is
done based on the characteristics of the new host.

3.3. Layout policies

The file system policies are divided into two distinct parts. At the top level are global policies
that use file system wide summary information to make decisions regarding the placement of
new inodes and data blocks. These routines are responsible for deciding the placement of new
directories and files. They also calculate rotationally optimal block layouts, and decide when to
force a long seek to a new cylinder group because there are insufficient blocks left in the current
cylinder group to do reasonable layouts. Below the global policy routines are the local allocation
routines that use a locally optimal scheme to lay out data blocks.

Two methods for improving file system performance are to increase the locality of reference to
minimize seek latency as described by [Trivedi80], and to improve the layout of data to make
larger transfers possible as described by [Nevalainen77]. The global layout policies try to
improve performance by clustering related information. They cannot attempt to localize alt
data references, but must also try to spread unrelated data among different cylinder groups. If
too much localization is attempted, the local cylinder group may run out of space forcing the
data to be scattered to non-local cylinder groups. Taken to an extreme, total localization can
result in a single huge cluster of data resembling the old file system. The global policies try to
balance the two conflicting goals of localizing data that is concurrently accessed while spreading
out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and directories. Files
in a directory are frequently accessed together. For example the ‘‘list directory’™ command often
accesses the inode for each file in a directory. The layout policy tries to place all the files in a
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directory in the same cylinder group. To ensure that files are allocated throughout the disk, a
different policy is used for directory allocation. A new directory is placed in thke cylinder group
that has a greater than average number of free inodes, and the fewest number of directories in
it already. The intent of this policy is to allow the file clustering policy to succeed most of the
time. The allocation of inodes within a cylinder group is done using a next free strategy.
Although this allocates the inodes randomly within a cylinder group, all the inodes for each
cylinder group can be read with 4 to 8 disk transfers. This puts a small and constant upper
bound on the number of disk transfers required to access all the inodes for all the files in a
directory as compared to the old file system where typically, one disk transfer is needed to get
the inode for each file in a directory.

The other major resource is the data blocks. Since data blocks for a file are typically accessed
together, the policy routines try to place all the data blocks for a file in the same cylinder
group, preferably rotationally optimally on the same cylinder. The problem with allocating all
the data blocks in the same cylinder group is that large files will quickly use up available space
in the cylinder group, forcing a spill over to other areas. Using up all the space in a cylinder
group has the added drawback that future allocations for any file in the cylinder group will also
spill to other areas. Ideally none of the cylinder groups should ever become completely full.
The solution devised is to redirect block allocation to a newly chosen cylinder group when a file
exceeds 32 kilobytes, and at every megabyte thereafter. The newly choser cylinder group is
selected from those cylinder groups that have a greater than average number of free blocks left.
Although big files tend to be spread out over the disk, a megabyte of data is typically accessible
before a long seek must be performed, and the cost of one long seek per megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks. The
loeal allocation routines will always allocate the requested bloek if it is free. If the requested
block is not available, the allocator allocates a free block of the requested size that is rotation-
ally closest to the requested block. If the global layout policies had complete information, they
could always request unused blocks and the allocation routines would be reduced to simple
bookkeeping. However, maintaining complete information is costly; thus the implementation of
the global layout policy uses heuristic guesses based on partial information.

If a requested block is not available the local allocator uses a four level allocation strategy:

1} Use the available block rotationally closest to the requested block on the same cylinder.

2} If there are no blocks available on the same cylinder, use a block within the same cylinder
group. '

3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups looking
for a free block.

4) Finally if the rehash fails, apply an exhaustive search.

The use of quadratic rehash is prompted by studies of symbol table strategies used in program-
ming languages. File systems that are parameterized to maintain at least 10% free space almost
never use this strategy; file systems that are run without maintaining any free space typically
have so few free blocks that almost any allocation is random. Consequently the most important
characteristic of the strategy used when the file system is low on space is that it be fast.

