
0 ~ ~~sun
• microsystems

0

Pascal Programmer's Guide
for the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0

0

0

• sun
microsystems

Pascal Programmer's Guide
for the Sun Workstation

-------------·-- ----

--

-------------------------------- ---------------------------------------

------ ·-·--------

---------- ------- --------- --- -------- -----------------------c

------------·------------ ---- ------~---------- -- --------------

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Acknowledgements

The first version of this Pa,cal Programmer'• Guide for the Sun Work•lation was originally pro­
duced by William N. Joy, Susan L. Graham, Charles B. Haley, Marshall Kirk McKusick, and
Peter B. Kessler of the Computer Science Division, Department of Electrical Engineering and
Computer Science, at the University of California at Berkeley.

The financial support of the first and second authors' work by the National Science Foundation
under grants MCS74-07644-A04, MCS78-07291, and MCS80-05144, and the first author's work by
an IBM Graduate Fellowship are gratefully acknowledged.

History of the Implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main features of
the present system were implemented by Charles Haley and William Joy during the latter half of
1976. Versions of this system have been in use since January, 1977.

The system was moved to the VAX-11 by Peter Kessler and Kirk McKusick with the porting of
the interpreter in the spring of 1979, and the implementation of the compiler in the summer of
1980.

The whole system was moved to the Sun Workstation in 1983 by Peter Kessler and Kirk
McKusick.

Copyrights

Copyright <!:> 1977, 1979, 1980, 1983 by W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick,
P. B. Kessler

Copyright<!:> 1982, 1983, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit­
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0

0

0

Revision History

Version Date Comments

A October 1980 This revision was the Berkeley Pascal User's Manual
Version 2.0.

B July 1983 This revision was the Berkeley Pascal User's Manual
Version 3.0. Sun Microsystems updates to this
manual removed references to the CYBER 6000
implementation details.

C 7 January 1984 Minor corrections and updates.

D 19 November 1984 2.0 a release

D

D

5 February 1985

15 May 1985

2.0 /3 release

2.0 release

- lll -

!

ol I

i
Qi

.

0
,

0

0

0

Contents

Chapter 1 Basic UNIX Pascal

Chapter 2 Error Diagnostics

1-1

2-1

Chapter 3 Input and Output ... 3-1

Chapter 4 System Component Details .. . 4-1

Chapter 6 Calling Pascal From Other Languages .. 6-1

Chapter 6 The Pascal--C Interface 6-1

Chapter 7 The Pascal - FORTRAN Interface ... 7-1

Chapter 8 Sun Extensions to Berkeley Pascal.. 8-1

Appendix A Pascal Language Reference Summary A-1

Appendix B Differences Between Berkeley Pascal and Standard Pascal B-1

Appendix C Bibliography.. C-1

Appendix D Pascal Manual Pages D-1

-v-

0

0

0

0

0

0

Preface

Chapter 1 Basic UNIX Pascal
1.1. pc
1.2. p1 .
1.3. pix

Contents

1.4. Formatting the Program Listing
1.5. Execution Profiling

1.5.1. An Example .

IX

1-1
1-2
1-3
1-3
1-3
1-4
1-4

Chapter 2 Error Diagnostics 2-1
2.1. Translator Syntax Errors . 2-1

2.1.1. Illegal Characters 2-1
2.1.2. String Errors 2-1
2.1.3. Digits in Numbers 2-1
2.1.4. Replacements, Insertions, and Deletions 2-2
2.1.5. Undefined or Improper Identifiers 2-3
2.1.6. Expected Symbols, Malformed Constructs 2-3
2.1.7. Expected and Unexpected End-of-file, "QUIT"............................. 2-4

2.2. Translator Semantic Errors 2-4
2.2.1. Format of the Error Diagnostics 2-4
2.2.2. Incompatible Types .. 2-5
2.2.3. Scalar 2-5
2.2.4. Function and Procedure Type Errors .. 2-5
2.2.5. Procedures and Functions as Parameters . 2-5
2.2.6. Can't Read and \Vrite Scalars, etc. 2-6
2.2.7. Expression Diagnostics ... 2-6
2.2.8. Type Equivalence 2-7
2.2.9. Unreachable Statements 2-8
2.2.10. gotos in Structured Statements 2-8
2.2.11. Unused Variables, Never-Set Variables.. 2-8

2.3. Translator Panics, 1/0 Errors ···:····· 2-9
2.3.1. Panics... 2-9
2.3.2. Out of Memory .. 2-9
2.3.3. 1/0 Errors 2-9

2.4. Runtime Errors in pix 2-9
2.4.1. Start-up Errors ... 2-10

- Vll -

2.4.2. Program Execution Errors 2-10
2.4.3. Interrupts.......................... 2-10
2.4.4. 1/0 Interaction Errors .. 2-11
2.4.5. Runtime Errors in pc 2-11

2.5. Comparing 2-11
2.5.l. Language Features of pc Not Supported by pi 2-11
2.5.2. Separate Compilation 2-12
2.5.3. Access to UNIX

2.5.4. Performance
2.5.5. De bugging

Chapter 3 Input and Output ...
3.1. Introduction
3.2. eof and eoln
3.3. More About eoln
3.4. Output Buffering
3.5. Files, Reset, and Rewrite
3.6. Argc and Argv

2-12
2-12
2-12

3-1
3-1
3-3
3-4
3-5
3-5
3-6

Chapter 4 System Component Details 4-1
4.1. Using Options . 4-1
4.2. Options Common to pi, pc, and piz 4-2

4.2.l. -L - Map Identifiers and Keywords to Lower Case.. 4-2
4.2.2. -b - Buffering of the File output 4-2
4.2.3. -i - Include File Listing............. 4-2
4.2.4. -1 - Make a Listing 4-3
4.2.5. -s - Standard Pascal Only 4-3
4.2.6. -t and -C - Runtime Tests 4-3
4.2.7. -w - Suppress Warning Diagnostics 4-3
4.2.8. -z - Generate Counters for a pzp Execution Profile 4-3

4.3. Options Available in pi 4-4
4.3.l. -p - Post-Mortem Dump............ 4-4
4.3.2. -o - Redirect the Output File .. 4-4

4.4. Options Available in pz 4-4
4.5. Options Available in pc.. 4-5

4.5.l. -5 - Generate Assembly Language 4-5
4.5.2. -g - Symbolic Debugger Information.. 4-5
4.5.3. -o - Redirect the Output File 4-5
4.5.4. -p and -pg - Generate an Execution Profile 4-5
4.5.5. -0 - Run the Object Code Optimizer... 4-5
4.5.6. -P - Partial Evaluation of Boolean Expressions.................................. 4-5
4.5.7. -Idir - Specify Directories for Include Files... 4-5
4.5.8. -Dname=def - Define Name to Preprocessor....................................... 4-6
4.5.9. -Uname - Undefine Name to the Preprocessor 4-6
4.5.10. -fsky - Generate In-Line Code for SKY Board............................. 4-6

4.6. Options Available in pzp 4-6

- Vlll -

0

0

0

0

0

4.6.1. -a - Include the Bodies of All Routines in the Profile 4-6
4.6.2. -d - Suppress Declaration Parts from a Profile 4-6
4.6.3. -e - Eliminate #include Directives 4-6
4.6.4. -f - Fully Parenthesize Expressions 4-7
4.6.5. -j - Left-Justify all Procedures and Functions 4-7
4.6.6. -t - Print a Table Summarizing Procedure and Function

Calls
4.6.7. -z - Enable and Control the Profile

4.7. Formatting programs using pxp
4.7.1. -11 - Strip Comments
4.7.2. -1 - Underline Keywords
4.7.3. -[23456789] - Specify Indenting Unit

4.8. pxref ..
4.9. Multi-file programs
4.10. Separate Compilation with pc ...

Chapter 5 Calling Pascal From Other Languages
5.1. Argument List Layout
5.2. Value Parameters.

5.2.1. Type shortreal
5.2.2. Fixed Array Types
5.2.3. Value Conformant Array Parameters.

5.3. Conformant Array Parameters
5.4. Procedures and Functions as Parameters

Chapter 6 The Pascal--C Interface
6.1. Order of Declaration of Arguments
6.2. Value Parameters vs. Reference Parameters
6.3. Conformant Array Parameters
6.4. Procedures and Functions as Parameters
6.5. Compatible Types in Pascal and C
6.6. Incompatible Types in Pascal and C

6.6.1. C Bit Fields
6.6.2. Enumerated Types
6.6.3. Character String Types
6.6.4. Pascal Set Types
6.6.5. Pascal Variant Records

4-7
4-7
4-7
4-9
4-9
4-9
4-9

4-10
4-10

5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-4

6-1
6-1
6-1
6-2
6-3
6-4
6-4
6-5
6-5
6-5
6-6
6-6

Chapter 7 The Pascal - FORTRAN Interface 7-1
7.1. Order of Declaration of Arguments 7-1
7.2. Value Parameters vs. Reference Parameters...... 7-1
7.3. Conformant Array Parameters ... 7-1
7.4. Procedures and Functions as Parameters 7-2
7.5. Compatible Types in Pascal and FORTRAN 7-3
7.6. Incompatible Types in Pascal and FORTRAN 7-3

7.6.1. Pascal Boolean vs. FORTRAN LOGICAL .. 7-3

- IX -

7.6.2. Multidimensional Arrays.. 7-4

Chapter 8 Sun Extensions to Berkeley Pascal .. 8-1
8.1. Language Extensions Supported by both pc and pi.. 8-1

8.1.1. Underscores Allowed In Identifiers ... 8-1
8.1.2. Conformant Array Parameters... 8-1

8.1.2.1. Syntax... 8-2
8.1.3. Otherwiae clause in case statement 8-2
8.1.4. sizeof operator... 8-3
8.1.5. Correct handling of multidimensional array declarations................. 8-4

8.2. Language extensions supported only by pc ... 8-5
8.2.1. Shortreal and Longreal types (pc only).. 8-5
8.2.2. External FORTRAN and C Declarations (pc only) 8-6
8.2.3. Bit Operations on Integral Types ... 8-6
8.2.4. Preprocessor facilities (pc only) ... 8-7
8.2.5. Version identification 8-7

8.3. Differences from the ISO Pascal Standard ... 8-7

Appendix A Pascal Language Reference Summary .. A-1
A.1. Programs... A-1
A.2. Declarations A-1

A.2.1. Label Declarations A-1
A.2.2. Constant Declarations A-2
A.2.3. Type Declarations.. A-2
A.2.4. Variable Declarations A-2
A.2.5. Procedure And Function Declarations A-2
A.2.6. Formal Parameter Declarations A-3

A.3. Constants A-3
A.4. Types ... A-3
A.5. Record Types ... A-4
A.6. Statements A-4
A.7. Expressions
A.8. Variables
A.9. Actual Parameters
A.10. Operators
A.ll. Miscellaneous
A.12. Lexicon

A-5
A-6
A-6
A-7
A-7
A-7

Appendix B Differences Between Berkeley Pascal and Standard Pascal B-1
B.1. Extensions to Pascal.. B-1

B.1.1. String Padding.. B-1
B.1.2. Octal Constants, Octal and Hexadecimal Write B-2
B.1.3. Assert Statement B-2
B.1.4. Enumerated Type Input/Output ... B-2
B.1.5. Structure-Returning Functions ... B-2
B.1.6. Separate Compilation .. B-2

-x-

0

0

0

0

0

0

B.2. Implementation Dependent Features ... B-3
B.2.1. File Name - File Variable Associations.. B-3
B.2.2. The Program Statement B-3
B.2.3. The Files Input and Output .. B-3
B.2.4. Details For Files B-4
B.2.5. Buffering B-4
B.2.6. The Character Set . B-4
B.2.7. The Standard Types.................................. B-5
B.2.8. Comments...................... B-5
B.2.9. Option Control.. B-6
B.2.10. Notes on the Listings... B-6
B.2.11. The Standard Procedure Write... B-6

B.3. Restrictions and Limitations .. B-7
B.3.1. Files .. B-7
B.3.2. Arrays, Sets, and Strings ... B-7
B.3.3. Line and Symbol Length....... B-7
B.3.4. Procedure and Function Nesting and Program Size B-7
B.3.5. Overflow B-8

B.4. Added Types, Operators, Procedures and Functions ... B-8
B.4.1. Additional Predefined Types.................. B-8
B.4.2. Additional Predefined Operators B-8
B.4.3. Nonstandard Procedures ... B-8
B.4.4. Nonstandard Functions .. B-9

Appendix C Bibliography ... C-1

Appendix D Pascal Manual Pages .. D-1

-xi-

O i
'

01

or

0

0

0

Preface

Pascal is available on Sun Workstations as an extended version of the Berkeley Pascal system
distributed with UNIX 4.2BSD. The Berkeley Pascal compiler (pc) is part of the Sun languages
software you received with your workstation. It is supported by the same profilers, debuggers,
and libraries available in C and In addition, the Berkeley Pascal system includes a statement­
level execution profiler (pxp), and a cross-reference generator (pxre!). The original Berkeley
Pascal Interpreter (pi,px,pix) remains available and is upwardly compatible with pc. Most Pas­
cal programs that run on 4.2BSD should port easily to Sun Workstations.

The Berkeley Pascal system on Suns supports Level 1 ISO Standard Pascal, which includes con­
formant array parameters and type-safe procedures and functions as parameters. In addition, pc
supports separate compilation and several extensions for improved access to facilities of UNIX. t
This Programmer's Guide describes how to use pc, pi, px, pix, and pxp. Details of interactive
programs and programs combining Pascal with other languages are also given. A number of
examples are provided, including many dealing with input and output.

This manual consists of four chapters and seven appendices:

Chapter 1 is an overview of the system and provides some introductory examples.

Chapter 2 discusses the error diagnostics produced by the translators pc, pi, the Pascal library,
and the interpreter px.

Chapter 3 describes input and output and gives special attention to interactive programs and
features unique to UNIX.

Chapter 4 gives details on the components of the system and explanation of all relevant options.

Chapter 5 describes the calling sequence used by Pascal for use when calling Pascal routines
from other languages.

Chapter 6 describes how to call routines written in C from Pascal programs.

Chapter 7 describes how to call FORTRAN routines from Pascal programs.

Chapter 8 describes Berkeley Pascal's extensions relative to the ISO Pascal Standard, and Sun's
extensions relative to 4.2BSD.

Appendix A is a Pascal language reference summary.

Appendix B is an appendix to the Jensen and Wirth Pascal Report defining the Berkeley imple­
mentation of the Pascal language, primarily providing historical notes.

Appendix C is a bibliography.

Appendix D contains the manual pages relevant to Pascal.

- Xlll -

0

I
or

Qi

0

0

0

Chapter 1

Basic UNIX Pascal

The Sun Workstation provides the following Pascal facilities:

• pc, a compiler

• pi, an interpreter code translator

• px, an interpreter

• pix, a translator and interpreter (combines the functions of pi and px)

• pxp, a execution profiler

• pzre/, a cross-reference generator

Pascal's calling conventions are the same as m C, with var parameters passed by address and
other parameters passed by value.

Both pc and pi support ISO dp7185 Level 1 Standard Pascal, including conformant array parame­
ters. In addition, pc contains several extensions. Deviations from the standard are noted in the
BUGS section of the pc(i) manual page.

In addition to pc, there are other tools you might find helpful for creating Pascal programs.

Text Editing

Debug Aida

man page•

The major text editor for source programs is 11i (vee-eye), the visual display edi­
tor. It has considerable power because it offers the capabilities of both a line
and a screen editor. 11i also provides several commands for editing programs,
which are options you can set in the editor. Two examples are the autoindent
option, which supplies white space at the beginning of a line, and the
•howmatch option, which shows matching parentheses. For more information,
see the Editing and Text Proce88ing manual section on vi.

There are two main de bugging tools available on the Sun system:

dbx a symbolic debugger that understands Pascal, C, and FORTRAN-77
programs.

adb an interactive, general-purpose, low-level debugger that is not as easy
to use as dbx.

The on-line documentation consists of pages from the Command, Reference
Manual called manual or 'man' pages. The applicable manual pages for Pascal
are

Version D May 1985 1-1

Basic UNIX Pascal Pascal Programmer's Guide for the Sun Workstation

1. pc(l)

2. pi(l)

3. piz(l)

4. pz(l)

5. pxp(I)

6. pxref(I)

To get more information about the syntax for a command, you can display any
of the manual pages on your screen by typing

hostname% man pc

Other manuals Other Sun manuals containing information on editing or using Pascal are

1. Editing and Text Proceuing on the Sun Workstation

2. Programming Tools for the Sun Workstation

3. Commands Reference Manual for the Sun Work.talion

4. System Interface Manual for the Sun Workstation

Before reading on, make sure that you are familiar with basic editing techniques used on the Sun
Workstation and with writing standard Pascal programs.

1.1. pc

pc is the Sun Pascal compiler. If given an argument file named filename .p, pc compiles the file
and leaves the result in an executable file called (by default) a. out.

A program can be separated into more than one .p file. pc can compile a number of .p files into
object files having the extension .o in place of .p. Object files can then be loaded to produce an
executable a.out file. Exactly one object file must supply a program statement to successfully
create an executable a.out file. The rest of the files must consist only of declarations that logi­
cally nest within the program.

References to objects shared between separately compiled files are allowed if the objects are
declared in included header files having the extension .h. Header files may only be included at
the outermost level, and thus declare only globally available objects.

To allow external functions and procedures to be declared, an external directive has been
added, which used similarly to the forward directive but can only appear in .h files. A binding
phase of the compiler checks that declarations are used consistently, to enforce the type­
checking rules of Pascal.

Other language processors that create object files can be loaded together with object files
created by pc. The functions and procedures they define must be declared in .h files included by
all the .p files that call those routines.

For example, consider the example file greetings .p:

1-2 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation

program greetings(output);
begin

writeln('Hello, world')

end.

Compile the program with pc then run it as follows: .

hostname% pc greetings.p
hostname% a.out
Hello. world I
hostname%

1.2. pi

Basic UNIX Pascal

pi is the Pascal interpreter code translator. It translates .p files and puts the interpreter code
into the file obj. As an example, pi translates and runs greetings.pas follows:

hostname% pi greetinga.p

hostname% obj
Hello. world I

1 statement executed in 0.00 seconds cpu time.
hostname%

1.3. pix

piz combines the functions of pi and pz into one command. Translate and interpret
greeting. p with piz as follows:

hostname% pix greetings.p
Execution begins ...
Hello. world!

Execution terminated.

