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Using ADB to Debug the UNIX Kernel 

This document describes the use of extensions made to the UNIXt debugger adb for the purpose 
of debugging the UNIX kernel. It discusses the changes made to allow standard adb commands 
to function properly with the kernel and introduces the basics necessary for users to write adb 
command scripts which may be used to augment the standard adb command set. The examina­
tion techniques described here may be applied to running systems, as well as the post-mortem 
dumps automatically created by the aavecore(B) program after a system crash. The reader is 
expected to have at least a passing familiarity with the debugger command language. 

1. Introduction 

Modifications have been made to the standard UNIX debugger adb to simplify examination of 
post-mortem dumps automatically generated following a system crash. These changes may also 
be used when examining UNIX in its normal operation. This document serves as an introduction 
to the use of these facilities, and should not be construed as a description of how to debug the 
kernel. 

1.1. Getting Started 

Use the -k option on the adb command when you want to examine the UNIX kernel: 

tutorial% &db -k /vmunix /dev/mea 

The -k option makes adb partially simulate the Sun-2 virtual memory hardware when accessing 
the core file. In addition the internal state maintained by the debugger is initialized from data 
structures maintained by the UNIX kernel explicitly for debugging1. A post-mortem dump may 
be examined in a similar fashion, 

tutorial% adb -k vmunix.? vmcore.? 

where the appropriate version of the saved operating system image and core dump are supplied 
in place of"?". 

t UNIX is a. trademark of Bell Laboratories. 
1 IC the -k flag is not used when invoking adb the user must explicitly calculate virtual addresses. With 

the -k option tsdb interprets page tables to automatically perform virtual to physical address translation. 
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1.2. Establishing Context 

During initialization adb attempts to establish the context of the "currently active process" by 
examining the value of the kernel variable panic_reg,. This structure contains the register 
values at the time of the call to the panic routine. Once the stack pointer has been located, the 
command 

,e 
generates a stack trace. An alternate method may be used when a trace of a particular process 
is required: see section 2.3. 
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2. ADB Command Scripts 

2.1. Extending the Formatting Facilities 

Once the process context has been established, the complete adb command set is available for 
interpreting data structures. In addition, a number of adb scripts have been created to simplify 
the structured printing of commonly referenced kernel data structures. The scripts normally 
reside in the directory /uar/lib/ adb, and are invoked with the $< operator. A later table lists 
the "standard" scripts. 

As an example, consider the following listing which contains a dump of a faulty process's state 
(what the user types is shown in bold typewriter text like this. 

tutorial% adb -k vmuniz.3 9111COre.3 
sbr 50030 slr Sle 
physmem 3c0 •c 
_panic[lOfec] (5234d) + 3c 
_ialloc[16ea8] (d44a2,2,dff) + c8 
_maknode[ld476] (dff} + 44 
_copen[lc480] (602,-1) + 4e 
_creat () + 16 
_syscall[2ea0a] () + lSe 
levelS () + 6c 
5234d/s 
_nldisp+175: ialloc: dup alloc 
U$<U 

u· - . 
_u: pc 

4be0 
_u+4: d2 d3 

13b0 0 
_u+14: d6 d7 

0 2604 
_u+lc: a2 a3 

0 c7800 
_u+2c: a6 a7 

3e62 3e48 
_u+34: sr 

27000000 
_u+38: pObr pOlr 

105000 40000022 
_u+48: szpt sswap 

1 0 
_u+SO: procp arO 

d7160 3fb2 
_u+158: argO argl 

1001c -1 
_u+178: uap qsave 

2958 2eb46 
_u+lb2: rvl rv2 

0 14cac 
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d4 
0 

a4 
Sa958 

plbr 
fd7f4 

comm 
dtime·@·@·@·@·@ 
arg2 
ffffa4 

1 
eosys 
0 

dS 
0 

as 
d7160 

pllr 
lffe 

error 
0 
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_u+lbc: uid gid 
49 10 "' _u+lcO: groups u 
10 -1 -1 -1 
-1 -1 -1 -1 

_u+leO: ruid rgid 
49 10 

_u+le4: tsize dsize ssize 

7 lb 2 
_u+344: odsize ossize outime 

0 0 0 
_u+350: signal 

0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
sigmask 
0 0 0 0 

0 0 0 0 
0 0 0 0 

0 0 0 0 

0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 0 0 0 
_u+450: onstack oldmask code 

0 80002 0 
_u+4Sc: sigstack onsigstack 

0 0 
_u+464: ofile 

d66b4 d66b4 d66b4 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

pofile 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 
_u+4c8: cdir rdir ttyp ttyd cmask 

d44a2 0 Sc6c0 0 12 

ru & cru 
_u+4d8: utime stime 

0 0 0 35b60 

_u+4e8: maxrss ixrss idrss isrss 

9 35 43 

_u+4f8: min flt majflt nswap 

0 0 5 0 
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_u+504: inblock oublock msgsnd msgrcv 

0 3 7 0 0 
_u+514: nsignals nvcsw nivcsw 

0 12 4 
_u+520: utime stime 

0 0 0 0 
_u+530: maxrss ixrss idrss isrss 

0 0 0 
_u+540: minflt majflt nswap 

0 0 0 
_u+54c: inblock oublock msgsnd msgrcv 

0 0 0 0 
_u+55c: nsignals nvcsw nivcsw 

0 0 0 
Od7160$<proc 
d7160: link rlink addr 

590e0 0 1057f4 
d716c: upri pri cpu stat time nice slp 

066 024 020 03 01 024 0 
d7173: cursig sig 

0 0 
d7178: mask ignore catch 

0 0 0 
d7184: flag uid pgrp pid ppid 

8001 31 2f 2f 23 
d7190: xstat ru poip szpt tsize 

0 
0 0 0 1 7 

d719e: dsize ssize rssize maxrss 
lb 2 5 fffff 

d71ae: swrss swaddr wchan textp 
0 0 0 d8418 

d7lbe: pObr xlink ticks 
105000 0 15 

d71c8: %cpu ndx idhash pptr 
0 6 2 d70d4 

d7ld4: real !timer 
0 0 0 0 

d71e4: quota ctx 
0 Sf236 

Od8418$<text 
d8418: daddr 

284 0 0 0 
0 0 0 0 
0 0 0 0 

ptdaddr size caddr iptr 
184 7 d7160 d47e0 

rssize swrss count ccount flag slptim poip 
4 0 01 01 042 0 0 

The cause of the crash was a "panic" (see the stack trace) due to the a duplicate inode allocation 

0 detected by the ialloc routine The majority of the dump was done to illustrate the use of the 
command scripts used to format kernel data structures. The u script, invoked by the command 
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uS<U, is a lengthy series of commands which pretty-prints the user vector. Likewise, proc and 
text are scripts used to format the obvious data structures. Let's quickly examine the text 
script ( the script has been broken into a number of lines for readability here; in actuality it is a 
single line of text) . 

. /"daddr"n12Xn\ 
"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn\ 
"rsslze"8t"swrss"Bt"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx 

The first line produces the list of disk block addresses associated with a swapped out text seg­
ment. The n format forces a new-line character, with 12 hexadecimal integers printed immedi­
ately after. Likewise, the remaining two lines of the command format the remainder of the text 
structure. The expression 16t tabs to the next column which is a multiple of 16. 

The majority of the scripts provided are of this nature. When possible, the formatting scripts 
print a data structure with a single format to allow subsequent reuse when interrogating arrays 
of structures. That is, the previous script could have been written 

./"daddr"n12Xn 
+/"ptdaddr"16t"size"l6t"caddr"l6t"iptr"n4Xn 
+/"rssize"St"swrss"St"count"Bt"ccount"St"flag"Bt"slptim"8t"poip"n2x4bx 

but then reuse of the format would have invoked only the last line of the format. 

