
0

0

0

tt\sun
., microsystems

Assembler Language Reference Manual
for the Sun Workstation

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

o.

0

0

0

~\sun
• microsystems

Assembler Language Reference Manual
for the Sun Workstation

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part No: 800-1179-01
Revision E of 15 May. 1985

Credits and Acknowledgements

This Aaaembly Language Reference Manual for the Sun Workatation started life as an edited ver­
sion of the MJCAL Manual for the Intel 8080, written by Mike Patrick; transformed by James L.
Gula and Thomas J. Teixeira, March 1980; revised by Henry McGilton at Unison Systems of
Berkeley Corporation during March 1982; rewritten by Henry McGilton and Richard Tuck, of
Sun Microsystems, during October and November 1982.

Trademarks

Multibus is a trademark of Intel Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright <!l> 1983 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit­
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0;

0

0

0

Revision

A

B

C

D

0
E

0

Revision History

Date

15th July 1983

15th August 1983

1st November 1983

7th January 1984

15 May 1985

Comments

First release of this Manual.

Second Release of this manual entailed a complete reorganiza­
tion and some rewriting of the individual articles.

Third Release of this manual entailed minor corrections and
updates.

Added chapter on Shell Programming. Added chapter on
ADB. Many minor corrections and updates.

Extracted from Programming Too/a manual to make a separate
language manual. Minor corrections and updates. Folded
specific MC68010 descr!Rtions into rest of text. Many minor
corrections from a to p versions.

- 111 -

0

0

0

0

Preface

This manual is the Programmer's Reference Manual for a, - the assembler for the UNIXt system
running on the Sun Workstation. A• converts source programs written in Auemb/er Language
into a form that the linker utility, /d(l) will turn into a program that is runnable on the UNIX
operating system.

A• provides the assembly language programmer with a minimal set of facilities to write programs
in assembly language. Since the majority of programming is done in high level languages, aa
doesn't provide any elaborate macro facilities or conditional assembly features. It is assumed
that the volume of assembly code produced is so small that these facilities aren't required.

This manual describes the syntax and usage of the a, assembler for the Motorola MCB8010
microprocessor. The basic format of aa is loosely based on the Digital Equipment Corp Macro-11
assembler described in DEC's publication DEC-11-0MACA-A-D but also contains elements of the
UNIX PDP-11 aa(l) assembler. The instruction mnemonics and effective address format are
derived from a Motorola publication on the MCB8000: the MACSS MC68000 Deaign
Specification Inatruction Set Proceaaor dated June 30, 1979.

This is a reference manual as opposed to a treatise on writing in assembly language. It is
assumed that the reader is familiar with the concepts of machine architecture, the reasons for an
assembler, the ideas of instruction mnemonics, operands, and effective address modes, and assem­
bler directives. It is also assumed that the reader is familiar with the MCB8010 processor, its
instruction set, its addressing modes, and especially the irregularities in them.

t UNIX is a trademark of Bell Laboratories.

- v-

0

Oi

0

0
Contents

Chapter 1 Introduction .. 1-1

Chapter 2 Elements of Assembly Language 2-1

Chapter 3 Expressions .. 3-1

Chapter 4 Layout of an Assembly Language Source Program 4-1

Chapter 5 Assembler Directives 5-1

Chapter 6 Instructions and Addressing Modes .. 6-1

Appendix A Error Codes .. A-1

0 Appendix B List of As Opcodes.. B-1

0

- vii-

0

0

0

0

0

Contents

Preface

Chapter 1 Introduction .. .
l.l. How to Use the Assembler .. .
1.2. Notation
1.3. Further Reading .. .

Chapter 2 Elements of Assembly Language .. .
2.1. Character Set Which the Assembler Recognizes .. .
2.2. Identifiers .. .
2.3. Numeric Labels
2.4. Local Labels .. .
2.5. Scope of Labels
2.6. Constants .. .
2.7. Numeric Constants .. .
2.8. String Constants .. .
2.9. Assembly Location Counter

Chapter 3 Expressions
3.1. Operators
3.2. Terms .. .
3.3. Expressions .. .
3.4. Absolute, Relocatable, and External Expressions .. .

IV

1-1
1-1
1-2
1-3

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-4

3-1
3-1
3-2
3-2
3-2

Chapter -i Layout of an Assembly Language Source Program +.1
4.1. Label Field 4-1
4.2. Operation Code Field 4-2
4.3. Operand Field .. 4-2

4.3.1. Register Operands ... 4.3
4.4. Comment Field .. 4-3
4.5. Direct Assignment Statements ... 4-4

Chapter 5 Assembler Directives .. 5-1
5.1. . ascii - Generate Sequence of Character Data ... 5-2
5.2. . asciz - Generate Zero Terminated Sequence of Character

Data... 5-3
5.3. .byte, . word, . long - Generate Data... 5-3

ix-

5.4. . text, . data, .bss - Switch Location Counter
5.5. . skip - Advance the Location Counter .. .
5.6. . lcomm - Reserve Space in .bss Area .. .

5-4

0 5-5
5-5

5.7. . globl - Designate an External Identifier .. . 5-6
5.8. . comm - Define Name and Size of a Common Area 5-6
5.9 .. even - Force Location Counter to Even Byte Boundary 5-6

Chapter 6 Instructions and Addressing Modes 6-1
6.1. Instruction Mnemonics .. . 6-1
6.2. Extended Branch Instruction Mnemonics 6-1
6.3. Addressing Modes 6-2
6.4. Addressing Categories 6-4

Appendix A Error Codes .. . A-1
A.I. Usage Errors .. . A-1
A.2. Assembler Error Messages .. . A-1

Appendix B List of As Opcodes B-1

0

0

- X -

0
Tables

Table 5-1 Assembler Directives ... 5-2
Table 6-1 Addressing Modes.. 6-3
Table 6-2 Addressing Categories .. 6-5

0

0

-x·\

0

0

0

0

Chapter 1

Introduction

1.1. How to Use the Assembler

By convention, the assembly language source code of the program should be in a file with a ,,
suffix. Suppose that your program is in a file called parta.a. To run the assembler, type the
command:

tutorial% aa parts.a

Aa runs silently (if there are no errors), and generates a file called a.out.

Aa also accepts several command line options. These are:

-o file
Place the output of the assembler in file.

-R Make initialized data segments read only (actually the assembler places them at the end of
the . text area).

-L Keep local (compiler generated) symbols that start with the letter L. This is a debugging
feature. If the -L option is omitted, the assembler discards those symbols and does not
include them in the symbol table.

-j Make all jumps to external symbols (jsr and jmp) PC relative rather than long absolute.
This is intended for use when the programmer knows that the program is short. If there
are any externals which are too far away, the loader will complain when the program is
linked.

-J Suppress span-dependent instruction calculations and force all branches and calls to take
the most general form. This is used when assembly time must be minimized, but program
size and run time are not important.

-h Suppress span-dependent instruction calculations and force all branches to be of medium
length, but all calls to take the most general form. This is used when assembly time must
be minimized, but program size and run time are not important. This option results in a
smaller and faster program than that produced by the -J option, but some very large pro­
grams may not be able to use it because of the limits of the medium-length branches.

-d2 This is intended for small stand-alone programs. The assembler makes all program refer­
ences PC relative and all data references short absolute. Note that the -j option does half

Revision E of 15 May 1985 1-1

Introduction Assembly Language Reference Manual

this job anyway.

Readers should also consult the UNIX Programmer's Manual page for the man entry on aa.