1 statements executed in 0.00 seconds cpu time.
hostname%

1.4. Formatting the Program Listing

It is possible to use special lines within the source text of a program to format the program list­
ing. An empty line prints without a line number. A line containing only a control-L (formfeed)
character causes a page eject in the listing with the corresponding line number suppressed. With
pi, the -n command line option begins each listed include file on a new page with a banner line.

Version D May 1985 1-3

Basic UNIX Pascal Pascal Programmer's Guide for the Sun Workstation

1.5. Execution Profiling

An execution profile consists of a structured listing of (all or part of) a program with information
about the number of times each statement in the program was executed for a particular run of
the program. These profiles can be used for several purposes. In a program that was abnormally
terminated due to excessive looping, recursion, or a program fault, the counts can help you to
locate the error. Zero counts mark portions of the program that were not executed; during the
early debugging stages they should prompt new test data or a reexamination of the program
logic. The profile is perhaps most valuable, however, in drawing attention to the (typically
small) portions of the program that dominate execution time. This information can be used for
source-level optimization.

1.5.1. An Example

A prime number is a pos1t1ve integer with exactly two divisors, itself and one. The program
primes determines the first few prime numbers. In translating the program, the -z option is
specified on the command line to pc. This option causes the compiler to generate counters and
additional code that record the number of times each statement in the program was executed,
which enables pxp statement profiling. 1 Thus, the program is translated as follows:

hostname% pc -z prlmes.p

Run primes as follows:

hostname% a.out

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

hostname%

When execution of the program completes (either normally or abnormally) the statement counts
are written to the file pmon. out in the current directory. 2 By running pxp with the source file
containing the program and (implicitly) the file pmon.out as arguments you can prepare an exe­
cution profile. This results in the following output:

1 The counts are completely accurate only in the absence ot runtime errors and nonlocal goto state•
ments. This is not generally a problem, however, as in structured programs nonlocal goto statements occur
infrequently, and counts are incorrect after abnormal termination only when the upward look (described
below) to get a count passes a suspended call point.

2 pmon.out is similar to mon.out and gmon.out, which are used by pro/(1) and gpr,,J(l), respectively.
Note that both of these profilers are available under pc.

1-4 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Basic UNIX Pascal

hostname% pxp prlmea.p
Berkeley Pascal PXP -- Version 2.14 (11/2/84)

Sat Jan 12 10:01 1985 primes.p

Profiled Sat Jan 12 10:02 1985

1
2
2
2
3
3
4
5
6
7
7
B

8
8
8
9
9

11
11
12
13
14
14
14
16
16
17
18
19
19
20
20
20
23
23
24
24
25
26
26
26
26
29
29

1.---lprogram primes(output);
1const
I n = 50;
I nl = 7; (•nl = sqrt (n) •)
Ivar
I i, k, x, inc, lim, square, 1: integer;
I prim: boolean;
I p, v: array [1 .. nl] of integer;
!begin
I write(2: 6, 3: 6);
I 1 := 2;
I x := 1;
I inc := 4;
I lim := 1;
I square:= 9;
I for i := 3 ton do begin (•find next prime•)

48.---1 repeat
76.---1 x := x + inc;

1 inc := 6 - inc;
I if square<= x then begin

5.---1 lim := lim + 1;
I v[lim] := square;
I square:= sqr(p[lim + 1])

I end;
I k := 2;
I prim:= true;
I while prim and (k < lim) do begin

157.---1 k := k + l;
I if v[k] < x then

42. - - - I v [k] : = v [k] + 2 • p [k] ;
I prim:= x <> v[k]
end

!until prim;
I if i <= nl then

5.---1 p[i] := x;
I write(x: 6);
I 1 := 1 + 1;
1 if l = 10 then begin

5.---1 writeln;

lend.

I 1 := o
end

end;
writeln

The header lines in the outputs of pc, pi, and piz indicate the version of the translator and exe­
cution profiler in use at the time this program was prepared. The time given with the file name

Version D May 1985 1-5

Basic UNIX Pascal Pascal Programmer's Guide for the Sun Workstation

(also on the header line) indicates the time of last modification of the program source file. This
time serves to version stamp the input program. pxp also indicates the time when the profile o,

data was gathered.

To determine the number of times a statement was executed, look up to the left of the state­
ment and finds the corresponding vertical bar 'I'. If this vertical bar is labeled with a count,
then that count gives the number of times the statement was executed. If the bar is not labeled,
look upwards in the listing to find the first 'I' above the original one that has a count to find the
answer. Thus, in our example, k was incremented 157 times on line 18, while the write pro­
cedure call on line 24 was executed 48 times (as given by the count on the repeat on line 9).

More information on pxp can be found in its manual section pxp(l) and in the "Options available
in px," "Options available in pc," and "Separate Compilation with pc" sections in Chapter 4.

1-6 Version D May 1985

0

0

0

0

0

Chapter 2

Error Diagnostics

This section discusses the error diagnostics of the programs pi, pc, pz and piz. See the manual
section piz(l) and the "Options common to pi, pc, and pz" section found in Chapter 4 for more
details. All the diagnostics given by pi are also given by pc.

2.1. Translator Syntax Errors

This section describes some common syntax errors in Pascal programs and how the compiler han­
dles them.

2.1.1. ll/egal Characters

Characters such as '$', '!', and '@' are not part of Pascal. If they are found in the source pro­
gram and are not part of a string constant, a character constant, or a comment, they are con­
sidered to be illegal characters. This can happen if you leave off an opening string quotation
mark ('). Most nonprinting characters in your input are also illegal except in character constants
and character strings. Except for the tab and formfeed characters, which are used to format the
program, nonprinting characters in the input file print as the character '?' in your listing.

2.1. 2. String Errors

There is no character string of length zero in Pascal. Consequently the input '' '' is not accept­
able. Similarly, encountering an end-of-line after an opening string quotation mark (') without
first encountering the matching closing quote yields the diagnostic "Unmatched ' for string."

Programs containing'#' characters (other than in column 1) can produce this diagnostic. This is
because early implementations of Pascal used '#' as a string delimiter. In the Sun implementa­
tion, '#' is used for #include and preprocessor directives and must begin in column 1.

2.1.3. Digits in Numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers both before
and after the decimal point. Thus the following statements, which look quite reasonable to FOR­
TRAN users, generate diagnostics in Pascal:

Version D May 1985 2-1

Error Diagnostics Pascal Programmer's Guide for the Sun Workstation

Fri Dec 21 14:14 1984 digits.p:
4 r := O.;

e -------------A--- Digits required after decimal point
5 r := .O;

e -----------·--- Digits required before decimal point
6 r := 1.elO;

e -------------·--- Digits required after decimal point
7 r := .05e-10;

e -----------·--- Digits required before decimal point

These contructs are also illegal as data input to variables that read statements whose arguments
are variables of type real.

2.1.,t. Replacements, Insertions, and Deletions

When a syntax error is encountered in the input text, the parser invokes an error recovery pro­
cedure. This procedure examines the input text immediately after the point-of-error and uses a
set of simple corrections to see whether to allow the analysis to continue. These corrections
involve replacing an input token with a different token or inserting a token. Most of these
changes do not cause fatal syntax errors. The exception is the insertion of or replacement with a
symbol such as an identifier or a number; in these cases, the recovery makes no attempt to
determine which identifier or what number should be inserted. Thus, these are considered fatal
syn tax errors.

Consider the following example:

hostname% pix -1 synerr.p
Berkeley Pascal PI -- Version 3.5 (1/22/85)

Fri Dec 21 14:14 1984 synerr.p

1 program syn(output);
2 var i, j are integer;

e --------------- --- Replaced identifier with a
3 begin
4 for j : • 1 to 20 begin

'.'

e ---------------------A--- Repl~ced '*' with a'='
e -------------------------------A--- Inserted keyword do

5 write (j);
6 i=2••j;

e ------------------------A--- Inserted ':'

E -----------------------------·--- Inserted identifier
7 writeln (i))

E --------------------------------·---Deleted')'
8 end
9 end.

hostname%

The only surprise here may be that Pascal does not have an exponentiation operator, hence the
complaint about '**'. This error illustrates that if you assume tha.t the language has a feature
that it doesn't have, the translator diagnostic may not indicate this specifically, since it is
unlikely to recognize the construct you supply.

2-2 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Error Diagnostics

2.1.5. Undefined or Improper Identifiers

If an identifier is encountered in the input but is undeclared, the error recovery mechanism
replaces it with an identifier of the appropriate class. Further references to this identifier are
summarized at the end of the containing procedure or function or at the end of the pro­
gram if the reference occurred in the main program. Similarly, if an identifier is used in an
inappropriate way, (for example, if a type identifier is used in an assignment statement, or if a
simple variable is used where a record variable is required) a diagnostic is produced and an
identifier of the appropriate class inserted. Further incorrect references to this identifier are
flagged only if they involve incorrect use in a different way, with all incorrect uses being sum­
marized in the same way as undeclared variable uses are.

2.1.6. Expected Symbols, Malformed Constructs

If none of the corrections mentioned above appears reasonable, the error recovery examines the
input to the left of the point of error to see if there is only one symbol that can follow this input.
If this is the case, the recovery prints a diagnostic which indicates that the given symbol was
'expected.'

In cases where none of these corrections resolve the problems in the input, the recovery may
issue a diagnostic that indicates "malformed" input. If necessary, the translator can then skip
forward in the input to a place where analysis can continue. This process may cause some errors
in the missed text to be skipped.

Consider the following example:

tutorial% pix -1 aynerr2.p
Berkeley Pascal PC -- Version 3.5 (1/22/85)

Fri Dec 21 14:14 1984 synerr2.p:
1 program synerr2(input,outpu);
2 integer a(lO)

E ------·--- Malformed declaration
3 begin
4 read(b);

E ------------------- --- Undefined variable
5 for c : = 1 to 10 do

E ------------------·--- Undefined variable
6 a (c) := b • c;

E ----------------------·--- Undefined procedure
E ---------------------------·--- Malformed statement

7 end.
E 1 - File outpu listed in program statement but not declared
In program synerr2:

E - a undefined on line 6
E - b undefined on lines 4
E - c undefined on line 5 6

tutorial%

Here output is misspelled and given a FORTRAN style variable declaration that the translator
diagnosed as a 'Malformed declaration.' On line 6, parentheses are used for subscripting (as in
FORTRAN) rather than the square brackets that are used in Pascal, so the translator noted that a

was not defined as a procedure (delimited by parentheses in Pascal). As it's not permissible

Version D May 1985 2-3

Error Diagnostics Pascal Programmer's Guide for the Sun Workstation

to assign values to procedure calls, the translator diagnosed a malformed statement at the point
of assignment.

2.1. 7. Expected and Unexpected End-of-file, "QUIT"

If the translator finds a complete program, but there is more (noncomment) text in the input file,
then it indicates that an end-of-file is expected. This situation may occur after a bracketing
error, or if too many ends are present in the input. The message may appear after the recovery
says that it "Expected'.'", since a period(.) is the symbol that terminates a program.

If severe errors in the input prohibit further processing, the translator may produce a diagnostic
message followed by "QUIT". Examples include nonterminated comments and lines longer than
1024 characters. Consider the following example:

tutorial% pix -1 mism.p
Berkeley Pascal PI -- Version 3.5 (1/22/85)

Fri Dec 21 14:14 1984 mism.p

l program mismatch(output)
2 begin

e ------ Inserted';'
3 writeln('***');
4 { The next line is the last line in the file}
5 writeln

E --------------------- --- Malformed declaration
--------------------- Unexpected end-of-file - QUIT

tutorial%

In this case, the end of file was reached before an end delimiter.

2.2. Translator Semantic Errors

The following sections explain the typical formats and terminology used in Pascal error messages.
For more detailed descriptions of diagnostic messages, refer to Cooper's Standard Paacal Uaer
Reference Manual [l].

2.2.1. Format of the Error Diagnostics

In the example program above, the error diagnostics from the Pascal translator include the line
number in the text of the program, as well as the text of the error message. While this number
is most often the line where the error occurred, it can refer to the line number containing a
bracketing keyword like end or until . If so, the diagnostic may refer to the previous state­
ment. This occurs because of the method the translator uses for sampling line numbers. The
absence of a trailing ';' in the previous statement causes the line number corresponding to the
end or until to become associated with the statement. AB Pascal is a free-format language,
the line number associations can only be approximate and may seem-arbitrary in some cases.

2-4 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Error Diagnostics

2.2.2. Incompatible Types

Since Pascal is a strongly-typed language, many type errors can occur, which are called type
clashes by the translator. The types allowed for various operators in the language are summar­
ized on page 43 of Cooper [1]. It is important to know that the Pascal translator, in its diagnos­
tics, distinguishes among the following type classes:

array
pointer

Boolean
real

char
record

file
scalar

integer
string

These words are used in many error messages. Thus, if you tried to assign an integer value
to a char variable you would receive a diagnostic like

Fri Dec 21 14:14 1984 clash.p:
E 7 - Type clash: integer is incompatible with char

... Type of expression clashed with type of variable in assignment

In this case, one error produced a two-line error message. If the same error occurs more than
once, the same explanatory diagnostic is given each time.

2.2.3. Scalar

The only class whose meaning is not self-explanatory is scalar. Scalar has a precise meaning
in the Pascal standard where, in fact, it refers to char, integer, real, and Boolean
types as well as the enumerated types. For the purposes of the Pascal translator, scalar in an
error message refers to a user-defined, enumerated type, such as ops in the example above or
color in

type color= (red, green, blue)

For integers, the more explicit denotation integer is used. Although it's correct in the con­
text of the User Guide to refer to an integer variable as a scalar variable, the interpreter pi
prefers more specific identification.

2.2.4. Function and Procedure Type Errors

For built-in procedures and functions, two kinds of errors occur. If the routines are called with
the wrong number of arguments a message like

Fri Dec 21 14:14 1984 sinl.p:
E 12 - sin takes exactly one argument

is displayed. If the type of an argument is wrong, you receive a message like

Fri Dec 21 14:14 1984 sin2.p:
E 12 - sin's argument must be integer or real, not char

2.2.5. Procedures and Functions as Parameters

In standard Pascal, procedures and functions used as formal parameters can be declared with
(nested) parameter lists of their own. In Jensen and Wirth's Pascal there are no nested parame­
ter lists; therefore, no argument checking is possible in calls made to parametric procedures and
!unctions. Berkeley Pascal requires you to use parametric procedures to conform to the

Version D May 1985 2-5

Error Diagnostics Pascal Programmer's Guide for the Sun Workstation

standard, so programs ported from early implementations of Pascal may require modification.

2.2.6. Can't Read and Write Scalars, etc.

Error messages stating that scalar (user-defined) types cannot be written to and from files are
often mysterious. In fact, if you define

type color= (red, green, blue)

standard Pascal does not associate these constants with the strings 'red', 'green', and 'blue' in
any way. An extension has been added to Berkeley Pascal that allows enumerated types to be
read and written; however, if the program is to be portable, you must write your own routines to
perform these functions. Standard Pascal only allows the reading of characters, integers and real
numbers from text files (not strings or Booleans). It's possible to make a

file of color

but the representation is binary rather than a string.

2. 2. 7. Expression Diagnostics

The diagnostics for semantically ill-formed expressions are very explicit as this sample transla­
tion:

2-6 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Error Diagnostics

hostname% pi -1 expr.p
Berkeley Pascal PI -- Version 3.5 (1/22/85)

Fri Dec 21 14:14 1984 expr.p

1 program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 c: (red, green, blue) ;
6 p : • integer;
7 A: alfa;
8 B: packed array [1. . 5] of char;
9 begin

10 b := true;
11 c := red;
12 new (p);
13 a := [];
14 A := 'Hello, yellow';
15
16
17
18
19
20
21 end.

b := a and b;
a:= a* 3;
if input< 2 then writeln('boo');
if p <= 2 then writeln('sure nuff');
if A= B then writeln('same');
if c = true then writeln('hue''s and color''s')

E 14 - Constant string too long
E 15 - Left operand of and must be Boolean, not set
E 16 - Cannot mix sets with integers and reals as operands of•
E 17 - files may not participate in comparisons
E 18 - pointers and integers cannot be compared - operator was<=
E 19 - Strings not same length in= comparison
E 20 - scalars and Booleans cannot be compared - operator was=
e 21 - Input is used but not defined in the program statement
In program x:

w - constant green is never used
w - constant blue ls never used
w - variable Bis used but never set

hostname%

This example is admittedly far fetched, but illustrates that the error messages are clear enough
to allow you to easily determinate the problem in the expressions.

2.2.8. Type Equivalence

The Pascal translator produces several diagnostics that complain about 'non-equivalent types.' In
general, Pascal considers variables to have the same type only if they are declared with the same
constructed type or type identifier. Thus, the variables z and y declared as

var
x: ... integer;
y: • integer;

do not have the same type. The assignment

Version D May 1985 2-7

Error Diagnostics Pascal Programmer's Guide for the Sun Workstation

X := y

produces the diagnostic messages

Fri Dec 21 14:14 1984 typequ.p:
E 7 - Type clash: non-identical pointer types

... Type of expression clashed with type of variable in assignment

It is always necessary to declare a type such as

type intptr =·integer;

and use it to declare

var x: intptr; y: intptr;

Note that if we had initially declared

var x, y: A integer;

then the assignment statement would have worked. The statement

x· := y·

is allowed in either case. Since the parameter to a procedure or function must be declared
with a type identifier rather than a constructed type, it is always necessary to declare any type
that is used in this way.

2.2.9. Unreachable Statements

Sun Pascal flags unreachable statements. Such statements usually correspond to errors in the
program logic. Note that a statement is considered to be reachable if there is a potential path of
control, even if it can never be taken. Thus, no diagnostic is produced for the statement:

if false then
writeln('impossiblel ')

2.2.10. gotos in Structured Statements

The translator detects and complains about goto statements that transfer control into struc­
tured statements (e.g., for and while). It does not allow such jumps, nor does it allow
branching from the then part of an if statement into the else part. Such checks are made
only within the body of a single procedure or function.

2.2.11. Unused Variables, Never-Set Variables

Although pi always clears variables to zero at procedure and function entry, pc does not
unless runtime checking is enabled using the -C option. It is not good programming practice to
rely on this initialization. To discourage this practice, and to help detect errors in program
logic, pi flags as a 'w' warning error the following:

2-8

• Use of a variable that is never assigned a value.

• A variable that is declared but never used, distinguishing between those variables whose
values are computed but that are never used, and those that are completely unused.

Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Error Diagnostics

In fact, these diagnostics are applied to all declared items. Thus a canst or a procedure
that is declared but never used is flagged. The -w option of pi may be used to suppress these
warnings; (see "Options" and "Options Common to pi, pc, and pix" in Chapter 4).