2.2. Traversing Data Structures 

The adb command language can be used to traverse complex data structures. One such data Q 
structure, a linked list, occurs quite often in the kernel. By using adb variables and the normal 
expression operators it is a simple matter to construct a script which chains down the list print-
ing each element along the way. 

For instance, the queue of processes awaiting timer events, the callout queue, is printed with the 
following two scripts: 

callout: 

calltodo/"time"16t"arg"16t"func" 
*(.+Ot12}$<callout.next 

callout.next: 

./D2p 
•+>l 
,#<1$< 
<1$<callout.next 

The first line of the script callout starts the traversal at the global symbol calltodo and prints 
a set of headings. It then skips the empty portion of the structure used as the head of the queue. 
The second line then invokes the script callout.next moving"." to the top of the queue(*+ 
performs the indirection through the link entry of the structure at the head of the queue). 

cal lout. next prints values for each column, then performs a conditional test on the link to 
the next entry. This test is performed as follows, 
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*+> l Place the value of the "link" in the adb variable "<l". 

, #<1$< If the value stored in "<l" is non-zero, then the current input stream (i.e. the script 
callout .next) is terminated. Otherwise, the expression "#<l" will be zero, and 
the "$<" will be ignored. That is, the combination of the logical negation operator 
"#", adb variable "<l", and "$<" operator creates a statement of the form, 

if (!link) exit; 

The remammg line of callout. next simply reapplies the script on the next element in the 
linked list. 

A sample callout dump is shown below. 

tutorial% adb -k /vmunix /dev/mea 
sbr 50030 slr 51e 
physmem 3c0 
•<callout 
_calltodo: 
_calltodo: time arg 
d9fc4: 5 0 
d9f94: 1 0 
d9fd4: 1 0 
d9fa4: 3 0 
d9fe4: 0 0 
d9fb4: 15 0 
d9ff4: 12 0 
da044: 736 d7390 
da004: 206 d6fbc 
da024: 649 d741c 

func 
_roundrobin 
_if_slowtimo 
_schedcpu 
_pffasttimo 
_schedpaging 
_pfslowtimo 
_arptimer 

_realitexpire 
_realitexpire 

_realitexpire 
da034: 176929 d7304 _realitexpire 

2.3. Supplying Parameters 

If one is clever, a command script may use the address and count portions of an adb command 
as parameters. An example of this is the setproo script used to switch to the context of a pro­
cess with a known process-id; 

Ot99.<aetproc 

The body of aetproo is 

.>4 
*nproc>l 
*proc>f 
$<setproc.nxt 

while aetproo. met is 
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(•(<f+Ot42)&0xffff)="pid "D 
,#(((•(<f+Ot42)&0xffff))-<4)$<setproc.done 
<1-1>1 
<f+Otl40>f 
'#<1$< 
$<setproc.nxt 

The process-id, supplied a.s the para.meter, is stored in the va.ria.ble <4, the number of processes 
is placed in <l, and the ba.se of the array of process structures in <f. setproc .nxt then per­
forms a. linear search through the a.rra.y until it matches the process-id requested, or until it runs 
out of process structures to check. The script setproc. done simply establishes the context of 
the process, then exits. 

2.4. Standard Scripts 

The following ta.hie summarizes the command scripts currently a.vaila.ble in the directory 
/uar/lib/ adb. 

Standard Command Scripta 
Name Uae Deacription 

buf addr$<buf format block 1/0 buffer 
callout $<callout print timer queue 
clist addr$<cliat format character 1/0 linked list 
dino addr$<dino format directory inode 
dir addr$<dir format directory entry 

file addr$<file format open file structure 
filsys addr$<filsy• format in-core super block structure 
findproc pid$<findproo find process by process id 
ifnet addr$<ifnet format network interface structure 
inode addr$<inode format in-core inode structure 

inpcb addr$<inpob format internet protocol control block 
iovec addr$<ioveo format a. list of io11 structures 
ipreass addr$<ipreasa format an ip reassembly queue 
mact addr$<mact show "active" list of mbuf's 
mbstat $<mbstat show mbuf statistics 

mbuf addr$<mbuf show "next" list of mbuf's 
mbufs addr$<mbuf• show a. number or mbuf's 
mount addr$<111ount format mount structure 
pcb addr$<pob format process context block 
proc addr$<proc format process table entry 

protosw addr$<protoBY format protocol table entry 
rawcb addr$<rawob format a. ra.w protocol control block 
rtentry addr$<rtentry format a. routing ta.hie entry 
rusage addr$<ruaaqe format resource usage block 
setnroc oid$<aet"Oroo switch orocess context to oid 
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Standard Command Script, 
Name U,e Deacription 

socket addr*<•ooket format socket structure 
stat addr*<•tat format stat structure 
tcpcb addr•<topob format TCP control block 
tcpip addr*<topip format a TCP /JP packet header 
tcpreass addr$<toprea•• show a TCP reassembly queue 

text addr*<text format text structure 
traceall •<traoeall show stack trace for all processes 
tty addr*<tty format tty structure 
u addr$<U format user vector, including pcb 
uio addr$<uio format uio structure 
vtimes addr$<vtimea format vtimes structure 

3. Generating ADB Scripts with Adbgen 

You can use the adbgen(8) program to write the scripts presented earlier in a way that does not 
depend on the structure member offsets of the items being referenced. For example, the text 
script given above depended on the fact that all the members to be printed were located contigu­
ously in memory. Using adbgen, we could write the script as follows (again it is really on one 
line, but broken apart here for ease of display): 

#include "sys/types.h" 
#include "sys/text.h" 

text 
./"daddr"n{x_daddr,12X}n\ 
"ptdaddr"16t"size"16t"caddr"16t"iptr"n\ 
{x_ptdaddr,X}{x_size,X}{x_caddr,X}{x_iptr,X}n\ 
"rssize"8t"swrss"8t"count11 8t"ccount"8t"flag"8t 11 slptim"8t"polp"n\ 
{x_rssize,x}{x_swrss,x}{x_count,b}{x_ccount,b}{x_(lag,b}{x_slptime,b}{x_poip,x}{END) 

The script starts with the names of the relevant header files, while the braces delimit structure 
member names and their formats. This script is then processed through adbgen(8) to get the 
adb script presented in the previous section. See adbgen(8) for a complete description of how to 
write adbgen scripts. The real value of writing scripts this way becomes apparent only with 
longer and more complicated scripts (the u script for example). Once the scripts are written this 
way they can be rerun if a structure definition changes without any human effort put into offset 
calculations. 

4. Summary 

The extensions made to adb provide basic support for debugging the UNIX kernel by eliminating 
the need for a user to carry out virtual to physical address translation. A collection of scripts 
have been written to nicely format the major kernel data structures and aid in switching 
between process contexts. This has been carried out with only minimal changes to the debugger. 

Revision D of 15 May 1985 9 



Using ADB on the UNIX Kernel Sun System Internals Manual 

More work is also required on the user interface to adb. It appears the inscrutable adb com­
mand language has limited widespread use of much of the power of adb. One possibility is to 
provide a more comprehensible "adb frontend", just as bc(l) is used as a front end for dc(l). 
Another possibility is to upgrade dbz(l) to understand the kernel. 
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A Fast File System for UNIX 

This document describes a reimplementation of the UNIX file system. The reimplementation 
provides substantially higher throughput rates by using more flexible allocation policies, that 
allow better locality of reference and that can be adapted to a wide range of peripheral and pro­
cessor characteristics. The new file system clusters data that is sequentially accessed and pro­
vides two block sizes to allow fast access for large files while not wasting large amounts of space 
for small files. File access rates of up to ten times faster than the traditional UNIX file system 
are experienced. Long needed enhancements to the user interface are discussed. These include 
a mechanism to lock files, extensions of the name space across file systems, the ability to use 
arbitrary length file names, and provisions for efficient administrative control of resource usage. 
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1. Introduction 

This paper describes the changes between the original 512 byte UNIX file system to the file sy&­
tem implemented with the first Berkeley-compatible release of Sun's version of the UNIX system. 
It presents the motivations for the changes, the methods used to affect these changes, the 
rationale behind the design decisions, and a description of the new implementation. This discu&­
sion is followed by a summary of the results that have been obtained, directions for future work, 
and the additions and changes that have been made to the user visible facilities. The paper con­
cludes with a history of the software engineering of the project. 