4, Performance

Ultimately, the proof of the eflectiveness of the algorithms dacnbed in the previous section is
the long term performance of the new file system.
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Our empiric studies have shown that the inode layout policy has been effective. When running
the “list directory” command on a large directory that itself contains many directories, the
number of disk accesses for inodes is cut by a factor of two. The improvements are even more
dramatic for large directories containing only files, disk accesses for inodes being cut by a factor
of eight. This is most encouraging for programs such as spooling dacmons that access many
small files, since these programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughput of the new file system. Several comments need to
be made about the conditions under which these tests were run. The test programs measure the
rate that user programs can transfer data to or from a file without performing any processing
on it. These programs must write enough data to ensure that buffering in the operating system
does not affect the results. They should also be run at least three times in succession; the first
to get the system into a known state and the second two to ensure that the experiment has sta-
bilized and is repeatable. The methodology and test results are discussed in detail in [Kri-
dle83]t. The systems were running multi-user but were otherwise quiescent. There was no con-
tention for either the cpu or the disk arm. The only difference between the UNIBUS and
MASSBUS tests was the controller. All tests used an Ampex Capricorn 330 Megabyte Winches-
ter disk. As Table 2 shows, all file system test runs were on a VAX 11/750. All file systems
had been in production use for at least a month before being measured. :

Table 2: Reading Rates of the Old and New UNIX File Systems

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
W
old 1024 750/UNIBUS | 20 Kbytes/sec  29/1100 3% 11%
new 4096/1024  750/UNIBUS | 221 Kbytes/sec  221/1100 20% 43%
new 8192/1024  750/UNIBUS | 233 Kbytes/sec 233/1100 21%  20%
new 4096/1024 750/MASSBUS | 460 Kbytes/sec  466/1200 39% 73%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec  466/1200 39% 54%
Table 3: Writing rates of the old and new UNIX file systems
Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
_———— e}
old 1024 750/UNIBUS | 48 Kbytes/sec 48/1100 4% 20%
new 4096/1024  750/UNIBUS | 142 Kbytes/sec 142/1100 13%  43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec  215/1100 19% 46%
new 4096/1024 750/MASSBUS | 323 Kbytes/sec  323/1200 27% 94%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec ~ 466/1200 39%  95%

Unlike the old file system, the transfer rates for the new file system do not appear to change
over time. The throughput rate is tied much more strongly to the amount of free space that is

tA command that is similar to the reading test that we used is, “cp file /dev/null”, where
“file” is eight Megabytes long.
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maintained. The measurements in Table 2 were based on a file system run with 10% free space.
Synthetic work loads suggest the performance deteriorates to about half the throughput rates
given in Table 2 when no free space is maintained.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of the
disk by the file system. An upper bound on the transfer rate from the disk is measured by
doing 65536+ byte reads from contiguous tracks on the disk. The bandwidth is calculated by
comparing the data rates the file system is able to achieve as a percentage of this rate. Using
this metric, the old file system is only able to use about 3-4% of the disk bandwidth, while the
new file system uses up to 39% of the bandwidth.

In the new file system, the reading rate is always at least as fast as the writing rate. This is to
be expected since the kernel must do more work when allocating blocks than when simply read-
ing them. Note that the write rates are about the same as the read rates in the 8192 byte block
file system; the write rates are slower than the read rates in the 4096 byte block file system.
The slower write rates occur because the kernel has to do twice as many disk allocations per
second, and the processor is unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This is
because the write system call is asynchronous and the kernel can generate disk transfer requests
much faster than they can be serviced, hence disk transfers build up in the disk buffer cache.
Because the disk buffer cache is sorted by minimum seek order, the average seek between the
scheduled disk writes is much less than they would be if the data blocks are written out in the
order in which they are generated. However when the file is read, the read system call is pro-
cessed synchronously so the disk blocks must be retrieved from the disk in the order in which
they are allocated. This forces the disk scheduler to do long seeks resulting in a lower
throughput rate.

