
0

0

4'\sun ~~ microsystems

Programming Tools
for the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

/; '\

0

0

0

0

0

~\sun
• microsystems

Programming Tools
for the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Puri ;";i1: 80\J .. fJ()(}-01

Rcvisinn E of 15 19?6

Credits and Acknowledgements

The chapters of this manual were originally derived from the work of many people at Bell
Laboratories, the University of California at Berkeley, and other noble institutions. Their names
and the titles of the original works appear here.

Shell Programming
was derived from the papers An Introduction to the UNIX Shell, by S. R. Bourne, Bell
Laboratories, Murray Hill, New Jersey, and An Introduction to the C Shell, by William Joy,
University of California at Berkeley.

UNIX Programming
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lint, a C Program Checker
by S. C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Make - A Program for Maintaining Computer Program,
by S. I. Feldman, Bell Laboratories, Murray Hill, New Jersey.

DC - An Interactive Deak Calculator
by Robert Morris and Lorinda Cherry, Bell Laboratories, Murray Hill, New Jersey.

BC - An Arbitrary Preciaion Deak-Calculator Language
by Lorinda Cherry and Robert Morris, Bell Laboratories, Murray Hill, New Jersey.

0

The M-l Macro Proceuor 0
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey. ' .

Lex - A Lexical Analyzer Generator
by M. E. Lesk and E. Schmidt, Bell Laboratories, Murray Hill, New Jersey.

Yacc - Yet Another Compiler-Compiler
by Stephen C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Source Code Control Syatem Uaer 'a Guide
by L. E. Bonanni and C. A. Salemi, Bell Laboratories, Piscataway, New Jersey.

Source Code Control Sy.tern
by Eric Allman, Formerly of Project Ingres, University of California at Berkeley.

Trademarks

Multibus is a trademark of Intel Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright ~ 1983, 1984, 1985, by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of ihis o
publication may be reproduced, stored in a retrieval system, translated, transcribed, or trau,rnit-
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

Revision

A

B

C

D

0
E

0

Revision History

Date

15th July 1983

15th August 1983

1st November 1983

7th January 1984

15 May 1985

Comments

First release or this Manual.

Second Release or this manual entailed a complete reorganiza­
tion and some rewriting or the individual articles.

Third Release or this manual entailed minor corrections and
updates.

Added chapter on Shell Programming. Added chapter on
ADB. Many minor corrections and updates.

Many minor corrections and updates. Extracted Assembly
Language Reference Manual to make a separate manual.

- 111 -

o:

0

0

0
Contents

Chapter 1 Programming the Shells ... 1-1

Chapter 2 UNIX Programming .. 2-1

Chapter 3 Lint - A C Program Checker ... 3-1

Chapter -i Make - A Program for Maintaining Computer Programs 4'-1

Chapter 6 Source Code Control System .. 6-1

Chapter 6 DC - An Interactive Desk Calculator .. . 6-1

Chapter 7 BC - Arbitrary-Precision Desk Calculator.. 7-1

0 Chapter 8 M4 - A Macro Processor ... 8-1

Chapter 9 Lex - A Lexical Analyzer Generator... 9-1

Chapter 10 Yacc - Yet Another Compiler-Compiler .. 10-1

0
-v-

0

O '. '

0

0

0

Contents

Chapter 1 Programming the Shells ... 1-1
1.1. C-Shell Invocation and the Argv Variable... 1-2
1.2. Variable Substitution in the C Shell.. 1-2
1.3. Expressions in the C Shell .. 1-4
1.4. Sample C Shell Script 1-4
1.5. Other C-Shell Control Structures ... 1-7
1.6. Supplying Input to Commands in the C Shell... 1-7
1.7. Catching Interrupts with 'onintr' in the C Shell ... 1-8
1.8. Other C-Shell Features 1-9
1.9. Special Characters in the C Shell................. 1-10
1.10. Bourne Shell Variables 1-12

1.11.
1.12.
1.13.
1.14.
1.15.
1.16.
1.17.
1.18.
1.19.
1.20.
1.21.
1.22.
1.23.
1.24.
1.25.
1.26.
1.27.
1.28.
1.29.
1.30.

Control Flow in the Bourne Shell - for 1-14
Control Flow in the Bourne Shell - case 1-14

Here Documents in the Bourne Shell 1-16
The 'test' Command 1-17
Control Flow in the Bourne Shell - while 1-17
Control Flow in the Bourne Shell - if 1-18

Command Grouping.. 1-20
Debugging Bourne Shell Procedures ... 1-20
The 'man' Command... 1-21
Keyword Parameters in the Bourne Shell ... 1-21
Parameter Transmission in the Bourne Shell 1-22
Parameter Substitution in the Bourne Shell.. 1-22
Command Substitution in the Bourne Shell 1-23
Evaluation and Quoting in the Bourne Shell... 1-24
Error Handling in the Bourne Shell... 1-26
Fault Handling in the Bourne Shell .. 1-27
Command Execution in the Bourne Shell 1-29
Calling the Bourne Shell ... 1-30
Bourne Shell Grammar .. 1-31
Bourne Shell Metacharacters and Reserved Words 1-32

Chapter 2 UNIX Programming 2-1
2.1. Basics.. 2-1
2.2. The 'Standard Input' and 'Standard Output' ... 2-2
2.3. The Standard 1/0 Library ... 2-3
2.4. Low-Level Input Output ... 2-6

- VII -

2.5. Processes .. 2-11
2.6. Signals - Interrupts and All That ... 2-16
2.7. References ... 2-20
2.8. The Standard 1/0 Library ... 2-21

Chapter 3 Lint - A C Program Checker ... 3-1
3.1. Using Lint.. 3-1
3.2. A Word About Philosophy ... 3-2
3.3. Unused Variables and Functions... 3-2
3.4. Set/Used Information 3-3
3.5. Flow of Control 3-3
3.6. Function Values ... 3-3
3.7. Type Checking.. 3-4
3.8. Type Casts .. 3-5
3.9. Nonportable Character Use... 3-5
3.10. Assignments of longs to ints ... 3-6
3.11. Strange Constructions .. 3-6
3.12. Ancient History.. 3-7
3.13. Pointer Alignment..... 3-7
3.14. Multiple Uses and Side Effects... 3-8
3.15. Implementation 3-8
3.16. Portability 3-9
3.17. Shutting Lint Up ... 3-10
3.18. Library Declaration Files .. 3-11
3.19. Bugs, etc ... 3-11
3.20. References .. 3-13
3.21. Current Lint Options ... 3-14

Chapter 4 Make - A Program for Maintaining Computer Programs 4-1
4.1. Basic Features 4-2
4.2. Description Files and Substitutions .. 4-4
4.3. Command Usage ... 4-5
4.4. Implicit Rules .. :............... 4-6
4.5. Example .. 4-7
4.6. Suggestions and Warnings .. 4-9
4.7. Suffixes and Transformation Rules ... 4-10
4.8. Acknowledgments and References .. 4-11

Chapter 5 Source Code Control System .. 5-1
5.1. Learning the Lingo.. 5-2
5.2. Creating secs Database Files with 'secs create' .. 5-4
5.3. Retrieving Files for Compilation with 'secs get' .. 5-4
5.4. Changing Files (Creating Deltas) ... 5-5
5.5. Restoring Old Versions... 5-8
5.6. Auditing Changes ... 5-9
5.7. Shorthand Notations .. 5-9

- Vlll -

0

0

0

5.8. Using SCCS on a Project .. 5-10

0 5.9. Saving Yourself .. 5-11
5.10. Managing SCCS Files with 'secs admin' ... 5-11
5.11. Maintaining Different Versions (Branches) ... 5-12
5.12. Using SCCS with Make .. 5-14
5.13. Quick Reference .. 5-17
5.14. SCCS For Beginners ... 5-19
5.15. SCCS File Numbering Conventions .. 5-23
5.16. SCCS Command Conventions ... 5-26
5.17. SCCS Commands ... 5-28
5.18. SCCS Files .. 5-44

Chapter 6 DC - An Interactive Desk Calculator ... 6-1
6.1. Synoptic Description ... 6-1
6.2. Detailed Description 6-4
6.3. Design Choices 6-9
6.4. References 6-10

Chapter 7 BC - Arbitrary-Precision Desk Calculator .. 7-1
7.1. Simple Computations with Integers ... 7-1
7.2. Bases ... 7-2
7.3. Scaling 7-3
7.4. Functions 7-4

0
7.5. Subscripted Variables.. 7-5
7.6. Control Statements 7-5
7.7. Some Details .. 7-7
7.8. Three Important Things 7-8
7.9. Notation ... 7-9
7.10. Storage classes 7-12
7.11. Statements 7-13
7.12. Acknowledgement and References ... 7-15

Chapter 8 M4 - A Macro Processor ... 8-1
8.1. Using the M4 Command .. 8-1
8.2. Defining Macros ... 8-2
8.3. Quoting and Comments ... 8-3
8.4. Arguments ... 8-4
8.5. Arithmetic Built-ins.. 8-5
8.6. File Manipulation ... 8-6
8.7. Running System Commands ... 8-6
8.8. Conditionals ... 8-7
8.9. String Manipulation•.. 8-7
8.10. Printing .. 8-8
8.11. Summary of Built-in Macros ... 8-8
8.12. Acknowledgements and References ... 8-9

0
-1x-

Chapter 9 Lex - A Lexical Analyzer Generator .. . 9-1
9.1. Lex Source
9.2. Lex Regular Expressions

9-4 0 9-4
9.3. Lex Actions 9-7
9.4. Ambiguous Source Rules .. . 9-10
9.5. Lex Source Definitions 9-11
9.6. Using lez .. . 9-13
9.7. Lex and Yacc 9-13
9.8. Examples 9-14
9.9. Left Context-Sensitivity 9-16
9.10. Character Set .. . 9-18
9.11. Summary of Source Format 9-19
9.12. Caveats and Bugs .. . 9-20
9.13. Acknowledgments and References 9-20

Chapter 10 Yacc - Yet Another Compiler-Compiler .. 10-1
10.1. Basic Specifications... 10-3
10.2. Actions 10-5
10.3. Lexical Analysis 10-7
10.4. How the Parser Works ... 10-8
10.5. Ambiguity and Conflicts ... 10-12
10.6. Precedence ... 10-16
10.7. Error Handling .. 10-18
10.8. The Yacc Environment .. 10-19
10.9. Hints for Preparing Specifications .. 10-20
10.10. Advanced Topics ... 10-22 0
10.11. A Simple Example .. 10-25
10.12. Yacc Input Syntax .. 10-27
10.13. An Advanced Example .. 10-29
10.14. Old Features Supported but not Encouraged .. 10-34
10.15. Acknowledgements and References .. 10-34

-x-

0
Tables

Table 1-1 Quoting Mechanisms . 1-26
Table 1-2 UNIX Signals.. 1-27

0

0
-x1-

0

o:

0
Figures

Figure 1-1 A version of the man command ... 1-21
Figure 1-2 The touch Command... 1-28
Figure 1-3 The scan Command... 1-29
Figure 5-1 Evolution of an SCCS File ... 5-24
Figure 5-2 Tree Structure with Branch Deltas ... 5-25
Figure 5-3 Extending the Branching Concept.. 5-26
Figure 9-1 An overview of Lex... 9-2
Figure 9-2 Lex with Yacc 9-3
Figure 9-3 Sample character table .. 9-18

0

0
- xiii-

0

I

O
!
!
i

I

0

0

0

Chapter 1

Programming the Shells

You can put a sequence of UNIXt commands in a file, and then you can get one of the Shells to
read and execute the commands from the file. Such a file of UNIX commands is called a Shell
•cript.

Understand that Shell scripts do not serve the same function as the make program. Make is very
useful for maintaining a group of related files or performing sets of operations on related files.
For instance, a large program consisting of one or more files can have its dependencies described
in a makefile, which contains definitions of the commands used to recreate these files when
changes occur. Definitions for printing listings, cleaning up the directory in which the files
reside, and installing the resultant programs are easily, and most appropriately placed in this
makefile. Using a makefile is superior to maintaining a group of Shell procedures to update these
files. Similarly when working on a document, you can create a makefile, which defines how
different versions of the document are to be created and which options of nroff or troff are
appropriate.

When you have a file full of Shell commands and you simply type the name of that file as a com­
mand, the system looks at the very first line of that file to decide which Shell should run the
script:

• If the first line does not start with a# (hash sign), the system uses the Bourne Shell to run the
script.

• If the first line starts with a # (hash sign) and is not followed by a ! (exclamation mark), the
system uses the C-Shell to run the script.

• Finally, if the first line of the Shell script starts with a#! combination and is followed immedi­
ately by a name, the system looks for a program of that name to run the Shell script.

t UNIX is a trademark of Bell Laboratories.

Revision E of 15 May 1985 1-1

Programming the C Shell Programming Tools

Part I - Programming the C Shell

This section details C-Shell features useful for writing Shell scripts.

1.1. C-Shell Invocation and the Argv Variable

A cah command script may be interpreted by saying:

tutorial% csh script •.•
tutorial%

where acript is the name of the file containing a group of cah commands and ' ... ' is replaced by a
sequence of arguments. The Shell places these arguments in the variable argu and then begins to
read commands from the script. These parameters are available through the same mechanisms
used to refer to any other Shell variables.

If you make the file acript executable by changing its permissions with the chmod command:

tutorial% cbmod 755 script
tutorial%

and place a Shell comment at the beginning of the Shell script, that is, begin the file with a #
character, / bin/ cah is automatically called to execute acript when you type:

tutorial% acript
tutorial%

If the file does not begin with a #, then the standard Shell /bin/ah executes it. Thus, you can
convert your older Shell scripts to use cah at your convenience.

1.2. Variable Substitution in the C Shell

After each input line is broken into words and history substitutions are applied, the input line is
parsed into distinct commands. Before each command is executed, the variable aubatitution
mechanism is applied on these words. Keyed by the character $, this substitution replaces the
names of variables with their values. Thus, if you place:

echo $argv

in a command script, the current value of the variable argu is echoed to the output of the Shell
script. It is an error for argv to be unset at this point.

A number of notations are available for accessing components and variable attributes. The nota­
tion:

1-2 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the C Shell

$?name

expands to '1' if name is aet or to 'O' if name is not ael. This is the fundamental mechanism used
for checking whether particular variables have been assigned values. All other forms of refer­
ence to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name: Thus

tutorial% set argv•(a b c)
tutorial% echo •?argv
1
tutorial% echo •#argv
3

tutorial% unset argv
tutorial% echo •?argv
0

tutorial% echo •argv
Undefined variable: argv.
tutorial%

It is also possible to access the components of a variable that has several values. To get the first
component of argv or in the example above 'a', use:

$argv [1)

Similarly to get 'c', use:

$argv($#argv)

and to get 'ab', use:

$argv(l-2)

Other notations useful in Shell scripts are:

$n

where n is an integer as a shorthand for

$argv [n]

the nth parameter and

$*

which is a shorthand for

$argv

To expand to the process number of the current Shell, use the form:

$$

Since this process number is unique in the system, it can be used to generate unique temporary
file names. The form

$<

is quite special and is replaced by the next line of input read from the Shell's standard input (not
the script it is reading). Use this for writing Shell scripts that are interactive, reading commands

Revision E of 15 May 1985 1-3

Programming the C Shell Programming Tools

from the terminal, or even a Shell script that acts as a filter, reading lines from its input file.
Thus to write out the prompt 'yes or no?' without a. newline and then read the answer into the
variable 'a.', use:

echo 'yes or no?\c'
set a=($<)

In this case '$#a.' would be 'O' if either a. blank line or end-of-file ('D) was typed.

Note one minor difference between '$n' and '$argv[n]'. The form '$a.rgv[n]' yields an error if n
is not in the range 'l-$#argv', while '$n' never yields an out of range subscript error. This is
for compatibility with the way older Shells handled parameters.

Another important point is that it is never an error to give a. subrange of the form 'n-'; if there
are less than n components of the given variable then no words are substituted. A range of the
form 'm-n' likewise returns an empty vector without giving an error when m exceeds the
number of elements of the given variable, provided the subscript n is in range.

1.3. Expressions in the C Shell

To construct interesting Shell scripts, it must be possible to evaluate expressions in the Shell
based on the values of variables. In fact, all the arithmetic operations of the C language are
available in the Shell with the same precedence that they have in C. In particular, the opera­
tions '==' and '!=' compare strings, and the operators '&&' and 'l l' implement the boolean
and/or operations. The special operators '= -, and •r• are similar to '==' and '!=' except that
the string on the right side can have pattern-matching characters (like *, ? or []), and the test is
whether the string on the left matches the pattern on the right.

The Shell also allows file enquiries of the form:

-? filename

where '?' is replaced by a number of single characters. For instance, the expression primitive:

-e filename

tells whether the file filename exists. Other primitives test for read, write and execute access to
the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form '{ com­
mand}'. This primitive returns true, that is 'l', if the command exits normally with exit status
0, or 'O' if the command terminates abnormally or with exit status non-zero. If more detailed
information about the execution status of a command is required, it can be executed and the
variable '$status' examined in the next command. Since every command sets '$status', it is very
transient. It can be saved if it is inconvenient to use it only in the single immediately following
command.

For a full list of expression components available, see the user's manual section on the C-Shell.

1.4. Sample C Shell Script

A sample Shell script that uses the Shell expression mechanism and some of its control structure
follows:

1-4 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the C Shell

tutorial% cat copyc

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i ($argv)

end

if ($1 1- •.c) continue # not a .c file so do nothing

if (I -r -/backup/$i:t) then

endif

echo $1:t not in backup ... not cp\'ed
continue

cmp -s $1 -/backup/$1:t # to set $status

if ($status I= 0) then
echo new backup of $1
cp $1 -/backup/$1:t

endif

This script uses the foreach command, which causes the Shell to execute the commands between
the foreach and the matching end with the named variable taking on each of the values given
between '(' and ')' with the named variable - in this case 'i' is set to successive values in the
list. Within this loop you may use the command break to stop executing the loop and continue
to prematurely terminate one iteration and begin the next. After the foreach loop, the iteration
variable (i in this case) has the value it had during the last iteration.

We set the variable noglob here to prevent filename expansion of the members of argv. This is a
good idea, in general, if the arguments to a Shell script are filenames that have already been
expanded or if the arguments may contain filename expansion metacharacters. It is also possible
to quote each use of a '$' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form:

if (expression) then
command

endif

The placement of the keywords here 1s not flexible due to the current implementation of the
Shell. 1

1 The Shell does not accept the following two formats:

and

1 f (expression)
then

command

end!!

Revision E of 15 May 1985

,j/, Won't work!

1-5

Programming the C Shell

The Shell does have another form of the if statement of the form:

if (ezpression) command

which can be written

if (expression) \
command

Programming Tools

The newline is escaped here for the sake of appearance. The command must not involve 'l', '&'
or ';' and must not be another control command, and the final '\' must immediately precede the
end-of-line.

The more general if statements also admits a sequence of else-if pairs followed by a single else
and an endif. for example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Use the ':' modifier in Shell scripts, for instance in the modifier ':r' to extract the root of a
filename or ':e' to extract the eztenaion. Thus if the variable i has the value /mnt/foo.bar, then:

tutorial% echo •i •i:r •i:e
/mnt/foo.bar /mnt/foo bar
tutorial%

shows how the ':r' modifier strips off the trailing '.bar', and the ':e' modifier leaves only the 'bar'.
the ':h' modifier takes off the last component of a pathname leaving the head, and ':t' takes off
all but the last component of a pathname leaving the tail. See the csh manual page in the Com­
mands Reference Manual for the Sun Workatation for a full description of these modifiers.

It is also possible to use the command subatitution mechanism to perform modifications on strings
to then reenter the Shell's environment. Since calling this mechanism creates a new process
each time, it is much more expensive to use than the ':' modification mechanism2.

Finally, note that the character '#' lexically introduces a Shell comment in a Shell script, but
not from the terminal. The Shell discards all subsequent characters on the input line after a'#'.
Quote this character using ''' or '\' to place it in an argument word.

if (expression) then command endif 1* Won't work

2 Note that the current implementation of the Shell limits the number of ':' modifiers on a '$' substitu~
tion to 1. Thus:

tutorial% echo U U:h:t /a/b/c /afb:t tutorial%

does not do what one mght expect.

1-6 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the C Shell

1.5. Other C-Shell Control Structures

The Shell also has control structures while and awitch similar to those of C. These take the
forms:

and

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
comm.ands
breaksw

default:

endsw

commands
breaksw

See the cah manual page for details. C programmers should note that breakaw exits from a
awitch, while break exits a while or foreach loop. Do not make the common mistake in csh
scripts of using break instead of breakaw in switches.

Finally, cah allows a goto statement, with labels looking as they do in C, that is:

loop:
commands
goto loop

1.6. Supplying Input to Commands in the C Shell

Commands run from Shell scripts receive by default the standard input of the Shell that is run­
ning the script. This is different from previous UNIX shells. It allows Shell scripts to participate
fully in pipelines, but mandates extra notation for commands which are to take in-line data.

Thus, a metanotation is used to supply in-line data to commands in Shell scripts. As an example,
consider this script which runs the editor to delete leading blanks from the lines in each argu­
ment file:

Revision E of 15 May 1985 1-7

Programming the C Shell

tutorial% cat deblanlt
deblank -- remove leading blanks
foreach i ($argv)
ed - $1 « 'EOI:'

l,$sj"[]*//
w

q
'EOI:'
end
tutorial%

Programming Tools

The notation << 'EOF' means that the standard input for the ed command is the text in the
Shell script file up to the next line consisting of exactly 'EOF '. The fact that the EOF is
enclosed in ' characters, that is quoted, prevents the Shell from substituting variables on the
intervening lines. In general, the Shell uses << to terminate the text to be given to the com­
mand. If any part of the phrase following the << is quoted, these substitutions are not per­
formed. In this case, since the form 1, $ was used in the editor script, you needed to ensure that
the $ is not variable-substituted. You can also ensure this by preceding the $ here with a \, for
instance:

l,\h/t[]*//

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

1.7. Catching Interrupts with 'onintr' in the C Shell

0

If your Shell script creates temporary files, you may wish to catch interrupts that occur while 0
the Shell script is executing, so that you can clean up these files. You can then use onintr as fol-
lows:

onintr lab el

where label is a label in your program. If the Shell receives an interrupt, it does a 'goto labef,
and you can remove the temporary files and then do an exit command (which is built in to the
Shell) to exit from the Shell script. If you wish to exit with a non zero status, do the following:

exit (status)

where atatua is the status you want to exit with.

Briefly, there are other Shell features that are useful for writing Shell procedures. You can use
the verboae and echo options and the related -v and -x command-line options to help trace the
actions of the Shell. The -n option causes the Shell only to read commands and not to execute
them.

Also note that cah only executes Shell scripts that begin with the character '#', that is, Shell
scripts that begin with a comment (assuming that another Shell was not specified via the !
mechanism). Similarly, the /bin/ ah on your system may well defer to cah to interpret Shell
scripts which begin with '#'. This allows Shell scripts for both Shells to live in harmony.

There is also another quotation mechanism using '"' that allows only some of the expansion
mechanisms to occur on the quoted string and makes this string into a single word as''' does.

1-8 Revision E of 15 May 1985

0

0

0

0

Programming Tools Programming the C Shell

1.8. Other C-Shell Features

This section describes less commonly used C-Shell features.

1.8.1. Loops at the Terminal and Variables as Vectors

The foreach control structure aids in performing a. number of similar commands. For instance,
To count the number of persons using each Shell, you can say:

tutorial% grep -c cab• /etc/paaavd
27
tutorial% grep -c -v ah• /etc/paaavd
430
tutorial%

You can also use foreach to do this:

tutorial% foreach i ('cab•' '-v ah*')
? grep -c $1 /etc/passwd
? end
27
430

tutorial%

Note here that the Shell prompts for input with '? 'when reading the body of the loop.

Variables that contain lists of filenames or other words are very useful with loops. You can, for
example, do:

tutorial% aet a•('la')
tutorial% echo •a
csh.n csh.rm
tutorial% la
csh.n
csh.rm
tutorial% echo •#a
2
tutorial%

The aet command here set the variable a to a list of all the filenames in the current directory.
You can then iterate over these names to perform any chosen function.

The Shell converts the output of a command within '" characters to a list of words. You can
also place the ''' quoted string within '"' characters to take each (non empty) line as a. com­
ponent of the variable, preventing the lines from being split into words at blanks and tabs. Use
a modifier ':x' later to expand each component of the variable into another variable, splitting it
into separate words at embedded blanks and tabs.

1.8.2. Command Substitution in the C Shell

A command enclosed in ''' characters is replaced, just before filenames a.re expanded, by the
output from that command. Thus, to save the name of the current directory in the variable
pwd, say:

Revision E of 15 May 1985 1-9

Programming the C Shell Programming Tools

set pwd='pwd'

Or to run the ex editor, say:

ex 'grep -1 TRACE . ' .c

This uses as arguments those files whose names end in '.c' which have the string 'TRACE' in
them3.

In particular circumstances, you may need to know the exact nature and order of different sub­
stitutions that the Shell performs and the exact meaning of certain combinations of quotations.
Moreover, the Shell has a number of command line option flags used mostly in writing UNIX pro­
grams and debugging Shell scripts. See the user's manual pages on cah and ah for details.

1.9. Special Characters in the C Shell

The following tables lists the special cah and UNIX system characters. A number of these charac­
ters also have special meaning in expressions. See the cah manual pages for a complete list.

Syntactic
Metacharactera

I
()
&

Filename
Metacharactera
I

?

•
[]

{ }

Quotation
Metacharactera
\ ,
II

Input/ output
Metacharactera
<
>
>&

Deacription

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

Deacription

separates components of a file's pathname
separates root parts of a filename from extensions
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Deacription

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like ', but allows variable and command expansion

Deacription

indicates redirection of standard input
indicates redirection of standard output
indicates redirection of standard output and standard error

! Command expansion also occurs in input redirected with '< <' and within '"' quotations. Refer to the
e,A, manual page tor full details.

1-10 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

Ezpanaion/ •ubatitution
Metacharactera
$

Deuription

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

Deuription Other
Metacharactera

%

begins scratchfile names; indicates Shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

Revision E of 15 May 1985

Programming the C Shell

1-11

Programming the Bourne Shell Programming Tools

Part Il - Programming the Bourne Shell

1.10. Bourne Shell Variables

The Shell provides string-valued variables. Variable names begin with a. letter and consist of
letters, digits and underscores. You may give variables values by writing, for example:

user=fred box=mOOO acct=mhOOOO

which assigns values to the variables uaer, box and acct. To set a. variable (cheeae say) to the
null string, you can say:

cheese=

The value of a variable is substituted by preceding its name with $; for example:

$ echo •user
fred
$

Use variables interactively to provide abbreviations for frequently used strings. For example:

$ b•/uar/fred/bin
$ mv pgm •b
$

moves the file pgm from the current directory to the directory /uar/fred/bin. A more general
notation is available for parameter (or variable) substitution, as in:

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

directs the output of pa to the file /tmp/paa, whereas

ps a >$tmpa

redirects it to the file whose name is tmpa.

Except for $? the following are set initially by the Shell. $? is set after executing ea.ch com­
mand.

1-12 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the Bourne Shell

Variable Ezplanation

$? The exit status (return code) of the last command executed, as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of a return code is dealt with
later under if and while commands.

$# The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

$ $ The process number of this Shell (in decimal). Since process numbers are unique
among all existing processes, this string is frequently used to generate unique tem­
porary filenames. For example:

ps a >/tmp/ps$$

rm /tmp/ps$$
$! The process number of the last process run in the background (in decimal).
$- The current Shell flags, such as -x and -v.

Some variables have a special meaning to the Shell; avoid them in general use.

$MAIL When the Shell is used interactively, it looks at the file specified by this variable before
it issues a prompt. If the specified file has been modified since it was last looked at, the
Shell prints the message you have mail before prompting for the next command. This
variable is typically set in the file .profile, in the user's login directory. For example:

MAIL=/usr/spool/mail/fred

$HOME The default argument for the cd command. The command cd with no argument is
equivalent to:

cd $HOME

This variable is also typically set in .profile.

$PATH A list of directories that contain commands (the aearch path). Each time the Shell exe­
cutes a command, a list of directories is searched for an executable file. If $PATH is not
set, then the current directory, /bin, and /uar/bin are searched by default. $PATH
consists of directory names separated by : . For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /uar/fred/bin,
/bin and /uar/bin are to be searched in that order. In this way individual users can
have their own 'private' commands that are accessible independently of the current
directory. If the command name contains a /, then this directory search is not used.

$PS1 The primary Shell prompt string, by default, '$ '.

$PS2 The Shell prompt when further input is needed, by default, '> '

$IFS The set of characters used by blank interpretation.

Revision E of 15 May 1985 1-13

Programming the Bourne Shell Programming Tools

1.11. Control Flow in the Bourne Shell - for

A frequent use of Shell procedures is to loop through the arguments ($1, $ 2, ...) executing
commands once for each argument. An example of such a procedure is tel which searches the
file /uar/lib/telnoa which contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $1 /usr/lib/telnos; done

The command

$ tel fred

displays those lines in /usr/lib/telnos that contain the string /red. To display those lines contain­
ing /red followed by those for bert, type:

$ tel fred bert

The for loop notation is recognized by the Shell and has the general form

for name ln wl w!! ...
do command-list
done

0

A command-list is a sequence of one or more simple commands separated or terminated by a o
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. Name is a Shell variable that is set to the words w1 w2 ... in
turn each time the command-list following do is executed. If in w1 w2 ... is omitted, then the
loop is executed once for each positional parameter; that is, in $*is assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$1; done

The command:

$ create alpha beta

ensures that two empty files alpha and beta exist and are empty. Use the notation > file on its
own to create or clear the contents of a file. Notice also that a semicolon (or newline) is required
before done.

1.12. Control Flow in the Bourne Shell - case

The case notation provides a multi-way branch. For example:

1-14 Revision E of 15 May 1985

0

0

0

0

Programming Tools

case $# in
1) cat »$1

' '
2) cat »$2 <$1

' '
*) echo ' append [from] to ' usage: "

esac

is an append command. When called with one argument as

$ appenc! file

Programming the Bourne Shell

$# is the string "l" and the standard input is copied onto the end of file using the cat com­
mand. To append the contents of file1 onto file2, say:

$ appenc! file1 file2
$

If the number of arguments supplied to append is other than 1 or 2, a message is displayed indi­
cating proper usage.

The general form of the case command is:

case word in
pattern) command-list;;

esac

The Shell attempts to match word with each pattern, in the order in which the patterns appear.
If a match is found the associated command-liat is executed, and execution of the case is com­
plete. Since * is the pattern that matches any string, you can use it for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu­
ment. The first match found defines the set of commands to be executed. In the example below
the commands following the second * will never be executed.

case $# in
*) ' '
*) ' '

esac

Another example of the use of the case construction is to distinguish between different forms of
an argument. The following example is a fragment of a cc command:

for i
do case $1 in

- [ocs])
-•) echo 'unknown flag $1' ;;
•.c) /lib/co $1 ... ;;
•) echo 'unexpected argument $1' ,,
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a '1'· For example:

Revision E of 15 May 1985 1-15

Programming the Bourne Shell

case $1 in
-xl-y)

esac

is equivalent to

case $1 in
- [xy])

esac

The usual quoting conventions apply, so that

case $1 in
\?)

will match the character ? .

1.13. Here Documents in the Bourne Shell

Programming Tools

The Shell procedure tel in 'Control Flow - for' uses the file /uar/lib/telnoa to supply the data
for grep. An alternative is to include this data within the Shell procedure as a here document, as
m,

for i
do grep $1 « I

fred mh0123
bert mh0789

done

In this example the Shell takes the lines between « ! and ! as the standard input for grep.
The string ! is arbitrary, the document being terminated by a line that consists of the string fol­
lowing<<.

Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg.

ed $3 «%
g/$1/s//$2/g
w

%

The call

tutorial% edg atring1 atring2 file

is then equivalent to the command

1-16

ed file «%
g/string1/s//string2/g
w

%

Revision E of 15 May 1985

0

0

0

Programming Tools Programming the Bourne Shell

and changes all occurrences of atringl in file to atringe. You can prevent substitution by using o '\' to quote the special character $ as in

0

0

ed $3 «+
l,\$s/$1/$2/g
w
+

(This version of edg is equivalent to the first except that ed displays a ? if there are no
occurrences of the string $1). Quoting the terminating string prevents substitution entirely
within a here document, for example:

grep $1 «\#

The document is presented without modification to grep. If parameter substitution 1s not
required in a here document, this latter form is more efficient.

1.14. The 'test' Command

Although the teat command is not part of the Shell, Shell programs frequently use it. For exam­
ple:

test -f file

returns zero exit status if file exists and non-zero exit status otherwise. In general teat evaluates
a predicate and returns the result as its exit status. Some of the more frequently used teat argu­
ments are given here. See teat (1) for a complete specification.

test a true if the argument a is not the null string
test -f file true if file exists
test -r file true if file is readable
test -w file true if file is writable
test -d file true if file is a directory

1.15. Control Flow in the Bourne Shell - while

The actions of the for loop and the case branch are determined by data available to the
Shell. A while or until loop and an if then else branch are also provided whose
actions are determined by the exit status returned by commands. A while loop has the general
form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-liat1 is executed; if a zero exit status is returned
then command-liat1 is executed; otherwise, the loop terminates. For example,

Revision E of 15 May 1985 1-17

Programming the Bourne Shell

while test $1
do ...

shift
done

is equivalent to

for i
do ...
done

Programming Tools

ahift is a Shell command that renames the positional parameters $2, $3, ... as $1, $2,
... and discards $1.

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an unti 1 loop the termination condition is reversed. For exam­
ple,

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
Presumably another process will eventually create the file.

1.16. Control Flow in the Bourne Shell - if

A general conditional branch of the form

if command-list
then command-list
else command-list
fi

is also available to test the value returned by the last simple command following if.

The if command may be used in conjunction with the teal command to test for the existence of
a file as in

if test -f file
then process file
else do something else
fi

An example of the use of if, case and for constructions is given in 'The 'man' Command'
section.

A multiple-test if command of the form

1-18 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the Bourne Shell

if ...
then
else if ...

then
else

fi
fi

if ...

fi

may be written using an extension of the if notation:

if ...
then
elif
then
elif

fi

The following example is the touch command, which changes the 'last modified' time for a list of
files. The command may be used in conjunction with make (1) to force recompilation of a list of
files.

flag=
for i
do case $1 in

-c) flag=N , ,
•) if test -f $1

then ln $1 junk$$; rm junk$$
elif test $flag
then echo file \'$1\' does not exist
else >$1
fi

esac
done

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is displayed. The Shell vari­
able flag is set to some non-null string if the -c argument is encountered. The commands

ln ... ; rm ...

make a link to the file and then remove it, causing the last modified date to be updated.

The sequence

if commandl
then
fi

may be written

command2

commandl && command2

Conversely,

Revision E of 15 May 1985 1-19

Programming the Bourne Shell Programming Tools

conunandl II conunand2

executes command!! only if commandl fails. In each case the value returned is that of the last 0
simple command executed.

1.17. Command Grouping

Commands may be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first, command-liat is simply executed. The second form executes command-liat as a
separate process. For example,

$ (cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking
Shell.

The commands

$ cd x; rm junk

have the same effect but leave the invoking Shell in the directory z.

1.18. Debugging Bourne Shell Procedures

The Shell provides two tracing mechanisms to help in debugging Shell procedures. The first is
invoked within a procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the Shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. Note that saying set -n at a ter­
minal will render the terminal useless until an end-of-file is typed.

The command

set -x

produces an execution trace. Following parameter substitution, each command is displayed as it
is executed. Both flags may be turned off by saying

set -

and the current setting of the Shell flags is available as $- .

1-20 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools Programming the Bourne Shell

1.19. The 'man' Command

The man command displays pages from the on-line manuals. Man is called, for example, as

$ man sh
$ man -t ed
$ man 2 fork

In the first the manual section for ah is printed. Since no section is specified, section 1 is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fork
manual page from Section 2.

Figure 1-1: A version of the man command

cd /usr/man

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s)'
N=n s=l

for 1
do case $i in

[1-9) •) s=$i

-t) N=t , ,

-n) N=n , ,

-•) echo unknown flag \'$1\' ;;

•) if test -f man$s/$1.$s

esac
done

then ${N}roff man0/${N}aa man$s/$1.$s
else : 'look through all manual sections'

found=no

fi

for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$1.$j

then man $j $1
found=yes

fi
done
case $found in

no) echo '$i: manual page not found'
esac

1.20. Keyword Parameters in the Bourne Shell

Shell variables may be given values by assignment or when a Shell procedure is invoked. An
argument to a Shell procedure of the form name=value that precedes the command name causes
value to be assigned to name before execution of the procedure begins. The value of name in the

Revision E of 15 May 1985 1-21

Programming the Bourne Shell Programming Tools

invoking Shell is not affected. For example,

user=fred command

will execute command with user set to /red. The -k flag causes arguments of the form
name-value to be interpreted in this way anywhere in the argument list. Such name, are some­
times called keyword parameters. If any arguments remain, they are available as positional
parameters $1, $2,

You can also use the aet command to set positional parameters from within a procedure. For
example,

set - *

will set $1 to the first filename in the current directory, $2 to the next, and so on. Note that
the first argument, -, ensures correct treatment when the first filename begins with a - .

1.21. Parameter Transmission in the Bourne Shell

When a Shell procedure is called, both positional and keyword parameters may be supplied with
the call. Keyword parameters are also made available implicitly to .a Shell procedure by specify­
ing in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a Shell procedure is called, copies are made

0

of ahl_l exhported vdariables for usefI within the
1

invokehd pro
11
~edure.

11
Mod!fication o

1
f such variables O·

wit m t e proce ure does not a ect the va ues in t e ca mg She . It 1s genera ly true of a Shell
procedure that it may not modify the state of its caller without explicit request on the part of
the caller. (Shared file descriptors are an exception to this rule.)

Names whose values are intended to remain constant may be declared readon/y. The form of this
command is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

1.22. Parameter Substitution in the Bourne Shell

If a Shell parameter is not set, then the null string is substituted for it. For example, if the vari­
able d is not set

$ ecbo $d

or

$ ecbo ${d)

will echo nothing. A default string may be given as in

$ ecbo e{d-.)

which will echo the value of the variable d if it is set and '.' otherwise. The default string is 0

1-22 Revision E of 15 May 1985

0

0

0

Programming Tools

evaluated using the usual quoting conventions so that

$ echo Ud-'•')

will echo * if the variable d is not set. Similarly

$ echo •<d-•1J

Programming the Bourne Shell

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d was not previously set then it is now set to the string '.'. (The notation ${ ... = ... } is
not available for positional parameters.)

If there is no sensible default then the notation

echo ${d?message}

echos the value of the variable d if it has one; otherwise the Shell prints meuage, if the Shell if
not interactive, and stops executing the procedure. If meaaage is absent, then a standard mes­
sage is printed. A Shell procedure that requires some parameters to be set might start as fol­
lows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the Shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set, and the Shell is not
interactive, the Shell stops executing the procedure.

1.23. Command Substitution in the Bourne Shell

In a similar way, you can substitute the standard output from a command as the value of a
parameter. The command pwd displays on its standard output the name of the current direc­
tory. For example, if the current directory is /uar/fred/bin then the command

d='pwd"'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents4 (' .•. ') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a ' must be escaped using a \. For example,

ls 'echo "$1 "'

• Often called backquotes.

Revision E of 15 May 1985 1-23

Programming the Bourne Shell Programming Tools

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs (including here
documents) and the treatment of the resulting text is the same in both cases. This mechanism
allows use of string processing commands within Shell procedures. An example of such a com­
mand is baaename, which removes a specified suffix and the pathname's prefix from a string. For
example,

basename /usr/fred/main.c .c

displays the string main. The following fragment from a cc command illustrates its use:

case $A in

* .c) B='basename $A .c'

esac

that sets B to the part of $A with the pathname and suffix . c stripped.

Here are some composite examples.

• for i in ' ls -t' ; do ...
The variable i is set to the names of files in time order, most recent first.

• set 'date'; echo $6 $2 $3, $4
will print, for instance, 1971 Nov 1, 23:59:59

1.24. Evaluation and Quoting in the Bourne Shell

The Shell is a macro processor that provides parameter substitution, command substitution and
filename generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in the 'Grammar' section.
Before a command is executed, the following substitutions occur.

• Parameter substitution, such as $user

• Command substitution, such as 'pvd'

Only one evaluation occurs so that if, for example, the value of the variable X is the string
$y then

echo $X

will echo $y.

• Blank interpretation

Following the above substitutions, the resulting characters are broken into non-blank words
(blank interpretation). For this purpose 'blanks' are the characters of the string $IFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a
word unless it is quoted. For example,

1-24 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the Bourne Shell

echo ''

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null string.