The original UNIX system that runs on the PDP-111 has simple and elegant file system facilities. 
File system input/output is buffered by the kernel; there are no alignment constraints on data 
transfers and all operations are made to appear synchronous. All transfers to the disk are in 512 
byte blocks, which can be placed arbitrarily within the data area of the file system. No con­
straints other than available disk space are placed on file growth [Ritchie74], [Thompson79]. 

When used together with other UNIX enhancements, the original 512 byte UNIX file system is 
incapable of providing the data throughput rates that many applications require. For example, 
applications that need to do a small amount of processing on a large quantities of data such as 
VLSI design and image processing, need to have a high throughput from the file system. High 
throughput rates are also needed by programs with large address spaces that are constructed by 
mapping files from the file system into virtual memory. Paging data in and out of the file system 
is likely to occur frequently. This requires a file system providing higher bandwidth than the ori­
ginal 512 byte UNIX one which provides only about two percent of the maximum disk bandwidth 
or about 20 kilobytes per second per arm [White80], [Smith8lb]. 

Modifications have been made to the UNIX file system to improve its performance. Since the 
UNIX file system interface is well understood and not inherently slow, this development retained 
the abstraction and simply changed the underlying implementation to increase its throughput. 
Consequently users of the system have not been faced with massive software conversion. 

Problems with file system performance have been dealt with extensively in the literature; see 
[Smith8la] for a survey. The UNIX operating system drew many of its ideas from Multics, a 
large, high performance operating system [Feiertag71J. Other work includes Hydra [Almes78J, 
Spice [Thompson80j, and a file system for a lisp environment [Symbolics8la]. 

A major goal of this project has been to build a file system that is extensible into a networked 
environment [Holler73J. Other work on network file systems describe centralized file servers 
[Accetta80J, distributed file servers [Dion80], [Luniewski77], [Porcar82], and protocols to reduce 
the amount of information that must be transferred across a network [Symbolics8lbj, [Sturgis80]. 

I DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digita.l Equipment Corporation. 
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2. Old File System 

In the old file system developed at Bell Laboratories each disk drive contains one or more file 
systems2. A file system is described by its super-block, which contains the basic parameters of 
the file system. These include the number of data blocks in the file system, a count of the max­
imum number of files, and a pointer to a list of free blocks. All the free blocks in the system are 
chained together in a linked list. Within the file system are files. Certain files are distinguished 
as directories and contain pointers to files that may themselves be directories. Every file has a 
descriptor associated with it called an inode. The inode contains information describing owner­
ship of the file, time stamps marking last modification and access times for the file, and an array 
of indices that point to the data blocks for the file. For the purposes of this section, we assume 
that the first 8 blocks of the file are directly referenced by values stored in the inode structure 
itself3. The inode structure may also contain references to indirect blocks containing further 
data block indices. In a file system with a 512 byte block size, a singly indirect block contains 
128 further block addresses, a doubly indirect block contains 128 addresses of further single 
indirect blocks, and a triply indirect block contains 128 addresses of further doubly indirect 
blocks. 

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed by 146 
megabytes of data. This organization segregates the inode information from the data; thus 
accessing a file normally incurs a long seek from its inode to its data. Files in a single directory 
are not typically allocated slots in consecutive locations in the 4 megabytes of inodes, causing 
many non-consecutive blocks to be accessed when executing operations on all the files in a direc­
tory. 

r'\ The allocation of data blocks to files is also suboptimum. The traditional file system never U transfers more than 512 bytes per disk transaction and often finds that the next sequential data 
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination of 
the small block size, limited read-ahead in the system, and many seeks severely limits file system 
throughput. 

0 

The first work at Berkeley on the UNIX file system attempted to improve both reliability and 
throughput. The reliability was improved by changing the file system so that all modifications of 
critical information were staged so that they could either be completed or repaired cleanly by a 
program after a crash [Kowalski78J. The file system performance was improved by a factor of 
more than two by changing the basic block size from 512 to 1024 bytes. The increase was 
because of two factors; each disk transfer accessed twice as much data, and most files could be 
described without need to access through any indirect blocks since the direct blocks contained 
twice as much data. The file system with these changes will henceforth be referred to as the old 
file ayatem. 

This performance improvement gave a strong indication that increasing the block size was a 
good method for improving throughput. Although the throughput had doubled, the old file sys­
tem was still using only about four percent of the disk bandwidth. The main problem was that 
although the free list was initially ordered for optimal access, it quickly became scrambled as 
files were created and removed. Eventually the free list became entirely random causing files to 
have their blocks allocated randomly over the disk. This forced the disk to seek before every 
block access. Although old file systems provided transfer rates of up to 175 kilobytes per second 

2 A file system always resides on a single drive. 

S The actual number may vary from system to system, but is usually in the range 5-13. 
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when they were first created, this rate deteriorated to 30 kilobytes per second after a few weeks 
of moderate use because of randomization of their free block list. There was no way of restoring o 
the performance an old file system except to dump, rebuild, and restore the file system. Another 
possibility would be to have a process that periodically reorganized the data on the disk to 
restore locality as suggested by [Maruyama76]. 

O' 
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3. New file system organization 

As in the old file system organization each disk drive contains one or more file systems. A file 
system is described by its super-block, that is located at the beginning of its disk partition. 
Because the super-block contains critical data it is replicated to protect against catastrophic loss. 
This is done at the time that the file system is created; since the super-block data does not 
change, the copies need not be referenced unless a head crash or other hard disk error causes the 
default super-block to be unusable. · 

To ensure that it is possible to create files as large as 2f32 bytes with only two levels of indirec­
tion, the minimum size of a file system block is 4096 bytes. The size of file system blocks can be 
any power of two greater than or equal to 4096. The block size of the file system is maintained 
in the super-block so it is possible for file systems with different block sizes to be accessible 
simultaneously on the same system. The block size must be decided at the time that the file sys­
tem is created; it cannot be subsequently changed without rebuilding the file system. 

The new file system organization partitions the disk into one or more areas called cylinder 
groupa. A cylinder group is comprised of one or more consecutive ~ylinders on a disk. Associ­
ated with each cylinder group is some bookkeeping information that includes a redundant copy 
of the super-block, space for inodes, a bit map describing available blocks in the cylinder group, 
and summary information describing the usage of.- data blocks within the cylinder group. For 
each cylinder group a static number of inodes is allocated at file system creation time. The 
current policy is to allocate one inode for each 2048 bytes of disk space, expecting this to be far 
more than will ever be needed. 

All the cylinder group bookkeeping information could be placed at the beginning of each cylinder 
group. However if this approach were used, all the redundant information would be on the top 
platter. Thus a single hardware failure that destroyed the top platter could cause the loss of all 
copies of the redundant super-blocks. Thus the cylinder group bookkeeping information begins 
at a floating offset from the beginning of the cylinder group. The offset for each successive 
cylinder group is calculated to be about one track further from the beginning of the cylinder 
group. In this way the redundant information spirals down into the pack so that any single 
track, cylinder, or platter can be lost without losing all copies of the super-blocks. Except for 
the first cylinder group, the space between the beginning of the cylinder group and the beginning 
of the cylinder group information is used for data blocks4• 

3.1. Optimizing storage utilization 

Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly increas­
ing file system throughput. As an example, consider a file in the new file system composed of 
4096 byte data blocks. In the old file system this file would be composed of 1024 byte blocks. 
By increasing the block size, disk accesses in the new file system may transfer up to four times as 
much information per disk transaction. In large files, several 4096 byte blocks may be allocated 
from the same cylinder so that even larger data transfers are possible before initiating a seek. 

