
0

0

~\sun
,~ microsystems

System Interface Manual
for the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0

0

0

~\sun
• microsystems

System Interface Manual
for the Sun Workstation

---------·---------
Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

P:1rt N(;: ?"i00-·1173-(1 i
?.cvision of ~S 100:S

Credits and Acknowledgements

This manual is composed of parts of the original UNIX Programmer's Manual, plus one other
paper from University of California at Berkeley.

Sy.tern Interface Overview
is based on the ,l.2BSD Syatem Interface Overview by William Joy, Eric Cooper, Robert
Fabry, Samuel Leffier, Kirk McKusick and David Mosher; released by the Computer Systems
Research Group at U.C. Berkeley in July, 1983.

Trademarks

Multibus is a trademark of Intel Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright«:> 1983 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit­
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0

0

0

Revision

A

B

C

D

E

F

Revision History

Date Comments

23rd February 1983 First release of this Manual.

15th April 1983 Second Release of this manual involved many corrections to
manual pages.

1st August 1983

1st November 1983

7th January 1984

15 May 1985

Third Release of this manual involved many corrections to
manual pages. Added glossary of system calls and system error
responses.

Fourth Release of this manual involved many corrections to
manual pages. Fixed numerous incorrect cross-references
between pages. Added a Syatem Interface Overview and the
Interproceu Communication Primer as a tutorial.

Fifth Release of this manual involved many corrections to
manual pages.

Sixth Release of this manual involved many corrections to
manual pages. lnterproceaa Communicationa Primer is now
part of the manual entitled Networking on the Sun Workata­
tion.

Page numbering is contiguous throughout the manual and we
replaced the permuted index with a human-oriented index.

- iii -

0

0

0

0

0

0

System Interface Manual

Table of Contents

Section I. Overview

System Interface Overview

Summarizes the facilities provided by this release of the UNIX operating system for
the Sun Workstation.

Section II, Reference Manual P11.ges

1. System Calls - previously section 2 of the UNIX Programmer's Manual.

2. C Library Functions - section 3.

3. Compatibility Functions - section 3C. Covers those functions which are included
for compatibility with older versions of the C Library.

4. Mathematical Functions - section 3M.

5. Network Library Functions - section 3N.

6. Standard I/0 Library Functions - section 3S.

7. Miscellaneous Library Functions - section 3X.

8. Special Files and Hardware Support - section 4.

9. File Formats - section 5.

-v-

0

0 1

I

I

0
,
t

0

0

0

System Interface Overview

Contents

Part I -- Kernel Primitives

1. Processes and Protection
1.1. Host and Process Identifiers
1.2. Process Creation and Termination
1.3. User and Group Ids

3

4
4
4
5

1.4. Process Groups and System Terminals... 6

2. Memory management 7
2.1. Text, Data, and Stack 7
2.2. 11,fapping Pages 7
2.3. Page Protection Control ... 8
2.4. Giving and Getting Advice 8

3.S~~ 9
3.1. Signal Types 9
3.2. Signal Handlers 10
3.3. Sending Signals 10
3.4. Protecting Critical Sections 11

3.5. Signal Stacks .. -..................... 11

4. Timers
4.1. Real Time
4.2. Interval Time

5. Descriptors

12
12
12

14

5.1. The Reference Table .. .
5.2. Descriptor Properties
5.3. Managing Descriptor References
5.4. Multiplexing Requests

6. Resource Controls
6.1. Process Priorities
6.2. Resource Utilization ..
6.3. Resource Limits

7. System operation support
7.1. Bootstrap Operations
7.2. Shutdown Operations
7.3. Accounting

Part II - System Facilities

8. Generic Operations
8.1. Read and Write
8.2. Input/Output Control
8.3. Non-Blocking and Asynchronous Operations

9. File System
9.1. Naming .. .
9.2. Creation and Removal

9.2.1. Directory Creation and Removal
9.2.2. File Creation
9.2.3. Creating References to Devices ...
9.2.4. File and Device Removal

9.3. Reading and Modifying File Attributes
9.4. Links and Renaming
9.5. Extension and Truncation
9.6. Checking Accessibility
9.7. Locking ...
9.8. Disk Quotas

10. Interprocess Communications
10.1. Interprocess Communication Primitives

14
14
14
15

16
16
16
17

18
18
18
18

20

21
21
21
22

23
23
23
23
24
24
25
25
26
26
27
27
28

29
29

10.1.1. Communication Domains 29
10.1.2. Socket Types and Protocols.. 29
10.1.3. Socket Creation, Naming, and Service Establishment .. 30
10.1.4. Accepting Connections........................ 30
10.1.5. Making Connections 31
10.1.6. Sending and Receiving Data...................... 31
10.1.7. Scatter/Gather and Exchanging Access Rights....................... 32
10.1.8. Using Read and Write with Sockets.... 32

- 11 -

0

0

0

0

0

0

10.1.9. Shutting Down Halves of Full-Duplex Connections............................ 32
10.1.10. Socket and Protocol Options...................... 33

10.2. UNIX Domain 33
10.2.l. Types of Sockets ... 33
10.2.2. Naming 33
10.2.3. Access Rights Transmission ... 33

10.3. INTERNET Domain .. ,................ 33
10.3.l. Socket Types and Protocols... 34
10.3.2. Socket Naming 34
10.3.3. Access Rights Transmission 34
10.3.4. Raw Access 34

11. Devices 35
11.1. Structured Devices ... 35
11.2. Unstructured Devices .. 35

12. Debugging Support ... 36

Part III - Summary of Facilities 37

A. Summary of Facilities
A.l. Kernel Primitives

A.1.1. Process Naming and Protection
A.1.2. Memory Management
A.1.3. Signals
A.1.4. Timing and Statistics
A.1.5. Descriptors.
A.1.6. Resource Controls
A.1.7. System Operation Support.

A.2. System Facilities
A.2.1. Generic Operations
A.2.2. File System
A.2.3. Interprocess Communications
A.2.4. Devices
A.2.5. De bugging Support

- Ill -

37
37
37
37
38
38
38
39
39
39
39
39
40
40
40

0

0 I

0

0

0

0

System Interface Overview

Revised for Sun Release 2.0, May 1985

This document summarizes the facilities provided by the 1.1, 2.0, and later releases of the UNIXt
operating system for the Sun Workstation. It does not attempt to act as a tutorial for use of the
system nor does it attempt to explain or justify the design of the system facilities. It gives nei­
ther motivation nor implementation details, in favor of brevity. This document is in three major
parts:

Part I describes the basic kernel functions provided to a UNIX process: process naming and
protection, memory management, software interrupts, object references (descriptors),
time and statistics functions, and resource controls. These facilities, as well as facilities
for bootstrap, shutdown and process accounting, are provided solely by the kernel.

Part II describes the standard system abstractions for files and file systems, communication,
terminal handling, and process control and debugging. These facilities are implemented
by the operating system or by network server processes.

Part III is an appendix containing a summary of the facilities described in parts I and II.

Notation and Types

The notation used to describe system calls is a variant of a C language call, consisting of a proto­
type call followed by declaration of parameters and results. An additional keyword result, not
part of the normal C language, is used to indicate which of the declared entities receive results.
As an example, consider the read call, as described in section 8.1:

cc= read(fd, buf, nbytes);
result int cc; int fd; result char •buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the
second line cc is an integer and read also returns information in the parameter bu/.

Description of all error conditions arising from each system call is not provided here; they appear
in the Syatem Interface Manual. In particular, when accessed from the C language, many calls
return a characteristic -1 value when an error occurs, returning the error code in the global
variable errno. Other languages may present errors in different ways.

t UNIX is a. trademark ot Bell Laboratories.

Revision F of 15 May 1985 1

System Interface Overview

A number of system standard types are defined in the <•Y•/typea.h> include file and used in O·, -

the specifications here and in many C programs. These include caddr_t giving a memory
address (typically as a character pointer), ofLt giving a file offset (typically as a long integer),
and a set of unsigned types u_char, u....short, ujnt and u_long, shorthand names for
unsigned char, unsigned short, etc.

0

0

2 Revision F of 15 May 1985

0

0

0

System Interface Overview Kernel Primitives

Part I - Kernel Primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel facili­
ties directly implemented by UNIX code running in the operating system, and system facilities
implemented either by the system, or in cooperation with a •erver proce ... The kernel facilities
are described in this part of the document.

The facilities implemented in the kernel are those which define the UNIX virtual machine which
each process runs in. Like many real machines, this virtual machine has memory management
hardware, an interrupt facility, timers and counters. The UNIX virtual machine also allows
access to files and other objects through a set of de•criptor8. Each descriptor resembles a device
controller, and supports a set of operations. Like devices on real machines, some of which are
internal to the machine and some of which are external, parts of the descriptor machinery are
built-in to the operating system, while other parts are often implemented in server processes on
other machines. The facilities provided through the descriptor machinery are described in Part
II.

Revision F of 15 May 1985 3

Processes and Protection System Interface Overview

1. Processes and Protection

1.1. Host and Process Identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255 characters.
These are set (by a privileged user) and returned by the calls:

sethostid(hostid);
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len);
char *name; int len;

gethostname(buf, buflen);
result char *buf; int buflen;

The host id is not used in this release of the system. The bu/ containing the host name returned
by gethostname is null-terminated (if space allows).

On each host runs a set of proceuea. Each process is largely independent of other processes,
having its own protection domain, address space, timers, and an independent set of references to
system or user implemented objects.

Each process in a host is named by an integer called the proceaa id. This number is in the range
1-30000 and is returned by the getpid routine:

pid = getpid () ;
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the
(hostid, process id) pairs are guaranteed unique.

1.2. Process Creation and Termination

A new process is created by making a logical duplicate of an existing process:

pid = fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the
child, and once in the child process where pid is 0. The parent-child relationship induces a
hierarchical structure on the set of processes in the system.

A process may terminate by executing an exit call:

exit(status);
int status;

0

0

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives information 0
about any event which caused termination of the child process. A second call provides a non-

4 Revision F of 15 May 1985

0

0

0

System Interface Overview Processes and Protection

blocking interface and may also be used to retrieve information about resources consumed by the
process during its lifetime.

#include <sys/wait.h>

pid = wait(astatus);
result int pld; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus •astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passmg the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a binary
executable file or a file which causes the execution of a specified interpreter program to process
its contents.

1.3. User and Group Ids

Each process in the system has associated with it two user-id's: a real user id and a effective user
id, both non-negative 16 bit integers. Each process has an real accounting group id and an
effective accounting group id and a set of acces• group id'a. The group id's are non-negative 16
bit integers. Each process may be in several different access groups, with the maximum con­
current number of access groups a system compilation parameter, the constant NGROUPS in the
file <sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

ruid = getuid();
result int ruid;

euid = geteuid();
result int euid;

the real and effective accounting group ids by:

rgid = getgid();
result int rgid;

egid = getegid();
result int egid;

and the access group id set is returned by a getgroupa call:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id's are assigned at login time using the aetreuid, aetregid, and aetgroupa
calls:

Revision F of 15 May I 985 5

Processes and Protection

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset);
int gidsetsize; int gidset[gidsetsize];

System Interface Overview

The .etreuid call sets both the real and effective user-id's, while the aetregid call sets both the
real and effective accounting group id's. Unless the caller is the super-user, ruid must be equal
to either the current real or effective user-id, and rgid equal to either the current real or
effective accounting group id. The aetgroupa call is restricted to the super-user.

1.4. Process Groups and System Terminals

Each process in the system is also normally associated with a proceaa group. The group of
processes in a process group is sometimes referred to as a job and manipulated by high-level sys­
tem software (such as the shell). The current process group of a process is returned by the
getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

The process group associated with a process may be changed by the aetpgrp call:

setpgrp (pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id's distinct from all processes and process groups,
and the same process group as their parent. A normal (unprivileged) process may set its process
group equal to its process id. A privileged process may set the process group of any process to
any value.

When a process is in a specific process group it may receive software interrupts affecting the
group, causing the group to suspend or resume execution or to be interrupted or terminated. In
particular, every system terminal has a process group and only processes which are in the pro­
cess group of a terminal may read from the terminal, allowing arbitration of terminals among
several different jobs. A process can examine the process group of a terminal via the ioctl call:

ioctl(fd, TIOCGPGRP, pgrp);
int fd; result int *pgrp;

A process may change the process group of any terminal which it can write by the ioctl call:

ioctl(fd, TIOCSPGRP, pgrp);
int fd; int •pgrp;

The terminal's process group may be set to any value. Thus, more than one terminal may be in
a process group.

Each process in the system is usually associated with a control termin•I, accessible through the
file /dev/tty. A newly created process inherits the control terminal of its parent. A process
may be in a different process group than its control terminal, in which case the process does not
receive software interrupts affecting the control terminal's process group.

6 Revision F of 15 May 1985

0

0

0

System Interface Overview Memory management

Q 2. Memory management

This section represents the interface planned for later releases of the system. Of the calls
described in this section, only sbrk, getpagesize, and mmap are included in the current release.
Note that mmap is restricted in that it only works with certain character devices such as the
framebuffer and devices like mbmem.

2.1. Text, Data, and Stack

Each process begins execution with three logical areas of memory called text, data and stack.
The text area is read-only and shared, while the data and stack areas are private to the process.
Both the data and stack areas may be extended and contracted on program request. The call

addr = sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed. On
the VAX the text and data areas are adjacent in the PO region, while the stack section is in the
Pl region, and grows downward.

n
~ 2.2. Mapping Pages

0

The system supports sharing of data between processes by allowing pages to be mapped into
memory. These mapped pages may be shared with other processes or private to the process.
Protection and sharing options are defined in <mman.h> as:

/* protections are
#definePROT_READ
#definePROT_WRITE
#definePROT_EXEC

chosen from these bits, or-ed together*/
Ox4 /• pages can be read•;

/* sharing types; choose
#defineMAP_SHARED
#defineMAP_PRIVATE

Ox2 /• pages can be written*/
Oxl /• pages can be executed•/

either SHARED or PRIVATE*/
1 /• share changes•/
2 /• changes are private•/

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;

The call:

mmap(addr, len, prot, share, fd, pos);
caddr_t addr; int len, prot, share, fd; off_t pos;

maps the pages starting at addr and continuing for /en bytes from the object represented by
descriptor fd, at absolute position pos. The parameter share specifies whether modifications
made to this mapped copy of the page, are to be kept private, or are to be shared with other
references. The parameter prot specifies the accessibility of the mapped pages. The addr, /en,

Revision F of 15 May 1985 7

Memory management

and po• parameters must all be multiples of the pagesize.

A mapping can be removed by the call

munmap(addr, len);
caddr_t addr; int len;

System Interface Overview

This causes further references to these pages to refer to private pages initialized to zero.

2.3. Page Protection Control

A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prol.

2.4. Giving and Getting Advice

A process that has knowledge of its memory behavior may use the madviae call:

madvise(addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as given in <mman.h>:

#defineMADV_NORMJ\L
#defineMADV_RANDOM
#defineMADV_SEQUENTIAL
#defineMADV_WILLNEED
#defineMADV_DONTNEED

0
1
2
3
4

/• no further special treatment*/
/* expect random page references•/
/• expect sequential references•;
/* will need these pages*/
/• don't need these pages•/

Finally, a process may obtain information about whether pages are core resident by using the
call

mincore(addr, len, vec);
caddr_t addr; int len; result char •vec;

Here the current core residency of the pages is returned in the character array vec, with a value
of 1 meaning that the page is in-core.

8 Revision F of 15 May 1985

0

0

0

System Interface Overview Signals

Q 3. Signals

0

0

The system defines a set of aignala that may be delivered to a process. Signal delivery resembles
the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify the handler to
which a signal is delivered, or specify that the signal is to be blocked or ignored. A process may
also specify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accompanied
by creation of a core image file, containing the current memory image of the process for use in
post-mortem debugging. A process may choose to have signals delivered on a special stack, so
that sophisticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order in
which they are delivered to a process is implementation specific. Signal routines execute with
the signal that caused their invocation blocked, but other signals may yet occur. Mechanisms are
provided where by critical sections of code may protect themselves against the occurrence of
specified signals.

3.1. Signal Types

The signals defined by the system fall into one of five classes: hardware conditions, software con­
ditions, input/output notification, process control, or resource control. The set of signals is
defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execution.
Such signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL
for illegal instruction execution, SIGSEGV for addresses outside the currently assigned area of
memory, and SIGBUS for accesses that violate memory protection constraints. Other, more
cpu-specific hardware signals exist, such as those for the various customer-reserved instructions
on the VAX (SIGIOT, SIG EMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt
signal; SIGQUIT for the more powerful quit signal, that normally causes a core image to be gen­
erated; SIGHUP and SIGTERM that cause graceful process termination, either because a user
has "hung up", or by user or program request; and SIGKILL, a more powerful termination signal
which a process cannot catch or ignore. Other software signals (SIGALRM, SIGVTALRM, SIG­
PROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a
descriptor, or when a non-blocking operation completes. A process may request to receive a
SIGURG signal when an urgent condition arises.

A process may be atopped by a signal sent to it or the members of its process group. The SIG­
STOP signal is a powerful stop signal, because it cannot be caught. Other stop signals
SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or output
request respectively is the reason the process is being stopped. A SIGCONT signal is sent to a
process when it is continued from a stopped state. Processes may receive notification with a
SIGCHLD signal when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been
reached.

Revision F of 15 May 1985 g

Signals System Interface Overview

3.2. Signal Handlers

A process has a handler associated with each signal that controls the way the signal is delivered.
The call

#include <signal.h>

struct sigvec {
int (*sv..Jiandler) ();
int sv_mask;
int sv_onstack;

};

sigvec(signo, sv, osv)
int signo; struct sigvec •sv; result struct sigvec •osv;

assigns interrupt handler address ,v_handler to signal aigno. Each handler address specifies
either an interrupt routine for the signal, that the signal is to be ignored, or that a default action
(usually process termination) is to occur iC the signal occurs. The constants SIGJGN and
SIG...DEF used as values for ,v_handler cause ignoring or defaulting or a condition. The ,v_ma,k
and ,v_onatack values specify the signal mask to be used when the handler is invoked and
whether the handler should operate on the normal run-time stack or a special signal stack (see
below). If oav is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it will be delivered. The
process or signal delivery adds the signal to be delivered and those signals specified in the associ­
ated signal handler's sv_mask to a set or those ma,ked for the process, saves the current process
context, and places the process in the context oC the signal handling routine. The call is
arranged so that iC the signal handling routine exits normally the signal mask will be restored
and the process will resume execution in the original context. If the process wishes to resume in
a different context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent or handlers for signals. It prevents signals from being
delivered much as a raised hardware interrupt priority level prevents hardware interrupts.
Preventing an interrupt Crom occurring by changing the handler is analogous to disabling a dev­
ice from further interrupts.

The signal handling routine ,v_handler is called by a C call oC the form

(*sv..Jiandler) (signo, code, scp);
int signo; long code; struct sigcontext •scp;

The aigno gives the number of the signal that occurred, and the code, a word of information sup­
plied by the hardware. The up parameter is a pointer to a machine-dependent structure con­
taining the information for restoring the context before the signal.

3.3. Sending Signals

A process can send a signal to another process or group oC processes with the calls:

10 Revision For 15 May 1985

0

0

0

0

0

0

System Interface Overview

kill(pid, signo);
int pid, signo;

killpgrp(pgrp, signo);
int pgrp, signo;

Signals

Unless the process sending the signal is privileged, it and the process receiving the signal must
have the same effective user id.

Signals are also sent implicitly from a terminal device to the process group associated with the
terminal when certain input characters are typed.

3.4. Protecting Critical Sections

To block a section of code against one or more signals, a aigblock call may be used to add a set of
signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with aigaetmaak,

oldmask = sigsetmask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty ma,k.

It is possible to check conditions with some signals blocked, and then to pause waiting for a sig­
nal and restoring the mask, by using:

sigpause(mask);
long mask;

3.5. Signal Stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

};

sigstack(ss, oss)
struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at aa_ap for delivery of signals. The value aa_onatack
indicates whether the process is currently on the signal stack, a notion maintained in software by
the system.

When a signal is to be delivered, the system checks whether the process is on a signal stack. If
not, then the process is switched to the signal stack for delivery, with the return from the signal
arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the signal
stack that uses a different stack, a aigatack call should be used to reset the signal stack.

Revision F of 15 May 1985 11

Timers System Interface Overview

4. Timers

4.1. Real Time

The system's notion of the current Greenwich time and the current time zone 1s set and
returned by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <•y•/time.h> as:

struct timeval {
long tv_sec;

tv_usec; long
};

struct timezone {

/* seconds since Jan l, 1970 */
/* and microseconds*/

int tz_minuteswest; /* of Greenwich*/
int tz_dsttime; /• type of dst correction to apply•/

};

Earlier versions of UNIX contained only a !-second resolution version of this call, which remains
as a library routine:

or

time(tvp)
result long •tvp;

tv = time(O);
result long tv;

returning only the tv_sec field from the gettimeofday call.

4.2. Interval Time

The system provides each process with three interval timers, defined in <sys/time.h>:

#defineITIMER_R.EAL O /* real time intervals*/
#defineITIMER_VIRTUAL 1 /* virtual time intervals*/
#defineITIMER_FROF 2 /• user and system virtual time•/

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to
maintain a wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process
is executing. A SIGVTALRM signal is delivered when it expires.

12 Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview Timers

The ITIMERYROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by processes to statistically profile their
execution. A SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval;
struct timeval it_value;

};

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setltlmer(which, value, ovalue);

/• timer interval•/
;• current value•/

int which; struct itimerval •value; result struct itimerval •ovalue;

The third argument to ,etitimer specifies an optional structure to receive the previous contents
of the interval timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This
clock resolution can be determined by loading a very small value into a timer and reading the
timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain because
it is not always possible to guarantee the automatic restart of system calls after receipt of a sig­
nal.

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

Revision F of 15 May 1985 13

Descriptors System Interface Overview

5. Descriptors

Each process has access to resources through descriptor.. Each descriptor is a handle allowing
the process to reference objects such as files, devices and communications links.

5.1. The Reference Table

Rather than allowing processes direct access to descriptors, the system introduces a level of
indirection, so that descriptors may be shared between processes. Each process has a descriptor
reference table, containing pointers to the actual descriptors. The descriptors themselves thus
have multiple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the getdta­
blesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by
small integers; for example if there are 20 slots they are numbered O to 19.

5.2. Descriptor Properties

0

Each descriptor has a logical set of properties maintained by the system and defined by its type.
Each type supports a set of operations; some operations, such as reading and writing, are com- 0
mon to several abstractions, while others are unique. The generic operations applying to many
of these types are described in section 8. Naming contexts, files and directories are described in
section 9. Section 10 describes communications domains and sockets. Terminals and (structured
and unstructured) devices are described in section 11.

5.3. Managing Descriptor References

A duplicate of a descriptor reference may be made by doing

new= dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new chosen
by the system will be the smallest unused descriptor reference slot. A copy of a descriptor refer­
ence may be made in a specific slot by doing

dup2(old, new);
int old, new;

The dupe call causes the system to deallocate the descriptor reference current occupying slot
new, if any, replacing it with a reference to the same descriptor as old. This deallocation is also
performed by:

14

close(old);
int old;

Revision F of 15 May 1985

0

System Interface Overview Descriptors

Q 5.4. Multiplexing Requests

0

0

The system provides a standard way to do synchronous and asynchronous multiplexing of opera­
tions.

Synchronous multiplexing is performed by using the aelect call:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result *in, *out, *except;
struct tlmeval *tvp;

The select call examines the descriptors specified by the sets in, out and except, replacing the
specified bit masks by the subsets that select for input, output, and exceptional conditions
respectively (nd indicates the size, in bytes, of the bit masks). If any descriptors meet the follow­
ing criteria, then the number of such descriptors is returned in nda and the bit masks are
updated.

• A descriptor selects for input if an input oriented operation such as read or receive is possi­
ble, or if a connection request may be accepted (see section 10.1.4).

• A descriptor selects for output if an output oriented operation such as write or aend is possi­
ble, or if an operation that was "in progress", such as connection establishment, has com­
pleted (see section 8.3).

• A descriptor selects for an exceptional condition if a condition that would cause a SIGURG
signal to be generated exists (see section 3.1).

If none of the specified conditions is true, the operation blocks for at most the amount of time
specified by tvp, or waits for one of the conditions to arise if tvp is given as 0.

Options affecting i/o on a descriptor may be read and set by the call:

dept= fcntl(d, cmd, arg);
result int dept; int d, cmd, arg;

/• interesting values for cmd •/
#defineF_SETFL 3 /• set descriptor options•;
#defineF_GETFL 4 ;• get descriptor options•;
#defineF_SETOWN 5 /• set descriptor owner (pid/pgrp) •/
#defineF_GETOWN 6 ;• get descriptor owner (pid/pgrp) •;

The F _SETFL cmd may be used to set a descriptor in non-blocking i/o mode and/or enable sig­
nalling when i/o is possible. F -8ETOWN may be used to specify a process or process group to
be signalled when using the latter mode of operation.

Operations on non-blocking descriptors will either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or
return an error EINPROGRESS noting that the requested operation is in progress. A descriptor
which has signalling enabled will cause the specified process and/or process group be signaled,
with a SIGIO for input, output, or in-progress operation complete, or a SIGURG for exceptional
conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only
as much data as there is buffer space for and return; when making a connection on a aocket, the
operation may return indicating that the connection establishment is "in progress". The aelect
facility can be used to determine when further output is possible on the terminal, or when the
connection establishment attempt is complete.

Revision F of 15 May 1985 15

Resource Controls System Interface Overview

6. Resource Controls

6.1. Process Priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently.
This tends to favor interactive processes and processes that execute only for short periods. It is
possible to determine the priority currently assigned to a process, process group, or the processes
of a specified user, or to alter this priority using the calls:

#definePRIO_PROCESS
#definePRIO_PGRP
#definePRIO_USER

0
1
2

/*process*/
/* process group*/
/* user id*/

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

The value prio is in the range -20 to 20. The default priority is O; lower priorities cause more
favorable execution. The getpriority call returns the highest priority (lowest numerical value)
enjoyed by any of the specified processes. The setpriority call sets the priorities of all of the
specified processes to the specified value. Only the super-user may lower priorities.

6.2. Resource Utilization

The resources used by a process are returned by
structure defined in <sys/resource.h>:

a getru,age call, returning information m a

16

#defineRUSAGE_SELF
#defineRUSAGE_CHILDREN

0
-1

/* usage by this process*/
/* usage by all children*/

getrusage(who, rusage);
int who; result struct rusage ~rusage;

struct rusage {
struct
struct
int
int
int
int
int
int
int
int
int
int
int
int
int

timeval ru_utime;
timeval ru_stime;
ru_maxrss; /*
ru_ixrss; /*
ru_idrss; /*
ru_isrss; /*
ru_minflt; /*
ru_majflt; /*
ru_nswap; /*
ru_inblock; /*
ru_oublock; /*
ru_msgsnd; /*
ru_msgrcv; /*
ru_nsignals; /*
ru_nvcsw; /*

/* user time used*/
/* system time used*/

maximum core resident set size: kbytes */
integral shared memory size (kbytes•sec) */
unshared data"*/
unshared stack"*/
page-reclaims*/
page faults*/
swaps */
block input operations*/
block output"*/
messages sent*/
messages received*/
signals received*/
voluntary context switches*/

Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview Resource Controls

int ru_nlvcsw; ;•involuntary"•;
};

The who parameter specifies whose resource usage is to be returned. The resources used by the
current process, or by all the terminated children of the current process may be requested.

6.3. Resource Limits

The resources of a process for which limits are controlled by the kernel are defined m
<sys/resource.h>, and controlled by the getrlimit and aetrlimit calls:

#defineRLIMIT_CPU O /* cpu time in milliseconds*/
#defineRLIMIT_FSIZE 1 /• maximum file size*/
#defineRLIMIT_DATA 2 ;• maximum data segment size*/
#defineRLIMIT_STACK 3 /* maximum stack segment size•/
#defineRLIMIT_CORE 4 /• maximum core file size•/
#defineRLIMIT_RSS 5 /* maximum resident set size*/

#defineRLIM_NLIMITS

#defineRLIM__INFINITY

struct rlimit {

};

int
int

rlim._cur;
rlim_max;

getrlimit(resource, rlp);

6

Ox7fffffff

/* current (soft) limit*/
/* hard limit*/

int resource; result struct rlimit *rlp;

setrlimit(resource, rlp);
int resource; struct rlimlt *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within
the range from O to rlim_max or (irreversibly) lower rlim_max.

Revision F of 15 May 1985 17

System operation support

7. System operation support

The calls in this section are permitted only to a privileged user.

7.1. Bootstrap Operations

The call

mount(blkdev, dir, ronly);
char •blkdev, •dir; int ronly;

System Interface Overview

extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX
file system to be made available starting at dir. If ronly is set then the file system is read-only;
writes to the file system will not be permitted and access times will not be updated when files are
referenced.

The call

swapon(blkdev, size);
char •blkdev; int size;

specifies a device to be made available for paging and swapping.

7 .2. Shutdown Operations

The call

unmount(dir);
char •ctir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call

sync();

schedules input/output to clean all system buffer caches.

The call

reboot(how);
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB_AUTOBOOT, or that the machine be halted with RBJIALT. These constants are defined
in <sys/reboot.h>.

7 .3. Accounting

0

0

The system optionally keeps an accounting record in a file for each process that exits on the sys­
tem. The format of this record is beyond the scope of this document. The accounting may be
enabled to a file name by doing 0

18 Revision F of 15 May 1985

0

0

0

System Interface Overview

acct (path) ;
char *path;

System operation support

if path is null, then accounting is disabled. Otherwise, the named file becomes the accounting
file.

Revision F of 15 May 1985 19

System Facilities System Interface Overview

Part II - System Facilities

This part of the document discusses the system facilities that are not considered part of the ker­
nel.

The system abstractions described are:

Directory Context•
A directory context is a position in the UNIX file system name space. Operations on files and
other named objects in a file system are always specified relative to such a context.

File•
Files are used to store uninterpreted sequence of bytes on which random access read• and
write• may occur. Pages from files or devices may also be mapped into process address
space. A directory may be read as a filet.

Communication• Domain•
A communications domain represents an interprocess communications environment, such as
the communications facilities of the UNIX system, communications in the INTERNET, or the
resource sharing protocols and access rights of a resource sharing system on a local network.

Socket•
A socket is an endpoint of communication and the focal point for !PC in a communications
domain. Sockets may be created in pairs, or given names and used to rendezvous with other
sockets in a communications domain, accepting connections from these sockets or exchanging
messages with them. These operations model a labeled or unlabeled communications graph,
and can be used in a wide variety of communications domains. Sockets can have different
type• to provide different semantics of communication, increasing the flexibility of the
model.

Terminal• and other device•
Devices include terminals, providing input editing and interrupt generation and output flow
control and editing, magnetic tapes, disks and other peripherals. They often support the
generic read and write operations as well as a number of ioctls.

Proce66ea
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in this release.

20 Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview Generic Operations

8. Generic Operations

Many system abstractions support the operations read, write and ioctl. We describe the basics of
these common primitives here. Similarly, the mechanisms whereby normally synchronous opera­
tions may occur in a non-blocking or asynchronous fashion are common to all system-defined
abstractions and are described here.

8.1. Read and Write

The read and write system calls can be applied to communications channels, files, terminals and
devices. They have the form:

cc= read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc= write(fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at
address bu/ of size nbytea. The number of bytes transferred is returned in cc, which is -1 if a
return occurred before any data was transferred because of an error or use of non-blocking
operations.

The write call transfers data from the buffer to the object defined by fd. Depending on the type
of fd, it is possible that the write call will accept some portion of the provided bytes; the user
should resubmit the other bytes in a later request in this case. Error returns because of inter­
rupted or otherwise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
caddr_t
int

};

iov_msg;
iov_len;

The calls using an array of descriptors are:

cc= readv(fd, iov, iovlen);

/* base of a component*/
/* length of a component*/

result int cc; int fd; struct iovec •1ov; int iovlen;

cc= writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

8.2. Input/Output Control

Control operations on an object are performed by the ioctl operation:

ioctl(fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified requeat to be performed on the object fd. The requeat

Revision F of 15 May 1985 21

Generic Operations System Interface Overview

parameter specifies whether the argument buffer is to be read, written, read and written, or is
not needed, and also the size of the buffer, as well as the request. Different descriptor types and 0
subtypes within descriptor types may use distinct ioctl requests. For example, operations on ter-
minals control flushing of input and output queues and setting of terminal parameters; operations
on disks cause formatting operations to occur; operations on tapes control tape positioning.

The names for basic control operations are defined in <sys/ioctl.h>.

8.3. Non-Blocking and Asynchronous Operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor
in non-blocking mode as described in section 5.4. Thereafter the read call will return a specific
EWOULDBLOCK error indication if there is no data to be read. The process may aelect the
associated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of
the provided data, returning a shorter than normal length, or return an error indicating that the
operation would block. More output can be performed as soon as a aelect call indicates the
object is writeable.

Operations other than data input or output may be performed on a descriptor in a non-blocking
fashion. These operations will return with a characteristic error indicating that they are in pro­
gress if they cannot return immediately. The descriptor may then be ,elected for write to find
out when the operation can be retried. When aelect indicates the descriptor is writeable, a
respecification of the original operation will return the result of the operation.

22 Revision F of 15 May 1985

0

0

System Interface Overview File System

Q 9. File System

0

0

The file system abstraction provides access to a hierarchical file system structure. The file sys­
tem contains directories (each of which may contain other sub-directories) as well as files and
references to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related infor­
mation is present in a file. Files may be read and written in a random-access fashion. The user
may read the data in a directory as though it were an ordinary file to determine the names of
the contained files, but only the system may write into the directories. The file system stores
only a small amount of ownership, protection and usage information with a file.

9.1. Naming

The file system calls take path name arguments. These consist of a zero or more component file
namea separated by "/" characters, where each file name is up to 255 ASCII characters exclud­
ing null and"/".

Each process always has two naming contexts: one for the root directory of the file system and
one for the current working directory. These are used by the system in the filename translation
process. If a path name begins with a "/", it is called a full path name and interpreted relative
to the root directory context. If the path name does not begin with a "/" it is called a relative
path name and interpreted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name " .. " in each directory refers to the parent directory of that directory.

The calls

chdir (path) ;
char •path;

chroot(path);
char *path;

change the current working directory and root directory context of a process. Only the super­
user can change the root directory context of a process.

9.2. Creation and Removal

The file system allows directories, files and special devices, to be created and removed from the
file system.

9.2.1. Directory Creation and Removal

A directory is created with the mkdir system call:

mkdir(path, mode);
char •path; int mode;

and removed with the rmdir system call:

Revision F of 15 May 1985 23

File System

rmdir(path);
char •path;

A directory must be empty if it is to be deleted.

9.2.2. File Creation

Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

System Interface Overview

The path parameter specifies the name of the file to be created. The oftag parameter must
include O_CREAT from below to cause the file to be created. The protection for the new file is
specified in mode. Bits for oftag are defined in <sys/file.h>:

#defineO_RDONLY 000 /* open for reading*/
#defineO_WRONLY 001 /• open for writing•/
#defineO_RDWR 002 /* open for read & write */
#defineO_NDELAY 004 /• non-blocking open•/
#defineO__J\PPEND 010 /• append on each write*/
#defineO_CREAT 01000 /• open with file create*/
#defineO_TRUNC 02000 /* open with truncation*/
#defineO_EXCL 04000 /* error on create if file exists*/

One of O__RDONLY, O_WRONLY and O__RDWR should be specified, indicating what types of

0

operations are desired to be performed on the open file. The operations will be checked against 0,
the user's access rights to the file before allowing the open to succeed. Specifying O_APPEND
causes writes to automatically append to the file. The flag O_CREAT causes the file to be
created if it does not exist, with the specified mode, owned by the current user and the group of
the containing directory.

If the open specifies to create the file with O__EXCL and the file already exists, then the open
will fail without affecting the file in any way. This provides a simple exclusive access facility.

9.2.3. Creating References to Devices

The file system allows entries which reference peripheral devices. Peripherals are distinguished
as block or character devices according by their ability to support block-oriented operations.
Devices are identified by their "major" and "minor" device numbers. The major device number
determines the kind of peripheral it is, while the minor device number indicates one of possibly
many peripherals of that kind. Structured devices have all operations performed internally in
"block" quantities while unstructured devices often have a number of special ioctl operations,
and may have input and output performed in large units. The mknod call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

where mode is formed from the object type and access perm1ss1ons. The parameter de11 is a
configuration dependent parameter used to identify specific chara~ter or block i/o devices.

24 Revision F of 15 May 1985

0

0

0

0

System Interface Overview

9.2.4. File and Device Removal

A reference to a file or special device may be removed with the unlink call,

unlink (path) ;
char •path;

File System

The caller must have write access to the directory in which the file is located for this call to be
successful.

9.3. Reading and Modifying File Attributes

Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stat.h>

stat(path, stb);
char •path; result struct stat •stb;

fstat (fd, stb);
int fd; result struct stat •stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of
hard links. If the file is a symbolic link, then the status of the link itself (rather than the file the
link references) may be found using the lat at call:

lstat(path, stb);
char *path; result struct stat •stb;

Newly created files are assigned the user id of the process that created it and the group id of the
directory in which it was created. The ownership of a file may be changed by either of the calls

chown(path, owner, group);
char *path; int owner. group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it. These
levels are owner relative, group relative, and global (all users and groups). Each level of access
has separate indicators for read permission, write permission, and execute permission. The pro­
tection bits associated with a file may be set by either of the calls:

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

where mode is a value indicating the new protection of the file. The file mode is a three digit
octal number. Each digit encodes read access as 4, write access as 2 and execute access as 1,
or'ed together. The 0700 bits describe owner access, the 070 bits describe the access rights for
processes in the same group as the file, and the 07 bits describe the access rights for other
processes.

Revision F of 15 May 1985 25

File System System Interface Overview

Three additional bits exist: the 04000 "set-user-id" bit can be set on an executable file to cause o
the effective user-id of a process which executes the file to be set to the owner of that file; the
02000 bit has a similar effect on the effective group-id. The 01000 bit causes an image of an exe-
cutable program to be saved longer than would otherwise be normal; this "sticky" bit is a hint to
the system that a program is heavily used.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp);
char •path; struct timeval •tvp[2];

This is particularly useful when moving files between media, to preserve relationships between
the times the file was modified.

9.4. Links and Renaming

Links allow multiple names for a file to exist. Links exist independently of the file linked to.

Two types of links exist, hard links and aymbolic links. A hard link is a reference counting
mechanism that allows a file to have multiple names within the same file system. Symbolic links
cause string substitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists
for a symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to path1:

link(pathl, path2);
char •pathl, *path2;

symlink(pathl, path2);
char *path!, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the "value" of the link may be read with the read/ink call,

len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;

This call returns, in buf, the null-terminated string substituted into pathnames passing through
path.

Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both o/dname and newname must be in the same file system. If newname exists and is a
directory, then it must be empty.

9.5. Extension and Truncation

0

Files are created with zero length and may be extended simply by writing or appending to them. o.
While a file is open the system maintains a pointer into the file indicating the current location in
the file associated with the descriptor. This pointer may be moved about in the file in a random

26 Revision F of 15 May 1985

0

0

0

System Interface Overview

access fashion. To set the current offset into a file, the laeek call may be used,

oldoffset = lseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of,

/* set absolute file offset*/

File System

#de fine L_SET
#defineL_INCR
#defineL_XTND

0
1
2

/* set file offset relative to current position*/
/* set offset relative to end-of-file*/

The call "lseek(fd, 0, L_INCR)" returns the current offset into the file.

Files may have "holes" in them. Holes are void areas in the linear extent of the file where data
has never been written. These may be created by seeking to a location in a file past the current
end-of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:

truncate(path, length);
char *path; int length;

ftruncate(fd, length);
int fd, length;

reducing the size of the specified file to length bytes.

9.6. Checking Accessibility

A process running with different real and effective user ids may interrogate the accessibility of a
file to the real user by using the acceu call:

accessible= access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or'ing the following bits, defined in <sys/file.h>:

#defineF_OK O /* file exists */
#defineJLOK 1 /* file is executable */
#defineW_OK 2 /* file is writable */
#defineR_OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of acce ...

9. 7. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their
access to shared files. A process may place an advisory read or write lock on a file, so that other
cooperating processes may avoid interfering with the process' access. This simple mechanism
provides locking with file granularity. More granular locking can be built using the !PC facilities
to provide a lock manager. The system does not force processes to obey the locks; they are of an
advisory nature only.

Locking is performed after an open call by applying the flock primitive,

Revision F of 15 May 1985 27

File System

flock (fd, how) ;
int fd, how;

where the how parameter is formed from bits defined in <sys/file.h>:

/* shared lock•/

System Interface Overview

#de fine LOCK_SH
#defineLOCK_EX
#define LOCK_NB
#de fine LOCK_UN

1
2
4
8

/* exclusive lock*/
/* don't block when locking*/
/*unlock*/

Successive lock calls may be used to increase or decrease the level of locking. If an object is
currently locked by another process when a flock call is made, the caller will be blocked until the
current lock owner releases the lock; this may be avoided by including LOCK_NB in the how
parameter. Specifying LOCK_UN removes all locks associated with the descriptor. Advisory
locks held by a process are automatically deleted when the process terminates.

9.8. Disk Quotas

As an optional facility, each file system may be requested to impose limits on a user's disk usage.
Two quantities are limited: the total amount of disk space which a user may allocate in a file sys­
tem and the total number of files a user may create in a file system. Quotas are expressed as
hard limits and ,oft limits. A hard limit is always imposed; if a user would exceed a hard limit,
the operation which caused the resource request will fail. A soft limit results in the user receiv­
ing a warning message, but with allocation succeeding. Facilities are provided to turn soft limits
into hard limits if a user has exceeded a soft limit for an unreasonable period of time.

To enable disk quotas on a file system the ,etquota call is used:

setquota(special, file);
char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file refers
to a disk quota file (residing on the file system associated with apeciaQ from which user quotas
should be obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:

#include <sys/quota.h>

quota(cmd, uid, arg, addr);
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command
specific. The file <sys/quota.h> contains definitions pertinent to the use of this call.

28 Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview Interprocess Communications

10. Interprocess Communications

10.1. Interprocess Communication Primitives

10.1.1. Communication Domains

The system provides access to an extensible set of communication domain,. A communication
domain is identified by a manifest constant defined in the file <sys/socket.h>. Important stan­
dard domains supported by the system are the UNIX domain, AF _UNIX, for communication
within the system, and the "internet" domain for communication in the DARPA internet,
AF _]NET. Other domains can be added to the system.

10.1.2. Socket Types and Protocols

Within a domain, communication takes place between communication endpoints known as aock­
eta. Each socket has the potential to exchange information with other sockets within the
domain.

Each socket has an associated abstract type, which describes the semantics of communication
using that socket. Properties such as reliability, ordering, and prevention of duplication of mes­
sages are determined by the type. The basic set of socket types is defined in <sys/socket.h>:

/* Standard socket types*/
#defineSOCK_DGRAM 1
#defineSOCK_STREAM 2
#define SOCK_RAW
#defineSOCK_RDM
#defineSOCK_SEQPACKET

3

4
5

/*datagram*/
/* virtual circuit*/
/*
;•
/*

raw socket"/
reliably-delivered message*/
sequenced packets*/

The SOCK_DGRAM type models the semantics of datagrams in network communication: mes­
sages may be lost or duplicated and may arrive out-of-order. The SOCK_RDM type models the
semantics of reliable datagrams: messages arrive unduplicated and in-order, the sender is notified
if messages are lost. The aend and receive operations (described below) generate
reliable/unreliable datagrams. The SOCK_STREAM type models connection-based virtual cir­
cuits: two-way byte streams with no record boundaries. The SOCK_SEQPACKET type models
a connection-based, full-duplex, reliable, sequenced packet exchange; the sender is notified if
messages are lost, and messages are never duplicated or presented out-of-order. Users of the last
two abstractions may use the facilities for out-of-band transmission to send out-of-band data.

SOCK_RA W is used for unprocessed access to internal network layers and interfaces; it has no
specific semantics.

Other socket types can be defined. 1

Each socket may have a concrete protocol associated with it. This protocol is used within the
domain to provide the semantics required by the socket type. For example, within the

I This release does not support the SOCK__RDM and SOCK_SEQPACKET types.

Revision F of 15 May 1985 29

Interprocess Communications System Interface Overview

"internet" domain, the SOCKJ)GRAM type may be implemented by the UDP user datagram
protocol, and the SOCK-8TREAM type may be implemented by the TCP transmission control
protocol, while no standard protocols to provide SOCK_RDM or SOCK-8EQPACKET sockets
exist.

10.1.3. Socket Creation, Naming, and Service Establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the
aocket call:

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

An unconnected socket descriptor may yield a connected socket descriptor in one of two ways:
either by actively connecting to another socket, or by becoming associated with a name in the
communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the communications
domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket's bound name may be retrieved with a getaockname call:

getsockname(s, name, namelen);
int s; result caddr_t name; result int *namelen;

while the peer's name can be retrieved with gelpeername:

getpeername(s, name, namelen);
int s; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

10.1.4- Accepting Connections

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued
awaiting acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result caddr_t name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on •·

30 Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview Interprocess Communications

10.1.5. Making Connections

An active connection to a named socket is made by the connect call:

connect(s, name. namelen);
int s; caddr_t name; int namelen;

It is also possible to create connected pairs of sockets without using the domain's name space to
rendezvous; this is done with the aocketpair call2:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2);

Here the returned sv descriptors correspond to those obtained with accept and connect.

The call

pipe(pv);
result int pv[2);

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv [O] only writeable and
pv [1] only readable.

10.1.6. Sending and Receiving Data

Messages may be sent from a socket by:

cc= sendto(s, buf, len, flags, to, tolen);
result int cc; int s; caddr_t buf; int len, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc= send(s, buf, len, flags);
result int cc; int s; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

and

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result caddr_t from; result int *fromlenaddr;

msglen = recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len, flags;

In the unconnected case, the parameters to and to/en specify the destination or source of the
message, while the from parameter stores the source of the message, and 'fromlenaddr initially
gives the size of the from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length len bytes,
starting at address buf The flag• specify peeking at a message without reading it or sending or
receiving high-priority out-of-band messages, as follows:

2 This release supports 1ocketpair creation only in the "unix" communiea.tion domain.

Revision F of 15 May 1985 31

Interprocess Communications System Interface Overview

#defineMSG_PEEK
#defineMSG_OOB

Oxl
Ox2

/• peek at incoming message•/
/• process out-of-band data•/

10.1. 7. Scatter/Gather and Exchanging Access Rights

It is possible to scatter and gather data and to exchange access rights with messages. When
either of these operations is involved, the number of parameters to the call becomes large. Thus
the system defines a message header structure, in <sys/socket.h>, which is used to contain the
parameters to the calls:

struct msghdr {

};

caddr_t msg_name;
int msg_namelen;
struct lov *msg_iov;
int msg_iovlen;

/• optional address•/
/• size of address•;
/• scatter/gather array•/

/•#elements in msg_iov •/
access rights sent/received•/

/• size of msg_accrights. •/
caddr_t msg_accrlghts; /*
int msg_accrightslen;

Here m,g_name and m,g_namelen specify the source or destination address if the socket is
unconnected; m,g_name may be given as a null pointer if no names are desired or required. The
m,g_iov and m,g_iovlen describe the scatter /gather locations, as described in section 8.3. Access
rights to be sent along with the message are specified in m•g_accright•, which has length
m,g_accrightslen. In the "unix" domain these are an array of integer descriptors, taken from
the sending process and duplicated in the receiver.

This structure is used in the operations .endm,g and recvm,g:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

10.1.8. Using Read and Write with Sockets

The normal UNIX read and write calls may be applied to connected sockets and translated into
send and receive calls from or to a single area of memory and discarding any rights received. A
process may operate on a virtual circuit socket, a terminal or a file with blocking or non-blocking
input/output operations without distinguishing the descriptor type.

10.1.9. Shutting Down Halves of Full-Duplex Connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read
from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is O to not read further, 1 to not write further, or 2 to completely shut the con­
nection down.

32 Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview Interprocess Communications

10.1.10. Socket and Protocol Options

Sockets, and their underlying communication protocols, may support option,. These options
may be used to manipulate implementation specific or non-standard facilities. The getaockopt and
setsockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen);
int s, level, optname; result caddr_t optval; result int •optlen;

setsockopt(s, level, optname, optval, optlen);
int s, level, optname; caddr_t optval; int optlen;

The option op/name is interpreted at the indicated protocol level for socket a. If a value is
specified with optval and opt/en, it is interpreted by the software operating at the specified level.
The level SOL_SOCKET is reserved to indicate options maintained by the socket facilities.
Other level values indicate a particular protocol which is to act on the option request; these
values are normally interpreted as a "protocol number".

10.2. UNIX Domain

This section describes briefly the properties of the UNIX communications domain.

10.2.1. Types of Sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while
SOCK_DGRAM provides datagrams - unreliable message-style communications.

10.2.2. Naming

Socket names are strings and may appear in the UNIX file system name space through portals3.

10.2.3. Access Rights Transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of service
within the system and allows user processes to be used in building system facilities.

10.3. INTERNET Domain

This section describes briefly how the INTERNET domain is mapped to the model described in
this section. More information will be found in the Networking Implementation Notea in the Sys­
tem Internals Manual.

3 The current implementation or the UNIX domain embeds bound sockets in the UNIX file system name
space; this is a side effect of the implementation.

Revision F of 15 May 1985 33

Interprocess Communications System Interface Overview

10.3.1. Socket Types and Protocols

SOCK-8TREAM is supported by the INTERNET TCP protocol; SOCK.J)GRAM by the UDP
protocol. The SOCK_SEQP ACKET has no direct INTERNET family analogue; a protocol
based on one from the XEROX NS family and layered on top of IP could be implemented to fill
this gap.

10.3.2. Socket Naming

Sockets in the INTERNET domain have names composed of the 32 bit internet address, and a 16
bit port number. Options may be used to provide source routing for the address, security
options, or additional addresses for subnets of INTERNET for which the ha.sic 32 bit addresses
are insufficient.

10.3.3. Access Rights Transmission

No access rights transmission facilities are provided in the INTERNET domain.

10.3 . .f. Raw Access

The INTERNET domain allows the super-user access to the raw facilities of the various network
interfaces and the various internal layers of the protocol implementation. This allows adminis-

0

trative and debugging functions to occur. These interfaces are modeled as SOCK__RAW sockets. o

0
34 Revision F of 15 May 1985

0

0

0

System Interface Overview Devices

11. Devices
The system uses a collection of device-drivers to access attached peripherals. Such devices are
grouped into two classes: structured devices on which block-oriented input/output operations
occur, and unstructured devices (the rest).

11.1. Structured Devices

Structured devices include disk and tape drives, and are accessed through a system buffer­
caching mechanism, which permits them to be accessed as ordinary files are, performing reads
and writes as necessary to allow random-access.

The mount command in the system allows a structured device containing a file system volume to
be accessed through the UNIX file system calls.

Tape drives also typically provide a structured interface, although this is rarely used.

11.2. Unstructured Devices

Unstructured devices are those devices which do not support a randomly accessed block struc­
ture.

Communications lines, raster plotters, normal magnetic tape access (in large or variable size
blocks), and access to disk drives permitting large block transfers and special operations like disk
formatting and labelling all use unstructured device interfaces.

The writing of devices for unstructured devices other than communications lines is described in
the Device Driver Manual in the System Internals Manual.

Revision F of 15 May 1985 35

Debugging Support System Interface Overview

12. Debugging Support

The ptrace facility of version 7 UNIX is provided in this release. Planned enhancements which
would allow a descriptor-based process control facility have not been implemented.

36 Revision F of 15 May 1985

0

0

0

0

0

System Interface Overview Summary of Facilities

Part ID - Summary of Facilities

Appendix A. Summary of Facilities

A.1. Kernel Primitives

A.1.1. Process Naming and Protection

sethostid
gethostid
sethostname
gethostname
getpid
fork
exit
execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

A.1.2. Memory Management

<mman.h>

set UNIX host id
get UNIX host id
set UNIX host name
get UNIX host name
get process id
create new process
terminate a process
execute a different process
get user id
get effective user id
set real and effective user id's
get accounting group id
get effective accounting group id
get access group set
set real and effective group id's
set access group set
get process group
set process group

memory management definitions

fr 3 t Not supported in the 1.0 Sun release. (,,_')

Revision F of 15 May 1985 37

Summary of Facilities

sbrk
sstkt
getpagesize
mmapt
mremapt
munmapt
mprotectt
madviset
mincoret

A.1.3. Signals

<signal.h>
s1gvec
kill
killpgrp
sigblock
sigsetmask
s1gpause
sigstack

A.1..4- Timing and Statistics

<sys/time.h>
gettimeofday
settimeofday
getitimer
setitimer
profil

A.1.5. Descriptors

getdtablesize
dup
dup2
close
select
fcntl

~ t Not supported in the 1.0 Sun release.

38

change data section size
change stack section size
get memory page size
map pages of memory
remap pages m memory
unmap memory
change protection of pages

System Interface Overview

give memory management advice
determine core residency of pages

signal definitions
set handler for signal
send signal to process
send signal to process group
block set of signals
restore set of blocked signals
wait for signals
set software stack for signals

time-related definitions
get current time and timezone
set current time and timezone
read an interval timer
get and set an interval timer
profile process

descriptor reference table size
duplicate descriptor
duplicate to specified index
close descriptor
multiplex input/output
control descriptor options

Revision F of 15 May 1985

0

0

0

0

0

0

System Interface Overview

A.1.6. Resource Controls

<sys/resource.h>
get priority
set priority
getrusage
getrlimit
setrlimit

A.1. 7. System Operation Support

mount
swapon
umount
sync
reboot
acct

A.2. System Facilities

A.2.1. Generic Operations

read
write
<sys/uio.h>
readv
writev
<sys/ioctl.h>
ioctl

A.2.2. File System

resource-related definitions
get process priority
set process priority
get resource usage
get resource limitations
set resource limitations

mount a device file system
add a swap device
umount a file system
flush system caches
re boot a machine
specify accounting file

read data
write data
scatter-gather related definitions
scattered data input
gathered data output
standard control operations
device control operation

Summary of Facilities

Operations marked with a * exist in two forms: as shown, operating on a file name, and operat­
ing on a file descriptor, when the name is preceded with a "f".

<sys/file.h>
chdir
chroot
mkdir
rmdir
open
mknod
unlink

Revision F of 15 May 1985

file system definitions
change directory
change root directory
make a directory
remove a directory
open a new or existing file
make a special file
remove a link

39

Summary of Facilities

stat*
!stat
chown*
chmod*
utimes
link
symlink
readlink
rename
!seek
truncate*
access
flock

return status for a file
returned status of link
change owner
change mode
change access/modify times
make a hard link
make a symbolic link
read contents of symbolic link
change name of file
reposition within file
truncate file
determine accessibility
lock a file

System interface Overview

A.2.3. Interprocess Communications

<sys/socket.h>
socket
bind
getsockname
listen
accept
connect
socketpair
sendto
send
recvfrom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

A.2 . .J. Devices

A.2.5. Debugging Support

40

standard definitions
create socket
bind socket to name
get socket name
allow queueing of connections
accept a connection
connect to peer socket
create pair of connected sockets
send data to named socket
send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights
partially close full-duplex connection
get socket option
set socket option

Revision F of 15 May 1985

0

0

0

0
Index

A F
accept,30 fchmod,25
accessability of a file, 27 fchown, 25

access, 27 file
acct, 19 access times, 26

attributes accessability, 27

of a file, 25 attributes, 25
extending, 26

B hard links, 26

bind, 30 links, 26

binding sockets, 30 Jocking, 27
modify times, 26

C ownership, 25

chdir, 23
permission, 25
protection, 25

chmod, 25 renaming, 26
chown, 25 seeking in, 27
chroot, 23 symbolic links, 26

0 connect,31 truncating, 27
connecting to sockets, 30 file permission
control operations, 21 changing, 25
creating a process, 4 set group-id, 26
creating devices, 24 set user-id, 26

creating files, 24 sticky bit, 26

creating sockets, 30 file system, 23 thru 28
naming, 23

D files

descriptor creating, 24

copying, 14 removing, 25

duplicating, 14 flock, 28

reference table, 14 fork, 4
removing, 14 fstat, 25
type, 14 ftruncate, 27

descriptors, 14 thru 15
devices, 35 G

creating, 24 gather write, 21
removing, 25 generic operations, 21 thru 22
structured, 35 getdtablesize, 14
unstructured, 35 getegid,5

disk quotas, 28 geteuid,5
dopt, 15 getgid,5

E
gethostname,4
getitimer, 13

execve,5 getpagesize, 7

0
exit,4 getpeername, 30
extending files, 26 getpgrp, 6

getpid,4

-v-

getpriority, 16
getrlimit, 17
getrusage, 16
getsockname, 30
getsockopt, 33
gettimeofday, 12
getuid,5
group !D's, 5

H
hard links, 26
hostid,4

I
interprocess communication, 29 thru 34
interval timers, 12
ioctl, 6, 21

K
kill, 11
killpgrp, 11

L
link, 26
links, 26

hard, 26
symbolic, 26

listen, 30
locking files, 27
lseek, 27

M
madvise,8
memory management, 7 thru 8
mincore,8
mkdir, 23
mknod, 24
mmap,7
mount, 18
mprotect,8
multiplexing requests, 15
munmap,8

0
open, 24
operations support, 18 thru 19
ownership of a file, 25

p
process groups, 6
process priorities, 16
processes, 4

creating, 4
terminating, 4

- vi -

processes, continued
waiting for, 5

processes and protection, 4 thru 6
profil, 13

Q
quota, 28
quotas, 28

R
read, 21
readlink, 26
readv, 21
reboot, 18
receiving from sockets, 31
recv, 31
recvfrom, 31
recvmsg, 32
reference table, 14
removing devices, 25
removing files, 25
rename, 26
renaming files, 26
resource controls, 16 thru 17
rmdir,24

s
sbrk,7
scatter read, 21
seeking in files, 27
select, 15
send, 31
sending to sockets, 31
sendmsg, 32
sendto, 31
setgroups,6
sethostid,4
sethostname,4
setitimer, 13
setpgrp, 6
setpriority, 16
setquota, 28
setregid,6
setrlimit, 17
setruid,6
setsockopt,33
settimeofday, 12
shutdown,32
sigblock, 11
signals, 9 thru 11
sigpause, 11
sigsetmask, 11
sigstack, 11
sigvec, 10
socket, 30

0

0

0

0

0

0

socketpair, 31
sockets, 29

binding, 30
connecting, 30
creating, 30
options, 33
receiving from, 31
sending to, 31

sstk,7
stat, 25
swapon, 18
symbolic links, 26
symlink, 26
sync, 18

T
terminating a process, 4
time, 12
timers, 12 thru 13

interval, 12
truncate, 27
truncating files, 27

u
unlink, 25
unmount, 18
user]D's, 5
utimes, 26

w
wait,5
wait3,5
waiting for a process, 5
write, 21
writev, 21

- vii -

01

0,
I

0

0

0

0

INTR0(2) SYSTEM CALLS INTR0(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#Include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error returns.
An error condition is indicated by an otherwise impossible return value. This is almost always
-1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer unless
otherwise noted. An error number is also made available in the external variable errno, which is
not cleared on successful calls. Thus errno should be tested only after an error has occurred.

The following is a complete list of the errors and their names as given in <errno.h>.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to
its owner or super-user. It is also returned for attempts by ordinary users to do things
allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition.

5 EIO 1/0 error
Some physical 1/0 error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a su bdevice which does not exist, or beyond the limits of
the device. It may also occur when, for example, an illegal tape drive unit number is
selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to ezecve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid ma~ic number, see a.out(&).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a
file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes

Sun Release 2.0

In a fork, the system's process table is full or the user is not allowed to create any more
processes.

Last change: 15 March 1984 1

JNTR0(2) SYSTEM CALLS INTR0(2)

2

12 ENOMEM Not enough core
During an ezecve or break, a program asks for more core or swap space than the system
is able to supply. A lack of swap space is normally a temporary condition, however a
lack of core is not a temporary condition; the maximum size of the text, data, and stack
segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a sys­
tem call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current directory,
mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir.

21 EJSDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown sig­
nal in signal, reading or writing a file for which seek has generated a negative pointer.
Also set by math functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in an ioctl is not a terminal or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or
reading!). Also an attempt to open for writing a pure-procedure program that is being
executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

Last change: 15 March 1984 Sun Release 2.0

0

0

0

0

0

0

INTR0(2) SYSTEM CALLS INTR0(2)

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An /seek was issued to a pipe. This error may also be issued for other non-seekable dev­
ices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This condi­
tion normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math library (as described in section 3M) is out of the
domain of the function.

34 ERANGE Result too large
The value of a function in the math library (as described in section 3M) is unrepresent­
able within machine precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non­
blocking mode (see ioct/(2)).

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect(2)) was attempted
on a non-blocking object (see ioct/(2)).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it exists.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no implemen­
tation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

Sun Release 2.0 Last change: 15 March 1Q84 3

INTR0(2) SYSTEM CALLS INTR0(2)

4

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for it
exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP Internet addresses with ARPA Inter­
net protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTA VAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer execut­
ing a shutdown(2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked sufficient
buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown(2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it . .This usu­
ally results from trying to connect to a service which is inactive on the foreign host.

62 ELOOP Too many levels or symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component or a path name exceeded 255 characters, or an entire path name exceeded
1023 characters.

Last change: 15 March 1984 Sun Release 2.0

0

0

0

0

0

0

INTR0(2) SYSTEM CALLS INTR0(2)

64 ENOTEMPTY Directory not empty
A directory with entries other than '\" and 11

••
11 was supplied to a remove directory or

rename call.

DEFINITIONS
Descriptor

An integer assigned by the system when a file is referenced by open(2), dup(2), or pipe(2) or
a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access path
to that file or socket from a given process or any of its children.

Directory
A directory is a special type of file which contains entries which are references to other files.
Directory entries are called links. By convention, a directory contains at least two links, .
and .. , referred to as dot and dot-dot respectively. Dot refers to the directory itself and
dot-dot refers to its parent directory.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the effective
group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user ID and real
group ID respectively. Either may be modified through execution of a set-user-ID or set­
group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID's used only in determining resource
accessibility. Access checks are performed as described below in "File Access Permissions".

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used in
determining whether a process may perform a requested operation on the file (such as open­
ing a file for writing). Access permissions are established at the time a file is created. They
may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes
of users: the owner of the file, those users in the file's group, anyone else. Every file has an
independent set of access permissions for each of these classes. When an access check is
made, the system decides if permission should be granted by checking the access informa­
tion applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID or the owner or the file and the owner
permissions allow the access.

The process's effective user ID does not match the user ID of the owner of the file, and
either the process's effective group ID matches the group ID of the file, or the group ID of
the file is in the process's group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for "other
users" allow access.

Otherwise, permission is denied.

File Name
Names consisting of up to 255 characters may be used to name an ordinary file, special file,
or directory.

Sun Release 2.0 Last change: 15 March 1984 5

INTR0(2) SYSTEM CALLS INTR0(2)

6

These characters may be selected from the set of all ASCII character excluding O (null) and
the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, !, J or J as part of file names because of the special
meaning attached to these characters by the shell.

Parent Process ID
A new process is created by a currently active process; see fork(2). The parent process ID
of a process is the process ID of its creator.

Path Name
A path name is a null-terminated character string starting with an optional slash (/), fol­
lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME...MAX} characters.

If a path name begins with a slash, the path search begins at the root directory. Otherwise,
the search begins from the current working directory. A slash by itself names the root
directory. A null pathname refers to the current directory.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping per­
mits the signalling of related processes (see ki/lpg(2)) and the job control mechanisms of
csh(l).

Process ID
Each active process in the system is uniquely identified by a positive integer called a process
ID. The range of this ID is from O to 30000.

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process's root directory need
not be the root directory of the root file system.

Sockets and Address Families
A socket is an endpoint for communication between processes. Each socket has queues for
sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2) for
more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process O is the scheduler.

Last change: 15 March 1984 Sun Release 2.0

0

0

0

0

0

0

INTR0(2) SYSTEM CALLS INTR0(2)

Process 1 is the initialization process init, and is the ancestor of every other process in the
system. It is used to control the process structure. Process 2 is the paging daemon.

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Tty Group ID

SEE ALSO

Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between multiple jobs
contending for the same terminal; see csh(l), and tty(4).

intro(3), perror(3)

Sun Release 2.0 Last change: 15 March 1984 7

ACCEPT(2) SYSTEM CALLS ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#Include <sy•/typea,h>
#Include <•y•/socket,h>

n• = accept(•, addr, addrlen)
Int na, a;
struct sockaddr •addr;
Int •addrlen;

DESCRIPTION
The argument s is a socket which has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Accept extracts the first connection on
the queue of pending connections, creates a new socket with the same properties of s and allo­
cates a new file descriptor, ns, for the socket. Ir no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connection is
present. If the socket is marked non-blocking and no pending connections are present on the
queue, accept returns an error as described below. The accepted socket, ns, is used to read and
write data to and from the socket which connected to this one; it is not used to accept more con­
nections. The original socket s remains open for accepting rurther connections.

The argument addr is a result parameter which is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is deter­
mined by the domain in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr; on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection­
based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. Ir it succeeds it returns a non-negative integer which is a descrip­
tor for the accepted socket.

ERRORS
The accept will fail if:

[EBADF[The descriptor is invalid.

[ENOTSOCKJ The descriptor references a file, not a socket.

[EOPNOTSUPP[The referenced socket is not of type SOCK_STREAM.

JEFAULT[The addr parameter is not in a writable part of the user address space.

JEWOULDBLOCK[The socket is marked non-blocking and no connections are present to be
accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

8 Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

ACCESS (2) SYSTEM CALLS ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
#Include <sys/flle,h>

#define R_OK 4
#define W _OK Z

/• test for read permission•/
/• test for write permission •/

#define X'._OK 1 /• test for execute (search) permission•/
/• test for presence of file •/ #define F _OK 0

accessible = access(path, mode)
Int accessible;
char •path;
Int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or of
the bits R_OK, W_OK and }{_OK. Specifying mode as F _OK (i.e. 0) tests whether the direc­
tories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying per­
mission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but ezecve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a O value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR[

[ENOENT]

[ENOENT]

[EPERM]

[ELOOP]

[EROFS]

[ETXTBSY]

[EACCES[

[EFAULT]

SEE ALSO

A component of the path prefix is not a directory.

The argument path name was too long.

Read, write, or execute (search) permission is requested for a null path name or
the named file does not exist.

The argument contains a byte with the high-order bit set.

Too many symbolic links were encountered in translating the pathname.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being
executed.

Permission bits of the file mode do not permit the requested access; or search
permission is denied on a component of the path prefix. The owner of a file has
permission checked with respect to the "owner" read, write, and execute mode
bits, members of the file's group other than the owner have permission checked
with respect to the "group" mode bits, and all others have permissions checked
with respect to the "other" mode bits.

Path points outside the process's allocated address space.

chmod(2), stat(2)

Sun Release 2.0 Last change: 2 July 1983 g

ACCT(2) SYSTEM CALLS ACCT(2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct{flle)
char •flle;

DESCRIPTION

NOTES

The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a null-terminated string naming an existing file as argument, turns on accounting;
records for each terminating process are appended to file. An argument of O causes accounting
to be turned off.

The accounting file format is given in acct(5).

This call is permitted only to the super-user.

Accounting is automatically disabled when the file system the accounting file resides on runs out
of space; it is enabled when space once again becomes available.

RETURN VALUE
On error -1 is returned. The file must exist and the call may be exercised only by the super­
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acct will fail if one of the following is true:

[EPERMJ

JEPERMJ

[ENOTDIRJ

[ENOENTJ

[EISDIRJ

[EROFSJ

[EFAULTJ

[ELOOPJ

[EACCESJ

The caller is not the super-user.

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is a directory.

The named file resides on a read-only file system.

File points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

The file is a character or block special file.

SEE ALSO

BUGS

10

acct(5), sa(8)

No accounting is produced for programs running when a crash occurs. In particular nonter­
minating programs are never accounted for.

Last change: 13 February 1983 Sun Release 2.0

0

0

0

0

0

0

BIND (2) SYSTEM CALLS B1ND(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <•Y•/typea.h>
#Include <sys/aocket.h>

blnd(s, name, namelen)
Int s;
struct sockaddr •name;
Int namelen;

DESCRIPTION

NOTES

Bind assigns a name to an unnamed socket. When a socket is created with sockel(2) it exists in a
name space (address family) but has no name assigned. Bind requests the name, be assigned to
the socket.

Binding a name in the UNIX domain creates a socket in the file system which must be deleted by
the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a O value is returned. A return value of -1 indicates an error, which is
further specified in the global errno.

ERRORS
The bind call will fail if:

IEBADFJ

IENOTSOCKI

Sis not a valid descriptor.

Sis not a socket.

IEADDRNOTAVAILJ The specified address is not available from the local machine.

[EADDRINUSEJ The specified address is already in use.

[EINV ALJ The socket is already bound to an address.

[EACCESJ The requested address is protected, and the current user has inadequate
permission to access it.

[EFAULTJ The name parameter is not in a valid part of the user address space.

SEE ALSO

BUGS

connect(2), listen(2), socket(2), getsockname(2)

The file created is a side-effect of the current implementation and will not be created in future
versions of the UNIX ipc domain.

Sun Release 2.0 Last change: 4 January 1984 11

BRK(2) SYSTEM CALLS BRK(2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
caddr_t brk(addr)
caddr _t addr;

caddr_t sbrk{lncr)
int incr;

DESCRIPTION
Brk sets the system's idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system's page size). Locations greater
than addr and below the stack pointer are not in the address space and will thus cause a memory
violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via ezecve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getr/imit(2) system call may be used to determine the maximum permissible size of the data
segment; it will not be possible to set the break beyond the rlim_max value returned from a call
to getr/imit, e.g. "etext + rlp-+rlim_max." (See end(3) for the definition of etext.)

RETURN VALUE
Zero is returned if the brk could be set; -1 if the program requests more memory than the sys­
tem limit. Sbrk normally returns the current value of the break, but -1 if it could not be set.

ERRORS
Sbrk will fail and no additional memory will be allocated if one of the following are true:

[ENOMEM[

[ENOMEM[

jENOMEMJ

The limit, as set by eetrlimit(2), was exceeded.

The maximum possible size of a data segment (compiled into the system) was
exceeded.

Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

12

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin­
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getr/imit.

Last change: 26 February 1985 Sun Release 2.0

0

0

0

0

0

0

CHDffi(2) SYSTEM CALLS CHDIR(2)

NAME
chdir - change current working directory

SYNOPSIS
chdlr(path)
char •path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with"/".

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the follow­
ing are true:

jENOTDffij

JENOENTJ

[ENOENTJ

[EPERMJ

[EACCES[

[EFAULTJ

JELOOPJ

SEE ALSO
chroot(2)

Sun Release 2.0

A component of the pathname is not a directory.

The named directory does not exist.

The argument path name was too long.

The argument contains a byte with the high-order bit set.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

Last change: 2 July 1983 13

CHMOD(2) SYSTEM CALLS CHMOD(2)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
chmod(path, mode)
char •path;
Int mode;

fchmod(fd, mode)
Int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed to
mode. Modes are constructed by or'ing together some combination of the following:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user
terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id {set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compatibil­
ity.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

14

Chmod will fail and the file mode will be unchanged if:

JEPERMJ

JENOTDIRJ

JENOENTJ

JENOENTJ

JEACCESJ

JEPERMJ

JEROFSJ

[EFAULTJ

[ELOOPJ

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

The pathname was too long.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective user
ID is not the super-user.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

Fchmod will fail if:

[EBADFJ

[EINVALJ

The descriptor is not valid.

Fd refers to a socket, not to a file.

Last change: 2 July 1983 Sun Release 2.0

0

0

0

CHM0D(2) SYSTEM CALLS CHM0D(2)

0 [EROFSJ The file resides on a read-only file system.

SEE ALSO
open(2), chown(2)

0

0
Sun Release 2.0 Last change: 2 July 1983 15

CHOWN(2) SYSTEM CALLS CHOWN(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char •path;
Int owner, group;

fchown(fd, owner, group)
Int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as specified.
Only the super-user may execute this call, because if users were able to give files away, they
could defeat the file-space accounting procedures.

Chown clears the set-user-id and set-group-id bits on the file to prevent accidental creation of
set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
flock(2)).

Only one of the owner and group id's may be set by specifying the other as -1.

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

jEINV ALI The argument path does not refer to a file.

jENOTDIRJ A component of the path prefix is not a directory.

JENOENTJ

jEPERM]

JENOENTJ

JEACCESJ

jEPERMJ

The argument pathname is too long.

The argument contains a byte with the high-order bit set.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective user
ID is not the super-user.

jEROFSJ The named file resides on a read-only file system.

JEFAUL TJ Path points outside the process's allocated address space.

JELOOPJ Too many symbolic links were encountered in translating the pathname.

Fchown will fail if:

JEBADFJ

[EINVALJ

Fd does not refer to a valid descriptor.

Fd refers to a socket, not a file.

SEE ALSO
chmod(2), ftock(2)

16 Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

CHROOT(2) SYSTEM CALLS CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
chroot(dlrname)
char •dlrname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a. null byte. Chroot causes
this directory to become the root directory, the starting point for path names beginning with
"/". This root directory setting is inherited across execve(2) and by all children of this process
created with fork(2) calls.

In order for a directory to become the root directory a process must have execute (search) access
to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are true:

[ENOTDIRJ A component of the path name is not a directory.

[ENOENTJ The pathname was too long.

JEPERMJ The argument contains a byte with the high-order bit set.

[ENOENTJ The named directory does not exist.

[EACCESJ Search permission is denied for any component of the path name.

[EFAUL Tj Path points outside the process's allocated address space.

[ELOOPJ

SEE ALSO
chdir(2)

Sun Release 2.0

Too many symbolic links were encountered in translating the pathname.

Last change: 29 August 1983 17

CLOSE(2) SYSTEM CALLS CLOSE(2)

NAME
close - delete a descriptor

SYNOPSIS
close(d)
Int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object rererence table. If this is the last
rererence to the underlying object, then it will be deactivated. For example, on the last close or a
file the current seek pointer associated with the file is lost; on the last close or a socket(2) associ­
ated naming information and queued data are discarded; on the last close or a file holding an
advisory lock the lock is released, see ftock(2) ror rurther information.

A close or all or a process's descriptors is automatic on exit, but since there is a limit on the
number or active descriptors per process, close is necessary for programs which deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process rererence the same
objects as they did in the parent before the fork. Ir a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most or the descriptors can be
rearranged with dup2(2) or deleted with close before the execve is attempted, but ir some or
these descriptors will still be needed ir the execve rails, it is necessary to arrange ror them to be
closed ir the execve succeeds. For this reason, the call "rcntl(d, F_SETFD, 1)" is provided which
arranges that a descriptor will be closed arter a successrul execve; the call "fcntl(d, F_SETFD,
O)" restores the derault, which is to not close the descriptor.

Close unmaps pages mapped through this file descriptor.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
the global integer variable errno is set to indicate the error.

ERRORS
Close will rail ir:

[EBADF[D is not an active descriptor.

SEE ALSO

18

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), rcnt1(2), mmap(2), mun­
map(2)

Last change: 20 March 1983 Sun Release 2.!l

0

0

0

0

0

0

CONNECT(2) SYSTEM CALLS CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#Include <aya/typea.h>
#Include <sya/socket.h>

connect(a, name, namelen)
Int a;
struct sockaddr •name;
Int namelen;

DESCRIPTION
The parameter • is a socket. If it is or type SOCK...DGRAM, then this call permanently specifies
the peer to which datagrams are to be sent; if it is or type SOCK._STREAM, then this call
attempts to make a connection to another socket. The other socket is specified by name which is
an address in the communications space or the socket. Each communications space interprets the
name parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then O is returned. Otherwise a -1 is returned, and a
more specific error code is stored in errno.

ERRORS
The call fails if:

JEBADFJ . Sis not a valid descriptor.

JENOTSOCKJ Sis a descriptor for a file, not a socket.

[EADDRNOTAV AILJ The specified address is not available on this machine.

[EAFNOSUPPORTJ Addresses in the specified address family cannot be used with this socket.

[EISCONNJ The socket is already connected.

jETIMEDOUTJ

[ECONNREFUSEDJ

[ENETUNREACHJ

[EADDRINUSE[

[EFAULT[

JEWOULDBLOCK[

SEE ALSO

Connection establishment timed out without establishing a connection.

The attempt to connect was forcefully rejected.

The network isn't reachable from this host.

The address is already in use.

The name parameter specifies an area outside the process address space.

The socket is non-blocking and the and the connection cannot be com­
pleted immediately. It is possible to se/ect(2) the socket while it is con­
necting by selecting it for writing.

accept(2), select(2), socket(2), getsockname(2)

Sun Release 2.0 Last change: 7 July 1983 19

CREAT(2) SYSTEM CALLS CREAT(2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char •name;

DESCRIPTION
This Interface Is obsoleted by open(2).

NOTES

Great creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process's mode mask (see umask(2)). Also see chmod(2) for the construction of the mode argu­
ment.

If the file did exist, its mode and owner remain unchanged, but it is truncated to O length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the past by
programs to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL open
mode, or ftock(2) facility.

RETURN VALUE
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descrip­
tor which only permits writing.

ERRORS
Great will fail and the file will not be created or truncated if one of the following occur:

[EPERM[

[ENOTDIR[

[EACCESJ

[EACCESJ

[EACCESJ

[EISDIRJ

[EMFILEJ

[EROFSJ

[ENXIOJ

JETXTBSYJ

[EFAULTJ

[ELOOPJ

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

A needed directory does not have search permission.

The file does not exist and the directory in which it is to be created is not writ­
able.

The file exists, but it is unwritable.

The file is a directory.

There are already too many files open.

The named file resides on a read-only file system.