Note: Since variable uses and assignments are not tracked across separate commpilation units,
pc ignores uninitialized and unused variables in the global scope. This also applies to fields or
records whose types are global.

2.3. Translator Panics, 1/0 Errors

2.3.1. Panics

One class of error that rarely occurs, but that causes termination of all processing when it does,
is a panic. A panic indicates a translator-detected internal inconsistency. A typical panic mes­
sage 1s

snark (rvalue) line=llO yyline=109
Snark in pi

If you receive such a message, the translation is quickly and (perhaps) ungracefully terminated.
Save a copy of your program to inspect later, then contact Technical Support at Sun Microsys­
tems. If you were making changes to an existing program when the problem occurred, you may
be able to work around the problem by determining which change caused the snark and mak­
ing a different change or error correction to your program.

Panics are also possible in pz, particularly if range checking is disabled with the -t option.

2.3.2. Out of Memory

If you receive an "out of space" message from the translator during translation of a large pro­
cedure or function or one containing a large number of string constants, you can either
break the offending procedure or function into smaller pieces or inc!'ease the maximum data seg­
ment size using the limit command of c•h(l).

In practice, the compiler rarely runs out of memory on Sun workstations.

2.3.3. I/0 Errors

Other errors that you may encounter when running pi relate to input/output. If pi cannot open
the file you specify, or if the file is empty, an error occurs.

2.4. Runtime Errors in pix

The second example illustrates one run-time error. Here are general descriptions of run-time
errors. The more unusual interpreter error messages are explained briefly in the manual pages
section for pz(l).

Version D May 1985 2-9

Error Diagnostics Pascal Programmer's Guide for the Sun Workstation

2.4-1. Start-up Errors

These errors occur when the object file to be executed is not available or appropriate. Typical
errors here are caused by the specified object file not existing, not being a Pascal object, or not
being accessible to the user.

2.4-2. Program Execution Errors

These errors occur when the program interacts with the Pascal runtime environment in an inap­
propriate way. Typical errors are values or subscripts out of range, bad arguments to built-in
functions, exceeding the statement limit because of an infinite (or very long) loop, or running out
of memory3. The interpreter produces a traceback after the error occurs, showing all the active
routine calls, unless the -p option was disabled when the program was translated. Unfor­
tunately, no variable values are given and no way of extracting them is available.

As an example of such an error, assume that you have accidentally declared the constant n1 to
be 6, instead of 7 on line 2 of the program 'primes' (as given in the Execution profiling section in
Chapter 1). If you run this program, you get the following response:

hostname% piz primee.p
Execution begins ...

2 3 5 7 11 13 17 19
31 37 41 43 47 53 59 61
73 79 83 89 97 101 103 107

127 131 137 139 149 151 157 163
Subscript value of 7 is out of range

Error in "error"+B near line 14.
Execution terminated abnormally.

996 statements executed in 0.32 seconds cpu time.

23
67

109
167

29
71

113

The interpreter indicates that the program terminated abnormally due to a subscript out of
range near line 14, which is eight lines into the body of the program primes.

2 .. ,1.3. Interrupts

If a program running under pz is interrupted while executing, and the -p option was not
specified to pi, then a traceback is printed. 4 The file pmon.out of profile information is written if
the program was translated with the -z option enabled (pc, pi, or piz).

3 The checks tor running out ot memory a.re not foolproof a.nd there is a cha.nee that the interpreter will
fa.ult, producing a core image, when it runs out of memory. This situation occurs very rarely.

4 Occasionally, the Pascal system is in an inconsistent state when this occurs (tor example, when an inter­
rupt terminates a procedure or function entry or exit). In this case, the traceback only contains the
current routine. A reverse ca.II-order list of procedures is not given.

2-10 Version D May 1985

0

C

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Error Diagnostics

2.4-4. I/ 0 Interaction Errors

The final class of interpreter errors results from inappropriate interactions with files, including
your Sun workstation. Included here are bad formats for integers and real numbers (such as no
digits after the decimal point) when reading.

2.4,5. Runtime Errors in pc

Programs compiled with pc use the same library routines as the interpreter pz. They detect
essentially the same error conditions as pz, but support error diagnosis and debugging differently
from pz.

When an error is detected in a program compiled by pc, a message describing the error is
printed and the program is aborted, producing a core image. For example, consider the previous
example, which was run using piz. Compiling this program using the -C and -g options and
running it you get

hostname% pc primes.p -c -g
hostname% a.out

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

hostname%

Note that unlike pz or piz, no traceback is produced. However, since the program was compiled
with the -g option you can use the dbx debugger to help debug the program.

2.5. Comparing

This section lists differences between the compiler pc and the interpreter programs pi/pz/pix. pi
may be used for small, easy-to-debug programs having negligible execution time. For most appli­
cations, pc is a better choice.

2.5.1. Language Features of pc Not Supported by pi

Both pi and pc support ISO standard Pascal with numerous extensions. However, some exten­
sions supported by pc are not supported by pi. In most cases, these are related to separate com­
pilation or to compatibility with other languages:

• The predefined type shortreal (IEEE single-precision floating point)

• External procedure declarations

• Bitwise logical operations on integral types

• Preprocessor facilities other than file inclusion

Version D May 1985 2-11

Error Diagnostics Pascal Programmer's Guide for the Sun Workstation

For details on these and other extensions, see Appendix A.

2.5.2. Separate Compilation

pi compiles a single source file, which can contain #include commands. As in standard Pascal,
programs compiled by pi must be organized as a single unit, including the outer begin ... end
block and the program heading. pc allows programs to be developed as separately compiled
source modules.

2.5.S. Access to UNIX

Programs processed by pi cannot call library or UNIX system routines, except for routines
predefined by pi and built into pz. Program modules compiled by pc can call C library routines
directly; details are given in Appendix D.

2.5.4, Performance

pi compiles more quickly than pc, but at the expense of execution efficiency. It has been
estimated that pi compiles a source program at five times the speed of pc, but programs com­
piled by pi and interpreted by pz can run 30 times slower than the same programs compiled by
pc.

0

These numbers vary according to the application and release version of Berkeley Pascal running
on Sun Workstations. They are given here, however, to illustrate the performance tradeoffs Q,

between compiled and interpreted programs.

2.5.5. Debugging

Programs compiled by pc can be debugged using either the assembly-level debugger (adb) or the
source-level debugger (dbx). There is no debugger running on Sun Workstations for interpreted
Pascal programs, so programs compiled by pi must be de bugged with write ln and assert
statements.

2-12 Version D May 1985

0

0

0

0

Chapter 3

Input and Output

This chapter describes features of the Pascal input/output environment, with special considera­
tion of the features specific to interactive programs.

3.1. Introduction

In Berkeley Pascal, the predefined file variables input and output are equivalent to the
UNIX standard input and output files (known as stdin and stdout). Consequently, Pascal
programs can be easily used in the UNIX environment to read or write files by using the shell to
redirect stdin and stdout. For example, consider the following program, which copies input
to output:

program copy(input,output);
var c: char;
begin

while not eof to begin
while not eoln do begin

read(ch);
write(ch);

end;
readln;
writeln;

end;
end.

Assume that the program above is saved in a file called copy. p. First, you would compile it
and produce a program called copy as follows:

hostname% pc copy.p -o copy

Next, run the program. Since the standard files input and output default to the terminal,
the program simply echoes each line typed, terminating when a line beginning with an end-of-file
(control-D) character is typed.

Version D May 1985 3-1

Input and Output Pascal Programmer's Guide for the Sun Workstation

hostname% copy
hello, are you listening?
hello, are you listening?
goodbye, I must go now.
goodbye, I must go now.
(CTRL-D)
hostname%

By using the shell's ">" operator to redirect output, you can create a short text file called
data.

hostname% copy >data
hello, are you listening?
goodbye, I must go now.
(CTRL-D)

hostname%

Using the same program, but with the "<" operator to redirect input the file prints on the termi­
nal:

hostname% copy<data
hello, are you listening?
goodbye, I must go now.
hostnamex

There are other ways to associate Pascal file variables with UNIX files. One simple way, which
is restrictive but usually portable to other Pascal systems, is to list the name of the file as a file
variable in the program statement. The Pascal library associates the file variable with a file of
the same name. For example, the following program copies a UNIX file named data to output:

program copydata(data,output);
var c: char;

data: text'
begin

reset(data);
while not eof(data) do begin

while not eoln(data) do begin
read(data,ch);

end;
end.

write(ch);
end;
readln(data);
writeln;

Assuming that the file data is still in the current directory and the copydata program 1s
saved in copydata. p, you can compile and run the program as follows:

hostname% pc copydata,p -o copydata
hostname% copydata
hello, are you listening?
goodbye, I must go now.
hostnamex

There are other more flexible ways to associate Pascal file variables with UNIX files; for example,
actual filenames can be taken from string constants or variables, or from command-line

3-2 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Input and Output

arguments using the built-in procedures argc and argv. Details are given in later sections of
this manual.

3.2. eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the interactive
environment offered by UNIX, relates to the definitions of eof and eoln. These functions are
supposed to be defined at the beginning of execution of a Pascal program, indicating whether the
input device is at the end of a line or the end of a file (or neither). Setting eof or eoln actu­
ally corresponds to an implicit read in which the input is inspected, but not "used up." In fact,
there is no way the system can know whether the input is at end-of-file or the end of a line
unless it attempts to read a line from it. If the input is from a previously created file, then this
reading can take place without runtime action by the user. However, if the input is from a ter­
minal, then the input is what you type. 5 If the system does an initial read automatically at the
beginning of program execution, and if the input is a terminal, the user would have to type some
input before execution could begin. This would make it impossible for the program to begin by
prompting for input.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given time,
the Pascal system may or may not know whether the end-of-file and end-of-line conditions are
true. Thus, internally, these functions can have three values: TRUE, FALSE, and "I don't know
yet; if you ask me I'll have to find out." All files remain in this last, indeterminate state until the
Pascal program requires a value for eof or eoln either explicitly or implicitly, for example, in
a call to read. The important point to note here is that if you force the Pascal system to
determine whether the input is at the end-of-file or the end-of-line, it is necessary for it to
attempt to read from the input.

Consider the following example code:

while not eof do begin
write('number, please? ');
read(i);
writeln('that was a i: 2)

end

At first glance, this may appear to be a correct program for requesting, reading and echoing
numbers. Notice, however, that the while loop asks whether eof is true before the request is
printed. This forces the Pascal system to decide whether the input is at the end-of-file. The
Pascal system gives no messages; it simply waits for the user to type a line. By producing the
desired prompting before testing eo f, the following code avoids this problem:

write('number, please 7 1
);

while not eof do begin
read (i);

end

writeln('that was a' i:2);
write('number, please ?')

You must still type a line before the while test is completed, but the prompt asks for it. This
example, however, is still not correct. To understand why, it is first necessary to know that

6 It is not possible to determine whether the input is a. terminal, as the input may appear to be a file but
actually be a pipe, the output of a program which is reading trom the terminal.

Version D May 1985 3-3

Input and Output Pascal Programmer's Guide for the Sun Workstation

there is a blank character at the end of each line in a Pascal text file. When reading integers or
real numbers, the read procedure is defined so that when only blanks are left in the file, a zero O· ·

value is returned and the end-of-file condition is set. If, however, there is a number remaining in
the file the end-of-file condition is not set even if it is the last number, since read never reads
the blanks after the number (and there is always at least one blank). Thus, the modified code
still puts out a spurious

that was a O

at the end of a session when end-of-file is reached. The simplest way to correct the problem in
this example is to use the procedure readln instead of read. In general, unless you test the
end-of-file condition both before and after calls to read or readln, there will be inputs that
cause your program to attempt to read past the end-of-file.

3.3. More About eoln

To have a good understanding of when eoln is true it is necessary to know that in any file
there is a special character indicating end-of-line, and that in effect, the Pascal system always
reads one character ahead of the Pascal read commands. 6 For instance, in response to
read (ch), the system sets ch to the current input character and g§ts the next input character.
If the current input character is the last character of the line, then the next input character
from the file is the newline character, the normal UNIX line separator. When the read routine
gets the newline character, it replaces that character by a blank (causing every line to end with
a blank) and sets eoln to TRUE. eoln is TRUE as soon as you read the last character of the
line and before you read the blank character corresponding to the end of line. Thus, it is almost
always a mistake to write a program that deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this almost always has the effect of ignoring the last character in the line. The read (ch)
belongs as part of the normal processing.

Given this framework, it is not hard to explain the function of a readln call, which is defined
as:

while not eoln do
get (input) ;

get(input);

This advances the file until the blank corresponding to the end-of-line is the current input sym­
bol and then discards this blank. The next character available from read is the first character
of the next line, if one exists.

e In Pasca.l terms, read (ch) corresponds to 'ch:= input"; get(input)'.

3-4 Version D May 1985

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Input and Output

3.4. Output Buffering

A final point about Pascal input/output concerns the buffering of the file output. It is
extremely inefficient for the Pascal system to send each character to the user's terminal as the
program generates it for output - even less efficient if the output is the input of another pro­
gram such as the line printer daemon lpr(l). To gain efficiency, the Pascal system "buffers" the
output characters (i.e., it saves them in memory until the buffer is full and then emits the entire
buffer in one system interaction). However, to allow interactive prompting to work as in the
example given above, this prompt must be printed before the Pascal system waits for a response.
For this reason, Pascal normally prints all the output that has been generated for the file out­
put whenever one of the following occurs:

• a writeln occurs

• the program reads from the terminal

• the procedure message or flush is called

Thus, in the code sequence

for i := 1 to 5 do begin
write(i: 2);
Compute a lot with no output

end;
writeln

the output integer does not print until the writeln occurs. The delay can be somewhat
disconcerting, and you should be aware that it does occur. By setting the -b option to O before
the program statement by inserting a comment of the form

(*$b0*)

you can cause output to be completely unbuffered, with a corresponding large degradation in
program efficiency. Option control in comments is discussed in the "Using Options" section in
Chapter 4.

3.5. Files, Reset, and Rewrite

It is possible to use extended forms of the built-in functions reset and rewrite to get more
general associations of UNIX file names with Pascal file variables. When a file other than input
or output is to be read or written, then the reading or writing must be preceded by a reset
or rewrite call. In general, if the Pascal file variable has never been used before, there will be
no UNIX filename associated with it. By mentioning the file in a program statement, however,
we can cause a UNIX file with the same name as the Pascal variable to be associated with it. If
we do not mention a file in the program statement and use it for the first time with the state­
ment

reset (f)

or

rewrite (f)

then the Pascal system generates a temporary name of the form tmp. x for some character x,
and associates this UNIX filename with the Pascal file. The first such generated name is 'tmp.1'
and the names continue by incrementing the filename extension through the ASCII set. The

Version D May 1985 3-5

Input and Output Pascal Programmer's Guide for the Sun Workstation

advantage of using such temporary files is that they are automatically removed by the Pascal
system as soon as they become inaccessible. They are not removed, however, if a runtime error
causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable you can give
that name in the reset or rewrite call. For example, you could have associated the Pascal
file data with the file primes (see "Translator Syntax Errors" section in Chapter 2) by doing:

reset(data, 'primes')

instead of a simple

reset(data)

In this case it is not essential to mention data in the program statement, but it is still a good
idea because it serves as an aid to program documentation. The second parameter to reset
and rewrite can be any string value, including a variable. Thus the names of UNIX files to be
associated with Pascal file variables can be read in at runtime. Full details on filename/file vari­
able associations are given in "Restriction and Limitations" section of Appendix A.

3.6. Argc and Argv

Each UNIX process receives a variable-length sequence of arguments, each of which is a
variable-length character string. The built-in function argc and the built-in procedure argv
can be used to access and process these arguments. The value of the function argc is the
number of arguments to the process. By convention, the arguments are treated as an array and
indexed from O to argc-1, with the zeroth argument being the name of the program being
executed. The rest of the arguments are those passed to the command on the command line.
Thus, the command

tutorial% obj /etc/motd /uar/dict/worda hello

invokes the program in the file obj with argc having a value of 4. The zeroth element
accessed by argv is obj, the first /etc/motd, and so on.

Pascal does not provide variable-size arrays, nor does it allow character strings of varying length.
For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun­
cated or blank-padded) i 'th argument of the current process to the string variable a. The
file manipulation routines reset and rewrite strip trailing blanks from their optional second
arguments so that this blank padding is not a problem in the usual case where the arguments are
filenames.

The Berkeley Pascal program kat illustrates the use of arc and argv, which can be used
with the same syntax (except for the options to cat) as the UNIX system program cat(l).

First compile the program:

hostname% pc kat.p -o kat

Then run the program:

3-6 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation

hostname% kat kat.p
program kat(input, output);
var

ch: char;
i: integer;
name: packed array [1 .. 100] of char;

begin
i := 1;
repeat

if i < argc then begin
argv(i, name);
reset(input, name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);

end

write(ch)
end;
readln;
writeln

until i >= argc
end { kat }.
tutorial%

Input and Output

{nonstandard}

Note that the reset call to the file input may not be allowed on other systems. As this pro­
gram deals mostly with argc and argv and UNIX system-dependent considerations, portability
is of little concern.

If this program is in the file kat. p, then do the following:

Version D May 1985 3-7

Input and Output Pa.seal Programmer· s Guide for the Sun Workstation

tutorial% pi kat,p
tutorial% mv obj kat O· - -

tutorial% :tat kat,p
program kat(input. output);
var

ch: char;
1: integer;
name: packed array [1 .. 100) of char;

begin
i := l;
repeat

if i < argc then begin
argv (1. name) ;
reset(input. name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);

end

write (ch)
end;
readln;
writeln

until i >= argc
end { kat }.

1152 statements executed in 0.36 seconds cpu time.

hostname% kat
This is a line of text.
This is a line of text.
The next line contains only an end-of-file (an invisible control-di)
The next line contains only an end-of-file (an invisible control-di)

288 statements executed in 0.10 seconds cpu time.
hostname%

Thus, if it is given arguments, kat (like cat) copies each one in turn. If no arguments are
given, it copies from the standard input. Thus it works as it did before, with

tutorial% :tat< 11:at.p

now equivalent to

tutorial% kat kat.p

although the mechanisms are quite different in the two cases.

3-8 Version D May 1985

C

0

0

0

0

Chapter 4

System Component Details

4.1. Using Options

The programs pi, pc, and pxp take several options.7 There is a standard UNIX convention for
passing options to programs on the command line, which is followed by the Berkeley Pascal sys­
tem programs. As you saw in previous examples, option-related arguments consist of the charac­
ter '-' followed by a single character option name.