The main problem with bigger blocks is that most UNIX file systems are composed of many 
small files. A uniformly large block size wastes space. Table 1 shows the effect of file system 

4 While it appears that the first cylinder group could be laid out with its super-block at the "known" lo­
cation, this would not work for file systems with blocks sizes of 16K or greater, because of the requirement 
that the cylinder group information must begin at a block boundary. 

Revision D of 15 May 1985 5 



A Fa.st File System for UNIX System Internals Reference Manual 

block size on the amount of wasted space in the file system. The machine measured to obtain 
these figures is one of our time sharing systems that ha.s roughly 1.2 Gigabyte of on-line storage. o 
The measurements are based on the active user file systems containing about 920 megabytes of 
formated space. 

Table 1: Wasted Space a.s a function of Block Size 

Space used % waste Organization 

775.2 Mb 0.0 Data only, no separation between files 
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary 
828.7 Mb 6.9 512 byte block UNIX file system 
866.5 Mb 11.8 1024 byte block UNIX file system 
948.5 Mb 22.4 2048 byte block UNIX file system 

1128.3 Mb 45.6 4096 byte block UNIX file system 

The space wasted is measured a.s the percentage of space on the disk not containing user data. 
As the block size on the disk increases, the waste rises quickly, to an intolerable 45.6% waste 
with 4096 byte file system blocks. 

To be able to use large blocks without undue waste, small files must lie stored in a more efficient 
way. The new file system accomplishes this goal by allowing the division of a single file system 
block into one or more fragmenta. The file system fragment size is specified at the time that the 
file system is created; each file system block can be optionally broken into 2, 4, or 8 fragments, 
each of which is addressable. The lower bound on the size of these fragments is constrained by o 
the disk sector size, typically 512 bytes. The block map associated with each cylinder group 
records the space availability at the fragment level; to determine block availability, aligned frag-
ments are examined. Figure 1 shows a piece of a map from a 4096/1024 file system. 

Bits in map XXXX XXOO 
Fragment numbers 0-3 4-7 
Block numbers O 1 

ooxx 
8-11 

2 

0000 
12-15 

3 

Figure 1: Example layout of blocks and fragments in a 4096/1024 file system 

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use, 
while a "O" shows that the fragment is available for allocation. In this example, fragments 0-5, 
10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks 
cannot be used a.s a block, even if they are large enough. In this example, fragments 6-9 cannot 
be coalesced into a block; only fragments 12-15 are available for allocation a.s a block. 

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is 
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. If 
a file system block must be fragmented to obtain space for a small amount of data, the 
remainder of the block is made available for allocation to other files. As an example consider an 
11000 byte file stored on a 4096/1024 byte file system. This file would uses two full size blocks 
and a 3072 byte fragment. If no 3072 byte fragments are available at the time the file is created, 
a full size block is split yielding the necessary 3072 byte fragment and an unused 1024 byte frag- o 
ment. This remaining fragment can be allocated to another file a.s needed. 
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The granularity of allocation is the Wf'ite system call. Each time data is written to a file, the sys­
tem checks to see if the size of the file has increased5. If the file needs to hold the new data, one 
of three conditions exists: 

I) There is enough space left in an already allocated block to hold the new data. The new data 
· is written into the available space in the block. 

2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte 
block is allocated and the first 4096 bytes of new data is written there. This process is 
repeated until less than 4096 bytes of new data remain. If the remaining new data to be 
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, other­
wise a 4096 byte block is located. The new data is written into the located piece. 

3) A fragment has been allocated. If the number of bytes in the new data plus the number of 
bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The con­
tents of the fragment is copied to the beginning of the block and the remainder of the block 
is filled with the new data. The process then continues as in (2) above. If the number of 
bytes in the new data plus the number of bytes already in the fragment will fit in three or 
fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096 byte block is 
located. The contents of the previous fragment appended with the new data is written into 
the allocated piece. 

The problem with allowing only a single fragment on a 4096/1024 byte file system is that data 
may be potentially copied up to three times as its requirements grow from a 1024 byte fragment 
to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block. The frag­
ment reallocation can be avoided if the user program writes a full block at a time, except for a 
partial block at the end of the file. Because file systems with different block sizes may coexist on 
the same system, the file system interface been extended to provide the ability to determine the 
optimal size for a read or write. For files the optimal size is the block size of the file system on 
which the file is being accessed. For other objects, such as pipes and sockets, the optimal size is 
the underlying buffer size. This feature is used by the Standard Input/Output Library, a pack­
age used by most user programs. This feature is also used by certain system utilities such as 
archivers and loaders that do their own input and output management and need the highest pos­
sible file system bandwidth. 

The space overhead in the 4096/1024 byte new file system organization is empirically observed 
to be about the same as in the 1024 byte old file system organization. A file system with 4096 
byte blocks and 512 byte fragments has about the same amount of space overhead as the 512 
byte block UNIX file system. The new file system is more space efficient than the 512 byte or 
1024 byte file systems in that it uses the same amount of space for small files while requiring less 
indexing information for large files. This savings is offset by the need to use more space for 
keeping track of available free blocks. The net result is about the same disk utilization when the 
new file systems fragment size equals the old file systems block size. 

In order for the layout policies to be effective, the disk cannot be kept completely full. Each file 
system maintains a parameter that gives the minimum acceptable percentage of file system 
blocks that can be free. If the the number of free blocks drops below this level only the system 
administrator can continue to allocate blocks. The value of this parameter can be changed at 
any time, even when the file system is mounted and active. The transfer rates to be given in 
section 4 were measured on file systems kept less than 90% full. If the reserve of free blocks is 

6 A program may be overwriting data in the middle of an existing file in which case space will already be 
allocated. 
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set to zero, the file system throughput rate tends to be cut in half, because of the inability of the 
file system to localize the blocks in a file. If the performance is impaired because of overfilling, it c 
may be restored by removing enough files to obtain 10% free space. Access speed for files 
created during periods of little free space can be restored by recreating them once enough space 
is available. The amount of free space maintained must be added to the percentage of waste 
when comparing the organizations given in Table 1. Thus, a site running the old 1024 byte 
UNIX file system wastes 11.8% of the space and one could expect to fit the same amount of data 
into a 4096/512 byte new file system with 5% free space, since a 512 byte old file system wasted 
6.9% of the space. 

3.2. File system parameterization 

Except for the initial creation of the free list, the old file system ignores the parameters of the 
underlying hardware. It has no information about either the physical characteristics of the mass 
storage device, or the hardware that interacts with it. A goal of the new file system is to 
parameterize the processor capabilities and mass storage characteristics so that blocks can be 
allocated in an optimum configuration dependent way. Parameters used include the speed of the 
processor, the hardware support for mass storage transfers, and the characteristics of the mass 
storage devices. Disk technology is constantly improving and a given installation can have 
several different disk technologies running on a single processor. Each file system is parameter­
ized so that it can adapt to the characteristics of the disk on which it is placed. 

For mass storage devices such as disks, the new file system tries to allocate new blocks on the 
same cylinder as the previous block in the same file. Optimally, these new blocks will also be 
well positioned rotationally. The distance between "rotationally optimal" blocks varies greatly; 0 
it can be a consecutive block or a rotationally delayed block depending on system characteristics. 
On a processor with a channel that does not require any processor _intervention between mass 
storage transfer requests, two consecutive disk blocks often can be accessed without suffering lost 
time because of an intervening disk revolution. For processors without such channels, the main 
processor must field an interrupt and prepare for a new disk transfer. The expected time to ser-
vice this interrupt and schedule a new disk transfer depends on the speed of the main processor. 