• Filename generation

Each word is then scanned for the file pattern characters *, ? and [...] , and an alpha­
betical list of filenames is generated to replace the word. Each such filename is a separate
argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
parameter and command substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' ... ', a third quoting
mechanism is provided using double quotes. Within double quotes, parameter and command sub­
stitution occur, but filename generation and the interpretation of blanks does not. The following
characters have special meanings within double quotes and may be quoted using \.

Character Meaning

$ parameter substitution
command substitution

II ends the quoted string
\ quotes the special characters $ ' "\

For example,

echo "$x"

passes the value of the variable x as a single argument to echo. Similarly,

echo "$•"

passes the positional parameters as a single argument and is equivalent to

echo "$1 $2 ... "

The notation $@ is the same as $ * except when it is quoted.

echo"$@"

passes the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ,,,

The following table gives, for each quoting mechanism, the Shell metacharacters that are
evaluated.

Revision E of 15 May 1985 1-25

Programming the Bourne Shell Programming Tools

Table 1-1: Quoting Mechanisms

Quoting Metacharacter
Character

\ $ * It

n n n n n t
y n n t n n

It y y n y t n

Where t=terminator, y=interpreted, and n=not interpreted

In cases where more than one evaluation of a string is required, use the built-in command evaL
For example, if the variable X has the value $y and y has the value pqr, then

eval echo $X

echos the string pqr.

In general, the eval command evaluates its arguments (as do all commands) and treats the result
as input to the Shell. The input is read and the resulting command(s) are executed. For exam­
ple,

wg= 'eva 1 who lgrep'
$~g fred

is equivalent to

who lgrep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I ,
following substitution.

1.25. Error Handling in the Bourne Shell

The treatment of errors detected by the Shell depends on the type of error and on whether the
Shell is being used interactively. A Shell invoked with the -i flag is deemed to be interactive.

Execution of a command (see also 'Command Execution') may fail for any of the following rea­
sons.

• Input/output redirection may fail, for example, if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a 'bus error' or 'memory fault.' See
Figure 3 for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

0

0

In all of these cases the Shell goes on to execute the next command. Except for the last case, the
Shell displays an error message. All remaining errors cause the Shell to exit from a command
procedure. An interactive Shell will return to read another command from the terminal. Such
errors include the following: 0

1-26 Revision E of 15 May 1985

0

0

0

Programming Tools Programming the Bourne Shell

• Syntax errors such as, if ... then ... done

• A signal such as an interrupt. The Shell waits for the current command, if any, to finish
execution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as ed.

The Shell flag -e terminates the Shell if any error is detected.

Signal
Number

1
2
3*
4*
5*
6*
7*
8*
9

10*
11 *
12*
13
14
15

Table 1-2: UNIX Signals

Deacription

hangup
interrupt
quit
illegal instruction
trace trap
!OT instruction
EMT instruction
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination (from kill (1))

Those signals marked with an asterisk produce a core dump if not caught. However, the Shell
itself ignores quit, which is the only external signal that can cause a dump. The signals in this
list of potential interest to Shell programs are 1, 2, 3, 14 and 15.

1.26. Fault Handling in the Bourne Shell

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received it executes the com­
mands

rm /tmp/ps$$; exit

Exit is another built-in command that terminates execution of a Shell procedure. The ezit is
required; otherwise, after the trap has been taken, the Shell will resume executing the procedure
at the place where it was interrupted.

Revision E of 15 May 1985 1-27

Programming the Bourne Shell Programming Tools

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal
is never sent to the process. They can be caught, in which case the process must decide what
action to take when the signal is received. Lastly, they can be left to cause termination of the
process without its having to take any further action. If a signal is being ignored, on entry to
the Shell procedure, for example, by invoking it in the background (see 'Command Execution'),
then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 3). The
cleanup action is to remove the file junk$$.

Figure 1-2: The touch Command

flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for 1
do case $1 in

-c) flag=N , ,
*) if test -f $1

then ln $1 junk$$; rm junk$$
elif test $flag
then echo file \'$1\' does not exist
else >$1
fl

esac
done

The trap command appears before the creation of the temporary file; otherwise it would be possi­
ble for the process to die without removing the file.

Since there is no signal O in UNIX, the Shell uses it to indicate the commands to be executed on
exit from the Shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command:

trap " 1 2 3 15

which causes both the procedure and the invoked commands to ignore the hangup, interrupt,and
kill signals.

Traps may be reset by saying:

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing:

trap

The procedure acan (Figure 4) is an example of the use of trap where there is no exit in the trap
command. Scan takes each directory in the current directory, prompts with its name, and then
executes commands typed at the terminal until an end of file or an interrupt is received. Inter­
rupts are ignored while executing the requested commands but cause termination when acan is
waiting for input.

1-28 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the Bourne Shell

d='pwd'
foriin*
do if test -d $d/$i

then cd $d/$i

Figure 1-3: The scan Command

while echo "$1:"
trap exit 2
read x

do trap : 2; eval $x; done
fi

done

read is a built-in command that reads one line from the standard input and places the result in
the variable which is its argument. read returns a non-zero exit status if either an end-of-file is
read or an interrupt is received.

1.27. Command Execution in the Bourne Shell

To run a command (other than a built-in), the Shell first creates a new process using the fork
system call. The execution environment for the command includes input, output and the states
of signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the Shell
with a new command. For example, a simple version of the nohup command looks like:

trap'' 1 2 3 15
exec$*

The trap turns off the specified signals so that they are ignored by subsequently created com­
mands and exec replaces the Shell by the command specified.

Most forms of input/output redirection have already been described. In the following, word is
only subject to parameter and command substitution. No filename generation or blank interpre­
tation takes place so that, for example,

echo ... >• .c

will write its output into a file whose name 1s * . c. Input/output specifications are evaluated
left to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word, which is created if it
does not already exist.

>> word

< word

<< word

The standard output is sent to file word. If the file exists, then output is appended
(by seeking to the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of Shell input that follow, up to but not
including a line consisting only of word. If word is quoted then no interpretation of
the document occurs. If word is not quoted, then parameter and command substi­
tution occur, and \ is used to quote the characters \ $ ' and the first character
of word. In the latter case newline quoted with backslashes are ignored (c.f. quoted
strings).

Revision E of 15 May 1985 1-29

Programming the Bourne Shell Programming Tools

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

<& digit

<&­
>&-

The standard input is duplicated from file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default O or 1. For example,

..• 2>file

runs a command with message output (file descriptor 2) directed to file .

... 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as

list *·c I lpr &

is modified in two ways. First, the default standard input for such a command is the empty file
/ dev/ null. This prevents two processes (the Shell and the command), which are running in paral­
lel, from trying to read the same input. Chaos would ensue if this were not the case. For exam­
ple,

$ ed file &

would allow both the editor and the Shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and
INTERRUPT signals so that the command ignores them. This allows these signals to be used at
the terminal without causing background commands to terminate. For this reason the UNIX con­
vention for a signal is that if it is set to 1 (ignored), then it is never changed, even for a short
time. Note that the Shell command trap has no effect for an ignored signal.

1.28. Calling the Bourne Shell

The Shell interprets the following flags when it is called. If the first character of argument zero
is a minus, then commands are read from the file .profile.

-c string
If the -c flag is present, commands are read from string.

-s If the -s flag is present or if no arguments remain, commands are read from the standard
input. Shell output is written to file descriptor 2.

-i If the - i flag is present or if the Shell input and output are attached to a terminal (as
determined by gtty), then this Shell is interactive. In this case TERMINATE is ignored (so that
kill O does not kill an interactive Shell), and INTERRUPT is caught and ignored (so that
vai t is interruptable). In all cases, the Shell ignores QUIT.

1-30 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Programming the Bourne Shell

1.29. Bourne Shell Grammar

Commands are parsed initially according to the following grammar.

item: word
input-output
name - value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
1 f command-list then command-list else-part fl

pipeline: command

and or:

pipeline I command

pipeline
andor && pipeline
andor II pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file

file:

< file
» word
<< word

& digit
&-

word

case-part: pattern) command-list

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

Revision E of 15 May 1985 1-31

Programming the Bourne Shell Programming Tools

name: a sequence or letters, digits or underscores starting with a letter

digit: 0 1 2 3 4 5 6 7 8 9

1.30. Bourne Shell Metacharacters and Reserved Words

a) syntactic

pipe symbol

&& 'andf' symbol

11 'orf' symbol

command separator

' '
case delimiter

& background commands

() command grouping

< input redirection

« input from a here document

> output creation

» output append

b) patterns

* match any character(s) including none

? match any single character

[...]
match any of the enclosed characters

c) substitution

${ •.. }
substitute Shell variable

' ... ' substitute command output

d) quoting

\ quote the next character

' ... ' quote the enclosed characters except for '

" It

quote the enclosed characters except for $ ' \ "

1-32 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }
read

Revision E of 15 May 1985

Programming the Bourne Shell

1-33

0.

0

0

0

0

0

Chapter 2

UNIX Programming

This chapter is an introduction to programming on the UNIX system. The emphasis is on how to
write programs that interface to the operating system, either directly or through the standard
1/0 library. The topics discussed include

• handling command arguments

• rudimentary 1/0; the standard input and output

• the standard 1/0 library; file system access

• low-level 1/0: open, read, write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.

Section 2.8 - The Standard I/ 0 Library - describes the standard 1/0 library in detail.

This chapter describes how to write programs that interface with the UNIX operating system in a
nontrivial way. This includes programs that use files by name, that use pipes, that invoke other
commands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of the Sun Refer­
ence Manuals (Uaer'a Manual, Syatem Interface Manual, and Syatem Manager'a Manual)[l].
There is no attempt to be complete; only generally useful material is dealt with. It is assumed
that you will be programming in C, so you must be able to read the language roughly up to the
level of The C Programming Language [2]. You should also be familiar with UNIX itself, at least
to the level of UNIX for Beginnera [3].

2.1. Basics

2.1.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made available
to the function main as an argument count argc and an array argv of pointers to character
strings that contain the arguments. By convention, argv [OJ is the command name itself, so
argc is always greater than 0.

Revision E of 15 May 1985 2-1

UNIX Programming Programming Tools

The following program illustrates the mechanism: it simply echoes its arguments back to the
terminal - This is essentially the echo command.

main(argc, argv)
int argc;
char •argv[);
{

int i;

;• echo arguments•/

for (i = 1; i < argc; i++)
printf("%s%c", argv[i), (i<argc-1)?' ' : '\n');

}

argv is a pointer to an array whose elements are pointers to arrays of characters; each is ter­
minated by \0, so they can be treated as strings. The program starts by printing argv [1] and
loops until it has printed argv [argc-1).

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The 'Standard Input' and 'Standard Output'

The simplest input mechanism is to read from the 'standard input,' which is generally the user's
terminal. The function getchar returns the next input character each time it is called. A file
may be substituted for the terminal by using the < convention (input redirection): if prog uses
getchar, the command line

0

tutorial% prog < filename 0
makes prog read from the file specified by filename instead of the terminal. prog itself need
know nothing about where its input is coming from. This is also true if the input comes from
another program via the pipe mechanism:

tutorial% otherprog I prog

provides the standard input for prog from the standard output (see below) of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on whatever you
are reading. The value of EOF is normally defined to be -1, but it is unwise to take any advan­
tage of that knowledge. As will become clear shortly, this value is automatically defined for you
when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character con the 'standard output', which is also by default
the terminal. The output can be captured on a file by using >: if prog uses putchar,

tutorial% prog > outputfile

writes the standard output on outputfile instead of the terminal. outputfile is created if it
doesn't exist; if it already exists, its previous contents are overwritten. A pipe can be used:

tutorial% prog I otherprog

puts the standard output of prog into the standard input of otherprog.

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to pr int f and putchar may be intermixed in any order; the output
will appear in the order of the calls.

2-2 Revision E of 15 May 1985

0

0

0

0

Programming Tools UNIX Programming

Similarly, the function scanf provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as
getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs 1/0 with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For example, the following program strips out
all ASCII control characters from its input (except for newline and tab).

#include <stdio.h>

main() /• ccstrip: strip non-graphic characters•/
{

}

The line

int c;
while ((c = getchar()) I= EOF)

exit (0) ;

if ((c >= ' ' && c < 0177) II c -- '\t' II c -- '\n')
putchar(c);

#include <stdio.h>

should appear at the beginning of each source file which does 1/0 using the standard 1/0 func­
tions described in section 3(S) of the Syatem Interface Manual - the C compiler reads a file
(/uar/include/atdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

tutorial% cat file1 file2 ••. I ccatrip > output

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary to make the program work properly, but it assures that any caller of the
program will see a normal termination status (conventionally 0) from the program when it com­
pletes. Section 2.5.3 discusses returning status in more detail.

2.3. The Standard 1/0 Library

The 'Standard 1/0 Library' is a collection of routines intended to provide efficient and portable
1/0 services for most C programs. The standard 1/0 library is available on each system that
supports C, so programs that confine their system interactions to its facilities can be transported
from one system to another essentially without change.

This section discusses the basics of the standard 1/0 library. Section 2.8 - The Standard 1/0
Library - contains a more complete description of its capabilities and calling conventions.

2.9.1. Accessing Files

The above programs have all read the standard input and written the standard output, which we
have assumed are magically predefined. The next step is to write a program that accesses a file
that is not already connected to the program. One simple example is we, which counts the lines,
words and characters in a set of files. For instance, the command

Revision E of 15 May 1985 2-3

UNIX Programming Programming Tools

tutorial% we x.c y.c

displays the number of lines, words and characters in x.c and y. c and the totals.

The question is how to arrange for the named files to be read - that is, how to connect the
filenames to the 1/0 statements which actually read the data.

The rules are simple - you have to open a file by the standard library function fopen before it
can be read from or written to. fopen takes an external name (like x.c or y.c), does some
housekeeping and negotiation with the operating system, and returns an internal name which
must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains infor­
mation about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don't need to know the
details, because part of the standard 1/0 definitions obtained by including atdio.h is a structure
definition called FILE. The only declaration needed for a file pointer is exemplified by

FILE • fp, • fopen () ;

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. FILE is a
type name, like int, not a structure tag.

The actual call to fopen in a program has the form:

fp = fopen(name, mode);

0

The first argument of fopen is the name of the file, as a character string. The second argument
is the mode, also as a character string, which indicates how you intend to use the file. The
allowable modes are read ("r"), write ("v"), or append ("a"). In addition, each mode may be
followed by a + sign to open the file for reading and writing. "r+ 11 positions the stream at the 0
beginning of the file, "v+" creates or truncates the file, and "a+" positions the stream to the
end of the file. Both reads and writes may be used on read/write streams, with the limitation
that an fseek, revind, or reading end-of-file must be used between a read and a write or vice
versa.

If a file that you open for writing or appending does not exist, it is created (if possible). Opening
an existing file for writing discards the old contents. Trying to read a file that does not exist is
an error, and there may be other causes of error as well (like trying to read a file when you don't
have permission). If there is any error, fopen returns the null pointer value NULL - defined as
zero in atdio.h.

The next thing needed is a way to read or write the file once it is open. There are several possi­
bilities, of which getc and putc are the simplest. getc returns the next character from a file;
it needs the file pointer to tell it what file. Thus

c = getc(fp)

places in c the next character from the file referred to by fp; it returns EOF when it reaches end
of file. putc is the inverse of getc:

putc(c, fp)

puts the character c on the file fp and returns c as its value. getc and putc return EOF on
error.

When a program is started, three streams are opened automatically, and file pointers are pro-
vided for themh. These stred~ms fia

1
re t~e standard i

1
n
1

pdut, the standard outpdut, and the Nstanda
1
r
1
d 0,

error output; t e correspon mg e pomters are ca e stdin, stdout, an stderr. orma y

2-4 Revision E of 15 May 1985

0

0

0

Programming Tools UNIX Programming

these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin, stdout and stderr are predefined in the 1/0 library as the standard
input, output and error files; they may be used anywhere an object of type FILE * can be.
They are constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they
are processed in order. If there are no arguments, the standard input is processed. This way the
program can be used standalone or as part of a larger process.

#include <stdio.h>

main(argc, argv)
int argc;

/* we: count lines, words, chars*/

char •argv[];
{

}

int c, i, inword;
FILE * fp, * fopen () ;
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = O;

i = l;
fp = stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], "r")) == NULL) {
fprintf(stderr, "we: can't open %s\n", argv[i]);
continue;

}
linect = wordct = charct = inword = O;
while ((c = getc (fp)) I= EOF) {

}

charct++;
if (c == '\n')

linect++;
if (c == ' ' II c == '\t' II c

inword = O;
else if (inword == 0) {

inword = 1;
wordct++;

}

'\n')

printf("%7ld %7ld %7ld", linect, wordct, charct);
printf(argc > 1? "%s\n" : 11\n", argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

printf("%7ld %7ld %7ld total\n", tlinect, twordct, tcharct);
exit (0) ;

The function fpr int f is identical to pr int f, save that the first argument is a file pointer that
specifies the file to be written.

Revision E of 15 May 1985 2-5

UNIX Programming Programming Tools

The function !close is the inverse of fopen; it breaks the connection between the file pointer
and the external name that was established by fopen, freeing the file pointer for another file. o
Since there is a limit on the number of files that a program may have open simultaneously, it's a

1

good idea to free things when they are no longer needed. There is another reason to call
fclose on an output file - it flushes the buffer in which putc is collecting output. !close is
called automatically for each open file when a program terminates normally.

2.3.2. Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output written
on stderr appears on the user's terminal even if the standard output is redirected, unless the
standard error is also redirected. we writes its diagnostics on stderr instead of stdout so that
if one of the files can't be accessed for some reason, the message finds its way to the user's termi­
nal instead of disappearing down a pipeline or into an output file.

The argument of exit is made available to whatever process called the process that is exiting
(see Section 2.5.3, so the success or failure of the program can be tested by another program that
uses this one as a subprocess. By convention, a return value of O signals that all is well; nonzero
values signal abnormal situations.

exit itself calls !close for each open output file, to flush out any buffered output, then calls a
routine named _exit. The function _exit terminates the program immediately without any
buffer flushing; it may be called directly if desired.

2.3.3. Miscellaneous I/0 Functions

The standard 1/0 library provides several other 1/0 functions besides those illustrated above.

Normally output with putc, and such is buffered - use !flush (fp) to force it out immedi­
ately.

fscanf is identical to scanf, except that its first argument is a file pointer (as with fprintf)
that specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprint! are identical to fscanf and fprintf, except that the
first argument names a character string instead of a file pointer. The conversion is done from
the string for sscanf and into it for sprint!, and no input or output is done.

fgets (buf, size, fp) copies the next line from fp, up to and including a newline, into
buf; at most size-1 characters are copied; it returns NULL at end of file. fputs (buf, fp)
writes the string in buf onto file fp.

The function ungetc (c, fp) 'pushes back' the character c onto the input stream fp; a subse­
quent call to getc, fscanf, etc., will encounter c. Only one character of pushback per file is
permitted.

2.4. Low-Level Input Output

0

This section describes the bottom level of 1/0 on the UNIX system. The lowest level of 1/0 in
UNIX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over 0

2-6 Revision E of 15 May 1985

0

0

0

Programming Tools UNIX Programming

what happens. And since the calls and usage are quite simple, this isn't as bad as it sounds.

2.,1.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files, because all
peripheral devices, even the user's terminal, are files in the file system. This means that a single,
homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called 'opening' the file. If you are going to write on a file, it may
also be necessary to create it. The system checks your right to do so - does the file exist? Do
you have permission to access it? - if all is well, returns a small positive integer called a file
deacriptor. Whenever 1/0 is to be done on the file, the file descriptor is used instead of the
name to identify the file. This is roughly analogous to the use of READ (5, ...) and
WRITE (6, ...) in FORTRAN. All information about an open file is maintained by the system;
the user program refers to the file only by the file descriptor.

The file pointers discussed in Section 2.3 are similar in spirit to file descriptors, but file descrip­
tors are more fundamental. A file pointer is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the 'shell') runs a program, it opens
three files, with file descriptors 0, 1, and 2, called standard input, standard output, and standard
error output. All of these are normally connected to the terminal, so if a program reads file
descriptor O and writes file descriptors 1 and 2, it can do terminal 1/0 without opening the files.

If 1/0 is redirected to and from files with < and >, as in

tutorial% prog < infile > outfile

the shell changes the default assignments for file descriptors O and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Normally
file descriptor 2 remains attached to the terminal, so error messages can go there. In all cases,
the file assignments are changed by the shell, not by the program. The program does not need
to know where its input comes from nor where its output goes, so long as it uses file O for input
and 1 and 2 for output.

2.,1.2. Read and Write

All input and output is done by two functions called read and write. For both, the first argu­
ment is a file descriptor. The second argument is a buffer in your program where the data is to
come from or go to. The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. When the file is a terminal, read normally reads only up to the next
newline, which is generally less than what was requested. A return value of zero bytes implies

Revision E of 15 May 1985 2-7

UNIX Programming Programming Tools

end of file, and -1 indicates an error of some sort. For writing, the returned value is the
number of bytes actually written; it is generally an error if this isn't equal to the number sup­
posed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are
1, which means one character at a time ('unbuffered'), and 1024, corresponding to a physical
blocksize on many peripheral devices. This latter size will be most efficient, but even character­
at-a-time 1/0 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This
program will copy anything to anything, since the input and output can be redirected to any file
or device.

#define

main()
{

}

BUFSIZE 1024

/* copy input to output */

char buf[BUFSIZEJ;
int n·

'

while ((n = read(O, buf, BUFSIZE)) > 0)
write(!, buf, n);

exit(O);

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes,
and the next call to read after that will return zero.

0

It is instructive to see how read and write can be used to construct higher-level routines like 0
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered
input.

#define CMASK 0377 /* for making char's > 0 */

getchar() /* unbuffered single character input*/
{

char c;

return((read(O, &c, 1) > 0) ? c & CMASK EOF);
}

c mud be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. The constant 0377 is appropriate for the Sun but not necessarily for other
machines.

The second version of getchar does input in big chunks, and hands out the characters one at a
time:

2-8 Revision E of 15 May 1985

0

0

0

0

Programming Tools

#define CMASK 0377 /' for making char's > 0 '/
#define BUFSIZE 1024

getchar() /' buffered version'/
{

}

static char
static char
static int

buf[BUFSIZE];
'bufp = buf;
n = O;

if (n == 0) { /' buffer is empty'/
n = read(O, buf, BUFSIZE);
bufp = buf;

}
return((--n >= 0) ? •bufp++ & CMASK

2.4.:1. Open, Great, Close, Unlink

EOF);

UNIX Programming

Other than the default standard input, output and error files, you must explicitly open files in
order to read or write them. There are two system entry points for this, open and creat.

open is rather like the fopen discussed in the previous section, except that instead of returning
a file pointer, it returns a file descriptor, which is just an int.

int fd;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is O for read, 1 for write, and 2
for read and write access. open returns -1 if any error occurs; otherwise it returns a valid file
descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided to
create new files, or to rewrite old ones.

fd = creat(name, pmode);

returns a file descriptor if it could create the file called name, and -1 if not. If the file already
exists, creat will truncate it to zero length; it is not an error to creat a file that already
exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode argu­
ment. In the UNIX file system, there are nine bits of protection information associated with a
file, controlling read, write and execute permission for the owner of the file, for the owner's
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner, and
read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one file
to another. The main simplification is that our version copies only one file, and does not permit
the second argument to be a directory:

Revision E of 15 May 1985 2-9

UNIX Programming

#define NULL 0
#define BUFSIZE 1024

Programming Tools

#define PMODE 0644 /* RW for owner, R for group, others*/

main(argc, argv)
int argc;

/* cp: copy fl to f2 */

char •argv[];
{

}

int fl, f2, n;
char buf[BUFSIZE];

if (argc != 3)
error("Usage: cp from to", NULL);

if ((fl= open(argv[l], 0)) == -1)
error("cp: can't open %s", argv[l]);

if ((f2 = creat(argv[2], PMODE)) == -1)
error("cp: can't create Xs", argv[2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) I= n)

error("cp: write error", NULL);
exit(O);

error(sl, s2) /* print error message and die*/
char *sl, *s2;
{

}

printf (sl, s2);
printf ("\n");
exit(l);

As we said earlier, there is a limit (typically 20-32) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must
be prepared to reuse file descriptors. The routine close breaks the connection between a file
descriptor and an open file, and frees the file descriptor for use with some other file. Termina­
tion of a program via exit or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file system.

2.4-4. Random Access - Seek and Lseek

File 1/0 is normally sequential: each read or write takes place at a position in the file right
after the previous one. When necessary, however, a file can be read or written in any arbitrary
order. The system call lseek provides a way to move around in a file without actually reading
or writing:

lseek(fd, offset, origin);

0

0

forces the current position in the file whose descriptor is fd to move to position offset, which
is taken relative to the location specified by origin. Subsequent reading or writing will begin
at that position. offset is a long; fd and origin are int's. origin can be 0, 1, or 2 to o·
specify that offset is to be measured from the beginning, from the current position, or from

2-10 Revision E of 15 May 1985

0

0

0

Programming Tools UNIX Programming

the end of the file, respectively. For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);

To get back to the beginning ('rewind'),

lseek(fd, OL, O);

Notice the OL argument; it could also be written as (long) 0.

With lseek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi­
trary place in a file.

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{

lseek(fd, pos, O); /* get to pos */
return(read(fd, buf, n));

}

2.,$.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries into
the system can incur errors. Usually they indicate an error by returning a value of -1. Some­
times it is nice to know what sort of error occurred; for this purpose all these routines, when
appropriate, leave an error number in the external variable errno. The meanings of the various
error numbers are listed in intro(2) in the Sun Syatem Interface Manual so your program can, for
example, determine if an attempt to open a file failed because it did not exist or because the user
lacked permission to read it. Perhaps more commonly, you may want to display the reason for
failure. The routine perror displays a message associated with the value of errno; more gen­
erally, sys_errno is an array of character strings which can be indexed by errno and
displayed by your program.

2.5. Processes

It is often easier to use a program written by someone else than to invent one's own. This sec­
tion describes how to execute a program from within another.

2.5.1. The 'System' Function

The easiest way to execute a program from another is to use the standard library routine
system. system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to timestamp the output of a
program,

Revision E of 15 May 1985 2-11

UNIX Programming Programming Tools

main () {
system("date"); /* rest of processing*/

}

If the command string has to be built from pieces, the in-memory formatting capabilities of
sprint f may be useful.

Remember that getc and putc normally buffer their input; terminal 1/0 will not be properly
synchronized unless this buffering is defeated. For output, use fflush; for input, see setbuf
in section 2.8.

2.5.2. Low-Level Process Creation - Exec/ and Execv

If you're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library's system routine is based on5.

The most basic operation is to execute another program without returning, by using the routine
exec l. To display the date as the last action of a running program, use

execl ("/bin/date", "date", NULL);

The first argument to execl is the filename of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is, the
last component of the file name), but this is seldom used except as a placeholder. If the com­
mand takes arguments, they are strung out after this; the end of the list is marked by a NULL
argument.

The execl call overlays the existing program with the new one, runs that, then exits. There is
no return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to start the second pass simply by an execl call from the
first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can't be found or is not executable. If you don't know
where date is located, you might try

exeel("/bin/date", "date", NULL);
exeel("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance how many argu­
ments there are going to be. The call is

exeev(filename, argp);

6 system uses /binj,h (the Bourne Shell) to execute the command string, so syntax specific to the C­
Shell will not work.

2-12 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools UNIX Programming

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL
so execv can tell where the list ends. As with execl, filename is the file in which the pro­
gram is found, and argp [OJ is the name of the program. (This arrangement is identical to the
argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like<,>,*,?, and [] in the argument
list. If you want these, use execl to invoke the shell sh, which then does all the work. Con­
struct a string commandline that contains the complete command as it would have been typed
at the terminal, then say

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con­
structing the right information in commandline.

2.5.9. Control of Processes - Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply over­
lay the new program on the old one, to save the old one requires that it first be split into two
copies; one of these can be overlaid, while the other waits for the new, overlaying program to
finish. The splitting is done by a routine called fork:

proc_id =fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the 'process id.' In one of these processes (the 'child'),
proc_id is zero. In the other (the 'parent'), proc_id is nonzero; it is the process number of
the child. Thus the basic way to call, and return from, another program is

if (fork() == 0)
execl ("/bin/sh", "sh", "-c", cmd, NULL); /* in child * /

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the pro­
gram. In the child, the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent, fork returns nonzero so it skips the execl. If there is
any error, fork returns -1.

More often, the parent wants to wait for the child to terminate before continuing itself. This
can be done with the function wait:

int status;

if (fork() == 0)
execl (...) ;

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. The wait returns
the process id of the terminated child, if you want to check it against the value returned by

Revision E of 15 May 1985 2-13

UNIX Programming Programming Tools

fork. Finally, this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status). Still, these three lines are the heart of the standard library's o,

system routine, which we'll show in a moment.

The status returned by vai t encodes in its low-order eight bits the system's idea of the
child's termination status; it is O for normal termination and nonzero to indicate various kinds of
problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to
return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up to point at
the right files (see Section 2.4.1), and all other possible file descriptors are available for use.
When this program calls another one, correct etiquette suggests making sure the same conditions
hold. Neither fork nor the exec calls affects open files in any way. If the parent is buffering
output that must come out before output from the child, the parent must flush its buffers before
the execl. Conversely, if a caller buffers an input stream, the called program will lose any
information that has been read by the caller.

2.5.f Pipes

A pipe is an 1/0 channel intended for use between two cooperating processes: one process writes
into the pipe, while the other process reads from the pipe. The system looks after buffering the
data and synchronizing the two processes. Most pipes are created by the shell, as in

tutorial% la I pr

which connects the standard output of ls to the standard input of pr. Sometimes, however, it 0
is most convenient for a process to set up its own plumbing; in this section, we illustrate how the ,
pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd [2);

stat = pipe (fd) ;
if (stat == -1)

/* there was an error ... */

fd is an array of two file descriptors, where fd [O] is the read side of the pipe and fd [1] is for
writing. These may be used in read, write and close calls just like any other file descriptors.

If a process reads a pipe which is empty, it waits until data arrives; if a process writes into a pipe
which is too full, it waits until the pipe empties somewhat. If the write side of the pipe is closed,
a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a !"unction called popen (cmd,
mode), which creates a process cmd (just as system does), and returns a file descriptor that
will either read or write that process, according to mode. That is, the call

fout = popen("pr", WRITE);

2-14 Revision E of 15 May 1985

0

0

0

0

Programming Tools UNIX Programming

creates a process that executes the pr command; subsequent vrite calls using the file descrip­
tor fout will send their data to that process through the pipe.

popen first creates the pipe with a pipe system call; it then fork's to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the
pipe, then calls the shell (via execl) to run the desired process. The parent likewise closes the
end of the pipe it does not use. These closes are necessary to make end-of-file tests work prop­
erly. For example, if a child that intends to read fails to close the write end of the pipe, it will
never see the end of the pipe file, just because there is one writer potentially active.

#include <stdio.h>

#define READ 0
#define WRITE
#define tst (a,
static int

1
b) (mode -- READ ? (b)
popen_pid;

popen(cmd, mode)
char *cmd;
int mode;
{

int p [2];

if (pipe(p) < 0)
return(NULL);

if ((popen_pid =fork()) == 0) {
close(tst(p[WRITE], p[READ]));
close(tst(O, 1));

(a))

dup(tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl("/bin/sh", "sh", "-c", cmd, O);
_exit(l); /' disaster has occurred if we get here•/

}

}
if (popen_pid == -1)

return(NULL);
close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));

The sequence of close's in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close (tst (0, 1)) ;
dup(tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor O; thus the read side of the pipe becomes the standard
input6• Finally, the old read side of the pipe is closed.

e Yes, this is a bit tricky, but it's a. standard idiom.

Revision E of 15 May 1985 2-15

UNIX Programming Programming Tools

A similar sequence of operations takes place when the child process is supposed to write to the
parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait for the termination of the child process. First, the return value from pclose indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist, even if some of them have ter­
minated; performing the vai t lays the child to rest. Thus:

#include <signal.h>

pclose(fd)
int fd;

/* close pipe fd */

{
register r, (*hstat) () , (*istat) () , (*qstat) () ;
int status;
extern int popen_pid;

close(fd);
istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while ((r = wait(&status)) I= popen...pid && r I= -1);
if (r == -1)

0

status= -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat); O·

signal(SIGHUP, hstat);
return(status);

}

The calls to signa 1 make sure that no interrupts, etc. interfere with the waiting process; this is
the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the
single shared variable popen_pid; it really should be an array indexed by file descriptor. A
popen function, with slightly different arguments and return value is available as part of the
standard 1/0 library discussed below. As currently written, it shares the same limitation.

2.6. Signals - Interrupts and All That

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there's nothing very useful that can be done from
within C about program faults, which arise mainly from illegal memory references or from execu­
tion of peculiar instructions, we'll discuss only the outside world signals: interrupt and quit,
which are generated from the keyboard7, hangup, caused by hanging up the phone on dialup
lines, and terminate, generated by the kill command. When one of these events occurs, the

7 The current binding or characters and signals can be discovered by the stty all command. On Sun
systems, typing control-C usually generates the kill signal and control-\ generates the quit signal.

2-16 Revision E of 15 May 1985

0

0

0

0

Programming Tools UNIX Programming

signal is sent to all processes which were started from the corresponding terminal - the signal
terminates the process unless other arrangements have been made. In the quit case, a core
image file is written for debugging purposes.

signal is the routine which alters the default action. signal has two arguments; the first
specifies the signal to be processed, and the second argument specifies what to do with that sig­
nal. The first argument is just a numeric code, but the second is either a function, or a some­
what strange code that requests that the signal either be ignored or that it be given the default
action. The include file aignal.h gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal(SIGINT, SIG_IGN);

means that interrupts are ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used so that
the program can clean up unfinished business before terminating, for example to delete a tem­
porary file:

#include <signal.h>

main ()
{

}

onintr (
{

}

int onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, onintr);

/• Process . . . • /

exit(O);

unlink(tempfile);
exit (1);

Why the test and the double call to signal? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non­
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground processes. If this program began by announcing that all interrupts
were to be sent to the onintr routine regardless, that would undo the shell's effort to protect it
when run in the background.

Revision E of 15 May 1985 2-17

UNIX Programming Programming Tools

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that o,
signal returns the previous state of a particular signal. If signals were already being ignored,
the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to
stop what it is doing and return to its own command processing loop. Think of a text editor:
interrupting a long display should not terminate the edit session and lose the work already done.
The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main()
{

}

int (•istat) () , onintr () ;

istat = signal(SIGINT, SIG_IGN); /• save original status•/
setjmp(sjbuf); /• save current stack position•/
if (!stat I= SIG_IGN)

signal(SIGINT, onintr);

/• main processing loop•/

onintr ()
{

printf("\nlnterrupt\n");
longjmp(sjbuf); /• return to saved state•/

}

The include file aetjmp.h declares the type jmp_buf - an object in which the state can be
saved. sjbuf is such an object. The setjmp routine then saves the state of things. When an
interrupt occurs the onintr routine is called, which can display a message, set flags, or what­
ever. longjmp takes as argument an object set by setjmp, and restores control to the location
following the call to setjmp, so control (and the stack level) will pop back to the place in the
main routine where the signal is set up and the main loop entered. Notice, by the way, that the
signal gets set again after an interrupt occurs. This is necessary; most signals are automatically
reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called when a signal occurs sets a
flag and then returns instead of calling exit or longjmp, execution continues at the exact
point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the termi­
nal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If
it were really true, as we said above, that 'execution resumes at the exact point it was inter­
rupted,' the program would continue reading the terminal until the user typed another line.
This behavior might well be confusing, since the user might not know that the program is read­
ing; he presumably would prefer to have the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read when execution resumes after the signal,
returning an error code which indicates what happened.

2-18 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools UNIX Programming

Thus programs which catch and resume execution after signals should be prepared for 'errors'
which are caused by interrupted system calls. The ones to watch out for are reads from a termi­
nal, wait, and pause. A program whose onintr routine just sets int flag, resets the inter­
rupt signal, and returns, should usually include code like the following when it reads the stan­
dard input:

if (getchar() == EOF)
if (intflag)

/• EOF caused by interrupt•/
else

/• true end-of-file•/

A final subtlety to keep in mind becomes important when catching signals is combined with exe­
cuting other programs. Suppose a program catches interrupts, and also includes a method (like
'!' in the editor) whereby other programs can be executed. Then the code should look something
like this:

if (fork() == 0)
execl (...);

signal(SIGINT, SIG_IGN);
wait(&status);
signal(SIGINT, onintr);

/• ignore interrupts•/
/• until the child is done•/
/• restore interrupts•/

Why is this? Again, it's not obvious, but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function system:

#include <signal.h>

system(s)
char *s;

/• run command strings•/

{

}

int status, pid, w;
register int (•istat) () , (•qstat) () ;

if ((pid = fork ()) == 0) {

}

execl("/bin/sh", "sh", "-c", s, O);
_exit(127);

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) I= pid && w I= -1)

if (w == -1)
status= -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat);
return(status);

Revision E of 15 May 1985 2-19

UNIX Programming Programming Tools

As an aside on declarations, the function signal obviously has a rather strange second argu-
ment. It is in fact a pointer to a function delivering an integer, and this is also the type or the o,
signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but a.re chosen
so they coincide with no possible actual functions. For the enthusiast, here is how they a.re
defined for the Sun system - the definitions should be sufficiently ugly and nonporta.ble to
encourage use or the include file.

#define S!G_DFL
#define SIG_IGN

2. 7. References

(int (*) ())0
(int (*) ()) 1

[1 J Sun Microsystems Reference Manuals: Command, Reference Manual and Syatem Interface
Manual.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.

[3] B. W. Kernighan, UNIX for Beginner, - Second Edition, Bell Laboratories, 1978.
Reprinted in the Sun Tutorial for Beginner a Manual.

2-20 Revision E or 15 May 1985

0

0

0

0

0

Programming Tools UNIX Programming

2.8. The Standard 1/0 Library

The standard 1/0 library was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita­
tion in using it, no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use
mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines non-Sun running a
version of UNIX.

2.8.1. General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no spe­
cial library argument is needed for loading. All names in the include file intended only for inter­
nal use begin with an underscore _ to reduce the possibility of collision with a user name. The
names intended to be visible outside the package are

stdin

stdout

stderr

EOF

NULL

FILE

the name of the standard input stream

the name of the standard output stream

the name of the standard error stream

is actually -1, and is the value returned by the read routines on end-of-file or error

is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

expands to struct _iob and is a useful shorthand when declaring pointers to
streams

BUFSIZ is a number (viz. 1024) of the size suitable for an 1/0 buffer supplied by the user.
See setbuf, below

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here to
point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderr are constants and may
not be assigned to.

Revision E of 15 May 1985 2-21

UNIX Programming

2.8.2. Standard I/0 Library Calls

FILE *fopen(filename, type)
char *filename;
char •type;

Programming Tools

opens the file and, if needed, allocates a buffer for it. filename is a character string specifying
the name. type is a character string (not a single character). It may be "r", "w", or "a" to
indicate intent to read, write, or append. In addition, each mode may be followed by a + sign to
open the file for reading and writing. "r+" positions the stream at the beginning of the file,
"w+" creates or truncates the file, and "a+" positions the tream to the end of the file. Both
reads and writes may be used on read/write streams, with the- limitation that an fseek,
rewind, or reading end-of-file must be used between a read and a write or vice versa. The
value returned is a file pointer. If it is NULL the attempt to open failed.

FILE *freopen(filename, type, ioptr)
char *filename;
char •type;
FILE *ioptr;

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If the
attempt to open fails, NULL is returned, otherwise ioptr is returned, which now refers to the
new file. Often the reopened stream is stdin or stdout. The filename and type parame­
ters are as for fopen.

int getc (ioptr)
FILE • ioptr;

returns the next character from the stream named by ioptr, which is a pointer to a file such as
returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or when an
error occurs. The null character \0 is a legal character.

int fgetc(ioptr)
FILE • ioptr;

acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an argu­
ment, etc.

int putc(c, ioptr)
int c;
FILE *ioptr;

putc writes the character c on the output stream named by ioptr, which is a value returned
from fopen or perhaps stdout or stderr. The character is returned as value, and EOF is
returned on error.

int fputc(c, ioptr)
int c;
FILE *ioptr;

acts like putc but is a genuine function, not a macro.

int fclose(ioptr)
FILE *ioptr;

The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated by
the 1/0 system is freed. fclose is automatic on normal termination of the program.

2-22 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

int fflush(ioptr)
FILE •ioptr;

UNIX Programming

Any buffered information on the (output) stream named by ioptr is written out. Output files
are normally buffered if they are not directed to the terminal.