Except for the -b option, which takes a single-digit value, each option may be set on (enabled)
or off (disabled). When an on/off-valued option appears on the command line of pi or pz, it
inverts the default setting of that option. Thus

hostname% pi -l foo.p

enables the listing option -1, since it is off by default, while

hostname% pi -t foo.p

disables the run-time tests option -t, since it is on by default.

In addition to inverting the default settings of pi options on the command line, it is also possible
to control them within the body of the program by using comments of the special form:

{$1-}

The opening comment delimiter, which could also be a '(*', is immediately followed by the char­
acter '$'. After the '$', which signals the start of the option list, you can place a sequence of
letters and option controls, separated by commas. The most basic actions for options are to set
them, thus

{$1+ Enable listing}

or to clear them

{$t-,p- No run-time tests, no post mortem analysis}

Notice that '+' always enables an option and '-' always disables it, no matter what the default
is. Thus '-' has a different meaning in an option comment than it has on the command line. As
shown in the examples, normal comment text may follow the option list.

7 As piz uses pi to translate Pascal programs, it takes the options or pi also. We refer to them here,
however, a.s pi options.

Version D May 1985 4-1

System Component Details Pascal Programmer's Guide for the Sun Workstation

4.2. Options Common to pi, pc, and pix

The following options are common to both the compiler and the interpreter. Refer to the
appropriate manual page in Appendix G for a summary of the options to each command. With
each option the default setting (the setting it would have if it appeared on the command line),
and a sample command using the option are given.

4-2.1. -L - Map Identifiers and Keywords to Lower Case

Programs transported from other systems ,are often written with mixed-case identifiers and key­
words. This option cleans up such a program for use with Berkeley Pascal.

4-2.2. -b - Buffering of the File output

The -b option controls the buffering of the file output. The default is line buffering, with
flushing at each reference to the file input and under certain other circumstances detailed in
"Options Available in pc" section found later in this chapter. Mentioning -b on the command
line, that is:

hostname% pi -b aaaembler.p

makes standard output block-buffered, where a block is some system-defined number of charac­
ters. The -b option can also be controlled in comments. Unique among the Berkeley Pascal
options, it takes a single-digit value rather than an on or off setting. A value of O, that is

{$b0}

makes output unbuffered. Any value two or greater causes block buffering and is equivalent to
the flag on the command line. The option control comment setting -b must precede the pro­
gram statement .

. {2.9. -i - Include File Listing

The -i option takes the name of an include file, procedure or function name and
causes it to be listed while translating8. Typical uses would be

hostname% pix -i acanner.i compiler.p

to make a listing of the routines in the file scanner. i, and

hostname% pix -i scanner compiler.p

to make a listing of only the routine scanner. This option is especially
conservation-minded programmers who are making partial program listings.

8 :Include files are discussed in the "Multi-file programs" section later in this chapter.

useful for

4-2 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation System Component Details

4-2.4- -1 - Make a Listing

The -1 option enables a listing of the program. -1 is off by default. When specified on the
command line, it creates a header line identifying the version of the translator in use and a line
giving the modification time of the file being translated to appear before the actual program list­
ing. The -1 option is pushed and popped by the -i option at appropriate points in the pro­
gram.

,4.2.5. -s - Standard Pascal Only

The -s option causes many of the features of Berkeley Pascal implementation that are not
found in sta.ndard Pascal to be diagnosed as 's' warning errors. This option is off by default and
is enabled when mentioned on the command line. Some of the features that are diagnosed are
nonstandard procedures and functions, extensions to the procedure write, and padding of con­
stant strings with blanks. In addition, all letters are mapped to lower case except in strings and
characters, so that the case of keywords and identifiers is effectively ignored. The -s option is
most useful when a program is to be transported.

,4.2.6. -t and -C - Runtime Tests

These options control the generation of tests that subrange variable values are within bounds at
runtime. pi defaults to generating tests and uses the option -t to disable them. pc defaults to
not generating tests, and uses the option -C to enable them. Disabling runtime tests also causes
assert statements to be treated as comments.9

4.2. 7. -w - Suppress Warning Diagnostics

The -w option, which is on by default, allows the translator to print a number of warnings
about inconsistencies it finds in the input program. Turning this option off with a comment of
the form

{$w-}

or on the command line

hostname% pi -v tryme.p

suppresses these diagnostics.

,4.2.8. -z - Generate Counters for a pxp Execution Profile

The -z option, off by default, enables the production of execution profiles. Specifying -z on
the command line:

hostname% pi -z foo.p

or enabling it in a comment before the program statement, causes pi and pc to insert code in

g See the section on the Aaaert statement in Appendix E for details.

Version D May 1985 4-3

System Component Details Pascal Programmer's Guide for the Sun Workstation

the program to count the number of times each statement was executed. An example of using
pzp is given in the "Execution profiling" section in Chapter l; its options are described in the
"Options Available in pxp" section later in this chapter. Note that the -z option cannot be
used on separately-compiled programs.

4.3. Options Available in pi

,/.3.1. -p - Post-Mortem Dump

The -p option is on by default, and causes the runtime system to initiate a post-mortem trace­
back when an error occurs. The -p option also makes pz count statements in the executing
program, enforcing a statement limit to prevent infinite loops. Specifying -p on the command
line disables these checks and the ability to produce this post-mortem analysis. It does make
smaller and faster programs, however. It is also possible to control the -p option in comments.
To prevent the post-mortem traceback on error, -p must be off at the end of the program
statement.

,/.3.2. -o - Redirect the Output File

-o is used to specify the output file used in place of a.out. Its typical use is to name the com­
piled program using the root of the filename of the Pascal program. Thus,

hostname% pc -o myprog myprog.p

causes the compiled program myprog.p to be called myprog.

4.4. Options Available in px

The first argument to pz is the name of the file containing the program to be interpreted. If no
argument is given, then the file .obj is executed. If more arguments are given, they are available
to the Pascal program by using the built-ins argc and argv as described in the "argc and
argv" section in Chapter 3.

pz can also be invoked automatically. In this case, whenever a Pascal object file name is given as
a command, the command will be executed with pz prepended to it; that is

hostname% obj primes

is converted to read

hostname% px obj primes

4-4 Version D May 1985

0

0

0

0

0

0

Pascal Programmer· s Guide for the Sun Workstation System Component Details

4.5. Options Available in pc

4-5.1. -S - Generate Assembly Language

The program is compiled and the assembly language output is left in the file aourcefile.a. Thus,

hostname% pc -S foo.p

places the assembly language translation of foe .p m the file foe. s. No executable file 1s
created.

4"5.2. -g - Symbolic Debugger Information

The -g option causes the compiler to generate information needed by dbz(l), the source-level
debugger.

4-5.3. -o - Redirect the Output File

-o is the same as in "Options Available in pi."

4.5.4- -p and -pg - Generate an Execution Profile

The compiler produces code that counts the number of times each routine is called. The
profiling is based on a periodic sample taken by the system, rather than by inline counters (as
with pzp). This results in less degradation in execution, but with a loss in accuracy. -p causes
a man. out file to be produced for pro/(1). -pg causes a gmon. out file to be produced for
gpro/(1), a more sophisticated profiling tool.

4-5.5. -0 - Run the Object Code Optimizer

The output of the compiler is run through the object code optimizer. This causes an increase in
compile time in exchange for a decrease in compiled code size and execution time.

4.5.6. -P - Partial Evaluation of Boolean Expressions

Partial evaluation semantics are used on the boolean operators and and or. Left-to-right
evaluation is guaranteed and the second operand is evaluated only if necessary to determine the
result.

4-5. 7. -Idir - Specify Directories for Include Files

#include files whose names don't begin with "/" are always searched for first in the directory
of the file argument, then in directories named in -I options, then in uaer/include/paaca/.

Version D May 1985 4-5

System Component Details Pascal Programmer· s Guide for the Sun Workstation

4-5.8. -Dname=def - Define Name to Preprocessor

Define name to the preprocessor, as it by #define. If no definition 1s given, the name 1s
defined as "l."

4.5.9. -Uname - Undefine Name to the Preprocessor

This option removes any initial definition of name.

4.5.10. -fsky - Generate In-Line Code for SKY Board

Generates code that assumes the presence of a SKY floating-point processor board. Programs
compiled with this option can only be run in systems that have a SKY board installed. Without
the -fsJcy option, the SKY board runs slower, since it uses the SKY board library routines. If
any part of a program is compiled using this option, you must also use this option when linking
with the pc command, since different startup routines are used to initialize the SKY board.

4.6. Options Available in pxp

On its command line, pzp takes a list of options followed by the program filename, which must
end in '.p' (as it must for pi, pc, and piz). pzp produces an execution profile if any of the -z,
-t, or -c options are specified on the command line. If none is specified, then pzp functions as
a program reformatter.

It is important to note that only the -z and -w options of pxp, which are common to pi, pc,
and pxp can be controlled in comments. All other options must be specified on the command
line to have any effect.

The options listed below are relevant to profiling with pzp.

4.6.1. -a - Include the Bodies of All Routines in the Profile

To make the profile more compact, pzp does not normally print the bodies of routines that were
not executed. This option forces all routine bodies to be printed.

4.6.2. -d - Suppress Declaration Parts from a Profile

Normally a profile includes declaration parts. Specifying -d on the command line suppresses
declaration parts.

4.6.9. -e - Eliminate #include Directives

Normally, pzp preserves #include directives in the output when reformatting a program, as
though they were comments. Specifying -e causes the contents of the specified files to be refor­
matted into the output stream instead. This is an easy way to eliminate #include directives,
for example, before transporting a program.

4-6 Version D May 1985

0

0

01
I
I

0

Pascal Programmer's Guide for the Sun Workstation System Component Details

4,6.4. -f - Fully Parenthesize Expressions

Normally pxp prints expressions with the minimum number of parentheses necessary to preserve
the structure of the input. This option causes pxp to fully parenthesize expressions. Thus, the
statement that normally prints as

d :=a+ b mod c / e

prints as

d :=a+ ((b mod c) / e)

when the -f option is specified on the command line.

4,6.5. -j - Left-Justify all Procedures and Functions

Normally, each procedure and function body is indented to reflect its static nesting depth. This
option prevents this nesting and can be used if the indented output would be too wide.

4,6.6. -t - Print a Table Summarizing Procedure and Function Calls

The -t option causes pxp to print a table summarizing the number of calls to each pro­
cedure and function in the program. It may be specified in combination with the -z
option, or separately.

0 4.6. 7. -z - Enable and Control the Profile

0

The -z profile option is very similar to the -i listing control option of pi. If -z is specified
on the command line, then all arguments up to the source file argument (which ends in .p) are
taken to be the names of procedures and functions or include files that are to be profiled. If
this list is null, then the whole file is profiled. A typical command for extracting a profile of part
of a large program would be

hostname% pxp -z parser.i test compiler.p

This specifies that profiles of the routines in the file paraer.i and the routine test are to be
made.

4. 7. Formatting programs using pxp

The program pzp can be used to reformat programs by using a command of the form

hostname% pxp dirty.p > clean.p

Note that since the shell creates the output file clean.p before pzp executes, clean.p and
dirty .p must not be the same file.

pxp automatically paragraphs the program. It performs housekeeping chores such as comment
alignment, and treating blank lines (lines containing exactly one blank or lines containing only a
formfeed character) as though they were comments, preserving their vertical spacing effect in
the output. pxp processes four kinds of comments:

Version D May 1985 4-7

System Component Details Pascal Programmer's Guide for the Sun Workstation

• Left-marginal comments beginning in the first column of the input line are placed in the first
column of an output line.

• Aligned comments preceded by no input tokens on the input line are aligned in the output
with the running program text.

• Trailing comments preceded in the input line by a token are placed with no more than two
spaces separating the token from the comment.

• Right-marginal comments, preceded in the input line by a token from which they are
separated by at least three spaces or a tab, are aligned down the right margin of the output.
They are aligned to the first tab stop after the 40th column from the current "left margin".

Consider the following program:

hostname% cat comments.p
{ This is a left marginal comment. }
program hello(output);
var i : integer; {This is a trailing comment}
j integer; {This is a right marginal comment}
k array [1 .. 10] of array [1 .. 10] of integer; {Marginal, but past the margin}
{

An aligned, multi-line comment
which explains what this program is
all about

}
begin
i := 1; {Trailing i comment}
{A left marginal comment}

{An aligned comment}
j := 1; {Right marginal comment}
k[l] := 1;
writeln(i, j, k[l])
end.

When formatted by pzp the following output is produced:

4-8 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation System Component Details

hostname% pxp commenta.p
{ This is a left marginal comment. }

program hello(output);
var

i: integer; {This is
j: integer;

a trailing comment}

{

}

k: array [1 .. 10] of array [1 .. 10]

An aligned, multi-line comment
which explains what this program is
all about

begin
i := 1; {Trailing i comment}

{A left marginal comment}
{An aligned comment}
j := l;
k[l] := 1;
writeln(i, j, k[l])

end.
hostname%

{This is a right marginal comment}
of integer;{Marginal, but past the margin}

{Right marginal comment}

The following formatting-related options are currently available m pzp. The options -f and
-j described in the previous section may also be of interest.

4- 7.1. -s - Strip Comments

The -• option causes pxp to remove all comments from the input text.

4. 7.2. -- - Underline Keywords

A command line argument of the form - _, as in

hostname% pxp -- dirty.p

causes pxp to underline all keywords in the output for enhanced readability.

4. 7.3. -/23456789/ - Specify Indenting Unit

The normal unit that pxp uses to indent a structure statement level is four spaces. By giving an
argument of the form -d, with d a digit, 2 < d :5 9, you can specify that d spaces are to be
used per level instead.

4.8. pxref

The cross-reference program pxref can be used to make cross-referenced listings of Pascal pro­
grams. To produce a cross reference of the program in the file 'foo.p' you can execute the com­
mand:

Version D May 1985 4-9

System Component Details Pascal Programmer's Guide for the Sun Workstation

hostname% pxref foo.p

The cross reference is unfortunately not block-structured. Full details on pzre/ are given in the
pzre/(1) manual page.

4.9. Multi-file programs

A text inclusion facility is available in Berkeley Pascal. This facility allows the interpolation of
source text from other files into the source stream of the translator. It can be used to divide
large programs into more manageable pieces to facilitate editing, listing, and maintaining them.
The inclusion facility is also used in pc for sharing common declarations among separately­
compiled modules. See the following section for information about compiling modules separately
with pc.

The include facility is similar to that of the UNIX C compiler. To use it, place the character
'#' in the first position of a line immediately followed by the word include, and then a
filename enclosed in single ''' or double '"' quotation marks. The filename may be followed by a
semicolon if you wish to treat this as a pseudo-Pascal statement, The filenames of included files
must end in '. i '. An example of the use of included files in a main program is

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i"
#include "parser.i"
#include "semantics.i"

begin
{ main program}

end.

When the include pseudo-statement is encountered in the input, the lines from the included
file are inserted into the input stream. For the purposes of translation and run-time diagnostics
and statement numbers in the listings and post-mortem tracebacks, the lines in the included file
are numbered starting from I. Nested includes may be up to IO levels deep.

See the description of the -i option of pi in the "Options Common to pi, pc, and pix" section
found in this chapter; this can be used to control listing when include files are present.

When a nontrivial line is encountered in the source text after an include finishes, the 'popped'
filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename is printed before
each diagnostic if the current filename has changed since the last one was printed.

4.10. Separate Compilation with pc

A separate compilation facility is provided in the Berkeley Pascal compiler, pc. This facility
allows programs to be divided into a number of files that are compiled individually and linked
together later. This is especially useful for large programs, where small changes would otherwise
require time-consuming recompilation of the entire program.

4-10 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation System Component Details

Normally, pc expects to be given entire Pascal programs. However, if you give the -o option
on the command line, pc accept a sequence of definitions and declarations, and compiles them
into a . o file that can be linked with a Pascal program at a later time. In order to have pro­
cedures and functions available across separately compiled files, they must be declared with the
external directive. This directive is similar to the directive forward in that it must precede
the resolution of the function or procedure, and formal parameters and function result types
must be specified in the external declaration but may not be specified in the resolution.

Type checking is performed across separately compiled files during loading. Since Pascal type
definitions define unique types, any types that are shared between separately-compiled files must
have the same definitions.

This problem is solved using a facility similar to the include facility discussed above.
Definitions can be placed in files having the extension .hand the files included by separately­
compiled files. Each definition from a . h file defines a unique type, and all uses of a definition
from the same . h file define the same type.

Similarly, the facility is extended to allow the definition of consts and the declaration of
labels, vars, and external functions and procedures. Thus procedures and functions
that are used between separately-compiled files must be declared externa 1 , and must be so
declared in a .h file included by any file that calls or resolves the function or procedure. Con­
versely, functions and procedures declared external can only be so declared in .h files.
These files can only be included at the outermost level and define or declare global objects.
Note that since only external function and procedure declarations (and not resolutions)
are allowed in .h files, statically nested functions and procedures can't be declared external.

An example of the use of included . h files in a program is:

program compiler(input, output, obj);

#include "globals.h"
#include 11 scanner.h"
#include "parser.h"
#include "semantics.h"

begin
{ main program}

end.

The main program might include the definitions and declarations of all the global labels,
consts, types, and vars from the file globals .h, and the external function and
procedure declarations for each of the separately-compiled files for the scanner, parser, and
semantics. The header file scanner. h would contain declarations of the form:

type
token= brecord

{ token fields}
end;

function scan(var inputfile: text): token;
ezternal;

Then the scanner might be in a separately-compiled file containing

Version D May 1985 4-11

System Component Details

#include "globals.h"
#include "scanner.h"

function scan;
begin

{ scanner code}
end;

Pascal Programmer's Guide for the Sun Workstation

which includes the same global definitions and declarations and resolves the scanner functions
and procedures declared externa 1 in the file scanner. h.

4-12 Version D May 1985

0

C

0

0

0

0

Chapter 5

Calling Pascal From Other Languages

This section describes the Pascal calling sequence used when other languages call Pascal routines.
The following topics are discussed:

• Argument list layout

• Value parameters

• Conformant array parameters

• Procedures and functions as parameters

5.1. Argument List Layout

The argument list consists of up to four separate sections, in the following order:

l. Storage for declared arguments. These are either values or pointers to values, and in any
case, correspond directly to explicitly declared formal parameters in the Pascal procedure or
function declaration.