The performance of the new file system is currently limited by a memory to memory copy
operation because it transfers data from the disk into buffers in the kernel address space and
then spends 40% of the processor cycles copying these buffers to user address space. If the
buffers in both address spaces are properly aligned, this transfer can be affected without copying
by using the VAX virtual memory management hardware. This is especially desirable when
large amounts of data are to be transferred. We did not implement this because it would
change the semantics of the file system in two major ways; user programs would be required to
allocate buffers on page boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain together ker-
nel buffers. This would allow files to be allocated to contiguous disk blocks that could be read
in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track. The
inability to use contiguous disk blocks effectively limits the performance on these disks to less
than fifty percent of the available bandwidth. Since each track has a multiple of sixteen sectors
it holds exactly two or three 8192 byte file system blocks, or four or six 4098 byte file system
blocks. If the the next block for a file cannot be laid out contiguously, then the minimum spac-
ing to the next allocatable block on any platter is between a sixth and a half a revolution. The
implication of this is that the best possible layout without contiguous blocks uses only half of
the bandwidth of any given track. If each track contains an odd number of sectors, then it is
possible to resolve the rotational delay to any number of sectors by finding a block that begins
at the desired rotational position on another track. The reason that block chaining has not
been implemented is because it would require rewriting all the disk drivers in the system, and

¢ This number, 65538, is the maximal }/O size supported by the VAX hardware; it is » remnant of
the system’s PDP-11 ancestry. )
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the current throughput rates are already limited by the speed of the available processors.

Currently only one block is allocated to a file at a time. A technique used by the DEMOS file
system when it finds that a file is growing rapidly, is to preallocate several blocks at once,
releasing them when the file is closed if they remain unused. By batching up the allocation the
system can reduce the overhead of allocating at each write, and it can cut down on the number
of disk writes needed to keep the block pointers on the disk synchroaized with the block alloca-
tion [Powell79].

5. File system functional enhancements

The speed enhancements to the UNIX file system did not require any changes to the semantics
or data structures viewed by the users. However several changes have been generally desired for
some time but have not been introduced because they would require users to dump and restore
all their file systems. Since the new file system already requires that all existing file systems be
dumped and restored, these functional enhancements have been introduced at this time.

5.1. Long file names

File names can now be of nearly arbitrary length. The only user programs affected by this
change are those that access directories. To maintain portability among UNIX systems that are
not running the new file system, a set of directory access routines have been introduced that
provide a uniform interface to directories on both old and new systems.

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation can be
transferred to disk in a single atomic operation. Each allocation unit contains variable-length
directory entries. Each entry is wholly contained in a single allocation unit. The first three
fields of a directory entry are fixed and contain an inode number, the length of the entry, and
the length of the name contained in the entry. Following this fixed size information is the null
terminated name, padded to a 4 byte boundary. The maximum length of a name in a directory
is currently 255 characters.

Free space in a directory is held by entries that have a record length that exceeds the space
required by the directory entry itself. All the bytes in a directory unit are claimed by the direc-
tory entries. This normally results in the last entry in a directory being large. When entries are
deleted from a directory, the space is returned to the previous entry in the same directory unit
by increasing its length. If the first entry of a directory unit is free, then its inode number is set
to zero to show that it is unallocated.

65.2. File locking

The old file system had no provision for locking files. Processes that needed to synchronize the
updates of a file had to create a separate “lock™ file to synchronize their updates. A process
would try to create a ‘“lock” file. If the creation succeeded, then it could proceed with its
update; if the creation failed, then it would wait, and try again. This mechanism had three
drawbacks. Processes consumed CPU time, by looping over attempts to create locks. Locks
were left lying around following system crashes and had to be cleaned up by hand. Finally,
processes running as system administrator are always permitted to create files, so they had to
use a different mechanism. While it is possible to get around all these problems, the solutions
are not straight-forward, so a mechanism for locking files has been added.
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The ciost general schemes allow processes to concurrently update a file. Several of these tech-
niques are discussed in [Peterson83]. A simpler technique is to simply serialize access with locks.
To attain reasonable efficiency, certain applications require the ability to lock pieces of a file.
Locking down to the byte level has been implemented in the Onyx file system by [Bass8l).
However, for the applications that currently run on the system, a mechanism that locks at the
granularity of a file is sufficient.