1.2. Notation

The notation used in this chapter is a somewhat modified Backus-Naur Form (BNF). A string of
characters on its own stands for itself, for example:

WIDGET

is an occurrence of the literal string 'WIDGET', and:

1983

is an occurrence of the literal constant 1983. An element enclosed in < and > signs is a non­
terminal symbol, and must eventually be defined in terms of some other entities. For example,

<identifier>

stands for the syntactic construct called 'identifier', which is eventually defined in terms of basic
objects. A syntactic object followed by an ellipsis:

<thing> • ••

denotes one or more occurrences of <thing>. Syntactic objects occuring one after the other, as
m:

<firat thing> <aecond thing>

simply means an occurrence of fir at thing followed by aecond thing. Syntactic elements
separated by a vertical bar sign (I), as in:

<letter> I <digit>

means an occurrence of <letter> or <digit> but not both. Brackets and braces define the order
of interpretation. Brackets also indicate that the syntax described by the subexpression they
enclose is optional. That is:

[<thing>]

denotes zero or one occurrences of <thing>, while:

{<thing one> I <thing lwo>}<lhing three>

denotes a <thing one> or a <thing two>, followed hy a <thing three>.

1-2 Revision E of 15 May 1985

0

0

0

Assembly Language Reference Manual Introduction

0 1.3. Further Reading

Motorola MC68010 16-bit Microprocessor Programmer's Reference Manual.

0

0

Revision E of 15 May 1985 1-3

0

0

0

0

Chapter 2

Elements of Assembly Language

This chapter covers the lexical elements which comprise an assembly language program. The
next chapter discusses the rules for expressions and operand formation. Topics covered in this
chapter are:

• Character aet which the assembler recognizes,

• Rules for identifiera,

• Syntax for numeric conatanta,

• Syntax for airing comtanta,

• Rules for comment,,

• Layout of an assembly language aource atatement.

An assembly language program is ultimately constructed from characters. Characters are com­
bined to make up lexical element• or token• of the language. Combinations of tokens then form
assembly language atatementa, and sequences of statements then form an assembly language pro­
gram. This section describes the basic lexical elements of aa.

2.1. Character Set Which the Assembler Recognizes

Aa recognizes the following character set:

• The lettera A through Z and a through z.

• The digit. 0 through 9.

• The ASCII graphic charactera - the printing characters other than letters and digits.

• The ASCII non-graphic,: space, tab, carriage return, and newline (also known as line feed).

2.2. Identifiers

ldentifiera are used to tag assembler statements (where they are called label,), as the location tag
for data, and as the symbolic names of constants.

An identifier in an a, program is a sequence of from l to 255 characters from the set:

0 • Upper case letters A through z.

Revision E of 15 May 1985 2-1

Elements of Assembly Language Assembly Language Reference Manual

• Lower case letters a through z.

• Digits O through 9.

• The characters underline (_), period (.), and dollar sign ($).

The first character of an identifier must not be numeric. Other than that restriction, there are a
few other points to note:

• All 255 characters of an identifier are significant and are checked in comparisons with other
identifiers.

• Upper case letters and lower case letters are considered distinct, so that ki t_o f_parts
and KIT_OF _PARTS are two different identifiers.

• Although the period (•) and dollar sign ($) characters can be used to construct identifiers,
they are reserved for special purposes (pseudo-ops for instance) and should not appear in
user-defined identifiers.

Examples of Identifiers

Grab_Hold Widget Pot_of_Message MAXNAME

2.3. Numeric Labels

A numeric label consists of a digit O to 9 followed by a colon. As in the case of name labels, a

0

numeric label assigns the current value of the location counter to the symbol. However, several o·
numeric labels with the same digit may be used within the same assembly. References of the
form nb refer to the first numeric label n backwards from the reference; nf symbols refer to the
first numeric label n forwards from the reference.

2.4. Local Labels

Local labels are a special form of identifier which are strictly local to a control section. Local
labels provide a convenient means of generating labels for branch instructions and such. Use of
local labels reduces the possibility of multiply defined labels in a program, and separates entry
point labels from local references, such as the top of a loop. Local labels cannot be referenced
from outside of the current assembly unit. Local labels are of the form n$ where n is any
integer. Valid local labels include:

1$ 27$ 394$

2.5. Scope of Labels

The ,cope of a label is the 'distance' over which it is visible to other parts of the program which
want to reference it. An ordinary label which tags a location in the program or data is visible
only within the current assembly. An identifier which is designated as an external identifier via
a . glob 1 directive is visible to other assembly units at link time. o
2-2 Revision E of 15 May 1985

0

Assembly Language Reference Manual Elements of Assembly Language

Local labels have a scope, or span of reference, which extends between one ordinary label and
the next. Every time an ordinary label is encountered, all previous local labels associated with
the current location counter are discarded, and a new local label scope is created. The following
example illustrates the scopes of the different kinds of labels:

first: addl dO,dl creates a new local label scope

100$: addqw #7,d3 first appearance of 100$
bees 100$ branches to the label above

second: andl #Ox7ff,d41 above 100$ has gone away

100$: cmpw dl,d3 this is a different 100$
beqs 100$ branches to the previous instruction

third: movw d0,d7 now 100$ has gone away again
beqs 100$ generates an error message if no 100$ below

The labels firat, aecond, and third all have a scope which is the entire source file containing
them. The first appearance of the local label 100$ has a scope which extends between firat and
aecond. The second appearance of the local label 100$ has a scope which extends between
aecond and third. After the appearance of the label third, the branch to 100$ will generate an
error message because that label is no longer defined in th is scope.

Q 2.6. Constants

0

There are two forms of constants available to aa users, namely numeric constants and airing con­
stants. All constants are considered absolute quantities when they appear in an expression (see
section 3 for a discussion on absolute and relocatable expressions).

2.7. Numeric Constants

Aa assumes that any token which starts with a digit is a numeric c9nstant. Aa accepts numeric
quantities in either decimal (base 10), hexadecimal (base 16), or octal (base 8) radices. Numeric
constants can represent quantities up to 32 bits in length.

Decimal numbers consist of between one and ten decimal digits (0 through 9). The range of
decimal numbers is between -2,147,483,648 and 2,147,483,647. Note that you can't have com­
mas in decimal numbers even though they are shown here for readability. Note also that
decimal numbers can't be written with leading zeros, because a numeric constant starting with a
zero is taken as either an octal constant or a hexadecimal constant, as described below.

Hexadecimal constants must start with the notation Ox (zero-ex) and can then have between one
and eight hexadecimal digits. The hexadecimal digits consist of the decimal digits O through 9
and the hexadecimal digits a through f or A through F.

Octal constants must start with the digit 0. There can then be from one to 11 octal digits (0
through 7) in the number. But note that 11 octal digits is 33 bits, so the largest octal number is
037777777777. The assembler generates an error message if the decimal digits 8 and 9 appear in
an octal constant.

Revision E of 15 May 1985 2-3

Elements of Assembly Language Assembly Language Reference Manual

2.8. String Constants

A string is a sequence of ASCII characters, enclosed in quote signs ".

Within string constants, the quote sign is represented by a backslash character followed by a
quote sign. The backslash character itself is represented by two backslash characters. Any
other character can be represented by a backslash character followed by one, two, or three octal
digits. The table below shows the octal representation of some of the more common non printing
characters.

Character
Octal

Repreaentation

Backspace 010

Horizontal Tab 011

Newline (Line-Feed) 012

Form-Feed 014

Carriage-Return 015

2.9. Assembly Location Counter

The assembly location counter is the period character (,). It is colloquially known as dot.
When used in the operand field of any statement, dot represents the address of the first byte of
the statement. Even in assembler directives, dot represents the address of the start of that
assembler directive. For example, if dot appears as the third argument in a . long directive,
the value placed at that location is the address of the first location of the directive - dot is not
updated until the next machine instruction or assembler directive. For example:

Ralph: movl .,ao load value of Ralph into aO

At the beginning of each assembly pass, the assembler clears the location counter. Normally,
consecutive memory locations are assigned to each byte of generated code. However, the loca­
tion where the code is stored may be changed by a direct assignment altering the location
counter:

= < expression>

This < ezpreaaion> must not contain any forward references, and must not change value from
one pass to another. Storage may also be reserved be advancing dot. For example, if the
current value of dot is 1000, the direct assignment statement:

Table: .=.+OxlOO

reserves 256 bytes (100 hexadecimal) of storage, with the address of the first byte as the value of
Table. The next instruction is stored at address OxllOO. Also see the . skip assembler direc­
tive for another means of achieving the same effect.

