
0

-0

0

Part Number 800-1122-01
Revision: A or 7 January l':184

For: Sun System Release 1.1

SunWindows Programmer's Guide

An Introduction to

the Sun Window System

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View
California 94043
(415) 960-1300

Abstract

The Sun Window, Programmer'• Guide is a tutorial supplement to the Programmer', Reference
Manual for Sun Window,.

Trademarks

Sun Workstation, SunWindows, SunCore and the combination
or Sun with a numeric suffix

i.re trademarks or Sun Microsystems, Inc.
Sun Microsytems and Sun Workstation are registered trademarks or

Sun Microsystems, Inc.
UNIX, UNIX/32V, UNIX System III, and UNIX

System V are trademarks or Bell Laboratories.

Copyright © 1984 by Sun Micl'Qsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part or
this publication may he reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

- ii -

0

0

0

0

Revision History

Rev Date Comment•

A 7 January 1984 First releaae of this programmer's guide.

0

- iii -

0

0

~~~--·--· -



0 
Table of Contents 

Chapter 1 A!l l!ltroductio!l to Wi!ldows ........................................................................... 1-1 

Chapter I Su!lWi!ldows lmpleme!ltatio!l Overview ................................................... 2-1 

Chapter I Applicatio!ls - Tools ud Canvas Programs ........................................ 3-1 

Ohapltr 4 Writi!lg a Sim pie Tool ........ ................................................................................. 4-1 

Chapter a Writi!lg a Simple Ca!lVU Program .............................................................. 6-1 

Chapter 0 Writi!lg a More Sophisticated Tool .............................. ,............................... tl-1 

Chapter 7 Writi!lg a More Sophisticated Canvas Program................................... 7-1 

Additional Topics ................................................................................................... 8-1 

Appendix A Gloseaey ................................................................................................ ' .................... A-1 
0 Chapter I 

Appendix B Bibliography ........................................................................................................... B-1 

0 
-v-



0 



0 
Table of Contents 

Preface ........................................................................................................................................................ xv 

Chapter 1 An Introduction to Windows ........................................................................... 1-1 
1.1. The What and Why of a Window System ......................................................... 1-1 
1.2. What is SunWindows! .................................................................................................... 1-3 

Chapter 2 SunWindows Implementation Overview ................................................... 2-1 
2.1. Architectural Principles.................................................................................................. 2-1 
2.2. Layers or Implementation ............................................................................................. 2-2 

2.2.1. Suntool Layer ............................................................................................................ 2-3 
2.2.2. Sunwindow Layer.................................................................................................... 2-5 
2.2.3. Pixrect Layer ............................................................................................................. 2-8 

2.3. Choosing the Appropriate Layer .............................................................................. 2-9 

0 Chapter 3 Applications - Tools and Canvas Programs ........................................ 3-1 
3.1; Applications Concepts ......... :........................................................................................... 3-1 
3.2. What is a Tool! ................................................................................................................... 3-2 

3.2.1. Designing a Tool ...................................................................................................... 3-2 
3.2.2. Flow or Control in a Tool .................................................................................. 3-3 
3.2.3. Sample Tools .............................................................................................................. 3-3 

8.3. Canvas Programs ............................................................................................................... 3-4 
3.3.1. The Graphics Subwindow .................................................................................. 3-4 
3.3.2. Sample Canvas Programs ................................................................................... 3-5 

3.4. Non-interactive Utility Programs ............................................................................. 3-5 
3.4.1. Sample Non-interactive Utility Program .................................................. 3-5 

3.5. Review ...................................................................................................................................... 3-5 

Chapter , Writing a Simple Tool ......................................................................................... '91 
4.1. The g/ztool Code ................................................................................................................. 4-2 
4.2. Include Files .......................................................................................................................... 4-4 
4.3. Defining Global Data ....................................................................................................... 4-4 
4.4. Declaring the Local Variables ..................................................................................... 4-5 
4.5. Creating the Tool Object .............................................................................................. 4-5 
4.6. Creating Subwindow Objects ..................................................................................... 4-6 
4.7. Installing the Tool ............................................................................................................. 4-7 
4.8. Client Code............................................................................................................................ 4-7 

0 
- vii-



4.9. Notification Loop ............................................................................................................... 4-8 
4.10. Cleanup ................................................................................................................................. 4-8 
4.11. Review.................................................................................................................................... 4-9 0 

Chapter S Writing a Simple Canvas Program .............................................................. S-1 
5.1. The canvaaftaah Code ...................................................................................................... 5-2 
5.2. External Declarations ...................................................................................................... 5-3 
6 .3. Initialization .......................................................................................................................... 5-4 
6.4. Display Loop ......................................................................................................................... 5-6 
5.6. Cleanup .................................................................................................................................... 5-6 
5.6. Review ...................................................................................................................................... 5-6 

Chapter 8 Writing a More Sophisticated Tool .............................................................. 8-1 
6.1. Overview or the Mouse Tool Processing .............................................................. 6-2 
6.2. The mouaetool Code ......................................................................................................... 6-2 
6.3. External Declarations...................................................................................................... 6-7 
6.4. Global Data Definitions .................................................................................................. 6-8 

6.4.1. Tool- and Sunwindow!I-Specific Data .......................................................... 6-8 
6.4.2. Other Global Data .................................................................................................. 6-9 

6.5. Main Procedure ................................................................................................................... 6-10 
6.6. Initializing the Mouse Tool .......................................................................................... 6-10 

6.6.1. Creating the Mouse Tool .................................................................................... 6-10 
6.6.2. Creating and Initializing the Message Subwindow ............................. 6-11 
6.6.3. Creating and Initializing the Option Subwindow ................................ 6-12 
6.6.4. Creating and Initializing the Range Subwindow ................................. 6-13 0 
6.6.5. Remaining Initialization and Utilities ......................................................... 6-15 

6.7. Normal Tool Processing ................................................................................................. 6-15 
6.7.1. Responding to Damage to the Range Subwindow .............................. 6-16 
6.7.2. Notification from the Option Subwindow ................................................ 6-17 
6.7.3. Responding to User Inputs in the Target Range ................................. 6-19 

6.8. Terminating the Tool ...................................................................................................... 6-22 

• Chapter 't Writing a More Sophisticated Canvas Program ................................... 7-1 
7 .1. The canvaainput Code ..................................................................................................... 7-2 
7.2. External Declarations...................................................................................................... 7-4 
7 .3. Defining the Menu ............................................................................................................. 7-4 
7 .4. Initialization .......................................................................................................................... 7-5 
7.5. Notification Manager....................................................................................................... 7-6 
7.6. Handling Notifications .................................................................................................... 7-6 
7.7. Termination and Cleanup............................................................................................. 7-7 
7.8. Review ...................................................................................................................................... 7-8 

Chapter 8 Additional Topics ................................................................................................... 8-1 
8.1. Implementing-a Subwindow Package .................................................................... 8-1 

8.1.1. Facilities Provided By All Subwindows ..................................................... 8-1 

0 
- viii -



8.1.1.1. Initialization..................................................................................................... 8-2 

0 8.1.1.2. Notification of Events ................................................................................ 8-2 
8.1.1.3. Handling Changes in Windows............................................................. 8-2 
8.1.1.4. Releasing Window and Deallocate Resources .............................. 8-3 
8.1.1.5. Creating Tool Subwindow Structure ................................................ 8-3 

8.1.2. Subwindow Packages and createtool,ubwintlow .................................... 8-3 
8.1.3. Instance Data ............................................................................................................. 8-4 
8.1.4. Handing Over Control of Input ...................................................................... 8-4 

8.2. Initialize and Terminate a Window Environment - auntool, ............... 8-4 

Appendix A Glossary .................................................................................................................... A-1 

Appendix B Bibliography ........................................................................................................... B-1 

0 

0 
- ix -



0 

0. 

O· I 



0 
List of Figures 

Figure l•l Sample Window Display........................................................................................ l·l 
Figure 1•2 Clock Tool and Icon................................................................................................. 1·3 
Figure 1·3 SunWindows Tool Window ................................................................................. 1-3 
Figure 1·4 Sample SunWindows Screen Display ............................................................. 1·4 
Figure 1·5 Pop-up Menus .............................................................................................................. 1-5 
Figure l·-' Adding Another Shell Tool .................................................................................. 1-5 
Figure 2·1 Sun Windows Layers................................................................................................. 2-2 
Figure 2·2 Standard Tool Window and a Default Icon ............................................... 2-4 
Figure 2·3 System Subwindow Types .................................................................................... 2·6 
Figure 2-4 Window. Tree ................................................................................................................ 2·6 
Figure 2·6 Damage ............................................................................................................................ 2-7 
Figure 4-1 G/:itool Running 1phere1demo ............................................................................ 4-1 
Figure 5-1 eonvo1Jla1h Output ................................................................................................... 5-1 
Figure ~2 . Inverted conv11/la1h Output ............................................................................... 5-1 
Figure 8-1 mouietool Output ...................................................................................................... 6-1 

0 
Figure 8-2 Default Tool Icon ....................................................................................................... 6-10 
Figure 7·1 canva,input Output .................................................................................................. 7-1 

0 
- xiii -



0 

0 



0 

0 

0 

Preface 

Welcome to SunWindows, the Sun window system. This Sun Window, Programmer', Guide pro­
vides a tutorial introduction to the overall Sun Windows structure, to writing a tool, and to han­
dling graphics applications in a window. It also points you to additional information in the 
Programmer', Reference Manual for Sun Window,. 

Who Should Read tbia Guide 

This guide is intended for the programmer who wants tutorial instructions on how to write an 
application program using the SunWindows facilities. We assume a working understanding of 
UNIX, 1/0 concepts, and the C programming language and some knowledge of signals. We also 
assume that you are using a Sun workstation with a mouse so you can experiment with the 
examples. 

How to Use thla Gulde 

We recommend that you sit down at your workstation with this guide and try the examples as 
you read about them. Be sure to read the explanations in the order presented so you under­
stand the terminoiogy and basic concepts that we build on in subsequent chapters. 
At times we provide rather sketchy descriptions to give you the general idea, but not the 
details. When you are ready to study the details of the window system, refer to the 
Programmer', Reference Manual /or Sun Window,. You may want to glance through it and 
return to the appropriate chapters as the need arises. Use the index to find detailed accounts of 
item glossed over in this guide. There are examples of window system application code in the 
appendices of the reference manual that you may also want to use. 

For an elementl introdw,tion to the general use of the mouse, the SunWindows pop-up 
menus, and the acilities provided with SunWindows, see the Beginner'• Guide to the Sun 
Work,tation and t e ,unlool:(l) entry in the U,er'• Manual/or the Sun Workatation. 

Guide Contents 

This guide contains the following: 

-xv-



Chapter 1 - An Introduction to Window, - describes what a window system is and what it is 
good for from the user's perspective; provides definitions of concepts and terms; and presents f\ 
the Sun Windows features. Novices should start here. U 
Chapter 2 - Sun Window, Implementation Overview - describes the layers and basic concepts 
of Sun Windows from the programmer's perspective. 
Chapter 3 - Application, - Tool, and Canva, Program, - differentiates between types of 
Sun Windows programs; discusses high-live! implementation approaches; and describes existing 
SunWindows programs. 
Chapter 4 - Writing a Simple Tool - provides an in-depth explanation of how to write a sim­
ple tool. 
Chapter 5 - Writing a Simple Canva, Program - details how to write a simple graphics appli­
cation for SunWindows. 
Chapter 6 - Writing a More Saphiaticated Tool - provides a detailed explanation of a more 
complex tool. 

Chapter 7 - Writing a More Sophi1ticated Canva, Program - details how to write a more com­
plex canvas program that receives input. 
Chapter 8 - Additional Topic, - explains how to implement a subwindow package and 
describes the 1untool1 program that initializes and terminates a window environment. 
Appendix A ~ Glo11ar11- provides definitions of terms used in this manual. 

Appendix B - Bibliograph11- an annotated list of references for additional reading on window 
systems and graphics applications. 
lndez - a quick reference to terms and code. 
Nate: The code examples show the proper case of letters for the names of macros, procedures, () 
arguments, flags, and so on. In the text surrounding the code examples, the first letter in a sen- ~ 
tence is capitalized as a courtesy to English, although the word may not then be technically 
correct. 

0 
- xvi -



0 

0 

0 

Chapter 1 

An Introduction to Windows 

This chapter introduces you to window systems in general and to SunWindows in particular. It 
looks at what a window system is and describes the benefits of using windows from a user's 
point of view. Ir you are already familiar with a window system, skip the first section and read 
the second on what distinguishes the Sun Windows system. 

1,1, The What and Why of a Window System 

A user or a window system views his environment through a collection or several rectangular 
display window,, each of which can correspond to a different task or context. A window system 
minimizes the context that· the user must remember; it remembers the state of the user's par­
tially completed tasks while the user is working on a different task. He manipulates the win­
dows and their contents by a combination or keyboard inputs and pointing operations. The 
technique of using different windows for different tasks makes it easy to manage several simul­
taneous tasks and contexts., such as defining programs, testing programs, editing, asking the 
system for assistance, sending and receiving electronic mail, and switching back and forth 
between these tasks at his convenience. 

A window system divides the area available on the disph<y screen into multiple regions, usually 
rectangles. Each region provides a window through which the user and the computer interact. 
At any time the user can change the size of a window, allotting more or the display space to 
those windows currently containing interesting information, while ignoring the other uninterest­
ing windows. Some window systems support tiling; a window fits into the available screen real 
estate so all windows are visible at once. Other systems support overlapping window,; windows 
can overlap one another, in the same way that pieces of paper can overlap one another. In this 
case, windows that are underneath can be brought to the top or the stack and vice versa. Over­
lapping windows increase the user's effective working space, and contribute to the notion that 
the user is working on an electronic desk top. The user interacts with the window manager of a 
window system to move, change the size of, and modify the overlap or a window. 

Revision ,S of 7 January 1984 1-1 



An Introduction to Windows SunWindows Programmer's Gu,~• 

The figure below shows a sample window display. 

'. 

, Y c us, sun,oo 
rtlvS la 

dJac•nt•crHne fc••-
ounc~d•- ahtaol 
onvnrluh ght.,.,1 • ...., 
onv .. lnp~t ghtaol .old 
locUool glollofra•• 
,a lco11tool 
otool J.,.o ... 

1 .. d .. tdthfonta k<Jpton 
rk1vS I 

!.~::~~i" ~ ,... .. _.,. 
old_oyo 
opt lontool 
por,u<>0l 
potf..., 
ol>alltoal 

• Sun lllcroay•to-. Inc . . , .. - - ....... .... ,.,a_ .. , .. ~ ..... 
" 

•""lltool.n­
ohelltool.old 
opltorodo-

out1toolo 
toolplocu 

Shooll Tool: #, o I NO Tuo ,., ! 1S:H I'll~ "lhlo 1- tit• fitet ••HII'" pct>D••• uo n 2 •• Tuo Apr S IS:IS 121'21! ·-tbot ••ooge• 
a•• 1 ... Apr a 1~:1s unv:z ·tut .... ,. about ..,............, • . , 

tm:l""" (oy,llt,pM.h) 
1ncl...S. (ot9"ol.lt) 
<ncluds (pt,r,oct/pturct,h) 
lnclUff {pbrocl/phfoM.h> 

:~~::::: ~:::~=~~~!~\;~> 
lm:ludo <o.....,todoWroct,h) 
tm:!Uff (oum,tndow/coctlht.h> 
ln<ludo <, ...... tndo.,/c-.h> 
Include (o.,....tndo,ofphwtn.h) 
lncluclo (o..,,tool/tcon.h) 
includv (ountoollt<>Dl.h) 
1ncl.,.!e (ountool/np•,h> 

Figure 1-1: Sample Window Display 

The figure shows that the user is reading his mail is one window, editing a file in another, and 
listing the files in a directory in a third. Output in a particular application's window can be 
tailored so it clearly coincides with the application and controls the user input. The user can 
collect all the information specific to an application in a single window, so each window 
corresponds to a different t&ak. 
With multiple windows the user can work on multiple tasks concurrently as the figure shows. 
Each task has a visual representation on the display. To stop working on one task and start 
working on another task, all the user need do is move his attention from one window to another 
by pointing at that window with the point\'ng device. All of the context of the other tasks is 