Lockmg schemes fall into two classes, those using hard locks and those using advisory locks.
The primary difference between advisory locks and hard locks is the decision of when to over-
ride them. A hard lock is always enforced whenever a program tries to access a file; an advisory
lock is only applied when it is requested by a program. Thus advisory locks are only eflective
when all programs accessing a file use the locking scheme. With hard locks there must be some
override policy implemented in the kernel, with advisory locks the policy is implemented by the
user programs. In the UNIX system, programs with system administrator privilege can override
any protection scheme. Because many of the programs that need to use locks run as system
administrators, we chose to implement advisory locks rather than create a protection scheme
that was contrary to the UNIX philosophy or could not be used by system administration pro-
grams.

The file locking facilities allow cooperating programs to apply advisory shared or ezclusive locks
on files. Only one process has an exclusive lock on a file while multiple shared locks may be
present. Both shared and exclusive locks cannot be present on a file at the same time. If any
lock is requested when another process holds an exclusive lock, or an exclusive lock is requested
when another process holds any lock, the open will block until the lock can be gained. Because
shared and exclusive locks are advisory only, even if a process has obtained a lock on a file,
another process can override the lock by opening the same file without a lock.

Locks can be applied or removed on open files, so that locks can be manipulated without need-
ing to close and reopen the file. This is useful, for example, when a process wishes to open a file
with a shared lock to read some information, to determine whether an apdate is required. It
can then get an exclusive lock so that it can do a read, modify, and write to update the file in a
consistent manner.

A request for a lock will cause the process to block if the lock can not be immediately obtained.
In certain instances this is unsatisfactory. For example, a process that wants only to check if a
lock is present would require a separate mechanism to find out this information. Consequently,
a process may specify that its locking request should return with an error if a lock can not be
immediately obtained. Being able to poll for a lock is useful to “‘daemon” processes that wish to
service a spooling area. If the first instance of the daemon locks the directory where spooling
takes place, later daemon processes can easily check to see if an active daemon exists. Since the
lock is removed when the process exits or the system crashes, there is no problem with uninten-
tioral locks files that must be cleared by hand.

Almost no deadlock detection is attempted. The only deadlock detection made by the system is
that the file descriptor to which a lock is applied does not currently have a lock of the same
type (i.e. the second of two successive calls to apply a lock of the same type will fail). Thus a
process can deadlock itself by requesting locks on two separate file descriptors for the same
object.
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5.3. Symbolic links

The 512 byte UNIX file system allows multiple directory entries in the same file system to refer-
ence a single file. The link concept is fundamental; files do not live in directories, but exist
separately and are referenced by links. When all the links are removed, the file is deallocated.
This style of links does not allow references across physical file systems, nor does it support
inter-machine linkage. To avoid these limitations symbolic links have been added similar to the
scheme used by Multics [Feiertag71].

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the contents of the
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield the
resulting pathname, If the symbolic link contains an absolute pathname, the absolute path-
name is used, otherwise the contents of the symbolic link is evaluated relative to the location of
the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname that
they are using. However certain system utilities must be able to detect and manipulate sym-
bolic links. Three new system calls provide the ability to detect, read, and write symbolic links,
and seven system utilities were modified to use these calls.

In future Berkeley software distributions it will be possible to mount file systems from other
machines within a local file system. When this occurs, it will be possible to create symbolic
links that span machines.

5.4. Rename

Programs that create new versions of data files typically create the new version as a temporary
file and then rename the temporary file with the original name of the data file. In the old UNIX
file systems the renaming required three calls to the system. If the program were interrupted or
the system crashed between these calls, the data file could be left with only its temporary name.
To eliminate this possibility a single system call has been added that performs the rename in an
atomic fashion to guarantee the existence of the original name.

In addition, the rename facility allows directories to be moved around in the directory tree
hierarchy. The rename system call performs special validation checks to ensure that the direc-
tory tree structure is not corrupted by the creation of loops or inaccessible directories. Such
corruption would occur if a parent directory were moved into one of its descendants. The vali-
dation check requires tracing the ancestry of the target directory to ensure that it does not
include the directory being moved.

