
0

0

0

tt\sun
• microsystems

Programmer's Reference Manual
forSunCGI

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0

0

0

~\sun
• microsystems

-------~-------

Programmer's Reference Manual
forSunCGI

--------·-----

------- ----- -

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Acknowledgements

Copyright C 1984, 1985 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit­
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0
Revision History

Rev Date Comments

A 15 May 1985 First release of this Programmer's Reference Manual.

0

0
- 111 -

Q,

o:

oi

0
Contents

Chapter 1 Introduction .. 1-1

Chapter 2 Initializing (and Terminating) Sun CG I ... 2-1

Chapter 3 Output ... 3-1

Chapter -i Attributes ... -i-1

Chapter 5 Input 5-1

Appendix A Differences between SunCore and SunCGI ... A-1

Appendix B Unsupported Aspects of CGI .. B-1

0 Appendix C Type Definitions .. C-1

Appendix D Error Messages ... D-1

Appendix E Sample Program .. E-1

Appendix F Using SunCGI and Pixwins (Cgipw) ... F-1

Appendix G Using SunCGI with Fortran-77 Programs ... G-1

0

-v-

0

O'
I

0

0

0

Contents

Chapter 1 Introduction .. 1-1
1.1. Notations Used in this Manual .. 1-1
1.2. Using Sun CG I ... 1-2
1.3. Overview of Sun CG I.. 1-2

1.3.1. Control (Initialization and Termination) .. 1-3
1.3.2. Output.. 1-3
1.3.3. Attributes ... 1-3
1.3.4. Input ... 1-4
1.3.5. Programming Tips.. 1-4
1.3.6. Appendices.. 1-4

1.3.6.1. Reference Appendices.. 1-4
1.3.6.2. Description of Interfaces to SunCGI .. 1-5

1.4. References .. 1-5

Chapter 2 Initializing (and Terminating) SunCGI ... 2-1
2.1. View Surface Selection And Initialization.. 2-1

2.1.1. open_cgi {Copencgi) ... 2-2
2.1.2. open_vws (Copenvws) 2-3
2.1.3. activate_vws (Cactvws) .. 2-5
2.1.4. deactivate_vws {Cdeactvws) ... 2-6
2.1.5. close_vws (Cclosevws) .. 2-6
2.1.6. close_cgi (Cclosecgi) 2-6

2.2. Interface Negotiation ... 2-7
2.2.1. inquire_device_identi fication (Cqdevid) 2-7
2.2.2. inquire_device_class {Cqdevclass) ... 2-8
2.2.3. inquire_physical_coordinate_system

(Cqphyscsys) 2-8
2.2.4. inquire_output_function_set (Cqoutfunset) 2-9
2.2.5. inquire_vdc_type (Cqvdctype) .. 2-9
2.2.6. inquire_output_capabilities (Cqoutcap) 2-10
2.2.7. Input Capability Inquiries .. 2-10

2.2.7.1. inquire_input_capabilities (Cqinpcaps) 2-10
2.2.7.2. inquire_lid_capabilities (Cqlidcaps) 2-11
2.2.7.3. inquire_trigger _capabilities (Cqtrigcaps) 2-12

2.3. View Surface Control .. 2-13
2.3.1. Coordinate Definition .. 2-13

2.3.1.1. vdc_extent (Cvdcext) ... 2-14

- Vil -

2.3.l.2. device_viewport (Cdevvpt) ... 2-16
2.3.2. Clipping ... 2-16

2.3.2.l. clip_indicator (Cclipind) ... 2-16
0

2.3.2.2. clip_rectangle (Ccliprect) .. 2-17
2.3.3. Device Control .. 2-17

2.3.3.l. hard_reset (Chardrst) .. 2-17
2.3.3.2. reset_to_defaul ts (Crsttodefs) .. 2-18
2.3.3.3. clear _view_surface (Cclrvws) .. 2-18
2.3.3.4. clear _control (Cclrcont) ... 2-19
2.3.3.5. set_error _warning_mask (Cserrwarnmk) 2-19

2.4. Running SunCGI in the Window System ... 2-20
2.4.l. Changing the Window Size .. 2-20
2.4.2. Passing SJGWINCHes to the Application Program 2-20
2.4.3. set_up_sigwinch (Csupsig) .. 2-20

Chapter 3 Output ... 3-1
3.1. Geometrical Output Primitives .. 3-1

3.1.1. Polygonal Primitives ... 3-1
3.1.1.1. polyline (Cpolyline) ... 3-2
3.1.l.2. disjoint_polyline (Cdpolyline) .. 3-2
3.1.l.3. polymarker (Cpolymarker) ... 3-3
3.1.l.4. polygon (Cpolygon) ... 3-3
3.l.1.5. partial_polygon (Cppolygon) ... 3-4
3.1.l.6. rectangle (Crectangle) ... 3-5

3.1.2. Conical Primitives... 3-6
3.1.2.1. circle (Ccircle) .. 3-6
3.1.2.2. circular _arc_center (Ccircarccent) 3-6
3.1.2.3. circular _arc_center _close

(Ccircarccentcl) .. 3-7
3.1.2.4. circular _arc_3pt (Ccircarcthree) 3-8
3.1.2.5. circular _arc_3pt_close (Ccircarcthreecl) 3-9
3.1.2.6. ellipse (Cellipse) ... 3-9
3.1.2.7. elliptical_arc (Celliparc) .. 3-9
3.1.2.8. elliptical_arc_close (Celliparccl) 3-10

3.2. Raster Primitives .. 3-10
3.2.1. text (Ctext) 3-10
3.2.2. vdm_text (Cvdmtext) ... 3-11
3.2.3. append_text (Captext) ... 3-11
3.2.4. inquire_text_extent (Cqtextext) ... 3-12
3.2.5. cell_array (Ccellarr) ... 3-12
3.2.6. pixel_array (Cpixarr) ... 3-13
3.2.7. bitblt_source_array (Cbtblsouarr) ... 3-13
3.2.8. bitblt_pattern_array (Cbtblpatarr) .. 3-14
3.2.9. bi tbl t_patterned_source_array

(Cbtblpatsouarr) .. 3-14
3.2.10. inquire_cell_array (Cqcellarr) .. 3-15

0

- VIII -

0
3.2.11. inquire_pixel_array (Cqpixarr) .. 3-16
3.2.12. inquire_device_bitmap (Cqdevbtmp) ... 3-16
3.2.13. inquire_bitblt_alignments (Cqbtblalign) 3-16

3.3. Drawing Modes .. 3-17
3.3.1. set_drawing_mode (Csdrawmode) .. 3-17
3.3.2. set_global_drawing_mode (Csgldrawmode) 3-18
3.3.3. inquire_drawing_mode (Cqdrawmode) ... 3-18

Chapter 4 Attributes... 4-1
4.1. Bundled Attribute Functions.. 4-2

4.1.1. set_aspect_source_flags (Csaspsouflags) 4-2
4.1.2. define_bundle_index (Cdefbundix) .. 4-3

4.2. Line Attributes .. 4-4
4.2.1. polyline_bundle_index (Cpolylnbundix) 4-4
4.2.2. line_type (Clntype) .. 4-5
4.2.3. line_endstyle (Clnendstyle) .. 4-5
4.2.4. l ine_width_speci f ication_mode

(Clnwidthspecmode) ... 4-5
4.2.5. line_width (Clnwidth) ... 4-6
4.2.6. line_color (Clncolor) ... 4-6

4.3. Polymarker Attributes .. 4-6
4.3.1. polymarker _bundle_index (Cpolymkbundix) 4-7
4.3.2. marker _type (Cmktype) .. 4-7
4.3.3. marker _size_speci fication_mode

(Cmksizespecmode) .. 4-7 0
4.3.4. marker _size (Cmksize) .. 4-8
4.3.5. marker _color (Cmkcolor). ... 4-8

4.4. Solid Object Attributes....................... ... 4-8
4.4.1. Fill Area Attributes 4-9

4.4.1.1. fil l_area_bundle_index (Cflareabundix) 4-9
4.4.1.2. interior _style (Cintstyle) ... 4-9
4.4.1.3. fill_color (Cflcolor) .. 4-10

4.4.2. Pattern Attributes ... 4-10
4.4.2.1. hatch_index (Chatchix) ... 4-10
4.4.2.2. pattern_index (Cpatix) ... 4-11
4.4.2.3. pattern_table (Cpattable) .. 4-11
4.4.2.4. pattern_reference_point (Cpatrefpt) 4-11
4.4.2.5. pattern_size (Cpatsize) .. 4-12

4.4.3. Perimeter Attributes .. 4-12
4.4.3.1. perimeter _type (Cperimtype) ... 4-12
4.4.3.2. perimeter _width (Cperimwidth) ... 4-13
4.4.3.3. perimeter _width_specification_mode

(Cperimwidthspecmode) ... 4-13
4.4.3.4. perimeter _color (Cperimcolor) ... 4-13

4.5. Text Attributes .. 4-14

0
4.5.1. text_bundle_index (Ctextbundix) ... 4-14

-ix-

4.5.2. text_precision (Ctextprec) ... 4-14
4.5.3. character _set_index (Ccharsetix) .. 4-15
4.5.4. text_font_index (Ctextfontix) .. 4-15

0
4.5.5. character _expansion_factor (Ccharexpfac) 4-16
4.5.6. character _spacing (Ccharspacing) .. 4-16
4.5.7. character _height (Ccharheight) ... 4-17
4.5.8. fixed_font (Cfixedfont) ... 4-17
4.5.9. text_color (Ctextcolor) ... 4-17
4.5.10. character _orientation (Ccharorientation) 4-18
4.5.11. character _path (Ccharpath) ... 4-18
4.5.12. text_alignment (Ctextalign) ... 4-19

4.6. Color Attributes .. 4-20
4.6.1. color _table (Ccotable) .. 4-20

4.7. Inquiry Functions ... 4-21
4.7.1. inquire_line_attributes (Cqlnatts) .. 4-21
4.7.2. inquire_marker _attributes (Cqmkatts) 4-21
4.7.3. inquire_fill_area_attributes (Cqflareaatts) 4-22
4.7.4. inquire_pattern_attributes (Cqpatatts) 4-22
4.7.5. inquire_text_attributes (Cqtextatts) 7 ..••••.•........................... 4-23
4.7.6. inquire_aspect_source_flags (Cqasfs) 4-24

Chapter 5 Input .. :... 5-1
5.1. Input Device Management ... 5-3

5.1.1. initialize_lid (Cinitlid) .. 5-3
5.1.2. release_input_device (Crelidev) ... 5-4 0
5.1.3. flush_event_queue (Cflusheventqu) ... 5-4
5.1.4. selective_flush_of_event_queue

(Cselectflusheventqu) .. 5-5
5.1.5. associate (Cassoc) .. 5-5
5.1.6. set_de faul t_trigger _associations

(Csde fatr igassoc) .. 5-6
5.1.7. dissociate (Cdissoc) .. 5-7
5.1.8. set_initial_value (Csinitval) .. 5-7
5.1.9. set_valuator _range (Csvalrange) ... 5-7

5.2. Tracking 5-8
5.2.1. track_on (Ctrackon) ... 5-8
5.2.2. track_o ff (Ctracko ff) ... 5-9

5.3. Event Functions .. 5-10
5.3.1. sample_input (Csampinp) ... 5-10
5.3.2. initiate_request (Cinitreq) .. 5-10
5.3.3. request_input (Creqinp) ... 5-11
5.3.4. get_last_requested_input (Cgetlastreqinp) 5-11
5.3.5. enable_events (Cenevents) .. 5-12
5.3.6. disable_events (Cdaevents) ... 5-12
5.3.7. await_event (Cawaitev) .. 5-13

5.4. Status Inquiries .. 5-13 0

-x-

0

0

0

5.4.1. inquire_lid_state_list (Cqlidstatelis) 5-14
5.4.2. inquire_lid_state (Cqlidstate) ... 5-14
5.4.3. inquire_trigger _state (Cqtrigstate) 5-15
5.4.4. inquire_event_queue_state (Cqevquestate) 5-15

Appendix A Differences between SunCore and SunCGI ... A-1
A.l. Output Primitives... A-1

A.1.1. Output Aspects of SunCore not Supported by SunCGI A-2
A.1.2. Output Features of SunCGI not Available in SunCore A-2

A.2. Segmentation ... A-2
A.3. Differences in Input Functions between SunCore and SunCGI A-2

Appendix B Unsupported Aspects of CGI .. B-1

Appendix C Type Definitions .. C-1

Appendix D Error Messages ... D-1
D.1. Successful Return (0) .. D-1
D.2. State Errors (1-5) .. D-1
D.3. Control Errors (10-16) .. D-2
D.4. Coordinate Definition (20-24) ... D-2
D.5. Output Attributes (30-51) ... D-3
D.6. Output Primitives (60-70) ... -.................................. D-5
D.7. Input (80-97) D-6
D.8. Implementation Dependent (110) ... D-7
D.9. Possible Causes of Visual Errors ... D-8

Appendix E Sample Program .. E-1
E.1. Martini Glass .. E-1

Appendix F Using SunCGI and Pixwins (Cgipw) ... F-1
F.l. open_pv_cgi .. F-1
F.2. open_cgi_pv F-1
F.3. close_cgi_pv ... F-2
F.4. close_pv_cgi ... F-2
F.5. Using Cgipw F-2
F.6. List of Cgipw Functions F-3
F.7. Example Program.. F-5

Appendix G Using SunCGI with Fortran-77 Programs ... G-1
G.1. Programming Tips... G-1
G.2. Example Program.. G-2
G.3. Correspondence Between C Names and FORTRAN Names................... G-3
G.4. FORTRAN Interfaces to SunCGI ... G-6

- XI -

0 1
'

o:

0

0

0

0

Tables

Table 2-1 SunCGI Default States.. 2-3
Table 2-2 Available View Surfaces.. 2-5
Table 2-3 View Surface Default States ... 2-5
Table 2-4 Class Dependent Information .. 2-12
Table 4-1 Default Attributes... 4-2
Table 4-2 Attribute Source Flag Numbers .. 4-3
Table 4-3 Available Fonts ... 4-16
Table 4-4 Normal Alignment Values .. 4-20
Table 4-5 Default Color Lookup Table .. 4-20
Table 5-1 Devices Offered by SunCGI .. 5-1
Table 5-2 States of Input Devices .. 5-2
Table 5-3 Triggers Offered by SunCGI .. 5-5
Table 5-4 Default Trigger Associations 5-6
Table 5-5 Available Track Types... 5-8
Table A-1 Difference in Output Primitives ... A-1
Table D-1 Possible Causes of Visual Errors ... D-8
Table D-2 Primitive-Specific Errors ... D-9
Table D-3 Attribute Errors .. D-10
Table D-4 Input-specific Errors D-10
Table F-1 List of Cgipw Functions ... F-3

- Xlll -

0

0

0

0

0

0

Chapter 1

Introduction

SunCGI (Sun Computer Graphics Interface) provides access to low-level graphics device func­
tions without the restrictions, benefits, or overhead of higher-level graphics packages such as
SunCore. SunCGI is useful for two-dimensional graphics programs which do not require seg­
mentation or transformations. The absence of segmentation from SunCGI makes drawing
diagrams faster and simpler, but does not provide automatic picture regeneration. SunCGI pro­
grams are usually smaller and more efficient than SunCore programs with similar functionality.
In addition, SunCGI programs will run on all of Sun's devices without explicitly specifying the
device at compile time. Furthermore, SunCGI provides output primitives (for example, circles),
attributes (for example, sophisticated pattern filling), and input primitives which are not offered
by SunCore.

SunCGI is Sun Microsystem's interpretation of the March, 1984 working draft of the ANSI X3H3
committee which is commissioned with designing the CG! standard1. The CG! standard is
currently under development, and therefore, CG! has not been accepted by the X3H3 committee,
ANSI, or the computer graphics community. Furthermore, only certain models within the CG!
proposed standard are supported by SunCGI. Specifically SunCGI implements input option
sets 1, 2, 3, 4, and 6 and output option sets 1 through 6 of the CG! standard. Furthermore, the
user should be aware that CG! does not support three-dimensional output primitives.

SunCGI doea provides output primitives, attribute selection, and input device management, at a
level which is close to the actual device driver; thus affording speed and flexibility not offered by
higher-level graphics packages such as SunCore. SunCGI provides output primitives which
are not provided by any of the other Sun graphics packages: for example disjoint polygons, cir­
cles, ellipses, and cell arrays (which can be thought of as scaled and transformed pixel arrays).
CG! also provides a larger vocabulary of attributes than SunCore. SunCGI also provides facili­
ties for explicitly binding virtual input devices to physical input devices as well as explicit
management of an event queue.

1.1. Notations Used in this Manual

Within the text of this manual, a typewriter font is used to represent function names and
types. For example, append_text is the name of a function; Cint is the name of a type.
The formal definitions of functions and arguments are printed in the typewriter font so
that they resemble code as typed at a terminal.

1 Both the CCI standard and Sun's interpretation or it are subject to change.

Revision A of 15 May 1985 1-1

Introduction SunCGI Reference Manual

Italic font is used to indicate an internal state of SunCGI. Internal states of SunCGI are not
explicitly enumerated, but their definition should be obvious from their names (for example,
current font). Internal states are distinguishable from function arguments in that they do not
use the underscore (_) character.

Italics are also used in the conventional manner (that is, to accentuate important words and
phrases). Boldface is used for the names of Sun software packages such as SunCGI and Sun­
Core.

In examples of what a user types at a terminal, a bold typewriter font is used to
represent what the user types, and the typewriter font represents what the software
displays in response.

1.2. Using SunCGI

To link SunCGI with your application program, put the following line in your Makefile:

cc testl.o -lcgi -lsunwindow -lpixrect -lm

where tea/1.o is the name of the application program. Similarly, if your application program uses
other libraries, they must also be included in the Makefile line.

SunCGI uses a variety of structures and enumerated types. These types are defined in Appen­
dix C. You should include the files <cgitypes.h>, and <cgiconstants.h> to provide the neces­
sary type definitions and constants for your application program.

0

All SunCGI functions can be called by one of two names: the expanded name or the C-
language binding name. The expanded name is the first name provided in the function descrip- o
tion section, whereas the C-language binding name is specified in parenthesis. You must include
the file <cgicbind.h> in your application program if you want to use the C-language binding
name. The C-language binding names are an attempt to anticipate the C-language binding of
CG!. However, no C-language binding has been included in the CGI standard, and the SunCGI
binding is inspired by the C-language binding of GKS.

As a final note, do not name any user-defined function or variable starting with the letters _cgi
because doing so may disrupt the internal workings of SunCGI.

FORTRAN programmers can access SunCGI functions by using the include file in cgidefs77 .h
and using the /uar/lib/libcgi77.a library to link with. Details of the FORTRAN interface to
SunCGI are provided in appendix G.

1.3. Overview of SunCGI

This section provides an overview of the substance of the SunCGI manual. The four major sec­
tions of the manual (which correspond to chapters) are:

1) view surface initialization and termination (control),
2) output primitives,
3) attributes, and
4) input.

The overview of these chapters contains a brief introduction to the basic concepts of CGL The
appendices at the end of this manual provide quick reference tables and descriptions of the inter- 0
faces between SunCGI and

1-2 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual

1) Pixwins and
2) FORTRAN.

1.3.1. Control (Initialization and Termination)

The chapter on control describes functions for

Introduction

1) initializing and terminating the entire SunCGI package and individual view surfaces,

2) defining the coordinate systems,

3) interface negotiation, and

4) signal trapping.

The first section of the control chapter describes functions for opening and closing view surfaces
(which are either windows or screens). SunCGI provides facilities for writing primitives to mul­
tiple view surfaces. Output primitives can be written to a selected subset of the open view sur­
faces by using the activate and deactivate commands (which turn a view surface on or off
without closing the view surface). The functions discussed in the control chapter also define the
range of normalized device coordinates (VDC Space) and device coordinates (screen space). The
coordinates of most SunCGI functions are expressed in terms of VDC Space. The limits of both
VDC Space and screen space can be defined by the application program.

If you are attempting to run an application program developed on another vendor's version of
CG!, negotiation functions are provided which describe the capabilities of SunCGI. The applica­
tion program can use the information obtained by using the negotiation functions to call
appropriate functions in SunCGI to make the application program run correctly. Finally, the
control chapter describes SunCGI's option for trapping SIGWINCH signals (generated by manipu­
lating the window which the application program is using).

1.3.2. Output

SunCGI provides functions for drawing geometrical output primitives (for example, polygons,
circles, and ellipses) as well as functions for performing raster operations. The coordinates of
output primitives are specified in VDC Space (with the exception of some raster functions).
Geometrical output primitives include rectangles, polymarkers circular and elliptical arcs in
addition to those mentioned in the previous sentence. Geometrical output primitives are affected
by attributes described in the following chapter (such as fill style and line width). All output
primitives are affected by the drawing mode which determines how an output primitives is
affected by pixels which have been previously drawn on the screen.

1. 3. 3. Attributes

Attributes functions control the appearance of output primitives. Attributes can be set individu­
ally, or in groups which are called bundles. The use of most attributes is fairly straightforward;
however, the options available for filling geometrical output primitives requires a word of expla­
nation. Geometrical output primitives can be filled with textures called hatches or patterns.
Hatches are simply arrays of color values with each element of the array corresponding to a
pixel. Patterns are arrays of color values which can be scaled and translated.

Revision A of 15 May 1985 1-3

Introduction SunCGI Reference Manual

1. 9.,4. Input

SunCGI offers a standard interface for receiving input from the mouse and the keyboard. The
CGI input model is based on the concept of logical input devices such as LOCATORS,
VALUATORS,and STROKES. Logical input devices are bound to physical devices (such as mouse
buttons) called triggers. Triggers may be associated with logical input devices by the application
program. Each logical input device has an associated measure (for example, the measure .of a
LOCATOR device is the mouse position on the screen). Each logical input device also has a state
which determines how a device handles input. Each logical input device can be in one of five
states:

1) RELEASED (uninitialized),

2) NO...EVENTS (initialized but unable to receive input),

3) REQUEST...EVENT (wait for one event),

4) RESPOND...EVENT (report one event asynchronously), and

5) QUEUE_EVENT (put each event at the end of the event queue).

1.9.5. Programming Tips

For novice C-language users, the syntax of SunCGI may pose some initial difficulties. When a
pointer is specified as an argument to a SunCGI function, SunCGI usually expects space to be
allocated by the application program and the function argument to be preceded by an amper­
sand (&). SunCGI uses many enumerated types. These types are printed by the printf func­
tion as integers. If you want to print out these values in English, you should use the enumerated
types as indices into a character array which contains appropriate English equivalents of the
enumerated types. Finally, if you are a novice programmer, begin by copying the example pro­
gram in the example program appendix and develop your application program from this example.
Further help can be obtained by referring to the tables at the end of the appendix specifying
error messages. These tables list commonly encountered problems and how to solve them.

1.9.6. Appendices

The first five appendices are provided as an informational reference which may make SunCGI
easier to understand. This information will probably be particularly useful to novice users. The
last two appendices describe the interfaces:

1. between SunCGI and Pixwins (the Sun Window System) and

2. betweenSunCGI and the FORTRAN programming language.

1.9.tJ.1. Reference Appendicea

0

o:

The first appendix explains the difference between SunCGI and SunCore. The next appendix
lists the ANSI CGI standard functions which are not implemented by SunCGI and the SunCGI
functions which are not part of the ANSI CGI standard. The third appendix provides the type
definitions used by the SunCGI functions. The fourth appendix lists the error messages and
possible strategies for eliminating them. This appendix also lists possible causes of simple run- 0
time errors. Finally, the fifth appendix describes a sample program.

1-4 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Introduction

1.9.6.e. Deicription o/ Inter/acea to SunCGI

The final two appendices describe the interfaces between SunCGI and other Sun software
packages: Pixwins and FORTRAN. The first of the two interface appendices explains how to call
SunCGI from application programs written on top of Pixwins. This interface allows SunCGI
to write output primitives in different pixwins using different attributes. This interface is useful
for application programs which wish to control different areas of the view surface independently.
The final appendix describes the interface to the FORTRAN programming language. The behavior
of each SunCGI function is the same in both C and FORTRAN.

1.4. References

l) ANSI X3H3 Technical Committee, 1984, 'Graphics Kernel System dpANS', ACM SIG­
GRAPH, February 1984, ACM, New York.

2) ANSI X3H3 Technical Committee, 1984, 'Virtual Device Interface dpANS', X3H3 84/45,
March 1984, ANSI, New York.

Revision A of 15 May 1985 1-5

0

0

0

0

0

0

Chapter 2

Initializing (and Terminating) SunCGI

2.1. View Surface Selection And Initialization

No functions for initializing and terminating devices are provided in the current CG! standard.
Therefore, six nonstandard functions open_cgi, close_cgi, open_vws, close_vws,
activate_vws, and deactivate_vws are included in SunCGI. open_cgi and
close_cgi initialize and terminate the operation of the SunCGI package. A view surface is
initialized by calling open_ vws. SunCGI is capable of handling more than one view surface at
once. However, output primitives are not displayed unless a view surface is activated.

A view surface is automatically activated when it is opened. However, a view surface can be
deactivated (with the deactivate_vws function) when the output stream is not intended to
appear on all view surfaces. Subsequent calls to SunCGI output functions will not apply to
deactivated view surfaces2 until activate_vws is called again (see the following example).

2 However, inputs ca.n be received on deactivated view surra.ces.

Revision A of 15 May 1985 2-1

Initializing (and Terminating) Sun CG! SunCGI Reference Manual

main ()
{

}

Cvwsurf devicel,device2;
Cint namel, name2;
Ccoor bot,top,center;
Cint radius;

/*declarations*/

/• values of arguments are assumed to be set by you*/

open_cgi(); /• start cgi */
NORMAL_VWSURF(devicel, PIXWINDD); /* black-and-white view surface*/
open_vws(&namel,&devicel); /* open device number 1 */
NORMAL_VWSURF(device2, CGlDD); /* color view surface*/
open_vws(&name2,&device2); /* open device number 2 */
rectangle(&bot,&top); /* draw a rectangle on both devices*/
deactivate_vws(name2); /* deactivate device number 2 */
circle(¢er,radius); /* draw a circle on device no. 1 only*/
activate_vws(name2); /* activate device number 2 */
circle(¢er,2*radius); /* draw a circle on both devices*/
close_vws(namel); /* close device number 1 */
close_vws(name2); /* close device number 2 */
close_cgi(); /* close cgi */

2.1.1. open_cgi (Copencgi}

Cerror open_cgi()

open_cgi initializes the state of SunCGI to CGOP (CGi OPen). open_cgi does not initial­
ize input devices but does initialize the event queue. No other CG! functions can be used without
generating an error if open_cgi has not been called.

ERRORS:

1 ENOTCGCL CG! not in proper state: CG! shall be in state CGCL.

Errors are reported in SunCGI by setting the return value of the function to a nonzero result
and echoing an error message and number on the terminal. However, error trapping can be con­

-trolled by the set_error _warning_mask function. An explanation of each error message
(and suggestions for how to eliminate them) is presented in Appendix D.

2-2 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Initializing (and Terminating) Sun CG I

Table 2-1: SunCGI Default States

State

Range of VDC Space
Clip Indicator
Clip Rectangle
Error Warning Mask
Input Devices
Input Queue
Trigger Associations
Echo Modes

Value

(0-32767 in both X and Y directions)
ON
(Range of VDC Space)
INTERRUPT
(Uninitialized)
EMPTY
(Defaults specific values listed in Table 5-4)
(Device specific values listed in Table 5-5)

Some of the entries discussed in Table 2-1 may be unfamiliar to you at this time. However, all of
these concepts are explained in the course of this chapter. Further, each of these concepts are
referenced in the index.

2.1.2. open_vws {Copenvws)

Cerror open_vws(name,devdd)
Cint •name; /• name assigned to cgi view surface•;
Cvwsurf •devdd; /• view surface descriptor•/

open_ vws initializes a view surface. The list of available view surfaces is described below in
Table 2-2. open_ vws initializes the attributes to their default values (listed in Table 2-3). The
returned argument name is the identifier which is used to refer this view surface in other
SunCGI functions. If you want to reinitialize the state of the view surface without reopening it,
you should use the hard_reset function.

More than one view surface can be open at one time. Output primitives are displayed on all
active view surfaces (view surfaces must be opened before they are activated). However, input
is only echoed on the view surface which is pointed to by the mouse. You must set the view sur­
face type by assigning the dd element of the devdd argument to the name of the appropriate dev­
ice driver as in this example3:

Cvwsurf device;
NORMAL_VWSURF(device, BW2DD); /• black-and-white view surface•/
open_vws(&name,&device);

8 Notice that when SunOGI specifies a pointer it usually requires that the argument is preraced by an &
character when the argument is actually used.

Revision A of 15 May 1985 2-3

Initializing (and Terminating) SunCGI SunCGI Reference Manual

The NORMAL_VWSURF macro initializes the dd element of the Cvwsurf structure and guarantees
that the view surface will be opened in the normal fashion. Howev.tr, if you want to open a win­
dow with some nonstandard parameters, or open a second window from a graphics tool you
should read the following paragraphs. If you want to use an existing pizwin then you should skip
the following paragraphs and read Appendix F instead.

If the view surface of the specified type has been previously initialized and the type of view sur­
face is a window (PIXWINDD or CGPIXWINDD), a CGJ tool (a window with the name CGI Tool)
is opened. You may also define other characteristics of the view surface by setting the other ele­
ments of the of the devdd argument (which is of type Cvwsurf).

typedef struct {
char screenname[DEVNAMESIZEJ; ;• physical screen•/
char windowname[DEVNAMESIZE]; ;• window•/
int windowfd; ;• window file descriptor •;
int retained; ;• retained flag •;
int dd; ;• device•/
int cmapsize; ;• color map size •;
char cmapname[DEVNAMESIZEJ; ;• color map name •;
int flags; ;• new flag •;
char **ptr; ;• CG! tool descriptor •;

} Cvwsurf;

The elements acreenname and windowname specify alternate screens (for example, /dev/cgoneO)
or alternate window (for example, /dev/win10). If these elements are left blank, the current
screen and the current window are used, unless the dd field implicitly specifies a device (for
example CGtDD). The element windowfd is the window file descriptor for the current device.
The current implementation of SunCGI ignores this element.