preserved in their windows. Moreover, whi e interacting with the user on the second task via 
the second window, the computer can be processing the first t~k in the background. Thus, the 
user can interact simultaneously with multiple processes. 
Most window systems provicle some form of interaction via menu input. A menu is a list of 
commands and/or parameters displayed to the user in a window. When the user chooses an 
item in the menu, the system starts an operation or changes its internal state. For instance, the 
figure also shows a simple menu with four items. A menu can be permanent, in the sense that 
it is always displayed, or i~ can he temporary, only appearing in response to a specific user input 
and disappearing when thl user is finished with it. Menus present lists of options from which 
the user can choose. In·atldition, menu items can usually be chosen without having to use the 
standard typing keys, thereby permitting these keys to keep a standard interpretation. . . 

Window systems use a bit-mapped tliapla11 and a pointing device, called a mouae, to simplify and 
speed up user interaction. A bit-mapped diaplay ia a display device which has independent con­
trol for each displayed point. A displayed point is called a pizel for picture element. A one-to­
one mapping .of each pixel to a poi'tion of memory provides the control values. Note that for 
color displays, more than one bit is lnapped to a pixel. The bit-mapped diaplay allows windows 
to contain arbitrary images in addition to simple text. In fact, text is just graphics with fami­
liar shapes. The bit-mapped display's graphical capability significantly improves the ability of a 

1-2 Revision A of 7 January 1984 

0 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide An Introduction to Windows 

program to present information to the user in ways that the user can quickly grasp. 

The user points with the mouse to direct the window system's attention to particular regions of 
the display. A special image known as the curaor tracks this direction and the movement of the 
mouse on the display. In the figure, the cursor is the small arrow near the upper righthand 
comer. Typical regions that the user can point to with the mouse are individual windows, items 
inside a menu, characters or collections of characters inside windows displaying text, lines or 
other geometric primitives inside windows displaying graphics, and even individual pixels. The 
value of the pointing device is that it allows very quick movement, usually much faster than 
that available from keys on the keyboard, while at the same time allowing very precise position­
ing, usually with single pixel resolution. 

1.2. What is SunWindows? 

SunWindows is the Sun window system. It supports rectangular windows on both monochrome 
and color displays. SunWindows accepts input from the keyboard and from the Sun 
workstation's pointing device, which is usually a mouse. 

The mouse is used to point at text and graphics displayed on the screen. The user directs his 
input to a window by moving the cursor into that window. The user can also call up menus 
with the mouse by pressing one of its buttons and choosing the menu items. The user can point 
at most text that is displayed on the screen and treat it as input, exactly as though it were 
typed. Text can be chosen with the mouse and copied within and between windows. 

The user tells SunWindows to change a window to an icon when he is not concerned with the 
contents of a window. An icon is a small picture that represents the application area of the 
window. For example, the icon for the window that continuously displays the date and time as 
text is a clock face with hour and minute hands as shown below next to its window. 

Figure 1-2: Clock Tool and Icon 

SunWindows encourages the constructiotl of application-oriented windows. We use the term 
tool to describe such a program focused on a particular task and written for execution in the 
SunWindows environment. A tool is not a window; it is a program which creates and destroys 
windows on the display during its execution. Most SunWindows tools have at least two win­
dows. Looking at the following figure, you see that one window acts as the frame, defining the 
maximum area of the display that the tool controls. It usually displays the name of the tool in 
a stripe at the top and displays a border all around its region. 

Revision A of 7 January 1984 1-3 



An Introduction to Windows Sun Windows Programmer's Guide 

Figure 1-3: SunWindows Tool Window 

Here, this name stripe shows "Shell Tool I.I." The other window(s) occupy areas inside this 
frame, obscuring most of it. The inner windows are called aubwintlow,, because they are subol'­
dinate to the frame. In particular, if the frame is moved, all of the subwindows move with it, 
keeping their positions relative to the frame. Subwindows are tiled over the surface of a tool. 

Now consider the following figure. We see in this sample display that the user has five tool win­
dows. 

co,.._•Yt·tcon tooot ... l.c 
cote<ool.< tcoetaol.t<>Ot> 

t,ontaol.o 
1contool.ola 
J_. ...... 
o,,t1ontool .c 

p>""toolc -,-.c p,tct.,,., ....,,0010.c 

:::::.~ ::::::::~:~ 
ohol1,..,.,1.c toot .. ,;,o c 
oholltool,lcan toolplacoo.c 

Figure 1-4: Sample SunWindows Screen Display 

The tool with the large window on the left is a terminal emulator which is running the C-Shell. 
This tool is known as the shell tool. Its terminal emulation facility provides backward compati­
bility with traditional terminal-oriented UNIX utilities. We see that the user has made a listing 
of the current directory and then compiled a C program. Note the arrow that points upward 
and to the left in this window. This is the cursor that tracks the mouse. 

0 

0 

The tool on the right that has the white and gray subwindows within the window is a graphics 
tool. The white subwindow is also a terminal emulator, albeit for a terminal with a smaller Q 

1-4 Revision A of 7 January 1984 



0 

0 

0 

SunWindows Programmer's Guide An Introduction to Windows 

screen. The gray subwindow is a blank canvas available to graphics programs. In Writing a 
Simple Tool, we examine code that implements the graphics tool. 

The three small windows on the far right edge of the display belong to three different tools. 
Each tool has changed its window's presentation to an iconic form. Thus, from the top down, 
we see icons for a clock tool, for another shell tool, and for another graphics tool. 

This figure also shows a window that underlies the rest, and is partially obscured by the other 
windows. This window belongs to the ,untool, program, the user-level program that initializes 
the SunWindows environment. It is the window that covers the entire display with background 
color. Because it is the window on which the others are displayed, it is called the root window. 
The SunWindows system supports overlapping windows; one window can cover up another par­
tially or completely. The user can stack windows however he wants. He can bring one window 
to the top of the stack, hide one underneath, and make a window as large as the screen. The 
user can manipulate the physical area of the screen to accommodate his needs. Note that all 
windows can be active at the same time, not just the one on top. Moreover, multiple display 
devices can be attached, with windows simultaneously displayed on each. SunWindows also 
supports both monochrome and color screens. 
The next figure shows two examplea of menus that use the SunWindows menu package. The 
menu on the left iii available in the root window. The Tool Manager menu on the right is avail­
able in a portion of every tool window. SunWindows menus are called pop-up because they 
appear quickly out of the background, while the user is pressing one of the mouse buttons. 

Tool Mgr 

Root Mgr \Open -+. 

-+ New Shell Move 

New Graphics ·stretch 

Exit Expose 

ReDisplay All llide 
ReDisplay 
Quit 

Figure 1-5: Pop-up Menus 

Choosing the "New Shell" item in the "Root Mgr" (short for Root Manager) menu creates 
another shell tool. 

Now examine the following figure, which shows the stat& of the display following the creation of 
a new shell tool. Note that the new shell tool window, the third shell tool window on the 
display, overlaps the other two open tool windows. 

Revision A of 7 January Hl84 1-5 



An Introduction to Windows 

.,r I 10 

kof1\o °"'"-~'1°"" 
out cor.tool .c 
anc-..,.c 1,--.c 

l<><kho!>d•.c g,x,ool ,c 
\ocktoal .c ghtool. lcOfl 
lcc~tool .1con lcontool 
""I"' cc -0 -.: ,,,., I too Le 

'"'"'I I\ 

Sun Windows Programmer's Guide 

tcootool .c flO""too\ c °""",o.-o.c 
tcontool . 1con p&tc,.., .c 1"'1\oal, .c 

:~~1 :~10 ::~~:·: ::l:::::~::~ 
J.,....,_.c oholltool,c ,ooliaergo.c 
cpt1on1001.c o'4\ltool.tcOII <oolpllcoo.c 

Figure 1-6: Adding Another Shell Tool 

() 

One shell tool can be used to compile a program, a second to edit its source code, a third to o 
read and answer mail, and so on. Every tool keeps all of the context associated with its task. 
Although such multi-tasking can also be achieved through C-Shell job control, having the con-
text of each task visibly represented concurrently is only available in the window system. If the 
number of concurrent tasks becomes so large that the display becomes cluttered, the user can 
simply shrink or make into icons those tool windows that are least interesting. Thus, the clock 
tool unobtrusively provides the current time, just one of many possible background tasks pro-
viding feedback on the state of the workstation. 

More comprehensive explanations of the facilities provided with SunWindows are available in 
1untool1 (1 ). Sample Tool, in this guide provides the programmer's perspective of these facili­
ties. 

In brief, Sun Windows is: 
an open architecture 

the user can extend the collection of available tools. 
a databaae of window, 

that are simultaneously active. 
aimultanuu, muitiple acreen4 

· the user can run Sun Windows on more than one monitor. 
color and monochrome 1creen1 

for running both color and black-and-white programs. 
overlapping wintow, 

that increase ihe user's effective working space. 

1-6 Revision A of 7 January 1984 

0 



SunWindows Programmer's Guide An Introduction to Windows 

0 icon, for providing a visual reminder of a tool or process. 

pop-up menu, 
for quick entry .. of commands. 

terminal emulation 
for UNIX compatibility. 

te:it tran,fer between window, 
for quick invocation of commands and text entry. 

mou,e and diaplar, entrr, 
of commands and parameters. 

0 

0 
Revision A of 7 January 1984 1-7 



0 

0 



0 

0 

0 

Chapter 2 

Sun Windows Implementation Overview 

In the previous chapter we looked at SunWindows from the user's perspective. Here we investi­
gate SunWindows from the programmer's point of view. In particular, we describe the major 
components or the Sun Windows implementation and their interactions. 

Note the distinction between a uaer - a person who u,e, SunWindows, and a programmer 
who writes programs to run in the SunWindows environment. In addition, we introduce the 
term client to designate software that uses some other software package. A ooftware package 
presents a programmatic interface to its clients. 

2,1, Architectural Principles 

SunWindows is built according to four architectural principles that are important to you as a 
programmer: 

Open-ended 
Sun Windows is a tool bo:r and a kit of parta - you can create tools aimed at specific appli­
cation areas by tailoring and gluing together existing Sun Windows packages. These tools 
can access all the facilities of the workstation that are available to Sun Windows itself. 
Thus Sun Windows is not a closed system aimed only at a single idealized user. 

lnteorated 
Sun Windows provides standard packages with which you can expand the facilities available 
to the user. The standi!,rd packages impose a framework on components. By using these 
standard packages and working within the framework, expanded facilities that you or other 
people write will exhibit,.the same level of user-interlace integration that the standard Sun 
tools provide. ln addition, the package-level integration will be consistent across different 
implementation•. 

L a11ered Implementation , 
Sun Windows is a selectively layered system. The highest (most abstract) layer is called aun­
lool - a collection of utilities that provide a tramework and parts kit for constructing user 
interlaces. The middle layer, called aunwindow, provides facilities to share and arbitrate 
display and input devices between concurrent programs. The lowest (closest to the 
workstation's hardware) layer, called the pizrecl layer, provides primitive access to the Sun 
Workstation's display. In general, the highest and most abstract layer has more functional­
ity and generality at some expense in efficiency. Later sections or this chapter describes 
the layers in detail. 

Information Hidino 
Many of the major packages of SunWindows are implemented with the concepts of data 

Revision A of 7 January 1984 2-1 



SunWindows Implementation Overview Sun Windows Programmer's Guide 

ab,traction, in mind. A data abstraction is a collection of subroutines and private data 
structures - only the •ubroutines accee the data structures, and the interface to the data Q 
ab.traction is defined entirely in terms of the interface that the subroutines provide. This 
practice is encouraged to provide flexibility of implementation for both Sun Windows itself 
and for programmers writing new tool• using SunWindows facilities. For example, Sun Win• 
dows' lowest level provides device-independent accesa to bit-mapped devices in a framework 
where new devices can be added with no impact on any existing code using this level. 
Additionally, by hiding the implementation information, SunWindows minimizes the impact 
on existing code due to reimplementation of the support for a particular bit-mapped device. 

2.2. Layers of Implementation 

As we mentioned above, there are three layers in Sun Windows. Each layer has an &Mociated 
library of C routines which you can use to create your programs. The three layers, from the 
most abstract to the most system-dependent are: 
,untool 

implements a multi-window executive and application environment, supporting many user 
interface facilities. These facilities include pop-up menus, selections, icona and several 
subwindow packages supporting terminal emulation and mouse and display entry of com• 
mands and parameters. The associated library is li61untool.11. 

,unwindow'-
implements a manager for overlappinJ windows. This management includes creating and 
manipulating windows, maintaining the windows' images, a stream input format for key­
boards and mice, and distribution of those user inputs. The associated library is 
lib,unwindow.a. 

pizrect 
provides a device-independent interface to pixel operationa. The associated library is 
libpizrect.11. 

1 Note that the term 'sunwindow' refers to the layer or level of implementation while the word 
'Sun Windows' is the name of the Sun window system. 

2-2 Revision A of 7 January 1984 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide SunWindows Implementation Overview 

• 

User Programs 

suntool 
• user interface utilities 
• tool support 
• canvas program support 

I 
sunwindow 

• baste window device 
• window display package 
• tnpl.J.t mechanism 

I 
pixrect 

• devtce Independent pixel 
rectangle access 

Figure 2-1: SunWindows Layers 

As you can see from the figure, there ls programmatic access to any or all of these levels, 

2.2.1. Suntool Layer 

The ,untool layer provides user interkace utilities. The name •untool indicates that a client ( an 
application program) at this level is a tool. Such a client presents a complete user interface 
oriented to a particular application. 
Several tools are provided with Sun Windows. These include: 
the ,hell tool 

a terminal emulator 
the graphi~, tool 

which provicles display space to simple graphics programs, 

the icon tool 
used to create and modify cursor and icon images, and 

the clock tool 
a simple tool that colitinuously updates a display of the time of day. 

We describe these ready-built tools in more detail in Sample Too/a and provide sample code in 
appendix B in the Programmer', Reference Manual for Sun Wt"ndowa and in /uar/ auntool/ arc. 
We describe how to write your own tools in App/icatt"ona - Tool, and Canvaa Program,. 

The user interface utilities that the ,untool layer provides are: 
a atandard tool manager , 

for the region of the display belonging to the tool. This region is enclosed by the 
"window which is the tool's frame," a phrase we will shorten to "tool window." This 
tool window identifies the tool by a name stripe at the top of the window and places 

Revision A of 7 January 1984 2-3 



Sun Windows Implementation Overview Sun Windows Programmer's Guide 

borders around the enclosed subwindows. It also generates a default icon for the ·O 
tool if the tool writer does not provide one. • 

~rkJvk I .. 

Figure 2-2: Standard Tool Window and a Default Icon 

window management 
A collection of routines for manipulating the position, size and overlapping structure 
of windows. These routines constitute the heart of a window manager for tool win­
dows and subwindows. 

an ezecutive framework 
which supplies the main loop of a client program and coordinates the activities or its 
various subwindows. 

a menu package 
that implements pop-up menus. 

a aimple prompting facility 
that displays client messages to the user. 

full acreen acceu 
for temporarily overriding the input and output hierarchies. Applications of this full 
screen access are menu display and item choice, making screen dumps, and display­
ing prompts, often in conjunction with awaiting user confirmation or some action. 

global tezt ,election . 
for specifying a span of text that may be of interest across window boundaries. This 
selection is typically used to make copies within or between windows. Graphic selec­
tions are supported with this mechanism. 

Also provided are several subwiI1dow types that can be incorporated in the tool, and an imple­
mentation of a simple tiling mechanism for subwindows. The provided subwindow types are: 

terminal emulaior aubwindow ( ttyaw) 
that provides emulation of a "smart" Sun terminal; 

graphic, aubwindow (gfzaw) 
for programs that want to display graphics in the Sun Windows environment without 
undertaking all the responsibilities of a standard tool. Such programs are called can­
vaa program,. The graphics subwindow also provides the ability for a program to 
run on top of an existing window. 

option aubwindow ( optaw) 

2-4 

which provides sophisticated mouse and disptay entry of commands and parameters. 
It is the window system analog to entering command-line arguments and typing 

Revision A of 7 January 1984 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide SunWindows Implementation Overview 

mnemonic commands to an application. An option subwindow contains a number of 
items of various types, each item corresponding to one parameter. Existing option 
item types include labels, booleans, enumerated choices, text parameters, and com­
mand buttons. 

meuage ,ubwindow ( m1g1w). 
for displaying textual messages such as error messages and prompts to the user. 

empt11 ,ubwindow ( e,w) 
for tending a window that will be covered by another window. The empty subwin­
dow is thus a place holder. 

The following figure shows each of the subwindow types: 

option aubwindow 8 12-24 :32} 

empty subwindow 

graphics subwindow --t-o 

Figure 2-3: System Subwindow Types 

You can also mak~ a custom subwindow from a l!keletal version, as we describe in Writing a 
More S0phi1ticated Tool and in Additional Topic,. 

2.2.2. Sunwindow Layer 

The 1unwindow layer of the system maintains a database of windows. This database is struc­
tured as a collection of trees, with one tree per display device. Each tree has a root at the top 
and descef\dants toward the bottom. We will use the metaphor of a family tree to describe this 

Revision A of 7 January 191!4, 2-5 



SunWindows Implementation Overview Sun Windows Programmer's Guide 

database, since it provides a convenient terminology, and the concept of age is useful for Q" 
describing the locations of windows in the tree. Note, however, that the metaphor is not exact: 
it is possible to change a window's position in the tree, hence a window's age is subject to 
change. 
When one window is located directly above another in the tree, the first is called the parent; the 
second is the cliiltl. A window may have any number of children, but only one parent. All the 
child windows of a parent are called ,ibling,. Parents are older than their children, and siblings 
have distinct ages, which esiablishes a full order on them (no twins). The window at the top of 
the tree 1, called the root window; it is the ancestor of all other windows in the tree. The fol­
lowing figure shows these relationships. 

root =1 

I \ 
2 4 

I /\ 
3 5 6 

older ----+ younger 

Figure 2-4: Window Tree 

Each window in the database occupies a region of the dlspl..,. Child windows usually occupy a 
region completely contained within their parent's region, but should a child's region extend 
beyond the parent's region, the excess portions of the child's region are not visible to the user. 
Thus, the child's visible region is clipped so it does not extend beyond its parent's region. 
When two or more windows have regions with a common area, they are said to overlap in that 
area. When windows of direct descent overlap in a common area, the youngest of the overlap­
ping windows is 'Visible to the user in that area of the display. Thus, the youngest window 
obscures its ancestors where they overlap. When two siblings overlap, the younger sibling 
obscures the older sibling. In ~dition, the younger sibling obscures all of the older sibling's des­
cendants. By recursively applying these rules, the visible portions of each window are com­
p~ted. 
The sunwindow layer provides facilities to create, destroy, move, stretch and shrink windows. 
It provides for repositioning a window at different places in the window tree. 

2-6 Revision A of 7 January 1984 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide SunWindows Implementation Overview 

The sunwindow layer allows definitions of a different cursor image to track the mouse in each 
window. It also provides inquiry and control over the mouse position. 

The sunwindow layer provides locking primitives to enable clients to arbitrate access to the 
display. Such arbitration is necessary because two or more clients, each running in a separate 
user process, may be painting into windows that share a common region of the display. To 
guarantee that the user sees the correct display image where the windows overlap or clip, these 