2-4 Revision E of 15 May 1985

01

0

o!

0

0

0

Assembly Language Reference Manual Elements or Assembly Language

The value of dot is always relative to the start of the current control section. For instance:

. = OxlOOO

does not set dot to absolute location OxlOOO, but to location OxlOOO relative to the start of
the current control section. This practice is not recommended.

Revision E of 15 May 1985 2-5

0

0

0

0

0

Chapter 3

Expressions

Expressions are combinations of operands (numeric constants and identifiers) and operators,
forming new values. The sections below define the operators which aa provides, then gives the
rules for combining terms into expressions.

3.1. Operators

Identifiers and numeric constants can be combined, via arithmetic operators, to form ezprea­
aiom. Aa provides unary operators and binary operators, described below.

Unary Operatora

Operator Function Deacription

- unary minus Returns the two's complement of its following argu-
ment.

- logical negation Returns the one's complement (logical negation) of
its following argument.

Binary operatora

Operator Function Deacription

+ addition Arithmetic addition of its arguments.

- subtraction Arithmetic subtraction of its arguments.

• multiplication Arithmetic multiplication of its arguments .

/ division Arithmetic division of its arguments. Note that
division in aa is integer division, which truncates to-
wards zero.

Each operator is assumed to work on a 32-bit number. If the value of a particular term occupies
only 8 bits or 16 bits, the short quantity is sign extended to a full 32-bit value.

Revision E of 15 May 1985 3-1

Expressions Assembly Language Reference Manual

3.2. Terms

A term is a component of an expression. A term may be one of the following:

• A numeric constant, whose 32-bit value is used. The assembly location counter, known as
dot, is considered a number in this context.

• An identifier.

• An expression or term enclosed in parentheses () . Any quantity enclosed in parentheses is
evaluated before the rest of the expression. This can be used to alter the normal left-to-right
evaluation of expressions - for example, differentiating between a*b+c and a* (b+c) or to
apply a unary operator to an entire expression - for example, - (a*b+c).

• A term preceded by a unary operator. For example, both double_plus_ungood and
-double_plus_ungood are terms.

Multiple unary operators can be used in a term. For example, --positive has the same
value as positive.

3.3. Expressions

Expression are combinations of terms joined together by binary operators. An express10n 1s
always evaluated to a 32-bit value.

If the operand only requires a single byte value (a . byte directive or an addq instruction, for
example) the low order eight bits of the expression are used.

If the operand only requires a single 16-bit word value (a . word directive or an movem instruc­
tion, for example) the low order 16 bits of the expression are used.

Expressions are evaluated left to right with no operator precedence. Thus

1 + 2 • 3

evaluates to 9, not 7. Unary operators have precedence over binary operators since they are
considered part of a term, and both terms of a binary operator must be evaluated before the
binary operator can be applied.

A missing expression or term is interpreted as having a value of zero. In this case, an Invalid
expression error is generated.

An Invalid Operator error means that a valid end-of-line character or binary operator was not
detected after the assembler processed a term. In particular, this error is generated if an expres­
sion contains an identifier with an illegal character, or if an incorrect comment character was
used.

3.4. Absolute, Relocatable, and External Expressions

When an expression is evaluated, its value is either absolute, relocatable, or external:

An expression is absolute if its value is fixed.

• An expression whose terms are constants is absolute.

3-2 Revision E of 15 May 1985

0

0

0

0

0

0

Assembly Language Reference Manual Expressions

• An identifier whose value is a constant via a direct assignment statement is absolute.

• A relocatable expression minus a relocatable term is absolute, where both items belong to the
same program section.

An expression is relocatable if its value is fixed relative to a base address, but will have an offset
value when it is linked or loaded into memory. All labels of a program defined in relocatable sec­
tions are relocatable terms.

Expressions which contain relocatable terms must only add or aubtract conatanta to their value.
For example, assuming the identifiers widget and blivet were defined in a relocatable sec­
tion of the program, then the following demonstrates the use of relocatable expressions:

Expreaaion

widget

widget+S

widget*2

2-widget

Deacription

ia a aimple relocatable term. !ta value ia an offaet
from the baae addreaa of the current control aection.

ia a aimple relocatable expreuion. Since the value
of widget ia an offael from the baae addreaa of the
current control aection, adding a conalanl lo ii doea
not change ita relocatable atatua.

Not relocatable. Multiplying a relocatable term by a
conalant invalidatea the relocatable alatua.

Not relocatable, aince the expreaaion cannot be
linked by adding widget'a offael to it.

widget-blivet Abaolute, aince the offaela added lo widget and blivel
cancel each other out.

An expression is external (or global) if it contains an external identifier not defined in the current
program. With one exception, the same restrictions on expressions containing relocatable
identifiers apply to expressions containing external identifiers. The exception is that the expres­
sion

widget-blivet

is incorrect when both widget and blivet are external identifiers - you cannot subtract an exter­
nal relocatable expression. In addition, you cannot multiply or divide any relocatable expression.

Revision E of 15 May 1985 3-3

0

0

0

0

0

0

Chapter 4

Layout of an Assembly Language Source Program

An a, program consists of a series of statements. Several statements can be written on one line,
but statements cannot cross line boundaries. The format of a statement is:

[< label field>] [<op-code> [< operand field>]]

It is possible to have a statement which consists of only a label field.

The fields of a statement can be separated by spaces or tabs. There must be at least one space
or tab separating the op-code field from the operand field, but spaces are unnecessary elsewhere.
Spaces may appear in the operand field. Spaces and tabs are significant when they appear in a
character string (for instance, as the operand of an . ascii pseudo-op) or in a character con­
stant. In these cases, a space or tab stands for itself.

A line is a sequence of zero or more statements, optionally followed by a comment, ending with a
< newline> character. A line can be up to 4096 characters long. Multiple statements on a line
are separated by semicolons. Blank lines are allowed. The form of a line is:

[< .tatement> [; < .tatement> ...]] [:<comment> J

4.1. Label Field

Label, are identifiers which the programmer may use to tag the locations of program and data
objects. The format of a <label field> is:

<identifier>: [<identifier>:] ...

If present, a label alway, occurs first in a statement and muat be terminated by a colon:

sticky: there is a label defined here.

More than one label may appear in the same source statement, each one being terminated by a
colon:

Revision E of 15 May 1985 4-1

Layout of an Assembly Language Source Program Assembly Language Reference Manual

presson: grab: hold: there are multiple labels defined here.

The collection of label definitions in a statement is called the label field.

When a label is encountered in the program, the assembler assigns that label the value of the
current location counter. The value of a label is relocatable. The symbol's absolute value 1s
assigned when the program is linked via the UNIX system ld(l) command.

4.2. Operation Code Field

The operation code field of an assembly language statement identifies the statement as either a
machine instruction or an assembler directive.

One or more spaces (or tabs) must separate the operation code field from the following operand
field in a statement. Spaces or tabs are unnecessary between the label and operation code fields,
but they are recommended to improve readability of the program.

A machine instruction is indicated by an instruction mnemonic. The assembly language state­
ment is intended to produce a single executable machine instruction. The operation of each
instruction is described in the manufacturer's user manual. Some conventions used in aa for
instruction mnemonics are described in section 6 and a complete list of the instructions 1s
presented in appendix B.

An assembler directive, or pseudo-op, performs some function during the assembly process. It
does not produce any executable code, but it may assign space for data in a program.

Note that aa expects that all instruction mnemonics in the op-code field should be in lower caae
only. Use of any upper case letters in instruction mnemonics gives rise to an error message.

The names of register operands must also be in lower case only. This behavior differs from the
case of identifiers, where both upper and lower case letters may be used and are considered dis­
tinct.

Many MC68010 machine instructions can operate upon byte (8-bit), word (16-bit), or long word
(32-bit) data. The size which the programmer requires is indicated as part of the instruction
mnemonic. For instance, a movb instruction moves a byte of data, a movw instruction moves a
16-bit word of data, and a movl instruction moves a 32-bit long word of data. In general, the
default size for data manipulation instructions is word.