(void) exit(errcode);
int errcode;

terminates the process and returns its argument as status to the parent. This is a special version
of the routine which calls fflush for each output file. To terminate without flushing, use
_exit.

int feo f (ioptr)
FILE • ioptr;

returns nonzero when end-of-file has occurred on the specified input stream.

int ferror(ioptr)
FILE •ioptr;

returns nonzero when an error has occurred while reading or writing the named stream. The
error indication lasts until the file has been closed.

int getchar () ;

is identical to getc (stdin).

int putchar(c);

is identical to putc (c, stdout).

char •tgets(s, n, ioptr)
char *s;
int n;
FILE •ioptr;

reads to n-1 characters, or up to a newline character, whichever comes first, from the stream
ioptr into the string pointed to by the character pointer s. A null character is placed after the
last character read in the strings s. fgets returns the first argument, or NULL if error or end­
of-file occurred.

int puts(s)
char *s;

puts copies the null-terminated strings specified by s onto the standard output stream and
appends a newline character.

int fputs(s, ioptr)
char *s;
FILE •ioptr;

writes the null-terminated string (character array) s on the stream ioptr. No newline 1s
appended. The last character transmitted is returned as value, or EOF is returned on error.

int ungetc(c, ioptr)
int c;
FILE • ioptr;

The argument character c is pushed back on the input stream named by ioptr. Only one
character may be pushed back.

Revision E of 15 May 1985 2-23

UNIX Programming

int printf(format, al, ...)
char *format;

int fprintf(ioptr, format, al, ...)
FILE •ioptr;
char *format;

int sprintf(s, format, al, ...)
char •s;
char *format;

Programming Tools

printf writes on the standard output. fprintf writes on the output stream named by ioptr.
sprintf puts characters in the character array (string) named bys. The specifications are as
described in printf(3) in the Sun Sy.tern Interface Manual.

All three functions return the number of characters actually transmitted, except that printf
and fpr int f return EOF if any error condition exists on the output file.

int scanf(format, al, ...)
char *format;

int fscanf(ioptr, format, al, ...)
FILE •ioptr;
char *format;

int sscanf(s, format, al, ...)
char •s;
char •format;

scanf reads from the standard input. fscanf reads from the named input stream. sscanf
reads from the character string supplied as s. scan f reads characters, interprets them accord­
ing to the format, and stores the results in its arguments. Each routine expects as arguments a
control string format, and a set of arguments, each of which muat be a pointer, indicating
where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input character does not match what was
called for in the control string.

int fread(ptr, sizeof(*ptr), nitems, ioptr)
unsigned nitems;
FILE • ioptr;

reads ni tems of data of the type of *ptr from file ioptr into the memory area starting at
ptr. No advance notification that binary 1/0 is being done is required. fread returns the
number of items actually read from the specified stream.

int fwrite(ptr, sizeof(•ptr), nitems, ioptr)
unsigned nitems;
FILE •ioptr;

Like fread, but in the other direction. fwrite returns the number of items actually transmit­
ted to the specified stream. This may possibly be less than the number of items requested if an
error occurs while the transfer is in process.

2-24 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

(void) rewind(ioptr)
!:ILE *ioptr;

UNIX Programming

rewinds the stream named by ioptr. It is not very useful except on input, since a rewound out­
put file is still open only for output.

int system(string)
char *string;

The string is executed by the shell as if typed at the terminal. The return value is the exit
code of the invoked shell, which is usually the exit code of the last command executed by it.

int getw (ioptr)
!:ILE *ioptr;

returns the next word from the input stream named by ioptr. EOF is returned on end-of-file or
error, but since this a perfectly good integer, feof and ferror should be used. A 'word' is 32
bits on the Sun Workstation.

int putw(w, ioptr)
!:ILE *ioptr;

writes the integer w on the named output stream. putw returns the current error status of the
specified stream, as if an ferror call had been made.

(void) setbuf(ioptr, buf)
!:ILE *ioptr; char *buf;

setbuf may be used after a stream has been opened but before 1/0 has started. If buf is
NULL, the stream is unbuffered. Otherwise the buffer supplied is used. It must be a character
array of sufficient size:

char buf[BUE'SIZ];

(void) setbuffer(ioptr, buf, size)
!:ILE *ioptr;
char *buf;
int size;

setbuffer is like setbuf (described above), but can be used when a specified, nonstandard
buffer size should be used.

int fileno(ioptr)
!:ILE *ioptr;

returns the integer file descriptor associated with the file.

int fseek(ioptr, offset, ptrname)
!:ILE *ioptr;
long offset;
int ptrname;

The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 1,
the offset is measured from the current read or write pointer; if ptrname is 2, the offset is meas­
ured from the end of the file. The routine accounts properly for any buffering. When this rou­
tine is used on non UNIX systems, the offset must be a value returned from ftell and the
ptrname must be 0.

Revision E of 15 May 1985 2-25

UNIX Programming Programming Tools

long ftell(ioptr)
FILE *ioptr;

The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. On non UNIX systems the value of this call is
useful only for handing to fseek, so as to position the file to the same place it was when ftell
was called.

int getpw(uid, buf)
int uid;
char *buf;

The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and O is returned. If no line is found corresponding to the
user ID then 1 is returned.

char •malloc(num)
int num;

allocates num bytes. The pointer returned is aligned so as to be usable for any purpose. NULL is
returned if no space is available.

int free (ptr)
char *ptr;

free frees up memory previously allocated by malloc. free returns a O if any errors were
detected (such as ptr being misaligned), and returns 1 otherwise. Disorder can be expected if
the pointer was not obtained from malloc.

char •calloc(num, size);
unsigned num;
unsigned size;

allocates space for num items, each of size size. The space is guaranteed to be set to O and the
pointer is aligned so as to be usable for any purpose. NULL is returned if no space is available.

(void) cfree(ptr, num, size)
char *ptr;
unsigned num;
unsigned size;

Space is returned to the pool used by ca 11cc. Disorder can be expected if the pointer was not
obtained from callee.

The following are macros whose definitions may be obtained by including <ctype. h>.

isalpha (c) returns nonzero if c is alphabetic.

isupper (c) returns nonzero if c is upper-case alphabetic.

is lower (c) returns nonzero if c is lower-case alphabetic.

isdigit (c) returns nonzero if c is a digit.

isxdigit (c) returns nonzero if c is a hexadecimal digit - that is, one of 'O' through '9', 'a'
through 'f', or 'A' through 'F'. ·

isspace (c) returns nonzero if c is a spacing character: tab, newline, carriage return, vertical
tab, form feed, space.

2-26 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools UNIX Programming

ispunct (c) returns nonzero if c is any punctuation character, that is, not a space, letter, digit
or control character.

isalnum(c) returns nonzero if c is a letter or a digit.

isprint (c) returns nonzero if c is printable - a letter, digit, space, or punctuation character.

iscntrl (c) returns nonzero if c is a control character.

isascii (c) returns nonzero if c is an ASCII character, that is, less than octal 0200.

isgraph (c) returns nonzero if c is a printing character - like isprint (c) but doesn't
include the space character.

toupper (c) returns the upper-case character corresponding to the lower-case letter c.

tolower (c) returns the lower-case character corresponding to the upper-case letter c.

Revision E of 15 May 1985 2-27

I
0

I

0

O'

0

0

0

Chapter 3

Lint - A C Program Checker

Lint examines C source programs, detecting a number of bugs and obscurities. Lint enforces the
type rules of C more strictly than the C compiler. Lint may also be used to enforce a number of
portability restrictions involved in moving programs between different machines and/or operat­
ing systems. Another option detects a number of wasteful, or error-prone, constructions which
nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them for consistency.

The separation of function between lint and the C compilers has both historical and practical
rationale. The compilers turn C programs into executable files rapidly and efficiently. This is
possible in part because the compilers do not do sophisticated type checking, especially between
separately compiled programs. Lint takes a more global, leisurely view of the program, looking
much more carefully at the compatibilities.

This document discusses the use of lint, gives an overview of its implementation, and gives some
hints on writing machine-independent C code.

3.1. Using Lint

Suppose there are two C[l] source files, file1.c and file!!.c, which are ordinarily compiled and
loaded together. The command:

tutorial% lint file1,c file2,c

produces messages describing inconsistencies and inefficiencies in the programs. Lint enforces
the typing rules of C more strictly than the C compiler (for both historical and practical reasons)
enforces them. The command:

tutorial% lint -p file1,c file2,c

produces, in addition to the types of messages described above, additional messages relating to
portability of the programs to other operating systems and machines. Replacing the -p by -b
produces messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying -hp gets the whole works.

The next several sections describe the major messages; the document closes with sections discuss­
ing the implementation and giving suggestions for writing portable C. There is a summary of
lint options in section 3.21.

Revision E of 15 May 1985 3-1

Lint - A C Program Checker Programming Tools

3.2. A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether a given
function in a program ever gets called may depend on the input data. Deciding whether exit is
ever called is equivalent to solving the famous 'halting problem,' which is known to be recur­
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can
never be called. If a function is mentioned, lint assumes it can be called; this is not necessarily
so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form 'zzz might
be a bug' are easy to generate, but are acceptable only in proportion to the fraction of real bugs
they uncover. If this fraction of real bugs is too small, the messages lose their credibility and
serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages which lint
produces.

3.3. Unused Variables and Functions

As programs evolve and develop, previously used variables and arguments to functions may
become unused; it is not uncommon for external variables, or even entire functions, to become
unnecessary, and yet not be removed from the source. These 'errors of commission' rarely make
working programs fail, but they are a source of inefficiency, and make programs harder to under­
stand and change. Moreover, information about such unused variables and functions can occa­
sionally serve to discover bugs; if a function does a necessary job, and is never called, something
is wrong!

Lint complains about variables and functions which are defined but not otherwise mentioned.
An exception is variables which are declared through explicit extern statements but are never
referenced; thus the statement:

extern float sin();

will evoke no comment if ain is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they can
be discovered by adding the -x option to the lint invocation.

Certain styles of programming require many functions to be written with similar interfaces; fre­
quently, some of the arguments may be unused in many of the calls. The -v option is available
to suppress the printing of complaints about unused arguments. When -v is in effect, no mes­
sages are produced about unused arguments except for those arguments which are unused and
also declared as register arguments; this can be considered an active (and preventable) waste of
the register resources of the machine.

There is one case where information about unused, or undefined, variables is more distracting
than helpful. This is when lint is applied to some, but not all, files out of a collection which are
to be loaded together. In this case, many of the functions and variables defined may not be used,
and, conversely, many functions and variables defined elsewhere may be used. The -u option
may be used to suppress the spurious messages which might otherwise appear.

3-2 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Lint - A C Program Checker

3.4. Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult to do
well; many algorithms take a good deal of time and space, and still produce messages about per­
fectly valid programs. Lint detects local variables (automatic and register storage classes) whose
first use appears physically earlier in the input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a 'use,' since the actual use may occur
at any later time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very sim­
ple and quick to implement, since the true flow of control need not be discovered. It does mean
that lint can complain about some programs which are legal, but these programs would probably
be considered bad on stylistic grounds (for example, might contain at least two goto's). Because
static and external variables are initialized to 0, no meaningful information can be discovered
about their uses. The algorithm deals correctly, however, with initialized automatic variables,
and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set and
never used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs.

3.5. Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It complains
about unlabeled statements immediately following goto, break, continue, or return state­
ments. An attempt is made to detect loops which can never be left at the bottom, detecting the
special cases while{l) and for{;;) as infinite loops. Lint also complains about loops which
cannot be entered at the top; some valid programs may have such loops, but at best they are bad
style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of detect­
ing functions which are called and never return. Thus, a call to exit may cause unreachable
code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement that lint does not complain about is a break statement that
cannot be reached - programs generated by yacc[2], and especially lez[3], may have literally
hundreds of unreachable break statements. The -0 option in the C compiler often eliminates
the resulting object code inefficiency. Thus, these unreached statements are of little importance
- there is typically nothing the user can do about them, and the resulting messages would
clutter up the lint output. If these messages are desired, lint can be invoked with the -b
option.

3.6. Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use
function 'values' which are never returned. Lint addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both:

return (ezpr) ;

Revision E of 15 May 1985 3-3

Lint - A C Program Checker Programming Tools

and:

return;

statements results in the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a)

return (3);
g ();

}

Notice that, if a tests false, f will call g and then return with no defined return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also accounts
for a substantial fraction of the 'noise' messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is some­
times, or always, unused. When the value is always unused, it may constitute an inefficiency in
the function definition. When the value is sometimes unused, it may represent bad style (for
example, not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also detected.
This is a serious problem. Amazingly, this bug has been observed on a couple of occasions in
'working' programs; the desired function value just happened to have been computed in the
function return register!

3. 7. Type Checking

Lint enforces the type checking rules of C more strictly than the compiler does. The additional
checking is in four major areas: across certain binary operators and implied assignments, at the
structure selection operators, between the definition and uses of functions, and in the use of
enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (? :), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double
types may be freely intermixed. The types of pointers must agree exactly, except that arrays of
z's can, of course, be intermixed with pointers to z's.

The type checking rules also require that, in structure references, the left operand of the -> be
a pointer to structure, the left operand of the • be a structure, and the right operand of these
operators be a member of the structure implied by the left operand. Similar checking is done for
references to unions.

3-4 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Lint - A C Program Checker

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside from this, all actual arguments must
agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed with
other types, or other enumerations, and that the only operations applied are -, initialization,
==, !=, and function arguments and return values.

3.8. Type Casts

The type casting feature in C was introduced largely as an aid to producing more portable pro­
grams. Consider the assignment:

p = 1 ;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char •)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It seems
harsh for lint to continue to complain about this. On the other hand, if this code is moved to
another machine, such code should be looked at carefully. The -c option controls the printing
of comments about casts. When -c is in effect, casts are treated as though they were assign­
ments subject to complaint; otherwise, all legal casts are passed without comment, no matter
how strange the type mixing seems to be.

3.9. Nonportable Character Use

On the PDP-II, characters are signed quantities, with a range from -128 to 127. In most other C
implementations, characters take on only positive values. Thus, lint will mark certain comparis­
ons and assignments as being illegal or nonportable. For example, the fragment:

char c;

if ((c = get char ()) < 0) ...

works on the PDP-II, but will fail on machines where characters always take on positive values.
The real solution is to declare c an integer, since getchar is actually returning integer values. In
any case, lint will say 'nonportable character comparison'.

A similar issue arises with bitfields; when assignments of constant values are made to bitfields,
the field may be too small to hold the value. This is especially true because on some machines
bitfields are considered as signed quantities. While it may seem unintuitive to consider that a
two-bit field declared of type int cannot hold the value 3, the problem disappears if the bitfield
is declared to have type unsigned.

Revision E of 15 May 1985 3-5

Lint - A C Program Checker Programming Tools

3.10. Assignments of longs to ints

Bugs may arise from the assignment of a long to an int, which may lose accuracy. This may
happen in programs which have been incompletely converted to use typedefs. When a
typedef variable is changed from int to long, the program can stop working because some
intermediate results may be assigned to int's, losing accuracy. Since there are a number of legi­
timate reasons for assigning longs to ints, the detection of these assignments is enabled by the
-a option.

3.11. Strange Constructions

Lint flags several perfectly legal, but somewhat strange, constructions - it is hoped that the
messages encourage better code quality, clearer style, and may even point out bugs. The -h
option is used to enable these checks. For example, in the statement:

*P++ ;

the • does nothing; this provokes the message 'null effect' from lint. The program fragment:

unsigned x; if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test:

if(X > 0) ...

is equivalent to:

if(XI= 0)

which may not be the intended action. Lint will say 'degenerate unsigned comparison' in these
cases. If one says:

if(1 I= 0) ...

lint reports 'constant in conditional context', since the comparison of 1 with O gives a constant
result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and format­
ting, making such bugs extremely hard to find. For example, the statements:

if(x&077 == o) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

0

0

Finally, when the -h option is in force lint complains about variables which are redeclared in o
inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered

3-6 Revision E of 15 May 1985

0

0

0

Programming Tools Lint - A C Program Checker

by many (including the author) to be bad style, usually unnecessary, and frequently a bug.

3.12. Ancient History

There are several forms of older syntax which are being officially discouraged. These £all into
two classes, assignment operators and initialization.

The older forms of assignment operators (for example, =+, =-, ...) could result in ambiguous
expressions, such as:

a =-1 ;

which could be taken as either:

a =- 1 ;

or:

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro sub­
stitution. The newer, and preferred operators (+=, -=, etc.) have no such ambiguities. To
spur the abandonment of the older forms, lint complains about these old-fashioned operators.,
and the Sun C compiler issues warning messages about them.

A similar issue arises with initialization. The older language allowed:

int X 1 . •

to initialize :z to 1, also creating syntactic difficulties. For example:

int X (-1) ;

looks somewhat like the beginning of a £unction declaration:

int X (y) {

and the compiler must read a £air ways past z in order to sure what the declaration really is.
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int X = -1 ;

This is free of any possible syntactic ambiguity.

3.13. Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others, due
entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign integer
pointers to double pointers, since double-precision values may begin on any integer boundary.
On the Honeywell 6000, double-precision values must begin on even word boundaries; thus, not

Revision E of 15 May 1985 3-7

Lint - A C Program Checker Programming Tools

all such assignments make sense. Lint tries to detect cases where pointers are assigned to other
pointers, and such alignment problems might arise. The message 'possible pointer alignment o,
problem' results from this situation whenever either the -p or -h options are in effect.

3.14. Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine-dependent. For example, on machines (like the PDP-11) in which the stack runs back­
wards, function arguments will probably be best evaluated from right-to-left; on machines with a
stack running forward, left-to-right seems most attractiw. Function calls embedded as argu­
ments of other functions may or may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side effects, such as the assignment operators and
the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the C
language leaves the order of evaluation of complicated expressions up to the local compiler, and,
in fact, the various C compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is changed by a side effect, and
also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For exam­
ple, the statement:

a[i] = b[i++)

will draw the complaint:

warning: i evaluation order undefined

3.15. Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable C
Compiler[4], [5] which is the basis of many C compilers, including Sun's. This compiler does lexi­
cal and syntax analysis on the input text, constructs and maintains symbol tables, and builds
trees for expressions. Instead of writing an intermediate file which is passed to a code generator,
as the compilers do, lint produces an intermediate file which consists of lines of ASCil text. Each
line contains an external variable name, an encoding of the context in which it was seen (use,
definition, declaration, etc.), a type specifier, and a source file name and line number. The infor­
mation about variables local to a function or file is collected by accessing the symbol table, and
examining the expression trees.

Comments about local problems are produced as detected. The information about external
names is collected onto an intermediate file. After all the source files and library descriptions
have been collected, the intermediate file is sorted to bring all information collected about a
given external name together. The second, rather small, program then reads the lines from the
intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available to both
passes of lint.

3-8 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools Lint - A C Program Checker

3.16. Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operating
system. This means that the implementation of C tends to follow local conventions rather than
adhere strictly to UNIX system conventions. Despite these differences, many C programs have
been successfully moved to GCOS and the various IBM installations with little effort. This section
describes some of the differences between the implementations, and discusses the lint features
which encourage portability.

Uninitialized external variables are treated differently in different implementations of C. Sup­
pose two files both contain a declaration without initialization, such as:

int a;

outside of any function. The UNIX loader resolves these declarations, and sets aside only a single
word of storage for a. Under the GCOS and IBM implementations, this is not feasible (for various
stupid reasons!) so each such declaration sets aside a word of storage called a. When loading or
library editing takes place, this creates fatal conflicts which prevent the proper operation of the
program. Lint detects such multiple definitions if it is invoked with the -p option.

A related difficulty comes from the amount of information retained about external names during
the loading process. On the UNIX system, externally known names have seven significant charac­
ters, with the upper /lower case distinction kept. On the IBM systems, there are eight significant
characters, but the case distinction is lost. On GCOS, there are only six characters, of a single
case. This leads to situations where programs run on the UNIX system, but encounter loader
problems on the IBM or GCOS systems. Lint -p maps all external symbols to one case and trun­
cates them to six char.acters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX system
are eight bit ASCII, while they are eight bit EBCDIC on the IBM, and nine bit ASCII on GCOS.

Moreover, character strings go from high to low bit positions ('left to right') on GCOS and IBM,
and low to high ('right to left') on the PDP-II. This means that code attempting to construct
strings out of character constants, or attempting to use characters as indices into arrays, must be
looked at with great suspicion. Lint is of little help here, except to option multi-character char­
acter constants.

Of course, the word sizes are different! This is less troublesome than might be expected, at least
when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The
main problems are likely to arise in shifting or masking. C now supports a bit-field facility,
which can be used to write much of this code in a reasonably portable way. Frequently, porta­
bility of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing:

X &= 0177700;

to clear the low order six bits of :z. This suffices on the PDP-II, but fails badly on GCOS and IBM.
If the bit field feature cannot be used, the same effect can be obtained by writing:

X &= - 077 ;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-II, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.

Revision E of 15 May 1985 3-9

Lint - A C Program Checker !Programming Tools

Characters are considered signed integers on the PDP-II, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-11 hardware o, -
which has infiltrated itself into the C language. Ir there were a good way to discover the pro-
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in fact is.
The issues involved here are rarely subtle or mysterious, at least to the implementor of the pro­
gram, although they can involve some work to straighten out. The most serious bar to the por­
tability of UNIX system utilities has been the inability to mimic essential UNIX system functions
on the other systems. The inability to seek to a random character position in a text file, or to
establish a pipe between processes, has involved far more rewriting and debugging than any of
the differences in C compilers. On the other hand, lint has been very helpful in moving the
UNIX operating system and associated utility programs to other machines.

3.17. Shutting Lint Up

There are occasions when the programmer is smarter than lint. There may be valid reasons for
'illegal' type casts, functions with a variable number of arguments, etc. Moreover, as specified
above, the flow of control information produced by lint often has blind spots, causing occasional
spurious messages about perfectly reasonable programs. Thus, some way of communicating with
lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would require
current and old compilers to recognize these keywords, if only to ignore them. This has both
philosophical and practical problems. New preprocessor syntax suffers from similar problems.

What was finally done was to make lint recognize a number of words when they were embedded
in comments. This required minimal preprocessor changes; the preprocessor just had to agree to
pass comments through to its output, instead of deleting them as had been previously done.
Thus, lint directives are invisible to the compilers, and the effect on systems with the older
preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in the pro­
gram cannot be reached, but this is not apparent to lint, this can be asserted by placing the
directive

/* NOTREACHED */

just before that spot in the program. Similarly, if it is desired to turn off strict type checking for
the next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression. The -v
option can be turned on for one function by the directive:

/* ARGSUSED */

Complaints about variable numbers of arguments in calls to a function can be turned off by the
directive:

3-10 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools Lint - A C Program Checker

/* VARARGS •/

preceding the function definition. In some cases, it is desirable to check the first several argu­
ments, and leave the later arguments unchecked. This can be done by following the VARARGS
keyword immediately with a digit giving the number of arguments which should be checked;
thus,

/' VARARGS2 t /

checks the first two arguments and leaves the others unchecked. Finally, the directive:

/• LINTLIBRJ\RY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

3.18. Library Declaration Files

Lint accepts certain library directives, such as:

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive:

/' LINTLIBRJ\RY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and ARGSUSED
directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only difference is
that functions which are defined in a library file, but not used in a source file, draw no com­
plaints. Lint does not simulate a full library search algorithm, and complains if the source files
contain a redefinition of a library routine (this is a feature!).

By default, lint checks the routines it is given against a standard library file, which contains
descriptions of the programs which are normally loaded when a C program is run. When the -p
option is in effect, another file is checked containing descriptions of the standard 1/0 library rou­
tines which are expected to be portable across various machines. The -n option can be used to
suppress all library checking.

3.19. Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters of
programming style, and partially because users usually don't notice bugs which cause lint to miss
errors which it should have caught. By contrast, if lint incorrectly complains about something
that is correct, the programmer reports that immediately!

Revision E of 15 May 1985 3-11

Lint - A C Program Checker Programming Tools

A number of areas remain to be further developed. The checking of structures and arrays is
rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter­
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a
special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or are
expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There are
many options which serve only to turn off, or slightly modify, certain features. There are pres­
sures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one. The
compiler concentrates on quickly and accurately turning the program text into bits which can be
run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be wrong,
since incorrectness and over-conservatism are merely annoying, not fatal. The compiler can be
fast since it knows that lint will cover its flanks. Finally, the programmer can concentrate at
one stage of the programming process solely on the algorithms, data structures, and correctness
of the program, and then later retrofit, with the aid of lint, the desirable properties of universal­
ity and portability.

3-12 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Lint - A C Program Checker

3.20. References.

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, N. J.
(1978).

2. S. C. Johnson, 'Yacc: Yet Another Compiler-Compiler,' Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey (July 1975).

3. M. E. Lesk, 'Lex - A Lexical Analyzer Generator,' Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, 'UNIX Time-Sharing System: Portability of C Programs and
the UNIX System,' Bell Sya. Tech. J. 57(6) pp. 2021-2048 (1978).

5. S. C. Johnson, 'A Portable Compiler: Theory and Practice,' Proc. 5th ACM Symp. on Prin­
ciple, of Programming Language•, (January 1978).

Revision E of 15 May 1985 3-13

Lint - A C Program Checker Programming Tools

3.21. Current Lint Options

The lint command currently has the form

tutorial% lint [-abchnpsuvx] filename. • • lihrary-de,criptore • ••

The options are

& Report assignments of long to int or shorter

b Report unreachable break statements

c Complain about questionable casts

h Perform heuristic checks

n Do not do library checking

p Perform portability checks

a Same as h (for historical reasons)

u Don't report unused or undefined externals

v Don't report unused arguments

x Report unused external declarations

3-14 Revision E of 15 May 1985

0

0

0

0

0

0

Chapter 4

Make - A Program for Maintaining Computer
Programs

It is common practice to divide large programs into smaller, more manageable pieces. The pieces
may require quite different treatments: some may need to be run through a macro processor, and
some may need to be processed by a sophisticated program generator (for example, Yacc[l] or
Lex[2]). The outputs of these generators may have to be compiled with special options and with
certain definitions and declarations. The code resulting from these transformations may then
need to be loaded together with certain libraries under the control of special options. Related
maintenance activities involve running complicated test scripts and installing validated modules.
Unfortunately, it is very easy for a programmer to forget which files depend on which others,
which files have been modified recently, and the exact sequence of operations needed to make or
exercise a new version of the program. After a long editing session, one may easily lose track of
which files have been changed and which object modules are still valid, since a change to a
declaration can obsolete a dozen other files. Forgetting to compile a routine that has been
changed or that uses changed declarations usually results in a program that will not work, and a
bug that can be very hard to track down. On the other hand, recompiling everything in sight
just to be safe is very wasteful.

Make mechanizes many of the activities of program development and maintenance. Make pro­
vides a simple mechanism for maintaining up-to-date versions of programs that result from many
operations on a number of files. It is possible to tell make the sequence of commands that create
certain files, and the list of files that require other files to be current before the operations can
be done. Whenever a change is made in any part of the program, make will create the proper
files simply, correctly, and with a minimum amount of effort.

The basic operation of make is to find the name of a needed target in the description, ensure
that all of the files on which it depends exist and are up-to-date, and then create the target if it
has not been modified since its generators were. The description file really defines the graph of
dependencies; make does a depth-first search of this graph to determine what work is really
necessary.

Make also provides a simple macro substitution facility and the ability to encapsulate commands
in a single file for convenient administration.

If the information on inter-file dependences and command sequences is stored in a file, the simple
command:

tutorial% make

Revision E of 15 May 1985 4-1

Make - A Program for Maintaining Computer Programs Programming Tools

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last 'make'. In most cases, the description file is easy to write and changes infre­
quently. It is usually easier to type the make command than to issue even one of the needed
operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the problems of
maintaining multiple source versions8 or of describing huge programs.

4.1. Basic Features

The basic operation of make is to update a target file by ensuring tl_!at all of the files on which it
depends exist and are up to date, then creating the target if it has not been modified since its
dependents were. Make does a depth-first search of the graph of dependences. The operation of
the command depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is made by compiling and
loading three C-language files z.c, y.c, and z.c with the Im library. By convention, output of the
C compilations is found in files named z.o, y.o, and z.o. Assume that the files z.c and y.c share
some declarations in a file named def•, but that z.c does not. That is, z.c and y.c have the line

#include "defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -lm -o prog

x.o y.o : defs

If this information were stored in a file named makefile, the command:

tutorial% make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files z.c, y.c, z.c, or def•.

Make operates using three sources of information: a user-supplied description file (as above),
filenames and 'last-modified' times from the file system, and built-in rules to bridge some of the
gaps. In our example, the first line says that prog depends on three '.o' files. Once these object
files are current, the second line describes how to load them to create prog. The third line says
that z.o and y.o depend on the file def•. From the file system, make discovers that there are
three '.c' files corresponding to the needed '.o' files, and uses built-in information on how to gen­
erate an object from a source file (that i•, issue a cc -c command).

The following long-winded description file is equivalent to the one above, but takes no advantage
of make's innate knowledge:

8 See the description ot the Source Code Control System {SCCS) la.ter in this book, for a tool for main­
ta.ining multiple source versions.

4-2 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Make - A Program for Maintaining Computer Programs

prog : x.o y.o z.o
cc x.o y.o z.o -lm -o prog

x.o x.c defs
cc -c x.c

y.o y.c defs
cc -c y.c

z.o z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of the files
would be current, and the command:

tutorial% make

would just announce this fact and stop. If, however, the de/a file had been edited, z.c and y.c
(but not z.c) would be recompiled, and then prog would be created from the new '.o' files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the descrip­
tion is created; otherwise the specified targets are made. The command:

tutorial% make x.o

would recompile z.o if z.c or de/a had changed.

If the file exists after the commands are executed, its time of last modification is used in further
decisions; otherwise the current time is used. It is often quite useful to include rules with
mnemonic names and commands that do not actually produce a file with that name. These
entries can take advantage of make's ability to generate files and substitute macros. Thus, an
entry 'save' might be included to copy a certain set of files, or an entry 'cleanup' might be used
to throw away unneeded intermediate files. In other cases one may maintain a zero-length file
purely to keep track of the time at which certain actions were performed. This technique is use­
ful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command strings.
Macros are defined by command arguments or description file lines with embedded equal signs.
A macro is invoked by preceding the name by a dollar sign; macro names longer than one char­
acter must be parenthesized. The name of the macro is either the single character after the dol­
lar sign or a name inside parentheses. The following are valid macro invocations:

$ (CJ:LAGS) $2 $ (xy) $Z $ (Z)

The last two invocations are identical. $$ produces a dollar sign. All of these macros are
assigned values during input, as shown below. Four special macros change values during the exe­
cution of the command: $•, $@, $?, and $<. They are discussed below. The following fragment
shows how macros are used:

Revision E of 15 May 1985 4-3

Make - A Program for Maintaining Computer Programs

OBJECTS= x.o y.o z.o
LIBES = -lm
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog

The command:

tutorial% make

loads the three object files with the Im library. The command:

tutorial% make "LXBES• -11 -1111"

Programming Tools

loads them with both the /ez (-11) and mathematical (-lm) libraries, since macro definitions on
the command line override definitions in the description. It is necessary to quote arguments with
embedded blanks in UNIX commands.

The following sections detail the form of description files and the command line, and discuss
options and built-in rules in more detail.

4.2. Description Files and Substitutions

0

A description file contains three types of information: macro definitions, dependency informa­
tion, and executable commands. There is also a comment convention: all characters after a
sharp (#) to the end of the line are ignored, as is the sharp itself. Blank lines and lines begin- Q, ,
ning with a sharp are totally ignored. If a non-comment line is too long, it can be continued
using a backslash. If the last character of a line is a backslash, the backslash, newline, and fol-
lowing blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name
(string of letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is
assigned the string of characters following the equal sign (leading blanks and tabs are stripped,
but trailing ones are not). The following are valid macro definitions:

2 = xyz
abc = -11 -ly -lm
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

targetl [target2 ...] : [:] [dependentl ...] [; commands] [# ...]
[(tab) commandsJ [# ... J

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. Shell metacharacters '•' and '?' are expanded. A command is any string of

0
_

characters not including a sharp (except in quotes) or newline. Commands may appear either

4-4 Revision E of 15 May 1985

0

0

0

Programming Tools Make - A Program for Maintaining Computer Programs

after a semicolon on a dependency line or on lines beginning with a tab immediately following a
dependency line.

A dependency line may have either a single or a double colon. A_ target name may appear on
more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

I. For the usual single-colon case, at most one of these dependency lines may have a command
sequence associated with it. If the target is out of date with any of the dependents on any of
the lines, and a command sequence is specified (even a null one following a semicolon or tab),
it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency line;
if the target is out of date with any of the files on a particular line, the associated commands
are executed. A built-in rule may also be executed. This detailed form is of particular value
in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command
line is displayed and then passed to a separate invocation of the Shell after substituting for mac­
ros. The displaying is suppressed in silent mode or if the command line begins with an @ sign.
Make normally stops if any command signals an error by returning a non zero error code.

Make ignores errors if the -i option has been specified on the make command line, if the fake
target name . IGNORE appears in the description file, or if the command string in the description
file begins with a hyphen - these criteria are necessary because some UNIX commands return
meaningless status.

Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (for example, cd and Shell control commands) that have meaning only
within a single Shell process; the results are forgotten before the next line is executed.

Make sets certain macros before issuing any command. $@ is set to the name of the file to be
'made'. $? is set to the string of names that were found to be younger than the target. If the
command was generated by an implicit rule (see below), $< is the name of the related file that
caused the action, and $• is the prefix shared by the current and the dependent filenames.

If a file must be made but there are no explicit commands or relevant built-in rules, the com­
mands associated with the name .DEFAULT are used. If there is no such name, make displays a
message and stops.

4.3. Command Usage

The make command takes three kinds of arguments: macro definitions, options, and target
filenames.

tutorial% make [options] [macro definitions] [targets]

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and
the assignments made. Command-line macros override corresponding definitions found in the
description files.

Revision E of 15 May 1985 4-5

Make - A Program for Maintaining Computer Programs Programming Tools

Next, the options are examined. The permissible options are:

-i Ignore error codes returned by invoked commands. This mode is also entered if the fake tar­
get name . IGNORE appears in the description file. C .

-s Do not display command lines before executing. This mode is also entered if the fake target
name , SILENT appears in the description file.

-r Do not use the built-in rules.

-n Display commands, but do not execute them. Even lines beginning with an '@' sign are
displayed.

-t Touch the target files (bringing them to be up-to-date) rather than issuing the usual com­
mands.

-q Question. The make command returns a zero or non zero status code depending on whether
the target file is or is not up-to-date.

-p Display the complete set of macro definitions and target descriptions.

-d De bug mode. Display detailed information on files and times examined.

-r filename
Use filename as the name of the description file. A file name of - denotes the standard
input. In the absence of the -t option, make first looks for a file called makefile in the
current directory, then looks for a file called Makefile in the current directory. The contents
of the description files override the built-in rules if they are present.

Finally, the remaining arguments are assumed to be the names of targets to be made; they are
done in left-to-right order. If there are no such arguments, the first name in the description files
that does not begin with a period is 'made'. 0
4.4. Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to supply
default dependency information and implied commands. Section 4.7 describes these tables and
means of overriding them. The default suffix list is:

Su!Jfa Type of File

.o Object file

.c C source file

.r Ratfor source file

. f Fortran source file

.F Fortran source file

.s Assembler source file

.y Y acc-C source grammar

.yr Yacc-Ratfor source grammar

.p Pascal source

. l Lex source grammar

The following diagram summarizes the default transformation paths. 1£ there are two paths con-
necting a pair of suffixes, the longer one is used only if the intermediate file exists or is named in

0 the description.

4-6 Revision E of 15 May 1985

0

0

0

Programming Tools Make - A Program for Maintaining Computer Programs

If the file z.o were needed and there were an z.c in the description or directory, it would be com­
piled. If there were also an z.l, that grammar would be run through /ez before compiling the
result. However, if there were no z.c but there were an z.l, make would discard the intermediate
C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the option
arguments with which they are invoked by knowing the macro names used. The compiler names
are the macros AS, CC, FC, PC, RC, YACC, YACCR, and LEX. The command:

tutorial% make CC•nevcc

uses the newcc command instead of the usual C compiler. The macros CFLAGS, FFLAGS,
PFLAGS, RFLAGS, YFLAGS, and LFLAGS may be set to issue these commands with optional
options.

tutorial% make "CFLAGS•-0"

uses the optimizing C compiler.

The make variable MFLAGS is also useful - it contains a list of the command-line arguments
given to this invocation of make.

4.5. Example

As an example of the use of make, consider the following description file which could be used to
maintain the make command itself. The code for make is spread over a number of C source files
and a uacc grammar. The description file contains:

Revision E of 15 May 1985 4-7

Make - A Program for Maintaining Computer Programs Programming Tools

Description file for the Make command
FILES= Makefile version.c defs main.c doname.c misc.c files.c dosys.c \

gram.y lex.c gcos.c
OBJECTS= version.o main.o doname.o misc.o files.o dosys.o gram.o
LINT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) -o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm •.o gram.c
-du

install:
@size make /usr/bin/make
cp make /usrjbin/make; rm make

print: $ (FILES) # print recently changed files

test:

pr$? 1 $P
touch print

make -dp I grep -v TIME >lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint dosys.c doname.c files.c main.c misc.c version.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

Make usually displays each command before issuing it. The following output results from typing
the simple command:

tutorial% make

in a directory containing only the source and description file:

4-8

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c flles.c
cc -e dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -o make
13188+3348+3044 = 19580b = 046174b

Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Make - A Program for Maintaining Computer Programs

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the 'size make' command - the @ sign on the aize command in the description file
suppressed the displaying of the •ize command, so only the sizes are displayed.

The la.st few entries in the description file are useful maintenance sequences. The 'print' entry
displays only the files that have been changed since the ia.st 'make print' command. A zero­
length file print is maintained to keep track of the time of the printing; the $? macro in the com­
mand line then picks up only the names of the files changed since print was la.st touched. The
output can be sent to a different printer or to a file by changing the definition of the P macro:

tutorial% make print •p • opr -ap"

or:

tutorial% make print "P• cat >sap"

4.6. Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file z.c has a
#include "defs" line, the object file z.o depends on def•; the source file z.c does not. If def•
is changed, it is not necessary to do anything to the file z.c, while it is necessary to recreate z.o.

To discover what make would do, the -n option is very useful. The command:

tutorial% make -n

orders make to display the commands it would issue without actually executing them. If a
change to a file is absolutely certain to be benign (for example, adding a new definition to an
include file), the -t (touch) option can save a lot of time: instead of issuing a large number of
superfluous recompilations, make updates the modification times on the affected file. Thus, the
command:

tutorial% make -ta

('touch silently') makes the relevant files appear up-to-date. Obvious care is necessary, since this
mode of operation subverts the intention of make and destroys all memory of the previous rela­
tionships.

The debugging option (-d) generates a very detailed description of what make is doing, includ­
ing the file times. The output is verbose, and recommended only a.s a la.st resort.

Revision E of 15 May 1985 4-9

Make - A Program for Maintaining Computer Programs Programming Tools

4. 7, Suffixes and Transformation Rules

Make itself does not know what filename suffixes are interesting or how to transform a file with
one suffix into a file with another suffix. This information is stored in an internal table that has
the form of a description file. If the -r option is used, this table is not used.

The list of suffixes is actually the dependency list for the name . SUFFIXES; make looks for a file
with any of the suffixes on the list. If such a file exists, and if there is a transformation rule for
that combination, make acts as described earlier. The transformation rule names are the con­
catenation of the two suffixes. The name of the rule to transform a '.r' file to a '.o' file is thus
'.r.o'. If the rule is present and no explicit command sequence has been given in the user's
description files, the command sequence for the rule '.r.o' is used. If a command is generated by
using one of these suffixing rules, the macro $• is given the value of the stem (everything but the
suffix) of the name of the file to be made, and the macro $< is the name of the dependent that
caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is used. If new names are to be
appended, the user can just add an entry for . SUFFIXES in his own description file; the depen­
dents are added to the usual list. A . SUFFIXES line without any dependents deletes the
current list. It is necessary to clear the current list if the order of names is to be changed.

The following is an excerpt from the default rules file:

Macros:

.y.c:

. l.o:

LOADLIBES =
FFLAGS =
FC = f77
RFLAGS =
RC= f77
CFLAGS =
PFLAGS =
PC= pc
AS= as
cc= cc
LFLAGS =
LEX= lex
YFLAGS =
YACCR = yacc -r
YACC= yacc
MFLAGS = -p
$ = $

$(YACC) $('/FLAGS) $<
mv y.tab.c $@

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

Rules for converting yacc grammar to C code

Rules for converting Le:z grammar to object code

0

0

.yr.o: Rules for converting Ratfor uace grammar lo object code 0

4-10 Revision E of 15 May 1985

0

0

0

Programming Tools Make - A Program for Maintaining Computer Programs

.y.o:

.s.o:

$(YACCR) $(YFLAGS) $<
$(RC) $(RFLAGS) -c y.tab.r
rm y.tab.r
mv y.tab.o $@

$ (YACC) $ (YFLAGS) $ <
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(AS) -o $@ $<

Rule11 for converting yacc grammar to object code

Rules for converting assembler source lo object code

. f. o: Rules for converting FORTRAN-77 source lo object code
$(FC) $(RFLAGS) $(FFLAGS) -c $<

.F .o: Rules for converting FORTRAN-77 source to object code
$(FC) $(RFLAGS) $(FFLAGS) -c $<

. r. o: Rules for converting Ratfor source to object code
$(FC) $(RFLAGS) $(FFLAGS) -c $<

.p. o: Rules for converting Pascal source to object code
$ (PC) $ (PFLAGS) -c $<

.c.o: Rules for converting C source to object code
$ (CC) $ (CFLAGS) -c $<

4.8. Acknowledgments and References

I would like to thank S. C. Johnson for suggesting this approach to program maintenance con­
trol. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs dur­
ing development of make.