separate procesoes need to have a consistent idea about the positions, sizes and relationships of 
the windows in the window tree. The locking primitives ensure that one client cannot change 
the window tree while another client is either modifying the window tree or painting to the 
display. 

Various events can make a'window's image incorrect. For example, the following figure shows 
two overlapping windows. When the bottom one is brought to the top, the area that was 
covered by the top window must be repaired. This area is indicated by the dotted line in the 
following figure. 

I 
I 
I 

"' I 
I 
I 
I 
I ________ ...J 

Figure 2-5: Damage 

Other examples of damage are the window growing bigger, the window changing from iconic to 
standard presentation, or some other window being destroyed that previously had obscured the 
window. Most of these events occur in sync with the window's standard processing, but events 
such as another window being destroyed are asynchronous. The incorrect portions or a 
window's image are known as damage. This damage is always composed of previously hidden 
areas or a window that have become exposed. When a window's image becomes incorrect, the 
window owner process is notified of this problem via UNIX's asynchronous signaling mechanism. 
In particular, a SIGWINCH signal is delivered to the window owner process. Later, when the win­
dow process decides to correct its window image, the sunwindow layer provides calls to deter­
mine the current damage !or the window. Windows may either recompute their contents £or 
redisplay, or they may elect to be retained. A retained window has a foll backup of its image in 

Revision A or 7 January 1984 2-7 



SunWindows Implementation Overview Sun Windows Programmer's Guide 

main memory, and need merely copy this backup to the display when required. SunWindows 
also provides facilities for colormap sharing on color displays. 

The user interacts with multiple windows via a single keyboard and mouse. User inputs are 
unified into a single stream at this level, so that actions with the mouse and keyboard can be 
coordinated. In particular, input events are time-stamped and entered into the queue in the 
order they occur, independent of the device which generated them. This unified stream is then 
distributed to different windows, according to user or programmatic indications. Windows may 
be selectiye about which input events they will process, and rejected events will be offered to 
other windows for processing. This enables terminal-based programs to run within windows 
which wiJI handle mouse interactions for them. Separate collections of windows may reside on 
separate s'creens, and the user input facilities treat them as if they were all on one huge screen. 

2.2.3. Pixrect Layer 

The pizrect layer of the system provides a uniform interface to devices which can hold raster 
images, such as bit-mapped displays and memory. The pixrect layer defines a standard set of 
operations on pixels; regardless of the actual device containing the pixels, each operation is 
invoked in the same fashion and has the same results. This is similar to UNIX's system interface 
to files, with a single set of operations being used to manipulate file descriptors independent of 
the underlying file implementations. The pixrect layer provides a way of defining a rectangular 
array of pixels on a device and then binding to the array the specific procedures which provide 
the general pixrect operations for that device. A particular pixrect (for pi:rel rectangle) is a com­
bination of one of these arrays of pixels and the operations used to manipulate the array. This 

0 

layer of SunWindows is named after the pixrect structure because that structure is central to 0 
the entire layer. 

The concept of a pixrect is very general. A particular pixrect may refer to an entire display, or 
to an image as small as a single character in a font, or to a particular cursor image. The array 
containing the pixels may be visible on a display, or be stored in memory or (conceivably) on 
some mass storage devlce. Peculiarities of specific devices are hidden below the pixrect inter­
face: some displays use only a single bit per pixel, and display black on white, or green on black; 
others user three, eight, or twenty-{our bits to describe the color of each pixel. Some displays 
address pixels in two dimension, with an origin in the upper left, or bottom left, or center of the 
screen; other displays, and most forms of memory, address pixels in a linear fashion, with the 
first pixel of one row immediately following the last pixel of the preceding row. Some devices 
provide hardware support for common operations, while others require all operations to be per­
formed in software. :To the programmer using pixrects, all pixrects are described in the same 
way and manipulated by the same operations. 

The operations supported by pixrects include: single pixel reads and writes, writing vectors, and 
a variety of Ra,terOpa (each of which determines its resulting image by a logical function of 
corresponding pixels froln source, destination, and (sometimes) mask pixrects). Color pixrects 
provide operations for manipulating a colormap, which translates a pixel value to a specific 
color, and for isolating the bits of a color pixel's value, so that an image may be treated in 
1'/ane, which can be operated on independently. Monochrome pixrects provide the same opera­
tions, without doing very much for them; thus images designed for color displays generally pro­
duce reasonable results on a monochrome display, and vice versa. Where hardware support 
exists for a pixrect operation, the implementation takes advantage of it to provide increased 
efficiency; but the generality of the interface is not sacrificed. See Pize/ Data and Operation, in 
the Progrp

1
mmer '• Reference Manual for Sun Window• for details on the pixrect layer. 0 

2-8 Revision A of 7 January 1984 



0 

0 

SunWindows Programmer's Guide SunWindows lmpier;ientation Overview 

A new device may be incorporated in the pixrect layer, by providing a new implementation of 
the basic operations. The proce"" is akin to adding a new device to the kernel, with the advan­
tage that most of the pixrect implementation is in user code. 

2.3. Choosing the Appropriate Layer 

When you start writing applications to make full use of the bit-mapped display'• capabilities, 
you have a number of choices. One of these choices is which level of the Sun Windows facilities 
to use: 
• If you only want to modify the basic user interface presented by the 1untool1 program, you 

can simply re-write 1untool, while continuing to use all of the other Sun Windows facilities. 

• However, if you want to modify the basic appearance of the individual tools, you must replace 
portions of the ,unlool level as well. In general, you can replace individual packages in the 
,unlool level rather than discarding the entire level. 

• If you want to replace the entire user interface that comes with SunWindows, you must 
rewrite both the 1untool1 program and all of the ,untoo/ level. However, you can still use the 
basic input and output sharing and arbitration facilities of the ,unwindow and pizrect levels. 

• If you don't care about the sharing and arbitration between concurrent processes, you can 
discard the ,unwindow l~vel and simply use the pizrecl level, thereby keeping the device­
independent pixel access provided by the the pizrect level. 

You are encouraged to use the highest possible layer of the Sun Windows interfaces. Only after 
careful consideration should you delve into the lower layers, as it lessens the overall integration 
of your code with the rest of the system. 
Several other interesting possibilities exist: For programs that want to run standalone, you can 
use facilities described in the next chapter that allow a program using only a single window to 
be developed and executed within 1untoo/1 and then also run outside 1untool1. Many of the Sun 
demonstration programs fit this category and use this facility. For instance, you can run boun­
cedemo, the bouncing ball" demonstration, outside of ,untool,. 
Finally, SunCore is an alternative if SunWindows doesn't provide what you want. SunCore is 
the Sun implementation of the AOM Core graphics standard. The Sun Core library provides rou­
tines for: 
• Three-dimensional floating-point coordinate systems with hidden-surface elimination provided 

by the system. 
• Flexible viewing transformations and scaling of input coordinates. 
• A rich set of primitives such as polygons and shading. 

• Display-list segmentation. 
Programs using SunCore are more portable than tho•e u•ing SunWindows, but the extra gen­
erality and sophistication of the Core is computationally expensive. If you decide to use Sun­
Corc, you need not lose all .of the advantages of a window system because SunCore programs 
can run both inside and outside of SunWindows. See the Programmer', Reference Manual for 
SunCorc for further details on SunCore. 

Revision A of 7 January 1084 2-9 



0 

C) 



0 

0 

0 

Chapter 3 

Applications - Tools and Canvas Programs 

This chapter introduces the basic concepts that high-level SunWindows applications program· 
mers need to know. Applications are divided into categories and the programmatic implications 
of writing programs of a particular class are discussed. The definitions of terms introduced in 
previous chaptel'I! are refined here to the level required for writing SunWindows client programs. 

Note: Window code can only be written in the C programming language. 

3.1. Applications Concepts 

A Sun Windows program falls into one of three categories, depending on the relationship that 
the program has with windows: 
Tool A tool usually fi'eates and owns more than one window. It has a mechanism for 

dealing with multiple windows within a single user process. Most application pro­
grams in SunWindows are tools. G/ztool, which we describe in detail later, is a sim· 
pie example of a tool, containing a terminal subwindow and a graphics subwindow. 

Oanvu program 
A canva, program is characterized by its creating and managing only one window. 
Since a canvas program owns only one window, the mechanism required for dealing 
with it is ·simpler than for a tool. For example, bouncetlemo owns a graphics subwin­
dow in which it paints a bouncing ball. 

Non-interactive utilit11 · · 
A non-interactive utility is typified by not creating any windows. Instead it queries 
and manipulates !he state of one or more existing windows. Since this type of pro­
gram does not · own any windows, it never has to deal with window input or 
SIGWINCH signals .. Toolplacea, described later in this chapter, is a simple example of 
a program that just finds out where windows are on the screen. Screentlump is 
another non-interactive utility that takes the screen image and dumps it to a printer 
for hardcopy output. 

The process that is responsible for Jisplaying a window's image and reading its input is said to 
own that window. The relationship between programs (user processes) and windows varies; 
there is no one-to-one corresponderlce between them. If a window's size, position or relative 
relationship with other tlindows is changed, some sort of window management operation has 
been performed. Sontttimes it is a window's owner and sometimes some external agent that 
invokes window management activity. 
It is important to make the·distinction between a window and a SunWindows program. Win­
dows are pseudo-devices, referenced as / Jev/ win zz, where zz is the number of the window. A 

Revision A of 7 January 1984 3-1 



Applications - Tools and Canvas Programs Sun Windows Programmer's Guide.· 

window is the operating system's handle on a specific area of the screen. UNIX uses a window to 
multiplex user input and screen output among competing user processes. Like other UNIX dev-
ices, a window can be opened, closed, read, waited on for input, and given input/output control (=) 
commands (through a procedural interface). 
Most of the software interfaces in Sun Windows follow a common paradigm. First, a client will 
call some creation/initialization routine, which returns a pointer to some data, typically a C 
structure or a nested group of such structures. Then it calls other procedures to perform 
specific tasks, generally passing that pointer as an argument which provides state information. 
We refer to the implementation of such an interface as a manager, the data which it provides 
and manipulates as an object, and the pointer to that data as a handle. Strictly speaking, the 
object is the general class that the manager deals with, a specific copy of which is called an 
in,tance. 
Thus, a client will call on a tool manager to create a new instance of a tool object; the manager 
returns a tool handle which points to a particular instance of the tool object. The client then 
may call various aubwindow manager,, passing each the tool handle, to have a number of 
subwindow objects added to the tool object. 
Note that the set of things with which a program concerns itself depends on a program's rela­
tionship with windows. 

3,2, What is a Tool! 

A tool consists of two or more windows owned by a single user process. Sun Windows provides a 
mechanism, called the tool manager, for multiplexing multiple windows. A tool manager owns 
one window, the tool window; which defines the maximum extent of the display region that the 
tool controls. The tool manager usually displays the name of the tool in a stripe at the top and Q 
a border all around the region of its tool window. Subwindow(s) occupy areas within this tool 
window and move with it when it is moved. 
Each subwindow object is a building block for constructing a tool. A tool's subwindow 
managers provide most of the user interface to the tool's facilities. Sun Windows defines a 
minimum interface that a software implementation must provide in order to properly be called 
a ,ubwindow package. Any ilubwindow package can be plugged into a tool object if it meets the 
programmatic interface requirements of such a package. 

3.2.1. Designing a. Tool 

One of the major thrusts of Sun Windows is to offload user interface design from each and every 
application. The intent is that most programmers will use the existing packages for most of 
their user interface activities. This means that the programmer is able to concentrate on what 
is unique about his application. It also means that because applications are using common 
packages, the user interface will be highly consistent across applications. 
Tool design is a matter of deciding: 

• How should you lay out the available tool window real estate into subwindows! As examples, 
look at the tools supplied with SunWindows in Sample Tool, below and try running those 
tools in /uar/auntool/ •tool. Many tools place a message subwindow across the top, an option 
subwin<low beneath for specifying parameters and invoking commands, and below that, an 
application-specific subwindow. 

3-2 Revision A of 7 January 1984 



0 

0 

0 

Sun Windows Programmer's Guide Applications - Tools and Canvas Programs 

• Which SunWindowa-supplied subwindow packages will you be able to use! The available 
subwindow packages are listed in Sun Window, Implementation Overview. 

• What subwindow implementation(s) will you have to provide! The SunWindows supplied 
mouaetool and icontool provide their own subwindow implementations. 

• What SunWindows supplied facilities can you use in your own subwindow implementation! 
Packages which provide pop-up menus, prompts, a selection manager, and icons are available 
from the suntool library. Mouse cursor shape and input mask control are available from the 
sun window library. The pix win display package is available for accessing the screen in this 
overlapping window environment. 

• How do you unify all these user interlace pieces with your program's purpose to produce a 
harmonious application! Again, the SunWindowa-supplied mouaetool and icontool are good 
examples or tying together multiple subwindows into a single application. 

3.2.2. Flow of Control in a Tool 

When you get to the point of writing code, note that all tools follow the same basic steps: 

Create a tool object 
Some of the properties of the tool object are specified at create time. 

Create a ,ubwindow object 
for each su bwindow and associate it with the tool object. The initial state of each 
subwindow object is specified at this time. 

In,tall the tool window 
into the database of windows, so that the tool window and its subwindows can 
receive input and display themselves on the screen. 

Invoke the main loop 
of the program. The tool manager notifies each or the subwindow managers and the 
tool manager itsetf of pending input and window changes. 

Perform a clean-up ltep 
to release resources associated with the various objects when the tool is terminated 
normally. 

Writing a Simple Tool provides a concrete example or tool writing that details these steps. 

3.2.3. Sample Tools 
Here is a list of existing tools along with the basic facilities that they use. You may want to 
refer to them as examples when writing your own applications. 

,helltool Uses a single ter"Jnal emulator subwindow. 
g/itool Uses a tei'minal emulator subwindow and an empty subwindow in which canvas pro­

grams can be run without overwriting the terminal text. 
icontool Uses an optlon subwindow for parameter specification and command invocation. A 

message subwindpw is available for error messages. Two client-defined subwindow 
implementations are used. This tool illustrates mouse tracking and cursor shape 
alteration. You may use this tool to generate cursor and icon images for your own 
applications. .,, .. 

Revision J\ of 7 January 1984 3-3 



Applications - Tools and Canvas Programs Sun Windows Programmer's Guide 

panetool Uses four message subwindows. This tool serves as an example of stacked menus 
and input redirection. 

optiontool Uses one option subwindow. This tool serves as an extensive example of option 
subwindow possibilities. 

clocktool Uses one message subwindow to display the time and date. This tool also shows 
how to dynamically change the tool window's icon. 

coretool Uses a single empty subwindow. This program is usually invoked programmatically 
by SunCore and serves as a view surface for CORE programs with independent win­
dow management. 

mouaetool Uses a message subwindow for status messages, and an option subwindow for param­
eter specification and command invocation. One client-defined subwindow imple­
mentation is used. This is discussed in detail in Writing a More Sophiaticated Tool. 

The source code for these programs is available in /uar/ auntool/ arc/ *lool.c. 

3.3. Canvas Programs 

As defined above, canvas programs only create one window. This has the advantage of not 
requiring multiplexing of notifications to multiple windows, a considerable simplification over a 
tool. Canvas programs can be categorized into those that are interactive and those that are 
not. Not surprisingly, non-interactive canvas programs are easier to write because they do less. 

3.3.1. The Graphics Subwindow 

One mechanism often used to write canvas programs is the graphics subwindow package. It 
accommodates both interactive and non-interactive canvas programs. The flow of control for 
interactive programs is essentially the same as for tools. The main difference is that instead of 
there being a tool manager and multiple subwindow managers, there is just the graphics 
subwindow manager. For non-interactive canvas programs, the flow of control is usually an 
infinite loop in which some flags are checked in order to know when to respond to window 
management operations. 

The graphics subwindow manager provides the following features: 
• A graphics subwindow can be used to take over the area of an existing window by laying 

itself on top of the existing window. When the existing window is manipulated the graphics 
subwindow is changed as well. This Crees the canvas program of any concern for providing 
window management operations to the user. 

• A graphics subwindow-based program can be run both inside and outside of the ,untool, win-
dow environment. 

• A graphics subwindow manager will manage a retained window for you. 

Writing a Simple Canva, Program provides a concrete example of using the graphics subwin­
dow. 

3-4 Revision A of 7 January 1984 

0 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide Applications - Tools and Canvas Programs 

3.3.2. Sample Canvas Programs 

Here is a list of existing canvas programs along with the basic facilities that they are using. 
You may want to refer to them as examples when writing your own applications. 

bouncedemo, jumpdemo, aphereademo 
Non-interactive graphics subwindow based programs. 

/ramedemo Interactive graphics subwindow based program. 
,untool, Interactive canvas program not using the graphics subwindow package. The pro­

gram shows simple menu use. This program does many other things that are related 
to initializing the window environment. 

The source code for these programs is available in /uar/auntool/arc/•demo.c. 

3.4. Non-interactive Utility Programs 

A SunWindows non-interac.tive utility program doesn't create any windows. Instead, it queries 
or changes the state of existing windows. Since this type of program does not own any win­
dows, the problems associated with user input and screen output are not present. 

3.4.1, Sample Non-interactive Utility Program 

Too/place, is a program that traverses the second level of a window tree and displays the posi­
tions of the windows on the screen. Sample output is: 

markiv% toolplacee 

toolname 160 80 730 532 956 0 64 64 
1 

toolname 265 246 730 532 64 736 64 64 0 
toolname 18 226 730 567 959 736 64 64 0 
toolnaine 263 14 730 532 0 736 64 64 0 
markiv% 

These coordinates are read with the origin (0,0) in the upper lefthand comer, z increasing to the 
right, and II increasing down. 
The source code for toolplacea is available in /uar/auntool/arc/toolplace,.c. Refer to auntoola(l) 
for more details. 

3.5. Review 

In this chapter, you have been introduced to the following points: 
• What the software terms object, handle, inatance, and manager mean. 
• A window is different from a window-related program. The basic phrases directly related to 

windows are window owner and window management. 
• When considering writing a SunWindows application, you should have an idea as to whether 

it will best be done as a tool, can11a1 program, or non-interactive utility. 
• When considering writing a SunWindows application, you should have an idea of programs to 

go to f11, sample code thit matches your application. Note that detailed descriptions of tool 

Revision A of 7 January 1984 3-5 



Applications - Tools and Canvas Programs Sun Windows Programmer's Guide 