The file is a character special or block special file, and the associated device does
not exist.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPPJ
The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

20 Last change: 31 August 1984 Sun Release 2.0

0

0

0

0

0

0

DUP(2) SYSTEM CALLS DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
Int newd, oldd;

dup2(oldd, newd)
Int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument o/dd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table,
which is returned by getdtab/esize(2). The new descriptor newd returned by the call is the lowest
numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using o/dd and
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and lseek(2) calls all move a single pointer into the file. If a separate pointer into the file
is desired, a different object reference to the file must be obtained by issuing an additional
open(2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is already
in use, the descriptor is first deallocated as if a close(2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indicates
the cause or the error.

ERRORS
Dup and dup2 fail if:

jEBADFj

jEMFlLE]

SEE ALSO

0/dd or newd is not a valid active descriptor

Too many descriptors are active.

accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

Sun Release 2.0 Last change: 12 February 1983 21

EXECVE(2) SYSTEM CALLS EXECVE(2)

NAME
execve - execute a file

SYNOPSIS
execve{ name, argv, envp)
char •name, •argvU, •envpU;

DESCRIPTION

22

Ezecve transforms the calling process into a new process. The new process is constructed from
an ordinary file called the new process file. This file is either an executable object file, or a file of
data for an interpreter. An executable object file consists of an identifying header, followed by
pages of data representing the initial program (text) and initialized data pages. Additional pages
may be specified by the header to be initialize with zero data. See a.out(5).

An interpreter file begins with a line of the form "#! interpreter"; When an interpreter file is
execve 'd, the system execve's the specified interpreter, giving it the name of the originally exec'd
file as an argument, shifting over the rest of the original arguments.

There can be no return rrom a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is an array or character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention, at
least one argument must be present in this array, and the first element of this array should be
the name of the executed program (i.e. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command,
see environ(5).

Descriptors open in the calling process remain open in the new process, except for those for which
the close-on-exec flag is set; see c/ose(2). Descriptors which remain open are unaffected by
execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined; see sigvec(2) for more information.

Each process has a real user ID and group ID and an effective user ID and group ID. The real ID
identifies the person using the system; the effective ID determines his access privileges. Execve
changes the effective user and group ID to the owner of the executed file if the file has the "set­
user-ID" or "set-group-ID" modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID
parent process ID
process group ID
access groups
working directory
root directory
control terminal
resource usages
interval timers
resource limits
file mode mask
signal mask

see getpid(2)
see getppid(2)
see getpgrp(2)
see getgroups(2)
see chdir(2)
see chroot(2)
see tty(4)
see getru•age(2)
see getitimer(2)
see getrlimit(2)
see umask(2)
see sigvec(2)

When the executed program begins, it is called as follows:

Last change: 2 July 1983 Sun Release 2.0

0

0

0

0

0

0

EXECVE(2) SYSTEM CALLS EXECVE(2)

main(argc, argv, envp)
int argc;
char ••argv, ••envp;

where argc is the number of elements in argv (the "arg count") and argv is the array of character
pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment or the process. A pointer
to this array is also stored in the global variable "environ". Each string consists of a name, an
"=", and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(l) passes an environment entry for each global shell variable defined when the program is
called. See environ(5) for some conventionally used names.

RETURN VALUE
if execve returns to the calling process an error has occurred; the return value will be -1 and the
global variable errno will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the following are true:

jENOENTI

jENOTDIRI

jEACCES]

jEACCES]

jEACCESj

jENOEXECj

jETXTBSYj

jENOMEMI

jE2BIG]

jEFAULTj

jEFAULT]

CAVEATS

One or more components of the new process file's path name do not exist.

A component of the new process file is not a directory.

Search permission is denied for a directory listed in the new process file's path
prefix.

The new process file is not an ordinary file.

The new process file mode denies execute permission.

The new process file has the appropriate access permission, but has an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file that is currently open
for writing or reading by some process.

The new process requires more virtual memory than is allowed by the imposed
maximum (getr/imit(2)).

The number of bytes in the new process's argument list is larger than the
system-imposed limit of {ARG_MAX} bytes.

The new process file is not as long as indicated by the size values in its header.

Path, argv, or envp point to an illegal address.

If a program is setuid to a non-super-user, but is executed when the real uid is "root", then the
program has the powers or a super-user as well.

SEE ALSO
exit(2), fork(2), exec1(3), environ(5)

Sun Release 2.0 Last change: 2 July 1983 23

EXIT(2) SYSTEM CALLS EXIT(2)

NAME
_exit - terminate a process

SYNOPSIS
_exlt(status)
Int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD
signal, then it is notified of the calling process's termination and the low-order eight bits of status
are made available to it; see wait(2). The low-order 8 bits of status are available to the parent
process.

The parent process ID of all of the calling process's existing child processes are also set to 1. This
means that the initialization process (see intro(2)) inherits each of these processes as well.

Most C programs will call the library routine exit(3) which performs cleanup actions in the stan­
dard i/o library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit(3)

24 Last change: 29 August 1983 Sun Release 2.0

0

I

o!
I

0

0

0

0

FCNTL(2) SYSTEM CALLS FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#Include <fcntl,h>

res = fcntl(fd, cmd, arg)
Int res;
Int fd, cmd, arg;

DESCRIPTION
Fenti provides for control over descriptors. The argument fd is a descriptor to be operated on by
cmd as follows:

FJ)UPFD Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execve(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fd. If the low-order
bit is 0, the file will remain open across exec, otherwise the file will be closed
upon execution of exec.

F_SETFD Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1 as
above).

F _GETFL Get descriptor status flags, see fcnt/(5) for their definitions.

F _SETFL Set descriptor status flags, see fcnt1(5) for their definitions.

F _GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG sig­
nals; process groups are returned as negative values.

F _SETOWN Set the process or process group to receive SIG IO and SIGURG signals; process
groups are specified by supplying arg as negative, otherwise arg is interpreted as

a process ID.

The SIGIO facilities are enabled by setting the FASYNC flag with F _SETFL.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

FJ)UPFD
F_GETFD
F_GETFL
F_GETOWN
other

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.
Value of file descriptor owner.
Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Fenti will fail if one or more of the following are true:

Fi/dee is not a valid open file descriptor. [EBADF[

[EMFlLEJ Cmd is F __DUPFD and the maximum allowed number of file descriptors are
currently open.

Sun Release 2.0 Last change: 29 August 1983 25

FCNTL(2)

JEINVALJ

SEE ALSO

SYSTEM CALLS lf'CNTL(2)

Cmd is F J)UPFD and arg is negative or greater the maximum allowable
number (see getdtablesize(2)).

close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

26 Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

FLOCK(2) SYSTEM CALLS FLOCK(2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#Include <•Y•/file.h>

#define LOCK_SH 1
#define LOCK__EX 2
#define LOCK_NB 4
#define LOCK_UN 8

fiock(fd, operation)
Int fd, operation;

DESCRIPTION

/ • ohared lock • /
/• exclusive lock•/
/• don't block when locking•/
/•unlock•/

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A lock
is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK.EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (i.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked until
the lock may be acquired. If LOCK_NB is included in operation, then this will not happen;
instead the call will fail and the error EWOULDBLOCK will be returned.

NOTES
Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the parent
will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned if the operation was successful; on an error a -1 is returned and an error code is
left in the global location errno.

ERRORS
The flock call fails if:

[EWOULDBLOCKJ The file is locked and the LOCK_NB option was specified.

[EBADFJ The argument fd is an invalid descriptor.

JEINV ALJ The argument fd refers to an object other than a file.

SEE ALSO
open(2), close(2), dup(2), execve(2), fork(2)

Sun Release 2.0 Last change: 27 July 1983 27

FORK(2) SYSTEM CALLS FORK(2)

NAME
fork - create a new process

SYNOPSIS
pld = fork()
Int pld;

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro­
cess).

The child process has its own copy of the parent's descriptors. These descriptors reference
the same underlying objects, so that, for instance, file pointers in file objects are shared
between the child and the parent, so that a /seek(2) on a descriptor in the child process can
affect a subsequent read or write by the parent. This descriptor copying is also used by the
shell to establish standard input and output for newly created processes as well as to set up
pipes.

The child processes resource utilizations are set to O; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of O to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the global variable errno is set to indicate the error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAINJ The system-imposed limit {PROC_MAX} on the total number of processes
under execution would be exceeded.

[EAGAINJ The system-imposed limit {KID_MAX} on the total number of processes under
execution by a single user would be exceeded.

SEE ALSO
execve(2), wait(2)

28 Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

FSYNC(2) SYSTEM CALLS FSYNC(2)

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
raync(rd)
Int rd;

DESCRIPTION
Fsync causes all modified data and attributes of fd to be moved to a permanent storage device:
all in-core modified copies of buffers for the associated file have been written to a disk when the
call returns. (Note that this is different than sync(2) which schedules disk-io for all files (as
though an /sync had been done on all files) but returns before the i/o completes.)

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

RETURN VALUE
AO value is returned on success. A -1 value indicates an error.

ERRORS
The /sync fails if:

[EBADFJ

JEINVALJ

SEE ALSO

Fd is not a valid descriptor.

Fd refers to a socket, not to a file.

sync(2), sync(8), cron(8)

BUGS
The current implementation of this call is expensive for large files.

Sun Release 2.0 Last change: 29 August 1983 29

GETDIRENTRIES (2) SYSTEM CALLS GETDIRENTRIES (2)

NAME
getdirentries - gets directory entries in a filesystem independent format

SYNOPSIS
#Include <sys/dlr.h>

cc = getdlrentrles(d, but, nbytes, basep)
Int cc, d;
chBI' •but';
Int nbytes;
long •basep

DESCRIPTION
Getdirentries attempts to put directory entries from the directory referenced by the descriptor d
into the buffer pointed to by bu/, in a filesystem independent format. Up to nbytes or data will
be transferred. Nbytes must be greater than the block size associated with the file, see stat{£).
Sizes less than this may cause errors on certain filesystems.

The data in the buffer is a series or direct structures. The direct structure is defined a.s

struct direct {

};

unsigned long
unsigned short
unsigned short
char

d_fileno;
d_reclen;
d_namlen;
d_name[MAXNAMELEN + I];

The d..fileno entry is a number which is unique for each distinct file in the filesystem. Files that
are linked by hard links (see link{2}) have the same d..fileno. The d_reclen entry is the length, in
bytes, or the directory record. The d_name and d_namelen entries specify the actual file name
and its length.

Upon return, the actual number or bytes transferred is returned. The current position pointer
associated with d is set to point to the next block or entries. The pointer is not necessarily incre·
mented by the number or bytes returned by getdirentries. Ir the value--,.eturned is zero, the end
or the directory has been reached. The current position pointer may be set and retrieved by
lseek{2}. The basep entry is a pointer to a location into which the current position or the buffer
just transferred is placed. It is not safe to set the current position pointer to any value other
than a value previously returned by /seek{2} or a value previously returned in basep or zero.

RETURN VALUE
If successful, the number of bytes actually transferred is returned. Otherwise, a -1 is returned
and the global variable errno is set to indicate the error.

SEE ALSO
open(2), lseek(2)

30 La.st change: 29 July 1984 Sun Release 2.0

0

0

0

0

0

0

GETDOMAINNAME(2) SYSTEM CALLS GETDOMAINNAME(2 J

NAME
getdomainname, setdomainname - get/set name or current domain

SYNOPSIS
getdomalnname(name, namelen)
char •name;
Int namelen;

setdomalnname(name, namelen)
char •name;
Int namelen;

DESCRIPTION
Getdomainname returns the name or the domain for the current processor, a.s previously set by
setdomainname. The parameter name/en specifies the size or the name array. The returned
name is null-terminated unless insufficient space is provided.

Setdomainname sets the domain or the host machine to be name, which has length name/en.
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

The purpose or domains is to enable two distinct networks that may have host names in common
to merge. Each network would be distinguished by having a different domain name. At the
current time, only the yellow pages service makes use or domains.

RETURN VALUE
Ir the call succeeds a value of O is returned. Ir the call fails, then a value or -1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

BUGS

[EFAULTJ

[EPERMJ

The name or namelen parameter gave an invalid address.

The caller was not the super-user.

Domain names are limited to 255 characters.

Sun Release 2.0 Last change: 5 November 1984 31

GETDT ABLESIZE (2) SYSTEM CALLS

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nda = getdtablealze()
Int nda;

DESCRIPTION

GETDT ABLESIZE (2)

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at 0. The call getdta­
blesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2)

32 Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

GETGID(2)

NAME
getgid, getegid - get group identity

SYNOPSIS
gld = getgld()
Int gld;

egld = getegld()
Int egld;

DESCRIPTION

SYSTEM CALLS GETGID(2)

Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during exe­
cution of a "set-group-ID" process, and it is for such processes that getgid is most useful.

SEE ALSO
getuid(2), setregid(2), setgid(3C)

Sun Release 2.0 Last change: 12 February 1983 33

GETGROUPS (2) SYSTEM CALLS GETGROUPS (2)

NAME
getgroups - get group access list

SYNOPSIS
#Include <sys/param.h>

getgroups(n, gldset)
Int n, •gldset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gidset.
The parameter n indicates the number of entries which may be placed in gidset and getgroups
returns the actual number of entries placed in the gidset array. No more than NGROUPS, as
defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A return value of greater than zero indicates the number of entries placed in the gidset array. A
return value of -1 indicates that an error occurred, and the error code is stored in the global
variable errno.

ERRORS
The possible errors for getgroup are:

[EINVALJ

[EFAULTJ

The argument n is smaller than the number of groups you are in.

The arguments n or gidset specify invalid addresses.

SEE ALSO
setgroups(2), initgroups(3)

34 Last change: 25 October 1984 Sun Release 2.0

0

0

0

0

0

0

GETHOSTID(2) SYSTEM CALLS

NAME
gethostid - get unique identifier or current host

SYNOPSIS
hoatld = gethoatld()
Int hoatld;

DESCRIPTION

GETHOSTID (2)

Gethostid returns the 32-bit identifier for the current host, which should be unique across all
hosts. On the Sun, this number is taken from the CPU board's ID PROM.

SEE ALSO
hostid(l)

Sun Release 2.0 Last change: 27 February 1985 35

GETHOSTNAME (2) SYSTEM CALLS

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char •name;
lot namelen;

aethostname(name, namelen)
char •name;
Int namelen;

DESCRIPTION

GETHOSTNAME (2)

Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter name/en specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length name/en. This call
is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of O is returned. If the call fails, then a value of -1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT[

[EPERM[

SEE ALSO
gethostid(2)

BUGS

The name or name/en parameter gave an invalid address.

The caller was not the super-user.

Host names are limited to 255 characters.

36 Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

NAME
getitimer, setitimer - get/set value or interval timer

SYNOPSIS
#Include <sys/tlme.h>

#define ITIMER....REAL 0
#define ITIMER_ VIRTUAL 1
#define ITIMERYROF 2

getltlmer(whlch, value)
Int which;
struct ltlmerval •value;

setltlmer(whlch, value, ovalue)
Int which;
struct ltlmerval •value, •ovalue;

DESCRIPTION

/ • real time Intervals • /
/• virtual time Intervals•/
/ • user and system virtual time • /

The system provides each process with three interval timers, defined in <sys/time.h>. The geti­
timer call returns the current value for the timer specified in which, while the setitimer call sets
the value or a timer (optionally returning the previous value or the timer).

A timer value is defined by the itimerva/ structure:

struct itimerval {

};

struct timeval it_.interval;
struct timeval it_value;

/• timer interval •/
/• current value •/

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non­
zero, it specifies a value to be used in reloading it_va/ue when the timer expires. Setting it_va/ue
to O disables a timer. Setting it_interva/ to O causes a timer to be disabled after its next expira­
tion (assuming it_va/ue is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution.

The ITIMERJlEAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

NOTES

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the process
is executing. A SIGVT ALRM signal is delivered when it expires.

The ITIMERYROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMERYROF timer expires, the SIG­
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerc/ear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time values
(beware that>- and <- do not work with this macro).

RETURN VALUE
If the calls succeed, a value of O is returned. If an error occurs, the value -1 is returned, and a
more precise error code is placed in the global variable errno.

ERRORS
The possible errors are:

[EFAUL T[The value structure specified a bad address.

Sun Release 2.0 Last change: 29 August 1983 37

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

[EINVALJ A value structure specified a time was too large to be handled.

SEE ALSO 0
sigvec(2), gettimeofday(2)

0

0
38 Last change: 29 August 1983 Sun Release 2.0

0

0

0

GETPAGESIZE(2)

NAME
getpagesize - get system page size

SYNOPSIS
pageslze = getpagealze()
Int pageslze;

DESCRIPTION

SYSTEM CALLS GETPAGESIZE(2)

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk(2), pagesize(l)

Sun Release 2.0 Last change: 29 August 1983 39

GETPEERNAME (2) SYSTEM CALLS GETPEERNAME (2)

NAME
getpeername - get name or connected peer

SYNOPSIS
getpeername(s, name, namelen)
Int a;
atruct aockaddr •name;
Int •namelen;

DESCRIPTION
Getpeername returns the name or the peer connected to socket •· The name/en parameter
should be initialized to indicate the amount or space pointed to by name. On return it contains
the actual size of the name returned (in bytes).

DIAGNOSTICS
AO is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADFJ

[ENOTSOCKJ

[ENOTCONNJ

[ENOBUFS[

[EFAULTJ

The argument sis not a valid descriptor.

The argument sis a file, not a socket.

The socket is not connected.

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

40

bind(2), socket(2), getsockname(2)

Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero length
name.

Last change: 31 October 1983 Sun Release 2.0

0

0

0

0

0

0

GETPGRP(2) SYSTEM CALLS GETPGRP(2)

NAME
getpgrp - get process group

SYNOPSIS
pgrp = getpgrp(pld)
Int prgp;
Int pld;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes which have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(l) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

Sun Release 2.0 Last change: 2 July 1983 41

GETPID(2) SYSTEM CALLS

NAME
getpid, getppid - get process identification

SYNOPSIS
pid = getpld()
long pld;

ppld = getppld()
long ppld;

DESCRIPTION

GETPID(2)

Getpid returns the process ID of the current process. Most often it is used with the host
identifier getho,tid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

42 Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

GETPRIORITY (2) SYSTEM CALLS GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#Include <sys/resource.h>

#define PRIO_FROCESS 0
#define PRIO_FGRP 1
#define PRIO_USER 21

prlo = getprlorlty(whlch, who)
Int prlo, which, who;

setprlorlty(whlch, who, prlo)
Int which, who, prlo;

/• proceu •/
/• process group •/
/• user Id•/

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the getpriority call and set with the setpriority call. Which is one of
PRIOYROCESS, PRIOYGRP, or PRIO_USER, and who is interpreted relative to which (a pro­
cess identifier for PRIOYROCESS, process group identifier for PRIOYGRP, and a user ID for
PRIO_USER). Prio is a value in the range -20 to 20. The default priority is O; lower priorities
cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to the
specified value. Only the super-user may lower priorities.

RETURN VALUE
Since getpriority can legitimately return the value -1, it is necessary to clear the external vari­
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti­
mate value. The setpriority call returns O if there is no error, or -I if there is.

ERRORS
Getpriority and setpriority may return one of the following errors:

IESRCHJ No process(es) were located using the which and who values specified.

IEINVALI Which was not one of PRIOYROCESS, PRIOYGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the following errors
returned:

IEACCESJ

[EACCESJ

A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.

A non super-user attempted to change a process priority to a negative value.

SEE ALSO

BUGS

nice(l), fork(2), renice(8)

It is not possible for the process executing setpriority () to lower any other process down to its
current priority, without requiring superuser privileges.

Sun Release 2.0 Last change: 20 March 1984 43

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#Include <•Y•/tlme.h>
#Include <sys/resource.h>

getrllmlt(resource, rip)
Int resource;
struct rllmlt nip;

setrllmlt(resource, rip)
Int resource;
struct rllmlt •rip;

DESCRIPTION

44

Limits on the consumption of system resources by the current process and each process it creates
may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum.amount of cpu time (in milliseconds) to be used by each process.

RLIMIT...FSIZE the largest size, in bytes, of any single file which may be created.

RLIMITJ)ATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the ehrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program's stack segment may be extended automatically by the sys­
tem.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

RLIMIT _RSS the maximum size, in bytes, a process's resident set size may grow to. This
imposes a limit on the amount or physical memory to be given to a process; if
memory is tight, the system will prefer to take memory from processes which
are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a pro­
cess may receive a signal (for example, if the cpu time is exceeded), but it will be allowed to con­
tinue execution until it reaches the hard limit (or modifies its resource limit). The rlimit struc­
ture is used to specify the hard and soft limits on a resource,

struct rlimit {
int
int

};

rlim_cur;
rlim_max;

/• current (soft) limit•/
/• hard limit •/

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from O to rlim_maz or (irreversibly) lower rlim_maz.

An "infinite" value for a. limit is defined as RLIMJNFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a.
built-in command to ceh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a hreak call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A O return value indicates that the call succeeded, changing or returning the resource limit. A
return value of -1 indicates that an error occurred, and an error code is stored in the global
location errno.

ERRORS
The possible errors are:

[EFAUL T[The address specified for rip is invalid.

[EPERM[The limit specified to eetrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
csh(l), quota(2)

BUGS
There should be limit and unlimit commands in eh(l) as well as in ceh.

Sun Release 2.0 Last change: 29 August 1983 45

GETRUSAGE(2) SYSTEM CALLS GETRUSAGE(2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#Include <•Y•/tlme.h>
#Include <•Y•/resource.h>

#define RUSAGE_$ELF
#define RUSAGE_CHILDREN

getrusage(who, rusage)
Int who;
struct rusage •rusage;

0
-1

/ • calling procen • /
/ • terminated child procenes • /

DESCRIPTION

46

Getrusage returns information about the resources utilized by the current process, or all its ter­
minated child processes. The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN.
If rusage is non-zero, the buffer it points to will be filled in with the following structure:

struct rusage {
struct timeval ru_utime; /• user time used •/
struct timeval ru...stime; /• system time used •/
int ru_maxrss;
int ru_ixrss; /• integral shared memory size •/
int ru_idrss; /• integral unshared data size •/
int ru_isrss; /• integral unshared stack size •/
int ru_minflt; /• page reclaims •/
int ru_majftt; /• page faults •/
int ru_nswap; /•swaps•/
int ru..inblock; /• block input operations •/
int ru .. ou block; /• block output operations •/
int ru_msgsnd; /• messages sent •/
int ru_msgrcv; /• messages received •/
int ru_nsignals; /• signals received •/
int ru_nvcsw; /• voluntary context switches •/
int ru_nivcsw; /• involuntary context switches •/

};
The fields are interpreted as follows:

ru_utime

ru...stime

ru_maxrss

ru..ixrss

ru..idrss

rujsrss

the total amount of time spent executing in user mode. Time is given in
seconds:microseconds.

the total amount of time spent in the system executing on behalf of the
process(es). Time is given in seconds:microseconds.

the maximum resident set size utilized. Size is given in pages (1 page =
2Kbytes).

an "integral" value indicating the amount of memory used which was also
shared among other processes. This value is expressed in units of pages • clock
ticks (1 tick - 1/50 second). The value is calculated by summing the number of
shared memory pages in use each time the internal system clock ticks, and then
averaging over 1 second intervals.

an integral value of the amount of unshared memory residing in the data seg­
ment of a process. The value is given in pages • clock ticks.

an integral value of the a.mount of unshared memory residing in the stack seg­
ment of a process. The value is given in pages • clock ticks.

Last change: 20 February 1984 Sun Release 2.0

0

0

0

0

0

0

GETRUSAGE (2) SYSTEM CALLS GETRUSAGE(2)

NOTES

ru_minflt

ru_majflt

ru_nswap

rujnblock

ru_outblock

ru_msgsnd

ru_msgrcv

ru_nsignals

ru_nvcsw

ru_nivcsw

the number of page faults serviced without any ifo activity; here i/o activity is
avoided by "reclaiming" a page frame Crom the list of pages awaiting realloca­
tion.

the number of page faults serviced which required i/o activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number or ipc messages sent.

the number or ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily giv­
ing up the processor before its time slice was completed (usually to await availa­
bility of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inb/ock and ru_outblock account only for real i/o; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process which has not yet terminated.

Sun Release 2.0 Last change: 20 February 1984 47

GETSOCKNAME (2) SYSTEM CALLS GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(a, name, namelen)
Int a;
struct sockaddr •name;
Int •namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The name/en parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

DIAGNOSTICS
AO is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

IEBADFJ

IENOTSOCKJ

JENOBUFSJ

IEFAULTJ

The argument • is not a valid descriptor.

The argument 11 is a file, not a socket.

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

48

bind(2), socket(2), getpeername(2)

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero length
name.

Last change: 24 October 1983 Sun Release 2.0

0

0

0

0

0

0

GETSOCKOPT (2) SYSTEM CALLS GETS0CKOPT(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#Include <1y1/type1.h>
#Include <1y1/1ocket.h>

getaockopt(a, level, optname, optval, optlen)
Int 1, level, optname;
char •optval;
Int •optlen;

setsockopt(a, level, optname, optval, optlen)
Int 1, level, optname;
char •optval;
Int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the name or the
option must be specified. To manipulate options at the "socket" level, level is specified as
SOL_50CKET. To manipulate options at any other level the protocol number or the appropri­
ate protocol controlling the option is supplied. For example, to indicate an option is to be inter­
preted by the TCP protocol, level should be set to the protocol number or TCP; see
getprotoent(3N).

The parameters optval and opt/en are used to access option values ror setsockopt. For getsockopt
they identiry a buffer in which the value ror the requested option(s) are to be returned. For get­
sockopt, opt/en is a value-result parameter, initially containing the size or the buffer pointed to by
optval, and modified on return to indicate the actual size or the value returned. Ir no option
value is to be supplied or returned, optval may be supplied ~ 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file <sys/socket.h> contains definitions for "socket" level
options; see socket(2). Options at other protocol levels vary in format and name, consult the
appropriate entries in (4P).

RETURN VALUE
AO is returned ir the call succeeds, -1 ir it fails.

ERRORS
The call succeeds unless:

[EBADF[The argument sis not a valid descriptor.

[ENOTSOCKJ The argument sis a file, not a socket.

[ENOPROTOOPTJ The option is unknown.

[EFAUL TJ The options are not in a valid part or the process address space.

SEE ALSO
socket(2), getprotoent(3N)

Sun Release 2.0 Last change: 7 July 1983 49

GETTIMEOFDA Y (2) SYSTEM CALLS GETTIMEOFDAY (2)

NAME
gettimeorday, settimeofday - get/set date and time

SYNOPSIS
#Include <aya/tlme.b>

gettlmeotday(tp, tzp)
atruct tlmeval •tp;
atruct timezone etzp;

aettlmeotday(tp, tsp)
atruct tlmeval etp;
atruct timezone etzp;

DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time and the current time
zone. Time returned is expressed in seconds and microseconds since midnight January 1, 1970.

The structures pointed to by Ip and tzp are defined in <•11•/time.h> as:

struct timeval {
uJong tv ..sec;
long tv_usec;

};

struct timezone {

/• seconds since Jan. 1, 1970 •/
/• and microseconds •/

int tz_minuteswest; /• or Greenwich •/
int tz_dsttime; /• type of dst correction to apply •/

};

The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

if tp and/or tzp is a zero pointer, the corresponding information will not be returned or set.

Only the super-user may set the time of day.

RETURN
A O return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULTJ

[EPERMJ

An argument address referenced invalid memory.

A user other than the super-user attempted to set the time.

SEE ALSO

BUGS

50

date(l), ctime(3)

Time is never correct enough to believe the microsecond values. There should a mechanism by
which, at least, local clusters of systems might synchronize their clocks to millisecond granularity.

Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

0

0

GETUID(2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
uld = getuld()
Int uld;

euld = geteuld()
Int euld;

DESCRIPTION

SYSTEM CALLS

Getuid returns the real user ID or the current process, geteuid the effective user JD.

GETUID(2)

The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of "set-user-ID" mode processes, which use getuid to
determine the real-user-id or the process which invoked them.

SEE ALSO
getgid(2), setreuid(2)

Sun Release 2.0 Last change: 12 February 1983 51

IOCTL(2) SYSTEM CALLS IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#Include <sys/loctl.h>

loctl(d, request, argp)
Int d, request;
char •argp;

DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating charac­
teristics of character special files (e.g. terminals) may be controlled with ioctl requests. The
writeups of various devices in section 4 discuss how ioctl applies to them.

An ioctl request has encoded in it whether the argument is an "in" parameter or "out'' parame­
ter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file <sys/ioctl.h>.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

If no error has occurred (using a STANDARD device driver), a value of O is returned.

ERRORS
Ioctl will fail if one or more of the following are true:

[EBADFJ

[ENOTTY[

[ENOTTY[

[EINVALJ

D is not a valid descriptor.

D is not associated with a character special device.

The specified request does not apply to the kind of object which the descriptor d
references.

Request or argp is not valid.

SEE ALSO
execve(2), fcntl(2), mtio(4), tty(4)

52 Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

0

0

KILL (2) SYSTEM CALLS KILL(2)

NAME
kill - send signal to a process

SYNOPSIS
kill(pld, slg)
Int pid, slg;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of the
signals specified in sigvec(2), or it may be 0, in which case error checking is performed but no sig­
nal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call is
restricted to the super-user. A single exception is the signal SIGCONT which may always be sent
to any child or grandchild of the current process.

If the process number is O, the signal is sent to all other processes in the sender's process group;
this is a variant of kil/pg(2).

If the process number is -1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

[EINVALJ

[ESRCH[

[EPERM[

SEE ALSO

Sig is not a valid signal number.

No process can be found corresponding to that specified by pid.

The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.

getpid(2), getpgrp(2), killpg(2), sigvec(2)

Sun Release 2.0 Last change: 29 August 1983 53

KILLPG(2) SYSTEM CALLS KILLPG(2)

NAME
killpg - send signal to a process group

SYNOPSIS
klllpg(pgrp, slg)
Int pgrp, slg;

DESCRIPTION
Kil/pg sends the signal eig to the process group pgrp. See eigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
otherwise this call is restricted to the super-user. As a single special case the continue signal
SIGCONT may be sent to any process which is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Kil/pg will fail and no signal will be sent if any of the following occur:

IEINVAL]

IESRCHJ

]EPERM]

SEE ALSO

Sig is not a valid signal number.

No process were found in the specified process group.

The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

kill(2), getpgrp(2), sigvec(2)

Last change: 16 February 1984 Sun Release 2.0

0

0

0

0

0

0

LINK(2) SYSTEM CALLS LINK(2)

NAME
link - make a hard link to a file

SYNOPSIS
llnk(namel, name2)
char •namel, •name2;

DESCRIPTION
A hard link to namel is created; the link has the name namee. Namel must exist.

With hard links, both namel and namee must be in the same file system. Unless the caller is the
super-user, namel must not be a directory. Both the old and the new link share equal access and
rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

jEPERMI

jENOENTJ

JENOTDffiJ

JENOENTJ

jEACCESJ

!ENOENTI

jEEXISTJ

JEPERMJ

jEXDEVJ

JEACCESJ

jEROFSJ

jEFAULTj

jELOOPJ

SEE ALSO

Either pathname contains a byte with the high-order bit set.

Either pathname was too long.

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by namel does not exist.

The link named by namee does exist.

The file named by namel is a directory and the effective user ID is not super­
user.

The link named by namee and the file named by namel are on different file sys­
tems.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

One of the pathnames specified is outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

symlink{2), unlink{2)

Sun Release 2.0 Last change: 12 February 1983 55

LISTEN(2) SYSTEM CALLS LISTEN(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(•, backlog)
Int •, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for incoming connections
is specified with listen(2) and then the connections are accepted with accept(2). The listen call
applies only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow
to. If a connection request arrives with the queue full the client will receive an error with an
indication of ECONNREFUSED.

RETURN VALUE
AO return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

The argument sis not a valid descriptor.

The argument • is not a socket.

IEBADFJ

IENOTSOCKJ

IEOPNOTSUPPJ The socket is not of a type that supports the operation listen.

SEE ALSO
accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

56 Last change: 27 February 1985 Sun Release 2.0

0

0

0

0

0

0

LSEEK(2) SYSTEM CALLS LSEEK(2)

NAME
lseek, tell - move read/write pointer

SYNOPSIS
#define L_SET 0
#define LJNCR 1
#define L...XTND 2

/• set the seek pointer •/
/ • Increment the seek pointer • /
/ • extend the file size • /

pos = lseek(d, offset, whence)
Int pos;
Int d, offset, whence;

DESCRIPTION
The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offset bytes.

If whence is LJNCR, the pointer is set to its current location plus offset.

If whence is L..J{TND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from beginning of
the file is returned. Some devices are incapable of seeking. The value of the pointer associated
with such a device is undefined.

The obsolete function te//(fildes) is identical to lseek(fildes, OL, LJNCR}.

NOTES
Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies no
physical space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:

IEBADFJ

!ESPIPEI

IEINVALJ

IEINVALJ

SEE ALSO
dup(2), open(2)

Sun Release 2.0

Fi/des is not an open file descriptor.

Fi/des is associated with a pipe or a socket.

Whence is not a proper value.

The resulting file pointer would be negative.

Last change: 29 August 1983 57

MKDJR(2) SYSTEM CALLS MKDIR(2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdlr(path, mode)
char •path;
Int mode;

DESCRIPTION
Mkdir creates a new directory file with name path. The mode or the new file is initialized from
mode. (The protection part or the mode is modified by the process's mode mask; see umask(2)).

The directory's owner ID is set to the process's effective user ID. The directory's group ID is set
to that of the parent directory in which it is created.

The low-order 9 bits or mode are modified by the process's file mode creation mask: all bits set in
the process's file mode creation mask are cleared. See umask(2).

RETURN VALUE
A O return value indicates success. A -I return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:

[EPERM]

[EPERM[

[ENOTDIR[

[ENOENT]

[EROFS]

[EEXJST[

[EFAULT]

[ELOOP]

[EIO]

The process's effective user ID is not super-user.

The path argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

An 1/0 error occured while writing to the file system.

SEE ALSO
chmod(2), stat(2), umask(2)

58 Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

MKN0D(2) SYSTEM CALLS MKN0D(2)

NAME
mknod - make a special file

SYNOPSIS
mknod(path, mode, dev)
char •path;
Int mode, dev;

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special file bits)
is initialized from mode. (The protection part of the mode is modified by the process's mode
mask; see umask(2)). The first block pointer of the i-node is initialized from dev and is used to
specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent specification
of a character or block 1/0 device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mknod will fail and the file mode will be unchanged if:

IEPERMJ

IEPERMI

IENOTDIRJ

IENOENTJ

IEROFSJ

IEEXISTJ

IEFAULTI

IELOOPJ

SEE ALSO

The process's effective user ID is not super-user.

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

chmod(2), stat(2), umask(2)

Sun Release 2.0 Last change: 2 July 1983 59

MMAP(2) SYSTEM CALLS MMAP(2)

NAME
mmap - map pages or memory

SYNOPSIS
#Include <sys/mman.h>
#Include <ays/types.h>

mmap(addr, !en, prot, share, fd, off)
caddr _t addr; Int !en, prot, share, fd; ofl....t off;

DESCRIPTION
N.B.: This call ls not completely Implemented In 4.21.

Mmap maps the pages starting at addr and continuing for /en bytes from the object represented
by the descriptor /d, at the current file position of offset off. The parameter share specifies
whether modifications made to this mapped copy of the page are to be kept private or are to be
shared with other references. The parameter prot specifies the accessibility of the mapped pages.
The addr and /en parameters and the sum of the current position in /d and the off parameters
must be multiples of the page size (found using the getpagesize(2) call).

Pages are automatically unmapped at close.

RETURN VALUE
The call returns O c,: success, -I on failure.

ERRORS
The mmap call will fail if:

[EINV AL[The argument address or length is not a multiple or the page size as returned by
getpagesize(2),or the length is negative.

[EINV AL[The entire range of pages specified in the call is not part of data space.

[EINV AL[The specified /d does not refer to a character special device which supports mapping
(e.g. a frame buffer).

[EINV AL] The specified /dis not open for reading and read access is requested, or not open for
writing when write access is requested.

[EINV AL[The sharing mode was not specified as MAP _SHARED.

SEE ALSO
getpagesize(2), munmap(2), close(2)

60 Last change: 20 March 1984 Sun Release 2.0

0

0

I 01
I

0

0

0

MOUNT(2) SYSTEM CALLS MOUNT(2)

NAME
mount - mount file system

SYNOPSIS
mount(apeclal, name, rwflag)
char •special, •name;
Int rwflag;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block­
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings contain­
ing the appropriate path names. Name must exist already, and must be a directory. Its old con­
tents are inaccessible while the file system is mounted.

The rwftag argument determines whether the file system can be written on; if it is O writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

RETURN VALUE
Mount returns O if the action occurred, and -1 if special is inaccessible or not an appropriate file,
if name does not exist, if special is already mounted, if name is in use, or if there are already too
many file systems mounted.

ERRORS
Mount will fail when one of the following occurs:

[ENODEV[

[ENODEV[

[ENOTBLK[

[ENXIOJ

[EPERMJ

JENOTDIRJ

jEROFSJ

[EBUSYJ

[EBUSYJ

JEBUSYJ

[EBUSYJ

JEBUSYJ

The caller is not the super-user.

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in name is not a directory.

Name resides on a read-only file system.

Name is not a directory, or another process currently holds a reference to it.

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size.

Not enough memory was available to read the cylinder group information for
the file system.

An 1/0 error occurred while reading the super block or cylinder group informa­
tion.

SEE ALSO
nfsmount(2), unmount(2), mount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

Sun Release 2.0 Last change: 1 February 1985 61

MUNMAP(2) SYSTEM CALLS

NAME
munmap - unmap pages of memory

SYNOPSIS
#include <mman.h>

munmap(addr, !en)
caddr _t addr; Int !en;

DESCRIPTION
N.B.: This call la not completely Implemented In 4.2.

MUNMAP(2)

Munmap causes the pages starting at addr and continuing for len bytes to refer to private pages
which will be initialized to zero on reference.

RETURN VALUE
The call returns -1 on error, 0 on success.

ERRORS
The call fails if any of the following:

[EINV AL[The argument address or length is not a multiple of the page size as returned by
getpagesize(2),or the length is negative.

[EINV AL[The entire range of pages specified in the call is not part of data space.

SEE ALSO
brk (2), mmap(2), close(2)

62 Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

0

0

NFSMOUNT(2) SYSTEM CALLS NFSMOUNT(2)

NAME
nfsmount - mount an NFS file system

SYNOPSIS
ntemount(addr, fh, dlr, rwflag, hard)
atruct sockaddr Jn •addr;
fhandle_t •fh;
char •freq;
Int rwflag;
Int hard;

DESCRIPTION
Nfsmount mounts an NFS(4) file system on the directory dir. Addr is the UDP(4) address or the
server that owns the file system to mount. Fh is a file handle, obtained from the server, to iden­
tify the root directory on the server that is being mounted.

The rwftag argument determines whether the file system can be written on; if it is O writing is
allowed, if non-zero no writing is done.

The hard argument determines whether the remote file system is mounted hard or soft. A soft
mount causes an error to be returned when a remote access times out. Hard mounts cause the
access to retry until the server responds. A value of 1 indicates a hard mount.

RETURN VALUE
Nfsmount returns O if the action occurred, -1 if some error occurred.

ERRORS
Nfsmount will fail when one of the following occurs:

JEPERMJ The caller is not the super-user or the path name given for dir contains charac­
ters with the high bit set.

JENAMETOOLONGJ
The path name for dir is too long.

JELOOPJ Dir contains a symbolic link loop.

JETIMEDOUTJ The server at addr is not accessable. This can only happen if the hard flag is set.

JENOTDIRJ A component of the path prefix in dir is not a directory.

[EBUSYJ Another process currently holds a reference to fh.

SEE ALSO
mount(2), unmount(2), mount(8)

Sun Release 2.0 Last change: 1 February 1985 63

NFSSVC(2) SYSTEM CALLS NFSSVC(2j

NAME
nfssvc, async_daemon - NFS daemons

SYNOPSIS
nfssvc(sock)
Int sock;

uync_daemon()

DESCRIPTION

BUGS

Nfssvc starts an NFS daemon listening on socket sock. The socket must be AF JNET, and
SOCKJ)GRAM (protocol UDP /IP). The system call will return only if the process is killed.

Async_daemon implements the NFS daemon that handles asynchronous 1/0 for an NFS client.
The system call never returns.

These two system calls allow kernel processes to have user context.

SEE ALSO
nfs(4), mountd(8)

64 Last change: 1 February 1985 Sun Release 2.0

0

0

0

0

0

0

OPEN(2) SYSTEM CALLS OPEN(2)

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#Include <•:r•/ftle,h>

open(path, flags, mode)
char •path;
Int flags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or'ing the following values

OJWONLY
O_WRONLY
O....RDWR
OJIDELAY
O_APPEND
O_CREAT
O_TRUNC
O_EXCL

open for reading only
open for writing only
open for reading and writing
do not block on open
append on each write
create file if it does not exist
truncate size to 0
error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with O_CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the OJIDELAY flag is specified and
the open call would result in the process being blocked for some reason (e.g. waiting for carrier
on a dialup line), the open returns immediately. The first time the process attempts to perform
i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system cans; see close(2).

There is a system enforced limit on the number of open file descriptors per process, whose value
is returned by the getdtab/esize(2) call.

RETURN VALUE
The value -1 is returned if an error occurs, and external variable errno is set to indicate the
cause of the error. Otherwise a non-negative numbered file descriptor for the new open file is
returned.

ERRORS
Op en fails if:

jEPERMI

jENOTDIRJ

JENOENTJ

JEACCESJ

JEACCESJ

JEISDIRJ

Sun Release 2.0

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

O_CREAT is not set and the named file does not exist.

A component of the path prefix denies search permission.

The required permissions (for reading and/or writing) are denied for the named
file.

The named file is a directory, and the arguments specify it is to be opened for

Last change: 17 February 1984 65

OPEN(2)

JEROFSJ

JEMFILEJ

[ETXTBSY[

[EFAULTJ

JELOOPJ

[EEXISTJ

[ENXIOJ

SYSTEM CALLS OPEN(2)

writing.

The named file resides on a read-only file system, and the file is to be modified.

{OPEN_MAX} file descriptors are currently open.

The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

O_EXCL was specified and the file exists.

The O_NDELAY flag is given, and the file is a communications device on which
there is no carrier present.

JEOPNOTSUPPJ
An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup{2), lseek{2), read{2), write(2), umask{2)

66 Last change: 17 February 1984 Sun Release 2.0

0

0

0

0

0

0

PIPE(2) SYSTEM CALLS PIPE(2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
plpe(ftldes)
Int ftldes[2);

DESCRIPTION
The pipe system call creates an 1/0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fildes[l] up
to 4096 bytes or data are buffered before the writing process is suspended. A read using the
descriptor fildes[OJ will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array or processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed)
returns an end-of-file.

Pipes are really a special case or the socketpair(2) call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; -1 if an error occurred.

ERRORS
The pipe call will fail if:

[EMFILE] Too many descriptors are active.

[EFAUL TJ The fildes buffer is in an invalid area of the process's address space.

SEE ALSO
sh(l), read(2), write(2), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop or processes, deadlock will
occur.

Sun Release 2.0 Last change: 12 February 1983 67

PROFIL(2) SYSTEM CALLS PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
profll(buff, bufslz, offset, ocale)
char •buff;
Int bufslz, offset, ocale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by hufsiz. After this call, the user's
program counter (pc) is examined each clock tick (20 milliseconds); offset is subtracted from it,
and the result multiplied by scale. If the resulting number corresponds to a word inside huff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: OxlOOOO
gives a 1-1 mapping of pc's to words in huff; Ox8000 maps each pair of instruction words
together. Ox2 maps all instructions onto the beginning of huff (producing a non-interrupting core
clock).

Profiling is turned off by giving a scale of O or l. It is rendered ineffective by giving a hufsiz of 0.
Profiling is turned off when an ezecve is executed, but remains on in child and parent both after
a fork. Profiling is turned off if an update in huff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(l), setitimer(2), monitor(3)

68 Last change: 16 March 1984 Sun Release 2.0

0

0

0

0

0

0

PTRACE{2) SYSTEM CALLS PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#Include <slgnal.h>

ptrace(request, pld, addr, data)
Int request, pld, •addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of breakpoint
debugging. There are four arguments whose interpretation depends on a request argument.
Generally, pid is the process ID of the traced process, which must be a child (no more distant
descendant) of the tracing process. A process being traced behaves normally until it encounters
some signal whether internally generated like "illegal instruction" or externally generated like
"interrupt". See sigvec(2) for the list. Then the traced process enters a stopped state and its
parent is notified via wait(2). When the child is in the stopped state, its core image can be exam­
ined and modified using ptrace. If desired, another ptrace request can then cause the child either
to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. Addr must
be even. The child must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr
must be a valid offset within the kernel's per-process data pages. This space contains the
registers and other information about the process; its layout corresponds to the user struc­
ture in the system.

4,5 The given data is written at the word in the process's address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request 4
indicates I space, 5 D space. Attempts to write in pure procedure fail if another process is
executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer­
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at loca­
tion addr as if it had incurred that signal. Normally the signal number will be either O to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process's image indicating which signal caused the stop. If addr is (int •)1 then execution
continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution or at least
one instruction, execution stops again. The signal number from the stop is SIGTRAP. (On
the Sun and V AX-11 the T-bit is used and just one instruction is executed.) This is part of
the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait eall is used to determine when a process stops; in sueh a case the "termina­
tion" status returned by wait has the value 0177 to indicate stoppage rather than genuine

Sun Release 2.0 Last change: 15 March 1984 69

PTRACE(2) SYSTEM CALLS PTRACE(2)

termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subsequent
ezecve(2) calls. If a traced process calls ezecve, it will stop before executing the first instruction
of the new image showing signal SIGTRAP.

On the Sun and VAX-11, "word" also means a 32-bit integer; the "even" restriction does not
apply on the VAX-11.

RETURN VALUE
A O value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
JEINVALJ The request code is invalid.

JEINVALJ

JEINVALJ

JEFAULT]

JEPERM]

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

70

wait(2), sigvec(2), adb(1S)

Ptrace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ioct/(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request O call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use "illegal
instruction" signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, see intro(2), can be used to disam­
biguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

Last change: 15 March 1984 Sun Release 2.0

0

0

0

0

0

0

QUOTA(2) SYSTEM CALLS QUOTA(2)

NAME
quota - manipulate disk quotas

SYNOPSIS
#Include <sys/quota.h>

quota(cmd, uld, arg, addr)
Int cmd, uld, arg;
caddr _t addr;

DESCRIPTION
N.B.: This call ls not Implemented in the current version of the system.

The quota call manipulates disk quotas for file systems which have had quotas enabled with set­
quota(2). The cmd parameter indicates a command to be applied to the user ID uid. Arg is a
command specific argument and addr is the address of an optional, command specific, data struc­
ture which is copied in or out of the system. The interpretation of arg and addr is given with
each command below.

Q_SETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqblk structure
(defined in <sus/quota.h>). This call is restricted to the super-user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remaining param­
eters are as for Q..SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID uid. Arg is a major-minor device indicating a
particular file system. Addr is a pointer to a struct dqusage structure (defined in
<•Y•/ quota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are
ignored.

Q_SETUID
Change the calling process's quota limits to those of the user with ID uid. The arg and
addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor device
indicating a particular file system. Addr is a pointer to a struct dqwarn structure
(defined in <sys/quota.h>). This call is restricted to the super-user.

Q..DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the system
to check its current disc usage information and print a message on the terminal of the
caller for each file system on which the user is over quota. If the arg parameter is
specified as NODEV, all file systems which have disc quotas will be checked. Otherwise,
arg indicates a specific major-minor device to be checked. This call is restricted to the
super-user.

RETURN VALUE
A successful call returns O and, possibly, more information specific to the cmd performed; when
an error occurs, the value -1 is returned and errno is set to indicate the reason.

ERRORS
A quota call will fail when one of the following occurs:

IEINV ALJ Cmd is invalid.

Sun Release 2.0 Last change: 7 July 1983 71

QUOTA(2) SYSTEM CALLS QUOTA(2)

JESRCHJ

JEPERMJ

JEINVALJ

jEFAULTJ

JEUSERSJ

No disc quota is found for the indicated user.

The call is priviledged and the caller was not the super-user.

The arg parameter is being interpreted as a major-minor device and it indicates
an unmounted file system.

An invalid addr is supplied; the associated structure could not be copied in or
out or the kernel.

The quota table is full.

SEE ALSO

BUGS

72

setquota(2), quotaon(8), quotacheck(8)

There should be someway to integrate this call with the resource limit interface provided by
setr/imit(2) and getr/imit(2).

The Australian spelling of disk is used throughout the quota facilities in honor of the implemen­
tors.

Last change: 7 July 1983 Sun Release 2.0

0

0

0

0

0

0

READ(2) SYSTEM CALLS READ(2)

NAME
read, readv - read input

SYNOPSIS
cc= read(d, but, nbytes)
Int cc, d;
char •but;
Int nbytes;

#Include <sys/typea.h>
#Include <sys/ulo.h>

cc = readv(d, lov, lovcnt)
Int cc, d;
struct lovec •lov;
Int lovcnt;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf. Readv performs the same action, but scatters the input data into the
iovcnt buffers specified by the members of the iovec array: iov[OJ, iov[IJ, ... , iov[iovcnt-IJ.

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov _base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated with
d, see lseek(2). Upon return from read, the pointer is incremented by the number of bytes actu­
ally read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and placed
in the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and the
global variable errno is set to indicate the error.

ERRORS
Read and readv will fail if one or more of the following are true:

[EBADFJ

[EFAULTJ

[EINTRJ

Fi/des is not a valid file descriptor open for reading.

Buf points outside the allocated address space.

A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

In addition, readv may return one of the following errors:

[EINVALJ

JEINVALJ

Sun Release 2.0

Iovcnt was less than or equal to 0, or greater than 16.

One of the iov_/en values in the iov array was negative.

Last change: 29 August 1983 73

READ(2) SYSTEM CALLS READ(2)

jEINVALI The sum oC the iov_len values in the iov array overflowed a 32-bit integer.

SEE ALSO 0
dup(2), open(2), pipe(2), socket(2), socketpair(2)

0

0
74 Last change: 29 August 1983 Sun Release 2.0

0

0

0

READ LINK (2) SYSTEM CALLS

NAME
readlink - read value or a symbolic link

SYNOPSIS
cc = readllnk(path, but, bufslz)
lnt cc;
char •path, •buf;
Int bufslz;

DESCRIPTION

READLJNK (2)

Read/ink places the contents or the symbolic link name in the buffer buf which has size bufsiz.
The contents or the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Read/ink will fail and the file mode will be unchanged if:

[EPERM[

[ENOENTJ

[ENOTDIRJ

[ENOENTJ

[ENXIOJ

[EACCES[

[EPERMJ

[EINVAL[

[EFAULTJ

[ELOOP[

SEE ALSO

The path argument contained a byte with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is not a symbolic link.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective user
ID is not the super-user.

The named file is not a symbolic link.

Buf extends outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

stat(2), lstat(2), symlink(2)

Sun Release 2.0 Last change: 2 July 1983 75

REBOOT(2) SYSTEM CALLS REBOOT(2)

NAME
re boot - re boot system or halt processor

SYNOPSIS
#Include <sys/reboot.h>

reboot(howto)
Int howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call interface
permits only RBJIALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap procedures.
When none of these options (e.g. RB_AUTOBOOT) is given, the system is rebooted from file
"vmunix" in the root file system of unit O of a disk chosen in a processor specific way. An
automatic consistency check of the disks is then normally performed.

The bits of howto are:

RBJIALT
the processor is simply halted; no reboot takes place. RBJIAL T should be used with
caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should
be booted. Normally, the system is booted from the file "vmunix" without asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply boot­
ing the system with a single-user shell on the console. RB_SINGLE is interpreted by the
init(B) program in the newly booted system.

Only the super-user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the
global variable errno.

ERRORS
jEPERMj The caller is not the super-user.

SEE ALSO
crash{8S), halt(&), init(8), reboot(&)

76 Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

RECV(2) SYSTEM CALLS RECV(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#Include <•ya/types.h>
#Include <•y•/•ocket.h>

cc= recv(s, buf, len, flags)
Int cc, 11;
char •buf;
Int len, flags;

cc = recvfrom(a, buf, len, flags, from, fromlen)
int cc, 1;
char •buf;
Int len, flags;
atruct aockaddr •from;
Int •fromlen;

cc = recvmsg(•, msg, flags)
Int cc, a;
struct msghdr msgO;
Int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2)), while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in cc.
If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending on
the type of socket the message is received from; see eocket(2).

Ir no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioct/(2)) in which case a cc or -1 is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the values,

#define MSGYEEK Oxl /• peek at incoming message •/
#define MSG_OOB Ox2 /• process out-of-band data•/

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame­
ters. This structure has the following form, as defined in <sys/socket.h>:

struct msghdr {
caddr_t msg_name;
int msg_namelen;
struct iovec •msg_iov;
int msgjovlen;
caddr_t msg_accrights;
int msg_accrightslen;

};

/• optional address •/
/• size of address •/
/• scatter /gather array •/
/• # elements in msgjov •/
/• access rights sent/received •/

Here msg_name and msg_namelen specify the destination address if the socket is unconnected;
msg_name may be given as a null pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter gather locations, as described in read(2). Access rights to be sent

Sun Release 2.0 Last change: 4 January 1984 77

RECV(2) SYSTEM CALLS RECV(2)

along with the message are specified in msg_accrights, which has length msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

IEBADFI

IENOTSOCK]

IEWOULDBLOCK]

IEINTR]

IEFAULTJ

SEE ALSO

The argument • is an invalid descriptor.

The argument • is not a socket.

The socket is marked non-blocking and the receive operation would block.

The receive was interrupted by delivery of a signal before any data was
available for the receive.

The data was specified to be received into a non-existent or protected part
of the process address space.

read(2), send(2), socket(2)

78 Last change: 4 January 1984 Sun Release 2.0

0

0

0

0

0

0

RENAME(2) SYSTEM CALLS RENAME(2)

NAME
rename - change the name of a file

SYNOPSIS
rename(from, to)
char •from, •to;

DESCRIPTION
Rename causes the link named from to be renamed as to. Ir to exists, then it is first removed.
Both from and to must be of the same type (that is, both directories or both non-directories), and
must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in the
middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the form of
an entry in directory "a", say 11a/foo", being a hard link to directory "b", and an entry in direc­
tory 11 b", say "b/bar", being a hard link to directory "a". When such a loop exists and two
separate processes attempt to perform "rename a/foo b/bar" and "rename b/bar a/Coo", respec­
tively, the system may deadlock attempting to lock both directories for modification. Hard links
to directories should be replaced by symbolic links by the system administrator.

RETURN VALUE
AO value is returned if the operation succeeds, otherwise rename returns -1 and the global vari­
able errno indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are true:

JENOTDIRJ

JENOENTJ

JEACCESJ

JENOENTJ

JEPERMJ

JEXDEVJ

JEACCESJ

JEROFSJ

JEFAULTJ

JEJNVALJ

SEE ALSO
open(2)

Sun Release 2.0

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by from is a directory and the effective user ID is not super-user.

The link named by to and the file named by from are on different logical devices
{file systems). Note that this error code will not be returned if the implementa­
tion permits cross-device links.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

Path points outside the process's allocated address space.

From is a parent directory of to.

Last change: 12 February 1983 79

RMDIR(2) SYSTEM CALLS RMDIR(2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdlr(path)
char •path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than"." and" .. ".

RETURN VALUE
A O is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored in
the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

JENOTEMPTYJ

JEPERMJ

JENOENTJ

JENOTDIRJ

jENOENTj

JEACCESJ

JEACCESJ

jEBUSYJ

[EROFSJ

[EFAULTJ

JELOOPJ

The named directory contains files other than "." and " .. " in it.

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

SEE ALSO
mkdir(2), unlink(2)

80 Last change: 2 July 1983 Sun Release 2.0

0

0

0

0

0

0

SELECT(2) SYSTEM CALLS SELECT(2)

NAME
select - synchronous I/0 multiplexing

SYNOPSIS
#Include <•:r•/tlme.h>

nfds = select(wldth, readfds, wrltefds, execptfds, timeout)
Int width, •readfds, •wrltefds, •execptfds;
struct tlmeval •timeout;

DESCRIPTION
Select examines the 1/0 descriptors specified by the bit masks readfds, writefds, and execptfds to
see if they are ready for reading, writing, or have an exceptional condition pending, respectively.
Width is the number of significant bits in each bit mask that represent a file descriptor. Typi­
cally width has the value returned by getdtablesize(2) for the maximum number of file descriptors
or is the constant 32 (number of bits in an int). File descriptor f is represented by the bit
"l<<f" in the mask. Select returns, in place, a mask of those descriptors which are ready. The
total number of ready descriptors is returned in nfds.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to com­
plete. If timeout is a zero pointer, the select blocks indefinitely. To effect a poll, the timeout
argument should be non-zero, pointing to a zero valued timeval structure.

Any of readfds, writefds, and execptfds may be given as O if no descriptors are of interest.

RETURN VALUE
Select returns the number of descriptors which are contained in the bit masks, or -1 if an error
occurred. If the time limit expires then select returns 0.

ERRORS
An error return from select indicates:

!EBADFJ

!EINTRJ

One of the bit masks specified an invalid descriptor.

A signal was delivered before any of the selected events occurred or the time
limit expired.

SEE ALSO

BUGS

accept(2), connect(2), gettimeofday(2), read(2), write(2), recv(2), send(2), getdtablesize{2)

The descriptor masks are always modified on return, even if the call returns as the result of the
timeout.

Sun Release 2.0 Last change: 1 March 1984 81

SEND(2) SYSTEM CALLS SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#Include <ayo/typea.h>
#Include <aya/aocket.h>

cc= oend(o, mag, !en, flago)
Int cc, 11;
char •mag;
Int !en, flap;

cc = aendto(a, mag, !en, flap, to, tolen)
Int cc, 11;
char •mag;
Int !en, flap;
atruct sockaddr •to;
Int tolen;

cc = aendmsg(s, mag, flap)
int cc, a;
atruct maghdr maga;
Int flap;

DESCRIPTION
Sis a socket created with socket(2). Send, sendto, and sendmsg are used to transmit a message
to another socket. Send may be used only when the socket is in a connected state, while sendto
and sendmsg may be used at any time.

The address of the target is given by to with to/en specifying its size. The length of the message
is given by len. If the message is too long to pass atomically through the underlying protocol,
then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some locally
detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then send
normally blocks, unless the socket has been placed in non-blocking i/o mode. The select(2) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF_OOB to send "out-of-band" data on sockets which sup­
port this notion (e.g. SOCK.STREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

ERRORS
[EBADFJ An invalid descriptor was specified.

[ENOTSOCKJ The argument • is not a socket.

[EFAULTJ An invalid user space address was specified for a parameter.

[EMSGSIZEJ The socket requires that message be sent atomically, and the size of the
message to be sent made this impossible.

[EWOULDBLOCKJ The socket is marked non-blocking and the requested operation would
block.

0

0

SEE ALSO
recv(2), socket(2) 0

82 Last change: 4 January 1984 Sun Release 2.0

0

0

0

SETGROUPS (2)

NAME
setgroups - set group access list

SYNOPSIS
#Include <•Y•/param.h>

eetgroupe(ngroups, gldaet)
Int ngroupe, •gldaet;

DESCRIPTION

SYSTEM CALLS SETGROUPS (2)

Setgroups sets the group access list of the current user process according to the array gidset.
The parameter ngroups indicates the number of entries in the array and must be no more than
NGRPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
AO value is returned on success, -1 on error, with a error code stored in errno.

ERRORS
The setgroups call will fail if:

[EPERMJ The caller is not the super-user.

[EFAUL T[The address specified for gidset is outside the process address space.

SEE ALSO
getgroups(2), initgroups(3)

Sun Release 2.0 Last change: 7 July 1983 83

SETPGRP(2) SYSTEM CALLS SETPGRP(2)

NAME
setpgrp - set process group

SYNOPSIS
aetpgrp(pld, pgrp)
Int pld, pgrp;

DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective user­
id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and the
global variable errno indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

!ESRCHJ

!EPERMI

SEE ALSO
getpgrp(2)

84

The requested process does not exist.

The effective user ID of the requested process is different from that of the caller
and the process is not a descendent or the calling process.

Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

SETQUOT A (2) SYSTEM CALLS SETQUOTA(2)

NAME
setquota - enable/disable quotas on a file system

SYNOPSIS
setquota(speclal, file)
char •speclal, •flle;

DESCRIPTION
N ,B,: This call Is not Implemented In the current version of the system,

Disc quotas are enabled or disabled with the setquota call. Special indicates a block special dev­
ice on which a mounted file system exists. If file is nonzero, it specifies a file in that file system
from which to take the quotas. If file is 0, then quotas are disabled-on the file system. The
quota file must exist; it is normally created with the quotacheck(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(8), quotaon(8)

RETURN VALUE
A O return value indicates a successful call. A value of -1 is returned when an error occurs and
errno is set to indicate the reason for failure.

ERRORS

BUGS

Setquota will fail when one of the following occurs:

!ENODEVI

!ENODEVI

!ENOTBLKJ

jENXIOJ

JEPERMJ

jENOTDIRJ

!EROFSJ

!EACCESJ

jEACCESJ

The caller is not the super-user.

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in file is not a directory.

File resides on a read-only file system.

File resides on a file system different from special.

File is not a plain file.

The error codes are in a state of disarray; too many errors appear to the calier as one value.

Sun Release 2.0 Last change: 27 February 1985 85

SETREGID (2) SYSTEM CALLS SETREGID (2)

NAME
setregid - set real and effective group ID

SYNOPSIS
setregld(rgld, egld}
Int rgld, egld;

DESCRIPTION
The real and effective group !D's of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERMJ

SEE ALSO

The current process is not the super-user and a change other than changing the
effective group-id to the real group-id was specified.

getgid(2), setreuid(2), setgid(3C)

86 Last change: 12 February Hl83 Sun Release 2.0

0

0
I

0

0

0

0

SETREUID (2) SYSTEM CALLS

NAME
setreuid - set real and effective user ID's

SYNOPSIS
oetreuld(ruld, euld)
Int rutd, euld;

DESCRIPTION

SETREUID (2)

The real and effective user !D's of the current process are set according to the arguments. If ruid
or euid is -1, the current uid is filled in by the system. Only the super-user may modify the real
uid of a process. Users other than the super-user may change the effective uid of a process only
to the real uid.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
IEPERMJ

SEE ALSO

The current process is not the super-user and a change other than changing the
effective user-id to the real user-id was specified.

getuid(2), setregid(2), setuid(3)

Sun Release 2.0 Last change: 12 February 1983 87

SHUTD0WN(2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
ahutdown(s, how)
Int•, how;

DESCRIPTION

SHUTD0WN(2)

The shutdown call causes all or part of a full-duplex connection on the socket associated with e to
be shut down. If how is 0, then further receives will be disallowed. If how is 1, then further
sends will be disallowed. If how is 2, then further sends and receives will be disallowed.

DIAGNOSTICS
A O is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADFJ Sis not a valid descriptor.

[ENOTSOCKJ Sis a file, not a socket.

[ENOTCONNJ The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

BUGS
The how values should be defined constants.

88 Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

SIGBLOCK(2)

NAME
sigblock - block signals

SYNOPSIS
oldmask = slgblock(mask);
Int mask;

DESCRIPTION

SYSTEM CALLS SIGBLOCK (2)

Sigblock adds the signals specified in mask to the set of signals currently being blocked from
delivery. Signal i is blocked if the i-l'th bit in maek is a. 1. The previous mask is returned, and
may be restored using sigsetmask(2).

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed
by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
ki11(2), sigvec(2), sigsetmask(2), signal(3)

Sun Release 2.0 Last change: 4 January 1984 89

SIGPAUSE (2) SYSTEM CALLS SIGPAUSE(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
algpause(algmaak)
Int slgmaak;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually O to indicate that no signals are
now to be blocked. Sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using sigpause with the mask returned by sig­
b/ock.

SEE ALSO
sigblock(2), sigvec(2), signal(3)

90 Last change: 7 July 1983 Sun Release 2.0

0

0

0

0

0

0

SJGSETMASK (2) SYSTEM CALLS S1GSETMASK(2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
slgsetmask(mask);
Int mask;

DESCRIPTION
Sigsetmask sets the current signal mask (those signals which are blocked from delivery). Signal i
is blocked if the i-l'th bit in mask is al.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2), signal(3)

Sun Release 2.0 Last change: 4 January 1984 91

SIGSTACK (2) SYSTEM CALLS SIGSTACK (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#Include <slgnal.h>

struct slgstack {
caddr _t ssJJp;
Int ss_onatack;

};

algstack(aa, oas)
struct slgstack •••, •oas;

DESCRIPTION
Sigstack allows users to define an alternate stack on which signals are to be processed. If 88 is
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the process
is currently executing on that stack. When a signal's action indicates its handler should execute
on the signal stack (specified with a sigvec(2) call), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stack,
the system arranges a switch to the signal stack for the duration of the signal handler's execu­
tion. If 088 is non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Sig8tack will fail and the signal stack context will remain unchanged if one of the following
occurs.

IEFAULTI Either 88 or 088 points to memory which is not a valid part of the process
address space.

SEE ALSO
sigvec(2), setjmp(3), signal(3)

92 Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

SIGVEC(2) SYSTEM CALLS S1GVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#Include <slgnal.h>

struct slgvec {
Int (••v _handler)();
Int av _mask;
Int ov_onstack;

};

slgvec(slg, vec, ovec)
Int slg;
struct slgvec •vec, •ovec;

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resembles
the occurrence of a hardware interrupt: the signal is blocked from further .occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per­
handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their invo­
cation blocked, but other signals may yet occur. A global signal mask defines the set of signals
currently blocked from delivery to a process. The signal mask for a process is initialized from
that of its parent (normally 0). It may be changed with a sighlock(2) or sigsetmask(2) call, or
when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process then it is delivered to the process.
When a signal is delivered, the current state of the process is saved, a new signal mask is calcu­
lated (as described below), and the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally the process will resume execution in the
context from before the signal's delivery. If the process wishes to resume in a different context,
then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the pro­
cess' signal handler (or until a sighlock or sigsetmask call is made). This mask is formed by tak­
ing the current signal mask, adding the signal to be delivered, and or'ing in the signal mask asso­
ciated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine and
mask to be used when delivering the specified signal. Further, if sv_onstack is 1, the system will
deliver the signal to the process on a signal stack, specified with sigstack(2). If ovec is non-zero,
the previous handling information for the signal is returned to the user.

The following is a list of all signals with names as in the include file <signal.h>:

SIGIIDP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3• quit
SIGILL 4• illegal instruction
SIGTRAP 5• trace trap
SIGIOT 6• !OT instruction
SIGEMT 7• EMT instruction
SIGFPE 8• floating point exception

Sun Release 2.0 Last change: 7 July 1983 93

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10• bus error
SIGSEGV lh segmentation violation
SIGSYS 12• bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16 urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18f stop signal generated from keyboard
SIGCONT 19• continue after stop (cannot be blocked)
SIGCHLD 20• child status has changed
SIGTTIN 2lt background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23 i/o is possible on a descriptor (see fcnt1(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 28• window changed (see win(4S))

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
ezecve(2) is performed. The default action for a signal may be reinstated by setting sv_hondler
to SIG.J)FL; this default is termination (with a core image for starred signals) except for signals

0

marked with • or t. Signals marked with • are discarded if the action is SIG....DFL; signals

0 marked with t cause the process to stop. If sv_hondler is SIGJGN the signal is subsequently
ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a reod or write(2) on a
slow device (such as a terminal; but not a file) and during a woit(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal stack.

The execve(2) call resets all caught signals to default action; ignored signals remain ignored; the
signal mask remains the same; the signal stack state is reset.

NOTES
Programs that must be portable to Unix systems other than 4.2 BSD should use the signol(3)
interface instead. The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or
SJGCONT. This is done silently by the system.

RETURN VALUE
A O value indicated that the call succeeded. A -1 return value indicates an error occurred and
errno is set to indicated the reason.

ERRORS

94

Sigvec will fail and no new signal handler will be installed if one of the following occurs:

[EFAULTJ

[EINVALJ

[EINVALJ

[EINVALJ

Either vec or ovec points to memory which is not a valid part of the process
address space.

Sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

Last change: 7 July 1983 Sun Release 2.0

0

0

0

0

SIGVEC(2) SYSTEM CALLS S1GVEC(2)

SEE ALSO
kill(l), ptrace(2), ki11(2), sigblock(2), sigsetmask(2), sigpause(2) sigstack(2), sigvec(2), setjmp(3),
signal(3), tty(4)

NOTES (VAX-11)
The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext •scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from the
other SIGILL traps by having PSL_CM set in the psi). Sep is a pointer to the eigcontext struc­
ture (defined in <eignal.h>), used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in <signal.h>:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow SIGFPE FPEJNTOVF_TRAP
Integer division by zero SIGFPE FPEJNTDIV _TRAP
Floating overflow trap SIGFPE FPE...FLTOVF _TRAP
Floating/ decimal division by zero SIGFPE FPE...FLTDIV _TRAP
Floating underflow trap SIGFPE FPE...FL TUND_TRAP
Decimal overflow trap SIGFPE FPE_.DECOVF _TRAP
Subscript-range SIGFPE FPE_8UBRNG_TRAP
Floating overflow fault SIGFPE FPE...FL TOVF ...FAULT
Floating divide by zero fault SIGFPE FPE...FL TDIV ...FAULT
Floating underflow fault SIGFPE FPE...FLTUND...FAULT

Length access control SIGSEGV
Protection violation SIGBUS
Reserved instruction SIGILL ILL_RESAD...FAULT
Customer-reserved instr. SIGEMT
Reserved operand SIGILL ILLJ'RIVIN...F AULT
Reserved addressing SIGILL ILL_RESOP...FAULT
Trace pending SIGTRAP
Bpt instruction SIGTRAP
Compatibility-mode SIGILL hardware supplied code
Chme SIGSEGV
Chms SIGSEGV
Chmu SIGSEGV

NOTES (SUN)
The 1010 and 1111 emulator traps both generate a SIGEMT signal. Everything else illegal gen­
erates SI GILL. Nothing generates SIGIOT.

Sun Release 2.0 Last change: 7 July 1983 95

SOCKET(2) SYSTEM CALLS SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#Include <sys/types,h>
#Include <sys/socket.h>

• = socket(af, type, protocol)
Int •, af, type, protocol;

DESCRIPTION

96

Socket creates an endpoint for communication and returns a descriptor.

The af parameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include file
<sys/ socket.h>. The currently understood formats are

AF_UNIX (UNIX path names),
AFJNET (ARPA Internet addresses),
AF YUP (Xerox PUP-I Internet addresses), and
AF JMPLINK (IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics or communication. Currently
defined types are:

SOCK_STREAM
SOCKJ)GRAM
SOCK.RAW
SOCK_SEQPACKET
SOCK..RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCKJ)GRAM socket supports
datagrams (connectionless, unreliable messages or a fixed (typically small) maximum length).
SOCK.RAW sockets provide access to internal network interfaces. The types SOCK.RAW,
which is available only to the super-user, and SOCK_SEQPACKET and SOCK..RDM, which are
planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However, it is
possible that many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the "communication domain" in which
communication is to take place; see services(3N) and protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket
must be in a connected state before any data may be sent or received on it. A connection to
another socket is created with a connect(2) call. Once connected, data may be transferred using
read(2) and write(2) calls or some variant or the send(2) and recv(2) calls. When a session has
been completed a c/ose(2) may be performed. Out-of-band data may also be transmitted as
described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not lost
or duplicated. Ir a piece of data for which the peer protocol has buffer space cannot be success­
fully transmitted within a reasonable length or time, then the connection is considered broken
and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific code in the
global variable errno. The protocols optionally keep sockets "warm" by forcing transmissions
roughly every minute in the absence or other activity. An error is then indicated if no response
can be elicited on an otherwise idle connection for a extended period (e.g. 5 minutes). A SIG­
PIPE signal is raised if a process sends on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

Last change: 29 August 1983 Sun Release 2.0

0

0

0

0

0

0

S0CKET(2) SYSTEM CALLS SOCKET(2)

SOCK..DGRAM and SOCK..RA W sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

An fcnt/(2) call can be used to specify a process group to receive a SIGURG signal when the out­
of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the
file <•Y•/socket.h> and explained below. Setsockopt and getsockopt(2) are used to set and get
options, respectively.

SO...DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse
SO_KEEP ALIVE keep connections alive
SOJ)ONTROUTE do no apply routing on outgoing messages
SOJ,INGER linger on close if data present
SO...DONTLINGER do not linger on close

SOJ)EBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates
the rules used in validating addresses supplied in a bind(2) call should allow reuse of local
addresses. SO_KEEP ALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection is con­
sidered broken and processes using the socket are notified via a SIGPIPE signal.
SO...DONTROUTE indicates that outgoing messages should bypass the standard routing facili­
ties. Instead, messages are directed to the appropriate network interface according to the net­
work portion of the destination address. SOJ,INGER and SO...DONTLINGER control the
actions taken when unsent messags are queued on socket and a close(2) is performed. If the
socket promises reliable delivery of data and SOJ,INGER is set, the system will block the pro­
cess on the close attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified in the setsockopt
call when SOJ,INGER is requested). If SO...DONTLINGER is specified and a close is issued, the
system will process the close in a manner which allows the process to continue as quickly as possi­
ble.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

JEAFNOSUPPORTJ The specified address family is not supported in this version of the system.

JESOCKTNOSUPPORTj
The specified socket type is not supported in this address family.

[EPROTONOSUPPORTj

[EMFILEJ

JENOBUFSJ

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

SEE ALSO

BUGS

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2), select(2),
send(2), shutdown(2), socketpair(2)
"A 4.2BSD Interprocess Communication Primer".

The use of keepalives is a questionable feature for this layer.

Sun Release 2.0 Last change: 29 August 1983 97

SOCKETP AIR (2) SYSTEM CALLS SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#Include <•Y•/typeo,h>
#Include <•y•/•ocket,h>
socketpalr(d, type, protocol, av)
Int d, type, protocol;
Int av(2);

DESCRIPTION
The socketpair system call creates an unnamed pair of connected sockets in the specified domain
d, of the specified type and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv!O! and evil]. The two sockets are indistinguish­
able.

DIAGNOSTICS
AO is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

]EMFILE] Too many descriptors are in use by this process.

!EAFNOSUPPORT] The specified address family is not supported on this machine.

!EPROTONOSUPPORTJ
The specified protocol is not supported on this machine.

0

JEOPNOSUPPORTJ The specified protocol does not support creation of socket pairs.

JEFAUL TJ The address sv does not specify a valid part of the process address space. 0
SEE ALSO

read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

0

98 Last change: 29 August 1983 Sun Release 2.0

0

0

0

STAT(2) SYSTEM CALLS STAT(2)

NAME
stat, !stat, fstat - get file status

SYNOPSIS
#Include <•Y•/typeo.h>
#Include <•Y•/•tat.h>

etat(path, buf')
char •path;
struct otat •buf;

latat(path, buf')
char •path;
otruct otat •buf;

fstat(fd, buf')
Int fd;
etruct stat •buf;

DESCRIPTION
Stat obtains information about the file path. Read, write or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be reachable.

Lstat is like stat except in the case where the named file is a symbolic link, in which case /stat
returns information about the link, while stat returns information about the file the link refer­
ences.

Fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed concerning the file.
tents of the structure pointed to by buf

The con-

struct stat {
dev_t st_dev; /• device inode resides on */

/• this inode's number •/

};

st_atime

st_mtime

Sun Release 2.0

ino_t
u...short
short
short
short
dev_t
ofLt
time_t
int
time_t
int
time_t
int
long
long
long

stjno;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st...sparel;

/• protection •/
/• number or hard links to the file •/
/• user-id of owner •/
/• group-id of owner •/
/• the device type, for inode that is device •/
/• total size of file •/
/• file last access time •/

st_mtime; /• file last modify time •/
st_spare2;
st_ctime;
st_spare3;

/• file last status change time •/

st_blksize; /• optimal blocksize for file system i/o ops •/
sLblocks; /• actual number of blocks allocated •/
st...spare4121;

Time when file data was last read or modified. Changed by the following system
calls: mknod(2), utimes(2), read(2), wrile(2), and truncate(2). For reasons of
efficiency, st_atime is not set when a directory is searched-, although this would be
more logical.

Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mknod(2), utimes(2),

Last change: 6 March 1984 gg

STAT(2) SYSTEM CALLS STAT(2)

write(2).

st_ctime Time when file status was last changed. It is set both both by writing and changing
the i-node. Changed by the following system calls: chmod(2) chown(2), link(2),
mknod(2), unlink(2), utimee(2), write(2), truncate(2).

The status information word et_mode has bits:
#define s_wMT
#define s_wom
#define s_wcHR
#define s_wBLK
#define s_wREG
#define s_wLNK
#define s_wsoCK
#define SJSUID
#define SJSGID
#define SJSVTX
#define SJREAD
#define SJWRITE
#define SJEXEC

0170000
0040000
0020000
0060000
0100000
0120000
0140000
0004000
0002000
0001000
0000400
0000200
0000100

/• type of file •/
/• directory •/
/• character special •/
/• block special •/
/• regular •/
/• symbolic link •/
/•socket•/
/• set user id on execution •/
/• set group id on execution •/
/• save swapped text even after use •/
/• read permission, owner •/
/• write permission, owner •/
/• execute/search permission, owner •/

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When Jd is associated with a pipe, fetal reports an ordinary file with an i-node number, restricted
permissions, and a not necessarily meaningful length.

RETURN VALUE
Upon successful completion a value or O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Stat and letat will fail if one or more of the following are true:

jENOTDIRj

jEPERMj

jENOENTJ

A component of the path prefix is not a directory.

The pathname contains a character with the high-order bit set.

The pathname was too long.

jENOENTj The named file does not exist.

jEACCESJ Search permission is denied for a component of the path prefix.

jEFAUL Tj Bu/ or name points to an invalid address.

Fstat will fail if one or both of the following are true:

jEBADFJ

jEFAULTj

jELOOPJ

Fi/des is not a valid open file descriptor.

Bu/ points to an invalid address.

Too many symbolic links were encountered in translating the pathname.