5.5. Quotas

The UNIX system has traditionally attempted to share all available resources to the greatest
extent possible. Thus any single user can allocate all the available space in the file system. In
certain environments this is unacceptable. Consequently, a quota mechanism has been added
for restricting the amount of file system resources that a user can obtain. The quota mechanism
sets limits on both the number of files and the number of disk blocks that a user may allocate.
A separate quota can be set for each user on each file system. Each resource is given both a
hard and a soft limit. When a program exceeds a soft limit, a warning is printed on the users
terminal; the offending program is not terminated unless it exceeds its bard limit. The idea is
that users should stay below their soft limit between login sessions, but they may use more
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space while they are actively working. To encourage this behavior, users are warned when log-
ging in if they are over any of their soft limits. If they fail to correct the problem for too many
login sessions, they are eventually reprimanded by having their soft limit enforced as their hard
limit. .

8. Software engineering

The preliminary design was done by Bill Joy in late 1980; he presented the design at The
USENIX Conference held in San Francisco in January 1981, The implementation of his design
was done by Kirk McKusick in the summer of 1981. Most of the new system calls were imple-
mented by Sam Leffler. The code for enforcing quotas was implemented by Robert Elz at the
University of Melbourne.

To understand how the project was done it is necessary to understand the interfaces that the
UNIX system provides to the hardware mass storage systems. At the lowest level is a raw disk.
This interface provides access to the disk as a linear array of sectors. Normally this interface is
only used by programs that need to do disk to disk copies or that wish to dump file systems.
However, user programs with proper access rights can also access this interface. A disk is usu-
ally formated with a file system that is interpreted by the UNIX system to provide a directory
hierarchy and files. The UNIX system interprets and multiplexes requests from user programs
to create, read, write, and delete files by allocating and freeing irodes and data blocks. The
interpretation of the data on the disk could be done by the user programs themselves. The rea-
son that it is done by the UNIX system is to synchronize the user requests, so that two
processes do not attempt to allocate or modify the same resource simultaneously. 1t also allows
access to be restricted at the file level rather than at the disk level and allows the common file
system routines to be shared between processes.

The implementation of the new file system amounted to using a different scheme for formating
and interpreting the disk. Since the synchronization and disk access routines themselves were
not being changed, the changes to the file system could be developed by moving the file system
interpretation routines out of the kernel and into a user program. Thus, the first step was to
extract the file system code for the old file system from the UNIX kernel and change its requests
to the disk driver to accesses to a raw disk. This produced a library of routines that mapped
what would normally be system calls into read or write operations on the raw disk. This library
was then debugged by linking it into the system utilities that copy, remove, archive, and restore
files.

A new cross file system utility was written that copied files from the simulated file system to the
one implemented by the kernel. This was accomplished by calling the simulation library to do a
read, and then writing the resultant data by using the conventional write system call. A similar
utility copied data from the kernel to the simulated file system by doing a conventional read
system call and then writing the resultant data using the simulated file system library.

The second step was to rewrite the file system simulation library to interpret the new file sys-
tem. By linking the new simulation library into the cross file system copying utility, it was pos-
sible to easily copy files from the old file system into the new one and from the new one to the
old one. Having the file system interpretation implemented in user code had several major
benefits. These included being able to use the standard system tools such as the debuggers to
set breakpoints and single step through the code. When bugs were discovered, the offending
problem could be fixed and tested without the need to reboot the machine. There was never a
period where it was necessary to maintain two concurrent file systems in the kernel. Finally it
was not necessary to dedicate a machine entirely to file system development, except for a brief
period while the new file system was boot strapped.
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The final step was to merge the new file system back into the UNIX kernel. This was done in
less than two weeks, since the only bugs remaining were those that involved interfacing to the
synchronization routines that could not be tested in the simulated system. Again the simulation
system proved useful since it enabled files to be easily copied between old and new file systems
regardless of which file system was running in the kernel. This greatly reduced the number of
times that the system had to be rebooted.