and canvas ex am pies are presented in later chapters. 

0 

0 

0 
3-6 

Revision A of 7 January 1984 



0 

0 

0 

Chapter 4 

Writing a Simple Tool 

Here we describe how to write a too), and illustrate what a window, a tool object, and a ,ubwin­
dow object are. 
We walk through the C language source code for a program called the g/ztool (g/z stands for 
graphic,). We illuminate and give substance to broader concepts sketched out earlier. Each line 
in this program is explained; however at times you are asked to accept descriptions that don't 
go into much detail. Detail is covered in the reference manual. 
G/ztool runs in the Sun Windows environment and consists of two subwindows: 

a terminal emulator aubwindow 
from which canvas programs can be run 

an empt111ubwindow 
in which canvas programs can draw. Thus, terminal text is kept separate from the 
graphic image, and the graphics do not disturb the characters in the terminal emula­
tor. Note that g/ztool does not actually generate any interesting graphics, rather it 
provides a virtual terminal and a blank canvas where a graphics application can 
draw pictures. 

G/ztool is a very simple tool, being composed entirely of glue that brings together existing 
subwindow packages into a single entity. Understanding the concepts in this program is critical 
to being able to do more interesting applications. 

Revision A of 7 January 1984 4-1 



Writing a Simple Tool SunWindows Programmer's Guide 

ar sp eres entO 

.. 

Figure 4-1: Gfztool Running ,phere,demo 

4.1; The gfxtool Code 

As described in Flow of Control in II Tool, gf:itool has some distinct parts, namely: 

• Gf:itool creates a tool object. 

• It then creates a terminal emulator and an empty subwindow. 

• It installs the tool. 

• It calls the main loop. 

• It cleans up. 

Here is a listing of gf:itool.c. You may want to glance at it now, however, it is primarily for 
reference as you read the subsequent explanation. Extensive C comments are removed in favor 
of the accompanying text. 
fifndef lint 
static ehar seesidO - "O(f)gfxtool.e 1.1 84/04/04 SM1"; 
fendif 

finelude <suntool/tool_hs.h> 
finelude <suntool/emptysw.h> 
finelude <suntool/ttysw.h> 
finelude <stdio.h> /• Source of NULL •/ 

/• define global data•/ 
finelude "gfxtool.icon" 
mpr_statie(gfxic_mpr, 64, 64, 1, icon_data); 
static struct icon icon - {64, 64, (struct pixreet •)NULL, O, O, 64, 64, 

&gfxie_mpr, 0, 0, 0, O, (ehar •)NULL, (struct pixfont •)NULL, 
IOON__BKGRDGRY}; 

4-2 Revision A of 7 January 1984 

0 

{ 
I 

0 



0 

0 

0 

Sun Windows Programmer's Guide 

static sigwinchcatcber(), sigcbldcatcbcr(); 
1tatic struct tool •tool; 

main(argc, argv) · 
int argc; 
char ••argv; 

{ 

/• declare local variables•/ 

} 

char •toolname - "Graphics Tool 1.1"; 
etruct tool.aw •ttyew, •emptysw; 
char na.me(WIN_NAMESIZEJ; 

/• create tool •/ . 
tool - tooLcreate(toolname, TOOL_NAMESTRIPEITOOL...BOUNDARYMGR, 

(struct reel •)NULL, &icon); 
if (tool -- (struct tool •)NULL) 

exit(!); 

/• create subwindows •/ 
ttysw - ttysw_createtoolsubwindow(tool, • ttysw•, 

TOOLJjWEXTENDTOEDGE, 200); 

emptysw - eaw_ereatetooleubwindow(tool, "emptysw", 
TOOLJjWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE); 

if (ttysw -- (struct toolsw •)NULL II 
emptysw -- (struct toolsw •)NULL) 

exit(!); 

/• install the tool •/ 
signal(S1GW1NCH, sigwineheateher); 
tooUn,tall(tool); 

/• start child process•/ 
win_fdtoname( empt)'SW• > ts_ windowfd, name); 
we_setgfxwindow(name); 
signal(SIGCHLD, eigchldcatcher); 
if (ttyswJork(ttysw•>ts_data, + + argv, 

&tt;rsw•>tsjo.tiojnputmuk, 

} 

&tt)'sw• > tsjo.tio_outputmuk, 
&ttysw->tsjo.tio_exceptmuk) -- ·1) { 

perror(' gfxtool" ); 
exit(l); 

/• notiftcatlon loop • f 
tool_select(tool, 1 /• means wait ror child process to die•/); 

~• clean '1P •/ , 
tool_destroy(tool)1 
exit(O); 

static sigchldcatcher() { tool_sigehld( tool); } 

static sigwinchcatcher() { tool_si~inchl tool); } 

Remion A of 7 January 1984 

Writing a Simple Tool 

4-3 



Writing a Simple Tool 

4.2. Include Files 

The header files included for this program are: 

finclude <suntool/tool_ha.h> 
finclude <suntool/emptysw.h> 
finclude <euntool/ttysw.h> 
finclude <stdio.h> /• Source of NULL •/ 

Sun Windows Programmer's Guide 

A brief description of each of these follows: 
< ,unlool/ tool_h,.h> 

includes the header files needed to deal with the tool manager and subwindow 
managers. The _,., sullix to "tool" stands for Headers and is a convention used by 
Sun Windows to indicate that this header file includes other header files. A header 
file that includes other header files simplifies the tedious job of determining exactly 
which header files are required and then ordering them based on their inter­
dependencies. (This job can be especially difficult for software which is built in mul· 
tiple layers, as is SunWindows.) The "suntool/" means that "tool.Jis.h" is found in 
the / u,r / include/ ,unlool directory. 

< aunlool/ empt111w.h> . 
is a single header file that defines structures and declarations pertinent to the empty 
subwindow manager. In particular, an external reference to 
e,w_crealeloolaubwindow() is used. 

< aunlool/ t1111w.h> 
is a single header file that defines structures and declarations pertinent to the Sun 
terminal emulator subwindow manager. In particular, an external reference to 
t1111w_crealelool1ubwindow() is used. 

4.3. Defining Global Data 

The global definitions provided are: 

finclude "gfxtool.ieon" 
mpr_static(gfxic_mpr, 64, 64, I, icon_data); 
static struct icon icon - {64, 64, (otruct pixrect •)NULL, 0, 0, 64, 64, 

&g!xic_mpr, O, O, O, O, (char •)NULL, (struct pixfont •)NULL, 
ICON.JlKGRDGRY}; 

.. 
static sigwinchcatcher(), oigchldcatcher(); 
static struct tool •toolj 

The definitions are made global to the module to: 

• take advantage of global structure initialization, 
• declare the types of procedures referenced later (,igwinchcalcher and 1igchldcalcher), and 

• share data between procedures ( tool structure). 
The data structures define the icon displayed when the tool window is tiny: 

• "G/ztool.icon" contains the data structure icon_dala that defines the bit pattern of the 
graphic image displayed in the icon. The include file "gfxtool.icon" is output from a special­
ized bitmap editor tool named icontool that is distributed with Sun Windows. 

0 

0 

• A memor11 pizrect is a data structure that describes raster images in main memory. The 0 
mpr_atatic macro constructs a memory pixrect containing the image data of ico11_tlat11. The · 

4-4 Revision A of 7 January 1984 



0 

0 

0 

SunWindows Programmer's Guide Writing a Simple Tool 

constructed memory pixrect is called gfxic_mpr and is 64 bits wide by 64 bits high by 1 bit 
deep. The depth of a pixel is the number of bits in a pixel. This number controls how many 
values, black and white or color, the pixel can display. 

• Icon is a structure which describes the layout of the icon. The icon includes a background 
(ICON...llKGRDGRY), graphic image (g/xic_mpr) and text tag (NULL implies there is no text 
associated with this icon). The other fields in the structure are position and size data that 
you can find more about in the reference manual. 

4.4. Declaring the Local Variables 

The variable definitions are: 

main( argc, argv) 

{ 

int argc:; 
char .. argv; 

char •toolnamo - 'Graphic• Tool 1.1'; 
otruct toolow •ttyow, •emptyow; 
char namo(WIN_NAMESIZEJ; 

Main is the first routine called when a C program is started. Argc is the count of arguments to 
the program that are described as strings in ar1111. These arguments are ignored in g/xtool.c 
proper but are passed through to ttu,wJork. 
Now the other local variables: 
Too/name 

is the name and version num her of the tool passed to tool_create. This string is displayed 
in the tool window's name stripe. 

Ttu,w and emptu,w 
are the subwindow handles for the two subwindows we create. 

Name 
is a temporary variable that holds a window device name. A window is conventionally 
named "/dev/win*" where* is a decimal number between O and 255. 

4.5. Creating the Tool Object 

The first thing that the program does is create a tool object. Tool_create dynamically allocates 
a tool object and retul'ns a tool handle (called tool here) that points to this tool object. 

tool - tool_croato(toolnamo, TOOL_NAMESTRIPEITOOL...llOUNDARYMGR, 
(otruct roct •)NULL, &icon); 

it (tool -- (otruct tool •)NULL) 
exit(!); 

• The tool manager takes care of displaying the tool window. When the tool window is its nor­
mal size, the tool window displays a name stripe and borders around its subwindows. Tool­
name is the text in the name stripe. TOOL_NAMESTRIPE indicates that the name stripe is to 
be displayed. When the tool window is tiny, it displays icon. 

• Normally, the initial size of the tool window and its position on the screen is determined 
inside tool_create by examining the environment parameter WINDOWJNITIALDATA (see 
u,e_getinitrect in the reference manual). A program may override this default by specifying an 

Revision'\ of 7 January 1984 4-5 



Writing a Simple Tool Sun Windows Programmer's Guide 

explicit position and size. In this case, the default is used because the position and size struc• 
ture pointer is NULL. f\ 

• The tool object is a framework in which subwindow objects are collected. The tool manager V 
is responsible for laying out the positions and dimensions of its subwindows so that they tile 
the surface of the tool window. The TOOLJIOUNDARYMGR flag tells the tool manager to let 
the user move the boundaries between subwindows by using the mouse to point at and drag 
the boundaries. 

The tool_create routine can fail in a variety of unusual situations: 

• Enough virtual address space couldn't be allocated. 
• The program was started outside of the Sun Windows environment. 

• A free window device couldn't be found. 
If tool_create fails, the returned pointer is NULL. An error message will have been written to 
1tderr (the usual UNIX error stream) in this case. Thus, the appropriate action is to terminate 
the program. A non-zero argument to ezit indicates abnormal termination. 

4.6. Creating Subwindow Objects 

Next, subwindow objects are created to populate the tool. A terminal emulation subwindow 
object and an empty subwindow object are created in the calls to tly1w_createtool1ubwindow 
and e,w_createtool,ubwindow, respectively. The calling sequence to all subwindow manager 
creation routines is essentially the same: 

tty.11w - ttyew_crea.tetoolsubwindow(tool, "ttysw", 
TOOL_SWEXTENDTOEDGE, 200); 

emptyew - esw_crea.tetoolauhwindow(tool, "emptysw", 
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE); 

if (ttyow -- (otruct toolsw •)NULL II 
emptyow -- (otruct toolow •)NULL) 

exit(l); 

i 
• The tool handle tool identifies the object in which the subwindow object is installed. 
• The second argument b a string that names the subwindow instance and differentiates it from 

other subwindow instances in the same tool. Although not used now, this naming of subwin• 
dow instances may eventually allow manipulation of subwindow managers by scripts. 

• The third (width) and fourth (height) arguments are hints to the tool manager's tiling 
mechanism that indicate the preferred dimensions of the subwindow. The constant 
TOOL_SWEXTENDTOEDGE indicates that the tiling mechanism is to extend the dimension of 
the subwindow to the right or bottom edge of the tool window. The tiling algorithm uses the 
order that subwindow objects are created to place the subwindows in English reading order. 
The first subwindow goes in the upper left-hand comer. Subsequent subwindows go to the 
right and then down to the next "row" depending on the constraints of the width and height 
hints. 

Subwindow object creation calls t.hat fail return a NULL subwindow handle. The types of prob­
lems that might be encountered are similar to those within tool_create. An error message will 
have been written to standard error in this case. Again, the appropriate action is to terminate 
the program. · 

Although not done here, at this point in the code one often calls routines to further specify 
subwindow instance behavior. For example, one would define the layout of items in an option 
subwindow manager here. 

4-6 Revision A of 7 January 1984 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide Writing a Simple Tool 

4.7. Installing the Tool 

Up to this point, we have been building up structure under the tool object. The next thing to 
do is to install the tool window into the database of windows that are actually displayed on the 
screen: 

signal(SIGWINCH, sigwincbcatcher); 
tooUnstall(tool); 

Sun Windows uses async,hronous software interrupts to notify a program that one or mord of the 
windows it controls needs to refresh part of its image. A program controlling windows needs to 
set up a procedure to receive this SIGWINCH interrupt. The call to ,ignal(2) sets 1igwinchcatchcr 
as the procedure called when a SIGWINCH interrupt is sent to this program. 
Now that the program is ready to handle the SIGWINCH interrupt, the call to tool_in,ta/1 causes 
the tool window and its subwindows to be included in the database of windows that are actually 
displayed on the screen. During the call to tool_in,tal/, a SIGWINCH signal occurs, and 1igwinch­
catchcr ia called (asynchronously). What ,igwinchcatchcr does when it is called is described 
below in Notifieation Loop. 

I 

I 

4.8. Client Code 

Moat of the code in this program ia boilerplate, meaning that almost every other tool has the 
same sequence of calla. Of course, the number and kind of subwindows vary from tool to tool. 
The code described in this section is different from the boilerplate code; it is specific to the 
g/r/ltool and its terminal emulator subwindow object set up. The code in this section starts the 
child process that interacts with the user through the terminal emulator subwindow: 

win_f dtoname(emptyaw- >ts_ windowfd, name); 
we_Jletgfxwindow(name); 
oignal(SIGCHLD, oigehlde&teher)1 
if (ttyawJork(ttyew->ts_data, + + argv, 

&ttyaw• > t1jo.tiojnputmMk, 

} 

&ttyaw- >tojo.tio_outputmMk, 
kttyaw->tojo.tio_exceptmMk) -- -1) { 

perror(' gfxlOOI' ); 
exit(l); 

Typically, a canvas program runs undet a shell process which runs under the tool. There is a 
problem of communicating the name of the window that the canvas program is to use from the 
tool to the canvas program. This communication is done through the environment parameter 
WINDOW_GFX. A aubwindow object contains its (process specific) window's device identifier, 
called a window file dc,criptor. WinJdtonamc translates the file descriptor of the empty 
subwindow into its name, which is meaningful across process boundaries. Wc_,etg/zwindow sets 
the environment parameter WINDOW_GFX to be name. This window name is not be confused 
with the name passed into tool_crcatc, tty,w_createtool,ubwindow or c,w_createtool,ubwindow. 
One of the· things that the program wants to do is notice when its child process terminates. An 
asynchronous software interrupt called SIGCHLD is generated when a child process terminates. 
Signal causes aigchldcatchcr to be called when a SIGCHLD is received. What ,igchldcatcher does 
when it ia called is described -in Notification Loop. 
Tt111wJork forks the program named by the second string in argv. Tty,w-> t,_data is data 
specific to the terminal emulator subwindow package. The reason for the other parameters is 

Revision 1 of 'J January 1984 4-7 



Writing a Simple Tool SunWindows Programmer's Guide 

outside the context of this discussion. It is sufficient to say that the variables pointed to by 
these parameters are modified in t111awJork. 

The fork can fail; this is indicated by a return value of -1. An error message is written to stan• 
dard error by calling perror. The appropriate action is to terminate the program. 

4.9. Notification Loop 

Unlike other programs that you may have written, in a tool program you don't need to poll all 
the various devices on which you expect input or output. activity. Instead, a centralized 
notification manager calls out to interested parties when it detects certain events: 

tool,elect(tool, 1 /• means wait for child proceu to die•/); 

static eigchldcatcher() { tool,igchld(tool); } 

static sigwinchcatcher() { tool_sigwinch(tool); } 

Tool_,elect is called to serve as a notification manager for the tool object and its subwindow 
objects. 

• Input, output, or a timeout detected for a object causes a procedure associated with the 
object to be called. The. procedure is expected to respond to this notification appropriately, 
for example by reading available input, processing it and returning. 

• A SIGWINCH interrupt generates a call to 1igwinc/acotc/,er. This, in turn, calls tool_,igwinc/a 
with the tool handle as an argument. A procedure associated with each subwindow object 
responds to this notification appropriately. For example, it rescales its image (if the size of its 
window has changed), repaints and returns. 

The procedures that are notified of interesting events were established for the object instances 
retumed from the tool object creation and subwindow object creation calls descn1ied above; 
tool_create, tt111w_creotetool1ubwindow and e1w_createtool1ubwindow. 

As mentioned above, this program also needs to wait Cor the termination or its child process. 
Sigc/aldcotc/aer is called due to a SIGCHLD interrupt. Sigc/aldcatc/aer then calls tool_11'gc/ald. This 
causes tool_aelect to retum arter cleaning up the terminated child process (see the wait(2) sys­
tem call for more information about cleaning up after a child process). The second argument to 
tool_aelect, in ·this case 1, specifies how many child processes it should clean up berore returning. 

4,10. Cleanup 

The call to tool_deatro11 is made so that the tool manager and its subwindow managers may 
gracefully terminate any ties to the outside world, such as open files, subprocesses, etc. 

tool_deotroy( tool); 
exit(O); 

Just as there are procedures associated with a subwindow manager that are called in the 
notification loop, another procedure is called when a subwindow instance is being destroyed. 
The call to czit terminates the program and the argument O indicates that the program tel'­
minated normally. 

4-8 Revision A of 7 January 1984 

0 



0 

0 

0 

SunWindows Programmer's Guide Writing a Simple Tool 

4.11. Review 

After reading this section you should have a grasp of the following concepts: 

• A windou, is a UNIX device upon which the tool package and ,ubwindou, package, are built. 

• A tool object is a framework that is designed to help you manage multiple subwindow objects 
within a single process. 

• A 1ub1111iidou, manager is designed to provide a specific set of user interface functions. 

• Much of tool writing is setting up subwindow structure. 

• The flc;iw of control is based on notification and exceptions from the tool manager, not on pol-
ling. 

From here you may choose -to go to another example provided in Writing a More Sophiaticoted 
Tool to expand what you have learned. That example includes the following: 

• Using other predefined subwindow packages that the top level program interacts with more 
directly than the ones used in this simple example. 

• Creating a subwindow not using any predefined subwindow package. 

Revision A of 7 January 1984 4-9 



0 

0 

01 
j! 



0 

0 

0 

Chapter 5 

Writing a Simple Canvas Program 

This chapter describes a simple can11aa program, called canvaaftaah, that runs in SunWindows. 
A canvas program is one that owns a single window. In SunWindows, such a program is often 
written using the graphic, aubwindow package. This example shows how to use the graphics 
subwindow package to get a single window on which the application draws. The graphics 
subwindow package shields the canvas application from some of the complexities of window 
ownership. The graphics subwindow package is by no means the only vehicle for writing canvas 
programs. It is simply a mechanism to expedite canvas applications. 

Canvaaftaah creates a window and draws a vertical line, a white square and a string of text 
within the window. Every second it inverts the images within the window. Inverting the line 
causes it to appear white and essentially "disappear"; the text appears in reverse video; and the 
white square appears black. 

arkiv% canvasflash 
Stopped (signal) 

arkiv% I 

This is a string written with pw_text. 

Figure 5-1: canvaaftaah Output 

Revision A of 7 January 1984 5-1 



Writing a Simple Canvas Program 

Stopped (signal) 
arkiv% I 

SunWindows Programmer's Guide 

Figure 5-2: Inverted can11aafta1h Output 

With no arguments the program runs indefinitely .. To run the program for some number or 
iterations, invoke it with the •D number argument where number is the number or iterations: 

markiv% canvaaflaah -n number 

The source to this example is provided in the /uar/1unlool/arc/can11a1fta1h.c file. To compile 
the source, use: 

markiv% cc -o canvaaflaah canvaaflaah.c -lsuntool -lsunwindow -lplxrect 

5.1. The canvas/lash Code 

The flow or can11a1fta,h is as follows: 
• Oan11a1fta1h creates a graphics subwindow object and clears the window associated with it. 

• It loops for a specified number or iterations. Within the loop it checks some flags used for 
window housekeeping and reacts appropriately (details later). 

• Once everything is In a known state, can11a1fta1h displays the line, square and string or text. 
The operator that dlsplays the graphics objects is inverted every iteration. 

Here is a listing or /uar/1untoo//arc/can11a1fta,h.c. You may want to glance at it now, however, 
it is primarily meant to be referred to as you read the subsequent explanation. Extensive C 
comments are removed in favor or the accompanying text. 
firnder lint . 
static char sccsidO - •o(f)canvasftash.c 1.184/04/04 SMI"; 
fendif 

/• External l)eclarations •/ 
finclude <iltdio.h> 
finclude <euntool/g(x_bs.h> 

extern st'!lct pixront •pw_prsysopen(); 

static struct pixfoni •font; 
static struct g(xsubwindow •gl'x; 

Revision A or 7 January 1984 

0 

0 

C) 



0 

0 

0 

Sun Windows Programmer;• Guide 

ma.in( arge, argv) 
int ugc; 
char ••a.rgv; 

{ 

} 

int op; 

/• initia.lilation •/ 
if ((gfx - gfxswjnit(O, argv)) -- NULL) { 

} 

fpJintf(otderr, "Unable to open gr&pbieo oubwindow.\n"}; 
exit(!}; 

if ((font - pw..J)feyoopen()) -- NULL) { 
fprintf(etderr, "Unable to open default font. \n" ); 
exit(!}; · 

} 
pw_writebaekground(gfx->gfx..J)bcwin, O, O, 

gfx->gfx_rect.r_width, gfx->gfxJect.rJ,eight, PIX...OLR}; 

/• display loop•/ 
while (gfx->gfxJepo-) { 

} 

/• check to see if window bu changed oise or been exposed •/ 
if (gfx->gfx.J(ago & GFXJ)AMAGED} 

gfx1wJ,andle1igwinch(gfx); 

/• screen bu been corrupted and must be redrawn•/ 
if (gfx->gfx.J(ags & GFX_ltESTART) { 

} 

gfx·>gfx_flap &- "GFX_ltESTART; 