The physical characteristics of each disk include the number of blocks per track and the rate at 
which the disk spins. The allocation policy routines use this information to calculate the number 
of milliseconds required to skip over a block. The characteristics of the processor include the 
expected time to schedule an interrupt. Given the previous block allocated to a file, the alloca-
tion routines calculate the number o! blocks to skip over so that the next block in a file will be 
coming into position under the disk head in the expected amount of time that it takes to start a 
new disk transfer operation. For programs that sequentially access large amounts of data, this 
'strategy minimizes the amount of time spent waiting for the disk to position itself. 

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary infor­
mation includes a count of the availability of blocks at different rotational positions. Eight rota­
tional positions are distinguished, so the resolution of the summary information is 2 milliseconds 
for a typical 3600 revolution per minute drive. 

The parameter that defines the minimum number of milliseconds between the completion of a 
data transfer and the initiation of another data transfer on the same cylinder can be changed at 
any time, even when the file system is mounted and active. If a file system is parameterized to 
lay out blocks with rotational separation of 2 milliseconds, and the disk pack is then moved to a 
system that has a processor requiring 4 milliseconds to schedule a disk operation, the throughput o 
will drop precipitously because of lost disk revolutions on nearly every block. If the eventual 
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target machine is known, the file system can be parameterized for it even though it is initially 
created on a different processor. Even if the move is not known in advance, the rotational layout 
delay can be reconfigured after the disk is moved so that all further allocation is done based on 
the characteristics of the new host. 

3.3. Layout policies 

The file system policies are divided into two distinct parts. At the top level are global policies 
that use file system wide summary information to make decisions regarding the placement of new 
inodes and data blocks. These routines are responsible for deciding the placement of new direc­
tories and files. They also calculate rotationally optimal block layouts, and decide when to force 
a long seek to a new cylinder group because there are insufficient blocks left in the current 
cylinder group to do reasonable layouts. Below the global policy routines are the local allocation 
routines that use a locally optimal scheme to lay out data blocks. 

Two methods for improving file system performance are to increase the locality of reference to 
minimize seek latency as described by [Trivedi80), and to improve the layout of data to make 
larger transfers possible as described by [Nevalainen77). The global layout policies try to 
improve performance by clustering related information. They cannot attempt to localize all data 
references, but must also try to spread unrelated data among different cylinder groups. If too 
much localization is attempted, the local cylinder group may run out of space forcing the data to 
be scattered to non-local cylinder groups. Taken to an extreme, total localization can result in a 
single huge cluster of data resembling the old file system. The global policies try to balance the 
two conflicting goals of localizing data that is concurrently accessed while spreading out unre­
lated data. 

One allocatable resource is inodes. !nodes are used to describe both files and directories. Files 
in a directory are frequently accessed together. For example the "list directory" command often 
accesses the inode for each file in a directory. The layout policy tries to place all the files in a 
directory in the same cylinder group. To ensure that files are allocated throughout the disk, a 
different policy is used for directory allocation. A new directory is placed in the cylinder group 
that has a greater than average number of free inodes, and the fewest number of directories in it 
already. The intent of this policy is to allow the file clustering policy to succeed most of the 
time. The allocation of inodes within a cylinder group is done using a next free strategy. 
Although this allocates the inodes randomly within a cylinder group, all the inodes for each 
cylinder group can be read with 4 to 8 disk transfers. This puts a small and constant upper 
bound on the number of disk transfers required to access all the inodes for all the files in a direc­
tory as compared to the old file system where typically, one disk transfer is needed to get the 
inode for each file in a directory. 

The other major resource is the data blocks. Since data blocks for a file are typically accessed 
together, the policy routines try to place all the data blocks for a file in the same cylinder group, 
preferably rotationally optimally on the same cylinder. The problem with allocating all the data 
blocks in the same cylinder group is that large files will quickly use up available space in the 
cylinder group, forcing a spill over to other areas. Using up all the space in a cylinder group has 
the added drawback that future allocations for any file in the cylinder group will also spill to 
other areas. Ideally none of the cylinder groups should ever become completely full. The solu­
tion devised is to redirect block allocation to a newly chosen cylinder group when a file exceeds 
32 kilobytes, and at every megabyte thereafter. The newly chosen cylinder group is selected 
from those cylinder groups that have a greater than average number of free blocks left. 
Although big files tend to be spread out over the disk, a megabyte of data is typically accessible 
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before a long seek must be performed, and the cost of one long seek per megabyte is small. 

The global policy routines call local allocation routines with requests for specific blocks. The 0 
local allocation routines will always allocate the requested block if it is free. If the requested 
block is not available, the allocator allocates a free block of the requested size that is rotationally 
closest to the requested block. If the global layout policies had complete information, they could 
always request unused blocks and the allocation routines would be reduced to simple bookkeep-
ing. However, maintaining complete information is costly; thus the implementation of the global 
layout policy uses heuristic guesses based on partial information. 

If a requested block is not available the local allocator uses a four level allocation strategy: 

1) Use the available block rotationally closest to the requested block on the same cylinder. 

2) If there are no blocks available on the same cylinder, use a block within the same cylinder 
group. 

3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups looking 
for a free block. 

4) Finally if the rehash fails, apply an exhaustive search. 

The use of quadratic rehash is prompted by studies of symbol table strategies used in program­
ming languages. File systems that are parameterized to maintain at least 10% free space almost 
never use this strategy; file systems that are run without maintaining any free space typically 
have so few free blocks that almost any allocation is random. Consequently the most important 
characteristic of the strategy used when the file system is low on space is that it be fast. 
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4. Performance 

Ultimately, the proof of the effectiveness of the algorithms described in the previous section is 
the long term performance of the new file system. 

Our empiric studies have shown that the inode layout policy has been effective. When running 
the "list directory" command on a large directory that itself contains many directories, the 
number of disk accesses for inodes is cut by a factor of two. The improvements are even more 
dramatic for large directories containing only files, disk accesses for inodes being cut by a factor 
of eight. This is most encouraging for programs such as spooling daemons that access many 
small files, since these programs tend to flood the disk request queue on the old file system. 

Table 2 summarizes the measured throughput of the new file system. Several comments need to 
be made about the conditions under which these tests were run. The test programs measure the 
rate that user programs can transfer data to or from a file without performing any processing on 
it. These programs must write enough data to ensure that buffering in the operating system does 
not affect the results. They should also be run at least three times in succession; the first to get 
the system into a known state and the second two to ensure that the experiment has stabilized 
and is repeatable. The methodology and test results are discussed in detail in [Kridle83]6• The 
systems were running multi-user but were otherwise quiescent. There was no contention for 
either the cpu or the disk arm. The only difference between the UNIBUS and MASSBUS tests 
was the controller. All tests used an Ampex Capricorn 330 Megabyte Winchester disk. As Table 
2 shows, all file system test runs were on a VAX 11/750. All file systems had been in production 
use for at least a month before being measured. 

Table 2: Reading Rates of the Old and New UNIX File Systems 

Type of Processor and Read 
File System Bus Measured Speed Bandwidth %CPU 

old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 3% 11% 
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/1100 20% 43% 
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/1100 21 % 29% 
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 73% 
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 54% 

e A UNIX command that is similar to the reading test that we used is, "cp file /dev /null", where "file" 
is eight Megabytes long. 
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Table 3: Writing rates of the old and new UNIX file systems 

Type of Processor and Write 
File System Bus Measured Speed Bandwidth %CPU 

old 1024 750/UNIBUS 48 Kbytes/sec 48/1100 4% 29% 
new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/1100 13% 43% 
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/1100 19% 46% 
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/1200 27% 94% 
new 8192 /1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 95% 

Unlike the old file system, the transfer rates for the new file system do not appear to change over 
time. The throughput rate is tied much more strongly to the amount of free space that is main­
tained. The measurements in Table 2 were based on a file system run with 10% free space. 
Synthetic work loads suggest the performance deteriorates to about half the throughput rates 
given in Table 2 when no free space is maintained. 