If the element retained is nonzero, then the view surface created by open_ vws has a retained
window associated with it (that is, if the window is covered-up by another window and then
revealed, the picture present before the window was covered-up will be redisplayed.

By default the window created by open_ vws is non-retained. That is, if the window is
covered-up and then revealed the covered-portion will be redisplayed as white. However, draw­
ing in non-retained windows is twice as fast as drawing in retained windows, so the choice of
which type of view surface to open should be carefully considered.

The dd element specifies the view surface type. The cmapaize and the cmapname elements
determine the size and the name of the colormap. No colormap ia enabled for black-and-white
devicea. The colormap determines the mapping between color indices and red, green, and blue
values. If the colormap specified by the cmapname element of the devdd argument is the same as
a colormap segment which already exists, then the colormap segment is shared. Refer to the
Programmera' Reference Manual for Sun Window, for more information about colormaps.

0

When the flaga element is nonzero, no attempt is made to take over the current graphics
subwindow (if one exists). If this flag is set or the graphics subwindow has already been taken
over by SunCGI, then a CGI Tool (a window with the name CGI Tool) is created. The view sur­
face descriptor returned in name refers to the CGI Tool. The ptr element specifies the size and
placement of the CGJ Tool. Ptr is a pointer to a nine element array of characters. Each element
of the array should be filled with an integer. The first two elements specify the x- and y- O
coordinates of the upper left-hand corner of the CGI Tool. The third and fourth elements specify

2-4 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Initializing (and Terminating) SunCGI

the width and height of the CG! Tool. The fifth through eighth elements specify the position and
size of the iconic form of the CG! Tool. If the ninth element is nonzero, the tool is displayed in
its iconic form.

ERRORS:

5 ENOTOPOP CG! not in proper state CGI shall be either in state CGOP, VSOP, or
VSAC.

11 ENOWSTYP

12 EVSISOPN

Specified view surface type does not exist.

Specified view surface is open.

Surface Name

BW1DD
BW2DD
CG1DD
CG2DD
PIXWINDD
CGPIXWINDD

Table 2-2: Available View Surfaces

Deacription

for the Sun-1 monochrome display
for the Sun-2 monochrome display
for the Sun-1 color display
for the Sun-2 color display
for windows on the Sun-I monochrome display
for windows on color display

Table 2-3: View Surface Default States

State

View Surface
Device Viewport

2.1.9. activate_vws (CactvwsJ

Cerror activate_vws(name)

Value

(Cleared)
(Total Screen)

Cint name;/* view surface name*/

activate_ vvs activates the view surface specified by name. Future SunCGI calls affect this
view surface. Nothing ia diaplayed on a view aurface unleaa that view aurface ia active. Note
that activating a view surface may reset the state of SunCGI.

ERRORS:

5 ENOTOPOP

10 EVSIDINV

CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

Specified view surface name is invalid.

Revision A of 15 May 1985 2-5

Initializing (and Terminating) SunCGI

13 EVSNOTOP

14 EVSISACT

Specified view surface not open.

Specified view surface is active.

2.1.4. deactivate_vws {CdeactvwsJ

Cerror deactivate_vws(name)
Cint name;/* view surface name*/

SunCGI Reference Manual

deactivate_ vvs prevents calls to SunCGI functions from having an effect on this view sur­
face. The view surface may be reactivated at a later time without having to be reopened. Note
that activating a view surface may reset the state of SunCGI.

ERRORS:

4 ENOTVSAC

10 EVSIDINV

13 EVSNOTOP

15 EVSNTACT

CG! not in proper state: CG! shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

2.1.5. close_vws {CclosevwsJ

Cerror close_vws(name)
Cint name;/* view surface name*/

close_vvs terminates a view surface. Future SunCGI calls have no effect on this view sur­
face. The view surface cannot be reactivated without being reopened.

ERRORS:

5 ENOTOPOP

10 EVSIDINV

13 EVSNOTOP

CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

Specified view surface name is invalid.

Specified view surface not open.

2.1.6. close_cgi {Cclosecgi}

Cerror close_cgi()

c 1 ose_cgi terminates all open view surfaces, and restores the state of the window system to
the state that it was in before SunCGI was opened. Future SunCGI calls will have no effect
and will generate errors.

2-6 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Initializing (and Terminating) SunCGI

It is recommended that you include a call to close_cgi in the-exit routines of your applica­
tion program to guarantee leaving the window system and SunCGI in a stable state.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.2. Interface Negotiation

CG! is intended to support a 'negotiated device interface' which permits programs written on a
specific type of hardware to run on other machines. SunCGI only allows inquiry of most of the
settable modes.4 For example the user may want to find out which types of input devices are
supported. However, functions for setting color precision, coordinate type, specification mode,
and color specification are not provided because SunCGI only supports one type of color preci­
sion (8-bit), coordinate type (integers), and color specification (indexed). The width and size
specification modes are settable, but the functions which set them are described in the chapter
on attributes. However, the inquiry negotiation functions are supported so that an application
program written for a CG! on another manufacturers' workstation can find out whether the
SunCGI is capable of running that application.

2.2.1. inquire_device_identification {Cqdevid}

Cerror inquire_device_identification (name,devid)
Cint name; /• device name•/
Cchar •devid; /• Workstation type•/

inquire_device_identification reports which type of Sun Workstation view surface
name is associated with. The argument devid may be set to one of the six Sun Workstation
types: BW1DD, BW2DD, CG1DD, CG2DD, PIXWINDD, or CGPJXWINDD. The inclusion of
the name argument deviates from the ANSI standard, but is necessary so that the characteristics
of individual view surfaces may be inquired.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

10 EVSIDINV

13 EVSNOTOP

Specified view surface name is invalid.

Specified view surface not open.

• The functions which are not supported by SunCGI are classified as non-required by the March 1984
ANSI 03I standard.

Revision A of 15 May 1985 2-7

Initializing (and Terminating) Sun CG I SunCGI Reference Manual

2.2.2. inquire_device_class (CqdevclassJ

Cerror inquire_device_class(output,input)
Cint •output,•input; /• output and input abilities•;

inquire_device_class describes the capabilities of Sun Workstations in terms of the CG!
functions they support5• Each of the two returned values reports the number of functions of
each of the two classes which are supported in SunCGI. These numbers (the values of input and
output) are used to make more detailed inquiries by using functions such as
inquire_output_capabilities.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.2.3. inquire_physical_coordinate_system (CqphyscsysJ

Cerror inquire_physical_coordinate_system
(name,xbase,ybase,xext,yext,xunits,yunits)

Cint name; /• name assigned to cgi view surface•/
Cint •xbase,•ybase; /• base coordinates•/
Cint •xext,•yext; /• number of pixels in each direction•/
Cfloat •xunits,•yunits; /* number of pixels per mm. */

inquire_coordinate_system reports the physical dimensions of the coordinate system of
view surface name in pixels and millimeters. The inquire_coordinate_system function is
provided to permit the drawing of objects of a known physical size.
inquire_coordinate_system is also provided to assist in the computation of parameters for
the device_viewport function. Xezt and yezt describe the maximum extent of the window
in which the application program is run (The window may or may not cover the entire screen.)
The number of pixels per millimeter is always set to O because the actual screen size of device
varies between individual monitors. If you want to compute the actual size of the screen, you
may obtain the number of pixels in the z and y directions from the monitor specifications and
perform the division in your application program.

ERRORS:

5 ENOTOPOP

10 EVSIDINV

13 EVSNOTOP

CGI not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

Specified view surface name is invalid.

Specified view surface not open.

6 The output argument does not include the non-standard CGI functions.

2-8 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Initializing (and Terminating) SunCGI

2.2.4. inquire_output_function_set {CqoutfunsetJ

Cerror inquire_output_function_set (level,support)
Cint level;/* level of output*/
Csuptype •support/* amount of support*/

inquire_output_ function_set reports the extent to which each level of the output por­
tion of the ANSI CG! standard is supported.

typedef enum {
NONE,
REQUIRED_FUNCTIONS_ONLY,
SOME_NON_REQUIRED_FUNCTIONS,
ALL_NON_REQUIRED_FUNCTIONS

} Vsuptype;

The standard requires that the level argument be an enumerated type; however, for reasons of
simplicity only the level number is used by SunCGI. Levels 1-6 are supported completely (that
is, both required and non-required functions are implemented. Level 7 is not supported at all.
Refer to the ANSI standard for the precise definition of each level.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.2.5. inquire_vdc_type {CqvdctypeJ

Cerror inquire_vdc_type(type)
Cvdctype •type;/* type of vdc space*/

inquire_vdc_type reports the type of coordinates used by SunCGI in the returned argu­
ment type.

typedef enum {
INTEGER,
REAL,
BOTH

} Cvdctype;

Type is always set to INTEGER (32-bit). Use SunCol'e if you want to use a system with coordi­
nate space expressed in real numbers.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

Revision A of 15 May 1985 2-9

Initializing (and Terminating) SunCGI

2.2.6. inquire_output_capabili ties (Cqoutcap)

Cerror inquire_output_capabilities (first,num,list)
Cint first,num; /* first and number elements

SunCGI Reference Manual

of list to be returned*/
Cchar *list[];/* returned list*/

inquire_output_capabilities lists the output functions in the returned argument liat.
The range of the /frat and num arguments is determined by the returned argument output from
the inquire_device_class function.

ERRORS:

5 ENOTOPOP CG! not in proper state CGI shall be either in state CGOP, VSOP, or
VSAC.

16 EINQLTL Inquiry arguments are longer than list.

2.2. 7. Input Capability Inquiries

Input devices have a separate class of negotiation functions. Input capability inquiries report
qualitative abilities as well as quantitative abilities of input devices. The
inquire_input_capabilities function reports which devices and overall features are sup­
ported by SunCGI. The remaining functions report the capabilities of individual devices or
features.

Input devices are virtual devices which must be associated with physical triggers (such as
mouse buttons). Initializing an input device defines the measure used by a device, for example
initializing a LOCATOR device defines the measure as x,y coordinates. In addition to being
associated with a trigger, each device has selectable screen echoing capabilities. Association and
echoing capabilities for each input device are reported by the functions described in this section.

2.2. 7.1. inquire_input_capabilities {Cqinpcaps/

Cerror inquire_input_capabilities (valid,table)
Clogical •valid;/* device state*/
Ccgidesctab •table;/• CGI input description table•/

inquire_input_capabilities reports the total number of input devices of each class that
are supported. The argument valid returns the value L_TRUE if SunCGI is initialized, and
LJ'ALSE otherwise. If valid is set to L_TRUE, the elements of table are set to the quantity and
quality of inputs supported by the specific view surface. All Sun Workstations support input
at the same level.

2-10 Revision A of 15 May 1985

0

0

o:

0

0

0

SunCGJ Reference Manual Initializing (and Terminating) SunCGI

typedef struct {
Cint numloc;
Cint numval;
Cint numstrk;
Cint numcholce;
Cint numstr;
Cint numtrig;
Csuptype event_queue;
Csuptype asynch;
Csuptype coord_map;
Csuptype echo;
Csuptype tracking;
Csuptype prompt;
Csuptype acknowledgement;
Csuptype trigger_manipulation;

} Ccgidesctab;

Elements of type Cint report how many of each type device is supported, as well as how many
types of triggers are supported. Elements of type C,uptype report how many of the functions of
each class are supported. All functions except the tracking functions are fully supported.

ERRORS:

5 ENOTOPOP CG! not in proper state CGI shall be either in state CGOP, VSOP, or
VSAC.

2.2. 7.2. inquire_lid_capabilities {Cqlidcaps/

Cerror inquire_lid_capabilities (devclass,devnum,valid,table)
Cdevoff devclass;
Cint devnum; /* device type, device number*/
Clogical *valid;/* device supported at all*/
Cliddescript •table;/* table of descriptors*/

inquire_input_device_capabilities describes the capabilities of a specific input device
(hereafter, specified device). The input arguments devcla,a and devnum refer to a specific dev­
ice type and number. The argument valid reports whether CG! is initialized.

typedef struct {
Clogical sample;
Cchangetype change;
Cint numassoc;
Cint *trlgassoc;
Clogical prompt;
Clogical acknowledgement;
Cechoav •echo;
Cchar *classdep;
Cstatelist state;

} Cliddescr ipt;

Revision A of 15 May 1985 2-11

Initializing (and Terminating) SunCGI SunCG! Reference Manual

The elements of table which are of type Clogical indicate whether an ability is present in a
specified logical input device. The change element reports whether associations are changeable Q,

at all (all input devices except string are not changeable). The numaaaoc and trigaaaoc elements
of table report how many and which triggers are associated with the specified logical input dev-
ice. The echo argument describes which echo types are supported (see the chapter on input for
a list of echo types6). The claudep argument provides class dependent information in character
form (the type of information is given in Table 2-3). If more than one piece of class dependent
information is returned, then the pieces of information are separated by commas. The ltate
argument reports the initial state of the specified device. See the inquire_state_list func-
tion.

Device Glau

ICJ,OCATOR

IC_VALUATOR
IC_STROKE

IC_CHOICE
IC_STRING

Table 2-4: Class Dependent Information

Information

Coordinate Mapping
Native Range
Set Valuator Range
Time Increment Settable
Minimum Distance
Range
None

Poaaible V aluea

(Yes,No,Partial)
(xmin,xmax,ymin,ymax)
(yes/no)
(yes/no)
(yes/no)
(min/max)
None

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.2. 7.9. inquire_trigger _capabilities (Cqtrigcaps)

Cerror inquire_trigger_capabilities(trigger,valid,tdis)
Cint trigger;/* trigger number*/
Clogical •valid;/* trigger supported at all*/
Ctrigdis •tdis; /* trigger description table*/

inquire_trigger _capabilities describes how a particular trigger can be associated. The
argument valid reports whether the device supports input at all.

5 Note that 1nquira_lid_capab111t1aa returns an enumerated type whereas traclc_on accepts
integers. ThereCore these values may be different.

2-12 Revision A of 15 May 1985

0

0

SunCGI Reference Manual

typedef struct {
Cchangetype change;
Cassoclid *numassoc;
Cint maxassoc;
Cpromstate prompt;
Cackstate acknowledgement;
Cchar *name;
Cchar *description;

} Ctrigdis;

Initializing (and Terminating) SunCGI

The change element of tdia reports whether the specified trigger can be associated with a logical
input device. The numa .. oc and triga .. oc elements of tdia report how many and which logical
input devices can be associated with trigger. The maxaaaoc element reports the maximum
number of devices that can be associated with a particular trigger. The prompt and ack­
nowledgement elements report the ability of the trigger to support these abilities. SunCGI does
not support either prompt or acknowledgement for any input device. The name element is sim­
ply a character form of the trigger name (for example, LEFT MOUSE BUTTON). The deacription
element is never filled and is included for standards compatibility.

ERRORS:

5 ENOTOPOP

86 EINTRNEX

CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

Trigger does not exist.

Q 2.3. View Surface Control

0

The functions described in this section

1. define the range of world and device coordinates,

2. control clipping, and

3. reset selected aspects of the view surface and the internal state of SunCGI.

2.3.1. Coordinate Definition

Most functions in SunCGI express coordinates in VDC Space (Virtual Device Coordinate Space).
In conventional computer graphics terms, VDC Space corresponds to world coordinate space.
The mapping between VDC Space and screen space is determined by the physical size of the
screen in pixels. Screen space is set by default to the entire size of the screen or the graphics
window depending on the device type. The mapping from VDC Space to screen space is always
isotropic (the shape of the rectangle defining screen space is the same shape as VDC Space).
Therefore, VDC Space defines the shape of the active view surface. The portion of screen space
which does not correspond to VDC Space is ignored. The aspect ratio (the ratio between the
height and width) is therefore, defined by VDC Space and not screen space.

Revision A of 15 May 1985 2-13

Initializing (and Terminating) Sun CG I SunCGI Reference Manual

2.9.1.1. vdc_extent (Cvdcext)

Cerror vdc_extent (cl, c2)
Ccoor *cl, *c2; /* bottom left-hand and top right-hand

corner of VDC space*/

vdc_extent defines the limits of VDC Space. The range of the coordinates must be between
-32767 and 32767 (or an error is generated). VDC Space can be set by you, but it ranges from 0
to 32767 in both the X and the Y directions by default. Resetting VDC Space impacts the display
of output primitives on all view surfaces.

Resetting the limits of VDC Space &utom&tic&lly redefines the clipping rectangle to the new
limits of VDC Space, regardless of the value of the clip indicator.

Changing the mapping from screen space to VDC Space allows you to translate (move) or scale
(zoom in/zoom out) the output primitives. However, no rotation functions are provided by
SunCGI, and therefore, must be built by you. The code fragment below translates and zooms
in on a rectangle:

2-14 Revision A of 15 May 1985

0

ol

0

0

0

0

SunCGI Reference Manual Initializing (and Terminating) SunCGI

#include <cgidefs.h>
main()
{
Cvwsurf device;
Cint name;
Ccoor upper~lower;
Cint xl,yl,xu,yu;
Ccoor dvl,dv2;

}

ERRORS:

device.dd = PIXWINDD; /' turn on a pixwin •/
open_cgi();
open_vws(&name,&device);
activate_view_surface(name);
lower.x=30; /' coordinates of rectangle•/
lower.y=30;
upper.x=70;
upper.y=70;
dvl.x = O;
dvl.y = O;
dv2.x = 200;
dv2 .y = 200;
vdc_extent(&dvl,&dv2);
rectangle(&upper,&lower); /' draw initial rectangle'/
sleep(4);
dvl.x = O;
dvl.y = 0;
dv2.x = 100;
dv2.y = 100;
vdc_extent(&dvl,&dv2); /' center rectangle'/
rectangle(&upper,&lower);
sleep(4);
dvl.x = 20;
dvl.y = 20;
dv2.x = BO;
dv2.y = BO;
vdc_extent(&dvl,&dv2); /' enlarge rectangle'/
rectangle(&upper,&lower);
sleep(4);
close_view_surface(name);
close_cgi () ;

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

20 EBADRCTD

24 EVDCSDIL

Rectangle definition is invalid.

VDC space definition is illegal.

Revision A of 15 May 1985 2-15

Initializing (and Terminating) SunCG! SunCGI Reference Manual

2.9.1.2. device_viewport {Cdevvpt)

Cerror device_viewport(name,cl,c2)
Cint name; /• name assigned to cgi view surface•/
Ccoor •c1,•c2; /• bottom left-hand and top right-hand corner of view

surface to map device onto (expressed in pixels) •/

device_viewport redefines the limits of screen space. If the new limits are not less than or
equal to the size of the current screen or window size, an error is returned. Although
device_viewport does not redefine the aspect ratio, it may redefine which areas of the screen
are unused.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

10 EVSIDINV

13 EVSNOTOP

20 EBADRCTD

21 EBDVIEWP

2.3.2. Clipping

Specified view surface name is invalid.

Specified view surface not open.

Rectangle definition is invalid.

Viewport is not within Device Coordinates.

For some application programs, it is desirable to have clipping explicitly within the viewport,
while other applications may seek to increase efficiency by not checking if the coordinates are
within the bounds of the clipping area.

All SunCGI application programs will run faster if clipping is turned off. However, clipping is
turned on by default to prevent SunCGI from drawing outside of the bounds of the window.

The clipping area is set by the clip_rectangle function.

2.9.2.1. clip_indicator {Cclipind)

Cerror clip_indicator(cflag)
Cclip cflag; /• CLIP....RECTANGLE, VDC_EXTENT, or OFF•/

The value of the argument cflag determines whether output primitives are clipped before they
are displayed. The default state is vdc_extent. The advantage of turning clipping off is that it
improves the speed of drawing primitives. However, if clipping is turned OFF, SunCGI may
draw output primitives outside of the window or within the bounds of an overlapping window. If
clipping is not OFF, output primitives are clipped to either the clip rectangle, (if cflag equals
CLIP) or the full extent of VDC space or (if cflag equals CLIP).

2-16 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Initializing (and Terminating) SunCGI

typedef enum {
CLIP,
NOCLIP,
CLIP_RECTANGLE

} Vclip;

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.9.2.2. clip_rectangle {CcliprectJ

Cerror clip_rectangle(xmin,xmax,ymin,ymax)
Cint xmin,xmax,ymin,ymax; /* bottom left-hand

and top right-hand corner of clipping rectangle*/

clip_rectangle defines the clipping rectangle in VDC Coordinates. By default, the clipping
rectangle is set to the borders of VDC space. The clipping rectangle impacts all view surfaces.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

20 EBADRCTD

22 ECLIPTOL

23 ECLIPTOS

2.3.3. Device Control

Rectangle definition is invalid.

Clipping rectangle is too large.

Clipping rectangle is too small.

Device control functions restore the view surface and the internal state of SunCGI to a known
state. The individual aspects of the device which can be reset are the output attributes, the
view surface (screen), and the error reporting.

2.9.9.1. hard_reset {ChardrstJ

Cerror hard_reset()

hard_reset returns the output attributes to their default values; terminates all input devices,
and empties the event queue and clears all view surfaces. VDC Space is reset to its default
values and the clip indicator is set to CLIP.

Revision A of 15 May 1985 2-17

Initializing (and Terminating) Sun CG I SunCGI Reference Manual

This function should be used sparingly because most control, attribute, and input functions
called before this function will not have any effect on functions called after hard_reset is
called.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.9.9.2. reset_to_defaults {Crsttodefs/

Cerror reset_to_defaults()

reset_to_defaults returns output attributes to defaults. reset_to_defaults does not
clear the screen, reset the input devices, or reset the character aet indez.

ERRORS:

5 ENOTOPOP

10 EVSIDINV

CG! not in proper state CGI shall be either in state CGOP, VSOP, or
VSAC.

Specified view surface name is invalid.

2.9.9.9. clear _view_surface {Cclrvws/

Cerror clear_view_surface (name,defflag,index)
Cint name; /* name assigned to cgi view surface*/
Cflag defflag; /* default color flag*/
Cint index;/* color of cleared screen*/

clear _view_surface changes all pixels in the relevant area of the view surface specified by
name to the color specified by the indez argument, unless the defflag argument is set to OFF. If
defflag is equal to OFF, the view surface is cleared to color zero. The area of the view surface
which is actually cleared is determined by the clear _control function.
clear _view_surface also resets the internal state of SunCGI according to previous calls to
the clear _control function. clear _view_surface resets the current background color
to the color of the cleared view surface.

ERRORS:

2-18

4 ENOTVSAC

10 EVSIDINV

13 EVSNOTOP

15 EVSNTACT

35 ECINDXLZ

36 EBADCOLX

CGI not in proper state: CGI shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

Color index is less than zero.

Color index is invalid.

Revision A of 15 May 1985

0

o:

0

0

0

0

SunCGI Reference Manual Initializing (and Terminating) SunCGI

2.9.9.,l. clear _control {Cclrcont)

Cerror clear_control(soft,hard,intern,extent)
Cacttype soft.hard;/* soft-copy action, hard-copy action*/
Cacttype intern;/* internal action*/
Cexttype extent;/* clear extent*/

clear _control determines the action taken when clear _viev_surface is called. The
argument ,oft can be set to either NO_OP or CLEAR. The argument hard which regulates clearing
rules for plotters is ignored (because SunCGI does not currently support hard-copy devices) and
is included only for ANSI CG! compatibility. The argument intern is set to either RETAIN or
CLEAR. This parameter was included to support segmentation storage which is not currently a
part of ANSI CG!. Therefore, the intern argument is ignored. The argument clear _extent is
set to either VIEW_SURFACE, VIEWPORT, or CLIPRECTANGLE and determines what area of the
screen is cleared. The default states are CLEAR (a oft), NO_OP (hard), RETAIN (intern), and
VIEW _SURFACE (e:ztent).

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

2.9.9.5. set_error _varning_mask {Cserrvarnmk)

Cerror set_error_varning_mask(action)
Cerrtype action;/* Action on receipt of an error*/

set_error _varning_mask7 determines the action taken by SunCGI when an error occurs.
Three types of action are possible: NO__ACTION, POLL, INTERRUPT. If the action argument is set
to NO__ACTION, errors are detected internally, but not reported.

The user is advised not to set the action argument to NO__ACTION.

If the action argument is set to POLL, errors are detected and the returned value of the function
is set to the error number. Error handling is therefore, left up to the application programmer.
If the action is set to INTERRUPT an error message is printed on the terminal, and the program is
stopped if the error is FATAL (See Appendix D). The default error _varning_mask is INTER­
RUPT.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

7 The syntax or set_error _warning_mask in SunCGI is slightly different from the proposed ANSI

standard in that the ANSI definition allows different actions for different classes of errors.

Revision A of 15 May 1985 2-19

Initializing (and Terminating) Sun CG I SunCGI Reference Manual

2.4. Running SunCGI in the Window System

Two aspects of SunCGI pertaining to the window system are:

1. varying the size of graphics windows, and

2. handling S!GWINCHes (interrupt signals generated by changes to the view surface made by
the window system).

2.4.1. Changing the Window Size

When the window size changes during execution time, the scale factors which map VDC Space
into screen space are modified. More importantly, unless the application program has explicitly
opened a view surface as a retained view surface, overlapping other windows destroys the picture
in the graphics subwindow below, In this case, the picture must be regenerated by re-running the
application program.

2.,4.2. Passing SIGWINCHes to the Application Program

When a view surface is initialized or changed, the SIGWINCH signal is normally trapped by
SunCGI. However, the SIGWINCH signal is passed up to the application program if the applica­
tion program provides a SIGWINCH handling routine by using the set_up_sigwinch function.
Under no circumstances will the user be able to access the SIGWINCHes generated when the view
surface is initialized. Therefore, the set_up_sigwinch routine is primarily intended for users
who want to activate a display list for picture regeneration, for example, when the size of the
view surface has changed. If the view surface is retained, the pictures is redisplayed if the size
of the view surface has not changed.

2.4.s. set_up_sigwinch {Csupsig)

Cerror set_up_sigwinch(name, sig_function)
Cint name;
Cint *sig_function(); /* signal handling function*/

set_up_sigwinch is a nonstandard SunCGI function that allows the application program to
trap SIGWINCHes for viewsurface name. If the sig_ function argument is nonzero, all
SIGWINCHes which are not trapped by the internals of SunCGI (that is, view surface initializa­
tion, and changing the size of the window) are passed to the function specified by
sig_function.

ERRORS:

5 ENOTOPOP

2-20

CG! not in proper state CG! shall be either in state CGOP, VSOP, or
VSAC.

Revision A of 15 May 1985

0

0

0

0

0

Chapter 3

Output

SunCGI supports two classes of output primitives: geometrical output primitives and raster
primitives.

Geometrical Output Primitivea
include arcs, circles, polylines, and polygons. The position of geometrical output primitives
are always specified in absolute VDO coordinates8.

R aater Primitivea
draw text and scaled and unscaled two-dimensional arrays. The coordinate system for ras­
ter primitives depends on the type of primitive: cell array, pixel array, or bitblt (bit block
transfer). The drawing mode determines how output primitives are drawn on top of other
output primitives or the background.

3.1. Geometrical Output Primitives

Geometrical output primitives are divided into two classes: polygonal pr1m1t1ves and conical
primitives. Geometrical output primitives are all two-dimensional in keeping with the CG! stan­
dard. However, polygons with holes (via the partial_polygon function) are provided in
order to support three-dimensional graphics packages.

9.1.1. Polygonal Primitives

Most polygonal primitives (polyline, polymarker, polygon, and partial_polygon)
take one argument of type Ccoorlist:

8 SunCGI (unlike SunCore) maintains no concept of current position.

Revision A of 15 May 1985 3-1

Output

typedef struct {
Clnt x;
Clnt y;

} Ccoor;

typedef struct {
Ccoor *ptlist;
Clnt n;

} Ccoorllst;

SunCGI Reference Manual

The element ptliat is really a pointer to an array of type Ccoor which contains the coordinates
of the points defining the primitive. The style, color, and other features of lines, markers, and
fill patterns used by geometrical output primitives are set by the attribute functions described in
the next chapter.

The polygons generated by SunCGI may or may not be closed. SunCGI automatically assumes
the polygon is closed for the purpose of filling. However, a polygon must be explicitly closed in
order to get all of its edges drawn, so take care to generate explicitly closed polygons. However,
the rectangle function implicitly generates closed objects9•

9.1.1.1. polyline (Cpolyline/

Cerror polyllne(polycoors)
Ccoorlist *polycoors; /* list of points*/

polyline draws lines between the points specified by the ptliat element of polycoora. polyline does
not draw a line between the first and last element of the point list. To generate a closed poly­
line, the last point on the list must have the same coordinates as the first point on the list. The
style, color, and width of the lines are set by the polyline_bundle_index, line_type,
line_color, line_width, and line_width_specification_mode functions. If a line
segment of a polyline has a length of zero, the line is not drawn. To draw a point use the circle
function. If you specify a polyline that has less than two points an error is generated. Similarly,
if the number of points specified is greater than the maximum number of points (255), an error is
generated.

ERRORS:

4 ENOTVSAC

60 ENMPTSTL

61 EPLMTWPT

CG! not in proper state: CG! shall be in state VSAC.

Number of points is too large.

polylines must have at least two points.

9.1.1.2. disjoint_polyline (Cdpolyline/

11 The only instance in which rectangle does not produce a closed object is ir one or the corners exceeds a
clipping boundary.

3-2 Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual Output

Cerror disjolnt_polyline(polyeoors)
Ceoorlist *polyeoors; /* list of points*/

disjoint_polyline draws lines between pairs of elements in ptliat. The style, color, and
width of the lines are set by the polyline_bundle_index, line_type, line_color,
line_width, and line_width_specification_mode functions. If polycoora contains an
odd number of points, the last point is ignored. As with polyline, if the number of points is
less than two or greater than 256, an error is generated. disjoint_polyline is typically
used to implement scan-line polygon filling algorithms.

ERRORS:

4 ENOTVSAC

60 ENMPTSTL

61 EPLMTWPT

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

polylines must have at least two points.

9.1.1.9. polymarker {Cpolymarker)

Cerror polymarker(polyeoors)
Ceoorlist *polyeoors; /* list of points*/

polymarker draws a marker at each point. The type, color, and size of marker are set by the
polymarker_bundle_index, marker_type, marker_color, marker_size, and
marker _size_specification_mode functions. If the number of points specified is greater
than the maximum number of points, an error is generated. polymarker is useful for making
graphs such as scatter plots.