2. Storage for auxiliary arguments associated with conformant array parameters.

3. Storage for auxiliary arguments associated with procedures or functions passed as parame­
ters.

4. Storage for an auxiliary argument required if the called routine is declared within another
procedure. This can only arise in C or FORTRAN if a nested Pascal procedure is passed as an
argument.

The parameter list is organized like this primarily in order to make it easy to call other
languages from Pascal. In general, auxiliary items for Pascal-specific requirements (such as range
checking and static scoping) have been moved outside the "primary" argument list.

In C notation, the calling sequence observed by pc is described as follows:

declared procedures and scalar-valued functions:

p(... args ... [,cap bounds] [,pf slinks] [,slink])

structure-valued functions:

(temp= p(... args ... [,cap bounds] [,pf slinks] [,slink]),&temp)

formal procedures and scalar-valued functions:

Version D May 1985 5-1

Calling Pascal From Other Languages Pascal Programmer's Guide for the Sun Workstation

(*p) (... args ... [,cap bounds] [,pf slinks] ,slink)

formal structure-valued functions:

(temp = (*p) (... args ... [,cap bounds) [,pf slinks) ,slink), &temp)

where:
cap bounds are bounds pairs for conformant array parameters
pf slinks are static links for procedure/function parameters
slink is the static link of the called procedure/function
temp is storage allocated by the caller for the result of a structure-valued function

5.2. Value Parameters

In general, Pascal expects all value parameters except conformant array parameters to be passed
directly on the stack, widening to a full word representation if necessary. From C, there are two
places where this causes trouble: scalars of type shortreal, and arrays of any fixed type.

5.2.1. Type shortreal

Parameters of type short re a 1 are assumed to have been passed in single precision; note that
this differs from C, which always converts float arguments to double before pushing them
on the stack.

If a Pascal procedure with a shortrea 1 value parameter must be called from C, use the fol­
lowing device:

For the caller (C), use:

extern foo () ;

union {

/* procedure foo(x:shortreal); */

int intval;
float fval;

} u;

u.fval = <expression of type 'float'>
foo(u.intval);

For the callee (Pascal), use:

5-2

procedure foo(x: shortreal);
begin

end;

Version D May 1985

0

0

0

0

0

0

Pascal Programmer· s Guide for the Sun Workstation Calling Pascal From Other Languages

5.2.2. Fixed Array Types

C does not pass arrays by value, but does pass structures by value. An array can be passed by
value to Pascal by enclosing the array declaration in a dummy structure. For example, consider
the following Pascal routine:

procedure foo(name: alfa);
begin

do something with name ...
end;

where al fa is defined by

alfa = packed array[l .. 10] of char;

The routine foe may be called by using the auxiliary declaration

typedef struct {
char cbuf[lO];

} alfa;

alfa digits;
strncpy(digits, "0123456789", sizeof(digits));
foo(digits);

Since this interface is neither efficient nor general, it should be avoided whenever possible. A
more general interface is described in the next section.

5.2.3. Value Conformant Array Parameters

Value conformant array parameters are handled by creating a copy in the caller's environment
and passing a pointer to the copy. In addition, the bounds of the array must be passed (this is
described in "Argument List Layout" found earlier in this appendix). For example:

The caller (C):

The callee (Pascal):

From FORTRAN:

extern foo () ;

char a[]= "this is a string";

foo(a, 0, sizeof(a)-1);

procedure foo(s: packed array[lb .. ub: integer] of char);
begin

end;

FORTRAN passes all arguments by reference. Thus, from FORTRAN it is impossible to call a Pas­
cal routine that expects value parameters.

Version D May 1985 5-3

Calling Pascal From Other Languages Pascal Programmer's Guide for the Sun Workstation

5.3. Conformant Array Parameters

A conformant array parameter must include bounds and possibly element widths as arguments.
These go immediately after the declared argument list. An element width is included for all
except the last dimension of a multidimensional array.

Note that since the bounds are passed by value, Pascal routines with conformant array parame­
ters cannot be called from FORTRAN.

If the called routine knows the element width at compile time, the pair

(low bound, high bound: integer)

is passed. For C, the low bound is always 0.

If the called routine does not know the element width at compile time, (i.e., for all dimensions
but the last dimension of a multidimensional conformant array) a triple

(low bound, high bound, element width: integer)

must be passed. The element width is computed as

(ub - lb + 1) • w

where (lb, ub, w) are the bounds and element width of the next lower dimension of the array.
Note that this definition is recursive.

Finally, note that bounds information may be shared by several conformant array parameters;
this is a consequence of their declaration structure. For example, only one bounds pair is passed
for the declaration

function innerproduct(
var x,y: array[lb .. ub: integer) of real): real;

external;

This could be used from C as follows:

#define N 100
double vectorl(N], vector2[N];
extern double innerproduct(

;• double x[J,y[]; int lb, ub; •;
) ;

double ip;
ip = lnnerproduct(vectorl, vector2, 0, N-1);

5.4. Procedures and Functions as Parameters

A procedure or function passed as an argument is associated with a static link to its lexical
parent's activation record. When an outer block procedure or function is passed as an argument,
Pascal passes a null pointer in the position normally occupied by the passed routine's static link.
So that procedures and functions can be passed to other languages as arguments, the static links
for all procedure or function arguments are placed after the end of the conformant array bounds
pairs (if any) so that procedures and functions may be passed to other languages as arguments.

Routines in other languages may be passed to Pascal; a dummy argument must be passed in the
position normally occupied by the passed routine's static link. If the passed routine is not a Pas­
cal routine, the argument is used only as a place holder.

5-4 Version D May 1985

0

0

0

0

0

0

Chapter 6

The Pascal--C Interface

This appendix gives information for constructing interfaces between Pascal and C routines. It
contains information that is necessary for calling existing C library routines from Pascal, as well
as for writing Pascal-callable routines in C. However, it is not intended to serve as a tutorial on
either subject. Familiarity with both C and Pascal is assumed.

6.1. Order of Declaration of Arguments

The order that arguments are declared is the same in Pascal and C. Certain forms of arguments
in Pascal (i.e., procedures, functions, and conformant arrays) cause the compiler to pass addi­
tional information after the declared argument list; however, in most cases, external C routines
need not be aware of this additional information. See Chapter 5 for further details.

6.2. Value Parameters vs. Reference Parameters

In C, all parameters except arrays are passed by value. Pascal var (reference) parameters are
handled in C by declaring the formal parameter to be a pointer type. Thus the following Pascal
declaration:

procedure incr(var n: integer);
external c;

corresponds to the C function

incr (n)

{

}

int *n;

*n += l;

Pascal allows structured types (records, arrays, and sets) to be passed by value. In C, this is true
only of structures and unions. If an array of fixed type is to be passed by value to C, the called
routine should declare the formal parameter as a structure. For example:

Version D May 1985 6-1

The Pascal--C Interface

The caller (Pascal):

The callee (C):

Pascal Programmer's Guide for the Sun Workstation

type
intarray = array[0 .. 9) of integer;

procedure foo(arr: intarray);
external c;

typedef struct {
int a [10);

} intarray;

foo (arr)
intarray arr;

{

}

This type of interface should be avoided if possible, since it is neither general nor efficient.

6.3. Conformant Array Parameters

The conformant array parameter feature of ISO Standard Pascal provides a means of passing
arrays of different dimensions to a single routine. For a general description of this feature, see
Cooper[l]. Conformant array parameters can be passed to C programs; the argument seen by a
C program is a pointer to the array.

Pascal passes the bounds of the array at the end of the argument list; C routines can choose to
ignore the bounds if some other convention is followed (e.g., an explicit length parameter or a
terminating value). For example:

The caller (Pascal):

6-2

{
I search returns index in [O .. len-1) if value is found
I in a[); otherwise it returns -1. Note that actual array
I must have lower bound of 0.
}

function search(
var a: array[lb .. ub:integer] of integer;
len: integer;
value: integer): integer;

external e;

Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation The Pascal--C Interface

The callee (C):

;•
• return index in [O .. len-1] if value is found
• in a# else return -1
•;

int
search(a,len,value)

int a[];
int len;
int value;
/* int lb,ub; NOTUSED */

{

}

Conformant array parameters can be passed by value; if this is done, a copy of the array is made
in the caller's environment and the address of the copy is placed in the argument list. This pro­
perty is useful for dealing with character strings (see "Character String Types" later in this
Appendix for further details).

6.4. Procedures and Functions as Parameters

Pascal procedures and functions can be passed as parameters to external C routines. The argu­
ment seen by C is a pointer to the text of the passed routine. For example:

The caller (Pascal):

Version D May 1985

type element= record ... end;

procedure qsort(
var elist: array[lb .. ub:integer] of element;
nelements: integer;
elementsize: integer;
function compare(var ell, el2: element): integer);

external c;

function compara(var x,y: element): integer;
begin

end;

6-3

The Pascal--C Interface Pascal Programmer's Guide for the Sun Workstation

The callee (C):

typedef struct {

} element;

qsort(elist,nelements,elementsize,compare)

{

}

element elist[];
int nelements;
int elementsize;
int (*compare) () ;

The Pascal compiler appends an extra argument to the argument list, which is significant if the
actual procedure is nested; consequently, nested Pascal routines should not be passed as parame­
ters to C or FORTRAN. The compiler issues a warning if this is attempted.

6.5. Compatible Types in Pascal and C

Sizes and alignments of types common to both Pascal and C are listed in the table below:

Pascal type C type Size Alignment

shortreal float 4 bytes 2 bytes
real double 8 bytes 2 bytes
longreal double 8 bytes 2 bytes
integer int 4 bytes 2 bytes
-32768 .. 32767 short 2 bytes 2 bytes
-128 .. 127 char 1 byte 1 byte
boolean char 1 byte 1 byte
char char 1 byte 1 byte
record struct/union 2 bytes 2 bytes
array array 2 bytes 2 bytes

In most cases, C arrays and structures describe the same objects as their Pascal equivalents, pro­
vided that the components have compatible types and are declared in the same order. Exceptions
are noted in the next section.

6.6. Incompatible Types in Pascal and C

This section describes types that differ between Pascal and C. In some cases, the differences are
minor; in others, a type has no equivalent in the other language, and can be reproduced only
with difficulty.

6-4 Version D May 1985

0

C

0

0

0

0

Pascal Programmer's Guide for the Sun \Vorkstation The Pascal--C Interface

6. 6.1. C Bit Fields

The Pascal compiler ignores the word 'packed', so the minimum field width is 1 byte. Conse­
quently, C bit fields have no equivalent in Pascal, and should be avoided in structures shared by
C and Pascal code.

6.6.2. Enumerated Types

In Pascal, enumerated types are represented internally by sequences of integral values starting
with 0. Storage is allocated for a variable of an enumerated type as if the type were a subrange
of integer. For example, an enumerated type of fewer than 128 elements is treated as 0 .. 127,
which according to the rules above, is equivalent to a char in C.

In C, enumerated types are allocated a full word and can take on arbitrary integer values.

6.6.3. Character String Types

In Pascal, strings are values of character array type. String assignments and comparisons involv­
ing string constants imply blank-padding of the constant to the length of the longer operand. C
does not support string assignments, except through library functions (see airing). By conven­
tion, strings in C end with a null byte.

C routines with character string parameters expect a string to be passed by address and be ter­
minated by a null byte. To meet these requirements, the formal parameter should be declared in
Pascal as a value conformant array of char. Note that null termination is only guaranteed
when the actual parameter is a string constant, and that this guarantee is not required by the
ISO Pascal Standard.

As an example, the following Pascal program lists the files in the current directory by using the
C library routine aystem(3), which executes a string as a shell command:

program usesystem;
procedure system(

cmd: packed array[lb .. ub: integer] of char);
external c;

begin
system ('/bin/ls -1 ') ;

end.

Some common constructs in C rely on the fact that strings in C denote static variable storage;
the user is cautioned to avoid such idioms in Pascal, especially when calling C library routines.
For example, typical usage of mktemp(3) in Pascal would be as follows:

tmp := mktemp('/tmp/foo.xxxxxxxx'); {WRONG}

This is incorrect, since mktemp () modifies its argument. A correct solution is to use the C
library routine strncpy () (see string) to copy the string constant to a declared char array
variable.

Version D May 1985 6-5

The Pascal--C Interface Pascal Programmer's Guide for the Sun Workstation

procedure strncpy(
var dest: packed array[ll .. ul:integer] of char;
srce: packed array[l2 .. u2:integer] of char;
length: integer);

external c;

procedure mktemp(
var dest: packed array[lb .. ub:integer] of char);

external c;

var pathname: packed array[l .. 40] of char;

strncpy(pathname, '/tmp/foo.xxxxxxxx', sizeof(pathname));
mktemp(pathname);

6.6.,S. Pascal Set Types

In Pascal, a set is implemented as a bit vector, which may be thought of as a C byte array.
Direct access to individual elements of a set is highly machine dependent and should be avoided.
Note that the implementation may change in a future release.

In the Sun implementation, bits are numbered within a byte from least significant to most
significant. For example, the bits in a variable of type set of O .. 31 would be ordered:

set+O: 7. 6. 5. 4. 3. 2 1. 0
set+l: 15.14.13 12.11 10. 9. 8
set+2: 23,22,21.20.19 18.17 16
set+3: 31.30.29 28.27 26.25 24

In C, a set could be described as a byte array beginning at an even address. The nth element in
a set [lower ... upper] can be tested as follows:

#define BITMASK 07
#define BITNUMSIZE 03
register indx;
upper-= lower;/* normalize upper bound*/
if ((indx = n - lower) < 0 I I indx > upper) {

/* n is outside the range [lower .. upper] */
}
if (setptr[indx >> BITNUMSIZE] & (1 << (indx & BITMASK))) {

/* n is in [lower .. upper] */
}
/* n is not in [lower .. upper] */

6.6.5. Pascal Variant Records

C equivalents of variant records can usually be constructed by the following somewhat awkward
correspondence:

6-6 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation The Pascal--C Interface

Pascal:

C:

record

end;

<fixed part fields>
case <tag field> of
<tag value list(l)>: (<variant field list(l)>);

<tag value list(n)>: (<variant field list(n)>);

struct {

};

<fixed part fields>
<tag field>
union {

struct { <variant field list(!)>} <name(!)>;

struct { <variant field list(2)>} <name(n)>;
} <name>;

The correspondence fails if the variant part begins at an odd address, which occurs if none of the
variants requires word alignment. The problem is that in C, each variant must be represented
by a nested structure, which always begins at an even address. In Pascal this restriction is not
observed because a variant does not begin a new record. For example:

var x : record

end;

case tag: char of
'a': (chl, ch2: char);
'b': (flag: boolean);

does not correspond to a C structure, since the substructure of the 'a' variant is not word
aligned. However, one can force the variant part of this record to be aligned by adding another
variant, for example,

var x : record

end;

Version D May 1985

case tag: char of
'a': (chl, ch2: char);
'b': (flag: boolean);
'K': (ALIGN: integer);

6-7

The Pascal--C Interface Pascal Programmer's Guide for the Sun Workstation

The corresponding C structure is then

struct {

} x;

6-8

char tag;
union {

struct {
char chl, ch2;

}a_var;
struct {

char flag;
}b_var;
struct {

int ALIGN;
}c_var;

}var_part;

Version D May 1985

0

0

0

0

0

0

Chapter 7

The Pascal - FORTRAN Interface

This section describes the interface for calling FORTRAN from Pascal. It describes parameter
passing conventions, and the mapping between types in FORTRAN and their equivalents in Pascal.

7.1. Order of Declaration of Arguments

The order of declaration of arguments is the same in Pascal and FORTRAN.

7 .2. Value Parameters vs. Reference Parameters

In FORTRAN, all parameters are passed by reference, including constants and function results. In
general, all constants and temporary values are handled by creating a copy in the caller's
environment and passing the copy by reference. The Pascal compiler follows this convention for
routines declared with the external fortran directive. For example:

The caller (Pascal):

The callee (FORTRAN):

function hypot(x,y: real): real;
external fortran;

z := hypot(3, 4);
assert(z = 5.0);

double precision function hypot(x,y)
double precision x,y
hypot = sqrt(x**2 + y**2)
return
end

7 .3. Conformant Array Parameters

External FORTRAN routines can be declared to accept one-dimensional arrays of different sizes by
using conformant array parameters. The calling sequence passes the array bounds at the end of
the argument list. Unfortunately, the bounds are not accessible from FORTRAN. In general, the
caller must supply an explicit length parameter. For example,

Version D May 1985 7-1

The Pascal - FORTRAN Interface Pascal Programmer's Guide for the Sun Workstation

The caller (Pascal):

function innerproduct(
var x,y: array[lb .. ub:integer] of real;
nelements: integer): real;

external fortran;

The callee (FORTRAN):

double precision function innerproduct(x,y,n)
double precision x,y
integer n
dimension x(n), y(n)
end

Multidimensional arrays can cause problems if passed from Pascal to FORTRAN; see the section
on "Multidimensional Arrays" later in this appendix for details.

7.4. Procedures and Functions as Parameters

Pascal procedures and functions can be passed as parameters to external FORTRAN routines, sub­
ject to the following restrictions:

• All formal parameters of the passed routine must be var parameters since the source
language of a compiled routine is not recorded in its runtime representation.

• The actual routine passed must be declared at the outer block level.

• All formal parameters of the passed routine must have types with compatible equivalents in
FORTRAN.

The argument that FORTRAN sees should be declared with an external statement. For exam­
ple:

The caller(Pascal):

function apply (
function f(var xx:real): real;
var x: real): real;

external fortran;

The callee (FORTRAN):

7-2

double precision function apply(f,x)
external f
double precision f,x
apply = f (x)
return
end

Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation The Pascal - FORTRAN Interface

7 .5. Compatible Types in Pascal and FORTRAN

Size and alignments of types common to both Pascal and FORTRAN are listed in the table below:

Pascal type FORTRAN Type Size Alignment

shortreal REAL 4 bytes 2 bytes
real DOUBLE PRECISION 8 bytes 2 bytes
longreal DOUBLE PRECISION 8 bytes 2 bytes
integer INTEGER*4 4 bytes 2 bytes
-32768 .. 32767 INTEGER*2 2 bytes 2 bytes
-128 .. 127 CHARACTER 1 byte 1 byte
boolean CHARACTER 1 byte 1 byte
char CHARACTER 1 byte 1 byte
array array (*) 2 bytes

(*) Only one-dimensional arrays are compatible in Pascal and FORTRAN.