1. S. C. Johnson, 'Yacc - Yet Another Compiler-Compiler', Bell Laboratories Computing Sci­
ence Technical Report #32, July 1978.

2. M. E. Lesk, 'Lex - A Lexical Analyzer Generator', Computing Science Technical Report
#39, October 1975.

Revision E of 15 May 1985 4-11

0 ,
'

0

0

0

0

0

Chapter 5

Source Code Control System

The Source Code Control System (SCCS) is a system for controlling changes to text files (typi­
cally, the source code and documentation of software systems).

You can think of SCCS as a custodian of files: SCCS provides facilities for storing, updating, and
retrieving any version of a text file; for controlling updating privileges to that file; for identifying
the version of a retrieved file; and for recording who made each change, when and where it was
made, and why. This is important in environments where programs and documentation undergo
frequent changes (due to maintenance and/or enhancement work), because regenerating an
unrevised version of a program or document is often desirable. Obviously, this could be done by
keeping copies (on paper or other media), but this quickly becomes unmanageable and wasteful
as the number of programs and documents increases. SCCS provides an attractive alternative to
stockpiling multiple versions of the same text, because it stores only the original file and subse­
quent sets of change• on disk.

There are two major divisions of secs and these two divisions are reflected in the layout of this
document:

• The •cc• command itself is a high-level 'user-friendly' front end that provides an interface to a
collection of tools for manipulating SCCS files. In general, users can get by using the facilities
provided by the ace• command, and so ace• is described in Part I of this document. The indi­
vidual SCCS tools are not too easy to use, but they do provide extremely close control over the
secs database files.

• The SCCS commands are a collection of programs for manipulating the SCCS database files.
Although the ace• front end command normally abstracts the most common operations you
might want to do, there may be times when it is necessary to use the raw facilities of the SCCS
commands themselves - these commands are described in Part II of this document which
gives a deeper description of how to use SCCS. Of particular interest are the numbering of
branches, the I-file, which gives a description of what deltas were used on a get, and certain
other secs commands.

The SCCS manual pages are a good last resort. These should be read by software managers and
by people who want to know everything about everything.

Both the SCCS Uaer '• Guide and the SCCS manual pages were written in the days before the
ace• command existed, so most of the examples are slightly different from those in this docu­
ment.

Revision E of 15 May 1985 5-1

SCCS High-Level User Interface Programming Tools

Part I - The SCCS High-Level User Interface

The first part of this document is a quick introduction to using secs via the ace• command. The
presentation is geared towards people who want to know how to get the job done rather than
how SCCS works; for this reason some of the examples are not well explained. For details of what
the magic options do, see Part II of this manual.

Throughout this introduction, we assume that you are using the C-Shell on a system called
'tutorial', and so the hostname is shown followed by the % sign prompt in the examples. What
you type is shown in bold typewriter text like this, and the system's responses are
shown in ordinary typewriter text, like this:

tutorial% secs get prog.c
1.1
87 lines

secs is a source management system. Such a system maintains a record of versions of a
software system; a record is kept with each set of changes of what the changes are, why they
were made, who made them, and when they were made. Old versions can be recovered, and
different versions can be maintained simultaneously. In projects with more than one person,
SCCS ensures that two people are not editing the same file at the same time.

All versions of your program, plus the log and other information, are kept in a file called the •­
file. There are three major operations that can be performed on the •-file:

1. Get a file. This operation retrieves a version of the file from the •-file. By default, the
latest version is retrieved. This file is intended for compilation, printing, or whatever; it is
specifically NOT intended to be edited or changed in any way; any changes made to a file
retrieved in this way will probably be lost.

2. Get a file for editing. This operation also retrieves a version of the file from the •-file, but
this file is intended to be edited and then incorporated back into the •-file. Only one person
may be editing a file at one time.

3. Merge a file back into the •-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

5.1. Learning the Lingo

There are a number of terms that are worth learning before we go any farther.

5-2 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools SCCS High-Level User Interface

5.1.1. S-file

The •-file is a single file that holds all the different versions of your file. The •-file contains only
the the original version and differences between versions, rather than the entire text of the new
version. This saves disk space and allows selective changes to be removed later. Also included
in the •-file is some header information for each version, including the comments given by the
person who created the version explaining why the changes were made.

5.1. 2. Deltas

Each set of changes to the •-file - which is approximately, but not exactly, equivalent to a ver­
sion of the file - is called a delta. Although technically a delta only includes the change• made,
in practice it is usual for each delta to be made with respect to all the deltas that have occurred
before9. However, it is possible to get a version of the file that has selected deltas removed out
of the middle of the list of changes - equivalent to removing your later changes.

5.1.9. S/D's (version numbers)

An SID - SCCS-Id - is a number that represents a delta. This is normally a two-part number
consisting of a 'release' number and a 'level' number. Normally the release number stays the
same. However, it is possible to move into a new release if some major change is being made.

Since all past deltas are normally applied, the SID of the final delta applied can be used to
represent a version number of the file as a whole.

5.1.,1. Id keywords

When you get a version of a file with intent to compile and install it - that is, something other
than edit it - some special keywords that are part of the text of the file are expanded in-line by
SCCS. These Id Keyword• can be used to include the current version number or other informa­
tion into the file. All id keywords are of the form %z%, where z is an upper case letter. For
example, %!% produces the SID of the latest delta applied, %W% includes the module name,
SID, and a mark that makes it findable by a program, and %G% results in the date the latest
delta was applied. There are many others, most of which are of dubious usefulness.

When you get a file for editing, the id keywords are not expanded; this is so that after you put
them back in to the •-file, they will be expanded automatically on each new version. But notice:
if you were to get them expanded accidently, your file would appear to be the same version for­
ever more, which would of course defeat the purpose. Also, if you should install a version of the
program without expanding the id keywords, it will be impossible to tell what version it is (since
all it will have is '%W%' or whatever).

9 This matches normal usage, where the previous changes are not saved at all, so all changes are au­
tomatically based on all other changes that have happened through history.

Revision E of 15 May 1985 5-3

SCCS High-Level User Interface

5.2. Creating SCCS Database Files with 'secs create'

To put a bunch of source files into SCCS format, you do the following things:

• Make the SCCS subdirectory if it isn't there already:

tutorial% mkdir secs
tutorial%

Note that SCCS is upper-case

Programming Tools

• Then use the secs create command to actually create the SCCS database files for all the
source files you have. Suppose that you want to have all your .c and .h files under SCCS con­
trol:

tutorial% acca create •.[ch]
Iota of messages from SCCS here

tutorial%

For each file you have, the secs create command does the following things for you:

createa a file called a.file in the SCCS subdirectory,

renames each file by placing a comma in front of the name, so that you end up with files of
the form ,file.

gets a read-only copy of each file by using the sccs get command, as described later
on.

0

When you are convinced that SCCS has correctly created the •-files, you should remove the files
whose names start with commas.

If you want to have id keywords in the files, it is best to put them in before you create the •· C
files. If you do not, create will print 'No Id Keywords (cm7)', which is a warning message only.

5.3. Retrieving Files for Compilation with 'secs get'

To get a copy of the latest version of a file, run

tutorial% aces get prog.c

SCCS will respond:

1.1
87 lines

meaning that version 1.1 has been retrieved10 and that it has 87 lines. The file prog.c is created
in the current directory - it is created read-only to remind you that you are not supposed to
change it.

This copy of the file should not be changed, since SCCS is unable to merge the changes back into
the a-file. If you do make changes, they will be lost the next time someone does a get.

10 Actually, the SID of the final delta applied W88 I.I.

5-4 Revision E of 15 May 1985

0

0

0

0

Programming Tools SCCS High-Level User Interface

5.4. Changing Files (Creating Deltas)

5.,4.1. Retrieving a File for Editing with 'secs edit'

To edit a source file, you must first get it, requesting permission to edit itll. The response will
be the same as with gel except that it also says that a new delta is being created:

tutorial% aces edit prog,c
New delta 1.2

You then edit it, using a text editor:

tutorial% vi prog.c

5.,4.2. Merging Changes Back Into the s-file with 'secs delta'

When the desired changes have been made, you can put your changes into the SCCS file using the
delta command:

tutorial% aces delta prog.c

Delta prompts you for 'comments?' before merging the changes in. At this prompt you should
type a one-line description of what the changes mean (more lines can be entered by ending each
line except the last with a backslash). Delta then types:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84 lines
unchanged12• The prog.c file is then removed; it can be retrieved using gel.

5.4.3. "When to Make Deltas

It is probably unwise to make a delta before every recompilation or test; otherwise, you tend to
get a lot of deltas with comments like 'fixed compilation problem in previous delta' or
'fixed botch in 1.3'. However, it is very important to delta everything before installing a module
for general use. A good technique is to edit the files you need, make all necessary changes and
tests, compiling and editing as often as necessary without making deltas. When you are satisfied
that you have a working version, delta everything being edited, re-get them, and recompile
everything.

11 The edit command is equivalent to using the -e option to get, as:
tutorial% ace• vet-• prog.c

Keep this in mind when reading other documentation.

12 Changes to a line are counted as a line deleted and a line inserted.

Revision E of 15 May 1985 5-5

SCCS High-Level User Interface

5.4-4. Finding Out What's Going On with 'secs info'

To find out what files are being edited, type:

tutorial% aces info

Programming Tools

to display a list of all the files being edited and other information - such as the name of the
user who did the edit. Also, the command:

tutorial% aces check

is nearly equivalent to the info command, except that it is silent if nothing is being edited, and
returns non zero exit status if anything is being edited. It can thus be used in an 'install' entry
in a makefile to abort the install if anything has not been properly delta'ed.

If you know that everything being edited should be delta'ed, you can use:·

tutorial% aces delta 'aces tell'

The tell command is similar to info except that only the names of files being edited are output,
one per line.

All of these commands take a -b option to ignore 'branches' (alternate versions, described later)
and the -u option to give only files being edited by you. The -u option takes an optional uaer
argument, giving only files being edited by that user. For example:

tutorial% aces info -ujohn

gives a listing of files being edited by john.

5.,t.5. ID keywords

Id keywords can be inserted into your file that will be expanded automatically by get. For exam­
ple, a line such as:

static char Sccsid[] = "%W%\t%G%";

will be replaced with something like:

static char Sccsid[] = "@(#)prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was created. The
string '@(#)' is a special string which signals the beginning of an SCCS Id keyword.

5.,1.5.1. Finding Out What Veraiona Are Being Uaed with 'acca what'

To find out what version of a program is being run, use:

tutorial% aces what prog.c /uar/1:lin/prog

which will print all strings it finds that begin with '@(#) '. This works on all types of files,
including binaries and libraries. For example, the above command will output something like:

prog.c:
prog.c 1.2

/usr/bin/prog:
prog.c 1.1

08/29/80

02/05/79

From this one can see that the source in prog.c will not compile into the same version as the

5-6 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools SCCS High-Level User Interface

binary in /uar/bin/prog.

5.,1.5.2. Where to Put Id Keyword,

ID keywords can be inserted anywhere, including in comments, but Id keywords that are com­
piled into the object module are especially useful, since they let you find out what version of the
object is being run. However, there is a cost: data space is used up to store the keywords.

When you put id keywords into header files, it is important that you assign them to different
variables. For example, you might use:

static char AccessSid[] = "%W% %G%";

in the file acce ... h and:

static char OpsysSid[] = "%W% %G%";

in the file opaya.h. Otherwise, you will get compilation errors because 'Sccsld' is redefined. The
problem with this is that if the header file is included by many modules that are loaded together,
the version number of that header file is included in the object module many times; you may find
it more to your taste to put id keywords in header files in comments.

5.,t. 6. Keeping SID 's Consistent Across Files

With some care, it is possible to keep the SID's consistent in multi-file systems. The trick here is
to always edit all files at once. The changes can then be made to whatever files are necessary
and then all files (even those not changed) are redelta'ed. This can be done fairly easily by just
specifying the name of the directory that the secs files are in:

tutorial% SCCS edit SCCS

which will edit all files in that directory. To make the delta, use:

tutorial% •cc• delta SCCS

You will be prompted for comments only once.

5.,l. 7. Creating New Releases

When you want to create a new release of a program, you can specify the release number you
want to create on the edit command. For example:

tutorial% sec• edit -r2 prog.c

will put the next delta in release two (that is, it will be numbered 2.1). Future deltas will
automatically be in release two. To change the release number of an entire system, use:

tutorial% sec• edit -r2 secs

Revision E of 15 May 1985 5-7

SCCS High-Level User Interface Programming Tools

5.5. Restoring Old Versions

5.5.1. Reverting to Old Versions

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this introduced a
bug, so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you decided you wanted
to go back to the old version. You could revert to delta 1.2 by choosing the SID in a get:

tutorial% ace• get -r1.2 prog.c

This will produce a version of prog.c that is delta 1.2 that can be reinstalled so that work can
proceed.

In some cases you don't know what the SID of the delta you want is. However, you can revert to
the version of the program that was running as of a certain date by using the -c (cutoff) option.
For example,

tutorial% ace• get -c800722120000 prog.c

retrieves whatever version was current as of July 22, 1980 at 12:00 noon. Trailing components
can be stripped off (defaulting to their highest legal value), and punctuation can be inserted in
the obvious places; for example, the above line could be equivalently stated as:

tutorial% acca get -c"B0/07/22 12:00:00" prog.c

5.5.2. Selectively Deleting Old Deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3 should
be removed. You could do this by excluding delta 1.3:

tutorial% acca edit -z1.3 prog.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the
changes made in delta 1.3. You can exclude a range of deltas using a dash. For example, if you
want to get rid of 1.3 and 1.4 you can use:

tutorial% ace• edit -z1.3-1.4 prog.c

which will exclude all deltas from 1.3 through 1.4. Alternatively,

tutorial% ace• edit -z1.3-1 prog.c

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using -x (or -i - see below) there will be conflicts between versions; for
example, it may be necessary to both include and delete a particular line. If this happens, SCCS
always displays a message telling the range of lines affected; these lines should then be examined
very carefully to see if the version secs got is ok.

Since each delta (in the sense of 'a set of changes') can be excluded at will, it is most useful to
put each semantically distinct change into its own delta.

5-8 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools SCCS High-Level User Interface

5.6. Auditing Changes

5.6.1. Displaying Delta Comments with 'secs prt'

When you created a delta, you presumably gave a reason for the delta to the 'comments?'
prompt. To display these comments later, use:

tutorial% secs prt prog.c

which produces a report for each delta of the SID, time and date of creation, user who created
the delta, number of lines inserted, deleted, and unchanged, and the comments associated with
the delta. For example, the output of the above command might be:

D 1.2 80/08/29 12:35:31
removed "-q" option
D 1.1 79/02/05 00:19:31
date and time created 80/06/10

5.6.2. Finding Why Lines Were Inserted

bill 2

eric 1
00:19:31 by eric

1

0

00005/00003/00084

00087/00000/00000

To find out why you inserted lines, you can get a copy of the file with each line preceded by the
SID that created it:

tutorial% secs get -m prog.c

You can then find out what changes were made by this delta by printing the comments using prt.

To find out what lines are associated with a particular delta, 1.3 for instance, use:

tutorial% secs get -m -p prog.c I grep 'A1 .3'

The -p option makes SCCS output the generated source to the standard output rather than to a
file.

5.6.3. Discovering What Changes You Have Made with 'secs diffs'

When you are editing a file, you can find out what changes you have made using:

tutorial% secs diffa prog.c

Most of the "diff" options can be used. To pass the -c option, use -C.

To compare two versions that are in deltas, use:

tutorial% scca sccadiff -r1.3 -r1.6 prog.c

to see the differences between delta 1.3 and delta 1.6.

5.7. Shorthand Notations

There are several sequences of commands that are used frequently. Sec, tries to make it easy to
do these.

Revision E of 15 May 1985 5-9

SCCS High-Level User Interface Programming Tools

5. 7.1. Making a Delta and Getting a File with 'secs de/get'

A frequent requirement is to make a delta of some file and then get that file. This is done by 0
usmg

tutorial% aces delget prog.c

which is entirely equivalent to:

tutorial% aces delta prog.c
tutorial% aces get prog.c

except that if an error occurs while making a delta of any of the files, none of them will be got­
ten. The de/edit command is equivalent to de/get except that the edit command is used instead
of the get command.

5. 7.2. Replacing a Delta with the 'secs fix'

Frequently, there are small bugs in deltas, for instance, compilation errors, for which there is no
reason to maintain an audit trail. To replace a delta, use:

tutorial% ace• fix -r1.4 prog.c

This gets a copy of delta 1.4 of prog.c for you to edit and then deletes delta 1.4 from the SCCS
file. When you do a delta of prog.c, it will be delta 1.4 again. The -r option must be specified,
and the delta that is specified must be a leaf delta, that is, no other deltas may have been made
subsequent to the creation of that delta.

5. 7.8. Backing Out of an Edit with 'secs unedit'

If you found you edited a file that you did not want to edit, you can back out by using:

tutorial% aces unedit prog.c

5. 1.4. Working From Other Directories with the -d Flag

If you are working on a project where the SCCS code is in a directory somewhere else, you may
be able to simplify things by using a shell alias. For example, the alias:

alias syssccs secs -d/usr/src

will allow you to issue commands such as:

syssccs edit cmd/who.c

which will look for the file '/usr/src/cmd/SCCS/who.c'. The file 'who.c' is always created in
your current directory regardless of the value of the -d option.

5.8. Using secs on a Project

Working on a project with several people has its own set of special problems. The main problem
occurs when two people modify a file at the same time. secs prevents this by locking an •-file
while it is being edited.

5-10 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools SCCS High-Level User interface

As a result, files should not be reserved for editing unless they are actually being edited at the
time, since this will prevent other people on the project from making necessary changes. For
example, a good scenario for working might be:

tutorial% •cc• edit a.c g.c t.c
tutorial% vi a.c g.c t.c
do testing of the (experimental) version
tutorial% •cc• delget a.c g.c t.c
tutorial% •cc• info
should respond "Nothing being edited"
tutorial% make in•tall

As a general rule, all source files should be delta'ed before installing the program for general use.
This will ensure that it is possible to restore any version in use at any time.

5.9. Saving Yourself

5.9.1. Recovering a Munged Edit File

Sometimes you may find that you have destroyed or trashed a file that you were trying to edit13.
Unfortunately, you can't just remove it and re-edit it; secs keeps track of the fact that someone
is trying to edit it, so it won't let you do it again. Neither can you just get it using get, since
that would expand the Id keywords. Instead, you can say:

tutorial% •cc• get -k prog.c

This will not expand the Id keywords, so it is safe to do a delta with it.

Alternatively, you can unedit and edit the file.

5.9.2. Restoring the s-file

In particularly bad circumstances, the secs file itself may get munged. The most common way
this happens is that it gets edited. Since secs keeps a checksum, you will get errors every time
you read the file. To fix this checksum, use:

tutorial% aces admin -• prog.c

5.10. Managing SCCS Files with 'secs admin'

There are a number of parameters that can be set using the admin command. The most
interesting of these are flags. Flags can be added by using the -f option. For example:

tutorial% •cc• admin -fd1 prog.c

sets the 'd' flag to the value 'l'. This flag can be deleted by using:

1S Or given up and decided to start over.

Revision E of 15 May 1985 5-11

SCCS High-Level User Interface

tutorial% acca admin -dd prog.c

The most useful flags are:

b Allow branches to be made using the -b option to edit.

dSID

Programming Tools

Default SID to be used on a get or edit. If this is just a release number it constrains the ver­
sion to a particular release only.

i Give a fatal error if there are no Id keywords in a file. This is useful to guarantee that a
version of the file does not get merged into the a-file that has the Id keywords inserted as
constants instead of internal forms.

y The 'type' of the module. Actually, the value of this flag is unused by SCCS except that it
replaces the %Y% keyword.

-tfi/e
store descriptive text from file in the SCCS file. This descriptive text might be the documen­
tation or a design and implementation document. Using the -t option ensures that if the
SCCS file is passed on to someone else, the documentation will go along with it. If file is
omitted, the descriptive text is deleted. To see the descriptive text, use prt -t.

The admin command can be used safely any number of times on files. A file need not be gotten
for admin to work.

5.11. Maintaining Different Versions (Branches)

0

Sometimes it is convenient to maintain an experimental version of a program for an extended 0· ·
period while normal maintenance continues on the version in production. This can be done using
a 'branch'. Normally deltas continue in a straight line, each depending on the delta before.
Creating a branch 'forks off' a version of the program.

The ability to create branches must be enabled in advance using:

tutorial% aces admin -fb prog.c

The -fb option can be specified when the SCCS file is first created.

5.11.1. Creating a Branch

To create a branch, use:

tutorial% aces edit -b prog.c

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be num­
bered 1.5.1.n.

5.11.2. Getting From a Branch

Deltas in a branch are normally not included when you do a get. To get these versions, you will
have to say:

5-12 Revision E of 15 May 1985

0

0

0

0

Programming Tools SCCS High-Level User Interface

tutorial% ace• get -r1.S.1 prog.c

5.11.9. Merging a Branch Back into the Main Trunk

At some point you will have finished the experiment, and if it was successful you will want to
incorporate it into the released version. But in the meantime someone may have created a delta
1.6 that you don't want to lose. The commands:

tutorial% ace• edit -i1.s.1.1-1.s.1 prog.c
tutorial% ace• delta prog.c

will merge all of your changes into the release system. If some of the changes conflict, get will
print an error. The generated result should be carefully examined before the delta is made.

5.11.4, A More Detailed Example

The following technique might be used to maintain a different version of a program. First,
create a directory to contain the new version:

tutorial% mkdir •. /nevxyz
tutorialX cd .. /nevxyz

Edit a copy of the program on a branch:

tutorial% aces -d •. /xya edit -b prog.c

When using the old version, be sure to use the -b option to info, check, tell, and clean to avoid
confusion. For example, use:

tutorial% aces info -b

when in the 'xyz' directory.

If you want to save a copy of the program (still on the branch) back in the a-file, you can use:

tutorial% aces -d .. /xya deledit prog.c

which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the a-file using delta:

tutorial% aces -d •. /xyz delta prog.c

At this point you must decide whether this version should be merged back into the trunk, that
is, the default version, which may have undergone changes. If so, it can be merged using the -i
option to edit as described above.

5.11.5. A Warning

Branches should be kept to a minimum. After the first branch from the trunk, SID's are assigned
rather haphazardly, and the structure gets complex fast.

Revision E of 15 May 1985 5-13

SCCS High-Level User Interface Programming Tools

5.12. Using SCCS with Make

secs and make can be made to work together with a little care. A few sample makefiles for 0
common applications are shown below.

There are a few basic entries that every Makefile ought to have. These are:

a.out

install

sources

clean

print

(or whatever the Makefile generates). This entry regenerates a program. If the
Makefile regenerates many things, this should be called .!all' and should in turn have
dependencies on everything the Makefile can generate.

Moves the objects to their final resting place, doing any special chmod's or ranlib's as
appropriate.

Creates all the source files Crom secs files.

Removes all unwanted files Crom the directory.

Prints the contents of the directory.

The examples shown below are only partial examples, and may omit some of these entries when
they are deemed to be obvious.

The clean entry should not remove files that can be regenerated Crom the SCCS files. It is
sufficiently important to have the source files around at all times that the only time they should
be removed is when the directory is being mothballed. To do this, the command:

tutorial% aces clean

can be used. This removes all files for which an a-file exists, but which are not being edited.

5.12.1. Maintaining Single Programs

Frequently there are directories with several largely unrelated programs (such as simple
mands). These can be put into a single Makefile:

LDFLAGS= -1 -s
prog: prog. o

$(CC) $(LDFLAGS) -o prog prog.o
prog.o: prog.c prog.h
example: example.o

$(CC) $(LDFLAGS) -o example example.o
example.o: example.c
.DEFAULT:

SCCS get $<

com-

The trick here is that the .DEFAULT rule is called every time something is needed that does not
exist, and no other rule exists to make it. The explicit dependency of the .o file on the .c file is
important. Another way of doing the same thing is:

5-14 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools SCCS High-Level User Interface

SRCS= prog.c prog.h example.c
LDFLAGS= -i -s
prog: prog.o

$(CC) $(LDFLAGS) -o prog prog.o
prog.o: prog.h
example: example.o

$(CC) $(LDFLAGS) -o example example.o
sources: $(SRCS)
$(SRCS):

SCCS get$@

There are a couple of advantages to this approach: (1) the explicit dependencies or the .o on
the .c files are not needed, (2) there is an entry called "sources" so if you want to get all the
sources you can just say 'make sources' and (3) the makefile is less likely to do confusing things
since it won't try to get things that do not exist.

5.12.2. Maintaining A Library

Libraries that are largely static are best updated using explicit commands, since make doesn't
know about updating them properly. However, libraries that are in the process or being
developed can be handled quite adequately. The problem is that the . o files have to be kept
separate from the library, as well as in the library.

configuration information
OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h y.h z.h
TARG= /usr/lib
programs
GET= secs get
REL=
AR= -ar
RANLIB= ranlib
lib. a: $ (OBJS)

$(AR) rvu lib.a $(0BJS)
$ (RANLI B) lib . a

install: lib. a
SCCS check
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@
print: sources

pr • .h •. [cs]
clean:

rm -f • .o
rm -f core a.out $(LIB)

The '$(REL)' in the get can be used to get old versions easily; for example:

make b.o REL=-rl.3

Revision E of 15 May 1985 5-15

SCCS High-Level User Interface Programming Tools

The inata/1 entry includes the line secs check before anything else. This guarantees that all
the a-file's are up-to-date (that is, nothing is being edited), and will abort the make if this condi- o,
tion is not met.

5.12.3. Maintaining A Large Program

OBJS=
SRCS=
GET=
REL=

a.o b.o c.o d.o
a.c b.c y.c d.s x.h y.h z.h
secs get

a.out: $(0BJS)
$(CC) $(LDFLAGS) $(0BJS) $(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

The print and clean entries are identical to the previous case. This Makefile requires copies of
the source and object files to be kept during development. It is probably also wise to include
lines of the form:

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

so that modules will be recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in some Makefiles lines o--
like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

The touch command brings the modification date of z.h in line with the modification date of
z.h. When you have a Makefile such as the above, the touch command can be removed com­
pletely; the equivalent effect will be achieved by doing an automatic get on z.h.

5-16 Revision E of 15 May 1985

0

Programming Tools SCCS High-Level User Interface

,I"\ 5.13. Quick Reference

"-'

0

0

5.13.1. Commands

The following commands should all be preceded with 'secs'. This list is not exhaustive; for more
options see Part II of this manual.

get Gets files for compilation (not for editing). Id keywords are expanded.

edit

-rSID

-p

-k

-ili•t

-x/i.t

-m

-cdate

Version to get.

Send to standard output rather than to the actual file.

Don't expand id keywords.

List of deltas to include.

List of deltas to exclude.

Precede each line with SID of creating delta.

Don't apply any deltas created after date.

Gets files for editing. Id keywords are not expanded. Should be matched with a
delta command.

-rSID

-b

-i/i•t

-x/iat

Same as for get. If SID specifies a release that does not yet exist, the
highest numbered delta is retrieved and the new delta is numbered with
SID.

Create a branch.

Same as for get.

Same as for get.

de 1 ta Merge a file gotten using edit back into the •-file. Collect comments about why this
delta was made.

unedi t Remove a file that has been edited previously without merging the changes into the
•-file.

prt Produce a report of changes.

info

check

tell

-t Print the descriptive text.

-e Print (nearly) everything.

Give a list of all files being edited.

-b Ignore branches.

-u(u.er] Ignore files not being edited by u•er.

Same as info, except that nothing is printed if nothing is being edited and exit status
is returned.

Same as info, except that one line is produced per file being edited containing only
the file name.

Revision E of 15 May 1985 5-17

SCCS High-Level User Interface Programming Tools

clean

what

admin

Remove all files that can be regenerated from the •-file.

Find and print id keywords.

Create or set parameters on •-file's.

-ifile Create, using file as the initial contents.

-•
-(flag

-dflag

-tfile

Rebuild the checksum in case the file has been trashed.

Turn on flag.

Turn off (delete) flag.

Replace the descriptive text in the •-file with the contents of file. If file
is omitted, the text is deleted. Useful for storing documentation or design
and implementation documents to ensure they get distributed with the •­
file.

Useful flags that can be introduced via the -F and -d options are:

b Allow branches to be made using the -b option to edit.

dSID Default SID to be used on a get or edit.

i Make the 'No Id Keywords' error message a fatal error rather than a
warnmg.

t The module 'type'; the value of this flag replaces the %Y% keyword.

fix Remove a delta and reedit it.

de 1 get Do a delta followed by a get.

de ledi t Do a delta followed by an edit.

5.19.2. Id Keywords

Expands to '@<. #)' for the what command to find.

The current module name, for example, 'prog.c'.

The highest SID applied.

A shorthand for '%Z%%M% <tab> %!%'.

The date of the delta corresponding to the '%!%' keyword.

%Z%

%M%

%!%

%W%

%G%

%R%

%Y%

The current release number, that is, the first component of the '%!%' keyword.

Replaced by the value of the t flag (set by admin).

5-18 Revision E of 15 May 1985

0

o·

0

0

0

0

Programming Tools SCCS Low-Level Commands

Part II - The SCCS Low-Level Command Inter­
face

Part I of this document described the acca front-end command for using the facilities of SCCS. In
general, you can do most things using the acca command, and so you should in theory never
have to look at this part of the document. There may be times however, when it is necessary to
use the raw facilities of the SCCS commands themselves, and so this part of the document is a
reference guide for SCCS. The following topics are covered in this document:

• How to get started with secs.
• The scheme used to identify versions of text kept in an SCCS file.

• Basic information needed for day-to-day use of SCCS commands, including a discussion of the
more useful arguments.

• Protection and auditing of SCCS files, including the differences between the use of SCCS by
individual users on one hand, and groupa of users on the other.

5.14. SCCS For Beginners

We assume here that you know how to log onto a UNIX system, create files, and use a text editor
like ez or vi. If you need more information on these subjects, see the Uaer 'a Manual for the Sun
UNIX Syatem.

In this section, we present some basic concepts of SCCS. Examples are fragments of terminal ses­
sions, with what you type shown in bold typewriter font like this, and what the ter­
minal displays shown in typewriter font like this. After familiarizing yourself with
basics, use the manual pages for detailed SCCS command descriptions.

Note that all the SCCS commands described here live in the /uar/acca directory, so you must
either state that directory explicitly when using SCCS commands, or include that pathname in
your .login file. All the examples shown in this guide assume that you have /uar/acca in your
path and so you just have to type the required SCCS command name.

5.1,t.1. Terminology

Each SCCS file is composed of one or more sets of changes applied to the null (empty) version of
the file; each set of changes usually depends on all previous sets. Each set of changes is called a
'delta' and is assigned a name called the Secs /Dentification string (SID).

The SID is composed of at most four components; for now let's focus on only the first two: the
'release' and 'level' numbers. Each set of changes to a file is named 'releaae.levef; hence, the

Revision E of 15 May 1985 5-19

SCCS Low-Level Commands Programming Tools

first delta is called '1.1 ', the second '1.2', the third '1.3', and so on. The release number can also
be changed, allowing, for example, deltas '2.1', '3.19', etc. A change in the release number usu- O·

ally indicates a major change to the file.

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5 defines
the version of the SCCS file obtained by applying the changes that constitute deltas 1.1, 1.2, etc.,
up to and including delta 1.5 itself, in that order, to the null (empty) version of the file.

5.1,S.2. Creating an SCCS File with 'admin'

Consider, for example, a file called 'lang' containing a list of programming languages:

tutorial% cat lang
C

PL/I
FORTRAN
COBOL
Algol
tutorial%

We wish to give secs custody of 'lang' by using admin (which adminiaters SCCS files) to create
an SCCS file and initialize delta 1.1. To do so, we use admin as shown, and admin responds with
a message:

tutorial% admin -ilang a.lang
No id keywords (cm7)
tutorial%

All SCCS files muat have names that begin with 's.', hence, 's.lang'. The -i option, together with
its value 'lang', indicates that admin is to create a new SCCS file and initialize it with the con­
tents of the file 'lang'. This initial version is a set of changes applied to the null SCCS file; it is
delta 1.1.

The message is a warning message (which may also be issued by other SCCS commands) that you
can ignore for the present. In the following examples, this warning message is not shown,
although it may actually be issued by the various commands.

Remove the file 'lang' now - it can easily be reconstructed with the get command, described
below.

5.1,t.9. Retrieving a File with 'get'

Get creates (retrieves) the latest version of an SCCS file and gives you some information about it.
For example, here is how to retrieve the file we created above:

tutorial% get a.lang
1.1
5 lines
tutorial%

Get tells you it has retrieved version 1.1 of the file, which contains 5 lines of text. The retrieved
text is placed in a file whose name is formed by deleting the 's.' prefix from the name of the SCCS
file; hence, the file 'lang' is created.

5-20 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools SCCS Low-Level Commands

The above get command simply creates the read-only file 'lang' and keeps no information what­
soever regarding its creation. If you wish to subsequently change an SCCS file with the delta
command (see below), however, you must create a file which can be written as well as read. You
do this by using get with the -e (edit) option:

tutorial% get -e a.lang
1.1
new delta 1.2
5 lines
tutorial%

When you use the -e option, get creates a file 'lang' for both reading and writing (so that it may
be edited) and places certain information about the SCCS file in another new file, called the p-file,
that the delta command reads later. Get prints the same messages as before, and in addition
displays the SID of the version to be created using delta.

You can now change 'lang' by adding (say) SNOBOL and Ratfor to the list using your favorite
editor. Then take a look at the new file:

tutorial% cat lang
C
PL/I
FORTRAN
COBOL
Algol
SNOBOL
Ratfor
tutorial%

5.14-4. Recording Changes with 'delta'

To record the changes that were applied to 'lang' within the SCCS file, use the delta command.
Delta asks for comments describing the change, and you respond with a description of why the
changes were made:

tutorial% delta a.lang
comments? added SNOBOL and Ratfor

More messages from delta - see below
tutorial%

Delta then reads the p-file and determines what changes were made to the file 'lang'. Delta does
this by doing its own get to retrieve the original version, and then applying dijJ(l) to the original
version and the edited version. When the changes to 'lang' have been stored in 's.lang', the
dialogue with delta looks like:

tutorial% delta a.lang
comments? added SNOBOL and Ratfor
1.2
2 inserted
0 deleted
5 unchanged
tutorial%

The number '1.2' is the name of the delta just created, and the next three lines are a summary
of the changes made to 's.lang'.

Revision E of 15 May 1985 5-21

SCCS Low-Level Commands Programming Tools

5.Lf.5. More about the 'get' Command

As we have seen:

tutorial% get e.lang

retrieves the latest version (now 1.2) of the file 's.lang' by starting with the original version of
the file and successively applying deltas (the changes) in order, until all deltas have been applied.
For our example, the following commands are all equivalent:

tutorial% get e.lang

tutorial% get -r1 e.lang

tutorial% get -r1.2 e.lang

The numbers following the -r option are SIDs. Note that omitting the level number of the SID
(as in the second example above) is equivalent to specifying the higheat level number that exists
within the specified release. Thus, the second get retrieves the latest version in release 1, namely
1.2. The third get specifically retrieves a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indi­
cated by changing the releaae number (first component of the SID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number (second
component of the SID), we must indicate to secs that we wish to change the release number.
This is done with a get -r command to indicate that a new release will be made:

tutorial% get -e -r2 e.lang
1.2
new delta 2.1
7 lines
tutorial%

Release 2 does not exist, as indicated by the 'new delta' message, so get retrieves the latest ver­
sion before release 2. Get also changes the release number of the delta we wish to create to 2,
and thus names the new version 2.1, rather than 1.3. This information is conveyed to delta via
the p-file.

Now suppose you edit the file and remove Cobol from the list of languages, so that the new file
looks like this:

tutorial% cat lang
C

PL/I
FORTRAN
Algol
SNOBOL
Ratfor
tutorial%

and then use delta, you will see from delta 'a output, that version 2.1 is indeed created:

5-22 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

tutorial% delta a.lang
comments? deleted Cobol from llat of languages
2.1
0 inserted
1 deleted
6 unchanged
tutorial%

SCCS Low-Level Commands

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner.

5.L/.6. Getting Explanations of Errors with 'help'

Help displays explanations of SCCS commands and diagnostic messages. As an example, let's type
a command line incorrectly and generate an error message:

tutorial% get abc
ERROR [abc]: not an SCCS file (col)
tutorial%

The string 'col' is a code for the diagnostic message. Use it as an argument to help to get a
fuller explanation of the error:

tutorial% help co1
col:
"not an SCCS file"
A file that you think ls an SCCS file
does not begin with the characters "s.".
tutorial%

Thus, help is useful whenever there is any doubt about the meaning of an SCCS message. Fuller
explanations of almost all SCCS messages may be found in this manner.

5.15. SCCS File Numbering Conventions

You can think of the deltas applied to an SCCS file as the nodes of a tree; the root is the initial
version of the file. The root delta (node) is normally named '1.1' and successor deltas (nodes) are
named '1.2', '1.3', etc. We have already discussed these two components of the names of the
deltas, the 'release' and 'level' numbers; and you have seen that normal naming of successor del­
tas proceeds by incrementing the level number, which is performed automatically by secs when­
ever a delta is made. In addition, you have seen how to change the release number when making
a delta, to indicate that a major change to the file is being made. The new release number
applies to all successor deltas, unless it is specifically changed again. Thus, the evolution of a.
particular file may be represented as in Figure 1.

Revision E of 15 May 1985 5-23

SCCS Low-Level Commands Programming Tools

Release 2

Release 1
2.2

2.1

1.4

1.3

1.2

1.1

Figure 5-1: Evolution of an SCCS File

We can call this structure the 'trunk' of the SCCS tree. It represents the normal sequential
development of an SCCS file, in which changes that are part of any given delta are dependent
upon all the preceding deltas.

0

However, there are situations when a branch is needed on the tree: when changes applied as part
of a given delta are not dependent upon all previous deltas. As an example, consider a program
which is in production use at version 1.3, and for which development work on release 2 is already
in progress. Thus, release 2 may already have some deltas, precisely as shown in Figure l.
Assume that a production user reports a problem in version 1.3 which cannot wait until release 2
to be repaired. The changes necessary to repair the trouble will be applied as a delta to version
1.3 (the version in production use). This creates a new version that will then be released to the Q,

user, but will not affect the changes being applied for release 2 (that is, deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a 'branch' of the tree, and its name consists of four components: the
release and level numbers, as with trunk deltas, plus the 'branch' and 'sequence' numbers. Its
SID thus appears as: releaae.level.branch.aequence. The branch number is assigned to each
branch that is a descendant of a particular trunk delta; the first such branch is 1, the next one 2,
and so on. The aequence number is assigned, in order, to each delta on a particular branch.
Thus, 1.3.l.2 identifies the second delta of the first branch that derives from delta 1.3. This is
shown in Figure 2.

0
5-24 Revision E of 15 May 1985

0

0

0

Programming Tools SCCS Low-Level Commands

Release 2

Release 1
2.2

2.1

1.2

1.1

1.3.1.1 Branch 1

1.3.1.2

Figure 5-2: Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk del­
tas contain exactly two components, and the names of branch deltas contain exactly four com­
ponents. Second, the first two components of the name of a branch delta are always those of the
ancestral trunk delta, and the branch component is assigned in the order of creation of the
branch, independently of its location relative to the trunk delta. Thus, a branch delta may
always be identified as such from its name. Although the ancestral trunk delta may be identified
from the branch delta's name, it is not possible to determine the entire path leading from the
trunk delta to the branch delta. For example, if delta 1.3 has one branch emanating from it, all
deltas on that branch will be named 1.3.l.n. If a delta on this branch then has another branch
emanating from it, all deltas on the new branch will be named 1.3.2.n (see Figure 3). The only
information that may be derived from the name of delta 1.3.2.2 is that it is the chronologically
second delta on the chronologically second branch whose trunk ancestor is delta 1.3. In particu­
lar, it is not possible to determine from the name of delta 1.3.2.2 all of the deltas between it and
its trunk ancestor (1.3).

Revision E of 15 May 1985 5-25

SCCS Low-Level Commands Programming Tools

Release 2

Release 1
2.2

2.1

1.3

1.2

1.1

Branch 1

Branch 2

1.3.2.2

Figure 5-3: Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the secs tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

5.16. SCCS Command Conventions

This section discusses the conventions and rules that apply to SCCS commands. These rules and
conventions are generally applicable to all SCCS commands, except as indicated below.