pw_writebackground(gfx->gfx..J)bcwin, 0, O, 

gfx->gfx_rect.r_width, gfx->gfxJect.rJ,eight, PIX...OLR}; 

/• change ruter operation between eaeh iteration•/ 
op - (gfx->gfxJepo % 2) T PIX...SRO: PDUIOT(PIX...SRO); 

/• ,..,,pie pw_• call••/ 
pw_vector(gfx->gfx..J)bcwin, 6, 6, 6, 100, op, l); 
pw_wrltebackground(gfx->gfx..J)ixwin, 26, 26, 76, 75, opJ; 
pw_text(gfx·>sf•..J>ixwin, 6, 126, op, 

font, "Thi• i1 • 1tri111.wrltten with pw_text."); 
1leep(l}; 

/• clean up•/ 
pw..J)fqecloN(); 
gfx1w_done(gfx ); 

6,2, External Declarations 

Writing a Simple Canvas Program 

This section describes the explicit external declarations that must be included to compile this 
program. The mt include statement allows the program to access standard error (atderr) for 
diagnostic output: 

#include <stdio.h> 

Revision A or 7 January 1984 5-3 



Writing a Simple Canvas Program Sun Windows Programmer's .Guide 

It also allows the program to use the buffered output print/ family. 
The graphics subwindow package that the program uses is part of the •untoola library with 
include files in / u,r/ include/ auntool. In the include statement: 

#include <suntool/gfx_hs.h> 

the _ha construct refers to aU header files needed to run a canvas application that: is based on 
the "gfx" (graphics) subwindow. 

5.3. Initialization 

This section describes the set-up undertaken before entering the looping part of the program. 
The following code creates a graphics subwindow object: 

if ((gfx - gfxsw_init(O, argv)) =- NULL) { 

} 

fprintf(stderr, "Unable to open graphics subwindow.\n"); 
exit(l); 

The call to llfzaw_init() parses argc, according to the description of arguments to the demo pro­
grams in auntool, (1 ), and returns a handle to a graphics subwindow object. The handle is a 
pointer to a 1truct llfzaubwindow which contains fields that the canvas application uses: 

g/z_piztDin 
is a 1truct pizwin pointer. A piztDin provides access to a window's visible surface. A pro-
gram displays in the window by operating through the pixwin. ·• 

11/z_rect 
is a atruct rect that describes the current size of the window. This value is updated by the 
graphics subwindow manager. 

g/z_flag• 
is an Int of window housekeeping flags. These flags, as well as g/z_rect, are updated asyn­
chronously by the graphics subwindow manager when something happens to affect the 
window's size or visibility. 

g/z_rep, 
is a count of the number of repetitions that a cyclic canvas program may use to count down 
with. It is initialized in g/zaw_init to a very large number. If a "-n #" argument sequence 
is found in arg11 then * is used as the number of repetitions. 

If the returned pointer is NULL, an error condition exists. The message "Unable to open._graph­
ics subwindow." is displayed, and the program exits. 
In a similar fashion, we open a font file that is used while writing text to the screen, and display 
an error message if there is a problem: 

if ((font= pw;fsysopen()) == NULL) t 
fprintf(stderr, "Unable to open default font.\n"); 
exit(2); 

} 

We then call pw_w,itebackground() to clear the window: 

pw_writebackground(gfx->gfx_pixwin, 0, O, 
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PD(_CLR ); 

5.4 Revision A of 7 January 1984 

0 

0 

0 



SunWindows Programmer's Guide Writing a Simple Canvas Program 

o It writes zeros, defined as the background color, on its destination, g/z-> g/z_pizwin. 

0 

0 

5.4. Display Loop 

This part of the program loops until the user interrupts the program or until the repetition 
counter (g/z-> g/z_rep,) goes to zero: 

while (gfx->gfx_reps-) { 

The program is responsible for decrementing this counter to keep track of the number of itera­
tions left to be done. 

A graphics subwindow object contains a set of housekeeping flags that the program interrogates. 

if (gfx->gfx_flags & GFX_DAMAGED) 
gfxsw _handlesigwinch(gfx ); 

The status flag GFX....OAMAGED indicates when part of the window has become exposed or when 
the window has changed size. Removing an overlapping window or changing the window's size 
may expose a portion of the window, whose image must then be redrawn. The description of a 
previously hidden area of the window is known as damage because the application may need to 
redraw part of its image. 

The standard thing to do when the GFX....OAMAGED flag is set is to call g/zaw_handle,igwinch. 
Unless the window's size has changed, this routine can repair the damage if the graphics 
subwindow 's pix win has been made retained. 

The graphics subwindow manager sets the GFX,JtESTART flag on window size changes or when 
there is some part of the window for the client to refresh. 

if (gfx->gfx_flags & GFX_RESTART) { 
gfx->gfx_flags &- - GFX_RESTART; 

} 

pw _writebackground(gfx- > gfx__pixwin, O, O, 
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PD{_CLR ); 

Many canvas applications will scale their contents to current dimensions. The minimum that 
needs to be done is to clear the flag and repaint the window. Here we just clear the window. 

To flash the demo, we alternate PIX....SRC and PJX.NOT(PIX....SRC) as display operations: 

op=- (gfx->gfx_reps % 2)? PIX_8RC : PIX_NOT(PIX_SRC); 

Each pixwin operation is given a source image, a destination image, and an operator. The 
operator determines the relationship between the source image and the destination image. For 
now, it is important to note only that PIX....SRC maps its source directly onto its destination. 
PJX.NOT(PIX....SRC) inverts its source before mapping it onto the destination. 

The following function calls are the meat of the program, as they draw the graphics in the win­
dow: 

pw_vector(gfx-:>gfx__pixwin, Ii, 5, 5, 100, op, 1); 
pw_writebackground(gfx->Jx__pixwin, 25, 25, 75, 75, op); 
pw_text(gfx->gfx__pixwin, 5, 125, op, 

font, "This is a string written with pw_text."); 

Revision,\ of 7 January 1084 5-5 



Writing a Simple Canvas Program Sun Windows Programmer's Guide 

Pw_vector() 
draws a vector onto a destination pixwin. It accepts as arguments the destination, end-
points for the vector, a raster operation to apply to the source before writing, and a source 0 
value to write (color). 

Pw_writebackground() 
is used to draw a solid square on the display. 

Pw_te:rt() 
writes text in a specified font. It accepts as arguments a destination pixwin, a location 
within the destination at which to begin writing (the y component is the baseline, not the 
upper edge of the text), a raster operation that specifies how to combine the text with the 
destination, a handle to the desired font - typically a pointer to a piz/ont structure 
acquired by opening the font, and a string of text to be printed. 

The sleep procedure waits for 1 second before returning. This slows the action so that you can 
clearly see the flashing. 

sleep(l); 

5.5. Cleanup 

To cleanup before exiting the program, we have: 

pw __pfsysclose(); 
gfxsw _done(gfx ); 

• Pw_p/111acloae() frees the resources used for the program's text font. 

• g/zaw_done () frees the resources allocated for the graphics subwindow. 

5.6. Review 

After reading this section, you should know: 
• that canvas programs can be written using the graphics subwindow package, 

• that canvas programs need not be written using the graphics subwindow package, 

• how to write a non-interactive canvas program, and 

• that pix wins are used to write on the display. 

0 

' I 

ol 
5-6 Revision A of 7 January 1984 



0 

0 

0 

Chapter 6 

Writing a More Sophisticated Tool 

Here we examine a tool which uses Sun Windows facilities to perform a more sophisticated 
operation than the g/:dool covered in Writing o Simple Tool. This tool, called the mouae loot, 
evaluates different mice for speed and accuracy; it can also be used as a drill to improve a user's 
skill with the mouse. 
The mouse tool presents a kind of shooting gallery to the user: it displays a sequence of ran­
domly positioned targets to be selected with the mouse. After any click of the left mouse but­
ton in the window, the current target is removed from the window and the next one presented. 
Ir the cursor was within the target, the time that target was kept up is computed; otherwise, 1 
is added to a count of errors. A continuously-updated report of the user's speed and accuracy is 
displayed in a message subwindow. 
The following figure presents a view of the mouse tool in operation. 

(Skrt) Ta.,,.t Stu: { 4 8 12 - 24 32 J 
jlriii m: j1 

• .. 

Figure 6-1: mouaetool Output 

The mouse tool incorporates three subwindows, two standard and one special: 

option aubwindow 
is the vehicle through which the user controls the parameters of the tool's operation, 
such as the size of the target and the particular sequence of random positions. 

Revision A of 7 January 1984 6-1 



Writing a More Sophisticated Tool Sun Windows Programmer's Guide 

meaaage aubwindow 
displays the current report. 

range aubwindow 
is where targets are set up as on a firing range - this is a custom subwindow. 

6.1. Overview of the Mouse Tool Processing 

Processing in the mouse tool occurs in four phases: 

Tool initialization 
When the tool starts up, it creates its various windows, adds the desired items to the 
option subwindow, and provides handlers for the events of interest (size change sig­
nals and input events). Then the tool's window is installed, and the standard tool 
control structure is invoked. 

Sequence initialization 
It is possible to run multiple sequences of trials with one invocation of the tool. At 
the start or each sequence, the tool sets the size or the target to be used, resets the 
counters that record performance, determines the particular sequence or target loca­
tions, and presents an initial target for the user to select. 

Trial Proceaain11 
When a sequence or trials is begun, the tool notes the time when a target is put up, 
and waits for a button-down on the mouse's left button inside the subwindow which 
holds the target. When the button-down is received, the time is noted, and the 
mouse coordinates are checked to determine whether the user hit the target. Ir so, 
the mean time to hit is updated, else the number of errors is. In either case, the new 
result is reported in the message subwindow, and another trial is started. 
The user may start a new sequence or trials at any time by selecting the (Start) 
command, or by changing the target size, in the option subwindow. 

Termination 
The tool will repeat trials and sequences or trials endlessly, until stopped. The most 
convenient way or terminating the tool is to bring up the Tool Manager menu ( avail­
able in any of the tool's windows, since none or them provides a menu or its own), 
and select the Quit item. This causes the tool to exit its main loop. Then a call to 
tool_deatroy releases resources allocated by the tool and its subwindows, and the 
tool's process terminates normally. 

6.2. The mousetool Code 

The following pages present the code or mouaetool.c. The in-depth discussion that follows cov­
ers this code pretty much in order. Extensive C comments are removed in favor or the accom­
panying text. 

fi(nde( lint 
static char BCC5id0 ~ "«l(#)mow,etool.c I.I 84/04/04 SMI"; 
fendir 

l>-2 Revision A or 7 Janua,y 1984 

0 

0 

0 



0 

0 

0 

Sun Windows Programmer'• Guide 

fincludo <ndio.h> 
finclude <suntool/tool.,Ju,.h> 
fincludo <suntool/opiionsw.h> 
fincludo <suntool/mspw.b> 

random(); exiorn long 
extern char 
exiorn siruct pidont 

•init,,iate(l; 
•pw_pfll)'sopon(l; 

/• tool and sunwindow .. spociftc daia •/ 
siaiic siruct tool •too~ 
static struci toolsw •m•Lisw, •opt_t,,w, •range_t,,w; 
static atruct pixwin •r&11ge_pixwin; 
atatic struct mepubwindow •m••i 
atatic caddr_t oaw, etart_item, eiseJtem, srandJtem; 

siaiic siruct iyped_pair 
siaiic siruci iyped_pair 
1i1iic char 
1i1iic ,iruci iyped_pair 
1tatic int 
1i1iic siruct iyped_pair 

simJabel - { IM..TEXT, •sim• }; 
siloJabol - { IM..TEXT, "Target Sise• }; 

•eile_tapO - { "'", "8", "12\ "18", "24", 11 32., O}; 
silo_choic••- { IM_TEXTVEC, (eaddr_i)si1e_iago }; 
,ile_valuooO- { 4, 8, 12, u, 24, a2 }; 
erandJabel - { IM_TEXT, "Trial ID" }; 

11111c uJni running - FALSE, 
cur.Jt, curJ, silt - 1D, 
cum_time, erron1 trial,_done, 
win_widlb, win...hoi&hl, widlbJimil, hoi&hUimit; 

etatic etruct timeval etart_time, stop_time; 
,iaiic 1truci iimesone truh...1one; 

1l1lic 1lm_proc(l, 1igwinchod()/rango_oelociod(), range_sighandler(); 

,._;.,: 

Revision A or 7 Januaey 1984 

Wriiing a Moro Sophisiicaiod Tool 

6-3 



Writing a More Sophisticated Tool SunWindows Programmer's Guide 

main() 
{ 

/• create the tool • / 
tool - tooLcreate("Mou,e Tool 1.1•, TOOL...NAMESTRIPE I TOOL_BOUNDARYMGR, 

(struct rect •)NULL, (etruct icon •)NULL); 
it (iool -- (.iruct tool •)NULL) loee("Couldn't create tool"); 
font - pw_pfsyeopen(); 
if (font -- (etruct pixfont •)NULL) loee("Couldn't get default font"); 

/• create and iniiialiJe the me .. age eubwindow •/ 
meg_t"'I' - msgew_createtooleubwindow(tool, "", TOOL_SWEXTENDTOEDGE, 

(foni->pf_defaulteise.y • 3) / 2, "Click (Start) to begin", font); 
it (meg,;tew -- (etruct toolaw •)NULL) loee("Couldn't create message subwindow"); 
msw - (.iruct msgsubwindow •)msg_tsw->ts_data.; 

/• create and initialiJe the option eubwindow •/ 
opt_tsw - optsw_createtooleubwindow(tool, "", TOOL_SWEXTENDTOEDGE, 

foni->pf_defaultsiJe.y • 3); 
if (opt_tsw -- (etruct toolaw •)NULL) loee("Couldn't create option subwindow"); 
init_option,(); 

/• create and initiali1e the range subwindow •/ 
range_taw - .tooLcreatesubwindow(tool, "", 

TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE); 
if (range_tsw -- (struct toolew •)NULL) loee("Couldn't create range eubwindow"); 
initJange(); 

) 

initstate(l, randomJtate, 256); 
eignal(SIGWINCH, eigwinched); 

/• install tool •/ 
iooljnstall(tool); 
iooL,,elect(tool, O); 

/• terminate tool•/ 
tooLdestroy(tool); 
pw_pfsyscloee(); 
exit(O); 

lose(etr) 
char•etr; 
{ fprintf(stderr, ,tr); exit(!); 
} 

static 
sigwinched() 
{ toolJigwinch(tool); 
} 

IH Revision A of 7 January 1984 

0 

0 

0 



0 

0 

0 

Sun Window• Programmer'• Guide Writing a More Sophisticated Tool 

static 
init_opuons() 
{ 

} 

struct item_plaee place; 

osw - opt_tsw->ts_data; 
startjtem - optow_command(osw, &startJabel, start..proc); 
if (starUtem -- NULL) loSB('Couldn't create start item"); 
sia:ejtem - optsw_enum(on, &siseJabel, &si1e_choicea1 O, 3, sta.rt_proc); 
if (si1ejtem -- NULL) lose('Couldn't create size item"); 
srandjtem - optnrc..text(osw, &srandJabel, "1", O, (int(•)()) NULL); 
if (srancl...item -- NULL) lose("Couldn't create random initializer item"); 
optow~etplace(oow, srandjtem, &place); 
place.rect;rJeft - optsw_coltox(osw, O); place.flxed.x - TRUE; 
place.rect.r_width - optow_eoltox(osw, 80); plaee.flxed.w - TRUE; 
optow.,J1etplaee(osw, •rancl...item, &place, FALSE); 

static 
initJangef) 
{ 

} 

struet inputmuk muk; 

range..pixwin - pw_open(range_tsw• >ts_windowfd); 
if'(range..pixwin -- (struet pixwin •)NULL) lose("Couldn't create range pixwin"); 
range_tsw- > tsjo.tio.J,andleoigwineh - range.,Jlighandler; 
range_tnr->t1jo.tio..J1electsd - range..Jleleeted; 
input_jmnull(&muk); 
win.,J1etinputcodebit(&muk, MSJ,EFT )I 
win.,J1etinputmuk(range_tzw->tz_windowfd, &muk, (•truct inputmask •)NULL, WIN_NULLLINK); 

/• respond to damage to rangesubwindow •/ 
stauc, 
range....elghandler(1w), 
caddr_t 1w; 
{ 

} 

struct rect r;. 
int val; 

win~etsise(range_te,r.>t1_wlndowfd, &r); 
win_width - r.r~width; win.J,eight - r.r.J>eight; 
widthJlmit - r.r_widtb • oi1e; heigbtJimit - r.r.J,eigbt • si1e; 
pw_damaged(range..pixwin); 
pw_writebackground(range..pixwin, O, 0, r.r_widtb, r.r.J,eigbt, Pill.CLR); 
pw_donedamaged(range..pixwjn); 
if (running) 1tart_proc(oow, ~tartjtem); 

Revioion A or 7 January 1984 6-5 



Writing a More Sophistica.ted Tool 

/• get notification from option subwindow •/ 
fdefine SEED ...llUF _SIZE 256 
static 
start_J>roc(!W, ip, new_value) 
caddr_t sw; 
c&ddr_t ip; 
int new_value; 
{ 

} 

int 
char 
otruct otring_buf 

seed, val; 
buf_d&ta(SEED.JlUF _SIZE(; 
bur; 

if (running) { 

} 

running - FALSE; 
msgswJetstring(msw, "Reatarting"); 
sleep(2); 

pw_writebackground(range_pixwin, 0, 0, win_width, win.Jieight, PIX..CLR); 
oi1e - oi1e_valueo(optow...&etvalue(oi1ejtem, (eaddr_t)&val)J; 
widthJimit - win_width .. size; heightJimit - win_height .. sise; 
bur.limit - SEED.JlUF _SIZE; bur.data - buf_data; 
optow...&etvalue(orandjtem, (caddr_t)&bul); 
eeed - atoi(bu(_data); 
initetate( .. ed, r&ndomJtate, 256); 
oet_target(); 

/• respond to user inputs in target range •/ 
static 
rangeJelected(ew, ibite, obits, ebite, timer) 
ca.ddr_t ew; 
int •ibite, •obits, •ebits; 
struct timeval ••timer; 
{ 

6-6 

int x, Yi 
struct inputevent ie; 

ir (input_readevent(range_tow->to_windowrd, &ie) -- -1) { 
perror(' input_readevent tailed'); 
abort(); 

} 

SunWindows Programmer's Guide 

() 

0 

0 
Revision A or 7 January 198t 



0 

0 

0 

Sun Window• Programmer'• Guide 

} 

•ibite - •obita - •ebite - O; 
x - ie.ie_locx; y - ie.ieJoeyi stop_time - ie.ie_time; 
if (!running) { 

cum_tinie - trials_done - erron - O; 
running- TRUE; 

} else { 

} 

triall_done + - 1; 
it (s < eur..,1 111 < cur_y 11 

s >- cur_x + llile II 1 >- cur_y + oi1e) { 
error,+• 1; 

} else { 

} 

it (nop_time.tv_uoec < otart_time.tv_uoee) { 
1top_time.tv_u10e + - 1000000; 
otop_time.tvJec ·- l; 

} 
cum_time + - etop_time.tv_ueee - etart_time.tv_ueec + 

(etop..time.tv_oec • etart_time.tv_oee) • 1000000; 

pw_writebackground(range_piswin, cur..,11 cur_y, obre, ebre, PIX...CLR); 
report(); 
oet_targct(); 

static 
oet_tatget() 
{ 

} 

cur..)I - random() % widtbJimit; 
eur_y - random() % beightJimit; 
pw_writebackground(range_piswin, cur..,1, cur_y, ebre, ebre, PIX_SET); 
gettimeofd&)'(&ltart.time, &:truh_oone); 

static 
report() 
{ 

} 

int 
double 
char 

good_trlala - trlale_done • errors; 
mean_time; 
bur(2681; 

Ir (good.trials -- O) { 
mean..time - O; 

} else { 
mean..time - ((tloat)cum_tlme / (ftoat)good_triala ) / 1000000; 

} 
eprlnU(but, 

• %d trials; %d errors; mean time: %r ••.•, 
trlala_done, errors, mean_time); 

m1gewJet1tring(m1w1 bul); 

6,3, External Declarations 

Writing a More Sophisticated Tool 

The first lines of the program are concerned with procedures and data declared elsewhere. Four 
header files are included: 

Revision A of 7 January 1984 6-7 



Writing a More Sophisticated Tool Sun Windows Programmer's Guide 

#include <stdio.h> 
#include <suntool/tool_hs.h> 
#include <suntool/optionsw.h> 
#include <suntool/msgsw.h> 

<,tdio.h> 
provides the declarations for things in the standard I/0 library, /print!, for instance, and 
declares NULL. 

<,untool/ tool_ha.h> 
includes the collection of header files needed for dealing with tools and subwindows. Its 
function is the same as in the g/ztool described in Writing a Simple Tool. 

< ,untool/ optionaw.h> 
has the declarations of the procedures, structures, and defined constants needed for an 
option subwindow. 

< auntool/ m1g1w.h> 
has the declarations of the procedures, structures, and defined constants needed for a mes­
sage subwindow. 

There are also external declarations for two C library procedures, which implement a random 
number generator; these declarations do not appear in any header file. 

extern long random(); 
extern char •initstate(); 
extern struct pix font •pw _pfsysopen(); 

6.4. Global Data Definitions 

The next lines declare global data for the program. These items have two possible functions: 
they are referenced from several procedures or they maintain a state; a few items which could 
be local to a procedure appear here simply to keep them associated with related items which are 
global. There are also declarations of four procedures which will be defined later; C requires 
such declarations to allow the addresses of these procedures to be used before the procedures are 
defined. 

6.4.1. Tool- and Sunwindows-Specific Data 

The first lines of global data are directly concerned with the mouse tool's interface to the win­
dow system: 

static struct tool •tool; 
static struct toolsw •msg_tsw, •opt_tsw, •range_tsw; 
static struct pixwin •range_J>ixwin; 
static struct msgsubwindow •msw; 
static caddr_t os~, start_item, size_item, srand_item; 

The tool handle (pointer to a atruct too~ returned by tool_create will be stored in tool. Handles 
for the three subwindows (pointers to ,truct tool,w's) will be stored in m1g_t1w, opt_t,w, and 
range_t,w when they are returned from their respective. creation routines. Because the mouse 
tool uses the pixwin display interface directly to display in the range subwindow, there is a 
pointer here for the range subwindow pixwin structure. Maw will hold a pointer to the private 

6-8 Revision A of 7 January 1984 

0 

0 

ol 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Tool 

data for the message subwindow. Oaw will hold a pointer to the private data for the option 
subwindow, and the three option items in that subwindow will be identified by handles stored in 
atart_itcm, ai:e_itcm, and arand_item. 
The next six lines hold dati. used to define the three items in the option subwindow: 

static struct typed..J>air startJabel = { IM_TEXT, "Start" } ; 
static struct typed_pair sizeJabel = { IM_TEXT, "Target Size" }; 
static char •size_tags[) = { "4", "8", "12", "16", "24", "32", O}; 
static struct typed_pair size_choices = { IM_TEXTVEC, (caddr_t)size_tags }; 
static int size_values[J = { 4, 8, 12, 16, 24, 32 }; 
static struct typed_pair erandJabel = { IM_TEXT, "Trial ID" }; 

All three items have text for their textual labels, as indicated by the type IM_TEXT in the atruct 
lgpcd..Jlair. The enumerated item also has an array of labels for its various choices ( type 
IM_TEXTVEC), and another array for translating the value of the item. (This is needed 
because the option subwindow implementation deals with the value as an index in the range O -
5, where we want the corresponding values 4, 8, 12, etc.) 

6.4.2. Other Global Data 

The other lines of global data declarations are: 

static ujnt 

static char 

running = FALSE, 
cur__x, cur_y, size= 16, 
cum_time, errors, trials_done, 
win_width, win_lieight, width_limit, heightJimit; 

random__state[256); 

static struct timeval start_time, stop_time; 
static struct timezone trash_zone; 

static struct pixfont •font; 

Running is a state variable used to indicate whether a sequence of trials has been started. 

CurJ, cur-11, and ,izc 
define the current target. 

Cum_timc, error,, and trial,_done 
accumulate statistics for a sequence of trials. 

Win_widtla and win_laciglat 
are the cached dimension of the range subwindow, and widtla_limit and /aeig/at_limit 
are those same dimensions less the size of the target. (These limits are used to calcu­
late target positions so that the target is always fully visible.) 

Random_,tate 
is a state vector required by the random number library routines. 

Start_timc and atop_time 