The total design and debug time took about one man year. Most of the work was done on the
file system utilities, and changing all the user programs to use the new facilities. The code
changes in the kernel were minor, involving the addition of only about 200 lines of code.
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The CPU PROM Monitor Commands

The central processor board (CPU) of the Sun Workstation has a set of ROM’s containing a
program generally known as the ‘monitor’. The monitor controls the operation of the system
before the UNIX kernel takes control. This document describes the PROM monitor commands.
For information on the startup and boot functions of the monitor, including messages displayed,
see the appendix to the System Manager's System Installation and Maintenance Guide: The Sun
Workstation Monitor.

1. Command Syntax

The command format understood by the monitor is quite simple. It is:
< verb> <apace>+[< srgument>] < return>

<verb> - is always one alphabetic character; case does not matter.
<aspace>* means that any number of spaces is skipped here.
< argument>

is normally a hexadecimal number or a single letter; again, case does not matter.
Square brackets ‘[ ]’ indicate that the argument portion is optional.

<return> means that you should press the carriage-return key.
When typing commands, < backspace>> and < delete>> (also called <rubout>>, generated by the

key labelled <backtab> on the non-VT100 Sun keyboard) erase one character; control-U erases
the entire line.

2. Syntax for Memory and Register Access

Several of the commands open a memory location, map register, or processor register, so that
you can examine and/or modify the contents of the specified location. These commands include
a,d,e,],mo,p,andr.

Each of these commands takes the form of a command letter, possibly followed by a hexade-
cimal memory address or register number, followed by a sequence of zero or more ‘action
specifier’ arguments. The various options are illustrated below, using the e command as an
example. You type the boldface parts, with a RETURN at the end of each command.

If no action specifier arguments are present, the address or register name is displayed along with
its current contents. You may then type a new hexadecimal value, or simply <return> to go
on the next address or register. Typing any non-hex character and RETURN will get you back
to command level. For registers, ‘next’ means within the sequence D0-D7, A0-A8, SS, US, SF,
DF, VB, SC, UC, SR, PC. For example, the following command sets consecutive locations
0x1234 and 0x1236 to the values 0x5678 and 0x0000 respectively:
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> el234

001234: 007F? 5678
001236: 51A41 0
001238: C022! q

>

A non-hex character (such as question mark) on the command line means read-only:

> el000?
001000: 007F

>
Multiple nonhex characters read multiple locations:

> 1000 17
001000: 0O7F
001002: 0064
001004: 1234
>

A hex number on the command line does store-only:

> ¢1000 4587
001000 -> 4567
>

Multiple hex writes multiple locations:

>el000123
001000 -> 0001
001002 -> 0002
001004 -> 0003
>

Nonhex followed by hex reads, then stores.

> e1000 ? 348
001000: 007F -> 0346
>

Finally, reads and writes can be interspersed:

>el000?12734
001000: 0G7F -> 0001
001002: 0064

001004: 1234 -> 0003
001006 -> 0004

>

Spaces are optional except between two consecutive numbers. When actions are specified on the
command line after the address, no further input is taken from the keyboard for that command;
after executing the specified actions, a new command is prompted for. Note that these com-
mands provide the ability to write to a location (such as an 1/O register) without reading from
it; and provide the ability to query a location without having to interact.

9 Revision C of 7 January 1984




Sun System Internals Manual CPU PROM Monitor

3. Command Descriptions

A [n]actions]  Open A-register n (0<n<7, default zero in the address space defined by the
‘S' command). A7 is the System Stack Pointer; to see the User Stack Pointer,
" use the r command. For further explanation, see the section, ‘Syntax for

Memory and Register Access’ above.

B [l){args) Boot. Resets appropriate parts of the system, then bootstraps the system.
This allows bootstrap loading of programs from various devices such as disk,
tape, or Ethernet. Typing ‘b?' lists all possible boot devices. Simply typing
‘b’ gives you a default boot, which is configuration dependent. For an expla-
nation of the booting options, see the sections on ‘Booting,’ in the appendix
to the System Installation and Maintenance Guide in the Sun System
Manager’s Manual.

If the first character of the argument is a ‘{', the system reset is not done, and
the bootstrapped program is not automatically executed. To execute it, use
the ‘C' command described below.