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of the disk 
by the file system. An upper bound on the transfer rate from the disk is measured by doing 
655367 byte reads from contiguous tracks on the disk. The bandwidth is calculated by compar­
ing the data rates the file system is able to achieve as a percentage of this rate. Using this 
metric, the old file system is only able to use about 3-4% of the disk bandwidth, while the new 
file system uses up to 39% of the bandwidth. 

In the new file system, the reading rate is always at least as fast as the writing rate. This is to 
be expected since the kernel must do more work when allocating blocks than when simply read­
ing them. Note that the write rates are about the same as the read rates in the 8192 byte block 
file system; the write rates are slower than the read rates in the 4096 byte block file system. 
The slower write rates occur because the kernel has to do twice as many disk allocations per 
second, and the processor is unable to keep up with the disk transfer rate. 

In contrast the old file system is about 50% faster at writing files than reading them. This is 
because the write system call is asynchronous and the kernel can generate disk transfer requests 
much faster than they can be serviced, hence disk transfers build up in the disk buffer cache. 
Because the disk buffer cache is sorted by minimum seek order, the average seek between the 
scheduled disk writes is much less than they would be if the data blocks are written out in the 
order in which they are generated. However when the file is read, the read system call is pro­
cessed synchronously so the disk blocks must be retrieved from the disk in the order in which 
they are allocated. This forces the disk scheduler to do long seeks resulting in a lower 
throughput rate. 

The performance of the new file system is currently limited by a memory to memory copy opera­
tion because it transfers data from the disk into buffers in the kernel address space and then 
spends 40% of the processor cycles copying these buffers to user address space. If the buffers in 
both address spaces are properly aligned, this transfer can be affected without copying by using 
the VAX virtual memory management hardware. This is especially desirable when large 
amounts of data are to be transferred. We did not implement this because it would change the 

7 This number, 65536, is the maximal 1/0 size supported by the VAX.. ha.rd ware; it is a remnant of the 
system's PDP-11 ancestry. 
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semantics of the file system in two major ways; user programs would be required to allocate 
buffers on page boundaries, and data would disappear from buffers after being written. 

Greater disk throughput could be achieved by rewriting the disk drivers to chain together kernel 
buffers. This would allow files to be allocated to contiguous disk blocks that could be read in a 
single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track. The ina­
bility to use contiguous disk blocks effectively limits the performance on these disks to less than 
fifty percent of the available bandwidth. Since each track has a multiple of sixteen sectors it 
holds exactly two or three 8192 byte file system blocks, or four or six 4096 byte file system 
blocks. If the the next block for a file cannot be laid out contiguously, then the minimum spac­
ing to the next allocatable block on any platter is between a sixth and a half a revolution. The 
implication of this is that the best possible layout without contiguous blocks uses only half of the 
bandwidth of any given track. If each track contains an odd number of sectors, then it is possi­
ble to resolve the rotational delay to any number of sectors by finding a block that begins at the 
desired rotational position on another track. The reason that block chaining has not been imple­
mented is because it would require rewriting all the disk drivers in the system, and the current 
throughput rates are already limited by the speed of the available processors. 

Currently only one block is allocated to a file at a time. A technique used by the DEMOS file 
system when it finds that a file is growing rapidly, is to preallocate several blocks at once, releas­
ing them when the file is closed if they remain unused. By batching up the allocation the system 
can reduce the overhead of allocating at each write, and it can cut down on the number of disk 
writes needed to keep the block pointers on the disk synchronized with the block allocation 
[Powell79]. 
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5. File system functional enhancements 

The speed enhancements to the UNIX file system did not require any changes to the semantics 
or data structures viewed by the users. However several changes have been generally desired for 
some time but have not been introduced because they would require users to dump and restore 
all their file systems. Since the new file system already requires that all existing file systems be 
dumped and restored, these functional enhancements have been introduced at this time. 

5.1. Long file names 

File names can now be of nearly arbitrary length. The only user programs affected by this 
change are those that access directories. To maintain portability among UNIX systems that are 
not running the new file system, a set of directory access routines have been introduced that pro­
vide a uniform interface to directories on both old and new systems. 

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation can be 
transferred to disk in a single atomic operation. Each allocation unit contains variable-length 
directory entries. Each entry is wholly contained in a single allocation unit. The. first three 
fields of a directory entry are fixed and contain an inode number, the length of the entry, and 
the length of the name contained in the entry. Following this fixed size information is the null 
terminated name, padded to a 4 byte boundary. The maximum length of a name in a directory 
is currently 255 characters. 

Free space in a directory is held by entries that have a record length that exceeds the space 

0 

required by the directory entry itself. All the bytes in a directory unit are claimed by the direc-

0 tory entries. This normally results in the last entry in a directory being large. When entries are 
deleted from a directory, the space is returned to the previous entry in the same directory unit 
by increasing its length. If the first entry of a directory unit is free, then its inode number is set 
to zero to show that it is unallocated. 

5.2. File locking 

The old file system had no provision for locking files. Processes that needed to synchronize the 
updates of a file had to create a separate "lock" file to synchronize their updates. A process 
would try to create a "lock" file. If the creation succeeded, then it could proceed with its 
update; if the creation failed, then it would wait, and try again. This mechanism had three 
drawbacks. Processes consumed CPU time, by looping over attempts to create locks. Locks 
were left lying around following system crashes and had to be cleaned up by hand. Finally, 
processes running as system administrator are always permitted to create files, so they had to 
use a different mechanism. While it is possible to get around all these problems, the solutions 
are not straight-forward, so a mechanism for locking files has been added. 

The most general schemes allow processes to concurrently update a file. Several of these tech­
niques are discussed in [Peterson83]. A simpler technique is to simply serialize access with locks. 
To attain reasonable efficiency, certain applications require the ability to lock pieces of a file. 
Locking down to the byte level has been implemented in the Onyx file system by [Bass81]. How­
ever, for the applications that currently run on the system, a mechanism that locks at the granu­
larity of a file is sufficient. 
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Locking schemes fall into two classes, those using hard locks and those using advisory locks. The 
primary difference between advisory locks and hard locks is the decision of when to override 
them. A hard lock is always enforced whenever a program tries to access a file; an advisory lock 
is only applied when it is requested by a program. Thus advisory locks are only effective when 
all programs accessing a file use the locking scheme. With hard locks there must be some over­
ride policy implemented in the kernel, with advisory locks the policy is implemented by the user 
programs. In the UNIX system, programs with system administrator privilege can override any 
protection scheme. Because many of the programs that need to use locks run as system adminis­
trators, we chose to implement advisory locks rather than create a protection scheme that was 
contrary to the UNIX philosophy or could not be used by system administration programs. 

The file locking facilities allow cooperating programs to apply advisory ahared or ezcluaive locks 
on files. Only one process has an exclusive lock on a file while multiple shared locks may be 
present. Both shared and exclusive locks cannot be present on a file at the same time. If any 
lock is requested when another process holds an exclusive lock, or an exclusive lock is requested 
when another process holds any lock, the open will block until the lock can be gained. Because 
shared and exclusive locks are advisory only, even if a process has obtained a lock on a file, 
another process can override the lock by opening the same file without a lock. 

Locks can be applied or removed on open files, so that locks can be manipulated without needing 
to close and reopen the file. This is useful, for example, when a process wishes to open a file 
with a shared lock to read some information, to determine whether an update is required. It can 
then get an exclusive lock so that it can do a read, modify, and write to update the file in a con­
sistent manner. 