ERRORS:

4 ENOTVSAC

60 ENMPTSTL

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

9.1.1.,1. polygon {CpolygonJ

Cerror polygon(polyeoors)
Ceoorlist *polyeoors; /* list of points*/

polygon displays the polygon des<;ribed by the points in polycoors. In addition, any points added
to the global polygon liat by the partial_polygon function are also displayed. The polygon is
filled between edges. Polygons are allowed to be self-intersecting. The visibility of individual
edges can only be set by the partial_polygon function. The pattern and color used to fill
the polygon are set by the functions described in the solid attributes section of the attributes
chapter. The characteristics of the edges are controlled by the perimeter attribute functions and
not the line attribute functions (which regulate the drawing of polyline,). The number of points
in the polygon used to determine the error condition of too few points is the total number of
points on the global polygon liat not the number of points specified in polycoora.

0 ERRORS:

Revision A of 15 May 1985 3-3

Output SunCGi Reference Manual

4 ENOTVSAC

60 ENMPTSTL

62 EPLMTHPT

63 EGPLISE'L

CG! not in proper state: CG! shall be in state VSAC.

Number of points is too large.

Polygons must have at least three points.

Global polygon list is full.

9.1.1.5. partial_polygon {Cppolygon)

Cerror partial_polygon(polycoors, flag)
Ccoorlist •polycoors; /* list of points*/
Ccflag flag;/* add to point buffer•/

partial_polygon adds elements to the global polygon li,t without displaying the polygon.
The flag controls whether the previou, polygon on the global polygon lilt is open or closed. If the
cftag is set to CLOSED, the last polygon on the global polygon li,t is closed by drawing a vi,ible
perimeter edge between the last and the first points of the last polygon in the global polygon liat.
If the cftag is set to OPEN, an invi,ible perimeter edge is drawn between the last and the first
points of the last polygon in the global polygon liat. The partial_polygon function provides
the capability of drawing multiple-boundary polygons, including polygons with holes.

3-4 Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual

#include "cgidefs.h"
{

}

Ccoor list [4];
Ccoorlist points;

interior_style(SOLIDI,ON);
list[O) .x = 10000;
list[O) .y = 10000;
list[l] .x = 10000;
list[l] .y = 20000;
list[2] .x = 20000;
list[2) .y = 20000;
list[3) .x = 20000;
list[3).y = 10000;
points.ptlist=list;
points.n=4;
partial_polygon(&points,CLOSE); /* drav large solid square*/
list[OJ:x = 12500;
list[O] .y = 12500;
list[l).x = 12500;
list[l).y = 17500;
list[2].x = 17500;
list[2).y = 17500;
list[3].x = 17500;
list[3).y = 12500;
polnts.ptlist=list;
points.n=4;
polygon(&points); /* cut a hole in it*/

Output

An error is detected if the number of points on the global polygon liat exceeds 255. In this case,
the polygon on the global polygon liat is drawn, and the new information is not added. The same
error handling applies to polygon.

ERRORS:

4 ENOTVSAC

60 ENMPTSTL

62 EPLMTHPT

63 EGPLISFL

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

Polygons must have at least three points.

Global polygon list is full.

9.1.1.6. rectangle {Crectangle)

Revision A of 15 May 1985 3-5

Output SunCGI Reference Manual

Cerror rectangle(rbc, ltc)
Ccoor *rbc,*ltc; /* corners defining rectangle*/

rectangle displays a box with its lower right-hand corner at point rbc and its upper left-hand
corner at point ltc. The fill pattern is determined by the solid object attribute functions. Calls
to rectangle do not affect the global polygon liat. The interior of the rectangle (the filled portion)
is defined by Ire and ulc. The perimeter is drawn outside of this region. The appearance of the
rectangle is determined by the fill area and perimeter attributes.

If the arguments to rectangle would result in a point or a line, the point or line is drawn. How­
ever, if the arguments to rectangle determine a point, the point is drawn with width zero,
regardless of the current value of perimeter_width. If the values of Ire and ulc are reversed, the
points are automatically reversed and the rectangle is drawn normally.

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

3.1.2. Conical Primitives

SunCGI has two classes of conical primitives: circular and elliptical. Each class has functions
for drawing solid objects, arcs, and closed arcs. Drawing of conical primitives is regulated by the
same attributes that regulate the drawing of polygons and polylines.

9.1.2.1. circle {Ccircle)

Cerror circle(cl, rad)
Ccoor *cl;/* center*/
Cint rad;/* radius*/

circle draws a circle of radius rad centered at cl. The argument rad is expressed in terms of
VDC Space. The color, form, and visibility of the interior and perimeter are controlled by the
same solid object attributes which control the drawing of polygons and rectangles.

The argument rad determines the size of the inaide of the circle. Therefore, a circle with a thick
perimeter may be larger than expected. If the radius is zero, a point is drawn, and no textured
perimeter is drawn, even if the perimeter width is large. If the radius is negative, the absolute
value of the radius is used.

Textured circles may possibly contain an incorrect element at one point because the digital cir­
cumference may not be exactly divisible by the length of the texture element.

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

9.1.2.2. circular _arc_center {Ccircarccent)

3-6 Revision A of 15 May 1985

0

o:

O'

0

0

0

SunCGI Reference Manual Output

Cerror circular_arc_center(cl, cax, cay, c3x, c3y, rad)
Ccoor *cl;/* center•/
Cint cax,cay,c3x,c3y; /*endpoints*/
Cint rad;/* radius•/

circular _arc_center draws a circular arc through points cf!z, cf!y and c9z, c9y with circle
of radius rad at center cl. Point cf!z, cf!y is the starting point and point c9z, c9y is the ending
point. If cf!z, cf!y or c9z, c9y are not on the circumference of the circle, an error is generated
and the arc is not drawn. Circular arcs are drawn in a counterclockwiae manner. This conven­
tion is used to determine the difference between the arc formed by the obtuse angle determined
by c1.z, c1.y, cf!z, cf!y, and c9z, c9y and the acute angle specified by these same points. There­
fore switching the values of cf!z, cf!y and c9z, c9y will produce complementary arcs.

if rad is negative, the points 180 degrees opposite from cf!z, cf!y-and c9z, c9y are used as the
endpoints of the arc.

If the rad is zero, a point is drawn at cl. If either c2z, cf!y or c9z, c9y are not on the perimeter
of the circle determined by c1 and rad, an error is generated and the arc is not drawn. The
attributes which determine the style, width, and color of the arc are the same functions which
regulate the drawing of polylinea.

ERRORS:

4 ENOTVSAC CGI not in proper state: CG! shall be in state VSAC.

Arc points do not lie on circle. 64 EARCPNCI

9.1.2.9. circular _arc_center _close {Ccircarccentcl)

Cerror clrcular_arc_center_close(cl, cax, cay, c3x, c3y, rad, close)
Ccoor *cl;/• center*/
Cint cax,cay,c3x,c3y; /*endpoints•/
Cint rad;/* radius*/
Cclosetype close;/• PIE or CHORD•/

circular _arc_center _close draws a closed arc centered at c1 with radius rad and end­
points c2x, c2y and c9x, c9y. Arcs are closed with either the PIE or CHORD algorithm. The PIE

algorithm draws a line from each of the endpoints of the arc to the center point of the circle.
SunCGI then fills this region as it would any other solid object (that is, it uses the fill area attri­
bute•). The CHORD algorithm draws a line between the endpoints of the arc and then fills this
region. circular _arc_center _close is useful for drawing pie charts (see following exam­
ple):

Revision A of 15 May 1985 3-7

Output SunCGI Reference Manual

#include <cgidefs.h>

{/*draws four quadrants in different colors*/
Cint radius;
Ccoor cl;

0

interior_style(SOLIDI,OFF) /* set arc type to SOLID and no visible perimeter*/
cl.x = 16000; /*center*/
cl.y = 16000;
radius =8000; /*radius*/
fill_color(l); /* color of quadrant 1 */
circular_arc_center_close(&cl,16000,24000,24000,16000,radius,PIE);
fill_color(2); /* color of quadrant 2 */
circular_arc_center_close(&cl,16000,24000,12000,16000,radius,PIE);
fill_color(3); /* color of quadrant 3 */
circular_arc_center_close(&cl,12000,16000,12000,16000,radius,PIE);
fill_color(4); /* color of·quadrant 4 */
circular_arc_center_close(&cl,12000,16000,24000,16000,radius,PIE);

sleep(lO);

}

ERRORS:

4 ENOTVSAC

64 EARCPNCI

CG! not in proper state: CG! shall be in state VSAC.

Arc points do not lie on circle.
ol

!

9.1.2.,I. circular _arc_3pt {Ccircarcthree)

Cerror circular_arc_3pt(cl, c2, c3)
Ccoor *cl,*c2,*c3; /* starting, intermediate, and ending points*/
Cint rad;/* radius*/

circular _arc_3pt draws a circular arc starting at point c1 and ending at point c9 which is
guaranteed to pass through point c2. If the circular arc is textured (for example, dotted) then
the intermediate point may not be displayed. However, if the arc is solid, the intermediate point
is always drawn. If the three points are colinear, a line is drawn. If two of the three points are
coincident, a line is drawn between the two distinct points. Finally, if all three points are coin­
cident, a point is drawn. circular _arc_3pt is considerably slower than
circular _arc_center, therefore, you are advised to circular _arc_center if both func­
tions can meet your needs.

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

3-8 Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual Output

9.1.2.5. circular _arc_3pt_close {Ccircarcthreecl)

Cerror circular_arc_3pt_close(cl, c2, c3, close)
Ccoor *cl, *c2, *c3; /* starting, intermediate, and ending points*/
Cclosetype close;/* PIE or CHORD*/

circular _arc_3pt_close draws a circular arc starting at point c1 and ending at point cS
which is guaranteed to pass through point c2. As with circular _arc_3pt,
circular _arc_3pt_close is considerably slower than circular _arc_center _close;
therefore, you are advised to use circular _arc_center _close if both functions meet your
needs.

If the three points are colinear, a line is drawn. If two of the three points are coincident, a line
is drawn between the two distinct points. Finally, if all three points are coincident, a point is
drawn. In none of these cases will any region be filled.

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

9.1.2.6. ellipse {Cellipse}

Cerror ellipse (cl, majx,miny)
Ccoor *cl;/* center*/
Cint majx,miny; /* enpoints of x and x axes*/

ellipte draws an ellipse centered at point c1 with major(x) and minor (y) axes which terminate at
majx and miny10. If either majx or miny are zero, a line is drawn. If both majx and miny are
zero, a point is drawn. The attributes which control the drawing of ellipses are the same as
those attributes which control the drawing of circles and rectangles (namely, the perimeter and
fill area attributes).

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

9.1.2. 7. elliptical_arc {Celliparc/

Cerror elliptical_arc(cl, sx, sy, ex, ey, majx, miny)
Ccoor *cl;/* center*/
Cint sx,sy; /* starting point of arc*/
Cint ex,ey; /* ending point of arc*/
Cint majx,miny; /* endpoints of major and minor axes*/

elliptical_arc draws an elliptical arc centered at c1 with major(x) and minor (y) axes which
terminate at majx and miny. Sx, ay and ez, ey are the starting and ending points of the arc. An
error is generated (and the ellipse is not drawn) if the points (az, ay, and ez, ey) are not on the

10 Although the a.xes are called the major and minor a.xes by the standard they are really the x and y
axes. In fact, the x-axis can either be the major or minor uis, depending on the relative length or the y-axis.

Revision A of 15 May 1985 3-9

Output SunCGI Reference Manual

perimeter of the ellipse. Circular arcs are drawn in a counterclockwiae manner. This convention
is used to determine the difference between the arc formed by the obtuse angle determined by
cl.:z, cl.y, a:z, ay, and ez, ey and the acute angle specified by these same points. Therefore
switching the values of az, ay and ez, ey will produce complementary arcs.

If either maj:z or mmy are zero, a line is drawn. If both maj:z and miny are zero, a point is
drawn.

ERRORS:

4 ENOTVSAC

65 EARCPNEL

CG! not in proper state: CG! shall be in state VSAC.

Arc points do not lie on ellipse.

9.1.2.8. elliptical_arc_close {Celliparccl)

Cerror elliptical_arc_close(cl, sx, sy, ex, ey, majx, miny, close)
Ccoor *cl;/* center*/
Cint sx,sy; /* starting point of arc*/
Cint ex,ey; /* ending point of arc*/
Cint majx,miny; /* enpoints of major and minor axes*/
Cclosetype close;/* PIE or CHORD*/

elliptical_arc_close draws an elliptical arc specified by az, ay, e:z, ey, and maj:z, miny
The arc is closed with either the PIE or CHORD algorithm. The same restrictions on a:z, ay, e:z,

0

and ey are applied to elliptical_arc_close as to elliptical_arc. However,
elliptical_arc_close uses the fill area and perimeter attributes, whereas o
elliptical_arc_close uses the line attributes.

If either maj:z or miny are zero, a line is drawn. If both majz and miny are zero, a point is
drawn. In neither of these cases will any region be filled.

ERRORS:

4 ENOTVSAC

65 EARCPNEL

CG! not in proper state: CG! shall be in state VSAC.

Arc points do not lie on ellipse.

3.2. Raster Primitives

Raster primitives include text, cell arrays, pixel arrays, and bitblts (bit block transfer). Bitblts
are pixel arrays (bitmaps) which can be drawn using the various drawing modes. The current
drawing mode determines how bitblt primitives are affected by information which is already on
the screen. Raster primitives differ from geometrical primitives because their dimensions are not
necessarily expressed in VDC Space. Therefore, you must be careful to consider whether position
arguments are expressed in VDC Space or screen coordinates.

9.2.1. text {CtextJ

3-10 Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual

Cerror text(cl, tstring)
Ccoor cl;/• starting point of text (in VDC Space) •/
Cchar •tstring; /•text•/

Output

text displays the text contained in tatring at point c1 (expressed in VDC Space). The appearance
of text is controlled by the text attributes described in the next chapter; however, it is worth
noting some of the effects of the most important attribute, text preciaion. The size of the text
depends on the setting of the text preciaion (see the text_precision function) and the font
selected. The results of clipping also depend on the text preciaion attribute (unless the text pre­
ciaion is set to STROKE). Control characters are displayed as blanks, except in the SYMBOL font
where they may be drawn as pictures of bugs.

ERRORS:

4 ENOTVSAC CGI not in proper state: CGI shall be in state VSAC.

3.2.2. vdm_text {Cvdmtext)

Cerror vdlll....text(cl, flag, tstring)
Ccoor cl;/* starting point of text (in VDC Space) */
Ctextfinal flag;/• final text for alignment•/
Cchar •tstring; /•text•/

vdm_ text displays the text contained in lairing at point c1 (expressed in VDC Space). The
intended difference between text and vdm_text is that vdm_text allows control characters;
however, SunCGI does not handle control characters so text drawn with vdm_text will appear
identical to text drawn with the text function. If the flag argument is equal to FINAL, the previ­
ous text and the appended text are aligned separately. However, if the flag argument is equal to
NOT...FINAL, the appended and previous text are aligned together.

ERRORS:

4 ENOTVSAC CGI not in proper state: CGI shall be in state VSAC.

3.2.3. append_text (Captext)

Cerror append_text(flag, tstring)
Ctextfinal flag;/• final text for alignment•/
Cchar •tstring; /•text•/

append_text displays the text contained in lairing after the end of the most recently written
text. The type of text written depends on the same attributes which control the display of text.
The flag argument determines whether the appended text is aligned with the previous text if the
alignment is CONTINUOUS. If the flag argument is equal to FINAL, then the previous text and the
appended text are aligned separately. However, if the flag argument is equal to NOT..FINAL, the
appended and previous text are aligned together.

ERRORS:

4 ENOTVSAC CGI not in proper state: CGI shall be in state VSAC.

Revision A of 15 May 1985 3-11

Output SunCGI Reference Manual

3.2.,l. inquire_text_extent {CqtextextJ

Cerror inquire_text_extent(tstring, nextchar, coru,at, lleft, uleft, uright)
Cchar •tstring; /*text*/
Cchar nextchar; /* last character*/
Ccoor •concat; /* concatenation point*/
Ccoor *lleft,*uleft,•uright; /* coordinates of

text bounding box*/

inquire_text_extent determines how large text tatring would be and where it would be
placed if it were drawn using the current text attributes. The neztchar parameter is used to
determine the point where text would start if more text (starting with neztchar) were appended
to the text specified by tatring11 • I£ neztchar equals "", the last point of the current character is
used. The argument concat returns the coordinates of the point where appended text would
start. The arguments /left, uleft, and uright return the coordinates of the bounding box of text
contained in t.tring.

The values of /left, uleft, and uright are defined by the bounding box of the character and there­
fore may not be at the exact pixel where the character ends or begins.

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

3.2.5. eel l_array {Ccel larr)

Cerror cell_array(p, q, r, dx, dy, colorind)
Ccoor *P~ *q, *r;

/* corners of parallelogram (in VDC Space) */
Cint dx,dy; /* dimensions of color array*/
Cint •colorind; /* array of color values*/

cel l_array draws a scaled and skewed pixel array on the view surface(s). Points p, q,and r
(expressed in VDC Space) define a parallelogram. Line p-q is a diagonal and p is the lower left­
hand corner. r is one of the remaining two corners. dz and dy define the width and the height
of the array colorind which is mapped onto the parallelogram defined by p,q, and r.

cel l_array is one of the few primitives which depends on the actual size of the view surface.
Cell arrays are not drawn if the elements of the array would be smaller than one pixel. How­
ever, because different view surfaces may have different dimensions, a cell array might be drawn
on one view surface, but not on another smaller view surface. Finally, all cells composing the
cell array are the same size; therefore, the upper left hand corner of the cell array might be
down and to the right of point q because of the accumulated error of making all of the cells
slightly smaller than their floating point size. For example if each cell of a three-by-three cell
array is supposed to be 3.333 pixels wide, the actual cell array will be nine pixels wide instead of
ten.

ERRORS:

11 This is a method for accounting for proportional spacing:.

3-12 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Output

4 ENOTVSAC

66 ECELLATS

67 ECELLPOS

CG! not in proper state: CG! shall be in state VSAC.

Cell array dimensions dx,dy are too small.

Cell array dimensions must be positive.

3.2.6. pixel_array {Cpixarr J

Cerror pixel_array (pcell,m,n,colorind)
Ccoor •pcell; /' base of array in VDC Space'/
Cint m,n; /' dimensions of color array in screen space*/
Cint *colorind; /' array of color values'/

pixel_array draws array eolorind starting at point peel/ (expressed in VDC Space). m and n
(expressed in screen space) define the x- and y-dimensions of the array. Therefore, pizel array•
always have a constant physical size, independent of the dimensions of VDC Space. The pizel
array is drawn down and to the right from point pee/I. If either m or n are not positive, the
absolute value of m and n are used. pixe l_array is not affected by the current drawing
mode.

ERRORS:

4 ENOTVSAC

69 EVALOVWS

CG! not in proper state: CG! shall be in state VSAC.

Value outside of view surface.

3.2. 7. bi tbl t_source_array {Cbtblsouarr J

Cerror bitblt_source_array(pixsource, xo, yo, xe, ye, pixtarget, xt, yt, name)
Cpixrect *pixsource,*pixtarget; /* source and target pixel arrays*/
Cint xo,yo; /* coordinates of source pixel array (in VDC Space) */
Cint xe,ye; /* dimensions of source pixel array (in screen space) */
Cint xt,yt; /* coordinates of target pixel array (in VDC Space) */
Cint name;/* view surface name*/

bitblt_source_array moves a pixel array from point {zo,yo) to point (zt,yt) using the
current drawing mode. Both of these points are expressed in VDC Space. The size of the pixel
array is determined by the ze and ye arguments which are expressed in screen space. Pizaouree
and piztarget are pizrecta12 which contain the bitmaps at the source and target destinations. An
error is detected if either ze or ye are not positive. If the replicated pattern array overlaps with
the source array on the screen, the visual result depends on the current drawing mode. piz­
•ource and piztarget may have different contents depending on the screen drawing mode {see the
set_drawing_mode function).

Multiple view surfaces and bitblt's are incompatible, so a name argument must be specified.

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

12 Rerer to the Programmer,' Re/erenu Manual for Sun Winclow, ror more information a.bout pixrects.

Revision A of 15 May 1985 3-13

Output SunCGI Reference Manual

69 EVALOVWS Value outside of view surface.

3.2.8. bi tbl t_pattern_array {Cbtblpatarr J

Cerror bitblt_pattern_array(pixpat, px, py, pixtarget, rx, ry,
ox, oy, dx, dy, name)
Cpixrect *pixpat; /* pattern source array*/
Cint px,py; /* pattern extent*/
Cpixrect *pixtarget; /* destination pattern array*!
Cint rx,ry; /* pattern reference point*/
Cint ox,oy; /* destination origin*/
Cint dx,dy; /* destination extent*/
Cint name;/* view surface name*/

bitblt_pattern_array replicates the pattern (using the current drawing mode) stored in
pixpat to fill the area of array pixtarget which is determined by ox, oy, and dz, dy. The pattern
reference point determines the offset of pattern array from the point zero. The resultant pattern
array is displayed at ox, oy. If the replicated pattern array overlaps with the source array on
the screen, the visual result depends on the current drawing mode.

Pixpat is a pointer to a pixrect which must be created by the application program. If pixpat is
not a pointer to an existing pixrect, an error is generated. Piztarget is a pointer to a pixrect
which is created by a bitbl t_pattern_array.

Multiple view surfaces and bitblt's are incompatible, so a name argument must be specified.

ERRORS:

4 ENOTVSAC

69 EVALOVWS

70 EPXNOTCR

CG! not in proper state: CG! shall be in state VSAC.

Value outside of view surface.

Pixrect not created.

3.2.9. bi tbl t_patterned_source_array {Cbtblpatsouarr J

Cerror bitblt_patterned_source_array(pixpat, px, py, pixtarget, rx, ry,
pixsource, sx, sy, ox, oy, dx, dy, name)
Cpixrect *pixpat; /* pattern source array*/
Cint px,py; /* pattern extent*/
Cpixrect *pixsource; /* source array*/
Cint sx,sy; /* source origin*/
Cpixrect *pixtarget; /* destination pattern array*/
Cint rx,ry; /* pattern reference point*/
Cint ox,oy; /* destination origin*/
Cint dx,dy; /* destination extent*/
Clnt name;/* view surface name*/

bitbl t_patterned_source_array replicates the pattern (using the current drawing mode)
stored in pixpat to fill the area of array piztarget which is determined by ox, oy, and dz, dy. The
replicated pattern array is ANDed into the pixrect pointed to by pixaource before the array is
copied to pixtarget. The pattern reference point determines the offset of pattern array from the

3-14 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Output

point zero. The resultant pattern array is displayed at oz, og. If the replicated pattern array
overlaps with the source array on the screen, the visual result dep~nds on the current drawing
mode. Pixpat is a pointer to a pixrect which must be created by your application program.
Pixaource and piztarget are pointers to pixrects which are created by a
bitblt_patterned_source_array.

Multiple view surfaces and bitblt's are incompatible, so a name argument must be specified.

ERRORS:

4 ENOTVSAC

69 EVALOVWS

70 EPXNOTCR

CG! not in proper state: CG! shall be in state VSAC.

Value outside of view surface.

Pixrect not created.

3.2.10. inquire_cell_array {Cqcellarr J

Cerror inquire_cell_array(name, p, q, r, dx, dy, colorind)
Cint name;/• view surface name•/
Ccoor •p, •q, •r; /• corners of parallelogram

(in VDC Space) •/
Cint dx,dy; /• dimensions of color array•/
Cint *colorind; /* array of color values*/

Points p, q,and r (in VDC Space) define a parallelogram with line p-q as the diagonal where p is
the lower left-hand corner. r is one of the remaining two corners. dz and dg define the width
and the height of the array colorind which contains the colors of the pixels on the screen which
lie within the parallelogram defined by p,q, and r. Notice that a view surface identifier, name,
must be specified because the result of this function is highly dependent on the dimensions and
contents of the view surface.

The area of the screen corresponding to the parallelogram is assumed to contain a regular grid of
points. However, if each element of the grid is larger than one pixel, the color of the pixel at
lower left-hand corner of each element of the grid is defined to be the color of the grid element.
Therefore, the values contained in colorind are highly dependent on the size of the view surface.
An error is produced if the elements of the grid are smaller than one pixel.

ERRORS:

4 ENOTVSAC

10 EVSIDINV

13 EVSNOTOP

15 EVSNTACT

66 ECELLATS

67 ECELLPOS

CG! not in proper state: CG! shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

Cell array dimensions dx,dy are too small.

Cell array dimensions must be positive.

Revision A of 15 May 1985 3-15

Output

3.2.11. inquire_pixel_array {Cqpixarr)

Cerror inquire_pixel_array(p, m, n, colorind, name)
Ccoor •p; /• base of array in VDC Space•/

SunCGI Reference Manual

Cint m,n; ;• dimensions of color array in screen space•;
Cint •colorind; /• array of color values•/
Cint name;/• view surface name•/

inquire_pixel_array fills array colorind with the values of pixels in the area of the screen
defined by point p (expressed in VDC Space) and m and n (expressed in screen space). The array
is filled down and to the right from point p. If either m or n are not positive, the absolute value
of these arguments is used.

Multiple view surfaces and bitblt's are incompatible, so a name argument must be specified.

ERRORS:

4 ENOTVSAC

69 EVALOVWS

70 EPXNOTCR

CG! not in proper state: CG! shall be in state VSAC.

Value outside of view surface.

Pixrect not created.

3.2.12. inquire_device_bitmap {Cqdevbtmp}

0

Cpixrect
Cint

•inquire_device_bitmap(name)
name; /• name assigned to cgi view surface•/

i
O'

inquire_device_bi tmap returns the pixrect which corresponds to the view surface. If you
want to use subareas of this pixrect or manipulate it any other way, refer to the Pixrects
Chapter in the Programmera' Reference Manual for Sun Windowa. Pixrects may be created in
other manners; again refer to the Pixrect Chapter in the Programmera' Reference Manual for
Sun Windowa.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be m m state VDOP, VSOP, or
VSAC.

3.2.13. inquire_bi tbl t_alignments {Cqbtblalign)

Cerror inquire_bitblt_alignments(base, width, px, py, maxpx, maxpy, name)
Cint *base; /* bitmap base alignment*/
Cint •width;/• width alignment•;
Cint •px,•py; /* pattern extent alignment•/
Cint •maxpx,•maxpy; /• maximum pattern size•/
Cint name; /• name assigned to cgi view surface•/

inquire_bitblt_alignments reports the alignment criteria which are necessary for some
implementations. These factors are not critical for SunCGI. However, you should keep in mind

0 the appropriate depth for the pixrect when talking to a specific device. Therefore the arguments
baae, width, pz, and Pl/ are always set to zero. The arguments mazpz and mazpu are device

3-16 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Output

dependent and determine the maximum size of a pattern for bitblt_pattern_array and
bitblt_patterned_source_array.

Multiple view surfaces and bitblt's are incompatible, so a name argument must be specified.

ERRORS:

4 ENOTVSAC

10 EVSIDINV

13 EVSNOTOP

15 EVSNTACT

CG! not in proper state: CGI shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

3.3. Drawing Modes

Drawing modes determine the result of drawing any output primitive on the clear screen (back­
ground) or on top of a previously drawn object. Drawing modes only affect the drawing of bitblt
primitives. However, a non-standard set_global_draving_mode function is provided,
which affects all output primitives except bitblt's. Resetting the drawing mode in the middle of
an application program only affects those output primitives drawn after the mode is reset. The

· novice user is advised not to reset the drawing mode until the user has written at least one appli­
cation program using SunCGI.

3.3.1. set_draving_mode {Csdravmode}

Cerror set_drawing_mode{visibility, source, destination, combination)
Cbmode visibility;/* transparent or opaque*/
Cbitmaptype source;/* NOT source bits*/
Cbitmaptype destination;/* NOT destination bits*/
Ccombtype combination;/* combination rules*/

set_drawing_mode determines the current drawing mode which in turn determines how bitblt
primitives are displayed. The viaibility argument determines how pixels with index zero are
treated.

typedef enum {
TRANSPARENT, OPAQUE

} Cbmode;

typedef enum {
BITTRUE, BITNOT

} Cbitmaptype;

typedef enum {
REPLACE, AND, OR, NOT, XOR

} Ccombtype;

If viaibility is set to TRANSPARENT, all source pixels with index zero leave the destination pixel
unchanged, regardless of the operation, whereas if viaibility is set to OPAQUE, all pixels are
treated normally. The arguments aource and deatination determine whether the contents of the

Revision A of 15 May 1985 3-17

Output SunCGI Reference Manual

source and destination pixrects are NOTted before the bitblt operation is performed.

The combination argument determines how the source and destination pixrects are combined. 0
If combination is equal to REPLACE, the source pixrect (after optionally being NOTted) replaces
the destination pixrect. If combination is equal to AND, OR, NOT, or XOR the source pixrect and
the destination pixrect are combined in the indicated Boolean fashion.

ERRORS:

5 ENOTOPOP CG! not m proper state CGI shall be m m state VDOP, VSOP, or
VSAC.

3.3.2. set_global_drawing_mode (Csgldrawmode}

Cerror set_global_drawing_mode(combination)
Ccombtype combination;/• combination rules*/

set_global_drawing_mode determines the current global drawing mode which in turn deter­
mines how all output primitive, except bitblt', are displayed. The combination argument deter­
mines how the source and destination pixrects are combined. If combination is equal to REPLACE

(the default value) the output primitive replaces the destination background. If combination is
equal to AND, OR, or XOR the output primitive and the information on the screen are combined in
the indicated Boolean fashion.

ERRORS:

5 ENOTOPOP CG! not m proper state CG! shall be m m state VDOP, VSOP, or
VSAC.

3.3.3. inquire_drawing_mode (Cqdrawmode}

Cerror inquire_drawing_mode(visibility, source, destination, combination)
Cbmode *visibility;/• transparent or opaque•/
Cbitmaptype •source;/* NOT source bits*/
Cbitmaptype *destination;/* NOT destination bits*/
Ccombtype •combination;/* combination rules•/

The inquire_draving_mode returns the values of the four components of the current draw­
ing mode.

ERRORS:

5 ENOTOPOP

3-18

CG! not m proper state CGI shall be m m state VDOP, VSOP, or
VSAC.