are used to note the time a target is put up and the time of the subsequent button­
push that ends that trial. The system call that provides a time also requires a place 
to store a time-zone, which we ignore; traala_zonc provides this area. The message 
subwindow creation routine requires a font handle with which to display the current 

Revision A of 7 January 1984 6-9 



Writing a More Sophisticated Tool Sun Windows Programmer's Guide 

message; this will be stored in font. 

Finally, the four procedures whose addresses will be used before they are defined are declared: o 
static start_proc(), sigwinched(), range_selected(), range_sighandler(); 

6.5. Main Procedure 

When the mouse tool is started, control is passed to the procedure main. Thus, this procedure 
provides a top-level view of the tool's processing. Nineteen of the 22 lines are concerned with 
initialization, and the last two provide clean termination: all of the normal processing for the 
tool is encapsulated within the call to tool_ae/ect. 

6.6. Initializing the Mouse Tool 

The general strategy of tool initialization is to create a tool object, and then to create its 
subwindow objects in the order they appear in the tool window, initializing each in turn. When 
the whole structure is built up, SunWindows is told that the tool is ready to handle signals from 
the window system, and the tool's window structure is inserted into the tree of windows for its 
display. This is the point at which the tool's windows become visible on the screen. 
Most of the procedures that will be called in the initialization phase may indicate they were 
unable to perform their task. The mouse tool's response to all of these is the same: it explains 
what went wrong as best it can, and gives up. This is handled by the procedure lo,e() 
described in Remaining Initialization. 

6.6.1. Creating the Mouse Tool 

The first two statements of main() create the tool object with standard options, or complain if 
that's not possible: 

tool - tool_create("Mouse Tool 1.1", TOOL_NAMESTRIPE I TOOL_BOUNDARYMGR, 
(struct rect •)NULL, (struct icon •)NULL); 

if (tool -- (struct tool •)NULL) lose("Couldn't create tool"); 

• "Mouse Tool 1.1" is the string that is displayed in the mouse tool's name stripe, and in its 
icon when it is closed. 

• Two flags indicate respectively that the mouse tool should be displayed with the usual black 
stripe containing the mouse tool's name at the top (TOOL...NAMESTRIPE), and that the user 
should be able to adjust the boundaries between subwindows (TOOL..BOUNDARYMGR). Both 
these facilities are implemented by library procedures which will be invoked as needed; no 
further client actions are required to provide them. 

• The tool's size and position are left to the window manager's discretion by supplying NULL 
instead of a pointer to a rectangle in the third argument. 

• Similarly, the NULL in the fourth argument indicates that the default icon should be used for 
this tool. This is a square with a thick black border, and the tool's name displayed inside as 
shown in the following figure. 

6-10 Revision A of 7 January 1984 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Tool 

Mouse 
Tool 

Figure 6-2: Default Tool Icon 

6.6.2. Creatlng and Initializing the Message Subwindow 

The next lilies of main create the first subwindow object for the tool. This is the message 
subwindow where messages wilt be displayed to the user. 

fq11t - pw_pfsysopen(); 
if (font =- (struct pixfont •)NULL) lose(" Couldn't get default font"); 
msLtsw .... msgsw_createtoolsubwindow(tool, "", TOOL_SWEXTENDTOEDGE, 

(font->pf_defaultsize.y • 3) / 2, "Click (Start) to begin", font); 
if (msLtsw -- (struct toolsw •)NULL) lose("Couldn't create message subwindow"); 
msw,.,. (struct msgsubwindow •)msLtsw->ts_data; 

Since the message subwindow requires its clients to specify which font to use for displaying the 
messages, the first step is to determine the system default font, and to store its handle in the 
global variable font. 

The subwindow object is actually created in a call to m1g1w_createtoo/1ubwindow; its arguments 
indicate dl'tails specific to this particular message subwindow: 

• Tool i~tntill.es the tool object this subwindow is to be part of by passing in the handle which 
tool_crdpte provided. The tool object will be modified to include the new subwindow object 
createc(ln this call, · 

• Since siibwindow names are not used for anything at this point, an empty string is given for 
the name of this argument. 

• TOOL_5WEXTENDTOEDGE indicates that the width of the subwindow is to be elastic, stretch• 
ing to II.II whatever the width of the tool window happens to be. 

• The height o# the message subwindow is defined to be 1.6 times the height of characters in 
the current font. 

• The string "Click (Start) to begin" specifies the text that will be displayed when the message 
subwindow first appears. ' ·' 

• Font sp11ci6.es the font that will be used to display messages; its value is the font handle 
which was provided by the call to pw_p/1y1open() in the first line of this section. 

In calls to message subwiudow procedures, the information needed about the subwindow is 
encapsulated in the subwindow's private data, the object pointed to by t,_data in the too/aw 
struct. Therefore, we save this handle in m,w for convenience in passing it to those message 

Revision A of 7 January 1984 6-11 



Writing a. More Sophisticated Tool Sun Windows Programmer's Guide 

subwindow procedures. 

6.6.3. Creating and Initializing the Option Subwindow 

The next subwindow created is an option subwindow, which provides a control panel for the 
tool. Because the message subwindow was specified to spread across the tool, this second 
subwindow will also begin at the left edge, starting immediately below the message subwindow: 

opt_tsw = optsw_createtoolsubwindow(tool, "", TOOL_SWEXTENDTOEDGE, 
font·>pf_defaultsize.y • 3); 

if (opt_tsw === (struct toolsw •)NULL) lose("Couldn't create option subwindow"); 
inlt_options(); 

The arguments to optaw_createtool,ubwintlow exactly parallel those 
m,g,w_createtoolaubwintlow, leaving off the text and font. 

to 

Because initializing this subwindow object is somewhat more complicated, creating several 
option items has been isolated in a subroutine: 

static 
init_options() 
{ 

struct item,.J>lace place; 

0 

Among the structs declared in optionsw.h is a struct item_place, which describes the layout 
aspects of an option item (the x and y origins, the width and height, and four boolean flags 
indicating whether each of those may be adjusted when the window must be rearranged). This 
struct will be used to ensure that the third item which holds text begins a new line and is wide Q 
enough to display its contents. 

As with the message subwindow, the usual object of interest to option subwindow procedures is 
the private data specific to the subwindow's nature as an option subwindow. The handle on 
this data is stored in the global variable oaw: 

osw - opt_tsw->ts_data; 

Then we proceed to create the option items. The option subwindow package provides a distinct 
creation routine for each kind of item (boolean, command, enumerated, label, text); each routine 
returns either a handle on the item created, or NULL if it cannot create an item. 

The first item in the window is a command; that is, it invokes some procedure when the user 
selects it with the mouse. 

sta.rt_item = optsw _command( osw, &sta.rt_label, sta.rt,.J>roc ); 
if (sta.rt_item =- NULL) lose("Couldn't create start item"); 

A tool may have several option subwindows; o,w indicates which option subwindow this item is 
to be added to. It will be positioned in the upper left comer of the window because it is the 
first item created for this subwindow. The text "Sta.rt" labels it, as defined in the static data. 
item atart_label. When the user selects the button on the screen, we wa.nt the procedure 
atart_proc to be invoked. 

The next item is to be a.n enum, a.n item whose va.lue is one of a. sma.11 set of defined values: 

size_item = optsw_enum(osw, &size_la.bel, &size_choices, 0, 3, sta.rt,.J>roc); 
if (size_item == NULL) lose("Couldn't create size item"); 

6-12 Revision A of 7 Ja.nua.ry 1984 

C) 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Tool 

Its label has likewise been predefined as the text "Target Size." The choices available to the 
user are listed in the the array 1ize_choice1, namely 4, 8, 12, 16, or 32. No flags are currently 
defined for enumerated items, so we explicitly pass O here. We indicate which choice we want 
to be the initial value of the item by giving its index in the choice array as the fifth argument: 
1ize_choice,[3J is "16." Note that the value of an enumerated item is reported and manipulated 
as an index into an array, not the text of the choice the user sees. Finally, whenever the user 
changes the value of this item, we want to restart the sequence of trials with the new target 
size, so we specify that ,tart_proc is to be invoked in this case as well as when the "Start" com-
mand is selected. · 

The last item in the option subwindow is a seed for the random number generator; this allows 
the user to replicate a sequence ot trials exactly, lending some validity to comparisons. The 
seed is actually a number, but the user will enter it as text, so we want a text item: 

srand_item - optsw_text(osw, &srand_label, "1", O, (int(•)())NULL); 
if (srandjtem -- NULL) lose("Couldn't create random initializer item"); 

The specification of the containing option .subwindow and the label of the item are just as in the 
previous items. The initial value of the item will be the string "1"; we don't want any of the 
options specified by Bags (the only one currently defined masks the value, as for passwords); and 
we don't need any proeedure to be invoked when the value changes. 
We do, however, care about the placement of the item. Since text is generally elastic, the 
option subwindow's layout routines will have a much easier time, and generally produce a more 
pleasant result, if we constrain the variability of the item: 

optsw_getplace(osw, srand_item, &place); 
place.rect.r_lefi - optsw_coltox(osw, O); place.llxed.x = TRUE; 
place.rect.r_width - optsw_coltox(osw, 60); place.llxed.w = TRUE; 
optsw_setplace(osw, srand_item, &place, FALSE); 

Optato_getplace stores a description of the item's current size, position, and flexibility into the 
struct place. We then modify that description to ensure that the item starts at the left edge of 
the window, and the combined width of the label and value is sufficient to hold 60 characters. 
We are using the optaw_coltoz utility routine provided by the option subwindow package to 
translate character coordinates to pixels. That description is then handed back to the option 
subwindow package, which will now refrain from modifying the fixed aspects of this item. The 
fourth argument to optaw_aetplace indicates whether the subwindow should be laid out again, 
taking the new information for this item into account. Since the window hasn't appeared yet, 
there's 110 point to rearranging it, hence our "FALSE." 

This completes initialization. of the option subwindow. 

6,6,4, Creating and Initializing the Range Subwindow 

The last subwindow created is the range in which targets will be displayed. There is no esta­
blished subwindow type which provides this capability for us, so we will build it ourselves on 
top of lower-level facilities. 

The Bret step looks very fa~iliar: 

range_tsw = tool_createsubwindow(tool, ••, 
TOOL_8WEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE); 

if (range_tsw =- (atruct toolsw •)NULL) lose("Couldn't create range subwindow"); 

TooLcrcate,ubwindow is a procedure which creates a tool subwindow of no defined type. Its 

Revision ~ of 7 January 11184 6-13 



Writing a More Sophisticated Tool Sun Windows Programmer's Guide 

only interesting properties are that it will expand across and down to fill the remainder or the 
tool window's area. 

The steps required to give the range subwindow some interesting behavior are again isolated in 
a separate procedure to keep from cluttering main: 

init_range(); 

We look at that procedure here: 

static init_range() 
{ 

s·truct inputmask mask; 

Since there is no established subwindow type implementing the range subwindow for us, we will 
be doing our own input and output. The input mask controls which user input events are actu­
ally read from this window. 

In order to draw on the window safely, we want to use the pixwin facilities detailed in 011er­
/apped Window,: Imaging Facilitie, in the reference manual. Our first step is to get a pixwin for 
the window: 

range__pixwin =- pw_open(range_tsw->ts_windowfd); 
if (range__pixwin ==- (struct pixwin •)NULL) lose("Couldn't create range pixwin"); 

This pixwin handle will be used in the routines which draw on this window. 

The next step is to set up the tool subwindow object so it will be notified of interesting events. 
In our case, there are two such events: 

• a signal (SIOWINCH) indic~ting that the window has changed and may need repair, and 
• arrival of a user input event to be read and processed. 

For each such event, the address of a procedure which can handle it must be stored in an 
appropriate procedure pointer: 

range_tsw->ts_io.tio_handlesigwinch == range_sighandler; 
range_tsw->ts_io.tio_selected ... range_selected; 

This declares that range_,ighandler is the procedure to call when a SIOWINCH indicates damage 
to the range subwindow, and range_,elected is the procedure to call when the user generates 
input of interest. 

The last step in inirializing the range subwindow is to specify which input events are of interest. 
As it turns out, al we care about is a button-down on the left mouse button. So we start by 
making our mask accept no events at all, and then tum on the bit that indicates interest in the 
left mouse button. That is the mask we tell the system to use: 

input_imnull( &mask); 
win_setinputcodebit(&mask, MS_LEFT ); 
win_setinputmask(range_tsw->ts_windowtd, &mask, NULL, WIN_NULLLINK); 

The NULL third argument to win_,etinputma,k indicates that we have no desire to dispose of 
any events already queued for this window. (There should be none, since the window hasn't 
appeared on the screen yet.) The WIN_NULLLINK in the fourth argument indicates that the next 
window to be offered an input event that the range subwindow doesn't want should be the 
default, namely its parent (the tool window). 

This concludes the initialization of the range subwindow, the last of the tool's windows. 

6-14 Revision A of 7 January 1984 

0 

0 



SunWindows Programmer's Guide · Writing a More Sophisticated Tool 

8.8.5. Remaining Initialization and Utilities 

0 The remaining initialization is very simple: 

initstate{l, random_state, 256); 
signal(SIGWINCH, sigwinched); 
tool_install(tool); 

0 

0 

The random number generator is initialized to start with its default sequence of positions. The 
operating system is informed via the ,igno/(3) system call that this process is prepared to 
receive SIGWINCH signals, and that the procedure to invoke when they occur is 1i11winched. 
Until now, the various windows have existed in limbo as they were being set up; tool_in,toll is 
responsible for putting them on the screen. 
This completes the tool initialization discussion. Before we turn to normal tool processing, how­
ever, let us examine two brief procedures which are defined immediately after main. The first is 
the procedure which has been used throughout initialization to note an unrecoverable failure: 

lose(str) 
cl,.ar •str; 
{ fprintf(stdel'l', str); exit(l); 
} 

Lou takes a string aa its argument, prints it on the standard error stream, and exits the pro­
gram. 
The second procedure is even shorter, though somewhat more central to our program. It is 
invoked when the process receives a SI Cl WINCH signal: 

static 
sipinehed() 
{ tool_sigwinch(tool); 
} 

This procedure runs asynchronously; that is, almost any other statement in the program may 
be in the midst of executing when this is called. Therefore, we want to be very brief about the 
processing done here, and to be careful neither to rely on the state of data in other parts of the 
program, nor to invalidate assumptions those other parts may make about their data. 
In light of these considerations, the mouse tool's response to a SIGWINCH is simply to set a flag 
notiq that the interrupt has occurred, and to return. This is done by the call to tool_,igwinch; 
the tool argument allows that procedure to know where to set the flag. All other processing in 
response to the signal is delayed until the program's normal processing gets around to noticing 
this flag and invoking appropriate handlers synchronously. This is described under tool_,elect() 
in the next section. · 

This concludes the discussion of tool initialization for the mouse tool. 

8.7. Normal Tool Processing 

Once the tool has been set up and Installed, it begins its normal processing. This is done 
entirely in response to outside events: user inputs and window manipulations. Therefore, this 
section will consist of descriptions of subroutines and the circumstances under which they are 
called. 

Revision A of 7'. January 1984 6-15 



Writing a More Sophisticated Tool SunWindows Programmer's Guide 

To get into this state, however, it is necessary to start listening for these events. This is done 
in one line of main, which encapsulates the main loop or the program: 

tool_select(tool, O); 

The tool argument gives tool_aclect a handle on all or the status data it needs; the O means that 
this tool doesn't expect to fork any subordinate process that would need to be collected when it 
finishes. 
Tool_aelect repeatedly does a aelect(2) system call, which blocks until input is available on some 
device, a timer runs down, or a signal is received. When it is awakened by one of these, 
tool_aclect finds the corresponding procedure to call in the various tool and tool subwindow 
objects, and invokes it. After that procedure returns, it goes back to the top of its loop to 
await the next thing to do. 

Potentially, that's a lot of things to take care of. But the mouse tool keeps things very simple: 

• It never sets a timer. 
• Its tool window, message subwindow, and option subwindow have signal handlers of their own 

that respond to SIGWINCHes without bothering the client. 
• The message subwindow does not accept any input, and the tool window and option subwin• 

dow have input handlers provided by their implementors. 
Inputs and signals for the range subwindow must be handled. There are two cases when the 
option subwindow will call out to mouse tool code: when the user selects the "Start" button, 
and when the user changes the "Target size" item. 

Thus, there are three circumstances which must be provided for in mouse tool code: 
• the range subwindow receives a SIGWINCll, indicating it must repair damage; 

0 

• the option subwindow notifies the tool that one of its two events of interest has occurred; or (~_.,.) 
• the range subwindow has a user input to process, generated by the user pressing the left 

mouse button while the cursor is in the range window. 
Ea.ch of these cases has a procedure to respond to it; we will consider them in order. 

6.7.1. Responding to Damage to the Range Subwindow 

When the range window is damaged a SIGWINCH is sent to the process which owns the window, 
that is, the mouse tool. This SIGWINCH is caught by the procedure aigwinched, as described 
above, which simply sets a flag in the tool object and returns. The occurrence of the signal is 
enough to awaken tool_aclect from its ,elect if it is in one; otherwise, the flag will be noted the 
next time tool_ae/ect comes around to the top of its loop, and tool_aclect will avoid going to 
sleep. 

In either case, tool_aelect will determine that the range window has been damaged, find the 
address of range_aighandler in its tool subwindow object, and invoke it: 

6-16 Revision A of 7 January 1984 

0 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Tool 

static range_sighandler(sw) 
caddr_t sw; 
{ 

struct rect r; 
i11t val; 

win_getsize(range_tsw->ts_windowfd, &r); 
win_width =- r.r_width; win_height = r.r_height; 
width_limit - r.r_width - size; height_limit =- r.r_height - size; 

The first thing range_,ighandler does is update its idea of the size of its window. Win....11etaize 
stores the window's rectangle into the struct addressed by its second argument. The interesting 
parts of this rectangle, namely the width and height, are copied into global data (a window's 
coordinate system always has a 0,0 origin). The limits on the origin for displaying the target 
must also be updated, since a formerly valid position may now lie outside the window. 

Assuming the window has been damaged, we now do a very simplistic repair job: 

pw_damaged(range..J>ixwin); 
pw_writebackground(range..J)ixwin, O, 0, r.r_width, r.r_height, PIX_CLR); 
pw _donedamaged(range..J)ixwin); 

There may not have been any actual damage - for instance, the window may have shrunk -
or it may be that only a little of the window needs to be repaired. By bracketing the code with 
pw_domoged and pw_donedomoged, we ensure that we write only to the areas of the screen that 
need it. 
Since changing the size or visible portion of the window seriously affects the sequence of target 
positions, the mouse tool takes a SIGWINCH as an indication that any current sequence of trials 
should be terminated and a new one started. To do this, it simply duplicates the call that the 
option subwindow makes when the user selects the "Start" button: 

if (running) start..J>roc( osw, start_item ); 
} 

This completes the processing of a SIGWINCH on the range subwindow. 

6,7 ,2, Notification f'rom the Option Subwindow 

The option subwindow implementation takes care of a lot of details for its clients, including sig­
nal handling and feedback as the mouse is moved in the window. But eventually, the user will 
perform some action which requires the suhwindow manager to notify its client. In the mouse 
tool, there are two such events: the user may select the "Start" button, or change the "Target 
size." In both cases, because of the way those items were initialized, the subwindow implementa­
tion will call ,torlJroc: 

Revision A of 7 January 1984 6-17 



Writing a More Sophisticated Tool Sun Windows Programmer's Guide 

#define SEED_BUF _SIZE 256 
static 
start_J>roc( sw, ip, new _value) 
caddr_t sw; 
caddr_t ip; 
int new_value; 
{ 

int 
char 
struct string_buf 

seed, val; 
buf_data(SEED_BUF _SIZE); 
buf; 

Several small bugs have been left in this code, in the interests of realism. Here, the declarations 
of the arguments to ,tartJroc are a little awkward, due partly to our short-cut of using the 
same procedure for both events. The option subwindow package will call its client's noti/11 pro­
cedures with arguments that identify the subwindow and the item an event is associated with; if 
the item has a numeric value (a boolean or enumerated item), a third argument gives the new 
value. In the current case, the declarations are written for the fuller case, when the target-size 
item has changed; ncw_valuc will be undefined when this procedure is called to respond to a 
button-click on the "Start" command. 

As it happens, none of these arguments serves any purpose in this code anyway, except perhaps 
to reduce the number of complaints from linl(l). 

A sequence of trials may already have started when ,tartJroc is invoked, so the first step is to 
terminate any old sequence: 

0 

if (running) { 
running =- FALSE; o· 
msgsw_setstring(msw, "Restarting"); /-
sleep(2); 

} 

(The eleep allows the user time to read the message before anything else starts happening.) 

Next we guarantee that the range is clear; no old targets are cluttering up the image, for 
instance: 

pw_writebackground(range..J)iicwin, 0, 0, win_width, win_height, PIX_CLR); 

Then we make sure we're up to date on the parameters: 

size = size_values [optsw _geivalue(size_item, ( caddr_t )&val)); 
width_limit - win_width - size; height_limit = win_height - size; 

Opt,w_gctvaluc takes a handle on the item of interest and a pointer to a place to store the 
result; for items with numeric values, it returns the same value it stores. Because the value is 
defined to be an index, rather than the value the user sees, we use it to index into the array of 
values to translate to the actual sizes. The limits on target positions are always calculated, in 
case the target size has changed or this is the first call to etartJroc. 
(Another bug: if the window's dimensions are smaller than the target size, the limits can go 
negative here. This will result in no target being visible.) 

The other parameter to he updated is the seed for the random number generator. This can be 
changed at any time by the user, without affecting the rest of the program - we don't want to 
be restarting a run of trials on every keystroke. So the value must be retrieved explicitly before 
each sequepce is begun: 

6-18 Revision A of 7 January 1984 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Tool 

bur.limit = SEED_BUF _SIZE; buf.data = buf_data; 
optsw __getvalue(srand_item, ( caddr_t )&buf); 
seed = atoi(buf_data); 
initstate(seed, random_state, 256); 

For text items like the random seed, optawJetvaluo behaves slightly differently. It stores char­
acters into a huller addressed by its second argument, and returns the count of characters 
stored. To allow for strings which are larger than the buffer, the destination is actually a struct 
which includes a limit on how many characters may be stored; there is provision for multiple 
calls to optawJetvalue to collect all of a long value through a short buffer ( this is detailed in 
Option Subwindow in the reference manual). 
Note: Probably the worst bug, the mouse tool ignores all this, assuming that no user will enter 
more than 256 characters into the seed item. 
Having retrieved the string, we convert it to an integer and store it in aeed. (This is a rather 
less dangerous reliance on cooperative users, since atoi will return O if it can't make sense or the 
string; that's as good a seed as any other.) Finally, that seed is used to initialize the random 
n um her generator to the desired sequence. 
This completes the preparations needed for a sequence of trials. What remains is to put up the 
first target to start the sequence: 

set_target(); 
} 

This procedure is discussed below. 

With that call, we have completed the processing required in response to activity in the option 
subwindow. 

6.7.3. Responding to User Inputs ln the Target Range 

The last circumstance to which the mouse tool must respond is input in the range subwindow. 
Because of the way the input mask for this window was initialized, this occurs only when the 
user clicks the left mouse button in the window. That is, each invocation of this procedure 
corresponds to a trial on a single target. 
Most routines that only handle window input tend to have similar structures, at least at the 
beginning: 

Revision '\ or 7 January 1984 6-19 



Writing a More Sophisticated Tool Sun Windows Programmer's Guide 

static 
range_selected(sw, ibits, obits, ebits, timer) 
caddr_t sw; 
int •ibit.s, •obits, •ebits; 
struct timeval • •timer; 
{ 

int x, y; 
struct inputevent ie; 

if (input_readevent(range_tsw->ts_windowfd, &ie) == -1) { 
perror(" input_readevent failed"); 
abort(); 

} 
•ibits = •obits = •ebits = O; 

The arguments to a ,elected-handler are useful in the general case where one routine may be 
attending to multiple 1/0 devices and a timer as well; they allow the routine to determine what 
event actually needs to be responded to on each call. But for the mouse tool, there is no timer 
to be reset; the "ibits" masks will have the one bit turned on that indicates that input is avail­
able on the range subwindow's /d; and aw will hold the contents of the range subwindow's 
t,_data, which we never stored anything useful into. So this part of the procedure is just a 
boilerplate. 

The call to input_reade11ent will fill ie with the next available input event, or draw attention to 
a system error. Making the "zbits" masks zeros resets the specification of what 1/0 devices the 

0 

range subwindow manager is expecting activity on. All zeros indicates the default case, which is o 
waiting for user input in the window. 

Note: Failing to reset these bits befor~ returning from a ,elected routine can cause a problem. 

The next step is to extract the information we want from the event struct. By the way we set 
the input mask, we know this is a button-down on the left mouse button. We want to know 
when and where it happened: 

x = ie.ie_locx; y = ie.ie_iocy; stop_time = ie.ie_time; 

To avoid biasing Its results by the time needed to move the cursor from the "Start" button 
down into the range window, the tool cl.oes not count th.e first target. Rather, it uses the first 
click as the signal to reset counters and state to begin a new sequence: 

if (!running) { 
cum_time = trials_done = errors = O; 
running= TRUE; 

If the sequence of trials is already under way, this trial must be accounted: 

} else { 
trials_done + = 1; 
if (x < cur_x II y < cur_y II 

x >= cur_x + size II y >= cur_y + size) { 
errors+= 1; 

A trial is averaged into the running time only if the user actually hit the target; otherwise, the 
count of misses is incremented. 

6-20 Revision A of 7 January 1984 

0 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Tool 

Ir the user hit the target, the number of microseconds since the target was put up is calculated 
and accumulated: 

} else { 
if (stop_time.tv_usec < start_time.tv_usec) { 

stop_time.tv_usec + = 1000000; 
stop_time.tv_sec -= l; 

} 

} 
cum_time + = stop_time.tv_usec - start_time.tv_usec + 

(stop_time.tv_sec - start_time.tv_sec) • 1000000; 

Then the old target is taken down: 

pw_writebackground(range_pixwin, cur_x, cur_y, size, size, PIX_CLR); 

the results of that trial are posted: 

report(); 

and the next trial is begun: 

set:..target(); 
} 

Two small subroutines remain to be described. Sel_target puts up a target and notes the time: 

static 
set_target() 
{ 

} 

cur_x - random() % widthJimit; 
cur_y - random() % heightJimit; 
pw_writebackground(range_pixwin, cur_x, cur_y, size, size, PIX_SET); 
gettimeofday( &start_time, &trash_zone ); 

This is straightforward: random coordinates are chosen for the new target, clamped to keep the 
target inside the window boundaries; a black square of side ,ize is written at those coordinates; 
and the time it was put up is noted. 
The report procedure, which posts the most recent results, is not much more complicated: 

Revision'\ of 1 January 1984 6-21 



Writing a More Sophisticated Tool 

static 
report() 
{ 

int 
double 
char 

good_trials = trials_done - errors; 
mean_time; . 
buf[256); 

if (good_trials == 0) { 
mean_time = O; 

} else { 

Sun Windows Programmer's Guide 

mean_time -=- ((float)cum_time / (float)good_trials ) / 1000000; 

} 

} 
sprintf(buf, "%d trials; o/od errors; mean time: %f sec.", 

trials_done, errors, mean_time ); 
msgsw _setstring(msw, but); 

Having calculated the most recent results and used ,print/ to format a line with them, we 
request the message subwindow to change its display to this new line. 
This completes discussion of the normal tool processing for the mouse tool. Note that all of the 
processing is handled as small procedures which respond quickly to specific events. There is very 
little global intelligence required. Note also that most of the work is done by calling on esta­
blished utilities. Even in the range subwindow, the amount of work that needs to be done is 
easily controlled by initializations which allow us to ignore the vast body of uninteresting 
events. 

6.8. Terminating the Tool 

When tool_ulect returns, the two lines of code at the end of main are reached: 

tool_destroy(tool); 
pw _pfsysclose(); 
exit(O); 

Toal_,elect returns when some procedure calls tool_done, which sets another flag in the tool's 
data. It would be possible to have such a call somewhere in the mouse tool code - a "Quit" 
command in an option subwindow is a fairly standard way of getting to one - but in this case, 
we leave it to the standard tool manager menu. 
Library routines which implement the taai object include procedures for displaying and process­
ing a standard menu, one of whose items is "Quit." When this menu item is selected (and after 
the user confirms his intentions), the tool menu handler calls tool_done. This causes toal_aelect 
to break out of its loop and return, which leads to the call to tool_deat,011, 

0 

Library implementations like the option subwindow tend to be more careful about cleaning up 
than we were for the range window, since they have no guarantee that their client is about to 
exit - the reaources they've used may be needed by some other procedures in a new phase of 
processing. Tool_de1tro11 checks each subwindow of the tool in turn for a subwindow de1tro11 
procedure and invokes it if it exists. After all subwindows have cleaned up their own areas, the 
tool docs the same with its private data. 

Finally, everything has been cleaned up, and the tool exits normally. Q 

6-22 Revision A of 7 January 1984 



0 

0 

0 

Chapter 7 

Writing a More Sophisticated Canvas Program 

This chapter describes a canvas program called canva,input, an interactive extension of 
canva,ftaah, which was described in Writing a Simple Canva, Program. Be sure you understand 
canvaafta,h as we discuss only what is different about canvaainput here. 

Canva,input creates a retained graphics subwindow and then waits for the user to enter a com­
mand. The user can use the keyboard or the mouse and a menu to specify that either a vertical 
line, a black square or a string of text be drawn within the window. He can also clear the win­
dow or terminate the program. The user can enter all commands from the menu. In addition, 
he can press the first letter of the name of a menu item to invoke the associated menu item. 

Ci J:~PJJiC :: · i:v:i.J,i:o.Jt,.J,~~(:y·~:-.''-· ""'"",.,_._..~,...,""'..;;44-· ,,.,..,..._ -arkiv1, kill 1,1 
[1] Terminated canvasflash 
arkiv% canvasinput 

D 
This is a string written with pw_text. 

Vector ... Square 
Text 
Clear 
Quit 

Figure 7-1: canva,input Output 

The source to this example is provided in the / uar/ auntool/ arc/ canvaainput.c file. To compile 
the source, use: 

markiv% cc -o canvasinput canvaslnput.c -lsuntool -lsunwindow -lpixrect 

Revision A of 7 January 1984 7-1 



Writing a More Sophisticated Canvas Program 

7.1. The canvasinput Code 

The flow of canvaainput is as follows: 

• Canvaainput gets a graphics subwindow handle. 

• The subwindow is enabled to receive user input. 

Sun Windows Programmer's Guide 

• The program calls a notification manager. This manager is given the address of a routine, 
canvaa_,olected, to invoke when input arrives. 

• Canva,_,olected is the guts of this program. 

Here is a listing or /uarf,untool/arc/canva,input.c. You may want to glance at it now, however, 
it is primarily meant to be referred to as you read the subsequent explanation. Extensive C 
comments are removed in favor or the accompanying text. 

fifndef lint 
otatic char oeeoidO - "O(f)canvaoinput.c 1.1 84/04/04 SM!"; 
fendir 

/• External Deelar&tiono •/ 
#include <•tdio.h> 
#include <euntool/gfx__ho.h> 
finclude <euntool/menu.h> 

extern otruct menuitem •menu_dioplay(); 

static etruct gfxsubwindow •gtx; 

/• Menu Definition •/ 
static struct menuitem menu_itemL!IH - { 

{MENUJMAGESTRING, "vector", (caddr_t)'v'}, 
{MENUJMAGESTRING, "•quare", (caddr_t)'•'}, 
{MENUJMAGESTRING, "text", (caddr_t)'t'}, 
{MENUJMAGESTRING, "clear•, (caddr_t)'c'}, 
{MENUJMAGESTRING, "quit", (caddr_t)'q'}, 

}; 
static etruct menu menu_body -= { 

}; 

MENUJMAGESTRING, "Commando", 
oizeo((menu_itemo) / oizeo((otruct menuitem), menujtemo, 
(•truct menu •)NULL, (caddr_t)NULL 

static etruct menu lllmthuj>tr - &menu_body; 

main( argc, &rgv) 
int argc; 
char uargv; 

{ 

7-2 

int canvao_selected(); 
struct inputma.sk im; 

/• Initialization •/ 
if ((gtx - gtxsw_init(O, argv)) -- NULL) { 

} 

fprintf(stderr, "Una.hie to open graphics subwindow.\n"); 
exit(!); 

input_imnull(&im); 
im.im_flags I- IM_ASCII J IM_NEGEVENT; 
win_setinputcodebit(&im, MENUJ3UT); 
gCxsw _setinputmask(gtx, 

Revision A or 7 January 1984 

() 

0 



0 

0 

0 

SunWindow1 Programmer'• Guide Writing a More Sophisticated Canvas Program 

} 

&im, (struct inputmuk •)NULL, WIN..)IULLLINK, 1, l); 
gfxsw...cetretained(gfx); 

/• Notiftcation Manager•/ 
gfxaw_aelect(gfx, canvu_eelected, O, O, O, (struct timeval •)NULL); 

/• Cleanup •/ 
gfxsw_done(gfx); 

/• NotiftcatJpn Handling •/ 
canvu_aelected(gfx, ibits, obits, obits, timer) 

otruct gfxsubwindow •gfx; 

{ 

} 

int •ibitl, •obits, •ebit1; 
atruct timeval ••timer; 

,truct menuitem •mi; 
1truct input.event ie; 

if (gfx->gfxjlap & GFJC.,.RESTART) { 
gfx•>gfxJlap &- "GFJC.,.RESTART; 
pw_writebackground(gfx->gfx..J>ixwin, O, O, 

gfx• > gfx_rect.r_width, gfx- > gfx.1ect.r..J,eight, PDLCLR ); 
} 
tr (•lblt1 & (1 << gfx•>gfx_windowfd)) { 

If (input_readevent(gfx· >gfx_wlndowfd, &le)) { 
perror(• canvuinput•); 

} 

exit{l); 
} 
if (ie.ie_code -- MENUJlUT &.I: wlnJnputpooevent(.1:ie) &.I: 

(mi - menu_dilplay(.1:menU..J)tr, &ie, gfx->gfx_windowfd))) 
ie.ie_code - (1hort) mi->mi_data; 

switch (ie.il_code) { 
cue'v': 

pw_vector(gfx·>gfx..J>ixwin, 6, 6, 6, 100, PIX;_SET, OJ; 
break; 

cue 11
1
: 

pw_ writebacltground(gfx· >gfx..J>ixwin, 
26, 26, 76, 76, POC...SET); 

broak; 
CUI 't': 

pw_text(gfx->gfx..J>ixwln, 6, 126, PDC..SRO, 
(1truct pixfont •)NULL, 
"Thia ii a otrlns written with pw_text."); 

break; 
e111'e1

: 

pw_wrltebackground(gfx- >gfx..J>ixwin, O, O, 
gfx· > gfx_rect.r_width, gtx. > gfx.1oct.r..J,eight, 
PIJLOLR); 

break; 
c111'q': 

gfxsw_aeloctdono(gfx); 
break; 

default: 
gfxswJnputintorrupti,(gfx, &ie); 

} 

•ibitl - •obite - •ebite - O; 

Revision A of 7 Ianuaey 1984 7.3 



Writing a More Sophisticated Canvas Program Sun Windows Programmer'• Guide 

7 .2. External Declarations 

This section describes the explicit external declarations, other than the ones described in the 
chapter on canva,fla,h, that must be included to compile this program. 

The menu package that the program uses is part of the ,untool, library with include files in 
/ u,r/ include/ ,untool. The include statement: 

#include <suntool/menu.h> 

contains the data structure definitions required for using the menu package. The following 
external reference to the menu manager procedure is required as well: 

extern struct menuitem •menu_display(); 

7.3. Defining the Menu 

This section describes the s.tatic structures that make up the menu that is passed to the pop-up 
menu manager. 

Defining a single menu is a two-step process: first define the menu item array, and second, 
install those items in a menu object. A menu item is composed of a type, a display data 
pointer, and 32 bits of data private to the client of the menu manager: 

staticstruct menuitem menu_itemsO = { 
{MENU_IMAGESTRING, "vector", 
{MENU_IMAGESTRING, "square", 
{MENU_IMAGESTRING, "text", 
{MENU_IMAGESTRING, "clear", 
{MENU_IMAGESTRING, "quit", 

}; 

( caddr_t )'v'}, 
( caddr_t )'• '}, 
(caddr_t)'t'}, 
(caddr_t)'c'}, 
(caddr_t)'q'}, 

Our menu items are of type MENUJMAGESTRING which means that the display data is a string. 
We are using the first character of the display data string as our private data. The character 
will be used to identify the menu item returned by the pop-up menu manager. 
A menu object contains a title and a description of its menu items: 

staticstruct menu menu_body = { 

}; 

MENU_IMAGESTRING, "Commands", 
sizeof(menu_items) / sizeof(struct menuitem), menu_items, 
(struct menu •)NULL, (caddr_t)NULL 

staticst,ruct menu •menu_ptr = &menu_body; 

The title of our menu is "Commands" and it is of type MENUJMAGESTRING. The next argu­
ment translates to the number of elements in the menu item array which is followed by the 
address of the array. The second to last field is used when displaying multiple menus, and the 
last field is reserved for the use of the menu manager. 

7-4 Revision A of 7 January 1984 

0 

0 

C 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Canvas Program 

7 .4. Initialization 

This section describes the set up (other than that described in the chapter on canviuftiuh) 
undertaken before entering the notification manager. 
In Sun Windows, each window has an input mask indicating which actions to receive. This 
screening reduces the amount of data that an application must process. For instance, if an 
application is not tracking the mouse, it doesn't need to receive mouse motion events. Also, 
user actions not sent to one window may be redirected to another window. The following code 
sets up the input mask that we need: 

iuputjmnull(&im); 
im.im_Bags I- IM....ASCII I IM_NEGEVENT; 
win_setinputcodebit(&im, MENU...BUT); 
gfxsw _setinputmask(gfx, 

&im, (struct inputmask •)NULL, WIN_NULLLINK, 1, 1); 

The call to input_irnnull initializes the input mask im to be null. A Bag in the mask is set so 
that ASCD keyboard input is allowed through the mask. Win_,etinputcodebit is called to enable 
the menu button. 
When the menu button goes down, we will call the menu manager to handle interactions with 
the user. We know that the menu manager will return when the menu button goes up. A but­
ton going down is called a po,itive input event and a button going up is called a negative input 
event. We get positive events for a button by default when we call win_,etinputcodebit. We 
enable all negative input events for which we have enabled a corresponding positive input event 
in the mask by setting IM...NEOEVENT in the mask Bags. 
G/:uw_,etinputmtuk sets the mask g/s-> g/s_window/d. This is the mask that we have defined 
that the graphics subwindow uses. The NULL third argument to g/:uw_,etinputmiuk indicates 
that we have no desire to di~pose of any events already queued for this window. (There should 
be none, since the window hasn't appeared on the screen yet.) The WIN..NULLLINK in the fourth 
argument indicates that the· next window to be otfered an input event that the graphics aubwin­
dow doesn't want should be the default, namely its parent. The last two non-zero arguments 
indicate that we expect both mouse and keyboard input, respectively. 
Not11 Don't confuse the calling sequence of g/:uw_,etinputmtuk with the lower level 
win_aetinpufmtul Win_,erinpufma,k is called for windows in general. G/s,w_,etinpufma,k is 
called for graphi~s subwindows in particular. 
Next we tell the.iraphics subwindow manager to manage a retained pixwin: 

gf xsw _getretainl!ci(gtx ); 

With a retainJ pixwinl the graphics subwindow manager maintains a backup copy of the win­
dow image. If part of the graphics subwindow becomes exposed, the graphics subwindow 
manager repaints the damaged area from the retained pixwin. Without a retained pixwin, it is 
the programs responsibility to reair the damaged areas. We pay for a retained pixwin with the 
extra memory that is allocated for the backup copy of the window image. Also, for every 
pixwin write in our program a write is made to the backup image as well as the window. 

Revision A of 7 January 1084 7-5 



Writing a More Sophisticated Canvas Program Sun Windows Programmer's Guide 

7 .5. Notification Manager 

Now that initialization is done, we are ready to wait for user actions to drive the command 
interpreter of the program. The g/zaw_,elect routine waits for input. 

gfxsw_select(gfx, canvas_selected, 0, O, O, (struct timeval •)NULL); 

G/zaw_aelect is the notification manager for this graphics subwindow. For user actions that pass 
through the input mask, g/zaw_aelect calls canviu_,elected. that is used in a canvas program. 
Canva,_,elected is called when there is input available on the graphics subwindow. It is possible 
to have canva,_aelected called in other situations, such as output pending, input pending on 
devices other than the graphics subwindow, or a timer expiring by defining non-NULL values to 
the last four parameters. However, since the last four parameters are NULL, the notification 
manager, by default, only waits for input available on the subwindow. 

G/zaw_,elect loop indefinitely and can be terminated by a call to gfz,w_,electdone, which is 
described below. 

7 .6. Handling Notifications 

This section describes what is going on in the canva,_aelected routine. Cani,a,_,elected is called 
when something interesting has happened that the canvas program should react to. 
The graphics subwindow notification manager calls canva,_,elected when the size of the window 
changes. 

if (gfx->gfx_flags & GFX_RESTART) { 

} 

gfx->gfx_ftags &- "GFX_RESTART; 
pw_writebackground(gfx->gfx_pixwin, O, O, 

gfx->gfxJect.r_width, gfx->gfx_rect.r_height, PIX_CLR); 

The GFXJtESTART flag is set when the size of the window changes. Canviuinput clears the flag 
and simply clears the window image. 

Now we see if input is pending on the graphics subwindow: 

if(•ibits & (1 < < gfx->gfx_windowfd)) { 

•/bit, is a mask of the file descriptors that have input pending. If the bit position that 
corresponds to the graphics subwindow is set, there is input pending on the graphics subwin­
dow. 

Next, we read a single input event. An input event is a packet of information that describes 
the state of the input devices when the event occurred. The input event describes the event 
identifier, the position of the mouse, the time of day, and the state of shift buttons. 

if (input_readevent(gfx->gfx_windowfd, &ie)) { 
perror(" canvasinput • ); 
exit(l ); 

} 

The call to input_readevent will fill ie with the next available input event, or draw attention to 
a system error. The next step is to instigate menu processing if the menu button went down. 

7-6 Revision A of 7 January 1984 

0 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide Writing a More Sophisticated Canvas Program 

if (ie.ie_code == MENU_BUT && win_inputposevent(&ie) && 
(mi= menu_display(&menu_ptr, &ie, gfx->gfx_windowfd))) 

We want to start menu processing when the right mouse button goes down. le.ie_code is equal 
to MENU..BUT when the input event concerns the right mouse button. Win_inputpoaevent{8ie) 
returns true when the input event is positive; that is, the button went down. When these tests 
are true the menu manager menu_di1pla11 is called. 

Menu_di1pla11 is responsible for displaying menu(s), tracking the mouse over the menu items, 
and returning a menu item handle. A NULL menu item handle is returned if no item was 
chosen. Menu_di1pla11 takes a pointer to a menu pointer so that, in the case or stacked menus, 
the top menu can be returned via modifying menu_ptr. The input event handle that prompted 
the menu action and the graphics subwindow are passed in as well. 

Ir the user made a menu choice, the long word of private data associated with the menu item is 
placed in the input event: 

ie.ie_code = (short) mi->mi_data; 

This is done because we know that the private data contains values that are equal to the char­
acters that are tested for in the following ewitch statement. Thus, we simulate the case where 
the user typed a single character at the keyboard. 

For the most part, the arms of the ewitch statement on the input event are similar to the code 
described in the chapter about the canva,ftaah program. One notable exception is that you can 
use a NULL pixfont handle when calling pw_tezt to mean the default system Cont: 

pw_text(gfx->gfx_pixwin, 5, 125, PIX_SRC, 
( struct pixfont •)NULL, 
"This is a string written with pw_text."); 

The default arm of the ewitch statement is used to look for and act on some common interrupt 
character sequences (such as, ·c, DEL, ·D, ·z, and control-shift-backslash) used with terminal­
based programs: 

gfxsw _inputinterrupts(gfx, &ie); 

Some programs dynamically change the collection of input and output devices on which they 
wish to wait. To accommodate such programs, before returning Crom canvaa_,elected back to 
the notification manager, the conditions under which canva,_,elected will be called again must 
be respecified. 

•ibits = •obits = •ebits = O; 

Here we make the input( •1oit,), output( •obit,) and exception( •ebit,) masks zero. Since all the 
masks are O, the notification manager, by default, only waits for input available on the subwin­
dow. Details on mask usage are available in the reference manual under toolio. 

Note: Don't forget to reset these bits before returning; this is a common programming error. 

7.7. Termination and Cleanup 

The call to g/z,w_,electdone is made to tell the graphics subwindow notification manager, 
g/z1w_1elect, that it should return to its caller. In this case, g/uw_,elect will return to main 
after canva,_,elected returns. Clean up after returning Crom gfuw_aelect is as described in the 
chapter on canva,fta,h. 

Revision A of 7 January 1984 7-7 



Writing a More Sophisticated Canvas Program Sun Windows Programmer's Guide 

7.8. Review 

After reading this chapter, you know: 0 
• that interactive canvas programs can be written using the graphics subwindow package, 

• the programming basics of using the pop-up menu package, 
• that using a retained pixwin can simplify your program but has time and space penalties, and 
• what input masks are used for and what input events are. 

C 

0 
7-8 Revision A of 7 January Hl84 



0 

0 

0 

Chapter 8 

Additional Topics 

Here we discuss how to implement a subwindow package and describe the program, called ,un­
tool,, that initializes and terminates a window environment. 

8.1. Implementing a Subwindow Package 

As we have previously discussed, most Sun Windows clients use standard subwindow packages 
to supply most of their user interface. However, when addressing an application area with addi­
tional user interface requirements, the programmer must either modify an existing subwindow 
package or write a new one. There are certain conventions to observe to have the new package 
work properly with the existing SunWindows facilities. These conventions are described below 
and in Minimum Stantlartl Subwintlow Interface in the Programmer'• Reference Manual for 
Sun Window,. 

There is a procedure in all of the existing subwindow packages that creates an instance of the 
subwindow type within the tool structure. This instance is part of the auntool layer. However, 
the subwindow packages do not assume that they necessarily exist within the framework of the 
tool structure. This allows the ambitious user interface programmer to replace portions of the 
,untool layer without having to re-write all of the subwindow packages. 

8.1.1. Facilities Provided By All Subwindows 
Every subwindow package must provide the same minimum set of facilities. Given a package 
called "package," we have five routines, whose name are constructed according to this conven­
tion: 
package_init 

Initializes new instance of package's subwindow type 

package_,electetl 
Handles notifications of timeout and input available events 

package_hantlleaigwinch 
Processes repaint requests, detects and handles changes in subwindow size 

package_tlone 
Releases window without closing window's file descriptor; deallocates resources 

package_createtoolaubwintlow 
Creates too/aw structure, adds instance of the subwindow to the tool 

Revision A of 7 January 1984 8-1 



Additional Topics Sun Windows Programmer's Guide 

These routines are described in more detail below. The descriptions are in terms of the declara-
tions for the empty subwindow. First there's the structure definition for empty subwindow o 

atruct emptysubwindow { 
int em_windowfd; 
atruct pixwin •em_pixwin; 

}; 

8.1.1.1. Initialization 
"Package-init" must be able to take a new window device descriptor, and possibly some addi­
tional parameters, and initialize a new instance of the package's subwindow type to use the pro­
vided window. 

atruct emptysubwindow •esw_init(windowfd) 
int windowfd; 

This initialization includes all of the set up necessary for both output and input. 

8.1.1.2. Notification of Events 
The empt111ubwindow does not accept input or need to use timeouts, so there is no e,w_,elected. 
It it were to accept input in the future, the procedure declarations for e,w_,elected would look 
like: 

esw_selected(esw, ibits, obits, ebits, timer) 
atruct emptysubwindow •esw; 
int •ibits, •obits, •ebits; 
atruct timevalue • •timer; 

"Package_,elected'' is so naj;;_e because it is similar to the aelect(2) system call. SunWindows 
dictates the types and order of the parameters to this routine. The parameters include pointers 
to file descriptor selection masks and a timer that the routine must explicitly modify. If the 
package does not support input or need to use timeouts, it can elect not to supply this routine. 
See Toolio Structure and File De,criptor and Timeout Notification, in the Programmer', Refer· 
ence Manual for Sun Window, for further details. 

8.1.1.3. Handling Changes in Windows 

esw _handlesigwinch( esw) 
atruct emptysubwindow •esw; 

Each package must provide a routine to process repaint requests and to detect and handle 
changes in the size of a subwindow managed by the package. By convention, this procedure is 
named "package_llandle,igwincll" because it is closely related to the handling of SIGWINCH sig­
nals. To detect that a subwindow has changed size, the package must have previously stored 
away the old size, since the old size is unavailable by the time this procedure is called. Again, 
Sun Windows dictates the argument and return values of this procedure. 

8-2 Revision A of 7 January 1984 

0 



0 

0 

0 

SunWindows Programmer's Guide 

8.1.1.4. Releasing Window and Deallocate Resources 

esw _done(esw) 
atruct emptysubwindow •esw; 

Additional Topics 

"Package_done" cleanly releases a window being managed by the package. This routine should 
not close the window's file descriptor, but it must deallocate all resources that the package had 
allocated. Again, Sun Windows dictates the argument of this procedure. 

8.1.1.51 Creating Tool Subwindow Structure 
"Package_createtoolaubwindow" allows the package to cooperate more closely with the auntoo/ 
layer's notion or a tool. This routine creates a too/aw structure and thereby adds an instance or 
the subwindow to the tool object identified by the routine's first argument. The first four argu­
ment values as well as the return value are dictated by Sun Windows. 

atruct toolsw •esw_createtoolsubwindow(tool, name, width, height) 
atruct tool •tool; 
char •name; 
•hort width, height; 

8.1.2. Subwindow Packages and createtoolsubwindow 

We now examine the expected behavior or a subwindow package's 
"package_createtool,u6window" routine. For reference, we reproduce the definition of the tool,w 
structure below: 

,truct 
,truct 
Int 

toolsw { 
toolsw •ts_next; 
ts_windowfd; 

}; 

char •ts_name; 
abort ts_width; 
abort ts_height; 
,truct toolio ts_io; 
Int ( •ts_destroyX); 
caddr_t ts_data; 

"Package_createtool,ubwindow" is responsible for the following: 
• calling tool_create,ubwindow to allocate and initialize a new too/aw structure. The window file 

descriptor for the subwindow is then available in tool,w->t,_windowfd upon return from 
tool_create,ubwindow. 

• calling the package_init function with the subwindow's window file descriptor, and placing 
the returned pointer to the new subwindow data in tool,w->t,_data. 

• providing the address of the SIGWINCH handler ("package_/aandle,igwinc/a") by placing it in 
too/aw-> ta_io. tio_/aandleaigwinc/a. 

• providing the address or the input handler routine ("package_aelected'') by placing it in 
tool,w-> ta_io. tio_aelected. If the package does not support input, it leaves this field set to 
the null value that tool_createaubwindow initialized it to. 

Revision A of 7 January 1084 8-3 



Additional Topics Sun Windows Programmer's Guide 

• providing the address of the termination routine ( "package_done") by placing it in 
too/aw-> t,_de1tro11, 

Further details about tool create,ubwindow are available in Subwindow Creation in the 0 
Programmer', Reference Manual for Sun Window,. See Writing a More Sophi,ticated Toolfor an 
example of typical code in a package's tool subwindow creation routine, namely the code that 
sets the range_t,w variable in the body of the init_range routine. 

8.1.3. Instance Data 

The implementor of a general purpose subwindow package cannot know what all of the ultimate 
uses of the package will be. In particular, the package should allow a single user process to con­
tain multiple instances of its subwindows. Thus, there must be separate copies of the 
implementation-specific data for each instance, rather than a single set of variables that are glo­
bal to the implementation modules. As an example, the string that a message subwindow 
displays cannot be kept in a static variable in the implementation module, as it would preclude 
having two message subwindows in a single tool. 

SunWindows encourages a framework that involves each subwindow package having two BSBoci­
ated data structures. One structure is public to the clients of the package and contains all of 
the information that the implementor believes it is safe for the clients to have access to. The 
other structure is private to the package's implementation and contains the information needed 
to support the subwindow type that clients should not know about. A unique copy of this pair 
of data structures represents each instance of the subwindow type. For the subwindow types 
that SunWindows supplies, each subwindow's public structure is named "package,ubwindow" by 
convention, where package is the name of the subwindow package. For example, the public 
structure associated with the empty subwindow package is named empt111ubwindow. 

Note: the option subwindow has no public data outside the too/aw structure. Rather, it supplies 
procedures for manipulating its private data, much like the pixrect implementation. 

8.1.4. Hand~ng Over Control of Input 

A programmer often has to decide which piece of the code will handle various input events, such 
as menu events. Leaving the decision to the programmer, it is important that a subwindow 
package not swallow input events that it is not interested in. For instance, suppose that the 
programmer wants the standard Tool Mgr menu to be available when the right mouse button is 
depressed anywhere in his tool (if the right button does not have some other meaning in a 
subwindow ). If one of the subwindow packages used by the tool accepts all of the mouse button 
events and then simply discards them, it will be impossible to get the Tool Mgr menu in a 
subwindow of that type when a mouse button is depressed. This argument extends to all of the 
other input events. Thus, a subwindow package should only enable itself for those events for 
which the package performs non-trivial processing. 

8.2. Initialize and Terminate a Window Environment - suntools 

Most Sun Windows programs assume that a user-accessible program does basic set up for the 
window environment, and that it has been run before they are started. Suntool, is a standard 
initialization and termination program which is distributed with SunWindows. Suntool, does 
the following: 

8-4 Revision A of 7 January 1984 

() 

0 



SunWindows Programmer's Guide Additional Topics 

0 
Initiali:ei the window environment 

establishing a window database, and opening the 1/0 devices that will be used. 

Provide, a root window 
for the display and maintains its image. 

Provide, the Root Manager menu 
which allows creation of shell and graphics tools. 

A utomaticaU11 ,tart, up 
a set of tools specified in a file. 

Provide, for e:iiting 
the window system. 

0 

0 
Revision A of 7 January 1984 8-5 



0 

0 

0 



0 

0 

0 

Appendix A 

Glossary 

This glossary defines the terms used here that have meanings that are different from their com­
mon definitions, those that introduce concepts that are specific to programming in the SunWin­
dows environment, as well as standard terms. 

client Software which uses the facilities provided by other software. The mouse tool is a 
client of the option subwindow package. By a common anthropomorphism, also the 
programmer of other software. 

clock tool A simple tool that continuously updates a display of the time or day. 

tlama1111 That portion of a window that needs to be repainted to restore the window's image 
integrity; exposure of a previously invisible area of a window. 

con11111 program 
A SunWindows program that owns only one window. 

c1ret The location at which type-in is inserted or other text editing functions performed. 
Note that in other sy1tems thi1 location is sometimes called the "cursor". 

cur,or A email image that moves about the ecreen in response to mouse motions to indicate 
the poeition of the mouee. See caret. 

graphic, tool 
A tool that provlde1 display space to canvas programs. 

hantlle A pointer to an object. 
icon A email graphic identifying image that represents rather than displays the contents 

of a window, 
icon tool A tool for creating and modifying icon and cursor images 
mana11er The software which creates and manipulates an object. 
menu A displayed list of related items for user choice. 
objecl A piece ot data, usually a C structure, used by a piece of software to implement a 

certain abstraction. 
overlapping window, 

Windows that may obscure one another on the display. 
paintin11 A general term for setting pixel values to form an image; includes painting text as 

well as pictures. 
pane loo/ A sample tool tha.t demonstrates some user interface utilities. 
piiel A single displayable point on a screen or in memory; a picture element. 

Revi1ion A of 7 January 1984 A-1 



Glossary 

pizrect 

SunWindows Programmer's Guide 

A structure which binds together the definition of a rectangle of pixels and the set of 
operations which are used to manipulate them; an access method for rectangular 
pixel data. 

pizrect la11er 
The layer of SunWindows that provides a uniform interface to devices which can 

pizwin 

hold raster images. 
A pixel window; an object which encapsulates the locking and clipping information 
needed to support a multi-window system. 

private data and procedure, 
Elements of the implementation of a package which are not made available to the 
package's clients. Clients should never have to access these elements, and should not 
be able to detect any changes to their implementations. 

public data and procedure, 
Elements of the implementation of a package which are defined as its interface to its 
clients. 

rect A structure that defines a rectangle. 

rectli,t 

repair 

A structure which uses a list of reefs to define a complex sub-region of a rectangle. 

Regenerating the image for a part of a window which has just become visible ("is 
damaged"). 

retained window/ pizwin 
A pixwin on a display that maintains a backup copy in memory of the window's 
image. This allows fast repair of arbitrarily complex images, at the cost of a fixed 
overhead in painting. 

,hell tool A terminal emulator tool. 
,tacked menu, 

A set of menus which are all presented at the same time in a display which resem­
bles an offset stack of papers: the header of each menu is visible below and slightly 
to the left of the header of the menu behind it, and the items of the top menu are 
also available tor selection. 

,ubwindow A window which is subordinate to another. This is established by a structural rel~ 
tionship in the window database, and implies that the subwindow is contained 
within and displayed on top of the other. 

,ubwindow ab,traction 
An implementation which provides subwindows of a particular type with particular 
capabilities to clients; an instance of such a subwindow. 

aubwindow object 
A C structure used by a subwindow package to implement a subwindow abstraction. 

,ubwindow handle 
A pointer to a subwindow object. 

,ubwindow package 
The software that performs a useful service which can be plugged into a tool object 
because it meets the programmatic interface requirements of a subwindow object. 

,untool lo11er 
The layer of SunWindows that provides the user interlace utilities. 

Sun Window, 
The Sun window system. 

A-2 Revision A of 7 January 1984 

0 

0 

0 



0 

0 

0 

SunWindows Programmer's Guide Glossary 

,untoindow la11er 
The layer or Sun Windows that maintains a database of windows, provides imaging, 
locking and clipping support for multiple windows, and distributes user inputs 
among multiple windows. 

tiling Arranging elements in a planar figure (such as subwindows within a parent window) 
in such a rashion that they cover that figure completely and do not overlap among 
themselves. 

tool A program written using the suntool library which includes a tool window. More 
generally, a program that owns more than one window. 

tool toind~w 
· · The underlying window UNIX device ror presenting the visible image of a tool. 

up-down encoded kelfboard 
A device which generates two distinct signals when a key is pressed and then 
released. 

u,er A person using the system. 
window Generally a rectangular display area, along with the process or processes responsible 

ror its contents; specifically a UNIX device for multiplexing access to a screen surface. 

window management 
The activity of changing a window's size, position or overlapping relationship with 
other windows. 

Revision A of 7 January 1984 A-3 



0 

0 

0 



0 

0 

0 

Appendix B 

Bibliography 

Foley, J.D. and Van Dam, A., Fundamental. of Interactive Computer Graphic,, Addison-Wesley, 
1983. Presents graphics concepts and a complete graphics application program written in 
Pascal. 

Kernighan, Brian W. and Ritchie, Dennis C., The C Programming Language, Prentice-Hall, Inc., 
1978. Tutorial instruction on the C programming language; descriptions or the major 
features; and reference material. 

Newman, William M. and Sproull, Robert F ., Principle, of Interactive Computer Graphic,, 
McGraw-Hill, Inc., 1979. The classic exposition of interactive computer graphics, especially 
for raster graphics. 

Revision A of 7 January 1984 B-1 



0 

0 

I 
0. i 

1 
! 
l 



0 

0 

0 

age of window, 2·11 
biti-mapped display, 1·2 
canvu program, 2·4, 3-1 
child of window, 2·11 
client, 2·1 
clipping, 2·11 
clock tool, 2·3 
cunor, 1·3 
damage, 2·7, 6-5 
depth, 4-5 
destination image, 6-5 
empty eubwindow, 2-5 
full ecreen accese, 2·4 
graphic, eubwindow, 2·4 
graphic, tool, 1·.f, 2·3 
icon, 1·3 
icon tool, 2·3 
input event, 7•11 
locking, 2· 7 
lockins primltive1, 2•7 
main loop, 2·.f 
menu, 1·2, 7•.f 
menu packqe, 7•.f 
me1H1e 1ubwindow, 2-11 
neptive Input event, 7·11 
option items, 2·11 
option subwlndow, 2-li 
overlap, 2·11 
overlapping windows, l·l 
parent of window, 2·11 
pixel, 1-2 
pixreet layer, 2-8 
pop-up menu, l·li 
poaitive input event, 7-S 
retained window, 2-8 
root window, 1·5 
shell tool, 1•4, 2·3 
source image, 11-5 
subwindow, 1·4 

Index 

-i-

eubwindow package, 3-2 
subwindow types, 2-4 
SunCore, 2-9 
sun tool layer, 2· 2 
sunwindow layer, 2·2 
terminal emulator subwindow, 2·4 
text selection, 2·4 
tiling, 1-1 
tool, 1-3 
tool manager, 3-2 
tool window, 2-3, 3-2 
window, l·l 
window age, 2·8 
window child, 2-6 
window manager, 1-l 
window parent, 2-6 



0 

! 

0 

0 



0 
SunWindows Programmer's Guide 

READER COMMENT SHEET 

Dear Customer, 
We who work here at Sun Microsyatems wish to provide the best possible documentation for 
our product,. To this end, we solicit your comments on this manual. We would appreciate 
your telling us about errors in the content of the manual, and about any material which you 
feel should be there but isn't. 

Typo1raphlcal Erron: 
Pleue list typographical erron by page number and actual text of the error. 

Technical Erron: o Pleue liat erron olfact by page number and actual text of the error. 

0 

Content: 
Did thi1. guide meet your needs? If not, please indicate what you think should be 
added or deleted in order to do so. Please comment on any material which you feel 
1hould be preunt but is not. Is there material which is in other manuals, but would be 
more convenient if it were in this manual? 

Layout and Style: 
Did you find the organization of this guide useful? If not, how would you rearrange 
things? Do you find the style of this manual pleasing or irritating? What would you 
like to see different? 

Revision A of 7 January 1984 



o· 

0 

0 



0 

0 

0 



·O 

01 

0 