C [addr) Continue a program. The address eddr, if given, is the address at which exe-
"~ cution will begin; default is the current PC. The registers will be restored to
the values shown by the A, D, and R commands.

D [n][actions] Open D-register n (0<n<7, default rero). For a detailed explanation, see the
section, ‘Syntax for Memory and Register Access’ above.

E [addr][actions] Open the word at memory address addr (default zero in the address space
defined by the ‘S’ command); odd addresses are rounded down. For a
detailed explanation, see the section, ‘Syntax for Memory and Register
Access’' above.

G [addr][param] Start the program by executing a subroutine call to the address addr if given,
or else to the current PC. The values of the address and data registers are
undefined; the status register will contain 0x2700. One parameter is passed to
the subroutine on the stack; it is the address of the remainder of the com-
mand line following the last digit of addr (and possible blanks).

K [number] If number is O (or not given), this does a ‘Reset Instruction’: it resets the sys-
tem without affecting main memory or maps. If number is 1, this does a
‘Medium Reset’, which re-initializes most of the system without clearing
memory. If number is 2, a hard reset is done and memory is cleared. This is
equivalent to a power-on reset and causes the PROM-based diagnostics to be
run, which can take ten seconds or so.

L [eddr][actions] Open the longword at memory address addr (default zero in the address space
defined by the ‘S’ command); odd addresses are rounded down. For a
detailed explanation, see the section, ‘Syntax for Memory and Register
Access’ above.

M [addr] [actions]

Opens the Segment Map entry which maps virtual address addr (default zero)
in the current context. The choice of supervisor or user context is determined
by the ‘S’ command setting (03 == user; 4-7 = supervisor). See the section,
‘Syntax for Memory and Register Access’ above.

O [addr][actions] Opens the byte location specified (default zero in the address space defined by
the ‘S’ command). See the section, ‘Syntax for Memory and Register Access’
above. The byte versus word distinction can be a problem on the Multibus,
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since some Multibus boards follow the 8086 convention for byte ordering
within words, which is the reverse of the 68000 convention.

P [addr] [actions] Opens the Page Map entry which maps virtual address addr (default zero) in

R [actions]

S [number]

U [arg]

the current context. The choice of supervisor or user context is determined
by the ‘S’ command setting (03 == user; 4-7 == supervisor). With each page
map entry, the relevant segment map entry is displayed in brackets. See the
section, ‘Syntax for Memory and Register Access’ above.
Opens the miscellaneous registers (in order): SS (Supervisor Stack Pointer),
US (User Stack Pointer), SF (Source Function Code), DF (Destination Func-
tion Code), VB (Vector Base), SC (Systern Context), UC (User Context), SR
(Status Register), and PC {Program Counter). Alterations made to these
registers (except SC and VC) do not take effect until the next ‘C’ command.
For further explanation, see the section, ‘Syntax for Memory and Register
Access’ above.
Sets or queries the address space to be used by subsequent memory access
commands. number is the function code to be used, ranging from 1 to 7.
Useful values are 1 (user data), 2 (user program), 3 (memory maps), 5 (super-
visor data), 8 (supervisor program). If no number is supplied, the current set-
ting is printed.
The U command manipulates the on-board UARTS (serial ports) and switches
the current input or output device. The argument may have the following
values (‘{ab}’ means that either ‘a’ or ‘b’ is specified):

{ab} Select UART a (or b) as input and output device

{ab}io Select UART a (or b) as input and output device

{ab}i  Select UART a (or b) for input only

{ab}o Select UART a (or b) for output only

k Select keyboard for input

ki Select keyboard for input
s Select screen for output
80 Select screen for output

ks, sk Select keyboard for input and screen for output

{ab}# Set speed of UART a (or b) to # (such as 1200, 9600, ...}

u addr Set virtual UART address
If no argument is specified, the U command reports the current values of the
settings. If no UART is specified when changing speeds, the ‘current’ input
device is changed.
At power-up, the following default settings are used: The default conmsole
input device is the Sun keyboard or, if the keyboard is unavailable, UART a.
The default console output device is the Sun screen or, if the graphics board
is unavailable, UART a. All serial ports are set to 9600 baud.
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