5.16.1. Command Line Syntax

SCCS commands accept optiona and file argumenta.

0

0

Optiona begin with a minus sign (-), followed by a lower-case alphabetic character, and, in some O·

cases, followed by a value. Options modify actions of commands on which they are specified.

5-26 Revision E of 15 May 1985

0

0

0

Programming Tools SCCS Low-Level Commands

File argumenta (which may be names of files and/or directories) specify the file(s) that the given
SCCS command is to process; naming a directory is equivalent to naming all the SCCS files within
the directory. Non-SCCS files and unreadable 14 files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name '-' (a lone
minus sign) is specified as an argument to a command, the command reads the standard input
for lines and takes each line as the name of an SCCS file to be processed. The standard input is
read until end-of-file. This feature is often used in pipelines with, for example, the find(l) or
1a(l) commands. Again, names of non-SCCS files and of unreadable files are silently ignored.

Options specified for a given command apply to all file arguments of that command. Options are
processed before any file arguments; therefore the placement of options is arbitrary, that is,
options may be interspersed with file arguments. File arguments, however, are processed left to
right.

Somewhat different argument conventions apply to the help, what, accadiff, and val commands.

5.16.2. Flags

Certain actions of various secs commands are modified by ftaga embedded in the text of SCCS
files. Some of these flags are discussed below. For a complete description of all such flags, see
admin(l).

5.16.9. Real/Effective User

The distinction between the real uaer (see pauwd(l)) and the effective uaer of a UNIX system is
of concern in discussing various actions of SCCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same, that is, the user who is logged
into the system.

5.16.,t. Back-up Files Created During Processing

All SCCS commands that modify an SCCS file do so by writing a temporary copy, called the z-file,
to ensure that the SCCS file will not be damaged if processing terminates abnormally. The name
of the z-file is formed by replacing the 's.' of the SCCS file name with 'x.'. When processing is
complete, the old SCCS file is removed and the z-file is renamed to be the SCCS file. The z-file is
created in the directory containing the SCCS file, is given the same mode (see chmod(l)) as the
SCCS file, and is owned by the effective user.

To prevent simultaneous updates to an SCCS file, commands that modify SCCS files create a lock­
file, called the z-file, whose name is formed by replacing the 's.' of the SCCS file name with 'z.'.
The z-file contains the proceaa number of the command that creates it, and its existence is an
indication to other commands that that SCCS file is being updated. Thus, other commands that
modify SCCS files will not process an SCCS file if the corresponding z-file exists. The z-file is
created with mode 444 (read-only) in the directory containing the SCCS file, and is owned by the
effective user. The z-file exists only for the duration of the execution of the command that
creates it. In general, users can ignore z-filea and z-filea; they may be useful in the event of

14 Because of permission modes - see c/imod(l).

Revision E of 15 May 1985 5-27

SCCS Low-Level Commands Programming Tools

system crashes or similar situations.

5.16.5. Diagnostics

SCCS commands direct their diagnostic responses to the standard error file. SCCS diagnostics
generally look like this:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to help to obtain a further explanation of
the diagnostic message.

If the SCCS command detects a fatal error during the processing of a file it terminates processing
of that file and proceeds with the next file in the series, if more than one file has been named.

5.17. SCCS Commands

This section describes the major features of all the SCCS commands. For detailed descriptions of
the commands and their arguments, see the individual SCCS manual pages. The discussion below
covers only the more common arguments of the various SCCS commands.

The get and delta commands are presented first because they are the most frequently used. The
other commands follow in approximate order of importance.

The following is a summary of all the SCCS commands and their major functions:

get

delta

Retrieves versions of SCCS files.

Applies changes (deltas) to the text of SCCS files; that is, delta creates new versions.

admin Creates SCCS files and applies changes to parameters of SCCS files.

prs Prints portions of an SCCS file in user-specified format.

help Explains secs commands and diagnostic messages.

rmdel Removes a delta from an SCCS file; useful for removing deltas that were created by
mistake.

cdc Changes the commentary associated with a delta.

what Searches UNIX file(s) for all occurrences of a special pattern and prints what follows
it. What is useful in finding identifying information inserted by get.

sccsdifF Shows the differences between any two versions of an SCCS file.

comb Combines two or more consecutive deltas of an SCCS file into a single delta.

val Validates an secs file.

5.17.1. get - Retrieve a File

0

0

Get creates a text file containing a particular version of an SCCS file. The particular version is
retrieved by beginning with the initial version, and then applying deltas, in order, until the
desired version is obtained. The created file is called the g-file; its name is formed by removing
the 's.' from the SCCS file name. The g-file is created in the current directory and is owned by o
5-28 Revision E of 15 May 1985

0

0

0

Programming Tools SCCS Low-Level Commands

the real user. The permissions (mode) assigned to the g-file depend on the options used with get,
as discussed below.

Get is normally used to retrieve the latest version or a file on the trunk or the SCCS file tree:

tutorial% get a.abc
1.3
67 lines
No id keywords (cm7)
tutorial%

The messages tell you that:

l. Version 1.3 of file 's.abc' was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines or text.

3. No ID keywords were substituted in the file - see below for a discussion of ID keywords.

The generated g-file (file 'abc') is given mode 444 (read-only), since this particular way or invok­
ing get is intended to produce g-fi/ea only for inspection, compilation, or whatever, but not for
editing - that is, not for making deltas.

If you use get with several file arguments (or directory-name arguments), similar information is
given for each file processed, but the SCCS file name precedes it:

tutorial% get a.abc a.def
s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm7)
tutorial%

5.17.1.1. ID Keyword•

When you generate a g-fi/e to be used for compilation, it is useful and informative to record the
date and time of creation, the version retrieved, the module's name, etc., within the g-file, so
that this information appears in a load module when one is eventually created. SCCS provides a
convenient mechanism for doing this automatically. Identification (ID) keyword• appearing any­
where in the generated file are replaced by appropriate values according to the definitions of
these ID keywords.

The format of an ID keyword is an upper-case letter enclosed by percent signs(%). For example,
%I% is an ID keyword that is replaced by the SID of the retrieved version of a file. Similarly,
%H% is an ID keyword for the current date (in the form 'mm/dd/yy'), and %M% is the name of
the g-fi/e.

Thus, using get on an secs file that contains the C declaration:

char identification [] = "%M% %I% %H%";

gives (for example) the following:

Revision E of 15 May 1985 5-29

SCCS Low-Level Commands

char identification [] = "modulename 2.3 03/17/83";

If there are no ID keywords in the text, get might display:

No id keywords (cm7)
tutorial%

Programming Tools

This message is normally treated as a warning by get. However, if an i flag is present in the
SCCS file, it is treated as an error - see the section entitled delta - Make a Delta for further
information).

For a complete list of the approximately twenty ID keywords provided, see get(l).

5.17.1.2. Retrieving Different Veraion,

You can retrieve versions other than the default version of an SCCS file by using various options.
Normally, the default version is the most recent delta of the highest-numbered release on the
trunk of the secs file tree. However, if the SCCS file being processed has ad (default SID) flag,
the SID specified as the value of this flag is used as a default. The default SID is interpreted in
exactly the same way as the value supplied with the -r option of get.

The -r option specifies an SID to be retrieved, in which case the d (default SID) flag (if any) is
ignored. For example, to retrieve version 1.3 of file 's.abc', type:

tutorial% get -r1.3 s.abc
1.3
64 lines
tutorial%

A branch delta may be retrieved in the same way:

tutorial% get -r1.S.2.3 a.abc
1.5.2.3
234 lines
tutorial%

When a two- or four-component SID is specified as a value for the -r option (as above) and the
particular version does not exist in the SCCS file, an error message results.

If you omit the level number of the SID, get retrieves the trunk delta with the highest level
number within the given release, if the given release exists:

tutorial% get -r3 a.abc
3.7
213 lines
tutorial%

Get retrieved delta 3.7, the highest level trunk delta in release 3. If the given release does not
exist, get goes to the next-highest existing release, and retrieves the trunk delta with the highest
level number. For example, if release 9 does not exist in file 's.abc', and release 7 is actually the
highest-numbered release below 9, then get would generate:

tutorial% get -r9 a.abc
7.6
420 lines
tutorial%

indicating that trunk delta 7.6 is the latest version of file 's.abc' below release 9.

5-30 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools SCCS Low-Level Commands

Similarly, if you omit the sequence number of an SID, as in:

tutorial% get -r4.3,2 •·a.be
4.3.2.8
89 lines
tutorial%

get retrieves the branch delta with the highest sequence number on the given branch, if it exists.
If the given branch does not exist, an error message results.

The -t option retrieves the latest ('top') version in a particular releaae (that is, when no -r
option is supplied, or when its value is simply a release number). The latest version is defined as
that delta which was produced most recently, independent of its location on the SOOS file tree.
Thus, if the most recent delta in release 3 is trunk delta 3.5, doing a get -t on release 3 pro­
duces:

tutorial% get -r3 -t a.a.be
3.5
59 lines
tutorial%

However, if branch delta 3,2,1,5 were the latest delta (created after delta 3.5), the same com­
mand produces:

tutorial% get -r3 -t •.a.be
3,2,1,5
46 lines
tutorial%

5.17.1.9. Retrieving to Make Changea

Specifying the -e option to the get command indicates the intent to make a delta sometime
later, and, as such, its use is restricted. If the -e option is present, get checks the following
things:

1. The uaer liat, the list of login names and/or group /Da of users allowed to make deltas, to
determine if the login name or group ID of the user executing get is on that list. Note
that a null(empty) user list behaves as if it contained al/possible login names.

2. That the releaae (R) of the version being retrieved satisfies the relation:

floor $; R $; ceiling

to determine if the release being accessed is a protected release. The floor and ceiling
are specified as ftaga in the SOOS file.

3. That the releaae (R) is not locked against editing. The lock is specified as a flag in the
SOOS file.

4. Whether or not multiple concurrent edita are allowed for the SOOS file as specified by the
j flag in the SOOS file. Multiple concurrent edits are described in the section entitled
Concurrent Edita of the Same SID.

Get terminates processing of the corresponding SOOS file if any of the first three conditions fails.

If the above checks succeed, get with the -e option creates a g-file in the current directory with
mode 644 (readable by everyone, writable only by the owner) owned by the real user.

Revision E of 15 May 1985 5-31

SCCS Low-Level Commands Programming Tools

Get terminates with an error if a writable g-file already exists - this is to prevent inadvertent
destruction of a g-file that already exists and is being edited for the purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get when the -e option is specified,
because the generated g-file is to be subsequently used to create another delta, and replacement
of ID keywords would permanently change them within the SCCS file. In view of this, get does
not check for the presence of ID keywords within the g-file, so that the message: 'No id key­
words (cm7)' is never displayed when get is invoked with the -e option.

In addition, a get with the -e option creates (or updates) a p-file, for passing information to the
delta command. Let's look at an example of get -e:

tutorial% get -e a.abc
1.3
new delta 1.4
67 lines
tutorial%

The message indicates that get has retrieved version 1.3, which has 67 lines; the version delta will
create is version 1.4.

If the -r and/or -t options are used together with the -e option, the version retrieved for edit­
ing is as specified by the -r and/or -t options.

The options -i and -x may be used to specify a list of deltas to be included and excluded,
respectively, by get. See get(l) for the syntax of such a list. 'Including a delta' forces the
changes that constitute the particular delta to be included in the retrieved version - this is use­
ful for applying the same changes to more than one version of the SCCS file. 'Excluding a delta'
forces it not to be applied. This is useful for undoing the effects of a previous delta in the ver­
sion of the SCCS file to be created.

Whenever deltas are included or excluded, get checks for possible interference between such del­
tas and those deltas that are normally used in retrieving the particular version of the SCCS file.
Two deltas can interfere, for example, when each one changes the same line of the retrieved g­
file. Any interference is indicated by a warning that displays the range of lines within the
retrieved g-file in which the problem may exist. The user is expected to examine the g-file to
determine whether a problem actually exists, and to take whatever corrective measures are
deemed necessary.

a The -i and -x optiona ,hould be uaed with extreme care.

The -k option to get can be used to regenerate a g-file that may have been accidentally
removed or ruined after executing get with the -e option, or to simply generate a g-file in which
the replacement of ID keywords has been suppressed. Thus, a g-file generated by the -k option
is identical to one produced by get executed with the -e option. However, no processing related
to the p-file takes place.

5.17.1.,#. Concurrent Edit, of Different SID,

The ability to retrieve different versions of an SCCS file allows a number of deltas to be 'in pro­
gress' at any given time. In general, several people may simultaneously edit the same SCCS file
provided they are editing different 11eraion1 of that file. This is the situation we discuss in this
section. However, there is a provision for multiple concurrent edits, so that more than one per­
son can edit the ,ame 11er,ion - see the section entitled Concurrent Edit, of the Same SID.

5-32 Revision E of 15 May 1985

0

C

0

0

0

Programming Tools SCCS Low-Level Commands

The p-file - created via a get -e command - is named by replacing the 's.' in the SCCS file
name with 'p.'. The p-file is created in the directory containing the SCCS file, is given mode 644
(readable by everyone, writable only by the owner), and is owned by the effective user. The p­
file contains the following information for each delta that is still 'in progress':15

• The SID of the retrieved version.

• The SID that will be given to the new delta when it is created.

• The login name of the real user executing get.

The first execution of get -e create, the p-file for the corresponding SCCS file. Subsequent
executions only update the p-file by inserting a line containing the above information. Before
inserting this line, however, get performs two checks. First, it searches the entries in the p-file
for an SID which matches that of the requested version, to make sure that the requested version
has not already been retrieved. Secondly, get determines whether or not multiple concurrent
edits are allowed. If the requested version has been retrieved and multiple concurrent edits are
not allowed, an error message results. Otherwise, the user is informed that other deltas are in
progress, and processing continues.

It is important to note that the various executions of get should be carried out from different
directories. Otherwise, only the first use of get will succeed; since subsequent gets would
attempt to overwrite a writable g-file, they produce an SCCS error condition. In practice, this
problem does not arise: normally such multiple executions are performed by different users16
from different working directories.

Table 1 shows, for the most useful cases, what version of an SCCS file is retrieved by get, as well
as the SID of the version to be eventually created by delta, as a function of the SID specified to
get.

I& Other in(ormation may be present, but is not or concern here. See get(l) Cor rurther discussion.
18 See the section entitled Protection tor a discussion or how different users c:an use SCCS commands on

the same files.

Revision E of 15 May 1985 5-33

SCCS Low-Level Commands Programming Tools

Table 1 - Determination of New SID

Caae SID -b Option Other SID SID of Delta
Specified* Uaedt Conditiom Retrieved to be Created

1. nonei no R defaults to mR mR.mL mR.(mL+l)

2. nonei yes R defaults to mR mR.mL mR.mL.(mB+l).l

3. R no R>mR mR.mL R.1§

4. R no R=mR mR.mL mR.(mL+l)

5. R yes R>mR mR.mL mR.mL.(mB+l).l

6. R yes R-mR mR.mL mR.mL.(mB+l).l

7. R
R < mR and hR.mL** hR.mL.(mB+l).l - R does not exist

Trunk successor

8. R - in release > R R.mL R.mL.(mB+l).l
and R exists

9. R.L no No trunk successor R.L R.(L+l)

10. R.L yes No trunk successor R.L R.L.(mB+l).l

11. R.L
Trunk successor R.L R.L.(mB+l).l - in release ~ R

12. R.L.B no No branch successor R.L.B.mS R.L.B.(mS +l)

13. R.L.B yes No branch successor R.L.B.mS R.L.(mB+l).l

14. R.L.B.S no No branch successor R.L.B.S R.L.B.(S +l)

15. R.L.B.S yes No branch successor R.L.B.S R.L.(mB+l).l

16. R.L.B.S - Branch successor R.L.B.S R.L.(mB + 1).1

• 'R', 'L', 'B', and 'S' are the 'release', 'level', 'branch', and '11equence' component11 of the SID, re11pectively; 'm' means 'ma.ximum'.
Thu11, for example, 'R.mL' mean11 'the maximum level number within releue R'; 'R,L.(mB+l).1' meana 'the fint sequence number
on the nelt' branch (that i:i, maximum branch number plu! 1) of level L within relea:,e R'. Note that if the SID apecified i11 of the
form 'R.L', 'R.L.B', or 'R.L.B.S', each of the specified components mu1tl exist.

t The -b option i:i effective only if the b fla.g (11ee admin(1)) is pre11ent in the file. In this ta.hie, &n entry of 1
-

1 mea.ns 'irrelcva.nt'.

t This ca.se a.pplics if the d (def a.ult SID) 8a.g is not present in the file. If the d flag i, pre11ent in the file, then the SID obta.ined Crom
the d 8a.g i11 interpreted &11 if it ha.d been 11pecified on the comma.nd line. Thus, one of the other c&11es in this table applies.

§ This ca.se is u:ied to force the crea.tion of the ftr,t delta in a new relea.se . ..
'hR' is the highed ui,finJ relea.se that is lower tha.n the specified, nonui,fenf, release.

5.17.1.5. Concurrent Edita of the Same SID

Normally, gets for editing (-e option specified) cannot operate concurrently on the same SID.
Usually delta must be used before another get -e on the same SID. However, multiple

5-34 Revision E of 15 May 1985

0

C

0

0

0

0

Programming Tools SCCS Low-Level Commands

concurrent edits (two or more aucceaaive get -e commands based on the same retrieved SID)

are allowed if the j flag is set in the SCCS file. Thus:

tutorial% get -e ••&be
1.1
new delta 1.2
5 lines
tutorial%

may be immediately followed by:

tutorial% get -e •.&be
1.1
new delta 1.1.1.1
5 lines
tutorial%

without an intervening use of delta. In this case, a delta command corresponding to the first get
produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta command
corresponding to the second get produces delta l.l.l.l.

5.17.1.6. Option, That Affect Output

When the -p option is specified, get writes the retrieved text to the standard output, rather
than to a g-file. In addition, all output normally directed to the standard output (such as the SID

of the version retrieved and the number of lines retrieved) is directed instead to the diagnostic
output. This may be used, for example, to create g-filea with arbitrary names:

tutorial% get -p •·&be > arbitrary-filename

The -11 option suppresses all output that is normally directed to the standard output. Thus, the
SID of the retrieved version, the number of lines retrieved, and so on, do not appear on the stan­
dard output. -11 does not affect messages directed to the diagnostic output. -a, is often used in
conjunction with the -p option to 'pipe' the output of get, as in:

tutorial% get -p -11 a.&bc I nroff

A get -g verifies the existence of a particular SID in an SCCS file but does not actually retrieve
the text. This may be useful in a number of ways. For example,

tutorial% get -g -r4.3 •·&be

displays the specified SID if it exists in the SCCS file, and generates an error message if it doesn't.
-g can also be used to regenerate a p-file that has been destroyed:

tutorial% get -e -g ••&be

Get used with the -I option creates an I-file, which is named by replacing the 's.' of the secs file
name with 'l.'. This file is created in the current directory, with mode 444 (read-only), and is
owned by the real user. It contains a table (format described in get(l)) showing which deltas
were used in constructing a particular version of the SCCS file. For example:

tutorial% get -r2.3 -1 ••&be

generates an I-file showing which deltas were applied to retrieve version 2.3 of the SCCS file.
Specifying a value of 'p' with the -I option, as in:

Revision E of 15 May 1985 5-35

SCCS Low-Level Commands Programming Tools

tutorial% get -lp -r2.3 a.abc

sends the generated output to the standard output rather than to the I-file. Note that the -g
option may be used with the -I option to suppress the actual text retrieval.

The -m option identifies the origin of each change applied to an SCCS file. -m tags each line of
the generated g-file with the SID of the delta it came from. The SID precedes the line, and is
separated from the text by a tab character.

When the -n option is specified, each line of the generated g-file is preceded by the value of the
%M% ID keyword and a tab character. The -n option is most often used in a pipeline with
grep(l). For example, to find all lines that match a given pattern in the latest version of ea.ch
secs file in a directory:

tutorial% get -p -n -• directory I grep pattern

If both the -m and -n options are specified, ea.ch line of the generated g-file is preceded by the
value of the %M% ID keyword and a tab (the effect of the -n option), followed by the line in
the format produced by the -m option.

Since using the -m option, the -n option, or both, modifies the contents of the g-file, such a g­
file must not be used for creating a delta. Therefore, neither the -m nor the -n option may be
used with the -e option.

See get(l) for a full description of additional get options.

5.17.2. delta - Make a Delta

0

Delta incorporates changes made to a g-fik into the corresponding SCCS file. This process 1s 0
known as 'making a delta', which is essentially a new version of the file.

Delta does a series of checks before creating the delta:

1. Searches the p-file for an entry containing the user's login name, because the user who
retrieved the g-file must be the one who creates the delta. Delta displays an error message if
the entry is not found. Note that if the login name of the user appears in more than one
entry (that is, the same user did a get -e more than once on the same secs file), the -r
option must be used with delta to specify an SID that uniquely identifies the p-file entry17.

2. Performs the same permission checks as get -e.

If these checks succeed, delta compares the g-file (via diff(l)) with its own, temporary copy of
the g-file as it was before editing, to determine what has been changed. This temporary copy of
the g-file is called the d-file (its name is formed by replacing the 's.' of the secs file name with
'd.'); delta retrieves it by doing its own get at the SID specified in the p-/ile entry. If you would
like to see the results of delta's diff, use the -p option to display it on standard output.

In practice, the most common use of delta is:

tutorial% delta a.abc

If your standard output is a terminal, delta replies: 'comments?'. You may now type a response
- usually a description of why the delta is being made - of up to 512 characters, terminating
with a newline character. Newline characters not intended to terminate the response should be

17 The SID specified may be either the SID retrieved by gel, or the SID dell• is to create.

5-36 Revision E of 15 May 1985

0

0

0

0

Programming Tools SCCS Low-Level Commands

preceded by'\'.

If the SCCS file has a v flag, delta asks for 'MRs?' before prompting for 'comments?' (again, this
prompt is printed only if the standard output is a terminal). Enter MR18 numbers, separated by
blanks and/or tabs, and terminate your response with a. newline character.

If you want to enter commentary (comments and/or MR numbers) directly on the command line,
use the -y and/or -m options, respectively. For example:

tutorial% delta -y"deacriptive comment" -•"mrnWD1 mrnWD2" a.abc

inserts the 'descriptive comment' and the MR numbers 'mrnuml' and 'mrnum2' without prompt­
ing or reading from standard input. -m can only be used if the secs file has a v flag. These
options are useful when delta is executed from within a Shell procedure (see ah(l)).

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
options, is recorded as part of the entry for the delta being created, and applies to all secs files
processed by the same invocation of delta. Thus if delta is used with more than one file argu­
ment, and the first file named has a v flag, all files named must have this flag. Similarly, if the
first file named does not have this flag, then none of the files named may have it. Only files con­
forming to these rules are processed.

After the prompts for commentary, and before any other output, delta displays:

No id keywords (cm?)

if it finds no ID keywords in the edited g-file while making a delta. If there were any ID keywords
in the SCCS file, this might mean one of two things. The keywords may have been replaced by
their values (if a get without the -e option was used to retrieve the g-file). Or, the keywords
may have been accidentally deleted or changed while editing the g-file. Of course, the file may
never have had any ID keywords. In any case, it is left up to you to decide whether any action is
necessary, but the delta is made regardless (unless there is an i flag in the SCCS file, which makes
this a fatal error and kills the de !ta).

When processing is complete, delta displays a message containing the SID of the created delta.
(obtained from the p-file entry), and the counts of lines inserted, deleted, and left unchanged.
Thus, a. typical message might be:

1.4
14 inserted
7 deleted
345 unchanged

The reported counts may not agree with your sense of changes ma.de; there are a. number of
ways to describe a set of such changes, especially if lines are moved around in the g-file, and
delta may describe the set differently than you. However, the total number of lines of the new
delta (the number inserted plus the number left unchanged) should agree with the number of
iihcS in the edited g-file.

After processing of an SCCS file is complete, the corresponding p-file entry is removed from the
p·file 10

• If there is only one entry in the p-file, the p-file itself is removed.

lB In a tightly controlled environment, one would expect deltas to be created only as a result of some
trouble report, change request, trouble ticket, etc. (collectively called here Modilreation Requests, or MRs)
and would think it desirable or necessary to record such MR number(s) within each delta.

lG All updates to the p-file a.re made to a temporary copy, the q-file, whose use is similar to the use of
the #·file described above.

Revision E of 15 May 1985 5-37

SCCS Low-Level Commands Programming Tools

In addition, delta removes the edited g-file, unless the -n option is specified. Thus:

tutorial% delta -n e.abc ~
keeps the g-file upon completion of processing.

The -11 (silent) option suppresses all output that is normally directed to the standard output,
except the initial prompts for commentary. If you use -11 with -y (and, possibly, -m), delta
neither reads standard input nor writes to standard output.

5.17.9. admin -Administer SCCS Files

Admin adminiaters SCCS files, that is, creates new SCCS files and changes parameters of existing
ones. When an secs file is created, its parameters are either initialized by use of options or
assigned default values if no options are supplied. The same options are used to change the
parameters of existing files.

The two options used when detecting and correcting 'corrupted' SCCS files are discussed in the
section entitled Auditing.

Newly created secs files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the SCCS file may use the admin
command upon that file.

5.17.9.1. Creating SCCS File,

tutorial% admin -ifiret e.abc

creates the initial delta of the SCCS file 's.abc'. This delta contains the text from the file ('first')
specified as the value of the -i option. If you use -i without a value, admin reads its text from
standard input. Thus, the command:

tutorial% admin -i e.abc < firet

produces the same result as the previous example. If the text of the initial delta does not con­
tain ID keywords, admin displays the warning message;

tutorial% admin -ifiret a.abc
No id keywords (cm7)
tutorial%

If you use the same admin command to set the i flag in the text (not to be confused with the -i
option for admin), the message is treated as a fatal error and the SCCS file is not created. Only
one secs file may be created at a time using the -i option.

When an secs file is created, the releaae number assigned to its first delta is normally '1', and its
level number is always 'l'. Thus, the first delta of an secs file is normally '1,1'. If you wish to
specify a release number for the first delta, use the -r option:

tutorial% admin -ifiret -r3 e.abc

to name the first delta '3.1' rather than '1,1'. The -r option can only be used with the -i
option, because -r is meaningful only in creating the first delta.

5-38 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools SCCS Low-Level Commands

5.17.9.2. lnaerting Commentary for the Initial Delta

You can use the -y and -m options with admin, just as with delta, to insert initial descriptive
commentary and/or MR numbers when an SCCS file is created. If you don't use -y to comment,
admin automatically inserts a comment line of the form:

date and time created YY/MM/DD 1111:1111:ss by logname

If you want to supply MR numbers (-m option), the v flag must also be set (using the -foption
described below). The v flag simply determines whether or not MR numbers must be supplied
when using any secs command that modifies a delta commentary in the SCCS file (see
accafile(5)). Thus:

tutorial% ac!min -ifirat -mmrnam1 -fv a.abc

Note that the -y and -m options are only effective if a new SCCS file is being created.

5.17.9.9. Initializing and Modifiying SCCS File Parametera

The portion of the SCCS file reserved for deacriptive text may be initialized or changed through
the use of the -t option. The descriptive text is intended as a summary of the contents and
purpose of the SCCS file; actually its contents and length are up to you.

When an SCCS file is being created and the -t option is supplied, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the command

tutorial% ac!min -ifirat -tdeac a.abc

specifies that the descriptive text is to be taken from file 'desc'.

When processing an exiating SCCS file, the -t option specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

tutorial% ac!min -tdeac a,abc

specifies that the descriptive text of the SCCS file is to be replaced by the contents of 'desc'.
Omitting the filename after the -t option removea the descriptive text from the SCCS file:

tutorial% ac!min -t a.abc

The flaga - see the section entitled Deacriptive Text - of an SCCS file may be initialized and
changed with the -f (flag) option, or may be deleted with the -d (delete) option. The flags of
an SCCS file direct certain actions of the various commands. See admin(l) for a description of all
the flags. For example, the i flag specifies that the warning message stating there are no ID key­
words contained in the SCCS file should be treated as an error, and the d (default SID) flag
specifies the default version of the secs file to be retrieved by the get command. The -f option
sets a flag and, possibly, sets its value. For example:

tutorial% ac!min -ifirat -fi -fmmodnaae a.abc

sets the i flag and the m (module name) flag. The value 'modname' specified for the m flag is
the value that the get command uses to replace the %M% ID keyword. (In the absence of the m
flag, the name of the g-file is used as the replacement for the %M% ID keyword). Note that
several -f options may be supplied on a single admin command, and that -f options may be
supplied whether the command is creating a new SCCS file or processing an existing one.

The -d option deletes a flag from an secs file, and may only be specified when processing an
existing file. As an example, the command:

Revision E of 15 May 1985 5-39

SCCS Low-Level Commands Programming Tools

tutorial% admin -dm a.abc

removes the m flag from the SCCS file. Several -d options may be supplied on a single admin
command, and may be interspersed with -t options.

SCCS files contain a list (uaer liat) of login names and/or group IDs of users who are allowed to
create deltas. This list is normally empty, implying that anyone may create deltas. To add login
names and/or group IDs to the list, use the admin command with the -a option. For example:

tutorial% admin -averu!y -aaliaon -a1234 a.abc

adds the login names 'wendy' and 'alison' and the group ID '1234' to the list. The -a option may
be used whether admin is creating a new SCCS file or processing an existing one, and may appear
several times. The -e option is used in an analogous manner if one wishes to remove ('erase')
login names or group IDs from the list.

s.11.4. prs - Print SCCS File

Pra displays all or parts of an SCCS file on the standard output. The format of this display,
called the output data apecification, is set via the -d option.

The data specification is a string consisting of SCCS file data keyworda2° interspersed with
(optional) text. Data keywords are replaced by appropriate values according to their definitions.
For example: :I: is defined as the data keyword that is replaced by the SID of a specified delta.
Similarly, :F: is defined as the data keyword for the name of the file currently being processed,
and :C: is defined as the comment line associated with a specified delta. All parts of an SCCS file
have an associated data keyword. For a complete list of the data keywords, see pra(l).

There is no limit to the number of times a data keyword may appear in a data specification; pra
will respond with as many substitutions as you call for:

tutorial% pr• -d":I: this i• the top delta for :r: :I:" a.abc
2.1 this is the top delta for s.abe 2.1
tutorial%

If you want pra to print from a single delta, use the -r option to specify the SID of that delta:

tutorial% pr• -d":r: :I: comment line is: :c:• -r1.4 a.abc
s.abc1 1.4 comment line isl THIS I B A COMMENT
tutorial%

If the -r option is not specified, the value of the SID defaults to the most recently created delta.

If you want information from a range of deltas, use the -e or -1 option. -e substitutes data
keywords for the SID designated via the -r option and all deltas created earlier:

tutorial% pr• -d:I: -r1.4 -e a.abc
1.4
1.3
1.2.1.1
1.2
1.1
tutorial%

20 Not to be confused with get ID ke,.,,ord,.

5-40 Revision E of 15 May 1985

0

C

0

0

0

0

Programming Tools SCCS Low-Level Commands

-1 substitutes data keywords for the SID designated via the -r option and all deltas created
later:

tutorial% pr• -d:z: -r1.4 -1 a.al)c
3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4
tutorial%

Pra substitutes data keywords for all deltas of the SCCS file if you use both the -e and -1
options.

5.17.5. help - Ask for Help

Help displays explanations of SCCS commands, and of messages these commands may print. Help
takes zero or more arguments, which are simply the names of SCCS commands or the code
numbers that appear in parentheses after SCCS messages. Help has no concept of option, or file
argument,. If no argument is given, help prompts for one. When help cannot find any informa­
tion on an argument, it displays an error message. Each argument is processed independently;
an error resulting from one argument does not terminate processing of the others.

If an argument is a command, help 'explains' it by giving you its synopsis. For example, the fol­
lowing asks for help on the 'ge5' error message and information about the rmdel command:

tutorial% help geS rmdel
geS:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name

tutorial%

5.17.6. rmdel - Remove a Delta

Rmdel remove, a delta from an secs file - it should be reserved for cases in which incorrect,
global changes were made to a delta.

The delta to be removed must be a 'leaf' delta; that is, it must be the la.test (most recently
created) delta on its branch or on the trunk of the SCCS file tree. In Figure 3, only deltas
1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they a.re removed, deltas 1.3.2.1 and 2.1 can be
removed, and so on.

To remove a delta, the effective user must have write permission in the directory containing the
SCCS file. In addition, the real user must either have created the delta being removed, or be the
owner of the secs file and its directory.

Revision E of 15 May 1985 5-41

SCCS Low-Level Commands Programming Tools

You must specify the complete SID of the delta to be removed, preceded by -r. The SID must
have two components for a trunk delta, and four components for a branch delta. Thus:

tutorial% rmdel -r2.3 a.abc

removes (trunk) delta '2.3' of the SCCS file.

Before removing the delta, rmdel checks the following things:

1. the releaae number (R) of the given SID satisfies the relation:

floor ~ R ~ ceiling

2. the SID specified is not that of a version for which a get for editing has been executed
and whose associated delta has not yet been made.

3. the login name or group ID of the user either appears in the file's uaer liat or the uaer lid
is empty.

4. the release specified cannot be locked against editing (that is, if the I flag is set (see
admin(l)), the release specified mud not be contained in the list).

H these conditions are satisfied, the delta is removed. Otherwise, processing is terminated.

After the specified delta has been removed, its type indicator in the delta table of the secs file is
changed from 'D' (delta) to 'R' (removed).

5.17. 7. cdc - Change Delta Commentary

0

Cdc change• the commentary supplied to a delta when it was created. Cdc has the same com- O· ,

mand syntax and restrictions as rmdel, but the delta to be processed does not have to be a leaf
delta. For example:

tutorial% cdc -r3.4 a.abc

specifies that the commentary of delta '3.4' of the SCCS file is to be changed.

Cdc behaves like delta when it solicits new commentary. The old commentary associated with
the specified delta is kept, but it is preceded by a comment line indicating that it has been
changed (that is, superseded), and the new commentary is entered ahead of this comment line.
The 'inserted' comment line records the login name of the user executing cdc and the time of its
execution.

You can also use cdc to delete selected MR numbers associated with the specified delta by
preceding them with '!'. For example, to insert 'mrnum3' and delete 'mrnuml' for delta 1.4:

tutorial% cdc -r1.4 a.abc
MRs? mrnum3 !mrnuml
comments? deleted wrong MR number and lnaerted correct MR number

5.17.8. what - Identify SCCS Files

What finds SCCS identifying information within any specified UNIX file. What does not use any
options, nor does it treat directory names and a name of'-' (a lone minus sign) in any special
way, as do other secs commands.

5-42 Revision E of 15 May 1985

0

0

0

0

Programming Tools SCCS Low-Level Commands

What searches the given file(s) for all occurrences of the string'@#)', which is the replacement
for the %Z% ID keyword (see get(l)). What then displays whatever follows that string until the
first double quote("), greater than(>), backslash(\), newline, or (non-printing) NUL character.

As an example, let's begin with the secs file 's.prog.c' (a C program), which contains the follow­
ing line:

char id[] "%Z%%M%:%I%";

We then do the following get:

tutorial% get -r3.4 a.prog.c

and finally compile the resulting g-file to produce 'prog.o' and 'a.out'.
Using what as follows then displays:

tutorial% what prog.c prog.o a.out
prog.c:

prog.c:3.4
prog.o:

prog.c:3.4
a.outs

prog.c:3.4
tutorial%

The string what searches for need not be inserted via an ID keyword of get - it may be inserted
in any convenient manner.

5.17.9. sccsdifl - Compare Two Versions of an SCCS File

Sccadiff compares two specified versions of one or more SCCS files, and displays the differences in
dijJ-like format. The versions to be compared are specified with -r, as in get, and mud be
specified as the first two arguments to accadiff in the order in which they were created, that is,
the older version is specified first. The -p option may be used after these two arguments to
pipe the output of accadiff through pr(l). SCCS files to be processed are named last. Sccadiff
does not accept directory names or a name of'-' (a lone minus sign). An example:

tutorial% accadiff -r3.4 -rS.6 a.abc

5.17.10. comb - Combine Deltas

Comb generates a Shell procedure (see ah(l)) which tries to reconstruct new SCCS files leaner
than their original counterparts. The generated Shell procedure is written on the standard out­
put.

The rebuilding discards unwanted deltas and combines others. Comb is intended for those SCCS
files with deltas so old that they are no longer useful; it should only be used a small number of
times in the life of an SCCS file.

Used without options, comb preserves only leaf deltas and the minimum number of ancestor del­
tas necessary to preserve the 'shape' of the SCCS file tree; 'middle' deltas on the trunk and on all
branches of the tree are eliminated. In Figure 3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be elim­
inated.

Revision E of 15 May 1985 5-43

SCCS Low-Level Commands Programming Tools

Some options to comb are:

The -p option specifies the oldest delta that is to be preserved in the reconstruction. All older
deltas are discarded.

The -c option specifies a /iat of deltas to be preserved. All other deltas are discarded. See
get(l) for the syntax of such a list.

When used with the -s option, comb generates a Shell procedure, which, when run, produces
only a report summarizing the percentage space (if any) to be saved by reconstructing each
named secs file. It is a good idea to run comb with the -s option (in addition to any other
desired options) before attempting any actual reconstructions.

Note that the Shell procedure which comb generates is not guaranteed to save any space - in
fact, it is possible for the reconstructed file to be larger than the original. Note, too, that the
shape of the secs file tree may be altered by the reconstruction process.

5.17.11. val - Validate Characteristics of an SCCS File

Val determines if a file is an SCCS file meeting the characteristics specified by an optional list of
options. Any characteristics not met are considered errors.

Val checks for the existence of a particular delta when the SID for that delta is explicitly specified
via the -r option. The string following the -y or -m option is used to check the value set by
the t or m flag respectively (see admin(I) for a description of the flags).

0

Val treats the special argument '-' (a lone minus sign) differently from other SCCS commands.
When the - argument is specified, val reads the argument list from the standard input instead of
from the command line. The standard input is read until end-of-file. Thus val can be used once 0
with different values for the option and file arguments. For example:

tutorial% val
-ye -mabc a.abc
-mxyz -ypll a.xys
·n
tutorial%

This sequence first checks if file 's.abc' has a value 'c' for its type flag and value 'abc' for the
module name flag. Once processing of the first file is completed, val processes the remaining
files, in this case 's.xyz', to determine if they meet the characteristics specified by the options
associated with them.

Val returns an 8-bit code which is a disjunction of the possible errors detected - that is, each
bit set indicates the occurrence of a specific error (see va/(1) for a description of the possible
errors and their codes). In addition, an appropriate diagnostic is printed unless suppressed by
the -• (silent) option. A return code of 'O' indicates all named files met the characteristics
specified.

5.18. SCCS Files

This section discusses several topics that must be considered before extensive use is made of
secs. These topics deal with the protection mechanisms relied upon by secs, the format of secs
files, and the recommended procedures for auditing SCCS files.

5-44 Revision E of 15 May 1985

0

0

0

0

Programming Tools SCCS Low-Level Commands

5.18.1. Protection

secs relies on the capabilities of the UNIX operating system for most of the protection mechan­
isms required to prevent unauthorized changes to SCCS files (that is, changes made by non-SCCS
commands). The only protection features provided directly by SCCS are the releaae lock flag, the
releaae floor and ceiling flags, and the uaer liat.

New SCCS files created by admin are given mode 444 (read-only). It is best not to change this
mode, as it prevents any direct modification of the files by non-SCCS commands. Further, direc­
tories containing SCCS files should be given mode 755, so that only the owner of the directory can
modify its contents.

secs files should be kept in directories that contain only SCCS files and any temporary files
created by SCCS commands. This simplifies protection and auditing of SCCS files. The contents
of directories should correspond to convenient logical groupings, for example, subsystems of a
large project.

secs files must have only one link (name). Commands that modify SCCS files do so by creating a
temporary copy of the file (called the z-file), and, upon completion of processing, remove the old
file and rename the z-file. If the old file has more than one link, removing it and renaming the
z-file would break the link. Rather than process such files, SCCS commands produce an error
message. All SCCS files mual have names that begin with 's.'.

When only one user uses secs, the real and effective user IDs are the same, and that user ID owns
the directories containing SCCS files. Therefore, SCCS may be used directly without any prelim­
inary preparation.

However, in those situations in which several users with different user IDs are assigned responsi­
bility for one SCCS file (for example, in large software development projects), one user
(equivalently, one user ID) must be chosen as the 'owner' of the SCCS files and as the one who will
'administer' them (for example, by using admin). This user is termed the SCCS adminiatrator for
that project. Because other users of SCCS do not have the same privileges and permissions as the
SCCS administrator, they are not able to execute directly those commands that require write per­
mission in the directory containing the SCCS files. Therefore, a project-dependent program is
required to provide an interface to the get, delta, and, if desired, rmdel and cdc commands.