A request for a lock will cause the process to block if the lock can not be immediately obtained. 
In certain instances this is unsatisfactory. For example, a process that wants only to check if a 
lock is present would require a separate mechanism to find out this information. Consequently, a 
process may specify that its locking request should return with an error if a lock can not be 
immediately obtained. Being able to poll for a lock is useful to "daemon" processes that wish to 
service a spooling area. If the first instance of the daemon locks the directory where spooling 
takes place, later daemon processes can easily check to see if an active daemon exists. Since the 
lock is removed when the process exits or the system crashes, there is no problem with uninten­
tional locks files that must be cleared by hand. 

Almost no deadlock detection is attempted. The only deadlock detection made by the system is 
that the file descriptor to which a lock is applied does not currently have a lock of the same type 
(i.e. the second of two successive calls to apply a lock of the same type will fail). Thus a process 
can deadlock itself by requesting locks on two separate file descriptors for the same object. 

5.3. Symbolic links 

'The 512 byte UNIX file system allows multiple directory entries in the same file system to refer­
ence a single file. The link concept is fundamental; files do not live in directories, but exist 
separately and are referenced by links. When all the links are removed, the file is deallocated. 
This style of links does not allow references across physical file systems, nor does it support 
inter-machine linkage. To avoid these limitations aymbolic linka have been added similar to the 
scheme used by Multics [Feiertag71]. 

A symbolic link is implemented as a file that contains a pathname. When the system encounters 
a symbolic link while interpreting a component of a pathname, the contents of the symbolic link 
is prepended to the rest of the pathname, and this name is interpreted to yield the resulting 
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pathname. If the symbolic link contains an absolute pathname, the absolute pathname is used, 
otherwise the contents of the symbolic link is evaluated relative to the location of the link in the 
file hierarchy. 

Normally programs do not want to be aware that there is a symbolic link in a pathname that 
they are using. However certain system utilities must be able to detect and manipulate symbolic 
links. Three new system calls provide the ability to detect, read, and write symbolic links, and 
severi system utilities were modified to use these calls. 

In future Berkeley software distributions it will be possible to mount file systems from other 
machines within a local file system. When this occurs, it will be possible to create symbolic links 
that span machines. 

5.4. Rename 

Programs that create new versions of data files typically create the new version as a temporary 
file and then rename the temporary file with the original name of the data file. In the old UNIX 
file systems the renaming required three calls to the system. If the program were interrupted or 
the system crashed between these calls, the data file could be left with only its temporary name. 
To eliminate this possibility a single system call has been added that performs the rename in an 
atomic fashion to guarantee the existence of the original name. 

In addition, the rename facility allows directories to be moved around in the directory tree 
hierarchy. The rename system call performs special validation checks to ensure that the direc­
tory tree structure is not corrupted by the creation of loops or inaccessible directories. Such 

0 

corruption would occur if a parent directory were moved into one of its descendants. The vali- 0 
dation check requires tracing the ancestry of the target directory to ensure that it does not 
include the directory being moved. 

5.5. Quotas 

The UNIX system has traditionally attempted to share all available resources to the greatest 
extent possible. Thus any single user can allocate all the available space in the file system. In 
certain environments this is unacceptable. Consequently, a quota mechanism has been added for 
restricting the amount of file system resources that a user can obtain. The quota mechanism sets 
limits on both the number of files and the number of disk blocks that a user may allocate. A 
separate quota can be set for each user on each file system. Each resource is given both a hard 
and a soft limit. When a program exceeds a soft limit, a warning is printed on the users termi­
nal; the offending program is not terminated unless it exceeds its hard limit. The idea is that 
users should stay below their soft limit between login sessions, but they may use more space 
while they are actively working. To encourage this behavior, users are warned when logging in if 
they are over any of their soft limits. If they fail to correct the problem for too many login ses­
sions, they are eventually reprimanded by having their soft limit enforced as their hard limit. 
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6. Software engineering 

The preliminary design was done by Bill Joy in late 1980; he presented the design at The 
USENIX Conference held in San Francisco in January 1981. The implementation of his design 
was done by Kirk McKusick in the summer of 1981. Most of the new system calls were imple­
mented by Sam Leffier. The code for enforcing quotas was implemented by Robert Elz at the 
University of Melbourne. 

To understand how the project was done it is necessary to understand the interfaces that the 
UNIX system provides to the hardware mass storage systems. At the lowest level is a raw diak. 
This interface provides access to the disk as a linear array of sectors. Normally this interface is 
only used by programs that need to do disk to disk copies or that wish to dump file systems. 
However, user programs with proper access rights can also access this interface. A disk is usu­
ally formated with a file system that is interpreted by the UNIX system to provide a directory 
hierarchy and files. The UNIX system interprets and multiplexes requests from user programs to 
create, read, write, and delete files by allocating and freeing inodes and data blocks. The 
interpretation of the data on the disk could be done by the user programs themselves. The rea.­
son that it is done by the UNIX system is to synchronize the user requests, so that two processes 
do not attempt to allocate or modify the same resource simultaneously. It also allows access to 
be restricted at the file level rather than at the disk level and allows the common file system rou­
tines to be shared between processes. 

The implementation of the new file system amounted to using a different scheme for formating 
and interpreting the disk. Since the synchronization and disk access routines themselves were 
not being changed, the changes to the file system could be developed by moving the file system 
interpretation routines out of the kernel and into a user program. Thus, the first step was to 
extract the file system code for the old file system from the UNIX kernel and change its requests 
to the disk driver to accesses to a raw disk. This produced a library of routines that mapped 
what would normally be system calls into read or write operations on the raw disk. This library 
was then debugged by linking it into the system utilities that copy, r€move, archive, and restore 
files. 

A new cross file system utility was written that copied files from the simulated file system to the 
one implemented by the kernel. This was accomplished by calling the simulation library to do a 
read, and then writing the resultant data by using the conventional write system call. A similar 
utility copied data from the kernel to the simulated file system by doing a conventional read sys­
tem call and then writing the resultant data using the simulated file system library. 

The second step was to rewrite the file system simulation library to interpret the new file system. 
By linking the new simulation library into the cross file system copying utility, it was possible to 
easily copy files from the old file system into the new one and from the new one to the old one. 
Having the file system interpretation implemented in user code had several major benefits. 
These included being able to use the standard system tools such as the debuggers to set break­
points and single step through the code. When bugs were discovered, the offending problem 
could be fixed and tested without the need to reboot the machine. There was never a period 
where it was necessary to maintain two concurrent file systems in the kernel. Finally it was not 
necessary to dedicate a machine entirely to file system development, except for a brief period 
while the new file system was boot strapped. 

The final step was to merge the new file system back into the UNIX kernel. This was done in 
less than two weeks, since the only bugs remaining were those that involved interfacing to the 
synchronization routines that could not be tested in the simulated system. Again the simulation 
system proved useful since it enabled files to be easily copied between old and new file systems 
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regardless of which file system was running in the kernel. This greatly reduced the number of 
times that the system had to be rebooted. 

The total design and debug time took about one man year. Most of the work was done on the 
file system utilities, and changing all the user programs to use the new facilities. The code 
changes in the kernel were minor, involving the addition of only about 800 lines of code. 
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The CPU PROM Monitor Commands 

The central processor board ( CPU) of the Sun Workstation has a set of PROM's containing a pro­
gram generally known as the 'monitor'. The monitor controls the operation of the system before 
the UNIX kernel takes control. This document describes the PROM monitor commands. For 
information on the startup and boot functions of the monitor, including messages displayed, see 
the appendix on Automatic Startup in the Syatem Manager'a Manual for the Sun Workatation. 

1. Command Syntax 

The monitor understands commands in quite a simple format. The format is: 

< verb>< apace>* [ < argument>)< return> 

< verb> is always one alphabetic character; case does not matter. 

<apace>* means that any number of spaces is skipped here. 

< argument> 
is normally a hexadecimal number or a single letter; again, case does not matter. 
Square brackets '[ )' indicate that the argument portion is optional. 

< return> means that you should press the carriage-return key. 