Similarly, branch instructions can use a long or short offset to indicate the destination. So the
beq instruction uses a 16-bit offset, whereas the beqs uses a short (8-bit) offset.

Note that this implementation of aa provides an extended set of branch instructions which start
with the letter j instead of the letter b. If the programmer uses the j forms, the assembler
computes the offset size for the instruction. See section 1.1 for the assembler options which con­
trol this.

4.3. Operand Field

The operand field of an assembly language statement supplies the arguments to the machine
instruction or assembler directive.

4-2 Revision E of 15 May I 985

0

0

0

0

0

0

Assembly Language Reference Manual Layout of an Assembly Language Source Program

As makes a distinction between the <operand field> and individual <operands> in a machine
instruction or assembler directive. Some machine instructions and assembler directives require
two or more arguments, and each of these is referred to as an "operand".

In general, an operand field consists of zero or more operands, and in all cases, operands are
separated by commas. In other words, the format for an <operand field> is:

[<operand> [,<operand>] ...]

The format of the operand field for machine instructions is the same for all instructions, and is
described in section 6. The format of the operand field for assembler directives depends on the
directive itself, and is included in the directive's description in section 5 of this manual.

Depending upon the machine instruction or assembler directive, the operand field consists of one
or more operands. The kinds of objects which can form an operand are:

• Register operands.

• Expressions.

These forms of operands are described in the subsections following.

4,3.1. Register Operands

Register operands in a machine instruction refer to the machine registers of the MC68010 proces­
sor.

Note that register names must be in lower case; as does not recognize register names in upper
case or a combination of upper case and lower case.

4.4. Comment Field

As provides the means for the programmer to place comments in the source code. There are
two ways of representing comments.

A line whose first non-whitespace character is the hash character (#) is considered a comment.
This feature is handy for passing C preprocessor output through the assembler. For example,
these lines are comments:

This is a comment line.
And this one is also a comment line.

The other way to introduce a comment is when a comment field appears as a part of a state­
ment. The comment field is indicated by the presence of the vertical bar character (1) after the
rest of the source statement.

The comment field consists of all characters on a source line following and including the com­
ment character. The assembler ignores the rest of line. Any character may appear in the com­
ment field, with the obvious exception of the <newline> character, which starts a new line.

An assembly language source line can consist of just the comment field. For example, the two
statements below are quite acceptable to the assembler:

Revision E of 15 May 1985 4-3

Layout of an Assembly Language Source Program

This is a comment field.
So is this.

4.5. Direct Assignment Statements

Assembly Language Reference Manual

A direct assignment statement assigns the value of an arbitrary express10n to a specified
identifier. The format of a direct assignment statement is:

<identifier> = <expression>

Examples of direct assignments are:

vect_size = 4
vectora = OxFFFE
vectorb = vectora-vect_size
CRLF = OxODOA

dtemp = dO use register dO as a temporary

Any identifier defined by direct assignment may be redefined later in the program, in which case
its value is the result of the last such statement. This is analogous to the SET operation found in
other assemblers.

A local identifier may be defined by direct assignment, though this doesn't make much sense.

Register identifiers may not be redefined.

An identifier which has already been used as a label may not be redefined, since this would be
tantamount to redefining the address of a place in the program. In addition, an identifier which
has been defined in a direct assignment statement cannot later be used as a label. Both situa­
tions give rise to an assembler error message.

If the <expreaaion> is absolute, the identifier is also absolute, and may be treated as a constant
in subsequent expressions. If the <expreaaion> is relocatable, however, the< identifier> is also
relocatable, and it is considered to be declared the same program section as the expression.

If the < expreaaion> contains an external identifier, the identifier defined by the = statement is
also considered external. For example:

.globl X
holder= X

Xis declared as external identifier
holder becomes an external identifier

assigns the value of X (zero if it is undefined) to holder and makes holder an external
identifier. External identifiers may be defined by direct assignment.

4-4 Revision E of 15 May 1985

0

0

0

0

0

0

Chapter 5

Assembler Directives

Assembler directives are also known as paeudo operationa or paeudo-opa. Pseudo-ops are used to
direct the actions of the assembler, and to achieve effects such as generating data. The following
pseudo-ops are available in aa:

Revision E of 15 May 1985 5-1

Assembler Directives Assembly Language Reference Manual

Table 5-1: Assembler Directives

Paeudo Deacription
Operation

. ascii Generates a. sequence of ASCII characters .

. asciz Generates a sequence or ASCII characters, terminated by a zero byte .

.byte Generates a sequence oC bytes in data storage.

. word Generates a sequence of words in data storage .

.long Generates a sequence of long words in data storage.

.text Specifies that generated code be placed in the tezt control section until further
notice.

.data Specifies that generated code be placed in the tlattl control section until further
notice.

.datal Specifies that generated code be placed in the datat control section until further
notice.

.data2 Specifies that generated code be placed in the data2 control section until further
notice.

.bss Specifies that space will be reserved in the bu control section until rurther no-
tice.

. globl Declares an identifier as global (external) .

. comm Declares the name and size or a. common area .

.lcomm reserves a specified amount or space in the b11 area.

.skip advances the location counter by a specified amount.

. even forces location counter to next word (even·byte) boundary .

. stab:z: Builds special symbol table entries . These directives are Cor the benefit oC com-
pilers which generate information for the symbolic debugger dbz.

These assembler directives are discussed in detail in the sections following.

5.1. . ascii - Generate Sequence of Character Data

The . ascii directive translates character strings into their ASCll equivalents for use m the
source program. The format of the . ascii directive is:

[<label>:] . ascii "<character string>"

<character airing>

5-2

contains any character or escape sequence which can appear in a character string.
Obviously, a newline must not appear within the character string. A newline can be
represented by the escape sequence \012.

Revision E of 15 May 1985

0

0

0

0

0

0

Assembly Language Reference Manual Assembler Directives

The following examples illustrate the use of the . ascii statement:

Octal Code Generated: Statement:

150 145 154 154 157 040 .ascii "hello there"
164 150 145 162 145

127 141 162 156 151 156 .ascii "Warning-\007\007 \012 11

147 055 007 007 040 012

141 142 143 144 145 146 .ascii "abcde f g"
147

5.2. . asciz - Generate Zero Terminated Sequence of Character
Data

The . asciz directive is equivalent to the . ascii directive except that a zero byte is
automatically inserted as the final character of the string. This feature is intended for generat­
ing strings which C programs can use.
The following examples illustrate the use of the . asciz statement:

Octal Code Generated: Statement:

110 145 154 154 157 040 .asciz "Hello World!"
127 157 162 144 041 000

124 150 105 040 107 162 .asciz "The Great PROMpkin strikes again!"
145 141 164 040 120 122
117 115 160 153 151 156
040 163 164 162 151 153
145 163 040 141 147 141
151 156 041 000

5.3. . byte, . word, . long - Generate Data

The .byte, . vord and . long directives reserve bytes, words, and long words, and initialize
them with specified values.

The format of the various forms of data generation statements is:

[<label>:]

[<label>:]

[<label>:]

.byte

. vord

. long

[<expreSBion>] [,<expression>] ...

[<expression>][, <expression>] •••

[<expression>][, <expression>] .•.

The .byte directive reserves one byte (8 bits) for each expression in the operand field, and ini­
tializes the byte to the low-order 8 bits of the corresponding expression.

Revision E of 15 May 1985 5-3

Assembler Directives Assembly Language Reference Manual

The . word directive reserves one word (16 bits) for each expression in the operand field, and
initializes the word to the low-order 16 bits of the corresponding expression. o
The . long directive reserves one long word (32 bits) for each expression in the operand field,
and initializes the long word to the low-order 32 bits of the corresponding expression.

Multiple expressions can appear in the operand field of the . byte, . word, or . long direc­
tives. Multiple expressions must be separated by commas.