Revision A of 15 May 1985

0

0

0

0

0

Chapter 4

Attributes

The current attributes determine how output pr1m1t1ves are displayed. Attributes are not
specific to any view surface, but affect all view surfaces. If you want to avoid using the attribute
functions, the current attributes are set to their default attributes which are defined in Table 4-
1. The current attributes may be set either individually or in groups (by changing the index into
the bundle table). Each entry in the bundle table specifies a set of attributes for a particular
type of primitive (for example, solid objects). The method for setting the current attributes
depends on the state of the ASF (aapect aource flag) for each attribute. For individual attribute
functions to have an effect, the ASF must be set to INDIVIDUAL. If the ASF is set to BUNDLED, the
current attribute is defined by the entry in the bundle table pointed to by the bundle index.

The majority of this chapter is devoted to individual attribute functions. Individual attribute
functions are grouped according to the output primitives they effect: polylines, polymarkers,
filled objects, and text. The color_table function (which redefines color table entries) is also
included in this chapter. Finally, functions for obtaining the values of the current attributes are
discussed.

Revision A of 15 May 1985 4-1

Attributes SunCGI Reference Manual

Table 4-1: Default Attributes

Attribute Value Attribute Value

All ASFs INDIVIDUAL All Bundle Indices 1

Line Type SOLID Line Endstyle POINT

Line Width Specification Mode SCALED Line Width 0.0
Line Color I

Marker Size Specification Mode SCALED Marker Size 0.0
Marker Color I

Fill Style HOLLOW Fill Visible ON

Fill Color I Fill Hatch Index 0
Fill Pattern Index I Number of Pattern Table Entries 2

Pattern Reference Point 0,0 Pattern Size 300,300

Perimeter Style SOLID Perimeter Width Specification Mode SCALED .
Perimeter Width 0.0 Perimeter Color I

Fontset I Current Font STICK

Text Precision STRING Character Expansion Factor 1.0
Character Space 0.1 Character Color I

Character Height 1000 Character Base.z 0.0
Character Base.y 0.0 Character Up.z 1.0

Character Up.y 1.0 Character Path RIGHT

Horizontal Text Alignment NRMAL Vertical Text Alignment NORMAL

Text Continuous Alignment.z 1.0 Text Continuous Alignment.y 1.0

4.1. Bundled Attribute Functions

The attribute environment selector functions determine if the current attributes are defined indi­
vidually or by using a set of attributes (bundles). Bundles are defined by entries in the bundle
table. The CGI standard specifies the bundle table as read-only but SunCGI allows user­
definition of entries in the bundle table.

4-1.1. set_aspect_source_flags {CsaspsouflagsJ

4-2

Cerror set_aspect_source_flags(flags)
Cflaglist *flags;/* list of ASFs */

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Attributes

set_aspect_source_flags determines whether individual attributes are set individually or
from bundle table entries.

typedef struct {
Cint n;
Cint num[);
Casptype value[);

} Cflaglist;

The n element or the flags argument determines how many flags are to be set. The num
array of the flags argument determines which flags are to be set. Flag numbers are provided
in Table 4-2. Finally, the value array 0£ the flags argument determines the values or the flags
specified in num. If a value is assigned to INDIVIDUAL, the individual attribute functions affect
the current attribute. If the value of index is BUNDLED, calls to individual attribute functions
have no effect. The default bundle indez is set to 1 (which initially contains the default value for
the attributes specified in Table 4-1). The default value of all aapect aource ftaga is INDIVIDUAL.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

Table 4-2: Attribute Source Flag Numbers

Flag Attribute Flag Attribute

0 line type 9 fill color
1 line width 10 perimeter type
2 line color 11 perimeter width
3 marker type 12 perimeter color
4 marker width 13 text font index
5 marker color 14 text precision
6 interior style 15 character expansion factor
7 hatch index 16 character spacing
8 pattern index 17 text color

4-1.2. define_bundle_index {Cdefbundix)

Cerror define_bundle_index(index,entry)
Cint index;/* entry in attribute environment table*/
Cbunatt *entry;/* new attribute values*/

define_bundle_index is a nonstandard function which defines an entry in the bundle table.
The type Cbunatt is a structure which contains elements corresponding to all the attributes. If
the contents of a bundle table entry are changed, all subsequently drawn primitives use the infor­
mation in the new entry. You should keep this fact in mind if you are designing display list
traversal algorithms using SunCGI.

Revision A of 15 May 1985 4-3

Attributes

typedef struct {
Clintype line_type;
Cfloat line_width;
Cint line_color;
Cmartype marker_type;
Cfloat marker_size;
Cint marker_color;
Cintertype interior_style;
Cint hatch....index;
Cint pattern_index;
Cint fill_color;
Clintype perimeter_type;
Cfloat perimeter_width;
Cint perimeter_color;
Cint text_font;
Cprectype
Cfloat
Cfloat
Cint

text_precision;
character_expansion;
character_spacing;
text_color;

} Cbunatt;

ERRORS:

SunCGI Reference Manual

5 ENOTOPOP

31 EBBDTBDI

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Bundle table index out of range.

4.2. Line Attributes

SunCGI provides for specifying the style, width and color of lines which constitute polyline•,
rectangles, circular arcs, and elliptical arcs. The functions do not affect the drawing of the per­
imeter of polygon•, rectangles, circles, or ellipses. The attributes of the perimeters of solid
objects are set by the perimeter functions .

. f2.1. polyline_bundle_index {Cpolylnbundix}

Cerror polyline_bundle_index(index)
Cint index;/* polyline bundle index*/

polyline_bundle_index sets the current polyline bundle index to the value of indez. The
contents of the polyline_bundle_index are line type, line width and line color. The line
width apecification mode and the line_endstyle function are not included in the polyline
bundle. If indez is not defined, an error is generated, and the polyline_bundle_index does
not change. If the ASF's for any of these attributes is set to BUNDLED, the current values of these
attributes are set to the contents of the bundle.

ERRORS:

5 ENOTOPOP CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

4-4 Revision A of 15 May 1985

0

01

0

0

0

0

SunCGJ Reference Manual Attributes

33 EBADLINX Polyline index is invalid.

4-2.2. line_type {ClntypeJ

Cerror line_type (ttyp)
Clintype ttyp; /* style of line*/

The styles of line offered are SOLID, DASHED, DOTTED, DASHED...DOTTED, and DASH...DOT...DOTTED.
The default line style is SOLID. The actual representation of a line on the screen is affected by
the line endatyle.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

4-2.s. line_endstyle {ClnendstyleJ

Cerror line_endstyle (ttyp)
Cendstyle ttyp; /* style of line*/

line_endstyle determines how a textured (non-SOLID) line terminates. The three values
which ttyp can assume are NATURAL, POINT, and BEST....FJT. If the endstyle selected is NATURAL,
the last component of the line texture (for example, a dash or a dot) which can be completely
drawn is drawn. Blank space at the end of the line may cause the -line to not appear as long as
specified by the starting and ending coordinates. If the endstyle selected is POINT, the last point
of the line is drawn whether it is appropriate or not. In this case, the endpoints of the line
always appear on the screen. If the endstyle selected is BEST....FIT, the last point is always drawn
but is extended as far back as the last space if appropriate. However, the BEST....FIT endstyle may
shorten the space between the last element of the line and the element preceding the last ele­
ment by one in order to guarantee that the line ends on a drawn point. The default endstyle is
BEST....FIT.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4-2.4- line_width_specification_mode {ClnwidthspecmodeJ

Cerror line_width_specification_mode(mode)
Cspecmode mode;/* pixels or percent*/

line_width_specification_mode allows the line_width to be specified in pixels or as a per­
centage of VDC Space according to the value of mode (which can either be ABSOLUTE or SCALED).
If the line width apecification mode is changed from ABSOLUTE to SCALED, the change in the line
width will probably be dramatic.

Revision A of 15 May 1985 4-5

Attributes SunCGI Reference Manual

If multiple view surfaces are open, the line width is calculated on the basis of the first view sur­
face opened.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

,t.2.5. line_width {Clnwidth}

Cerror line_width(index)
Cfloat index;;• line width•/

line_width determines the width of the lines composing polylines, circular arcs, etc. If the
line_width_apecification_mode is SCALED, indez is expressed in percent ofVDC Space and if the X
and Y dimensions are different, the width is calculated on the basis of the range of the x­
coordinate of VDC space. If the parameter setting would result in a line less than one pixel wide,
the line width is displayed as one pixel wide. The default line width is 0.0 (SCALED).

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

34 EBDWIDTH

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Width must be nonnegative.

,t.2.6. line_color {ClncolorJ

Cerror line_color(index)
Cint index;;• line color•/

line_color resets the color of the lines. indez selects an entry in the color lookup table. The
default value of indez is 1.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

35 ECINDXLZ

36 EBADCOLX

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Color index is less than zero.

Color index is invalid.

4.3. Polymarker Attributes

The type, size and color of markers (the components of polymarkers) are controlled by the fol­
lowing functions.

4-6 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Attributes

4,3.1. polymarker _bundle_index {Cpolymkbundix}

Cerror polymarker_bundle_index(index)
Cint index;/• polymarker bundle index*/

polymarker _bundle_index sets the current polymarker bundle index to the value of indez.
The contents of a polymarker _bundle are marker type, marker width and marker color.
The marker iize ipecification mode function is not included in the polymarker bundle. If indez
is not defined, an error is generated, and the polymarker_bundle_indez does not change. If the
ASF's for any of these attributes is set to BUNDLED, the current values of these attributes are set
to the values of the corresponding attribute in the bundle.

ERRORS:

5 ENOTOPOP

37 EBADMRKX

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Polymarker index is invalid.

4.3.2. marker _type (Cmktype)

Cerror marker_type (ttyp)
Cmartype ttyp; /• style of marker•/

marker _type sets the marker type to one of five marker types DOT, PLUS, ASTERISK, CIBCLE, or
X. Be sure to use an argument of Cmartype and not Cint.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

4,3.3. marker _size_specification_mode {Cmksizespecmode)

Cerror marker_size_specification_mode(mode)
Cspecmode mode;/* pixels or percent•/

marker _size_speci fication_mode allows the marker_iize to be specified in pixels or as a
percentage of VDC Space according to the value of mode (which can either be ABSOLUTE or
SCALED).

If multiple view surfaces are open, the marker size is calculated on the basis of the first view sur­
face opened.

ERRORS:

5 ENOTOPOP CG! not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Revision A of 15 May 1985 4-7

Attributes SunCGI Reference Manual

4.s.4. marker _size {CmksizeJ

Cerror marker_size(index)
Cfloat index;/• marker size•/

marker _size sets the size of the marker height and marker width. inJez is expressed in per­
cent of VDC Space. The default marker size is 4 percent of VDC space. Ir the marker size
becomes very small, markers of all types are displayed as points. An error is detected if inJez is
negative.

ERRORS:

5 ENOTOPOP

38 EBADSIZE

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Size must be nonnegative.

,1.9.5. marker _color {Cmkcolor J

Cerror marker_color(index)
Cint index;/* marker color*/

marker _color resets the color of the markers. inJez selects an entry in the color lookup table.
An error is detected if inJez is not between O and 255.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

35 ECINDXLZ

36 EBADCOLX

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Color index is less than zero.

Color index is invalid.

4.4. Solid Object Attributes

The solid object attribute functions describe how all solid object primitives are filled (colored-in).
There are three sets of solid object attribute functions:

fill area attribute,
determine the general method for 'coloring-in' solid geometrical objects.

pattern attributea
determines a pixel array for filling a polygon if the fill atyle is set to PATTERN.

perimeter attribute,

4-8

determine how the edge of a geometrical object is displayed if the perimeter vi,ibility
is ON.

Revision A or 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Attributes

4,4,1. Fill Area Attributes

The fill area attribute functions determine the general method for drawing polygons, filled rec­
tangles, circles, and ellipses.

4.4.1.1. f i l l_area_bundle_index (c fl areabundix)

Cerror fill_area_bundle_index(index)
Cint index;/• fill area bundle index•/

fill_area_bundle_index sets the current fill area bundle indez to the value of indez. The
contents of the fil l_area_bundle are interior atyle, fill color, hatch indez, pattern index,
perimeter type, perimeter width and perimeter color. The perimeter width apecification mode
and the pattern attributes are not included in the definition of the filLarea bundle. If indez is
not defined, an error is generated, and the fi/Larea_bundle_index does not change. If the ASF's

for any of these attributes is set to BUNDLED, the current value of the attribute is set to the
value of the corresponding attribute in the bundle.

ERRORS:

5 ENOTOPOP

39 EBADFABX

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Fill area index is invalid.

4.4.1.e. interior _style {Cintstyle)

Cerror interior_style(istyle,perimvis)
Cintertype istyle; /• fill style•/
Cflagtype perimvis; /• perimeter visibility•/

interior _style sets the fill aty/e for solid objects to either HOLLOW, SOLIDI, PATTERN, or
HATCH. If the fill atyle is set to SOLIDI, the solid object is filled with the current fill color. How­
ever, the appearance of the solid object on the screen depends on the drawing mode. If iaty/e is
set to PATTERN or HATCH, the solid object is filled with the current PATTERN or HATCH style.
The PATTERN and HATCH styles are explained in the pattern attributes section. The default fill
aty/e is HOLLOW.

interior _style also determines whether the perimeter of the solid object is visible according
to the value of perimvia (which must be ON or OFF). If perimvia is OFF, the perimeter attributes
have no effect. The default value of perimeter viaibility is ON.

Be careful when using the interior atyle function to explicitly specify the perimvia argument. If
you do not specify it, or set it to OFF, the geometrical output primitive may not be displayed
because the interior atyle is HOLLOW.

ERRORS:

5 ENOTOPOP CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Revision A of 15 May 1985 4-9

Attributes SunCGI Reference Manual

,1.,1.1.9. fill_color (Cflcolor)

Cerror fill_color(color)
Cint color;/• color for solid object fill•/

fill_color determines the color for filling solid objects, if the fill atyle is not set to HOLLOW.

The default fill atyle is HOLLOW, so changing the fill color will not have an effect without chang­
ing the interior atyle first.

The default fill color is 1.

ERRORS:

5 ENOTOPOP

35 ECINDXLZ

36 EBADCOLX

CG! not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

Color index is less than zero.

Color index is invalid.

4-4-2. Pattern Attributes

Geometrical primitives can be filled with two dimensional arrays of color values called patterns.
SunCGI supports pre-defined as well as user-defined patterns. The definition of patterns is
stored in the pattern table. Each entry in the pattern table consists of a two-dimensional array
of color values and the X and Y dimensions of the array. The starting position (lower left-hand
corner) of the pattern is determined by the pattern reference point.

Two types of patterns are available: PATTERNs and HATCHes. PATTERNS can be scaled and
translated. HATCHes can't and simply fill the geometrical output primitives with pixel arrays.

,1.,1.2.1. hatch_index {Chatchix)

Cerror hatch_index(index);
Cint index;/• index in the pattern table bound to HATCH•/

hatch_index determines which index in the pattern table is used to fill solid objects when the
fill style is set to HATCH. The default hatch index is 1. An error is generated if index points to
an undefined entry in the pattern table.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

42 ESTYLLEZ

43 ENOPATNX

4-10

CG! not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Style (pattern or hatch) index is less than zero.

Pattern table index not defined.

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Attributes

4.4.e.e. pattern_index {Cpatix/

Cerror pattern_index(index);
Cint index;/* index in the pattern table bound to PATTERN*/

pattern_index determines which index in the pattern table is used to fill solid objects when
the fill atyle is set to PATTERN. pattern_index also determines the pattern which is used by
drawing mode. The default pattern index is 2. An error is generated if index points to an
undefined entry in the pattern table. Note that pattern_index O is not defined.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

42 ESTYLLEZ

43 ENOPATNX

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Style (pattern or hatch) index is less than zero.

Pattern table index not defined.

4.4.2.9. pattern_table {Cpattable/

Cerror pattern_table(index,m,n,colorind)
Cint index;/* entry in table*/
Cint m,n; /* number of rows and columns*/
Cint •colorind; /* array containing pattern*/

pattern_table defines an entry in the pattern table. index defines the entry in the table
(which must be less than 10). An error is generated if index is outside the bounds of the pattern
table. m and n define the height and width of the pattern (in pixels). The array pointed to by
the argument colorind contains the actual pattern. All nonzero entries in colorind are set to 1.
Pattern 1 is initially defined to be a three-by-three matrix which is set to zero at the corners and
one elsewhere. Pattern 1 produces simple cross-hatching. Pattern 2 (which produces a polka-dot
pattern) is initially defined to be a three-by-three matrix which is set to 1 at the center and 0
elsewhere. The maximum number of elements in a pattern is 256.

ERRORS:

5 ENOTOPOP

40 EPATARTL

41 EPATSZTS

42 ESTYLLEZ

44 EPATITOL

CGI not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

Pattern array too large.

Pattern size too small.

Style (pattern or hatch) index is less than zero.

Pattern table index too large.

4.4-2.4. pattern_reference_point (Cpatrefpt/

Revision A of 15 May 1985 4-11

Attributes

Cerror pattern_reference_point(begin)
Ccoor *begin;

SunCGI Reference Manual

pattern_re ference_point defines the point in VDC Space where the pattern bo,e begins.
begin determines the offset of the pattern. pattern_re/erence_point has no effect if the interior
•tyle is set to HATCH. The lower left-hand corner of the pattern bo,e is determined by begin. The
pattern is conceptually replicated over all of VDC Space - the begin point provides for fine posi­
tioning of the pattern. The default pattern reference point is (0,0).

ERRORS:

5 ENOTOPOP CGI not in proper state CGI shall be in staie VDOP, VSOP, or VSAC.

4.4.2.5. pattern_size {Cpatsize/

Cerror pattern_size(dx,dy)
Cint dx,dy; /• size of pattern in VDC Space•;

pattern_size defines the size of the pattern array in VDC coordinates. d,e and dy determine
the size of an element of the pattern in VDC Space. pattern_aize therefore allows you to 'stretch'
the pattern to a certain size. If dz or dy would result in pattern elements less than one pixel
wide, an error is generated and the pattern size is set m pixels by n pixels. 13 If the pattern aize is
larger than the bounds of screen space, the effective pattern aize is the size of VDC Space. The
default pattern aize is 300,300.

ERRORS:

5 ENOTOPOP CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

4-4-s. Perimeter Attributes

As mentioned previously, control of the drawing of the borders of solid objects is under the con­
trol of the perimeter attribute functions, not the line attribute functions. However, the two sets
of functions perform the same tasks. Perimeter attribute functions have no effect if the perime­
ter viaibility is set to OFF. The perimeter attributes are essentially the same as the line attri­
butes except that they affect the borders of solid attributes. Which attributes affect which prim­
itives may become ambiguous when the interior atyle is set to HOLLOW.

4-4.9.1. perimeter _type {Cperimtype/

Cerror perimeter_type (ttyp)
Clintype ttyp; ;• style of perimeter•/

The styles of perimeter offered are SOLID, DASHED, DOTTED, DASHED...DOTTED, and
DASH..DOT...DOTTED. The default perimeter style is SOLID. The actual representation of a

13 m and " are obtained from the pattern table.

4-12 Revision A of 15 May 1985

0

0

0

0

0

0

SunCCI Reference Manual Attributes

perimeter is effected by drawing mode as well as the perimeter aty/e. Notice that there 1s no
ending style for perimeter. The endstyle is controlled by the line endaty/e function.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CCI not in proper state CCI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

4.4.9.2. perimeter _width {Cperimwidth)

Cerror perimeter_width(index)
Cfloat index;/• perimeter width*/

perimeter _width determines the width of the perimeters of solid objects. Index can be
expressed in percent of VDC Space or pixels. If the perimeter width apecification mode is set to
SCALED and the x and y dimensions are different, the perimeter width is calculated on the basis
of the range of the x-coordinate of VDC space. If the parameter setting would result in a perime­
ter less than one pixel wide, the perimeter width is displayed as one pixel wide. The default per­
imeter width is 0.0 (SCALED).

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CCI not in proper state CCI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

34 EBDWIDTH Width must be nonnegative.

4.4.9.9. perimeter _width_specification_mode {Cperimwidthspecmode/

Cerror perimeter_width_specification_mode(mode)
Cspecmode mode;/* pixels or percent•/

perimeter _width_specification_mode allows the perimeter _width tc, be specified in
pixels or as a percentage of VDC Space according to the value of mode (which can either be
ABSOLUTE or SCALED). If the perimeter width apecification mode is changed from ABSOLUTE to
SCALED, the change in the line width will probably be dramatic.

If multiple view surfaces are open, the perimeter width is calculated on the basis of the first view
surface opened.

ERRORS:

5 ENOTOPOP CCI not in proper state CCI shall be in state VDOP, VSOP, or VSAC.

4.4.s.4. perimeter _color {Cperimcolor)

Cerror perimeter_color(index)
Cint index;/* perimeter color•/

Revision A of 15 May 1985 4-13

Attributes SunCGI Reference Manual

perimeter _color resets the color of the perimeters. index selects an entry in the color
lookup table. The default value of indez is 1. An error is detected if indez is not between O and 0
255.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CCI not in proper state CCI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

35 ECINDXLZ

36 EBADCOLX

Color index is less than zero.

Color index is invalid.

4.5. Text Attributes

SunCGI provides a variety of functions for determining how text is written to the screen. The
most important text attribute is text preciaion. If tezt preciaion is set to STRING, firmware char­
acters are used. The fonts, size, spacing, and alignment of firmware are more limited than char­
acters drawn with tezt preciaion set to a value other than STRING. Therefore, calls to text attri­
bute functions regulating these aspects of text drawing have no effect when tezt preciaion is set
to STRING.

4.5.1. text_bundle_index {Ctextbundix}

Cerror text_bundle_index(index)
Cint index;/* text bundle index*/

text_bundle_index sets the current tezt bundle indez to the value of indez. The contents of
the text bundle indez are tezt font text preciaion, character expanaion factor, character &pacing,
and text color. The character height, character orientation, character path, text alignment and
fixed font are not included in the definition of the text bundle. If index is not defined, an error is
generated, and the text bundle index does not change. If the ASF's for any of these attributes are
set to BUNDLED, the current values of these attributes are set to the contents of the bundle.

ERRORS:

5 ENOTOPOP

45 EBADTXTX

CG! not in proper state CCI shall be in state VDOP, VSOP, or VSAC.

Text index is invalid.

4.5.2. text_precision {CtextprecJ

Cerror text_precision (ttyp)
Cprectype ttyp; /* text type*/

text_precision controls the type of text displayed. ttyp can assume one of three values:
STRING, CHARACTER, or STROKE. If the text preciaion is set to STRING, the firmware character
set is used.

4-14 Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual Attributes

Firmware characters cannot be scaled or rotated.

Characters are clipped, but not in parts (that is, if any portion of the character exceeds the clip­
ping boundary the whole character is clipped). If the text preci,ion is set to CHARACTER,
software generated characters are employed. All text attributes have a visible effect on software
generated characters, but according to the standard, text drawn with CHARACTER precision are
not clipped in parts. However, in SunCGI, characters are clipped in parts. Ir the text preciaion
is set to STROKE, the CHARACTER precision capabilities are enabled and characters are clipped in
parts. The default text preciaion is STRING.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

,t.5.3. character _set_index {Ccharsetix}

Cerror character_set_index(index)
Cint index;/* font set*/

character _set_index selects a set of fonts. Although SunCGI supports this function, only
set number 1 is defined. Calls to character_aet_index with index assigned to a value other than 1
are ignored.

ERRORS:

5 ENOTOPOP CG! not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

,1.5 .. ,t. text_font_index {CtextfontixJ

Cerror text_font_index(index)
Cint index;/* font*/

text_ font_index resets the current font. A list of available fonts and their availability when
text preciaion is set to STRING is given in Table 4-3. A warning about the SYMBOL font:
undefined characters are displayed as bugs (the six-legged kind). The default font is STICK.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

47 ETXTFLIN

CGI not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Text font is invalid.

Revision A of 15 May 1985 4-15

Attributes SunCGi Reference Manual

Table 4-3: Available Fonts

Font Available in String Preciaionf

ROMAN
GREEK
SCRIPT
OLD ENGLISH
STICK
SYMBOLS

YES
YES (displayed as STICK font)
YES
NO
YES
NO

,t.5.5. character _expansion_factor {Ccharexpfac)

Cerror character_expansion_factor{efac)
Cfloat efac; /• width factor•/

character _expansion_factor determines the width-to-height ratio of characters. If efac is
greater than 1 the characters appear fatter than they are wide. If efac is less than 1 the charac­
ters appear slimmer than they are wide. The default character ezpamion factor is 1.0. An error
is generated if efac is less than .01 or greater than 10.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

48 ECEXFOOR

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Expansion factor is out of range.

,t.5.6. character _spacing {Ccharspacing)

Cerror character_spacing(spcratio)
Cfloat spcratio; /• spacing ratio•;

character _spacing sets the spacing between characters based on the height of the charac­
ters. The amount of space between characters is obtained by multiplying the character height
by apcratio. The default character apacing factor is 0.1. An error is generated if apcratio is less
than .01 or greater than 10.

ERRORS:

4-16

5 ENOTOPOP

30 EBTBUNDL

48 ECEXFOOR

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Expansion factor is out of range.

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual

4-s. 7. character _height (Ccharheight}

Cerror character_height (height)
Cint height;/• height in voe•/

Attributes

The character_height function determines the height of text in VDC coordinates. The height is
defined as the distance from the top to the bottom of the character.

Notice that changing the character height implicitly changes the character •pacing.

The default character height is 1000. This may result in huge characters if VDC Space is reset
from its default range (0-32767). If the X and Y dimensions of VDC Space are different, the
height is calculated on the basis of the range of the x-coordinate of VDC space.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

49 ECHHTLEZ Character height is less than or equal to zero.

,1.5.8. fixed_font {Cfixedfont)

Cerror fixed_font (index)
Cint index; /' fixed or variable width characters•/

fixed_font is a non•tandard CG! function which allows characters to be of fixed or variable
size. If index is nonzero, the characters are of uniform size, otherwise the characters are packed
proportional to their actual sizes. If the character preci•ion is STRING, this function has no
effect.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4.s.n. text_color {Ctextcolor)

Cerror text_color(index)
Cint index;/* color*/

text_color resets the color of the text. index selects an entry in the color lookup table. The
default value of index is 1. An error is detected if index is not between O and 255.

ERRORS:

5 ENOTOPOP

30 EBTBUNDL

35 ECINDXLZ

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

ASF is BUNDLED.

Color index is less than zero.

Revision A of 15 May 1985 4-17

Attributes SunCGI Reference Manual

36 EBADCOLX Color index is invalid.

4,5.10. character _orientation (Ccharorientation)

Cerror character_orientation (xup,yup,xbase,ybase)
Cfloat xup.yup,xbase,ybase; /* character base and character up vectors*/

character _orientation specifies the skew and direction of text. The left side of the char­
acter box lies on an invisible line called the character up vector whose slope is determined by
zbaae and zup. The bottom of the character box lies on an invisible line called the character
baae vector whose slope is determined by ybaae and yup.

If the character up vector and the character baae vector are not orthogonal, the text is distorted.
Calls to character _orientation have no effect if tezt preciaion is set to STRING. The
default values for the character up vector and the character baae vector are zup =1.0, yup =1.0,
zbase=0.0, and ybase=O.O.

The character up vector and the character baae vector influence the character path and the char­
acter alignment. For example, if zbase=-1.0 and the character path is RIGHT, the text is written
to the left.

ERRORS:

5 ENOTOPOP

50 ECHRUPVZ

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

Length of character up vector or character base vector is zero.

,4.5.11. character _path (Ccharpath}

Cerror character_path(path)
Cpathtype path;/• text direction•/

The character_path function respecifies direction that text is written. The four possible direc­
tions are RIGHT, LEFT, UP, and DOWN. The actual effect of character_path depends on the char­
acter up vector and the character baae vector. RIGHT specifies that the text is written in the
direction of the character baae vector. For example, if the direction of the character baae vector
points left imtead of right (zup=-1.0 inatead of 1.0), the tezt will be written right-to-left imtead of
left-to-right which ia the uaual interpretation of RIGHT. LEFT apecifiea that the tezt ia written in
the oppoaite direction of the character baae vector. The character up vector and character baae
vector e .. entially change functiona when the character direction ia aet to UP or DOWN. UP
apecifiea that the tezt ia written in the direction of the character up vector. DOWN apecifiea that
the tezt ia written in the oppoaite direction of the character up vector. The default character
path ia RIGHT.

ERRORS:

5 ENOTOPOP CG! not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

4-18 Revision A of 15 May 1985

Q,

0

0'

0

0

0

SunCGJ Reference Manual Attributes

4,5.12. text_alignment {Ctextalign)

Cerror text_alignment(halign,valign,hcalind,vcalind)
Chaligntype halign; ;• horizontal alignment type•/
Cvaligntype valign; /• vertical alignment type•/
Cfloat hcalind,vcalind; ;• continuous alignment indicators•/

text_alignment determines where the text is positioned relative to the starting point
specified by the c1 argument of the text or vdm_text function. The value of the halign
argument (which must be one of LFT, CNTER, RGHT, NRMAL, CNT) determines where the charac­
ter is placed in relation to the z component of the starting coordinate of the text position
(specified by the c1 argument of text). If the value of halign is LFT, the horizontal position of the
text will begin at the left edge of the box enclosing the text. Similarly, if the value of halign is
RGHT, the horizontal position of the text will begin at the right edge of the box enclosing the
text. If the value of halign is CTR the horizontal position of the text will begin equidistant from
the right an<l the left edges of the text box. NRML assigns the alignment based on the value of
the character path (see Table 4-4). If the value of halign is CNT (continuous) the horizontal posi­
tion of the text is determined by the argument hcalind. In this case, the text will begin hcalind
percent of the width of the text box from the left edge of the character box. The default value
of h align is NRML.

The value of the valign argument (which must be one of TOP, CAP, HALF, BASE, BOTTOM, NOR­
MAL, CONT) specifies where the character is placed in relation to the y component of the text
position. If the value of valign is TOP, the vertical position of the text will begin at the top edge
of the character box. If the value of valign is CAP, the vertical position of the text will begin at
the cap line of the character.14 Similarly, if the value of valign is BOTTOM, the vertical position
of the text will begin at the bottom edge of the character box. If the value of valign is BASE, the
vertical position of the text will begin at the ba,eline of the character.15 If the value of valign is
HALF the vertical position of the text will begin equidistant from the top and the bottom edges
of the character box. NORMAL assigns the alignment based on the value of the character path
(see Table 4-4). If the value of valign is assigned to CONT (continuous), the vertical position of
the text is determined by the argument vcalind and will begin vcalind percent of the distance
from the bottom edge of the character box. The default value of valign is NORMAL.