7 .6. Incompatible Types in Pascal and FORTRAN

7.6.1. Pascal Boolean vs. FORTRAN LOGICAL

In Sun Pascal, Booleans are allocated a single byte, and may reside at odd-byte addresses. In
FORTRAN, LOGICAL is defined to be the same size as the default size of INTEGER, which may
be 2 or 4 bytes, but is never a single byte and is always word-aligned.

FORTRAN LOGICAL parameters should be declared at the calling site as integers. Boolean
values can be passed using the standard function ord. For example:

The caller (Pascal):

(WRONG):

(RIGHT):

The callee (FORTRAN):

Version D May 1985

procedure foo(flag: boolean);
external fortran;

foo (n>O) ;

procedure foo(flag: integer);
external fortran;

foe (ord (n>O)) ;

subroutine foo(flag)
logical flag

{ERROR}

7-3

The Pascal - FORTRAN Interface Pascal Programmer's Guide for the Sun Workstation

1.6.2. Multidimensional Arrays

Multidimensional arrays are not compatible in Pascal and FORTRAN. Since Pascal arrays use
row-major indexing and FORTRAN arrays use column-major indexing, an array passed in either
direction between Pascal and FORTRAN appears to be transposed. For example:

The caller (Pascal):

7-4

program example(output);

type
matrix= array [1 .. 5, 1 .. 5] of integer;

var
a: matrix;
i, j: integer;

procedure fort(var a: matrix);
external fortran;

begin

end.

for i := l to 5 do begin

end;

for j := l to 5 do begin
a[i,j] := i;
write(a[i, j] :3);

end;
writeln

writeln;
fort (a)

Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation

The callee (FORTRAN):

subroutine fort(a)
integer a
dimension a(5,5)
integer i, j
do 10 i = 1,5

print •, (a(i,j) ,j = 1,5)
10 continue

output:

Version D May 1985

return
end

1 1
2 2
3 3
4 4
5 5

1 2
1 2
1 2
1 2
1 2

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

3 4 5
3 4 5
3 4 5
3 4 5
3 4 5

The Pascal - FORTRAN Interface

7-5

0

0

0

0

0

0

Chapter 8

Sun Extensions to Berkeley Pascal

Sun Microsystems has made many extensions to Berkeley Pascal. These are exclusively language
extensions (as opposed to new tools such as dbx). In addition, this section discusses the
differences between the ISO standard and Sun Pascal.

8.1. Language Extensions Supported by both pc and pi

8.1.1. Underscores Allowed In Identifiers

The syntax of Pascal identifiers is extended to allow underscores ("_") in all character positions
except the first. This improves readability of long identifiers, and for pc, allows access to more
routines of the Sun libraries than do earlier versions.

8.1.2. Conformant Array Parameters

Level I ISO Pascal Standard requires that conformant array parameters be supported. This
feature allows a procedure or function to accept arrays with a common element type, but with
different bounds. Note that conformant arrays are not truly dynamic - that is, their bounds
cannot be altered. They merely provide a mechanism for including subscript bounds information
when an array is passed as a formal parameter. For example, the following function computes
the real inner product of two real vectors z and y. x and y must have the same dimension.

function innerproduct (var x,y: array [lb .. ub: integer] of real): real;
var sum: real;

n: integer;
begin

sum := 0.0;
for n := lb to ub do

sum:= sum+ x[n]*y[n];
innerproduct := sum;

end;

Version D May 1985 8-1

Sun Extensions to Berkeley Pascal Pascal Programmer's Guide for the Sun Workstation

8,1.2,1. Syntax

<conformant-array-parameter-specification>
::= <value-conformant-array-parameter-specification>
::= <variable-conformant-array-parameter-specification>

<value-conformant-array-parameter-specification>
::=<identifier-list>":" <conformant-array-schema>

<variable-conformant-array-parameter-speciflcation>
: := "var" <identifier-list> 11

·" <con formant-array-schema>

<conformant-array-schema>
::= <packed conformant-array-schema>
::= <unpacked conformant-array-schema>

<packed conformant-array-schema>
: := ''packed" "array" "[" <index-type-specification> 11

]"

"of" <type-identifier>

<unpacked conformant-array-schema>
: := "array" 11 (11 <index-type-specification> "] 11

"of" <array-element-type>

<array element-type>
::= <type-identifier>
::= <conformant-array-schema>

<index-type-specification>
: := <bound-identifier> " .. " <bound-identifier>

"·" <type-identifier>

A formal conformant array parameter includes read-only bound identifiers as part of its
definition. The bound identifiers provide the lower and upper limits of the conformant array
parameter's index type. The actual array associated with a conformant array parameter must
have the same element type as the conformant array, as well as a compatible index type. When
an actual array is passed as a conformant array parameter, its bounds become the bounds of the
conformant array parameter. If the formal parameter is a value conformant array parameter, a
copy of the actual array is made in the caller's environment and the address of the copy is
passed.

A detailed description of conformant array parameters is given in Cooper[l].

8.1.9, Otherwise clause in case statement

Case statements may specify a default action or "otherwise clause", according to the following
syntax:

8-2 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Sun Extensions to Berkeley Pascal

<case statement>
: : = "case" <case selector> "of"

<case selector>

<case-element> {";"<case-element>} [0
;"]

[<otherwise-clause>]
"end"

::= <expression>

<case-element>
: := <case label> { " " <case label>} ti • II <statement>

<case-label>
: : = <constant>

<otherwise-clause>
: := "otherwise" <statement> ["; "]

Note that the reserved word "otherwise" is not a case label, so is
specified, it must be at the end of the case statement. For example,

program silly (input,output);
var ch:char;
begin

read(ch);
case ch of

not followed by a

'O', '1', '2', 1 3 1
, '4', 'S', '6 1

,
1 7 1

, '8', '9':
writeln ('digit');

otherwise
writeln ('not a digit')

end
end.

ff• II If

The default action (i.e., the statement immediately following the reserved word "otherwise") is
executed if the case selector does not match any of the specified case label values. Without the
"otherwise" clause, this situation would result in a run-time error and termination of the pro­
gram.

8.L{ sizeof operator

The sizeof operator returns the size of a specified type or variable. If you wish to compute
the size of a variant record type, an optional list of variant tag values can be used to specify a
particular variant of the given record type, similar to the standard procedures new and
dispose. For example,

Version D May 1985 8-3

Sun Extensions to Berkeley Pascal Pascal Programmer's Guide for the Sun Workstation

program showsize (output);
type thing= record

case boolean of
true: (n: integer);
false: (x: real)
end;

var t: thing;

begin
writeln (sizeof (t));
writeln (sizeof (thing));
writeln (sizeof (thing, true));
end.

The syntax of sizeo f () 1s

"sizeof" "(" <size_expr_llst> ")"

where <size_expr _list> : := <size_expr> { u," <constant expression> }
<size_expr> : := <type identifier> I <variable>

sizeo f () returns the size, in bytes, of a declared type or a (possibly qualified) variable. If an
optional list of constant expressions is supplied, the <type identifier> or <variable> must
denote a variant record type or an instance of one; the value returned is the size of the variant
selected by the list of constant expressions (e.g., the standard procedures new and dispose).

sizeof () is a compile-time function and does not cause code generation other than the genera­
tion of the constant value it returns. Since the size of a conformant array parameter is not
known until runtime, sizeo f (conform ant array parameter) is treated as an error. For the
one-dimensional conformant array parameter,

function size (
var arr: array[lb .. ub: integer] of element

) : integer;

the size of arr may be computed as

size := (ub-lb+l) • sizeof(element);

Apply the above formula recursively to compute the size of multi-dimensional arrays.

Note: sizeo f is now a reserved word, unless the -s option (compile only standard Pascal) is in
effect.

8.1.5. Correct handling of multidimensional array declarations

As specified by the ISO standard, arrays of arrays and multi-dimensional arrays are treated t.he
same. For example,

array[l .. 10] of array[l .. 6] of real;

and

array(l .. 10,1 .. 6] of real;

are treated as equivalent, as are a [i] [j] and a [i, j]. In the 4.2BSD versions of pc and pi

8-4 Version D May 1985

0

0

0

0

0

0

Pa.seal Programmer's Guide for the Sun Workstation Sun Extensions to Berkeley Pa.seal

substitution of one for the other was considered an error.

8.2. Language extensions supported only by pc

8.2.1. Shor/real and Longreal types (pc only)

Example:

var x: shortreal;
y: longreal;
z: real; { same as longreal}

Description:

pc now supports both single- and double-precision floating point types, which are denoted by the
names shortreal and longreal, respectively. The standard type real denotes double­
precision floating point, as in earlier versions of Sun Pa.seal. Note that real can be redeclared
as either longreal or shortreal, if desired.

The rules for arithmetic conversions are changed to permit computations involving single preci­
sion operands to be done in single precision. The new rules are

• The operators+,-, *

Let op denote a binary arithmetic operator in the set{+,-,*}. Let xl and x2 denote the
operands of op. Let tl and t2 denote the types of xl and x2, respectively. The type of
(xl op x2) is determined by applying the following rules in the order listed:

l. If tl and t2 are both subranges of -128 .. 127, the type of the result is -32768 .. 32767.

2. If tl and
result is integer.

3. If tl or t2 is 16~g;',?,;f, tElffi'tNP?j'p~ o'tlh.?''tt!§°u\l"i~' 1Jrf~Fea1f'8 type of the

4. If tl and t2 are either shortreal or subranges of -32768 .. 32767 (i.e., representable
exactly in 16 bits), then the type of the result is shortreal.

5. Otherwise, the type of the result is longreal.

• The integral dividing operators div, mod:

If the operator is one of {div, mod}, then the operands are restricted to integral types, and
the type of the result is integer.

• The operator /:

If the conversions described above for +, -, * return an integral type, then both operands are
converted to longreal, and that is the type of the result.

Note: These rules differ from those of C, which automatically forces conversion to double preci­
sion for all floating-point arithmetic operations, as well as for floating-point function arguments.

Version D May 1985 8-5

Sun Extensions to Berkeley Pascal Pascal Programmer's Guide for the Sun Workstation

8.2.2. External FORTRAN and C Declarations (pc only)

The extern a 1 directive for procedure and function declarations is extended to allow the
optional specification of the source language of a separately compiled procedure or function.

<procedure declaration>
: := <procedure or function heading> <directive>

<directive>
: : = "forward"
: : = "external" (<identifier>] II , ft ,

where either "fortran" or "c" may be substituted for
<identifier>.

The directives external fortran and external c, direct pc to generate calling sequences
compatible with Sun's FORTRAN 77 and C, respectively.

For routines declared external fortran, the changes in the calling sequence are as follows:

• For value parameters, the compiler creates a copy of the actual argument's value in the
caller's environment, and a pointer to the temporary is passed on the stack. Thus,, you
don't need to create (otherwise useless) temporary variables.

• The compiler appends an underscore to the name of the external procedure to conform to a
naming convention of the /77 compiler. Note that names of Pascal procedures called from
FORTRAN must supply their own trailing ("_"). This may be done using a #define
preprocessor declaration to minimize impact on the rest of the program.

Note: Multidimensional Pascal arrays are not compatible with FORTRAN arrays. Since FOR­
TRAN uses column-major ordering, a multidimensional Pascal array passed to FORTRAN may
appear to be transposed.

For routines declared external c, the only changes in the calling sequence is that value
parameters of type shortreal are treated as longreal.

8.2.3. Bit Operations on Integral Types

X := land(y,z); { bitwise AND }

X := lor(y,z); { inclusive OR }
X := xor(y,z); { exclusive OR }
X := lnot(y); { bitwise NOT }
X := lsl(y,z); { logical shift left }
X := lsr(y,z); { logical shift right }
X := asl(y,z); { arithmetic shift left }

X := asr (y, z) ; { arithmetic shift right }

These predefined functions provide access to the same bit operations provided by C. Each takes
one or two arguments of integral type and returns a result whose type is the larger of the two
operand types. The result is computed in-line, producing faster and smaller code than an
equivalent external function call.

8-6 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Sun Extensions to Berkeley Pascal

8.2.,4. Preprocessor facilities {pc only)

Preprocessor facilities (e.g., conditional compilation, macros) can be used as in C (see cpp). You
should be cautioned that comments containing a '#' in column 1 are interpreted by the prepro­
cessor. Also, Sun's C language reserves the symbols "sun", "unix", and "mc68000", which are not
reserved in Pascal.

8.2.5. Version identification

The version· of pc used to compile a given object file can be identified by the following command
line:

hostname% nm -ap <file> I grep •PC• I head

The first line containing the string "PC" indicates the version of the compiler used and the date
of its generation, for example:

hostname% nm -ap foo.o I grep •PC• I head
00000000 - 00 OOOd PC 3.4 (10/4/84)
00000001 - 00 0001 PC foo.p

8.3. Differences from the ISO Pascal Standard
The following section describes the differences between the ISO Pascal standard and Sun Pascal.

• Operands of binary set operators{*,+,-} are required to have identical types. The standard
permits different types as long as the base types are compatible.

• According to the standard, the expression [maxint ... -maxint] should be equivalent to []. pc
and pi both refuse to evaluate sets with elements larger than indicated by the definition of
type intset (predefined as set of 0 ... 127).

• Sun Pascal treats files declared as 'file of char' the same as files declared as 'text.' In
ISO Pascal the two types are distinct.

• The value of (m mod n) is not computed correctly for negative values of m. According to
the standard, the divisor must be positive and the result must be negative. The correct
result can be obtained by:

result := m mod n;
if result< 0 then result :=result+ n;

Version D May 1985 8-7

Qi

01

0

0

0

0

Appendix A

Pascal Language Reference Summary

This appendix is a condensed language reference summary for Berkeley Pascal with Sun exten­
sions. BNF notation is used throughout.

A.1. Programs

<program> ::=<program heading>< declaration liat> <block>.
I <declaration li•t>

<program heading>::= program< identifier> (<identifier liat>);
J program < identifier> ;

< block> ::=begin< atatement liat> end

A.2. Declarations

< declaration liat> ::=<declaration liat> < declaration>
I <empty>

< declaration> ::= < label declaration>
I <conatant declaration>
I <type declaration>
I <variable declaration>
I <procedure declaration>
I </unction declaration>

A.2.1. Label Declarations

< label declaration> ::= label < label liat > ;

< label liat > ::= < label>
I <label liat> , < label>

< label> ::= < un•igned integer>

Version D May 1985 A-1

Pascal Language Reference Summary Pascal Programmer's Guide for the Sun Workstation

A.2.2. Constant Declarations

< constant declaration>::= canst< identifier>=< conatant> ;
I <comtant declaration>< identifier>=< conatant>;

A.2.9. Type Declarations

< type declaration> ::=type< identifier>=< type>;
I <type declaration>< identifier> - <type>;

A.2.4- Variable Declarations

< variable declaration>::= var< identifier liat>: <type>;
I <variable declaration> < identifier list>:< type>;

A.2.5. Procedure And Function Declarations

< procedure declaration> ::= < procedure heading> forward ;
J <procedure heading> external< identifier>;
I <procedure heading> external;
I <procedure heading>< declaration list>< block> ;

<function declaration> ::= <function heading> forward;
J </unction heading> external< identifier> ;
I <function heading> external ;
I <function heading>< declaration list>< block> ;

< procedure heading> ::= procedure < identifier> <parameters> ;

<function heading>::= function< identifier> <parameters>:< type identifier>;

<parameters>::= (<parameter list>)
I <empty>

A.2.6. Formal Parameter Declarations

A-2

<parameter liat> ::- <parameter>
J < parameter liat > ; <parameter>

< parameter> ::= < identifier liat> : < parameter type>
J var < identifier li,t> : < parameter type>
I function < identifier> <parameter,> : < type identifier>
I procedure < identifier> <parameter,>

Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Pascal Language Reference Summary

< parameter type>::=< type identifier>
I <conformanl array ,chema>
I <packed conformant array achema>

< conform ant array achema > ::= array [< indez type liat>] of< parameter type>

< packed conformanl array achema> ::= packed array [< indez type>] of< type identifier>

< index type li,t> ::=<index type>
I < index type li,t > ; < index type>

< index type>::=< identifier> •• < identifier>:< type identifier>

A.3. Constants

< conatanl > ::= < character airing>
I < comtanl identifier>
I <number>
I + < number>
I - < number>

<number>::=< unaigned integer>
I < octal conatant >
I <unaigned real conalant>

< conatanl liat > ::= < con,tanl >
I <con•tant li•t> , < conalant>

A.4. Types

< type> ::= < ,imp/e type>
I • < type identifier>
I <alructured type>
I packed < atructured type>

< aimple type> ::= < type identifier>
I (< identifier liat>)
I <conatant> •• < conatant>

< atructured type> ::= array [< aimple type li,t>] or< type>
I file or< type>
I set or < aimple type>
I record < field liat > end

< aimple type li,t> ::- < aimple type>
I <aimple type liat>, < aimp/e type>

Version D May 1985 A-3

Pascal Language Reference Summary Pascal Programmer's Guide for the Sun Workstation

A.5. Record Types

<field liat> ::= <fixed part>< variant part>

<fized part>::= <field>
I <fixed part> ; < field>

<field> ::=<empty>
I <identifier lid> : < type>

< variant part> ::= < empty>
I case < type identifier> of< variant liat>
I case< identifier>:< type identifier> of< variant liat>

< variant liat > ::= < variant>
I < variant liat > ; < variant>

< variant> ::= < empty>
I <conatant liat>: (<field liat>)

A.6. Statements

A-4

< atatement> ::=<empty>
<unaigned integer>:< atatement>
<procedure identifier>
<procedure identifier> (<actual parameter liat>)
< a .. ignment >
begin < atatement list> end
case < expre .. ion > of < caae atatement list> end
with < variable liat> do < atatement>
while< expre .. ion> do< atatement>
repeat < atatement liat> until < expre .. ion>
for< aaaignment> to< expre .. ion> do< atatement>
for< aaaignment> downto < expreaaion> do< atatement>
goto < label>
if< expreaaion> then< atatement>
if< expreaaion> then< atatement> else< atatement>

< aaaignment> ::=<variable>:=< expreaaion>

< atatement liat > : :- < atatement >
I <atatement liat> ; < atatement>

< caae atatement liat> ::= < caae liat element>
I <caae atatement liat> ; < caae liat element>

Version D May 1985

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Pascal Language Reference Summary

< caae liat element> ::= < conatant liat> : < atalement>
I otherwise <statement>
I <empty>

A. 7. Expressions

< ezpreuion> ::= < aimple expreaaion>
I <ezpreaaion> < relational operator>< aimple ezpreuion>

< ,imple ezprea,ion > ::= < aigned term>
I <aimple ezpreuion > < adding operator> < aigned term>