5.4. . text, . data, . bss - Switch Location Counter

These statements change the 'control section' where assembled code will be loaded.

Aa (and the UNIX system linker) view programs as divided into three distinct sections or address
spaces:

text is the address space where the executable machine instructions are placed.

data is the address space where initialized data is placed. The assembler actually knows
about three data areas, namely, data, data1, and data!!. The second and third data
areas are mainly for the benefit of the C compiler and are of minimal interest to the
assembly language programmer.

If the -R option is coded on the aa command line, it means that the initialized data
should be considered read only. It is actually placed at the end of the text area.

b,, is the address space where the uninitialized data areas are placed. Also, see the
. lcomm directive described below.

For historical reasons, the different areas are frequently referred to as 'control sections' (csects
for short).

These sections are equivalent as far as aa is concerned with the exception that no instructions or
data are generated for the b .. section - only its size is computed and its symbol values are out­
put.

During the first pass of the assembly, aa maintains a separate location counter for each section.
Consider the following code fragments:

.text place the next instruction in the tezt section
code: movw dl,d2

.data now generate some data in the data section
grab: .long 27

.text now revert to the text section
more: addw d2,dl

.data and now back to the data section
hold: .byte 4

During the first pass, aa creates the intermediate output in two separate chunks: one for the text
section and one for the data section.

In the text section, code immediately precedes more; in the data section, grab immediately
precedes hold. At the end of the first pass, aa rearranges all the addresses so that the sections

5-4 Revision E of 15 May 1985

0

0

0

0

Assembly Language Reference Manual Assembler Directives

are sent to the output file in the order: text, data and b,a.

The resulting output file is an executable image file with all addresses correctly resolved, with
the exception of undefined .glob/', and .comm 'a.

For more information on the format of the assembler's output file, consult the UNIX System
Programmer's Reference Manual for the entry on a.out(5).

5.5. . skip - Advance the Location Counter

The . skip directive reserves storage area by advancing the current location counter a specified
amount. The format of the . skip directive is:

.skip <size>

where <size> is the number of bytes by which the location counter should be advanced. The
. skip directive is equivalent to performing direct assignment on the location counter. For
instance, a . skip directive like this:

.skip 1000

is equivalent to the direct assignment statement:

. = . + 1000

5.6. . lcomm - Reserve Space in .bss Area

The . lcomm directive is a lazy way to get a specific amount of space reserved in the .b,a area.
The format of the . lcomm directive is:

.lcomm <name>.<size>

where <name> is the name of the area to reserve, and <•ize> is the number of bytes to
reserve. The . lcomm directive specifically reserves the space in the .b,a area, regardless of
which location counter is currently in effect.

A . lcomm directive like this:

.lcomm lower_forty,1200

is equivalent to these directives:

.bss switch to .has area
lower_forty: .skip size
revert to previous control section

Revision E of 15 May 1985 5-5

Assembler Directives Assembly Language Reference Manual

5.7 . . globl - Designate an External Identifier

A program may be assembled in separate modules, and then linked together to form a single exe­
cutable unit. See the ld(l) command in the UNIX Commands Reference Manual.

External identifiers are defined in each of these separate modules. An identifier which is defined
(given a value) in one module may be referenced in another module by declaring the identifiers
as external in both modules.

There are two forms of external identifiers, namely, those declared with the . globl and those
declared with the . comm directive. The . comm directive is described in the next section.

External symbols are declared with the . globl assembler directive. The format is:

. globl <symbol> [, <symbol>] ...

For example, the following statements declare the array TABLE and the routine SRCH as exter­
nal symbols, and then define them as locations in the current control section:

TABLE:
SRCH:

.globl

.word
movw
etc.,.

TABLE,SRCH
0,0,0,0,0
TABLE,dO

5.8. . comm - Define Name and Size of a Common Area

The . comm directive declares the name and size of a common area, for compatibility with FOR­
TRAN and other languages which use common. The format of the . comm statement is:

. comm <name>, <constant ezpression>

where name is the name of the common area, and comtant ezpreuion is the size of the common
area.The . comm directive implicitly declares the identifier name as an external identifier.

a, does not allocate storage for common symbols; this task is left to the linker. The linker com­
putes the maximum declared size of each common symbol (which may appear in several load
modules), allocates storage for it in the final bu section, and resolves linkages. Ir, however,
<name> appears as a global symbol (label) in any module of the program, all references to
<name> are linked to it, and no additional spaces is allocated in the .b88 area.

5.9. . even - Force Location Counter to Even Byte Boundary

The . even directive advances the location counter to the next even byte boundary, if its
current value is odd. This directive is necessary because word and long data values must lie on
even byte boundaries, and also because machine instructions must start on even byte boundaries.

5-6 Revision E of 15 May 1985

0

0

0

0

0

0

Chapter 6

Instructions and Addressing Modes

This chapter describes the conventions used in aa to specify instruction mnemonics and address­
ing modes. The information in this chapter is specific to the machine instructions and addressing
modes of the MC68010 processor.

6.1. Instruction Mnemonics

The instruction mnemonics which a, uses are based on the mnemonics described in the Motorola
MC68010 processor manual. Aa deviates from the Motorola manual in several areas.

Most of the MC68010 instructions can apply to byte, word or long operands. Instead of using a
qualifier of .b, . v, or .1 to indicate byte, word, or long as in the Motorola assembler, a,
appends a suffix to the normal instruction mnemonic, thereby creating a separate mnemonic to
indicate which length operand was intended.

For example, there are three mnemonics for the or instruction: orb, orv and orl, meaning or
byte, or word, and or long, respectively.

Instruction mnemonics for instructions with unusual opcodes may have additional suffixes. Thus
in addition to the normal add variations, there also exist addqb, addqv and addql for the
add quick instruction.

Branch instructions come in two flavors, byte (or short) and word. Append the suffix • to the
word mnemonic to specify the short version of the instruction. For example, beq refers to the
word version of the Branch if Equal instruction, while beqs refers to the short version of that
instruction.

6.2. Extended Branch Instruction Mnemonics

In addition to the instructions which explicitly specify the instruction length, aa supports
extended branch instructions, whose names are, in most cases, constructed from the word ver­
sions by replacing the b with j. These mnemonics should only be used in the text segment -
if they are used in the data segment, the most general form of the branch is generated.

If the operand of the extended branch instruction is a simple address in the text segment, and
the offset to that address is sufficiently small, aa automatically generates the corresponding short
branch instruction.

If the offset is too large for a short branch, but small enough for a branch, the corresponding
branch instruction is generated. If the operand references an external address or is complex (see
next paragraph), the extended branch instruction is implemented either by a jmp or jsr (for
jra or jbsr), or by a conditional branch (with the sense of the conditional inverted) around a
jmp for the extended conditional branches.

Revision E of 15 May 1985 6-1

Instructions and Addressing Modes Assembly Language Reference Manual

In this context, a complex address is either an address which specifies other than normal mode
addressing, or a relocatable expression containing more than one relocatable symbol. For 0
instance, if a, b and c are symbols in the current segment, the expression a+b-c is relocatable,
but not simple.

Consult appendix B for a complete list of the instruction op-codes.

6.3. Addressing Modes

The following table describes the addressing modes that aa recognizes. The notations used in
this table have these meanings:

an refers to an address register,

dn refers to a data register,

ri refers to either a data register or an address register,

d refers to a displacement, which is a constant expression in aa,

zzz refers to a constant expression.

Certain instructions, particularly move accept a variety of special registers including:

sp the stack pointer which is equivalent to a7,

sr the status register,

cc the condition codes of the status register,

usp the user mode stack pointer,

pc the program counter,

sfc the source function code register,

dfc the destination function code register,

Note that register a7 and the stack pointer (sp) are the same register. The only place where
this is important is when the supervisor must explicitly use usp to refer to the user stack
pointer.