H The cap line is defined as the invisible line corresponding to the top of the average character within a
font.

16 The bHeline is defined as the invisible line corresponding to the bottom of the average character
within a font. The bs,elint does not necessarily correspond to the bottom of a character. For example, a
the tail of a lower-case g extends below the baseline.

Revision A of 15 May 1985 4-19

Attributes SunCGI Reference Manual

Table 4-4: Normal Alignment Values

Character Horizontal Vertical
Path Normal Normal

RIGHT LEFT BASELINE

LEFT RIGHT BASELINE

UP CENTER BASELINE
DOWN CENTER TOP

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4.6. Color Attributes

SunCGI supports only one color specification mode - INDEXED. Index color specification mode
means that the red, green, and blue values (hereafter referred to as rgb values) are obtained from
a table known as the color lookup table. The initial values of the color lookup table are provided
in Table 4-5. If the device is black and white, nonzero color values are displayed as black; zero
is displayed as white.

Table 4-5: Default Color Lookup Table

Indez Color

0 black
1 red
2 yellow
3 green
4 cyan
5 blue
6 magenta
7 white

,4.6.1. color _table {Ccotable)

Cerror color_table(istart,clist)
Cint istart; /' starting address•/
Ccentry •clist; /' color triples and number of entries•/

0

0

color _table resets color lookup table entries. The color lookup table is a set of 256 rgb o
entries. The argument iatart determines the first entry in the color lookup table to be modified.
The argument cliat contains the color information for entry iatart in terms of triples of values of

4-20 Revision A of 15 May 1985

0

0

0

SunCGJ Reference Manual Attributes

numbers ranging between O and 255. The last field of cli,t reports how many entries are
modified. An error is generated if either the indices to the color lookup table are out of range.

ERRORS:

5 ENOTOPOP

35 ECINDXLZ

36 EBADCOLX

CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

Color index is less than zero.

Color index is invalid.

4. 7. Inquiry Functions

The attribute inquiry functions permit examination of the current attributes. Attributes are
reported in groups corresponding to the class of output primitive which they modify. The argu­
ment to each inquiry function has its own structure type which has an element for each of the
individual attributes (see Appendix D).

4. 7.1. inquire_line_attributes {CqlnattsJ

Clinatt *inquire_line_attributes();
/* pointer to line attribute structure*/

inquire_line_attributes reports the current line atyle, line width, line color, and
polyline_bundle_index in the appropriate elements of the returned value of the function.

typedef struct {
Clintype style;
Cfloat width;
Cint color;
Cint index;

} Clinatt;

Since inquire_line_attributes does not return an error, errors are only reported m
INTERRUPT mode.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4. 7.2. inquire_marker _attributes {CqmkattsJ

Cmarkatt *inquire.JDarker_attributes();
/* pointer to marker attribute structure*/

inquire_marker _attributes reports the current marker atyle, marker width, marker color,
and polymarker _bundle_index in the appropriate elements of the returned value of the
function.

Revision A of 15 May 1985 4-21

Attributes

typedef struct {
Cmartype type;
Cfloat size;
Cint color;
Cint index;

} Cmarkatt;

SunCGI Reference Manual

Since inquire_marker _attributes does not return an error, errors are only reported in

INTERRUPT mode.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4- 7.3. inquire_fi l l_area_attr ibutes {Cqflareaatts)

Cfillatt •inquire_fill_area_attributes();
;• pointer to fill area attribute structure•/

The current interior atyle, perimeter viaibility, fill color, hatch indez, pattern indez, fill area bun•
die indez, perimeter aty/e, perimeter width, and perimeter color can be obtained by using the
inquire_fill_attributes function.

typedef struct {
Cintertype style;
Cflagtype visible;
Cint color;
Cint hatch_index;
Cint pattern_index;
Cint index;
Clintype pstyle;
Cfloat pwidth;
Cint

} fillatt;
pcolor;

Since inquire_fill_area_attributes does not return an error, errors are only reported
in INTERRUPT mode.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4. 1.4. inquire_pattern_attributes {Cqpatatts}

Cpatternatt •inquire_pattern_attributes();
/• pointer to pattern attribute structure•/

inquire_pattern_attributes reports the current pattern indez, row count, column count,
color liat, pattern reference point, and pattern aize.

4-22 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Attributes

typedef struct {
Cint cur_index;
Cint row;
Cint column;
Cint •color list;
Ccoor •point;
Cint dx;
Cint dy;

} patternatt;

Since inquire_pattern_attributes does not return an error, errors are only reported in
INTERRUPT mode.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

4- 7.5. inquire_text_attributes {Cqtextatts)

Ctextatt •inquire_text_attributes();
/• pointer to text attribute structure•/

inquire_ text_attr ibutes reports the current font aet, tezt bundle indez, font, tezt preci­
aion, character ezpanaion factor, character apacing, tezt color, character height, character baae
vector, character up vector, character path, and text alignment.

typedef struct {
Cint fontset;
Cint index;
Cint current_font;
Cprectype precision;
Cfloat exp_factor;
Cfloat
Cint
Cint
Cfloat
Cfloat

space;
color;

height;
basex;
basey;

Cfloat upx;
Cfloat upy;
Cpathtype path;
Chaligntype halign;
Cvaligntype valign;
Cfloat hcalind;
Cfloat vcalind;

} textatt;

Since inquire_text_attributes does not return an error, errors are only reported m
INTERRUPT mode.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in state VDOP, VSOP, or VSAC.

Revision A of 15 May 1985 4-23

Attributes SunCGI Reference Manual

4- 7.6. inquire_aspect_source_flags (Cqasfs}

Cflaglist *inquire_aspect_source_flags()
/* pointer to text attribute structure*/

inquire_aspect_source_flags reports whether attributes are set individually by returning
all of the values of the ASFs. The element n of the flaglist struct is set to 18. The definitions of
each flag are in Table 4-2.

typedef struct {
Cint n;
Cint *num;
Casptype •value;

} Cflaglist;

Since inquire_aspect_source_flags does not return an error, errors are only reported in
INTERRUPT mode.

ERRORS:

5 ENOTOPOP
CGI not in proper state CGI shall be in state VDOP, VSOP, or VSAC.

4-24 Revision A of 15 May 1985

0

0

0

0

0

0

Chapter 5

Input

CG! describes an input device as consisting of a meaaure and a list of aaaociationa with triggera.
A trigger corresponds to a physical input device such as a mouse button. A meaaure reports the
current value of the device such as z,y position for a locator device. SunCGI input functions
apply to all classes of input devices. The classes of devices that are offered are listed in Table 5-
1.

Table 5-1: Devices Offered by SunCGI

Device Glau Max. Number Deacription

IC_CHOICE 3 Mouse button (trigger)17
ICJ,OCATOR 4 z, 11 position
IC..STRING 1 Keyboard input
IC_STROKE 3 Array of z, I/ positions
IC_VALUATOR 4 Normalized z position

When a trigger is activated, the measure of the device is reported to the application program by
use of the event functions.

The effect of the event functions depends on the •tate of the input device (see Table 5-2). Before
an input device is initialized it is in the RELEASED state. When an input device is first initial­
ized, it is in the NO_EVENTS state.

The meaaure (value) of the input device is the device-dependent information that the application
program wants (for example, the LOCATOR returns the x,y position of the cursor. The measure
of an input device in the NO_EVENTS state is the measure that it was initialized with. The meas­
ure of an input device in the NO_EVENTS state does not change with activation of a trigger. For
example, the measure of a LOCATOR doea not change when the mouse moves.

The measure of an input device is changed by trigger activation when the input device is in
either the REQUEST_EVENT, RESPOND_EVENT or QUEUE_EVENT state. If the input device is in
the REQUEST_EVENT state its measure is set by the first trigger activation after the
ini tiate_request function is called. If the input device is in the RESPOND_EVENT state its

17 The left mouse button is choice 2, the middle button is choice 3, and so on.

Revision A of 15 May 1985 5-1

Input SunCGI Reference Manual

measure is set by the most recent trigger activation. Previous trigger activations are not stored.
When an input device is in the QUEUE...EVENT state, trigger activation is buffered by the event
queue. The event queue processes inputs in the order that they are received provided that the
event queue is not overflowing.

State

RELEASED

NO..EVENTS

REQUEST ...EVENT

RESPOND...EVENT

QUEUE...EVENT

Table 5-2: States of Input Devices

Brief Deacription

Device not initialized.

Device initialized, but unable to process events.

Device measure set by first (and only first) trigger activation.

Device measure settable by most recent trigger activation.

Device able to post events on the event queue. Device measure
settable by trigger activation when processed.

The figure below illustrates the CG! input state model.

Get La.st Req. Input
Await Event

All input
commands
cause error D

;--::~~:~~--~ Initialize LID ~. -~:-:::~::-rT'' 1''"

Release LID
I --==;,,:,_;=;.._--, I
I I I

L------------~ - ~

I
I
I
I
I
I

request
event

I I '- -1----- _f ___ .,

Sample Input
!nit Request

(Request Input,
Enable Events cause error)

5-2

user break
timeout

trigger fires
Disable Events

,..--------- -
I
I
I
I
I
I
I

respond
event

I I

'--1------f----'

Sample Input
(!nit Request

Request,
Enable Events cause error)

Figure 5-1: CG! Input State Model

Disable
Events

,..-----
' I
I
I
I
I
I

queue
event

--,
I

I I '--1--- ___ f ___ .,

trigger fires
Sample Input
Await Event

(request,
init request cause error)

Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual Input

In addition to reporting input to an application program, you may want to have the measure of a
device displayed on all active view surfaces (called tracking). Tracking must be explicitly
enabled for each device. In addition, the type of track is selectable for some input devices.

5.1. Input Device Management

Before input can be processed, the individual input devices must be initialized and associated
with triggers. Input device initialization requires that at least one view surface is active. Typi­
cally, the procedure for initializing an input device includes calls to the initialize_lid,
enable_events, and associate functions which turn 0!1 an input device and permit it to
receive input from an associated trigger (see the following example).

{/•initialize LOCATOR input device, get input, and close•/
Cinrep ival;
Clogical stat;
Cint trig;

ival.xypt.x = 16384; /' put cursor in the middle of the view surface •/
ival.xypt.y = 16384;
initialize_lid(IC_LOCATOR,l,&ival);
associate(2,IC_LOCATOR,l); /• associate locator with mouse button 1 •/
request_input(IC_LOCATOR,1,5000000,&stat,&ival,&trig); /' wait five seconds•/
if (stat== TRUE)

printf(" trigger activated at %d %d \n",ival.xypt.x,ival.xypt.y);
else

printf(" trigger not activated \n");
disable_events(IC_LOCATOR,l); ;• shut device off•/
dissociate(2,IC_LOCATOR,l);
release_input_device (IC_LOCATOR,l);
}

5.1.1. initialize_lid {Cinitlid}

Cerror initialize_lid(devclass, devnum, ival)
Cdevoff devclass; /• device type'/
Cint devnum; /• device number•/
Cinrep •ival; /' initial value of device measure•/

initialize_lid (lid - Logical Input Device) must be called for an input device before it can
be referenced by any other input function. initialize_lid changes the state of the specified input
device from RELEASED to NO-EVENTS. The argument devclau specifies one of the supported dev­
ices, and devnum indicates the number of the device within that class. The argument ival sets
the initial measure of the device. The structure Cinrep contains different elements for each
type of measure. An error is generated if the device does not exist, if it is already initialized, or
if the initial value is out of range. You must set the appropriate field of ival, or an error will
be generated.

Revision A of 15 May 1985 5-3

Input SunCGI Reference Manual

typedef struct {
Ccoor *xypt;
Ccoorlist •points;
Cfloat val;
Cint choice;
Cchar

} Cinrep;
•string;

/*LOCATOR*/
/* STROKE devices*/
/* VALUATOR device*/
/* CHOICE devices*/
/* STRING device*/

Notice that whenever a device is initialized, no associations with triggers are made. This must
be done by having your application program call the appropriate functions.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

82 EINDALIN

95 EBADDATA

96 ESTRSIZE

CGI not in proper state: CGI shall be in state VSAC.

Input device does not exist.

Input device already initialized.18

Contents of input data record are invalid.

Length of initial string is greater than the implementation defined max­
imum.

5.1.2. release_input_device {Crelidev J

Cerror release_input_devlce(devclass, devnum)
Cdevoff devclass; /• device type•/
Cint devnum; /* device number•/

release_input_device releases all associations with triggers, and removes all pending events
from the device from the event queue. release_input_device changes the state of the
specified input device from NO..EVENTS to RELEASED. An error is produced if devclau, devnum
does not refer to an existing or initialized device.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

CGI not in proper state: CGI shall be in state VSAC.

Input device does not exist.

Input device not initialized.

5.1.3. flush_event_queue {CflusheventquJ

Cerror flush__event_queue()

flush_event_queue discards all events in the event queue. The purpose of ftuah_event_queue
is to return the event queue to a stable state (NO_OFLO). This function should be used

18 The AN5I standard allows initialized input devices to be re-initialized. SunOGI does not because it is
felt that re-initialization is usually a mistake.

5-4 Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Input

carefully to avoid throwing away mouse-ahead or type-ahead inputs.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in either in state VDOP, VSOP,
or VSAC.

5.1.,t. se 1 ect i ve_ f 1 ush_o f_event_queue {Cse 1 ect f 1 usheven tqu}

Cerror selective_flush_of_event_queue(devclass, devnum)
Cdevoff devclass; /* device type*/
Cint devnum; /• device number*/

selective_flush_of_event_queue discards all events in the event queue which are gen­
erated by the specified device. selective_flush_of_event_queue does not affect the
state of the specified input device. devclaaa, devnum must refer to an existing or initialized dev­
ice or an error is produced. However, no error is returned if no events from the specified device
are pending.

ERRORS:

5 ENOTOPOP CG! not in proper state CG! shall be in either in state VDOP, VSOP,
orVSAC.

80 EINDNOEX

81 EINDINIT

Input device does not exist.

Input device not initialized.

5.1.5. associate {Cassoc)

Cerror associate(trigger, devclass, devnum)
Cint trigger;/• trigger number•/
Cdevoff devclass; /• device type•/
Cint devnum; /* device number•/

The function a .. ociate links a trigger to a specific device. The trigger numbers are listed in
Table 5-3.

Table 5-3: Triggers Offered by SunCGI

Trigger Number

Keyboard 1
Mouse Button No. 1 2
Mouse Button No. 2 3
Mouse Button No. 3 4
Mouse Position 5

Multiple a.ssociations are allowed; however, some a.ssociations are not allowed (for example,
JCJ,OCATOR may not be associated with the keyboard). The interaction between an IC..STROKE

Revision A of 15 May 1985 5-5

Input SunCGI Reference Manual

device and the trigger requires some explanation. IC..STROKE can only be linked with the mouse
buttons. IC_STROKE returns an array of coordinates in VDC space. The first coordinate is
entered when the mouse button is initially depressed, the last coordinate is entered when the
mouse button is released. For ICJ,OCATOR and IC_VALUATOR devices, the measure is reported
when the mouse button is depre.,ed.

I
Qi

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

83 EINASAEX

84 EINAIIMP

86 EINTRNEX

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Association already exists.

Association is impossible.

Trigger does not exist.

5.1.6. set_default_trigger _associations {CsdefatrigassocJ

Cerror set_default_trigger_associations(devclass, devnum)
Cdevoff devclass; /• device type•/
Cint devnum; /* device number*/

The function aet_default_trigger_a.,ociationa links a trigger to a specific device. The rules for
trigger association are the same as those for the tuaociate function. The default associations are o
listed in Table 5-4.

ERRORS:

5-6

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

83 EINASAEX

86 EINTRNEX

Table 5-4: Default Trigger Associations

Device Clau

ICJ.OCATOR
IC_VALUATOR
IC_STROKE
IC_CHOICE
IC_STRING

Default Trigger

5
3
4
2
1

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Association already exists.

Trigger does not exist.

Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual

5.1. 7. dissociate {CdissocJ

Cerror dissociate(trigger, devclass, devnum)
Cint trigger;/• trigger number•/
Cdevoff devclass; /* device type*/
Cint devnum; /* device number*/

Input

The function diaaociate removes the association between a trigger and the specified device. If
the diaaociate function is called while there are events pending on the event queue, the pending
events are discarded.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

85 EINNTASD

86 EINTRNEX

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

association does not exist.

Trigger does not exist.

5.1.8. set_initial_value {Csinitval}

Cerror set_initial_value(devclass, devnum, value)
Cdevoff devclass; /* device type*/
Cint devnum; /* device number*/
Cinrep *value;/* device value*/

set_ini tia l_ value sets the current measure of the specified device. This function resets the
position of the track, if the track is appropriate and activated. set_initial_value also
resets the request register.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

95 EBADDATA

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Contents of input data record are invalid.

96 ESTRSIZE Length of initial string is greater than the implementation defined max­
imum.

5.1.9. set_valuator _range {Csvalrange)

Cerror set_valuator_range(devnum, min, max)
Cint devnum; /• device number*/
Cfloat min,max; /* limits of valuator*/

Revision A of 15 May 1985 5-7

Input SunCGI Reference Manual

set_valuator _range specifies the limits of the valuator. Device coordinates are mapped into
the valuator range. All valuator events which are on the event queue are not rescaled. You Q
must dequeue these events either with the selective_flush_of_event_queue function or .
flush_event_queue.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

5.2. Tracking

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Tracking functions determine how the measure of an input device is displayed on the view sur­
face. Each class of devices has its own set of possible tracks (given in Table 5-4). Although
SunCGI allows certain classes of devices to track simultaneously, all types of input devices are
not allowed to track at once. Tracking is not provided in the NO...EVENTS state unless the track
type is PRINTERSJ'IST.

Table 5-5: Available Track Types

Trigger Number Track Type

IC_CHOICE 1. PRINTERSJ'IST

ICJ,OCATOR 1. PRINTERSJ'IST

IC_STRING 1. PRINTERSJ'IST
2. STRING_TRACK

IC_8TROKE 1. PRINTERSJ'IST
2. SOLIDJ,INE
3. XJ,INE

4. YJ,INE

5. RUBBER....BAND....BOX

IC_VALUATOR 1. PRINTERSJ'IST
2. STRING_TRACK

5.2.1. track_on {Ctrackon)

5-8 Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual

Cerror track_on(devclass, devnum, tracktype, trackregion, value)
Cdevoff devclass; /' device type•/
Cint devnum; /' device number•/
Cint tracktype; /' track number'/
Ccoorpair •trackregion /• window where track is enabled'/
Cinrep •value;/• device value•/

Input

track_on initiates track (or echo) for a specific device. The tracktype argument specifies the
type of track to be used. See table 5-5. The trackregion argument specifies a rectangular subre­
gion of the view surface (in VDC Space) where tracking is active. The returned argument value
reports the device measure at the time track_on is called. The track is initially displayed on the
first view surface opened.

The xypt element of value must be set to initially position the cursor. The reference point for
IC_STROKE echos 2 through 5 is the first point in the stroke array. The reference point for
STRING_TRACK echo is the append_text concatenation point, and can be changed by calling
text or append_text. The trackregion argument is not used and the device tracks in all
areas of the view surface.

ERRORS:

4 ENOTVSAC

88 EINECHON

91 EINETNSU

95 EBADDATA

CGI not in proper state: CGI shall be in state VSAC.

Track already on.

Track type not supported.

Contents of input data record are invalid.

96 ESTRSIZE Length of initial string is greater than the implementation defined max­
imum.

5.2.2. track_off {Ctrackoff}

Cerror track_off(devclass, devnum, tracktype, action)
Cdevoff devclass; /' device type'/
Cint devnum; /' device number'/
Cint tracktype;
Cint action;

The function track_of! terminates tracking for the specified input device. However, the printer's
fist track always remains. For this reason, the tracktype and the action arguments are always
ignored.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

CGI not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Revision A of 15 May 1985 5-9

Input SunCGI Reference Manual

5.3. Event Functions

Event functions allow the application program to set and obtain the current measure of input
devices and triggers. No device-specific input routines exist in SunCGI. Therefore, each of the
following functions requires explicit identification of an input device. There are two input
buffers: the event queue and the requeat regiater. The event queue is a FIFO (First In, First Out)
buffer containing input events which are not generated by the requeat functions. The requeat
register is a one-element per device buffer which contains the measure caused by the last input
event, if the device has been put in request_event mode.

5.3.1. sample_input {Csampinp)

Cerror sample_input(devclass, devnum, valid, sample)
Cdevoff devclass; /* device type*/
Cint devnum; /* device number*/
Clogical *valid;/* device status*/
Cinrep *sample;/* device value*/

sample_input reports the current measure of the specified input device in the returned argu­
ment sample. The returned argument valid reports whether the device is initialized and
prepared to receive an input. The current measure of the device may be set by a queued event,
a requested event, or a device initialization depending on the state of the input device and the
most recent trigger activation(s). See the chapter introduction for an explanation of the relation­
ship between the meawre of an input device and the atate of an input device.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

5.3.2. initiate_request {Cinitreq)

Cerror initiate_request(devclass, devnum)
Cdevoff devclass; /* device type*/
Cint devnum; /* device number*/

ini tiate_request sets up a device so that the measure resulting from the next trigger
activation will be placed in the request register. ini tiate_request puts the device in the
REQUEST_EVENT state. The value caused by the trigger activation can be obtained by the
get_ l ast_requested_input function.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

5-10

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual input

85 EINNTASD No triggers associated with device.

5.S.S. request_input (Creqinp)

Cerror request_input(devclass, devnum, timeout, valid, sample, trigger)
Cdevoff devclass; /* device type*/
Cint devnum; /* device number*/
Cint timeout;/* amount of time to wait for input*/
Cawresult •valid;/* device status*/
Cinrep •sample;/* device value*/
Cint •trigger/* trigger number*/

request_input awaits activation of a trigger associated with a_ specific device, for timeout
microseconds. reque.t_input puts the input device in the RESPOND...EVENT state. If a trigger is
activated within this period, the activating trigger and the device measure are returned in the
trigger and •ample arguments respectively. If the trigger is not activated within this period, the
current device measure is returned in the •ample argument. trigger is set to zero.

Cawresul t is defined as an enumerated type as follows:

typedef enum {
VALID_DATA,
TIMED_OUT,
DISABLED,
WRONG_STATE,
NOT_SUPPORTED

} Cawresult;

valid is set to v AL!DJ)ATA if a trigger is activated within the specified timeout period and
TIMED_OUT otherwise. If the device is not in the state RESPOND_EVENT, valid is set to DISABLED.
If the device is not a legal device, valid is set to NOT.JlUPPORTED. valid is set to WRONG.JlTATE

if SunCGI is not in state VSAC.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

94 EINEVNEN

99 EINNTRSE

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Events not enabled.

Input device not in state RESPOND EVENTS.

5.3.4. get_last_requested_input (Cgetlastreqinp)

Cerror get_last_requested_input(devclass, devnum, valid, sample)
Cdevoff *devclass; /* device class and number*/
Cint *devnum;
Clogical •valid;
Cinrep *sample;

/* device status*/
/* device value*/

get_last_requested_input returns the contents of the reque•t regiater. The returned

Revision A of 15 May 1985 5-11

Input SunCGI Reference Manual

argument valid reports if the device exists and is initialized. The returned argument ,ample
reports the latest event in the requeat regiater. If no event is in the request register, the initial O· ·

device value is reported.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

CG! not in proper state: CGI shall be in state VSAC.

Input device does not exist.

Input device not initialized.

5.3.5. enable_events (Cenevents}

Cerror enable_events(devclass, devnum)
Cdevoff devclass; /• device type•/
Cint devnum; /• device number•/

Calling enable_event, allows the specified device to put events on the event queue. enable_event,
puts the input device in the QUEUE_.EVENT state. An error is generated if the device specified by
devcla11, devnum does not exist or is not initialized.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

93 EIAEVNEN

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Events already enabled.

5.3.6. disable.;..events {Cdaevents}

Cerror disable_events(devclass, devnum)
Cdevoff devclass; /* device type*/
Cint devnum; /* device number*/

disable_events prevents the specified device from putting events on the event queue or mak­
ing new associations with triggers. disable_events puts the input device in the NO.EVENT
state. However, existing entries on the event queue are not removed and existing associations
remain. devcla11, devnum must refer to an existing or initialized device or an error is produced.

ERRORS:

4 ENOTVSAC

80 EINDNOEX

81 EINDINIT

94 EINEVNEN

5-12

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

Input device not initialized.

Events not enabled.

Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual

5.3. 7. awai t_event {Cawai tev J

Cerror await_event(timeout, valid, devclass, devnum,
measure, message_link, replost, time_stamp, qstat, overflow)

Cint timeout;/• amount of time to wait for input•/
Cawresult •valid;/• status•/
Cdevoff •devclass; /• device type•/
Cint •devnum; ;• device number•/
Cinrep •measure;/• device value•/
Cmesstype •message_link; /• type of message•/
Cint •replost; /• reports lost•;
Cint •time_stamp; /• time_stamp •/
Cqtype •qstat; /• queue status•/
Ceqflow *overflow;/* event queue*/

Input

awai t_event processes the event at the head of the event queue. If the event queue is EMPTY,
then await_event waits for timeout microseconds for a trigger to be activated. valid is set to
VALID..DATA if a trigger is activated within the specified timeout period and TIMED_OUT other­
wise. valid is set to WRONG_STATE if SunCGI is not in state VSAC.

If either the event queue is not empty or a trigger is activated, the class, the number, and the
value of the device generating the event are reported in the returned arguments devcla .. , dev­
num, and meaaure. If timeout is less than 0, SunCGI waits until a trigger is activated. If two
events on the event queue have the same trigger but different values, the argument, meaaage_link
is assigned to SIMULTANEOUS..EVENT...FOLLOWS; otherwise the argument me .. age_link is set to
SJNGLE...EVENT.

The rep/oat and time_atamp arguments should be ignored and are always zero. The returned
argument qatat reports the queue status after the event is removed from the head of the event
queue.

typedef enum {
NOT_VALID, EMPTY, NON_EMPTY, ALMOST_FULL, FULL

} Cqtype;

Qatat is set to EMPTY if the event queue has no pending events. Qatat is set to NON_.EMPTY if
the event queue has events pending, but is not FULL or ALMOST...FULL. Qatat is set to
ALMOST...FULL if there is room for only one more event on the event queue. Q.tat is set to FULL
if there is no room for more events on the event queue. The argument overflow can assume one
of two values: NO_OFLO, or OFLO.

ERRORS:

4 ENOTVSAC

97 EINQOVFL

CG! not in proper state: CG! shall be in state VSAC.

Input queue has overflowed.

5.4. Status Inquiries

The current state of the input devices, triggers, and the event queue can be obtained by using
the functions discussed in this section.

Revision A of 15 May 1985 5-13

Input SunCGI Reference Manual

5.,l.1. inquire_lid_state_list {Cqlidstatelis}

Cerror inquire_lid_state_list(devclass, devnum, valid, list)
Cdevoff devclass;
Cint devnum; /* device type, device number•/
Clogical •valid;/• device supported at all*/
Cstatelist *list;/• table of descriptors•/

inquire_l id_state_l ist reports the status of a specific input_ device specified by devclaaa
and devnum. The argument valid reports whether the device is supported at all. The list argu­
ment reports the track, associations, state, and measure of the device in the appropriate ele­
ments of liat. When checking the elements of liat, first check the atate element - if atate is
RELEASE, the other elements of liat are undefined.

typedef struct {
Clidstate state;
Cpromstate prompt;
Cackstate acknowledgement;
Clnrep •current;
Cint n;
Cint •triggers;
Cechotype echotyp;
Cechostate echosta;
Cint echodat;

} Cstatelist;

ERRORS:

4 ENOTVSAC

80 EINDNOEX

CG! not in proper state: CG! shall be in state VSAC.

Input device does not exist.

5 .. 4,2. inquire_lid_state {CqlidstateJ

Cerror inquire_lid_state(devclass, devnum, valid, state)
Cdevoff devclass;
Cint devnum; /• device type, device number*/
Clogical •valid;/* device supported at all*/
Clidstate •state;/* table of descriptors•/

inquire_! id_state reports the status of a specific input device specified by devclaaa and dev­
num. The argument valid reports whether the device is supported at all. The atate argument
(of type Clidstate) reports the current state of the specified input device.

typedef enum {
RELEASE, NO_l!VENTS, REQUEST_EVENT, RESPOND_l!VENT, QUEUE_EVENT

} Clidstate;

ERRORS:

4 ENOTVSAC CG! not in proper state: CG! shall be in state VSAC.

5-14 Revision A of 15 May 1985

0

0

o!

0

SunCGI Reference Manual

80 EINDNOEX Input device does not exist.

5.,4.9. inquire_trigger _state {Cqtrigstate}

Cerror inquire_trigger_state(trigger, valid, list)
Cint trigger/* trigger number*/
Clogical *valid;/* trigger state*/
Ctrigstate *list;/* trigger description table*/

Input

inquire_trigger _state describes the binding between a trigger and an input device. If the
atate element of the returned argument liat is INACTIVE, no associations have been made with the
trigger. An error is generated if the trigger does not exist.

typedef struct {
Cactstate state;/* state */
Cassoclid *assoc;/* list of associations*/

} Ctrigstate;

ERRORS:

4 ENOTVSAC

86 EINTRNEX

CG! not in proper state: CG! shall be in state VSAC.

Trigger does not exist.

Q 5.4-4. inquire_event_queue_state {Cqevquestate}

Cerror inquire_event_queue_state(qstat, qflow)

0

Cqtype * qstat; /* queue state*/
Ceqflow • qflow; /* overflow indicator*/

inquire_event_queue_state reports the status of the event queue. Qatat indicates whether
any events are pending. The argument qflow reports if the event queue is overflowing.

typedef enum {
NOT_VALID, EMPTY, NON_EMPTY, ALMOST_FULL, FULL

} Cqtype;

typedef enum {
NO_OFLO, OFLO

} Ceqflow;

ERRORS:

4 ENOTVSAC CGI not in proper state: CGI shall be in state VSAC.

Revision A of 15 May 1985 5-15

O·

0

0

0

Appendix A

Differences between SunCore and SunCGI

This appendix provides an introduction to SunCGI for programmers who have programming
experience with SunCore or graphics packages based on the ACM Core Graphics Specification.
The three major differences between SunCore and SunCGI are in the areas of output primi­
tives, segmentation, and input. While SunCore is generally a 'higher-level' package, SunCGI
has capabilities which are not available in SunCore.