CAVEAT
The fields in the stat structure currently marked st_sparel, sl_spare!!, and et_spareS are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain pro­
grams which depend on the time stamps being contiguous (in calls to ulimee(2)).

SEE ALSO
chmod(2), chown(2), utimes(2)

BUGS
Applying /stat to a socket returns a zero'd buffer.

100 Last change: 6 March 1984 Sun Release 2.0

0

0

0

0

0

0

STATFS(2)

NAME
statrs - get file system statistics

SYNOPSIS
#Include <•y•/vto.h>

statfs(path, but)
char •path;
struct statfs •but;

fstatfs(fd, but)
Int td;
struct statfs •buf;

DESCRIPTION

SYSTEM CALLS STATFS(2)

Statjs returns information about a mounted file system. Path is the pathname or any file within
the mounted filesystem. Buf is a pointer to a statfs structure defined as follows:

typedef struct {
long val[2];

} rsid_t;

struct statrs {
long
long
long
long
long
long
long
fsid_t
long

};

Ltype;
Lbsize;
Lblocks;
Lbfree;
Lbavail;
Lfiles;
Lffree;
fJsid;
f....spare[7];

/• type of info, zero for now•/
/• fundamental file system block size •/
/• total blocks in file system •/
/• free blocks •/
/• free blocks available to non-superuser •/
/• total file nodes in file system •/
/• free file nodes in fs •/
/• file system id •/
/• spare for later •/

Fields that are undefined for a particular file system are set to -1. Fstatjs returns the same
information about an open file referenced by descriptor fd.

RETURN VALUE
Upon successful completion, a value or O is returned. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

SEE ALSO
NAME

swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
swapon(speclal)
char •special;

DESCRIPTION
Swapon makes the block device special available to the system for allocation for paging and
swapping. The names or potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the dev­
ice is first made available for swapping.

SEE ALSO
swapon(8), config(8)

Sun Release 2.0 Last change: 29 August 1983 101

SWAPON(2) SYSTEM CALLS

BUGS

102

There is no way to stop swapping on a. disk so that the pa.ck may be dismounted.

This call will be upgraded in future versions or the system.

Last change: 20 August 1983

SWAPON(2)

0

0

0
Sun Release 2.0

0

0

0

SYMLINK(2) SYSTEM CALLS SYMLINK(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
symllnk(namel, name2)
char •namel, •name2;

DESCRIPTION
A symbolic link name2 is created to namel (name2 is the name of the file created, namel is the
string used in creating the symbolic link). Either name may be an arbitrary path name; the files
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. IC an error occurs, the error code is stored
in errno and a -1 value is returned.

ERRORS
The symbolic link is made unless on or more or the following are true:

[EPERMJ

[ENOENTJ

!ENOTDIRJ

[EEXISTJ

[EACCESJ

[EROFSJ

!EFAULTJ

!ELOOPJ

SEE ALSO

Either name! or name/J contains a character with the high-order bit set.

One or the pathnames specified was too long.

A component or the name2 prefix is not a directory.

Name2 already exists.

A component or the name2 path prefix denies search permission.

The file name/J would reside on a read-only file system.

Name! or name2 points outside the process's allocated address space.

Too may symbolic links were encountered in translating the pathname.

link(2), ln(l), unlink(2)

Sun Release 2.0 Last change: 29 August 1983 103

SYNC(2) SYSTEM CALLS SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync()

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 1/0.

Sync should be used by programs which examine a file system, for example /eek, df, etc. Sync is
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), cron(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

104 Last change: 12 February 1983 Sun Release 2.0

0

0

0

0

0

0

SYSCALL(2) SYSTEM CALLS SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
syscall(number, arg, ...)

DESCRIPTION
Sysca/1 performs the system call whose assembly language interface has the specified number, and
arguments arg

The register dO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, sysca/1 returns -1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register dl.

Sun Release 2.0 Last change: 29 August 1983 105

TRUNCATE(2) SYSTEM CALLS TRUNCATE(2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char •path;
Int length;

ftruncate(fd, length)
Int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. Ir the file previously was larger than this size, the extra data is lost. With /trun­
cate, the file must be open for writing.

RETURN VALUES
A value of O is returned if the call succeeds. Ir the call fails a -1 is returned, and the global vari•
able errno specifies the error.

ERRORS
Truncate succeeds unless:

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix of path is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

The named file is a directory.

The named file resides on a read-only file system.

[EPERM[

[ENOENT[

[ENOTDIRJ

[ENOENTJ

[EACCESJ

[EISDIRJ

[EROFSJ

[ETXTBSYJ

JEFAULTJ

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADFJ

JEINVALJ

SEE ALSO
open(2)

BUGS

The fd is not a valid descriptor.

The fd references a socket, not a file.

Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

106 Last change: 7 July 1983 Sun Release 2.0

0

0

0

0

0

0

UMASK(2) SYSTEM CALLS

NAME
umask - set file creation mode mask

SYNOPSIS
oumask = umask(numask)
Int oumask, numaak;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to numask and returns the previous value of
the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict the
default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

Sun Release 2.0 Last change: 12 February 1983 107

UNLINK(2) SYSTEM CALLS UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unllnk(path)
char •path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to the
file, and no process has the file open, then all resources associated with the file are reclaimed. If,
however, the file was open in any process, the actual resource reclamation is delayed until it is
closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The unlink succeeds unless:

IEPERMJ

IENOENTI

IENOTDIRI

IENOENTJ

IEACCESJ

IEACCESJ

IEPERMJ

IEBUSYJ

IEROFSI

IEFAULTI

IELOOPI

The path contains a character with the high-order bit set.

The path name is too long.

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be removed.

The named file is a directory and the effective user ID of the process is not the
super-user.

The entry to be unlinked is the mount point for a mounted file system.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

SEE ALSO
close(2), link(2), rmdir(2)

108 Last change: 2 July 1983 Sun Release 2.0

0

0

0

0

0

0

UNMOUNT(2) SYSTEM CALLS UNMOUNT(2)

NAME
unmount - remove a file system

SYNOPSIS
unmount(name)
char •name;

DESCRIPTION
Unmount announces to the system that the directory name is no longer to refer to the root of a
mounted file system. The directory name reverts to its ordinary interpretation.

RETURN VALUE
Unmount returns O if the action occurred; -1 if if the directory is inaccessible or does not have a.

mounted file system, or if there are active files in the mounted file system.

ERRORS
Unmount may fail with one of the following errors:

[EINVALJ

JEINVALJ

JEBUSYJ

SEE ALSO

The caller is not the super-user.

Name is not the root of a mounted file system.

A process is holding a reference to a file located on the file system.

mount(2), mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

Sun Release 2.0 Last change: 1 February 1985 109

UTIMES(2) SYSTEM CALLS UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#Include <sys/types.h>

utlmes(flle, tvp)
chu •file;
struct tlmeval •tvp[2);

DESCRIPTION
The utimes call uses the "accessed" and "updated" times in that order Crom the tvp vector to set
the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time of the file
is set to the current time.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Utime will fail if one or more of the following are true:

JEPERMJ

JENOENTJ

JENOENT]

JENOTDIRJ

JEACCESJ

JEPERMJ

jEACCESJ

JEROFSJ

JEFAULTJ

jELOOPJ

SEE ALSO
stat(2)

llO

The pathname contained a character with the high-order bit set.

The pathname was too long.

The named file does not exist.

A component of the path prefix is not a directory.

A component of the path prefix denies search permission.

The process is not super-user and not the owner of the file.

The effective user ID is not super-user and not the owner of the file and times is
NULL and write access is denied.

The file system containing the file is mounted read-only.

Tvp points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

Last change: 2 July 1983 Sun Release 2.0

0

0

0

0

0

0

VADVISE(2) SYSTEM CALLS VADVISE(2)

NAME
vadvise - give advice to paging system

SYNOPSIS
#Include <•:r•/vadvlse,h>

vadvlse(param)
Int param;

DESCRIPTION

BUGS

Vadvise is used to inform the system that process paging behavior merits special consideration.
Parameters to vadvise are defined in the file <vadvlse,h>, Currently, two calls t vadvise are
implemented.

The call

vadvlse(V A_ANOM);

advises that the paging behavior is not likely to be well handled by the system's default algo­
rithm, since reference information is collected over macroscopic intervals (e.g. 10-20 seconds) will
not serve to indicate future page references. The system in this case will choose to replace pages
with little emphasis placed on recent usage, and more emphasis on referenceless circular
behavior. It is essential that processes which have very random paging behavior (such as LISP
during garbage collection of very large address spaces) call vadvise, as otherwise the system has
great difficulty dealing with their page-consumptive demands.

The call

vadvlse(V .A_NORM);

restores default paging replacement behavior after a call to

vadvlse(V A_ANOM);

Will go away soon, being replaced by a per-page madvise facility.

Sun Release 2.0 Last change: 29 August 1983 111

VFORK(2) SYSTEM CALLS VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pld = vfork()
Int pld;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old pro­
cess, which is horrendously inefficient in a paged environment. It is useful when the purpose of
fork(2) would have been to create a new system context for an ezecve. Vfork differs from fork in
that the child borrows the parent's memory and thread of control until a call to ezecve(2) or an
exit (either by a call to ezit(2) or abnormally.) The parent process is suspended while the child is
using its resources.

Vfork returns O in the child's context and (later) the pid of the child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, t~ return while running in
the childs context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _ezil rather than
ezit if you can't ezecve, since ezil will flush and close standard 1/0 channels, and thereby mess
up the parent processes standard 1/0 data structures. (Even with fork it is wrong to call ezit
since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

112

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

Last change: 2 July rn83 Sun Release 2.0

0

0

0

0

0

0

VHANGUP(2) SYSTEM CALLS VHANGUP(2)

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given "clean'" terminals at login, by revoking access of the previous users' processes to the termi·
nal. To effect this, vhangup searches the system tables for references to the control terminal of
the invoking process, revoking access permissions on each instance of the terminal which it finds.
Further attempts to access the terminal by the affected processes will yield i/o errors (EBADF).
Finally, a hangup signal (SIGHUP) is sent to the process group or the control terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev /tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

Sun Release 2.0 Last change: 12 Febuary 1983 113

WAJT(2) SYSTEM CALLS WAIT(2)

NAME
wait, wait3 - wait for process to terminate or stop

SYNOPSIS
#Include <sys/walt.h>

pld = wait(status)
Int pld;
union wait •status;

pld = walt(O)
Int pld;

#Include <sys/tlme.h>
#Include <sys/resource.h>

pld = walt3(status, options, rusage)
Int pld;
union watt •status;
Int options;
struct rusage •rusage;

DESCRIPTION

NOTES

114

Wait causes its caller to delay until a signal is received or one of its child processes terminates or
stops due to tracing. Ir any child has died or stopped due to tracing and this has not been
reported via wait, return is immediate, returning the process id and exit status of one of those
children. Ir that child had died, it is discarded. Ir there are no children, return is immediate
with the value -1 returned. Ir there are only running or stopped but reported children, the cal­
ling processes is suspended.

On return from a successful wait call, status is nonzero, and the high byte of status contains the
low byte of the argument to ezit supplied by the child process; the low byte of status contains the
termination status of the process. A more precise definition of the status word is given in
<sys/ wait.h>.

Waits is an alternate interface which allows both non-blocking status collection and the status of
children stopped by any means. The status parameter is defined as above. The options parame­
ter is used to indicate the call should not block if there are no processes which have status to
report (WNOHANG), and/or that children of the current process which are stopped due to a
SJGTTIN, SIGTTOU, SIGTSTP, or SJGSTOP signal are eligible to have their status reported as
well (WUNTRACED). A terminated child is discarded after it reports status, and a stopped pro­
cess will not report its status more than once. Ir rusage is non-zero, a summary of the resources
used by the terminated process and all its children is returned. (This information is currently
not available for stopped processes.)

When the WNO HANG option is specified and no processes have status to report, waits returns a
pid of 0. The WNOHANG and WUNTRACED options may be combined by or'ing the two
values.

See eigvec(2) for a list of termination statuses (signals); 0 status indicates normal termination. A
special status (0177) is returned for a stopped process which has not terminated and can be res­
tarted; see ptrace(2) and eigvec(2). Ir the 0200 bit of the termination status is set, a core image
of the process was produced by the system.

Ir the parent process terminates without waiting on its children, the initialization process (process
ID = l) inherits the children.

Wait and waits are automatically restarted when a process receives a signal while awaiting termi­
nation of a child process.

Last change: 22 December 1983 Sun Release 2.0

0

0

0

0

0

0

WAIT(2) SYSTEM CALLS WAIT(2)

RETURN VALUE
If wait returns due to a stopped due to tracing or terminated child process, the process ID or the
child is returned to the calling process. Otherwise, a value or -1 is returned and errno is set to
indicate the error.

Waits returns -1 if there are no children not previously waited for; 0 is returned if WNOHANG
is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD]

[EFAULT[

SEE ALSO
exit(2)

Sun Release 2.0

The calling process has no existing unwaited-for child processes.

The status or rusage arguments point to an illegal o.ddress.

Last change: 22 December 1983 115

WRITE(2) SYSTEM CALLS WRITE(2)

NAME
write, writev - write on a file

SYNOPSIS
wrlte(d, buf, nbyteo)
Int d;
char •buf;
Int nbytea;

#Include <sys/types.h>
#Include <•Y•/ulo.h>

wrltev(d, lov, loveclen)
Int d;
struct lovec •lov;
Int loveclen;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by bu/. Writev performs the same action, but gathers the output data from the
iovlen buffers specified by the members of the iov array: iov[OJ, iov[lJ, etc.

On objects capable of seeking, the write starts at a position given by the pointer associated with
d, see lseek(2). Upon return from write, the pointer is incremented by the number of bytes actu­
ally written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This prevents
penetration of system security by a user who 11captures" a writable set-user-id file owned by the
super-user.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a -1 is
returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are true:

[EBADFJ

[EPIPEJ

[EPIPEJ

[EFBIGJ

[EFAULTJ

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any pro­
cess.

An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size limit or
the maximum file size.

Part of iov or data to be written to the file points outside the process's allocated
address space.

SEE ALSO
lseek(2), open(2), pipe(2)

116 Last change: 29 August 1983 Sun Release 2.0

0

0

o;
I

0

0

0

INTR0(3) SUBROUTINES INTR0(3)

NAME
intro - introduction to library functions

DESCRIPTION

FILES

Section 3 describes library routines. The main C library is /lib/libc.a, which contains all system
call entry points described in section 2, as well as functions described in several subsections here.
The primary functions are described in the main section 3. Functions associated with the "stan­
dard 1/0 library" used by many C programs are found in section 3S. The main C library also
includes Internet network functions, described in section 3N, and routines providing compatibility
with other UNIX systems, described in section 3C.

Other sections are:

(3F) All functions callable from FORTRAN. These manual pages are reproduced in the FOR­
TRAN manual. These functions perform the same jobs as the straight "3" functions do
for C programmers. There are in fact three FORTRAN libraries, namely -1077 which
contains the system interface routines, -1177 which is the 1/0 interface library, and
-IF77 which is everything not contained in the other two. These libraries are searched
automatically by the loader when loading FORTRAN programs.

(3M) The math library. C declarations for the types of functions may be obtained from the
include file <math.h>. To use these functions with C programs use a -Im option with
cc(l). They are @ltomatically loaded as needed by the Fortran and Pascal compilers
/77(1) and pc(l).

(3X) Various specialized libraries have not been given distinctive captions. Files in which such
libraries are found are named on appropriate pages if they don't appear in the libc
library.

/lib/libc.a
/usr /lib/libc_p.a
/usr/lib/libm.a
/usr/lib/libm_p.a
/usr /lib/libU77.a
/usr /lib /libl77 .a
/usr /lib/libF77.a
/usr /lib /libcurses.a
/usr /lib/libdbm.a
/usr /lib/libmp.a
/usr /lib /libtermcap.a
/usr /lib /libtermcap_p.a
/usr /lib /libtermlib
/usr /lib /libtermlib_p.a
/usr /lib /lib plot.a
/usr /lib/lib300.a
/usr /lib/lib300s.a
/usr /lib/lib4014.a
/usr /lib/lib450.a

C Library ((2), (3), {3N) and (3C) routines)
Profiling C library (for gprof(I))
Math Library -Im (see section 3M)
Profiling version or -Im
FORTRAN system interface (see section 3F)
FORTRAN 1/0 (see section 3F)
FORTRAN everything else (see section 3F)
screen management routines (see curses(3X)
data base management routines (see dbm(3X))
multiple precision math library (see mp(3X))
terminal handling routines (see termcap(3X))
"
"
"

plot routines (see plot(3X))
"
"
"
"

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(!), Id(!), cc(l), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (section 3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM (domain error) or ERANGE
(range error). The values of EDOM and ERANGE are defined in the include file <errno.h>.

Sun Release 2.0 Last change: 15 May 1985 117

INTR0(3) SUBROUTINES INTR0(3)

LIST OF FUNCTIONS 0 Name Appears on Page Description

abort abort.3 generate a fault
abs abs.3 integer absolute value
addmntent getmntent.3 get file system descriptor file entry
alarm alarm.3c schedule signal after specified time
alphasort scandir.3 scan a directory
asctime ctime.3 convert date and time to ASCII
assert assert.3 program verification
atof atof.3 convert ASCII to numbers
atoi atof.3 convert ASCII to numbers
atol atof.3 convert ASCII to numbers
hemp bstring.3 bit and byte string operations
bcopy bstring.3 bit and byte string operations
bzero bstring.3 bit and byte string operations
clearerr ferror.3s stream status inquiries
closedir directory .3 directory operations
closelog syslog.3 control system log
crypt crypt.3 DES encryption
ctime ctime.3 convert date and time to ASCII
dysize ctime.3 convert date and time to ASCII
ecvt ecvt.3 output conversion
edata end.3 last locations in program
encrypt crypt.3 DES encryption
end end.3 last locations in program
endfsent getfsent.3 get file system descriptor file entry

0 endgrent getgrent.3 get group file entry
endhostent gethostent.3n get network host entry
endmntent getmntent.3 get file system descriptor file entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ execl.3 execute a file
err no perror.3 system error messages
etext end.3 last locations in program
execl execl.3 execute a file
execle execl.3 execute a file
execlp execl.3 execute a file
execv execl.3 execute a file
execvp execl.3 execute a file
exit exit.3 terminate a process after performing cleanup
fclose fclose.3s close or ft ush a stream
fcvt ecvt.3 output conversion
fdopen fopen.3s open a stream
feof Cerror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fflush fclose.3s close or flush a stream
Ifs bstring.3 bit and byte string operations
fgetc getc.3s get character or integer Crom stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries 0 fopen fopen.3s open a stream

118 Last change: 15 May 1985 Sun Release 2.0

INTR0(3) SUBROUTINES INTR0(3)

0 fprintf printf.3s formatted output conversion
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
freopen fopen.3s open a stream
frexp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion
fseek fseek.3s reposition a. stream
ftell fseek.3s reposition a stream
ftime time.3c get date and time
fwrite fread.3s buffered binary input/output
gcvt ecvt.3 output conversion
getc getc.3s get character or integer from stream
getchar getc.3s get character or integer from stream
getdate getdate.3 convert time and date from ASCII
getenv getenv.3 value for environment name
getfsent getfsent.3 get file system descriptor file entry
getfsfile getfsent.3 get file system descriptor file entry
getfsspec getfsent.3 get file system descriptor file entry
getfstype getfsent.3 get file system descriptor file entry
getgrent getgrent.3 get group file entry
getgrgid getgrent.3 get group file entry
getgrnam getgrent.3 get group file entry
gethostbyaddr gethostent.3n get network host entry
gethostbyname gethostent.3n get network host entry

0
gethostent gethostent.3n get network host entry
getlogin getlogin.3 get login name
getmntent getmntent.3 get file system descriptor file entry
getnetbyaddr getnetent.3n get network entry
getnetbyname getnetent.3n get network entry
getnetent getnetent.3n get network entry
getopt getopt.3c get option letter from argv
getpass getpass.3 read a password
getprotobyname getprotoent.3n get protocol entry
getprotobynumber getprotoent.3n get protocol entry
getprotoent getprotoent.3n get protocol entry
getpw getpw.3 get name from uid
getpwent getpwent.3 get password file entry
getpwnam getpwent.3 get password file entry
getpwuid getpwent.3 get password file entry
gets gets.3s get a string from a stream
getserv byname getservent.3n get service entry
getserv by port getservent.3n get service entry
getservent getservent.3n get service entry
getw getc.3s get character or integer from stream
getwd getwd.3 get current working directory pathname
gmtime ctime.3 convert date and time to ASCII
gtty stty.3c set and get terminal state
hasmntopt getmntent.3 get file system descriptor file entry
htonl byteorder.3n convert values between host and network byte order
htons byteorder.3n convert values between host and network byte order

0 index string.3 string operations
inet_addr inet.3n Internet address manipulation

Sun Release 2.0 Last change: 15 May 1985 119

INTR0(3)

inet_lnaof
inet_makeaddr
inet_netof
inet_network
inet_ntoa
initgroups
initstate
insque
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
isinf
islower
isnan
isprint
ispunct
isspace
is upper
isxdigit
ldexp
localtime
longjmp
mktemp
modf
moncontrol
monitor
monstartup
nice
nlist
ntohl
ntohs
on_exit
opendir
openlog
optarg
optind
pause
pclose
perror
popen
printf
psignal
putc
putchar
puts
putw
qsort
rand
random

120

inet.3n
inet.3n
inet.3n
inet.3n
inet.3n
initgroups.3
random.3
insque.3
ctype.3
ctype.3
ctype.3
ttyname.3
ctype.3
ctype.3
ctype.3
isinf.3
ctype.3
isinf.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
frexp.3
ctime.3
setjmp.3
mktemp.3
frexp.3
monitor.3
monitor.3
monitor.3
nice.3c
nlist.3
byteorder.3n
byteorder.3n
onexit.3
directory .3
syslog.3
getopt.3c
getopt.3c
pause.3c
popen.3s
perror.3
popen.3s
printf.3s
psignal.3
putc.3s
putc.3s
puts.3s
putc.3s
qsort.3
rand.3c
random.3

SUBROUTINES INTR0(3)

Internet address manipulation o,
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
initialize group access list
better random number generator; routines for changing generators
insert/remove element from a queue
character classification and conversion macros
character classification and conversion macros
character classification and conversion macros
find name of a terminal
character classification and conversion macros
character classification and conversion macros
character classification and conversion macros
test for indeterminate floating point values
character classification and conversion macros
test for indeterminate floating point values
character classification and conversion macros
character classification and conversion macros
character classification and conversion macros
character classification and conversion macros
character classification and conversion macros
split into mantissa and exponent
convert date and time to ASCII
non-local goto
make a unique file name
split into mantissa and exponent
prepare execution profile
prepare execution profile
prepare execution profile
set program priority
get entries from name list
convert values between host and network byte order
convert values between host and network byte order
name termination handler
directory operations
control system log
get option letter from argv
get option letter from argv
stop until signal
initiate I/0 to/from a process
system error messages
initiate I/0 to/from a process
formatted output conversion
system signal messages
put character or word on a stream
put character or word on a stream
put a string on a stream
put character or word on a stream
quicker sort

0

random number generator o
better random number generator; routines for changing generators

Last change: 15 May 1985 Sun Release 2.0

INTR0(3) SUBROUTINES INTR0(3)

0 rcmd rcmd.3n routines for returning a stream to a remote command
re_comp regex.3 regular expression handler
re_exec regex.3 regular expression handler
readdir directory .3 directory operations
remque insque.3 insert/remove element from a queue
rewind fseek.3s reposition a. stream
rewinddir directory.3 directory operations
rexec rexec.3n return stream to a remote command
rind ex string.3 string operations
rresvport rcmd.3n routines for returning a stream to a remote command
ruserok rcmd.3n routines for returning a stream to a remote command
scandir scandir.3 scan a directory
scanf scanf.3s formatted input conversion
seekdir directory.3 directory operations
setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID
seteuid setuid.3 set user and group ID
setfsent getfsent.3 get file system descriptor file entry
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry
setjmp setjmp.3 non-local goto
setkey crypt.3 DES encryption
setlinebuf setbuf.3s assign buffering to a stream

0 setmntent getmntent.3 get file system descriptor file entry
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
setstate random.3 better random number generator; routines for changing generators
setuid setuid.3 set user and group ID
signal signal.3 simplified software signal facilities
sleep sleep.3 suspend execution for interval
sprintf printf.3s formatted output conversion
srand rand.3c random number generator
srandom random.3 better random number generator; routines for changing generators
sscanf scanf.3s formatted input conversion
stdio intro.3s standard buffered input/output package
strcat string.3 string operations
strcmp string.3 string operations
strcpy string.3 string operations
strlen string.3 string operations
strncat string.3 string operations
strncmp string.3 string operations
strncpy string.3 string operations
stty stty.3c set and get terminal state
swab swab.3 swap bytes
sys_errlist perror.3 system error messages

0 sys_nerr perror.3 system error messages
sys__siglist psignal.3 system signal messages

Sun Release 2.0 Last change: 15 May 1985 121

JNTR0(3) SUBROUTINES INTR0(3)

syslog syslog.3 control system log 0 system system.3 issue a. shell comma.nd
telldir directory .3 directory operations
time time.3c get date and time
times times.3c get process times
timezone ctime.3 convert date and time to ASCII
tmpnam tmpnam.3c create a name ror a temporary file
toa.scii ctype.3 character classification and conversion macros
tolower ctype.3 character classification and conversion macros
toupper ctype.3 character classification and conversion macros
ttyname ttyname.3 find name or a terminal
ttyslot ttyname.3 find name or a terminal
ulimit ulimit.3c get and set user limits
ungetc ungetc.3s push character back into input stream

utime utime.3c set file times
valloc valloc.3 aligned memory allocator
varargs varargs.3 variable argument list
vlimit v!imit.3c control maximum system resource consumption
vtimes vtimes.3c get information about resource utilization

0

0
122 La.st change: 1S May 1986 Sun Relea.,e 2.0

0

0

0

ABORT(3) SUBROUTINES ABORT(3)

NAME
abort - generate a fault

SYNOPSIS
abort()

DESCRIPTION
Abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb{lS), signal(3), exit(2)

DIAGNOSTICS
Usually "Illegal instruction (core dumped)" from the shell.

BUGS
The abort function does not flush standard 1/0 buffers. Use ffiueh as described in fcloee(3S).

Sun Release 2.0 Last change: 26 August 1983 123

ABS (3) SUBROUTINES ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abo(I)
Int I;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M) for Jabs

BUGS
Applying the abs function to the most negative integer generates a result which is the most nega­
tive integer. That is, abs(Ox80000000) returns Ox80000000 as a result.

124 Last change: 27 August 1983 Sun Release 2.0

0

0

0

0

0

0

ASSERT(3) SUBROUTINES ASSERT(3)

NAME
assert - program verification

SYNOPSIS
#Include <assert.h>

assert(expression)

DESCRIPTION
Assert is a macro that indicates ezpression is expected to be true at this point in the program. It
causes an ezit(2) with a diagnostic comment on the standard output when ezpression is false (0).
Compiling with the cc(l) option -DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
'Assertion failed: file / line n.' F is the source file and n the source line. number of the assert
statement.

Sun Release 2.0 Last change: 23 August 1983 125

ATOF(3) SUBROUTINES ATOF(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atot(nptr)
char •nptr1

atol(nptr)
char •nptr;

long atol(nptr)
char •nptr1

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer represen­
tation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of spaces, then an optional sign, then a string of digits option­
ally containing a decimal point, then an optional 'e' or 'E' followed by an optionally signed
integer.

Aloi and atol recognize an optional string of spaces, then an optional sign, then a string of digits.

SEE ALSO
scanf(3S)

BUGS

126

There are no provisions for overflow.

Currently, atof performs highly inaccurate conversions of very large or very small numbers - on
the order or 10*•32 or its reciprocal.

Last change: 19 March 1984 Sun Release 2.0

0

I
I

ol

0

0

0

0

BSTRING(3) SUBROUTINES BSTRING(3)

NAME
bcopy, bcmp, bzero, ffs - bit and byte string operations

SYNOPSIS
bcopy(bl, b2, length)
char •bl, •b2;
Int length;

bcmp(bl, b2, length)
char •bl, •b2;
Int length;

bzero(b, length)
char •h;
Int length;

tra(i)
Int I;

DESCRIPTION
The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do not
check for null bytes as the routines in string(3) do.

Bcopy copies length bytes from string bl to the string b2. Overlapping strings are handled
correctly.

Bcmp compares byte string bl against byte string b2, returning zero if they are identical, non­
zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length O bytes in the string b.

Ffs finds the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at 1 from the right. A return value of -1 indicates the value passed is zero.

CAVEAT
The bcmp and bcopy routines take parameters backwards from strcmp and strcpy.

Sun Release 2.0 Last change: 7 November 1984 127

CRYPT(3) SUBROUTINES CRYPT(3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char •crypt(key, ealt)
char •key, *Bait;

setkey(key)
char •key;

encrypt(block, edftag)
char •block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a 2-character
string chosen from the set la-zA-Z0-9./J. The salt string is used to perturb the DES algorithm in
one of 4096 different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password, in the same alphabet _as
the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and I. If this string is divided into groups of 8, the low-order bit in each group is ignored, lead­
ing to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing O's and
J's. The argument array is modified in place to a similar array representing the bits of the argu­
ment after having been subjected to the DES algorithm using the key set by setkey. if edflag is 0,
the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(J), passwd(5), login(!), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

128 Last change: 25 February 1983 Sun Release 2.0

0

0

0

0

0

0

CTIME(3) SUBROUTINES CTIME(3)

NAME
ctime, Iocaltime, gmtime, asctime, timezone, dysize - convert date and time to ASCII

SYNOPSIS
char •ctlme(clock)
Jong •clock;

#Include <sys/tlme,h>

struct tm •localtlme(clock)
Jong •clock;

struct tm •gmtlme(clock)
Jong •clock;

char •asctlme(tm)
struct tm •tm;

char •tlmezone(zone, dat)

int dyslze(y)
Int y;

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by gettimeofday(2) into ASCII and
returns a pointer to a 26-character string in the following form. All the fields have constant
width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time UNIX uses. Asctime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11), day
of week (Sunday = 0), year - 1900, day of year (0-365), and a flag that is nonzero if daylight
saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the U.S.A., Australian, Eastern European, Middle European, or Western European day­
light saving time adjustment is appropriate. The program knows about various peculiarities in
time conversion over the past 10-20 years.

Timezone returns the name of the time zone associated with its first argument, which is meas­
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g. in Afghanistan timezone(-

Sun Release 2.0 Last change: 23 August 1983 129

CTIME(3) SUBROUTINES CTIME(3)

{60•4+90}, O} is appropriate because it is 4:30 ahead of GMT and the string GMT+4:30 is pro- o; -
duced.

Dysize returns the number of days in the argument year, either 365 or 366.

SEE ALSO
gettimeofday(2), time(3C)

BUGS
The return values point to static data whose content is overwritten by each call.

0

0
130 Last change: 23 August 1983 Sun Release 2.0

0

0

0

CTYPE(3) SUBROUTINES CTYPE(3)

NAME
isalpha, is upper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii, isgraph,
toupper, tolower, toascii - character classification and conversion macros

SYNOPSIS
#Include <ctype.h>

lsalpha(c)

...
CHARACTER CLASSIFICATION MACROS

These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning
nonzero for true, zero for false. Isascii is defined on all integer values; the rest are defined only
where isascii(c) is true and on the single non-ASCII value EOF (see stdio(3S)).

isalpha(c) c is a letter

isupper(c) c is an upper case letter

islower(c) c is a lower case letter

isdigit(c) c is a digit

isxdigit(c) c is a hexadecimal digit

isalnum(c) c is an alphanumeric character, that is, c is a letter or a digit

isspace(c) c is a space, tab, carriage return, newline, or formfeed

ispunct(c) c is a punctuation character (neither control nor alphanumeric)

isprint(c) c is a printing character, code 040(8) (space) through 0176 (tilde)

iscntrl(c) c is a delete character (0177) or ordinary control character (less than 040).

isascii(c) c is an ASCII character, code less than 0200

isgraph(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde).

CHARACTER CONVERSION MACROS
These macros perform simple conversions on single characters.

toupper(c) converts c to its upper-case equivalent. Note that this only works where c is
known to be a lower-case character to start with (presumably checked via
is/ower).

tolower(c)

toascii(c)

SEE ALSO
ascii(7)

Sun Release 2.0

converts c to its lower-case equivalent. Note that this only works where c is
known to be a upper-case character to start with (presumably checked via
isupper).

masks c with the correct value so that c is guaranteed to be an ASCII character
in the range O thru Ox7f.

Last change: 7 November 1984 131

DIRECTORY(3) SUBROUTINES DIRECTORY(3)

NAME
opendir, readdir, te11dir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#Include <•Y•/dlr.h>

DIR •opendlr(fllename)
char *11lename;

struct direct •readdlr{dlrp)
DIR •dlrp;

long telldlr{dlrp)
DIR •dlrp;

seekdlr{dlrp, loc)
DIR •dlrp;
long loc;

rewlnddlr{dlrp)
DIR •dlrp;

closedlr{ dlrp)
DIR •dlrp;

DESCRIPTION
Opendir opens the directory named by filename and associates a directory stream with it. Open­
dir returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed or is not a directory, or if it cannot mal­
/oc(3) enough memory to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end
of the directory or detecting an invalid seekdir operation.

Te//dir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new position
reverts to the one associated with the directory stream when the te//dir operation was performed.
Values returned by te//dir are good only for the lifetime of the DIR pointer from which they are
derived. If the directory is closed and then reopened, the te//dir value may be invalidated due to
undetected directory compaction. It is safe to use a previous te//dir value immediately after a
call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

C/osedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry "name" is:

!en = strlen(name);
dirp ~ opendir(" .");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))

if (dp->d_namlen == !en && !strcmp(dp->d_name, name)) {
closedir(dirp);
return FOUND;

}
closedir(dirp);
return NOTJ'OUND;

SEE ALSO
open(2), close(2), read(2), lseek(2), getwd(3), dir(5)

132 Last change: 25 February 1983 Sun Release 2.0

0

0

0

0

0

0

DIRECTORY(3) SUBROUTINES DIRECTORY(3)

BUGS
Old UNIX programs which examine directories should be converted to use this package, as the
new directory rormat is non-obvious.

Sun Release 2.0 Last change: 25 February 1983 133

ECVT(3) SUBROUTINES ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char •ecvt(value, ndlglt, decpt, sign)
double value;
Int ndlglt, •decpt, •sign;

char •fcvt(value, ndlglt, decpt, algn)
double value;
Int ndlglt, •decpt, .. 1gn;

char •gcvt(value, ndlglt, but)
double value;
char •buf;

DESCRIPTION
Ecvl converts the value to a null-terminated string of ndigil ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fcvl is identical to ecvl, except that the correct digit has been rounded for Fortran F-format
output of the number of digits specified by ndigils.

Gcvl converts the value to a null-terminated ASCII string in bu/ and returns a pointer to bu/. It
attempts to produce ndigil significant digits in Fortran F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
isinf(3), printf(3S)

BUGS
The return values point to static data whose content is overwritten by each call.

134 Last change: 23 August 1983 Sun Release 2.0

0

0

0

0

0

0

END(3) SUBROUTINES END(3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of
elexl is the first address above the program text, edata above the initialized data region, and end
above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the routines
brk(Z), malloc(3), standard input/output (stdio(3S)), the profile (-p) option of cc(l), etc. The
current value of the program break is reliably returned by 'sbrk(O)', see brk(Z).

SEE ALSO
brk(2), malloc(3)

Sun Release 2.0 Last change: 19 January 1983 135

EXECL(3) SUBROUTINES EXECL(3)

NAME
execl, execv, execle, execlp, execvp, environ - execute a file

SYNOPSIS
execl(name, argO, argl, .•• , argn, 0)
char •name, •argO, •argl, ... , •argn;

execv(name, argv)
char •name, •argv (];

execle(name, argO, argl, ... , argn, O, envp)
char •name, •argO, •argl, ... , •argn, •envp[);

execlp(name, argO, argl, ... , argn, 0)
char •name, •argO, •argl, ... , •argn;

execvp(name, argv)
char •name, •argv();

extern char ••environ;

DESCRIPTION

136

These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

Ezec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

The name argument is a pointer to the name oC the file to be executed. The pointers arg[OJ,
arg[lJ ... address null-terminated strings. Conventionally arg[OJ is the name of the file.

Two interfaces are available. ezecl is useful when a known file with known arguments is being
called; the arguments to ezec/ are the character strings constituting the file and the arguments;
the first argument is conventionally the same as the file name (or its last component). AO argu­
ment must end the argument list.

The ezecv version is useful when the number of arguments is unknown in advance; the argu­
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a O pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argvlargc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an "=", and a null~terminated value. The array of pointers is ter~
minated by a null pointer. The shell sh(l) passes an environment entry for each global shell vari­
able defined when the program is called. See environ(5) for some conventionally used names.
The C run-time start-off routine places a copy of envp in the global cell environ, which is used by
execv and exec/ to pass the environment to any subprograms executed by the current program.

Execlp and execvp are called with the same arguments as ezec/ and execv, but duplicate the
shell's actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

Last change: 27 March 1985 Sun Release 2.0

0

0

0

0

0

0

EXECL(3) SUBROUTINES EXECL(3)

FILES
/bin/sh shell, invoked if command file found by ezec/p or ezecvp

SEE ALSO
execve(2), fork(2), environ(5), csh(l), sh(l)
"UNIX Programming" in Programming Tools for the Sun Workstation, pp. 1-3.

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5)), if maximum memory is exceeded, or if the arguments require too much space, a
return constitutes the diagnostic; the return value is -1. Even for the super-user, at lea.st one of
the execute-permission bits must be set for a file to be executed.

Sun Release 2.0 La.st change: 27 March 1985 137

EXIT(3) SUBROUTINES EXIT(3)

NAME
exit - terminate a process after performing cleanup

SYNOPSIS
exlt(status)
Int status;

DESCRIPTION
Exit terminates a process by calling exil(2) after calling any termination handlers named by calls
to on_exit. Normally, this is just the Standard 1/0 library function _cleanup. Exit never
returns.

SEE ALSO
exit(2), intro(3S), on_exit(3)

138 Last change: 21 September 1984 Sun Release 2.0

0

0

0

0

0

0

FREXP(3) SUBROUTINES

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
Int •eptr;

double ldexp(value, exp)
double value;

double modl'(value, lptr)
double value, •lptr;

DESCRIPTION

FREXP(3)

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value = X* 2n indirectly through eptr.

Ldexp returns the quantity value• 2exp_

Mod/ returns the positive fractional part of value and stores the integer part indirectly through
iptr.

SEE ALSO
isinf(3)

BUGS
The identity claimed for the results of frexp cannot hold when the value argument is an IEEE
indefinite quantity - infinity or not-a-number.

Sun Release 2.0 Last change: 23 August 1983 139

GETENV(3) SUBROUTINES

NAME
getenv - value for environment name

SYNOPSIS
char •getenv(name)
char •name;

DESCRIPTION

GETENV(3)

Getenv searches the environment list (see environ(5)) (or a string of the form name=value and
returns a pointer to the string value if such a string is present, otherwise getenv returns the value
0 (NULL).

SEE ALSO
environ(5), execve(2)

140 Last change: 19 January 1983 Sun Release 2.0

0

0

o1

0

0

0

GETFSENT (3) SUBROUTINES GETFSENT(3)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry

SYNOPSIS
#Include <fatab.h>

atruct fstab •getfsent()

atruct fstab •getfsapec(spec)
char •spec;

struct fstab •getfsflle(file)
char •Ille;

struct fatab •getfstype(type)
char •type;

Int setfaent()

Int endfsent()

DESCRIPTION

FILES

These routines are included for compatibility with 4.2 BSD; they have been superseded by the
getmntent(3) library routines.

Get/sent, getfsspec, getfstype, and getfsfile each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file, <fstab.h>.

struct fstab{
char

};

char
char
int
int

•fs_spec;
•fs_file;
•fs_type;
fsJreq;
fs_pa.ssno;

The fields have meanings described in fstab(5).

Get/sent reads the next line of the file, opening the file if necessary.

Set/sent opens and rewinds the file.

End/sent closes the file.

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getfstype does likewise,
matching on the file system type field.

/etc/fstab

SEE ALSO
fstab(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
The return value points to static information which is overwritten in each call.

Sun Release 2.0 La.st change: 23 August 1983 141

GETGRENT(3) SUBROUTINES

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#Include <grp.h>

struct group •getgrent()

struct group •getgrgld(g!d)
Int gld;

struct group •getgrnam(name)
char •name;

setgrent()

endgrent()

DESCRIPTION

GETGRENT (3)

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file:

struct group {
char
char
int

*gr_name;
*gr _passwd;
gr_gid;

char ••gr_mem;
};

The members of this structure are:

0

gr _name The name of the group.
gr _passwd The encrypted password of the group. 0
gr _gid The numerical group-ID.

FILES

gr_mem Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave off so
successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

/etc/group
/etc/yp/ domainname /group.byname
/etc/yp/ domainname /group.bygid

SEE ALSO
getlogin(3), getpwent(3), group(5), ypserv(8)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
The return value points to static information which is overwritten on each call.

142 Last change: 23 August 1983 Sun Release 2.0

0

0

0

0

GETLOGIN (3) SUBROUTINES GETLOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char •getlogln()

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call getlogin and if it fails, to call
gelpwuid(getuid()).

/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(S)

DIAGNOSTICS

BUGS

Returns NULL (0) if name not found.

The return values point to static data whose content is overwritten by each call.

Getlogin does not work for processes running under a pty (for example, emacs shell buffers, or
shell tools) unless the program "fakes" the login name in the /etc/utmp file.

Sun Release 2.0 Last change: 20 March 1984 143

GETMNTENT(3) SUBROUTINES GETMNTENT (3)

NAME
setmntent, getmntent, addmntent, endmntent, hasmntopt - get filesystem descriptor file entry

SYNOPSIS
#Include <stdlo.h>
#Include <mntent.h>

FILE •setmntent(fllep, type)
char •fllep;
char •type;

struct mntent •getmntent(fllep)
FILE •fllep;

Int addmntent(fllep, mnt)
FILE dlep;
struct mntent •mnt;

char •hasmntopt(mnt, opt)
struct mntent •mnt;
char •opt;

Int endmntent(fllep)
FILE •fllep;

DESCRIPTION

FILES

These routines replace the getfsent(3) routines for accessing the filesystem description file
/etc/fstab, and the mounted filesystem description file /etc/mtab.

Setmntent opens a filesystem description file and returns a file pointer for use with getmntent,
addmntent, or endmntent. The type argument is the same as in fopen(3). Getmntent reads the
next line from filep and returns a pointer to an object with the following structure containing
broken-out fields of a line in the filesystem description file, <mntent.h>. The fields have mean­
ings described in fstab(5).

struct mntent {

};

char •mntJsname;
char •mnt_dir;
char *mnt_type;
char •mnt_opts;
int mntJreq;
int mnt_passno;

/• filesystem name •/
/• filesystem path prefix •/
/• 4.2, nfs, swap, or ignore •/
/• ro, rw, quota, noquota, hard, soft•/
/• dump frequency, in days•/
/• pass number on parallel fsck •f

Addmntent adds the mntent structure mnt to the end of the open file filep. Note that filep has
to be opened for writing if this is to work. Hasmntopt scans the mnt_opts field of the mntent
structure mnt for a substring that matches opt. It returns the address of the substring if a
match is found, 0 otherwise. Endmntent closes the file.

/etc/fstab
/etc/mtab

SEE ALSO
getfsent(3), fstab(5), mtab(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

144 Last change: 12 March 1985 Sun Release 2.0

0

0

0

GETMNTENT (3) SUBROUTINES GETMNTENT (3)

0 BUGS
The returned mntent structure points to static information that is overwritten in each call.

0

0
Sun Release 2.0 Last change: 12 March 1985 145

GETPASS (3)

NAME
getpass - read a password

SYNOPSIS
char •getpass(prompt)
char •prompt;

DESCRIPTION

SUBROUTINES GETPASS(3)

Getpass reads a password from the file /dev/tty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string or at most 8 characters.

FILES
/dev /tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

146 Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

0

GETPW(3)

NAME
getpw - get name from uid

SYNOPSIS
getpw(uld, but)
char •buf;

DESCRIPTION

SUBROUTINES

Getpw Is obsoleted by getpwent(3),

GETPW(3)

Getpw searches the password file for the (numerical) uid, and fills in buf with the corresponding
line; it returns non-zero if uid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

Sun Release 2.0 Last change: 26 August 1983 147

GETPWENT (3) SUBROUTINES GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
#Include <pwd.h>

atruct passwd •getpwent()

struct passwd •getpwuld(uld)
Int uld;

struct pasewd •getpwnam(name)
char •name;

Int aetpwent()

Int endpwent()

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the password file.

/• @(#)pwd.h 1.1 84/12/20 SM!; from UCB 4.1 83/05/03 •/

struct passwd { /• see getpwent(3) •/
char •pw_name;
char *PW_passwd;
int pw_uid;
int pw_gid;
int pw_quota;
char. •pw_comment;
char *pw_gecos;
char •pw_dir;
char •pw__shell;

};

struct passwd •getpwent(), •getpwuid(), •getpwnam();

The fields pw_quota and pw_comment are unused; the others have meanings described in
passwd(5).

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent
closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or
until EOF is encountered).

/etc/passwd
/etc/yp/ domainname/passwd.byname
/etc/yp/ domainname /passwd.byuid

SEE ALSO
getlogin(3), getgrent(3), passwd(5), ypserv(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
The return value points to static information which is overwritten on each call.

148 Last change: 28 February 1985 Sun Release 2.0

0

0

0

0

0

0

GETWD(3) SUBROUTINES GETWD(3)

NAME
getwd - get current working directory pathname

SYNOPSIS
#Include <•Y•/param.h>

char •getwd(pathname)
char pathname(MAXP ATHLEN);

DESCRIPTION
Getwd copies the absolute pathname of the current working directory to pathname and returns a
pointer to the result.

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

Sun Release 2.0 Last change: 25 February 1983 149

INITGROUPS (3) SUBROUTINES

NAME
initgroups - initialize group access list

SYNOPSIS
lnltgroups(name, basegld)
char •name;
Int basegld;

DESCRIPTION

INITGROUPS (3)

/nilgroups reads through the group file and sets up, using the selgroups(2) call, the group access
list for the user specified in name. The hasegid is automatically included in the groups list. Typ­
ically this value is given as the group number from the password file.

FILES
/etc/group

SEE ALSO
setgroups(2)

DIAGNOSTICS
/nilgroups returns -1 if it was not invoked by the super-user.

BUGS
/nilgroups uses the routines based on gelgrent(3). If the invoking program uses any of these rou­
tines, the group structure will be overwritten in the call to inilgroups.

150 Last change: 23 August 1983 Sun Release 2.0

0

0

0

0

0

0

INSQUE(3) SUBROUTINES

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
struct qelem {

};

atruct qelem •qJorw;
struct qelem •q._back;
char q._dataD;

lnaque(elem, pred)
struct qelem •elem, •pred;

remque(elem)
struct qelem •elem;

DESCRIPTION

INSQUE(3)

Jnsque and remque manipulate queues built from doubly linked lists. Each element in the queue
must be in the form of "struct qelem". lneque inserts elem in a queue imediately after pred;
remque removes an entry elem from a queue.

SEE ALSO
"VAX Architecture Handbook", pp. 228-235. It does work on Suns.

Sun Release 2.0 Last change: 20 March 1984 151

ISINF{3) SUBROUTINES ISINF(3)

NAME
isinf, isnan - test for indeterminate floating point values

SYNOPSIS
Int lalnr(value)
double value;

Int lanan(value)
double value;

DESCRIPTION

BUGS

152

!sin/ returns a value of 1 if its value is an IEEE format infinity (two words Ox71f00000
OxOOOOOOOO) or an IEEE negative infinity, and returns a zero otherwise.

lsnan returns a value of 1 if its value is an IEEE format 'not-a-number' (two words
Ox7ff nnnnnOx nnnnnnnn) where n is not zero) or its negative, and returns a zero otherwise.

Some library routines such as ecvt(3) do not handle indeterminate floating point values grace­
fully. Prospective arguments to such routines should be checked with isinf or isnan before cal­
ling these routines.

Need a manual section describing the format of IEEE numbers in detail.

Last change: 23 August 1983 Sun Release 2.0

01
I

0

0

0

0

0

MALLOC(3) SUBROUTINES MALLOC(3)

NAME
malloc, free, realloc, calloc, cfree, memalign, valloc, alloca, malloc_debug, malloc_verify -
memory ailocator

SYNOPSIS
char •malloc(size)
unsigned size;

free(ptr)
char •ptr;

char nealloc(ptr, size)
char •ptr;
unsigned size;

char •calloc(nelem, el size)
unsigned nelem, elslze;

cfree(ptr)
char •ptr;

char •memallgn(allgnment, size)
unsigned alignment;
unsigned size;

char •valloc(size)
unsigned size;

char •alloca(size)
Int size;

DESCRIPTION
These routines provide a general-purpose memory allocation package. They maintain a table of
free blocks for efficient allocation and coalescing of free storage. When there is no suitable space
already free, the allocation routines call sbrk (see brk(2)) to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for storage of any type
of object. They return a null pointer if the request cannot be completed (see DIAGNOSTICS).

Mal/oc returns a pointer to a block of at least size bytes beginning on a word boundary. A null
(0) pointer is returned if size bytes or memory cannot be allocated.

Free releases a previously allocated block. Its argument is a pointer to a block previously allo­
cated by mal/oc, cal/oc, real/oc, valloc, or memalign. The block is made available for further allo­
cation; its contents are left undisturbed until the next call to malloc, ca//oc, realloc, valloc, or
me malign.

Real/oc changes the size of the block referenced by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.
For backwards compatibility, realloc accepts a pointer to a block freed since the most recent call
to ma/loc, calloc, real/oc, val/oc, or memalign. Note that using rea/loc with a block freed before
the most recent call to ma/loc, calloc, real/oc, valloc, or memalign is an error.

Cal/oc uses malloc to allocate space for an array of nelem elements of size elsize, initializes the
space to zeros, and returns a pointer to the initialized block. The block can be freed with free or
cfree.

Mema/ign allocates size bytes on a specified alignment boundary, and returns a pointer to the
allocated block. The value of the returned address is guaranteed to be an even multiple of align­
ment. Note that the value of alignment must be a power of two, and must be greater than or
equal to the size or a word.

Sun Release 2.0 Last change: 15 November 1984 153

MALLOC(3) SUBROUTINES MALLOC(3)

Valloc{size) is equivalent to memalign(getpagesize{), size).

Alloca allocates size bytes of space in the stack frame of the caller, and returns a pointer to the
allocated block. This temporary space is automatically freed when the caller returns.

SEE ALSO
"Fast Fits" by C. J. Stephenson, in Proceedings of the ACM 9th Symposium on Operating Sys­
tems, SIGOPS Operating Systems Review, vol. 17, no. 5, October 1983.

Core Wars, in Scientific American, May 1984.

DIAGNOSTICS
Malloc, calloc, realloc, valloc, and memalign return a null pointer (0) and set errno if arguments
are invalid, or if there is insufficient available memory, or if the heap has been detectably cor­
rupted, e.g. by storing outside the bounds of a block.

More detailed diagnostics can be made available to programs using ma/loc, ca/loc, rea/loc, valloc,
memalign, cfree, and free, by including a special relocatable object file at link time (see FILES).
This file also provides routines for control of error handling and diagnosis, as defined below.
Note that these routines are not defined in the standard library.

Int malloc_debug(level)
Int level;

Int malloc_verlfy()

Ma/loc_debug sets the level of error diagnosis and reporting during subsequent calls to malloc,
calloc, realloc, valloc, memalign, cfree, and free. The value of level is interpreted as follows:

[Level O[Ma/loc, ca/loc, realloc, valloc, memalign, cfree, and free behave the same as in
the standard library.

[Level lJ

[Level 2J

Malloc, calloc, rea/loc, valloc, memalign, cfree, and free abort with a message to
stderr if errors are detected in arguments or in the heap. If a bad block is
encountered, its address and size are included in the message.

Same as level 1, except that the entire heap is examined on every call to malloc,
calloc, realloc, valloc, memalign, cfree, and free.

Ma/loc_debug returns the previous error diagnostic level. The default level is 1.

Malloc_verify attempts to determine if the heap has been corrupted. It scans all blocks in the
heap (both free and allocated) looking for strange addresses or absurd §izes, and also checks for
inconsistencies in the free space table. Ma/loc_verify returns 1 if all checks pass without error,
and otherwise returns 0. The checks can take a significant amount of time, so it should not be
used indiscriminately.

ERRORS

FILES

BUGS

154

Mal/oc, cal/oc, realloc, valloc, memalign, cfree, and free will set errno if:

JEINVALJ

[ENOMEMJ

An invalid argument was given. The value of ptr given to free, cfree, or realloc
must be a pointer to a block previously allocated by malloc, calloc, realloc, val­
loc, or me malign. The EINV AL condition also occurs if the heap is found to
have been corrupted. More detailed information may be obtained by enabling
range checks using malloc_debug.

size bytes of memory could not be allocated.

/usr /lib/ de bug/malloc.o diagnostic versions of malloc, free, etc.

Alloca is both machine- and compiler-dependent; its use is discouraged.

Last change: 15 November 1984 Sun Release 2.0

0

0

0

0

0

0

MALLOC(3) SUBROUTINES MALLOC(3)

Since rea/loc accepts a pointer to a block freed since the last call to malloc, calloc, realloc, valloc,
or mema/ign, a degradation of performance results. The semantics of free should be changed so
that the contents of a previously freed block are undefined.

Sun Release 2.0 Last change: 15 November 1984 155

MKTEMP(3) SUBROUTINES MKTEMP(3)

NAME
mktemp - make a unique file name

SYNOPSIS
char •mktemp(template)
char •template;

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address or the template. The
template should look like a file name with six trailing X's, which will be replaced with the current
process id and a unique letter.

Notes:

• Mktemp actually changes the template string which you pass, this means that you cannot use
the same template string more than once - you need a fresh template for every unique file
you want to open.

• When mktemp is creating a new unique filename it checks for the prior existence or a file with
that name. This means that if you are creating more than one unique filename, it is bad prac­
tice to use the same root template for multiple invocations of mktemp.

SEE ALSO
getpid(2)

156 Last change: 6 January 1984 Sun Release 2.0

0

0

0

0

0

0

MONITOR(3) SUBROUTINES MONITOR(3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
monltor(lowpc, hlghpc, buffer, bufslze, nfunc)
Int (•lowpc)(), (•hlghpc)();
short buffer a;
monstartup(lowpc, hlghpc)
Int (•lowpc)(), (•hlghpc)();

moncontrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc -p ...

automatically includes calls for the prof(l) monitor and includes an initial call to its start-up rou­
tine monstartup with default parameters; monitor need not be called explicitly except to gain fine
control over profit buffer allocation. An executable program created by:

cc -pg ...

automatically includes calls for the gprof(l) monitor.

Monstartup is a high level interface to profi/(2). Lowpc and highpc specify the address range that
is to be sampled; the lowest address sampled is that of /owpc and the highest is just below
highpc. Monstartup allocates space using sbrk(2) and passes it to monitor (see below) to record a
histogram of periodically sampled values or the program counter, and of counts of calls or certain
functions, in the buffer. Only calls of functions compiled with the profiling option -p or cc(l)
are recorded.

To profile the entire program, it is sufficient to use

extern etext();

monstartup(Ox8000, etext);

Etezt lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

then prof(l) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either
prof(l) or gprof{l) type profiling. When the program starts, profiling begins. To stop the collec­
tion of histogram ticks and call counts use moncontrol(O); to resume the collection of histogram
ticks and call counts use moncontrol(l). This allows the cost of particular operations to be meas­
ured. Note that an output file will be produced upon program exit irregardless of the state of
moncontrol.

Monitor is a low level interface to profi/(2). Lowpc and highpc are the addresses of two functions;
buffer is the address or a (user supplied) array or bu/size short integers. At most nfunc call
counts can be kept. For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few times smaller than the range
or locations sampled. Monitor divides the buffer into space to record the histogram of program
counter samples over the range lowpc to highpc, and space to record call counts or functions
compiled with the -p option to cc{l).

Sun Release 2.0 Last change: 19 January 1983 157

MONITOR(3) SUBROUTINES

FILES

To profile the entire program, it is sufficient to use

extern etext();

monitor(Ox8000, etext, bur, bufsize, nfunc);

mon.out

SEE ALSO
cc(l), prof(!), gprof(l), profil(2), sbrk(2)

158 Last change: 19 January 1983

MONITOR(3)

0

0

0
Sun Release 2.0

0

0

0

NLIST(3)

NAME
nlist - get entries from name list

SYNOPSIS
#Include <nllst,h>

nllst(ftiename, nI)
ch&!' •fllename;
struct nllst nl[);

DESCRIPTION

SUBROUTINES NLIST(3)

Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values. The
list is terminated with a null name. Each name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted in the next two fields. If the name is
not found, both entries are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /vmunlx. In this
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to O if the file cannot be found or if it is not a valid namelist.

Sun Release 2.0 Last change: 19 January 1983 159

0 N_.EXIT (3) SUBROUTINES ON...EXIT(3)

NAME
on_exit - name termination handler

SYNOPSIS
Int on_exlt(procp, arg)
void (•procp)();
caddr _t arg;

DESCRIPTION
On_ezit names a routine to be called after a program calls ezit(3) or returns normally, and before
its process terminates. The routine named is called as

(•procp)(status, arg);
where status is the argument with which exit was called, or zero if main returns. Typically, arg
is the address of an argument vector to (•procp}, but may be an integer value. Several calls may
be made to on_ezit, specifying several termination handlers. The order in which they are called is
the reverse of that in which they were given to on_ezit.

SEE ALSO
exit(3)

DIAGNOSTICS

BUGS

NOTES

160

On_exit returns zero normally, or nonzero if the procedure name could not be stored.

Currently there is a limit of 20 termination handlers, including any invoked implicitly (for exam­
ple, by gprof(l) or tcov(l) processing). Calls to on_ezit beyond this number will fail.

This call is specific to Sun Unix and should not be used if portability is a. concern.

Standard 1/0 exit processing is always done last.

Last change: 12 October 1984 Sun Release 2.0

0

0

0

0

0

0

PERROR(3) SUBROUTINES PERROR(3)

NAME
perror, sys_errlist, sys_nerr, errno - system error messages

SYNOPSIS
perror(s)
char •a;

Int sys_nerr;
char •sys_errllst[);

lnt errno;

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error encoun­
tered during a call to the system from a C program. First the argument string e is printed, then
a colon, then the message and a new-line. Most usefully, the argument string is the name of the
program which incurred the error. The error number is taken from the external variable errno
(see intro(2)), which is set when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

Sun Release 2.0 Last change: 19 January 1983 161

PSIGNAL(3) SUBROUTINES PSIGNAL(3)

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
pslgnal(slg, •)
unsigned olg;
char••;
char •syo_slgllot[);

DESCRIPTION
Psignal produces a short message on the standard error file describing the indicated signal. First
the argument string s is printed, then a colon, then the name of the signal and a new-line. Most
usefully, the argument string is the name of the program which incurred the signal. The signal
number should be from among those found in <signal.h>.

To simplify variant formatting or signal names, the vector or message strings sys_siglist is pro­
vided; the signal number can be used as an index in this table to get the signal name without the
newline. The define NSIG defined in <signal.h> is the number of messages provided for in the
table; it should be checked because new signals may be added to the system before they are
added to the table.

SEE ALSO
perror(3), signal(3)

162 Last change: 26 August 1983 Sun Release 2.0

0

0

0

0

0

0

QSORT(3) SUBROUTINES QSORT(3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, com par)
char •base;
Int (•com par)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal to,
or greater than O according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sort(!)

Sun Release 2.0 Last change: 19 January 1983 163

RANDOM(3) SUBROUTINES RANDOM(3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing
generators

SYNOPSIS
long random()

srandom(seed)
Int seed;

long •lnltstate(seed, state, n)
unsigned seed;
long •state;
Int n;

long •setstate(state)
long •state;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default table
of size 31 long integers to return successive pseudo-random numbers in the range from O to
231-1. The period of this random number generator is very large, approximately 16•(231-1).

Random/srandom have (almost) the same calling sequence and initialization properties as
rand/ srand. The difference is that rand(3C) produces a much less random sequence -- in fact, the
low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random
are usable. For example, "random()&Ol" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of
state information used is much more than a single word. (Two other routines are provided to
deal with restarting/changing random number generators). Like rand(3C), however, random will
by default produce a sequence of numbers that can be duplicated by calling srandom with 1 as
the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future
use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a ran­
dom number generator it should use ·· the more state, the better the random numbers will be.
(Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256 bytes;
other amounts will be rounded down to the nearest known amount. Using less than 8 bytes will
cause an error). The seed for the initialization (which specifies a starting point for the random
number sequence, and provides for restarting at the same point) is also an argument. lnitstate
returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching between states.
Setstate returns a pointer to the previous state array; its argument state array is used for further
random number generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by calling
initstate (with the desired seed, the state array, and its size) or by calling both setstate (with the
state array) and srandom (with the desired seed). The advantage of calling both setstate and
srandom is that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than
2••, which should be sufficient for most purposes.

DIAGNOSTICS

164

if initstate is called with less than 8 bytes of state information, or if setstate detects that the
state information has been garbled, error messages are printed on the standard error output.

Last change: 9 March 1984 Sun Release 2.0

0

0

0

0

0

0

RANDOM(3)

SEE ALSO
rand(3C)

BUGS

SUBROUTINES

About 2/3 the speed or rand(3C).

Sun Release 2.0 Last change: 9 March 1984

RANDOM(3)

165

REGEX(3) SUBROUTINES REGEX(3)

NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char •re_comp(•)
char •a;

re_exec(s)
char •s;

DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern matching. Re_ezec checks
the argument string against the last string passed to re_comp.

Re_comp returns O if the string B was compiled successfully; otherwise a string containing an
error message is returned. If re_comp is passed O or a null string, it returns without changing the
currently compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s
failed to match the last compiled regular expression, and -1 if the compiled regular expression
was invalid (indicating an internal error).

The strings passed to both re_comp and re_ezec may have trailing or embedded newline charac­
ters; they are terminated by nulls. The regular expressions recognized are described in the
manual entry for ed(l), given the above difference.

SEE ALSO
ed{l), ex{l), egrep{l), fgrep(l), grep{l)

DIAGNOSTICS

166

Re_exec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

No previous regular expression

Regular expression too long

unmatched\(

missing J
too many\(\} pairs

unmatched V

Last change: 4 March 1983 Sun Release 2.0

0

0

0

0

0

0

SCANDIR(3) SUBROUTINES SCANDIR(3)

NAME
scandir, alphasort - scan a directory

SYNOPSIS
#Include <•y•/typea.h>
#Include <•Y•/dlr.h>

acandlr(dlrname, namellat, select, com par)
char •dlrname;
struct direct •(•nameliat(]);
Int (••elect)();
Int (•com par)();

alphasort(dl, d2)
struct direct **dl, **dll;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries using
ma/loc(3). The second parameter is a pointer to an array of structure pointers. The third
parameter is a pointer to a routine which is called with a pointer to a directory entry and should
return a non zero value if the directory entry should be included in the array. If this pointer is
null, then all the directory entries will be included. The last argument is a pointer to a routine
which is passed to qsort(3) to sort the completed array. If this pointer is null, the array is not
sorted. A/phasort is a routine which will sort the array alphabetically.

Scandir returns the number of entries in the array and a pointer to the array through the
parameter namelist.

SEE ALSO
directory(3), malloc(3), qsort(3)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if ma/loc(3) cannot allocate enough
memory to hold all the data structures.

Sun Release 2.0 Last change: 19 January 1983 167

SETJMP(3) SUBROUTINES SETJMP(3)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

val = setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

val= _setjmp(env)
jmp_buf env;

Jongjmp(env, val)
jmp_buf env;

DESCRIPTION

168

Setjmp and longjmp are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. Setjmp also saves the regis­
ter environment. Setjmp returns the value 0. If a /ongjmp call will be made, the routine which
called setjmp should not return until after the longjmp has returned control (see below).

Longjmp restores the environment saved by the last call of setjmp, and then returns in such a
way that execution continues as if the call of setjmp had just returned the value val to the func­
tion that invoked setjmp. The calling function must not itself have returned in the interim, oth­
erwise longjmp will be returning control to a possibly non-existent environment. All memory­
bound data have values as of the time /ongjmp was called. The machine registers are restored to
the values they had at the time that setjmp was called. But, because the register storage class
is only a hint to the C compiler, variables declared as register variables may not necessarily be
assigned to machine registers, so their values are unpredictable after a longjmp. This is espe­
cially a problem for programmers trying to write machine-independent C routines.

The following code fragment indicates the flow of control of the setjmp and longjmp combination:

.•. function declaration
jmp_buf my_environment;

... code ...
If (setjmp (my_environment)) {

this is the code after the return from longjmp
... more code

register variables have unpredictable values
... more code

} else {

}

this is the return from set}mp
... more code

Do not modify register variables
in this leg of the code
... more code

Setjmp and longjmp save and restore the signal mask sigsetmask(2), while _setjmp and _longjmp
manipulate only the C stack and registers.

Last change: 26 August 1983 Sun Release 2.0

0

0

0

0

0

0

SETJMP{3) SUBROUTINES SETJMP{3)

SEE ALSO
sigsetmask(2), sigvec{2), signal{3)

BUGS
Setjmp does not save current notion of whether the process is executing on the signal stack. The
result is that a longjmp to some place on the signal stack leaves the signal stack state incorrect.

Sun Release 2.0 Last change: 26 August 1983 169

SETUID(3) SUBROUTINES

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
setuld(uld)
seteuld(euld)
setruld(ruld)

setgld(gld)
setegld(egld)
setrgld(rgld)

DESCRIPTION

SETUID(3 i

Setuid (selgid) sets both the real and effective user ID (group ID) of the current process to as
specified.

Seteuid (selegid) sets the effective user ID (group ID) of the current process.

Setruid (setruid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid(2), setregid(2), getuid(2), getgid(2)

DIAGNOSTICS

170

Zero is returned if the user (group) ID is set; -1 is returned otherwise, with the global variable
errno set as for setreuid or setregid.

Last change: 1 April 1983 Sun Release 2.0

0

0

0

0

0

0

SIGNAL(3) SUBROUTINES S1GNAL(3)

NAME
signal - simplified software signal facilities

SYNOPSIS
#Include <slgnal.h>

(•slgnal(slg, tune))()
void (•func)();

DESCRIPTION
Signal is a simplified interface to the more general sigvee(2) facility. Programs that use signal in
preference to sigvec are more likely to be portable to all UNIX systems.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt,
stop), by a program error (bus error, etc.), by request of another program (kill), or when a pro­
cess is stopped because it wishes to access its control terminal while in the background (see
tty(4)). Signals are optionally generated when a process resumes after being stopped, when the
status of child processes changes, or when input is ready at the control terminal. Most signals
cause termination of the receiving process if no action is taken; some signals instead cause the
process receiving them to be stopped, or are simply discarded if the process has not requested
otherwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows signals either to
be ignored or to cause an interrupt to a specified location. The following is a list of all signals
with names as in the include file <signal.h>:

SJGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3• quit
SIGILL 4• illegal instruction
SIGTRAP 5• trace trap
SIGIOT 6• !OT instruction
SIGEMT 7• EMT instruction
SIGFPE 8• floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10• bus error
SIGSEGV lh segmentation violation
SIGSYS 12• bad argument to system call
S!GPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16 urgent condition present on socket
SIGSTOP 17t stop (cannot be caught or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19• continue after stop
SIGCHLD 20• child status has changed
SIGTTIN 21t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23 i/o is possible on a descriptor (see Jent/(2))
SIGXCPU 24 cpu time limit exceeded {see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWJNCH 28• window changed

The starred signals in the list above cause a core image if not caught or ignored.

If June is S!GJ)FL, the default action for signal eig is reinstated; this default is termination (with
a core image for starred signals) except for signals marked with • or t Signals marked with •
are discarded if the action is S!GJ)FL; signals marked with t cause the process to stop. If June

Sun Release 2.0 Last change: 27 February 1985 171

SIGNAL(3) SUBROUTINES S1GNAL(3)

is SIGJGN the signal is subsequently ignored and pending instances of the signal are discarded. o,
Otherwise, when the signal occurs further occurences of the signal are automatically blocked and
June is called.

A return from the function unblocks the handled signal and continues the process at the point it
was interrupted. Unlike previous signal facilities, the handler June remains Installed
after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) value of June for the particular signal.

After a Jork(2) or vJork(2) the child inherits all signals. An execve(2) resets all caught signals to
the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set
to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

[EINVAL[

[EINVAL]

[EINVAL]

SEE ALSO

Sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

kill(l), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause{2), sigstack(2), setjmp(3), 0
tty(4)

NOTES (VAX-11)

172

The handler routine can be declared:

handler(sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware. Sep is a pointer to the struct sigcontext used by the
system to restore the process context from before the signal. Compatibility mode faults are dis­
tinguished from the other SIGILL traps by having PSL_CM set in the psi.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV

Code

FPEJNTOVF _TRAP
FPEJNTDIV _TRAP
FPEJ'L TOVF _TRAP
FPEJ'L TD IV _TRAP
FPEJ'L TUND_TRAP
FPE..DECOVF _TRAP
FPE_SUBRNG_ TRAP
FPEJ'LTOVFJ'AULT
FPEJ'LTDIV J' AULT
FPEJ'L TUNDJ' AULT

Last change: 27 February 1985 Sun Release 2.0

0

SIGNAL(3) SUBROUTINES S1GNAL(3)

0 Protection violation SIGBUS
Reserved instruction SIGILL ILL..RESAD..F AULT
Customer-reserved instr. SIGEMT
Reserved operand SIGILL ILLYRIVIN..F AULT
Reserved addressing SIGILL ILL..RESOP ..FAULT
Trace pending SIGTRAP
Bpt instruction SIGTRAP
Compatibility-mode SIGILL hardware supplied code
Chme SIGSEGV
Chms SIGSEGV
Chmu SIGSEGV

0

0

Sun Release 2.0 Last change: 27 February 1985 173

SLEEP(3) SUBROUTINES SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
eleep(eeconda)
unsigned seconds;

DESCRIPTION
Sleep suspends the current process from execution for the number or seconds specified by the
argument. The actual suspension time may be up to 1 second less than that requested, because
scheduled wakeups occur at fixed 1-second intervals, and may be an arbitrary amount longer
because of other activity in the system.

Sleep is implemented by setting an interval timer and pausing until it expires. The previous state
or this timer is saved and restored. Ir the sleep time exceeds the time to the expiration of the
previous value of the timer, the process sleeps only until the timer would have expired, and the
signal which occurs with the expiration of the timer is sent one second later.

SEE ALSO
setitimer(2), sigpause(2)

BUGS
An interface with finer resolution is needed.

174 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

STRING(3) SUBROUTINES STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations

SYNOPSIS
#Include <strlnp.h>

char ••trcat(sl, 12)
char •sl, •s:Z;

char •strncat{sl, 12, n)
char •sl, •s2;

strcmp(sl, s:Z)
char •al, •s2;

strncmp{sl, s:Z, n)
char •al, •a2;

char •strcpy(sl, s:Z)
char •al, •s2;

char •strncpy(sl, 12, n)
char •sl, •s2;

strlen(s)
char •a;

char •Index(•, c)
char •s, c;

char •rindex(•, c)
char •11, c;

DESCRIPTION

BUGS

These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string sf! to the end of string sl. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as sl is lexicographically greater than, equal to, or less than sf!. Strncmp makes the
same comparison but looks at at most n characters.

Strcpy copies string sf! to sl, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding sf!; the target may not be null-terminated if the
length of sf! is n or more. Both return sl.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character c in strings, or zero if
c does not occur in the string.

Strcmp uses native character comparison, which is signed on the Sun.

On the Sun processor (and on some other machines), you can NOT use a zero pointer to indicate
a null string. A zero pointer is an error and results in an abort of the program. If you wish to
indicate a null string, you must have a pointer that points to an explicit null string. On PDP-
11 'sand VAX'en, a source pointer of zero (0) can generally be used to indicate a. null string. Pro­
grammers using NULL to represent an empty string should be aware of this portability issue.

Sun Release 2.0 Last change: 19 January 1983 175

SWAB(3)

NAME
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)
chal" •from, •to;

DESCRIPTION

SUBROUTINES SWAB(3)

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between high-ender machines (IBM
360's, MC68000's, etc) and low-ender machines (PDP-11 's and V AX'es).

Nbytes should be even.

The from and to addresses should not overlap in portable programs.

176 Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

0

0

SYSLOG(3) SUBROUTINES SYSLOG(3)

NAME
syslog, openlog, closelog - control system log

SYNOPSIS
#Include <syslog.h>

openlog(ldent, logstat)
char •ident;

syslog(prlorlty, message, parameter• ...)
char •message;

closelog()

DESCRIPTION
Syslog arranges to write the message onto the system log maintained by syslog(8). The message
is tagged with priority. The message looks like a printf(3S) string except that %mis replaced by
the current error message (collected from errno). A trailing newline is added if needed. This
message will be read by syslog(8) and output to the system console or files as appropriate.

If special processing is needed, openlog can be called to initialize the log file. Parameters are
ident which is prepended to every message, and /ogstat which is a bit field indicating special
status; current values are:

LOGYID log the process id with each message; useful for identifying instantiations of dae-
mons.

Openlog returns zero on success. If syslog cannot send datagrams to syslog(8), then it writes on
/ dev/ console instead. If / dev/ console cannot be written, standard error is used. In either case,
it returns -1.

C/ose/og can be used to close the log file. It is automatically closed on a successful exec system
call (see execve(2)).

EXAMPLES
syslog(LOG_SALERT, "who: internal error 23");

openlog("serverftp", LOGYID);
syslog(LOG_INFO, "Connection from host %d", CallingHost);

SEE ALSO
syslog(8)

Sun Release 2.0 Last change: 15 March 1984 177

SYSTEM(3) SUBROUTINES SYSTEM(3)

NAME
system - issue a shell command

SYNOPSIS
s;ystem(strlng)
char •string;

DESCRIPTION
System causes the string to be given to sh(l) as input as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

178 Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

0

TTYNAME(3) SUBROUTINES TTYNAME(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char •ttyname(ftledea)

lsatty(ftledes)

ttyslot()

DESCRIPTION

FILES

Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor fi/edes.

lsatty returns 1 if fi/edes is associated with a terminal device, 0 otherwise.

Ttyslot returns the number of the entry in the ttys(5) file for the control terminal of the current
process.

/dev/•
/etc/ttys

SEE ALSO
ioctl(2), ttys(5)

DIAGNOSTICS
Ttyname returns a null pointer (0) if filedes does not describe a terminal device in directory
'/dev'.

Ttyslot returns O if '/etc/ttys' is inaccessible or if it cannot determine the control terminal.

BUGS
The return value points to static data whose content is overwritten by each call.

Sun Release 2.0 Last change: 19 January 1983 179

VARARGS(3) SUBROUTINES VARARGS(3)

NAME
varargs - variable argument list

SYNOPSIS
#Include <vararga.h>

function(va...allst)
va...dcl
va.Jlst pvar;
va...start(pvar);
f = va...arg(pvar, type);
va...end(pvar);

DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argu­
ment lists. Routines having variable argument lists (such as printf(3S)) that do not use varargs
are inherently nonportable, since different machines use different argument passing conventions.

va...allst is used in a function header to declare a variable argument list.

va_dcl is a declaration for va...allst. Note that there is no semicolon after va...dcl.

vaJlst is a type which can be used for the variable pvar, which is used to traverse the list. One
such variable must always be declared.

va...start(pvar) is called to initialize pvar to the beginning of the list.

va...arg(pvar, type) will return the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Different types can be mixed, but it is up to the routine to know
what type of argument is expected, since it cannot be determined at runtime.

va...end(pvar) is used to finish up.

Multiple traversals, each bracketed by va...start ... va...end, are possible.

EXAMPLE

BUGS

180

#Include <varargs.h>
execl(va...allst)
va...dcl
{

}

va.Jlst ap;
char •file;
char •args[lOO];
Int argno = O;

va...start(ap);
file= va...arg(ap, char •);
while (arga(argno++) = va...arg(ap, char •))

;
va...end(ap);
return execv(flle, arga);

It is up to the calling routine to determine how many arguments there are, since it is not possible
to determine this from the stack frame. For example, ezecl passes a O to signal the end of the
list. Print/ can tell how many arguments are supposed to be there by the format.

Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

0

INTR0(3C) COMPATIBILITY ROUTINES INTR0{3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion or libc. They are automatically
loaded as needed by the C compiler cc(l). The link editor searches this library under the "-le"
option. Use or these routines (instead or newer equivalent routines) is encouraged for the sake or
program portability. Manual entries for the functions in this library describe the proper routine
to use.

LIST OF FUNCTIONS
Name Appears on Page Description

alarm alarm.3c schedule signal after specified time
rtime time.3c get date and time
getopt getopt.3c get option letter from argv
gtty stty.3c set and get terminal state
nice nice.3c set program priority
optarg getopt.3c get option letter from argv
optind getopt.3c get option letter from argv
pause pause.3c stop until signal
rand rand.3c random number generator
srand rand.3c random number generator
stty stty.3c set and get terminal state
time time.3c get date and time
times times.3c get process times
tmpnam tmpnam.3c create a name for a temporary file
ulimit ulimit.3c get and set user limits
utime utime.3c set file times
vlimit vlimit.3c control maximum system resource consumption
vtimes vtimes.3c get information about resource utilization

Sun Release 2.0 Last change: 15 May 1985 181

ALARM(3C) COMPATIBILITY ROUTINES ALARM(3C)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm(seconda)
unsigned seconds;

DESCRIPTION
Alarm causes signal SIGALRM, see sigvec(2), to be sent to the invoking process in a number of
seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is canceled. Because or scheduling delays, resumption or execution of when the sig­
nal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3), sleep(3)

182 Last change: 26 August 1983 Sun Release 2.0

0

0

0

0

0

0

GETOPT(3C) COMPATIBILITY ROUTINES GETOPT(3C)

NAME
getopt, optarg, optind - get option letter rrom argv

SYNOPSIS
Int getopt(argc, argv, optstrlng)
Int args;
char ••argv;
char •optstrlng;

extern char •optarg;
extern Int optlnd;

DESCRIPTION
This routine is included for compatibility with UNIX System V.

Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a
string or recognized option letters; ir a letter is followed by a colon, the option is expected to have
an argument that may or may not be separated rrom it by white space. Optarg is set to point to
the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns
EOF, The special option -- may be used to delimit the end of the options; EOF will be returned,
and -- will be skipped.

DIAGNOSTICS
Getopt prints an error message on etderr and returns a question mark (?) when it encounters an
option letter not included in optstring.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and o, both of which require
arguments:

Sun Release 2.0

main(argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *Optarg;

while ((c = getopt(argc, argv, "abf:o:")) != EOF)
switch (c) {
case 'a':

case 'b':

if (bflg)
errflg++;

else
aflg++;

break;

if (aftg)
errflg++;

else
bproc();

Last change: 28 February 1985 183

GETOPT(3C)

}

184

COMPATIBILITY ROUTINES

break;
case 'f':

case 10 1
:

case '!':

infile = optarg;
break;

ofile = optarg;
bufsiza = 512;
break;

errflg++;
}

if (errflg) {

}

fprintf(stderr, "usage: ... ");
exit(2);

for (; optind < argc; optind++) {
if (access(argv[optindJ, 4)) {

Last change: 28 February 1985

GETOPT(3C)

0

0

0

Sun Release 2.0

0

0

0

NICE(3C) COMPATIBILITY ROUTINES NICE(3C)

NAME
nice - set program priority

SYNOPSIS
nlce(lncr)

DESCRIPTION
The scheduling priority or the process is augmented by incr. Positive priorities get less service
than normal. Priority IO is recommended to users who wish to execute long-running programs
without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range -20 (most urgent) to 20 (least).

The priority or a process is passed to a child process by fork(2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with argu·
ments -40 (goes to priority -20 because or truncation), 20 (to get to 0), then O (to maintain com­
patibility with previous versions or this call).

SEE ALSO
nice(l), getpriority(2), setpriority(2), for k(2), renice(8)

Sun Release 2.0 Last change: 20 March 1984 185

PAUSE(3C) COMPATIBILITY ROUTINES PAUSE(3C)

NAME
pause - stop until signal

SYNOPSIS
pause()

DESCRIPTION
Pause never returns normally. It is used to give up control while waiting for a signal from ki/1(2)
or an interval timer, see selitimer(2). Upon termination of a signal handler started during a
pause, the pause call will return.

RETURN VALUE
Always returns -1.

ERRORS
Pause always returns:

[EINTR[The call was interrupted.

SEE ALSO
kill(2), select(2), sigpause(2)

186 Last change: 23 August 1983 Sun Release 2.0

0

0

0

0

0

0

RAND{3C) COMPATIBILITY ROUTINES

NAME
rand, srand - random number generator

SYNOPSIS
orand(seed)
Int seed;

rand()

DESCRIPTION

RAND(3C)

Rand uses a multiplicative congruential random number generator with period 202 to return suc­
cessive pseudo-random numbers in the range from Oto 2!1-1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

Random(3) is better; use it if compatibility is not a concern.

SEE ALSO
random{3)

BUGS
The low bits of the numbers generated are not very random; use the middle bits. In particular
the lowest bit alternates between O and 1.

Sun Release 2.0 Last change: 23 August 1983 187

STTY(3C) COMPATIBILITY ROUTINES STTY(3C)

NAME
stty, gtty - set and get terminal state

SYNOPSIS
#Include <sgtt;y .h>

stt;y(rd, but)
Int fd;
struct sgtt;yb •but;

gtt;y(fd, but)
Int fd;
struct sgtt;yb •but;

DESCRIPTION
This Interface Is obsoleted by loctl(2).

Slty sets the state of the terminal associated with fd. Gtty retrieves the state of the terminal
associated with Jd. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)", while the gtty call is "ioctl(fd, TIOCGETP,
buf)". See ioct/(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful O is returned, otherwise -1 is returned and the global variable errno con­
tains the reason for the failure.

SEE ALSO
ioct1(2), tty(4)

188 Last change: 26 August 1983 Sun Release 2.0

0

0

0

0

0

0

TIME(3C) COMPATIBILITY ROUTINES TIME(3C)

NAME
time, ftime - get date and time

SYNOPSIS
tlmeofday = tlme(O)

tlmeofday = tlme(tloc)
long ,oi;loc;

#Include <sys/types.b>
#Include <sys/tlmeb.h>
ftlme(tp)
struct tlmeb •tp;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

The [time entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

struct timeb
{

};

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds or more­
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date(l), gettimeofday(2), settimeofday(2), ctime(3)

Sun Release 2.0 Last change: 1 April 1983 189

TIMES(3C)

NAME
times - get process times

SYNOPSIS
#Include <sys/type1.h>
#Include <•Y•/tlme1.h>

tlmes(buffer)
struct tm1 •buffer;

DESCRIPTION

COMPATIBILITY ROUTINES

This Interface 11 obsoleted by getrusage(2).

TIMES(3C)

Times returns time-accounting information for the current process and for the terminated child
processes or the current process. All times are in 1/HZ seconds, where HZ is 60.

This is the structure returned by times:

struct tms {

};

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

/• user time •/
/• system time •/
/• user time, children •/
/• system time, children •/

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(l), getrusage(2), wait3(2), time(3C)

190 La.st change: 3 November 1983 Sun Relea.se 2.0

0

0

0

0

0

0

TMPNAM(3C) COMPATIBILITY ROUTINES TMPNAM(3C)

NAME
tmpnam - create a name for a temporary file

SYNOPSIS
#Include <stdto.h>

char •tmpnam(s)
char••;

DESCRIPTION
This routine is included for System V compatibility.

Tmpnam generates a file name that can safely be used for a temprary file. If (int)• is zero,
tmpnam leaves its result in an internal static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If (int)• is nonzero, • is assumed to be the
address of an array of at least L_tmpnam bytes; tmpnam places its result in that array and
returns a as its value.

Tmpnam generates a different file name each time it is called.

Files created using tmpnam and either /open or creat are only temporary in the sense that they
reside in a directory intended for temporary use, and their names are unique. It is the user's
responsibility to use unlink(2) to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), mktemp(3), fopen(3S)

If called more than 17,576 times in a single process, tmpnam will start recycling previously used
names.

Between the time a file name is created and the file is opened, it is possible for some other pro­
cess to create a file with the same name. This can never happen if that other process is using
tmpnam or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

Sun Release 2.0 Last change: 27 February 1985 191

ULIMIT(3C) COMPATIBILITY ROUTINES ULIMIT(3C)

NAME
ulimit - get and set user limits

SYNOPSIS
long ullmtt(cmd, newllmlt)
Int cmd;

DESCRIPTION
This function is included for System V compatibility.

This routine provides for control over process limits. The cmd values available are:

1 Get the process's file size limit. The limit is in units of 512-byte blocks and is inherited
by child processes. Files of any size can be read.

:Z Set the process's file size limit to the value of newlimil. Any process may decrease this
limit, but only a process with an effective user ID of super-user may increase the limit.
Ulimit will fail and the limit will be unchanged if a process with an effective user ID other
than the super-user attempts to increase its file size limit.

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise a value of -I is
returned and errno is set to indicate the error.

SEE ALSO
brk(2), setrlimit(2), write(2)

192 Last change: 27 February 1985 Sun Release 2.0

0

0

0

0

0

0

UTIME(3C) COMPATIBILITY ROUTINES UTIME(3C)

NAME
utime - set file times

SYNOPSIS
#Include <aya/typea.h>

utlme(ftle, tlmep)
char •file;
tlme_t tlmep(2);

DESCRIPTION
The utime call uses the 1accessed' and 'updated' times in that order from the timep vector to set
the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file is
set to the current time.

SEE ALSO
utimes(2), stat(2)

Sun Release 2.0 Last change: 1 April 1983 193

VLIMIT(3C) COMPATIBILITY ROUTINES VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#Include <sys/vllmlt.h>

vllmlt(resource, value)

DESCRIPTION
Thia facility la superseded by getrllmlt(:Z).

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. If value is specified as -1, then the current limit is
returned and the limit is unchanged. The resources which are currently controllable are:

LIM_NORAISE
A pseudo-limit; if set non-zero then the limits may not be raised. Only the
super-user may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process

LIMJ'SIZE the largest single file which can be created

LIM__DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of
the program text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_CORE the size of the largest core dump that will be created.

LIM__MAXRSS
a soft limit for the amount of physical memory (in bytes} to be given to the pro­
gram. If memory is tight, the system will prefer to take memory from processes
which are exceeding their declared L!M_MAXRSS.

Because this information is stored in the per-process information this system call must be exe­
cuted directly by the sholl if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the cpu time limit
is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process the sig­
nal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS
If L!M_NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in sh(l) as well as in csh.

Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

VTIMES(3C) COMPATIBILITY ROUTINES VTIMES(3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
vtlmea(par_vm, ch_vm)
atruct vtlmea •par_vm, •ch_vm;

DESCRIPTION
Thia facility la superseded by getruaage(Z),

Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either par_vm or ch_vm or both may be 0, in which case only
the information for the pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file
<sys/ vtimes.h>:

struct vtimes {
int vm_utime; /• user time (•HZ)•/
int vm_stime; /• system time (•HZ)•/
/• divide next two by utime+stime to get averages •/
unsigned vmjdsrss; /• integral of d+s rss •/
unsigned vmjxrss; /* integral of text rss •/
int vm_maxrss; f* maximum rss •/
int vm_majflt; /• major page faults •/
int vm_minflt; /• minor page faults •/
int vm_nswap; /* number or swaps •/
int vmjnblk; /• block reads •/
int vm_oublk; /• block writes•/

};

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a
second (or 50ths if that is the frequency of wall current in your locality.) The vm_idrss and
vm_izrss measure memory usage. They are computed by integrating the number of memory
pages in use each over cpu time. They are reported as though computed discretely, adding the
current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5 core
pages over 1 cpu-second for its data and stack, then vm_idsrss would have the value 5•60, where
vm_utime+vm_stime would be the 60. Vm_idsrss integrates data and stack segment usage, while
vm_izrss integrates text segment usage. VT1Lmazrss reports the maximum instantaneous sum of
the text+data+stack core-resident page count.

The vm_majftt field gives the number of page faults which resulted in disk activity; the
vm_minj!t field gives the number of page faults incurred in simulation of reference bits;
vm_nswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm_inblk and vm_oublk These numbers account only for real ifo; data sup­
plied by the caching mechanism is charged only to the first process to read or write the data.

SEE ALSO
getrusage(2), wait3(2)

Sun Release 2.0 Last change: 13 June 1983 195

0

0

0

0

0

0

SIN(3M) MATHEMATICAL FUNCTIONS

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#Include <math,h>

double sln(x)
double x;

double coo(x)
double x;

double asln(x)
double x;

double acoa(x)
double x;

double atan(x)
double x;

double atanZ(x, y)
double x, YI

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments.

Asin returns the arc sin in the range -'lf/2 to 'lf/2.

Acos returns the arc cosine in the range O to 1r.

Atan returns the arc tangent of z in the range -'lf/2 to 'lf/2.

Atanl/ returns the arc tangent of z/y in the range -'If to 'If.

DIAGNOSTICS

S1N(3M)

These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary
floating point arithmetic. When x is infinity in sin(x), cos(x), or tan(x), or when :Xi > 1 in asin(x)
or acos(x), the functions return NaN values and errno is set to EDOM.

Sun Release 2.0 Last change: 19 January 1983 203

SINH(3M) MATHEMATICAL FUNCTIONS

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#Include <matb.h>

double alnh(x)

double coab(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH(3M)

These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary
floating point arithmetic. Thus and cosh return infinity on overflow.

204 Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

0

INTR0(3N) NETWORK FUNCTIONS INTR0(3N)

NAME
intro - introduction to network library functions

DESCRIPTION
This section describes functions that are applicable to the DARPA Internet network, which are
part or the standard C library.

LIST OF FUNCTIONS
Name Appears on Page Description

endhostent gethostent.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endservent getservent.3n get service entry
gethostbyaddr gethostent.3n get network host entry
gethostbyname gethostent.3n get network host entry
gethostent gethostent.3n get network host entry
getnetbyaddr getnetent.3n get network entry
getnetbyname getnetent.3n get network entry
getnetent getnetent.3n get network entry
getprotobyname getprotoent.3n get protocol entry
getprotobynumber getprotoent.3n get protocol entry
getprotoent getprotoent.3n get protocol entry
getserv byname getservent.3n get service entry
getserv by port getservent.3n get service entry
getservent getservent.3n get service entry
htonl byteorder .3n convert values between host and network byte order
htons byteorder.3n convert values between host and network byte order
inet_addr inet.3n Internet address manipulation
inet.Jnaor inet.3n Internet address manipulation
inet_makeaddr inet.3n Internet address manipulation
inet_netor inet.3n Internet address manipulation
inet_network inet.3n Internet address manipulation
inet_ntoa inet.3n Internet address manipulation
ntohl byteorder.3n convert values between host and network byte order
ntohs byteorder.3n convert values between host and network byte order
rcmd rcmd.3n routines for returning a stream to a remote command
rexec rexec.3n return stream to a remote command
rresvport rcmd.3n routines for returning a stream to a remote command
ruserok rcmd.3n routines for returning a stream to a remote command
sethostent gethostent.3n get network host entry
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setservent getservent.3n get service entry

Sun Release 2.0 Last change: 15 May 1985 205

BYTEORDER(3N) NETWORK FUNCTIONS BYTEORDER(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#Include <•Y•/types.h>
#Include <netlnet/ln.h>

netlong = htonl(hostlong);
uJong netlong, hostlong;

netshort = htons(hostahort);
uJhort netshort, hoatahort;

hostlong = ntohl(netlong);
uJong hoatlong, netlong;

hoatahort = ntohs(netshort);
uJhort hostahort, netahort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order.
On machines such as the Sun these routines are defined as null macros in the include file
<netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as returned
by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

0

BUGS
The VAX handles bytes backwards from most everyone else in the world. This is not expected to o
be fixed in the near future. :

0

206 Last change: 4 March 1983 Sun Release 2.0

0

0

0

GETHOSTENT (3N) NETWORK FUNCTIONS GETH0STENT(3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNOPSIS
#Include <netdb.h>

atruct hoatent •gethoatent()

atruct hostent •gethoatbyname(name)
char •name;

struct hostent •gethoatbyaddr(addr, Jen, type)
char •addr; Int Jen, type;

aethostent(stayopen)
Int atayopen

endhostent()

DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network host data base, /etc/hosts.

struct hostent {
char •h_name;
char .. h_aliases;
int h_addrtype;
int h__length;
char •h_addr;

};

The members of this structure are:

h_name Official name of the host.

/• official name of host •/
/• alias list •/
/• address type •/
/• length of address •/
/• address •/

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AFJNET.

h_Jength The length, in bytes, of the address.

h_addr A pointer to the network address for the host. Host addresses are returned in net-
work byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will not
be closed after each call to gethostent (either directly, or indirectly through one of the other
"gethost" calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until a
matching host name or host address is found, or until EOF is encountered. Host addresses are
supplied in network order.

/etc/hosts
/ etc/yp / domainname /hosts. byname
/etc/yp/ domainname/hosts.byaddr

SEE ALSO
hosts(5), ypserv(8)

Sun Release 2.0 Last change: 28 February 1985 207

GETHOSTENT(3N) NETWORK FUNCTIONS GETHOSTENT (3N)

DIAGNOSTICS

BUGS

208

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet address format is currently understood.

Last change: 28 February 1985 Sun Release 2.0

0

0

0

0

0

0

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT(3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#Include <netdb.h>

struct netent •getnetent()

struct netent •getnetbyname(name)
char •name;

struct netent •getnetbyaddr(net, type)
long net;

setnetent(stayopen)
Int stayopen

endnetent()

DESCRIPTION

FILES

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network data base, / etc/networks.

struct netent {
char

};

char
int
long

•n_name;
••n_aliases;
n_addrtype;
n_net;

The members of this structure are:

/• official name of net •/
/• alias list •/
/• net number type •/
/• net number •/

n_name

n_aliases

The official name of the network.

A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AFJNET.

n_net The network number. Network numbers are returned in machine byte order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getnetent (either directly, or indirectly through one of the other "get­
net" calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a match­
ing net name or net address is found, or until EOF is encountered. Network numbers are sup~
plied in host order.

/etc/networks
/etc/yp/ domainname /networks.byname
/etc/yp/ domainname/networks.byaddr

SEE ALSO
networks(5), ypserv(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Sun Release 2.0 Last change: 28 February 1985 209

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT (3N J

Only Internet network numbers are currently understood. 0

0

0
210 Last change: 28 February 1985 Sun Release 2.0

0

0

0

GETNETGRENT (3N) NETWORK FUNCTIONS GETNETGRENT (3N)

NAME
getnetgrent, setnetgrent, endnetgrent, innetgr - get network group entry

SYNOPSIS
lnnetgr(netgroup, machine, user, domain)
char •netgroup, •machine, •user, •domain;

aetnetgrent(netgroup)
char •netgroup

endnetgrent()

getnetgrent(machlnep, userp, domalnp)
char ••machlnep, ••userp, ••domalnp;

DESCRIPTION

FILES

Inngetgr returns 1 or 0, depending on whether netgroup contains the machine, user, domain triple
as a member. Any of the three strings machine, user, or domain can be NULL, in which case it
signifies a wild card.

Getnetgrent returns the next member of a network group. After the call, machinep will contain a
pointer to a string containing the name or the machine part of the network group member, and
similarly for userp and domainp. Getnetgrent will malloc space for the name. This space is
released when a endnetgrent call is made. Getnetgrent returns 1 if it succeeding in obtaining
another member of the network group, 0 if it has reached the end of the group.

Setnetgrent establishes the network group from which getnetgrent will obtain members, and also
restarts calls to getnetgrent from the beginning of the list. If the previous setnetgrent call was to
a different network group, a endnetgrent call is implied. Endnetgrent frees the space allocated
during the getnetgrent calls.

/etc/netgroup

Sun Release 2.0 Last change: 1 February 1985 211

GETPROTOENT (3N) NETWORK FUNCTIONS GETPROTOENT (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

atruct protoent •getprotoent()

struct protoent •getprotob;yname(name)
char •name;

atruct protoent •getprotob;ynumber(proto)
Int proto;

setprotoent(sta;yopen)
Int sta;yopen

endprotoent()

DESCRIPTION

FILES

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network protocol data base,
/etc/protocols.

struct protoent {
char *P-name;
char **p_aliases;
long p_proto;

};
The members of this structure are:

/• official name or protocol •/
/ • alias list * /
/• protocol number •/

p_name The official name or the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p_proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. Ir the stayopen flag is non-zero, the net data base will not
be closed after each call to getprotoent (either directly, or indirectly through one of the other
"getproto" calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until EOF is encountered.

/etc/protocols
/etc/yp/ domainname /protocols.byname
/ etc/yp / domainname /protocols.bynumber

SEE ALSO
protocols(5), ypserv(8)

DIAGNOSTICS

BUGS

212

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

Last change: 28 February 1985 Sun Release 2.0

0

0

0

0

0

0

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
#Include <netdb.h>

atruct aervent •getaervent()

struct servent •getservbyname(name, proto)
char •name, •proto;

struct aervent •getaervbyport(port, proto)
Int port; char •proto;

setservent(stay open)
Int stayopen

endservent()

DESCRIPTION

FILES

Getservent, getservbyname, and gelservbyport each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network services data base,
/etc/services.

struct servent {
char •s_name;
char **S_a!iases;
long s_port;
char •s_proto;

};

/• official name of service •/
/• alias list•/
/• port service resides at •/
/• protocol to use •/

The members of this structure are:

s_name The official name of the service.

s_alia.ses A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network
byte order.

s_proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getservent (either directly, or indirectly through one of the other
"getserv" calls).

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a
matching protocol name or port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL), searches must also match the protocol.

/etc/services
/ etc/yp/ domainname /services.byname

SEE ALSO
getprotoent(3N), services(5), ypserv(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

Sun Release 2.0 Last change: 28 February 1985 213

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT (3N)

BUGS

214

All information is contained in a static area so it must be copied if it is to be saved. Expecting
port numbers to fit in a 32 bit quantity is probably naive.

Last change: 28 February 1985 Sun Release 2.0

0

0

0

0

0

0

INET(3N) NETWORK FUNCTIONS INET(3N)

NAME
inet_addr, inet_network, inet_makeaddr, inetJnaof, inet_netof, inet_ntoa - Internet address
manipulation

SYNOPSIS
#Include <ays/socket,h>
#Include <netlnet/ln,h>
#Include <arpa/lnet.h>

unsigned long
lnet_addr(cp)
char •cp;

lnet__network(cp)
char •cp; ·

struct ln_addr
lnet_makeaddr(net, Ina)
Int net, Ina;

lnetJnaof(ln)
struct ln_addr In;

lnet__netof(ln)
atruct ln_addr In;

char•
lnet__ntoa(ln)
atruct ln_addr In;

DESCRIPTION
The routines inet_addr and inet_network each interpret character strings representing numbers
expressed in the Internet standard "." notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The routine inet_makeaddr takes an
Internet network number and a local network address and constructs an Internet address from it.
The routines inet_netof and inet_lnaof break apart Internet host addresses, returning the net­
work number and local network address part, respectively.

The routine inet_ntoa returns a pointer to a string in the base 256 notation "d.d.d.d" described
below.

All Internet address are returned in network order (bytes ordered from left to right). All net­
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed as
a 32-bit integer quantity on the VAX the bytes referred to above appear as "d.c.b.a". That is,
VAX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed
in the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as "128.net.host".

Sun Release 2.0 Last change: 27 February 1985 215

INET(3N) NETWORK FUNCTIONS INET(3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed O·
in the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal, as
specified in the C language (that is, a leading Ox or OX implies hexadecimal; otherwise, a leading
0 implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(5), networks(5),

DIAGNOSTICS

BUGS

216

The value -1 is returned by inet_addr and inet_network for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is needed.

The return value from inet_ntoa points to static information which is overwritten in each call.

Last change: 27 February 1985 Sun Release 2.0

0

0

0

0

0

RCMD{3N) NETWORK FUNCTIONS RCMD(3N)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rem = rcmd(ahoat, lnport, locuaer, remuaer, cmd, fdllp);
char **ahoat;
u_short lnport;
char •locuser, •remu1er, •cmd;
Int •fd2p;

a = rresvport(port);
Int •port;

ruserok(rhost, superuser, ruser,)user);
char •r host;
int superuser;
char •ruser, •luser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space. Ruserok is a routine used by
servers to authenticate clients requesting service with rcmd. All three functions are present in
the same file and are used by the rshd(BC) server (among others).

Rcmd looks up the host •ahost using gethostbyname(3N), returning -1 if the host does not exist.
Otherwise •ahost is set to the standard name or the host and a connection is established to a
server residing at the well-known Internet port inport.

Ir the call succeeds, a socket or type SOCK_STREAM is returned to the caller, and given to the
remote command as atdln and atdout. If fd2p is non-zero, then an auxiliary channel to a con­
trol process will be set up, and a descriptor for it will be placed in •fd2p. The control process
will return diagnostic output from the command (unit 2) on this channel, and will also accept
bytes on this channel as being UNIX signal numbers, to be forwarded to the process group or the
command. If fd2p is 0, then the atderr (unit 2 or the remote command) will be made the same
as the stdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(BC).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This
socket is suitable for use by rcmd and several other routines. Privileged addresses consist or a
port in the range O to 1023. Only the super-user is allowed to bind an address of this sort to a
socket.

Ruserok takes a remote host's name, as returned by a gethostent(3N) routine, two user names
and a flag indicating if the local user's name is the super-user. It then checks the files
/etc/hosts.equiv and, possibly, .rhosts in the current working directory (normally the local user's
home directory) to see ir the request for service is allowed. A 1 is returned if the machine name
is listed in the "hosts.equiv" file, or the host and remote user name are found in the ".rhosts"
file; otherwise ruserok returns 0. If the superuser flag is 1, the checking of the "host.equiv" file is
bypassed.

SEE ALSO
rlogin(lC), rsh(lC), rexec{3N), rexecd{8C), rlogind{8C), rshd{8C)

BUGS
There is no way to specify options to the socket call which rcmd makes.

Sun Release 2.0 Last change: 17 March 1982 217

REXEC(3N) NETWORK FUNCTIONS REXEC(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem= rexec(ahoat, lnport, user, paeawd, cmd, fd2p);
char ••ahoat;
1L.Bhort lnport;
char •user, •paaswd, •cmd;
Int •fdZp;

DESCRIPTION
Rexec looks up the host •ahost using gethostbyname(3N), returning -1 if the host does not exist.
Otherwise •ahost is set to the standard name of the host. Ir a username and password are both
specified, then these are used to authenticate to the foreign host; otherwise the environment and
then the user's .netrc file in his home directory are searched for appropriate information. IC all
this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection; it will
normally be the value returned Crom the call "getservbyname("exec", "tcp")" (see
getservent(3N)). The protocol for connection is described in detail in rexecd(8C).

Ir the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as atdln and atdout. IC fd2p is non-zero, then a auxiliary channel to a control
process will be setup, and a descriptor for it will be placed in •fd£p. The control process will
return diagnostic output Crom the command (unit 2) on this channel, and will also accept bytes
on this channel as being UNIX signal numbers, to be forwarded to the process group of the com­
mand. Ir fd2p is 0, then the atderr (unit 2 of the remote command) will be made the same as
the atdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

SEE ALSO
rcmd(3N), rexecd(8C)

BUGS
There is no way to specify options to the socket call which rexec makes.

218 Last change: 17 March 1982 Sun Release 2.0

0

0

0

0

0

0

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

NAME
yp_bind yp_get_default_domain yp_unbind yp_match yp_first ypclnt_first yp_next ypclnLnext -
yellow pages client interface

SYNOPSIS
#Include <rpcovc/ypclnt.h>

yp_blnd(lndomaln);
char •lndomaln;

yp_get_detault_domaln(outdomaln);
char **outdomaln;

void yp_unblnd(lndomaln}
char •lndomaln;

yp_match(lndomaln, lnmap, lnkey, lnkeylen, outval, outvallen)
char •lndomaln;
char •lnmap;
char •lnkey;
Int lnkeylen;
char **outval;
Int •outvallen;

yp__flrst(lndomaln, lnmap, outkey, outkeylen, outval, outvallen)
ypclnt__flrst(lndomaln, lnmap, outkey, outkeylen, outval, outvallen)
char •lndomaln;
char •lnmap;
char ••outkey;
Int •outkeylen;
char ••outval;
Int •outvallen;

yp_next(lndomaln, lnmap, lnkey, lnkeylen, outkey, outkeylen, outval, outvallen);
ypclnt_next(lndomaln, lnmap, lnkey, lnkeylen, outkey, outkeylen, outval, outvallen);
char •lndomaln;
char •lnmap;
char •lnkey;
Int lnkeylen;
char **Outkey;
Int •outkeylen;
char ••outval;
Int •outvallen;

char •yperr _string(code)
Int code;

DESCRIPTION
This package of functions is an interface to the yellow pages (YP) network service. The package
can be loaded from the standard library, /lib/libc.a. In the synopsis above, all input parameters
names begin with "in", while output parameters begin with "out". Output parameters of type
char •• should be addresses of uninitialized character pointers. Memory is allocated by the YP
client package using mal/oc(3), and may be freed if the user code has no continuing need for it.

For all outkeys and outva/s, two extra bytes of memory are allocated at the end, containing new­
line and NULL, but these two bytes are not reflected in outkey/en.

Sun Release 2.0 Last change: 1 February 1985 219

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

220

Information is stored in the yellow pages system as sets or key-value pairs, called entries, with no
imposed or assumed structure to the key or the value; both are counted binary objects. A
named set or key-value pairs is called a YP map, and is implemented as a pair or dbm(3) data
base files. Maps are objects within named domains, which are implemented by Unix directories.
Although map names must be unique within a domain, the same map name may appear in multi­
ple domains. As a map is a named set of key-value pairs, so is a domain a named set of maps.
Every map must be referenced as an object in some domain. Both map names and domain
names are non-null printable ASCII strings. Null-length domain and map names will be rejected
by the YP client interface, as will null pointers.

Network hosts, both servers and clients, have a default domain, which is set at system startup by
domainname(8). The default domain may be fetched by calling yp_get_default_domain(). In gen­
eral, client processes should make no assumption concerning the domain parameter that is to be
passed in the calls to yp_malch(}, yp_first(}, ypclnt_first{}, yp_nezt{}, and ypc/nt_nezt{}, but
should, rather, use the domain name returned by yp_get_defaull_domain(}.

All the functions in this package which are or type Int, return O if they succeed, and a failure
code (YPERR_zzzz) otherwise. Failure codes are described below in the DIAGNOSTICS section.

To use the YP services, the client process must be "bound" to a YP server that serves the
appropriate domain. A client is bound to a YP server when the client knows the internet address
or the server, the port on which the server is listening for requests, and it has set up an RPC
path to that YP server. Binding doesn't need to be done explicitly by user code; it will be done
automatically when yp_match(}, yp_first(}, ypclnt_firet(), yp_nezt{}, or ypclnt_nezt{} is called for
a domain that is not bound. The binding may, however, be explicitly made by the client by a call
to yp_bind(}. This is useful for processes that make use or a backup strategy (e.g., a local file) in
case YP services are not available.

Binding allocates (uses up) one or the client process' socket descriptors; each bound domain costs
one socket descriptor. Ir, however, yp_match{}, yp_first(}, ypclnt_first(}, yp_nezt(), or
ypc/nl_nezt(} is called naming a domain which is already bound, no further binding needs to be
done. No new resource will be allocated on a per-call basis.

Ir an RPC failure results upon use or a bound domain, that domain will be unbound automati­
cally by the YP client code, and an indication of the RPC error will be returned. At that point,
the client process wilt retry forever until the operation succeeds, provided that ypbind is running,
and either a) the client process can't bind to a server for the proper domain, orb) RPC requests
to the server fail.

Yp_unbind(} is available at the client interface for processes that need to explicitly manage their
socket descriptor resoures, and which need to access maps in multiple domains. The call to
yp_unbind(} will free the socket allocated by the binding for the passed domain, and will tear
down the RPC path to the YP server process.

Yp_match returns the value associated with the passed key. The key passed as the match value
must be exact; no pattern matching is available.

Yp_first returns the first key-value pair from the named map in the named domain. The concept
or first (and, for that matter, or next) is particular to the structure or the YP map data base pro­
cessing: there is no relation in retrieval order to either the lexical order within any original (non­
YP) data base, or to any obvious numerical sorting order on the keys, the values, or the key­
value pairs. The only ordering guarantee made is that if the yp_first(} function is called on a
particular map, and then the yp_nezt{} function is repeatedly called on the same map until the
call fails with a reason of YPERR..NOMORE, every entry in the data base will be seen exactly
once. Further, if the same sequence or operations is performed on the same map, the entries will
be seen in the same order. Yp_first(} will not return any entry from a map whose key begins
with the sequence "YP _"; such symbols are assumed to be private symbols used by the YP sys­
tem. In general, those entries are of no interest to the client process. If the client process needs

Last change: 1 February 1985 Sun Release 2.0

0

0

0

0

0

0

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

FILES

to see them, ypclnt_firet() will do no filtering or YP private symbols.

Yp_nezt() returns the next key-value pair in a named map. The input key should be one
returned from a call to yp_firet{) (to get the second pair) or one returned from the nth call to
yp_nezt() (to get the nth + second pair). Any valid key may be used, and is syntactically correct
with respect to the retrieval, but any key save the two mentioned previously will yield a result
which is semantically meaningless. Again, if the client process needs to see all or the entries in
the map, including the YP private symbols, ypclnt_nezt() does no filtering to eliminate those
entries.

Yperr_string{) returns a pointer to an error message string that is null-terminated but contains
no period or newline.

/usr /include/rpcsvc/ypclnt.h
/usr /include/rpcsvc/yp_prot.h

SEE ALSO
dbm(3x), makedbm(8), newpasswd(8), ypfiles(8), ypinit(8), yppush(8), ypserv(8)

DIAGNOSTICS
All functions except yp_unbind{) return O if the requested operation is successful, or one or the
following errors if the operation fails.

Sun Release 2.0

#define YPERRJ3ADARGS
#define YPERK.RPC
#define YPERRJ)OMAIN
#define YPERK.MAP
#define YPERRJ<EY
#define YPERR_YPERR
#define YPERR...RESRC
#define YPERR__NOMORE
#define YPERRYMAP
#define YPERR_YPBIND
#define YPERR_YPSERV
#define YPERR__NODOM

1 /• args to function are bad •/
2 /• RPC failure - domain has been unbound •/
3 /• can't bind to server on this domain•/
4 /• no such map in server's domain •/
5 /• no such key in map •/
6 /• internal yp server or client error •/
7 /• resource allocation failure •/
8 /• no more records in map database •/
9 /• can't communicate with portmapper •/
10 /• can't communicate with ypbind •/
11 /• can't communicate with ypserv •/
12 /• local domain name not set •/

Last change: 1 February 1985 221

0

0

0

0

0

0

INTR0(3S) STANDARD 1/0 LIBRARY JNTR0(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#Include <stdlo,h>

FILE •stdln;
FILE •stdout;
FILE •stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering scheme. The in-line macros
getc and putc(3S) handle characters quickly. The higher level routines gets, /gets, scan/, fscanf,
/read, puts, /puts, print/, fprintf, /write all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. A fopen(3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdln standard input file
stdout standard output file
stderr standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions that deal
with streams.

Any routine that uses the standard input/output package must include the header file <stdio.h>
of pertinent macro definitions. The functions and constants mentioned in sections labeled 3S are
declared in the include file and need no further declaration. The constants, and the following
'functions' are implemented as macros; redeclaration of these names is perilous: getc, getchar,
putc, putchar, feof, /error,]Ueno, clrerr.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3S), fseek(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with /open, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line
buffer output to a terminal by default and attempts to do this transparently by flushing the out­
put whenever a read(2) from the standard input is necessary. This is almost always transparent,
but may cause confusion or malfunctioning of programs which use standard i/o routines but use
read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an output
terminal, it is necessary to jflush (see fcloae(3S)) the standard output before going off and com­
puting so that the output will appear.

The standard buffered functions do not interact well with certain other library and system func­
tions, especially vfork and abort.

LIST OF FUNCTIONS
Name

clearerr
fclose

Sun Release 2.0

Appears on Page Description

ferror.3s
fclose.3s

stream status inquiries
close or flush a stream

Last change: 15 May 1985 223

INTR0(3S) STANDARD 1/0 LIBRARY INTR0(3S)

fdopen fopen.3s open a stream 0 feof ferror .3s stream status inquiries
ferror ferror .3s stream status inquiries
!Hush fclose.3s close or flush a stream
fgetc getc.3s get character or integer from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
fopen fopen.3s open a stream
fprintf printf.3s formatted output conversion
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
freopen fopen.3s open a stream
fscanf scanf.3s formatted input conversion
fseek fseek.3s reposition a stream
ftell fseek.3s reposition a stream
fwrite fread.3s buffered binary input/output
getc getc.3s get character or integer from stream
getchar getc.3s get character or integer from stream
gets gets.as get a string from a stream
getw getc.3s get character or integer from stream
pclose popen.3s initiate 1/0 to/from a process
popen popen.3s initiate 1/0 to/from a process
printf printf.3s formatted output conversion
putc putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream 0 putw putc.3s put character or word on a stream
rewind fseek.3s reposition a stream
scanf scanf.3s formatted input conversion
setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setlinebuf setbuf.3s assign buffering to a stream
sprintf printf.3s formatted output conversion
sscanf scanf.3s formatted input conversion
stdio intro.3s standard buffered input/output package
ungetc ungetc.3s push character back into input stream

0
224 Last change: 15 May 1985 Sun Release 2.0

0

0

0

FCLOSE(3S) STANDARD 1/0 LIBRARY FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#Include <stdlo.h>

fclose(stream)
FILE •stream;

fflush(stream)
FILE •stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Fc/ose is performed automatically upon calling exit(3).

Fjlush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
close(2), fopen(3S), setbuf(3S)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data can­
not be transferred to that file.

Sun Release 2.0 Last change: 19 January 1983 225

FERROR(3S) STANDARD I/0 LIBRARY

NAME
!error, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#Include <stdlo,h>

feof(stream)
Fll.,E •stream;

ferror(stream)
FILE •stream

clearerr(stream)
FILE •stream

flleno(stream)
FILE •stream;

DESCRIPTION

FERROR(3S)

Feof returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other­
wise zero. Unless cleared by c/earerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor a.ssociated with the stream, see open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

226 La.st change: 19 January 1983 Sun Relea.se 2.0

0

0

0

0

0

0

FOPEN(3S) STANDARD 1/0 LIBRARY FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#Include <atdlo.h>

FILE •topen(fllename, type)
char •fllename, •type;

FILE •freopen(fllename, type, stream)
char •fllename, •type;
FILE •stream;

FILE •fdopen(flldes, type)
char •type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fop en returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a '+' to have the file opened for reading and writing.
"r+" positions the stream at the beginning of the file, "w+" creates or truncates it, and "a+"
positions it at the end. Both reads and writes may be used on read/write streams, with the limi­
tation that an fseek, rewind, or reading an end-of-file must be used between a read and a write
or vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdln, stdout, atderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3S)

DIAGNOSTICS
Fopen and /reopen return the pointer NULL if filename cannot be accessed.

BUGS
Fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes will
probably treat the type as if the '+' was not present. These are unreliable in any event.

Sun Release 2.0 Last change: 9 June 1981 227

FREAD(3S) STANDARD 1/0 LIBRARY FREAD(3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <atdlo.h>

tread(ptr, alzeof(•ptr), nltems, stream)
FILE •stream;

fwrlte(ptr, alzeof(•ptr), nltems, stream)
FILE •stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nit ems of data of the type of •ptr from the named
input stream. It returns the number of items actually read.

If stream is stdln and the standard output is line buffered, then any partial output line will be
flushed before any call to read(2) to satisfy the /read.

Fwrite appends at most nitems of data of the type of •ptr beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)

DIAGNOSTICS
Fread and /write return O upon end of file or error.

228 Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

0

FSEEK(3S) STANDARD 1/0 LIBRARY

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#Include <stdlo.h>

faeek(atream, offset, ptrname)
FILE •stream;
long offset;

long ftell(stream)
FILE •stream;

rewind(stream)

DESCRIPTION

FSEEK(3S)

Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, the current position, or the end of the file,
according as ptrname has the value 0, l, or 2.

Fseek undoes any effects of ungetc(3S).

Fte/1 returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic cookie,
and the only foolproof way to obtain an offset for /seek.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

SEE ALSO
lseek(2), fopen(3S)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

Sun Release 2.0 Last change: 19 January 1983 229

GETC(3S) STANDARD 1/0 LIBRARY GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or integer from stream

SYNOPSIS
#Include <stdlo.h>

Int getc(streaJD)
FILE •streaJD;

Int getchar()

Int tgetc(streaJD)
FILE •streaJD;

Int getw(streaJD)
FILE •streaJD;

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(et din).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object
text.

Getw returns the next C Int (word) from the named input stream. It returns the constant EOF
upon end of file or error, but since that is a good integer value, /eo/ and /error(3S) should be
used to check the success of getw. Getw assumes no special alignment in the file.

SEE ALSO
fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS

BUGS

230

These functions return the integer constant EOF at end of file or upon read error.

A stop with message, 'Reading bad file', means an attempt has been made to read from a stream
that has not been opened for reading by /open.

The end-of-file return from getchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly.
In particular, 'getc(•r++);' doesn't work sensibly.

Data files written and read with putw and getw are not portable; the size of an Int and the order
in which data bytes are stored within an Int varies between machines.

Last change: 23 August 1983 Sun Release 2.0

0

0

0

0

0

0

GETS(3S) STANDARD 1/0 LIBRARY

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#Include <stdlo.h>

char •gets(•)
char •11;

char •fgets(s, n, at ream)
char •a;
FILE •stream;

DESCRIPTION

GETS(3S)

Gets reads a string into s from the standard input stream stdln. The string is terminated by a
newline character, which is replaced in a by a null character. Gets returns its argument.

Fgeta reads n-1 characters, or up to a newline character, whichever comes first, from the stream
into the strings. The last character read into sis followed by a null character. Fgets returns its
first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gets and /gets return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, /gets keeps it, all in the name of backward compatibility.

Sun Release 2.0 Last change: 19 January 1983 231

POPEN(3S) STANDARD 1/0 LIBRARY POPEN(3S)

NAME
popen, pclose - initiate 1/0 to/from a process

SYNOPSIS
#Include <stdlo.h>

FILE •popen(command, type)
char •command, •type;

pclose(stream)
FILE •stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an 1/0 mode, either "r" for reading or "w" for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input or the command or read
from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status or the command.

Because open files are shared, a type "r" command may be used to filter stdin, and a type "w" to
filter stdout. Popen always calls sh, never csh.

SEE ALSO
pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(l)

DIAGNOSTICS

BUGS

232

Popen returns a null pointer if files or processes cannot be created, or the shell cannot be
accessed.

Pclose returns -1 if stream is not associated with a 'popened' command.

Buffered reading before opening an input filter may leave the standard input or that filter mispo­
sitioned. Similar problems with an output filter may be forestalled by careful buffer flushing, for
instance, with fflush, see fclose(3S).

Last change: 27 February 1985 Sun Release 2.0

0

0

0

0

0

0

PRINTF(3S) STANDARD 1/0 LIBRARY PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#Include <stdlo.h>

Int prlntf(format [, arg [...)
char •format;

Int fprlntf(stream, format [, arg J ...)

Fll,E •stream;
char •format;

Int sprlntf(s, format [, arg J ...)

char •s, format;

#Include <varargs.h>
Int _doprnt(format, args, stream)
char •format;
va_llst •args;
FILE •stream;

DESCRIPTION
Print/ places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprint! places 'output' in the string s, followed by the character '\O'. All of
these routines work by calling the implementation-dependent routine _doprnt, using the variable­
length argument facilities of varargs(3). Print/ and fprintf return the number of characters
transmitted, while sprint/ returns a pointer to the string. Each returns an EOF if an output error
was encountered.

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg.

Each conversion specification is introduced by the character %. Following the%, there may be

• an optional minus sign '-' which specifies left ad}ustment of the converted value in the indi­
cated field;

• an optional digit string specifying a field width; if the converted value has fewer characters
than the field width it is blank-padded on the left (or right, if the left-adjustment indicator has
been given) to make up the field width; if the field width begins with a zero, zero-padding is
done instead of blank-padding;

• an optional period '.' which serves to separate the field width from the next digit string;

• an optional digit string specifying a precision which specifies the number of digits to appear
after the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

• an optional '#' character specifying that the value should be converted to an "alternate form".
For c, d, 1, and u, conversions, this option has no effect. For o conversions, the precision of
the number is increased to force the first character of the output string to a zero. For x(X)
conversion, a non-zero result has the string Ox(OX) prepended to it. For e, E, f, g, and G,
conversions, the result always contains a decimal point, even if no digits follow the point (nor­
mally, a decimal point only appears in the results of those conversions if a digit follows the
decimal point). For g and G conversions, trailing zeros are not removed from the result as
they would otherwise be.

• the character I specifying that a following d, o, x, or u corresponds to a long integer arg.

Sun Release 2.0 Last change: 7 November 1984 233

PRINTF(3S) STANDARD J/0 LIBRARY PRINTF(3S)

o a character which indicates the type or conversion to be applied.

A field width or precision may be '•' instead or a digit string. In this case an integer arg supplies
the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style '[-]ddd.ddd' where
the number or d's after the decimal point is equal to the precision specification for the
argument. Ir the precision is missing, 6 digits are given; ir the precision is explicitly 0, no
digits and no decimal point are printed.

e The float or double arg is converted in the style '[-]d.ddde±dd' where there is one digit
before the decimal point and the number arter is equal to the precision specification for
the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in styled, in styler, or in style e, whichever gives full
precision in minimum space.

The %e, %t, and %g formats print IEEE indeterminate values (infinity or not-a-number) as
"Infinity" or "Nan" respectively.

c The character arg is printed.

•

u

Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is O or missing all characters up to a null
are printed.

The unsigned integer arg is converted to decimal and printed (the result is in the range 0
through MAXUINT, where MAXUJNT equals 4294967295 on a Sun or on a V AX-11 and
65535 on a PDP-11).

% Print a'%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes place
only if the specified field width exceeds the actual width. Characters generated by print/ are
printed by putc(3S).

Example•
To print a date and time in the form 'Sunday, July 3, 10:02', where weekday and month are
pointers to null-terminated strings:

printr("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print ,r to 5 decimals:
printr("pi = %.5f", 4•atan(l.O));

SEE ALSO
putc(3S), scanf(3S), ecvt(3)

BUGS
Very wide fields (>128 characters) fail.

The values "Infinity" and "Nan" cannot be read by acan/(3S).

234 Last change: 7 November 1984 Sun Release 2.0

0

0

0

0

0

0

PUTC(3S) STANDARD I/0 LIBRARY PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#Include <stdlo.h>

Int putc(c, stream)
char c;
FILE •stream;

putchar(c)

fputc(c, stream)
FILE •stream;

putw(w, stream)
FILE •stream;

DESCRIPTION
Putc appends the character c to the named output stream. It returns the character written.

Put char(c) is defined as putc(c, atdout).

Fputc behaves like putc, but is a genuine function rather than a macro.

Putw appends C Int (word) w to the output stream. It returns the integer written. Putw neither
assumes nor causes special alignment in the file.

SEE ALSO
fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, /error(3S)
should be used to detect putw errors.

Because it is implemented as a macro, putc treats a stream argument with side effects improp­
erly. In particular "putc(c, •f++)" doesn't work sensibly.

Errors can occur long after the call to pule.

Data files written and read with putw and getw are not portable; the size of an Int and the order
in which data bytes are stored within an Int varies between machines.

Sun Release 2.0 Last change: 23 August 1983 235

PUTS (3S) STANDARD 1/0 LIBRARY

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#Include <stdlo.h>

puts(•)
char •a;

tputs(s, stream)
char •s;
FILE •stream;

DESCRIPTION

PUTS(3S)

Puts copies the null-terminated string s to the standard output stream stdout and appends a
newline character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

236

fopen(3S), gets(3S), putc(3S), printf(3S), ferror(3S)
fread(3S) for fwrite

Puts appends a newline, fputs does not, all in the name of backward compatibility.

Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

0

SCANF(3S) STANDARD J/0 LIBRARY SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#Include <stdlo.h>

scant(format [, pointer] ...)
char •format;

facant(stream, format [, pointer] ...)
FILE •stream;
char •format;

aacant(a, format [, pointer] ...)
char •1, •format;

DESCRIPTION
Scan! reads from the standard input stream atdln. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments. Each expects as arguments a con­
trol string format, described below, and a set or pointer arguments indicating where the con­
verted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpreta·
tion or input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not%) which must match the next character or the input stream.

3. Conversion specifications, consisting or the character %, an optional assignment suppressing
character•, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion or the next input field; the result is placed in the
variable pointed to by the corresponding argument, unless assignment suppression was indicated
by *· An input field is defined as a string or non-space characters; it extends to the next inap­
propriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation or the input field; the corresponding pointer
argument must usually be or a restricted type. The following conversion characters are legal:

% a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array or characters large enough to accept the string and a terminating '\O',
which will be added. The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space char­
acter, try '%Is'. Ir a field width is given, the corresponding argument should refer to a
character array, and the indicated number or characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
t through the corresponding argument, which should be a pointer to a float. The input for­

mat for floating point numbers is an optionally signed string or digits possibly containing a
decimal point, followed by an optional exponent field consisting or an E or e followed by an
optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed by a

Sun Release 2.0 Last change: 15 March 1984 237

SCANF(3S) STANDARD 1/0 LIBRARY SCANF(3S)

set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. Ir the first character is not circumflex (•), the input field
is all characters until the first character not in the set between the brackets; if the first char­
acter after the left bracket is ·, the input field is all characters until the first character
which is in the remaining set of characters between the brackets. The corresponding argu­
ment must point to a character array.

The conversion characters d, o and x may be capitalized or preceded by I to indicate that a
pointer to long rather than to Int is in the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by I to indicate a pointer to double rather than to float.
The conversion characters d, o and x may be preceded by h to indicate a pointer to ahort rather
than to Int.

The scan! functions return the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. The constant EOF is returned upon
end of input; note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

inti; float x; char nameJ50J;
scanf("%d%r%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to i the value 25, z the value 5.432, and name will contain

int i; float x; char name[50J;
scanf("%2d%r%•d%[1234567890J", &i, &x, name);

with input

56789 0123 56a72

'thompson\O'. Or,

will assign 56 to i, 789.0 to z, skip '0123', and place the string '56\0' in name. The next call to
getchar will return 'a'.

SEE ALSO
atof(3), getc(3S), printf(3S)

DIAGNOSTICS

BUGS

238

The scan! functions return EOF on end of input, and a short count for missing or illegal data
items.

The success of literal matches and suppressed assignments is not directly determinable.

Scanf cannot read the strings which printf(3S) generates for IEEE indeterminate floating point
values.

Scanf provides no way to convert a number in any arbitrary base (decimal, hex or octal) based
on the traditional C conventions (leading O or Ox).

Last change: 15 March 1984 Sun Release 2.0

0

0

0

0

0

SETBUF(3S) STANDARD 1/0 LIBRARY SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS
#Include <stdlo,h>

setbuf(stream, buf)
FILE •stream;
char •hut;

setbutfer(stream, but, size)
FILE •stream;
char •but;
Int size;

setllnebuf(stream)
FILE •stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When an
output stream is unbuffered, information appears on the destination fiJe or terminal as soon as
written; when it is block buffered many characters are saved up and written as a block; when it is
line buffered characters are saved up until a newline is encountered or input is read from stdin.
Fftush (see /close(3S)) may be used to force the block out early. Normally all files are block
buffered. A buffer is obtained from malloc(3) upon the first getc or putc(3S) on the file. If the
standard stream stdout refers to a terminal it is line buffered. If the standard stream stderr
refers to a terminal it is line buffered.

Setbuf is used after a stream has been opened but before it is read or written. The character
array bu/ is used instead of an automatically allocated buffer. If bu/ is the constant pointer
NULL, input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big
an ·array is needed:

char buf[BUFSIZ[;

Setbuffer, an alternate form of setbuf, is used after a stream has been opened but before it is
read or written. The character array bu/ whose size is determined by the size argument is used
instead of an automatically allocated buffer. If bu/ is the constant pointer NULL, input/output
will be completely unbuffered.

Setlinebuf is used to change stdout or stderr (only) from block buffered or unbuffered to line
buffered. Unlike setbuf and setbuffer it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using /reopen (see
/open(3S)). A file can be changed from block buffered or line buffered to unbuffered by using
/reopen followed by setbufwith a buffer argument of NULL.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

Sun Release 2.0 Last change: 23 August 1983 239

UNGETC(3S) STANDARD 1/0 LIBRARY

NAME
ungetc - push character back into input stream

SYNOPSIS
#Include <stdlo,h>

ungetc(c, stream)
FILE •stream;

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the
next gete call on that stream. Ungete returns c.

One character of pushback is guaranteed provided something has been read from the stream and
the stream is actually buffered. Attempts to push EOF are rejected.

An fseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

240 Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

0

INTR0(3X) MISCELLANEOUS FUNCTIONS INTR0(3X)

NAME
intro - introduction to other libraries

DESCRIPTION

FILES

This section contains manual pages describing other libraries, which are available only from C.
The list below includes libraries which provide device independent plotting functions, terminal
independent screen management routines for two dimensional non-bitmap display terminals, and
functions for managing data bases with inverted indexes. All functions are located in separate
libraries indicated in each manual entry.

/usr /iib/libcurses.a
/usr/lib/libdbm.a
/usr /lib/libmp.a
/usr /iib/libplot.a
/usr /Jib/Jib300.a
/ usr /Ii b /Ii b300s.a
/usr /Jib/lib450.a
/usr /iib/lib4014.a
/usr /iib/Jibtermcap.a
/usr /ii b /Ii btermcap_p.a
/usr /lib /libtermlib.a
/usr /lib /iibtermlib_p.a

screen management routines (see cureee(3x))
data base management routines (see dbm(3x))
multiple precision math library (see mp(3x))
plot routines (see plot(3x))
"
"
"
"

terminal handling routines (see termcap(3x))

Sun Release 2.0 Last change: 12 January 1984 241

CURSES(3X) MISCELLANEOUS FUNCTIONS CURSES(3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc I flags J files -!curses -!termcap I libraries J

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. Then the
refresh(} tells the routines to make the current screen look like the new one. In order to initialize
the routines, the routine initscr() must be called before any of the other routines that deal with
windows and screens are used. The routine endwin(} should be called before exiting.

SEE ALSO
ioct1(2), getenv(3), tty(4), termcap(5)

FUNCTIONS
addch(ch)
addstr(str)
box(win, vert,hor)
crmode()
clear()
clearok(scr, boo If)
clrtobot()
clrtoeol()
delch()
deleteln()
delwin(win)
echo()
endwin()
erase()
getch()
getcap(name)
getstr(str)
gettmode()
getyx(win,Y,x)
inch()
initscr()
insch(c)
insertln()
leaveok(win,boolf)
longname(termbuf,name)
move(y,x)
mv cur(Iasty ,lastx,newy ,newx)
newwin(lines,cols, begin_y, begi n_x)
nl()
nocrmode()
noecho()
non!()
noraw()
overlay(winl, win2)
overwrite(win l, win2)
print w(f mt,argl ,arg2, ...)
raw()
refresh()
resetty()

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase atdacr
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay win! on win2
overwrite win! on top of win2
printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value

242 Last change: 16 February 1984 Sun Release 2.0

0

0

0

0

0

0

CURSES(3X) MISCELLANEOUS FUNCTIONS CURSES(3X)

savetty()
scanw(fmt,argl,arg2, ...)
scroll(win)
scrollok(win, boolf)
setterm(name)
stand end()
standout()
su bwin(win ,lines,cols, begin...,y, begin_x)
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wc!ear(win)
wc!rtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsert!n(win)
wmove(win.y,x)
wprin t w(win,fmt, argl ,arg2, ...)
wrefresh(win)
wscan w(win,f mt,argl ,arg2, ...)
wstandend(win)
wstandout(win)

stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a su bwindow
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert character into win
insert line into win
set current (y,x) co-ordinates on win
printf on win
make screen look like win
scanfthrough win
end standout mode on win
start standout mode on win

Sun Release 2.0 Last change: 16 February 1984 243

DBM(3X) MISCELLANEOUS FUNCTIONS

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS
typedef etruct {

char •dptr;
Int delze;

} datum;

dbmlnlt(flle)
char die;

datum fetch(key)
datum key;

etore(key, content)
datum key, content;

delete(key)
datum key;

datum flretkey()

datum nextkey(key)
datum key;

DESCRIPTION

DBM(3X)

These functions maintain key/content pairs in a data base. The functions will handle very large
(a billion blocks) databases and will access a keyed item in one or two file system accesses. The
functions are obtained with the loader option -ldbm.

0

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes

0 pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The :
data base is stored in two files. One file is a directory containing a bit map and has '.dir' as its
suffix. The second file contains all data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files file.dlr and file.pag must exist. (An empty database is created by creating zero-length '.dir'
and '.pag' files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in
a database may be made, in an (apparently) random order, by use of firstkey and nextkey. First­
key will return the first key in the database. With any key nextkey will return the next key in
the database. This code will traverse the data base:

for (key = firstkey(); key.dptr != NULL; key= nextkey(key))

DIAGNOSTICS

BUGS

244

All functions that return an int indicate errors with negative values. A zero return indicates ok.
Routines that return a datum indicate errors with a null (0) dptr.

The '.pag' file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files cannot
be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subse­
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block. Store
will return an error in the event that a disk block fills with inseparable data.

Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

DBM(3X) MISCELLANEOUS FUNCTIONS DBM(3X)

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any­
thing interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is
risky.

Sun Release 2.0 Last change: 20 March 1984 245

MP(3X) MISCELLANEOUS FUNCTIONS MP(3X)

NAME
itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow - multiple precision integer arith·
metic

SYNOPSIS
#Include <mp.b>

madd(a, b, c)
MINT •a, •b, •c1

maub(a, b, c)
MINT •a, •b, •c;

mult(a, b, c)
MINT •a, •b, •c;

mdlv(a, b, q, r)
MINT •a, •b, •q, •r;

mln(a)
MINT •a;

mout(a)
MINT •a;

pow(a, b, c, d)
MINT •a, •b, •c, •d;

gcd(a, b, c)
MINT •a, •b, •c;

rpow(a, n, b)
MINT •a, •b;
short n;

msqrt(a, b, r)
MINT •a, •b, •r;

adlv(a, n, q, r)
MINT •a, •q;
short n, •r;

MINT •ltom(n)
short n;

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using
the defined type MINT. Pointers to a MINT should be initialized using the function itom, which
sets the initial value to n. After that space is managed automatically by the routines.

Madd, msub and mult assign to their third arguments the sum, difference, and product, respec­
tively, of their first two arguments. Mdiv assigns the quotient and remainder, respectively, to its
third and fourth arguments. Sdiv is like mdiv except that the divisor is an ordinary integer.
Msqrt produces the square root and remainder of its first argument. Rpow calculates a raised to
the power b, while pow calculates this reduced modulo m. Min and mout do decimal input and
output.

Use the -Imp loader option to obtain access to these functions.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

246 Last change: 15 March 1984 Sun Release 2.0

0

0

MP(3X) MISCELLANEOUS FUNCTIONS MP(3X)

0 FILES
/usr /Iib/libmp.a

0

0

Sun Release 2.0 Last change: 15 March 1984 247

PLOT(3X) MISCELLANEOUS FUNCTIONS PLOT(3X)

NAME
openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graphics inter­
face

SYNOPSIS
openpl()

erase()

label(•)
char •D;
llne(xl, yl, x%, yZ)

circle(x, y, r)

arc(x, y, xO, yO, xl, yl)

move(x, y)

cont(x, y)

polnt(x, y)

llnemod(s)
char •D;
space(xO, yO, xl, yl)

closepl()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See

0

plot(5) for a description of their effect. Openpl must be used before any of the others to open the o
device for writing. C/osepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the fol­
lowing ld(l) options:

-!plot device-independent graphics stream on standard output for plot(lG) filters
-1300 GS! 300 terminal
-13000 GS! 300S terminal
-1450 DASI 450 terminal
-14014 Tektronix 4014 terminal

SEE ALSO

FILES

248

plot(5), plot(lG), graph(lG)

/usr /lib /lib plot.a
/usr /lib/lib300.a
/usr /!ib/lib300s.a
/usr /lib/lib450.a
/usr /lib/lib4014.a

Last change: 19 January 1983 Sun Release 2.0

0

0

0

0

TERMCAP (3X) MISCELLANEOUS FUNCTIONS TERMCAP(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char •BC;
char •UP;
short ospeed;

tgetent(bp, name)
char •bp, •name;

tgetnum(ld)
char •Id;

tgetflag(ld)
char •Id;

char•
tgetatr(ld, area)
char •ld, ••area;

char•
tgoto(cm, destcol, destllne)
char •cm;

tputs(cp, atrcnt, outc)
register char •cp;
Int atrcnt;
Int (•outc)();

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base termcap(5).
These are low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the buffer, with the current size of the tty
(usually a window). This allows pre-Sun Windows programs to run in a window of arbitrary size.
hp. Bp should be a character buffer of size 1024 and must be retained through all subsequent
calls to tgetnum, tgetftag, and tgetstr. Tgetent returns -1 if it cannot open the termcap file, 0 if
the terminal name given does not have an entry, and 1 if all goes well. It will look in the
environment for a TERMCAP variable. If found, and the value does not begin with a slash, and
the terminal type name is the same as the environment string TERM, the TERMCAP string is
used instead of reading the termcap file. If it does begin with a slash, the string is used as a path
name rather than / etc/termcap. This can speed up entry into programs that call tgetent, as well
as to help debug new terminal descriptions or to make one for your terminal if you can't write
the file / etc/termcap. Note that if the window size changes, the "lines" and "columns"entries in
hp are no longer correct. See the Sunwindows Reference Manual for details regarding [how to
handle[this.

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the terminal.
Tgetflag returns 1 if the specified capability is present in the terminal's entry, 0 if it is not.
Tgetstr gets the string value of capability id, placing it in the buffer at area, advancing the area
pointer. It decodes the abbreviations for this field described in termcap(5), except for cursor
addressing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line dest­
line. It uses the external variables UP (from the up capability) and BC (if be is given rather
than ba) if necessary to avoid placing \n, ·n or ·@ in the returned string. (Programs which
call tgoto should be sure to turn off the XTABS bit(s), since tgoto may now output a tab. Note
that programs using termcap should in general turn off XTABS anyway since some terminals use

Sun Release 2.0 Last change: 27 March 1985 249

TERMCAP (3X) MISCELLANEOUS FUNCTIONS TERMCAP(3X)

FILES

control I for other functions, such as nondestructive space.) If a% sequence is given which is not
understood, then tgoto returns "OOPS".

Tput, decodes the leading padding information of the string cp; affcnt gives the number of lines
affected by the operation, or 1 if this is not applicable, outc is a routine which is called with each
character in turn. The external variable ospeed should contain the encoded output speed of the
terminal as described in tty(4). The external variable PC should contain a. pad character to be
used (from the pc capability) if a null(·@) is inappropriate.

/usr/lib/libtermcap.a -!termcap library
/etc/termcap data base

SEE ALSO
ex(!), curses(3X), tty(4), termcap(5)

250 Last change: 27 March 1985 Sun Release 2.0

0

0

0

0

0

0

INTRO(4) SPECIAL FILES INTRO(4)

NAME
intro - introduction to special files and hardware support

DESCRIPTION
This section describes device interfaces (drivers) in the operating system for disks, tapes, serial
communications, high-speed network communications, and other devices such as mice, frame
buffers and windows. The section is divided into a few subsections: Sun-specific drivers are
grouped in "4S"; protocol families in "4F"; protocols and raw interfaces are treated in "4P"; and
network interfaces in "4N".

The operating system can be built with or without many of the drivers listed here. For most of
them, the SYNOPSIS section of the manual page gives the syntax of the line to include in a ker­
nel configuration file if you wish to include the driver in a system. See config(8) for a description
of this process. The pages for most drivers also include a DIAGNOSTICS section listing error
messages the driver may produce. These messages appear on the system console, and also in the
system error log file /usr/ odm/messages.

Drivers which are present in every kernel include a driver for the paging device, drum(4); drivers
for accessing physical, virtual, and 1/0 space, mem(4S); and drivers for the data sink, nu/1(4).

Communications lines are most often used with the terminal driver described in tty(4). The ter­
minal driver runs on communications lines provided either by a communications driver such as
mti(4S) or zs(4S) or by a virtual terminal. The virtual terminal may be provided either by the
Sun console monitor, cons(4S), or by a true pseudo-terminal, pty(4), used in applications such as
windowing or remote networking.

Magnetic tapes all provide the interface described in mtio(4). Tape devices for the Sun include
ar(4S), tm(4S), st(4S), and xt(4S).

Disk controllers provide standard block and raw interfaces, as well as a set of ioctl's defined in
dkio(4S), which support disk formatting and bad block handling. Drivers available for the Sun
include xy(4S), ip(4S), and ed(4S).

The operating system supports one or more protocol families for local network communications.
The only complete protocol family in this version of the system is the Internet protocol family;
see inet(4F). Each protocol family provides basic services - packet fragmentation and reassem­
bly, routing, addressing, and basic transport - to each protocol implementation. A protocol
family is normally composed or a number of protocols, one per socket(2) type. A protocol family
is not required to support all socket types.

The primary network support is for the Internet protocol family described in inet(4F). Major
protocols in this family include the Internet Protocol, ip(4P), describing the universal datagram
format, the stream Transmission Control Protocol tcp(4P), the User Datagram Protocol udp(4P),
the Address Resolution Protocol arp(4P), and the Internet Control Message Protocol icmp(4P).
The primary network interface is for the 10 Megabit Ethernet; see ec(4S) and ie(4S). A software
loopback interface, lo{4) also exists. General properties of these (and all) network interfaces are
described in if(4N).

The general support in the system for local network routing is described in routing(4N); these
facilities apply to all protocol families.

Miscellaneous devices include color frame buffers cg•(4S), monochrome frame buffers bwo(4S),
the console frame buffer /b(4S), the console mouse mouse(4S), and the window devices win(4S).

Sun Release 2.0 Last change: 28 February 1985 251

AR (4S) SPECIAL FILES AR(4S)

NAME
ar - Archive 1/4 inch Streaming Tape Drive

SYNOPSIS
device arO at mbO car Ox200 priority 3

DESCRIPTION

FILES

The Archive tape controller is a Sun 'QIC-11' interface to an Archive streaming tape drive. It
provides a standard tape interface to the device, see mtio(4), with some deficiencies listed under
BUGS below.

The maximum blocksize for the raw device is limited only by available memory.

/dev /raro
/dev /nraro non-rewinding

SEE ALSO
mtio(4)
Archive Intelligent Tape Drive Theory of Operation, Archive Corporation (Sun 8000-1058-01)
Archive Product Manual (Sidewinder 1/4" Streaming Cartridge Tape Drive) (Sun 800-0628-01)
Sun 1/4" Tape Interface - User Manual (Sun 800-0415-01)

DIAGNOSTICS

BUGS

252

au: would not initialize.

"au: already open."
The tape can be open by only one process at a time.

au: no such drive.

au: no cartridge In drive.

au: cartridge Is write protected.

ar: Interrupt from unltlallzed controller %x.

au: many retries, consider retiring this tape.

ar•: %b error at block fl %d punted.

au: %b error at block fl %d.

ar: giving up on Rdy, try again.

The tape cannot reverse direction so the BSF and BSR ioctls are not supported.

The FSR ioctl is not supported.

The system will hang if the tape is removed while running.

When using the raw device, the number of bytes in any given transfer must be a multiple of 512
bytes. If it is not, the device driver returns an error.

The driver will only write an end of file mark on close if the last operation was a write, without
regard for the mode used when opening the file. This will cause empty files to be deleted on a
raw tape copy operation.

Last change: 04 February 1985 Sun Release 2.0

0

0

0

0

0

0

ARP(4P) SPECIAL FILES ARP(4P)

NAME
arp - Address Resolution Protocol

SYNOPSIS
pseudo-device ether

DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and lOMb/s Ethernet
addresses. It is used by all the lOMb/s Ethernet interface drivers.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an
address not in the cache, ARP queues the message which requires the mapping and broadcasts a
message on the associated network requesting the address mapping. If a response is provided,
the new mapping is cached and any pending messages are transmitted. ARP will queue at most
one packet while waiting for a mapping request to be responded to; only the most recently
"transmitted" packet is kept.

To enable communications with systems which do not use ARP, ioctls are provided to enter and
delete entries in the Internet-to-Ethernet tables. Usage:

#Include <sys/loctl.h>
#Include <sys/socket.h>
#Include <net/lf.h>
struct arpreq arpreq;

Ioctl(•, SIOCSARP, (caddr_t)&arpreq);
Ioctl(•, SIOCGARP, (caddr_t)&arpreq);
loctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl takes the same structure as an argument. SIOCSARP sets an ARP entry, SIOCGARP
gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be applied to any
socket descriptor s, but only by the super-user. The arpreq structure contains:

/•
• ARP ioctl request

•I
struct arpreq {

};

struct sockaddr arp_pa;
struct sockaddr arp_ha;
int arp_flags;

/• arp_flags field values •/
#define ATF_COM
#define ATF J'ERM
#defineATFJ'UBL

2
4
8

/• protocol address •/
/• hardware address•/
/• flags •/

/• completed entry (arp_ha valid)•/
/• permanent entry •/
/• publish (respond for other host)•/

The address family for the arp_pa sockaddr must be AF JNET; for the arp_ha sockaddr it must
be AF_UNSPEC. The only flag bits which may be written are ATFJ'ERM and ATFJ'UBL.
ATF J'ERM causes the entry to be permanent if the ioctl call succeeds. The peculiar nature of
the ARP tables may ca.use the ioctl to fa.ii if more than 4 (permanent) Internet host addresses
hash to the same slot. ATFJ'UBL specifies that the ARP code should respond to ARP requests
for the indicated host coming from other ma.chines. This allows a Sun to act as an "ARP server"
which may be useful in convincing an ARP-only machine to talk to a non-ARP machine.

ARP watches passively for hosts impersonating the local host (that is, a host which responds to
an ARP mapping request for the local host's address).

DIAGNOSTICS
duplicate IP address!! sent from ethernet address: %x:%x:%x:%x:%x:%x. ARP has

Sun Release 2.0 Last change: 11 January 1984 253

ARP(4P) SPECIAL FILES ARP(4P)

discovered another host on the local network which responds to mapping requests for its own o·
Internet address.

SEE ALSO

BUGS

254

ec(4S), ie(4S), inet(4F), arp(8C), ifconfig(8C)
An Ethernet Address Resolution Protocol, RFC826, Dave Plummer, MIT (Sun 800-1059-01)

ARP packets on the Ethernet use only 42 bytes or data, however, the smallest legal Ethernet
packet is 60 bytes (not including CRC). Some systems may not enforce the minimum packet size,
others will.

Last change: 11 January 1984 Sun Release 2.0

0

0

0

0

0

BK(4) SPECIAL FILES BK(4)

NAME
bk - line discipline for machine-machine communication

SYNOPSIS
pseudo-device bk

DESCRIPTION
This line discipline provides a replacement for the tty driver tty(4) when high speed output to
and especially input from another machine is to be transmitted over an asynchronous communi­
cations line. The discipline was designed for use by a (now obsolete) store-and-forward local net­
work running over serial lines. It may be suitable for uploading of data from microprocessors
into the system. If you are going to send data over asynchronous communications lines at high
speed into the system, you must use this discipline, as the system otherwise may detect high
input data rates on terminal lines and disable the lines; in any case the processing of such data
when normal terminal mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#Include <•gtty,h>
Int !disc = NETLDISC, ftldeo; ...
loctl(llldeo, TIOCSETD, &ldloc);

A typical application program then reads a sequence of lines from the terminal port, checking
header and sequencing information on each line and acknowledging receipt of each line to the
sender, who then transmits another line of data. Typically several hundred bytes of data and a
smaller amount of control information will be received on each handshake.

The old standard teletype discipline can be restored by doing:

!disc = OTTYDISC;
loctl(llldeo, TIOCSETD, &!disc);

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output
data path is desired, it is necessary to prepare the output line by putting it into RAW mode
using ioct1(2). This must be done before changing the discipline with TIOCSETD, as most
ioct/(2) calls are disabled while in network line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the input
path is only 7 bits wide, with newline the only character terminating an input record. Each input
record must be read and acknowledged before the next input is read as the system refuses to
accept any new data when there is a record in the buffer. The buffer is limited in length, but the
system guarantees to always be willing to accept input resulting in 512 data characters and then
the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee
accurate data transfer.

SEE ALSO
tty(4)

DIAGNOSTICS
None.

Sun Release 2.0 Last change: 17 August 1983 255

BWONE(4S) SPECIAL FILES BWONE(4S)

NAME
bwone - Sun-1 black and white frame buffer

SYNOPSIS
device bwoneO at mbO csr OxcOOOO priority 3

DESCRIPTION

FILES

The bwone interface provides access to Sun-1 black-and-white graphics controller boards. It sup­
ports the FBIOGTYPE ioctl which programs can use to determine the characteristics of the
display device; see fbio(4S)

It supports the FBIOGPIXRECT ioctl which allows SunWindows to be run on it; see fbio(4S)

Reading or writing to the frame buffer is not allowed - you must use the mmap(2) system call to
map the board into your address space.

/dev /bwoneJ0-9J

SEE ALSO
mmap(2), fb(4S), fbio(4S)
Sun 1024 Video Board - User Manual (Sun 800-0420)

DIAGNOSTICS
None.

BUGS
Use of vertical-retrace interrupts is not supported.

256 Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

BWTW0(4S) SPECIAL FILES BWTWO(4S)

NAME
bwtwo - Sun-2 black and white frame buffer

SYNOPSIS
device bwtwoO at mbO car Ox700000 priority 4

device bwtwoO at mbO car vme oblo OxO priority 4

DESCRIPTION

FILES

The bwtwo interface provides access to Sun-2 Monochrome Video Controller boards. The first
synopsis line given above should be used to generate a kernel for a Sun-2/120 or Sun-2/170; the
second, for a Sun-2/50 or Sun-2/160.

bwtwo supports the FBIOGTYPE ioctl, which programs may use to determine the characteristics
of the display device, and supports the FBIOGPIXRECT ioctl, which allows SunWindows to be
run on it (see fbio(4S)).

Reading or writing to the frame buffer is not allowed - you must use the mmap(2) system call to
map the board into your address space.

/dev /bwtwo[0-9]

SEE ALSO
mmap(2), fb{4S), fbio(4S)

DIAGNOSTICS
None.

BUGS
Use of vertical-retrace interrupts is not supported.

Sun Release 2.0 Last change: 1 November 1984 257

CGONE(4S) SPECIAL FILES CGONE(4S)

NAME
cgone - Sun-1 color graphics interface

SYNOPSIS
device cgoneO at mbO car OxecOOO priority 3

DESCRIPTION

FILES

The cgone interface provides access to the Sun-1 color graphics controller board, which is nor­
mally supplied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer
interface as defined in /bio(4S).

It supports the FBIOGPIXRECT ioctl which allows Sun Windows to be run on it; see foio(4S)

The hardware consumes 16 kilobytes or Multibus memory space. The board starts at standard
addresses OxE8000 or OxECOOO. The board must be configured for interrupt level 3.

/dev /cgone[0-9[

SEE ALSO
mmap(2), fbio(4S)
Sun Color Video Board User's Manual (Sun 8000-0398, Rev B)
Barco GD33 Color Display 120VAC Operation Instructions (13") (Sun 800-1002-01)
Barco Color Display CD 252 120/220VAC Operation Guide (19") (Sun 800-1003-01)

DlAGNOSTICS
None.

BUGS
Use or color board vertical-retrace interrupts is not supported.

258 Last change: l November 1984 Sun Release 2.0

0

0

0

0

0

0

CGTW0(4S) SPECIAL FILES CGTW0(4S)

NAME
cgtwo - Sun-2 color graphics interface

SYNOPSIS
cgtwoO at mbO car vme buomem Ox400000 priority 3

DESCRIPTION
The cgtwo interface provides access to the Sun-2 color graphics controller board, which is nor­
mally supplied with a 19" 60 Hz non-interlaced color monitor. It provides the standard frame
buffer interface as defined in fbio(4S).

The hardware consumes 4 megabytes of VME bus address space. The board starts at standard
address Ox400000. The board must be configured for interrupt level 3.

FILES
/dev /cgtwoJ0-9J

SEE ALSO
mmap(2), fbio(4S)
User's Manual for the Sun-2 Color Graphics Board.

Sun Release 2.0 Last change: 29 October 1984 259

CONS (4S) SPECIAL FILES CONS(4S)

NAME
cons - console driver and terminal emulator for the Sun workstation

SYNOPSIS
None; included in standard system.

DESCRIPTION
Cons is an indirect driver for the Sun workstation console, which implements a standard UNIX
system terminal. Cons is implemented by calling the PROM resident monitor or other kernel
UART drivers (zs(4s)) to perform 1/0 to and from the current system console, which is either a
Sun frame buffer or an RS232 port.

When the Sun window system win(4S) is active, console input is directed through the window
system rather than being read from the hardware console.

An ioctl TIOCCONS may be applied to serial devices other than the console to route output
which would normally appear on the console to the other devices instead. Thus, the window sys­
tem does a TIOCCONS on a pseudo-terminal to route console output to the pseudo-terminal
rather than routing output through the PROM monitor to the screen, since routing output
through the PROM monitor destroys the integrity of the screen.

ANSI STANDARD TERMINAL EMULATION

260

The Sun Workstation's PROM monitor provides routines that emulates a standard ANSI X3.64
terminal.

Note that the VTIOO also follows the ANSI X3.64 standard but both the Sun and the VTIOO have
nonstandard extensions to the ANSI X3.64 standard. The Sun terminal emulator and the VTIOO
are not compatible in any true sense.

The Sun console displays 34 lines of 80 ASCII characters per line, with scrolling, (z, y) cursor
addressability, and a number of other control functions.

The Sun console displays a non-blinking block cursor which marks the current line and character
position on the screen. ASCII characters between Ox20 (space) and Ox7E (tilde) inclusive are
printing characters - when one is written to the Sun console (and is not part of an escape
sequence), it is displayed at the current cursor position and the cursor moves one position to the
right on the current line. If the cursor is already at the right edge of the screen, it moves to the
first character position on the next line. If the cursor is already at the right edge of the screen
on the bottom line, the Line-feed function is performed (see control-J below), which scrolls the
screen up by one or more lines or wraps around, before moving the cursor to the first character
position on the next line.

Control Sequence Syntax

The Sun console defines a number of control sequences which may occur in its input. When such
a sequence is written to the Sun console, it is not displayed on the screen, but effects some con­
trol function as described below, for example, moves the cursor or sets a display mode.

Some of the control sequences consist of a single character. The notation
control-X

for some character X, represents a control character.

Other ANSI control sequences are of the form
ESC [<params> <char>

Spaces are included only for readability; these characters must occur in the given sequence
without the intervening spaces.

ESC represents the ASCII escape character (ESC, control-[, Ox!B).
[The next character is a left square bracket '[' (Ox5B).
<params>

are a sequence or zero or more decimal numbers made up of digits between O and 9,

Last change: 7 February rns5 Sun Release 2.0

0

0

0

0

0

0

CONS (4S)

separated by semicolons.
<char>

SPECIAL FILES

represents a function character, which is different for each control sequence.

CONS(4S)

Some examples of syntactically valid escape sequences are (again, ESC represent the single ASCil
character 'Escape'):

ESC[m
ESC[7m
ESC[33;54H

select graphic rendition with default parameter
select graphic rendition with reverse image
set cursor position

ESC [123·456·0 .. 3·B
' ' " '

move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted by the Sun console
are ignored. Control characters which are not currently interpreted by the Sun console are also
ignored.