The interface program must be owned by the SCCS administrator, and must have the
aet uaer ID on execution bit on (see chmod(I)), so that the effective user ID is the administrator's
user ID. This program's function is to invoke the desired SCCS command and to cause it to
inherit the privileges of the interface program for the duration of that command's execution. In
this manner, the owner of an SCCS file can modify it at will. Other users whose login names or
group IDs are in the uaer liat for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and are thus able to
modify the SCCS files only through the use of delta and, possibly, rmdel and cdc. The project­
dependent interface program, as its name implies, must be custom-built for each project.

5.18.2. Layout of an SCCS File

SCCS files are composed of lines of ASCII text arranged in six parts, as follows:

Checksum A line containing the 'logical' sum of all the characters of the file (not includ­
ing this checksum itself).

Revision E of 15 May 1985 5-45

SCCS Low-Level Commands Programming Tools

Delta Table

User Names

Flags

Descriptive Text

Body

Information about each delta, such as its type, SID, date and time of creation,
and commentary included.

List of login names and/or group IDs of users who are allowed to modify the
file by adding or removing deltas.

Indicators that control certain actions of various SCCS commands.

Text provided by the user; usually a summary of the contents and purpose of
the file.

Actual text that is being administered by SCCS, intermixed with internal SCCS
control lines.

Detailed information about the contents of the various sections of the file may be found in
accafile(5). In the following, the checkaum is the only portion of the file discussed.

Because SCCS files are ASCII files, they may be processed by various UNIX commands: editors
such as vi(l), text processing programs such as grep(l), awk(l), and cat(l), and so on. This is
quite useful when an SCCS file must be modified manually (for example, when the time and date
of a delta was recorded incorrectly because the system clock was set incorrectly), or when one
wants to simply 'look' at the file.

ir::r Extreme care ahould be exerciaed when modifying SCCS file• with non-SCCS command•.

5.18.9. Auditing

0

On rare occasions, perhaps due to an oper(ating system or hardware m)alfunction, all or part of an o
SCCS file is destroyed. SCCS commands like most UNIX commands display an error message
when a file does not exist. In addition, SCCS commands use the checkaum stored in the SCCS file
to determine whether a file has been corrupted since it was last accessed (has lost data, or has
been changed). The only SCCS command which will process a corrupted SCCS file is admin with
the -h or -z options. This is discussed below.

SCCS files should be audited (checked) for possible corruptions on a regular basis. The simplest
and fastest way to audit such files is to use admin with the -h option on them:

tutorial% admin -h a.file1 a.file2
or

tutorial% admin -h directory1 directory2

If the new checksum of any file is not equal to the checksum in the first line of that file, the mes­
sage

corrupted file (co6)

is produced for that file. This process continues until all files have been examined. When exa­
mining directories (as in the second example above), the process just described does not detect
mi .. ing files. A simple way to detect whether any files are missing from a directory is to periodi­
cally list the contents of the directory (using la(l)), and compare the current listing with the pre­
vious one. Any file which appears on the previous list but not the current one has been removed
by some means.

When a file has been corrupted, the appropriate method of restoration depends upon the extent
of the corruption. If damage is extensive, the best solution is to restore the file from a backup

0 copy. When damage is minor, repairing the file with your favorite text editor may be possible. .

5-46 Revision E of 15 May 1985

0

0

0

Programming Tools SCCS Low-Level Commands

If you do repair the file with the system's text processing capabilities, you must use admin(l)
with the -• option to recompute the checksum to bring it into agreement with the actual con­
tents of the file:

tutorial% admin -• a.file

After this command is executed on a file, any corruption which may have existed in that file will
no longer be detectable.

Revision E of 15 May 1985 5-47

0:

0

0

0

0

0

Chapter 6

DC - An Interactive Desk Calculator

De is an interactive desk calculator program implemented on the UNIX system to do arbitrary­
precision integer arithmetic. De works like a stacking calculator using reverse Polish notation.
It has provision for manipulating scaled fixed-point numbers and for input and output in bases
other than decimal.

The size of numbers that can be manipulated is limited only by available memory storage. On
typical implementations of UNIX, the size of numbers that can be handled varies from several
hundred digits on the smallest systems to several thousand on the largest.

A language called be [l] has been developed which accepts programs written in the familiar style
of higher-level programming languages and compiles output which is interpreted by de. Some of
the commands described below were designed for the compiler interface and are not easy for a
human user to manipulate.

Numbers that are typed into de are put on a push-down stack. de commands work by taking the
top number or two off the stack, performing the desired operation, and pushing the result on the
stack. If an argument is given, input is taken from that file until its end, then from the standard
input.

6.1. Synoptic Description

Here we describe the de commands that are intended for use by people. The additional com­
mands that are intended to be invoked by compiled output are described in the detailed descrip­
tion.

Any number of commands are permitted on a line. Blanks and newline characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

6.1.1. number - Push Number onto the Stack

The value of number is pushed onto the main stack. A number is an unbroken string of the
digits 0-9 and the capital letters A through F which are treated as digits with values 10 through
15, respectively, and possible a decimal point. The number may be preceded by an underscore
to input a negative number.

Revision E of 15 May 1985 6-1

DC - An Interactive Desk Calculator Programming Tools

6.1.2. Binary Operators - + * %

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (/),
remaindered (%), or exponentiated ('). The two entries are popped off the stack; the result is
pushed on the stack in their place. The result of a division is an integer truncated toward zero.
See the detailed description below for the treatment of numbers with decimal points. An
exponent must not have any digits after the decimal point.

6.1.3. s - Pop the Stack Into A Named Register

The sx command pops the value from the top of the main stack and stores that value into a
register named x, where x may be any single character. If the s is capitalized, xis treated as a
stack and the value is pushed onto it. Any character, even blank or newline, is a valid register
name.

6.1.,t. 1 - Push Contents of a Named Register Onto the Stack

The lx command pushes the value in register x onto the stack. The register x is not altered. If
the l is capitalized, register x is treated as a stack and its top value is popped onto the main
stack.

All registers start with empty value which is treated as a zero by the l command and is treated
as an error by the L command.

6.1.5. d - Duplicate the Top of Stack

The top value on the stack is duplicated.

6.1.6. p - Display the Value on the Top of Stack

Display the value on the top of the stack. The top value remains unchanged.

6.1. 7. f - Display All Register and Stack Values

Display all values on the stack and in registers.

6.1.8. x - Execute the Top of Stack

Treat the top element of the stack as a character string, remove it from the stack, and execute
it as a string of de commands.

6-2 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools DC - An Interactive Desk Calculator

6.1.9. [. . .] - Put Character String on Top of Stack

Put the bracketed character string onto the top of the stack.

6.1.10. q - Quit From DC

Exit the program. If executing a string, pop the recursion level by two. If q is capitalized, pop
the top value on the stack and pop the string execution level by that value.

6.1.11. Comparison Operators - <x >x =x ! <x ! >x ! =x

The top two elements of the stack are popped and compared. Register:,; is executed if they obey
the stated relation. Exclamation point is negation.

6.1.12. v - Compute Square Root of Top of Stack

The v command replaces the top element on the stack by its square root. The square root of an
integer is truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

6.1.13. ! - Execute a System Command

This command interprets the rest of the line as a UNIX command. Control returns to de when
the UNIX command terminates.

6.1.14. c - Clear the Stack

All values on the stack are popped; the stack becomes empty.

6.1.15. i - Use Top of Stack Value as Input Number Radix

The top value on the stack is popped and used as the number radix for further input. If i is
capitalized, the value of the input base is pushed onto the stack. No mechanism has been pro­
vided for the input of arbitrary numbers in bases less than 1 or greater than 16.

6.1.16. o - Use Top of Stack Value as Output Number Radix

The top value on the stack is popped and used as the number radix for further output. If o 1s

capitalized, the value of the output base is pushed onto the stack.

Revision E of 15 May 1985 6-3

DC - An Interactive Desk Calculator Programming Tools

6.1.17. k - Use Top of Stack Value as a Scale Factor

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and exponentia­
tion. The scale factor must be greater than or equal to zero and less than 100. If k is capital­
ized, the value of the scale factor is pushed onto the stack.

6.1.18. z - Push Value of Stack Level Onto Stack

The value of the stack level is pushed onto the stack.

6.1.19. ? - Execute a Line of Input from Input Source

A line of input is taken from the input source (usually the console) and executed.

6.2. Detailed Description

6.2.1. Internal Representation of Numbers

0

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form
of a string of digits to the base 100 stored one digit per byte (centenary digits). The string is o,
stored with the low-order digit at the beginning of the string. For example, the representation of
157 is 57,l. After any arithmetic operation on a number, care is taken that all digits are in the
range 0-99 and that the number has no leading zeros. The number zero is represented by the
empty string.

Negative numbers are represented in the IOO's complement notation, which is analogous to two's
complement notation for binary numbers. The high-order digit of a negative number (stored at
the right end of the string) is always -l and all other digits are in the range 0-99. The digit
preceding the high-order -l digit is never a 99. The representation of -157 is 43,98,-l. We
shall call this the canonical form of a number. The advantage of this kind of representation of
negative numbers is ease of addition. When addition is performed digit-by-digit, the result is for­
mally correct. The result need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can
be carried out and the handling of carries done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high-order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is l,9
where the scale has been italicized to emphasize the fact that it is not the high-order digit. The
value of this extra byte is called the scale factor of the number.

6-4 Revision E of 15 May 1985

0

0

0

0

Programming Tools DC - An Interactive Desk Calculator

6.2.2. The Allocator

De uses a dynamic string storage allocator for all of its internal storage. All reading and writing
of numbers internally is done through the allocator. Associated with each string in the allocator
is a four-word header containing pointers to the beginning of the string, the end of the string,
the next place to write, and the next place to read. Communication between the allocator and
de is done via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the one
pointing to this string are on a list of free headers. Requests for strings are made by size. The
size of the string actually supplied is the next higher power of 2. When a request for a string is
made, the allocator first checks the free list to see if there is a string of the desired size. If none
is found, the allocator finds the next larger free string and splits it repeatedly until it has a string
of the right size. Left-over strings are put on the free list. If there are no larger strings, the
allocator tries to coalesce smaller free strings into larger ones. Since all strings are the result of
splitting large strings, each string has a neighbor that is next to it in memory and, if free, can be
combined with it to make a string twice as long. This is an implementation of the 'buddy sys­
tem' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system for
more space. The amount of space on the system is the only limitation on the size and number of
strings in de. if at any time in the process of trying to allocate a string, the allocator runs out of
headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the charac­
ters of a string are read or written in succession by a series of read or write calls. The write
pointer is interpreted as the end of the information-containing portion of a string and a call to
read beyond that point returns an end-of-string indication. When an attempt is made to write
beyond the end of a string, the allocator allocates a larger space and then copies the old string
into the larger block.

6.2.3. Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the opera­
tion are popped from the main stack and their scale factors stripped off. Zeros are added or
digits removed as necessary to get a properly scaled result from the internal arithmetic routine.
For example, if the scales of the operands are different and decimal alignment is required, as it is
for addition, zeros are appended to the operand with the smaller scale. After performing the
required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is the
bound on the number of decimal places retained in arithmetic computations. scale may be set
to the number on the top of the stack truncated to an integer with the k command. K may be
used to push the value of scale on the stack. scale must be greater than or equal to O and less
than 100. The descriptions of the individual arithmetic operations will include the exact effect of
scale on the computations.

Revision E of 15 May 1985 6-5

DC - An Interactive Desk Calculator Programming Tools

6.2.,l. Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with
the lower scale to give both numbers the same scale. The number with the smaller scale is mul­
tiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the larger
of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addition.

Finally, the addition is performed digit-by-digit from the low-order end of the number. The car­
ries are propagated in the usual way. The resulting number is brought into canonical form,
which may require stripping of leading zeros, or for negative numbers replacing the high-order
configuration 99,-1 by the digit -1. In any case, digits which are not in the range 0-99 must be
brought into that range, propagating any carries or borrows that result.

6.2.5. Multiplication

The scales are removed from the two operands and saved. The operands are both made positive.
Then multiplication is performed in a digit-by-digit manner that exactly mimics the hand
method of multiplying. The first number is multiplied by each digit of the second number,
beginning with its low-order digit. The intermediate products are accumulated into a partial
sum which becomes the final product. The product is put into the canonical form and its sign is
computed from the signs of the original operands.

0

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is
larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities. 0
6.2. 6. Division

The scales are removed from the two operands. Zeros are appended or digits removed from the
dividend to make the scale of the result of the integer division equal to the internal quantity
scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Other­
wise the top digit of the divisor is divided into the top two digits of the dividend. The result is
used as the first (high-order) digit of the quotient. It may turn out be one unit too low, but if it
is, the next trial quotient will be larger than 99 and this will be adjusted at the end of the pro­
cess. The trial digit is multiplied by the divisor and the result subtracted from the dividend and
the process is repeated to get additional quotient digits until the remaining dividend is smaller
than the divisor. At the end, the digits of the quotient are put into the canonical form, with pro­
pagation of carry as needed. The sign is set from the sign of the operands.

6.2. 7. Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division truncates
toward zero, remainders have the same sign as the dividend. The scale of the remainder is set to o
the maximum of the scale of the dividend and the scale of the quotient plus the scale of the

6-6 Revision E of 15 May 1985

0

0

0

Programming Tools DC - An Interactive Desk Calculator

divisor.

6.2.8. Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result
have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations by the
rule

The initial guess is found by taking the integer square root of the top two digits.

6.2.9. Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1.
If the exponent is negative, then it is made positive and the base is divided into one. The scale
of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the
result is obtained as a product of those powers of the base that correspond to the positions of the
one bits in the binary representation of the exponent. Enough digits of the result are removed to
make the scale of the result the same as if the indicated multiplication had been performed.

6.2.10. Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale stored with
a number is simply the number of fractional digits input. Negative numbers are indicated by
preceding the number with a-· The hexadecimal digits A-F correspond to the numbers 10-15
regardless of input base. The i command can be used to change the base of the input numbers.
This command pops the stack, truncates the resulting number to an integer, and uses it as the
input base for all further input. The input base is initialized to 10 but may, for example, be
changed to 8 or 16 to do octal or hexadecimal to decimal conversions. The I command pushes
the value of the input base on the stack.

6.2.11. Output Commands

The p command displays the top of the stack. It does not remove the top of the stack. All of
the stack and internal registers can be output by typing the command f. The o command can
be used to change the output base. This command uses the top of the stack, truncated to an
integer as the base for all further output. The output base in initialized to 10. It will work
correctly for any base. The command O pushes the value of the output base on the stack.

Revision E of 15 May 1985 6-7

DC - An Interactive Desk Calculator Programming Tools

6.2.12. Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output; they
have no effect on arithmetic computations. Large numbers are output with 70 characters per
line; a \ indicates a continued line. All choices of input and o_utput bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-hexadecimal
conversions.

6.2.13. Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from registers with
the commands s and l. The command sz pops the top of the stack and stores the result in
register z. z can be any character. lz puts the contents of register z on the top of the stack.
The l command has no effect on the contents of register z. The s command, however, is des­
tructive.

6.2.14- Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on the top
of the stack on the stack. The command z pushes the stack size on the stack. The command
X replaces the number on the top of the stack with its scale factor. The command Z replaces
the top of the stack with its length.

6.2.15. Subroutine Definitions and Calls

Enclosing an ASCII string in [] pushes it onto the stack. The q command quits or in executing
a string, pops the recursion level by two.

6.2.16. Internal Registers - Programming DC

The load and store commands together with [] to store strings, x to execute and the testing
commands '<', '>', '=', '!<', '!>', '!=' can be used to program de. The x command assumes
the top of the stack is a string of de commands and executes it. The testing commands compare
the top two elements on the stack and if the relation holds, execute the register that follows the
relation. For example, to display the numbers 0-9,

[lipl+ si lilO>a]sa
Osi lax

6.2.17. Push-Down Registers and Arrays

0

0

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, de can be thought of as
having individual stacks for each register. These registers are operated on by the commands S 0
and L. Sz pushes the top value of the main stack onto the stack for the register z. Lz pops '

Revision E of 15 May 1985

0

0

Programming Tools ' DC - An Interactive Desk Calculator

the stack for register z and puts the result on the main stack. The commands s and l also
work on registers, but not as push-down stacks. l doesn't effect the top of the register stack,
and s destroys what was there before.

The commands to work on arrays are : and ; . : z pops the stack and uses this value as an
index into the array z. The next element on the stack is stored at this index in z. An index
must be greater than or equal to O and less than 2048. ; z is the command to load the main
stack from the array z. The value on the top of the stack is the index into the array z of the
value to be loaded.

6.2.18. Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to UNIX to exe­
cute. One other compiler command is Q. This command uses the top of the stack as the
number of levels of recursion to skip.

6.3. Design Choices

The real reason for the use of a dynamic storage allocator was that a general-purpose one could
be (and in fact has been) used for a variety of other tasks. The allocator has some value for
input and for compiling (that is, the bracket [...] commands) where it cannot be known in
advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately 25%
of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet
the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space,
de bugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all de commands from addition to
subroutine execution to be implemented in essentially the same way. The result was a consider­
able degree of logical separation of the final program into modules with very little communica­
tion between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the pro­
gram and it is used only to prevent the number of decimal places resulting from the arithmetic
operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no
case should any significant digits be thrown away if, on appearances, the user actually wanted
them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give
him the result 5.017 without requiring him to unnecessarily specify his rather obvious require­
ments for precision.

Revision E of 15 May 1985 6-9

DC - An Interactive Desk Calculator Programming Tools

On the other hand, multiplication and exponentiation produce results with many more digits
than their operands and it seemed reasonable to give as a. minimum the number of decimal

0 places in the operands but not to give more than that number of digits unless the user asked for ,
them by specifying a value for scale. Square root can be handled in just the same way as multi­
plication. The operation of division gives arbitrarily many decimal places and there is simply no
way to guess how many places the user wants. In this case only, the user must specify a. scale to
get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quotient
and remainder. This is easy to implement; no digits are thrown a.way.

6.4. References

L. L. Cherry, R. Morris, BC - An Arbitrary Preciaion Deak-Calculator Lan11ua11e.

K. C. Knowlton, A Faat Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

6-10 Revision E of 15 May 1985

0

0

0

0

Chapter 7

BC -Arbitrary-Precision Desk-Calculator

Be is a language and a compiler for doing arbitrary-precision arithmetic on the UNIX system.
The output of the compiler is interpreted and executed by a collection of routines which can
input, output, and do arithmetic on indefinitely large integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overflow does not occur
until all available memory is exhausted.

The be language has a complete control structure as well as immediate-mode operation. Func­
tions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand-digit result in about ten
seconds.

A small collection of library functions is also available, including sin, cos, arctan, log, exponen­
tial, and Bessel functions of integer order.

Some of the uses of the be compiler are:

• computation with large integers,

• computation accurate to many decimal places,

• conversion of numbers from one base to another base.

The be compiler was written to make conveniently available a collection of routines (called
de [51) which are capable of doing arithmetic on integers of arbitrary size. The compiler is by no
means intended to provide a complete programming language - it is a minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is made for
input and output in bases other than decimal. Numbers can be converted from decimal to octal
by simply setting the output base to 8.

The actual limit on the number of digits that can be handled depends on the amount of storage
available on the machine. Manipulation of numbers with many hundreds of digits is possible.

The syntax of be has been deliberately selected to agree substantially with the C language [2].
Those who are familiar with C will find few surprises in this language.

7 .1. Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if o you type in the line:

Revision E of 15 May 1985 7-1

BC - Arbitrary-Precision Desk Calculator Programming Tools

142857 + 285714

be responds immediately with the line

428571

The operators -, •, /, %, and • can also be used; they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated
(the 'unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just as in
FORTRAN, with • having the greatest binding power, then * and % and /, and finally + and -.
Contents of parentheses are evaluated before material outside the parentheses. Exponentiations
are performed from right to left and the other operators from left to right. The two expressions

a"b"c and a"(b"c)

are equivalent, as are the two expressions

a*b*c and (a*b)*c

Be shares with FORTRAN and C the undesirable convention that

a/b*c is equivalent to (a/b) *c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

X = X + 3

has the effect of increasing by three the value of the contents of the register named x. When, as
in this case, the outermost operator is an =, the assignment is performed but the result is not
printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling
below). The lines

x = sqrt(191) x

produce the printed result

13

7.2. Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase', initially
set to 10, determines the base used for interpreting numbers read in. For example, the lines:

!base = 8
11

will produce the output line

7-2 Revision E of 15 May 1985

0

0

0

0

0

0

•

Programming Tools BC - Arbitrary-Precision Desk Calculator

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who
deal in hexadecimal notation, the characters A-F (upper-case only) are permitted in numbers
(no matter what base is in effect) and are interpreted as digits having values 10-15 respectively.
The statement:

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of 'abase', initially set to 10, are used as the base for output numbers. The lines

obase = 16 1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of five
digits by setting 'abase' to 100000. Strange (that is, 1, 0, or negative) output bases are handled
appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued
end with \. Decimal output conversion is practically instantaneous, but output of very large
numbers (that is, more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred-digit number takes about three seconds.

It is best to remember that 'ibase' and 'abase' have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion,
respectively.

7.3. Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated quanti­
ties. Numbers may have up to 99 decimal digits after the decimal point. This fractional part is
retained in further computations. We refer to the number of digits after the decimal point of a
number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result
has a scale determined by the following rules. For addition and subtraction, the scale of the
result is the larger of the scales of the two operands. In this case, there is never any truncation
of the result. For multiplications, the scale of the result is never less than the maximum of the
two scales of the operands, never more than the sum of the scales of the operands and, subject to
those two restrictions, the scale of the result is set equal to the contents of the internal quantity
'scale'. The scale of a quotient is the contents of the internal quantity 'scale'. The scale of a
remainder is the sum of the scales of the quotient and the divisor. The result of an exponentia­
tion is scaled as if the implied multiplications were performed. An exponent must be an integer.

Revision E of 15 May 1985 7-3

BC - Arbitrary-Precision Desk Calculator Programming Tools

The scale of a square root is set to the maximum of the scale of the argument and the contents
of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits being dis­
carded when necessary. In every case where digits are discarded, truncation and not rounding is
performed.

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set to 0. In
case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'abase' can be used in expressions just like other vari­
ables. The line:

scale= scale+ 1

increases the value of 'scale' by one, and the line

scale

displays the current value of 'scale'.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in internal
computation even when 'ibase' or 'obase' is not equal to 10. The internal computations (which
are still conducted in decimal, regardless of the bases) are performed to the specified number of
decimal digits, never hexadecimal or octal or any other kind of digits.

7 .4. Functions

The name of a function is a single lower-case letter. Function names are permitted to collide
with simple variable names. Twenty-six different defined functions are permitted in addition to
the twenty-six variable names. The line:

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, it is the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

7-4 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

define a (x, y){
auto z
z = x•y
return (z) }

BC - Arbitrary-Precision Desk Calculator

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of argu­
ments is used.

Functions with no arguments are defined and called using parentheses with nothing between
them: b(l.

If the function a above has been defined, then the line

a(7,3.14)

would display the result 21.98, and the line

x = a(a(3,4) ,5)

would assign the value 60 to the register z.

7.5. Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a sub­
scripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return state­
ments.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f(a[])
define f (a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

7 .6. Control Statements

The if, the vhile, and the for statements may be used to alter the flow within programs or to
iterate. The range of each of them is a statement or a compound statement consisting of a col­
lection of statements enclosed in braces. They are written in the following way:

Revision E of 15 May 1985 7-5

BC - Arbitrary-Precision Desk Calculator

or

if (relation) etatement
while (relation) statement
for (ezpreesion-1; relation; ezpreeeion-1!) statement

if (relation) {statements}
while (relation) {etatements}
for (ezpression-1; relation; expression-!!) {statements}

A relation in one of the control statements is an expression of the form:

x>y

Programming Tools

where two expressions are related by one of the six relational operators <, >, <=, >=, ==, or !=.
The relation == stands for 'equal to' and ! = stands for 'not equal to'. The meaning of the
remaining relational operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are legal, so you
will not get a diagnostic message, but = really will not do a comparison.

The if statement executes its range if and only if the relation is true. Then control passes to
the next statement in sequence.

The vhile statement executes its range repeatedly as long as the relation is true. The relation
is tested before each execution of its range and if the relation is false, control passes to the next
statement beyond the range of the while.

The for statement begins by executing ezpre .. ion1. Then the relation is tested and, if true, the
statements in the range of the for are executed. Then ezpre .. ion2 is executed. The relation is
tested, and so on. The typical use of the for statement is for a controlled iteration, as in the
statement:

for(i=l; 1<=10; i=i+l) i

which prints the integers from 1 to 10. Here are some examples of the use of the control state­
ments.

define f (n) {
auto i, x
x=l
for(i=l; i<=n; i=i+l) x=x•i
return(x)
}

The line:

f (a)

prints a factorial if a is a positive integer. Here is the definition of a function which will com­
pute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=l
for(j=l; j<=m; j=j+l) x=x•(n-j+l)/j
return(x)
}

I 01
!

0

The following function computes values of the exponential function by summing the appropriate o
series without regard for possible truncation errors:

7-6 Revision E of 15 May 1985

0

0

Programming Tools

scale= 20
define e (x) {

auto a, b, c, d, n
a= 1
b = 1
C = 1
d = 0
n = 1
while (l==l) {

}
}

7. 7. Some Details

a= a*x
b = b*n
C: C + &/b
n = n + 1
if(c==d) return(c)
d = C

BC - Arbitrary-Precision Desk Calculator

There are some language features that every user should know about even if he will not use
them.

Normally statements are typed one to a line. It is also permissible to type several statements on
a line separated by semicolons.

If an assignment statement is parenthesized, it then has a .value and it can be used anywhere
that an expression can. For example, the line

(x=y+l 7)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

X = a[i=i+l]

assigns a value to z and also increments i before it is used as a subscript.

The following constructs work in be in exactly the same manner as they do in the C language.
Consult section 7.9.6 or the C manual [2] for their exact workings.

x=y=z is the same as x=(y=z)
X =+ y X = x+y
X =- y X = x-y
X =• y X = x•y
X =/ y X = x/y
X =,: y X = x,:y
X =· y X = x·y
x++ (x=x+l)-1
x-- (x=x-1) +1
++x X = x+l
--x X = x-1

0 Even if you don't intend to use these constructs, if you type one inadvertently, something

Revision E of 15 May 1985 7-7

BC - Arbitrary-Precision Desk Calculator Programming Tools

correct but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference 0·
between x=-y and x~ -y. The first replaces x by x-y and the second by -y.

7 .8. Three Important Things

1. To exit a be program, type 'quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin with
'/*' and end with'*/'.

3. There is a library of math functions which may be obtained by typing at command level:

be -1

This command loads a set of library functions which, at the time of writing, consists of sine
(named 's'), cosine ('c'), arctangent ('a'), natural logarithm ('I'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). The library sets the scale to 20. You can reset it to
something else if you like.

If you type

be file

Be will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

7-8 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools BC - Arbitrary-Precision Desk Calculator

7 .9. Notation

In the following pages syntactic categories are m italic,; literals are in boldface; material in
brackets [J is optional.

7.9.1. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators
may be blanks, tabs or comments. Newline characters or semicolons separate statements.

7.9.2. Comments

Comments are introduced by the characters /* and terminated by * /.

7.9.3. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist 0£ single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are one­
dimensional and may contain up to 2048 elements. Indexing begins at zero, so an array may be
indexed from O to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

7.9.,t. Keywords

The following are reserved keywords:

ibase
scale
length

if obase
define sqrt
return while

7.9.5. Constants

break
auto
quit for

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A-Fare also recognized as digits with values 10-15, respectively.

7.9.6. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is
the same as the order of presentation here, with highest appearing first. Left or right associa­
tivity, where applicable, is discussed with each operator.

Revision E of 15 May 1985 7-9

BC - Arbitrary-Precision Desk Calculator Programming Tools

7.9.8.1. Primitive ezpreuion,

Named ezpre,,ion, are places where values are stored. Simply stated, named expressions are
legal on the left side of an assignment. The value of a named expression is the value stored in
the place named.

Simple identifier, are named expressions. They have an initial value or zero.

Array element, are named expressions. They have an initial value of zero.

The internal registers scale, ibase and obase are all named expressions. scale is the number or
digits after the decimal point to be retained in arithmetic operations. scale has an initial value
of zero. ibase and obase are the input and output number radix, respectively. Both ibase and
obase have initial values of 10.

7.9.8.2. Function Calla

function-name([expression [,expression . ..]])

A function call consists of a function name followed by parentheses contammg a comma­
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

sqrt (expression)

The result is the square root of the expression. The result is truncated in the least significant
decimal place. The scale or the result is the scale or the expression or the value of scale, which­
ever is larger.

length (expression)

The result is the total number or significant decimal digits in the expression. The scale or the
result is zero.

scale (expression)

The result is the scale of the expression. The scale of the result is zero.

7.9.8.9. Conatanta

Constants are primitive expressions.

7-10 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools BC - Arbitrary-Precision Desk Calculator

7. 9. 6.,1. Parentheaea

An expression surrounded by parentheses is a primitive expression. The parentheses are used to
alter the normal precedence.

7.9.6.5. Unary operator,

The unary operators bind right to left.

-expression

The result is the negative of the expression.

++ named·e:tpression

The named expression is incremented by one. The result is the value of the named expression
after incrementing.

--named-expression

The named expression is decremented by one. The result is the value of the named expression
after decrementing.

named- expression++

The named expression is incremented by one. The result is the value of the named expression
before incrementing.

named-expression--

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

7.9.6.6. Binary Operator,

The exponentiation operator binds right to left.

expression • expression

The result is the first expression raised to the power of the second expression. The second
expression must be an integer. If a is the scale of the left expression and bis the absolute value
of the right expression, then the scale of the result is:

min (aXb, max(scale, a))

The operators •, /, % bind left to right.

expression * expression

The result is the product of the two expressions. If a and b are the scales of the two expressions,
the scale of the result is:

min(a+b,max(scale, a, b))

expression / expression

Revision E of 15 May 1985 7-11

BC - Arbitrary-Precision Desk Calculator Programming Tools

The result is the quotient of the two expressions. The scale of the result is the value of scale.

expression % expression

The % operator produces the remainder of the division of the two expressions. More precisely,
a%b is a-a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

The additive operators bind left to right.

expression + ezpression

The result is the sum of the two expressions. The scale of the result is the maximun of the scales
of the expressions.

expression - expression

The result is the difference of the two expressions. The scale of the result is the maximum of the
scales of the expressions.

The assignment operators bind right to left.

named-expression = expression

This expression results in assigning the value of the expression on the. right to the named expres­
sion on the left.

named-expression =+ expression
named-expression =- expression
named-expression =• expression
named-expression =/ expression
named-expression =% expression
named-expression =· ezpression

The result of the above expressions is equivalent to "named expression = named expression OP
expression", where OP is the operator after the = sign.

Unlike all other operators, the relational operators are only valid as the object of an if, while, or
inside a for statement.

expression < expression
expression > expression
expression <= expression
expression >= expression
expression -- expression
expression I= expression

7 .10. Storage classes

There are only two storage classes in be, global and automatic (local). Only identifiers that are
to be local to a function need be declared with the auto command. The arguments to a function
are local to the function. All other identifiers are assumed to be global and available to all func­
tions. All identifiers, global and local, have initial values of zero. Identifiers declared as auto
are allocated on entry to the function and released on returning from the function. They

7-12 Revision E of 15 May 1985

0

c,

0

0

0

0

Programming Tools BC - Arbitrary-Precision Desk Calculator

therefore do not retain values between function calls. auto arrays are specified by the array
name followed by empty square brackets.

Automatic variables in be do not work in exactly the same way as in either C or PL/I. On entry
to a function, the old values of the names that appear as parameters and as automatic variables
are pushed onto a stack. Until return is made from the function, reference to these names refers
only to the new values.

7.11. Statements

Statements must be separated by semicolon or newline. Except where altered by control state­
ments, execution is sequential.

7.11.0.1. Expre .. ion atatementa

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

7.11.0.2. Compound atatementa

Statements may be grouped together and used when one statement is expected by surrounding
them with { } .

7.11.0.9. Quoted atring atatementa

"any string"

This statement prints the string inside the quotes.

7.11.0.J. If atatementa

If (relation)statement

The substatement is executed if the relation is true.

7.11.0.5. While atatementa

while (relation)statement

The statement is executed while the relation is true. The test occurs before each execution of
the statement.

Revision E of 15 May 1985 7-13

BC - Arbitrary-Precision Desk Calculator

1.11.0.6. For atatementa

for (ezpression; relation; ezpression) statement

The for statement is the same as

first- expression
whlle(relation) {

statement
/ast-ezpression

}

All three expressions must be present.

1.11.0. 1. Break atatementa

break

break terminates a for or while statement.

1.11.0.8. Auto atatementa

auto identifier [, identifier J

Programming Tools

auto pushes down the values of the identifiers. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by following the array name by empty square
brackets. auto must be the first statement in a function definition.

1.11.0.9. Define atatementa

define ([parameter [,parameter . ..]]) {statements}

de fine defines a function. The parameters may be ordinary identifiers or array names. Array
names must be followed by empty square brackets.

1.11.0.10. Return atatementa

return

return (ezpreuion)

return terminates of a function, pops its auto variables, and specifies the result of the function.
The first form is equivalent to return (0) . The result of the function is the result of the
expression in parentheses.

1.11.0.11. Quit

quit stops execution of a be program and returns control to UNIX when it is first encountered.
Because quit is not treated as an executable statement, it cannot be used in a function
definition or in an if, for, or while statement.

7-14 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools BC - Arbitrary-Precision Desk Calculator

7.12. Acknowledgement and References

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

[1] K. Thompson and D. M. Ritchie, UNIX Programmer'• Manual, Bell Laboratories, 1978.

[2J B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[4J S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978 - this paper appears in this manual.

[SJ R. Morris and L. L. Cherry, DC - An Interactive De,k Calculator - this paper appears in
the previous chapter of this manual.

Revision E of 15 May 1985 7-15

0

0

0

0

0

0

Chapter 8

M4 - A Macro Processor

M,J is a macro processor whose primary use has been as a front end for Ratfor for those cases
where parameterless macros are not adequately powerful. It has also been used for languages as
disparate as C and COBOL. M,J is particularly suited for higher-level languages like FORTRAN,

PL/I and C since macros are specified in a functional notation.

M,J provides features seldom found even in much larger macro processors, including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

A macro processor is a useful way to enhance a programming language, to make it more palat­
able or more readable, or to tailor it to a particular application. The #define statement in C
and the analogous define in Ratfor are examples of the basic facility provided by any macro
processor - replacement of text by other text.

The basic operation of m,J is to copy its input to its output. As the input is read, however, each
alphanumeric "token" (that is, string of letters and digits) is checked. If it is the name of a
macro, then the name of the macro is replaced by its defining text, and the resulting string is
pushed back onto the input to be rescanned. Macros may be called with arguments, in which
case the arguments are collected and substituted into the right places in the defining text before
it is rescanned.

M,J provides a collection of about twenty built-in macros which perform various useful opera­
tions; in addition, the user can define new macros. Built-in macros and user-defined macros work
exactly the same way, except that some of the built-in macros have side effects on the state of
the process.

8.1. Using the M4 Command

The basic m,J command line looks like this:

tutorial% •• [filename ...]

Each argument file is processed in order; if there are no arguments, or if an argument is '-', the
standard input is read at that point. The processed text is written to the standard output, which

Revision E of 15 May 1985 8-1

M4 - A Macro Processor Programming Tools

may be captured for subsequent processing by redirecting the standard output:

tutorial% m4 [filename ...] > outputfile

8.2. Defining Macros

The primary built-in function of m,I is de fine, which is used to define new macros. The input

define(name, stuff}

defines the string name as atuff. All subsequent occurrences of name will be replaced by atuff,
unless name is redefined, or until name is undefined. name must be alphanumeric and must
begin with a letter (the underscore _ counts as a letter). atuff is any text that contains balanced
parentheses; it may stretch over multiple lines.

Thus, as a typical example,

de fine (N, 100)

if (i > N)

defines N to be 100, and uses this "symbolic constant" in a later i/ statement.

The left parenthesis must immediately follow the word define, to signal that define has argu­
ments. If a macro or built-in name is not followed immediately by '(', it is assumed to have no
arguments. This is the situation for N above; it is actually a macro with no arguments, and thus
when it is used there need be no parenthesis following it.

0

M,I divides its input into tokens, so a macro name is only recognized as such if it appears sur- o; ,
rounded by non-alphanumerics. For example, in

de fine (N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N, even though it contains a lot
of N's.

Things may be defined in terms of other things. For example,

define (N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way, is M defined as N or as 100? In M4,
the latter is true - M is 100, so that changing N does not change M.

This behavior arises because m,I expands macro names into their defining text as soon as it pos­
sibly can. Here, that means that when the string N is seen while the arguments of define are
being collected, it is immediately replaced by 100; it's just as if you had said

define (M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The first, which is specific to this
situation, is to interchange the order of the definitions:

8-2 Revision E of 15 May 1985

0

0

0

Programming Tools

de fine (M, N)
define (N, 100)

M4 - A Macro Processor

Now M is defined to be the string N, so when you ask for M later, you'll always get the value of
N at that time (because the M will be replaced by N which will be replaced in turn by its
value).

8.3. Quoting and Comments

The more general solution is to delay the expansion of the arguments of de fine by quoting
them. Any text surrounded by the single quotes ' and ' is not expanded immediately, but has
the quotes stripped off. If you say

define (N, 100)
define (M, 'N')

the quotes around the N are stripped off as the argument is being collected, but they have
served their purpose, and M is defined as the string N, not 100. The general rule is that m-1
always strips off one level of single quotes whenever it evaluates something. This is true even
outside of macros. If you want the word define to appear in the output, you have to quote it
in the input, as in

'define' = 1;

As another instance of the same thing, which is a bit more surprising, consider redefining N:

define(N, 100)

define (N, 200)

Perhaps regrettably, the N in the second definition is evaluated as soon as it's seen; that is, it is
replaced by 100, so it's as if you had written

define(lOO, 200)

This statement is ignored by M4, since you can only define things that look like names, but it
obviously doesn't have the effect you wanted. To really redefine N, you IIlJlSt delay the evalua­
tion by quoting:

define (N, 100)

de fine(' N' , 200)

If ' and ' are not convenient for some reason, the quote characters can be changed with the
built-in changequote:

changequote([,])

makes the new quote characters the left and right brackets. You can restore the original charac­
ters with just

changequote

There are two additional built-ins related to define. undefine removes the definition of some
macro or built-in:

undefine (' N')

0 removes the definition of N. (Why are the quotes absolutely necessary?) Built-ins can be

Revision E of 15 May 1985 8-3

M4 - A Macro Processor Programming Tools

removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in i fde f provides a way to determine if a macro is currently defined. In particular,
m,I pre-defines the name uniz.

ifdef actually permits three arguments; if the name is undefined, the value of ifdef is then
the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

Don't forget the quotes around the argument.

Comments in m,I are introduced by the It (sharp) character. All text from the It to the end of
the line is taken as a comment and otherwise ignored.

8.4. Arguments

So far we have discussed the simplest form of macro processing - replacing one string by
another (fixed) string. User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the second argument of its
define) any occurrence of $n is replaced by the nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

evaluates to

X = X + 1

A macro can have as many arguments as you want, but only the first nine are accessible, through
$1 to $9. The macro name itself is $0, although that is less commonly used. Arguments that
are not supplied are replaced by null strings, so we can define a macro cat which simply con­
catenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $ 9 are null, since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument collection are discarded.
All other white space is retained. Thus

define(a, b c)

defines a to be b c.

8-4 Revision E of 15 May 1985

C

0

0

0

0

0

Programming Tools M4 - A Macro Processor

Arguments are separated by commas, but commas can be nested inside parentheses. That is, in

define(a, (b,c))

there are only two arguments; the second 1s literally {b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

8.5. Arithmetic Built-ins

M,J provides two built-in functions for doing arithmetic on integers (only). The simplest is
incr, which increments its numeric argument by 1. Thus to handle the common programming
situation where you want a variable to be defined as "one more than N", write

define (N, 100)
define(Nl, 'incr(N) ')

which defines NJ as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called eval, which is capable of arbi­
trary arithmetic on integers.

eva l provides the operators (in decreasing order of precedence)

unary +

•• or

• I %
+

-- !=

& or &&
I or II

Operator

and -

< <= > >=

add and subtract
exponentiation

Meaning

multiply, divide, and modulus
binary add and subtract
equal, not equal, less than, lessthan or equal,
greater than, greater than or equal
logical not
logical and)
(logical or)

Parentheses may be used to group operations where needed. All the operands of an expression
given to eval must ultimately be numeric. The numeric value of a true relation (like l>O) is 1,
and false is 0. The precision in eva l is 32 bits.