< ,igned term>::=< term>
I + < aigned term>
I - < aigned term>

<term>::= <factor>
I <term>< multiplying operator> <factor>

<factor> ::= nil
I <character .tring>
I <unaigned integer>
I < octal comtant >
I <umigned real comtant>
I <variable>
I </unction identifier> (<actual parameter liat>)
I (< ezpre .. ion >)
I not <factor>
I [< ,el element liat >]
I []
I sizeof (< aizeof argument liat>)

< aizeof argument li.t> ::= < aizeof argument>
I <aizeof argument liat> , < expreaaion>

< aizeof argument>::=< type identifier>
I <variable>

< aet element liat> ::= < aet element>
I < aet element liat > , < aet element>

< aet element> ::= < ezpreuion>
I <ezpreaaion> .. < expreaaion>

Version D May 1985 A-5

Pa.seal Language Reference Summary Pa.seal Programmer's Guide for the Sun Workstation

A.8. Variables

<variable> ::= < identifier>
I <qualified variable>

< qualified variable>::=< array identifier> [< expreaaion liat>]
I <qualified variable> [< expreaaion liat>]
I <record identifier> • < field identifier>
I <qualified variable> , < field identifier>
I <pointer identifier> •
I < qualified variable> •

A.9. Actual Parameters

< actual parameter> ::= < expreaaion >
I < expreaaion > : < expreaaion >
I < expreaaion > : < expreaaion > : < expreaaion >
I < exprea,ion > < write baae >
I < expre88ion > : < expre88ion > < write baae >

< expreaaion liat> ::= < expreaaion>
I <expreaaion liat> , < expreaaion>

< actual parameter liat> ::= < actual parameter>
I < actual parameter liat > , < actual parameter>

< write baae> ::= oct I hex

A.10. Operators

< relational operator> ::= = I < I > I <> I <= I >= I in

< adding operator> ::- + 1-1 or ' • I I

< multiplying operator> ::= * I / I div I mod I &nd I &

A.11. Miscellaneous

< variable liat> ::=<variable>
I <variable liat>, < variable>

< identifier liat> ::=<identifier>
I <identifier /iat> , < identifier>

<empty>::=

A-6 Version D May 1985

0

C

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Pascal Language Reference Summary

A.12. Lexicon

< conatant identifier> ::=<identifier>

< type identifier> ::= < identifier>

< var identifier>::=< identifier>

< array identifier> ::= < identifier>

< pointer identifier> ::= < identifier>

< record identifier>::=< identifier>

< field identifier> ::= < identifier>

< procedure identifier>::=< identifier>

<function identifier>::= < identifier>

< identifier> ::=<letter> { < letter> I <digit> I _}

<letter>::=
a.IhlcldlelflglhliljJklllm

n I o I p I q I r I s I t I u I v I w I x I Y I z
AJBJCJDIEJFJGIHJIJJJKILIM
N101P1Q1R1S1T1u1v1w1x1Y1Z

<digit>::= o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I 8 I 9

< unaigned integer> ::=<digit> { <digit>}

< aigned integer> ::= < umigned integer>
I + < unaigned integer>
I - < umigned integer>

< unaigned real conatant> ::= < unaigned integer> , <fractional part>
I <umigned integer>. <fractional part> e < acale factor>
I <umigned integer>, <fractional part> E < acale factor>
I <umigned integer> e < acale factor>
I <unaigned integer> E < acale factor>

<fractional part>::= < digit> { <digit>}

< acale factor> ::= < aigned integer>

< octal comtant> ::= < octal digit> { < octal digit> } b
I < octal digit> { < octal digit> } B

< octal digit> ::= o I 1 I 2 I 3 I 4 I 5 I 6 I 7

Version D May 1985 A-7

Pascal Language Reference Summary Pascal Programmer's Guide for the Sun Workstation

A-8

< character airing>::-'< airing element> { < airing element>} '

< airing element> ::- < apoalrophe image> I <any character except apoatrophe or newln>

< apo•trophe image> ::- "

Version D May 1985

0

0

0

0

0

0

Appendix B

Differences Between Berkeley Pascal and Standard
Pascal

The official Pascal standard is "Specification for the Computer Programming Language Pascal"
(ISO dp7185).

This section summarizes extensions to the language, discusses the ways in which the undefined
specifications were resolved, gives limitations and restrictions of the current implementation, and
lists the predefined functions and procedures available in the Berkeley implementation. Sun
extensions to the language are listed in Appendix B.

B.1. Extensions to Pascal

This section defines nonstandard language constructs available in Berkeley Pascal. The -11

standard Pascal option of the translators pi and pc can be used to detect these extensions in
programs that are to be transported.

B.1.1. String Padding

Berkeley Pascal pads constant strings with blanks found in expressions and as value parameters,
making them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z := 'red';
writeln(z)

end;

The blanks are added on the right. Thus, the assignment above is equivalent to

z := 'red

which is standard Pascal.

Version D May 1985 B-1

Differences Pascal Programmer's Guide for the Sun Workstation

B.1.2. Octal Constants, Octal and Hexadecimal Write

Octal constants may be given as a sequence of octal digits followed by the character 'b' or 'B'.
The forms

write(a:n oct)

and

write(a:n hex)

cause the internal representation of expression a (which must be Boolean, character, integer,
pointer, or a user-defined enumerated type) to be written in octal or hexadecimal, respectively.

B.1.3. Assert Statement

An assert statement causes a Boolean expression to be evaluated each time the statement is
executed. A run-time error results if any of the expressions evaluates to FALSE. The assert
statement is treated as a comment if run-time tests are disabled. The syntax for assert is

assert <expr>

where expr is a Boolean expression.

B.1..J. Enumerated Type Input/Output

0

Enumerated types can be read and written. On output, the string name associated with the o
enumerated value is output. If the value is out of range, a run-time error occurs. On input an ·
identifier is read and looked up in a table of names associated with the type of the variable, and
the appropriate internal value is assigned to the variable being read. If the name is not found in
the table, a run-time error occurs.

B.1.5. Structure-Returning Functions

An extension has been added that allows functions to return arbitrary-sized structures, rather
than just scalars as in the standard.

B.1.6. Separate Compilation

The compiler pc has been extended to allow separate compilation of programs. Procedures and
functions declared at the global level can be compiled separately. Type checking of calls to
separately compiled routines is performed at load time to insure that the program as a whole is
consistent. See the section "Separate compilation with pc," in Chapter 4 for details.

B-2 Version D May 1985

0

0

Pascal Programmer's Guide for the Sun Workstation Differences

B.2. Implementation Dependent Features

This section describes implementation dependent features of Pascal, which are undefined by the
standard.

B.2.1. File Name - File Variable Associations

Each Pascal file variable is associated with a named UNIX file. Except for input and output,
which are exceptions to some of the rules, a name can become associated with a file in any of
three ways:

• If a global Pascal file variable appears in the program statement then it is associated with
the UNIX file of the same name.

• If a Pascal file is reset or rewritten using the extended two-argument form of reaet or rewrite
then the given name is associated.

• If a Pascal file that has never had a UNIX name associated with it is reset or rewritten
without specifying a name via the second argument, then a temporary name of the form
tmp. n is associated with the file. Temporary names start with tmp .1 and continue by
incrementing n in ASCII order. Temporary files are removed automatically when their scopes
are exited.

B.2.2. The Program Statement

0 The syntax of the program statement is (in extended BNF)10

program <id> (<file id> { , <file id> }) ;

0

The file identifiers (other than input and output) must be declared as variables of type
file in the global declaration part.

B.2.3. The Files Input and Output

The formal parameters input and output are associated with the UNIX standard input and
output and have a somewhat special status. The following rules must be noted:

• The program heading must contain the formal parameter output if it does any output. If
input is used (explicitly or implicitly) then it must also be declared here.

• Unlike all other files, the Pascal files input and output must not be defined in a declara­
tion, since their declaration is automatically done, as in

•

var input, output: text

The procedure reset may be used on input. If no UNIX filename has ever been associ­
ated with input, and no filename is given, then an attempt is made to 'rewind' input. If
this fails, a run-time error occurs. rewrite calls to output work as any other file,
except that output has no associated file initially. This means that a simple

10 For an explanation or extended BNF notation see Cooper[l], page 2.

Version D May 1985 B-3

Differences Pascal Programmer's Guide for the Sun Workstation

rewrite(output)

associates a temporary name with output.

B.2.4- Details For Files

If a file other than input is read, then reading must be initiated by a call to the procedure
reset, which causes the Pascal system to attempt to open the associated UNIX file for reading.
If this fails, then a run-time error occurs. Writing a file other than output must be initiated
by a rewrite call, which causes the Pascal system to create the associated UNIX file and then
to open it for writing only.

B.2.5. Buffering

The buffering for output is determined by the value of the -b option at the end of the pro­
gram statement. If it has its default value 1, then output is buffered in blocks of up to 1024
characters, and is flushed whenever a writeln occurs and at each reference to the file input.
If it has the value 0, output is unbuffered. Any value of 2 or more gives block buffering
without line or input-reference flushing. All other output files are always buffered in blocks of
1024 characters. All output buffers are flushed when the files are closed at scope exit or when­
ever the procedure message is called, and can be flushed using the built-in procedure flush.

An important point for an interactive implementation is the definition of 'inputf'. If input is a
terminal, and the Pascal system reads a character at the beginning of execution to define
'inputt', then no prompt can be printed by the program before the user is required to type some
input. For this reason, 'inputt' is not defined by the system until its definition is needed, with
reading from a file occurring only when necessary.

B.2.6. The Character Set

Seven-bit ASCII is the character set used in UNIX. The standard Pascal symbols and, or, not,
<=, >=, <>, and the up arrow 't' (for pointer qualification) are recognized. 11 Less portable are
the synonyms tilde,., (for not),'&' (for and), and 'I' (for or).

Upper and lower case are considered to be distinct. 12 Keywords and built-in procedure and
function names are composed of all lower-case letters. Thus the identifiers GOTO and GOto
are distinct both from each other and from the keyword goto. The standard type boolean is
also available as Boolean.

Character strings and constants may be delimited by the character ', or by the character '#';
the latter is sometimes convenient when programs are to be transported. Note that the '#'
character has special meaning when it is the first character on a line - see "Multi-file programs"
in Chapter 4.

11 On many terminals and printers, the up arrow is represented as a circumflex , .. ,. These are not dis­
tinct characters, but rather different graphic representations of the same internal codes.

12 The ISO standard for Pascal considers them to be the same. The -• and -L options of pc, pi, pzp
consider upper- and lower-case letters to be equivalent in identifiers and keywords.

B-4 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation

B. 2. 7. The Standard Types

The standard type integer is conceptually defined as

type integer= minint .. maxint;

Differences

Integer is implemented with 32-bit two's-complement arithmetic. The predefined constants of
type integer are

const maxint = 2147483647; minint = -2147483648;

The standard type char is conceptually defined as

type char= minchar .. maxchar;

The built-in character constants are minchar and maxchar, bell and tab;
ord (minchar) = 0, ord (maxchar) = 127.

The types real and longreal are implemented using 64-bit IEEE floating-point format and
the type shortreal using 32-bit floating-point format. The floating-point arithmetic for real
and longreal is done in round to neared mode, and provides approximately 16 digits of preci­
sion with numbers whose magnitudes range from 5.0E-324 to l.7E308.

Pascal shortreal is the same as real *4 in Fortran and float in C. The maximum and
minimum representable values are

(max) 3.402823e+38
(min) 1.175494e-38

Values of type shortreal can represent about 7 decimal digits.

B.2.8. Comments

Comments can be delimited by either '{' and '}' or by '(*' and '*)' (as opposed to the standard
which does not distinguish between them). If the character '{' appears in a comment delimited
by '{' and '}', a warning diagnostic is printed. A similar warning is printed if the sequence '(*'
appears in a comment delimited by'(*' and '*)'. The restriction implied by this warning is not
part of standard Pascal, but detects many otherwise subtle errors.

You can convert parts of your program to comments without generating an error diagnostic with
the following:

{ This is a comment enclosing a piece of program
a := functioncall; (* comment within comment *)
procedurecal l;
lhs := rhs;
}

(* another comment*)

By using one kind of comment exclusively in your program you can use the other delimiters
when you need to comment out parts of your program. In this way, you also allow the translator
to help by detecting statements accidently placed within comments.

If a comment does not terminate before the end of the input file, the translator points to the
beginning of the comment, indicating that the comment is not terminated. In this case, process­
ing terminates immediately. See the discussion of "QUIT" in Chapter 2.

Version D May 1985 B-5

Differences Pascal Programmer's Guide for the Sun Workstation

B.2.9. Option Control

Translator options can be controlled in two distinct ways: on the command line, and in com­
ments. Several options may appear on the command line invoking the translator. These options
are given as one or more strings of letters preceded by the character '-' and cause the nonde­
fault setting of each given option to be used. This method of options communication is expected
to predominate for UNIX. Thus the command

hostname% pi -1 -• foo.p

translates the file foo. p with the listing option enabled (it's normally off) and only with stan­
dard Pascal features available.

If you require more control over the portions of the program where options are enabled then
option control in comments can and should be used. Place a '$' as the first character of the com­
ment followed by a comma-separated list of directives. Thus, the following is an equivalent to
the command line example given above:

{$1+,s+ listing on, standard Pascal}

as the first line of the program. The -1 option is more appropriately specified on the command
line, since in an interactive environment it is unlikely to want a listing of the program each time
it is translated.

Most directives consist of a letter designating the option, followed either by a '+' to turn the
option on, or by a '-' to turn the option off. The only exception is the -b option which takes a
single digit instead of a'+' or '-'.

B.2.10. Notes on the Listings

The first page of a listing includes a banner line indicating the version number and generation
date of pi or pc. It also includes the UNIX pathname supplied for the source file and the date of
last modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the line
numbers used by the vi editor. Currently, two special kinds of lines may be used to format the
listing: a line consisting of a formfeed character (Control-L), which causes a page eject in the list­
ing, and a line with no characters, which causes the line number to be suppressed in the listing (
creating a blank line). These lines correspond to 'eject' and 'space' macros found m many
assemblers. Nonprinting characters are printed as the character'?' in the listing.13

B.2.11. The Standard Procedure Write

If no minimum field length parameter is specified for a write, the following default values are
assumed: 14

integer 10
real 22

13 The character generated by a Control-I indents to the next tab stop. Tab stops are set every 8
columns in UNIX. Thus, tabs provide a quick way of indenting in the program.

14 The default values for the Sun-provided types ,hortrecd and longreal are 14 and 22, respectively,

B-6 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Differences

Boolean length of 'true' or 'false'
char 1
string length of the string
oct 11
hex 8

The end of each line in a text file should be indicated explicitly by write ln (f) , where
writeln (output) may be written simply as writeln. The built-in function page (f) puts
a single ASCII formfeed character on the output file.

B.3. Restrictions and Limitations

B.3.1. Files

Files cannot be members of files or dynamically-allocated structures.

B.3.2. Arrays, Sets, and Strings

For pi only, the calculations involving array subscripts and set elements are done with 16-bit
arithmetic. This restricts the types with which arrays and sets may be defined. The lower
bound of such a range must be greater than or equal to -32768, and the upper bound less than
or equal to 32767. Strings may have any length from 1 to 65535 characters, and sets may con­
tain no more than 65535 elements. The range of elements in a set expression is bound by the
definition of int,et in the current scope. Refer to the section on "Additional Predefined Types"
later in this chapter for more information.

In pc, arrays may be any size that fits into the process address space.

B.3.3, Line and Symbol Length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be distinct if
they differ in any position over their entire length. The limit on the maximum input line length
is currently 1024 characters.

B.3.4, Procedure and Function Nesting and Program Size

A maximum 20 levels of procedure and function nesting are allowed. There is no fundamental,
translator-defined limit on the size of the program that can be translated. The ultimate limit is
supplied by the address space. If you encounter the 'ran out of memory' diagnostic, the program
can still be translated if smaller procedures are used, since a lot of space is freed by the transla­
tor at the completion of each procedure or function in the current implementation.

In pi, there is an implementation-defined limit of 65536 bytes per variable, but no limit on the
number of variables.

Version D May 1985 B-7

Differences Pascal Programmer's Guide for the Sun Workstation

B.3.5. Overflow

There is currently no checking for overflow on arithmetic operations at runtime.

B.4. Added Types, Operators, Procedures and Functions

B.,J.1. Additional Predefined Types

The type al fa is predefined as

type alfa = packed array [1 .. 10] of char

The type intset is predefined as

type intset = set of 0 .. 127

In most cases, the context of an expression involving a constant set allows the translator to
determine the type of the set, even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con­
text, the expression type defaults to a set over the entire base type unless the base type is
integerl5. In the latter case, the type defaults to the current binding of intset, which must
be "type set of (a subrange of) integer" at that point.

B.,J. 2. Additional Predefined Operators

The relationals '<' and '>' of proper set inclusion are available.

B.,J.3. Nonstandard Procedures

argv (i, a)

date (a)

flush (f)

halt

assigns the (possibly truncated or blank-padded) i'th argument of the invocation
of the current UNIX process to the variable a, where i is an integer and a is a
string variable. The range of i is Oto argc-1.

assigns the current date to the al fa variable a in the format dd mmm yy,
where mmm is the first three characters of the month, (e.g., 'Apr').

writes the output buffered for Pascal file /into the associated UNIX file.

terminates the execution of the program with a control flow traceback.

linelimit(f,x)
causes the program to be abnormally terminated if more than :,; lines are writ­
ten on file /, where f is a textfile and :,; an integer expression. If :,; is less than 0
then no limit is imposed.

message (x, ...)
causes the parameters (which have the same format as the built-in procedure

16 The translators make a special case of the construct 'it ... in I ... J' and enforces only the more lax res­
triction on 16-bit arithmetic given above in this case.

B-8 Version D May 1985

0

0

0

0

0

0

Pascal Programmer's Guide for the Sun Workstation Differences

null

remove (a)

reset (f, a)

write), to be written unbuffered on stderr, which is usually the user's ter­
minal.

a procedure of no arguments which does absolutely nothing. It is useful as a
place holder, and is generated by p:zp in place of the invisible empty statement.

causes the UNIX file whose name is given by the string a, with trailing blanks
eliminated, to be removed.

causes the file a (where a is a string with blanks trimmed) to be associated with
/, and performs a re8et on f

rewrite (f, a) is analogous to 'reset' above.

st limit (i)

time (a)

sets the statement limit to be i statements, where i is an integer. Specifying
the -p option to pc disables statement limit counting.

causes the current time in the form ' hh:mm:ss ' to be assigned to the al fa
variable a.

B.4-4- Nonstandard Functions

argc

card(x)

clock

expo (x)

random(x)

seed(i)

sysclock

returns the count of arguments provided when the Pascal program was invoked.
Argc is always at least I.

returns the cardinality of the set :z, that is, the number of elements in the set.

returns an integer representing the system time (in milliseconds) used by this
process.

yields the integer-valued exponent in the floating-point representation of z;

expo(z) = entler(log2(abs(z))).

invokes a linear congruential random number generator, where :z is a real
parameter that is evaluated but otherwise ignored. Successive seeds are gen­
erated as (seed*a + c) mod m and the new random number is a normali­
zation of the seed to the range 0.0 to 1.0; a is 62605, c is 113218009, and m is
536870912. The initial seed is 7774755.

sets the random number generator seed to i and returns the previous seed,
where i is an integer. Thus, seed (seed (i)) has no effect except to yield
value i.

returns the number of milliseconds of system time used by this process. sys­
c lock is an integer function with no arguments.

undefined(x) a Boolean function. Its argument is a real number and it always returns false.

wallclock

sizeof (x)

returns the time in seconds since 00:00:00 GMT January l, 1970. wallclock
is an integer function with no arguments.

see Chapter 8 for extensions specific to the Sun implementation.

Version D May 1985 B-9

0

O!
I

I

0

0

0

0

Appendix C

Bibliography

[l] Cooper, Doug. Standard Paual Uaer Reference Manual, W.W. Norton and Co., 1983

[2] Specification for Computer Programming Language Paual, BS 6192, British Standards
Institute, 1982

[3] Jensen, K., and N. Wirth. PASCAL U•er Manual and Report, Springer-Verlag, 1974.

Version D May 1985 C-1

01

o'

0

0
Appendix D

Pascal Manual Pages

0

0
Version D May 1985

o:

0

0

0

0

0

PC(I) USER COMMANDS PC(l)

NAME
pc - Pascal compiler

SYNOPSIS
pc [-c J I -g J 1-o output J 1-0 [I -b 11 -C] 1-fsky J 1-H 11-l_name ... JI -1 J

I -lpfc I [-L J I -P I [-• 11 -S 11 -• I filename.p ...

DESCRIPTION
Pc is the Sun Pascal compiler. If given an argument file ending with .p, pc compiles the file and
leaves the result in an executable file called a.out by default.

A program may be separated into more than one .p file. Pc will compile a number of .p files into
object files (with the extension .o in place of .p). Object files may then be loaded into an execut­
able a.out file. Exactly one object file must supply a program statement to successfully create
an executable a.out file. The rest of the files must consist only of declarations which logically
nest within the program. References to objects shared between separately compiled files are
allowed if the objects are declared in Included header files, whose names must end with .h.
Header files may only be included at the outermost level, and thus declare only globally available
objects. To allow external functions and procedures to be declared, an external directive has
been added, whose use is similar to the forward directive but restricted to appear only in .h
files. Function and procedure bodies may not appear in .h files. A binding phase of the com­
piler checks that declarations are used consistently, to enforce the type checking rules of Pascal.

Object files created by other language processors may be loaded together with object files created
by pc. The functions and procedures they define must have been declared in .h files included
by all the .p files which call those routines.

Pascal's calling conventions are the same as in C, with var parameters passed by address and
other parameters passed by value.

Both pc and pi(l) support ISO Level 1 Standard Pascal, including conformant array parameters.
Deviations from the ISO Standard are noted under BUGS below.

See the Pascal User's Manual for details.

OPTIONS
See /d(l) for load-time options.

-c Suppress loading and produce .o file(s) from source file(s).

-g Produce additional symbol table information for the symbolic debugger dbz(l).

-o name
Name the final output file name instead of a.out.

-0 Optimize the object code.

-b Buffer the file output in units of disk blocks, rather than lines.

-C Compile code to perform subscript and subrange checks, verify assert statements, and
initialize all variables to zero as in pi. Note that pointers are not checked. This option
differs significantly from the -C option of the cc compiler.

-fsky Generate code which assumes the presence of a SKY floating-point processor board. Pro­
grams compiled with this option can only be run in systems that have a SKY board
installed. Programs compiled without the -fsky option will use the SKY board from
library routines, but won't run as fast as they would if the -fsky option were used. If
any part of a program is compiled using the -faky option, you must also use this option
when linking with the pc command, since different startup routines are used to initialize
the SKY board.

-H Compile code to perform range checks on pointers into the heap.

-I name

Sun Release 2.0 Last change: 1 February 1985 I

PC(1)

FILES

USER COMMANDS

Produce a listing for the specified procedures, functions and Include files.

-I Make a program listing during translation.

PC(l)

-lpfc Load common startup code for programs containing mixed Pascal and FORTRAN object
files. Such programs should also be loaded with the FORTRAN libraries (see files below).

-L Map upper case letters in keywords and identifiers to lower case.

-P Use partial evaluation semantics for the boolean operators and and or. For these opera-
tors only, left-to-right evaluation is guaranteed, and the second operand is evaluated only
if necessary to determine the result.

-e Accept standard Pascal only; nonstandard constructs cause warning diagnostics.

-S Compile the named program, and leave the assembly language output on the correspond-
ing file suffixed '.s'. No 1

.0' is created.

-z Allow execution profiling with pxp by generating statement counters, and arranging for
the creation of the profile data file pmon.out when the resulting object is executed.

Other arguments are taken to be loader option arguments or libraries of pc compatible routines.
Certain flags can also be controlled in comments within the program, as described in the Pascal
User's Manual in the Sun Pascal Manual.

file.p
/lib/cpp
/usr/lib/pcO
/lib/fl
/usr/lib/pc2
/!ib/c2
/usr/lib/pc3
/usr /iib/pc3.2strings
/usr /iib/how_pc
/usr /iib/libpc.a
/usr /iib/!ibpfc.a
grams
/usr /!ib/libF77 .a
/usr /iib/libl77.a
/usr /iib/libU77.a
/usr/lib/libm.a
/lib/libc.a

Pascal source files
maero preprocessor
compiler
code generator
inline expander of library calls
peephole optimizer
separate compilation consistency checker
text of the error messages
basic usage explanation
intrinsic functions and 1/0 library
startup code for combined Pascal and FORTRAN pro-

FORTRAN intrinsics library
FORTRAN 1/0 library
FORTRAN<=>Unix interface library
math library
standard library, see intro(3)

SEE ALSO
The Pascal User's Manual in the Sun Pascal Manual.
pi(l), pxp(1), pxref(l)

DIAGNOSTICS

2

For a basic explanation do
tutorial% pc

In the diagnostic output of the translator, lines containing syntax errors are listed with a flag
indicating the point of error. Diagnostic messages indicate the action which the recovery
mechanism took in order to be able to continue parsing. Some diagnostics indicate only that the
input is 'malformed.' This occurs if the recovery can find no simple correction to make the input
syntactically valid.

Semantic error diagnostics indicate a line in the source text near the point of error. Some errors
evoke more than one diagnostic to help pinpoint the error; the follow-up messages begin with an
ellipsis ' ... '.

Last change: 1 February 1985 Sun Release 2.0

0

0

0

0

0

0

PC(1)

BUGS

USER COMMANDS PC(l)

The first character of each error message indicates its class:

E Fatal error; no code will be generated.
e Nonfatal error.
w Warning - a potential problem.
s Nonstandard Pascal construct warning.

Ir a severe error occurs which inhibits further processing, the translator will give a diagnostic and
then 'QUIT'.

Names whose definitions conflict with library definitions draw a warning. The library definition
will be replaced by the one supplied in the Pascal program. Note that this can have unpleasant
sideeffects.

The keyword packed is recognized but has no effect. The ISO standard requires packed and
unpacked structures to be distinguished for portability reasons.

Binary set operators are required to have operands with identical types; the ISO standard allows
different types, as long as the underlying base types are compatible.

The -z flag doesn't work for separately compiled files.

Because the -a option is usurped by the compiler, it is not possible to pass the strip option to the
loader. Thus programs which are to be stripped, must be run through strip(l) after they are
compiled.

Sun Release 2.0 Last change: 1 February 1985 3

Pl (I) USER COMMANDS Pl(1)

NAME
pi - Pascal interpreter code translator

SYNOPSIS
pl [-b J [-1 J [-L J [-n J [-o name J [-p J [-• J [-t J [-u J [-w J [-· [

[-1 name • • • J name.p

DESCRIPTION
Pi translates the program in the file name.p leaving interpreter code in the file obj in the current
directory. The interpreter code can be executed using px. Pix performs the functions of pi and
px for 'load and go' Pascal.

Both pi and pc(l) support ISO Level I Standard Pascal, including conformant array parameters.
Deviations from the ISO Standard are noted under BUGS below.

OPTIONS

FILES

The following flags are interpreted by pi; the associated options can also be controlled in com­
ments within the program; see the Pascal User's Manual in the Sun Fortran and Pascal
Manual for details.

-b Buffer the file output in units of disk blocks, rather than lines.

-I name
Enable the listing for any specified procedures, functions, and Include files.

-I Make a program listing during translation.

-L Map all identifiers and keywords to lower case.

-n Begin each listed Include file on a new page with a banner line.

-o name
Name the final output file name instead of a.out.

-p Suppress the post-mortem control flow backtrace if an error occurs; suppress statement
limit counting.

-• Accept standard Pascal only; non-standard constructs cause warning diagnostics.

-t Suppress runtime tests or subrange variables and treat assert statements as comments.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-a Allow execution profiling with pxp by generating statement counters, and arranging for the
creation of the profile data file pmon.out when the resulting object is executed.

file.p
file .i
/usr /lib/pi3.•strings
/usr /lib/how_pi•
obj

input file
Include file(s)
text of the error messages
basic usage explanation
interpreter code output

SEE ALSO
Sun Fortran and Pascal Manual
pix(l), px(l), pxp(l), pxref(l)

DIAGNOSTICS

4

For a basic explanation do
tutorial% pl

In the diagnostic output of the translator, lines containing syntax errors are listed with a flag
indicating the point of error. Diagnostic messages indicate the action which the recovery

Last change: 7 November 1984 Sun Release 2.0

0

0

0

0

0

0

PI(1)

BUGS

USER COMMANDS PI(1)

mechanism took in order to be able to continue parsing. Some diagnostics indicate only that the
input is 'malformed.' This occurs if the recovery can find no simple correction to make the input
syntactically valid.

Semantic error diagnostics indicate a line in the source text near the point of error. Some errors
evoke more than one diagnostic to help pinpoint the error; the follow-up messages begin with an
ellipsis' ... '.

The first character of each error message indicates its class:

E Fatal error; no code will be generated.
e Non-fatal error.
w Warning - a potential problem.
s Non-standard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator will give a diagnostic and
then 'QUIT'.

The keyword packed is recognized but has no effect. The ISO standard requires packed and
unpacked structures to be distinguished for portability reasons.

Binary set operators are required to have operands with identical types; the ISO standard allows
different types, as long as the underlying base types are compatible.

For clarity, semantic errors should be flagged at an appropriate place in the source text, and
multiple instances of the 'same' semantic error should be summarized at the end of a procedure
or function rather than evoking many diagnostics.

When Include files are present, diagnostics relating to the last procedure in one file may appear
after the beginning of the listing of the next.

Sun Release 2.0 Last change: 7 November igg4 5

PIX(1) USER COMMANDS PIX(1)

NAME
pix - Pascal translator and interpreter

SYNOPSIS
pix [options] [-I name ...] name.p [argument ...

DESCRIPTION

Fll,ES

Pix is a 'load and go' version of Pascal which combines the functions of the translator pi and the
interpreter px. Pix uses pi to translate the program in the file name.p and, if there were no fatal
errors during translation, calls pz to execute the resulting interpretive code with the specified
arguments. A temporary file is used for the object code; the file obj is neither created nor des­
troyed.

Options are as described under pi(l).

/usr/ucb/pi
/usr/ucb/px
/tmp/pix•
/usr /lib /how _pix

Pascal translator
Pascal interpreter
temporary
basic explanation

SEE ALSO
The Pascal User'• Manual in the Pascal for the Sun Workstation Manual.
pi(l), px(l)

DIAGNOSTICS

6

For a basic explanation do
tutorial% pix

La.st change: 7 November 1984 Sun Release 2.0

0

0

0

0

0

0

PMERGE(l) USER COMMANDS PMERGE(l)

NAME
pmerge - pascal file merger

SYNOPSIS
pmerge name.p •••

DESCRIPTION

FILES

Pmerge assembles the named Pascal files into a single standard Pascal program. The resulting
program is listed on the standard output. It is intended to be used to merge a collection of
separately compiled modules so that they can be run through pl, or exported to other sites.

/usr/tmp/MG* default temporary files

SEE ALSO

BUGS

pc(l), pi(l),
Auxiliary documentation Pascal User's Manual in the Sun Fortran and Pascal Manual.

Very minimal error checking is done, so incorrect programs will produce unpredictable results.
Block comments should be placed after the keyword to which they refer or they are likely to end
up in bizarre places.

Sun Release 2.0 Last change: 11 November 1983 7

PX(1) USER COMMANDS PX(l)

NAME
px - Pa.seal interpreter

SYNOPSIS
px I obj I argument ... I J

DESCRIPTION

FILES

Pz interprets the abstract machine code generated by pi. The first argument is the file to be
interpreted, and defaults to obj; remaining arguments are available to the Pascal program using
the built-ins argv and argc. Pz is also invoked by piz when running 'load and go'.

Ir the program terminates abnormally an error message and a control flow backtrace are printed.
The number of statements executed and total execution time are printed after normal termina­
tion. The p option of pi suppresses all of this except the message indicating the cause of abnor­
mal termination.

obj
pmon.out

default object file
profile data file

SEE ALSO
The Pascal User'• Manual in the Sun Pascal Manual.
pi(l), pix(l)

DIAGNOSTICS

BUGS

8

Most run-time error messages are self-explanatory. Some or the more unusual ones are:

Reference to an inactive file
A file other than input or output wa.s used before a call to reset or rewrite.

Statement count limit exceeded
The limit or 500,000 executed statements (which prevents excessive looping or recursion)
ha.s been exceeded.

Bad data found on integer read
Bad data found on real read

Usually, non-numeric input was found for a number. For reals, Pascal requires digits
before and after the decimal point so that numbers like '.1' or '21.' evoke the second diag­
nostic.

panic: Some message
Indicates a internal inconsistency detected in pz probably due to a Pa.seal system bug.

Post-mortem traceback is not limited; infinite recursion leads to almost infinite traceback.

La.st change: 1 November 1984 Sun Release 2.0

0

0

0

0

0

0

PXP (1) USER COMMANDS PXP(l)

NAME
pxp - Pascal execution profiler

SYNOPSIS
pxp [-acdefJLnstuw_ I [-!3451178Q I [-• [name ... 11 name.p

DESCRIPTION
Pzp can be used to obtain execution profiles of Pascal programs or as a pretty-printer. To pro­
duce an execution profile all that is necessary is to translate the program specifying the a option
to pc, pi, or piz, execute the program, and then type the command

tutorial% pxp -z name.p

Pzp generates a reformatted listing if none of the c, t, or z options are specified; thus
tutorial% pxp old.p > new.p

places a pretty-printed version of the program in old.p in the file new.p.

OPTIONS

FILES

The use of the following options of pzp is discussed in the Pascal User's Manual in the Sun Pas­
cal Manual.

-a Print the bodies of all procedures and functions in the profile; even those which were never
executed.

-c Extract profile data from the file core.

-d Include declaration parts in a profile.

-e

-t

-J
-L
-D

-•
-t

-u

Eliminate Include directives when reformatting a file; the Include is replaced by the refor­
matted contents of the specified file.

Fully parenthesize expressions.

Left justify all procedures and functions.

Map all identifiers and keywords to lower case.

Eject a new page as each file is included; in profiles, print a blank line at the top of the
page.

Strip comments from the input text.

Print a table summarizing procedure and function call counts.

Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-& Generate an execution profile. If no names are given the profile is of the entire program. If
a list of names is given, then only the specified procedures or functions and the contents
of the specified Include files will appear in the profile.

Underline keywords.

-d Use d spaces (where dis a digit, 2 ::, d :5 9) as the basic indenting unit. The default is 4.

name.p
name.i
name.h
pmon.out
core
/usr /Iib/how_pxp

input file
include file(s)
include file(s)

profile data
profile data. source for -c option

information on basic usage

Sun Release 2.0 Last change: 7 November 1984 9

PXP (1) USER COMMANDS PXP(l)

SEE ALSO
The Pascal User's Manual in the Sun Pascal Manual.
pc(l), pi(l), px(l)

DIAGNOSTICS

BUGS

10

For a basic explanation do
tutorial% pxp

Error diagnostics include 'No profile data in file' with the c option if the • option was not
enabled to pi; 'Not a Pascal system core file' ir the core is not from a pz execution; 'Program and
count data do not correspond' if the program was changed after compilation, before profiling; or
if the wrong program is specified.

Does not place multiple statements per line.

Procedures and functions as parameters are printed without nested parameter lists, as in the
obsolete Jensen and Wirth syntax.

Last change: 7 November 1984 Sun Release 2.0

0

0

0

0

0

0

PXREF(l) USER COMMANDS PXREF(l)

NAME
pxref - Pascal cross-reference program

SYNOPSIS
pxref [- J name

DESCRIPTION
Pzref makes a line numbered listing and a cross-reference or identifier usage for the program in
name. The optional '-' argument suppresses the listing. The keywords goto and label are
treated as identifiers for the purpose of the cross-reference. Include directives are not processed,
but cause the placement of an entry indexed by '#include' in the cross-reference.

SEE ALSO
The Pascal User's Manual in the Sun Fortran and Pascal Manual.

BUGS
Identifiers are trimmed to 10 characters.

Sun Release 2.0 Last change: 11 November 1983 11

0

0

0

0

0

0

READER COMMENT SHEET

Dear Customer,
We who work here at Sun Microsystems wish to provide the best possible documentation for our
products. To this end, we solicit your comments on this manual. We would appreciate your tel­
ling us about errors in the content of the manual, and about any material which you feel should
be there but isn't.

Typographical Errors:
Please list typographical errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Please list errors of fact by page number and actual text of the error.

Content:
Did this guide meet your needs? If not, please indicate what you think should be added
or deleted in order to do so. Please comment on any material which you feel should be
present but is not. Is there material which is in other manuals, but would be more con­
venient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange

0

things? Do you find the style of this manual pleasing or irritating? What would you like 0
to see different?

0