When typing commands, < backapace> and< delete> (also called< rubout>, generated by the 
key labelled< backtab> on the non-VTlOO Sun keyboard) erase one character; control-U erases 
the entire line. 

2. Syntax for Memory and Register Access 

Several of the commands open a memory location, map register, or processor register, so that 
you can examine and/or modify the contents of the specified location. These commands include 
a, d, e, 1, m, 0 1 p, and r. 

Each of these commands takes the form of a command letter, possibly followed by a hexadecimal 
memory address or register number, followed by a sequence of zero or more 'action specifier' 
arguments. The various options are illustrated below, using the e command as an example. You 
type the parts as shown in bold typewriter font, with a < return> at the end of each 
command. 

If no action specifier arguments are present, the address or register name is displayed along with 
its current contents. You may then type a new hexadecimal value, or simply< return> to go 
on the next address or register. Typing any non-hex character and <return> gets you back to 
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command level. For registers, 'next' means within the sequence of registers: 
DO-D7 the data registers, 
AO-A6 the address registers, 
SS the system stack pointer, 
US the us~r stack pointer, 
SF the source function code register, 
DF the destination function code register, 
VB the vector base register, 
SC the system context register, 
UC the user context register, 
SR the status register, 
PC the program counter. 

For example, the following command sets consecutive locations Oxl234 and Oxl236 to the values 
Ox5678 and OxOOOO respectively: 

> e1234 
001234: 007F? 5678 
001236: 51A4? 0 
001238: C022? q 
> 

A non-hex character (such as question mark) on the command line means read-only: 

> e1000? 
001000: 007F 
> 

Multiple nonhex characters read multiple locations: 

> e1000 ??? 
001000: 007F 
001002: 0064 
001004: 1234 
> 

A hex number on the command line does store-only: 

> e1000 4567 
001000 -> 4567 
> 

Multiple hex writes multiple locations: 

> e1000 1 2 3 
001000 -> 0001 
001002 -> 0002 
001004 -> 0003 
> 

Nonhex followed by hex reads, then stores. 
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> e1000? 346 
001000: 007F -> 0346 
> 

Finally, reads and writes can be interspersed: 

> e1000? 1?? 3 4 
001000: 007F -> 0001 
001002: 0064 
001004: 1234 -> 0003 
001006 -> 0004 
> 

Spaces are optional except between two consecutive numbers. When actions are specified on the 
command line after the address, no further input is taken from the keyboard for that command; 
after executing the specified actions, a new command is prompted for. Note that these com­
mands provide the ability to write to a location (such as an I/0 register) without reading from it; 
and provide the ability to query a location without having to interact. 

3. Command Descriptions 

In the descriptions listed below, the command letters in typewriter text are the commands, 
and things in italic font represent things that you substitute. Things in brackets are optional. 

A [ n ][ action• J 

B [!][ arg•J 

Open A-register n (O<n<7, default zero). A7 is the System Stack Pointer; to 
see the User Stack Pointer, use the r command. For further explanation, see 
the section, 'Syntax for Memory and Register Access' above. 

Boot. Resets appropriate parts of the system, then bootstraps the system. 
This allows bootstrap loading of programs from various devices such as disk, 
tape, or Ethernet. Typing 'b?' lists all possible boot devices. Simply typing 
'b' gives you a default boot, which is configuration dependent. For an expla,. 
nation of the booting options, see the sections on cwAutomatic Startup in the 
appendix to the Syatem Manager'• Manual for the Sun Workatation. 

If the first character of the argument is a '!', the system is not reset, and the 
bootstrapped program is not automatically executed. To execute it, use the 
'C' command described below. 

C [ addr] Continue a program. The address addr, if given, is the address at which exe­
cution will begin; default is the current PC. The registers will be restored to 
the values shown by the A, D, and R commands. 

D [n][actiona] Open D-register n (O<n<7, default zero). For a detailed explanation, see the 
section, 'Syntax for Memory and Register Access' above. 

E [addrl[actiona] Open the word at memory address addr (default zero) in the address space 
defined by the 'S' command. For a detailed explanation, see the section, 'Syn­
tax for Memory and Register Access' above. 

G [addrl[param] Start the program by executing a subroutine call to the address addr if given, 
or else to the current PC. The values of the address and data registers are 
undefined; the status register will contain Ox2700. One parameter is passed to 
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K [number] 

the subroutine on the stack; it is the address of the remainder of the command 
line following the last digit of addr (and possible blanks). 

If number is O (or not given), this does a 'Reset Instruction': it resets the sys­
tem without affecting main memory or maps. If number is 1, this does a 
'Medium Reset', which re-initializes most of the system without clearing 
memory. If number is 2, a hard reset is done and memory is cleared. This is 
equivalent to a power-on reset and runs the PROM-based diagnostics, which can 
take ten seconds or so. 

L [addrl[actiona] Open the longword at memory address addr (default zero) in the address space 
defined by the 'S' command. For a detailed explanation, see the section, 'Syn­
tax for Memory and Register Access' above. 

M [addr] [action•] Opens the Segment Map entry which maps virtual address addr (default zero) 
in the current context. The choice of supervisor or user context is determined 
by the 'S' command setting (0-3 = user; 4-7 = supervisor). See the section, 
'Syntax for Memory and Register Access' above. -

0 [addrl[actiona] Opens the byte location specified (default zero) in the address space defined 
by the 'S' command. See the section, 'Syntax for Memory and Register 
Access' above. 

P [addr] [actiona] Opens the Page Map entry which maps virtual address addr (default zero) in 
the current context. The choice of supervisor or user context is determined 
by the 'S' command setting (0-3 = user; 4-7 = supervisor). With each page 
map entry, the relevant segment map entry is displayed in brackets. See the 
section, 'Syntax for Memory and Register Access' above. 

R [actiona] Opens the miscellaneous registers (in order): SS (Supervisor Stack Pointer), US 
(User Stack Pointer), SF (Source Function Code), DF (Destination Function 
Code), VB (Vector Base), SC (System Context), UC (User Context), SR (Status 
Register), and PC (Program Counter). Alterations made to these registers 
(except SC and UC) do not take effect until the next 'C' command. For 
further explanation, see the section, 'Syntax for Memory and Register Access' 
above. 

S [number] 

4 

Sets or queries the address space to be used by subsequent memory access 
commands. number is the function code to be used, ranging from 1 to 7. Use­
ful values are l (user data), 2 (user program), 3 (memory maps), 5 (supervisor 
data), 6 (supervisor program). If no number is supplied, the current setting is 
printed. Upon entry into the monitor, this is set to 5 if the program was in 
supervisor state, or to l if the program was in user state. 

Revision D of 15 May 1985 

O' 

0 

0 



0 

0 

0 

Sun System Internals Manual CPU PROM Monitor 

U [arg] The U command manipulates the serial ports and switches the current input 
or output device. The argument may have the following values ('{AB}' means 
that either 'A' or 'B' is specified): 

{AB} Select serial port A (or B) as input and output device 
{AB}io Select serial port A (or B) as input and output device 
{AB}i Select serial port A (or B) for input only 
{AB}o Select serial port A (or B) for output only 
k Select keyboard for input 
ki Select keyboard for input 
s Select screen for output 
so Select screen for output 
ks, sk Select keyboard for input and screen for output 
{AB}# Set speed of serial port A (or B) to# (such as 1200, 9600, ... ) 
e Echo input to output 
ne Don't echo input to output 
u addr Set virtual serial port address 

U no argument is specified, the U command reports the current values of the 
settings. Ir no serial port is specified when changing speeds, the 'current' 
input device is changed. 

At power-up, the following default settings are used: The default console input 
device is the Sun keyboard or, if the keyboard is unavailable, serial port A. 
The default console output device is the Sun screen or, if the graphics board is 
unavailable, serial port A. All serial ports are set to 9600 baud. 
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