Each control function requires a specified number of parameters, as noted below. If fewer param­
eters are supplied, the remaining parameters default to l, except as noted in the descriptions
below.

Ir more than the required number of parameters is supplied, only the last n are used, where n is
the number required by that particular command character. Also, parameters which are omitted
or set to zero are reset to the default value of 1 (except as noted below).

Consider, for example, the command character M which requires one parameter. ESC[;M and
ESC[OM and ESC[M and ESC[23;15;32;1M are all equivalent to ESC[lM and provide a parameter
value of l. Note that ESC [;5M (interpreted as 'ESC [5M') is not equivalent to ESC [5;M (inter­
preted as 'ESC [5;1M') which is ultimately interpreted as 'ESC [lM').

In the syntax descriptions below, parameters are represented as '#' or '#1;#2'.

ANSI Control Function•

The following paragraphs specify the ANSI control functions implemented by the Sun console.
Each description gives:

• the control sequence syntax

• the hex equivalent of control characters where applicable

• the control function name and ANSI or Sun abbreviation (if any).

• description of parameters required, if any

• description of the control function

• for functions which set a mode, the initial setting of the mode. The initial settings can be
restored with the SUNRESET escape sequence.

Control Character Function•

control-G (Ox7) Bell (BEL)
The Sun Workstation Model 100 and lOOU is not equipped with an audible bell. It 'rings
the bell' by flashing the entire screen. The Sun-2 models have an audible bell which
beeps. The window system flashes the window.

control-H (Ox8) Backspace (BS)
The cursor moves one position to the left on the current line. Ir it is already at the left
edge of the screen, nothing happens.

control-I (Ox9) Tab (TAB)

Sun Release 2.0

The cursor moves right on the current line to the next tab stop. The tab stops are fixed
at every multiple of 8 columns. Ir the cursor is already at the right edge or the screen,

Last change: 7 February 1985 261

CONS (4S) SPECIAL FILES CONS(4S)

262

nothing happens; otherwise the cursor moves right a minimum or one and a maximum or
eight character positions.

control-J (OxA) Line-feed (LF)
The cursor moves down one line, remaining at the same character position on the line. If
the cursor is already at the bottom line, the screen either scrolls up or 'wraps around'
depending on the setting or an internal variable S (initially 1) which can be changed by
the ESC [r control sequence. If S is greater than zero, the entire screen (including the
cursor) is scrolled up by S lines before executing the Line-feed. The top S lines scroll off
the screen and are lost. S new blank lines scroll onto the bottom or the screen. Arter
scrolling, the line-feed is executed by moving the cursor down one line.

If Sis zero, 'wrap-around' mode is entered. 'ESC [1 r' exits back to scroll mode. If a
linefeed occurs on the bottom line in wrap mode, the cursor goes to the same character
position in the top line of the screen. When any linefeed occurs, the line that the cursor
moves to is cleared. This means that no scrolling occurs. Wrap-around mode is not
implemented in the window system.

The screen scrolls as fast as possible depending on how much data is backed up awaiting
printing. Whenever a scroll must take place and the console is in normal scroll mode
('ESC [1 r'), it scans the rest of the data awaiting printing to see how many linefeeds
occur in it. This scan stops when any control character from the set {VT, FF, SO, SI,
DLE, DCl, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is
found. At that point, the screen is scrolled by N lines (N at least 1) and processing con­
tinues. The scanned text is still processed normally to fill in the newly created lines.
This results in much faster scrolling with scrolling as long as no escape codes or other
control characters are intermixed with the text.

See also the discussion of the 'Set scrolling' (ESC[r) control funtion below.

control-K (OxB) Reverse Line-feed
The cursor moves up one line, remaining at the same character position on the line. If
the cursor is already at the top line, nothing happens.

control-L (OxC) Form-feed (FF)
The cursor is postioned to the Home position (upper-left corner) and the entire screen is
cleared.

control-M (OxD) Return (CR)
The cursor moves to the leftmost character position on the current line.

Escape Sequence Functions

control-[(OxlB) Escape (ESC)
This is the escape character. Escape initiates a multi-character control sequence.

ESC [#@ Insert Character (ICH)
Takes one parameter, # (default 1). Inserts # spaces at the current cursor position.
The tail of the current line starting at the current cursor position inclusive is shifted to
the right by # character positions to make room for the spaces. The rightmost# char­
acter positions shift off the line and are lost. The position or the cursor is unchanged.

ESC[#A Cursor Up (CUU)
Takes one parameter,# (default 1). Moves the cursor up# lines. Ir the cursor is fewer
than # lines from the top of the screen, moves the cursor to the topmost line on the
screen. The character position of the cursor on the line is unchanged.

ESC[#B Cursor Down (CUD)
Takes one parameter, # (default 1). Moves the cursor down # lines. If the cursor is
fewer than # lines from the bottom of the screen, move the cursor to the last line on the

Last change: 7 February 1985 Sun Release 2.0

0

0

0

0

0

0

CONS (4S) SPECIAL FILES CONS(4S)

screen. The character position of the cursor on the line is unchanged.

ESC [#C Cursor Forward (CUF)
Takes one parameter, # (default 1). Moves the cursor to the right by # character posi­
tions on the current line. If the cursor is fewer than # positions from the right edge of
the screen, moves the cursor to the rightmost position on the current line.

ESC[#D Cursor Backward (CUB)
Takes one parameter, # (default 1). Moves the cursor to the left by# character posi­
tions on the current line. If the cursor is fewer than # positions from the left edge of the
screen, moves the cursor to the leftmost position on the current line.

ESC[#E Cursor Next Line (CNL)
Takes one parameter, # (default 1). Positions the cursor at the leftmost character posi­
tion on the #-th line below the current line. If the current line is less than # lines from
the bottom of the screen, postions the cursor at the leftmost character position on the
bottom line.

ESC[#l;#2f Horizontal And Vertical Position (HVP)
or

ESC [#1;#2H Cursor Position (CUP)
Takes two parameters, #1 and #2 (default l, 1). Moves the cursor to the #2-th charac­
ter position on the #1-th line. Character positions are numbered from 1 at the left edge
of the screen; line positions are numbered from 1 at the top of the screen. Hence, if both
parameters are omitted, the default action moves the cursor to the home position (upper
left corner). If only one parameter is supplied, the cursor moves to column 1 of the
specified line.

ESC [J Erase in Display (ED)
Takes no parameters. Erases from the current cursor position inclusive to the end of the
screen. In other words, erases from the current cursor position inclusive to the end of
the current line and all lines below the current line. The cursor position is unchanged.

ESC [K Erase in Line (EL)
Takes no parameters. Erases from the current cursor position inclusive to the end of the
current line. The cursor position is unchanged.

ESC [#L Insert Line (IL)
Takes one parameter,# (default 1). Makes room for# new lines starting at the current
line by scrolling down by # lines the portion of the screen from the current line inclusive
to the bottom. The # new lines at the cursor are filled with spaces; the bottom # lines
shift off the bottom of the screen and are lost. The position of the cursor on the screen
is unchanged.

ESC [#M Delete Line (DL)
Takes one parameter, # (default 1). Deletes # lines beginning with the current line.
The portion of the screen from the current line inclusive to the bottom is scrolled
upward by # lines. The # new lines scrolling onto the bottom of the screen are filled
with spaces; the # old lines beginning at the cursor line are deleted. The position of the
cursor on the screen is unchanged.

ESC [#P Delete Character (DCH)
Takes one parameter,# (default 1). Deletes# characters starting with the current cur­
sor position. Shifts to the left by # character positions the tail of the current line from
the current cursor position inclusive to the end of the line. Blanks are shifted into the
rightmost # character positions. The position of the cursor on the screen is unchanged.

ESC I #m Select Graphic Rendition (SGR)
Takes one parameter, # (default 0). Note that, unlike most escape sequences, the

Sun Release 2.0 Last change: 7 February 1985 263

CONS (4S) SPECIAL FILES CONS(4S)

parameter defaults to zero if omitted. Invokes the graphic rendition specified by the
parameter. All following printing characters in the data stream are rendered according
to the parameter until the next occurrence of this escape sequence in the data stream.
Currently only two graphic renditions are defined:

0 Normal rendition.

7 Negative (reverse) image.

Negative image displays characters as white-on-black if the screen mode is currently
black-on white, and vice-versa. Any non-zero value of# is currently equivalent to 7 and
selects the negative image rendition.

ESC!p Black On White (SUNBOW)
Takes no parameters. Sets the screen mode to black-on-white. If the screen mode is
already black-on-white, has no effect. In this mode spaces display as solid white, other
characters as black-on-white. The cursor is a solid black block. Characters displayed in
negative image rendition (see 'Select Graphic Rendition' above) is white-on-black in this
mode. This is the initial setting of the screen mode on reset.

ESC I q White On Black (SUNWOB)
Takes no parameters. Sets the screen mode to white-on-black. If the screen mode is
already white-on-black, has no effect. In this mode spaces display as solid black, other
characters as white-on-black. The cursor is a solid white block. Characters displayed in
negative image rendition (see 'Select Graphic Rendition' above) is black-on-white in this
mode. The initial setting of the screen mode on reset is the alternative mode, black on
white.

ESC [#r Set scrolling (SUNSCRL)
Takes one parameter, # (default 0). Sets to # an internal register which determines how
many lines the screen scrolls up when a line-feed function is performed with the cursor on
the bottom line. A parameter of 2 or 3 introduces a small amount of 'jump' when a
scroll occurs. A parameter of 34 clears the screen rather than scrolling. The initial set­
ting is 1 on reset.

A parameter of zero initiates 'wrap mode' instead of scrolling. In wrap mode, if a
linefeed occurs on the bottom line, the cursor goes to the same character position in the
top line of the screen. When any linefeed occurs, the line that the cursor moves to is
cleared. This means that no scrolling ever occurs. 'ESC [1 r' exits back to scroll mode.

For more information, see the description of the Line-feed (control-J) control function
above.

ESC is Reset terminal emulator (SUNRESET)
Takes no parameters. Resets all modes to default, restores current font from PROM.
Screen and cursor position are unchanged.

4014 TERMINAL EMULATION

FILES

The PROM monitor for Sun models lOOU and 150U provides routines the Sun Workstation with
the capability to emulate a subset of the Tektronix 4014 terminal. This feature does not exist in
Sun-2 PROMs and will be removed from models lOOU and 150U in future Sun releases. Tek­
tool(l) provides Tektronix 4014 terminal emulation and should be used instead of relying on the
capabilities of the PROM monitor.

/dev /console
/dev /ttya alternate console (serial port)

SEE ALSO
oct(4S), tty(4), zs(4S), tektool(l)
ANSI Standard X3.64, 'Additional Controls for Use with ASCII', Secretariat: CBEMA, 1828 L

264 Last change: 7 February 1985 Sun Release 2.0

0

0

0

CONS (4S) SPECIAL FILES CONS (4S)

0 St., N.W., Washington, D.C. 20036.

BUGS
TIOCCONS should be restricted to the owner of /dev/console.

0

0

Sun Release 2.0 Last change: 7 February 1Q85 265

DES(4S) SPECIAL Fll,ES DES(4S)

NAME
des - DES encryption chip interface

SYNOPSIS
desO at mbO csr Oxee1800

#Include <•Y•/dea,h>

DESCRIPTION

Fll,ES

The des driver provides a high level interface to the AmZ8068 Data Ciphering Processor, a
hardware implementation of the NBS Data Encryption Standard.

The high level interface provided by this driver is hardware independent and could be shared by
future drivers in other systems. The driver implements a number of minor devices (currently,
ten); each of these is an exclusive-use device which maintains the state or one encryption channel.
The correct way to obtain a file descriptor for a DES channel is to iterate over the possible DES
devices (/ dev/ desO through / dev/ des9) until either an open succeeds or an error other than
EBUSY is indicated.

The interface allows access to two modes or the DES algorithm: Electronic Code Book (ECB)
and Cipher Block Chaining (CBC). All access to the DES driver is through ioct/(2) calls rather
than through reads and writes; all encryption is done in-place in the user's buffers. The ioctls
provided are:

DESIOCSETKEY
This command sets the encryption mode, direction (encrypt or decrypt), and key. The argu­
ment to this call is struct deskey as defined in <sys/des.h>.

DESIOCGETKEY
This call returns the current key and modes (atruct deskey) for the encryption channel.

DESIOCSETIVEC
This call sets the "initialization vector" used by the Cipher Block Chaining mode. This 8 byte
value is XORed with the each 8 byte chunk of data before the beginning of an ecryption
operation and replaced by the output of the operation. The argument of the ioctl is the
address of a atruct deslvec which contains the 8 byte value.

DESIOCGETIVEC
This call returns the current value of the initialization vector.

DESIOCCHUNK
This call invokes an encryption operation on a single 8 byte data "chunk". It is expected that
this call would be most useful in ECB mode. The argument of the ioctl is the address of the
8 bytes to be encrypted or decrypted.

DESIOCBLOCK
This call encrypts/decrypts an entire buffer of data, whose address and length are passed in
the struct desblock addressed by the argument. The length must be a multiple of 8 bytes.

/dev /des?

SEE ALSO
des(!)

BUGS

266

Federal Information Processing Standards Publication 46
AmZ8068 DCP Product Description, Advanced Micro Devices

The AmZ8068 is not intended to be context-switchable. Hence, the driver uses only the most
basic features of the chip (ECB mode) and maintains other state in software.

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

DKJO(4S) SPECIAL FILES DKIO(4S)

NAME
dkio - generic disk control operations

DESCRIPTION
All Sun disk drivers support a set of ioctl's for disk formattting and labelling operations. Basic
to these ioctl's are the definitions in <sun/dkio.h>:

/•
• Structures and definitions for disk io control commands

•/

/• Disk identification•/
struct dk_info {

};

int dki_ctlr;
short dki_unit;
short dki_ctype;
short dki_flags;

/• controller types •/
#define DKC_UNKNOWN
#define DKC_SMD2180
#define DKC_J(Y440
#define DKCJ)SD5215
#define DKC_JCY 450
#define DKC_SCSI

/• flags•/

0
l
4
5
6
7

/• controller address •/
/• unit (slave) address •/
/• controller type •/
/• flags •/

#define DKLBAD144 OxOl
#define DKLMAPTRK Ox02
#define DKLYMTTRK Ox04
#define DKLYMTVOL Ox08

/• use DEC std 144 bad sector fwding •/
/• controller does track mapping •/
/• formats only full track at a time •/
/• formats only full volume at a time •/

/• Definition of a disk's geometry •/
struct dk_geom {

};

unsigned short dkg_ncyl;
unsigned short dkg_acyl;
unsigned short dkg_bcyl;
unsigned short dkg_nhead;
unsigned short dkg_bhead;
unsigned short dkg_nsect;
unsigned short dkg_intrlv;
unsigned short dkg_gapl;
unsigned short dkg_gap2;
unsigned short dkg_extraJlOJ;

/• disk io control commands •/

/• # of data cylinders •/
/• # of alternate cylinders •/
/• cyl offset (for fixed head area) •/
/• # of heads •/
/• head offset (for Larks, etc.)•/
/• # of sectors per track •/
/• interleave factor •/
/• gap l size •/
/• gap 2 size •/
/• for compatible expansion •/

#define DKIOCGGEOM JOR(d, 2, struct dk_geom) /• Get geometry •/
/• Set geometry •/ #defineDKIOCSGEOM JOW(d, 3, struct dk_geom)

#defineDKIOCGPART JOR(d, 4, struct dk_map)
#defineDKIOCSPART JOW(d, 5, struct dk_map)
#define DKIOCINFO JOR(d, 8, struct dk_info)

Sun Release 2.0 Last change: 20 March 1984

/• Get partition info •/
/• Set partition info •/
/• Get info •/

267

DKIO(4S) SPECIAL FILES DKIO(4S)

The DKIOCGINFO ioctl returns a dkjnfo structure which tells the kind of the controller and
attributes about how bad-block processing is done on the controller. The DKIOCGPART and
DKIOCSP ART get and set the controller's current notion of the partition table for the disk
(without changing the partition table on the disk itself), while the DKIOCGGEOM and
DKIOCSGEOM ioctl's do similar things for the per-drive geometry information.

SEE ALSO
ip(4S), xy(4S)

268 Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

0

0

DRUM(4) SPECIAL FILES DRUM(4)

NAME
drum - paging device

SYNOPSIS
None; included with standard system.

DESCRIPTION

FILES

BUGS

This file refers to the paging device in use by the system. This may actually be a subdevice of
one of the disk drivers, but in a system with paging interleaved across multiple disk drives it pro­
vides an indirect driver for the multiple drives.

/dev /drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only occur
every .5Mbytes or so, and since the system never allocates blocks across the boundary, this is
usually not a problem.

Sun Release 2.0 Last change: 17 August igg3 269

EC(4S) SPECIAL FILES EC(4S)

NAME
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS
device ecO at mbO csr OxeOOOO priority 3

DESCRIPTION
The ec interface provides access to a 10 Mb/s Ethernet network through a 3COM controller.
For a general description of network interfaces see if(4N).

The hardware consumes 8 kilobytes of Multibus memory space. This memory is used for internal
buffering by the board. The board starts at standard addresses OxEOOOO or OxE2000. The board
must be configured for interrupt level 3.

The interface software implements an exponential backoff algorithm when notified of a collision
on the cable.

The interface handles the Internet protocol family, with the interface address maintained in
Internet format. The Address Resolution Protocol arp(4P) is used to map 32-bit Internet
addresses used in inet(4F) to the 48-bit addresses used on the Ethernet.

DIAGNOSTICS
ec%d: Ethernet Jammed. After 16 failed transmissions and backoffs using the exponential
backoff algorithm, the packet was dropped.

ec%d: can't handle af%d. The interface was handed a message with addresses formatted in
an unsuitable address family; the packet was dropped.

SEE ALSO
arp(4N), if(4N), inet(4F)
3COM 3C400 Multibus Ethernet Controller Reference Manual (Sun 800-0308)

BUGS
The interface hardware is not capable of talking to itself, making diagnosis more difficult.

270 Last change: 12 January 1984 Sun Release 2.0

0

0

0

0

0

0

FB(4S) SPECIAL FILES FB(4S)

NAME
fb - driver for Sun console frame buffer

SYNOPSIS
None; included in standard system.

DESCRIPTION

FILES

The fb driver provides indirect access to a Sun graphics controller board. It is an indirect driver
for the Sun workstation console's frame buffer. At boot time, the workstation's frame buffer dev­
ice is determined from information from the Monitor Proms and set to be the one that fb will
indirect to. The device driver for the console's frame buffer must be configured into the kernel
so that this indirect driver can access it.

The idea behind this driver is that user programs can open a known device, query its characteris­
tics and access it in a device dependent way, depending on the type. Fb redirects open(2),
close(2), ioct1(2), and mmap(2) calls to the real frame buffer. All of the Sun frame buffers sup­
port the same general interface; see fbio(4S)

/dev /fb

SEE ALSO
fbio(4S), bwone(4S), bwtwo(4S)

Sun Release 2.0 Last change: 21 March 1984 271

FBIO(4S) SPECIAL FILES FBIO(4S)

NAME
fbio - general properties of frame buffers

DESCRIPTION
All of the Sun frame buffers support the same general interface. Each responds to a FBIOG­
TYPE ioct1(2) which returns information in a structure defined in <sun/fbio.h>:

struct fbtype {
int fb_type;
int fb_height;
int fb_width;
int fb_depth;
int fb_cmsize;
int fb...,size;

};

/• as defined below •/
/• in pixels •/
/• in pixels •/
/• bits per pixel •/
/• size of color map (entries)•/
/• total size in bytes •/

#define FBTYPE_SUNlBW 0
#define FBTYPE_8UN1COLOR I
#define FBTYPE_SUN2BW 2
#define FBTYPE_SUN2COLOR 3

Each device has a FBTYPE which is used by higher-level software to determine how to perform
raster-op and other functions. Each device is used by opening it, doing a FBIOGTYPE ioctl to
see which frame buffer type is present, and thereby selecting the appropriate device-management
routines.

Full-fledged frame buffers (that is, those that run SunWindows), implement an FBIOGPIXRECT
ioct/(2), which returns a pixrect. This call is made only from inside the kernel. The returned
pixrect is used by win(4S) for cursor tracking and colormap loading.

SEE ALSO
mmap(2), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), fb(4S), win(4S)

272 Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

ICMP(4P) SPECIAL FILES ICMP(4P)

NAME
icmp - Internet Control Message Protocol

SYNOPSIS
None; included automatically with inet(4F).

DESCRIPTION
The Internet Control Message Protocol, ICMP, is used by gateways and destination hosts which
process datagrams to communicate errors in datagram-processing to source hosts. The datagram
level of Internet is discussed in ip(4P). ICMP uses the basic support of IP as if it were a higher
level protocol; however, ICMP is actually an integral part of IP. ICMP messages are sent in
several situations; for example: when a datagram cannot reach its destination, when the gateway
does not have the buffering capacity to forward a datagram, and when the gateway can direct
the host to send traffic on a shorter route.

The Internet protocol is not designed to be absolutely reliable. The purpose of these control mes­
sages is to provide feedback about problems in the communication environment, not to make IP
reliable. There are still no guarantees that a datagram will be delivered or that a control mes­
sage will be returned. Some datagrams may still be undelivered without any report of their loss.
The higher level protocols which use IP must implement their own reliability mechanisms if reli­
able communication is required.

The ICMP messages typically report errors in the processing of datagrams; for fragmented
datagrams, ICMP messages are sent only about errors in handling fragment O of the datagram.
To avoid the infinite regress of messages about messages etc., no IC?vfP messages are sent about
ICrvfi> messages. IC?vfP may however be sent in response to IC?vfP messages (for example,
ECHOREPL Y). There are eleven types of ICMP packets which can be received by the system.
They are defined in this excerpt from <netinet/ipjcmp.h>, which also defines the values of
some additional codes specifying the cause of certain errors.

/•
• Definition of type and code field values
•/

#define ICMP _ECHOREPLY 0 /• echo reply •/
#define ICMP _UNREACH 3 /• dest unreachable, codes: •/
#define ICMP _UNREACH_NET 0 /• bad net•/
#define ICMP _UNREACH_HOST 1 /• bad host •/
#define ICMP _UNREACH_PROTOCOL 2 /• bad protocol •/
#define ICMP _UNREACH_PORT 3 /• bad port •/
#define ICMP _UNREACH_NEEDFRAG 4 /• IP J)F caused drop •/
#define ICMP _UNREACH_SRCFAIL 5 /• src route failed •/
#define ICMP _SOURCEQUENCH 4 /• packet lost, slow down •/
#define ICMP _REDIRECT 5 /• shorter route, codes:•/
#define ICMP _REDIRECT_NET 0 /• for network •/
#define ICMP _REDIRECTJIOST 1 /• for host•/
#define ICMP _REDIRECT _TOSNET 2 /• for tos and net •/
#define ICMP _REDIRECT_TOSHOST 3 /• for tos and host •/
#define ICMP _ECHO 8 /• echo service •/
#define ICMP _TIMXCEED 11 /• time exceeded, code: •/
#define ICMP _TIMXCEEDJNTRANS 0 /• ttl==O in transit •/
#define ICMP _TIMXCEED_REASS 1 /• ttl==O in reass •/
#define ICMP _p ARAMPROB 12 /• ip header bad •/
#define ICMP _TSTAMP 13 /• timestamp request •/
#define ICMP _TSTAMPREPL Y 14 /• timestamp reply •/
#define ICMP JREQ 15 /• information request •/
#define ICMP JREQREPL Y 16 /• information reply •/

Sun Release 2.0 Last change: 1 November 1983 273

ICMP{ 4P) SPECIAL FILES ICMP{ 4P)

Arriving ECHLOY and TSTIRAMPEQ packkets cause the system to generate ECHOREPL Y and o
TSTAMPREP packets. pac ets are not yet processed by the system, and are discarded.
UNREACH, SOURCEQUENCH, TIMXCEED and PARAMPROB packets are processed inter-
nally by the protocols implemented in the system, or reflected to the user if a raw socket is being
used; see ip{4P). REDIRECT, ECHOREPLY, TSTAMPREPLY and IREQREPLY are also
reflected to users of raw sockets. In addition, REDIRECT messages cause the kernel routing
tables to be updated; see routing(4N).

SEE ALSO

BUGS

274

inet{4F), ip{4P)
Internet Control Message Protocol, RFC792, J. Postel, USC-ISi {Sun 800-1064-01)

IREQ messages are not processed properly: the address fields are not set.

Messages which are source routed are not sent back using inverted source routes, but rather go
back through the normal routing mechanisms.

Last change: 1 November 1983 Sun Release 2.0

0

0

0

0

0

IE(4S) SPECIAL FILES IE(4S)

NAME
ie - Sun-2 10 Mb/s Ethernet interface

SYNOPSIS
device leO at mbO car Ox88000 priority 3
device leO at mbO car vme vlrt Oxee3000 priority 3

DESCRIPTION
The ie interface provides access to a 10 Mb/s Ethernet network through a Sun-2 controller. For
a general description of network interfaces see if(4N).

Of the synopsis lines above, the first line specifies the first Sun-2 Ethernet controller on a Sun-
2/120 or Sun-2/170; the second line specifies the first Sun-2 Ethernet controller on a Sun-2/50 or
Sun-2/160.

Sun Release 2.0 Last change: 5 November 1984 275

IF (4N) SPECIAL FILES W(4N)

NAME
if - general properties of network interfaces

DESCRIPTION

276

Each network interface in a system corresponds to a path through which messages may be sent
and received. A network interface usually has a hardware device associated with it, though cer­
tain interfaces such as the loopback interface, lo(4), do not.

At boot time each interface which has underlying hardware support makes itself known to the
system during the autoconfiguration process. Once the interface has acquired its address it is
expected to install a routing table entry so that messages may be routed through it. Most inter­
faces require some part of their address specified with an SIOCSIF ADDR ioctl before they will
allow traffic to flow through them. On interfaces where the network-link layer address mapping
is static, only the network number is taken from the ioctl; the remainder is found in a hardware
specific manner. On interfaces which provide dynamic network-link layer address mapping facili­
ties (for example, IOMb/s Ethernets using arp(4P),), the entire address specified in the ioctl is
used.

The following ioctl calls may be used to manipulate network interfaces. Unless specified other­
wise, the request takes an ifreq structure as its parameter. This structure has the form

struct ifreq {
char ifr_name[I6J; /• name of interface (e.g. "ecO") •/
union {

struct
struct
short

} ifr_jfru;
#define ifr_addr
#define ifr_dstaddr
#define ifr_flags
};

SIOCSIFADDR

sockaddr ifru_addr;
sockaddr ifru_dstaddr;
ifru_flags;

ifr_jfru.ifru_addr /•address•/
ifr_jfru.ifru_dstaddr /• other end of p-to-p link •/
ifr_jfru.ifru_flags /•flags•/

Set interface address. Following the address assignment, the "initialization" routine for the
interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDST ADDR
Set point to point address for interface.

SIOCGIFDST ADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently routing
packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf structure (see below) as a
value-result parameter. The ifc_len field should be initially set to the size of the buffer
pointed to by ifc_buf. On return it will contain the length, in bytes, of the configuration
list.

I•
• Structure used in SIOCGIFCONF request.

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

IF(4N)

SEE ALSO

SPECIAL FILES

• Used to retrieve interface configuration
• for machine (useful for programs which
• must know all networks accessible).

•I
struct ifconf {

int ifc_len; /• size of associated buffer •/
union {

caddr_t ifcu_buf;
struct ifreq •ifcu_req;

} ifcjfcu;
#define ifc_buf ifcjfcu.ifcu_buf /• buffer address •/
#define ifc_req ifcjfcu.ifcu_req /• array of structures returned •/
};

arp(4P), ec(4S), en(4S), lo(4)

Sun Release 2.0 Last change: 1 November 1984

IF(4N)

277

!NET(4F) SPECIAL FILES !NET(4F)

NAME
inet - Internet protocol family

SYNOPSIS
options INET
pseudo-device !net

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the Internet Protocol (IP)
transport layer, and using the Internet address format. The Internet family provides protocol
support for the SOCK_STREAM, SOCK_J)GRAM, and SOCK_RAW socket types; the
SOCK_RA W interface provides access to the IP protocol.

ADDRESSING

278

Internet addresses are four byte quantities, stored in network standard format (on the VAX these
are word and byte reversed; on the Sun they are not reversed). The include file <netinet/in.h>
defines the Internet address as a discriminated union.

Sockets in the Internet protocol family use the following addressing structure:
struct sockaddr_in {

};

short sinJamily;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8J;

(Library routines to return and manipulate structures of this form are in section 3N of the
manual; see intro(3N) and the other section 3 entries mentioned under SEE ALSO below). Each
socket has a local address which may be specified in this form, which can be established with
bind(2); the getsockname(2) call returns this address. Each socket also may be bound to a peer
socket with an address specified in this form; this peer address can be specified in a connect(2)
call, or transiently with a single message in a sendto or sendmsg call; see send(2). The peer
address of a socket is returned by the getpeername(2) call.

The sin_addr field of the socket address specifies the Internet address of the machine on which
the socket is located. A special value may be specified or returned for this field,
sin_addr.s_addr==INADDR_.ANY. This address is a "wildcard" and matches any of the legal
internet addresses on the local machine. This address is useful when a process neither knows
(nor cares) what the local Internet address is, and even more useful for server processes which
wish to service all requests of the current machine. Since a machine can have several addresses
(one per hardware network interface), specifying a single address would restrict access to the ser·
vice to those clients which specified the address of that interface. By specifying INADDR..ANY,
the server can arrange to service clients from all interfaces.

When a socket address is bound, the networking system checks for an interface with the address
specified on the current machine (unless, of course, a wildcard address is specified), and returns
an error EADDRNOTAVAIL if no such interface is found.

The local port address specified in a bind(2) call is restricted to be greater than
IPPORT..RESERVED (=1024, in <netinet/in.h>) unless the creating process is running as the
super-user, providing a space of protected port numbers. The local port address is also required
to not be in use in order for it to be assigned. This is checked by looking for another socket of
the same type which has the same local address and local port number. If such a socket already
exists, you will not be able to create another socket at the same address, and will instead get the
error EADDRINUSE. If the local port address is specified as 0, then the system picks a unique
port address not less than IPPORT..RESERVED and assigns it to the port. A unique local port
address is also picked for a socket which is not bound but which is used with connect(2) or
sendto(2); this allows tcp(4p) connections to be made by simply doing socket(2) and then

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

!NET(4F) SPECIAL FILES !NET(4F)

connect(2) in the case where the local port address is not significant; it is defaulted by the sys­
tem. Similarly if you are sending datagrams with udp(4P) and do not care which port they come
from, you can just do socket(2) and sendto(2) and let the system pick a port number.

Let us say that two sockets are incompatible if they have the same port number, are not
conected to other sockets, and do not have different local host addresses. (It is possible to have
two sockets with the same port number and different local host addresses because a machine may
have several local addresses from its different network interfaces.) The Internet system does not
allow such incompatible sockets to exist on a single machine. Consider a socket which has a
specific local host and local port number on the current machine. If another process tries to
create a socket with a wildcard local host address and the same port number then that request
will be denied. For connection based sockets this prevents these two sockets from attempting to
connect to the same foreign host/socket, and thereby causing great havoc. For connectionless
sockets this prevents the dilemma which would result from trying to determine who to deliver an
incoming datagram to (since more than one socket could match an address given on a datagram).
The same restriction applies if the wildcard socket exists first. (If both sockets are wildcard, then
the normal restrictions on duplicate addresses apply.)

A socket option SO_REUSEADDR exists to allow incompatible sockets to be created. This
option is needed to implement the File Transfer Protocol (FTP) which requires that a connection
be made from an existing port number (the port number of its primary connection) to a different
port number on the same remote host. The danger here is that the user would attempt to con­
nect this second port to the same remote host/port that the primary connection was using. In
using SO_REUSEADDR the user is pledging not to do this, since this will cause the first connec­
tion to abort.

When a connect(2) is done, the Internet system first checks that the socket is not already con­
nected. If does not allow connections to port number O on another host, nor does it allow connec­
tions to a wildcard host (sin_addr.s_addr==INADDR..ANY); attempts to do this yield EAD­
DRINUSE. If the socket from which the connection is being made currently has a wildcard local
address (either because it was bound to a specific port with a wildcard address, or was never sub­
jected to bind(2)), then the system picks a local Internet address for the socket from the set of
addresses of interfaces on the local machine. If there is an interface on the local machine on the
same network as the machine being connected to, then that address is used. Otherwise, the
"first" local network interface is used (this is the one that prints out first in "netstat -i"; see
netstat(8)). Although it is not supposed to matter which interface address is used, in practice it
would probably be better to select the address of the interface through which the packets are to
be routed. This is not currently done (as it would involve a fair amount or additional overhead
for datagram transmission).

PROTOCOLS
The Internet protocol family supported by the operating system is comprised or the Internet
Datagram Protocol (IP) ip(4P), Address Resolution Protocol (ARP) arp(4P), Internet Control
Message Protocol (ICMP) icmp(4P), Transmission Control Protocol (TCP) tcp(4P), and User
Datagram Protocol (UDP) udp(4P).

TCP is used to support the SOCK.STREAM abstraction while UDP is used to support the
SOCK.OGRAM abstraction. A raw interface to IP is available by creating an Internet socket of
type SOCK.RAW; see ip(4P). The ICMP message protocol is most often used by the kernel to
handle and report errors in protocol processing; it is, however, accessible to user programs. The
ARP protocol is used to translate 32-bit Internet host numbers into the 48-bit addresses needed
for an Ethernet.

SEE ALSO
intro(3N), byteorder(3N), gethostent(3N), getnetent(3N), getprotoent(3N), getservent(3N),
inet(3N), network(3N), arp(4P), tcp(4P), udp(4P), ip(4P)
Internet Protocol Transition Workbook, Network Information Center, SRI (Sun 800-1056-01)

Sun Release 2.0 Last change: 1 November 1984 279

!NET(4F) SPECIAL FILES !NET(4F)

280

Internet Protocol Implementation Guide, Network Information Center, SRI (Sun 800-1055-01)
A 4.2BSD Interprocess Communication Primer

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

IP(4P) SPECIAL FILES IP(4P)

NAME
ip - Internet Protocol

SYNOPSIS
None; included by default with inet(4F).

DESCRIPTION
The Internet Protocol is designed for use in interconnected systems of packet-switched computer
communication networks. It provides for transmitting blocks of data called "datagrams" from
sources to destinations, where sources and destinations are hosts identified by fixed-length
addresses. It also provides for fragmentation and reassembly of long datagrams, if necessary, for
transmission through "small packet" networks.

IP is specifically limited in scope. There are no mechanisms to augment end-to-end data reliabil­
ity, flow control, sequencing, or other services commonly found in host-to-host protocols. IP can
capitalize on the services of its supporting networks to provide various types and qualities of ser­
vice.

IP is called on by host-to-host protocols, including tcp(4P) a reliable stream protocol, udp(4P) a
socket-socket datagram protocol, and nd(4P) the network disk protocol. Other protocols may be
layered on top of IP using the raw protocol facilities described here to receive and send
datagrams with a specific IP protocol number. The IP protocol calls on local network drivers to
carry the internet datagram to the next gateway or destination host.

When a datagram arrives at a UNIX system host, the system performs a checksum on the header
of the datagram. Ir this fails, or if the datagram is unreasonably short or the header length
specified in the datagram is not within range, then the datagram is dropped. Checksumming of
Internet datagrams may be disabled for debugging purposes by patching the kernel variable ipck­
sum to have the value 0.

Next the system scans the IP options of the datagram. Options allowing for source routing (see
routing(4N)) and also the collection of time stamps as a packet follows a particular route (for
network monitoring and statistics gathering purposes) are handled; other options are ignored.
Processing of source routing options may result in an UNREACH icmp(4P) message because the
source routed host is not accessible.

After processing the options, IP checks to see if the current machine is the destination for the
datagram. Ir not, then IP attempts to forward the datagram to the proper host. Before for­
warding the datagram, IP decrements the time to live field of the datagram by IPTTLDEC
seconds (currently 5 from <netinet/ip.h>), and discards the datagram if its lifetime has expired,
sending an JCMP TIMXCEED error packet back to the source host. Similarly if the attempt to
forward the datagram fails, then JCMP messages indicating an unreachable network, datagram
too large, unreachable port (datagram would have required broadcasting on the target interface,
and IP does not allow directed broadcasts), lack of buffer space (reflected as a source quench), or
unreachable host. Note however, in accordance with the ICMP protocol specification, ICMP mes­
sages are returned only for the first fragment or fragmented datagrams.

It is possible to disable the forwarding of datagrams by a host by patching the kernel variable
ipforwarding to have value 0.

Ir a packet arrives and is destined for this machine, then IP must check to see if other fragments
of the same datagram are being held. Ir this datagram is complete, then any previous fragments
of it are discarded. Ir this is only a fragment of a datagram, it may yield a complete set of pieces
for the datagram, in which case IP constructs the complete datagram and continues processing
with that. Ir there is yet no complete set of pieces for this datagram, then all data thus far
received is held (but only one copy of each data byte from the datagram) in hopes that the rest
of the pieces of the fragmented datagram will arrive and we will be able to proceed. We allow
IPFRAGTTL (currently 15 in <netinet/ip.h>) seconds for all the fragments of a datagram to
arrive, and discard partial fragments then if the datagram has not yet been completely

Sun Release 2.0 Last change: 1 November 1984 281

IP (4P) SPECIAL FILES IP(4P)

assembled.

When we have a complete input datagram it is passed out to the appropriate protocol's input
routine: either tcp(4P), udp(4P), nd(4P), icmp(4P) or a user process through a raw IP socket as
described below.

Datagrams are output by the system-implemented protocols tcp(4P), udp(4P), nd(4P), and
icmp(4P); as well as by packet forwarding operations and user processes through raw IP sockets.
Output packets are normally subjected to routing as described in routing(4N). However, special
processes such as the routing daemon routed(8C) occasionally use the SO.J>ONTROUTE socket
option to make packets avoid the routing tables and go directly to the network interface with the
network number which the packet is addressed to. This may be used to test the ability of the
hardware to transmit and receive packets even when we believe that the hardware is broken and
have therefore deleted it from the routing tables.

If there is no route to a destination address or if the SO.J)ONTROUTE option is given and there
is no interface on the network specified by the destination address, then the IP output routine
returns a ENETUNREACH error. (This and the other IP output errors are reflected back to user
processes through the various protocols, which individually describe how errors are reported.)

In the (hopefully normal) case where there is a suitable route or network interface, the destina­
tion address is checked to see if it specifies a broadcast (address INADDR__ANY; see ine1(4F)); if it
does, and the hardware interface does not support broadcasts, then an EADDRNOTAVAIL is
returned; if the caller is not the super-user then a EACCESS error will be returned. IP also does
not allow broadcast messages to be fragmented, returning a EMSGSIZE error in this case.

If the datagram passes all these tests, and is small enough to be sent in one chunk, then the sys­
tem calls the output routine for the particular hardware interface to transmit the packet. The
interface may give an error indication, which is reflected to IP output's caller; see the documenta­
tion for the specific interface for a description of errors it may encounter. If a datagram is to be
fragmented, it may have the IP .J)F (don't fragment) flag set (although currently this can happen
only for forwarded datagrams). If it does, then the datagram will be rejected (and result in an
ICMP error datagram). If the system runs out of buffer space in fragmenting a datagram then a
ENOBUFS error will be returned.

IP provides a space of 255 protocols. The known protocols are defined in <netinet/in.h>. The
ICMP, TCP, UDP and ND protocols are processed internally by the system; others may be accessed
through a raw socket by doing:

• = socket(AFJNET, SOCKJlAW, IPPROTO_xxx);

Datagrams sent from this socket will have the current host's address and the specified protocol
number; the raw IP driver will construct an appropriate header. When IP datagrams are
received for this protocol they are queued on the raw socket where they may be read with
recvfrom; the source IP address is reflected in the received address.

SEE ALSO

BUGS

282

send(2), recv(2), inet(4F)
Internet Protocol, RFC791, USC-ISi (Sun 800.1063-01)

One should be able to send and receive IP options.

Raw sockets should receive ICMP error packets relating to the protocol; currently such packets
are simply discarded.

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

IP (4S) SPECIAL FILES IP(4S)

NAME
ip - Disk driver for Interphase 2180 SMD Disk Controller

SYNOPSIS
controller lpcO at mbO car all vlrt Oxeb0040 priority 2
disk lpO at lpcO drlveO

DESCRIPTION
Special files ip• refer to disk devices controlled by an Interphase SMD 2180 disk controller.

The standard ip device names begin with the letters "ip", followed by the drive unit number, fol­
lowed by a letter from the series a - h to name one or the eight partitions on the drive. For
example, / dev/ipl c refers to partition c on the second drive controlled by the Interphase con­
troller.

The device names provide the binding into the minor device numbers for the driver software.
Files with minor device numbers O through 7 refer to the eight partitions (a - h) of unit O; files
with device numbers 8 through 15 refer to the eight partitions or drive 1, and so on.

The block files access the disk via the system's normal buffering mechanism, and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one I/0 operation and therefore raw 1/0 is considerably more
effficient when many words are transmitted. Raw files conventionally have a leading "r" -
/ dev/ripOc, for instance.

In raw I/0, counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple or 512 bytes.

DISK SUPPORT

FILES

This driver handles all SMD drives by reading a label from sector O of the drive which describes
the disk geometry and partitioning.

The ip?a partition is normally used for the root file system on a disk, the ip?b partition as a pag­
ing area, and the ip?c partition for pack-pack copying (it normally maps the entire disk). The
rest of the disk is normally the ip?g partition.

/dev /ip[0-7Jla-h]
/dev /rip[0-7Jla-h]

block files
raw files

SEE ALSO
dkio(4S), xy(4S)
"lnterphase SMD2180 Storage Module Controller/Formatter - User's Guide" (Sun 800-0274)

DIAGNOSTICS
lp%d: SMD-2180. When booting tells the controller type.

lp%d: lnltlallzatlon failed. Because the controller didn't respond; perhaps another device is at
the address the system expected an Interphase controller at.

lp%d1 error %x reading label on head %d. Error reading drive geometry /partition table
information.

lp%d: Corrupt label on head %d. The geometry /partition label checksum was incorrect.

lp%d: Misplaced label on head %d. A disk label was copied to the wrong head on the disk;
shoudn't happen.

lp%d: Unsupported phys partition # %d. This indicates a bad label.

lp%d: unit not onllne.

Sun Release 2.0 Last change: 1 November 1984 283

IP (4S)

BUGS

284

SPECIAL FILES IP (4S)

.lp%d%c: cmd how (msg) blk %d. A command such as read, write, or format encountered a
error condition (how): either it failed, the unit was restored, or an operation was retry'ed. The
msg is derived from the error number given by the controller, indicating a condition such as
"drive not ready", "sector not found" or "disk write protected".

In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and lseek(2) should always deal in 512-byte multiples.

Last change: l November 1984 Sun Release 2.0

0

0

0

0

0

0

KB(4S) SPECIAL FILES KB(4S)

NAME
kb - Sun keyboard

SYNOPSIS
pseudo-device kbnumber

DESCRIPTION

FILES

Kb provides access to the Sun workstation keyboard translation. Definitions for altering key­
board translation are in <sundev /kbio.h> and <sundev /kbd.h>. The number argument
specifies the maximum number or keyboards supported by the system.

The call KIOCTRANS controls the presence or keyboard translation:
int x;
err = ioctl(fd, KIOCTRANS, &x);

When z is 0, keyboard translation is turned off and up/down key codes are reported. Specifying
z as 1 restores normal keyboard translations.

The call KIOCSETKEY changes a keyboard translation table entry:
struct kiockey {

};

int kio_tablemask;

u_char
u_char
char

kio..station;
kio_entry;
kio..string[lO[;

struct kiockey key;

/• Translation table (one or: 0, CAPSMASK,
SHIFTMASK, CTRLMASK, UPMASK) •/

/• Physical keyboard key station (0-127) •/
/• Translation table station's entry •/
/• Value for STRING entries (null terminated)•/

err = ioctl(fd, KIOCSETKEY, &key);

Set kio_tablemask table's kio_station to kio_entry. Copy kio_string to string table if kio_entry is
between STRING and STRING+15. This call may return EINV AL if there are invalid argu­
ments.

The call KIOCGETKEY determines the current value of a keyboard translation table entry:
struct kiockey key;
err = ioctl(fd, KIOCGETKEY, &key);

Get kio_tab/emask table's kio_station to kio_entry. Get kio_string from string table if kio_entry
is between STRING and STRING+l5. This call may return EINVAL if there are invalid argu­
ments.

/dev/kbd

SEE ALSO
kbd(5)

Sun Release 2.0 Last change: l November 1984 285

LO(4N) SPECIAL FILES LO(4N)

NAME
lo - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop device is a software loopback network interface; see i/(4N) for a general description of
network interfaces.

The loop interface is used for performance analysis and software testing, and to provide
guaranteed access to Internet protocols on machines with no local network interfaces. A typical
application is the comsat(BC) server which accepts notification of mail delivery through a partic­
ular port on the loopback interface.

By default, the loopback interface is accessible at Internet address 127.0.0.1 (non-standard); this
address may be changed with the SIOCSIF ADDR ioctl.

DIAGNOSTICS
lo%d: can't handle af%d. The interface was handed a message with addresses formatted in
an unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

286

if(4N), inet(4F)

It should handle all address and protocol families. An approved network address should be
reserved for this interface.

Last change: 17 August 1983 Sun Release 2.0

0

0

0

0

0

0

MB(4S) SPECIAL FILES MB(4S)

NAME
mb - mainbus

SYNOPSIS
controller mbO at nexus T

DESCRIPTION
The mb device is a driver for the Intel Multibus" and the Motorola VMEbus®. It provides sup­
port functions to various devices that reside there. It vectors interrupts to Multibus and
VMEbus devices according to the priority level of the interrupt received, and queues requests for
DMA when there are insufficient resources to service the request or to allow certain DMA.s to
proceed exclusively. It also implements byte swapping to and from deficient devices.

DIAGNOSTICS
None.

SEE ALSO
ar(4S), cg(4S), ip(4S), ms(4S), oct(4S), tm(4S), vp(4S), xy(4S), zs(4S)
Intel Multibus Specification, Order Number 9800683-04 (Sun 800-1057-0l)
Motorola VMEbus Specification

Sun Release 2.0 Last change: 28 February 1985 287

MEM(4S) SPECIAL FILES MEM(4S)

NAME
mem, kmem, mbmem, mbio, vmel6, vme24 - main memory and bus 1/0 space

SYNOPSIS
None; included with standard system.

DESCRIPTION

FILES

288

These devices are special files that map memory and bus 1/0 space. They may be read, written,
seek'ed and (except for kmem) mmap(2)'ed.

Mem is a special file that is an image of the physical memory of the computer. It may be used,
for example, to examine (and even to patch) the system.

Kmem is a special file that is an image of the kernel virtual memory of the system.

Mbmem is a special file that is an image of the Multibus memory of the system. Multibus
memory is in the range from O to 1 Megabyte.

Mbio is a special file that is an image of the Multibus 1/0 space. Multibus 1/0 space extends
from O to 64K.

Vme16 is a special file that is an image of the VME 16-bit address space, extending from Oto
64K.

Vme2,I is a special file that is an image of the VME 24-bit address space, extending from Oto 16
Megabytes. The VME 16-bit address space overlaps the top 64K of the 24-bit address space.

Mbmem and mbio can only be accessed in Multibus based systems; vme16 and vme2,I can only be
accessed in VME based systems.

When reading and writing mbmem and mbio odd counts or offsets cause byte accesses and even
counts and offsets cause word accesses.

/dev/mem
/dev/kmem
/dev/mbmem
/dev /mbio
/dev /vme16
/dev /vme24

Last change: 15 October 1984 Sun Release 2.0

0

0

0

0

0

MOUSE(4S) SPECIAL Fll..ES MOUSE(4S)

NAME
mouse - Sun mouse

SYNOPSIS
pseudo-device ma3

DESCRIPTION

FILES

The mouse interface provides access to the Sun Workstation mouse.

The mouse incorporates a microprocessor which generates a byte~stream protocol encoding
mouse motions.

Each mouse sample in the byte stream consists of three bytes: the first byte gives the button
state with value Ox87:- but, where but is the low three bits giving the mouse buttons, where a 0
(zero) bit means that a button is pressed, and a 1 (one) bit means a button is not pressed. Thus
if the left button is down the value of this sample is Ox83, while if the right button is down the
byte is Ox86.

The next two bytes of each sample give the z and y delta'• of this sample as signed bytes. The
mouse uses a lower-left coordinate system, so moves to the right on the screen yield positive x
values and moves down the screen yield negative y values.

The beginning of a sample is identifiable because the delta's are constrained to not have values in
the range Ox80-0x87.

/dev /mouse

SEE ALSO
win(4S)
Mouse System Mouse Manual (Sun 800-04l!l)
User's Guide for the Sun Workstation Mouse Subsystem (Sun 800-0402)

Sun Release 2.0 Last change: 21 March 1984 289

MT!(4S) SPECIAL FILES MTI(4S)

NAME
mti - Systech MTl-800/1600 multi-terminal interface

SYNOPSIS
device mtlO at mbO car Oxll20 flap Oxft'Jf priority 4

DESCRIPTION
The Systech MT! card provides 8 (MTl-800) or 16 (MTl-1600) serial communication lines with
modem control. Each line behaves as described in tty(4). Input and output for each line may
independently be set to run at any of 16 speeds; see tty(4) for the encoding.

Bit i or flags may be specified to say that a line is not properly connected, and that the line i
should be treated as hard-wired with carrier always present. Thus specifying "flags Ox0004" in
the specification of mtiO would cause line tty02 to be treated in this way.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing
calls, a special feature, controlled by the minor device number, has been added. Minor device
numbers in the range O - 127 correspond directly to the normal tty lines and are named Ill/*.
Minor device numbers in the range 128 - 256 correspond to the same physical lines as those
above (i.e. the same line as the minor device number minus 128) and are (conventionally) named
cua•. The cua lines are special in that they can be opened even when there is no carrier on the
line. Once a cua line is opened, the corresponding tty line can not be opened until the cua line is
closed. Also, if the tty line has been opened successfully (usually only when carrier is recognized
on the modem) the corresponding cua line can not be opened. This allows a modem to be
attached to /dev/ttyOO (usually renamed to /dev/ttydO) and used for dialin (by enabling the line
for login in /etc/ttys) and also used for dialout (by tip(lC) or uucp(lC)) as /dev/cuaO when no
one is logged in on the line. Note that the bit in the flags word in the config file (see above) must
be zero for this line.

WIRING

FILES

The Systech requires the CTS modem control signal to operate. If the device does not supply
CTS then RTS should be jumpered to CTS at the distribution panel (short pins 4 to 5). Also,
the CD (carrier detect) line does not work properly. When connecting a modem, the modem's
CD line should be wired to DSR, which the software will treat as carrier detect.

/dev /tty0[0-9a-rJ hardwired tty lines
/dev /ttyd[0-9a-fJ dialin tty lines
/dev /cua[0-9a-fJ dialout tty lines

SEE ALSO
tty(4), zs(4S)
The MTI-BOOA/ 1600A Multiple Terminal Interface User's Manual, Rev. D, which comes with the
multiplexer.

DIAGNOSTICS

290

Most of these diagnostics "should never happen" and their occurrence usually indicates problems
elsewhere in the system.

mtl%d,%d1 silo overflow. More than 512 characters have been received by the mti hardware
without being read by the software. Extremely unlikely to occur.

mtl%d: error %x, The mti returned the indicated error code. See the mti manual.

mtl%d1 DMA output error. The mti encountered an error while trying to do DMA output.

mtl%d1 Impossible response %x. The mti returned an error it couldn't understand.

Last change: 6 April 1984 Sun Release 2.0

0

0

0

0

0

0

MTIO(4) SPECIAL FILES MTIO(4)

NAME
mtio - UNIX system magnetic tape interface

SYNOPSIS
#Include <•:r•/loctl,h>
#Include <•:r•/mtlo.h>

DESCRIPTION
The files mtO, ... , mt15 refer to the UNIX system magnetic tape drives, which read and write
magnetic tape in 2048 byte blocks (the 2048 is actually BLKDEV JOSIZE in <sys/param.h>).
The following description applies to any of the transport/controller pairs. The files mtO, ... , mtS
and mt8, ... , mtl 1 are rewound when closed; the others are not. When a nine track tape file,
open for writing or just written, is closed, two end-of-files are written; if the tape is not to be
rewound it is positioned with the head between the two tapemarks. When a 1/4" tape file, (due
to a bug, only if) just written, is closed, only one end of file mark is written because of the inabil­
ity to overwrite data on a 1/4" tape; see below.

1/4" tapes are not able to back up and always write fixed sized blocks. Since they cannot back
up, they cannot support backward space file and backward space record. Since they always write
fixed sized blocks, the size of transfers using the raw interface (see below) must be a multiple of
the underlying blocksize, usually 512 bytes.

1/4" tapes also have an unusual tape format. They have parallel tracks, but only record infor­
mation on one track at a time, switching to another track near the physical end of the medium.
They erase all the tracks at once while writing the first track. Therefore, they cannot, in general,
overwrite previously written data. Ir the old data were not on the first track, it would not be
erased before being overwritten, and the result would be unreadable.

The mt files discussed above are useful when it you want to access the tape in a way compatible
with ordinary files. When using foreign tapes, and especially when reading or writing long
records, the 'raw' interface is appropriate. The associated files are named rmtO, ... , rmt15, but
the same minor-device considerations as for the regular files still apply. Each read or write call
reads or writes the next record on the tape. In the write case the record has the same length as
the buffer given. During a read, the record size is passed back as the number or bytes read, pro­
vided it is no greater than the buffer size. In raw tape J/0 seeks are ignored. A zero byte count
is returned when a tape mark is read, but another read will fetch the first record or the new tape
file.

A number or additional ioctl operations are available on raw magnetic tape. The following
definitions are from <sys/mtio.h>:

/•
• Structures and definitions for mag tape 1/0 control commands

•I

/• structure for MTIOCTOP - mag tape op command •/
struct mtop {

short mLop;
daddr _tmt_count;

};

/•operations•/
#define MTWEOF
#define MTFSF
#define MTBSF
#define MTFSR
#define MTBSR
#define MTREW

Sun Release 2.0

0
1
2
3
4
5

/• operations defined below •/
/• how many of them •/

/• write an end-of-file record •/
/• forward space file •/
/• backward space file •/
/• forward space record •/
/• backward space record •/
/• rewind •/

Last change: 4 February 1985 291

MTIO(4) SPECIAL FILES

FILES

#define MTOFFL
#define MTNOP
#define MTRETEN
#define MTERASE

6
7
8
9

/• rewind and put the drive offline •/
/• no operation, sets status only •/
/• retension the tape •/
/• erase the entire tape •/

/• structure for MTIOCGET - mag tape get status command •/

struct mtget {
short mt_type; /• type of magtape device•/
/• the following two registers are grossly device dependent •/
short mt_dsreg; /• "drive status" register •/
short mt_erreg; /• "error" register •/
/• end device-dependent registers •/
short mtJesid; /• residual count•/
/• the following two are not yet implemented •/
daddr_tmt_fileno; /• file number of current position •/
daddr_tmt_blkno; /• block number of current position•/
/• end not yet implemented •/

};

I•
• Constants for mt_type byte

•/
#define MT_lSTS
#define MT_JSHT
#define MT _JSTM
#define MT _JSMT
#define MT _JSUT
#define MT _JSCPC
#define MT_JSAR
#define MT_JSSC
#define MT_lSXY

OxOl
Ox02
Ox03
Ox04
Ox05
Ox06
Ox07
Ox08
Ox09

/• vax: unibus ts-11 •/
/• vax: massbus tu77, etc •/
/• vax: unibus tm-11 •/
/• vax: massbus tu78 •/
/• vax: unibus gcr •/
/• sun: Multibus tapemaster •/
/• sun: Multibus archive •/
/• sun: SCSI archive •/
/• sun: Xylogics 472 •/

/• mag tape io control commands •/
#define MTIOCTOP _JOW(m, l, struct mtop) /• do a mag tape op •/

/• get tape status •/ #define MTIOCGET _JOR(m, 2, struct mtget)

#ifndef KERNEL
#define DEFTAPE
#endif

/dev /mt•
/dev /rmt•
/dev /rar•

"/dev /rmtl2"

SEE ALSO
mt(l), tar(l), ar(4s), tm(4s), st(4s), xt(4s)

292 Last change: 4 February 1985

MTI0(4)

0

0

0
Sun Release 2.0

0

0

0

ND(4P) SPECIAL FILES ND(4P)

NAME
nd - network disk driver

SYNOPSIS
pseudo-device nd

DESCRIPTION
The network disk device, /dev/nd•, allows a client workstation to perform disk 1/0 operations on
a server system over the network. To the client system, this device looks like any normal disk
driver: it allows read/write operations at a given block number and byte count. Note that this
provides a network disk block access service rather than a network file access service.

Typically the client system will have no disks at all. In this case /dev/ndO contains the client's
root file system (including /usr files), and nd1 is used as a paging area. Client access to these
devices is converted to net disk protocol requests and sent to the server system over the network.
The server receives the request, performs the actual disk J/0, and sends a response back to the
client.

The server contains a table which lists the net address of each of his clients and the server disk
partition which corresponds to each client unit number (ndO,l, ...). This table resides in the
server kernel in a structure owned by the nd device. The table is initialized by running the pro­
gram / etc/ nd with text file / etc/nd.local as its input. / etc/nd then issues ioct/(2) functions to
load the table into the kernel.

In addition to the read/write units /dev/nd•, there are public read-only units which are named
/ dev/ndp•. The correspondence to server partitions is specified by the / etc/nd./ocal text file, in a
similar manner to the private partitions. The public units can be used to provide shared access
to binaries or libraries (/bin, /usr/bin, /usr/ucb, /usr/lib) so that each diskless client does not
have to consume space in his private partitions for these files. This is done by providing a public
file system at the server (/ dev/ndpO) which is mounted on /pub of each diskless client. The
clients then use symbolic links to read the public files: /bin -> /pub/bin, /usr/ucb ->
/pub/usr/ucb. One requirement in this case is that the server (who has read/write access to this
file system) should not perform write activity with any public filesystem. This is because each
client is locally cacheing blocks, and may get out of sync with the physical disk image. In certain
cases, the client will detect an inconsistency and panic.

One last type of unit is provided for use by the server. These are called local units and are
named / dev/ ndl•. The Sun physical disk sector O label only provides a limited number of parti­
tions per physical disk (eight). Since this number is small and these partitions have somewhat
fixed meanings, the nd driver itself has a subpartitioning capability built-in. This allows the large
server physical disk partition (e.g. /dev/xyOg) to be broken up into any number of diskless client
partitions. Of course on the client side these would be referenced as /dev/nd0,1, ... ; but the
server needs to reference these client partitions from time to time, to do mkfs(8) and fsck(B) for
example. The /dev/ndl• entries allow the server 'local' access to his subpartitions without caus·
ing any net activity. The actual local unit number to client unit number correspondence is again
recorded in the / etc/ nd.local text file.

The nd device driver is the same on both the client and server sides. There are no user level
processes associated with either side, thus the latency and transfer rates are close to maximal.

The minor device and ioctl encoding used is given in file <sun/ndio.h>. The low six bits of the
minor number are the unit number. The Ox40 bit indicates a public unit; the Ox80 bit indicates
a local unit.

INITIALIZATION
No special initialization is required on the client side; he finds the server by broadcasting the ini­
tial request. Upon getting a response, he locks onto that server address.

Sun Release 2.0 Last change: 1 November 1984 293

ND(4P) SPECIAL FILES ND(4P)

At the server, the nd(8c) command initializes the network disk service by issuing ioctl's to the
kernel.

ERRORS
Generally physical disk 1/0 errors detected at the server are returned to the client for action. Ir
the server is down or unaccessable, the client will see the console message:

nd: file server not responding: still trying.
The client continues (forever) making his request until he gets positive acknowledgement from
the server. This means the server can crash or power down and come back up without any spe­
cial action required or the user at the client machine. It also means the process performing the
1/0 to nd will block, insensitive to signals, since the process is sleeping inside the kernel at PRI­
BIO.

PROTOCOL AND DRIVER INTERNALS

294

The protocol packet is defined in <sun/ndio.h> and also included below:

/•
• 'nd' protocol packet format.

•/
struct ndpack {

struct ip npjp; /• ip header, proto IPPROTO...ND •/
u_char np_op; /• operation code, see below •/
u_char np_min; /• minor device •/
char np_error; /• b_error •/
char np_ver; /• version number•/
long np_seq; /• sequence number •/
long np_blkno; /• b_blkno, disk block number •/
long np_bcount; /• b_bcount, byte count •/
long np_resid; /• b_resid, residual byte count•/
long np_caddr; /• current byte offset or this packet •/
long np_ccount; /• current byte count or this packet •/

}; /• data follows •/

I•
• np_oe operation codes.

•/
#define NDOPREAD
#define NDOPWRITE
#define NDOPERROR
#define NDOPCODE
#define NDOPWAIT
#define NDOPDONE

I•
• misc protocol defines.

•I
#define NDMAXDATA
#define NDMAXIO

1
2
3
7
010
020

1024
63•1024

/• read •/
/• write •/
/• error •/
/• op code mask •/
/• waiting for DONE or next request •/
/• operation done •/

/• max data per packet •/
/• max np_bcount •/

IP datagrams were chosen instead or UDP datagrams because only the IP header is check­
summed, not the entire packet as in UDP. Also the kernel level interface to the IP layer is
simpler. The min, blkno, and bcounl fields are copied directly from the client's strategy request.
The sequence number field seq is incremented on each new client request and is matched with
incoming server responses. The server essentially echos the request header in his responses, alter­
ing certain fields. The caddr and ccounl fields show the current byte address and count or the
data in this packet, or the data expected to be sent by the other side.

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

ND(4P) SPECIAL FILES ND(4P)

The protocol is very simple and driven entirely from the client side. As soon as the client ndstra­
tegy routine is called, the request is sent to the server; this allows disk sorting to occur at the
server as soon as possible. Transactions which send data (client writes on the client side, client
reads on the server side) can only send a set number of packets of NDMAXDATA bytes each,
before waiting for an acknowledgement. The defaults are currently set at 6 packets of lK bytes
each; the NDJOCETHER ioctl allows setting this value on the server side. This allows the nor­
mal 4K byte case to occur with just one 'transaction'. The NDOPWAIT bit is set in the op field
by the sender to indicate he will send no more until acknowledged (or requested) by the other
side. The NDOPDONE bit is set by the server side to indicate the request operation has com­
pleted; for both the read and write cases this means the requested disk 1/0 has actually
occured.

Requests received by the server are entered on an active list which is timed out and discarded if
not completed within NDXTIMER seconds. Requests received by the server allocate a bcounl
size buffer to minimize buffer copying. Contiguous DMA disk 1/0 thus occurs in the same size
chunks it would if requested from a local physical disk.

BOOTSTRAP
The Sun workstation has PROM code to perform a net boot using this driver. Usually, the boot
files are obtained from public device O (/ dev/ndpO) on the server with which the client is
registered; this allows multiple servers to exist on the same net (even running different releases
of kernel and boot software). If the station you are booting is not registered on any of the
servers, you will have to specify the hex Internet host number of the server in a boot command
string like: 'bec(0,5,0)vmunix'.

This booting performs exactly the same steps involved in a real disk boot:

1) User types 'b' to PROM monitor.

2) PROM loads blocks 1 thru 15 of/ dev/ ndpO (bootnd).

3) bootnd loads /boot.

4) /boot loads /vmuniz.

SEE ALSO

BUGS

ioctl(2), nd(8C)

The operations described in dkio(4) are not supported.

The local host's disk buffer cache is not used by network disk access. This means that if either a
local host or a remote host is writing, the changes will be visible at random based on the cache
hit frequency on the local host. Use Bync on the server to force the data out to disk. If both the
local and remote hosts are writing to the same filesystem, one machine's changes can be ran­
domly lost, based again on cache hit and deferred write timings.

If an R/0 remote file system is mounted R/W by mistake, it is impossible to umount it.

Sun Release 2.0 Last change: 1 November 1984 295

NULL(4) SPECIAL FILES NULL(4)

NAME
null - data sink 0

SYNOPSIS
None; included with standard system.

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return an end-of-file indication.

FILES
/dev/null

0

0

Last change: 17 August 1983 Sun Release 2.0

0

0

0

PTY(4) SPECIAL FILES PTY(4)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The pty driver provides support for a pair of devices collectively known as a pseudo-terminal.
The two devices comprising a pseudo-terminal are known as a master and a slave. The slave
device provides an interface identical to that described in tty(4), but instead of having a
hardware interface such as the Zilog chip and associated hardware used by zs(4S) supporting the
terminal functions, the functions of the terminal are implemented by another process manipulat­
ing the master side of the pseudo-terminal.

The master and the slave sides of the pseudo-terminal are tightly connected. Any data written
on the master device is given to the slave device as input, as though it had been received from a
hardware interface. Any data written on the slave terminal can be read from the master device
(rather than being transmitted from a UART).

In configuring, if no optional "count" is given in the specification, 16 pseudo terminal pairs are
configured.

A few special ioctl's are provided on the control-side devices of pseudo-terminals to provide the
functionality needed by applications programs to emulate real hardware interfaces:

TIOCSTOP
Stops output to a terminal (that is, like typing "S). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing "Q). Takes no parameter.

There are also two independent modes which can be used by applications programs:

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a
nonzero parameter and disabled by specifying (by reference) a zero parameter. When
applied to the master side of a pseudo terminal, each subsequent read from the terminal
will return data written on the slave part of the pseudo terminal preceded by a zero byte
(symbolically defined as TIOCPKT...DATA), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT _FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT_FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT_STOP
whenever output to the terminal is stopped a la ·s.

TIOCPKT_START
whenever output to the terminal is restarted.

TIOCPKT...DOSTOP
whenever t_etopc is ·s and Letarte is "Q.

TIOCPKT ..NOSTOP
whenever the start and stop characters are not "Sf"Q.

This mode is used by r/ogin(lC) and r/ogind(8C) to implement a remote-echoed, locally
"S/"Q flow-controlled remote login with proper back-flushing of output when interrupts
occur; it can be used by other similar programs.

TIOCREMOTE

Sun Release 2.0 Last change: 20 March igg4 297

PTY(4) SPECIAL FILES PTY(4)

FILES

BUGS

298

A mode for the master hair or a pseudo terminal, independent or TIOCPKT. This mode
causes input to the pseudo terminal to be flow controlled and not input edited (regardless
or the terminal mode). Each write to the control terminal produces a record boundary
for the process reading the terminal. In normal usage, a write or data is like the data
typed as a line on the terminal; a write or O bytes is like typing an end-of-file character.
TIOCREMOTE can be used when doing remote line editing in a window manager, or
whenever flow controlled input is required.

/dev /pty[p-rl[0-9a-rJ
/dev /tty[p-rl[0-9a-rJ

master pseudo terminals
slave pseudo terminals

It is apparently not possible to send an EOT by writing zero bytes in TIOCREMOTE mode.

Last change: 20 March 1984 Sun Release 2.0

0

0

0

0

0

0

ROUTING (4N) SPECIAL FILES ROUTING(4N)

NAME
routing - system supporting for local network packet routing

DESCRIPTION
The network facilities provided general packet routing, leaving routing table maintenance to
applications processes.

A simple set of data structures comprise a "routing table" used in selecting the appropriate net­
work interface when transmitting packets. This table contains a single entry for each route to a
specific network or host. A user process, the routing daemon, maintains this data base with the
aid of two socket specific ioct/(2) commands, SJOCADDRT and SIOCDELRT. The commands
allow the addition and deletion of a single routing table entry, respectively. Routing table mani­
pulations may only be carried out by super-user.

A routing table entry has the following form, as defined in <net/roule.h>:
struct rtentry {

uJong rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
uJong rt_use;
struct ifnet ort..ifp;

};
with rt..flags defined from:

#define RTF _UP
#define RTF_GATEWAY
#define RTF Jl0ST

Oxl
Ox2
Ox4

/• route usable •/
/• destination is a gateway •/
/• host entry (net otherwise) •/

Routing table entries come in three flavors: for a specific host, for all hosts on a specific network,
for any destination not matched by entries of the first two types (a wildcard route). When the
system is booted, each network interface autoconfigured installs a routing table entry when it
wishes to have packets sent through it. Normally the interface specifies the route through it is a
"direct" connection to the destination host or network. Ir the route is direct, the transport layer
of a protocol family usually requests the packet be sent to the same host specified in the packet.
Otherwise, the interface may be requested to address the packet to an entity different from the
eventual recipient (i.e. the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use,
or interface fields; these are filled in by the routing routines. If a route is in use when it is
deleted (rt_refcnl is non-zero), the resources associated with it will not be reclaimed until all
references to it are removed.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if
requested to delete a non-existant entry, or ENOBUFS if insufficient resources were available to
install a new route.

User processes read the routing tables through the /dev/kmem device.

The rt_use field contains the number of packets sent along the route. This value is used to select
among multiple routes to the same destination. When multiple routes to the same destination
exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are
used only when the system fails to find a route to the destination host and network. The combi­
nation of wildcard routes and routing redirects can provide an economical mechanism for routing
traffic.

Sun Release 2.0 Last change: 15 August 1983 299

ROUTING(4N) SPECIAL FILES ROUTING (4N)

SEE ALSO
route(8C), routed(8C) 0

0

0

300 Last change: 15 August 1983 Sun Release 2.0

0

0

0

SD(4S) SPECIAL FILES SD(4S)

NAME
sd - Disk driver for Adaptec ST-506 Disk Controllers

SYNOPSIS
controller ocO at mbO car Ox80000 priority I
controller ocO at mbO car vme buomem Ox:100000 priority I vector oclntr 114
disk odO at ocO drive O flap 0
disk odl at ocO drive 1 flap 0

DESCRIPTION
In the synopsis lines above, the first line specifies the first SCSI controller on a Sun-2/120 or
Sun-2/170; the second specifies the first such controller on a Sun-2/160. The last two lines
specify the first and second disk drives on the first SCSI controller in a system.

Files with minor device numbers O through 7 refer to various portions of drive 0. The standard
device names begin with "sd" followed by the drive number and then a letter a-h for partitions
0-7 respectively. The character 1 stands here for a drive number in the range 0-7.

The block file's access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call usually results in one 1/0 operation; therefore raw 1/0 is considerably more effficient
when many words are transmitted. The names of the raw files conventionally begin with an
extra 1r .'

In raw 1/0, requests to the SCSI disk must have an offset on a 512 byte boundary, and their
length must be a multiple of 512 bytes or the driver will return an error (EINVAL). Likewise
seek calls should specify a multiple of 512 bytes.

DISK SUPPORT

Fll,ES

This driver handles all ST-506 drives, by reading a label from sector O of the drive which
describes the disk geometry and partitioning.

The sd1a partition is normally used for the root file system on a disk, the sd1b partition as a pag­
ing area, and the sd1c partition for pack-pack copying (it normally maps the entire disk). The
rest of the disk is normally the sd1g partition.

/dev /sd[0-7Jla-h]
/dev /rsd[0-7][a-h]

block files
raw files

SEE ALSO
dkio(4S)
Adaptec ACB 4000 and 5000 Series Disk Controllers OEM Manual

DIAGNOSTICS
od%d%c: cmd how (msg) blk %d. A command such as read or write encountered a error con­
dition (how): either it failed, the unit was restored, or an operation was retry'ed. The msg is
derived from the error number given by the controller, indicating a condition such as "drive not
ready" or 11sector not found".

Sun Release 2.0 Last change: 1 November 1984 301

ST(4S) SPECIAL Fll..ES ST(4S)

NAME
st - Driver for Sysgen SC 4000 (Archive) Tape Controller

SYNOPSIS
controller ecO at mbO car Ox80000 priority I
controller ecO at mbO car vme buemem Ox:100000 priority I vector eclntr 114
tape etO at ecO drive 31 flap 1

DESCRIPTION

Fll,ES

In the synopsis lines above, the first line specifies the first SCSI controller on a Sun-2/120 or
Sun-2/170; the second specifies the first such controller on a Sun-2/160. The last line specifies
the first tape drive on the first SCSI controller in a system.

The Sysgen tape controller is a SCSI bus interface to an Archive streaming tape drive. It pro­
vides a standard tape interface to the device, see mlio(4), with some deficiencies listed under
BUGS below.

/dev /rst•
/dev /nrst• non-rewinding

SEE ALSO
mtio(4)
Sysgen SC4000 Intelligent Tape Controller Product Specification
Archive Intelligent Tape Drive Theory of Operation, Archive Corporation (Sun 8000-1058-01)
Archive Product Manual (Sidewinder 1/4" Streaming Cartridge Tape Drive) (Sun 800-0628-01)

DIAGNOSTICS

BUGS

302

et•: tape not onllne.

ah: no cartridge In drive.

eh: cartridge le write protected.

The tape cannot reverse direction so the BSF and BSR ioctls are not supported.

The FSR ioctl is not supported.

Most disk 1/0 over the SCSI bus is prevented when the tape is in use. This is because the con­
troller does not free the bus while the tape is in motion (even during rewind).

When using the raw device, the number of bytes in any given transfer must be a multiple of 512.
If it is not, the device driver returns an error.

The driver will only write an end of file mark on close if the last operation was a write, without
regard for the mode used when opening the file. This will cause empty files to be deleted on a
raw tape copy operation.

Last change: 04 February 1985 Sun Release 2.0

0

0

0

0

0

0

TCP(4P) SPECIAL FILES TCP(4P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
None; included automatically with inet(4F).

DESCRIPTION
TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarchy
of protocols which support multi-network applications. TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to distinct but intercon­
nected computer communication networks. Very few assumptions are made as to the reliability
of the communication protocols below TCP layer. TCP assumes it can obtain a simple, poten­
tially unreliable datagram service from the lower level protocols. In principle, TCP should be
able to operate above a wide spectrum of communication systems ranging from hard-wired con­
nections to packet-switched or circuit switched networks.

TCP fits into a layered protocol architecture just above the basic Internet Protocol (IP) described
in ip(4P) which provides a way for TCP to send and receive variable-length segments of informa­
tion enclosed in Internet datagram "envelopes." The Internet datagram provides a means for
addressing source and destination TCPs in different networks, deals with any fragmentation or
reassembly of the TCP segments required to achieve transport and delivery through multiple
netwokrs and interconnecting gateways, and has the ability to carry information on the pre­
cedence, security classification and compartmentalization of the TCP segments (although this is
not currently implemented under the UNIX system.)

An application process interfaces to TCP through the socket(2) abstraction and the related calles
bind(2), listen(2), accept(2), connect(2), send(2) and recv(2). The primary purpose of TCP is to
provide a reliable bidirectional virtual circuit service between pairs of processes. In general, the
TCP's decide when to block and forward data at their own convenience. In the UNIX system
implementation, it is assumed that any buffering of data is done at the user level, and the TCP's
transmit available data as soon as possible to their remote peer. They do this and always set the
PUSH bit indicating that the transferred data should be made available to the user process at
the remote end as soon as practicable.

To provide reliable data TCP must recover from data that is damaged, lost, duplicated, or
delivered out of order by the underlying internet communications system. This is achieved by
assigning a sequence number to each byte of data transmitted and requiring a positive ack­
nowledgement from the receiving TCP. If the ACK is not received within an (adaptively deter­
mined) timeout interval, the data is retransmitted. At the receiver, the sequence numbers are
used to correctly order segments that may be received out of order and to eliminate duplicates.
Damage is handled by adding a checksum to each segment transmitted, checking it at the
receiver, and discarding damaged segments. As long as the TCP's continue to function properly
and the internet system does not become disjoint, no tranmission errors will affect the correct
delivery of data, as TCP recovers from communications errors.

TCP provides flow control over the transmitted data. The receiving TCP is allowed to specify
the amount of data which may be sent by the sender, by returning a window with every ack­
nowledgement indicating a range of acceptable sequence numbers beyond the last segment suc­
cessfully received. The window indicates an allowed number of bytes that the sender may
transmit before receiving further permission.

TCP extends the standard 32-bit Internet host addresses with a 16-bit port number space; the
combined addresses are available at the UNIX system process level in the standard sockaddr_in
format described in inet(4F).

Sockets utilizing the tcp protocol are either 11 active" or "passive". Active sockets initiate connec­
tions to passive sockets. By default TCP sockets are created active; to create a passive socket
the listen(2) system call must be used after binding the socket to an address with the bind(2)

Sun Release 2.0 Last change: l November 1984 303

TCP(4P) SPECIAL FILES TCP(4P)

system call. Only passive sockets may use the accept(2) call to accept incoming connections.
Only active sockets may use the connect(2) call to initiate connections.

Passive sockets may "underspecify" their location to match incoming connection requests from
multiple networks. This technique, termed "wildcard addressing", allows a single server to pro­
vide service to clients on multiple networks. To create a socket which listens on all networks, the
Internet address INADDR_.ANY must be bound. The TCP port may still be specified at this
time; if the port is not specified the system will assign one. Once a connection has been esta­
blished the socket's address is fixed by the peer entity's location. The address assigned the
socket is the address associated with the network interface through which packets are being
transmitted and received. Normally this address corresponds to the peer entity's network. See
inet(4F) for a complete description of addressing in the Internet family.

A TCP connection is created at the server end by doing a socket(2), a bind(2) to establish the
address of the socket, a listen(2) to cause connection queueing, and then an accept(2) which
returns the descriptor for the socket. A client connects to the server by doing a socket(2) and
then a connect(2). Data may then be sent from server to client and back using read(2) and
write(2).

TCP implements a very weak out-of-band mechanism, which may be invoked using the out-of­
band provisions of send(2). This mechanism allows setting an urgent pointer in the data stream;
it is reflected to the TCP user by making the byte after the urgent pointer available as out-of­
band data and providing a SIOCATMARK ioctl which returns an integer indicating whether the
stream is at the urgent mark. The system never returns data across the urgent mark in a single
read. Thus, when a SIGURG signal is received indicating the presence of out-of-band data, and
the out-of-band data indicates that the data to the mark should be flushed (as in remote termi­
nal processing), it suffices to loop, checking whether you are at the out-of-band mark, and read­
ing data while you are not at the mark.