A.1. Output Primitives

The major differences in drawing objects to the screen between SunCore and SunCGI are that

1. SunCGI does not support three-dimensional primitives, and

2. SunCGI does not have floating-point world coordinates or image transforms, and,

3. SunCGI does not support the concept of current position, and

4. SunCGI does not support textured color lookup table for black-and-white devices.

However, SunCGI provides a wider variety of geometrical and raster primitives, and more con­
trol over the drawing of text. These differences are summarized in Table A-1.

Table A-1: Difference in Output Primitives

Feature SunCore SunCGI

Three-Dimensional Output Primitives YES NO

Current Position YES NO

Textured Color Lookup Tables YES NO

Polygons with Invisible Edges NO YES

Circles and Ellipses NO YES

Cell Arrays NO YES

Character Clipping NO YES

Revision A of 15 May 1985 A-1

Differences between SunCore and SunCGI SunCGI Reference Manual

A.1.1. Output Aspects of SunCore not Supported by SunCGI

SunCGI does not support three-dimensional output primitives, current position, or textured
color lookup tables for black-and-white devices. Since three-dimensional output primitives are
not supported, no shading or lighting functions are provided either. Furthermore, no rotation or
translation functions are provided. Therefore, if you want to rotate a geometrical output primi­
tive, these operations must be done by your application program.

Since SunCGI does not maintain the current position of the output 'cursor', relative drawing
functions such as polygon_reL9 are not supported. However, the application programmer can
implement this function by specifying all coordinates as a base register plus a constant. The base
register can be used by the application program to maintain the value of the current position.

For black-and-white devices, SunCore interprets the entries in the color lookup table with
indices greater than one as patterns. SunCGI interprets all color lookup table entries greater
than zero as black. Patterns in SunCGI are explicitly specified in the pattern table and invoked
by using the PATTERN or HATCH interior styles. In addition, while patterns in SunCore are all
four-by-four matrices, patterns in SunCGI have variable dimensions.

A.1.2. Output Features of SunCGI not Available in SunCore

SunCGI offers geometrical and raster primitives not available in SunCore, as well as increased
control over the drawing of text. SunCGI provides circles and ellipses. SunCGI also supports
the cell array which is a raster array whose element size is a function of the screen size.
SunCGI clips characters in parts if the tezt preciaion is set to STROKE.

A.2. Segmentation

SunCGI does not support segmentation. This effect influences the effect of attribute calls. In
SunCore, some attributes (for example, highlighting) apply to entire segments. Since no con­
cept of segmentation exists in SunCGI, these attributes are not offered. Furthermore, SunCGI
does not allow the saving or restoring of segments to the screen, so screen repainting functions
must be completely defined by the application program, unless the view surface is initialized as a
retained view surface and is not resized.

A.3. Differences in Input Functions between SunCore and SunCGI

SunCore provides device-specific functions for setting input device parameters and reading
input from them. SunCGI provides no device dependent calls. SunCGI has three methods for
obtaining the measure of input devices

1. by first activation (REQUEST EVENT),

2. by most recent activation (RESPOND EVENT), or

3. by mediating input requests through the event queue (QUEUE EVENT).

Furthermore, SunCGI allows the explicit binding of triggers (physical input devices) to logical
input devices.

A-2 Revision A of 15 May 1985

0

0

0

0

0

0

Appendix B

Unsupported Aspects of CGI

SunCGI does not support certain optional aspects of the proposed draft ANSI CG! standard.
Most notably SunCGI does not support the full constellation of negotiation functions or track­
ing. SunCGI does not allow the resetting of coordinate type, coordinate preciaion, or color
apecification mode because to do so would greatly reduce the speed of application programs writ­
ten in SunCGI. Furthermore, SunCGI does not support echoing functions for input, but pro­
vides the tracking functions instead.

Unsupported Control Functions

vde_type
vde_preeision_for_integer_points
vde_preeision_for_real_points
integer_preeision
real_preeision
index_preeision
color_selection_mode
color_precision
color_index_precision
viewport_speeifieation_mode
make_picture_current

Unsupported Input Functions

set_prompt_state
set_aeknowledgement_state
echo_on
eeho_off
eeho_update

The following SunCGI functions are nonstandard (that is, are not in the standards document)
and are included to make CG! easier to use. In addition, SunCGI has non-standard view surface
arguments for certain control functions.

Non Standard Control Functions

open_egi
open_vws
activate_vws
deactivate_vws
close_vws
elose_egi

Non Standard Attribute Functions

Revision A of 15 May 1985 B-1

Unsupported Aspects of CGI

B-2

define_bundle_index
line_endstyle
fixed_font
set_global_drawing.J11ode

SunCGI Reference Manual

Revision A of 15 May 1985

0

0

0

0

0

0

Appendix C

Type Definitions

This appendix lists the types used by SunCGI functions. The definition of these types can be
found in <cgitypes .h>. These definitions are listed here in alphabetical order to make the
manual easier to read.

typedef enum {
ACK_ON, ACK_OFF

} Cackstate;

typedef enum {
ACTIVE, INACTIVE

} Cactstate;

typedef enum {
CLEAR, NO_OP, RETAIN

} Cacttype;

typedef enum {
INDIVIDUAL, BUNDLED

} Casptype;

typedef struct {
Cint n;
Cdevoff * class;
Cint *assoc;

} Cassoclid;

typedef enum {
CALID_DATA,
TIMED_OUT,
DISABLED,
WRONG_STATE,
NOT_SUPPORTED

} Cawresult;

Revision A of 15 May 1985 C-1

Type Definitions

C-2

typedef enum {
BITTRUE, BITNOT

} Cbitmaptype;

typedef enum {
TRANSPARENT, OPAQUE

} Cbmode;

typedef struct {
Clintype line_type;
Cfloat line_width;
Cint line_color;
Cmartype marker_type;
Cfloat marker_size;
Cint marker_color;
Cintertype interior_style;
Cint hatch_index;
Cint pattern_index;
Cint fill_color;
Clintype perimeter_type;
Cfloat perimeter_width;
Cint
Cint

perimeter_color;
text_font;

Cprectype
Cfloat
Cfloat
Cint

} Cbunatt;

text_precision;
character_expansion;
character_spacing;
text_color;

typedef struct {
unsigned char *ra;
unsigned char •ga;
unsigned char *ba;
Cint n;

} Ccentry;

typedef enum {
OPEN, CLOSE

} Ccflag;

SunCGI Reference Manual

0

0

0

Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual

typedef struct {
Cint numloc;
Cint numval;
Cint numstrk;
Cint
Cint
Cint

numchoice;
numstr;
numtrig;

Csuptype event_queue;
Csuptype asynch;
Csuptype coord_;nap;
Csuptype echo;
Csuptype tracking;
Csuptype prompt;
Csuptype acknowledgement;
Csuptype trigger_;nanipulation;

} Ccgidesctab;

typedef enum {
YES, NO

} Cchangetype;

typedef char

typedef enum
CLIP,

Cchar;

{

NOCLIP,
CLIP_RECTANGLE

} Cclip;

typedef enum {
CHORD, PIE

} Cclosetype;

typedef enum {
REPLACE, AND, OR, NOT, XOR

} Ccombtype;

typedef struct {
Cint x;
Cint y;

} Ccoor;

typedef struct {
Ccoor *ptlist;
Cint n;

} Ccoorlist;

Revision A of 15 May 1985

Type Definitions

C-3

Type Definitions SunCGI Reference Manual

C-4

typedef struct {
Ccoor •upper;
Ccoor *lower;

} Ccoorpair;

typedef enum {
IC_LOCATOR,
IC_STROKE,
IC_V.ALUATOR,
IC_CHOICE,
IC_STRING,
ICJ'ICK

} Cdevoff;

typedef enum {
E_TRACK,
E_ECHO,
E_TRACK_OR_ECHO,
E_TRACK..}IND_ECHO

} Cechoav;

typedef struct {
Cinrep •echos;
Cint n;

} Cechodatalst;

typedef enum {
ECHO_OFF, ECHO_ON, TRACK_ON

} Cechostate;

typedef struct {
Cechostate • echos;
Cint n;

} Cechostatelst;

typedef enum {
PRINTERS_FIST, NO_ECHO, HIGHLIGHT, RUBBER_BAND_BOX,

DOTTED_LINE, SOLID_LINE, STRING_ECHO, XLINE, YLINE
} Cechotype;

typedef struct {
Cint n;
Cechoav * elements;
Cechotype • echos;

} Cechotypelst;

typedef enum {
NATURAL, POINT, BEST_FIT

} Cendstyle;

Revision A of 15 May 1985

0

0

0

0

0

0

------ --

SunCGJ Reference Manual

typedef enum {
NO_OFLO, OFLO

} Ceqflow;

typedef Cint Cerror;

typedef enum {
INTERRUPT, NO__ACTION, POLL

} Cerrtype;

typedef enum {
CLIP_RECT, VIEWPORT, VIEWSURFACE

} Cexttype;

typedef struct {
Cintertype style;
Cflag visible;
Cint color;
Cint hatch...index;
Cint pattern_index;
Cint index;
Clintype pstyle;
Cfloat pwidth;
Cint pcolor;

} Cfillatt;

typedef enum {
OFF, ON

} Cflag;

typedef struct {
Cint n;
Cint *num;
Casptype •value;

} Cflaglist;

typedef float Cfloat;

typedef enum {
FREEZE, REMOVE

} Cfreeze;

typedef enum {
LFT, CNTER, RGHT, NRMAL, CNT

} Chaligntype;

typedef int Cint;

Revision A of 15 May 1985

Type Definitions

C-5

Type Definitions SunCGI Reference Manual

C-6

typedef enum {
NO_INPUT, ALWAYS_ON, SETTABLE, DEPENDS_ON_LID

} Cinputability;

typedef struct {
Ccoor *xypt;
Ccoorlist *points;
Cfloat val;
Cint choice;
Cchar •string;
Cpick *pick;

} Cinrep;

typedef enum {

/*LOCATOR*/
/* STROKE devices*/
/* VALUATOR device*/
/* CHOICE devices•/
/* STRING device*/
/* PICK devices*-/

HOLLOW, SOLIDI, PATTERN, HATCH
} Cintertype;

typedef struct {
Clogical sample;
Cchangetype change;
Cint numassoc;
Cint *trigassoc;
Clogical prompt;
Clogical acknowledgement;
Cechotypelst *echo;
Cchar *classdep;
Cstatelist state;

} Cliddescript;

typedef enum {
RELEASE, NO_EVENTS, REQUEST_EVENT, RESPOND_EVENT, QUEUE_EVENT

} Clidstate;

typedef struct {
Clintype style;
Cfloat width;
Cint color;
Cint index;

} Clinatt;

typedef enum {
SOLID, DOTTED, DASHED, DASHED_DOTTED, DAS!l..DOT_DOTTED, LONG_DASHED

} Clintype;

typedef enum {
L_TRUE, L_FALSE

} Clogical;

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual

typedef struct {
Cmartype type;
Cfloat size;
Cint color;
Cint index;

} Cmarkatt;

typedef enum {
DOT, PLUS, ASTERISK, CIRCLE, X

} Cmartype;

typedef enum {
SIMULTANEOUS_EVENT_FOLLOWS, SINGLE_EVENT

} Cmesstype;

typedef enum {
RIGHT, LEFT, UP, DOWN

} Cpathtype;

typedef struct {
Cint cur_index;
Cint row;
Cint column;
Cint *color list;
Ccoor *point;
Cint dx;
Cint dy;

} Cpatternatt;

typedef struct
int
int

} Cpick;

{
segid; /*segment*/
pickid; /* pick id*/

typedef struct pixrect Cpixrect;

typedef enum {
STRING, CHARACTER, STROKE

} Cprectype;

typedef enum {
PROMPT_ON, PROMPT_OFF

} Cpromstate;

typedef enum {
NOT_VALID, EMPTY, NON_!!MPTY, ALMOST_FULL, FULL

} Cqtype;

Revision A of 15 May 1985

Type Definitions

C-7

Type Definitions SunCGI Reference Manual

C-8

typedef enum {
ABSOLUTE, SCALED

} Cspecmode;

typedef struct {
Clidstate state;
Cpromstate prompt;
Cackstate acknowledgement;
Cinrep *current;
Cint n;
Cint •triggers;
Cechotype echotyp;
Cechostate echosta;
Cint echodat;

} Cstatelist;

typedef enum {
NONI!, Rl!QUIRl!D_FUNCTIONS_ONLY, SOMl!_NON__Rl!QUIRl!D_FUNCTIONS,

ALL_NON__Rl!QUIRl!D_FUNCTIONS
} Csuptype;

typedef struct {
Cint fontset;
Cint index;
Clnt current_font;
Cprectype precision;
Cfloat exp_factor;
Cfloat space;
Cint
Cint
Cfloat
Cfloat

color;
height;

basex;
basey;

Cfloat upx;
Cfloat upy;
Cpathtype path;
Chaligntype halign;
Cvaligntype valign;
Cfloat heal ind;
Cfloat veal ind;

} Ctextatt;

typedef enum {
FINAL, NOT_FINAL

} Ctext final;

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual

typedef struct {
Cchangetype change;
Cassoclid *numassoe;
Cint maxassoe;
Cpromstate prompt;
Cackstate acknowledgement;
Cchar *name;
Cchar •description;

} Ctrigdis;

typedef struct {
Cactstate state;
Cassoclid *assoc;

} Ctrigstate;

typedef enum {
TOP, CAP, HALF, BASE, BOTTOM, NORMAL, CONT

} Cvaligntype;

typedef enum {
INTEGER, REAL, BOTH

} Cvdctype;

typedef struct {
Cchar screenname[DEVNAMESIZEJ; /• physical screen•/
Cchar windowname[DEVNAMESIZEJ; /•window•/
Cint windowfd; /• window file•/
Cint retained; /• retained flag •/
Cint dd; /•device•/
Cint cmapsize; /• color map size•/
Cchar cmapname[DEVNAMESIZEJ; /• color map name•/
Cint flags; /• new flag•/

Type Definitions

Cchar ••ptr; /• CGI tool descriptor•/
} Cvwsurf;

Revision A of 15 May 1985 C-9

0

I
0

0

0

0

Appendix D

Error Messages

This appendix lists the error messages in numerical and alphabetical order. Furthermore, the
probable cause of each error is given in the sentences following the error. In addition to explain­
ing the error message, an initial suggestion for corrective action is given. In the title for each
group of errors, the range of error numbers is given in parentheses after the title. If your appli­
cation program is not behaving as you want it to, but does not generate error messages, then the
table at the end of this appendix which lists commonly encountered problems and frequent
causes may be helpful.

D.1. Successful Return (0)

0 NO_ERROR (0)
No error.

D.2. State Errors (1-5)

1 ENOTCGCL CGI not in proper state: CGI shall be in state CGCL, A call
to open_cgi was attempted when cgi was already open. Elimination of the error
can be accomplished by removing the offending call to open_cgi.

2 ENOTCGOP CGI not in proper state: CGI shall be in state CGOP, Every
function except open_cgi requires that CG! be open. If this error is received,
make sure that your application program has called open_cgi, or that it has not
recently called cloae_cgi.

3 ENOTVSOP CGI not in proper state: CGI shall be in state VSOP, The
function which generated the error requires that at least one view surface be
open. Corrective action would include· either removing the most recent call to
cloae_vwa or by including a call to open_vwa.

4 ENOTVSAC CGI not in proper state: CGI shall be in state VSAC. The
function which generated the error requires that at least one view surface be
active. Corrective action would include either removing the most recent call to
deactivate_vwa or by including a call to activate_vwa.

5 ENOTOPOP CGI not in proper state CGI shall be in state CGOP, VSOP,
or VSAC. The function which generated the error requires that SunCGI is

Revision A of 15 May 1985 D-1

Error Messages SunCGI Reference Manual

at least initialized. If this error is received, make sure that your application
program has called open_cgi, or that it has not recently called cloae_cgi.

D.3. Control Errors (10-16)

10 EVSIDINV Specified view 111lrface name is invalid. The view surface name
specified by the name argument has never been opened or if it has been
opened, it has since been closed. Corrective action involves opening the view
surface or changing the value of the name argument.

11 ENOWSTYP Specified view surface type does not exist. The application
program has specified a type of view surface which is not supported by
SunCGI. Corrective action involves changing the type of view surface.

12 EVSISOPN Specified view surface is open. An attempt was made to open a
view surface which is already open. Corrective action involves removing one
call to open_vwa.

13 EVSNOTOP Specified view surface not open. An attempt was made to close a
view surface which is already closed. Corrective action involves removing one
call to cloae_vwa.

14 EVSISACT Specified view surface is active. An attempt was made to
activate a view surface which is already activated. Corrective action involves
removing one call to activate_vwa.

15 EVSNTACT Specified view surface is not active. An attempt was made to O
deactivate a view surface which has already been deactivated. Corrective
action involves removing one call to deactivate_vwa.

16 EINQALTL Inquiry arguments are longer than list. A call to inquiry negotia­
tion function with indices greater than the number of supported functions was
made. The returned list is always empty. Corrective action may be facilitated
by obtaining the size of the list by using the inquire_device_clasa function.

D.4. Coordinate Definition {20-24)

20 EBADRCTD Rectangle definition is invalid. The application program has
made a call to vdc_eztent or device_viewport with the coordinates of both
corners equal in the x or y dimensions or both. Corrective action involves
changing one of the arguments to the function which generated the error so
that the values of the two arguments are different in both the x and y dimen­
sions.

21 EBDVIEWP Viewport is not within Device Coordinates. A call to
device_viewport has been made which specifies a viewport which is larger than
the view surface. Corrective action involves making the arguments to
device_viewport less than the view surface size. The size of the view surface can
be obtained by calling the inquire_phyaicaLcoordinate_ayatem function.

D-2 Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual Error Messages

22 ECLIPTOL Clipping rectangle i• too large. The clipping rectangle would
exceed the boundaries of VDC Space. Corrective action involves resetting the
clipping rectangle to be within limits of VDC Space.

23 ECLIPTOS Clipping rectangle i• too lllllllll. The clipping rectangle would
define an area of screen space smaller than one pixel. The clipping rectangle
remains unchanged. Since the occurrence of this error is partially a function of
the size of the view surface, changing the size of the view surface may be a
viable alternative to changing the size of the clipping rectangle.

24 EVDCSDIL VDC •pace definition i• illegal. One or more of the arguments to
the vdc_extent function exceeds the acceptable limits (-32767 to 32767) or coor­
dinates of the lower-left hand corner are greater than the coordinates of the
upper-right hand corner. Corrective action involves changing the arguments to
vdc_extent.

D.5. Output Attributes (30-51)

30 EBTBUNDL ASJ' i• BUNDLED. Error 16 is generated when attempting to call an indivi­
dual attribute function when the attributes are specified by entries in the attri­
bute envi~onment table. Calls to these functions have no effect on the current
attributes. Corrective action includes resetting the attribute environment aelec­
tor to BUNDLED by using the aet_attribute_environment_aelector function.

31 EBBDTBDI Bundle table index out of range. The entry in the bundle table
exceeds the size of the table. The only corrective action is to change the value
of the index argument.

32 EBTUNDEF Bundle table index ie undefined. The entry in the attribute
environment table specified by the most recent call to
aet_attribute_environment_table_index has not been defined by SunCGI or the
application program. Corrective action includes defining the entry by calling
define_attribute_environment_aelector_index.

33 EBADLINX Polyline index is invalid. The polyline bundle is not defined. Correc­
tive action involves changing the index argument to polyline_bundle_index, or
by defining the polyline bundle index.

34 EBDWIDTH Width must be nonnegative. The width of a perimeter or line must be
greater than or equal to zero. The current value of the perimeter width or line
width remains unchanged. Changing the value of the width argument to a
non-negative value will correct this error.

35 ECINDXLZ Color index is leas than zero. The value of the index argument to
one of the attribute functions or the color entry in one of the bundles is negar
tive. Corrective action involves changing the value of the color.

36 EBADCOLX Color index i• invalid. The color index argument to one of the attri­
bute functions or the color entry in one of the bundles is not defined in the
colormap. Indices in the color lookup table must be between O and 255 for the
Sun 8-bit per pixel frame buffer. Any color specification outside of this range is
ignored. Corrective action involves changing the value of the color.

Revision A of 15 May 1985 D-3

Error Messages SunCGI Reference Manual

37 EBADMRKX Polymarll:er index is invalid. The polymarker bundle is not defined.
Corrective action involves changing the indez argument to
polymarker_bundle_indez, or by defining the polymarker bundle index.

38 EBADSIZE Size must be nonnegative. The size or a marker or line must be
greater or equal to zero. The current value or the marker aize remains
unchanged. Changing the value or the size argument to a non-negative value
will correct this error.

39 EBADFABX J'ill area index is invalid. The fill area bundle is not defined.
Corrective action involves changing the indez argument to
fi/Larea_bundle_indez, or by defining the polymarker bundle index.

40 EPATARTL Pattern array too large. The pattern array must contain less than 257
elements. The pattern is not entered into the pattern table. Corrective action
involves designing a new pattern.

41 EPATSZTS Pattern size too small. The pattern size must be at least two-by-two.
The pattern is not entered into the pattern table. Corrective action could
include designing a new pattern which includes several replications or the origi­
nal pattern.

42 ESTYLLEZ Style (pattern or hatch) index is leas than zero. All indices
in the pattern table must be positive. To fix this mistake, change the argument
to the pattern_indez or the hatch_indez or the entries in the bundle table.

o,

43 ENOPATNX Pattern table index not defined. The argument to the hatch_indez
or pattern_indez function or the entry bundle table should be reset to
correspond to a defined value. 0

44 EPATITOL Pattern table index too large. The indez argument to pattern_table
exceeded the bounds of the pattern table. The pattern is not entered into the
pattern table. Redefining the pattern index to be between one and ten will
eliminate the error.

45 EBADTXTX Text index is invalid. The text bundle is not defined. Corrective
action involves changing the indez argument to tezt_bundle_indez, or by
defining the text bundle index.

46 EBDCHRIX Character index is undefined. All other character indices besides 1
are undefined in SunCGI. The new character indez is simply ignored. You are
advised to ignore the character_indez function entirely.

47 ETXTFLIN Text font is invalid. The text fonts range from 1 to 6. All other
integers do not correspond to actual fonts. Corrective action involves changing
the argument to the teztJonLindez function or resetting the font index in the
text bundle

48 ECEXFOOR Expansion factor is out of range. The character ezpanaion factor
or the character apace ezpanaion factor would result in a character or a space
which would exceed the bounds or the screen or would result in a character
smaller than the limitations or the character drawing software. To eliminate
this error, reset the offending value to within an acceptable range (0.1-2.0 are
reasonable guidelines).

49 ECHHTLEZ Character height is leas than or equal to zero. The character o
height must be positive. Corrective action involves changing the argument to

D-4 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Error Messages

the character height function or the element of the text bundle.

50 ECHRUPVZ Length of character up vector or character base vector is
1:ero. Both the character up vector and the character base vector must be
nonzero. Corrective action involves changing the arguments to the
character_orientation function or the element of the text bundles.

51 ECOLRNGE JlGB values must be between O and 255. The red, green, and blue
values are only defined between O and 255. The call to color_table which pro­
duced the error is ignored. Corrective action requires respecifying the values of
the arguments to color_table.

D.6. Output Primitives (60-70)

60 ENMPTSTL Number of points is too large. The number of points exceeds 255.
Change the n element of the ooorliat structure to a value less than or equal
to 255.

61 EPLMTWPT polyline a must have at least two points. Change the n element
of the ooorliat structure to a value greater than 2 and add the correspond­
ing points to the pt/id element.

62 EPLMTHPT Polygons must have at least three points. Change the n element
of the ooorliat structure to a value greater than or equal to 3 and add the
corresponding points to the ptliat element.

63 EGPLISFL Global polygon list is full. The number of points on the global
polygon liat exceeds 256. The points which exceed 256 are ignored. This error
can be corrected by inserting a call to polygon (which clears the global polygon
liat by displaying its contents) before the call to partiaLpolygon which caused
the overflow.

64 EARCPNCI Aro points do not lie on circle. The starting and ending points of
either an open or close circular arc do not lie on the perimeter of the circle
described by the arguments c1 and rad. If this error occurs, the arc is not
drawn. Corrective action may include determination of the endpoints with the
application program (for example c2.x = rad*cos(start_angle);).

65 EARCPNEL Aro points do not lie on ellipse. The starting and ending points of
either an open or close elliptical arc do not lie on the perimeter of the ellipse
described by the arguments c1,c2, and cS. If this error occurs, the arc is not
drawn. Corrective action may include determination of the endpoints with the
application program (see error 11).

66 ECELLATS Cell array dimensions dx,dy are too small. The dimensions of
the cell array are too small for a cell array element to be mapped onto one
pixel of the view surface. The cell array is not drawn. This error depends on
the physical size of the view surface as well as the limits of VDC Space. There­
fore, corrective action might require changing the size of the view surface, VDC
Space, or both.

67 ECELLPOS Cell array dimensions must be positive. Negative cell array
dimensions are not permitted. Corrective action requires changing the parame­
ters to the cell array function.

Revision A of 15 May 1985 D-5

Error Messages SunCGI Reference Manual

69 EVALOVWS Value outside of view surface. A coordinate of a pixel array is out­
side the physical range of the view surface. The pixel array is not drawn.
Change the arguments to the pizeLarray or bitblt_aource_array

70 EPXNOTCR Pixrect not created. One of the bitblt functions required a user-defined
pizrect, and that pizrect had not been created. Corrective action involves
creating a pizrect in your application program before calling the offending bitblt
function.

D.7. Input (80-97)

80 EINDNOEX Input device does not exist. The input device specification (specified
by the Jevclau and Jevnum arguments of most input functions) does not exist.
Corrective action involves resetting the device specification to a valid device.

81 EINDINIT Input device not initialized. A call to an input device function
specified a device which was not initialized. Calls which generate this error
have no effect. A call to initialize_input_Jevice should be inserted before the
call generating the error.

82 EINDALIN Input device already initialized. An attempt to initialize a device
which has previously been initialized. The parameters to the offending call to
initialize_input_Jevice are ignored. Removing the offending call to
initialize_input_Jevice will correct this error.

83 EINASAEX Association already exists. An attempt is being made to bind the
input device to a trigger to which it has been previously bound. The status of
the input device trigger are unchanged. This error is purely informational and
no corrective action is required.

84 EINAIIMP Association is impossible. An attempt is being made to bind the
input device to a trigger to which it cannot be bound. For example a
IC_STRING device cannot be bound to a mouse button. To eliminate this
error, change the arguments to the offending call of the auociate function.

85 EINNTASD Association does not exist. An attempt to set-up call an input func­
tion which specifies a device with no associated triggers was made. The
offending call is ignored. Corrective action involves calling auociate before the
offending call is issued.

86 EINTRNEX Trigger doea not exist. An attempt was made to associate or inquire
about a trigger which has a number less than one or greater than five. The
offending call is ignored. To eliminate the error, change the trigger number.

87 EINNECHO Input device doea not echo. CHOICE devices do not support echo.
Corrective action requires removing the call to echo_on from the application
program.

88 EINECHON Echo already on. A call to echo_on has been made to a device whose echo­
ing ability has already been activated. To stop generation of the error either
remove the offending call or change the arguments to specify a device whose
echo is currently off.

D-6 Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual Error Messages

89 EINEINCP Echo incompatible with existing echos. Although SunCGI can
support certain combinations of echos (such as IC...STRING and
ICJ,OCATOR), not all combinations are supported. The easiest remedy is to
remove the most recent call to echo_on from the application program.

90 EINERVWS Bohoregion larger than view surface. Error 91 is generated when
the rectangle defined by the echoregion argument exceeds the limits of VDC
Space. To eliminate this error, change the values to the echoregion argument to
be within the confines of VDC Space.

91 EINETNSU Echo type not supported. All devices except the IC...STROKE device
only support one type of echo. Therefore, assigning a value to echotype other
than zero or one will produce an error for any device except IC...STROKE.
Corrective action involves changing the value of the echotype argument.

92 EINENOTO Boho not on. The device echoing has not been turned on. Either remove
the call to echo_off, turn the echo on, or change the device specification.

93 EIAEVNEN Events already enabled. Events have already been enabled for the
specified device. The solution is to remove the offending call to enable_eventa.

94 EINEVNEN Events not enabled. Events have not been enabled for the specified dev­
ice. The solution is to include a call to enable_eventa before a call to the
await_event, aample_event, or request_event function is made with the specified
device as input parameter.

95 EBADDATA Contents of input data record are invalid, The value argument
of initialize_lid function is out of range or is the wrong type. The solution is to
change the contents value argument.

96 ESTRSIZE Length of initial string is greater than the implementa­
tion defined maximum. The initial string in the value argument is greater
than 80 characters. Shorten the string.

97 EINQOVFL Input queue has overflowed. The event queue can no longer record
input events. Solutions include flushing the event queue or dequeueing events
with the await_event, aample_event, or request_event function.

D.8. Implementation Dependent (110)

llO EMEMSPAC
Space allocation has failed. A function which was supposed to work
has failed. The only action which you can take is to eliminate other processes
which may be using memory. If you have eliminated all other processes, and
this error is still generated, please contact SUN Microsystems.

Revision A of 15 May 1985 D-7

Error Messages SunCGI Reference Manual

D.9. Possible Causes of Visual Errors oi
Table D-1: Possible Causes of Visual Errors

Behavior Pouible Cauae

Segmentation fault for open_vws a. devdd argument for open_vws is declared as
a pointer (the address of devdd should be
passed).

No primitives displayed a. View surface not initialized.
b. View surface not active.
c. VDC to device coordinate mapping makes

objects too small.
d. Clipping rectangle is too small and clipping

is ON.
e. Perimeter visibility is set to OFF and interi-

or style is set to HOLLOW.
f. line_color or fi!Lcolor is set to background

color.

Primitives displayed on undesired view sur- a. Undesired view surfaces have not been deac-
faces tivated.

Segmentation fault for inquiry functions a. passing variable instead of address (&) of 0
variable.

0
D-8 Revision A of 15 May 1985

SunCGI Reference Manual Error Messages

0 Table D-2: Primitive-Specific Errors

Behavior Poaaible Cauae

Polylines or polymarkers aren't displayed. a. Width or size is zero.
b. Color is the same as background.

Polygon borders aren't displayed. a. Width is zero.
b. Color is the same as background.
C. Perimeter visibility is set to OFF.

Circles aren't displayed. a. Width or size is zero.
b. Color is the same as background.

Ellipses aren't displayed. a. Width or size is zero.
b. Color is the same as background.

Text isn't displayed. a. Width or size is zero.
b. Color is the same as background.
C. character height is too small.
d. coordinates are outside the range of VDC

Space or the clipping rectangle.

0 Cell arrays aren't displayed. a. Dx or dy arguments are too small.
b. Color is the same as background.

Cell arrays aren't displayed on all active a. Mapping from cell size to view surface for
view surfaces. smaller view surfaces is too small.

Pixel arrays aren't displayed. a. Location is outside of view surface or clip-
ping rectangle.

b. Color is the same as background.

Bitblts aren't displayed. a. Width or size is zero.
b. Color is the same as background.

0

Revision A of 15 May 1985 D-9

Error Messages SunCGI Reference Manual

Table D-3: Attribute Errors 0
Behavior Poaaible Cauae

Attribute setting has no effect a. attribute ASF is set to BUNDLED.

Text attributes have no effect a. text precision is set to CHARACTER.
b. attribute ASF is set to BUNDLED.

PATTERN fill is the same as HATCH a. pattern_index and hatch_index are identical
b. pattern...:size is too small

PATTERN fill is different on different view a. View surfaces are of different size.
surfaces.

Table D-4: Input-specific Errors

Behavior Po .. ible Cauae

Input device does not report a. device not initialized

Input device does not echo a. echo not initialized

Input device does not echo on whole view a. echo region not set to whole view surface. 0
surface

0

D-10 Revision A of 15 May 1985

0

0

0

Appendix E

Sample Program

E.1. Martini Glass
The following program draws a Martini glass. The figure drawn by this program is identical to
figure drawn by the example given in the appendix of the SunCore manual. It is suggested that
novice users attempt to write this program to familiarize themselves with SunCGI.

Revision A of 15 May 1985 E-1

Sample Program SunCGI Reference Manual

E-2

#ifndef lint
static char sccsid[] = "@(#)glass.c 1.1 84/11/01 Copyr 1984 Sun Micro";
#endif

#include <cgidefs.h>

static Ccoorlist martinilist;
static Ccoor glass_coords[lO] = { 0,0

static Ccoor water_coords[2] = {-12,33

static Ccoor vpll = {-50,-10};
static Ccoor vpur = {50,80};

Cint name;

main()
{

Cvwsurf device;

device.dd=PIXWINDD;
open_cgi(); /* initialize CGI */

-10,0
-1,1
-1,20

-15,35
15,35
1,20
1,1

10,0
0,0 };

12,33 };

open_vws(&name,&device); /* open view surface*/
vdc_extent(&vpll,&vpur); /* reset VDC space*/
martinilist.ptlist=glass_coords; /* load polyline structure*/
martinilist.n=lO;
polyline(&martinilist); /* draw glass*/
martinilist.ptlist=water_coords;
martinilist.n=2; /* draw waterline*/
polyline(&martinilist);
sleep(lO); /* display for 10 seconds*/
close_vws(name); /*exit*/
close_cgi () ;
exit(O);
}

Revision A of 15 May 1985

0

0

0

0

0

0

Appendix F

Using SunCGI and Pixwins (Cgipw)

CG! and Pixwins calls can be integrated in a single application program by using the Cgipw
functions. However, the CG! standard does not provide for facilities for dealing with multiple
overlapping windows. Many users would like to have the richness of CGl's primitives combined
with Pixwin's ability to automatically take care of multiple (potentially overlapping) windows.

If you decide to use CG! and Pixwins, you may not use the standard SunCGI calls. Instead
you should use cgipw calls. For example, cgipw_polyline should be used instead of poly-
1 ine. Note that cgipw functions do not return error codes.

Using SunCGI and Pixwins involves using the basic CG! primitives to include a CG! pixwin
descriptor (type Ccgiwin) as the first argument. The routines implementing the CG! standard
output and attribute functions for SunCGI functions take a structure containing a specific
pixwin and attribute pointer as their first argument. However, the file <cgipw. h> should be
included instead of <cgide fs. h> in the application program. The four functions
open_pw_cgi, open_cgi_pw, close_cgi_pw, and close_pw_cgi are necessary for
managing the SunCGI/ Pizwin interface.

F .1. open_pw_cgi

Cerror open_pw_cgi()

open_pw_cgi puts CG! in a known internal state by setting the attributes to the default values
and setting the NDC to device coordinate mapping to 1:1. Therefore, unless the application pro­
gram changes the mapping by explicitly calling CG! functions to reset the NDC to device coordi­
nate mapping, all input and output primitives will use device coordinates. The origin of the dev­
ice coordinates is in the upper left-hand corner instead of the lower left-hand corner. No stan­
dard errors are specified. If open_pw_cgi returns a nonzero result, then the initialization
failed.

F .2. open_cgi_pw

Revision A of 15 May 1985 F-1

Using SunCGI and Pixwins (Cgipw)

Cerror open_cgi_pw(pw, desc, name)
pixwin *pw; /• pixwin •/
Ccgiwin *desc; /• CGI pixwin descriptor•/
Cint name;

SunCGI Reference Manual

open_cgi_pw makes the pixwin pointed to by pw known to the internals or CG!. Calls to all
CG! primitives will affect this pixwin. Deac is a pointer to a CG! pixwin which is used as the first
argument to cgipw function. However, CG! does not guarantee that a pixwin exists or is any
other way properly initialized. Calls may also be made to any pixwin function (see example pro­
gram). Multiple calls to open_cgi_pw will result in primitives being displayed on multiple
view surfaces. Attributes are local and apply only to the specified pixwins which have been
opened by using open_cgi_pw.

F.3. close_cgi_pw

Cerror close_cgi_pw(desc)
Ccgiwin *desc; /• CGI pixwin descriptor*/

close_cgi_pw takes the CG! pixwin descriptor deac as an argument and removes it from the
list of pixwins that CG! writes to. The pixwin is not closed.

F .4. close_pw_cgi

Cerror close_pw_cgi()

close_pw_cgi takes care or leaving CG! in an orderly state. This function should be called
before exiting the application program.

F.5. Using Cgipw

After calling the two initialization functions (open_pw_cgi, open_cgi_pw) the user may call
both pixwin and SunCGI primitives as specified in their respective manuals. Signals are not
handled by SunCGI when it is used with pixwins. No error handling is done by cgipw func­
tions - this makes cgipw more efficient but errors must be detected by the programmer.
Therefore, the application program must insure that the NDC to device coordinate mapping is
changed when the window size is changed. The application program should not use both
SunCGI and window system input functions, since both SunCGI and the window system share
a common event queue. For example, events handled by a SunCGI function will not be han­
dled by a window system called after the SunCGI call.

0

0

The cgipw functions is given in the table below. Ir one or the functions that you want to use is
not listed, then you should use the normal SunCGI function. Most or the functions listed below
are output and attribute functions; however, the tracking functions are listed so that you can
control which surfaces input devices echo on. The arguments of the Cgipw functions are the
same as those or the SunCGI functions except that the first argument is always the deac argu-
ment which is of type Ccgiwin. Deac is a pointer to pixwin descriptor obtained from the 0
open_cgi_pw function.

F-2 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Using SunCGI and Pixwins (Cgipw)

F .6. List of Cgipw Functions

Table F-1: List of Cgipw Functions

CG[Function Name

append_text(flag, tstring)
cell_array(p, q, r, dx, dy, colorind)
character_expansion_factor(sfac)

character_height(height)
character_orientatlon(xup. yup, xbase,
ybase)

character_path(path)
character_set_lndex(index)

character_spacing(spcratio)

circle (cl, rad)
circular_arc_3pt(cl, cl, c3)

c1rcular_arc_3pt_close(cl,
close)

cl, c3,

circular_arc_center(cl, c2x, c2y, c3x,
c3y, rad)
circular_arc_center_close(cl, c2x,
c2y, c3x, c3y, rad, close)
define_bundle_index(index)
disjoint_polyline(polycoors)

ellipse(cl, majx, miny)
elliptical_arc(cl, sx, sy, ex, ey.
majx, miny)
ell1pt1cal_arc_close(cl, sx, sy, ex,
ey, m.ajx, mlny. close)

fill_area_bundle_index(index)
fill_color(color)

fixed_font(index)
hatch_index(index)
1nqu1re_aspect_source_flags()

inquire_draving_mode(visibility,
source, destination, combination)
inquire_fill_area_attributes()

inquire_line_attributes()
inquire_marker_attributea()
inquire_pattern_attributea()
1nqu1re_p1xel_array(p, m, n, colorind)
1nqu1re_text_attr1butes()

Revision A of 15 May 1985

Cgipw Function Name

cgipv_append_text(desc, flag, tstring)
cgipv_cell_array(desc, p, q, r, dx, dy, colorind)
cgipv_character_expansion_factor(desc, sfac)

cgipv_character_height(desc, height)
cgipv_character_orientation(desc, xup, yup, xbase,
ybase)

cgipv_character_path(desc, path)
cgipv_character_set_index(desc, index)

cgipv_character_spacing(desc, spcratio)

cgipv_circle(desc, cl, rad)
cgipv_circular_arc_3pt(desc, 'cl, cl, c3)

cgipv_circular_arc_3pt_close(desc, cl, c2, c3,
close)

cgipw_circular_arc_center(desc, cl. clx, c2y, c3x,
c3y, rad)
cgipw_circular_arc_center_close(desc, cl, c2x,
c2y, c3x, c3y, rad, close)

cgipv_de!ine_bundle_index(desc, index)
cgipv_disjoint_polylina(desc, polycoors)

cgipv_ellipse(desc, cl, majx, miny)
cgipv_elliptical_arc(desc, cl, ax, sy, ex, ey,
majx, miny)
cgipv_elliptical_arc_closa (desc, cl, sx, sy, ex,
ey, majx, miny, close)

cgipv_fill_area_bundle_index(desc, index)
cgipv_fill_color(desc, color)

cgipv_fixed_font(desc, index)

cgipv_hatch_index(desc, index):
cgipv_inquire_aspect_source_flags(desc);

cgipv_inquire_drawing_mode(desc, visibility,
source, destination, combination)

cgipv_inquire_fill_area_attributes(desc);

cgipv_inquire_line_attributes(desc);
cgipv_inquire_marker_attributes(desc);
cgipv_inquire..pattern_attributes(desc);
cgipv_inquire..pixel_array(desc, p, m, n, colorind)
cgipv_1nquira_text_attr1butas(desc);

F-3

Using SunCGI and Pixwins (Cgipw) SunCGI Reference Manual

1-------C_G_I_F_u_n_c_t_io_n_N_a_m_e ______________ c_g_ip_w_F_u_n_c_t_io_n_N_a_m_e _______ -lo
inquire_text_extent(tstring, nextchar, cglpv_inquire_text_extent(desc, tstrlng, nextchar,
concat, lleft, uleft, uright) concat, lleft, uleft, uright)

interior_style(istyle, perimvis) cgipv_interior_style(dasc, istyla, perimvis)

line_color(indax) cgipv_line_color(desc, indax)
line_endstyle(ttyp) cgipv_line_andstyle(desc, ttyp)
line_type(ttyp) cgipv_line_typa(desc, ttyp)

line_vidth(index)
11ne_vidth_spec1ficat1on_m.ode(mode)

marker_color(index)

marker_size(index)

marker_s1ze_spec1f1cat1on_mode(mode)

marker_type(ttyp)
pattern_index(index)
pattern_reference_point(open)
pattern_size(dx, dy)
pattern_table(index, m, n, colorind)

perimeter_color(index)

perimeter_type(ttyp)
perimeter_vidth(index)
per1meter_v1dth_spec1f1cation_mode(mode)

pixel_array(pcall, m, n, colorind)

polygon(polycoors)
polyline(polycoors)

polyline__bundle_index(indax)
polymarker(polycoors)
polymarker__bundle_Index(index)

rectangle(lrc, ulc)
set_aspect_source_flags(flaga)

text(cl, tstring)
text_alignment(hallgn.
hcalind, vcalind)
text__bundle_index(index)

vallgn,

text_color(index)
text_!ont_index(index)
text...;precision(ttyp)
track_off(devclass, devnum.)
track_on(devclass, tracktype, trackre­
gion, value)

vdm..._textlcl, naa, tstrinnl

F-4

cgipv_line_vidth(desc, index)
cg1pw_l1ne_vidth_spec1f1cat1on_mode(desc; mode)

cg1pv_marker_color(desc; index)

cg1pv_marker_s1ze(desc; index)

cgipv_marker_size_spec1!icat1on__mode(desc, mode)

cgipv__marker_type(desc, ttyp)
cgipv_pattern_index(desc, index);
cgipv_pattern_re!erenca_point(desc, open)
cgipv_pattern_size(desc, dx, dy)
cgipv_pattarn_table(desc, index, m, n, colorind)

cgipv_perimeter_color(desc, index)
cgipv_perimeter_type(dasc, ttyp)
cgipv_parimeter_vidth(dasc, index)
cg1pv_per1meter_vidth_spec1f1cation.....mode(desc;
mode)
cgipv_pixel_array(desc, pcell, m, n, colorind)

cgipv_polygon(desc, polycoors)

cg1pv_polyl1ne(desc. polycoors)

cgipv_polylina__bundle_indax(desc, index)
cgipv_polymarker(dasc, polycoors)
cgipv_polymarker__bundle_Index(desc, index)

cgipv_rectangle(desc, lrc, ulc)
cg1pv_set_aspect_source_flags(desc, flags)

cgipv_text(desc, cl, tstring)
cg1pv_text_al1gnment(desc, halign,
hcalind, vcalind)
cgipv_text__bundle_indax(desc, index)

val1gn.

cgipv_text_color(desc, index)
cgipv_text_!ont_index(desc, index)
cgipv_text_precision(desc, ttyp)
cg1pv_track_off(desc; devclass. devnum)

cg1pv_track_on(desc, devclass, tracktype, trackre­
g1on. value)

caicv vdm....textldesc, cl, !laa, tstrin"'

Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual Using SunCGI and Pixwins (Cgipw)

F. 7. Example Program

#include <cgipw.h>
#include <suntool/gfxsw.h>

struct pixwin •mypw;
struct gfxsubwindow •mine;

main()
{

}

Ccgiwin vpw;
Ccoor bottom;
Ccoor top;
int name;
int op;

mine= gfxsw_init(O, O);
gfxsw_getretained(mine);
mypw = mine->gfx_pixwin;
pw_writebackground(mypw, 0, 0, mypw->pw_prretained->pr_size.x,

mypw->pw_prretained->pr_size.y, PIX...CLR);
open_pw_cgi () ;
open_cgi_pw(mypw, &vpw, &name);
op= PIX...COLOR(l) I PIX...SRC;
pw_write(mypw, 0, 0, 100, 100, op, 0, 0, O);
bottom.x = 300;
bottom.y = 100;
top.x = 200;
top.y = O;
cgipw_interior_style(&vpw, SOLIDI, ON);
cgipw_rectangle(&vpw, &bottom, &top);
sleep(lO);
close_cgi_pw(name);
close_pw_cgi () ;

Revision A of 15 May 1985 F-5

0

0

0

0

0

Appendix G

Using SunCGI with Fortran-77 Programs

All functions provided in SunCGI may be called from FORTRAN-77 programs by linking them
with the /uar/lib/libcgi11.a library. This is done by using the /77 compiler with a command
line such as:

tutorial% f77 -o grab grab.f -lcgi77 -lcgi -lsunwindow -lpizrect -lm

where grab./ is the FORTRAN source program. Note that /uar/lib/libcgi.a must be linked with
the program (the -lcgi option), and /uar/lib/libcgi11.a must come before it (the -lcgi 77
option).

Defined constants may be referenced in source programs by including cgide fs77. h. In a FOR­
TRAN program, this must be done via a source statement like:

include 'cgidefs77.h'

This include statement must be in each FORTRAN program unit which uses the defined constants,
not just once in each source program file.

In the Sun release of FORTRAN-77, names are restricted to sixteen characters in length and may
not contain the underline character. For this reason, FORTRAN programs must use abbreviated
names to call the corresponding SunCGI functions. The correspondence between the full
SunCGI names and the FORTRAN names appears later in this appendix. In addition, FORTRAN-
77 declarations for all SunCGI functions appear at the end of this appendix.

G.1. Programming Tips

• The abbreviated names of the SunCGI functions are less readable than the full length names
because the underline character cannot be used in the FORTRAN names. However, since FOR­
TRAN doesn't distinguish between upper-case and lower-case letters in names, upper-case char­
acters can be used to improve readability. There is an example of this later in this appendix.

• Character strings passed from FORTRAN programs to SunCGI cannot be longer than 256
characters.

• FORTRAN passes all arguments by reference. Although some SunCGI functions receive argu­
ments by value, the FORTRAN programmer need not worry about this. The interface routines
in /uar/lib/libcgi11.a handle this situation correctly. When in doubt, look at the FORTRAN

Revision A of 15 May 1985 G-1

Using SunCGJ with Fortran-77 Programs SunCGI Reference Manual

declarations for SunCGI functions at the end of this appendix.

• Some SunCGI structures contain both int's and float's. For instance, the argument to 0
inquire_viewing_parameters contains both int's and float's. This can be handled in
FORTRAN by declaring a real array and an integer array and making them share storage
by using an equivalence statement. Following the call to the inquiry function, the real
components can be accessed using the real array and the integer components can be
accessed using the integer array.

• Since FORTRAN does not distinguish between upper-case letters and lower-case letters in
identifiers, any FORTRAN program unit which includes the cgide/a77.h header file cannot use
the same spelling as any constant defined in that header file, regardless of case.

G.2. Example Program

This example is the FORTRAN equivalent of the very simple program for drawing a martini glass.

G-2

include 'cgidefs77.h'

integer vsurf(VWSURFSIZE)
integer name

integer glassdx(9), glassdy(9)
data glassdx /-10,9,0,-14,30,-14,0,9,-10/
data glassdy /0,1,19,15,0,-15,-19,-l, 0/

integer waterdx(9), waterdy(9)
data waterdx /-10,9,0,-14,30,-14,0,9,-10/
data waterdy /0,1,19,15,0,-15,-19,-1, 0/

c initialize CG!
call cfopencgi

c open the view surface
call cfopenvws(name, , PIXWINDD, , ,)

C reset VDC space
call cfvdcext(vpll, vpur)

c drawr glass
call cfpolyline(glassdx, glassdy, 10)

c draw water surface
call cfpolyline(waterdx, waterdy, 9)

c display for 10 seconds
call sleep (10)

c close the view surface
call cfclosevws(name)

c close cgi and exit
call cfclosecgi

C

end

Revision A of 15 May 1985

0

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

G.3. Correspondence Between C Names and FORTRAN Names

Correapondence Between C Namea and FORTRAN Namea

Long Name FORTRAN Equivalent

activate_vws
append_text
associate
await_event
bitblt_pattern_array

bitblt_patterned_source_array
bitblt_source_array
cell_array
character_expansion_factor
character_height

character_orientation
character_path
character_set_index
character_spacing
circle

circular_arc_3pt
circular_arc_3pt_close
circular_arc_center
circular_arc_center_close
clear_control

clear_view_surface
clip_indicator
clip_rectangle
close_cgi
close_vws

color_table
deactivate_vws
define_bundle_index
device_viewport
disable_events

disjoint_polyline
dissociate
echo_off
echo_on
echo_update

ellipse
elliptical_arc

Revision A of 15 May 1985

cfactvws
cfaptext
cfassoc
cfawaitev
cfbtblpatarr

cfbtblpatsouarr
cfbtblsouarr
cfcellarr
cfcharexpfac
cfcharheight

cfcharorientation
cfcharpath
cfcharsetix
cfcharspacing
cfcircle

cfcircarcthree
cfcircarcthreecl
cfcircarccent
cfcircarccentcl
cfclrcont

cfclrvws
cfclipind
cfcliprect
cfclosecgi
cfclosevws

cfcotable
cfdeactvws
cfdefbundix
cfdevvpt
cfdaevents

cfdpolyline
cfdissoc
cfechooff
cfechoon
cfechoupd

cfellipse
cfelliparc

G-3

Using SunCGI with Fortran-77 Programs SunCGI Reference Manual

G-4

Correapondence Between C Namea and FORTRAN Namea

Long Name FORTRAN Equivalent

elliptical_arc_close
enable_events
fill_area_bundle_index

fill_color
fixed_font
flush_event_queue
get_last_requested_input
hard_reset

hatch_index
initialize_lid
initiate_request
inquire_aspect_source_flags
inquire_bitblt_alignments

inquire_cell_array
inquire_device_bitmap
inquire_device_class
inquire_device_identification
inquire_drawing_mode

inquire_event_queue
inquire_fill_area_attributes
inquire_input_capabilities
inquire_lid_capabilities
inquire_lid_state_list

inquire_lid_state_list
inquire_line_attributes
inquire_marker_attributes
inquire_output_capabilities
inquire_output_function_set

inquire_pattern_attributes
inquire_physical_coordinate_system
inquire_pixel_array
inquire_text_attributes
inquire_text_extent

inquire_trigger_capabilities
inquire_trigger_state
inquire_vdc_type
interior_style
line_color

line endstyle

cfelliparccl
cfenevents
cfflareabundix

cfflcolor
cffixedfont
cfflusheventqu
cfgetlastreqinp
cfhardrst

cfhatchix
cfinitlid
cfinitreq
cfqasfs
cfqbtblalign

cfqcellarr
cfqdevbtmp
cfqdevclass
cfqdevid
cfqdrawmode

cfqevque
cfqflareaatts
cfqinpcaps
cfqlidcaps
cfqlidstate

cfqlidstatelis
cfqlnatts
cfqmkatts
cfqoutcap
cfqoutfunset

cfqpatatts
cfqphyscsys
cfqpixarr
cfqtextatts
cfqtextext

cfqtrigcaps
cfqtrigstate
cfqvdctype
cfintstyle
cflncolor

cflnendstvle

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

Correapondence Between C Name• and FORTRAN Name•

Long Name FORTRAN Equivalent

line_type
line_vidth
line_vidth_specification_mode
marker_color

marker_size
marker_size_specification_mode
marker_type
open_cgi
open_vvs

partial_polygon
pattern_index
pattern_reference_point
pattern_size
pattern_table

perimeter_color
perimeter_type
perimeter_vidth
perimeter_vidth_specification_mode
pixel_array

polygon
polyline
polyline_bundle_index
polymarker
polymarker_bundle_index

rectangle
release_input_device
request_input
reset_to_defaults
sample_input

selective_flush_of_event_queue
set_aspect_source_flags
set_default_trigger_associations
set_drawing_mode
set_error_warning_mask

set_global_draving_mode
set_initial_value
set_up_sigvinch
set_valuator_range
text

Revision A of 15 May 1985

cflntype
cflnvidth
cflnvidthspecmode
cfmkcolor

cfmksize
cfmksizespecmode
cfmktype
cfopencgi
cfopenvvs

cfppolygon
cfpatix
cfpatrefpt
cfpatsize
cfpattable

cfperimcolor
cfperimtype
cfperimvidth
cfperimvidthspecmode
cfpixarr

cfpolygon
cfpolyline
cfpolylnbundix
cfpolymarker
c fpo 1 ymkbundix

cfrectangle
cfrelidev
cfreqinp
cfrsttodefs
cfsampinp

cfselectflusheventqu
cfsaspsouflags
cfsdefatrigassoc
cfsdravmode
cfserrvarnmk

cfsgldravmode
cfsinitval
cfsupsig
cfsvalrange
cftext

G-5

Using SunCGI with Fortran-77 Programs SunCGI Reference Manual

Correapondence Between C Namea and FORTRAN Namea

Long Name FORTRAN Equivalent

text_alignment
text_bundle_index
text_color
text_font_index

text_precision
vdc_extent
vdm_text

cftextalign
cftextbundix
cftextcolor
cftextfontix

cftextprec
cfvdcext
cfvdmtext

G.4. FORTRAN Interfaces to SunCGI

Note: Although all SunCGI procedurea are declared here aa functiom, each mag alao be called aa
a aubroutine if the uaer doea not want to check the returned value.

G-6

integer function cfactvws(name)
integer name

integer function cfaptext(flag, string, stringlen)
integer flag
character•(•) string
integer stringlen

integer function cfassoc(trigger, devclass, devnum)
integer trigger
integer devclass
integer devnum

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

integer function cfawaitev(timeout, valid, devclass, devnum,
1 x, y, xlist, ylist, n, val, choice, string, r-tringlan,
2 messaga_link, replost, time_stamp, qstat, overflow)

integer timeout
integer valid
integer devclass
integer devnum
integer x, y
integer xlist(*)
integer ylist(*)
integer n
real val
integer choice
character*(*) string
integer stringlen
integer message_link
integer rep lost
integer time_stamp
integer qstat
integer overflow

integer function cfbtblpatarr(pixpat, px, py, pixtarget,
1 rx, ry, ox, oy, dx, dy)

integer pixpat
integer px, PY
integer pixtarget
integer rx, ry
integer ox, oy
integer dx, dy

integer function cfbtblpatsouarr(pixpat, px, py, pixsource,
1 sx, sy, pixtarget, rx, ry, ox, oy, dx, dy)

integer pixpat
integer px, py
integer pixsource
integer sx, sy
integer pixtarget
integer rx, ry
integer ox, oy
integer dx, dy

integer function cfbtblsouarr(bitsource, xo, yo, xe, ye, bittarget, xt, yt)
integer bitsource, bittarget
integer xo, yo, xe, ye, xt, yt

integer function cfcellarr(px, qx, rx, py, qy, ry, dx, dy, colorind)
integer px, py
integer
integer
integer
integer

qx, qy
rx, ry
dx, dy
colorind(*)

Revision A of 15 May 1985 G-7

Using SunCGI with Fortran-77 Programs

integer function cfcharexpfac(efac)
real efac

integer function cfcharheight(height)
integer height

integer function cfcharorient(bx, by, dx, dy)
real bx, by, dx, dy

integer function cfcharpath(path)
integer path

integer function cfcharsetix(index)
integer index

integer function cfeharspacing (efac)
real efac

SunCGI Reference Manual

integer function cfcircarccent(clx, cly, c2x, c2y, c3x, c3y, rad)
integer clx, cly, c2x, c2y, c3x, c3y
integer rad

integer function cfcircarccentcl(clx, cly, c2x, c2y, c3x, c3y, rad, close)
integer clx, cly, c2x, c2y, c3x, c3y
integer rad
integer close

integer function cfcircarcthree(clx, cly, c2x, c2y, c3x, c3y)
integer clx, cly, c2x, c2y, c3x, c3y

integer function cfcircarcthreecl(clx, cly, c2x, c2y, c3x, c3y, close)
integer clx, cly, c2x, c2y, c3x, c3y
integer close

integer function cfcircle(x, y, rad)
integer x
integer y
integer rad

integer function cfclipind(flag)
intege,- flag

integer function cfcliprect(xmin, xmax, ymin, ymax)
integer xmin, xmax, ymin, ymax

0

0

integer function cfclosecgi () 0

G-8 Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

integer function cfclrcont(soft, hard, intern, extent)
integer soft, hard
integer intern
integer extent

integer function cfclrvws(name, defflag, color)
integer name
integer def flag
integer color

integer function cfcotable(istart, ra, ga, ba, n)
integer !start
integer ra(•), ga(•), ba(•)
integer n

integer function cfdaevents(devclass, devnum)
integer devclass
integer devnum

integer function cfdeactvws(name)
integer name

integer function cfdevvpt(name, xbot, ybot, xtop, ytop)
integer name
integer xbot, ybot, xtop, ytop

integer function cfdissoc(trigger, devclass, devnum)
integer trigger
integer devclass
integer devnum

integer function cfdpolyline(xcoors, ycoors, n)
integer xcoors
integer
integer

ycoors
n

integer function cfechooff(devclass, devnum, echo)
integer devclass
integer devnum
integer echo

Revision A of 15 May 1985 G-9

Using SunCGI with Fortran-77 Programs SunCGI Reference Manual

integer function cfechoon(devclass. echotype. exlow, eylow.
1 exup, eyup, x, y, xlist, ylist, n, val, choice, string, stringlen)

integer devclass
integer echo type
integer ex low
integer eylow
integer exup
integer eyup
integer x, y
integer xlist(*)
integer ylist(*)
integer n
real val
integer choice
character*(*) string
integer stringlen

integer function cfechoupd(echo, x, y, xlist, ylist, n, val,
1 choice, string, stringlen)

integer echo
integer x, y
integer xlist (*)
integer ylist(*)
integer n
real val

0

integer choice 0
character*(*) string
integer stringlen

G-10

integer function cfelliparc(x, y, sx, sy, ex, ey, majx, miny)
integer x, y
integer sx, sy
integer ex, ey
integer majx, miny

integer function cfelliparccl(x, y, sx, sy, ex, ey, majx, miny, close)
integer x, y
integer sx, sy
integer ex, ey
integer majx, miny
integer close

integer function cfellipse(x, y, majx, miny)
integer x, y
integer majx, miny

integer function cfenevents(devclass, devnum)
integer devclass
integer devnum

Revision A of 15 May 1985

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

integer function cffixedfont(index)
integer index

integer function efflareabundix(index)
integer index

integer function cfflcolor(color)
integer color

integer function cfflusheventqu()

integer function cfgetlastreqinp(devclass, devnum, valid,
1 x, y, xlist, ylist, n, val, choice, string, stringlen)

integer devclass
integer devnum
integer valid
integer x, y
integer xlist(*)
integer ylist(*)
integer n
real val
integer choice
character*(*) string
integer stringlen

integer function cfhardrst()

integer function efhatchix(index)
integer index

integer function cfinitlid(devclass, devnum, x, y, xlist, ylist, n, val,
1 choice, string, stringlen)

integer devclass
integer devnum
integer x, y
integer xlist(*)
integer ylist(*)
integer n
real val
integer choice
character*(*) string
integer stringlen

integer function cfinitreq(develass, devnum)
integer devclass
integer devnum.

Revision A of 15 May 1985 G-11

Using SunCGI with Fortran-77 Programs

G-12

integer function cfintstyle(istyle, perimvis)
integer istyle
integer perimvis

integer function cflncolor(index)
integer index

integer function cflnendstyle(ttyp)
integer ttyp

integer function cflntype(ttyp)
integer ttyp

integer function cflnwidth(index)
real index

integer function cflnwidthspecmode(mode)
integer mode

integer function cfmkcolor(index)
integer index

integer function cfmksize(index)
real index

integer function cfmksizespecmode(mode)
integer mode

integer function cfmktype(ttyp)
integer ttyp

integer function cfopencgi()

SunCG! Reference Manual

0

0

0
Revision A of 15 May 1985

0

0

0

SunCGI Reference Manual Using SunCGJ with Fortran-77 Programs

integer function cfopenvws(name, screenname, screenlen,
1 windowname, windowlen, windowfd, retained, dd,
2 cmapsize, cmapname, cmaplen, flags, ptr, noargs)

integer name
character*(*) screenname
integer screenlen
character*(*) windowname
integer windowlen
integer windowfd
integer retained
integer dd
integer cmapsize
integer cmapname(*)
integer cmaplen
integer flags
character*(*) ptr
integer noargs

integer function cfpatix(index)
integer index

integer function cfpatrefpt(x, y)
integer x, y

integer function cfpatsize(dx, dy)
integer dx, dy

integer function cfpattable(index, m, n, colorind)
integer index
integer m, n
integer color ind

integer function cfperimcolor(index)
integer index

integer function cfperimtype(ttyp)
integer ttyp

integer function cfperimwidth(index)
real index

integer function cfpixarr(px, py, m, n, colorind)
integer px, py
integer m, n
integer color ind(*)

Revision A of 15 May 1985 G-13

Using SunCGI with Fortran-77 Programs Sun CG I Reference Manual

G-14

integer function cfpolygon(xcoors, ycoors, n)
integer xcoors
integer ycoors
integer n

integer function cfpolyline(xcoors, ycoors, n)
integer xcoors
integer ycoors
integer n

integer function cfpolylnbundix(index)
integer index

integer function cfpolymarker(xcoors, ycoors, n)
integer xcoors
integer ycoors
integer n

integer function cfpolymkbundix(index)
integer index

integer function cfppolyline(xcoors, ycoors, n, flag)
integer flag

integer function cfqasfs(n, num, vals)
integer n
integer num(*)
integer vals(*)

integer function cfqcellarr(px, qx, rx, py, qy, ry, dx, dy, colorind)
integer px, PY
integer qx, qy
integer rx, ry
integer dx, dy
integer color ind(*)

integer function cfqdevbtmp(name, map)
integer name, map

integer function cfqdevclass(output, input)
integer output, input

integer function cfqdevid(name, devid, stringlen)
integer name
character*(*) devid
integer stringlen

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

integer function cfqflareaatts(style, vis, hindex, pindex, bindex,
1 pstyle, pwidth, pcolor)

integer style, vis, hindex, pindex
integer bindex
integer pstyle
real pwidth
integer pcolor

integer function cfqinpcaps(valid, numval, numstrk, numchoice,
1 numstr, numtrig, evqueue, asynch, coordmap, tracking,
2 prompt, acknowledgement, trigman)

integer valid
integer numval
integer numstrk
integer numchoice
integer numstr
integer numtrig
integer evqueue
integer asynch
integer coordmap
integer tracking
integer prompt
integer acknowledgement
integer trigman

integer function cfqlidcaps(devclass, devnum, valid, sample,
1 change, numassoc, trigassoe, prompt, acknowledgement,
2 echo, classdep, stringlen, state)

integer devclass
integer devnum
integer valid
integer sample
integer change
integer numassoc
integer trigassoc(•)
integer prompt
integer acknowledgement
integer echo(•)
character•(•) classdep
integer stringlen
integer state(•)

Revision A of 15 May 1985 G-15

Using SunCGI with Fortran-77 Programs SunCGI Reference Ma.nual

G-16

integer
1
2
3

function cfqlidstatelis(devclass, devnum, valid, numloc,
numval, numstrk, numchoiee, num.str, numtrig, eventqueue,
asynch, coordmap, echo, tracking, prompt, acknowledgement,
triggermanipulation)

integer devclass
integer devnum
integer valid
integer numloc
integer numval
integer numstrk
integer numchoice
integer numstr
integer numtrig
integer event queue
integer asynch
integer coordmap
integer echo
integer tracking
integer prompt
integer acknowledgement
integer triggermanipulation

integer function cfqlnatts(style, width, color, index)
integer style
real width
integer color, index

integer function cfqmkatts(type, size, color, index)
integer type
real size
integer color, index

integer function cfqoutcap(first, last, list)
integer first, last
character•(•) list

integer function cfqoutfunset(level, support)
integer level
integer support

integer function cfqpatatts(cindex, row, column, colorlis, x, y, dx, dy)

integer function cfqphyscsys(name, xbase, ybase, xext, yext, xunits, yunits)
integer name
integer
integer
real

xbase, ybase
xext, yext
xunits, yunits

Revision A of 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

integer function cfqtext(fontset, index, cfont, prec, efac, space,
1 color, hgt, bx, by, ux, uy, path, halign, valign, hfac, cfac)

integer fontset, index, cfont, prec
real
integer
real
integer
real

efae, space
color, hgt
bx, by, ux, uy
path, halign, valign
hfac, cfac

integer function cfqtextext(string, stringlen, nextchar,
1 conx, cony, llpx, llpy, ulpx, ulpy, urpx, urpy)

character*(*) string
character*(*) nextchar
integer stringlen
integer conx
integer cony
integer llpx
integer llpy
integer ulpx
integer ulpy
integer urpx
integer urpy

integer function cfqtrigcaps(trigger, valid, change, n, class,
1 assoc, numassoc, maxassoc, prompt, acknowledgement,
1 name, namelen, description, desclen)

integer trigger
integer valid
integer change
integer n
integer class
integer assoc(*)
integer numassoc
integer maxassoc
integer prompt
integer acknowledgement
character*(*) name
integer namelen
character*(*) description
integer desclen

integer function cfqtrigstate(trigger, valid, state, n, class, assoc)
integer trigger
integer valid
integer state
integer n
integer class(*)
integer assoc(*)

integer function cfqvdctype(type)
integer type

Revision A of 15 May 1985 G-17

Using SunCGI with Fortran-77 Programs SunCGI Reference Manual

G-18

integer function cfrectangle(xbot, ybot, xtop, ytop)
integer xbot, ybot, xtop, ytop

integer function cfrelidev(devclass, devnum)
integer devclass
integer devnum

integer function cfreqinp(devclass, devnum, timeout, valid, sample,
1 trigger, x, y, xlist, ylist, n, val, choice, string, stringlen)

integer devclass
integer devnum
integer timeout
integer valid
integer x, y
integer xlist(•)
integer ylist(•)
integer n
real val
integer choice
character•(•) string
integer stringlen
integer trigger

integer function cfrsttodefs(name)
integer name

integer function cfsampinp(devclass, devnum, valid, x, y,
1 xlist, ylist, n, val, choice, string, stringlen)

integer devclass
integer devnum
integer valid
integer x, y
integer xlist(•)
integer ylist(•)
integer n
real val
integer choice
character•(•) string
integer stringlen

integer function· cfsaspsouflags(fval, fnum, n)
integer fval(•). fnum(•). n

integer function cfsdefatrigassoc(devclass, devnum)
integer devclass
integer devnum

Revision A or 15 May 1985

0

0

0

0

0

0

SunCGI Reference Manual Using SunCGI with Fortran-77 Programs

integer function cfsdrawmode(visibility, source, destination, combination)
integer visibility
integer source
integer destination
integer combination

integer function cfselectflushevenqu(devclass, devnum)
integer devclass
integer devnum

integer function cfserrwarnmk(action)
integer action

integer function cfsgldrawmode(combination)
integer combination

integer function cfsinitval(devclass, devnum, x, y, xlist, ylist, n,
l val, choice, string, stringlen)

integer devclass
integer
integer
integer
integer
integer
real

devnum
X, y
xlist (•)
yllst (•)
n
val

integer choice
character•(•) string
integer stringlen

integer function cfsupsig(sig_function)
integer sig_function
external sig_function

integer function cfsvalrange(devnum, mn, mx)
integer devnum
real mn, mx

integer function cftext(x, y, string, stringlen)
integer x
integer y
character•(•) string
integer stringlen

integer function cftextalign(halign, valign, hcalind, vcalind)
integer halign
integer valign
real hcalind, vcalind

Revision A of 15 May 1985 G-19

Using SunCGI with Fortran-77 Programs SunCGI Reference Manual

G-20

integer function cftextbundix(index)
integer index

integer function cftextcolor(index)
integer index

integer function cftextfontix(index)
integer index

integer function cftextprec(ttyp)
integer ttyp

integer function cfvdcext(xbot, ybot, xtop, ytop)
integer xbot, ybot, xtop, ytop

integer function cfvdmtext(x, y, flag, string, stringlen)
integer x
integer y
integer flag
character*(*) string
integer stringlen

integer function vqdrawmode(visibility, source, destination, combination)
integer visibility
integer source
integer destination
integer combination

integer function vqfpixarr(px, py, m, n, colorind)
integer px, PY
integer m, n
integer colorind(*)

Revision A of 15 May 1985

0

0

0

0

0

0

Index

A
activate_vws, 2-5
ANSI, 1-1
append_text, 3-11
associate, 5-5
association, 5-1
associations, 2-10

adding, 5-5
removing, 5-7

attribute inquiries
Cqas fs, 4-24
Cqflareaatts, 4-22
Cqlnatts, 4-21
Cqmkatts, 4-21
Cqpatatts, 4-22
Cqtextatts, 4-23
inquire_aspect_source_flags,4-24
inquire_fill_area_attributes,4-22
inquire_line_attributes, 4-21
inquire_marker_attributes,4-21
inquire_pattern_attributes,4-22
inquire_text_attributes,4-23

attribute inquiry functions, 4-21 thru 4-24
attributes, 4-1 thru 4-24

bundled, 4-2 thru 4-4
color, 4-20 thru 4-21
fill area, 4-9 thru 4-10
line, 4-4 thru 4-6
pattern, 4-10 thru 4-12
perimeter, 4-12, 4-14
polymarker, 4-6 thru 4-8
solid object, 4-8 thru 4-14
text, 4-14 thru 4-20

await_event, 5-13

B
bitblt, 3-1, 3-10, 3-17
bitblt_pattern_array,3-14
bitblt_patternec:Lsource_array,3-14
bitblt_source_array,3-13
bundle table, 4-2
bundled attributes, 4-2 tA 4-4

Cdefbundix, 4-3
Csaspsou!lags, 4-2
define_bundle_index,4-3
set_aspect_source_flags,4-2

bundles, 4-2

C
Cactvws, 2-5
Captext, 3-11
Cassoc, 5-5
Cawaitev, 5-13
Cbtblpatarr, 3-14
Cbtblpatsouarr,3-14
Cbtblsouarr, 3-13
Ccellarr, 3-12
Ccharexpfac, 4-16
Ccharheight, 4-17
Ccharorientation,4-18
Ccharpath, 4-18
Ccharsetix, 4-15
Ccharspacing, 4-16
Ccircarccent, S-6
Ccircarccentcl,3-7
Ccircarcthree,3-8
Ccircarcthreecl,3-9
Ccircle, 3-6
Cclipind, 2-16
Ccliprect, 2-17
Cclosecgi, 2-6
Cclosevws, 2-6
Cclrcont, 2-19
Cclrvws, 2-18
Ccotable, 4-20
Cdaevents, 5-12
Cdeactvws, 2-6
Cdefbundix, 4-3
Cdevvpt, 2-16
Cdissoc, 5-7
Cdpolyline, 3-2
Cell array, 3-12
cell_array, 3-12
Cell !pare, 3-9
Celliparccl, 3-10
Cellipse, 3-9
Cenevents, 5-12
Cfixedfont, 4-17
Cflareabundix,4-9
Cflcolor, 4-10
C!lusheventqu, 5-4
Cgetlastreqinp,5-11
CG!, 1-1

-xv -

Cgi functions, F-3 thru F-4
CG! tool, 2-4
CG! type definitions, C-1 thru C-9
CG! with pixwins, F-1 thru F-5

example, F-5
functions, F-3 thru F-4
using cgipw, F-2

cgipw functions
close_cgi_pw, F-2
close_pw_cgi, F-2
open_cgi_pw, F-1
open_pw_cgi, F-1

character_expansion_factor,4-16
character _height, 4-17
character_orientation,4-18
character _path, 4-18
character _set_index, 4·15
character _spacing, 4-16
Chardrst, 2-17
Chatchix, 4-10
Cini t lid, 5-3
Cini treq, 5-10
Cintstyle, 4-9
circle

area or a, 3-6
perimeter definition, 3-6

circle, 3-6
circular arcs

center, 3-7
close, 3-7
direction of drawing, 3-7
three-point, 3-8

circular_arc_3pt,3-8
circular_arc_3pt_close,3-9
circular_arc_center,3-6
circular_arc_center_close,3-7
clear _control, 2-19
clear_view_surface, 2·18
clip_indicator, 2-16
clip_rectangle, 2-17
clipping, 2-14, 2-16
Clncolor, 4-6
Clnendstyle, 4-5
Clntype, 4-5
Clnwidth, 4-6
Clnwidthspecmode, 4-5
close_cgi, 2-6
close_cgi_pw, F-2
close_pw_cgi, F-2
close_vws, 2-6
Cmkco 1 or, 4-8
Cmksize, 4-8
Cmksizespecmode,4-7
Cmktype, 4-7
color attributes, 4-20 thru 4-21

color attributes, continued
Ccotable, 4-20
color _table, 4-20

color table, 4-6, 4-20
color _table, 4-20
conical output primitives, 3-1, 3-6 thru 3-10
control errors, D-2
coordinate definition errors, D-2 thru D-3
Copencgi, 2-2
Copenvws, 2-3
Cpatix, 4-11
Cpatrefpt, 4-11
Cpatsize, 4-12
Cpattable, 4-11
Cperimcolor, 4-13
Cperimtype, 4-12
Cperimwidth, 4--13
Cperimwidthspecmode,4-13
Cpixarr, 3-13
Cpolygon, 3-3
Cpolyline, 3-2
Cpolylnbundix, 4-4
Cpolymarker, 3-3
Cpolymkbundix, 4-7
Cppolygon, 3-4
Cqasfs, 4-24
Cqbtblalign, 3-16
Cqcellarr, 3-15
Cqdevbtmp, 3-16
Cqdevclass, 2-8
Cqdevid, 2-7
Cqdrawmode, 3-18
Cqevque, 5-15
Cqflareaatts, 4-22
Cqinpcaps, 2-10
Cqlidcaps, 2-11
Cqlidstate, 5-14
Cqlidstatelis,5-14
Cqlnatts, 4-21
Cqmkatts, 4-21
Cqoutcap, 2-10
Cqout funset, 2-9
Cqpatatts, 4-22
Cqphyscsys, 2-8
Cqpixarr, 3-16
Cqtextatts, 4-23
Cqtextext, 3-12
Cqtrigcaps, 2-12
Cqtr igstate, 5-15
Cqvdctype, 2-9
Crectangle, 3-5
Crelidev, 5-4
Creqinp, 5-11
Crsttodefs, 2-18
Csampinp, 5-10

-xvi-

0

0:

0

0

0

0

Csaspsouflags, 4-2
Csdefatrigassoc,S-6
Csdrawmode, 3-17
Cselectflusheventqu,S-5
Cserrwarnmk, 2-19
Csgldrawmode,3-18
Csinitval, 5-7
Csupsig, 2-20
Csvalrange, 5-7
Ctext, 3-10
Ctextalign, 4-19
Ctextbundix, 4-14
Ctextcolor, 4-17
Ctextfontix, 4-15
Ctextprec, 4-14
Ctrackoff, S-9
Ctrackon,S-8
current position, A-1
Cvdcext, 2-14
Cvdmtext, 3-11

D
data type definitions, C-1 thru C-9
deactivate_vws, 2-6
deflne_bundle_index, 4-3
device coordinates (see screen space), 2-13
device_viewport, 2-16
disable_events,S-12
disjoint_polyline,3-2
dissociate,S-7
drawing mode, 1-3, 3-10
drawing modes, 3-17 thru 3-18

E
ellipse, 3-9, 3-9
elliptical arcs, 3-9

drawing or, 3-10
elliptical_arc,3-9
elliptical_arc_close,3-10
enable_events,S-12
error, 2-19

control, 2-19
errors

control, D-2
coordinate definition, D-2 thru D-3
implementation dependent, D-7
input, D-6 thru D-7
output attribute, D-3 thru D-5
output primitive, D-5 thru D-6
possible causes or visual, D-8 thru D-10
state, D-1 thru D-2

event functions, S-10 thru S-13
event queue, 5-1, S-7, S-13

overflow, S-1
status, 5-13

F
fill area attributes, 4-9 tAru 4-10
fill_area_bundle_index,4-9
fill_color, 4-10
fixed_font, 4-17
flush....event_queue,S-4
FORTRAN interface

function definitions, G-6 thru G-20
function name mapping, G-3 thru G-6
Programming Hints, G-1 thru G-2
using FORTRAN, G-1

G
geometrical output primitives, 3-1, 3-1 thru 3-10
get_last_requested_input,S-11
global polygon list, 3-3, 3-4

H
hard_reset, 2-17
hatch, 4-10
hatch....index, 4-10

I
IC_STROKE, 5-5
implementation dependent errors, D-7
include files, 1-2
initialize_lid,S-3
initializing

activate_vws, 2-5
Cactvws, 2-5
Cclosecgi, 2-6
Cclosevws, 2-6
Cdeactvws, 2-6
close_cgi, 2-6
close_vws, 2-6
Copencgi, 2-2
Copenvws, 2-3
deactivate_vws, 2-6
open_cgi, 2-2
open_vws, 2-3

initializing SunCGI, 2-2
initiate_request,S-10
input device, 5-3

capabilities, 2-10
current measure, S-10
measure, S-1
model, S-1
status, 5-13

input device management, S-3 thru 5-8
input devices

initialization, S-3
input errors, D-6 IAru D-7
input functions

- xvii -

associate, S-5
await_event, S-13
Cassoc, S.5
Cawaitev, 5-13

input functions, continued
Cdaevents, f>-12
Cdissoc, f>-7
Cenevents, 5--12
Cflusheventqu,f>-4
Cgetlastreqinp,f>-11
Cinitlid, f>-3
Cinitreq, f>-10
Cqevque, f>-15
Cqlidstate, f>-14
Cqlidstatelis, f>-14
Cqtrigstate, f>-15
Crelidev, f>-4
Creqinp, f>-11
Csampinp, f>-10
Csdefatrigassoc,f>-6
Cselectflusheventqu,f>-5
Csinitval, f>-7
Csvalrange, f>-7
Ctrackoff, f>-9
Ctrackon, f>-8
disable_events,f>-12
dissociate, f>-7
enable_events,f>-12
flush__event_queue,f>-4
get_last_requested_input,f>-11
initialize_lid,f>-3
initiate_request,f>-10
inquire_event_queue,f>-15
inquire_lid_state,f>-14
inquire_lid_state_list,f>-14
inquire_trigger_state,f>-15
release_input_device,f>-4
request_input,f>-11
sample_input, f>-10
selective_flush__of_event_queue, f>-

5
set_default_trigger_associations,

f>-6
set_initial_value,f>-7
set_valuator_range,f>-7
track_off, f>-9
track_on, f>-8

input model, f>-1
inquire_

aspect_source_flags, 4-24
bitblt_alignments,3-16
cell_array, 3-15
device_bitmap,3-16
device_c:lass, 2-8
device_identification,2-7
drawin!J_Jllode,3-18
fill_area_attributes,4-22
input_capabilities,2-10
licLcapabilities, 2-11
line_attributes, 4-21
marker _attributes, 4-21
output_capabilities, 2-10
output_function_set, 2-9

inquire_, continued
pattern_attributes, 4-22
physical_coordinate_system, 2-8
pixel_array, 3-16
text_attributes,4-23
text_extent, 3-12
trigger _capabilities, 2-12
vdc_type, 2-9

inquire_event_queue,f>-15
inquire_lid_state,f>-14
inquire_lid_state_list,f>-14
inquire_trigger_state,f>-15
inquiry functions

attributes, 4-21 tA,.. 4-24
interface negotiation, 2-7 tAru 2-13

Cqdevclass, 2-8
Cqdevid, 2-7
Cqinpcaps, 2-10
Cqlidcaps, 2-11
Cqoutcap, 2-10
Cqout !unset, 2-9
Cqphyscsys, 2-8
Cqtr igcaps, 2-12
Cqvdctype, 2-9
inquire_device_class, 2-8
inquire_device_identification,2-7
inquire_input_capabilities, 2-10
inquire_lid_capabilities,2-11
inquire_output_capabilities,2-10
inquire_output_function_set,2-9
inquire_physical_coordinate_system,

2-8
inquire_trigger _capabilities, 2-12
inquire_vdc_type, 2-9

interior_style,4-9
isotropy, 2-13

L
line attributes, 4-4 tAru 4-6

Clncolor, 4-6
Clnendstyle, 4-5
Clntype, 4-5
Clnwidth, 4-6
Clnwidthspecmode,4-5
Cpolylnbundix,4-4
line_color, 4-6
line_endstyle, 4-5
line_type, 4-5
line_width, 4-6
line_width__specificatiollJllode,4-5
polyline_bundle_index,4-4

line_eolor, 4-6
line_endstyle,4-5
line_type, 4-5
line_width, 4-6
line_width__specification...mode, 4-5
linking SunCGI, 1-2

- xviii -

0

0

0

0

0

0

logical input device, 1-4

M
marker_color,4-8
marker _size, 4-8
marker_slze_speclflcatlon_mode,4-7
marker _type, 4-7
measure, 1-4, 5-1, 5-1

N
negotiation functions, 1-3

0
open_cgl, 2-2
open_cgl_pw, F-1
open_pw_cgl, F-1
open_vws, 2-3
option sets, 1-1
output attribute errors, D-3 tAru D-5
output primitive errors, D-5 IAru D-6
output primitives, 1-1, 1-3, 3-1 tAru 3-18, A-2

append_text, 3-11
bltblt_pattern_array,3-14
bltblt_patterned_source_array,3-14
bltblt_source_array,3-13
Captext, 3-11
Cbtblpatarr, 3-14
Cbtblpatsouarr, 3-14
Cbtblsouarr, 3-13
Ccellarr, 3-12
Cclrcarccent, 3-6
Ccircarccentcl,3-7
Cclrcarcthree,3-8
Cclrcarcthreecl,3-9
Cclrcle, 3-6
Cdpolyllne, 3-2
cell_array, 3-12
Celllparc, 3-9
Celllparccl, 3-10
Celllpse, 3-9
circle, 3-6
c1rcular_arc_3pt,3-8
circular_arc_3pt_close,3-9
circular_arc_center,3--6
circular_arc_center_close,3-7
conical, 3-1, 3-6 tAru 3-10
Cpixarr, 3-13
Cpolygon, 3-3
Cpolyline, 3-2
Cpolymarker, 3-3
Cppolygon, 3-4
Cqbtblallgn, 3-16
Cqcellarr, 3-15
Cqdevbtmp, 3-16
Cqdrawmode, 3-18
Cqplxarr, 3-16
Cqtextext, 3-12

output primitives, continued
Crectangle, 3-5
Csdrawmode, 3-17
Csgldrawmode, 3-18
Ctext, 3-10
Cvdmtext, 3-11
disjoint_polyline,3-2
drawing modes, 3-17 IAru 3-18
ellipse, 3-9
elllptical_arc,3-9
elliptical_arc_close,3-10
geometrical, 3-1 tArt1 3-10
lnqulre_bitblt_alignments,3-16
inquire_cell_array,3-15
inquire_device_bitmap,3-16
inquire_drawlng_mode,3-18
inquire_plxel_array,3-16
inquire_text_extent,3-12
partial_polygon,3-4
pixel_array, 3-13
polygon, 3-3
polygonal, 3-1, 3-1 IAru 3-6
polyline, 3-2
polymarker, 3-3
raster, 3-10 tAru 3-17
rectangle, 3-5
set_drawing_mode,3-17
set_global_drawing_mode,3-18,3-18
text, 3-10
vdm.....text, 3-11

p
partlal_polygon,3-4
pattern, 4-10

reference point, 4-12
pattern attributes, 4-10 tAru 4-12

Chatchix, 4-10
Cpatix, 4-11
Cpatrefpt, 4-11
Cpatsize, 4-12
Cpattable, 4-11
hatch_index, 4-10
pattern_index, 4-11
pattern_reference_point,4-11
pattern_size,4-12
pattern_table, 4-11

pattern_index,4-11
pattern_reference_point,4-11
pattern_size,4-12
pattern_table,4-11
perimeter

endstyle, 4-13
perimeter attributes, 4-12 llrt1 4-14

Cperlmcolor, 4-13
Cperlmtype, 4-12
Cperimwidth, 4-13
Cperlmwidthspecmode,4-13
perimeter_color,4-13

-xix-

perimeter attributes, continued
perimeter_type,4-12
perimeter_width,4-13
perimeter_width_specification....mode,

4-13
perimeter visibility, 4-9
perimeter _color, 4-13
perimeter_type,4-12
perimeter_width,4-13
perimeter_width_specification....mode,

4-13
pie chart, 3-7
pixel_array, 3-13, 3-13
pixwins with CG!, F-1 thru F-5

example, F-5
functions, F-3 thru F-4
using cgipw, F-2

point
drawing a, 3-6

po 1 ygon, 3-3
with holes, 3-4
with undrawn edge(s), 3-4

polygonal primitives, 3-1, 3-1 thru 3-6
polyline, 3-2
polyline_bundle_index, 4-4
polymarker, 3-3
polymarker attributes, 4-6 thru 4-8

Cmkco 1 or, 4-8
Cmksize, 4-8
Cmksizespecmode, 4-7
Cmktype, 4-7
Cpolymkbundix,4-7
marker _color, 4-8
marker _size, 4-8
marker_size_specification_mode, 4-

7
marker _type, 4-7
polymarker_bundle_index,4-7

polymarker_bundle_index,4-7

R
raster primitives, 3-1, 3-10 thru 3-17
rectangle, 3-5
release_input_device,~4
request register, ~10, ~ll
request_input, ~ll
reset_to_defaults, 2-18

s
sample_input, ~10
screen space, 1-3, 1-3, 2-13, 2-20

definition, 2-16
selective_flusb_of_event_queue,~5
set_aspect_source_flags,4-2
set_default_trigger_associations,~6
set_drawing....mode,3-17

set_error_warning_%D.8.sk,2-19
set_global_drawing....mode,3-18,3-18
set_initial_value,~7
set_up_sigwinch, 2-20
set_valuator_range,~7
SIGWINCH, 1-3, 2-20
solid object attributes, 4-8 thru 4-14

Cflareabundix,4-9
Cflcolor, 4-10
Cintstyle, 4-9
fill_area__bundle_index,4-9
fill_color, 4-10
interior_style,4-9

specified device, 2-11
state errors, D-1 thru D-2
status inquiries, ~ 13 thru ~ 15
Sun Workstation, 2-7
SunCGI, 1-1

with window system, 2-20

T
text attributes, 4-14 thru 4-20

Ccharexpfac, 4-16
Ccharheight, 4-17
Ccharorientation,4-18
Ccharpath, 4-18
Ccharsetix, 4-15
Ccharspacing, 4-16
Cfixedfont, 4-17
character_expansion_factor,4-16
character__height,4-17
character_orientation,4-18
character_path,4-18
character_set_index,4-15
character_spacing,4-16
Ctextalign, 4-19
Ctextbundix, 4-14
Ctextcolor, 4-17
Ctextfontix, 4-15
Ctextprec, 4-14
fixed_font, 4-17
text_alignment,4-19
text_bundle_index,4-14
text_color, 4-17
text_font_index,4-15
text_precision,4-14

text precision, 3-11
detailed definition, 4-14

text, 3-10
appended, 3-11

text_alignment, 4-19
text, 3-10
text_bundle_index,4-14
text_color, 4-17
text_font_index,4-15
text_precision,4-14
textured line, 4-5

-xx-

0

O'

0

0

0

0

track, 5-1, 5-8, 5-9
track_off, 5-9
track_on, 5-8
tracking, 5-8 thru 5-9
trigger, 1-4, 2-10, 5-1, 5-6

activation, ~ 1
Trigger

Capabilities, 2-12
trigger

interaction with stroke device, 5-6
status, 5-13

type definitions, C-1 thru C-9

u
unsupported CG! functions, B-1 thru B-2
using SunCGI, 1-2

V
VDC Space, 1-3, 1-3, 2-13, 2-13, 2-20
vdc_extent, 2-14
vdm....text, 3-11
view surface, 2-1

clear control, 2-19
clearing, 2-18
default states, 2-5

view surface control, 2-13 thru 2-19
Cclipind, 2-16
Ccliprect, 2-17
Cclrcont, 2-19
Cclrvws, 2-18
Cdevvpt, 2-16
Chardrst, 2-17
clear _control, 2-19
clear _view_surface, 2-18
clip_indicator, 2-16
clip_rectangle, 2-17
Crsttodefs, 2-18
Cserrwarnmk, 2-19
Cvdcext, 2-14
device_viewport, 2-16
hard_reset, 2-17
reset_to_defaults, 2-18
set_error _warning_mask, 2-19
vdc_extent, 2-14

view surfaces, 2-5
active, 1-3
initializing, 2-3
multiple, 1-3, 2-3

visual errors
possible causes, D-8 thru D-10

w
window system

Csupsig, 2-20
set_up_sigwinch, 2-20
using SunCGI with, 2-20

windows

- xxi -

windows, continued
nonretained, 2-4
retained, 2-4

world coordinates (see VDC Space), 2-13

X
X3H3, 1-1

01

o!
I

01

0

0

0

• 0

I

I

0
I