As a simple example, suppose we want M to be 2uN+1. Then

define(N, 3)
define(M, 'eval(2••N+l) ')

As a matter of principle, it is advisable to quote the defining text for a macro unless it is very
simple indeed (say just a number); it usually gives the result you want, and is a good habit to get
into.

Revision E of 15 May 1985 8-5

M4 - A Macro Processor Programming Tools

8.6. File Manipulation

You can include a new file in the input at any time by the built-in function include:

lnclude(fllename)

inserts the contents of filename in place of the include command. The contents of the file is
often a set of definitions. The value of include (that is, its replacement text) is the contents of
the file; this can be captured in definitions, etc.

It is a fatal error if the file named in include cannot be accessed. To get some control over
this, the alternate form sinclude can be used; sinclude ("silent include") says nothing and
continues if it can't access the file.

It is also possible to divert the output of m,I to temporary files during processing, and output the
collected material upon command. M,I maintains nine of these diversions, numbered 1 through
9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as n. Diverting to this
file is stopped by another divert command; in particular, divert or divert (0) resumes the
normal output process.

Diverted text is normally output all at once at the end of processing, with the diversions output
in numeric order. It is possible, however, to bring back diversions at any time, that is, to append
them to the current diversion.

undivert

0

brings back all diversions in numeric order, and undi vert with arguments brings back the 0
selected diversions in the order given. The act of undiverting discards the diverted stuff, as does
diverting into a diversion whose number is not between O and 9 inclusive.

The value of undi vert is not the diverted stuff. Furthermore, the diverted material is not res­
canned for macros.

The built-in divnum returns the number of the currently active diversion. This is zero during
normal processing.

8.7. Running System Commands

You can run any UNIX program with the syscmd built-in. For example,

syscmd(date)

runs the date command. Normally syscmd would be used to create a file for a subsequent
include.

To facilitate making unique file names, the built-in maketemp is provided, with specifications
identical to the system function mktemp: a string of XXXXX in the argument is replaced by the
process id of the current process.

8-6 Revision E of 15 May 1985

0

0

Programming Tools M4 - A Macro Processor

8.8. Conditionals

There is a built-in called ifelse which enables you to perform arbitrary conditional testing. In
its simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these are identical, ifelse returns the string c; otherwise
it returns d. Thus we might define a macro called compare which compares two strings and
returns "yes" or "no" according to whether they are the same or different.

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of if else.

If the fourth argument is missing, it is treated as empty.

if else can actually have any number of arguments, and thus provides a limited form of multi­
way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same as e, the result
is/. Otherwise the result is g. if the final argument is omitted, the result is null, so

ifelse(a, b, c)

1s c if a matches b, and null otherwise.

Q 8.9. String Manipulation

0

The built-in len returns the length of the string that makes up its argument. Thus

len (abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to produce substrings of strings. substr (s, i, n) returns
the substring of a that starts at the ith position (origin zero), and is n characters long. If n is
omitted, the rest of the string is returned, so

substr('now is the time', 1)

evaluates to

ow is the time

If either i or n is out of range, various sensible things happen.

index (sl, s2) returns the index (position) in al where the string a2 occurs, or -1 if it
doesn't occur. As with substr, the origin for strings is 0.

The built-in transl it performs character transliteration.

translit(s, f, t)

modifies , by replacing any character found in / by the corresponding character in t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than /, characters which don't
have an entry in t are deleted; as a limiting case, if t is not present at all, characters in / are

Revision E of 15 May 1985 8-7

M4 - A Macro Processor

deleted from a. So

translit(s, aeiou)

deletes vowels from a.

Programming Tools

There is also a built-in called dnl which deletes all characters that follow it up to and including
the next newline; it is useful mainly for throwing away empty lines that otherwise tend to clutter
up m,l output. For example, if you say

define(N, 100)
define (M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into the output,
where it may not be wanted. Ir you add dnl to each of these lines, the newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is

divert (-1)
define(...)

divert

8.10. Printing

The built-in errpr int writes its arguments to the standard error file. Thus you can say

errprint('fatal error')

dumpdef is a debugging aid which dumps the current definitions of defined terms. Ir there are
no arguments, you get everything; otherwise you get the ones you name as arguments. Don't
forget to quote the names!

8.11. Summary of Built-in Macros

8-8

changequote(L, R)
define(name, replacement)
divert(number)
divnum
dnl
dumpdef('name', 'name', ...)
errprint(s, s, ...)
eval(numeric expression)
ifdef('name', this if true, this if false)
ifelse(a, b, c, d)
include (file)
incr(number)
index (sl, s:Z)
len (string)
maketemp (... XXXXX ...)
sinclude (file)
substr(string, position, number)
syscmd(s)

Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools

translit(str, from, to)
undefine r name')
undivert(number,number, .•.)

8.12. Acknowledgements and References

M4 - A Macro Processor

We are indebted to Rick Becker, John Chambers, Doug Mcilroy, and especially Jim Weythman,
whose pioneering use of m,# has led to several valuable improvements. We are also deeply grate­
ful to Weythman for several substantial contributions to the code.

The m,# macro processor is an extension of a macro processor called M3 which was written by D.
M. Ritchie for the AP-3 mtnicomputer; M3 was in turn based on a macro processor implemented
for [l]. Readers unfamiliar with the basic ideas of macro processing may wish to read some of
the discussion there.

[l] B. W. Kernighan and P. J. Plauger, ,SoftwareTools Addison-Wesley, Inc., 1976.

Revision E of 15 May 1985 8-9

0

0

0

0

0

0

Chapter 9

Lex - A Lexical Analyzer Generator

Lez helps write programs whose control flow is directed by instances 0£ regular expressions in
the input stream. It is well-suited for editor-script type transformations and for segmenting
input into tokens in preparation for a parsing routine.

Lez source is a table 0£ regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and parti­
tioning the input into strings which match the given expressions. As each such string is recog­
nized the corresponding program fragment is executed. The recognition 0£ the expressions is
performed by a deterministic finite automaton generated by lez. The program fragments writ­
ten by the programmer are executed in the order in which the corresponding regular expressions
occur in the input stream.

The lexical analysis programs written with lez accept ambiguous specifications and choose the
longest match possible at each input point. 1£ necessary, substantial lookahead is performed on
the input, but the input stream is then backed up to the end 0£ the current partition, so that the
programmer has general freedom to manipulate it.

Lez can generate analyzers in either C or Ratfor, a language which can be translated automati­
cally to portable FORTRAN. Lez is designed to simplify interfacing with Yacc, which is described
in the next chapter.

Lez is a program generator designed for lexical processing 0£ character input streams. It accepts
a high-level, problem-oriented specification for character string matching, and produces a pro­
gram in a general-purpose language which recognizes regular expressions. The regular expres­
sions are specified by the programmer in the source specifications given to lez. The lez written
code recognizes these expressions in an input stream and partitions the input stream into strings
matching the expressions. At the boundaries between strings, program sections provided by the
programmer are executed. The lez source file associates the regular expressions and the pro­
gram fragments. As each expression appears in the input to the program written by lez, the
corresponding fragment is executed.

The programmer supplies the additional code beyond expression matching needed to complete
his tasks, possibly including code written by other generators. The program that recognizes the
expressions is generated in the general-purpose programming language employed for the
programmer's program fragments. Thus, a high-level expression language is provided to write
the string expressions to be matched while the programmer's freedom to write actions is unim­
paired. This avoids forcing the programmer who wishes to use a string manipulation language
for input analysis to write processing programs in the same and often inappropriate string han­
dling language.

Revision E 0£ 15 May 1985 9-1

Lex - A Lexical Analyzer Generator Programming Tools

Lez is not a complete language, but rather a generator representing a new language feature
which can be added to different programming languages, called 'host languages.' Just as
general-purpose languages can produce code to run on different computer hardware, lez can
write code in different host languages. The host language is used for the output code generated
by lez and also for the program fragments added by the programmer. Compatible run-time
libraries for the different host languages are also provided. This makes lez adaptable to different
environments and different programmer. Each application may be directed to the combination
of hardware and host language appropriate to the task, the programmer's background, and the
properties of local implementations.

Lez turns the programmer's expressions and actions (called aource in this document) into the
host general-purpose language; the generated program is named yylez. The yylez program recog­
nizes expressions in a stream (called input in this document) and performs the specified actions
for each expression as it is detected - see Figure 1 below.

Lez
Source

Input
Source

Lez

Figure 9-1: An overview of Lex

yylez

Output

For a trivial example, consider a program to delete from the input all blanks or tabs at the ends
of lines.

%%
[\t] +$

is all that is required. The program contains a %% delimiter to mark the beginning of the rules,
and one rule. This rule contains a regular expression which matches one or more instances of
the characters blank or tab (written \t for visibility, in accordance with the C convention) just
prior to the end of a line. The brackets indicate the character class made of blank and tab; the
+ indicates 'one or more ... '; and the $ indicates 'end-of-line'. No action is specified, so the
program generated by lez (yylez) ignores these characters. Everything else is copied to the out­
put stream. To change any remaining string of blanks or tabs to a single blank, add another
rule:

%%
[\t] +$
[\t]+ print£("");

The finite automaton generated for this source scans for both rules at once, observing at the ter­
mination of the string of blanks or tabs whether or not there is a newline character, and execut­
ing the desired rule action. The first rule matches all strings of blanks or tabs at the ends of
lines, and the second rule all remaining strings of blanks or tabs.

9-2 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

Lez can be used alone for simple transformations, or for analysis and statistics gathering on a
lexical level. lez can also be used with a parser generator to perform the lexical analysis phase;
it is particularly easy to interface lez and yacc [3]. Lez programs recognize only regular expres­
sions; yacc writes parsers that accept a large class of context-free grammars, but require a
lower-level analyzer to recognize input tokens. Thus, a combination of lez and yacc is often
appropriate. When used as a preprocessor for a later parser generator, lez is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces. The flow of
control in such a case (which might be the first half of a compiler, for example) is shown in Fig­
ure 2. Additional programs, written by other generators or by hand, can be added easily to pro­
grams written by Lez.

Input

lezical
rule,

lez

grammar
rule,

yacc

Figure 9-2: Lex with Yacc

paraed
input

Yacc programmers will realize that the name yylez is what yacc expects its lexical analyzer to
be named, so that the use of this name by lez simplifies interfacing.

Lez generates a deterministic finite automaton from the regular expressions in the source [4].
The automaton is interpreted, rather than compiled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a /ez program to recognize and partition an input
stream is proportional to the length of the input. The number of lez rules or the complexity of
tlie rules is not important in determining speed, unless rules which include forward context
require a significant amount of rescanning. What does increase with the number and complexity
of rules is the size of the finite automaton, and therefore the size of the program generated by
lez.

In the program written by lez, the programmer's fragments (representing the action, to be per­
formed as each regular expression is found) are gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportunity is provided for the programmer to insert either
declarations or additional statements in the routine containing the actions, or to add subroutines
outside this action routine.

Lez is not limited to source which can be interpreted on the basis of one character lookahead.
For example, if there are two rules, one looking for ab and another for abcdefg, and the input

Revision E of 15 May 1985 9-3

Lex - A Lexical Analyzer Generator Programming Tools

stream is abcde/h, lez recognizes ab and leave the input pointer just before "ed .. ." Such backup
is more costly than processing simpler languages.

9.1. Lex Source

The general format of lez source is:

{definitions}

%%
{rules}
%%
{programmer subroutines}

where the definitions and the programmer subroutines are often omitted. The second %% is
optional, but the first is required to mark the beginning of the rules. The absolute minimum 1ez
program is thus

%%
(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.

In the outline of lez programs shown above, the rulea represent the programmer's control deci­
sions; they are a table, in which the left column contains regular ezpreuiona (see Section 2) and
the right column contains actiona, program fragments to be executed when the expressions are
recognized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message 'found keyword INT'
whenever it appears. In this example the host procedural language is C and the C library func­
tion print/ is used to print the string. The end of the expression is indicated by the first blank or
tab character. If the action is merely a single C expression, it can just be given on the right side
of the line; if it is compound, or takes more than a line, it should be enclosed in braces. As a
slightly more useful example, suppose it is desired to change a number of words from British to
American spelling. 1ez rules such as

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough, since the word petroleum would become
gaaeum; a way of dealing with this is described later.

9.2. Lex Regular Expressions

The definitions of regular expressions are very similar to those in the UNIX editors ez(l) and
11i(l)[5]. A regular expression specifies a set of strings to be matched. It contains text characters
(which match the corresponding characters in the strings being compared) and operator charac­
ters (which specify repetitions, choices, and other features). The letters of the alphabet and the
digits are always text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

9-4 Revision E of 15 May 1985

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

a57D

0 looks for the string a57D.

0

0

Operator•. The operator characters are

"\ [J "-?.•+I()$/{}%<>

and if they are to be used as text characters, an escape must be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

xyz"++"

matches the string zyz++ when it appears. Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary text character; the expression

"xyz++"

is the same as the one above. Thus by quoting every non-alphanumeric character being used as
a text character, the programmer can avoid remembering the list above of current operator
characters, and is safe should further extensions to fez lengthen the list.

An operator character may also be turned into a text character by preceding it with\ as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use of the quoting
mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs end
a rule. Any blank character not contained within [] (see below) must be quoted. Several normal
C escapes with\ are recognized: \n is newline, \tis tab, and \bis backspace. To enter\ itself,
use \ \. Since newline is illegal in an expression, \n must be used; it is not required to escape tab
and backspace. Every character but blank, tab, newline and the list above is always a text char­
acter.

Character c/a .. ea. Classes of characters can be specified using the operator pair []. The con­
struction /abcf matches a single character, which may be a, b, or c. Within square brackets, most
operator meanings are ignored. Only three characters are special: these are \, -, and •. The -
character indicates ranges. For example,

[a-z0-9<>_]

indicates the character class containing all the lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either order. Using - between any pair of characters
which are not both upper case letters, both lower case letters, or both digits is implementation­
dependent and generates a warning message. For example, [0-z] in ASCII is many more charac­
ters than it is in EBCDIC. If it is desired to include the character - in a character class, it should
be first or last, thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the • operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the system's character
set. Thus

["abc]

matches all characters except a, b, or c, including all special or control characters; and

Revision E of 15 May 1985 9-5

Lex - A Lexical Analyzer Generator Programming Tools

["a-zA-Z)

is any character which is not a letter. The \ character provides the usual escapes within charac­
ter class brackets.

Arbitrary character. To match almost any character, the operator character

(period) is the class of all characters except newline. Escaping into octal is possible although
non-portable:

[\40-\176)

matches all printable characters in the ASCII character set, from octal 40 (blank) to octal 176
(tilde).

Optional expreaaiona. The operator ? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

Repeated expre .. iona. Repetitions of classes are indicated by the operators• and + .

••
is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z) +

is all strings of lower case letters. And

[A-Za-z) [A-Za-z0-9]•

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expres­
sion for recognizing identifiers in computer languages.

Alternation and Grouping. The operator I indicates alternation:

(ab I cd)

matches either ab or ed. Note that parentheses are used for grouping, although they are not
necessary on the outside level;

ab!cd

would have sufficed. Parentheses can be used for more complex expressions:

(ab!cd+)?(ef)•

matches such strings as abe/ef, e/e/e/, cdef, or cddd; but not abc, abed, or abcdef.

Contezt aemitivity. Lez recognizes a small amount of surrounding context. The two simplest
operators for this are • and $. If the first character of an expression is ·, the expression is only
be matched at the beginning of a line This can never conflict with the other meaning of •, com­
plementation of character classes, since that only applies within the [] operators. If the very
last character is $, the expression is only be matched at the end of a line (when immediately fol­
lowed by newline). The latter operator is a special case of the / operator character, which indi­
cates trailing context. The expression

9-6 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

ab/cd

matches the string ab, but only if it is followed by ed. Thus

ab$

is the same as

ab/\n

Left context is handled in lez by dart conditiom as explained in section 9.9 - Left Contezt­
Senaitivity. If a rule is only to be executed when the lez automaton interpreter is in start condi­
tion z, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered 'being at the beginning of a line'
to be start condition ONE, then the ' operator would be equivalent to

<ONE>

Start conditions are explained more fully below.

Repetitiom and Definitiom. The operators {} specify either repetitions {if they enclose numbers)
or definition expansion (if they enclose a name). For example .

{digit}

looks for a predefined string named digit and inserts it at that point in the expression. The
definitions are given in the first part of the lez input, before the rules. In contrast,

a{l,5}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for lez source segments.

9.3. Lex Actions

When an expression written as above is matched, lez executes the corresponding action. This
section describes some features of lez which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the lez programmer who wishes to absorb the entire input, without
producing any output, must provide rules to match everything. When lez is being used with
yacc, this is the normal situation. One may consider that actions are what is done instead of
copying the input to the output; thus, in general, a rule which merely copies can be omitted.
Also, a character combination which is omitted from the rules and which appears as input is
likely to be printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null state­
ment, ; as an action does this. A frequent rule is

[\t\n] ;

which ignores the three spacing characters (blank, tab, and newline).

Another easy way to avoid writing actions is the action character j, which indicates that the
action to be used for this rule is the action given for the next rule. The previous example could
also have been written

Revision E of 15 May 1985 9-7

Lex - A Lexical Analyzer Generator

" "
"\t"
"\n"

with the same result. The quotes around \n and \ t are not required.

Programming Tools

In more complex actions, the programmer often wants to know the actual text that matched
some expression like [a-z] +. lez leaves this text in an external character array named yytezt.
Thus, to print the name found, a rule like

[a-z]+ printf("%s", yytext);

prints the string in yytezt. The C function print/ accepts a format argument and data to be
printed; in this case, the format is 'print string' (% indicating data conversion, and a indicating
string type), and the data are the characters in yytezt.
So this just places the matched string on the output. This action is so common that it may be

written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the characters found, one
might ask why give a rule, like this one, which merely specifies the default action? Such rules
are often required to avoid matching some other rule which is not desired. For example, if there
is a rule which matches read it normally matches the instances of read contained in bread or
readjuat; to avoid this, a rule of the form [a-z]+ is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence lez also pro­
vides a count yyleng of the number of characters matched. To count both the number of words
and the number of characters in words in the input, the programmer might write

[a-zA-Z] + {words++; chars+= yyleng;}

which accumulates in chara the number of characters in the words recognized. The last charac­
ter in the string matched can be accessed by

yytext [yyleng-1]

Occasionally, a lez action may decide that a rule has not recognized the correct span of charac­
ters. Two routines are provided to aid with this situation. First, yymore(} can be called to indi­
cate that the next input expression recognized is to be tacked on to the end of this input. Nor­
mally, the next input string would overwrite the current entry in yytezt. Second, yyleaa{n} may
be called to indicate that not all the characters matched by the currently successful expression
are wanted right now. The argument n indicates the number of characters to be retained in
yytezt. Further characters previously matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a different form.

Example: Consider a language which defines a string as a set of characters between quotation (")
marks, and provides that to include a " in a string it must be preceded by a \. The regular
expression which matches that is somewhat confusing, so that it might be preferable to write

\"[-"]• {
if (yytext [yyleng-1] == \ \')

yymore();
else

. . . normal programmer processing
}

0

0

which, when faced with a string such as "abc\" def" first matches the five characters "abc\; then c
the call to yymore(} tacks the next part of the string, "def, onto the end. Note that the final ·

9-8 Revision E of 15 May 1985

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

quote terminating the string should be picked up in the code labeled 'normal processing'.

The function yyle .. () might be used to reprocess text in various circumstances. Consider the
problem of resolving (in old-style C) the ambiguity of '=-a'. Suppose it is desired to treat this
as '=- a' but print a message. A rule might be

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for=- ...
}

which prints a message, returns the letter after the operator to the input stream, and treats the
operator as '=- '. Alternatively it might be desired to treat this as '= -a'. To do this, just
return the minus sign as well as the letter to the input:

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);
. . . action for = ...
}

performs the other interpretation. Note that the expressions for the two cases might more easily
be written

=-/[A-Za-z]

in the first case and

=/- [A-Za-z]

in the second; no backup would be required in the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity. The possibility of '--3 ', however, makes

=-/[" \t\n]

a still better rule.

In addition to these routines, /ez also permits access to the I/0 routines it uses. They are:

1) input(} which returns the next input character;

2) output(c} which writes the character con the output; and

3) unput(c) pushes the character c back onto the input stream to be read later by input().

By default these routines are provided as macro definitions, but the programmer can override
them and supply private versions. These routines define the relationship between external files
and internal characters, and must all be retained or modified consistently. They may be
redefined, to transmit inpu~ or output to or from strange places, including other programs or
internal memory; but the character set used must be consistent in all routines; a value of zero
returned by input must mean end of file; and the relationship between unput and input must be
retained or the /ez lookahead wilt not work. /ez does not look ahead at all if it does not have to,
but every rule ending in + • ? or $ or containing / implies lookahead. Lookahead is also
necessary to match an expression that is a prefix of another expression. See Section 10 for a dis­
cussion of the character set used by /ez. The standard Lez library imposes a 100-character limit
on backup.

Another /ez library routine that the programmer will sometimes want to redefine is 1111wrap()
which is called whenever /ez reaches an end-of-file. If 1111wrap returns a 1, /ez continues with the
normal wrapup on end of input. Sometimes, however, it is convenient to arrange for more input

Revision E of 15 May 1985 9-9

Lex - A Lexical Analyzer Generator Programming Tools

to arrive from a new source. In this case, the programmer should provide a Ill/wrap which
arranges for new input and returns 0. This instructs lez to continue processing. The default
1111wrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end 0£ a program.
Note that it is not possible to write a normal rule which recognizes end-of-file; the only access to
this condition is through 1111wrap. In fact, unless a private version 0£ input{) is supplied a file
containing nulls cannot be handled, since a value or O returned by input is taken to be end-of-file.

9.4. Ambiguous Source Rules

Lez can handle ambiguous specifications. When more than one expression can match the
current input, /ez chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number or characters, the rule given first is preferred.

Thus, suppose the rules

integer keyword action ... ,
[a-z] + identifier action ... ;

0

to be given in that order. If the input is integera, it is taken as an identifier, because fa-z/+
matches 8 characters while integer matches only 7. If the input is integer, both rules match 7
characters, and the keyword rule is selected because it was given first. Anything shorter (for
example, int) will not match the expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like .• 0
dangerous. For example,

I•*'
might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

1first' quoted string here, 'second' here

the above expression matches
1first1 quoted string here, 'second'

which is probably not what was wanted. A better rule is 0£ the form

'[-'\n]•'
which, on the above input, stops after 1/irat'. The consequences of errors like this are mitigated
by the fact that the . operator does not match newline. Thus expressions like .• stop on the
current line. Don't try to defeat this with expressions like /.\n/+ or equivalents; the lez gen­
erated program will try to read the entire input file, causing internal buffer overflows.

Note that lez is normally partitioning the input stream, not searching for all possible matches of
each expression. This means that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both ,he and he in an input text. Some
/ez rules to do this might be

9-10 Revision E of 15 May 1985

0

0

0

0

Programming Tools

she
he
\n

s++;
h++;

Lex - A Lexical Analyzer Generator

where the last two rules ignore everything besides he and ahe. Remember that . does not include
newline. Since ahe includes he, lez will normally not recognize the instances of he included in
ahe, since once it has passed a ahe those characters are gone.

Sometimes the programmer would like to override this choice. The action REJECT means 'go
do the next alternative.' It executes whatever rule was second choice after the current rule.
The position of the input pointer is adjusted accordingly. Suppose the programmer really wants
to count the included instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

these rules are one way of changing the previous example to do just that. After counting each
expression, it is rejected; whenever appropriate, the other expression is then counted. In this
example, of course, the programmer could note that ahe includes he but not vice versa, and omit
the REJECT action on he; in other cases, however, it would not be possible a priori to tell which
input characters were in both classes.

Consider the two rules

a [be]+
a[cd]+

{ ... ; REJECT;}
{ ... ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches. The input
string accb matches the first rule for four characters and then the second rule for three charac­
ters. In contrast, the input aced agrees with the second rule for four characters and the first
rule for three.

In general, REJECT is useful whenever the purpose of lez is not to partition the input stream but
to detect all examples of some items in the input, and the instances of these items may overlap
or include each other. Suppose a digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both th and he. Assuming a two­
dimensional array named digram to be incremented, the appropriate source is

%%
[a-z] [a-z]
\n

{digram[yytext[O]] [yytext[l]]++; REJECT;}

where the REJECT is necessary to pick up a letter pair beginning at every character, rather than
at every other character.

9.5. Lex Source Definitions

Remember the format of the lez source:

Revision E of 15 May 1985 9-11

Lex - A Lexical Analyzer Generator

{definitions}
%%
{rules}
%%
{programmer routines}

Programming Tools

So far only the rules have been described. The programmer needs additional options, though, to
define variables for use in his program and for use by lez. These can go either in the definitions
section or in the rules section.

Remember that /ez is turning the rules into a program. Any source not intercepted by lez is
copied into the generated program. There are three classes 0£ such things.

I) Any line which is not part 0£ a lez rule or action which begins with a blank or tab is copied
into the lez-generated program. Such source input prior to the first %% delimiter is exter­
nal to any £unction in the code; i£ it appears immediately after the first%%, it appears in an
appropriate place for declarations in the £unction written by lez which contains the actions.
This material must look like program fragments, and should precede the first /ez rule.

As a side effect 0£ the above, lines which begin with a blank or tab, and which contain a
comment, are passed through to the generated program. This can be used to include com­
ments in either the lez source or the generated code. The comments should follow the host
language convention.

2) Anything included between Jines containing only the delimiters %{ and %} is copied out as
above. The delimiters are discarded. This format permits entering text like preprocessor
statements that must begin in column I, or copying lines that do not look like programs.

3) Anything after the third %% delimiter, regardless 0£ formats, etc., is copied out after the
lez output.

Definitions intended for lez are given before the first %% delimiter. Any line in this section not
contained between %{ and %}, and begining in column 1, is assumed to define lez substitution
strings. The format 0£ such lines is

name translation

and it associates the string given as a translation with the name. The name and translation must
be separated by at least one blank or tab, and the name must begin with a letter. The transla­
tion can then be invoked by the {name} syntax in a rule. Using {D} for the digits and {E} for
an exponent field, for example, might abbreviate rules to recognize numbers:

D
E

%%

[0-9]
[DEde] [-+)?{D}+

{D}+ printf("integer");
{D}+"."{D}•({E})?
{D}•"."{D}+({E})? 1
{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and contain an optional
exponent field, but the first requires at least one digit before the decimal point and the second
requires at least one digit after the decimal point. To correctly handle the problem posed by a
FORTRAN expression such as 95.EQ.l, which does not contain a real number, a context-sensitive
rule such as

[0-9] +/". "EQ printf ("integer");

9-12 Revision E 0£ 15 May 1985

0

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection or a host
language, a character set table, a list or start conditions, or adjustments to the default size or
arrays within lex itself for larger source programs. These possibilities are discussed below under
'Summary of Source Format'.

9.6. Using lex

There are two steps in compiling a /ex source program. First, the lex source must be turned
into a generated program in the host general-purpose language. Then this program must be
compiled and loaded, usually with a library or lex subroutines. The generated program is on a
file named lex.yy.c. The 1/0 library is defined in terms or the C standard library in section 3 of
the Sy.tern Interface Manual for the Sun Workatation.

The lex library is accessed by the loader flag -11. So an appropriate set or commands is

lex source
cc lex.yy.c -11

The resulting program is placed on the usual file a.out for later execution. To use /ex with yacc
see below. Although the default Lex 1/0 routines use the C standard library, the lex automata
themselves do not do so; if private versions of input, output and unput are given, the library can
be avoided. Lex has several options which are described in the /ex(l) manual page.

Q 9.7. Lex and Yacc

0

If you want to use lex with yacc, note that what Lex writes is a program named yylex(), the
name required by yacc for its analyzer. Normally, the default main program in the lex library
calls this routine, but if yacc is loaded, and its main program is usedJ yacc calls yylex().

In this case each lex rule should end with

return(token);

to return the appropriate token value.

An easy way to get access to yacc 's names for tokens is to compile the lex output file as part or
the yacc output file by placing the line

include "lex.yy.c"

in the last section of yacc input. Supposing the grammar to be named 'good' and the lexical
rules to be named 'better' the UNIX command sequence can just be:

tutorial% yacc good
tutorial% lez better
tutorial% cc y.tab.c -11
tutorial%

The lex and yacc programs can be generated in either order.

Revision E of 15 May 1985 9-13

Lex - A Lexical Analyzer Generator Programming Tools

9.8. Examples

As a trivial problem, consider copying an input file while adding 3 to every non-negative number
divisible by 7. Here is a suitable /oz source program

%%
int k;

[0-9] + {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);
}

to do just that. The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary
and stores the result in k. The operator % (remainder) is used to check whether k is divisible by
7; if it is, it is incremented by 3 as it is written out. It may be objected that this program will
alter such input items as ,19.69 or X1. Furthermore, it increments the absolute value of all nega­
tive numbers divisible by 7. To avoid this, just add a few more rules after the active one, as
here:

%%
int k;

-? [0-9] + {
k = atoi(yytext);
pr int f ("%d", k%7 -- 0 ? k+3 k);
}

-? [0-9.] + ECHO;
[A-Za-z) [A-Za-z0-9]+ ECHO;

Numerical strings containing a '.' or preceded by a letter are picked up by one of the last two
rules, and not changed. The i/-elae has been replaced by a C conditional expression to save
space; the form afb:c means 'if a then b else c '.

For an example of statistics gathering, here is a program which constructs a histogram of the
lengths of words, where a word is defined as a string of letters.

int lengs[lOOJ;
%%
[a-z)+ lengs[yyleng]++;

\n
%%
1 s.
yywrap()
{
int 1;

1

printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(l);
}

0

0

This program accumulates the histogram, while producing no output. At the end of the input it 0

9-14 Revision E of 15 May 1985

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

prints the table. The final statement return(1); indicates that lez is to perform wrapup. If
1111wrap returns zero (false) it implies that further input is available and the program is to con­
tinue reading and processing. To provide a 1111wrap that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written by N. L. Schryer to convert
double-precision FORTRAN to single-precision FORTRAN. Because FORTRAN does not distinguish
upper and lower case letters, this routine begins by defining a set of classes including both cases
of each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

w [\t]•

The first rule changes 'double-precision' to 'real', or 'DOUBLE PRECISION' to 'REAL'.

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {
printf(yytext[0]==1d1? "real" : "REAL");
}

Care is taken throughout this program to preserve the case (upper or lower) of the original pro­
gram. The conditional operator is used to select the proper form of the keyword. The next rule
copies continuation card indications to avoid confusing them with constants:

• II
II [" OJ ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as 'beginning of line,
then five blanks, then anything but blank or zero.' Note the two different meanings of •. There
follow some rules to change double-precision constants to ordinary floating constants.

[0-9]+{W}{d}{W}[+-]?{W}[0-9]+ I
[0-9] +{W}". "{W}{d}{W} [+-] ?{W} [0-9] + I

11
• "{W} [0-9] +{W}{d}{W} [+-] ?{W} [0-9] + {

/* convert constants•/
for(p=yytext; *P I= O; p++)

{
if (•p == 'd' 11 *P == 'D')

*P=+ 'e'- 'd';
ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to find the letter d or
D. The program then adds 't!-'rl, which converts it to the next letter of the alphabet. The
modified constant, now single-precision, is written out again. There follow a series of names
which must be respelled to remove their initial d. By using the array 1111tezt the same action
suffices for all the names (only a sample of a rather long list is given here).

Revision E of 15 May 1985 9-15

Lex - A Lexical Analyzer Generator Programming Tools

{d}{s}{i}{n}
{d}{c}{o}{s} 0
{d}{s}{q}{r}{t}
{d}{a}{t}{a}{n}

{d}{f}{l}{o}{a}{t} printf("%s",yytext+l);

Another list of names must have initial d changed to initial a:

{d}{l}{o}{g}
{d}{l}{o}{g}lO
{d}{m}{i}{n}l
{d}{m}{a}{x}l {

yytext [O) =• 1a1
-

1d1
;

ECHO;
}

And one routine must have initial d changed to initial r:

{d}l{m}{a}{c}{h} {yytext [O) =• 1r 1 - 1d1;

ECHO;
}

To avoid such names as dainz being detected as instances of dain, some final rules pick up longer
words as identifiers and copy some surviving characters:

[A-Za-z) [A-Za-z0-9)•
[0-9] + 1
\n I

ECHO;

Note that this program is not complete; it does not deal with the spacing problems in FORTRAN
or with the use of keywords as identifiers.

9.9. Left Context-Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor statements and
analyze them differently from ordinary statements. This requires sensitivity to prior context,
and there are several ways of handling such problems. The ~ operator, for example, is a prior
context operator, recognizing immediately preceding left context just as $ recognizes immedi­
ately following right context. Adjacent left context could be extended, to produce a facility simi­
lar to that for adjacent right context, but it is unlikely to be as useful, since often the relevant
left con text appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of flags,
when only a few rules change from one environment to another, the use of .tart conditiona on
rules, and the possibility of making multiple lexical analyzers all run together. In each case,
there are rules which recognize the need to change the environment in which the following input
text is analyzed, and set some parameter to reflect the change. This may be a flag explicitly
tested by the programmer's action code; such a flag is the simplest way of dealing with the prob­
lem, since lez is not involved at all. It may be more convenient, however, to have lez remember
the flags as initial conditions on the rules. Any rule may be associated with a start condition. It
is only be recognized when lez is in that start condition. The current start condition may be
changed at any time. Finally, if the sets of rules for the different environments are very

9-16 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

dissimilar, clarity may be best achieved by writing several distinct lexical analyzers, and switch­
ing from one to another as desired.

Consider the following problem: copy the input to the output, changing the word magic to Jirat
on every line which begins with the letter 11, changing magic to aecond on every line which
begins with the letter b, and changing magic to third on every line which begins with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

%%
·a
.b
·c

\n
magic

int flag;

{flag = 'a'; !!CHO;}
{flag = 'b'; ECHO;}
{flag = 'c'; !!CHO;}
{flag = 0 ; ECHO;}
{
switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf ("second") ; break;
case 'c': print! ("third") ; break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to
lez in the definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The word Start may be abbreviated to a or S.
The conditions may be referenced at the head of a rule with the <> brackets:

<namel>expresslon

is a rule which is only recognized when lez is in the start condition name1. To enter a start con­
dition, execute the action statement

BEGIN namel;

which changes the start condition to name1. To resume the normal state,

BEGIN O;

which resets to the initial condition of the lez automaton interpreter. A rule may be active in
several start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always active.

The same example as before can be written:

Revision E of 15 May 1985 9-17

Lex - A Lexical Analyzer Generator

%START AA BB CC
%%
·a {ECHO;
.b {ECHO;
·c {ECHO;
\n {ECHO;
<AA>magic
<BB>magic
<CC>magic

BEGIN AA;}
BEGIN BB;}
BEGIN CC;}
BEGIN O;}
printf("first");
printf("second");
printf("third");

Programming Tools

where the logic is exactly the same as in the previous method of handling the problem, but lez
does the work rather than the programmer's code.

9.10. Character Set

The programs generated by /ez handle character 1/0 only through the routines input, output,
and unput. Thus the character representation provided in these routines is accepted by lez and
employed to return values in yytezt. For internal use a character is represented as a small
integer which, if the standard library is used, has a value equal to the integer value of the bit
pattern representing the character on the host computer. Normally, the letter a is represented
in the same form as the character constant I a'. If this interpretation is changed, by providing
1/0 routines which translate the characters, Lez must be told about it, by giving a translation
table. This table must be in the definitions section, and must be bracketed by two lines contain­
mg only '%T '. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus the next example

%T
l Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 l

39 9

%T

Figure 9-3: Sample character table.

maps the lower and upper case letters together into the integers l through 26, newline into 27, +
and - into 28 and 29, and the digits into 30 through 39. Note the escape for newline. If a table
is supplied, every character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0, and no character may be
assigned a bigger number than the size of the hardware character set.

9-18 Revision E of 15 May 1985

0

0

0

0

0

0 .

Programming Tools Lex - A Lexical Analyzer Generator

9.11. Summary of Source Format

The general form of a /ez source file is:

{definitions}

%%
{rules}

%%
{programmer subroutines}

The definitions section contains a combination of

1) Definitions, in the form 'name space translation'.

2) Included code, in the form 'space code'.

3) Included code, in the form

%{
code
%}

4) Start condition declarations, given in the form

%5 namel name2 ...

5) Character set tables, in the form

%T
number space character-string

6) Changes to internal array sizes, in the form

%z nnn

where nnn is a decimal integer representing an array size and z selects the parameter as fol­
lows:

Letter Parameter

p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the form 'expression action' where the action may be con­
tinued on succeeding lines by using braces to delimit it.

Regular expressions in /ez use the following operators:

Revision E of 15 May 1985 9-19

Lex - A Lexical Analyzer Generator

Operator Meaning

x the character "x"
"x"
\x
[xy)
[x-z]
[-x]

-x
<y>x
x$
x?
x•
x+
xJy
(x)

X

an "x", even if x is an operator
an "x", even if x is an operator
the character x or y
the characters x, y or z
any character but x
any character but newline
an x at the beginning of a line
an x when 1ez is in start condition y
an x at the end of a line
an optional x
0,1,2, ... instances of x
1,2,3, ... instances of x
anxoray
an x
y

Programming Tools

{xx}
x{m,n}

the translation of xx from the definitions section
m through n occurrences of x

9.12. Caveats and Bugs

0

There are pathological expressions which produce exponential growth of the tables when con- 0
verted to deterministic automata; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT is executed, the programmer
must not have used unput to change the characters forthcoming from the input stream. This is
the only restriction on the programmer's ability to manipulate the not-yet-processed input.

9.13. Acknowledgments and References

As should be obvious from the above, the outside of 1ez is patterned on yacc and the inside on
Aho' s string matching routines. Therefore, both S. C. Johnson and A. V. Aho are really origina­
tors of much of 1ez, as well as debuggers of it. Many thanks are due to both.

The code of the current version of /ez was designed, written, and debugged by Eric Schmidt.

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, N. J.
(1978).

2. B. W. Kernighan, Ratfor: A Preproceaaor for a Rational FORTRAN, Software - Practice and
Experience, 5, pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler Compiler, Computing Science Technical Report
No. 32, 1975, Murray Hill.

9-20 Revision E of 15 May 1985

0

0

0

0

Programming Tools Lex - A Lexical Analyzer Generator

4. A. V. Aho and M. J. Corasick, Efficient String Matching: An Aid to Bibliographic Search,
Comm. ACM 18, 333-340 (1975).

5. See the papers on ez and vi in Editing and Text Proceuing on the Sun Work.talion.

6. M. E. Lesk, The Portable C Library, Computing Science Technical Report No. 31, Murray
Hill.

Revision E of 15 May 1985 9-21

0

0

0

0

0

0

Chapter 10

Y ace - Yet Another Compiler-Compiler

Computer program input generally has some structure; in fact, every computer program that
does input can be thought of as defining an 'input language' which it accepts. An input
language may be as complex as a programming language, or as simple as a sequence of numbers.
Unfortunately, usual input facilities are limited, difficult to use, and often are lax about checking
their inputs for validity.

Yacc provides a general tool for describing the input to a computer program. The yacc pro­
grammer specifies the structure of the input, together with code to be invoked as each item is
recognized. Yacc turns such a specification into a subroutine that handles the input process; fre­
quently, it is convenient and appropriate to have most of the flow of control in the
programmer's application handled by this subroutine.

The input subroutine produced by yacc calls a programmer-supplied routine to return the next
basic input item. Thus, the programmer can specify his input in terms of individual input char­
acters, or in terms of higher-level constructs such as names and numbers. The programmer­
supplied routine may also handle idiomatic features such as comment and continuation conven­
tions, which typically defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very general one: LALR(l)
grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, Ratfor , etc., yacc has also been used for less conven­
tional languages, including a phototypesetter language, several desk calculator languages, a docu­
ment retrieval system, and a FORTRAN debugging system.

Yacc provides a general tool for imposing structure on the input to a computer program. The
yacc programmer prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a par,er, calls the programmer-supplied low-level input routine (the lezical analyzer) to
pick up the basic items (called tokena) from the input stream. These tokens are organized
according to the input structure rules, called grammar rule,; when one of these rules has been
recognized, then programmer code supplied for this rule, an action, is invoked; actions have the
ability to return values and make use of the values of other actions.

Yacc is written in a portable dialect of C and the actions and output subroutine are in C as well.
Moreover, many of the syntactic conventions of yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

Revision E of 15 May 1985 10-1

Yacc - Yet Another Compiler-Compiler Programming Tools

date month....name day year

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma ',' is enclosed in
single quotes - implying that the comma is to appear literally in the input. The colon and semi­
colon merely serve as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This routine reads
the input stream, recognizing the lower-level structures, and communicates these tokens to the
parser. For historical reasons, a structure recognized by the lexical analyzer is called a terminal
aymbol, while the structure recognized by the parser is called a nonterminal aymbol. To avoid
confusion, terminal symbols are referred to as tokena.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_narne

month_name

month_name

'F' 'e' 'b'

'D' 'e' 'c'

0

md igh
1

t
1

be used ind the abhove example
1
.d Tbhe lexical an~lyz

1
er wobul

1
d onlyhne

1
ed t

1
o re

1
cog

1
nize inddivi- Qi.

ua etters, an mont _name wou e a nontermma sym o . Sue ow- eve ru es ten to
waste time and space, and may complicate the specification beyond yacc 's ability to deal with
it. Usually, the lexical analyzer would recognize the month names, and return an indication that
a month_name was seen; in this case, month_name would be a token.