6-2 Revision E of 15 May 1985

0

0

0

0

0

Assembly Language Reference Manual Instructions and Addressing Modes

Table 6-1: Addressing Modes

Mode Notation E:zample

Register an;dn,sp,pc,cc,sr,usp movw a3,d2

Register Deferred an@ movw a3@,d2

Postincrement an@+ movv a3@+,d2

Predecrement an@- movv a3@-,d2

Displacement an@(d) movw a3@(24),d2

Word Index an@(d, Ri:W) movw a3@(16, d2:W) ,d3

Long Index an@ (d, Ri:L) movw a3@(16, d2:L) ,d3

Absolute Short :z:z:z: w movw 14:W,d2

Absolute Long :z:z:z: L movw 14:L,d2

PC Displacement pc@(d) movw pc@(20),d3
PC Word Index pc@(d, Ri:W) movw pc@(14, d2:W) ,d3

PC Long Index pc@(d, Ri:L) movw pc@(14, d2:L),d3

Normal identifier movv vidget,d3

Immediate #:z:z:z movw #27+3,d3

Normal mode assembles as PC-relative if the assembler can determine that this is appropriate, oth­
erwise it assembles as either absolute short or absolute long, under control of the -d2 command
line option.

The Motorola manual presents different mnemonics (and in fact different forms of the actual
machine instructions) for instructions that use the literal effective address as data instead of
using the contents of the effective address. For instance, the Motorola manual uses the
mnemonic adda for add addreu. aa does not make these distinctions because it can determine
the type of the operand from the form of the operand. Thus an instruction of the form:

avenue: . word 0

addl #avenue,aO

assembles to the add addreu instruction because aa can determine that avenue is an address.

right-11ow: = 40000

addl #right-11ow,dO

assembles to an add immediate instruction because aa can determine that right_now is a con­
stant.

Because of this determination of operand forms, some of the mnemonics listed in the Motorola
manual are missing from the set of mnemonics that aa recognizes.

The MC68010 is restrictive in that certain classes of instructions accept only subsets of the
address modes above. For example, the add instruction does not accept a PC-relative address as a
destination.

Revision E of 15 May 1985 6-3

Instructions and Addressing Modes Assembly Language Reference Manual

a, tries to check all these restrictions and generates the illegal operand error code for instruc-

0 tions that do not satisfy the address mode restrictions.

The next section below describes how the address modes are grouped into address categories.

6.4. Addressing Categories

The MC68010 groups the effective address modes into categories derived from the manner in
which they are used to address operands. Note the distinction between address mode, and
address categorie,. There are 14 addressing mode,, and they fall into one or more of four
addressing categarie,. The addressing categories are defined here, followed by a table which
summarizes the grouping of the addressing modes into the categories.

Data means that the effective address mode is used to refer to data operands such as a d
register or immediate data.

Memory means that the effective address mode can refer to memory operands. Examples
include all the a-register indirect address modes and all the absolute address modes.

Alterable means that the effective address mode refers to operands which are writeable (alter­
able). This category takes in every addressing mode except the PC-relative address­
ing modes and the immediate address mode.

Control means that the effective address mode refers to memory operands without any expli-
cit size specification.

Some addressing categories can be combined to make more restrictive ones. So the Motorola
MC68010 manual mentions things like Data Alterable Addreaaing Mode to mean that the particu- 0
lar instruction can only use those modes which provided data addressing and are alterable as
well.

0

6-4 Revision E of 15 May 1985

Assembly Language Reference Manual Instructions and Addressing Modes

0 Table 6-2: Addressing Categories

Addreaaing Aaaembler Data Memory Control Alterable
Mode Syntaz

Register Direct an, dn, sp, pc,
CC, sr, usp X X

A Register Indirect an@ X X X X

A Register Indirect an@+ X X X
with Post Increment

A Register Indirect an@- X X X
with Pre Decrement

A Register Indirect
an@(d) X X X X

with Displacement

A Register Indirect an@(d, ri:W) X X X X
with Word Index

0
A Register Indirect an@(d, ri:L) X X X X
with Long Index

Absolute Short xxx:W X X X X

Absolute Long xxx:L X X X X

PC-relative pc@(d) X X X

PC-relative with
pc@(d,ri:W) X X X

with Word Index

PC-relative
pc@(d,ri:L) X X X

with Long Index

Immediate Data #nnn X X

0

Revision E of 15 May 1985 6-5

0

0

0

0

0

Appendix A

Error Codes

A.1. Usage Errors

Unknown option 'z' ignored
A• does not recognize the option z. Valid options are listed in section 1.1.

Cannot open •ource file
The assembler cannot open a specified source file. Check the spelling, that the pathname
supplied is correct, and that you have read permission on that file.

Too many file name• given
The assembler can't cope with more than one source file. Break the job into smaller stages.

Cannot open output file
The specified output file cannot be created. Check that the permissions allow opening this
file.

No input file
Exactly one input file must be specified - a, cannot acept the output of a pipe as its input.

A.2. Assembler Error Messages

If a, detects any errors during the assembly process, it prints out a message of the form:

as: error (<line_no>): <error_code>

Error messages are sent to standard error. Here is a list of a, error codes, and their possible
causes.

Invalid Character
An unexpected character was encountered in the program text.

Revision E of 15 May 1985 A-1

Error Codes Assembly Language Reference Manual

Multiply defined aymbol

• An identifier appears twice as a label.

• An attempt to redefine a label using an= {direct assignment) statement.

• An attempt to use, as a label, an identifier which was previously defined in an - (direct
assignment) statement.

Symbol atorage exceeded
No more room is left in the assembler's symbol table. Cut the program into smaller por­
tions; assemble portions of the program separately, then bind them together using the linker.

Out of airing• apace
No more room is left in the assembler's internal string table. Cut the program into smaller
portions; assemble portions of the program separately, then bind them together using the
linker.

Stab atorage exceeded
No more room is left in the assembler's symbol table for debu_g information. Cut the pro­
gram into smaller portions; assemble portions of the program separately, then bind them
together using the linker.

Invalid Comtant

0

An invalid digit was encountered in a number. For example, using an 8 or 9 in an octal 0
number. Also happens when an out-of-range constant operand is found in an instruction - .
for example:

addq #200,dO
asll #12, dO

Invalid Term
The expression evaluator could not find a valid term: symbol, constant or (<ezpre .. ion>].
An invalid prefix to a number or a bad symbol name in an operand generates this message.

Invalid Operator
Check the operand field for a bad operator. The operators that aa recognizes are plus (+),
minus (-), negate or one's complement ("), multiply (*), and divide (/).

Non-relocatable ezpre .. ion
If an expression contains a relocatable symbol (a label, for instance), the only operations that
can be applied to it are the addition of absolute expressions or the subtraction of another
relocatable symbol (which produces an absolute result).

Invalid operand
The operand used is not consistent with the instruction used - for example:

addqb #1,aS

is an invalid combination of instruction and operand. Check the instruction set descriptions

A-2 Revision E of 15 May 1985

0

0

0

0

Assembly Language Reference Manual Error Codes

for valid combinations of instructions and operands.

Invalid symbol
An operand that should be a symbol is not - for example:

.globl 3

because the constant 3 is not a symbol.

Invalid assignment
An attempt was made to redefine a label with an = statement.

Invalid op-code
The assembler did not recognize an instruction mnemonic. Probably a misspelling.

Invalid atring
An invalid string was encountered in an . ascii or . asciz directive.

• Make sure the string is enclosed in double quotes.

• Remember that you must use the sequence \" to represent a double quote inside a string.

Wrong number of operands
Check appendix B for the correct number of operands for the current instruction.

Line too long
A statement was found which has more than 4096 characters before the newline.

Invalid regiater ezpre88ion
A register name was found where one should not appear - for example:

add #dO,_there

0 ffaet too large
The instruction is a relative addressing instruction and the displacement between this
instruction and the label specified is too large for the address field of the instruction.

Odd addre88
The previous instruction or pseudo-op required an odd number of bytes and this instruction
requires word alignment. This error can only follow an . ascii, an . asciz, a . byte, or
a . skip pseudo-operation.

• Use a . even directive to ensure that the location counter is forced to a 16-bit boundary.

Undefined L-•ymbol
This is a warning message. A symbol beginning with the letter 'L' was used but not defined.
It is treated as an external symbol. Compiler-generated labels usually start with the letter
'L' and should be defined in this assembly. The absence of such a definition usually indicates
a compiler code generation error. This message is also generated by the use of symbols such

Revision E of 15 May 1985 A-3

Error Codes Assembly Language Reference Manual

as $99 or n$ if n$ has not been defined.

0
Miuing cloae-paren ')'

An unmatched '(' was found in an expression.

0

0

A-4 Revision E of 15 May 1985

0

0

0

Appendix B

List of As Opcodes

This appendix is a list of the instruction mnemonics, grouped alphabetically.

Each entry describes the following things:

• The mnemonics for the instruction,

• The generic name for the instruction,

• The assembly language syntax and the variations on the instruction,

• The condition codes that this instruction affects.

The syntax for aa machine instructions differs somewhat from the instruction layouts and
categories shown in the Motorola MC680IO manual. For example, aa provides a single set of
mnemonics for add (add binary), adda (add address), and addi (add immediate). In general, aa
selects the appropriate instruction from the form of the operands.

Here is a brief explanation of the notations used below.

• An instruction of the form addz in the assembly language syntax column means that the
instruction is coded as addb or addv or addl, etcetera.

• An operand field of an means any A-register.

• An operand field of dn means any D-register.

• An operand field of rn means any A- or D-register.

• An operand field of ea means an effective address designated by one of the permissible
addressing modes for the MC68010. Consult the Motorola MC68010 manual for details of the
allowed addressing modes for each instruction.

• An operand field of #data means an immediate operand.

• Other special registers such as cc (condition code register) and sr (status register) are
specifically indicated where appropriate.

• The condition code register has the following flags, with the following meanings.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if there was an arithmetic overflow. Cleared otherwise.
C Set if a carry is generated (for addition) or a borrow is generated (for a subtraction) out

of the most significant bit of the operand. Cleared otherwise.
X This condition code is transparent to data movement instructions. When it is affected it

is set the same as the C (carry) condition.

Revision E of 15 May 1985 B-1

List of As Opcodes Assembly Language Reference Manual

• The notations under condition code, in the tables below have these meanings:

• set according to the result of the instruction.

this instruction does not affect this condition code.

0 this instruction clears this condition code.

l this instruction sets this condition code.

U this condition code is undefined after the instruction.

? this condition code is set according to the status register pulled off the stack, or according
to the immediate operand.

Mnemonic, Operation
Aaaembly Language Condition

Syntaz Codea
X N z V C

add decimal abed dy, dz
abed • u * u •

with extend abed ay@-, a:z@-

addb addz ea,dn

addv add binary
addz dn, ea • • • • •
addz ea, an

addl addz #data, ea

addqb
addqv add quick addqz #data, ea • • • • •
addql

addxb addxz dy, dz

add.xv add extended • • • • •
addxl

addxz ay@-, a:z@-

andb andz ea,dn
andw logical and andz dn, ea • • • • •
andl andz #data, ea

aslb aslz dz, dy
aslv arithmetic shift left aslz #data, dy • • • • •
asll aslz ea

asrb asrz dz, dy
asrw arithmetic shift right asrz #data, dy • • • • •
asrl asrz ea

bee branch carry clear beez ea - - - - -
bees

behg test a bit and change
behg dn, ea - •

#data, ea
- - -

behg

belr test a bit and clear
belr dn, ea • - - - -
belr #data, ea

bset test a bit and set
bset dn, ea * #data, ea - - - -
bset
btst dn, ea

B-2 Revision E of 15 May 1985

0

0

01

Assembly Language Reference Manual List of As Opcodes

0 Mnemonic, Operation
Auembly Language Condition

Syntax Code,
X N z V C

btst #data, ea

bes branch carry set bcsz ea - - - - -
bcss

beq branch on equal beqz ea - - - - -
beqs

bge branch greater or equal bgez ea - - - - -
bges

bgt branch greater than bgtz ea - - - - -
bgts

bhi branch higher bhiz ea - - - - -
bhis

ble branch less than or equal blez ea - - - - -
bles

bls branch lower or same blsz ea - - - - -
blss

blt branch less than bltz ea - - - - -
blts

0 bmi branch minus bmiz ea - - - - -
bmis
J.J ~~ ... llt:i:111 a Ull.1

bne branch not equal bnez ea - - - - -
bnes

bpl branch positive bplz ea - - - - -
bpls

bra branch always braz ea - - - - -
bras

bsr subroutine branch bsrz ea - - - - -
bsrs

bvc
bvcs

branch overflow clear bvcz ea - - - - -

bvs
bvss

branch overflow set bvsz ea - - - - -

chk
check register chk ea,dn - * u u u
against bounds

clrb
clrw clear an operand clrz ea - 0 1 0 0
clrl

0
cmpmb
cmpmw compare memory cmpmz ay@+ ,Az@+ - * * * *
cmnml

Revision E of 15 May 1985 B-3

List of As Opcodes Assembly Language Reference Manual

Mnemonic, Operation Aaaembly Language Condition
Syntaz Codea

X N z V C 0
cmpb cmpz ea,dn
cmpw arithmetic compare - • • • •
cmpl

cmpz #data, ea

dbcc
decrement & branch

dbcc dn, label
on carry clear - - - - -

dbcs
decrement & branch

dbcs dn, label - - - - -on carry set

dbeq
decrement & branch

dbeq dn, label
on equal - - - - -

dbf
decrement & branch

dbf dn, label
on false - - - - -

dbge
decrement & branch

dbge dn, label
on greater than or equal

- - - - -

dbgt
decrement & branch

dbgt dn, label
on greater than - - - - -

dbhi
decrement & branch

dbhi dn, label
on high - - - - -

dble
decrement & branch

dble dn, label
on less than or equal - - - - -

dbls
decrement & branch

dbls dn, label
on low or same - - - - - 0

dblt
decrement & branch

dblt dn, label
on less than

- - - - -

dbmi
decrement & branch

dbmi dn, label - - - - -on mmus

dbne
decrement & branch

dbne dn, label
on not equal - - - - -

dbpl decrement & branch dbpl dn, label - - - - -
on plus

dbra decrement & branch dbra dn, label - - - - -
always (same as dbf)

dbt decrement & branch dbt dn, label - - - - -
on True

dbvc decrement & branch dbvc dn, label - - - - -
on overflow clear

dbvs decrement & branch dbvs dn, label - - - - -
on overflow set

divs signed divide divs ea,dn - • • • 0
divu unsigned divide divs ea, dn - • • • 0

eorb logical exclusive or eor:r dn, ea - • • 0 0
eorv eorz #data, ea
earl eorb #data, cc

eorw #data, ar

B-4 Revision E of 15 May 1985

Assembly Language Reference Manual List of AB Opcodes

0 Mnemonic, Operation
Aaaembly Language Condition

Syntaz Code,
X N z V C

exg exchange registers exg rz. ry - - - - -
extw sign extend ext dn - • • 0 0
extl

jmp jump jmp ea - - - - -
jsr jump to subroutine jsr ea - - - - -
jcc jump carry clear jcc ea - - - - -
jcs Jump on carry jcs ea - - - - -
jeq jump on equal jeq ea - - - - -
jge jump greater or equal jge ea - - - - -
jgt jump greater than jgt ea - - - - -
jhi jump higher jhi ea - - - - -
jle jump less than or equal jle ea - - - - -
jls jump lower or same jls ea - - - - -
jlt jump less than jlt ea - - - - -
jmi jump minus jmi ea - - - - -
jne jump not equal jne ea - - - - -
jpl jump positive jpl ea - - - - -
jra jump always jra ea - - - - -
jbsr jump to subroutine jbsr ea - - - - -

0 jvc jump no overflow jvc ea - - - - -
jvs jump on overflow jvs ea - - - - -

lea load effective address lea ea, an - - - - -

link link and allocate link an, #diap - - - - -

lslb logical shift left lslz dz, dy • • • 0 •
lslw lslz #data, dy
lsll lslz ea

lsrb logical shift right lsrz dz,dy • • • 0 •
lsrv lsrz #data, dy
lsrl lsrz ea

movb move data movz ea, ea - • • 0 0
movv movz #data, dn
movl

movw move from movv cc, ea - - - - -
condition code register

movw move from status register movv sr, ea - - - - -
move move to control register move rn,cr - - - - -
move move from control register move cr,rn - - - - -
moveml move multiple registers movemz #maak, ea - - - - -
movemw movemz ea, #maak

0 movepl move peripheral movepz dn, an@(d) - - - - -
movepw movepz dn, an@ (d)

Revision E of 15 May 1985 S..5

List of As Opcodes Assembly Language Reference Manual

Mnemonica Operation
Aaaembly Language Condition

Syntaz Code,
X N z V C

0
moveq move quick moveq #data, dn - • • 0 0

movsb move to address space movsz rn, ea - - - - -
movsw move from address space movsz ea, rn
movsl

muls signed multiply muls ea,dn 0 0 • * 0
mulu unsigned multiply mulu ea,dn 0 0 * * 0

nbcd negate decimal with extend nbcd ea * u * u *
negb negate binary negz ea * * * * *
negw
negl

negxb negate binary with extend negxz ea * * * * *
negxv
negxl

nop no operation nop - - - - -

notb logical complement notz ea - • * 0 0
notv
notl

orb inclusive or orz ea,dn - • • 0 0
orv orz dn, ea
orl or #data, ea

orb #data, cc
orv #data, ar

pea push effective address pea ea - - - - -

reset reset machine reset - - - - -

rolb rotate left rolz dz,dy 0 * * 0 *
rolv rolz #data, dy
roll rolz ea

rorb rotate right rorz dz, dy 0 * • 0 *
rorw rorz #data, dy
rorl rorz ea

roxlb rotate left with extend roxlz dz,dy • • • 0 •
roxlv roxlz #data, dy
roxll roxlz ea

roxrb rotate right with extend roxrz dz, dy • • * 0 *
roxrw roxrz #data, dy
roxrl roxrz ea

rte return from exception rte ? ? ? ? ?
rtr return and restore codes rtr ? ? ? ? ?
rts return from subroutine rts - - - - -
rts return from subroutine rts #n - - - - - 0

B-6 Revision E of 15 May 1985

Assembly Language Reference Manual List of As Opcodes

0 Mnemonic, Operation
A,,embly Language Condition

Syntaz Code,
X N z V C

sbcd subtract decimal with extencl;bcd dy,dz • u • u •
sbcd a!,'@-, a:,@-

stop halt machine stop #ZZZ ? ? ? ? ?

subb arithmetic subtract subz ea,dn • • • • •
subw subz dn, ea

subz ea .. an
subl subz #data, ea

st set all ones st ea - - - - -
sf set all zeros sf ea - - - - -
shi set high shi ea - - - - -
sls set lower or same sls ea - - - - -
sec set carry clear sec ea - - - - -
scs set carry set scs ea - - - - -
sne set not equal sne ea - - - - -
seq set equal seq ea - - - - -
SVC set no overflow SVC ea - - - - -
svs set on overflow svs ea - - - - -
spl set plus spl ea - - - - -

0
smi set minus smi ea - - - - -
sge set greater or equal sge ea - - - - -
slt set less than slt ea - - - - -
sgt set greater than sgt ea - - - - -
sle set less than or equal sle ea - - - - -
subqb subtract quick subqz #data, ea • • • • •
subqv
subql

subxb subtract extended subxz dy, dz • • • • •
subxw subxz a!,'@-, az@-
subxl

swap swap register halves swap dn • • • • •
tas test operand then set tas ea - • • 0 0

trap trap trap #vector - - - - -
trapv trap on overflow trapv - - - - -

tstb test operand tstz ea - • • 0 0

tstw
tstl

unlk unlink unlk an - - - - -

0

Revision E of 15 May 1985 B-7

0

01

0

0
Index

A constants, continued
absolute expressions, 3-2 thru 3-3 string, 2-4
adressing categories, 6-4 thru 6-5 D alterable, 6-4

control, 6-4 -dz option, 1-1
data, 6-4 . data directive, 5-4
memory, 6-4 decimal constants, 2-3

adressing modes, 6-2 thru 6-4 direct assignment, 4-4
. ascii directive, 5-2 directives, 5-1 thru 5-6
. asciz directive, 5-3 .ascii, 5-2
assembler directives, 5-1 thru 5-6 .asciz, 5-3

.ascii, 5-2 .bss, 5-4

.asciz, 5-3 .byte, 5-3

.bss, 5-4 .comm, 5-6

.byte, 5-3 .data, 5-4
• comm, 5-6 .even, 5-6
.data, 5-4 . glob 1, 5-6
.even, 5-6 . lcomm, 5-5

0
. globl, 5-6 . long, 5-3
. lcomm, 5-5 .skip, 5-5
. long, 5-3 .text, 5-4
.skip, 5-5 .word, 5-3
. text, 5-4

E .word, 5-3
assembler options, 1-1 thru 1-2 . even directive, 5-6

-d2, 1-1 expressions, 3-1 thru 3-3
-h, 1-1 absolute, 3-2 thru 3-3
-J, 1-1, 1-1 external, 3-2 thru 3-3
-L, 1-1 operators, 3-1
-o, 1-1 relocatable, 3-2 thru 3-3
-R, 1-1 terms, 3-2

assignment statements, 4-4 external expressions, 3-2 thru 3-3

B G
basic elements, 2-1 thru 2-5 . globl directive, 5-6
. bss directive, 5-4
. byte directive, 5-3 H

-h option, 1-1
C hexadecimal constants, 2-3

character set, 2-1
. comm directive, 5-6 I
comment field, 4-3 thru 4-4 identifiers, 2-1 thru 2-2
constants, 2-3 thru 2-4

decimal, 2-3 J
hexadecimal, 2-3 -J option, 1-1, 1-1

0 numeric, 2-3
octal, 2-3

-xix-

L
-L option, 1-1
label field, 4-1 thru 4-2
labels, 2-2 thru 2-3

local, 2-2
numeric, 2-2
scope, 2-2

. lcomm directive, 5-5
lexical elements, 2-1 thru 2-5
lines, 4-1
local labels, 2-2
location counter, 2-4
. long directive, 5-3

N
notation, 1-2
numeric constants, 2-3
numeric labels, 2-2

0
-o option, 1-1
octal constants, 2-3
operand field, 4-2 thru 4-3
operation code field, 4-2
options, 1-1 thru 1-2

-d2, 1-1
-h, 1-1
-j, 1-1, 1-1
-L, 1-1
-o, 1-1
-R, 1-1

p
program layout, 4-1 thru 4-4
pseudo-ops, 5-1 thru 5-6

.ascii, 5-2

.asciz, 5-3

.bss, 5-4

.byte, 5-3

.comm, 5-6

.data, 5-4

.even, 5,.6

. glob 1, 5-6
• lcomm, 5-5
. long, 5-3
.skip, 5-5
. text, 5-4
.word, 5-3

R
-R option, 1-1
register operands, 4-3

address registers, 6-2
data registers, 6-2
special registers, 6-2

relocatable expressions, 3-2 thru 3-3

s
scope of labels, 2-2
. skip directive, 5-5
special register operands

cc, 6-2
dfc, 6-2
pc, 6-2
sfc, 6-2
sp, 6-2
sr, 6-2
usp, 6-2

statements, 4-1
comment field, 4-3 thru 4-4
direct assignment, 4-4
label field, 4-1 thru 4-2
operand field, 4-2 thru 4-3
operation code field, 4-2

string constants, 2-4

T
. text directive, 5-4

w
. word directive, 5-3

-xx-

0

0

0