SEE ALSO

BUGS

304

inet(4F), ip(4P)

It should be possible to send and receive TCP options.

The system always tries to negotiates the maximum TCP segment size to be 1024 bytes. This
can result in poor performance if an intervening network performs excessive fragmentation.

SIOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket
queue, and so that it can be changed from 2048 bytes to be larger or smaller, have been defined
(in <sys/ioctl.h>) but not implemented.

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

TM(4S) SPECIAL FILES TM(4S)

NAME
tm - tapemaster 1/2 inch tape drive

SYNOPSIS
controller tmO at mbO car all vlrt OxebOOaO priority 3 vector tmlntr 98
tape mtO at tmO drive O flap 1

DESCRIPTION
The Tapemaster tape controller controls Pertee-interface 1/2" tape drives such as the CDC Key­
stone, providing a standard tape interface to the device, see mtio(4).

SEE ALSO
mt(l), tar(l), ar(4S)
CPC Tapemaster Product Specification (Sun 800-0620-01)
CPC Tapemaster Application Note (Sun 800-0622-01)
CDC Streaming Tape Unit 9218X Reference Manual (Sun 800-0623-01)

DIAGNOSTICS

BUGS

tm%d: no response from ctlr.

tm%d: error %d during conflg.

mt%d: not onllne.

mt%d: no write ring.

tmgo: gate wasn't open. Controller lost synch.

tmlntr: can't clear Interrupts.

tm%d: stray Interrupts.

mt%d: hard error bn=%d er=%x.

mt%d: lost interrupt.

The Tapemaster controller does not provide for byte-swapping and the resultant system over­
head prevents streaming transports from streaming.

If a non-data error is encountered on non-raw tape, it refuses to do anything more until closed.

The system should remember which controlling terminal has the tape drive open and write error
messages to that terminal rather than on the console.

Sun Release 2.0 Last change: 1 November 1984 305

TTY(4) SPECIAL FILES TTY(4)

NAME
tty - general terminal interface

SYNOPSIS
None; included by default.

DESCRIPTION

306

This section describes the special file / dev/ tty and the terminal drivers used for conversational
computing by serial interfaces such as zs(4S), cons(4S), and pty(4).

Line disciplines.

The system provides different line disciplines for controlling communications lines. In this ver­
sion of the system there are three disciplines available:

old The old (standard) terminal driver. This is used when using the standard shell sh(l)
and for compatibility with Version 7 UNIX systems.

new A newer terminal driver, with features for job control; this must be used when using
csh(l).

net A line discipline used for networking and loading data into the system over communica­
tions lines. It allows high speed input at very low overhead, and is described in bk(4).

Line discipline switching is accomplished with the TIOCSETD ioctl:

Int ldlsc = LDISC; loctl(f, TIOCSETD, &ldlsc);

where LDISC is OTTYDISC for the standard tty driver, NTTYDISC for the new driver and
NETLDISC for the networking discipline. The standard (currently old) tty line discipline is O by
convention. The current line discipline can be obtained with the TIOCGETD ioctl. Pending
input is discarded when the line discipline is changed.

All of the low-speed asynchronous communications ports can use any of the available line discip­
lines, no matter what hardware is involved. The remainder of this section discusses the "old"
and "new" disciplines.

The control terminal.

When a terminal file is opened, it causes the process to wait until a connection is established. In
practice, user programs seldom open these files; they are opened by init(8) and become a user's
standard input and output file.

Ir a process which has no control terminal opens a terminal file, then that terminal file becomes
the control terminal for that process. The control terminal is thereafter inherited by a child pro­
cess, during a fork(2), even if the control terminal is closed.

The file /dev /tty is, in each process, a synonym for a control terminal associated with that pro­
cess. It is useful for programs that wish to be sure of writing messages on the terminal no matter
how output has been redirected. It can also be used for programs that demand a file name for
output, when typed output is desired and it is tiresome to find out which terminal is currently in
use.

A process can remove the association it has with its controlling terminal by opening the file
/dev /tty and issuing a

loctl(f, TIOCNOTTY, O};

This is often desirable in server processes.

Process groups.

Command processors such as csh(l) can arbitrate the terminal between different jobs by placing
related jobs in a single process group and associating this process group with the terminal. A
terminal's associated process group may be set using the TIOCSPGRP ioct/(2):

Last change: 27 March 1985 Sun Release 2.0

0

0

0

0

0

0

TTY(4) SPECIAL FILES TTY(4)

ioctl(ftldes, TIOCSPGRP, &pgrp)

or examined using TIOCGPGRP, which returns the current process group in pgrp. The new ter­
minal driver aids in this arbitration by restricting access to the terminal by processes which are
not in the current process group; see Job access control below.

Modes,

The terminal line disciplines have three major modes, characterized by the amount of processing
on the input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is done.
The edited line is made available when it is completed by a newline or when the
Lbrkc character, normally an EOT (control-D, hereafter ·o), is entered. A carriage
return is usually made synonymous with newline in this mode, and replaced with a
newline whenever it is typed. All line discipline functions (input editing, interrupt gen­
eration, output processing such as delay generation and tab expansion, etc.) are avail­
able in this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making the
input character available to the user program as it is typed. Flow control, literal-next
and interrupt processing are still done in this mode. Output processing is done.

RAW This mode eliminates all input processing and makes all input characters available as
they are typed; no output processing is done either.

The style of input processing can also be very different when the terminal is put in non-blocking
i/o mode; see the FNDELAY flag as described in fcnt/(2). In this case a read(2) from the control
terminal will never block, but rather return an error indication (EWOULDBLOCK) if there is no
input available.

A process may also request a SIGIO signal be sent it whenever input is present. To enable this
mode the FASYNC flag should be set using fcnt/(2).

Input editing,

A UNIX system terminal ordinarily operates in full-duplex mode. Characters may be typed at
any time, even while output is occurring, and are only Jost when the system's character input
buffers become completely choked, which is rare, or when the user has accumulated the max­
imum allowed number of input characters that have not yet been read by some program.
Currently this limit is 256 characters. In the old terminal line discipline all the saved characters
are thrown away without notice when the limit is reached; in RAW or CBREAK mode, the new
line discipline throws away all input and output, but in cooked mode it refuses to accept any
further input and rings the terminal bell.

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped of! before the character is given to the program. By clearing either the EVEN or ODD
bit in the flags word it is possible to have input characters with that parity discarded (see the
Summary below.)

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioctl,
which takes, as its third argument, the address of a character. The system pretends that this
character was typed on the argument terminal, which must be the control terminal except for
the super-user (this call is not in standard Version 7 UNIX system).

Input characters are normally echoed by putting them in an output queue as they arrive. This
may be disabled by clearing the ECHO bit in the flags word using the etty(3C) call or the
TIOCSETN or TIOCSETP ioctls (see the Summary below).

In cooked mode, terminal input is processed in units or lines. A program attempting to read will
normally be suspended until an entire line has been received (but see the description or SIGTTIN
in Modes above and FIONREAD in Summary below.) No matter how many characters are

Sun Release 2.0 Last change: 27 March 1985 307

TTY(4) SPECIAL FILES TTY(4)

308

requested in the read call, at most one line will be returned. It is not, however, necessary to read
a whole line at once; any number of characters may be requested in a read, even one, without los­
ing information.

During input, line editing is normally done, with the DELETE character logically erasing the last
character typed and a ·u (control-U) logically erasing the entire current input line. These char­
acters never erase beyond the beginning of the current input line or an 'D. These characters
may be entered literally by preceding them with '\ '; in the old teletype line discipline both the '\'
and the character entered literally will appear on the screen; in the new line discipline the '\' will
normally disappear.

The line disciplines normally treat either a carriage return or a newline character as terminating
an input line, replacing the return with a newline and echoing a return and a line feed. If the
CRMOD bit is cleared in the local mode word then the processing for carriage return is disabled,
and it is simply echoed as a return, and does not terminate cooked mode input.

In the new line discipline there is a literal-next character ·v which can be typed in both cooked
and CBREAK mode preceding any character to prevent its special meaning. This is to be pre­
ferred to the use of '\' escaping erase and kill characters, but '\' is (at least temporarily)
retained with its old function in the new line discipline.

The new terminal line discipline also provides two other editing characters in normal mode. The
word-erase character, normally ·w, erases the preceding word, but not any spaces before it. For
the purposes of ·w, a word is defined as a sequence of non-blank characters, with tabs counted
as blanks. Finally, the reprint character, normally 'R, retypes the pending input beginning on a
new line. Retyping occurs automatically in cooked mode if characters which would normally be
erased from the screen are fouled by program output.

Input echoing and redisplay

In the old terminal line discipline, nothing special occurs when an erase character is typed; the
erase character is simply echoed. When a kill character is typed it is echoed followed by a new­
line (even if the character is not killing the line, because it was preceded by a'\').

The new terminal line discipline has several modes for handling the echoing of terminal input,
controlled by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA bit is normally set in
the local mode word. Characters which are logically erased are then printed out backwards pre­
ceded by '\' and followed by '/' in this mode.

Crt terminals. When a crt terminal is in use, the LCRTBS bit is normally set in the local mode
word. The terminal line discipline then echoes the proper number of backspace characters when
input is erased to reposition the cursor. If the input has become fouled due to interspersed asyn­
chronous output, the input is automatically retyped.

Erasing characters from a crt. When a crt terminal is in use, the LCRTERA bit may be set to
cause input to be erased from the screen with a "backspace-space-backspace" sequence when
character or word deleting sequences are used. A LCRTKIL bit may be set as well, causing the
input to be erased in this manner on line kill sequences as well.

Echoing of control characters. If the LCTLECH bit is set in the local state word, then non­
printing (control) characters are normally echoed as ·x (for some X) rather than being echoed
unmodified; delete is echoed as "?.

The normal modes for using the new terminal line discipline on crt terminals are speed depen­
dent. At speeds less than 1200 baud, the LCRTERA and LCRTKILL processing is painfully
slow, so stty(l) normally just sets LCRTBS and LCTLECH; at speeds of 1200 baud or greater all
of these bits are normally set. The stty(l) command summarizes these option settings and the
use of the new terminal line discipline as "newcrt."

Last change: 27 March 1985 Sun Release 2.0

0

0

0

0

0

0

TTY(4) SPECIAL FILES TTY(4)

Output proceaolng.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. (As noted above, input characters are nor­
mally echoed by putting them in the output queue as they arrive.) When a process produces
characters more rapidly than they can be typed, it will be suspended when its output queue
exceeds some limit. When the queue has drained down to some threshold the program is
resumed. Even parity is normally generated on output. The EOT character is not transmitted
in cooked mode to prevent terminals that respond to it from hanging up; programs using raw or
cbreak mode should be careful.

The terminal line disciplines provide necessary processing for cooked and CBREAK mode output
including delay generation for certain special characters and parity generation. Delays are avail­
able after backspaces ·H, form feeds ·L, carriage returns ·M, tabs ·r and newlines • J. The line
disciplines will also optionally expand tabs into spaces, where the tab stops are assumed to be set
every eight columns. These functions are controlled by bits in the tty flags word; see Summary
below.

The terminal line disciplines provide for mapping between upper and lower case on terminals
lacking lower case, and for other special processing on deficient terminals.

Finally, in the new terminal line discipline, there is an output flush character, normally ·o, which
sets the LFLUSHO bit in the local mode word, causing subsequent output to be flushed until it is
cleared by a program or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any pending input. An ioctl
to flush the characters in the input and output queues, TIOCFLUSH, is also available.

Upper case ter mlnals and Hazeltlnes

If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the
corresponding lower-case letter. The upper-case letter may be generated by preceding it by '\'.
If the new terminal line discipline is being used, then upper case letters are preceded by a '\'
when output. In addition, the following escape sequences can be generated on output and
accepted on input:

for
use \'

I
I
\! ,- {

\(
}
\)

To deal with Hazeltine terminals, which do not understand that - has been made into an ASCII
character, the L TILDE bit may be set in the local mode word when using the new terminal line
discipline; in this case the character - will be replaced with the character ' on output.

Flow control.

There are two characters (the stop character, normally 'S, and the start character, normally ·Q)
which cause output to be suspended and resumed respectively. Extra stop characters typed
when output is already stopped have no effect, unless the start and stop characters are made the
same, in which case output resumes.

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the
system produces a stop character (default ·s) when the input queue is in danger of overflowing,
and a start character (default ·Q) when the input has drained sufficiently. This mode is useful
when the terminal is actually another machine that obeys the conventions.

Line control and breaks.

There are several ioctl calls available to control the state of the terminal line. The TIOCSBRK
ioctl will set the break bit in the hardware interface causing a break condition to exist; this can
be cleared (usually after a delay with sleep(3)) by TIOCCBRK. Break conditions in the input are
reflected as a null character in RAW mode or as the interrupt character in cooked or CBREAK
mode. The TIOCCDTR ioctl will clear the data terminal ready condition; it can be set again by

Sun Release 2.0 Last change: 27 March igg5 309

TTY(4) SPECIAL FILES TTY(4)

310

TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up his termi­
nal) a SJGHUP hangup signal is sent to the processes in the distinguished process group of the
terminal; this usually causes them to terminate (the SIGHUP can be suppressed by setting the
LNOHANG bit in the local state word of the driver.) Access to the terminal by other processes is
then normally revoked, so any further reads will fail, and programs that read a terminal and test
for end-of-file on their input will terminate appropriately.

When using an ACU it is possible to ask that the phone line be hung up on the last close with the
TIOCHPCL ioctl; this is normally done on the outgoing line.

Interrupt charactera.

There are several characters that generate interrupts in cooked and CBREAK mode; all are sent
to the processes in the control group of the terminal, as if a TIOCGPGRP ioctl were done to get
the process group and then a ki//pg(2) system call were done, except that these characters also
flush pending input and output when typed at a terminal (a /a TIOCFLUSH). The characters
shown here are the defaults; the field names in the structures (given below) are also shown. The
characters may be changed.

-c tJntrc (ETX) generates a SJGINT signal. This is the normal way to stop a process
which is no longer interesting, or to regain control in an interactive program.

-, t_qultc (FS) generates a SIGQUIT signal. This is used to cause a program to terminate
and produce a core image, if possible, in the file core in the current directory.

• Z t....1mspc (EM) generates a SIGTSTP signal, which is used to suspend the current process
group.

·y t_dsuspc (SUB) generates a SIGTSTP signal as ·z does, but the signal is sent when a
program attempts to read the ·y, rather than when it is typed.

Job access control.

When using the new terminal line discipline, if a process which is not in the distinguished process
group of its control terminal attempts to read from that terminal its process group is sent a
SIGTTIN signal. This signal normally causes the members of that process group to stop. If, how­
ever, the process is ignoring SIGTTIN, has SIGTTIN blocked, is an orphan process, or is in the
middle of process creation using vfork(2)), it is instead returned an end-of-file. (An orphan pro­
cess is a process whose parent has exited and has been inherited by the init(8) process.) Under
older UNIX systems these processes would typically have had their input files reset to /dev /null,
so this is a compatible change.

When using the new terminal line discipline with the LTOSTOP bit set in the local modes, a pro­
cess is prohibited from writing on its control terminal if it is not in the distinguished process
group for that terminal. Processes which are holding or ignoring SIGTTOU signals, which are
orphans, or which are in the middle of a vfork(2) are excepted and allowed to produce output.

Summary of modes.

Unfortunately, due to the evolution of the terminal drivers and line disciplines, there are 4
different structures which contain various portions of the driver and line discipline data. The
first of these (sgtt;yb) contains that part of the information largely common between Version 6
and Version 7 UNIX systems. The second contains additional control characters added in Version
7. The third is a word of local state peculiar to the new terminal line discipline, and the fourth is
another structure of special characters added for the new line discipline. In the future a single
structure may be made available to programs which need to access all this information; most
programs need not concern themselves with all this state.

Last change: 27 March 1985 Sun Release 2.0

0

0

0

0

0

0

TTY(4) SPECIAL FILES

Basic modes· sgtty
The basic ioctls use the structure defined in <sgtty.h>:

struct sgttyb {

};

char sgJspeed;
char ag_oapeed;
char
char
short

ag_erase;
sgJdll;
sgJ!ags;

TTY(4)

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according
to the following table, which corresponds to the DEC DH-11 interface. If other hardware is used,
impossible speed changes are ignored. Symbolic values in the table are as defined in
<sus/ttydeu.h>.

BO O (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
B110 3 110 baud
B134 4 134.5 baud
BI50 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200
B1800
B2400
B4800
B9600
EXTA
EXTB

g

10
11
12
13
14
15

1200 baud
1800 baud
2400 baud
4800 baud
9600 baud

19200 baud
External B

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 274l's (134.5 baud) must be imple­
mented by the user's program. The half-duplex line discipline required for the 202 dataset (1200
baud) is not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argument structure specify the erase and kill characters
respectively. (Defaults are DELETE and -u.)
The sg_flags field of the argument structure contains several bits that determine the system's
treatment of the terminal:

ALLDELAY 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays (not implemented):
BSO 0
BSl 0100000
VTDELAY 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFl 0100000
CRDELAY 0030000 Select carriage-return delays:
CRO 0
CRl 0010000
CR2 0020000
CR3 0030000
TBDELAY 0006000 Select tab delays:

Sun Release 2.0 Last change: 27 March 1985 311

TTY(4) SPECIAL FILES TTY(4)

312

TABO
TABl
TAB2
XTABS
NLDELAY
NLO
NLl
NL2
NL3
EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

0
0001000
0004000
0006000
0001400 Select new-line delays:
0
0000400
0001000
0001400
0000200 Even parity allowed on input (most terminals)
0000100 Odd parity allowed on input
0000040 Raw mode: wake up on all characters, 8-bit interface
0000020 Map CR into LF; echo LF or CR as CR-LF
0000010 Echo (full duplex)
0000004 Map upper case to lower on input
0000002 Return each character as soon as typed
0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of O indicates no delay.

Backspace delays are currently ignored but might be used for Terminet 300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type l lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is suit­
able for the concept-100 and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37's.
Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is 0.

Tab delay type 1 is dependent on the amount or movement and is tuned to the Teletype model
37. Type 3, called XTABS, is not a delay at all but causes tabs to be replaced by the appropriate
number of spaces on output.

Input characters with the wrong parity, as determined by bits 200 and 100, are ignored in cooked
and CBREAK mode.

RAW disables all processing save output flushing with LFLUSHO; full 8 bits of input are given as
soon as it is available; all 8 bits are passed on output. A break condition in the input is reported
as a null character. If the input queue overflows in raw mode it is discarded; this applies to both
new and old line discipline.

CRMOD causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (for terminals with a new-line function).

CBREAK is a sort of half-cooked (rare!) mode. Programs can read each character as soon as
typed, instead of waiting for a full line; all processing is done except the input editing: character
and word erase and line kill, input reprint, and the special treatment of\ or EOT are disabled.

TANDEM mode causes the system to produce a stop character (default ·s) whenever the input
queue is in danger of overflowing, and a start character (default ·Q) when the input queue has
drained sufficiently. It is useful for flow control when the 'terminal' is really another computer
which understands the conventions.

Note: The same stop- and start-characters are used for both direction on the tty line.

Basic iactls

Last change: 27 March 1985 Sun Release 2.0

0

0

0

0

0

0

TTY(4) SPECIAL FILES TTY(4)

In addition to the TIOCSETD and TIOCGETD disciplines discussed in Line disciplines above,
a large number or other ioct/(2) calls apply to terminals, and have the general form:

#Include <sgtty.h>

Ioctl(flldes, code, arg)
struct sgttyb •arg;

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the
pointed-to sgttyb structure.

TIOCSETP Set the parameters according to the pointed-to sgttyb structure. The interrace
delays until output is quiescent, then throws away any unread characters, before
changing the modes.

TIOCSETN Set the parameters like TIOCSETP but do not delay or flush input. Input is not
preserved, however, when changing to or from RAW.

With the following codes the arg is ignored.

TIOCEXCL Set "exclusive-use" mode: no further opens are permitted until the file has been
closed.

TIOCNXCL Turn off "exclusive-use" mode.

TIOCHPCL When the file is closed for the last time, hang up the terminal. This is useful
when the line is associated with an ACU used to place outgoing calls.

TIOCFLUSH All characters waiting in input or output queues are flushed.

The remaining calls are not available in vanilla Version 7 UNIX systems. In cases where argu­
ments are required, they are described; arg should otherwise be given as 0.

TIOCSTI the argument is the address of a character which the system pretends was typed
on the terminal.

TIOCSBRK the break bit is set in the terminal.

TIOCCBRK the break bit is cleared.

TIOCSDTR data terminal ready is set.

TIOCCDTR data terminal ready is cleared.

TIOCGPGRP arg is the address of a word into which is placed the process group number of
the control terminal.

TIOCSPGRP arg is a word (typically a process id) which becomes the process group for the
control terminal.

FIONREAD returns in the long integer whose address is arg the number of immediately
readable characters from the argument unit. This works for files, pipes, and ter­
minals.

The second structure associated with each terminal specifies characters that are special in both
the old and new terminal interfaces: The following structure is defined in <sys/ioctl.h>, which is
automatically included in <sgtty.h>:

struct tchars {

Sun Release 2.0

char tJntrc;
char t_qultc;
char t....11tartc1
char t....11topc;

/• Interrupt •/
/•quit•/
/ • start output • /
/• stop output•/

Last change: 27 March 1985 313

TTY(4) SPECIAL FILES TTY(4)

314

char t_eofc;
char t_br kc;

/• end-of-file •/
/• Input delimiter (like nl) •/

};

The default values for these characters are ·c, ·\, ·q, ·s, ·o, and -1. A character value of -1
eliminates the effect of that character. The t_brkc character, by default -1, acts like a new-line
in that it terminates a 'line,' is echoed, and is passed to the program. The 'stop' ·and 'start' char­
acters may be the same, to produce a toggle effect. It is probably counterproductive to make
other special characters (including erase and kill) identical. The applicable ioctl calls are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode
The third structure associated with each terminal is a local mode word; except for the
LNOHANG bit, this word is interpreted only when the new driver is in use. The bits of the local
mode word are:

LCRTBS
LPRTERA
LCRTERA
LTILDE
LLITOUT
LTOSTOP
LFLUSHO
LNOHANG
LETXACK
LCRTKIL
LCTLECH
LPENDIN
LDECCTQ

000001 Backspace on erase rather than echoing erase
000002 Printing terminal erase mode
000004 Erase character echoes as backspace-space-backspace
000010 Convert · to' on output (for Hazeltine terminals)
000040 Suppress output translations
000100 Send SIGTTOU for background output
000200 Output is being flushed
000400 Don't send hangup.when carrier drops
001000 Diablo style buffer hacking (unimplemented)
002000 BS-space-BS erase entire line on line kill
010000 Echo input control chars as ·x, delete as ·i
020000 Retype pending input at next read or input character
040000 Only 'Q restarts output after ·s, like DEC systems

The applicable ioctl functions are:

TIOCLBIS

TIOCLBIC

TIOCLSET

TIOCLGET

arg is the address of a mask which is the bits to be set in the local mode word.

arg is the address of a mask of bits to be cleared in the local mode word.

arg is the address of a mask to be placed in the local mode word.

arg is the address of a word into which the current mask is placed.

T.acal special chars
The final structure associated with each terminal is the ltchars structure which defines interrupt
characters for the new terminal driver. Its structure is:

struct ltchara {

};

char t_auapc;
char t_dsuapc;
char t_rprntc;
char t_fluahc;
char t_ werasc;
char tJnextc;

/ • atop procesa algnal • /
/ • delayed stop proce11 signal • /
/ • reprint line • /
/• fluah output (toggle•)•/
/• word erase•/
/• literal next character•/

0

0

The default values for these characters are ·z, ·y, 'R, ·o, ·w, and ·v. A value of -1 disables 0
the character.

Last change: 27 March 1985 Sun Release 2.0

0

0

0

TTY(4) SPECIAL FILES TTY(4)

FILES

The applicable ioctl functions are:

TIOCSL TC args is the address of a ltchars structure which defines the new local special charac­
ters.

TIOCGLTC args is the address of a ltchars structure into which is placed the current set of
local special characters.

/dev /tty
/dev/tty•
/dev /console

SEE ALSO

BUGS

csh(l), stty(l), ioct1(2), sigvec(2), stty(3C), getty(8), init(8)

Half-duplex terminals are not supported.

Processes that are not invoked with a control terminal, but open a dialout line can hang
indefinitely. Once the dialout line is opened, it becomes the control terminal. Should the process
then open /dev /tty, it will hang because /dev /tty resolves to the corresponding dialin line.
The process will wait for the dialin sequence to complete, even though the line is already con­
nected.

Sun Release 2.0 Last change: 27 March 1985 315

UDP(4P) SPECIAL FILES UDP(4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
None; comes automatically with inel(4F).

DESCRIPTION
The User Datagram Protocol (UDP) is defined to make available a datagram mode of packet
switched computer communicaton in the environment of an interconnected set of computer net­
works. The protocol assumes that the Internet Protocol (IP) as described in ip(4P) is used as the
underlying protocol.

The protocol provides a procedure for application programs to send messages to other programs
with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and
duplicate protection are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) as described in lcp(4P).

The UNIX system implementation of UDP makes it available as a socket of type SOCKJ)GRAM.
UDP sockets are normally used in a connectionless fashion, with the sendto and recvfrom calls
described in send(2) and recv(2).

A UDP socket is created with a socket(2) call:

• = socket(AF JNET, SOCK_DGRAM, O);

The socket initially has no address associated with it, and may be given an address with a
bind(2) call as described in inet(4F). If no bind call is done, then the address assignment pro­
cedure described in ine1(4F) is repeated as each datagram is sent.

When datagrams are sent the system encapsulates the user supplied data with UDP and IP
headers. Unless the invoker is the super-user datagrams which would become broadcast packets
on the network to which they are addressed are not allowed. Unless the socket has had a
SOJ)ONTROUTE option enabled (see socket(2)) the outgoing datagram is routed through the
routing tables as described in routing(4N). If there is insufficient system buffer space to tem­
porarily hold the datagram while it is being trasmitted, the sendto may result in a ENOBUFS
error. Other errors (ENETUNREACH, EADDRNOTAVAIL, EACCES, EMSGSIZE) may be gen­
erated by icmp(4P) or by the network interfaces themselves, and are reflected back in the send
call.

As each UDP datagram arrives at a host the system strips out the IP options and checksums the
data field, discarding the datagram if the checksum indicates that the datagram has been dam­
aged. If no socket exists for the datagram to be sent to then an ICMP error is returned to the
originating socket. If a socket exists for this datagram to be sent to, then we will append the
datagram and the address from which it came to a queue associated with the datagram socket.
This queue has limited capacity (2048 bytes of datagrams) and arriving datagrams which will not
fit within its high-water capacity are silently discarded.

UDP processes ICMP errors reflected to it by icmp(4P). QUENCH errors are ignored (this is well
considered a bug); UNREACH, TIMXCEED and P ARAMPROB errors cause the socket to be
disconnected from its peer if it was bound to a peer using bind(2) so that subsequent attempts to
send datagrams via that socket will give an error indication.

The UDP datagram protocol differs from IP datagrams in that it adds a checksum over the data
bytes and contains a 16-bit socket address on each machine rather than just the 32-bit machine
address; UDP datagrams are addressed to sockets; IP packets are addressed to hosts.

SEE ALSO
recv(2), send(2), inet(4F)
"User Datagram Protocol", RFC768, John Postel, USC-ISi (Sun 800-1054-01)

316 Last change: 28 September 1Q84 Sun Release 2.0

0

0

0

0

0

0

UDP(4P) SPECIAL FILES UDP(4P)

BUGS
SJOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket
queue, and so that it can be changed from 2048 bytes to be larger or smaller, have been defined
(in <sys/ioctl.h>) but not implemented.

Something sensible should be done with QUENCH errors ir the socket is bound to a peer socket.

Sun Release 2.0 Last change: 28 September 1984 317

VP(4S) SPECIAL FILES VP(4S)

NAME
vp - Ikon 10071-5 Versatec parallel printer interface

SYNOPSIS
device vpO at mbO car Ox400 priority :Z

DESCRIPTION

Fll,ES

This Sun interface to the Versatec printer/plotter is supported by the Ikon parallel interface
board, a word DMA device, which is output only.

The Versatec is normally handled by the line printer spooling system and should not be accessed
by the user directly.

Opening the device /dev/vpO may yield one or two errors: ENXIO indicates that the device is
already in use; EIO indicates that the device is offline.

The printer operates in either print or plot mode. To set the printer into plot mode you should
include <vcmd.h> and use the ioct/(2) call

ioctl(f, VSETSTATE, plotmd);

where plotmd is defined to be

Int plotmd[I = { VPLOT, 0, 0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT
after putting into print mode:

Int prtmdl] - { VPRINT, 0, 0 };

fflush(vp);
r = fileno (vp);
ioctl(f, VSETSTATE, prtmd);
write(f, "\04", l);

/dev/vpO

SEE ALSO

BUGS

318

Multibus/Versatec Interface, Ikon Corp (Includes Versatec Manual) (Sun 800-1065-01)

If you use the standard i/o library on the Versatec, be sure to explicitly set a buffer using setbu!,
since the library will not use buffered output by default, and will run very slowly.

Writes must start on even byte boundaries and be an even number of bytes in length.

Last change: 28 February 1985 Sun Release 2.0

0

0

0

0

0

0

VPC(4S) SPECIAL FILES VPC(4S)

NAME
vpc - Systech VPC-2200 Versatec printer/plotter and Centronics printer interface

SYNOPSIS
device vpcO at mbO car Ox480 priority :II

DESCRIPTION

FILES

This Sun interface to the Versatec printer/plotter and to Centronics printers is supported by the
Systech parallel interface board, an output-only byte-wide DMA device. The device has one
channel for Versatec devices and one channel for Centronics devices, with an optional long lines
interface for Versatec devices.

Devices attached to this interface are normally handled by the line printer spooling system and
should not be accessed by the user directly.

Opening the device /dev/vpO or /dev/lpO may yield one or two errors: ENXIO indicates that the
device is already in use; EIO indicates that the device is offline.

The Versatec printer /plotter operates in either print or plot mode. To set the printer into plot
mode you should include <vcmd.h> and use the ioct/(2) call:

ioctl(r, VSETSTATE, plotmd);

where p/otmd is defined to be

Int plotmd[[= { VPLOT, 0, 0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT
after putting into print mode:

Int prtmd[[= { VPRINT, 0, 0 };

fflush(vpc);
r = fileno(vpc);
ioctl(f, VSETSTATE, prtmd);
write(r, "\04", 1);

/dev/vpO
/dev /lpO

SEE ALSO

BUGS

Systech VPC-2200 Versatec Printer/Plotter Controller Technical Manual

If you use the standard 1/0 library on the Versatec, be sure to explicitly set a buffer using setbuf,
since the library will not use buffered output by default, and will run very slowly.

Sun Release 2.0 Last change: 26 February 1985 319

WIN(4S) SPECIAL FILES WIN(4S)

NAME
win - Sun window system

SYNOPSIS
pseudo-device wlnnumber
pseudo-device dtopnumber

DESCRIPTION

FILES

The win pseudo-device accesses the system drivers supporting the Sun window system. number,
in the device description line above, indicates the maximum number of windows supported by the
system. number is set to 128 in the GENERIC system configuration file used to generate the ker­
nel used in Sun systems as they are shipped. The dtop pseudo-device line indicates the number of
separate "desktops" (frame buffers) that can be actively running the Sun window system at once.
In the GENERIC file, this number is set to 4.

Each window in the system is represented by a/ dev/win• device. The windows are organized as
a tree with windows being subwindows of their parents, and covering/covered by their siblings.
Each window has a position in the tree, a position on a display screen, an input queue, and infor­
mation telling what parts of it are exposed.

The window driver multiplexes keyboard and mouse input among the several windows, tracks the
mouse with a cursor on the screen, provides each window access to information about what parts
of it are exposed, and notifies the manager process for a window when the exposed area of the
window changes so that the window may repair its display.

Full information on the window system functions is given in the Programmer's Reference Manual
for Sun Windows.

/dev /win!0-9]
/dev /win!0-9]10-9!

SEE ALSO
Programmer's Reference Manual for Sun Windows

320 Last change: 1 November 1984 Sun Release 2.0

0

0

ol

0

0

0

XT(4S) SPECIAL FILES XT(4S)

NAME
xt - Xylogics 472 1/2 inch tape controller

SYNOPSIS
controller xtcO at mbO car all vlrt OxebeellO priority 3 vector xtlntr 100 tape xtO at
xtcO drive O flags 1

DESCRIPTION
The Xylogics 472 tape controller controls Pertee-interface 1/2" tape drives such as the CDC
Keystone III, providing a standard tape interface to the device, see mtio(4). This controller is
used to support high speed or high density drives, which are not supported effectively by the
older TapeMaster controller (tm(4)).

The flags field is used to control remote density select operation: a O specifies no remote density
selection is to be attempted, a 1 specifies that the Pertee density-select line is used to toggle
between high and low density; a 2 specifies that the Pertc speed-select line is used to toggle
between high and low density. The default is 1, which is appropriate for the CDC Keystone III
(92185) and the Telex 9250. In no case will the controller select among more than 2 densities.

SEE ALSO
mt(l), tar(l), tm(4), mtio(4)

Sun Release 2.0 Last change: 27 March 1985 321

XY(4S) SPECIAL FILES XY(4S)

NAME
xy - Disk driver for Xylogics SMD Disk Controllers

SYNOPSIS
controller xycO at mbO car all vlrt Oxebee40 priority Z vector xylntr 'TZ
controller xycO at mbO car all vlrt Oxebee48 priority 2 vector xylntr '13
disk xyO at xycO drive 0

DESCRIPTION
The first line given in the synopsis section above should be used to support the first or only Xylo­
gics 450 SMD disk controller in a Sun system; the second should be used for the second such con­
troller.

Files with minor device numbers O through 7 refer to various portions of drive O; minor devices 8
through 15 refer to drive 1, and so on. The standard device names begin with "xy" followed by
the drive number and then a Jetter a-h for partitions 0-7 respectively. The character 1 stands
here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a 'raw' interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call usually results in only one J/0 operation; therefore raw 1/0 is considerably more
efficient when many words are transmitted. The names of the raw files conventionally begin with
an extra 'r.'

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPORT

FILES

This driver handles all SMD drives by reading a label from sector O of the drive which describes
the disk geometry and partitioning.

The xy1a partition is normally used for the root file system on a disk, the xy1b partition as a pag­
ing area, and the xy1c partition for pack-pack copying (it normally maps the entire disk). The
rest of the disk is normally the xy1g partition.

/dev /xy[0-7l[a-hJ
/dev /rxy[0-7l[a-hJ

block files
raw files

SEE ALSO
dkio(4S)
Xylogics Model 450 Peripheral Processor SMD Disk Subsystem Maintenance and Reference
Manual (Sun 800-1025-01)

DlAGNOSTICS

322

x;yc%d: self test error %x - %a. Self test error in controller, see the Maintenance and Refer­
ence Manual.

x;yc%d: addreH mode Jumper Is wrong. The controller is strapped for 24-bit Multibus
addresses; the Sun uses 20-bit addresses. See the subsection on the Xylogics controller in the
appropriate Sun Hardware Installation Manual for your machine(s) for instructions on how to set
the jumpers on the 450.

x;yattach: can't get bad sector Info. The bad sector forwarding information for the disk,
which is kept on the last cylinder, could not be read.

xy%d: drive type %d clash with x;y%d. The 450 does not support mixing the drive types
found on these units on a single controller.

Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

XY(4S) SPECIAL FILES XY(4S)

BUGS

xy%d: Initialization failed.

xy%d: error %x reading label on head %d. Error reading drive geometry /partition table
information.

xy%d: Corrupt label. The geometry /partition label checksum was incorrect.

xy%d: Unsupported phys partition # %d.

xy%d: offllne.

xy%d%c: cmd how (msg) blk %d. A command such as read, write, or format encountered a
error condition (how): either it failed, the unit was restored, or an operation was retry'ed. The
msg is derived from the error number given by the controller, indicating a condition such as
"drive not ready", "sector not found" or "disk write protected".

In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and lseek(2) should always deal in 512-byte multiples.

Sun Release 2.0 Last change: l November 1984 323

ZS (4S) SPECIAL FILES ZS(4S)

NAME
ZS - zilog 8530 SCC serial comunications driver

SYNOPSIS
device zaO at mbO car all vlrt Oxeec800 flags 3 priority 3
device zal at mbO car all vlrt OxeecOOO flags Ox103 priority 3
device zaZ at mbO car Ox80800 flags 3 priority 3
device za3 at mbO car Ox81000 flags 3 priority 3
device zs4 at mbO car Ox84800 flags 3 priority 3
device zs5 at mbO car Ox85000 flags 3 priority 3

DESCRIPTION

FILES

The Zilog 8530 provides 2 serial communication lines with full modem control. Each line behaves
as described in tty(4). Input and output for each line may independently be set to run at any of
16 speeds; see tty(4) for the encoding.

Of the synopsis lines above, the line for zsO specifies the serial 1/0 ports provided by the Sun-2
CPU board, the line for zsl specifies the Sun-2 Video Board ports (which are used for Sun-2 key­
board and mouse), the lines for zs2 and zs3 specify the first and second ports on the first SCSI
board in a system, and those for zs4 and zs5 specify the first and second ports provided by the
second SCSI board in a system, respectively.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i
should be treated as hard-wired with carrier always present. Thus specifying "flags Ox2" in the
specification of zsO would cause line ttyb to be treated in this way.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing
calls, a special feature, controlled by the minor device number, has been added. Minor device
numbers in the range O - 127 correspond directly to the normal tty lines and are named ttY*.
Minor device numbers in the range 128 - 256 correspond to the same physical lines as those
above (i.e. the same line as the minor device number minus 128) and are (conventionally) named
cua•. The cua lines are special in that they can be opened even when there is no carrier on the
line. Once a cua line is opened, the corresponding tty line can not be opened until the cua line is
closed. Also, if the tty line has been opened successfully (usually only when carrier is recognized
on the modem) the corresponding cua line can not be opened. This allows a modem to be
attached to /dev/ttya (usually renamed to /dev/ttydO) and used for dialin (by enabling the line
for login in /etc/ttys) and also used for dialout (by tip(lC) or uucp(lC)) as /dev/cuaO when no
one is logged in on the line. Note that the bit in the flags word in the config file (see above) must
be zero for this line.

/dev /tty!a, b, s0-s3J
/dev /ttyd!0-9, a-fl
/dev /cua!0-9, a-fj

SEE ALSO
tty(4)
Zilog Z8030/Z8530 SCC Serial Communications Controller (Sun 800-1052-01)

DIAGNOSTICS
zo%d%c: allo overflow. The character input silo overflowed before it could be serviced.

324 Last change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

A.OUT(5) FILE FORMATS

NAME
a.out - assembler and link editor output

SYNOPSIS
#Include <a.out.h>
#Include <atab.h>
#Include <nllat.h>

DESCRIPTION

A.OUT(5)

A.out is the output file or the assembler as(I) and the link editor ld(l). The link editor makes
a.out executable if there were no errors and no unresolved external references. Layout informa­
tion as given in the include file for the Sun system is:

I•
• Header prepended to each a.out file.

•/
struct exec {

};

long
unsigned
unsigned
unsigned a_bss;
unsigned
unsigned
unsigned
unsigned

a_magic;
a_text;
a_data;

a_syms;
a_entry;
a_trsize;
a_drsize;

#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413

/• magic number •/
/• size or text segment •/
/• size or initialized data •/
/• size of uninitialized data •/
/• size of symbol table •/
/• entry point •/
/• size of text relocation •/
/• size of data relocation •/

/• old impure format •/
/• read-only text •/
/• demand load format •/

#define PAGSIZ 2048
#define SEGSIZ Ox8000
#define TXTRELOC SEGSIZ

/•
• Macros which take exec structures as arguments and tell whether
• the file has a reasonable magic number or offsets to textJsymbolsJstrings.

•I
#define N..BADMAG(x) \

(((x).a_magic)!=OMAGIC && ((x).a_magic)!=NMAGIC && ((x).a_magic)!=ZMAGIC)

#define N_TXTOFF{x) \
({x).a_magic==ZMAGIC? PAGSIZ: sizeof (struct exec))

#define N_SYMOFF(x) \
(N_TXTOFF(x) + (x).a_text+(x).a_data + (x).a_trsize+(x).a_drsize)

#define N_STROFF(x) \
(N_SYMOFF(x) + (x).a_syms)

I•
• Macros which take exec structures as arguments and tell where the
* various pieces will be loaded.

•/
#define N_TXTADDR(x) TXTRELOC
#define NJ)ATADDR(x) \

Sun Release 2.0

(((x).a_magic==OMAGIC)? (N_TXTADDR(x)+(x).a_text) \
: (SEGSIZ+((N_TXTADDR(x)+(x).a_text-1) & ·sEGRND)))

Last change: 9 November 1984 325

A.OUT(5) FILE FORMATS A.OUT(5)

326

#define NJ3SSADDR(x) (N.J)ATADDR(x)+(x).a_data)

The a.out file has five sections: a. header, the program text and data., relocation information, a
symbol table and a string table (in that order). The last three may be omitted if the program
was loaded with the '-s' option or Id or if the symbols and relocation have been removed by
strip(l).

In the header the sizes of each section are given in bytes. The size of the header is not included
in any of the other sizes.

When an a.out file is executed, three logical segments are set up: the text segment, the data seg­
ment (with uninitialized data, which starts off as all 0, following initialized data), and a stack.
The header is not loaded with the text segment. If the magic number in the header is OMAGIC
(0407), it means that this is a non-sharable text which is not to be write-protected, so the data
segment is immediately contiguous with the text segment. This is rarely used. If the magic
number is NMAGIC {0410) or ZMAGIC {0413), the data segment begins at the first segment boun­
dary following the text segment, and the text segment is not writable by the program; other
processes executing the same file will share the text segment. For ZMAGIC format, the text seg­
ment begins on a page boundary in the a.out file; the remaining bytes after the header in the first
block are reserved and should be zero. In this case the text and data sizes must both be multi­
ples of the page size, and the pages of the file will be brought into the running image as needed,
and not pre-loaded as with the other formats. This is especially suitable for very large programs
and is the default format produced by ld{l). The macros N_TXTADDR, N_DATADDR, and
N.JlSSADDR give the memory addresses at which the text, data, and bss segments, respectively,
will be loaded.

The stack starts at the highest possible location in the memory image, and grows downwards.
The stack is automatically extended as required. The data segment is extended as requested by
brk(2) or sbrk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table
and string table in that order. The text begins at byte PAGSIZ in the file for ZMAGIC format or
just after the header for the other formats. The N_TXTOFF macro returns this absolute file
position when given the name of an exec structure as argument. The data segment is contiguous
with the text and immediately followed by the text relocation and then the data relocation infor­
mation. The symbol table follows all this; its position is computed by the N-8YMOFF macro.
Finally, the string table immediately follows the symbol table at a position which can be gotten
easily using N_STROFF. The first 4 bytes of the string table are not used for string storage, but
rather contain the size of the string table; this size includes the 4 bytes, the minimum string
table size is thus 4.

RELOCATION

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If a
byte in the text or data involves a reference to an undefined external symbol, as indicated by the
relocation information, then the value stored in the file is an offset from the associated external
symbol. When the file is processed by the link editor and the external symbol becomes defined,
the value of the symbol is added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the fol­
lowing structure:

I•
• Format of a relocation datum.

•/
struct relocation_info {

Last change: 9 November 1984 Sun Release 2.0

0

0

0

0

0

0

A.OUT(5)

};

FILE FORMATS

int r_address;
unsigned r..Jiymbolnum:24,

r_pcrel:1,
rJength:2,
r_extern:1,
:4;

/• address which is relocated •/
/• local symbol ordinal •/
/• was relocated pc relative already •/
/• O=byte, l=word, 2=long •/
/• does not include value of sym referenced •/
/• nothing, yet •/

A.OUT(5)

There is no relocation information if a_trsize+a_drsize==O. Ir r_extern is 0, then r..Jiymbolnum
is actually a n_type for the relocation (that is, N_TEXT meaning relative to segment text origin.)

SYMBOL TABLE

The layout of a symbol table entry and the principal flag values that distinguish symbol types are
given in the include file as follows:

/•
• Format of a symbol table entry.

•I
struct nlist {

union {
char
long

} n_un;

•n_name; /• for use when in~memory •/
n..Jitrx; /• index into file string table •/

unsigned char n_type; /• type flag, that is, N_TEXT etc; see below •/
char n_other;
short n_desc; /• see <stab.h> •/
unsigned n_value; /• value of this symbol (or adb offset)•/

};
#define n_hash n_desc /• used internally by Id •/

I•
• Simple values for n_type.

•/
#define N_UNDF OxO /• undefined •/
#define N_ABS Ox2 /• absolute •/
#define N_TEXT Ox4 /•text•/
#define N..DATA Ox6 /•data•/
#define N...BSS Ox8 /• bss •/
#define N_COMM Ox12 /• common (internal to Id) •/
#define N...FN Oxlf /• file name symbol •/

#define N...EXT 01 /• external bit, or'ed in */
#define N_TYPE Oxle /• mask for all the type bits •/

I•
• Other permanent symbol table entries have some of the

N_STAB
bits set.
• These are given in <stab.h>
•/

#define N_STAB OxeO /• if any of these bits set, don't discard •/

In the a.out file a symbol's n_un.n..Jitrx field gives an index into the string table. A n..Jitrx value
of O indicates that no name is associated with a particular symbol table entry. The field
n_un.n_name can be used to refer to the symbol name only if the program sets this up using

Sun Release 2.0 Last change: 9 November 1984 327

A.OUT(5) FILE FORMATS A.OUT(5)

328

n_strx and appropriate data rrom the string table. Because or the union in the nlist declaration,
it is impossible in C to statically initialize such a structure. If this must be done (as when using
nlist(3)) the file <nllat.h> should be included, rather that <a.out.h>; this contains the
declaration without the union.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is interpreted
by the loader Id as the name or a common region whose size is indicated by the value or the sym­
bol.

STAB SYMBOLS

Stab.h defines some values or the n_type field or the symbol table or a.out files. These are the
types for permanent symbols (that is, not local labels, etc.) used by the debuggers adb(l) and
dbx(l) and the Pascal compiler pc(l). Symbol table entries can be produced by the .stabs assem­
bler directive. This allows one to specify a double-quote delimited name, a symbol type, one char
and one short of information about the symbol, and an unsigned long (usually an address). To
avoid having to produce an explicit label for the address field, the .stabd directive can be used to
implicitly address the current location. If no name is needed, symbol table entries can be gen­
erated using the .stabn directive. The loader promises to preserve the order of symbol table
entries produced by .stab directives.

The n_value field of a symbol is relocated by the link editor as an address within the appropriate
segment. N_value fields of symbols not in any segment are unchanged by the linker. In addition,
the linker will discard certain symbols, according to rules of its own, unless the n_type field has
one of the bits masked by N_STAB set.

This allows up to 112 (7 * 16) symbol types, split between the various segments. Some of these
have already been claimed. The debugger, adb(l), uses the following n_type values:

#define N_GSYM Ox20
#define N_FNAME Ox22
#define N_FUN Ox24
#define N_STSYM Ox26
#define NJ,CSYM Ox28
#define N_RSYM Ox40
#define N_SLINE Ox44
#define N_SSYM Ox60
#define N_SO Ox64
#define NJ,SYM Ox80
#define N_SOL Ox84
#define NYSYM OxaO
#define N__ENTRY Oxa4
#define NJ,BRAC OxcO
#define N_RBRAC OxeO
#define NJ3COMM Oxe2
#define N__ECOMM Oxe4
#define N__ECOML Oxe8
#define NJ,ENG Oxfe

/• global symbol: name,.O,type,O •/
/• procedure name (f77 kludge): name,.O •/
/• procedure: name,,0,linenumber,address •/
/• static symbol: name,,0,type,address •/
/• .lcomm symbol: name,.0,type,address •/
/• register sym: name,,0,type,register •/
/• src line: 0,,0,linenumber ,address •/
/• structure elt: name,.O,type,struct_offset •/
/• source file name: name,,0,0,address •/
/• local sym: name,,0,type,offset •/
/• #included file name: name,.0,0,address •/
/• parameter: name,,0,type,offset •/
/• alternate entry: name,linenumber,address •/
/• left bracket: 0,.0,nesting level,address •/
/• right bracket: 0,.0,nesting level,address •/
/• begin common: name,, •/
/• end common: name,, •/
/• end common (local name): ,.address •/
/• second stab entry with length information •/

where the comments give the adb conventional use for .stabs and the n_name, n_other, n_dese,
and n_value fields of the given n_type. Adb uses the n_desc field to hold a type specifier in the
form used by the Portable C Compiler, cc(l), in which a base type is qualified in the following
structure:

struct desc {
short q6:2,

q5:2,
q4:2,

Last change: 9 November 1984 Sun Release 2.0

0

0

0

0

0

0

A.OUT(5)

};

q3:2,
q2:2,
ql:2,
ba.sic:4;

FILE FORMATS

There are four qualifications, with ql the most significant and q6 the lea.st significant:
0 none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows:
0 undefined
1 function argument
2 character
3
4
5
6
7
8
9
10
11
12
13
14
15

short
int
long
float
double
structure
union
enumeration
member of enumeration
unsigned character
unsigned short
unsigned int
unsigned long

The Pascal compiler, pc(l), uses the following n_type value:

#define NYC Ox30 /• global pa.seal symbol: name,,O,subtype,line •/

and uses the following subtypes to do type checking across separately compiled files:
1 source file name
2 included file name
3 global label
4 global constant
5 global type
6 global variable
7 global function
8 global procedure
9 external function
10 external procedure
11 library variable
12 library routine

A.OUT(5)

The debugger, dbz(l), uses the following n_type values. The comments give the dbz conventional
use for .stabs and the n_name, n_other, n_desc, and n_value fields for the given n_type symbol
entry.
#define N_GSYM Ox20
#define N...FUN Ox24
#define N_STSYM Ox26
#define NJ,CSYM Ox28
#define N...RSYM Ox40

Ox44 #define N_SLINE

Sun Release 2.0

/• global symbol: name,,O,size,O •/
/• procedure name: name,,O,size,address •/
/• static symbol: name,,O,size,address •/
/• .!comm symbol: name,,O,size,address •/
/• register sym: name,,O,size,register •/
/• src line: 0,,0,linenumber,address •/

La.st change: 9 November 1984 329

A.OUT(5) FILE FORMATS

#define N_SO Ox64 /• source file name: name,,0,0,address •/
#define NJ,SYM Ox80 /• local sym: name,,O,size,offset •/
#define N_SOL Ox84 /• #included file name: name,,0,0,address •/
#define NYSYM OxaO /• parameter: name,,O,size,offset •/
#define N...BCOMM Oxe2 /• begin common: name,, •/
#define N...ECOMM Oxe4 /• end common: name,, •/

A.OUT(5)

Dbz does not use the n_type value to differentiate symbols. The information as to whether a
symbol is local, global, a parameter, lives in a register, etc. is indicated within the n_name field.
Dbz processes N_GSYM, N__FUN, N_STSYM, NJ,CSYM, N...RSYM, NYSYM, NJ,SYM,
N_SSYM, and NJ,ENG symbol entries identically.

Each of the basic types in a language is given a type number. The type of a symbol is defined in
terms of the type numbers. Declarations which create new types, such as structure declarations,
define additional type numbers. The name of a type, its type number and other pertinent infor­
mation are put in the n_name field and parsed by dbz. For example, the line

.stabs "int:tl=r l;-2147 483648;2147 483647;" ,Ox80,0,0,0
defines the type Int and assigns it type number one. The lower and upper bounds of an Int vari­
able are given as -2147483648 and 2147483647, respectively.

The local variable
inti;

is described by
.stabs "i:l",Ox80,0,4,~24

The type number is one, corresponding to an integer. It's size is four bytes, and it's address is
-24 bytes from the stack pointer.

Structures and unions use the n_name field to describe the entire data structure. Each member
is described including its type, offset, and size. The structure

struct xyz {

};

int meml;
char mem2;
int mem3;

is described by
.stabs "xyz:Tl5=sl0meml:l,0,32;mem2:2,32,8;mem3:l,48,32;;",0x80,0,10,1275

Reading the n_name field from left to right, the tag name is first followed by the type number.
Thus, the xyz structure is assigned type number 15. The "=slO" indicates that a structure is
being defined (substitute u for • to define a union) and it is ten bytes long. The description of
the members follow next. The name of a member and it's type are given as above -
name:typeno. Next is the offset (in bits) to the start of the member, and the size (in bits) of the
member. The.member information is repeated for each member.

Enumerated types are described in a manner similar to structures. The enumerated type
enum color { RED, BLUE, YELLOW };

is described by
.stabs "color:Tl6=eRED:O,BLUE:l,YELLOW:2,;",0x80,0,4,-1275

The color enumeration is assigned type number 16 and the "=e" indicates that an enumerated
type is being defined. The member information consists of the member's name followed by the
member's ordinal value.

A type number used to indicate the type of a symbol may be preceded by a one character
descriptor. The descriptors are:

0

0

r

With no descriptor, the symbol is taken to be local to the current routine.

0 Register variable.

330 Last change: 9 November 1984 Sun Release 2.0

0

0

0

A.OUT(5) FILE FORMATS A.OUT(5)

G

s

p

V

t

•
T

a

r
F

V

X

X

C

Global variable.

Static global variable. In C, this is a static global variable whose scope is the file it is
defined in.

Parameter passed by value.

Parameter passed by reference. This includes var parameters in Pascal.

Type. Defines a new type.

Defines a pointer to a type .

Tag. Used for a structure, union or enum tag.

Array.

Private function. Corresponds to static functions in C and nested routines in Pascal.

Public functions.

Common or local static variable. Used for FORTRAN COMMON variables or local static
variables in C.

Pascal conformant array value parameter.

Pascal or FORTRAN function variable.

Pascal conformant array dimension.

For example,
char *charstar;

is described by
.stabs "charstar:G18=•2",0x20,0,1,0

The 'G' indicates that charstar is a global variable. It's type is number eighteen which is
defined here to be a pointer to type number two which is a character. Therefore, charotar is a
"char *"·
A function pointer parameter such as

frammis(funcp)
int (•funcp)();
{ ... }

is described by
.stabs "runcp:pl9=•20=fl ",Oxa0,0,4,8

The 'p' indicates that funcp is a parameter. The type information defines two new types, nine­
teen and twenty. Type twenty is a function returning type one (integer) and type nineteen is a
pointer to type twenty so it is a pointer to a function returning an integer.

SEE ALSO

BUGS

adb(l), as(l), cc(l), pc(l), ld(l), nm(l), dbx(l), strip(!)

There are currently two interpretations of the stabs symbol-table information. This creates
great confusion when trying to build a program for debugging.

Due to the amount or symbolic information necessary for high-level debugging, the whole a.out
structure has been stretched well beyond its original design, and should be replaced by something
with a more sophisticated symbol-table mechanism. The demands of future languages will only
compound the problems.

Sun Release 2.0 Last change: 9 November 1984 331

ALIASES(5) FILE FORMATS ALIASES(5)

NAME
aliases - aliases file Cor sendmail

SYNOPSIS
/usr /lib/aliases
/usr /llb/allases.dlr
/usr /llb/allases.pag

DESCRIPTION
These files describe user id aliases used by /usr/lib/eendmail. /usr/lib/aliasee is formatted as a
series of lines of the form

name: name_l, name2, name_3, ...
The name is the name to alias, and the name_n are the aliases for that name. Lines beginning
with white space are continuation lines. Lines beginning with '#' are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any
person more than once.

After aliasing has been done, local and valid recipients who have a ".forward" file in their home
directory have messages forwarded to the list of users defined in that file.

/usr/lib/aliases is only the raw data file; the actual aliasing information is placed into a binary
format in the files /usr/lib/aliases.dir and /usr/lib/aliases.pag using the program newaliases(8).
A newa/iases command should be executed each time that /usr/lib/aliases is changed for the
change to take effect.

Several kinds of name's are special:

owner-mary: fred
any errors resulting from a mail to mary are directed to /red instead of back to the per­
son who sent the message. This is most useful when mary is a mailing list rather than an
individual.

beer: :include:/usr/cyndi/beer;
All colons and semicolons are required as shown. The list of names in /usr/cyndi/beer is
included in the name_n list for the beer alias, in addition to any other names in the
name_n list. This mechanism is for setting up a mailing list so that /usr/lib/ aliases
doesn't have to be changed when people are added to or removed from the list. The
included file (that is, /usr/cyndi/beer in this case) may be changed at any time, and
changes take effect immediately.

SEE ALSO

BUGS

332

newaliases(8), dbm(3X), sendmail(8)
SENDMAIL Installation and Operation Guide.
SENDMAIL An Internetwork Mail Router.

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 bytes of
information. You can get longer aliases by "chaining"; that is, make the last name in the alias be
a dummy name which is a continuation alias.

Last change: 3 January 1984 Sun Release 2.0

0

0

0

0

0

0

AR(5) FILE FORMATS AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#Include <ar.h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as libraries to
be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number and header layout as described in the include file are;

/• @(#)ar.h I.I 84/12/20 SM!; from UCB 4.1 83/05/03•/

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "'\n"

struct ar_hdr {
char
char
char
char
char
char
char

};

ar _name[l6];
ar_date[l2j;
ar_uid[6J;
ar_gid[6J;
ar_mode[8J;
ar_size[lOJ;
arJmagJ2J;

The name is a blank-padded string. The ar_jmag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar_mode, which is octal. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files, the
archive itself is printable.

SEE ALSO

BUGS

ar(l), ld(l), nm(l)

File names lose trailing blanks. Most software dealing with archives takes even an included blank
as a name terminator,

Sun Release 2.0 Last change: 15 January 1983 333

CORE(5) FILE FORMATS CORE(b)

NAME
core - format of memory image file

SYNOPSIS
#Include <machlne/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various
errors occur. See sigvec(2) for the list of reasons; the most common are memory violations, ille­
gal instructions, bus errors, and user-generated quit signals. The memory image is called 'core'
and is written in the process's working directory (provided it can be; normal access controls
apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger than the
limit are not created.

Set-user-id programs do not produce core files when they terminate as this would be a security
loophole.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES manifest in
the <machine/param.h> file. The u. area starts with a user structure as given in
<sys/user.h>. The remainder of the core file consists first of the data pages and then the stack
pages of the process image. The amount of data space image in the core file is given (in pages)
by the variable u_dsize in the u. area. The amount of stack image in the core file is given (in
pages) by the variable u_ssize in the u. area.

SEE ALSO
adb(l), dbx(l), sigvec(2), setrlimit(2)

334 Last change: 9 March 1984 Sun Release 2.0

0

0

0

0

0

0

CPIO(5) FILE FORMATS CPI0(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The old format header structure, when the c option is not used, is:

atruct {

} Hdr;

short h_magic,
h_dev,
hjno,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to a word];

but note that the byte order here is that of the PDP-11 and the VAX, and that for the Sun you
have to use swab(3) after reading and before writing headers.

When the c option is used, the header information is described by the statement below:

sscanf{Chdr, "%60%60%60%60%60%60%60%60%lllo%60%60%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.hjno, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Hdr.h_mtime, &Hdr.h_namesize, &Hdr.h_filesize, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_fi/esize, respectively. The con­
tents of each file is recorded in an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of h_magic contains the constant
070707 (octal). The items h_dev through h_mtime have meanings explained in stat(2). The
length of the null-terminated path name h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!. Special files, directories,
and the trailer, are recorded with h_fi/esize equal to zero.

SEE ALSO
cpio(l), find(!), stat(2)

Sun Release 2.0 Last change: 8 February 1983 335

CRONTAB(5) FILE FORMATS CRONTAB(5)

NAME
crontab - table of times to run periodic jobs

SYNOPSIS
/uar /llb/crontab

DESCRIPTION

FILES

The / etc/ cron utility is a permanent process, started by / etc/re.local, that wakes up once every
minute. /etc/cron consults the file /usr/lib/crontab to find out what tasks are to be done, and
at what time.

Each line in / usr/ lib/ crontab consists of six fields, separated by spaces or tabs, as follows:

l. minutes field, which can have values in the range O through 59.

2. hours field, which can have values in the range O through 23.

3. day of the month, in the range 1 through 31.

4. month of the year, in the range 1 through 12.

5. day of the week, in the range 1 through 7. Monday is day 1 in this scheme of things.

6. (the remainder of the line) is the command to be run. A percent character in this field
is translated to a new-line character. Only the first line (up to a% or end of line) of the
command field is executed by the Shell. The other lines are made available to the com­
mand as standard input.

Any of fields 1 through 5 can be a list of values separated by commas. A field can be a pair of
numbers separated by a hyphen, indicating that the job is to be done for all the times in the
specified range. If a field is an asterisk character (•) it means that the job is done for all possible
values of the field.

/usr /!ib/crontab

SEE ALSO
cron(8), rc(8)

EXAMPLE

336

0 0 • • • calendar •
15 0 • • • /etc/sa -s >/dev /null
15 4 •••find /usr/preserve -mtime +7 -a -exec rm -f {};
40 4 • • • find / -name '#•' -atime +3 -exec rm -f {} ;
0,15,30,45 • • • • /etc/atrun
0,10,20,30,40,50 • • • • /etc/dmesg - >>/usr/adm/messages
5 4 • ••sh /etc/newsyslog

The calendar command run at minute O of hour O (midnight) of every day. The /etc/sa com­
mand runs at 15 minutes after midnight every day. The two find commands run at 15 minutes
past four and at 40 minutes past four, respectively, every day of the year. The atrun command
(which processes shell scripts users have set up with at) runs every 15 minutes. The /etc/dmesg
command appends kernel messages to the /usr/adm/messages file every ten minutes, and finally,
the /usr/ adm/ syslog script runs at five minutes after four every day.

Last change: 6 November 1984 Sun Release 2.0

0

0

0

0

0

0

DIR(5) FILE FORMATS DIR(&)

NAME
dir - format of directories

SYNOPSIS
#Include <•Y•/typeo.h>
#Include <•Y•/dlr.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry; see
/•(5). The structure of a directory entry as given in the include file is:

Sun Release 2.0

I•
• A directory consists of some number of blocks of DIRBLKSIZ
• bytes, where DIRBLKSIZ is chosen such that it can be transferred
• to disk in a single atomic operation (e.g. 512 bytes on most machines) .

•
• Each DIRBLKSIZ byte block contains some number of directory entry
• structures, which are of variable length. Each directory entry has
• a struct direct at the front of it, containing its inode number,
• the length of the entry, and the length of the name contained in
• the entry. These are followed by the name padded to a 4 byte boundary
• with null bytes. All names are guaranteed null terminated.
• The maximum length of a name in a directory is MAXNAMLEN .

•
• The macro DIRSIZ(dp) gives the amount of space required to represent
• a directory entry .. Free space in a directory is represented by
• entries which have dp->d_reclen > DIRSIZ(dp). All DIRBLKSIZ bytes
• in a directory block are claimed by the directory entries. This
• usually results in the last entry in a directory having a large
• dp->d_reclen. When entries are deleted from a directory, the
* space is returned to the previous entry in the same directory
• block by increasing its dp->d_reclen. If the first entry of
• a directory block is free, then its dp->d_ino is set to 0.
• Entries other than the first in a directory do not normally have
• d p- >d_ino set to 0.

•!
#if def KERNEL
#define DIRBLKSIZ DEV J3SIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

I•
• The DIRSIZ macro gives the minimum record length which will hold
• the directory entry. This requires the amount of space instruct direct
• without the d_name field, plus enough space for the name with a terminating
• null byte (dp->d_namlen+l), rounded up to a 4 byte boundary.

•I
#undef DIRSIZ
#define DIRSIZ(dp) ((sizeof (struct direct)- (MAXNAMLEN+l)) + (((dp)->d_namlen+l + 3) &- <

struct direct {

Last change: 15 January rn83 337

DIR(5) FILE FORMATS

u_long d_ino;
short d_reclen;
short d_namlen;
char d_namejMAXNAMLEN + l];
/• typically shorter •/

};

struct _dirdesc {
int ddJd;

};

long
long
char

dd_loc;
dd_size;
dd_bufjDIRBLKSIZj;

DIR(5)

By convention, the first two entries in each directory are for '.' and ' . .'. The first is an entry for
the directory itself. The second is for the parent directory. The meaning of ' . .' is modified for
the root directory of the master file system ("/"), where ' . .' has the same meaning as '.'.

SEE ALSO
fs(5), readdir(3)

338 Last change: 15 January 1983 Sun Release 2.0

0

0

0

0

0

0

DUMP(5) FILE FORMATS

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#Include <•Y•/types.h>
#Include <•Y•/inode.h>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dump and reslore(8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP(5)

The format of the header record and of the first record of each description as given in the
include file <dumprestor.h> is:

#define NTREC IO
#define MLEN 16
#define MSIZ 4096

#define TS_TAPE
#define TSJNODE
#define TS..BITS
#define TS__ADDR
#define TS_END
#define TS_CLRI
#define MAGIC
#define CHECKSUM

struct spcl {
int
time_t
time_t
int
daddr_t
ino_t
int
int
struct
int
char

} spcl;

struct idates {
char
char
time_t

};

l
2
3
4
5
6
(int) 60011
(int) 84446

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
cjnumber;
c_magic;
c_checksum;
dinode c_dinode;
c_count;
c_addr[BSIZEJ;

id_name[l6J;
idjncno;
id_ddate;

#define DUMPOUTFMT "%-16s %c %s" /• for printr •/
/• name, incno, ctime(date) •/

#define DUMPINFMT "%16s %c %['\nJ\n" /• inverse for scanf •/

Sun Release 2.0 Last change: 15 January 1983 339

DUMP(5) FILE FORMATS DUMP(5)

FILES

NTREC is the default number or 1024 byte records in a physical tape block, changeable by the b
option to dump. MLEN is the number or bits in a bit map word. MSIZ is the number or bit map
words.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types
and their meanings are as follows:

TS_TAPE
TSJNODE

TS....BITS
TS_ADDR
TS...END
TS_CLRI

Tape volume label
A file or directory follows. The c_dinode field is a copy or the disk inode and con­
tains bits telling what sort or file this is.
A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord or a file description. See c_addr below.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes that were empty
on the file system when dumped.

MAGIC
CHECKSUM

All header records have this number in c_magic.
Header records checksum to this value.

The fields or the header structure are as follows:

c_type
c_date
c_ddate
c_volume
c_tapea
cjnumber
c_magic
c_checksum
c_dinode
c_count
c_addr

The type of the header.
The date the dump was taken.
The date the file system was dumped from.
The current volume number or the dump.
The current number or this (1024-byte) record.
The number or the inode being dumped if this is or type TSJNODE.
This contains the value MAGIC above, truncated as needed.
This contains whatever value is needed to make the record sum to CHECKSUM.
This is a copy of the inode as it appears on the file system; see /s(5).
The count of characters in c_addr.
An array or characters describing the blocks or the dumped file. A character is
zero if the block associated with that character was not present on the file system,
otherwise the character is non-zero. Ir the block was not present on the file sys­
tem, no block was dumped; the block will be restored as a hole in the file. Ir there
is not sufficient space in this record to describe all of the blocks in a file,
TS_ADDR records will be scattered through the file, each one picking up where
the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends
with a TS...END record and then the tapemark.

The structure idates describes an entry in the file / etc/ dumpdates where dump history is kept.
The fields of the structure are:

id_name
idjncno
id_ddate

The dumped filesystem is '/dev/id_nam'.
The level number or the dump tape; see dump(8).
The date or the incremental dump in system format see types(5).

/etc/dumpdates

SEE ALSO
dump(8), restore(8), fs(5), types(5)

BUGS
Should more explicitly describe format of dumpdates file.

340 Last change: 15 January 1983 Sun Release 2.0

0

0

0

0

0

0

ENVIRON(5) FILE FORMATS ENVIRON(S)

NAME
environ - user environment

SYNOPSIS
extern char oenvlron;

DESCRIPTION
An array of strings called the 'environment' is made available by execve(2) when a process
begins. By convention these strings have the form 'name=value'. The following names are used
by various commands:

PATH The sequence of directory prefixes that sh, time, nice(l), etc., apply in searching for
a file known by an incomplete path name. The prefixes are separated by ':'. The
login(l) process sets PATH=:/usr /ucb:/bin:/usr /bin.

HOME

TERM

SHELL

A user's login directory, set by /ogin(l) from the password file passwd(5).

The kind of terminal for which output is to be prepared. This information is used by
commands, such as nroff or p/ot(lG), which may exploit special terminal capabilities.
See /etc/termcap (termcap(&)) for a list of terminal types.

The file name of the user's login shell.

TERMCAP The string describing the terminal in TERM, or the name of the termcap file, see
termcap (3), termcap(5),

EXINIT

USER

A startup list of commands read by ex(l), edit(l), and vi(l).

The login name of the user.

Further names may be placed in the environment by the export command and 'name=value'
arguments in sh(l), or by the setenv command if you use csh(l). Arguments may also be placed
in the environment at the point of an execve(2). It is unwise to conflict with certain sh(l) vari­
ables that are frequently exported by '.profile' files: MAIL, PSl, PS2, IFS.

SEE ALSO
csh(l), ex(l), login(l), sh(l), getenv(3), execve(2), system(3), termcap(3X), termcap(5)

Sun Release 2.0 Last change: 13 June 1983 341

EXPORTS(5) FILE FORMATS EXPORTS(5)

NAME
exports - NFS file systems being exported

SYNOPSIS
/etc/ export•

DESCRIPTION
The file /etc/exports describes the file systems which are being exported to nfs(4) clients. It is
created by the system administrator using a text editor and processed by the mount request dae­
mon mountd(Bc) each time a mount request is received.

The file consists of a list of file systems and the netgroups(5) or machine names allowed to
remote mount each file system. The file system names are left justified and followed by a list of
names separated by white space. The names will be looked up in /etc/netgroups and then in
/etc/hosts. A file system name with no name list following means export to everyone. A"#"
anywhere in the file indicates a comment extending to the end of the line it appears on.

EXAMPLE
/usr clients
/usr/local

export to my clients
export to the world

/usr2 phoenix sun sundae # export to only these machines

FILES
/etc/exports

SEE ALSO
mountd(8c), nfs(4)

342 Last change: 1 February 1985 Sun Release 2.0

0

0

0

0

0

0

FCNTL(5) FILE FORMATS FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
#Include <fcntl.h>

DESCRIPTION
The /cntl(2) function provides for control over open files. This include file describes requests and
arguments to /cntl and open(2) as shown below:

/• @(#)fcntl.h 1.2 83/12/08 SM!; from UCB 4.2 83/09/25 •/

I•
• Flag values accessible to open(2) and fcntl(2)
• (The first three can only be set by open)

•/
#define O_RDONL Y 0
#define O_ WRONL Y 1
#define O_RDWR
#define O__NDELAY
#define O_APPEND

2
FNDELAY
FAPPEND

#ifndef F ..DUPFD
/• fcntl(2) requests •/

/• Non-blocking 1/0 •/
/• append (writes guaranteed at the end)•/

#define F ..DUPFD O /• Duplicate fildes •/
#define F _GETFD 1 /• Get fildes flags •/
#define F _SETFD 2 /• Set fildes flags •/
#define F _GETFL 3 /• Get file flags •/
#define F _SETFL 4 /• Set file flags •/
#define F _GETOWN 5 /• Get owner •/
#define F _SETOWN 6 /• Set owner •/

/• flags for F _GETFL, F _SETFL-- copied from <sys/file.h> •/
#define FNDELAY 00004 /• non-blocking reads•/
#define F APPEND 00010 /• append on each write •/
#define FASYNC 00100 /• signal pgrp when data ready •/
#endif

SEE ALSO
fcntl(2), open(2)

Sun Release 2.0 Last change: 1 September 1983 343

FS (5) FILE FORMATS FS(5)

NAME
fs, inode - format of file system volume

SYNOPSIS
#Include <sys/types.h>
#Include <•Y•/fllsys.h>
#Include <sys/lnode.h>

DESCRIPTION

344

Every file system storage volume (disk, nine-track tape, for instance) has a common format for
certain vital information. Every such volume is divided into a certain number of blocks. The
block size is a parameter of the file system. Sectors O to 15 on a file system are used to contain
primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the super block as
defined by the include file <sys/fs.h> is:

#define FS_MAGIC Ox011954
struct fs {

struct fs •fs_link; /• linked list of file systems •/
struct fs •fsJlink; /• used for incore super blocks •/
daddr _tfs....sblkno; /• addr of super-block in filesys •/
daddr_tfs_cblkno; /• offset of cyl-block in filesys •/
daddr_tfs_iblkno; /• offset of inode-blocks in filesys •/
daddr_tfs_dblkno; /• offset of first data after cg•/
long fs_cgoffset; /• cylinder group offset in cylinder •/
long fs_cgmask; /• used to calc mod fs_ntrak •/
time_t fs_time; /• last time written •/
long fs....size; /• number of blocks in fs •/
long fs_dsize; /• number of data blocks in fs •/
1ong fs_ncg; /• number of cylinder groups •/
long fs_bsize; /• size of basic blocks in fs •/
long fsJsize; /• size of frag blocks in fs •/
long fsJrag; /• number of frags in a block in fs •/

/* th·ese are configuration parameters•/
long fs_minfree; /• minimum percentage of free blocks •/
long fs_rotdelay; /• num of ms for optimal next block •/
long fsJps; /• disk revolutions per second •/

/• these fields can be computed from the others•/
long fs_bmask; /• "blkoff" calc of blk offsets•/
long fsJmask; /• "fragoff" calc of frag offsets•/
long fs_bshift; /• "lblkno" calc of logical blkno •/
long fsJshift; /• "numfrags" calc number of frags •/

/• these are configuration parameters •/
long fs_maxcontig; /• max number of contiguous blks •/
long fs_maxbpg; /• max number of blks per cyl group •/

/• these fields can be computed from the others •/
long fsJragshift; /• block to frag shift •/
long fsJsbtodb; /• fsbtodb and dbtofsb shift constant•/
long fs....sbsize; /• actual size of super block •/
long fs_csmask; /• csum block offset •/
long fs_csshift; /• csum block number •/
long fs_nindir; /• value of NINDIR •/
long fsjnopb; /• value of INOPB •/
long fs_nspf; /• value of NSPF •/
long fs....spareconj6J; /• reserved for future constants •/

Last change: 3 April 1983 Sun Release 2.0

0

0

0

0

0

0

FS(5) FILE FORMATS FS(5)

/• sizes determined by number of cylinder groups and their sizes•/
daddr_t fs_csaddr; /• blk addr of cyl grp summary area•/
long fs_cssize; /• size of cyl grp summary area •/
long fs_cgsize; /• cylinder group size •/

/• these fields should be derived from the hardware •/
long fs_ntrak; /• tracks per cylinder •/
long fs_nsect; /• sectors per track •/
long fs_spc; /• sectors per cylinder •/

/• this comes from the disk driver partitioning •/
long fs_ncyl; /• cylinders in file system•/

/• these fields can be computed from the others •/
long fs_cpg; /• cylinders per group •/
long fs_ipg; /• inodes per group •/
long fsJpg; /• blocks per group • fsJrag •/

/• this data must be re-computed after crashes•/
struct csum fs_cstotal; /• cylinder summary information •/

/• these fields are cleared at mount time •/
char fsJmod; /• super block modified flag•/
char fs_clean; /• file system is clean flag •/
char fs_ronly; /• mounted read-only flag•/
char fs_flags; /• currently unused flag •/
char fsJsmnt[MAXMNTLENJ; /• name mounted on •/

/• these fields retain the current block allocation info•/
long fs_cgrotor; /• last cg searched •/
struct csum •fs_csp[MAXCSBUFSJ;/• list of fs_cs info buffers•/
long fs_cpc; /• cyl per cycle in postbl •/
short fs_postbl[MAXCPGl[NRPOSJ;/• head of blocks for each rotation•/
long fs_magic; /• magic number •/
u_char fs_rotbl[lj; /• list of blocks for each rotation •/

/• actually longer •/
};

Each disk drive contains some number of file systems. A file system consists of a number of
cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catas­
trophic loss. This is done at file system creation time and the critical super-block data does not
change, so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system blocks of
at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is address­
able; these pieces may be DEV _BSIZE, or some multiple of a DEV _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a small file is allocated as only as many fragments of a large block as are necessary.
The file system format retains only a single pointer to such a fragment, which is a piece of a sin­
gle large block that has been divided. The size of such a fragment is determinable from informa­
tion in the inode, using the "blksize(fs, ip, lbn)" macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

The root inode is the root of the file system. !node O can't be used for normal purposes and his­
torically bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer used for
this purpose, however numerous dump tapes make this assumption, so we are stuck with it).
The /ost+found directory is given the next available inode when it is initially created by mkfs.

Sun Release 2.0 Last change: 3 April 1983 345

FS(5)

346

FILE FORMATS FS(5)

fs_minfree gives the minimum acceptable percentage or file system blocks which may be free. If
the freelist drops below this level only the super-user may continue to allocate blocks. This may
be set to O if no reserve of free blocks is deemed necessary, however severe performance degrada­
tions will be observed if the file system is run at greater than 90% full; thus the default value of
fs_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a load­
ing of 90% comes with a fragmentation of 4, thus the default fragment size is a fourth of the
block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. With NRPOS 8 the reso­
lution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within a
file; the default value for fs_rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI
bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the struc­
ture simpler by having the only a single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE or 4096 it is possible to create
files of size 2· 32 with only two levels of indirection. MINBSIZE must be big enough to hold a
cylinder group block, thus changes to (struct cg) must keep its size within MINBSIZE. MAXCPG
is limited only to dimension an array in (struct cg); it can be made larger as long as that
structure's size remains within the bounds dictated by MINBSIZE. Note that super blocks are
never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fs_Jsmnt. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the amount
of summary information per file system is defined by MAXCSBUFS. It is currently parameterized
for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's
data blocks. These blocks are read in from fs_csaddr (size fs_cseize) in addition to the super
block.

N.B.: sizeof (struct csum) must be a power of two in order for the "fs_cs" macro to work.

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is lim­
ited by the fact that the super block is of size SBSIZE. The size of these tables is Inversely pro­
portional to the block size of the file system. The size of the tables is increased when sector sizes
are not powers of two, as this increases the number of cylinders included before the rotational
pattern repeats (fs_cpc). The size of the rotational layout tables is derived from the number of
bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact
that cylinder groups are at most one block. The size of the free block table is derived from the
size of blocks and the number of remaining bytes in the cylinder group structure (struct cg).

/node: The inode is the focus of all file activity in the UNIX file system. There is a unique inode
allocated for each active file, each current directory, each mounted-on file, text file, and the root.
An inode is 'named' by its device/i-number pair. For further information, see the include file
<sys/inode.h>.

Last change: 3 April 1983 Sun Release 2.0

0

0

0

0

0

0

FSTAB(5) FILE FORMATS FSTAB(5)

NAME
fstab - static information about filesystems

SYNOPSIS
#Include <mntent.h>

DESCRIPTION
The file / etc/fstab describes the filesystems and swapping partitions used by the local machine.
The system administrator can modify it with a text editor. It is read by commands that mount,
unmount, dump, restore, and check the consistency or filesystems; also by the system in providing
swap space. The file consists of a number of lines like this:

fsname dir type opts freq passno

for example:

/dev /xyOa / 4.2 rw,noquota 1 2

The entries from this file are accessed using the routines in getmntent(3), which returns a struc­
ture of the following form:

struct mntent {

};

char •mntJsname;
char •mnt_dir;
char •mnt_type;
char •mnt_opts;
int mntJreq;
int mnt_passno;

/• filesystem name •/
/• filesystem path prefix •/
/• 4.2, nfs, swap, or ignore •/
/• rw, ro, noquota, quota, hard, soft•/
/• dump frequency, in days•/
/• pass number on parallel fsck •/

Fields are separated by white space; a '#' as the first non-white character indicates a comment.

The mnt_type field determines how the mnt_jsname and mnt_opts fields will be interpreted. Here
is a list of the filesystem types currently supported, and the way each or them interprets these
fields:

4.2

NFS

SWAP

mntJsname
mnt_opts

mntJsname
mnt_opts

mntJsname
mnt_opts

Must be a block special device.
Valid options are ro, rw, quota, noquota.

The path on the server of the directory to be served.
Valid options are ro, rw, quota, noquota, hard, soft.

Must be a block special device swap partition.
Ignored.

If the mnt_type is specified as ignore then the entry is ignored. This is useful to show disk parti­
tions not currently used.

The field mnt_jreq indicates how often each partition should be dumped by the dump(8) com­
mand (and triggers that command's w option, which determines what filesystems should be
dumped). Most systems set the mnt_jreq field to 1, indicating that filesystems are dumped each
day.

The final field mnt_passno is used by the consistency checking program fsck(8) to allow over­
lapped checking or filesystems during a reboot. All filesystems with mnt_passno of 1 are checked
first simultaneously, then all filesystems with mnt_passno of 2, and so on. It is usual to make the
mnt_passno of the root filesystem have the value 1, and then check one filesystem on each avail­
able disk drive in each subsequent pass, until all filesystem partitions are checked.

The /etc/fstab file is read only by programs, and never written; it is the duty of the system
administrator to maintain this file. The order of records in /etc/fetab is important because Jeck,
mount, and umount process the file sequentially; filesystems must appear after filesystems they

Sun Release 2.0 Last change: 12 March 1985 347

FSTAB(5) FILE FORMATS FSTAB(5)

are mounted within.

FILES 0
/etc/fstab

SEE ALSO
getmntent(3), fsck(8), mount(8), quotacheck(8), quotaon(8)

0

0
348 Last change: 12 March 1985 Sun Release 2.0

0

0

0

FTPUSERS (5) FILE FORMATS FTPUSERS (5)

NAME
ftpusers - list of users prohibited by ftp

SYNOPSIS
/usr /etc/ttpusera

DESCRIPTION
Ftpusers contains a list of users who cannot access this system using the ftp(!) program.
Ftpusers contains one user name per line.

SEE ALSO
ftp(l), ftpd(8C)

Sun Release 2.0 Last change: 23 October 1984 349

GETTYT AB (5) FILE FORMATS GETTYT AB (5)

NAME
gettytab - terminal configuration data base

SYNOPSIS
/ etc /gettytab

DESCRIPTION
Gettytab is a simplified version of the termcap(5) data base used to describe terminal lines. The
initial terminal login process getty(8) accesses the gettytab file each time it starts, allowing simpler
reconfiguration of terminal characteristics. Each entry in the data base is used to deScr"ibe one
class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other classes.
(That is, the default entry is read, then the entry for the class required is used to override partic­
ular settings.)

CAP ABILITIES

350

Refer to termcap(&) for a description of the file layout. The default column below lists defaults
obtained if there is no entry in the table obtained, nor one in the special default table.

Name Type Default Description
ap boo! false terminal uses any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb boo! false use crt backspace mode
cd num 0 carriage-return delay
ce boo! false use crt erase algorithm
ck boo! false use crt kill algorithm
cl str NULL screen clear sequence
co boo! false console - add \n after login prompt
ds str ·y delayed suspend character
ec boo! false leave echo OFF

ep boo! false terminal uses even parity
er str '? erase character
et str 'D end of text (EOF) character
ev str NULL initial enviroment
ro num unused tty mode flags to write messages
fl num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
ft str ·o output flush character
he boo! false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht boo! false terminal has real tabs
ig boo! false ignore garbage characters in login name
im str NULL initial (banner) message
in str -c interrupt character
is num unused input speed
kl str -u kill character
le boo! false terminal has lower case
Im str login: login prompt
In str -v "literal next" character
lo str /bin/login program to exec when name obtained
nd num 0 newline (line-feed) delay
nl boo! false terminal has (or might have) a newline character

Last change: 24 October 1984 Sun Release 2.0

0

0

0

0

0

0

GETTYT AB (5) FILE FORMATS GETTYT AB (5)

nx str default next table (for auto speed selection)
op boo! false terminal uses odd parity
OS num unused output speed
pc str \0 pad character
pe boo! false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and following flush (seconds)
ps boo! false line connected to a MICOM port selector
qu str -, quit character
rp str 'R line retype character
rw boo! false do NOT use raw for input, use cbreak
sp num 0 line speed (input and output)
SU str -z suspend character
tc str none table continuation
td num 0 tab delay
to num 0 timeout (seconds)
tt str NULL terminal type (for enviroment)
ub boo! false do unbuffered output (of prompts etc)
UC boo! false terminal is known upper case only
we str -w word erase character
XC boo! false do NOT echo control chars as 'X
xf str -s XOFF (stop output) character
xn str 'Q XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is
entered. Specifying an input or output speed overrides line speed for stated direction only.

Terminal modes to be used for the output of the message, for input of the login name, and to
leave the terminal set as upon completion, are derived from the Boolean flags specified. If the
derivation should prove inadequate, any (or all) of these three may be overriden with one of the
to, fl, or f2 numeric specifications, which can be used to specify (usually in octal, with a leading
'O') the exact values of the flags. Local (new tty) flags are set in the top 16 bits of this {32 bit)
value.

Should getty receive a null character (presumed to indicate a line break) it will restart using the
table indicated by the nx entry. If there is none, it will re-use its original table.

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be
used. Should greater certainty be desired, delays with values 0, 1, 2, and 3 are interpreted as
choosing that particular delay algorithm from the driver.

The cl screen clear string may be preceded by a (decimal) number of milliseconds of delay
required (a la termcap). This delay is simulated by repeated use of the pad character pc.

The initial message, and login message, Im and Im may include the character sequence %h to
obtain the hostname. (%% obtains a single '%' character.) The hostname is normally obtained
from the system, but may be set by the hn table entry. In either case it may be edited with he.
The he string is a sequence or characters, each character that is neither 1@' nor '#' is copied
into the final hostname. A '@' in the he string, causes one character from the real hostname to
be copied to the final hostname. A '#' in the he string, causes the next character of the real
hostname to be skipped. Surplus 1@' and 1#' characters are ignored.

When petty execs the login process, given in the lo string (usually "/bin/login"), it will have set
the enviroment to include the terminal type, as indicated by the tt string (if it exists). The ev
string, can be used to enter additional data. into the environment. It is a list or comma separated
strings, each of which will presumably be of the form name=value.

Sun Release 2.0 Last change: 24 October 1984 351

GETTYT AB (5) FILE FORMATS GETTYTAB(5)

If a non-zero timeout is specified, with to, then getty will exit within the indicated number or
seconds, either having received a login name and passed control to login, or having received an
alarm signal, and exited. This may be useful to hangup dial in lines.

Output from getty is even parity unless op is specified. Op may be specified with ap to allow
any parity on input, but generate odd parity output. Note: this only applies while getty is being
run, terminal driver limitations prevent a more complete implementation. Getty does not check
parity or input characters in RAW mode.

SEE ALSO
termcap(5), getty(8).

352 Last change: 24 October 1984 Sun Release 2.0

0

0

0

0

0

0

GROUP(5) FILE FORMATS GROUP(5)

NAME
group - group file

SYNOPSIS
/etc/group

DESCRIPTION
Group contains for each group the following information:

• group name

• encrypted password

• numerical group ID

• a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

This file resides in the / etc directory. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical group ID's to names.

A group file can have a line beginning with a plus(+), which means to incorporate entries from
the yellow pages. There are two styles of + entries: All by itself, + means to insert the entire
contents of the yellow pages group file at that point; +name means to insert the entry (if any) for
name from the yellow pages at that point. If a + entry has a non-null password or group
member field, the contents of that field will overide what is contained in the yellow pages. The
numerical group ID field cannot be overridden.

EXAMPLE

FILES

+myproject:::bill, steve
+:

If these entries appear at the end of a group file, then the group myproject will have members
billandsteve, and the password and group ID of the yellow pages entry for the group myproject.
All the groups listed in the yellow pages will be pulled in and placed after the entry for mypro­
ject.

/etc/group /etc/yp/group

SEE ALSO
setgroups(2), initgroups(3), crypt(3), passwd(l), passwd(5)

BUGS
The passwd(l) command won't change group passwords.

Sun Release 2.0 Last change: 1 February 1985 353

HOSTS(5) FILE FORMATS HOSTS(5)

NAME
hosts - host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the DARPA Internet. For each
host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the begin­
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file. This file is normally created from the official host data base maintained at the
Network Information Control Center (NIC), though local changes may be required to bring it up
to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional "." notation using the inet_addr() routine
from the Internet address manipulation library, inet(3N). Host names may contain any printable
character other than a field delimiter, newline, or comment character.

/etc/hosts

SEE ALSO
gethostent(3N)

BUGS

354

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

Last change: 15 January 1983 Sun Release 2.0

0

0

0

0

0

0

HOSTS.EQUIV (5) FILE FORMATS HOSTS.EQUIV (5)

NAME
hosts.equiv - list of trusted hosts

DESCRIPTION

FlLES

Hosts.equiv resides in directory /etc and contains a list of trusted hosts. When an rlogin(l) or
rsh{l) request from such a host is made, and the initiator of the request is in /etc/passwd, then
no further validity checking is done. That is, rlogin does not prompt for a password, and reh
completes successfully. So a remote user is "equivalenced" to a local user with the same user ID
when the remote user is in hosts.equiv.

The format of hosts.equiv is a list of names, as in this example:

hostl
host2
+@group!
-@group2

A line consisting of a simple host name means that anyone logging in from that host is trusted.
A line consisting of +@group means that all members of that network group are trusted. A line
consisting of -@group means that members of that group are not trusted. Programs scan
hosts.equiv linearly, and stop at the first hit (either positive for hostname and +@ entries, or
negative for -@ entries). A line consisting of a single + means that everyone is trusted.

The .rhosts file has the same format as hosts.equiv. When user XXX executes rlogin or rsh, the
.rhosts file from XXX's home directory is conceptually concatenated onto the end of hosts. equiv
for permission checking. However, -@ entries are not sticky. If a user is excluded by a minus
entry from hosts.equiv but included in .rhosts, then that user is considered trusted. In the spe­
cial case when the user is root, then only the /.rhosts file is checked.

It is also possible to have two entries (separated by a single space) on a line of these files. In this
case, if the remote user is equivalenced by the first entry, then that user is allowed to log in as
any member of the second entry. Thus

sundown john

allows anyone from sundown to log in as john, and

+@group! +@group2

allows any member of netgroupl to log in as a member of netgroup!!.

/etc/hosts.equiv

SEE ALSO
rlogin(l), rsh(l), netgroup(5)

Sun Release 2.0 Last change: 1 February 1985 355

KBD(5) FILE FORMATS KBD(5 i

NAME
kbd - keyboard translation table format and default table

SYNOPSIS
#include <sundev /kbd.h>

DESCRIPTION
Keyboard translation is done in the UNIX kernel via a set of tables. A translation table is 128
bytes of 'entries', which are bytes (unsigned chars). The top 4 bits of each entry are decoded by
a case statement in the keyboard translator. If the entry is less than Ox80, it is sent out as an
ASCII character (possibly with the META bit OR-ed in). 'Special' entries are Ox80 or greater, and
invoke more complicated actions.

struct keymap {
unsigned char keymapj128J; /• maps keycodes to actions•/

};

A keyboard is defined by its keymaps.

struct keyboard {
struct keymap
struct keymap
struct keymap
struct keymap
struct keymap

};

int
int
unsigned char
unsigned char

•k_normal;
•k....shifted;
*k_caps;
•Lcontrol;
•k_up;
kjdleshifts;
kjdlebuckys;
k_abortl;
k_abort2;

/• Unshifted •/
/• Shifted •/
/• Caps locked •/
/• Controlled •/
/• Key went up •/
/•Shifts•/
/• Bucky bits •/
/• 1st key of abort sequence •/
/• 2nd key of abort sequence •/

The following defines the bit positions used within kjdleshifts to indicate the 'pressed' (1) or
'released' (0) state of shift keys. The bit numbers and the aggregate masks are defined.

Since it is possible to have more than one bit in the shift mask on at once, there is an implied
priority given to each shift state when determining which translation table to use. The order is
(from highest priority to lowest) UPMASK, CTRLMASK, SHIFTMASK, and lastly CAPSMASK.

#define CAPSLOCK O /• Caps Lock key•/
#define SHIFTLOCK 1 /• Shift Lock key•/
#define LEFTSHIFT 2 /• Left-hand shift key•/
#define RIGHTSHIFT 3 /• Right-hand shift key •/
#define LEFTCTRL 4 /• Left-hand (or only) control key •/
#define RIGHTCTRL 5 /• Right-hand control key •/
#define CAPSMASK OxOOOl /• Caplock translation table •/
#define SHIFTMASK OxOOOE /• Shifted translation table •/
#define CTRLMASK Ox0030 /• Ctr! shift translation table•/
#define UPMASK Ox0080 /• Key up translation table•/

Special Entry Key1

The 'special' entries' top 4 bits are defined below. Generally they are used with a 4-bit parame­
ter (such as a bit number) in the low 4 bits. The bytes whose top 4 bits are OxO thru Ox7 happen
to be ASCII characters. They are not special cased, but just normal cased.

#define SHIFTKEYS Ox80

0

0

thru Ox8F. This key helps to determine the translation table used. The bit position of o
its bit in 'shiftmask' is added to the entry, for example, SHIFTKEYS+LEFTCTRL. When

356 Last change: 19 March 1984 Sun Release 2.0

0

0

0

KBD (5) FILE FORMATS KBD(5)

this entry is invoked, the bit in 'shirtmask' is toggled. Depending which tables you put it
in, this works well for hold-down keys or press-on, press-off keys.

#define BUCKYBITS Ox90

thru Ox9F. This key determines the state of one of the 'bucky' bits above the returned
ASCII character. This is basically a way to pass mode-key-up/down information back to
the caller with each 'real' key depressed. The concept, and name 'bucky' (derivation
unknown) comes from the MIT/SAIL 'TV' system - they had TOP, META, CTRL, and a
few other bucky bits. The bit position of its bit in 'buckybits', minus 7, is added to the
entry; for example, bit Ox00000400 is BUCKYBITS+3. The '-7' prevents us from messing
up the ASCII char, and gives us 16 useful bucky bits. When this entry is invoked, the
designated bit in 'buckybits' is toggled. Depending which tables you put it in, this works
well for hold-down keys or press-on, press-off keys.

#define METABIT 0

Meta key depressed with key. This is the only user accessible bucky bit. This value is
added to BUCKYBITS in the translation table.

#define SYSTEMBIT 1

'System' key was down w/key. This is a kernel-accessible bucky bit. This value is added
to BUCKYBITS in the translation table. The system key is currently not used except as a
place holder to indicate the key used as the lc_abortl key (as defined above).

#define FUNNY OxAO /• thru OxAF. This key does one of 16 funny

#define NOP
#define OOPS
#define HOLE

#define NOS CROLL
#define CTRLS
#define CTRLQOxA5
#define RESET
#define ERROR
#define IDLE

OxAO
OxAl
OxA2

things based on the low 4 bits: •/
/• This key does nothing. •/
/• This key exists but is undefined. •/
/• This key does not exist on the keyboard.

Its position code should never be
generated. This indicates a software/
hardware mismatch, or bugs. •/

OxA3 /• This key alternately sends ·s or 'Q •/
OxA4 /• This sends ·s and lets NOSCROLL know•/
/• This sends 'Q and lets NOSCROLL know •/
OxA6 /• Kbd was just reset •/
OxA7 /• Kbd just detected an internal error•/
OxA8 /• Kbd is idle (no keys down)•/

Combinations OxA9 to OxAF are reserved for non-parameterized functions.

#define STRING OxBO

thru OxBF. The low-order 4 bits index a table select a string to be returned, char by
char. Each entry in the table is null terminated.

#define KTAB-8TRLEN 10 /• Maximum string length (including null)•/

Definitions for the individual string numbers:

#define HOMEARROW
#define UP ARROW
#define DOWNARROW
#define LEFT ARROW
#define RIGHT ARROW

Sun Release 2.0

OxOO
OxOl
Ox02
Ox03
Ox04

Last change: 19 March 1984 357

KBD(5) FILE FORMATS KBD(5)

String numbers 5 thru F are available to users making custom entries.

Function Key Groupings

In the following function key groupings, the low-order 4 bits indicate the function key number
within the group:

#define LEFTFUNC
#define RIGHTFUNC
#define TOPFUNC
#define BOTTOMFUNC
#define LF(n)
#define RF(n)
#define TF(n)
#define BF(n)

OxCO /• thru OxCF. The 'left' group. •/
OxDO /• thru OxDF. The 'right' group. •/
OxEO /• thru OxEF. The 'top' group. •/
OxFO /• thru OxFF. The 'bottom' group. •/
(LEFTFUNC+(n)-1)
(RIGHTFUNC+(n)-1)
(TOPFUNC+(n)-1)
(BOTTOMFUNC+(n)-1)

The actual keyboard positions may not be on the left/right/top/bottom of the physical keyboard
(although they usually are). What is important is that we have reserved 64 keys for function
keys.

Normally, when a function key is pressed, the following escape sequence is sent through the char­
acter stream:

ESC[0 .. 9z
where ESC is a single escape character and 0 .. 9 indicate some number of digits needed to encode
the function key as a decimal number.

DEFAULT TABLES

358

The kernel has 3 sets of initial translation tables, one set for each type of keyboard supported.

#ifndef lint
static char sccsid[[= "@(#)keytables.c 1.3 83/10/25 Copyr 1983 Sun Micro";
#endif

I•
• Copyright {C) 1983 by Sun Microsystems, Inc.

•/

I•
• keytables.c

•
• This module contains the translation tables for the up-down encoded
• Sun keyboards.
•I

#include " .. /sun/kbd.h"

/• handy way to define control characters in the tables •/
#define c(char) (char&OxlF)
#define ESC OxlB

/• Unshifted keyboard table for Micro Switch 103SD32-2 •/

static struct keymap keytab_msJc = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

LF(2), LF(3),
/• 8 •/TF(4), TF(5), TF(6), TF(7), TF(8),
/• 16 •/ TF(l2), TF(l3), TF(14), c('['),

HOLE, TF(l), TF(2), TF(3),
TF(9), TF(lO), TF(ll),
HOLE, RF(l), '+', '-'

Last change: 19 March 1984 Sun Release 2.0

0

0

0

0

0

0

KBD(5)

/• 24 •/

/• 32 •/
/• 40 •/
/• 48 •/

/• 56 •/
/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/
/• 96 of

FILE FORMATS

HOLE, LF(4), '\f', LF(6), HOLE, SHIFTKEYS+CAPSLOCK,

'3', '4', '5', '6', '7', '8',
'·'i ,-,, "', '\b', HOLE, '7',
HOLE, LF(7), STRING+UPARROW,

'l', '2',
'9',
'8',

'O',
'9',

LF(9), HOLE, '\t', 'q', 'w',
'p', 'e', 'r', 't', 'y', 'u', 'i',

'{' '}' ' ' HOLE '4' '5', ' ' _, ' '
STRING+LEFTARROW,

STRING+HOMEARROW,
STRING+RIGHT ARROW,

'o',
'6', HOLE,

HOLE, SHIFTKEYS+SHIFTLOCK,

'f', 'g', 'h', 'j',
'l', '\r', HOLE, '1',
STRING+DOWNARROW,

'k',
'2',

'a',

'l''
'3',

's',

'·' ''

'd',
,.,
. '

HOLE, NOSCROLL,

LF(97), HOLE, HOLE, SHIFTKEYS+LEFTSHIFT,
'z', 'x', 'c',

KBD(5)

/•104 •/
/•112 •/
/•120 •/

'v', 'b', 'n', 'm', ',', '.', '/', SHIFTKEYS+RIGHTSHIFT,
NOP, Ox7F, 'O', NOP, '.', HOLE, HOLE, HOLE,
HOLE, HOLE, SHIFTKEYS+LEFTCTRL,

' ' SHIFTKEYS+RIGHTCTRL,
HOLE, HOLE, IDLE,

};

/• Shifted keyboard table for Micro Switch 103SD32-2 •/

static struct keymap keytab_ms_uc = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

HOLE, TF(l), TF(2), TF(3),
TF(9), TF(IO), TF(ll), /• 8 •/TF(4),

/• 16 •/
/• 24 •/

/• 32 •/
/• 40 •/
/• 48 •/

/• 56 •/
/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/
/• 96 •/

LF(2), LF(3),
TF(5), TF(6), TF(7), TF(8),
TF(l2), TF(l3), TF(14), c('J'),
HOLE, LF(4), '\f', LF(6),

HOLE, RF(l), '+', '-',
HOLE, SHIFTKEYS+CAPSLOCK,

'!', ,.,
'

'#', '$', '%', '&', '\", '('' ')' I 'O',

' = ' '.' '@', '\b', HOLE, '7', '8', '9',
' ' HOLE, LF(7), STRING+UP ARROW,

LF(9), HOLE '\t'
' '

'Q', 'W',
'E', 'R', 'T', 'Y', 'U', 'I'' 'O', 'P',
'I', ']', ' ' HOLE, '4', '5', '6', HOLE, _,
STRING+LEFTARROW,

STRING+HOMEARROW,
STRING+RIGHT ARROW,

HOLE, SHIFTKEYS+SHIFTLOCK,

'F', 'G', 'H', 'J', 'K',
'\\', '\r', HOLE, '1', '2',
STRING+DOWNARROW,

'A',
'L',
'3',

'S', 'D',
'+', '•',
HOLE, NOSCROLL,

LF(97), HOLE, HOLE, SHIFTKEYS+LEFTSHIFT,
'Z', 'X', 'C',

/•104 •/
/•112 •/
/•120 •/

'V', 'B', 'N', 'M', '<', '>', '?', SHIFTKEYS+RIGHTSHIFT,
NOP, Ox7F, 'O', NOP, '.', HOLE, HOLE, HOLE,
HOLE, HOLE, SHIFTKEYS+LEFTCTRL,

Sun Release 2.0 Last change: 19 March 1984 359

KBD(5) FILE FORMATS KBD(5)

360

''

};

SHIFTKEYS+RIGHTCTRL,
HOLE, HOLE, IDLE,

/• Caps Locked keyboard table for Micro Switch 103SD32-2 •/

static struct keymap keytab_ms_cl = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

/• 8 •/TF(4),
/• 16 •/

HOLE, TF(l), TF(2), TF(3),
TF(9), TF(IO), TF(ll),
HOLE, RF(l), '+', '-',

/• 24 •/

LF(2), LF(3),
TF(5), TF(6), TF(7), TF(8),
TF(I2), TF(13), TF(14), c('['),
HOLE, LF(4), '\f', LF(6), HOLE, SHIFTKEYS+CAPSLOCK,

/• 32 •/
/• 40 •/
/• 48 •/

/• 56 •/
/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/
/• 96 •/

/•104 •/
/•112 •/
/•120 •/

};

'3', '4',
'-' ,-,

' ' HOLE, LF(7),

'5', '6', '7', '8',
"', '\b', HOLE, '7',
STRING+UP ARROW,

LF(9), HOLE, '\t',
'E', 'R', 'T', 'Y', 'U', 'I',
'{', '}', '-', HOLE, '4',
STRING+LEFTARROW,

STRING+HOMEARROW,

'5',

STRING+RIGHT ARROW,

'I', '2',
'9',
'8',

'Q',
'O',
'6',

'O',
'9',

'W',
'P',
HOLE,

HOLE, SHIFTKEYS+SHIFTLOCK,

'F', 'G', 'H', 'J', 'K',
'1' '\r' HOLE 'l'
1, ' ' '

'2',
STRING+DOWNARROW,

'A', 'S', 'D',
'L',
'3',

,.,
"

,.,
. '

HOLE, NOSCROLL,

LF(97), HOLE, HOLE, SHIFTKEYS+LEFTSHIFT,
'Z', 'X', 'C',

'V', 'B', 'N', 'M', ',', '.', '/', SHIFTKEYS+RIGHTSHIFT,
NOP, Ox7F, 'O', NOP, '.', HOLE, HOLE, HOLE,
HOLE, HOLE, SHIFTKEYS+LEFTCTRL,

' ' SHIFTKEYS+RIGHTCTRL,
HOLE, HOLE, IDLE,

/• Controlled keyboard table for Micro Switch 103SD32-2 •/

static struct keymap keytab_ms_ct = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

/• 8 •/TF(4),
/• 16 •/
/• 24 •/

/• 32 •/
/• 40 •/
/• 48 •/

/• 56 •/
/• 64 •/
/• 72 •/

HOLE, TF(l), TF(2), TF(3),
TF(9), TF(IO), TF(ll),

LF(2), LF(3),
TF(5), TF(6), TF(7), TF(8),
TF(12), TF(13), TF(14), c('['),
HOLE, LF(4), '\r', LF(6),

HOLE, RF(l), OOPS, OOPS,
HOLE, SHIFTKEYS+CAPSLOCK,

OOPS, OOPS,
OOPS, OOPS, OOPS, OOPS, OOPS, OOPS, OOPS, OOPS,
OOPS, c('''), c('@'), '\b', HOLE, OOPS, OOPS, OOPS,
HOLE, LF(7), STRING+UPARROW,

LF(9), HOLE, '\t', CTRLQ,
c('E'), c('R'), c('T'), c('Y'), c('U'), c('I'), c('O'), c('P'),
c('['), c('['), c('_'), HOLE, OOPS, OOPS, OOPS, HOLE,
STRING+LEFTARROW,

Last change: 19 March 1984

c('W'),

Sun Release 2.0

0

0

0

0

0

0

KBD(5)

/• 80 •/
/• 88 •/

/• g5 •/

FILE FORMATS

STRING+HOMEARROW,
STRING+RIGHTARROW,

HOLE, SHlFTKEYS+SHlFTLOCK,
c('A'), CTRLS, c('D'),

c('F'), c('G'), c('H'), c(' J'), c('K'), c('L'), OOPS, OOPS,
c('\ \'),

'\r', HOLE, OOPS, OOPS, OOPS, HOLE, NOSCROLL,
STRING+DOWNARROW,

LF(W), HOLE, HOLE, SHlFTKEYS+LEFTSHlFT,
c('Z'), c('X'), c('C'),

KBD(5)

/•104 •/
/•112 •/
/•120 •/

c('V'), c('B'), c('N'), c('M'), OOPS, OOPS, OOPS, SHlFTKEYS+RIGHTSHlFT,
NOP, Ox7F, OOPS, NOP, OOPS, HOLE, HOLE, HOLE,
HOLE, HOLE, SHlFTKEYS+LEFTCTRL,

'\O', SHlFTKEYS+RIGHTCTRL,
HOLE, HOLE, IDLE,

};

/• "Key Up" keyboard table for Micro Switch 103SD32-2 •/

static struct keymap keytab_ms_up = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

NOP, NOP, HOLE, NOP, NOP, NOP,
/• 8 •/NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/• 16 •/ NOP, NOP, NOP, NOP, HOLE, NOP, NOP, NOP,
/• 24 •/ HOLE, NOP, NOP, NOP, HOLE, SHlFTKEYS+CAPSLOCK,

NOP, NOP,
/• 32 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/• 40 •/ NOP, NOP, NOP, NOP, HOLE, NOP, NOP, NOP,
/• 48 •/ HOLE, NOP, NOP, NOP, HOLE, NOP, NOP, NOP,
/• 56 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/• 64 •/ NOP, NOP, NOP, HOLE, NOP, NOP, NOP, HOLE,
/• 72 •/ NOP, NOP, NOP, HOLE, SHlFTKEYS+SHlFTLOCK,

NOP, NOP, NOP,
/• 80 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/• 88 •/ NOP, NOP, HOLE, NOP, NOP, NOP, HOLE, NOP,
/• g5 •/ NOP, NOP, HOLE, HOLE, SHlFTKEYS+LEFTSHlFT,

NOP, NOP, NOP,
/•104 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, SHlFTKEYS+RIGHTSHlFT,
/•112 •/ NOP, NOP, NOP, NOP, NOP, HOLE, HOLE, HOLE,
/•120 •/ HOLE, HOLE, SHlFTKEYS+LEFTCTRL,

NOP, SHlFTKEYS+RIGHTCTRL,

};

/• Index to keymaps for Micro Switch 103SD32-2 •/
static struct keyboard keyindex__ms = {

&keytab_ms_!c,
&keytab_ms_uc,
&keytab_ms_cl,
&keytab_ms_ct,
&keytab_ms_up,

HOLE, HOLE, RESET,

Sun Release 2.0 Last change: rn March rn84 361

KBD(5) FIT,E FORMATS KBD(5)

362

};

CTLSMASK,
OxOOOO,
1, 77,

/• Shirt bits which stay on with idle keyboard •/
/• Bucky bits which stay on with idle keyboard •/
/• abort keys •/

/• Unshifted keyboard table for Sun-2 keyboard •/

static struct keymap keytab..s2-1c = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

/• 8 •/TF(4),
/• 16 •/
/• 24 •/
/• 32 •/
/• 40 •/
/• 48 •/
/• 56 •/
/• 64 •/

/• 72 •/

/• 80 •/
/• 88 •/

LF(2), LF(3), HOLE, TF(l), TF(2), TF(3),
TF(5), TF(6), TF(7), TF(8), TF(9), TF(lO), TF(ll),
TF(l2), TF(I3), TF(14), TF(15), HOLE, RF(l), RF(2), RF(3),
HOLE, LF(4), LF(5), LF(6), HOLE, c('i'), 'I', '2',
'3', '4', '5', . '6', '7', '8', '9', 'O',
'-', '=', "', '\b', HOLE, RF(4), RF(5), RF(6),
HOLE, LF(7), LF(8), LF(9), HOLE, '\t', 'q', 'w',
'e', 'r', 't', 'y', 'u', 'i', 'o', 'p',

Ox7F, HOLE, RF(7), STRING+lJPARROW,
RF(9), HOLE,

LF(lO), LF(ll), LF(12), HOLE, SHIFTKEYS+LEFTCTRL,

'[', 'J',

'a', 's', 'd',
'f', 'g', 'h', 'j', 'k', 'I', ';', '\",
'\ \', '\r', HOLE, STRING+LEFTARROW,

/• 96 •/

/•104 •/

/•ll2 •/

/•120 •/

RF(ll), STRING+RIGHTARROW,
HOLE, LF(13),

LF(l4), LF(15), HOLE, SHIFTKEYS+LEFTSHIFT,
'c', 'v',

'b', 'n', 'm', •• .. 'z',
•• . . 'x',

'/', SHIFTKEYS+RIGHTSHIFT,
'\n',

RF(l3), STRING+DOWNARROW,
RF(15), HOLE, HOLE, HOLE, HOLE, HOLE,

BUCKYBITS+METABIT,
'' BUCKYBITS+METABIT,

HOLE, HOLE, HOLE, ERROR, IDLE,
};

/• Shifted keyboard table for Sun-2 keyboard •/

static struct keymap keytab..s2-uc = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

/• 8 •/TF(4),
/• 16 •/
/• 24 •/
/• 32 •/
/• 40 •/
/• 48 •/
/• 56 •/
/• 64 •/

/• 72 •/

/• 80 •/

LF(2), LF(3), HOLE, TF(l), TF(2), TF(3),
TF(5), TF(6), TF(7), TF(8), TF(9), TF(lO), TF(ll),
TF(l2), TF(l3), TF(14), TF(l5), HOLE, RF(l), RF(2), RF(3),
HOLE, LF(4), LF(5), LF(6), HOLE, c('['), '!', '@',
'#', '$', '%', '"', '&', '•', '(', ')',
'-', '+', ,-,, '\b', HOLE, RF(4), RF(5), RF(6),
HOLE, LF(7), LF(8), LF(9), HOLE, '\t', 'Q', 'W',
'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P',
'{', '}', Ox7F, HOLE, RF(7), STRING+UPARROW,

RF(9), HOLE,
LF(lO), LF(ll), LF(12), HOLE, SHIFTKEYS+LEFTCTRL,

'F',
'A', 'S', 'D',

'G', 'H', 'J', 'K', 'L',

Last change: 19 March 1984

,., .. •••

Sun Release 2.0

0

0

0

0

0

0

KBD(5) FILE FORMATS KBD(li)

/• 88 •/

/• 96 •/

/•104 •/

/•112 •/

/•120 •/

};

,,,
I• '\r', HOLE, STRING+LEFTARROW,

RF(ll), STRING+RIGHTARROW,
HOLE, LF(13),

LF(14), LF(15), HOLE, SHIFTKEYS+LEFTSHIFT,
'Z',

'B', 'N', 'M', '<', '>',

RF(13), STRING+DOWNARROW,

'X',
'?' .. 'C', 'V',

SHIFTKEYS+RIGHTSHIFT,
'\n',

RF(15), HOLE, HOLE, HOLE, HOLE, HOLE,
BUCKYBITS+METABIT,

'' BUCKYBITS+METABIT,
HOLE, HOLE, HOLE, ERROR, IDLE,

/• Controlled keyboard table for Sun-2 keyboard •/

static struct keymap keytab...,s2_ct = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

HOLE, TF(l), TF(2), TF(3),
/• 8 •/TF(4),
/• 16 •/
/• 24 •/
/• 32 •/
/• 40 •/
/• 48 •/
/• 56 •/
/• 64 •/

/• 72 •/

/• 80 •/
/• 88 •/

/• 96 •/

/•104 •/

/•112 •/

/•120 •/

};

LF(2), LF(3),
TF(5), TF(6), TF(7), TF(8), TF(9), TF(lO), TF(ll),
TF(12), TF(13), TF(14), TF(15), HOLE, RF(l), RF(2), RF(3),
HOLE, LF(4), LF(5), LF(6), HOLE, c('['), '1', c('@'),
'3', '4', '5', c(', '), '7', '8', '9', 'O',
c('_'), ·-· c(" '), '\b', HOLE, RF(4), RF(5), RF(6), -,
HOLE, LF(7), LF(8), LF(9), HOLE, '\t', c('q'), c('w'),
c('e'), c('r'), c('t'), c('y'), c('u'), c('i'), c('o'), c('p'),
c('['), c('['), Ox7F, HOLE, RF(7), STRING+UPARROW,

RF(9), HOLE,
LF(lO), LF(ll), LF(12), HOLE, SHIFTKEYS+LEFTCTRL,

c('d'), c('a'), c('s'),
c('f'), c('g'), c('h'), c('j'), c('k '), c('l'), '·' .'\"' "
c('\ \'),

'\r', HOLE, STRING+LEFTARROW,
RF(ll), STRING+RIGHTARROW,

HOLE, LF(13),
LF(14), LF(l5), HOLE, SHIFTKEYS+LEFTSHIFT,

c('z'), c('x'), c('c'), c('v'),
c('b'), c('n'), c('m'), ',', '.', c('_'), SHIFTKEYS+RIGHTSHIFT,

'\n',
RF(l3), STRING+DOWNARROW,

RF(15), HOLE, HOLE, HOLE, HOLE, HOLE,
BUCKYBITS+METABIT,

c(' '), BUCKYBITS+METABIT,
HOLE, HOLE, HOLE, ERROR, IDLE,

/• "Key Up" keyboard table for Sun-2 keyboard •/

static struct keymap keytab...,s2_up = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

Sun Release 2.0 Last change: 19 March 1984 363

KBD(5) FILE FORMATS KBD(5)

364

OOPS, OOPS, HOLE, OOPS, OOPS, OOPS,
/• 8 •/OOPS, OOPS, OOPS, OOPS, OOPS, OOPS, OOPS, OOPS,
/• 16 •/ OOPS, OOPS, OOPS, OOPS, HOLE, OOPS, OOPS, NOP,
/• 24 •/ HOLE, OOPS, OOPS, OOPS, HOLE, NOP, NOP, NOP,
/• 32 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/• 40 •/ NOP, NOP, NOP, NOP, HOLE, OOPS, OOPS, NOP,
/• 48 •/ HOLE, OOPS, OOPS, OOPS, HOLE, NOP, NOP, NOP,
/• 56 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
/• 64 •/ NOP, NOP, NOP, HOLE, OOPS, OOPS, NOP, HOLE,
/• 72 •/ OOPS, OOPS, OOPS, HOLE, SHlFTKEYS+LEFTCTRL,

/• 80 •/
/• 88 •/
/• 96 •/

NOP, NOP, NOP,
NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
NOP, NOP, HOLE, OOPS, OOPS, NOP, HOLE, OOPS,
OOPS, OOPS, HOLE, SHlFTKEYS+LEFTSHlFT,

NOP, NOP, NOP, NOP,
/•104 •/ NOP, NOP, NOP, NOP, NOP, NOP, SHlFTKEYS+RIGHTSHlFT,

NOP,
/•112 •/
/•120 •/

OOPS, OOPS, NOP, HOLE, HOLE, HOLE, HOLE, HOLE,
BUCKYBITS+MET ABIT,

NOP, BUCKYBITS+METABIT,
HOLE, HOLE, HOLE, HOLE, RESET,

};

/• Index to keymaps for Sun-2 keyboard •/
static struct keyboard keyindex_s2 = {

&keytab...s2_lc,
&keytab...s2_uc,
0,
&keytab...s2_ct,
&keytab...s2_up,
OxOOOO, /• Shift bits which stay on with idle keyboard •/
OxOOOO, /• Bucky bits which stay on with idle keyboard •/
1, 77, /• abort keys•/

};

/• Unshifted keyboard table for "VTlOO style" •/

static struct keymap keytab_vt_lc = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/• 8 •/HOLE, HOLE, STRING+UPARROW,

STRING+DOWNARROW,
STRING+LEFT ARROW,

STRING+RIGHT ARROW,
HOLE, TF(l),

/• 16 •/ TF(2), TF(3), TF(4), c('I'), 'l', '2', '3', '4',
/• 24 •/ '5', '6', '7', '8', '9', 'O', ·-· ' = '
/• 32 •/ '" c('H'), BUCKYBITS+MET ABIT,

' '7', '8', '9', '' '\t', '
/• 40 •/ 'q', 'w', 'e', 'r', 't', 'y', 'u',

,., , ,
/• 48 •/ 'o', 'p', '/', ']', Ox7F, '4', '5', '6',
/• 56 •/ '' SHlFTKEYS+LEFTCTRL, ••

SHlFTKEYS+CAPSLOCK,

Last change: 19 March 1984 Sun Release 2.0

0

0

0

0

0

0

KBD(5)

/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/

/• 96 •/
/•104 •/
/•112 •/
/•120 •/
};

FILE FORMATS

'a', 's', 'd', 'f', 'g',

'h',
,.,

'k', 'I', '·' '\", '\r', '\\', J ' "
'1', '2', '3', NOP, NOSCROLL,

'c', 'v', 'b', 'n', 'm',
SHIFTKEYS+RIGHTSHIFT,

SHIFTKEYS+LEFTSHIFT,

''
"

'z', 'x',
" . ' '/',

'\n', 'O', HOLE, 9.', '\r', HOLE, HOLE,
HOLE, HOLE, '', HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,

/• Shifted keyboard table for "VTlOO style" •/

static struct keymap keytab_vt_uc = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/• 8 •/HOLE, HOLE, STRING+UPARROW,

/• 16 •/
/• 24 •/
/• 32 •/

/• 40 •/
/• 48 •/
/• 56 •/

/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/

/• 96 •/
/•104 •/
/•112 •/
/•120 •/
};

STRING+DOWNARROW,
STRING+LEFTARROW,

STRING+RIGHT ARROW,
HOLE, TF(l),

TF(2), TF(3), TF(4), c('\'), '!', '@', '#', '$',
'%', '"', '&', '*', '(', ')',
,-,, c('H'), BUCKYBITS+METABIT,

'Q',
'O',
'' ..

'H',

'7', '8', '9',
'W', 'E', 'R', 'T', 'Y',
'P', '{', '}', Ox7F, '4',
SHIFTKEYS+LEFTCTRL,

SHIFTKEYS+CAPSLOCK,
'A\ 'S', 'D',

,., '"' . ' . 'L',

' ' _,

'.'
' 'U',

'5',

'F',
'\r',

'+',

'\t'i
'I'.
'6',

'G',
,,,
I•

'I',
'J',
'2',

'K',
'3', NOP, NOSCROLL,

SHIFTKEYS+LEFTSHIFT,
'Z', 'X',

'C', 'V', 'B', 'N', 'M', '<', '>', ., . . .
SHIFTKEYS+RIGHTSHIFT,

'\n', 'O', HOLE, '.', '\r', HOLE, HOLE,
HOLE, HOLE, ' ', HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,

/• Caps Locked keyboard table for "VTlOO style"•/

static struct keymap keytab_vt_c! = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/• 8 •/HOLE, HOLE, STRING+UPARROW,

Sun Release 2.0 La.st change: 19 March 1984

KBD(5)

365

KBD(5) FILE FORMATS KBD(5)

366

STRING+DOWNARROW,
STRING+LEFTARROW,

STRING+RIGHTARROW,
HOLE, TF(l),

/• 16 •/ TF(2), TF(3), TF(4), c('l'l, '1', '2', '3', -,4',

/• 24 •/ '5', '6', '7', '8', '9', 'O', '' ' = '
/• 32 •/ '" c('H'), BUCKYBITS+METABIT,

'7', '8', '9', '' '\t', '
/• 40 •/ 'Q\ 'W', 'E', 'R', 'T', 'Y', 'U', 'I''
/• 48 •/ 'O', 'P', 'I'' ']', Ox7F, '4', '5', '6',

/• 56 •/ '' SHIFTKEYS+LEFTCTRL,
" SHIFTKEYS+CAPSLOCK,

'A', 'S', 'D', 'F', 'G',

/• 64 •/ 'H', 'J', 'K', 'L', '·' '\", '\r', '\\', "
/• 72 •/ 'l', '2', '3', NOP, NOS CROLL,

SHIFTKEYS+LEFTSHIFT,
'Z', 'X',

/• 80 •/ 'C', 'V', 'B', 'N', 'M', '' '' '/', '' . '
/• 88 •/ SHIFTKEYS+RIGHTSHIFT,

'\n', 'O', HOLE, '' '\r', HOLE, HOLE, . '
/• 96 •/ HOLE, HOLE, '' HOLE, HOLE, HOLE, HOLE, HOLE,

'
/•104 •/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/•112 •/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/•120 •/ HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,
};

/• Controlled keyboard table for "VTlOO style"•/

static struct keymap keytab_vLct = {
/• 0 •/HOLE, BUCKYBITS+SYSTEMBIT,

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
/• 8 •/HOLE, HOLE, STRING+UPARROW,

/• 16 •/
/• 24 •/
/• 32 •/

/• 40 •/
/• 48 •/
/• 56 •/

/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/

/• 96 •/

TF(2), TF(3),
'5', c('. '),
c('. '), c('H'),

CTRLQ,
c('O'), c('P'),

TF(4),
'7',

STRING+DOWNARROW,
STRING+LEFT ARROW,

STRING+RIGHT ARROW,
HOLE, TF(l),

c('l'l, 'l', c('@'), '3', '4',
'8', '9', 'O', c('_'), . = '

BUCKYBJTS+MET ABIT,
'7', '8', '9', '-' '\t', •

c('W'), c('E'), c('R'), c('T'), c('Y'), c('U'), c('I'),
c('l'l, c('I'), Ox7F, '4', '5', '6',

'' SHIFTKEYS+LEFTCTRL, ••
SHIFTKEYS+CAPSLOCK,

c('A'), CTRLS, c('D'), c('F'), c('G'),
c('H'), c('J'), c('K'), c('L'), '·'

,., '\r', c('\ \'), . ' ' '1', '2', '3', NOP, NOS CROLL,
SHIFTKEYS+LEFTSHIFT,

c('Z'), c('X'),
c('C'), c('V'), c('B'), c('N'), c('M'), '' . ' c('_'),

" . '
SHIFTKEYS+RIGHTSHIFT,

'\n', 'O', HOLE, '' '\r', HOLE, HOLE, . '
HOLE, HOLE, c(' '), HOLE, HOLE, HOLE, HOLE, HOLE,

Last change: 19 March 1984 Sun Release 2.0

0

0

0

0

0

0

KBD(5)

/•104 •/
/•112 •/
/•120 •/
};

FILE FORMATS

HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, IDLE,

/• "Key up" keyboard table for "VTlOO style"•/

static struct keymap keytab_vt_up = {
/• O •/HOLE, BUCKYBITS+SYSTEMBIT,

/• 8 •/HOLE, HOLE, NOP,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
NOP, NOP, NOP, HOLE, NOP,

/• 16 •/ NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
NOP, NOP, NOP, NOP, NOP, NOP,
BUCKYBITS+MET ABIT,

/• 24 •/ NOP, NOP,
/• 32 •/ NOP, NOP,

/• 40 •/
/• 48 •/
/• 56 *f

/• 64 •/
/• 72 •/

/• 80 •/
/• 88 •/

/•%•/
/•104 *f
/•112 •/
/•120 *f
};

NOP, NOP, NOP, NOP, NOP,
NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
NOP, SHIFTKEYS+LEFTCTRL,

SHIFTKEYS+CAPSLOCK,
NOP, NOP, NOP, NOP, NOP,

NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP,
NOP, NOP, NOP, NOP, NOP, SHIFTKEYS+LEFTSHIFT,

NOP, NOP, NOP, NOP,
SHIFTKEYS+RIGHTSHIFT,

NOP, NOP,
NOP, NOP, NOP, NOP,

NOP, NOP, HOLE, NOP, NOP, HOLE, HOLE,
HOLE, HOLE, NOP, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE,
HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, HOLE, RESET,

/• Index to keymaps for "VTlOO style" keyboard •/
static struct keyboard keyindex_vt = {

&keytab_vt_lc,
&keytab_vt_uc,
&keytab_vt_cl,
&keytab_vt_ct,
&keytab_vt_up,
CAPSMASK+CTLSMASK, /• Shift keys that stay on at idle keyboard •/
OxOOOO, /• Bucky bits that stay on at idle keyboard •/
l, 59, /• abort keys •/

};

I************************•**********************************••••••••••••••••/
/• Index table for the whole shebang •/

!•··! int nkeytables = 3; /• max 16 •/
struct keyboard •keytables[J = {

Sun Release 2.0

&keyindex_ms,
&keyindex_vt,

Last change: 19 March 1984

KBD(5)

367

KBD(5) FILE FORMATS

};
&keyindex_s2,

Keyboard String Table

This defines the strings sent by various keys (as selected in the
tables above).

#define kstescinit(c) {'\033', T, 'c', '\O'}
char keystringtab[16l[KTAB_STRLEN[= {

kstescinit(H) /•home•/,
kstescinit(A) /•up•/,

};

kstescinit(B) /•down•/,
kstescinit(D) /•left•/,
kstescinit(C) /orighto/,

SEE ALSO
cons(4S)

BUGS

KBD(6)

This keyboard translation implementation is essentially the PROM monitor mechanism moved
into the kernel. It will almost certainly be reworked in the future to take advantage of the
greater flexibility available to the kernel that was not available in the PROM.

368 Last change: 19 March 1984 Sun Release 2.0

0

0

0

0

0

0

MTAB(5) FILE FORMATS MTAB(5)

NAME
/etc/mtab - mounted file system table

SYNOPSIS
#Include <mntent.h>

DESCRIPTION

FILES

Mtab resides in the /etc directory, and contains a table of filesystems currently mounted by the
mount command. Umount removes entries from this file.

The file contains a line of information for each mounted filesystem, structurally identical to the
contents of/ etc/fstab, described in fstab(5). There are a number of lines of the form:

Jsname dir type opts freq passno

for example:

/dev /xyOa / 4.2 rw,noquota I 2

The file is accessed by programs using getmntent(3), and by the system administrator using a
text editor.

/etc/mtab

SEE ALSO
getmntent(3), fstab(5), mount(8)

Sun Release 2.0 Last change: 12 March 1985 369

NETGROUP (5) FILE FORMATS NETGROUP (5)

NAME
netgroup - list of network groups

DESCRIPTION

FILES

Netgroup defines network wide groups, which are used for perm1ss1on checking when doing
remote mounts, remote logins, and remote shells. Each line or the netgroup file defines a group
and has the format

groupname memberl member2

where memberi is either another group name, or a triple:

{hostname, username, domainname)

Any of three fields can be empty, in which case it signifies a wild card. Thus

universal (,,)

defines a group to which everyone belongs.

Network groups are accessed through the yellow pages. The database actually used by the yel­
low pages are in these two files:

/etc/yp/ domainname/netgroup.dir
/etc/yp / domainname/netgroup.pag

These files can be created from /etc/netgroup using makedbm(S).

/etc/netgroup
/etc/yp/ domainname/netgroup.dir
/etc/yp / domainname/netgroup.pag

SEE ALSO
getnetgrent(3), exportfs(8), makedbm(8), ypserv(8)

370 Last change: 1 February 1985 Sun Release 2.0

0

0

0

0

0

0

NETWORKS (5) Fll,E FORMATS NETWORKS (5)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should be present with the following informa­
tion:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the begin­
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file. This file is normally created from the official network data base maintained at
the Network Information Control Center (NIC), though local changes may be required to bring it
up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional "." notation using the inet_nelwork() rou­
tine from the Internet address manipulation library, inel(3N). Network names may contain any
printable character other than a field delimiter, newline, or comment character.

/etc/networks

SEE ALSO
getnetent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

Sun Release 2.0 Last change: 15 January 1983 371

NEWS(5) FILE FORMATS NEWS(5)

NAME
news - USENET network news article, utility files

DESCRIPTION

372

There are two rormats or news articles: A and 8. A rormat is the only rormat that version 1
netnews systems can read or write. Systems running the version 2 netnews can read either for­
mat and there are provisions ror the version 2 netnews to write in A rormat. A format looks like
this:

A article-ID
newsgroups
path
date
title
Body of article

Only version 2 netnews systems can read and write B format. B format contains two extra
pieces or information: receival date and expiration date. The basic structure or a B rormat file
consists or a series or headers and then the body. A header field is defined as a line with a capi­
tal letter in the 1st column and a colon somewhere on the line. Unrecognized header fields are
ignored. News is stored in the same format transmitted, see "Standard ror the Interchange or
USENET Messages" for a run description. The rollowing fields are among those recognized:

Header

From:

Information

user@hoat.domainf.domain ...] (Full Name}

Newsgroups: Newsgroups

Message-ID: < Unique Identifier>

Subject: descriptive title

Date: Date Posted

Date-Received:

Expires:

Reply-To:

References:

Control:

Date received on local machine

Expiration Date

Address for mail replies

Article ID of article this is

Text of a control message

Here is an example or an article:

Relay-Version: B 2.10 2/13/83 cbosgd.UUCP
Posting-Version: B 2.10 2/13/83 eagle.UUCP
Path: cbosgd!mh uxj!mh uxt!eagle!jerry
From: jerry@eagle.uucp (Jerry Schwarz)
Newsgroups: net.general
Subject: Usenet Etiquette •• Please Read
Message-ID: <642@eagle.UUCP>
Date: Friday, 19-Nov-82 16:14:55 EST
Followup-To: net.news
Expires: Saturday, l-Jan-83 00:00:00 EST
Date-Received: Friday, 19-Nov-82 16:59:30 EST
Organization: Bell Labs, Murray Hill

The body or the article comes here, arter a blank line.

Last change: 6 January rns4 Sun Release 2.0

0

0

0

0

0

0

NEWS (5) FILE FORMATS

A eye file line has four fields, each seperated by colons:

syatem-name:aubscriptiona:ftaga:transmission command

or these fields, on the system-name and subscriptions need to be present.

NEWS(5)

The system name is the name of the system being sent to. The subscriptions is the list of news­
groups to be transmitted to the system. The flags are a set of letters describing how the article
should be transmitted. The default is B. Valid flags include A (send in A format), B (send in B
format), N (use ihave/sendme protocol), U (use uux -c and the name of the stored article in a %s
string).

The transmission command is executed by the shell with the article to be transmitted as the
standard input. The default is uux - -z -r eyename!rnew1. Some examples:

xyz:net.all
oldaya:net.all,fa.all,to.oldaya:A
berkaya:net.all,ucb.all:i/uar/llb/newa/aendnew1 -b berkay1:rnew1
arpaays:net.all,arpa.all::/uar/llb/newa/aendnew1 -a rnews@arpaay1
old2:net.all,fa.all:A:/uar/llb/aendnew11 -o old2:rnew1
user:fa.af-lovers::mall user

Somewhere in a eye file, there must be a line for the host system. This line has no flags or com­
mands. A# as the first character in a line denotes a comment.

The history, active, and ngfile files have one line per item.

SEE ALSO
inews(l), postnews(l), sendnews(8), uurec(8), readnews(l)

Sun Release 2.0 Last change: 6 January 1984 373

NEWSRC(5) FILE FORMATS NEWSRC(5)

NAME
newsrc - information file for readnews and checknews

DESCRIPTION

FlLES

The .newerc file contains the list or previously read articles and an optional options line for read­
newe(l) and checknewe(l). Each newsgroup that articles have been read from has a line or the
form:

newsgroup: range

Range is a list of the articles read. It is basically a list of numbers separated by commas with
sequential numbers collapsed with hyphens. For instance:

general: 1-78,80,85-110
ra.lnfo-cpm: 1-7
net.news; 1
ra.lnfo-vax! 1-5

If the : is replaced with an ! (as in info-vax above) the newsgroup is not subscribed to and is not
be shown to the user.

An options line starts with the word options (left-justified). Then there are the list or options
just as they would be on the command line. For instance:

options -n all !fa.at-lovers !fa.human-nets -r
options -c -r

A string or lines beginning with a space or tab after the initial options line are considered con­
tinuation lines.

• /.newsrc options and list of previously read articles

SEE ALSO
readnews(l), checknews(l)

374 Last change: 6 January 1984 Sun Release 2.0

0

0

0

0

0

0

PASSWD(5) FILE FORMATS PASSWD(5)

NAME
passwd - password file

SYNOPSIS
/etc/pasawd

DESCRIPTION
The passwd file contains for each user the rollowing information:

name User's login name - contains no upper case characters and must not be greater than
eight characters long.

password encrypted password

numerical user ID
This is the user's ID in the system and it must be unique.

numerical group ID
This is the number or the group that the user belongs to.

user's real name
In some versions or UNIX, this field also contains the user's office, extension, home
phone, and so on. For historical reasons this field is called the GOOS field.

initial working directory
The directory that the user is positioned in when they log in - this is known as the
'home' directory.

shell program to use as Shell when the user logs in.

The user's real name field may contain '&'i meaning insert the login name.

The password file is an ASCII file. Each field within each user's entry is separated from the next
by a colon. Each user is separated from the next by a new-line. Ir the password field is null, no
password is demanded; ir the Shell field is null, /bin/sh is used.

The passwd file can also have line beginning with a plus (+), which means to incorporate entries
from the yellow pages. There are three styles or + entries: all by itselr, + means to insert the
entire contents or the yellow pages password file at that point; +name means to insert the entry
(ir any) for name from the yellow pages at that point; +@name means to insert the entries for all
members or the network group name at that point. Ir a + entry has a non-null password, direc­
tory, gecos, or shell field, they will overide what is contained in the yellow pages. The numerical
user ID and group ID fields cannot be overridden.

EXAMPLE
Here is a sample /etc/passwd file:

root:q.mJzTnuBicF.:0:10:God:/:fbin/csh
tut:6k/7KCFRPNVXg:508:10:B111 Tuthill:/usr2/tut:fbin/csh
+john:
+@documentation:no-login:
+:: :Guest

In this example, there are specific entries for users root lul, in case the yellow pages are out or
order. The user will have his password entry in the yellow pages incorporated without change;
anyone in the netgroup documentation will have their password field disabled, and anyone else
will be able to log in with their usual password, shell, and home directory, but with a gecos field
or Guest.

The password file resides in the /etc directory. Because or the encrypted passwords, it has gen­
eral read permission and can be used, ror example, to map numerical user !D's to names.

Sun Release 2.0 Last change: 1 February 1985 375

PASSWD(5) FILE FORMATS PASSWD(5)

FILES

Appropriate precautions must be taken to lock the /etc/passwd file against simultaneous changes
if it is to be edited with a text editor; vipw(8) does the necessary locking.

/etc/passwd

SEE ALSO
getpwent(3), login(l), crypt(3), passwd(l), group(5), vipw(8), adduser(8)

376 Last change: 1 February 1985 Sun Release 2.0

01

0

0

0

0

0

PHONES(&) FILE FORMATS PHONES(5)

NAME
phones - remote host phone number data base

SYNOPSIS
/etc/phones

DESCRIPTION

FILES

The file / etc/phones contains the system-wide private phone numbers for the lip(lC) program.
/ etc/phones is normally unreadable, and so may contain privileged information. The format of
/ etc/phones is a series of lines of the form: <system-name>[\t]•<phone-number>. The system
name is one of those defined in the remote(5) file and the phone number is constructed from
[0123456789-=•%[. The '=' and '•' characters are indicators to the auto call units to pause and
wait for a second dial tone (when going through an exchange). The'=' is required by the DF02-
AC and the '•' is required by the BIZCOMP 1030.

Com.ment lines are lines containing a '#' sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line in the file contains
the same system name tip(lC) will attempt to dial each one in turn, until it establishes a connec­
tion.

/etc/phones

SEE ALSO
tip(lC), remote(&)

Sun Release 2.0 Last change: 13 February 1985 377

PLOT(5) FILE FORMATS PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X), and are interpreted for vari­
ous devices by commands described in plot(lG). A graphics file is a stream of plotting instruc­
tions. Each instruction consists of an ASCII letter usually followed by bytes or binary informa­
tion. The instructions are executed in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. The last designated point in an I, m, n, or p
instruction becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in plot(3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See
plot(lG).

p point: Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the point given by the follow­
ing four b;,tes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last
four give the end point or a circular arc. The least significant coordinate of the end point is
used only to determine the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing further lines.
The styles are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only in
plot 4014 and plot ver.

• space: The next four bytes give the lower left corner or the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as closely
as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters or plot(lG). The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points outside may be displayable on dev­
ices whose face isn't square.

4014
ver
300, 300s
450

space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);
space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);

SEE ALSO
plot(lG), plot(3X), graph(lG)

378 Last change: 15 January 1983 Sun Release 2.0

0

0

0

0

0

0

PRINTCAP (5) FILE FORMATS PRINTCAP (5)

NAME
printcap - printer capability data base

SYNOPSIS
/etc/printcap

DESCRIPTION
Printcap is a simplified version or the termcap(5) data base for describing printers. The spooling
system accesses the printcap file every time it is used, allowing dynamic addition and deletion or
printers. Each entry in the data base describes one printer. This data base may not be substi­
tuted for, as is possible for termcap, because it may allow accounting to be bypassed.

The default printer is normally Ip, though the environment variable PRINTER may be used to
override this. Each spooling utility supports a -Pprinter option to explicitly name a destination
printer.

Refer to the Line Printer Spooler Manual in the Sun System Manager'• Manual for a discussion
or how to set up the database for a given printer.

Each entry in the printcap file describes a printer, and is a line consisting or a number of fields
separated by ':' characters. The first entry for each printer gives the names which are known for
the printer, separated by 'i' characters. The first name is conventionally a number. The second
name given is the most common abbreviation for the printer, and the last name given should be
a long name fully identifying the printer. The second name should contain no blanks; the last
name may well contain blanks for readability. Entries may continue onto multiple lines by giving
a \ as the last character or a line, and empty fields may be included for readability.

Capabilities in printcap are all introduced by two-character codes, and are of three types:

Boolean capabilities indicate that the printer has some particular feature. Boolean capabilities
are simply written between the ':' characters, and are indicated by the word 1bool' in
the type column of the capabilities table below.

Numeric capabilities supply information such as baud-rates, number or lines per page, and so
on. Numeric capabilities are indicated by the word 'num' in the type column of the
capabilities table below. Numeric capabilities are given by the two-character capabil­
ity code followed by the '#' character, followed by the numeric value. For example:
:br#l200: is a numeric entry stating that this printer should run at 1200 baud.

String capabilities give a sequence which can be used to perform particular printer opera­
tions such as cursor motion. String valued capabilities are indicated by the word 'str'
in the type column or the capabilities table below. String valued capabilities are
given by the two-character capability code followed by an '=' sign and then a string
ending at the next following ':'. For example, :rp=spinwriter: is a sample entry stat­
ing that the remote printer is named 'spinwriter'.

CAP ABILITIES
Name Type Default Description

ar str NULL name or accounting file
br num none if Ip is a tty, set the baud rate (ioctl call)
cf str NULL cifplot data filter
df str NULL TeX data filter (DVI format)
du str 0 User ID of user 'daemon'.
re num 0 if Ip is a tty, clear flag bits (sgtty .h)
ff str "\r" string to send for a form reed
fo boo! raise print a form feed when device is opened
rs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot (3X) format)
ic boo! false driver supports (non standard) ioctl

Sun Release 2.0 Last change: 26 September 1984 379

PRINTCAP (5) FILE FORMATS PRINTCAP (5)

call for indenting printout
if str NULL name of text filter which does accounting
If str "/dev/console" error logging file name
lo str "lock" name of lock file
Ip str "/dev /Ip" device name to open for output
me num 0 maximum number of copies
mx num 1000 maximum file size (in BUFSIZ blocks), zero= unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroff data filter (device independent troff)
of str NULL name of output filtering program
pl num 66 page length (in lines)
pw num 132 page width (in characters)
px num 0 page width in pixels (horizontal)
PY num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files
rm str NULL machine name for remote printer
rp str "Ip" remote printer name argument
rs boo! false restrict remote users to those with local accounts
rw boo! false open printer device read/write instead of read-only
sb boo! false short banner (one line only)
SC boo! false suppress multiple copies
sd str "/usr /spool/I pd" spool directory
sf boo! false suppress form feeds
sh boo! false suppress printing of burst page header
st str "status" status file name
tr str NULL troff data filter (cat phototypesetter)
tr str NULL trailer string to print when queue empties
vf str NULL raster image filter
XC num 0 if Ip is a tty, clear local mode bits (tty (4))
XS num 0 like 'xc' but set bits

Error messages sent to the console have a carriage return and a line feed appended to them,
rather than just a line feed.

If the local line printer driver supports indentation, the daemon must understand how to invoke
it.

Note that the 'fs', 'fc', 'xs', and 1xc' fields are flag masks rather than flag values. Certain default
device flags are set when the device is opened by the lineprinter daemon if the device is a tty.
The flags indicated in the 'fc' field are then cleared; the flags in the 'fs' field are then set (or
vice-versa, depending on the order of 'fc#nnnn' and 'fs#nnnn' in the /etc/printcap file). For
example, to set exactly the flags 06300 in the 'fs' field, do:

:fc#0177777:fs#06300:

The same process applies to the 'xc' and 'xs' fields.

SEE ALSO
termcap(5), lpc(8), lpd(8), pac(8), lpr(l), lpq(l), lprm(l)
The Line Printer Spooler Manual in the Sun System Manager's Manual.

380 Last change: 26 September 1984 Sun Release 2.0

0

0

0

0

0

0

PROTOCOLS (5) FILE FORMATS PROTOCOLS (5)

NAME
protocols - protocol name data base

SYNOPSIS
/etc/protocoI1

DESCRIPTION
The protocols file contains information regarding the known protocols used in the DARPA Inter­
net. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the begin­
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

EXAMPLE
The following example is taken from the Sun UNIX system.

Internet (IP) protocols

FILES

ip
icmp
ggp
tcp
pup
udp

/etc/protocols

SEE ALSO
getprotoent(3N)

BUGS

0
1
2
6
12
17

IP
ICMP
GGP
TCP
PUP
UDP

internet protocol, pseudo protocol number
internet control message protocol
gateway-gateway protocol
transmission control protocol
PARC universal packet protocol
user datagram protocol

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

Sun Release 2.0 Last change: 13 December 1983 381

REMOTE(5) FILE FORMATS REMOTE(5)

NAME
remote - remote host description file

SYNOPSIS
/etc/remote

DESCRIPTION
The systems known by tip(lC) and their attributes are stored in an ASCII file which is structured
somewhat like the termcap(5) file. Each line in the file provides a description for a single system.
Fields are separated by a colon (':'). Lines ending in a \ character with an immediately following
newline are continued on the next line.

The first entry is the name(s) or the host system. If there is more than one name for a system,
the names are separated by vertical bars. After the name of the system comes the fields of the
description. A field name followed by an '=' sign indicates a string value follows. A field name
followed by a '#' sign indicates a following numeric value.

Entries named 'tip•' and 'cu•' are used as default entries by tip, and the cu interface to tip, as
follows. When tip is invoked with only a phone number, it looks for an entry of the form
'tip300', where 300 is the baud rate with which the connection is to be made. When the cu inter­
face is used, entries of the form 1cu300' are used.

CAP ABILITIES

382

Capabilities are either strings (str), numbers (num), or boolean flags (boo!). A string capability is
specified by capability=value; for example, 'dv=/dev /harris'. A numeric capability is specified by
capability#va/ue; for example, 'xa#99'. A boolean capability is specified by simply listing the
capability.

at (str) Auto call unit type.

br (num) The baud rate used in establishing a connection to the remote host. This is a
decimal number. The default baud rate is 300 baud.

cm (str) An initial connection message to be sent to the remote host. For example, if a host
is reached through port selector, this might be set to the appropriate sequence required
to switch to the host.

cu (str) Call unit if making a phone call. Default is the same as the 'dv' field.

di (str) Disconnect message sent to the host when a disconnect is requested by the user.

du (boo!) This host is on a dial-up line.

dv (str) UNIX device(s) to open to establish a connection. Ir this file refers to a terminal line,
'tip(lC) attempts to perform an exclusive open on the device to insure only one user at a
time has access to the port.

el (str) Characters marking an end-of-line. The default is NULL. Tip only recognizes ,-,
escapes after one of the characters in 'el', or after a carriage~return.

fa (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (boo!) The host uses half-duplex communication, local echo should be performed.

le (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a file, this
string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of 'even',
'odd', 'none', 'zero' (always set bit 8 to zero), 'one' (always set bit 8 to 1). The default is
'none'.

pn (str) Telephone number(s) for this host. Ir the telephone number field contains an @
sign, tip searches the /etc/phones file for a list of telephone numbers - see phones(5). A

Last change: 13 February 1985 Sun Release 2.0

0

0

0

0

0

0

REMOTE(&) FILE FORMATS REMOTE(5)

FILES

tc

% sign in the telephone number indicates a &-second delay for the Ventel Modem.

(str) Indicates that the list of capabilities is continued in the named description. This is
used primarily to share common capability information.

Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv=/ dev / cauO:el= ·o ·u· C • S • Q ·o@:du:at=ventel:ie=#$%:oe-·o:br#l200:

arpavaxlax:\
:pn=7654321%:tc=UNIX-1200

/etc/remote

SEE ALSO
tip(lC), phones(5)

Sun Release 2.0 Last change: 13 February 1985 383

RMTAB{5) FILE FORMATS RMTAB{5)

NAME
rmtab - remotely mounted file system table

DESCRIPTION

FILES

Rmtab resides in directory / etc and contains a record or all clients that have done remote mounts
of file systems from this machine. Whenever a remote mount is done, an entry is made in the
rmtab file of the machine serving up that file system. Umount removes entries, iC of a remotely
mounted file system. Umount -a broadcasts to all servers, and informs them that they should
remove all entries from rmtab created by the sender of the broadcast message. By placing a
umount -a command in /etc/re.boot, rmtab tables can be purged of entries made by a crashed
host, which upon rebooting did not remount the same file systems it had before. The table is a
series of lines of the form

hostname:directory

This table is used only to preserve information between crashes, and is read only by mountd(B)
when it starts up. Mountd keeps an in-core table, which it uses to handle requests from pro­
grams like showmount(l) and shutdown(B).

/etc/rmtab

SEE ALSO
showmount{l), mountd{8), mount{8), umount(B), shutdown{B)

BUGS
Although the rmtab table is close to the truth, it is not always 100% accurate.

384 Last change: 1 February 1985 Sun Release 2.0

0

0

0

0

0

0

SCCSFILE(5) FILE FORMATS SCCSFILE(5)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum, the delta table (con­
tains information about each delta), user names (contains login names and/or numerical group
IDs of users who may add deltas), flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading) char­
acter (octal 001). This character is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line.
The @h provides a magic number of (octal) 064001.

Delta table

Sun Release 2.0

The delta table consists of a variable number of entries of the form:
@aDDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@I DDDDD ...
@x DDDDD •••
@g DDDDD •••
@m <MR number>

@c <comments> •••

@e

The first line (@•) contains the number of lines inserted/deleted/unchanged respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the delta, the login name
corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @I, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c
lines contain comments associated with the delta.

The @e line ends the delta table entry.

Last change: 15 March 1983 385

SCCSFILE (5) FILE FORMATS SCCSFILE(5)

386

User names

Flags

The list of login names and/or numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @u and @U. An empty list allows
anyone to make a delta.

Keywords used internally (see admin(l) for more information on their use). Each flag
line takes the form:

@r <flag> <optional text>

The following flags are defined:
@r t <type or program>
@r v <program name>
@ri
@tb
@tm
@tr
@re
@rd
@rn
@rj
@rl
@tq

<module name>
<floor>
<ceiling>
<default-sid>

<lock-releases>
<user defined>

The t flag defines the replacement for the identification keyword. The v flag controls
prompting for MR numbers in addition to comments; if the optional text is present it
defines an MR number validity checking program. The I flag controls the warning/error
aspect of the "No id keywords" message. When the l flag is not present, this message is
only a warning; when the l flag is present, this message will cause a 11fatal" error (the file
will not be gotten, or the delta will not be made). When the b flag is present the -b
keyletter may be used on the get command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of the sccsflle.5 identification key­
word. The r flag defines the "floor" release; the release below which no deltas may be
added. The c flag defines the "ceiling" release; the release above which no deltas may be
added. The d flag defines the default SID to be used when none is specified on a get
command. The n flag causes delta to insert a "null" delta (a delta that applies no
changes) in those releases that are skipped when a delta is made in a new release (for
example, when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be completely empty. The j flag causes
get to allow concurrent edits of the same base SID. The I flag defines a list of releases
that are locked against editing (gel(l) with the -e keyletter). The q flag defines the
replacement for the identification keyword.

Comments

Body

Arbitrary text surrounded by the bracketing lines @t and @T. The comments section
typically will contain a description of the file's purpose.

The body consists of text lines and control lines. Text lines don't begin with the control
character, control lines do. There are three kinds of control lines: insert, delete, and
end, represented by:

@IDDDDD

Last change: 15 March rns3 Sun Release 2.0

0

0

0

0

0

0

SCCSFILE(5)

SEE ALSO

@DDDDDD
@EDDDDD

FILE FORMATS SCCSFILE (5)

respectively. The digit string is the serial number corresponding to the delta for the con­
trol line.

admin(l), delta(!), get(l), prs(l).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

Sun Release 2.0 Last change: 15 March 1983 387

SERVERS(&) Fll,E FORMATS SERVERS(&)

NAME
servers - inet server data base

DESCRIPTION
The servers file contains the list or servers that inetd(8) operates. For each server a single line
should be present with the following information:

name of server
protocol
server location

Items are separated by any number of blanks and/or tab characters. A "#" indicates the begin­
ning of a comment; characters up to the end of the line are not interpreted by routines which
search the file.

The name of the server should be the official service name as contained in services(5). The pro­
tocol entry is either udp or tcp. The server location is the full path name of the server program.

EXAMPLE
The following example is taken from the Sun UNIX system.

tcp tcp /usr /etc/in.tcpd
telnet tcp /usr /etc/in.telnetd
shell tcp /etc/in.rshd
login tcp /etc/in.rlogind
exec tcp /usr /etc/in.rexecd
ttcp udp /usr /etc/in.ttcpd
syslog udp /usr /etc/in.syslog
comsat udp /usr /etc/in.comsat
talk udp /usr /etc/in.talkd
time tcp /usr /etc/in.timed

FILES
/etc/servers

SEE ALSO
services(&), inetd(8)

BUGS
Because of a limitation on the number of open files, this file must contain fewer than 27 lines.

388 Last change: 28 February 1985 Sun Release 2.0

0

0

0

0

0

0

SERVICES (5) FILE FORMATS SERVICES (5)

NAME
services - service name data base

SYNOPSIS
/etc/ service•

DESCRIPTION
The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and pro­
tocol name are considered a single item; a "/" is used to separate the port and protocol (for
instance, "512/tcp"). A "#" indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or com­
ment character.

EXAMPLE
Here is an example of the /etc/services file from the Sun UNIX System.

Network services, Internet style

echo 7/udp
discard 9/udp sink null
systat 11/tcp
daytime 13/tcp
netstat 15/tcp
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37 /tcp timserver

name 42/tcp nameserver
whois 43/tcp
mtp 57 /tcp # deprecated

Host specific functions

tftp 69/udp
rje 77 /tcp
finger 79/tcp
link 87 /tcp ttylink
supdup 95/tcp

UNIX specific services

exec 512/tcp
login 513/tcp
shell 514/tcp cmd
efs 520/tcp
bilf 512/udp comsat
who 513/udp whod

Sun Release 2.0 Last change: 13 December 1983 389

SERVICES (5)

FILES

sys!og
talk
route

/etc/services

SEE ALSO
getservent(3N)

BUGS

FILE FORMATS

514/udp
517/udp
520/udp

SERVICES (5)

router routed# 521 also

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

390 Last change: 13 December 1983 Sun Release 2.0

0

0

0

0

0

0

TAR(5) FILE FORMATS TAR(&)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for transpor­
tation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is
represented by a header block which describes the file, followed by zero or more blocks which
give the contents of the file. At the end of the tape are two blocks filled with binary zeros, as an
end-of-file indicator.

The blocks are grouped for physical 1/0 operations. Each group of n blocks (where n is set by
the b keyletter on the tar(l) command line - default is 20 blocks) is written with a single system
call; on nine-track tapes, the result of this write is a single tape record. The last group is always
written at the full size, so blocks after the two zero blocks contain random data. On reading, the
specified or default group size is used for the first read, but if that read returns less than a full
tape block, the reduced block size is used for further reads, unless the B keyletter is used.

The header block looks like:

#define TBLOCK &12
#define NAMSIZ 100

union hblock {

};

char dummy!TBLOCKJ;
struct header {

} dbuf;

char name!NAMSIZJ;
char mode!SJ;
char uidJ8J;
char gidJ8J;
char sizeJ12J;
char mtime[12];
char chksumJ8J;
char linkflag;
char linkname!NAMSIZJ;

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII. Each
field (of width w) contains w-2 digits, a space, and a null, except Bize and mtime, which do not
contain the trailing null. Name is the name of the file, as specified on the tar command line.
Files dumped because they were in a directory which was named in the command line have the
directory name as prefix and /filename as suffix. Mode is the file mode, with the top bit masked
off. Uid and gid are the user and group numbers which own the file. Size is the size of the file in
bytes. Links and symbolic links are dumped with this field specified as zero. Mtime is the
modification time of the file at the time it was dumped. Chk•um is a decimal ASCII value which
represents the sum of all the bytes in the header block. When calculating the checksum, the
ch/csum field is treated as if it were all blanks. Link/lag is ASCII 'O' if the file is "normal" or a
special file, ASCII 'l' if it is an hard link, and ASCII '2' if it is a symbolic link. The name linked­
to, if any, is in linkname, with a trailing null. Unused fields of the header are binary zeros (and
are included in the checksum).

The first t,ime a given i-node number is dumped, it is dumped as a regular file. The second and
subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but
not the file it was linked to, an error message is printed and the tape must be manually re­
scanned to retrieve the linked-to file.

Sun Release 2.0 Last change: 15 January 1983 391

TAR(5) FILE FORMATS

The encoding of the header is designed to be portable across machines.

SEE ALSO
tar(l)

BUGS

TAR(5)

Na.mes or linkna.mes longer than NAMSIZ produce error reports and cannot be dumped.

392 La.st change: 15 January 1983 Sun Release 2.0

0

0

0

0

0

0

TERM(5) FILE FORMATS TERM(5)

NAME
term - terminal driving tables for nroff

SYNOPSIS
/usr /llb/term/tabname

DESCRIPTION
Nroff(!) uses driving tables to customize its output for various types of output devices, such as
terminals, line printers, daisy-wheel printers, or special output filter programs. These driving
tables are written as C programs, compiled, and installed in the directory /usr/lib/term. The
name of the output device is specified with the -T option of nroff. The structure of the termi­
nal table is as follows:

#define INCH 240

struct {

} t;

int bset;
int breset;
int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;
-char •twinit;
char •twrest;
char •twnl;
char •hlr;
char •hlf;
char •fir;
char •bdon;
char •bdoff;
char •ploton;
char •plotoff;
char •up;
char •down;
char *fight;
char •left;
char •codetab[256-32[;
char •zzz;

The meanings of the various fields are as follows:

bset bits to set in the sg__ftags field of the sgtty structure before output; see tty(4).

breset bits to reset in the sg__ftags field of the sgtty structure after output; see tty(4).

Hor horizontal resolution in fractions of an inch.

Vert vertical resolution in fractions of an inch.

Newline space moved by a newline (linefeed) character in fractions of an inch.

Char quantum of character sizes, in fractions of an inch. (that is, a character is a multiple
of Char units wide)

Em size of an em in fractions of an inch.

Sun Release 2.0 Last change: 28 February 1985 393

TERM(5) FILE FORMATS TERM(5)

394

Halftine space moved by a half-linefeed (or half-reverse-linefeed) character in fractions of an
inch.

Adj quantum of white space, in fractions of an inch. (that is, white spaces are a multiple
of Adj units wide)

twinit

twrest

twnl

hlr

hlf

fir

bdon

bdoff

p/oton

p/otoff

up

down

right

left

codetab

Note: if this is less than the size of the space character (in units of Char; see below for
how the sizes of characters are defined), nroff will output fractional spaces using plot
mode. Also, if the -e switch to nroff is used, Adj is set equal to Hor by nroff.

set of characters used to initialize the terminal in a mode suitable for nroff.

set of characters used to restore the terminal to normal mode.

set of characters used to move down one line.

set of characters used to move up one-half line.

set of characters used to move down one-half line.

set of characters used to move up one line.

set of characters used to turn on hardware boldface mode, if any.

set of characters used to turn off hardware boldface mode, if any.

set of characters used to turn on hardware plot mode (for Diablo type mechanisms), if
any.

set of characters used to turn off hardware plot mode (for Diablo type mechanisms), if
any.

set of characters used to move up one resolution unit (Vert) in plot mode, if any.

set of characters used to move down one resolution unit (Vert) in plot mode, if any.

set of characters used to move right one resolution unit (Hor) in plot mode, if any.

set of characters used to move left one resolution unit (Hor) in plot mode, if any.

definition of characters needed to print an nroff character on the terminal. The first
byte is the number of character units (Char) needed to hold the character; that is,
"\001" is one unit wide, "\002" is two units wide, etc. The high-order bit (0200) is
on if the character is to be underlined in underline mode (.ul). The rest of the bytes
are the characters used to produce the character in question. If the character has the
sign (0200) bit on, it is a code to move the terminal in plot mode. It is encoded as:

0100 bit on vertical motion.

0100 bit off

040 bit on

040 bit off

037 bits

horizontal motion.

negative (up or left) motion.

positive (down or right) motion.

number of such motions to make.

zzz a zero terminator at the end.

All quantities which are in units of fractions of an inch should be expressed as
INCH•num/ denom, where num and denom are respectively the numerator and denominator of
the fraction; that is, 1/48 of an inch would be written as "INCH/48".

If any sequence of characters does not pertain to the output device, that sequence should be
given as a null string.

The source code for the terminal name is in /usr/src/usr.bin/nroff/term/name.c If you add a
new terminal type, modify the Makefile to reflect the change. By using the Makefile, everything
will be compiled and installed automatically

Last change: 28 February 1985 Sun Release 2.0

0

0

0

TERM(5) Fll,E FORMATS TERM(5)

0 FILES
/usr /Iib/term/tabname driving tables
tabname.c source for driving tables

SEE ALSO
trof!(l), term(7)

0

0
Sun Release 2.0 Last change: 28 February 1985 395

TERMCAP(&) FILE FORMATS TERMCAP(&)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, ror example, by vi(l) and curses(3X). Termi­
nals are described in termcap by giving a set or capabilities which they have, and by describing
how operations are performed. Padding requirements and initialization sequences are included in
termcap.

Each entry in the termcap file describes a terminal, and is a line consisting or a number of fields
separated by ':' characters. The first entry for each terminal gives the names which are known
for the terminal, separated by 'i' characters. The first name is always 2 characters long and is
used by older version 6 systems which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbreviation for the terminal, and the
last name given should be a long name rully identirying the terminal. The second name should
contain no blanks; the last name may well contain blanks for readability. Entries may continue
onto multiple lines by giving a \ as the last character of a line, and empty fields may be included
for readability.

Capabilities in termcap are all introduced by two-character codes, and are or three types:
Boolean capabilities indicate that the terminal has some particular reature. Boolean capabili­

ties are simply written between the ':' characters, and are indicated by the word 'boo!'
in the type column of the capabilities table below.

Numeric capabilities supply information such as the size or the terminal or the size or particu­
lar delays. Numeric capabilities are indicated by the word 'num' in the type column
of the capabilities table below. Numeric capabilities are given by the two-character
capability code followed by the '#' character and then the numeric value. For exam­
ple: :co#80: is a numeric entry stating that this terminal has 80 columns.

String capabilities give a sequence which can be used to perform particular terminal opera­
tions such as cursor motion. String valued capabilities are indicated by the word 'str'
in the type column of the capabilities table below. String valued capabilities are
given by the two-character capability code followed by an '=' sign and then a string
ending at the next following ':'. For example, :ce=16\E'S: is a sample entry for
clear to end-of-line.

CAP ABILITIES
(P) indicates padding may be specified
(P•) indicates that padding may be based on the number of lines affected

Name Type Pad! Description
ae str (P) End alternate character set
al str (P•) Add new blank line
am boo! Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not ·u
bl str Audible bell character
bs boo! Terminal can backspace with ·u
bt str (P) Back tab
bw boo! Backspace wraps rrom column O to last column
cc str Command character in prototype if terminal settable
cd str (P•) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P•) Clear screen

396 Last change: 26 September 1984 Sun Release 2.0

0

0

0

TERMCAP(&) FILE FORMATS TERMCAP(5)

0 cm str (P) Cursor motion
co num Number of columns in a line
er str (P•) Carriage return, (default ·M)
cs str (P) Change scrolling region (vtlOO), like cm
ct str Clear all tab stops
CV str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of er delay needed
de str (P•) Delete character
dF num Number of millisec of ff delay needed
di str (P•) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ":ei=:" if le
eo str Can erase overstrikes with a blank
ff str (P•) Hardcopy terminal page eject (default ·L)
he boo! Hardcopy terminal
hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1/2 linefeed)

0 hz str Hazeltine; can't print -,s
ic str (P) Insert character
if str Name of file containing 11
im bool Insert mode (enter); give ":im=:" if le
in boo! Insert mode distinguishes nulls on display
ip str (P•) Insert pad after character inserted
is str Terminal initialization string
k0-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
le str Move cursor left one place
Ii num Number of lines on screen or page
II str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mb str Turn on blinking
md str Enter bold (extra-bright) mode
me str Turn off all attributes, normal mode

0 mh str Enter dim (half-bright) mode
mi bool Safe to move while in insert mode

Sun Release 2.0 Last change: 26 September 1984 397

TERMCAP (5) FILE FORMATS TERMCAP(5)

398

ml str
mr str
ms boot
mu str
nc boot
nd str
nl str
ns boot
OS boot
pc str
pt boot
rf str
rs str
se str
sf str
sg num
so str
sr str
st str
ta str
tc str
te str
ti str
UC str
ue str
ug num
ul boot
up str
us str
vb str
ve str
vs str
vt num
xb boo!
xn boo!
xr boo!
XS boo!
xt boot

Memory lock on above cursor.
Enter reverse mode
Safe to move while in standout and underline mode
Memory unlock (turn off memory lock).
No correctly working carriage return (DM2500,H2000)
Non-destructive space (cursor right)

(P•) Newline character (default \n)
Terminal is a CRT but doesn't scroll.
Terminal overstrikes
Pad character (rather than null)
Has hardware tabs (may need to be set with 11)
Reset file, like If but for reeel(l)
Reset string, like 11 but for reset(!)
End stand out mode

(P) Scroll forwards
Number of blank chars left by so or 1e
Begin stand out mode

(P) Scroll reverse (backwards)
Set a tab in all rows, current column

(P) Tab (other than ·1 or with padding)
Entry of similar terminal - must be last
String to end programs that use cm
String to begin programs that use cm
Underscore one char and move past it
End underscore mode
Number of .blank chars left by u1 or ue
Terminal underlines even though it doesn't overstrike
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Virtual terminal number (CB/UNIX)
Beehive (fl=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 2641)
Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-100, is among the more complex entries in the
termcap file as of this writing. This particular concept entry is outdated, and is used as an exam­
ple only.

cl i c 100 i concept100:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al=3•\E'R:am:bs:cd=16•\E'C:ce=I6\E'S:cl=2•'L:cm=\Ea%+ %+ :co#80:\
:dc=16\E' A:dl=3•\E'B:ei=\E\200:eo:im=\E'P:in:ip=16•:li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ a.s the last character of a line, and empty
fields may be included for readability (here between the last field on a line and the first field on
the next).

Types ot Capabllltlea

Last change: 26 September 1984 Sun Release 2.0

0

0

0

0

0

0

TERMCAP(5) FILE FORMATS TERMCAP(5)

Capabilities in termcap are or three types: Boolean capabilities which indicate that the terminal
has some particular feature, numeric capabilities giving the size or the terminal or the size or par­
ticular delays, and string capabilities, which give a sequence which can be used to perform partic­
ular terminal operations. All capabilities have two letter codes.

Boolean

Numeric

String

capabilities are introduced simply by stating the two-character capability code in the
field between ':' characters. For instance, the fact that the Concept has "automatic
margins" (that is, an automatic return and linefeed when the end of a line is reached)
is indicated by the capability am. Hence the description or the Concept includes am.

capabilities are followed by the character '#' and then the value. Thus co which
indicates the number or columns the terminal has gives the value '80' for the Concept.

valued capabilities, such as ce (clear to end or line sequence) are given by the two
character code, an '=', and then a string ending at the next following ':'. A delay in
milliseconds may appear after the '=' in such a capability, and padding characters are
supplied by the editor after the remainder or the string is sent to provide this delay.
The delay can be either a integer, for instance, 120', or an integer followed by an '•',
that is, '3•'. A '•' indicates that the padding required is proportional to the number
or lines affected by the operation, and the amount given is the per-affected-unit pad­
ding required. When a '•' is specified, it is sometimes useful to give a delay or the
form '3.5' to specify a delay per unit to tenths or milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy
encoding or characters there. A \E maps to an ESCAPE character, ·x maps to a
control-x for any appropriate x, and the sequences \n \r \t \b \f give a newline,
return, tab, backspace and formfeed. Finally, characters may be given as three octal
digits after a \, and the characters • and \ may be given as \ • and \ \. If it is neces­
sary to place a : in a capability it must be escaped in octal as \072. If it is necessary
to place a null character in a string capability it must be encoded as \:ZOO. The rou­
tines which deal with termcap use C strings, and strip the high bits of the output very
late so that a \:ZOO comes out as a \ODO would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in termcap and to build
up a description gradually, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ez. To easily test a new terminal description you can set the environment
variable TERMCAP to a pathname of a file containing the description you are working on and
the editor will look there rather than in /etc/termcap. TERMCAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor.

Basic capabllltles

The number or columns on each line for the terminal is given by the co numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the II capability. Ir the
terminal wraps around to the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, then this is given by the cl
string capability. If the terminal can backspace, then it should have the bs capability, unless a
backspace is accomplished by a character other than ·u (ugh) in which case you should give this
character as the be string capability. If it overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in termcap are undefined at
the left and top edges or a CRT terminal. The editor will never attempt to backspace around the
left edge, nor will it attempt to go up locally off the top. The editor assumes that feeding off the
bottom of the screen will cause the screen to scroll up, and the am capability tells whether the

Sun Release 2.0 Last change: 26 September 1984 399

TERMCAP(&) FILE FORMATS TERMCAP(5)

400

cursor sticks at the right edge of the screen. Ir the terminal has switch selectable automatic mar­
gins, the termcap file usually assumes that this is on, that is, am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33
teletype is described as

t3 I 33 I tty33:co#72:os

while the Lear Siegler ADM-3 is described as

cl I adm3l3ilsi adm3:am:bs:cl-" Z:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a cm string capability, with print!(3S) like
escapes %x in it. These substitute to encodings or the current line or column position, while
other characters are passed through unchanged. Ir the cm string is thought or as being a func­
tion, then its arguments are the line and then the column to which motion is desired, and the %
encodings have the following meanings:

%d as in print!, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds z to value, then %.
%>xy if value > x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16•(x/10)) + (x%10), no output.
%D Reverse coding (x-2•(x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y pad­
ded for 6 milliseconds. Note that the order or the rows and columns is inverted here, and that
the row and column are printed as two digits. Thus its cm capability is
"cm=6\E&%r%2c%2Y". The Microterm ACT-IV needs the current row and column sent pre­
ceded by a ·T, with the row and column simply encoded in binary, "cm="T%.%.". Terminals
which use "%." need to be able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary because it is not always safe to
transmit \t, \n ·o and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cm=\E=%+ %+ ".

Cursor motlona

If the terminal can move the cursor one position to the right, leaving the character at the
current position unchanged, then this sequence should be given as nd (non-destructive space). Ir
it can move the cursor up a line on the screen in the same column, this should be given as up. If
the terminal has no cursor addressing capability, but can home the cursor (to very upper left
corner of screen) then this can be given as ho; similarly a. fast way of getting to the lower left
hand corner can be given as II; this may involve going up with up from the home position, but
the editor will never do this itself (unless II does) because it makes no assumption about the effect
of moving up from the home position.

Area cleara

Ir the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ce. Ir the terminal can clear from the current position to the
end of the display, then this should be given as ed. The editor only uses cd from the first

Last change: 26 September 1984 Sun Release 2.0

0

0

0

0

0

0

TERMCAP(5)

column of a line.

Ineert / delete line

FILE FORMATS TERMCAP(5)

If the terminal can open a new blank line before the line where the cursor is, this should be given
as al; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as di; this is done only from the first position on the line to be deleted. Ir the terminal can
scroll the screen backwards, then this can be given as sb, but just al suffices. If the terminal can
retain display memory above then the da capability should be given; if display memory can be
retained below then db should be given. These let the editor understand that deleting a line on
the screen may bring non-blank lines up from below or that scrolling back with ob may bring
down non-blank lines.

Insert/ delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using termcap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other ter­
minals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type "abc def" using local cursor motions (not spaces) between the "abc" and the
"def". Then position the cursor before the "abc" and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters to fall off the end, then your
terminal does not distinguish between blanks and untyped positions. If the "abc" shifts over to
the "def" which then move together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the capability In, which stands for
"insert null". If your terminal does something different and unusual then you may have to
modify the editor to get it to use the insert mode your terminal defines. We have seen no termi­
nals which have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as lm the sequence to get into
insert mode, or give it an empty value if your terminal uses a sequence to insert a blank position.
Give as el the sequence to leave insert mode (give this, with an empty value also if you gave Im
so). Now give as le any sequence needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not give le, terminals which send a
sequence to open a screen position should give it here. (Insert mode is preferable to the sequence
to open a position on the screen if your terminal has both.) If post insert padding is needed, give
this as a number of milliseconds in Ip (a string option). Any other sequence which may need to
be sent after an insert of a single character may also be given in Ip.

It is occasionally necessary to move around while in insert mode to delete characters on the same
line (for example, if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability ml to speed up inserting in this case. Omitting
ml will affect only speed. Some terminals (notably Datamedia's) must not have ml because of
the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and de
to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and ae
respectively. If there are several flavors of standout mode (such as inverse video, blinking, or
underlining - half bright is not usually an acceptable "standout" mode unless the terminal is in
inverse video mode constantly) the preferred mode is inverse video by itself. If the code to

Sun Release 2.0 Last change: 26 September 1984 401

TERMCAP(5) FILE FORMATS TERMCAP(&)

402

change into or out or standout mode leaves one or even two blank spaces on the screen, as the
TV! 912 and Teleray 1061 do, then sg should be given to tell how many spaces are lert.

Codes to begin underlining and end underlining can be given as us and ue respectively. Ir they
leave blank spaces on the screen, set ug. Ir the terminal has a code to underline the current
character and move the cursor one space to the right, such as the Microterm Mime, this can be
given as uc. (Ir the underline code does not move the cursor to the right, give the code rollowed
by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline.

If the terminal has a way or flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes or ez, this can be given as vs and ve, sent at the
start and end or these modes respectively. These can be used to change, ror example, rrom a
underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cursor,
the codes to enter and exit this mode can be given as tl and te. This arises, for example, from
terminals like the Concept with more than one page or memory. Ir the terminal has only
memory relative cursor addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.

Ir your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. Ir overstrikes are erasable
with a blank, then this should be indicated by giving eo.

ANSI terminals have modes for the character highlighting. Dim characters may be generated in
dim mode, entered by mh; reverse video characters in reverse mode, entered by mr; bold char­
acters in bold mode, entered by md; and normal mode characters restored by turning off all
attributes with me.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be given. Note that it is not possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit
or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as kl, kr, ku, kd, and kh respectively. If there are function keys such as fO, fl, ... ,
f9, the codes they send can be given as kO, kl, •.. , kO. If these keys have labels other than the
default fO through f9, the labels can be given as 10, 11, ... , 10. If there are other keys that
transmit the same code as the terminal expects for the corresponding function, such as clear
screen, the termcap 2 letter codes can be given in the ko capability, for example,
":ko=cl,11,sf,sb:", which says that the terminal has clear, home down, scroll down, and scroll up
keys that transmit the same thing as the cl, II, sf, and sb entries.

The ma entry is also used to indica.te arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomputers
due to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists of
groups of two characters. In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are h for kl, J for kd, k
for ku, I for kr, and H for kh. For example, the mime would be :ma-·KJ·zk·XJ: indicating
arrow keys left ('H), down ('K), up ('Z), and right ('X). (There is no home key on the mime.)

Miscellaneous

Last change: 26 September 1984 Sun Release 2.0

0

0

0

0

0

0

TERMCAP(5) FILE FORMATS TERMCAP(5)

FILES

If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than ·1 to tab,
then this can be given as ta.

Hazeltine terminals, which don't allow ,-, characters to be printed should indicate hs.
Datamedia terminals, which echo carriage-return linefeed for carriage return and then ignore a
following linefeed should indicate nc. Early Concept terminals, which ignore a linefeed immedi­
ately after an am wrap, should indicate xn. If an erase-eol is required to get rid of standout
(instead of merely writing on top of it), xs should be given. Teleray terminals, where tabs turn
all characters moved over to blanks, should indicate xt. Other specific terminal problems may be
corrected by adding more capabilities of the form xz.

Other capabilities include 11, an initialization string for the terminal, and If, the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both are given, 11 will be printed
before It. This is useful where If is /usr/lib/tabset/std but 11 clears the tabs first.

Similar Termlnal1

If there are two very similar terminals, one can be defined as being just like the other with cer­
tain exceptions. The string capability tc can be given with the name of the similar terminal.
This capability must be last and the combined length of the two entries must not exceed 1024.
Since termlib routines search the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left override the ones in the similar ter­
minal. A capability can be canceled with xx@ where xx is the capability. For example, the
entry

hn i 2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the k1 or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or for
different user preferences.

/etc/termcap file containing terminal descriptions

SEE ALSO

BUGS

ex(l), curses(3X), termcap(3X), tset(l), vi(l), ul(l), more(l)

Ez allows only 256 characters for string capabilities, and the routines in termcap(3X) do not
check for overflow of this buffer. The total length of a single entry (excluding only escaped new­
lines) may not exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

Sun Release 2.0 Last change: 26 September 1984 403

TP(5) FILE FORMATS TP(5)

NAME
tp - DEC/mag tape formats

DESCRIPTION
Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes are
the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

struct {
char pathnamel32];
unsigned short mode;
char uid;
char gid;
char unusedl;
char size!3];
long modtime;
unsigned short tapeaddr;
char unused2[16];
unsigned short checksum;

};

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (see file system /s(5)).
The tape address is the tape block number of the start of the contents of the file. Every file
starts on a block boundary. The file occupies (size+511)/512 blocks of continuous tape. The
checksum entry has a value such that the sum of the 32 words of the directory entry is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
fs(5)

BUGS
The pathname, uid, gid, and size fields are too small.

404 Last change: 18 June 1983 Sun Release 2.0

0

0

0

0

0

0

TTYS (5) FILE FORMATS TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the init program and specifies which terminal special files are to have a
process created for them so that people can log in. There is one line in the ttys file per special file
associated with a terminal.

The first character of a line in the ttys file is either '0' or 'l'. If the first character on the line is
a 'O', the init program ignores that line. If the first character on the line is a 'l', the init pro­
gram creates a login process for that line.

The second character on each line is used as an argument to getty(8), which performs such tasks
as baud-rate recognition, reading the login name, and calling login. For normal lines, the second
character is 'O'; other characters can be used, for example, with hard-wired terminals where
speed recognition is unnecessary or which have special characteristics. The remainder of the line
is the terminal's entry in the device directory, /dev.

Getty uses the second character in the ttys file to look up the characteristics of the terminal in
the / etc/ gettytab file. Consult the gettytab(5) manual page for an explanation of the layout of
/ etc/ gettytab.

/etc/ttys

SEE ALSO
init(8), getty(8), login(l), gettytab(5)

Sun Release 2.0 Last change: 28 October rnsa 405

TTYTYPE(5) FILE FORMATS TTYTYPE(5)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of terminal that is
attached to it. There is one line per port, containing the terminal kind (as a name listed in
termcap (5)), a space, and the name of the tty, minus /dev/.

This information is read by tset(l) and by /ogin(l) to initialize the TERM variable at login time.

SEE ALSO
tset(l), login(l)

BUGS
Some lines are merely known as "dial up" or "plugboard".

406 Last change: 25 October 1979 Sun Release 2.0

0

0

0

0

0

0

TYPES (5) FILE FORMATS TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
#Include <•Y•/types,h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these types
are accessible to user code:

/• @(#)types.h I.I 84/12/20 SM!; from UCB 4.11 83/07 /Oh/

/•
* Basic system types and major /minor device constructing/busting macros.

•/

/• major part of a device •/
#define major(x) ((int)(((unsigned)(x)>>8)&0377))

/• minor part of a device •/
#define minor(x) ((int)((x)&0377))

/• make a device number•/
#define makedev(x,y) ((dev_t)(((x)<<8) i (y)))

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u_char;
u_short;
u_int;
u__!ong;
ushort;/• sys III compat •/

#if def vax
typedef struct
typedef struct

int
} labe!_t;
#endif
#if def mc68000
typedef struct
typedef struct

int
} labeU;
#endif
typedef struct
typedef long
typedef char •
typedef u__long
typedef long
typedef int
typedef int
typedef short
typedef int

_physadr { int r[IJ; } •physadr;
labe!_t {
val[I4J;

_physadr { short r[IJ;} •physadr;
labeLt {
valjI3J;

_quad { long valj2J; } quad;
daddr_t;
caddr_t;
ino_t;
swblk_t;
size_t;
time_t;
dev_t;
olLt;

typedef struct fd....set { int fds_bits[IJ; } fd....set;

Sun Release 2.0 Last change: I April 1983 407

TYPES (5) FD.,E FORMATS TYPES(5)

The form daddr_t is used for disk addresses, see fs(5). Times are encoded in seconds since o
00:00:00 GMT, January 1, 1970. The major and minor parts of a device code specify kind and
unit number of a device and are installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label_t variables are used to save the processor state while another pro-
cess is running.

SEE ALSO
fs(5), time(3C), lseek(2), adb(lS)

0

0

408 Last change: 1 April 1983 Sun Release 2.0

0

0

0

UTMP(5) Fll,E FORMATS UTMP(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#Include <utmp.h>

DESCRIPTION

FILES

The utmp file records information about who is currently using the system. The file is a sequence
of entries with the following structure declared in the include file:

/• @(#)utmp.h 1.1 84/12/20 SM!; from UCB 4.2 83/05/22 •/

/•
• Structure of utmp and wtmp files .

•
• Assuming the number 8 is unwise.

•I
struct utmp {

};

char
char
char
long

uUine[8];
ut_name[8[;
ut_host[l6];
ut_time;

/• tty name •/
/• user id •/
/• host name, if remote •/
/• time on•/

This structure gives the name of the special file associated with the user's terminal, the user's
login name, and the time of the login in the form of time(3C).

The wimp file records all logins and logouts. A null user name indicates a logout on the associ­
ated terminal. Furthermore, the terminal name ,., indicates that the system was rebooted at the
indicated timej the adjacent pair of entries with terminal names T and 1

}' indicate the system·
maintained time just before and just after a date command has changed the system's idea of the
time.

Wtmp is maintained by login(I) and init(8). Neither of these programs creates the file, so if it is
removed record-keeping is turned off. It is summarized by ac(8).

/etc/utmp
/usr /adm/wtmp

SEE ALSO
login(l), init(8), who(l), ac(8)

Sun Release 2.0 Last change: 26 June 1983 409

UUENCODE(5) FILE FORMATS UUENCODE(5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode{l C} consist of a header line, followed by a number of body lines, and a
trailer line. Uudecode will ignore any lines preceding the header or following the trailer. Lines
preceding a header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters "begin ". The word begin is fol­
lowed by a mode (in octal), and a string which names the remote file. Spaces separate the three
items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing
newline). These consist of a character count, followed by encoded characters, followed by a new­
line. The character count is a single printing character, and represents an integer, the number of
bytes the rest of the line represents. Such integers are always in the range from O to 63 and can
be determined by subtracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to
make the characters printing. The last line may be shorter than the normal 45 bytes. If the size
is not a multiple of 3, this fact can be determined by the value of the count on the last line.
Extra garbage will be included to make the character count a multiple of 4. The body is ter­
minated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of "end" on a line by itself.

SEE ALSO
uuencode(lC), uudecode(lC), uusend(lC), uucp(lC), mail(l)

410 Last change: 1 June 1980 Sun Release 2.0

0

0

0

0

0

0

VFONT(5) Fll,E FORMATS VFONT(5)

NAME
vfont - font formats

SYNOPSIS
#Include <vfont,h>

DESCRIPTION

Fll,ES

The fonts used by the window system and printer /plotters have the following format. Each font
is in a file, which contains a header, an array of character description structures, and an array of
bytes containing the bit maps for the characters. The header has the following format:

struct header {
short magic;
unsigned short size;
short maxx;
short maxy;
short xtend;

};
#define VFONT_MAGIC

/• Magic number VFONT_MAGIC •/
/• Total # bytes or bitmaps •/
/• Maximum horizontal glyph size •/
/• Maximum vertical glyph size •/
/•(unused)•/

0436

Maxx and maxy are intended to be the maximum horizontal and vertical size of any glyph in the
font, in raster lines. (A glyph is just a printed representation of a character, in a particular size
and font.) The size is the total size or the bit maps for the characters in bytes. The xtend field is
not currently used.

After the header is an array of NUM....DISPATCH structures, one for each of the possible charac­
ters in the font. Each element of the array has the form:

struct dispatch {
unsigned short
short

};

char
short

addr;
nbytes;
up, down, left, right;
width;

#define NUM....DISPATCH

/• &(glyph) - &(start of bitmaps)•/
/•#bytes of glyphs (0 if no glyph)•/
/• Widths from baseline point •/
/• Logical width, used by troff •/

256

The nbytes field is nonzero for characters which actually exist. For such characters, the addr
field is an offset into the bit maps to where the character's bit map begins. The up, down, left,
and right fields are offsets from the base point of the glyph to the edges of the rectangle which
the bit map represents. (The imaginary "base point" is a point which is vertically on the "base
line" of the glyph (the bottom line of a glyph which doesn't have a descender) and horizontally
near the left edge of the glyph; often 3 or so pixels past the left edge.) The bit map contains
up+down rows of data for the character, each of which has left+right columns (bits). Each row
is rounded up to a number of bytes. The width field represents the logical width of the glyph in
bits, and shows the horizontal displacement to the base point of the next glyph.

/usr /Iib/vfont/•
/usr /lib /fonts/fixedwidthfonts/•

SEE ALSO

BUGS

troff(l), pti(l), vfontinfo(l), vswap(l)

A machine-independent font format should be defined. The shorts in the above structures con­
tain different bit patterns depending whether the font file is for use on a Vax or a Sun. The
vswap program must be used to convert one to the other.

Sun Release 2.0 Last change: 28 February 1985 411

VGRINDEFS (5) FILE FORMATS VGRINDEFS (5)

NAME
vgrindefs - vgrind's language definition data base

SYNOPSIS
/usr /1ib/vgrlndef1

DESCRIPTION
Vgrindefs contains all language definitions for vgrind. The data base is very similar to
termcap(5).

FIELDS

412

The following table names and describes each field.

NameType Description
pb str regular expression for start of a procedure
bb str regular expression for start of a lexical block
be str regular expression for the end of a lexical block
cb str regular expression for the start of a comment
ce str regular expression for the end of a comment
sb str regular expression for the start of a string
se str regular expression for the end of a string
lb str regular expression for the start of a character constant
le str regular expression for the end of a character constant
ti boo! present means procedures are only defined at the top

lexical level
oc boo! present means upper and lower case are equivalent
kw str a list of keywords separated by spaces

Example

The following entry, which describes the C language, is typical of a language entry.

C:c: :p b= • \d1•1\d 1\p \d ?1):bb={ :be= }:cb=/>:ce=•/:sb=":se=\e":\
:lb=':le=\e':tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned while #define\
#else #endif #if #if def #ifndef #include #under# define else endif\
if if def ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C language
could be specified to vgrind(I) as "c" or •c•.
Entries may continue onto multiple lines by giving a\ as the last character of a line. Capabilities
in vgrindefs are of two types: Boolean capabilities which indicate that the language has some par­
ticular feature and string capabilities which give a regular expression or keyword list.

REGULAR EXPRESSIONS

Vgrindefs uses regular expression which are very similar to those of ez(l) and /ez(l). The char­
acters '"', '$', ':' and '\' are reserved characters and must be "quoted" with a preceding\ if they
are to be included as normal characters. The metasymbols and their meanings are:

$ the end of a line

\d
\a
\p

the beginning of a line

a delimiter (space, tab, newline, start of line)

matches any string of symbols (like ·* in lex)

matches any alphanumeric name. In a procedure definition (pb) the string that matches
this symbol is used as the procedure name.

Last change: 11 February 1981 Sun Release 2.0

0

0

0

0

0

0

VGRINDEFS (5) FILE FORMATS VGRINDEFS (5)

FILES

() grouping

alternation

l last item is optional

\e preceding any string means that the string will not match an input string if the input
string is preceded by an escape character (\). This is typically used for languages (like C)
which can include the string delimiter in a string b escaping it.

Unlike other regular expressions in the system, these match words and not characters. Hence
something like "(trampJsteamer)flies!" would match "tramp", "steamer", "trampflies", or
"steamerflies".

KEYWORD LIST

The keyword list is just a list of keywords in the language separated by spaces. Ir the "oc"
boolean is specified, indicating that upper and lower case are equivalent, then all the keywords
should be specified in lower case.

/usr /Iib/vgrindefs file containing terminal descriptions

SEE ALSO
vgrind(l), troff(l)

Sun Release 2.0 Last change: 11 February 1981 413

YPFILES (5) FILE FORMATS YPFILES(5)

NAME
ypfiles - the yellowpages database and directory structure

DESCRIPTION

414

ypfiles.5:.IX "ypfiles file" "" "ypfiles - yellowpages database and directory"

The yellow pages (YP) network service uses a database or dbm{9X} files in the directory hierar­
chy at /etc/yp. Each YP domain is a subdirectory or /etc/yp. Domain yp_priv•te must be
present: it contains information about other domains. Any number or other domains may exist.

Every domain directory must contain 3 databases: ypservers, ypm•ps, and hosts.byn•me. In
addition, the domain yp_priv•te must contain the database ypdom•ins. No other databases are
required by the YP itself, although others may be required for the normal operation or the
operating system or the NFS.

When setting up a new domain on a YP server machine, the domain directory should be created
in / etc/yp manually. The required dbm files should be generated and placed in the new directory
if the host is the master server for those maps, or copied from the master host's database if the
local machine is not the master for those maps. The YP database can be set up for the simple
case where one YP server is the master for all maps by using ypinit(8).

A description or the required databases follows, following a short description or what makes a
valid dbm database file as far as the YP is concerned. A dbm database consists of two files, one
with the filename extension .p•g and one with the filename extension .dir. These two files are
created by calls to the dbm library package. Thus the database ypservers will be implemented by
the pair of files ypservers.p•g and ypservers.dir. Any dbm database which is to be used by the
YP must contain a distinguished key-value pair: the key is the ASCII characters
YP J,AST_.MODIFIED with length 16, and the value should be a 10 character ASCII order
number. The order number should be generated by calling gettimeofd•y(2) at the point the data­
base is created, and using the seconds field value returned from that call. Database files which
are also legal YP databases will be called YP maps. The low-level tool used to create valid YP
maps is makedhm(8). The middle-level tool to build particular YP maps is /etc/yp/m•ke,
described in ypmake(8). A high-level tool to initialize the YP directory structure and get the
required maps and the normally present maps into that directory structure is ypinit(8), men­
tioned above.

This section describes the format for ypdomains, ypservers, and ypm•p•.

Ypdomains contains the set or all legal domain names. It must include the domain yp_private. It
should also contain the domain names returned to client and server machines from the dom•in­
name(8) command. The keys in the map are assumed to be the domain names, and the values
are not used by the YP. They may be null, or may be used as comments. Ypdom•ins must exist
in domain yp_private, but need not exist in any other domain.

Ypservers contains the list or host names for all machines that should be running ypserv(8). The
structure is the same as for ypservers: the keys within the map are assumed to be the host
names, and the values are not used by the YP. ypservers must exist in every domain.

Ypmaps contains the list of all maps supported within a domain. Thus it will include entries for
ypservers, hosts.byname, and ypmaps itself. The keys are assumed to be the names of the maps,
and the values are assumed to be the hostname of the machine running the master ypserv. Each
host referred to within ypm•ps should have an entry in ypservers, and an entry in hosts.byname.
Ypmaps must exist in every domain.

The ypwhich(8) command tells what machine is the YP server. There are tools to examine and
change the YP database: yppush, yppull, yppoll, (all described in yppush(8)), ypc•l(l), m•k­
edhm(8), and ypm•ke(8). The command rpcinfo(8) determines if a ypserv or yphind process is up
and running on a particular host.

Last change: 1 February 1985 Sun Release 2.0

0

0

0

YPFILES (5) FILE FORMATS YPFILES (5)

0 SEE ALSO
makedbm(8), ypinit(8), ypmake(8), yppush(8), ypserv(8), rpcinfo(8)

0

0

Sun Release 2.0 Last change: 1 February 1985 415

o1

0

I

O'

0

0

0

System Interface Manual

Index

A
a. out - assembler and link editor output, 325

thru 331
abort - generate fault, 123
abs - integer absolute value, 124
absolute value - abs, 124
absolute value function - fabs, 199
accept, 8
access,9
access times of file

change, llO
accounting

turn on or off, 10
acct, 10
acos - trigonometric arccosine, 203
actually move cursor - mvcur, 242
add character - addch, 242
add character - waddch, 242
add string - addstr, 242
add string - waddstr, 242
add swap device, 101
addch - add character, 242
addmntent - get filesystem descriptor file

entry, 144
addstr - add string, 242
advise paging system, 111
advisory lock

apply, 27
remove, 27

alarm - schedule signal, 182
aliases - sendmail alia.ses file, 332
alphasort - sort directory, 167
ar - Archive 1/4 inch Streaming Tape Drive, 252

-i-

ar - archive file format, 333
arc - plot arc, 248
archive file format - ar, 333
argument lists

varying length, 180
argv

get option letter - getopt, 183
arp - Address Resolution Protocol, 253
ASCII to float - atof, 126
ASCII to integer - atoi, 126
ASCII to long - atol, 126
asctime - date and time conversion, 129
asin - trigonometric arcsine, 203
assembler output - a. out, 325
assert - program verification, 125
assign buffering to stream

setbuf - assign buffering, 239
setbuffer - assign buffering, 239
setlinebuf - assign buffering, 239

async_daemon,64
atan - trigonometric arctangent, 203
atan2 - trigonometric arctangent, 203
atof -- ASCII to float, 126
atoi - ASCII to integer, 126
atol - ASCII to long, 126

B
bcmp --- compare byte strings, 127
bcopy - copy byte strings, 127
Bessel functions

jO, 202
j 1, 202

Bessel functions, continued
jn, 202
yO, 202
yl,202
yn, 202

binary 1/0, buffered
fread - read from stream, 228
frwite - write to stream, 228

bind, 11
bit string functions

ffs, 127
bk - machine-machine communication line dis­

cipline, 255
block signals, 89
blocked signals

release, 90
box - draw box around window, 242
brk, 12
buffered binary 1/0

fread - read from stream, 228
frwite - write to stream, 228

buffering
a.ssign to stream - setbuf, 239
a.ssign to stream - setbu f fer, 239
a.ssign to stream - setlinebuf, 239

bwone - Sun-1 black and white frame buffer,
256

bwtwo - Sun-2 black and white frame buffer,
257

byte order
convert between host and network, 206

byte string functions
bcmp, 127
bcopy, 127
bzero, 127

bzero - zero byte strings, 127

C
cabs - Euclidean distance, 201
cell - ceiling of, 199
change

current working directory, 13
root directory, 17

change all window - touchwin, 242
change data segment size, 12
change file access times, 110
change file mode, 14
change file name, 79
change owner and group of file, 16
character

get from stdin - getchar, 230
get from stream - fgetc, 230
get from stream - getc, 230
push back to stream - ungetc, 240
put to stdin - putchar, 235
put to stream - fputc, 235

character, continued
put to stream - putc, 235

character cla.ssification
isalnum, 131
isalpha, 131
isascii, 131
iscntrl, 131
isdigit, 131
isgraph, 131
islower, 131
ispr int, 131
ispunct, 131
isspace, 131
is upper, 131
isxdigit, 131

character conversion
toascii, 131
tolower, 131
toupper, 131

chdir, 13
checknews information file - .newsrc, 374
chmod, 14
chown, 16
chroot, 17
circle - plot circle, 248
clear - clear, 242
clear - clear, 242
clear to bottom - clrtobot, 242
clear to bottom or window - wclrtobot, 242
clear to end of line - clrtoeol, 242

- ii -

clear to end of line - wclrtoeol, 242
clear window - wclear, 242
clearerr - clear error on stream, 226
clearok - set clear flag for screen, 242
close, 18
close directory stream - closedir, 132
close stream - fclose, 225
closedir - close directory stream, 132
closelog - close system log file, 177
closepl - close plot device, 248
clrtobot - clear to bottom, 242
clrtoeol - clear to end of line, 242
command

return stream to remote, 217, 218
compare byte strings - hemp, 127
compare string - strcmp, 175
compare string - strncmp, 175
compile regular expression - re_comp, 166
concatenate strings - strcat, 175
concatenate strings - strncat, 175
connect, 19
connected peer

get name of, 40
connection

accept on socket, 8
connections

0

0

0

0

0

0

connections, continued
listen for on socket, 56

cons - console driver/terminal emulator, 260
cont - continue line, 248
control devices

ioctl, 52
control resource consumption - vlimit, 194
control system log - closelog, 177
control system log - openlog, 177
control system log - syslog, 177
control terminal

hangup, 113
convert

between host and network byte order, 206
host to network long - htonl, 206
host to network short - htons, 206
network to host long - ntohl, 206
network to host short - ntohs, 206

convert character to ASCII - toascii, 131
convert character to lower-case tolower,

131
convert character to upper-case

131
convert numbers to strings

ecvt, 134
fcvt, 134
fprintf, 233
gcvt, 134
printf, 233
sprintf, 233

convert strings to numbers
atof, 126
atoi, 126
atol, 126
fscanf, 237
scanf, 237
sscanf, 237

convert time and date
asctime, 129
ctime, 129
dysize, 130
gmtime, 129
local time, 129
timezone, 129

copy byte strings - bcopy, 127
copy strings - strcpy, 175
copy strings - strncpy, 175

toupper,

core - memory image file format, 334
cos - trigonometric cosine, 203
cosh - hyperbolic cosine, 204
cpio - cpio archive format, 335
creat, 20
create directory, 58
create interprocess communication channel, 67
create interprocess communication endpoint, 96
create name for temporary file - tmpnam, 191

-iii -

create new process, 28
create new window - newwin , 242
create pair of connected sockets, 98
create special file, 59
create su bwindow - subwin , 242
create symbolic link, 103
create unique file name - mktemp, 156
crmode - set cbreak mode, 242
crontab - periodic jobs table, 336
crypt - DES encryption, 128
ctime - date and time conversion, 129
current directory

change, 13
get pathname - getwd, 149

current host
get identifier of, 35

D
daemons

network file system, 64
data segment size

change, 12
data types - types, 407
database functions

dbminit, 244
delete, 244
fetch, 244
firstkey, 244
nextkey, 244
store, 244

database library functions
ldbm option, 244

date
and time, get, 50
and time, set, 50

date and time
get - time, 189
get - ftime, 189

date and time conversion
asctime, 129
ctime, 129
dysize, 130
gmtime, 129
local time, 129
timezone, 129

dbminit - open database, 244
debugging support - assert, 125
delch - delete character, 242
delete character - delch, 242
delete character from window - wdelch, 242
delete datum and key - delete, 244
delete descriptor, 18
delete directory, 80
delete directory entry, 108
delete - delete datum and key, 244
delete line - deleteln, 242

delete line from window - wdeleteln, 242
delete window - delwin, 242
deleteln - delete line, 242
delwin - delete window, 242
demount file system, 109
des - DES encryption chip interface, 266
DES encryption

crypt, 128
encrypt, 128
setkey, 128

descriptors
close, 18
delete, 18
dup, 21
dup2, 21
fcntl,25
getdtablesize,32
select, 81

device control
ioctl,52

devices, 251
dir - directory format, 337
directory

change current, 13
change root, 17
delete, 80
get entries, 30
make, 58
remove, 80
scan, 167

directory operations
closedir, 132
opendir, 132
readdir, 132
rewinddir, 132
seekdir, 132
telldir, 132

disable file system quotas, 85
disk quotas, 71
dkio - disk control operations, 267
domain

get name of current, 31
set name of current, 31

draw box around window - box, 242
drum - paging device, 269
dump - incremental dump format, 339
dup, 21
dup2, 21
duplicate descriptor, 21
dysize - date and time conversion, 130

E
ec - 3Com 10 Mb/s Ethernet interface, 270
echo - set echo mode, 242
ecvt - convert number to ASCII, 134
edata - end of program data, 135

-iv -

effective group ID
set, 170, 86

effective group identity
get, 33

effective user ID
get, 51
set, 170, 87

enable file system quotas, 85
encrypt - DES encryption, 128
encryption

crypt, 128
encrypt, 128
setkey, 128

end - end of program, 135
end locations in program, 135
end standout mode - standend, 242
end standout mode - wstandend, 242
end window modes - endwin, 242
endfsent - get file system descriptor file

entry, 141
endgrent - get group file entry, 142
endhostent - get network host entry, 207
endmntent - get filesystem descriptor file

entry, 144
endnetent - get network entry, 209
endnetgrent - get network group entry, 211
endprotoent - get protocol entry, 212

endpwent - get password file entry, 148
endservent - get service entry, 213
endwin - end window modes, 242
enquire stream status

clearerr - clear error on stream, 226
fee f - enquire EOF on stream, 226
ferror - inquire error on stream, 226
fileno - get stream descriptor number,

226
environ - user environment, 341
environ - execute file, 136
environment

get value - getenv, 140
erase - erase, 242
erase directory entry, 108
erase - erase, 242, 248
erase window - werase, 242
errno - system error messages, 161
error messages, 161
etext - end of program text, 135
Euclidean distance functions

cabs, 201
hypot, 201

execl - execute file, 136
execle - execute file, 136
execlp - execute file, 136
execute file, 136, 22

environ, 136
execl, 136

0

C

0

0

0

0

execute file, continued
execle, 136
execlp, 136
execv, 136
execvp, 136

execute regular expression - re_exec, 166
execution

suspend for interval, 174
execution profile

prepare, 157
execv - execute file, 136
execve, 22
execvp - execute file, 136
exit, 24
exit - terminate process, 138
exp - exponential function, 198
exponent and mantissa

split into, 139
exponential function - exp, 198
export fs - exported NFS file systems, 341

F
fabs - absolute value, 199
fb - Sun console frame buffer driver, 271
fbio - frame buffers general properties, 272
fchmod, 14
fchown, 16
fclose - close stream, 225
fcntl, 25
fcntl - file control options, 343
fcvt - convert number to ASCII, 134
fdopen - associate descriptor, 227
feof - enquire EOF on stream, 226
ferror - inquire error on stream, 226
fetch - retrieve datum under key, 244
fflush - flush stream, 225
ffs - find first one bit, 127
fgetc - get character from stream, 230
fgets - get string from stream, 231
file

create new, 20
create temporary name - tmpnam, 191
determine accessibility of, 9
execute, 22
make hard link to, 55
synchronize state, 29
write on, 116

file control, 25
file control options - fcntl, 343
file lock

apply advisory, 27
remove advisory, 27

file position
move, 57

file system
access,9

-v-

file system, continued
chdir, 13
chmod, 14
chown, 16
chroot, 17
fchmod, 14
fchown, 16
flock, 27
fstat, 99
ftruncate, 106
get file descriptor entry, 141
getdirentries,30
link, 55
lseek, 57
lstat,99
mkdir, 58
mknod, 59
mount, 61
mounted table - mtab, 369
open, 65
readlink, 75
rename, 79
rmdir, 80
setquota, 85
stat, 99
statfs, 101
symlink, 103
tell, 57
truncate, 106
umask, 107
unlink, 108
unmount, 109
utimes, 110

file system format - fs, 344
file times

set - utime, 193
filename

change, 79
fileno - get stream descriptor number, 226
filesystem descriptor

get file entry, 144
fileystem static information - fstab, 347
find first key - firstkey, 244
find first one bit - ffs, 127
find name of terminal, 179
find next key - nextkey, 244
firstkey - find first key, 244
floating point

isinf - test infinite value, 152
isnan - test not a number, 152

flock, 27
floor - floor of, 199
flush stream - fflush, 225
fopen - open stream, 227
fork, 28
formatted input conversion

fscan f - convert from stream, 237

formatted input conversion, continued
scanf - convert from stdin, 237
sscanf - convert from string, 237

formatted write
fprintf - format to stream, 233
pr int f - format to stdout, 233
sprint f - format to string, 233

fpr int f - format to stream, 233
fputc - put character on stream, 235
fputs - put string to stream, 236
fread - read from stream, 228
freopen - reopen stream, 227
frexp - split into mantissa and exponent, 139
fs - file system format, 344
fscan f - convert from stream, 237
fseek - seek on stream, 22g
fstab - fileystem static information, 347
fstat, 99
fsync, 29
fte 11 - get stream position, 229
ftime - get date and time, 189
.ftpusers - ftp prohibited users list, 349
ftruncate, 106
full-duplex connection

shut down, 88
fwrite - write to stream, 228

G
gamma - log gamma, 200
gcd - multiple precision GCD, 246
gcvt - convert number to ASCII, 134
generate fault - abort, 123
generate random numbers

initstate - random number routines,
164

random - generate random number, 164
setstate - random number routines, 164
srandom - generate random number, 164

generate random numbers - rand, 187
generate random numbers - srand, 187
generic operations

ioctl,52
read, 73
readv, 73
write, 116
writev, 116

get (y,x) co-ordinates - getyx, 242
get character - getch, 242
get character at current (y,x) co-ordinates

inch, 242
get character at current (y,x) in window

winch, 242
get character from stream - fgetc, 230
get character from stream - getc, 230
get character through window - wgetch, 242
get current domain name, 31

get current working directory pathname -
getwd, 149

get date and time, 50, 189
get date and time - ftime, 189
get entries from name list - nlist, 159
get environment value - getenv, 140
get file status, 99
get file system descriptor file entry, 141
get file system statistiics, 101
get filesystem descriptor file entry

addmntent, 144
endmntent, 144
getmntent, 144
hasmntopt, 144
setmntent, 144

get group file entry
endgrent, 142
getgrent, 142
getgrgid, 142
getgrnam, 142
setgrent, 142

get info on resource usage - vtimes, 195
get login name - getlogin, 143
get long name - longname, 242
get network entry, 209
get network group entry, 211
get network host entry, 207
get network service entry, 213
get option letter from argv - getopt, 183
get options sockets, 49
get parent process identification, 42
get password file entry

- vi-

endpwent, 148
getpwent, 148
getpwnam, 148
getpwuid, 148
setpwent, 148

get position of stream - ftell, 229
get process identification, 42
get process times - times, 190
get protocol entry, 212
get scheduling priority, 43
get signal stack context, 92
get string - getstr, 242
get string from stdio - gets, 231
get string from stream - fgets, 231
get string through window - wgetstr, 242
get terminal capability - getcap, 242
get terminal state - gtty, 188
get tty modes - gettmode, 242
get user limits - ulimit, 192
get word from stream - getw, 230
gate - get character from stream, 230
get cap - get terminal capability, 242
getch - get character, 242
getchar - get character from stdin, 230

0

0

0

0

0

0

getdirentries,30
getdomainname,31
getdtablesize,32
getegid,33
getenv - get value from environment, 140
geteuid, 51
get fsent - get file system descriptor file

entry, 141
getfsfile - get file system descriptor file

entry, 141
get fsspec - get file system descriptor file

entry, 141
getfstype - get file system descriptor file

entry, 141
getgid, 33
getgrent - get group file entry, 142
getgrgid - get group file entry, 142
getgrnam - get group file entry, 142
getgroups, 34
gethostbyaddr - get network host entry, 207
gethostbyname - get network host entry, 207
gethostent - get network host entry, 207
gethostid,35
gethostname,36
getitimer,37
getlogin - get login name, 143
getmntent - get filesystem descriptor file

entry, 144
getnetbyaddr - get network entry, 209
getnetbyname - get network entry, 209
getnetent - get network entry, 209
getnetgrent - get network group entry, 211
get opt - get option letter, 183
getpagesize, 39
getpass - read password, 146
getpeername, 40
getpgrp, 41
getpid, 42
getppid,42
getpriority,43
getprotobynumber - get protocol entry, 212,

212
getprotoent - get protocol entry, 212
getpw - get name from uid, 147
getpwent - get password file entry, 148
getpwnam - get password file entry, 148
getpwuid - get password file entry, 148
getrlimit, 44
getrusage,46
gets - get string from stdin, 231
getservbyname - get service entry, 213
getservbyport - get service entry, 213
getservent - get service entry, 213
getsockname,48

getsockopt, 49
getstr - get string through, 242
gettimeofday,50
gettmode - get tty modes, 242
gettytab - terminal configuration data base,

350
getuid, 51
getw - get word from stream, 230
getwd - get current working directory path-

name, 149
getyx - get (y,x) co-ordinates, 242
gmtime - date and time conversion, 129
graphics interface

arc, 248
circle, 248
closepl, 248
cont, 248
erase, 248
label, 248
line, 248
linemod, 248
move, 248
openpl, 248
point, 248
space, 248

graphics interface files - plot, 378
group access list

get, 34
initialize - initgroups, 150

group entry
get network, 211

group - group file format, 353
group file entry

get, 142
group ID

set real and effective, 86
group identity

get, 33
get effective, 33

groups access list
set, 83

gtty - get terminal state, 188

H
halt processor, 76
hangup control terminal, 113
hard link to file, 55
hardware support, 251
hasmntopt - get filesystem descriptor file

entry, 144
host

get identifier of, 35
host byte order

convert to network, 206
host entry

get network, 207

- vii -

host name
get, 36
set, 36

host phone numbers - phones, 377
hosts - host name data base, 354
hosts .equiv - trusted hosts list, 355
htonl - convert network to host long, 206
htons - convert host to network short, 206
hyperbolic functions

cosh, 204
sinh, 204
tanh, 204

hypot - Euclidean distance, 201

I
1/0, buffered binary

fread - read from stream, 228
frwi te - write to stream, 228

icmp - Internet Control Message Protocol, 273
identifier

of current host, 35
ie - Sun-2 10 Mb/s Ethernet interface, 275
if - network interface general properties, 276
inch - get character at current (y,x) co-

ordinates, 242
incremental dump format - dump, 339
indeterminate floating point values

test for, 152
index - find character in string, 175
index strings - index, 175
index strings - r index, 175
indirect system call, 105
inet - Internet protocol family, 278
inet server database - servers, 388
inet_addr - Internet address manipulation,

215
inet_lnao f - Internet address manipulation,

215
inet_makeaddr - Internet address manipula­

tion, 215
inet_netof - Internet address manipulation,

215
inet_network - Internet address manipula­

tion, 215
inet_ntoa - Internet address manipulation,

215
initgroups - initialize group access list, 150
initialize group access list - initgroups, 150
initialize screens - ini tscr, 242
initiate

connection on socket, 19
initiate 1/0 to/from process, 232
ini tscr - initialize screens, 242
initstate - random number routines, 164
innetgr - get network group entry, 211

input conversion
fscan f - convert from stream, 237
scanf - convert from stdin, 237
sscan f - convert from string, 237

input stream
push character back to - ungetc, 240

inquire stream status
clearerr - clear error on stream, 226
feo f - enquire EOF on stream, 226
ferror - inquire error on stream, 226
fileno - get stream descriptor number,

226
insch - insert character, 242
insert character - insch, 242
insert character in - winsch, 242
insert element in queue - insque, 151
insert line - insert ln, 242
insert line in - winsertln, 242
insertln - insert line, 242
insque - insert element in queue, 151
integer absolute value - abs, 124
Internet address manipulation, 215
interprocess communication

accept,8
bind, 11
connect, 19
getsockname,48
getsockopt,49
listen, 56
pipe, 67
recv,77
recvfrom, 77
recvmsg, 77
send, 82
sendmsg, 82
sendto,82
setsockopt,49
shutdown,88
socket, 96
socketpair, 98

interrupts
release blocked signals, 90

interval timers
get, 37
set, 37

introduction to devices, 251
introduction to hardware support, 251
introduction to special files, 251
introduction to system calls, 1
ioctl, 52
ip - Internet Protocol, 281, 283
isalnum - is character ·alphanumeric, 131
isalpha - is character letter, 131
isascii - is character ASCII, 131
isatty - test if device is terminal, 179
iscntrl - is character control, 131
isdigi t - is character digit, 131

- viii -

0

0

0

0

0

0

isgraph - is character graphic, 131
isinf - test infinite value, 152
islower - is character lower-case, 131
isnan - test not a number, 152
isprint - is character printable, 131
ispunct - is character punctuation, 131
isspace - is character whitespace, 131
issue shell command - system, 178
isupper - is character upper-case, 131
isxdigi t - is character hex digit, 131
i tom - integer to multiple precision, 246

J
jO - Bessel function, 202
j 1 - Bessel function, 202
jn - Bessel function, 202

K
kb - Sun keyboard, 285
kbd - keyboard translation tables, 356
keyboard translation tables - kbd, 356
kill, 53
killpg, 54
kmem - kernel memory space, 288

L
label - plot label, 248
last locations in program, 135
ldexp - split into mantissa and exponent, 139
leaveok - set leave flag for window, 242
library file format - ar, 333
limits

get for user - ulimit, 192
set for user - ulimit, 192

line - plot line, 248
linemod - set line style, 248
link, 55

make symbolic, 103
read value of symbolic, 75

link editor output - a. out, 325
listen, 56
lo - software loopback network interface, 286
local time - date and time conversion, 129
lock

apply advisory, 27
remove advisory, 27

log - natural logarithm, 198
log gamma function - gamma, 200
loglO - logarithm, base 10, 198
logarithm, base 10 __.:. loglO, 198
logarithm, natural - log, 198
login environment - environ, 341
login name

get - getlogin, 143
login records

-ix-

login records, continued
utmp file, 409
wtmp file, 409

longjmp - non-local goto, 168
longname - get long name, 242
lseek, 57
lstat, 99

M
madd - multiple precision add, 246
make directory, 58
make hard link to file, 55
make interprocess communication channel, 67
make interprocess communication endpoint, 96
make name for temporary file - tmpnam, 191
make pair of connected sockets, 98
make screen look like window - wrefresh,

242
make special file, 59
make symbolic link, 103
make unique file name - mktemp, 156
manipulate disk quotas, 71
manipulate Internet addresses, 215
mantissa and exponent

split into, 139
map memory pages, 60
mask

set current signal, 91
mathematical functions

acos, 203
asin, 203
atan, 203
atan2, 203
cabs, 201
ceil - ceiling of, 199
cos, 203
cosh, 204
exp - exponential, 198
fabs - absolute value, 199
floor - floor of, 199
gamma, 200
hypot, 201
jO, 202
j 1, 202
jn, 202
log - natural logarithm, 198
loglO - logarithm, base 10, 198
pow - raise to power, 198
sin, 203
sinh, 204
sqrt - square root, 198
tan, 203
tanh, 204
yO, 202
yl, 202
yn, 202

mb - mainbus, 287

mbio - Multibus 1/0 space, 288
mbmem - Multibus memory space, 288
mdiv - multiple precision divide, 246
mem - main memory space, 288
memory image file format - core, 334
memory management

brk, 12
getpagesize, 39
mmap, 60
sbrk, 12
unmap, 62

message
receive from socket, 77
send from socket, 82

messages
system error, 161
system signal, 162

min - multiple precision decimal input, 246
mkdir, 58
mknod, 59
mktemp - make unique file name, 156
mmap, 60
modf - split into mantissa and exponent, 139
moncontrol - make execution profile, 157
monitor - make execution profile, 157
monstartup - make execution profile, 157
mount, 61
mounted file system table - mtab, 369
mouse - Sun mouse, 289
mout - multiple precision decimal output, 246
move file position, 57
move - move to (y,x), 242, 248
move to (y,x) - move, 242
msqrt - multiple precision exponential, 246
msub - multiple precision subtract, 246
mtab - mounted file system table, 369
mti - Systech MTI-800/1600 multi-terminal

interface, 290
mtio - UNIX magnetic tape interface, 291
mult - multiple precision multiply, 246
multiple precision integer arithmetic

gcd, 246
itom, 246
madd, 246
mdiv, 246
min, 246
mout, 246
msqrt, 246
msub, 246
mult, 246
pow, 246
rpow, 246
sdiv, 246

mvcur - actually move cursor, 242

N
name list

get entries from, 159
name of terminal

find, 179
name termination handler - on_exit, 160
natural logarithm - log, 198
nd - network disk driver, 293
netgroup - network groups list, 370
network byte order

convert to host, 206
network entry

get, 209
network file system

nfsmount, 63
network file system daemons, 64
network group entry

get, 211
network host entry

get, 207
network news file formats - news, 372
network service entry

get, 213
networks - network name data base, 371
news - USENET network news file formats,

372
newwin - create new window, 242
nextkey - find next key, 244
NFS exported file systems - export fs, 342
nfsmount, 63
nfssvc, 64
nice - set program priority, 185
nl - set newline mapping, 242
nlist - get entries from name list, 159
nocrmode - unset cbreak mode, 242
noecho - unset echo mode, 242
non-local goto

non-local goto - longjmp, 168
non-local goto - setjmp, 168

nonl - unset newline mapping, 242
noraw - unset raw mode, 242
ntohl - convert network to host long, 206
ntohs - convert host to network short, 206
null - null device, 296

-x-

null-terminated strings
compare - strcmp, 175
compare - strncmp, 175
concatenate - strcat, 175
concatenate - strncat, 175
copy - strcpy, 175
copy - strncpy, 175
index - index, 175
index - rlndex, 175
reverse index - rindex, 175

numbers
convert from strings, 126

0

0

0

0

0

0

numbers, continued
convert to strings, 134

0
on_exit - name termination handler, 160
open, 65
open database - dbminit, 244
open directory stream - opendir, 132
open stream - fopen, 227
opendir - open directory stream, 132
openlog - initialize system log file, 177
openp 1 - open plot device, 248
optarg - get option letter, 183
optind - get option letter, 183
option letter

get from argv - getopt, 183
options on sockets

get, 49
set, 49

output conversion
fprintf - convert to stream, 233
pr int f - convert to stdout, 233
sprintf - convert to string, 233

overlay - overlay winl on win2, 242
overlay winl on win2 - overlay, 242
overwrite - overwrite winl on win2, 242
overwrite winl on win2 - overwrite, 242

p
page size

get, 39
paging system

advise, 111
parent process identification

get, 42
passwd - password file, 375
password

read - getpass, 146
password file

get entry - endpwent, 148
get entry - getpwent, 148
get entry - getpwnam, 148
get entry - getpwuid, 148
get entry - setpwent, 148

pause - stop until signal, 186
pclose - close stream to process, 232
peer name

get, 40
periodic jobs table - crontab, 336
perror - system error messages, 161
phones - remote host phone numbers, 377
pipe, 67
plot - graphics interface files, 378
point - plot point, 248
popen - open stream to process, 232
position of directory stream - telldir, 132

- xi -

pow - raise to power, 198, 246
power function - pow, 198
prepare execution profile

moncontrol - make execution profile, 157
monitor - make execution profile, 157
monstartup - make execution profile, 157

primitive system data types - types, 407
printable version of control - unctrl, 242
printcap - printer capability data base, 379
printf - format to stdout, 233
printf to window - pr intw, 242
printf to window - wpr intw , 242
pr intw - printf to window, 242
priority

get, 43
set, 43

priority of program
set - nice, 185

process
create, 28
initiate 1/0 to/from, 232
send signal to, 53
terminate, 24
terminate and cleanup - exit, 138

process group
get, 41
send signal to, 54

process identification
get, 42

process times
get - times, 190

process tracing, 69
processes and protection

execve, 22
exit,24
fork, 28
getdomainname,31
getegid,33
geteuid, 51
getgid, 33
getgroups, 34
gethostid,35
gethostname, 36
getpgrp, 41
getpid,42
getppid, 42
getuid, 51
ptrace,69
setdomainname,31
setgroups, 83
sethostname,36
setpgrp, 84
setregid, 86
setreuid,87
vfork, 112
vhangup, 113
wait, 114

processes and protection, continued
wait3, 114

processes group
set, 84

profil, 68
profile

prepare execution, 157
program priority

set - nice, 185
program verification - assert, 125
protocol entry

get, 212
protocols - protocol name data base, 381
psignal - system signal messages, 162
ptrace, 69
pty - pseudo terminal driver, 297
push character back to input stream

ungetc, 240
put character to stdout - putchar, 235
put character to stream - fputc, 235
put character to stream - putc, 235
put string to stdout - puts, 236
put string to stream - fputs, 236
put word to stream - putw, 235
putc - put character on stream, 235
putchar - put character on stdout, 235
puts - put string to stdout, .236
putw - put word on stream, 235

Q
qsort - quicker sort, 163
queue

insert element in - insque, 151
remove element from - remque, 151

quicker sort - qsort, 163
quota, 71

R
rand - generate random numbers, 187
random - generate random number, 164
random number generator

lnitstate - random number routines,
164

random - generate random number, 164
setstate - random number routines, 164
srandom - generate random number, 164

random number generator - rand, 187
random number generator - srand, 187
raw - set raw mode, 242
rcmd - execute command remotely, 217
re_comp - compile regular expression, 166
re_exec - execute regular expression, 166
read, 73
read directory stream - readdir, 132
read formatted

- xii -

read formatted, continued
fscan f - convert from stream, 237
scanf - convert from stdin, 237
sscanf - convert from string, 237

read from stream - fread, 228
read password - getpass, 146
read/write pointer

move, 57
readdir - read directory stream, 132
readlink,75
readnews information file - .newsrc, 374
readv, 73
real group ID

set, 170, 86
real user ID

get, 51
set, 170, 87

reboot,76
receive message from socket, 77
recv, 77
recvfrom, 77
recvmsg, 77
refresh current screen - refresh, 242
refresh - refresh current screen, 242
regular expressions

compile -re_comp, 166
execute - re_exec, 166

release blocked signals, 90
remote command

return stream to, 217, 218
remote - remote host descriptions, 382
remote host phone numbers - phones, 377
remove directory, 80
remove directory entry, 108
remove element from queue - remque, 151
remove file system, 109
remque - remove element from queue, 151
rename, 79
reopen stream - freopen, 227
reposition stream

fseek, 229
ftell, 229
rewind, 229

reset tty flags to stored value - resetty, 242
resetty - reset tty flags to stored value, 242
resource consumption

control - vlimit, 194
resource control

getrlimit, 44
getrusage, 46
setrlimit, 44

resource controls
getpriority,43
quota, 71
setpriority,43
setquota, 85

0

0

0

0

0

0

resource usage
get info - vtimes, 195

resource utilization
get inrormation about, 46

retrieve datum under key - fetch, 244
return stream to remote command, 217, 218
return to saved environment - longjmp, 168
reverse index strings - rindex, 175
rewind directory stream - rewinddir, 132
rewind - rewind stream, 229
rewind stream - rewind, 229
rewinddir - rewind directory stream, 132
rexec - return stream to remote command,

218
rindex - find character in string, 175
rmdir,80
rmtab - remote mounted file system table, 384
root directory

change, 17
routing - local network packet routing, 299
rpow - multiple precision exponential, 246
rresvport - get privileged socket, 217
ruserok - authenticate user, 217

s
save stack environment - setjmp, 168
savetty - stored current tty flags, 242
sbrk, 12
scan directory - alphasort, 167
scan directory - scandir, 167
scandir - scan directory, 167
scan f - convert from std in, 237
scanr through string - scanw, 242
scanf through window - wscanw , 242
scanw - scanr through string, 242
sccsfile - SCCS file rormat, 385
schedule signal - alarm, 182
scheduling priority

get, 43
set, 43

scroll - scroll window one line, 242
scroll window one line - scroll, 242
scrollok - set scroll flag, 242
sd - Adaptec ST-506 Disk driver, 301
sdiv - multiple precision divide, 246
seek in directory stream - seekdir, 132
seek on stream - fseek, 229
seekdir - seek in directory stream, 132
select,81
send,82
send message from socket, 82
send signal to process, 53
send signal to process group, 54
sendmail aliases file - aliases, 332
sendmsg, 82

sendto,82
servers - inet server database, 388
service entry

get, 213
inet server database - services, 389
set cbreak mOde - crmode, 242
set clear flag (or screen - clearok, 242
set current (y ,x) co-ordinates - wmove, 242
set current domain name, 31
set current signal mask, 91
set date and time, 50
set echo mode - echo, 242
set effective group ID, 170
set effective user ID, 170
set file creation mode mask, 107
set file times - utime, 193
set leave flag for window - leaveok, 242
set network group entry, 211
set network service entry, 213
set newline mapping - nl, 242
set options sockets, 49
set program priority - nice, 185
set raw mode - raw, 242
set real group ID, 170
set real user ID, 170
set scheduling priority, 43
set scroll flag - scrollok, 242
set signal stack context, 92
set term variables ror name - setterm, 242
set terminal state - stty, 188
set user limits - ulimit, 192
set user mask, 107
setbuf - assign buffering, 239
setbuffer - assign buffering, 239
setdomainname,31
setegid - set effective group ID, 170
seteuid - set effective user ID, 170
set fsent - get file system descriptor file

entry, 141
setgid - set group ID, 170
setgrent - get group file entry, 142
setgroups,83
sethostent - get network host entry, 207
sethostname, 36
setitimer,37
setjmp - save stack environment, 168
setjmp - non-local goto, 168
setkey - DES encryption, 128
setlinebuf - assign buffering, 239
setmntent - get filesystem descriptor file

entry, 144
setnetent - get network entry, 209
setnetgrent - get network group entry, 211
setpgrp,84
setpriority,43

- xiii -

setprotoent - get protocol entry, 212
setpwent - get password file entry, 148
setquota,85
setregid, 86
setreuid,87
setrgid - set real group ID, 170
setrlimit, 44
setruid - set real user ID, 170
setservent - get service entry, 213
setsockopt, 49
setstate - random number routines, 164
setterm - set term variables for name, 242
settimeofday,50
setuid - set user ID, 170
shell command, issuing - system, 178
shutdown,88
sigblock, 89
signal

schedule - alarm, 182
stop until - pause, 186

signal - software signals, 171
signal messages

signal messages - psignal, 162
signal messages - sys_siglist, 162

signals
kill, 53
killpg, 54
sigblock, 89
sigpause, 90
sigsetmask,91
sigstack, 92
sigvec,93

sigpause,90
sigsetmask, 91
sigstack, 92
sigvec,93
sin - trigonometric sine, 203
sinh - hyperbolic sine, 204
sleep - suspend execution, 174
socket,96
socket operations

accept,8
async_daemon, 64
bind, 11
connect, 19
getpeername, 40
getsockname, 48
getsockopt, 49
listen, 56
nfssvc, 64
recv, 77
recvfr.om, 77
recvmsg, 77
send, 82
sendmsg, 82
sendto,82

socket operations, continued
setsockopt, 49
shutdown,88
socket,96
socketpair, 98

socket options
get, 49
set, 49

socketpair,98
software signal - signal, 171
sort quicker - qsort, 163
space - specify plot space, 248
spawn process, 112
special file

make, 59
special files, 251
split into mantissa and exponent, 139
sprint f - format to string, 233
sqrt - square root function, 198
square root function - sqrt, 198
srand - generate random numbers, 187
srandom - generate random number, 164
sscanf - convert from string, 237
st - Sysgen SC 4000 (Archive) Tape Driver,

302
standend - end standout mode, 242
standout - start standout mode, 242
start standout mode - standout, 242
start standout mode - wstandout, 242
stat, 99
state of terminal

get - gtty, 188
set - stty, 188

statfs, 101
statistics

get file system, 101
profit, 68

stdin
get character - getchar, 230
get string from - gets, 231
input conversion - scanf, 237

stdout
output conversion - printf, 233
put character to - putchar, 235

stop processor, 76
stop until signal - pause, 186
store datum under key - store, 244
store - store datum under key, 244
stored current tty flags - savetty, 242
strcat - concatenate strings, 175
strcmp - compare strings, 175
strcpy - copy strings, 175
stream

-xiv -

assign buffering - setbuf, 239
assign buffering - setbuffer, 239
assign buffering - setlinebuf, 239

0

0

0

0

0

0

stream, continued
associate descriptor - fdopen, 227
close - fclose, 225
flush - fflush, 225
fpr int f - format to stream, 233
get character - fgetc, 230
get character - getc, 230
get character - getchar, 230
get position or - ftell, 229
get string from - fgets, 231
get word - getw, 230
input conversion - scanf, 237
open - fopen, 227
output conversion - print!, 233
pr int f - format to stdout, 233
push character back to - ungetc, 240
put character to - fputc, 235
put character to - putc, 235
put string to - puts, 236
put string to - fputs, 236
put word to - putw, 235
read from stream - fread, 228
reopen - freopen, 227
reposition - rewind, 229
return to remote command, 217, 218
rewind - rewind, 229
write to stream - fwr i te, 228
seek - fseek, 229
sprint f - format to string, 233

stream status enquiries
elearerr - clear error on stream, 226
feo f - enquire EOF on stream, 226
ferror - inquire error on stream, 226
fileno - get stream descriptor number,

226
stream to remote command

return, 217, 218
stream, formatted output

fpr int f - format to stream, 233
pr int f - format to stdout, 233
sprintf - format to string, 233

string
get from stdin - gets, 231
get from stream - fgets, 231
number conversion - printf, 233, 237
put to stdout - puts, 236
put to stream - fputs, 236

string operations
compare - strcmp, 175
compare - strncmp, 175
concatenate - strcat, 175
concatenate - strncat, 175
copy - strcpy, 175
copy - strncpy, 175
index - nndex, 175
reverse index - r index, 175
reverse index - rindex, 175

strings

-xv -

strings, continued
convert from numbers, 134
convert to numbers, 126

strlen - get length or string, 175
strncat - concatenate strings, 175
strncmp - compare strings, 175
strncpy - copy strings, 175
stty - set terminal state, 188
subwin - create subwindow, 242
super block

update, 104
suspend execution - sleep, 174
swab - swap bytes, 176
swap bytes - swab, 176
swapon, 101
symbolic link

create, 103
read value or, 75

symlink, 103
sync, 104
synchronize file state, 29
synchronous 1/0 multiplexing, 81
sys_errlist - system error messages, 161
sys_nerr - system error messages, 161
sys_siglist - system signal messages, 162
syscall, 105
sys log - write message to system log, 177
system calls

introduction to, 1
system data types - types, 407
system error messages

errno - system error messages, 161
perror - system error messages, 161
sys_err 11st - system error messages,

161
sys_nerr - system error messages, 161

system - issue shell command, 178
system log

control, 177
system operation support

accounting, 10
mount,61
nfsmount, 63
reboot, 76
swapon, 101
sync, 104
vadvise, 111

system page size
get, 39

system resource consumption
control - vlimit, 194

system signal messages
system signal messages - psignal, 162
system signal messages - sys_siglist,

162

T
tan - trigonometric tangent, 203
tanh - hyperbolic tangent, 204
tar - tape archive file format, 391
tcp - Internet Transmission Control Protocol,

timing and statistics
getitimer,37
gettimeofday,50
profil, 68
setitimer, 37
settimeofday, 50 303

tell, 57
telldir - position of directory stream, 132
temporary file

create name for - tmpnam, 191
term - terminal driving tables, 393
termcap - terminal capability data base, 396
terminal

configuration data base - gettytab, 350
find name of, 179

terminal independent operations
tgetent, 249
tgetflag, 249
tgetnum, 249
tgetstr, 249
tgoto, 249
tputs, 249

terminal state
get - gtty, 188
set - stty, 188

terminal types - ttytype, 406
terminate process - exit, 138, 24
terminate program

terminate program - abort, 123
termination handler

name- on....exit, 160
test for indeterminate floating values

isinf - test infinite value, 152
isnan - test not a number, 152

tgetent - get entry for terminal, 249
tgetflag - get Boolean cabability, 249
tgetnum - get numeric cabability, 249
tgetstr - get string cabability, 249
tgoto - go to position, 249
time

and date, get, 50
and date, set, 50

time and date
get - time, 189
get - ftime, 189

time and date conversion
asctime, 129
ctime, 129
dysize, 130
gmtime, 129
local time, 129
timezone, 129

time - get date and time, 189
timed event jobs table - crontab, 336
times - get process times, 190
timezone - date and time conversion, 129

tm - tapemaster 1/2 inch tape drive, 305
tmpnam - make temporary file name, 191
toascii - convert character to ASCII, 131
tolower - convert character to lower-case, 131
touchwin - change all window, 242
toupper - convert character to upper-case,

131
tp - DEC/mag tape formats, 404
tputs - decode padding information, 249
trace process, 69
trigonometric functions

acos, 203
asin, 203
atan, 203
atan2, 203
cos, 203
sin, 203
tan, 203

truncate, 106
trusted hosts list - hosts. equiv, 355
tty - general terminal interface, 306
ttyname - find terminal name, 179
ttys - terminal initialization data, 405
ttyslot - get tty entry number, 179
ttytype - connected terminal types, 406
types - primitive system data types, 407

u
udp - Internet User Datagram Protocol, 316
ulimit - get and set user limits, 192
umask, 107
unctr l - printable version of control, 242
ungetc - push character back to stream, 240
unique file name

create - mktemp, 156
unlink, 108
unmap, 62
unmap memory pages, 62
unmount, 109
unset cbreak mode - nocrmode, 242
unset echo mode - noecho, 242
unset newline mapping - nonl, 242
unset raw mode - noraw, 242
update super block, 104
USENET network news file formats - news,

372
user and group ID, 170
user ID

get, 51
set real and effective, 87

-xvi -

0

0

0

0

0

0

user limits
get - ulimit, 192
set - ulimit, 192

user mask
set, 107

utime - set file times, 193
utimes, 110
utmp - login records, 409
uuencode - UUCP encoded file rormat, 410

V
va_arg - next argument in variable list, 180
va_dcl - variable argument declarations, 180
va_end - finish variable argument list, 180
va_list - variable argument declarations, 180
va_start - initialize varargs, 180
vadvise, 111
varargs - variable argument list, 180
variable argument list, 180
vfont - font formats, 411
vfork, 112
vgrindefs - vgrind language definitions, 412
vhangup, 113
vlimit - control consumption, 194
vme16 - VMEbus 16-bit space, 288
vme24 - VMEbus 24-bit space, 288
vp - Ikon 10071-5 Versatec parallel printer

interrace, 318
vpc - Systech VPC-2200 Versatec/Centronics

interface, 319
vtimes - resource use info, 195

w
waddch - add character, 242
waddstr - add string, 242
wait, 114
wait3, 114
wclear - clear window, 242
wclrtobot - clear to bottom or window, 242
wclrtoeol - clear to end or line, 242
wdelch - delete character rrom window, 242
wdeleteln - delete line from window, 242
werase - erase window, 242
wgetch - get character through window, 242
wgetstr - get string through window, 242
win - Sun window system, 320
winch - get character at current (y,x) in win-

dow, 242
winsch - insert character in, 242
winsertln - insert line in, 242
wmove - set current (y,x) co-ordinates, 242
word

get rrom stream - getw, 230
put to stream - putw, 235

working directory

working directory, continued
change, 13
get pathname - getwd, 149

wprintw - printr to window, 242
wrefresh - make screen look like window, 242
write, 116
write formatted

fpr int f - convert to stream, 233
printf - convert to stdout, 233
sprint f - convert to string, 233

write to stream - fwr 1 te, 228
writev, 116
wscanw - scanr through window, 242
wstandend - end standout mode, 242
wstandout - start standout mode, 242
wtmp - login records, 409

X
xt - Xylogics 472 Tape Driver, 321
xy - Xylogics SMD Disk driver, 322

y
yO - Bessel runction, 202
yl - Bessel runction, 202
yellow pages client interface, 219
yn - Bessel runction, 202
yp_bind - yellow pages client interface, 219
yp_first - yellow pages client interface, 219
yp_get_default_domain - yellow pages

client interface, 219
yp_match - yellow pages client interrace, 219
yp_next - yellow pages client interface, 219
yp_unbind - yellow pages client interrace, 219
ypclnt_first - yellow pages client interrace,

219
ypclnt_next - yellow pages client interrace,

219

z
zero byte strings - bzero, 127
zs - zilog 8530 sec serial comunications

driver, 324

- xvii -

0

0

0