Literal characters such as ',' must also be passed through the lexical analyzer, and are also con­
sidered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date month'/' day'/' year

allowing

7/4/1776

as a synonym for

July 4, 1776

In most cases, this new rule could be 'slipped in' to a working system with minimal effort and
little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as
early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading
and computing with bad input data substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the input specifications, permits the reentry
of bad data, or the continuation of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications. For example, the
specifications may be self-contradictory, or they may require a more powerful recognition

10-2 Revision E of 15 May 1985

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

mechanism than that available to yacc. The former cases represent design errors; the latter
cases can often be corrected by making the lexical analyzer more powerful, or by rewriting some
of the grammar rules. While yacc cannot handle all possible specifications, its power compares
favorably with similar systems; moreover, the constructions which are difficult for yacc to handle
are also frequently difficult for human beings to handle. Some users have reported that the dis­
cipline of formulating valid yacc specifications for their input revealed errors of conception or
design early in the program development.

The theory underlying yacc has been described elsewhere.2• 3, 4 Yacc has been extensively used
in numerous practical applications, including lint,5 the Portable C Compiler,6 and eqn, a system
for typesetting mathematics.7

The next several sections describe the basic process of preparing a yacc specification; Section
10.l describes the preparation of grammar rules, Section 10.2 the preparation of the
programmer-supplied actions associated with these rules, and Section 10.3 the preparation of lex­
ical analyzers. Section 10.4 describes the operation of the parser. Section 10.5 discusses various
reasons why yacc may be unable to produce a parser from a specification, and what to do about
it. Section 10.6 describes a simple mechanism for handling operator precedences in arithmetic
expressions. Section 10.7 discusses error detection and recovery. Section 10.8 discusses the
operating environment and special features of the parsers yacc produces. Section 10.9 gives
some suggestions which should improve the style and efficiency of the specifications. Section
10.10 discusses some advanced topics. Section 10.11 has a brief example, and section 10.12 gives
a summary of the yacc input syntax. Section 10.13 gives an example using some of the more
advanced features of yacc, and, finally, section 10.14 describes mechanisms and syntax no longer
actively supported, but provided for historical continuity with older versions of yacc.

10.1. Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared
as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical
analyzer as part of the specification file; it may be useful to include other programs as well.
Thus, every specification file consists of three sections: the declarationa, (grammar) rule•, and
program•. The sections are separated by double percent '%%' marks. The percent '%' is gen­
erally used in yacc specifications as an escape character.

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the second
%% mark may be omitted also; thus, the smallest legal yacc specification is

%%
rules

Spaces (also called blanks), tabs, and newlines are ignored except that they may not appear in
names or multi-character reserved symbols. Comments may appear wherever a name is legal;
they are enclosed in /• ... • /, as in C and PL/I.

Revision E of 15 May 1985 10-3

Yacc - Yet Another Compiler-Compiler Programming Tools

The rules section is made up of one or more grammar rules. A grammar rule has the form:

A BODY

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot '. ', underscore '_', and
non-initial digits. Upper and lower case letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes '' '. As in C, the backslash '\' 1s an
escape character within literals, and all the C escapes are recognized. Thus

'\n' newline
'\r' return
'\" single quote
'\\' backslash'\'
'\t' tab
'\b' backspace
'\f' form feed
'\xxx' 'xxx' in octal

For a number of technical reasons, the NUL character ('\O' or 0) should never be used in gram­
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar 'I' can be used
to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be
dropped before a vertical bar. Thus the grammar rules

A B C D

A E F
A G

can be given to yacc as

A B C D
E F
G

It is not necessary that all grammar rules with the same left side appear together in the gram­
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty:

Names representing tokens must be declared; this is most simply done by writing

,:token namel name2 . . .

in the declarations section. See Sections 3 , 5, and 6 for much more discussion. Every name not
defined in the declarations section is assumed to represent a nonterminal symbol. Every nonter­
minal symbol must appear on the left side of at least one rule.

0

0

Of all the nonterminal symbols, one, called the atart aymbol, has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most
general structure described by the grammar rules. By default, the start symbol is taken to be
the left hand side of the first grammar rule in the rules section. It is possible, and in fact desir- c
able, to declare the start symbol explicitly in the declarations section using the %start keyword: · '

10-4 Revision E of 15 May 1985

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If the
tokens up to, but not including, the endmarker form a structure which matches the start symbol,
the parser function returns to its caller after the endmarker is seen; it accepta the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the programmer-supplied lexical analyzer to return the endmarker when appropri­
ate; see Section 3, below. Usually the endmarker represents some reasonably obvious 1/0 status,
such as 'end-of-file' or 'end-of-record'.

10.2. Actions

With each grammar rule, the programmer may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for tokens,
if desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms,
and alter external vectors and variables. An action is specified by one or more statements,
enclosed in curly braces ' {' and '} '. For example,

A , (, B ') ,

{ hello(l, "abc"); }

and

XXX yyy zzz
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The dollar sign symbol '$' is used as a signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable '$$' to some value. For exam­
ple, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use
the pseudo-variables $1, $2, ... , which refer to the values returned by the components of the
right side of a rule, reading from left to right. Thus, if the rule is

A B C D

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr ' (' expr ') '

The value returned by this rule is usually the value of the ezpr in parentheses. This can be indi­
cated by

expr '(' expr ')' { $$ = $2; }

Q By default, the value of a rule is the value of $1 (the first element in it). Thus, grammar rules of

Revision E of 15 May 1985 10-5

Yacc - Yet Another Compiler-Compiler

the form

A B

frequently need not have an explicit action.

Programming Tools

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable
to get control before a rule is folly parsed. Yacc permits an action to be written in the middle
of a rule as well as at the end. This rule is assumed to return a value, accessible through the
usual $ mechanism by the actions to the right of it. In turn, it may access the values returned
by the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ X = $2; y = $3; }

the effect is to set z to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by manufacturing a new non­
terminal symbol name, and a new rule matching this name to the empty string. The interior
action is the action triggered off by recognizing this added rule. Yacc actually treats the above
example as if it had been written:

$ACT /• empty •/
{ $$ = 1; }

A B $ACT C
{ X = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure, such as
a parse tree, is constructed in memory, and transformations are applied to it before output is
generated. Parse trees are particularly easy to construct, given routines to build and maintain
the tree structure desired. For example, suppose there is a C function node, written so that the
call

node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. The parse tree can be built by supplying actions such as:

expr expr '+, expr
{$$=node('+', $1, $3); }

in the specification.

The programmer may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the me,rks '%{' and '%} '. These
declarations and definitions have global scope, so they are known to the action statements and
the lexical analyzer. For example,

%{ int variable= 0; %}
could be placed in the declarations section, making variable accessible to all of the actions.
The yacc parser uses only names beginning in 'yy '; the programmer should avoid such names.

10-6 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

In these examples, all the values are integers: a discussion of values of other types will be found
in Section 10.

10.3. Lexical Analysis

The programmer must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued function
called yylex. The function returns an integer, the token number, representing the kind of
token read. If there is a value associated with that token, it should be assigned to the external
variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order for communica­
tion between them to take place. The numbers may be chosen by yacc, or chosen by the pro­
grammer. In either case, the '# define' mechanism of C is used to allow the lexical analyzer to
return these numbers symbolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the yacc specification file. The relevant portion of the lexi­
cal analyzer might look like:

yylex () {
extern int yylval;
int c·

c = getchar () ;

switch(c) {

case 'O':
case 'l':

case '9':
yylval = c-'0';
return(DIGIT);

}

The intent is to return the token number of DIGIT, and a value equal to the numerical value of
the digit. Provided that the lexical analyzer code is placed in the programs section of the
specification file, the identifier DIGIT will be defined as the token number associated with the
token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant in C or the parser;
for example, the use of if or while as token names will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by yacc or by the programmer. In the
default situation, the numbers are chosen by yacc. The default token number for a literal char­
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name
or literal in the declaration, aection can be immediately followed by a nonnegative integer. This

Revision E of 15 May 1985 10-7

Y ace - Yet Another Compiler-Compiler Programming Tools

integer is taken to be the token number of the name or literal. Names and literals not defined
by this mechanism retain their default definition. It is important that all token numbers be dis­
tinct.

For historical reasons, the endmarker must have token number O or negative. This token
number cannot be redefined by the programmer; thus, all lexical analyzers should be prepared to
return O or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the 1oz program developed by Mike Lesk8

and described in the previous chapter of this manual. These lexical analyzers are designed to
work in close harmony with yacc parsers. The specifications use regular expressions instead of
grammar rules. Lez can be easily used to produce quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) which do not fit any theoretical framework, and
whose lexical analyzers must be crafted by hand.

10.4. How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself, how­
ever, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a stack. The parser can
read and remember the next input token (called the lookahead token). The current atate is

0

~!ways tlhbe o
1

ne_ ~n. t
1
h
1
e tohp of thhe. st~ck_- The statehs of thke finite-.state

1
machine are gdiven

1
smkall O··

mteger a es; m1t1a y, t e mac me 1s m state 0, t e stac contams on y state 0, an no oo a-

head token has been read.

The machine has only four actions available to it, called ahift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or popped
off the stack, and in the lookahead token being processed or left-alone.

The ahift action is the most common action the parser takes. Whenever a shift action is taken,
there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead token
is cleared.

The reduce action keeps the stack from growing without bound. Reduce actions are appropriate
when the parser has seen the right hand side of a grammar rule, and is prepared to announce
that it has seen an instance of the rule, replacing the right hand side by the left hand side. It
may be necessary to consult the lookahead token to decide whether to reduce, but usually it is
not; in fact, the default action (represented by a '. ') is often a reduce action.

10-8 Revision E of 15 May 1985

0

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

Reduce actions are associated with individual grammar rules. Grammar rules are also given
small integer numbers, leading to some confusion. The action

• reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to •tate 34.

Suppose the rule being reduced is

A : X y z

The reduce action depends on the left hand symbol (A in this case), and the number of symbols
on the right hand side (three in this case). To reduce, first pop off the top three states from the
stack (In general, the number of states popped equals the number of symbols on the right side of
the rule). In effect, these states were the ones put on the stack while recognizing z, !/, and z,
and no longer serve any useful purpose. After popping these states, a state is uncovered which
was the state the parser was in before beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues. There are significant differences
between the processing of the left hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the lookahead token is cleared by a shift, and is not
affected by a goto. In any case, the uncovered state contains an entry such as:

A goto 20

which pushes state 20 onto the stack, and becomes the current state.

In effect, the reduce action 'turns back the clock' in the parse, popping the states off the stack
to go back to the state where the right hand side of the rule was first seen. The parser then
behaves as if it had seen the left side at that time. If the right hand side of the rule is empty, no
states are popped off the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of programmer-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the external
variable yylval is copied onto the value stack. After the return from the programmer's code,
the reduction is carried out. When the goto action is done, the external variable yyval is
copied onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The- accept action indicates that
the entire input has been seen and that it matches the specification. This action appears only
when the lookahead token is the endmarker, and indicates that the parser has successfully done
its job. The error action, on the other hand, represents a place where the parser can no longer
continue parsing according to the specification. The input tokens it has seen, together with the
lookahead token, cannot be followed by anything that would result in a legal input. The parser
reports an error, and attempts to recover the situation and resume parsing: the error recovery
(as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

Revision E of 15 May 1985 10-9

Yacc - Yet Another Compiler-Compiler Programming Tools

,::token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When yacc is invoked with the -v option, a file called y.output is produced, with a human­
readable description of the parser. The y.output file corresponding to the above grammar (with
some statistics stripped off the end) is:

10-10 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

state 0
$accept _rhyme $end

DING shift 3
error

rhyme goto 1
sound goto 2

state l
$accept rhyme_$end

$end accept
error

state 2
rhyme soun~lace

DELL shift 5
error

place goto 4

state 3
sound DINGJ)ONG

DONG shift 6
error

state 4
rhyme sound place_ (1)

reduce 1

state 5
place DELL_ (3)

reduce 3

state 6
sound DING DONG_ (2)

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token, DING, is read, becoming the looka­
head token. The action in state O on DING is 'shift 3 ', so state 3 is pushed onto the stack, and

Revision E of 15 May 1985 10-11

Yacc - Yet Another Compiler-Compiler Programming Tools

the lookahead token is cleared. State 3 becomes the current state. The next token, DONG, is
read, becoming the lookahead token. The action in state 3 on the token DONG is 'shift 6 ', so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and
6. In state 6, without even consulting the lookahead, the parser reduces by rule 2.

sound DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on aound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is 'shift 5 ', so state 5 is pushed onto
the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the
only action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is
popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is state
4. Now, the stack contains 0, 2, and 4. In state 4, the only action rs to reduce by rule 1. There
are two symbols on the right, so the top two states are popped off, uncovering state O again. In
state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is
read; the endmarker is obtained, indicated by '$end' in the y.output file. The action in state 1
when the endmarker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, and so on. A few
minutes spend with this and other simple examples will probably be repaid when problems arise
in more complicated contexts.

10.5. Ambiguity and Conflicts

A set of grammar rules is ambiguoua if there is some input string that can be structured in two
or more different ways. For example, the grammar rule

expr expr expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put
two other expressions together with a minus sign between them. Unfortunately, this grammar
rule does not unambiguously specify the way that all complex inputs should be structured. For
example, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr) expr

or as

expr (expr expr

(The first is called left aaaociation, the second right aaaociation).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to con­
sider the problem that confronts the parser when it is given an input such as

expr expr expr

0

0

When the parser has read the second expr, the input that it has seen: 0
10.12 Revision E of 15 May 1985

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

expr expr

matches the right side of the grammar rule above. The parser could reduce the input by apply­
ing this rule; after applying the rule; the input is reduced to ezpr {the left side of the rule). The
parser would then read the final part of the input:

expr

and again reduce. The effect of this is to take the left-associative interpretation.

Alternatively, when the parser has seen

expr expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr expr expr

It could then apply the rule to the rightmost three symbols, reducing them to ezpr and leaving

expr expr

Now the rule can be reduced once more; the effect is to take the right associative interpretation.
Thus, having read

expr expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a •hi/I / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
'Shift/shift' conflicts.

When there are shift/reduce or reduce /reduce conflicts, yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice. A rule describing which choice
to make in a given situation is called a diaambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2
gives the programmer rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than yacc can construct. The use of actions within
rules can also cause conflicts, if the action must be done before the parser can be sure which rule
is being recognized. In these cases, the application of disambiguating rules is inappropriate, and
leads to an incorrect parser. For this reason, yacc always reports the number of shift/reduce
and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is
also possible to rewrite the grammar rules so that the same inputs are read but there are no
conflicts. For this reason, most previous parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces
slower parsers; thus, yacc will produce parsers even in the presence of conflicts.

Revision E of 15 May 1985 10-13

Yacc - Yet Another Compiler-Compiler Programming Tools

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an 'if-then-else' construction:

stat IF
IF

'(' eond
'(' eond

') ' stat
')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional (log­
ical) expressions, and •tat is a nonterminal symbol describing statements. The first rule will be
called the •imple-i/ rule, and the second the i/-el•e rule.

These two rules form an ambiguous construction, since input of the form

IF condition-1) IF (condition-2) etatement-1 ELSE etatement-2

can be structured according to these rules in two ways:

IF (condition-1 {
IF (condition-2) etatement-1

}
ELSE statement-2

or

IF condition-1) {
IF condition-2) etatement-1
ELSE statement-2

}

0

The second interpretation is the one given in most programming languages having this construct.
Each ELSE is associated with the last preceding 'un-ELSE'd' IF. In this example, consider the O··

situation where the parser has seen .

IF (condition-1) IF (condition-2) etatement-1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (condition-1) stat

and then read the remaining input,

ELSE statement-2

and reduce

IF (condition-1) stat ELSE statement-2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, otatement-2 read, and then the right hand portion
of

IF (condition-1) IF (condition-2) etatement-1 ELSE etatement-2

can be reduced by the if-else rule to get

IF (condition-1) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The application
of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

10-14 Revision E of 15 May 1985

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE, and
particular inputs already seen, such as

IF condition-1) IF (condition-2) Blalemenl-1

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of yacc are best understood by examining the verbose (-v) option output
file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond)
cond)

ELSE shift 45
reduce 18

stat_ (18)
statJ!LSE stat

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible things.
If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of its
description, the line

stat IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by '. ', is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat IF ' (' cond ') ' stat

Once again, notice that the numbers following 'shift' commands refer to other states, while the
numbers following 'reduce' commands refer to grammar rule numbers. In the y.output file, the
rule numbers are printed after those rules which can be reduced. In most states, there will be at
most one reduce action possible in the state, and this will be the default command. Program­
mers who encounter unexpected shift/reduce conflicts will probably want to look at the verbose
output to decide whether the default actions are appropriate, In really tough cases, the pro­
grammer might need to know more about the behavior and construction of the parser than can
be covered here. In this case, one of the theoretical references2• 3, 4 might be consulted; the ser­
vices of a local guru might also be appropriate.

Revision E of 15 May 1985 10-15

Yacc - Yet Another Compiler-Compiler Programming Tools

10.6. Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used construc­
tions for arithmetic expressions can be naturally described by the notion of precedence levels for
operators, together with information about left or right associativity. It turns out that ambigu­
ous grammars with appropriate disambiguating rules can be used to create parsers that are fas­
ter and easier to write than parsers constructed from unambiguous grammars. The basic notion
is to write grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the programmer specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow yacc to resolve the parsing conflicts in accordance with these rules, and con­
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is
done by a series of lines beginning with a yacc keyword: %left, %right, or %nonassoc, fol­
lowed by a list of tokens. All of the tokens on the same line are assumed to have the same pre­
cedence level and associativity; the lines are listed in order of increasing precedence or binding
strength. Thus,

%left '+'

%left '*' '/'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left-associative, and have lower precedence than star and slash, which are also left-associative.
The keyword %right is used to describe right-associative operators, and the keyword
%nonassoc is used to describe operators, like the . LT. operator in FORTRAN, that may not
associate with themselves; thus,

A .LT. B .LT. C

is illegal in FORTRAN, and such an operator would be described with the keyword %nonassoc in
yacc. As an example of the behavior of these declarations, the description

%right '='

%left '+'

%left '•' '/'

%%

expr expr
expr
expr
expr
expr
NAME

'='
'+,

'•'
, /'

might be used to structure the input

10-16

expr
expr
expr
expr
expr

Revision E of 15 May 1985

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

a=b=c•d e fog

as follows:

a= (b = (((c•d)-e) - (f•g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary ' - '; unary minus may be given the same
strength as multiplication, or even higher, while binary minus has a 1ower strength than multipli­
cation. The keyword %prec changes the precedence level associated with a particular grammar
rule. %prec appears immediately after the body of the grammar rule, before the action or clos­
ing semicolon, and is followed by a token name or literal. It changes the precedence of the
grammar rule to become that of the following token name or literal. For example, to make
unary minus have the same precedence as multiplication the rules might resemble:

%left '+'

%left '•' '/'

%%

expr expr
expr

'+'

expr ~.~

expr '/'
expr

NAME

expr
expr

expr
expr

%Pree '•'

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as we IL

The precedences and associativities are used by yacc to resolve parsing conflicts; they give rise
to disambiguating rules. Formally, the rules work as follows:

l. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc­
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two disam­
biguating rules given at the beginning of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left-associative implies reduce, right-associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre­
cedences, and use them in an essentially 'cookbook' fashion, until some experience has been

Revision E of 15 May 1985 10-17

Yacc - Yet Another Compiler-Compiler Programming Tools

gained. The y.output file is very useful in deciding whether the parser is actually doing what
was intended.

10. 7. Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete or
alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue
scanning the input to find further syntax errors. This leads to the problem of getting the parser
'restarted' after an error. A general class of algorithms to do this involves discarding a number
of tokens from the input string, and attempting to adjust the parser so that input can continue.

To allow the programmer some control over this process, yacc provides a simple, but reasonably
general, feature. The token name 'error' is reserved for error handling. This name can be used
in grammar rules; in effect, it suggests places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state where the token 'error' is legal. It then
behaves as if the token ·error' were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the error. If no special
error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in
error state until three tokens have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and the input token is quietly
deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state­
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize
tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are
rules such as

stat error ' . '
'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next '; '. All tokens after the error and before the next ';' cannot be shifted,
and are discarded. When the ';' is seen, this rule will be reduced, and any 'cleanup' action
associated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit
a line to be reentered after an error. A possible error rule might be

input error '\n'
{

{ printf("Reenter last line: ");
$$ = $4; }

} input

There is one potential difficulty with this approach; the parser must correctly process three input

10-18 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens, and gives no
message; this is clearly unacceptable. For this reason, there is a mechanism that can be used to
force the parser to believe that an error has been fully recovered from. The statement

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

print!("Reenter last line: ") ; }
input

{ $$ = $4; }

As mentioned above, the token seen immediately after the 'error' symbol is the input token at
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the programmer, that attempted to advance
the input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, illegal
token must be discarded, and the error state reset. This could be done by a rule like

stat error
{ resynch();

yyerrok;
yyclearin; }

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of
the parser from many errors; moreover, the programmer can get control to deal with the error
actions required by other portions of the program.

10.8. The Yacc Environment

When the programmer inputs a specification to yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the name may differ from installa­
tion to installation). Yacc produces an integer-valued function called yyparse. When
yyparse is called, it in turn repeatedly calls yylex - the lexical analyzer supplied by the pro­
grammer (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer
returns the endmarker token and the parser accepts. In this case, yyparse returns the value 0.

The programmer must provide a certain amount of environment for this parser in order to
obtain a working program. For example, as with every C program, a program called main must
be defined, that eventually calls yyparse. In addition, a routine called yyerror prints a mes­
sage when a syntax error is detected.

The programmer must supply these two routines in one form or another. They can be as simple
as the following example, or they can be as complex as needed.

Revision E of 15 May 1985 10-19

Yacc - Yet Another Compiler-Compiler

and

main() {
return(yyparse());
}

include <stdio.h>

yyerror(s) char •s; {
fprintf(stderr, "%s\n", s);
}

Programming Tools

The argument to yyerror is a string containing an error message, usually the string 'syntax
error'. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number
at the time the error was detected; this may be of some interest in giving better diagnostics.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the
parser generates a verbose description of its actions, including a discussion of which input sym­
bols have been read, and what the parser actions are. Depending on the operating environment,
it may be possible to set this variable by using a debugging system.

10.9. Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

10.9.1. Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file.
The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of 'knowing who to blame when things go wrong.'

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once, and
let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on
a separate line. This allows new rules to be added easily.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in section 10.11 is written following this style, as are the examples in the text of
this paper (where space permits). The programmer must make up his own mind about these
stylistic questions; the central problem, however, is to make the rules visible through the morass
of action code.

10-20 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

10.9.2. Left Recursion

The algorithm used by the yacc parser encourages so called 'left-recursive' grammar rules: rules
of the form

name name rest_of_rule

These rules frequently arise when writing specifications of sequences and lists:

list item
list item

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right-recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the programmer should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, con­
sider writing the sequence specification with an empty rule:

seq /• empty •/
seq item

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

10.9.3. Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to
delete blanks normally, but not within quoted strings. Or names might be entered into a symbol
table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of O or more declarations,
followed by O or more statements. Consider:

Revision E of 15 May 1985 10-21

Yacc - Yet Another Compiler-Compiler

%{

%}

%%

prog

decls

stats

int dflag;

other declarations

decls stats

/• empty •/
{ dflag

decls declaration

/• empty •/
{ dflag

stats statement

other rules ...

Programming Tools

= 1; }

= 0; }

The flag dflag is now O when reading statements, and 1 when reading declarations, ezcept for the
first token in the first statement. This token must be seen by the parser before it can tell that
the declaration section has ended and the statements have begun. In many cases, this single­
token exception does not affect the lexical scan.

0

This kind of 'backdoor' approach can be elaborated to a noxious degree. Nevertheless, it 0,
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

10.9.4- Reserved Words

Some programming languages permit the programmer to use words like 'if', which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework of
yacc; it is difficult to pass information to the lexical analyzer telling it 'this instance of if is a
keyword, and that instance is a variable'. The programmer can make a stab at it, using the
mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the
keywords be reaerved; that is, be forbidden for use as variable names. There are powerful stylis­
tic reasons for preferring this, anyway.

10.10. Advanced Topics

This section discusses a number of advanced features of yacc.

10-22 Revision E of 15 May 1985

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

10.10.1. Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YYAC­
CEPT and YYERROR. YYACCEPT makes yyparse return the value O; YYERROR makes the parser
behave as if the current input symbol results in a syntax error; yyerror is called, and error
recovery takes place. These mechanisms can be used to simulate parsers with multiple endmark­
ers or context-sensitive syntax checking.

10.10.2. Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The mechan­
ism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case
the digit may be O or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . }

THE
YOUNG

DOG

CRONE

{
{ $$ =

$$=THE;
YOUNG; }

}

{ $$=DOG; }

{ if($0 -- YOUNG){
printf ("what?\n") ;
}

$$=CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might pre­
cede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

10.10.3. Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can also
support values of other types, including structures. In addition, yacc keeps track of the types,
and inserts appropriate union member names so that the resulting parser will be strictly type
checked. The yacc value stack (see Section 4) is declared to be a union of the various types of
values desired. The programmer declares the union, and associates a union member name to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, yacc automatically inserts the appropriate union name, so that no unwanted
conversions will take place. In addition, type-checking commands such as /int(l) will be far more
silent.

Revision E of 15 May 1985 10-23

Y ace - Yet Another Compiler-Compiler Programming Tools

There are three mechanisms used to provide for this typing. First, there is a way of defining the
union; this must be done by the programmer since other programs, notably the lexical analyzer, O·
must know about the union member names. Second, there is a way of associating a union
member name with tokens and nonterminals. Finally, there is a mechanism for describing the
type of those few values where yacc cannot easily determine the type.

To declare the union, the programmer includes in the declaration section:

%union {
body of union ...
}

This declares the yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %} .

Once YYSTYPE is defined, the union member names must be associated with the various termi­
nal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saymg

%left <optype> '+'

will tag any reference to values returned by these two tokens with the union member name
optype. Another keyword, %type, is used similarly to associate union member names with non­
terminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the value returned by this action has no a priori type. Similarly, reference to left­
context values (such as $0 - see the previous subsection) leaves yacc with no easy way of
knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first$. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>O); }

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in 10.13. The facilities in this subsection are not triggered until
they are used: in particular, the use of %type will turn on these mechanisms. When they are
used, there is a fairly strict level of checking. For example, use of $n or $$ to refer to something
with no defined type is diagnosed. If these facilities are not triggered, the yacc value stack is
used to hold int' s, as was true historically. This paper is reprinted in this manual.

10-24 Revision E of 15 May 1985

0

0

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

10.11. A Simple Example

This example gives the complete yacc specification for a small desk calculator; the desk calcula,.
tor has 26 registers, labeled 'a' through 'z ', and accepts arithmetic expressions made up or the
operators +, -, •, /, % (mod operator), & (bitwise and), I (bitwise or), and assignment. Ir an
expression at the top level is an assignment, the value is not printed; otherwise it is. As in C, an
integer that begins with O (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example or a yacc specification, the desk calculator does a reasonable job or showing how
precedences and ambiguities are used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much simpler than for most applications,
and the output is produced immediately, line-by-line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs [26 J ;
int base;

%}

%start list

%token DIGIT

%left , I'
%left '&'
%left , +,

%left , . , , /'
%left UMINUS

LETTER

'%'
I• supplies precedence

%% /• beginning of rules section •/

list:/• empty •/
111st stat '\n'
llist error '\n'
{yyerrok; }

stat:expr
{printf ("%d\n", $1) ; }
II.ETTER '=' expr
{regs[$1) = $3; }

expr:'(' expr ,) ,

{$$ = $2; }
lexpr , +, expr
{$$ = $1 + $3; }
lexpr

, - ,
expr

{$$ = $1 $3; }

Revision E or 15 May 1985

for unary minus •I

10-25

Yacc - Yet Another Compiler-Compiler Programming Tools

lexpr , •' expr

{$$ = $1 • $3; }
lexpr , /' expr
{$$ = $1 I $3; }

lexpr '%' expr
{$$ = $1 % $3; }

lexpr '&' expr

{$$ = $1 & $3; }
lexpr , I' expr

{$$ = $1 I $3; }
I'-' expr ,::Pree UMINUS
{$$ = $2; }
!LETTER
{$$ = regs[$1J; }

!number

number:DIGIT
{$$ = $1; base = ($1==0) ? 8 10; }

!number DIGIT
{$$ = base• $1 + $2; }

%% I* start of programs •I

yylex()/• lexical analysis routine •/
{

/• returns LETTER for a lower case letter, yylval = 0 through 25 •/
/• return DIGIT for a digit, yylval = 0 through 9 •/
/* all other characters are returned immediately •/

intc;

while((c = getchar()) ==

/• c is now nonblank •/
if(islower(c)) {
yylval = c - 'a';
return(LETTER);
}
if(isdigit(c)) {
yylval = C - '0';
return(DIGIT);
}
return(c);
}

10-26

') {/• skip blanks •/ }

Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler Ill

10.12. Yacc Input Syntax 111

This section describes the yacc input syntax, as a yacc specification. Context dependencies, Ill
etc., are not considered. Ironically, the yacc input specification language is most naturally Ill
specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, immedi- Ill
ately following an action. If this identifier is followed by a colon, it is the start of the next rule; Ill
otherwise it is a continuation of the current rule, which just happens to have an action embed- Ill
ded in it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and decide Ill
whether the next token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns Ill
the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are Ill
also returned as IDENTIFIERs, but never as part of C_IDENTIFIERs. Ill

/• grammar for the input to Yacc •/

/• basic entities •/
%tokenIDENTIFIER/• includes identifiers and literals •/
%tokenC_IDENTIFIER/• identifier (but not literal) followed
%tokenNUMBER/• [0-9]+ •/

by

/• reserved words: %type => TYPE, %left => LEFT, etc. •/

%tokenLEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%tokenMARK/• the %% mark •/
%tokenLCURL/• the %{ mark •/
%tokenRCURL/• the %} mark •/

/• ascii character literals stand for themselves •/

%start spec

%%

spec:defs MARK rules tail

tail :MARK{
I/• empty:

In this action, eat up the rest of the file
the second MARK is optional •/

defs:/• empty •/
ldefs def

def:START IDENTIFIER
UNION { Cop11 union definition to output }
ILCURL { Cop11 C code to output file } RCURL
ndefs rword tag nlist

rword:TOKEN
ILEFT
!RIGHT
NONASSOC

Revision E of 15 May 1985

}

colon

10-27

111

111
111
•I

Yacc - Yet Another Compiler-Compiler

ITYPE

tag:/• empty: union tag is optional •/
I'<' IDENTIFIER '>'

nlist:nmno
blist nmno
nlist nmno

nmno:IDENTIFIER/• NOTE: literal
IIDENTIFIER NUMBER /• NOTE:

/• rules section •/

rules:C_IDENTIFIER rbody prec
!rules rule

rule:C_IDENTIFIER rbody prec
IT rbody prec

illegal
illegal

with ,:type
with ,:type

Programming Tools

0

rbody:/• empty •/
lrbody IDENTIFIER O· ·

lrbody act

act: ' {' { Copy action, translate $$, etc. } '}'

prec:/• empty •/
~REC IDENTIFIER
~REC IDENTIFIER act
prec

10-28

, '

'

0
Revision E of 15 May 1985

0

0

0

Programming Tools Y ace - Yet Another Compiler-Compiler

10.13. An Advanced Example

This section gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in section 10.11 is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands floating point constants,
the arithmetic operations +, - , •, /, unary - , and - (assignment), and has 26 floating point
variables, 'a' through 'z'. Moreover, it also understands interval•, written

(X ' y)

where z is less than or equal to y. There are 26 interval-valued variables 'A' through 'Z' that
may also be used. The usage is similar to that in section 10.11 - assignments return no value,
and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C. Intervals are represented
by a structure, consisting of the left and right endpoint values, stored as double' s. This struc­
ture is given a type name, INTERVAL, by using typedef. The yacc value stack can also con­
tain floating point scalars, and integers (used to index into the arrays holding the variable
values). Notice that this entire strategy depends strongly on being able to assign structures and
unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval
containing 0, and an interval presented in the wrong order. In effect, the error recovery mechan­
ism of yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (for example, scalar or interval) of intermedi­
ate expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval-value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval-valued expression in the second example, but this
fact is not known until the ',' is read; by this time, 2.5 is finished, and the parser cannot go
back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval-valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar-valued expressions scalar-valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were
many kinds of expression types, instead of just two, the number of rules needed would increase
dramatically, and the conflicts even more dramatically. Thus, while this example is instructive,
it is better practice in a more normal programming language environment to keep the type infor­
mation as part of the value, and not as part of the grammar.

Revision E of 15 May 1985 10-29

Yacc - Yet Another Compiler-Compiler Programming Tools

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating
point constants. The C libracy routine ato/ is used to do the actual conversion from a character o
string to a double-precision value. If the lexical analyzer detects an error, it responds by return-
ing a token that is illegal in the grammar, provoking a syntax error in the parser, and thence
error recovecy.

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof () ;

double dreg[26];
INTERVAL vreg[26];

%}

!'(start lines

,:union {
int ival;
double dval;
INTERVAL vval;
}

,:token <ival> DREG VREG/• indices into dreg,

,:token <dval> CONST/• floating point constant

%type <dval> dexp/• expression •I

%type <vval> vexp/• interval expression •I

!• precedence information about the operators

vreg

•I

•!

%left'+'
%left'•' '/'
%leftUMINUS /• precedence for unary minus •/

lines:/• empty •/
llines line

line:dexp
{print! (

10-30

'\n'
"%15.Sf\n", $1) ; }

arrays •!

Revision E of 15 May 1985

0

0

0

0

0

Programming Tools

lvexp '\n'
{printf("(%15.Sf
IDREG '=' dexp '\n'
{dreg[$!] = $3; }

%15 .Sf) \n",

ivREG '=' vexp '\n'
{vreg[$1] = $3;
lerror '\n'

}

{yyerrok; }

dexp:CONST
IDREG
{$$ = dreg[$!]; }
ldexp '+' dexp
{$$ = 1$1 + $3; }
ldexp ' ' dexp
{$$ = $1 $3; }
ldexp .. , dexp
{$$ = $1 • $3; }
ldexp '/' dexp
{$$ = $1 I $3; } ,._.

dexp%J,rec UMINUS
{$$ = - $2; } ,. (. dexp ') ,

{$$ = $2; }

vexp:dexp
{$$.hi = $$,lo = $1; , . (' dexp dexp ') '
{
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi){

}

print!("interval out of
YYERROR;
}
}
ivREG
{$$ = vreg[$1]; }
lvexp '+ ' vexp
{$$.hi = $1.hi + $3,hi;
$$.lo = $1.lo + $3.lo;
ldexp '+' vexp
{$$.hi = $1 + $3.hi;
$$.lo = $1 + $3.lo;
lvexp ' - ' vexp
{$$.hi = $1.hi $3.lo;
$$.lo = $1.lo $3.hi;
ldexp vexp
{$$.hi = $1 $3.lo;
$$.lo = $1 $3 .hi;
lvexp ••• vexp

}

}

{$$ = vmul ($1. lo, $1.hl,

Revision E or 15 May 1985

order\n"

}

}

$3) ;

Yacc - Yet Another Compiler-Compiler

$1.lo, $1.hl) ; }

) ;

}

10-31

Yacc - Yet Another Compiler-Compiler

ldexp '•' vexp
{$$ = vmul($1, $1, $3);
lvexp '/' vexp
{if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3
ldexp '/' vexp
{if(dcheck($3))
$$ = vdiv($1, $1,
I'-' vexp%Prec UMINUS

YYERROR;
$3) ; }

}

) ; }

{$$.hi = -$2.lo; $$.lo = -$2.hi;
I'(' vexp ')'
{$$ = $2; }

%%

Programming Tools

}

define BSZ 50 /• buffer size for floating point numbers •/

/• lexical analysis •/

yylex(){
register c·

while((c=getchar()) --

if (isupper(C)){
yylval.ival = C "A";
return (VREG) ;
}
if(is lower (C)){
yylval.ival = C "a,;

return(DREG) ;
}

if(isdigit (C) II c==" ...

I• gobble up digits, points,

char
int

buf[BSZ+l],
dot = 0,

•cp
exp =

= buf;
O;

) { /• skip over blanks •/ }

){
exponents •I

for(; (cp-buf)<BSZ ; ++cp,c=getchar()){

•cp = c;
if(isdigit(c)) continue;
if(C --){

if (dot++ II exp) return (
continue;
}

if(C -­

if (exp++
continue;
}

10-32

'e') {
) return('e') ;

) ; /• will cause syntax error •/

/• will cause syntax error •/

Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

/• end of number •/
break;
}
•cp = '\O';
if ((cp-buf)
else ungetc (
yylval .dval =
return(CONST
}
return(c);
}

>= BSZ) printf(
c, stdin) ; /•
atof(buf) ;
) ;

"constant
push back

too long:
last char

truncated\n"
read •/

{ INTERVAL hilo (
/• returns the
/• used by •.
INTERVAL v;

a, b, c, d) double a, b,
smallest interval containing
/ routines •/

C, d;
a, b, C, and d •!

if (a>b) { v.hi = a; v.lo = b; }
else { v.hi = b· v.lo = a; } '

if (c>d) {
if(c>v.hi) v.hi = c·

' if(d<v. lo) v.lo = d·
' }

else {
if (d>v.hi) v.hi = d;
if(c<v. lo) v.lo = c;
}
return(V) ;
}

INTERVAL vmul (a, b, V) double a, b;
return(hilo (aw.hi, a*V. lo, bov .hi, bov.lo
}

dcheck(V) INTERVAL v; {
if(v.hi >= o. && v.lo <= 0.){
printf ("divisor interval contains O.\n") ;
return (
}
return(
}

INTERVAL
return(
}

1) ;

0) ;

vdiv(
hilo(

a, b,
a/v.hi,

Revision E of 15 May 1985

v) double a,
a/v.lo, b/v.hi,

b;
b/v. lo

INTERVAL
)) ;

INTERVAL
)) ;

v; {

v; {

) ;

10-33

Yacc - Yet Another Compiler-Compiler Programming Tools

10.14, Old Features Supported but not Encouraged

This section mentions synonyms and features which are supported for historical continuity, but,
for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes '" '.

2. Literals may be more than one character long. Ir all the characters are alphabetic, numeric,
or _, the type number of the literal is defined, just as if the literal did not have the quotes
around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with yacc, since it
suggests that yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash '\' may be used. In particular, \ \ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
x= is the same as %Pree

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well as
in the declaration section.

10.15. Acknowledgements and References

Y ace owes much to a most stimulating collection of users, who have goaded me beyond my incli­
nation, and frequently beyond my ability, in their endless search for 'one more feature'. Their
irritating unwillingness to learn how to do things my way has usually led to my doing things their
way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger, S. I. Feldman, C.
Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the current version of
yacc. C. B. Haley contributed to the error recovery algorithm. D. M. Ritchie, B. W. Ker­
nighan, and M. 0. Harris helped translate this document into English. Al Aho also deserves spe­
cial credit for bringing the mountain to Mohammed, and other favors.

1. B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey (1978).

2. A.V. Aho and S.C. Johnson, 'LR Parsing,' Comp. Survey, 6(2) pp. 99-124 (June 1974).

3. A.V. Aho, S.C. Johnson, and J.D. Ullman, 'Deterministic Parsing of Ambiguous Grammars,'
Comm. Auoc. Comp. Mach. 1h1:8) pp. 441-452 (August 1975).

4. A.V. Aho and J.D: Ullman, Principle, of Compiler Deaign, Addison-Wesley, Reading, Mass.
(1977).

10-34 Revision E of 15 May 1985

0

0

0

0

0

0

Programming Tools Yacc - Yet Another Compiler-Compiler

6. S.C. Johnson, 'A Portable Compiler: Theory and Practice,' Proc. 5th ACM Symp. on Prin­
ciplea of Programming Languagea, (January 1978).

7. B.W. Kernighan and L.L. Cherry, 'A System for Typesetting Mathematics,' Comm. AHoe.
Comp. Mach. 18 pp. 151-157 (March 1975) - in Editing and Tezt Proeeuing on the Sun
Workatation.

8. M.E. Lesk, 'Lex - A Lexical Analyzer Generator,' Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975)- appears in this manual.

Revision E of 15 May 1985 10-35

0

O'

o:

