2

%sun

microsystems

- .”;m o ”-j_g_j

O ~S‘un Mlcrosystems, Inc. + 2550 Garcia Avenue

Programmer’s Tutorial
to SunWindows

e o s s [
-~ \ .
- - - \ . on -
> ~ ~ M
. o .
-
. s g
SO s 4
T s I
~

+ Mountain View, CA 94043 « 415-960-1300

O

S
% sun

microsystems

B e P
e ""S...,.r;i;&i \Q%?&z%??{ SRRy

SRR L R S

T GESLL T R e aNaaLT

Programmer’s Tutorial
to SunWindows

Sun Microsystems, Inc. + 2550 Garcia Avenue + Mountain View, CA 94043 + 415-960-1300

Burt No: 800-1182-01
Revigion B of 15 May, 1985

Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.
SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®,
and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystemns, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks of AT&T Bell Laboratories.

Copyright © 1985 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, tramscribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

Revision History

Version Date Comments
A 7 January 1984 First edition of this manual.
B-a 19 November 1984 | First release of total rewrite.

B 15 April 1985 Second release of total rewrite.

— 1l -

Preface

This document teaches the reader how to write SunWindows tools and canvas programs.

It is intended for C programmers who want a tutorial introduction to writing programs that run
in the SunWindows environment. The prerequisites: proficiency in C, and knowledge of UNIX
signals and I/O primitives.

Chapter 1 introduces the windowing system and its use.

Chapter 2 teaches how to write a simple tool.

Chapter 3 introduces the panel subwindow package.

Chapter 4 discusses cursors and icons.

Chapter 5 illustrates drawing in windows, display locking, and retained subwindows.
Chapter 6 covers input handling.

Chapter 7 shows how to create pop-up menus.

Chapter 8 discusses how to handle changes in window shape and size.

Chapter 9 describes how to write a custom subwindow package.

Chapters 10 and 11 discuss how to write single-window applications called canvas programs.
Appendix A is a glossary of terms.

Appendix B is a detailed overview of the SunWindows system.

Companion Documents

Programmer’s Reference Manual for SunWindows

Contents
Chapter 1 Introduction ... 1-1
Chapter 2 Tool Subwindows | ... 2-1
Chapter 3 Panels ... 3-1
(0375172 I T S b1d -T2 N 4-1
Chapter 8 PIXWIDS ... seces s eessees e oo esesesssseossssesemee s 5-1
Chapter 8 Input Handlers e 8-1
Chapter 7 Pop-Up MeRUS oo sssere s ssess s 7-1
Chapter 8 Window Reshaping ... 8-1
Chapter 8 User-defined Subwindows ... 9-1
Chapter 10 Writing a Simple Canvas Program o — 10-1
Chapter 11 Writing a More Sophisticated Canvas Program ... 11-1
APPENAIX A GIOSSATYooooooecrreeese oo eesssesereess s eeereeesesess s s eeees et A-1
Appendix B SunWindows Implementation Overview ... B-1

C— Vil —

O

Contents
28 XL SO OO OSSN iv
Chapter 1 Introduction ... s e 1-1
Running Suntools . .o 1-2
Chapter 2 Tool SubWINAOWS e eeeeeeeeeeees e 2-1
2.1. Sample Program: hello.c . e 2-1
2.2, Message SUDWINAOWS ... eeosessssee s ssserssssssaseosessesereomsne 2-4
2.3, SUDWIDAOW S1ZE oo eeees e 2-5
2.4, Tiling MeChaniSI ..o sese s eee e 2-5
2.5. Tools 10 1eonie FOIIN e eeeeeeesseeeseemreerere e 2-8
Chapter 3 Panels e e eees e eee e 3-1
3.1. Sample Program: stabls.C 31
3.2. Adding Panel I8emis oo 3-4
Chapter 4 PiIXTectS oot eeeeee e oseesres s eeseee s et 4-1
4.1, Changing the CUISOT | e eseesseereeeseesseeeeeeee o 4-1
4.2. Restoring the Old CUISOT ... oseressssosnsesesresesmseessssne 4-3
4.3. Changing the Tool TcOn oo 4-4
Chapter B PIXWiDs . .. e eeee st eses e i 5-1
5.1. Sample Program: status_image.c ... 5-1
5.2, Explictt Locking oo e 5-5
5.3. Retamed Subwindows e 5-5

Chapter 8 Input Handlers B=1

6.1. Sample Program: sketch.c 6-1
Chapter 7 Pop-Up MERUSoooooooesesesosoosssssssssssssssesssesoe s 7-1
7.1. Sample Program: sketch.c ..o 7-1
7.2. Adding Options t0 the MEDU ... eesssesse oo 7-3
Chapter 8 Window Reshaping 8-1
8.1, SIGWINCH Signal oo g1
8.2. SIGWINCH Handlers ..o esssmessessssssssemsssee g1
8.3. Retained SubWInAOWS ... ees e ereeseoee 82

—ix =

Chapter 9 User-defined Subwindows ... 9-1

9.1. Sample Program: hello_oWn.c ... 9-1
9.2. Using the CHPPING LISt ..o 9-3
9.3. Signal Handlers ... oo eseeseemssree oo 9-4
Chapter 10 Writing 2 Simple Canvas Program ... 10-1
10.1. The canvasflash Code e 10-3
10.2. External Declarabions ... seeeseeeenseen 10-4
103, InitaliZABION ...t seeee e 10-4
10,4, DISPIAY LIOODooooooeerecsessosssesrsoeseeseeseeeseeseses ettt 10-5
LT] X5 L1 T« T 10-6
Chapter 11 Writing a More Sophisticated Canvas Program ... 11-1
11.1. The canvasinptt COAe . s 11-2
11.2. External Declarations ... ooeesoe 11-4
11.3. Defining the Men ... 11-4
11,4, InitialIZAION e eomsessesee s eeeeeee s oo 11-5
11.5. Notification Manager ...ttt 11-6
11.6. Handling Nobificablons __........ooeceosecoeeeeesomeeeseee oo 11-6
11.7. Termination and Cleanupo 11-7
APPEndixX A GIOSSATY ..o oo etees e steess stssss sttt s sssssons A-1
Appendix B SunWindows Implementation Overview B-1
B.1. Architectural Prineiples ..o B-1
B.2. Layers of Implementationoooeoroeseeooeeseeseeeesesseee B-2
B.2.1. Suntool LAYET . . oo sssesssssssseseesise e esseesesoeeereeeees B-3
B.2.2. Sunwindow Layer ... e e e B-5
B.2.3. PIXTeCt LaYer e es st essssneeeeesessesseseesessers B-8

B.3. Choosing the Appropriate Layer ..., B-9

Table 4-1 Some useful raster-ops

—_X] —

Figures

Figure 2-1 Running the hello program 2-4
Figure 2-2 Running the goodbye Program 2-6
Figure 3-1 RUDDINE SLALUS.C e e 3-1
Figure 4-1 Running the cursor program ... 4-2

Figure 4-2 The status program’s ICOD ... 4D

Figure 5-1 Running the status_image Program ... 5-4
Figure 6-1 Running the sketch program ... 6-4
Figure 7-1 Running the sketch_menu program ... 7-3
Figure 9-1 Running the hello_own program ... 9-3
Figure 10-1 canvasflash Output 10-2
Figure 10-2 Inverted canvasflash OQutpub, 10-2
Figure 11-1 canvasinput Outpub . 11-1
Figure B-1 SunWindows Layers ... B-3
Figure B-2 Standard Too! Window and a Default Icon B-4
Figure B-3 System Subwindow TYDes . ..o B-5
Figure B-4 WINAOW TTEE oo eesoeessssssesomseseescsetesimsieeessesss s B-6
Figure B-5 DAIMAEE ..o oees e reessssssees e B-7

— xiil —

Chapter 1

Introduction

SunWindows is an operating environment for application programs. In particular, SunWindows
is a windowing environment, that is, an environment where programs run inside windows. A win-
dow is an arbitrary-size rectangular portion of a display.

In SunWindows, individual windows may overlap, change size, and change position on the
display. SunWindows provides a method for managing screen access and changes to windows.

A SunWindows program falls into one of three categories, depending on the relationship that the
program has with windows:

Tool Most application programs in SunWindows are tools. A tool is a SunWindows appli-
cation program that creates, owns, and manages a window and one or more subwin-
dows. It has a mechanism for dealing with multiple windows within a single user pro-
cess.

You interact with tools in order to perform various tasks, such as playing chess or
editing fonts. An example of a tool you probably use every day is shelltool,
which emulates a terminal and usually runs a UNIX shell.

Canvas program
A canvas program is characterized by its creating and managing only one window.
Since a canvas program owns only one window, the mechanism required for dealing
with it is simpler than for a tool.

Noninteractive utility
A noninteractive utility is typified by not creating any windows. Instead it queries
and manipulates the state of one or more existing windows. Since this type of pro-
gram does not own any windows, it never has to deal with window input or SIGWINCH
signals. toolplaces is a noninteractive utility that prints a list of current window
positions to standard output.

The process that is responsible for displaying a window’s image and reading its input is said to
own that window.

This tutorial teaches you how to build SunWindows tools and eanvas programs. Chapters 2
through 9 cover tools, and chapters 10 and 11 discuss canvas programs.

Revision B of 15 April 1985 1-1

Introduction SunWindows Tutorial

Running Suntools

If you're running SunWindows and feel comfortable with it, then skip to the next chapter. If
you're not running SunWindows and don’t yet have a */.suntools file, then use your favorite
editor to create a file named .suntools in your home directory, containing the following text:

clocktool ~r -8
gfxtoel -Wi -C
shelltool

Now start up the windowing environment by typing:
% suntools

This gives you a clock in the lower left corner of the display, an open shell window in the middle
of the screen and an iconic comsole graphics tool next to the clock. For more on suntools,
gfxtool, shelltool and clocktool, please see the User’s Manual for the Sun Worksta-
tion,

A window can be open, or it can be closed (iconic). The normal state is open. A closed window
is still running, but is quiescent. A graphical image, or fcon, represents a closed window on the
display. A tool’s icon is usually a picture showing the function performed by the tool. For
example, an iconic shell tool appears graphically on the display as a picture of a video display
terminal.

Now try the following. Point the mouse arrow anywhere inside the black border of the shell tool
window, and press and hold the right-hand mouse button to pop up the following menu:

Tool Mgr:

Close

Move
Stretch
Expose
Hide
ReDisplay
Quit

This is the Tool Manager menu, which represents a set of functions common to all tools.

Experiment with the options. Still holding down the right mouse button, move the arrow down
the list of options, releasing the right button when you get to the choice you want.

The Close option turns an open window into an icon. The default icon is a black-bordered
square with the tool’s name inside it. Once you have an icon, press the left mouse button to get
back to the open tool. The Move option changes the tool location, and the Stretch option
allows you to change tool window size. Ordinarily, the window system gives you directions
whenever you need to click another mouse button. Choosing Expose shifts the tool window in
front of all other windows, whereas Hide places it behind all other windows. The Redisplay
option refreshes the window in case it gets scrambled. Use Quit to exit the program.

To make the menu vanish without selecting any of the options, move the arrow completely out
of the menu and release the button.

1-2 Revision B of 15 April 1985

-

SunWindows Tutorial Introduction

Now turn the shell tool window into an icon by popping up the Tool Manager menu and select-
ing the Close option. The open window should collapse into a shell tool icon on your screen.
To open the shell tool, point at the terminal icon, and press the left mouse button. Your screen
now displays an open shell tool, which executes C shell commands for you.

Tools also have accelerators so that users can perform commonly used actions quickly, without
using the Tool Manager menu. One example of an accelerator is the quick method we just used
to open the shell icon — we did not have to pop up the Tool Manager menu; we just pressed the
left button. Accelerators are as follows:

¢ To expose an overlapped window, point at the tool’s namestripe or borders, then press the
left mouse button.

o To move a window, press the middle button and hold it down; an outline of the window will
follow the mouse as long as you hold down the middle button. When the outline is in the
desired spot, release the button to place the window.

Revision B of 15 April 1985 1-3

Chapter 2

Tool Subwindows

This chapter teaches you how to write a simple tool. A tool always consists of an outer window
that acts as a frame, and one or more disjoint subwindows. Subwindows are rectangular porticns
of a tool window, no larger than the tool itself.

A tool can read input from the keyboard and the mouse. It knows how to change window size
and origin whenever you tell it to stretch or move. It can cope with overlapping windows, and
can repaint portions that were once hidden behind another window, and later exposed.

First you will type in a program, and compile it using the proper libraries. While running the
program, you will learn about different parts of a tool. You will edit, recompile, and run the pro-
gram several times to learn about subwindow size, subwindow tiling, and the iconic form of a
tool.

If you've never seen a tool up close, try running icontool. Nearly all of its subwindows are
panels (which will be discussed in the next chapter); the exceptions are the drawing and proofing
areas, which are subwindows built specifically for icontool. You'll certainly want to learn
dbxtool, which facilitates program debugging. It has a panel in the middle, and user-defined
subwindows above and below.

2.1. Sample Program: hello.c

In order to make things as simple as possible, we present only the bare minimum — a tool that
prints “Hello world!” in a message subwindow. This program can be used as a template for more
complicated tools.

Source files for the programs in this manual reside in the directory
/usr/src/sun/sunteool/tutorial. However, we encourage you to type in the programs to
gam familiarity with the code being presented.

Use your favorite editor to place the following program into a file called hello.c:

#include <stdio.h>
#include <suntool/tool_hs.h>
#include <suntool/msgsw.h>

struct tool *tool:
int sigwlnched();

main{argec, argv) /* print "Hello world!" in message subwindow */
int argc;
char *argv[]:

struct toolsw *msg_sw;

if ((tool = tool_make(WIN_LABEL, argv[0], O)) == NULL) {

Revision B of 15 April 1985 2-1

Tool Subwindows SunWindows Tutorial

fputs ("Can't make tool\n", stderr);
exit(1);
}
if ((msg_sw = msgsw_createtoolsubwindow(tool,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,
"Hello world!", NULL)) == NULL) ¢
fputs ("Can't create msgsw\n", stderr):

He
’

exit(1);
}
signal (SIGWINCH, sigwinched); /* trap window change signal */
tool_install (tool); /* install tool in window tree */
tool_select (tool, 0): /* main loop to read input */
tool_destroy {toocl) ; /* after user exits, clean up %/
}
sigwinched (} /* note window size change and damage repair signal */
{
tool_sigwinch(tool);
3

The following header files are needed for compilation:

<stdio.h>
provides a standard library of input and output routines.

<suntocl/tool_hs.h>
includes a collection of header files for dealing with tools and subwindows.

<suntool /msgsw.h>
declares procedures, structures, and defined constants needed for message subwindows.

Let’s look at the program on a line-by-line basis. The tool structure needs to be global so the
sigwinched () function, which traps the SIGWINCH (window change) signal, can pass the
current tool to tool _sigwinch({). By contrast, the tool subwindow structure toolsw, used
for the message subwindow, can be local to the main () routine.

The tool_make ()} routine creates the tool we need. Many of the tool library functions take
one or more attribute/value pairs as parameters. In this case, WIN_LABEL is paired with
argv [0], meaning that the window label, which appears in the stripe at the top of the window,
is set to the name of the program, The tool does not actually appear on the screen until the call
to tool_select() — tool_install() merely places the tool window in a window data
base, which keeps track of details such as position on the screen, and whether the window is hid-
den or exposed.

A message subwindow is created with the call to msgsw_createtoolsubwindow(), which
must be passed the tool, the subwindow name (in this case a NULL string), the width and height
of the subwindow, the string to print, and the font to print it in. TOOL_SWEXTENDTOEDGE is
used for both width and height, indicating that the subwindow covers the entire tool window.,
Rather than supplying a special font, this program uses NULL to indicate the default font.

The call to signal () traps the window changing signal, SIGWINCH, and toocl_install ()
installs the tool in the window tree. The window tree arbitrates the partitioning of the screen
between all the windows displayed at one time. The routine tool_select () contains a loop
where the tool spends most of its time. This loop reads keyboard and mouse events, and responds
to whatever you decide it should consider.

2-2 Revision B of 15 April 1985

O

SunWindows Tutorial Tocol Subwindows

The remainder of the code cleans up and destroys the tool when you quit. There are two ways
to exit this program: by using the tool manager menu to quit, or by typing control-C from the
parent window, which is the shelltool from where it was called.

To compile the above program, invoke cc directly, rather than going through make, so that you
can see which libraries need to be loaded. SunWindows tools call routines from the following
libraries:

libsuntool .a
provides user interface utilities, tool support, canvas program support and subwindow
support.

libsunwindow.a
provides window device support, display access routines, and input control.

libpixrect.a
provides a device-independent interface to pixel operations.

Use the -1 flag of cc to specify which library is to be loaded. Loading is order-dependent: high-
level libraries must be given before low-level libraries, because they make use of lower-level rou-
tines:

% cc hello.c -0 hello -lsuntool -lsunwindow -lpixrect

Go 2head, compile the program. These libraries must always be given in this order, or program
loading won'’t work. If you want to debug using dbxtool, run cc with the -g option.

Before you run your program, make sure your workstation is running suntools, the window
system program. This was discussed in the first chapter. Your tool program is dependent on the
window system for underlying support. To run the sample program, type:

% hello

Let’s examine the parts of the tool running on your screen. The black band running across the
top of the tool, containing some text, is called the namestripe. In the sample program, and in
most programs, the namestripe contains the name of the tool. The double line going around the
remainder of the tool window is the border. Borders help the eye separate one tool from
another. You can also use the border to bring up a menu. The entire tool window {except the
namestripe and border) is hidden by the message subwindow, which contains the words “Hello
world!”. If the tool window changes size, the subwindow changes to remain within the tool
window’s borders.

Revision B of 15 April 1985 2-3

Tool Subwindows SunWindows Tutorial

Figure 2-1: Running the hello program

2.2. Message Subwindows

The above program constitutes the mininum boiler plate needed for a tool. The call to
tool_make () creates the outer tool window, including the border and namestripe. The call to
msgsw_createtoolsubwindow () creates the message subwindow with the text, “Hello
world!”. Its last argument, NULL, specifies the default font, which is used for the letters in the
tool namestripe as well as the text of the message subwindow.

Try changing the sample program so that it has no subwindow. Edit the file hello.c again and
comment out these lines with an #ifdef as follows:

#ifdef notdef
if ({msg_sw = msgsw_createtoolsubwindow(tool, "",
TOOL_SWEXTENDTCEDGE,
TOOL_SWEXTENDTCEDGE,
"Hello world!", NULL)) == NULL) {
fputs ("Can't create msgsw\n", stderr);
exit (1) ;

#endif

Now recompile {using !cc if you have history) and run the sample tool. You should see a blank
white area inside the tool border. This is the tool window that was underneath the message
subwindow in the first example, before recompilation. Be sure to edit hello.c again and
remove the lines you just put in there.

2-4 Revision B of 15 April 1985

-

SunWindows Tutorial Tool Subwindows

2.3. Subwindow Size

A good way to get a feel for how to extend a tool is by code modification. Begin by looking at
the function that creates the message subwindow. The argument TOOL_SWEXTENDTOEDGE is
given for the width and the height of the subwindow. This extends the subwindow to the edge of
the tool window. Try using 200 in place of both TOOL_SWEXTENDTOEDGE arguments. Recom-
pile the new tool code and run it, as before. The tool window should now be visible, below and
to the right of the subwindow. You may want to experiment with other values for the subwin-
dow width and height.

2.4. Tiling Mechanism

Tools provide a tiling mechanism, which enables them to display multiple subwindows without
overlapping. Tool windows may overlap, but subwindows do not — they are laid down like tiles
on a floor. You can observe this by creating a second subwindow, as follows:

Edit hello.c and copy the five lines of msgsw_createtoolsubwindow() code to a spot
directly after the original code, as shown in the listing below. The first subwindow should have a
width of TOOL_SWEXTENDTOEDGE

and a height of 100. Now give the second subwindow a width and height of
TOOL_SWEXTENDTOEDGE. Also change the text argument in the second subwindow from “Hello
World” to “Goodbye cruel world!”. This helps you tell the two windows apart. Here is a listing
of the revised code:

#include <stdioc.h>
#include <suntool/tocl_hs.h>
#include <suntocl/msgsw.h>

struct toocl *tool;
int sigwinched({):

main{argc, argv) /* create two message subwindows for tiling */
int argec;
char *argv[]:

struct toolsw *msg_sw;

if ((tool = tool_make (WIN_LABEL, argv[0O], 0)) == NULL) {
fputs {"Can't make tocl\n", stderr):

exit (1);
}
if ((msg_sw = msgsw_createtoolsubwindow(tool, "%,
TOOL_SWEXTENDTOEDGE, 100, "Hello world!™, NULL)) == NULL) {
fputs ("Can't create msgsw\n", stderr);
exit(1);
}
if ((msg_sw = msgsw_createtoolsubwindow(tool, "",
TOOL_SWEXTENDTOEDGE, TOQOI._SWEXTENDTOEDGE,
"Goodbye cruel world!", NULL)) == NULL) {
fputs ("Can't create msgsw\n", stderr);
exit(1};
}

Revision B of 15 April 1985 2-5

Tool Subwindows SunWindows Tutorial

signal (SIGWINCH, sigwinched);

tool_install(tcol); /* install tool in tree of windows */ O
tool_select (tool, O); /* main loop to read input */
tool_destroy(tool); /* clean up */

)

sigwinched () /* note window size change and damage repair signal */

{
tool_sigwinch(tool) ;

}

Now recompile the tool (using !cc if you have history) and rerun it.

Figure 2-2: Running the goodbye program

{Goodhye cruel woria!

Notice how there are two subwindows, one right above the other. The tiling mechanism is useful
if you want to place a2 number of subwindows on the screen, without having to worry about the
location and size of each one. Now use the mouse to shrink the entire tool window. Subwindows
are resized as necessary. It is possible to modify the placement of subwindows, using advanced
features discussed in the Programmer’s Reference Manual for SunWindows.

2.5. Tools in Iconic Form

Sometimes you may prefer tools to appear mitially in iconic form. Edit hello.c, and add the
attribute value pair WIN_ICONIC, TRUE so that line 15 looks like this: @

2.6 Revision B of 15 April 1985

SunWindows Tutorial Tool Subwindows

if {(tool = tool_make (WIN_LABEL, argv[0], WIN_ICONIC, TRUE, O)) == NULL)

Now recompile the program and run it. You should have a small square somewhere on your
screen containing the word “hello”. The default tool icon is a black-bordered square containing
the name of the tool. The string paired with the WIN_LABEL attribute for tool_make ()
specifies the name of the tool. You could also specify a bitmap image for the icon, by pairing a
pointer to an icon structure with the WIN_ICON attribute. We will do this in a later chapter.
Consult the Programmer’s Reference Manual for SunWindows for a list of all possible arguments
to tool_make ().

Now move the mouse until the arrow points at the icon. Press the left button on the mouse.
This results in an open tool exactly like the one you had before adding WIN_ICONIC to the
tool_make () function call. Some tools, such as the cleck, normally come up as icons, because
they are easier to read that way. Try opening your clock by moving the mouse arrow to it, and
clicking the left button.

Revision B of 15 April 1985 2-7

Chapter 3

Panels

This chapter introduces panels. The panel subwindow package is most commonly used to build
control panels, which allow the user to graphically issue commands to a tool and to set the tools’
options. The user moves the mouse so that the arrow points at an option, and presses the left
mouse button to select that option. For an example of a tool with a complex control panel, try
running icontool.}

Panels, like the message subwindows introduced in the previous chapter, are a spectal predefined
type of subwindow that an application program can use to perform useful functions, You can
define your own type of subwindow if the standard subwindow packages don’t provide what you
need (see Chapter 9).

First you will key in a sample program, and compile it using the make facility. Then you will be
asked to add another option to the program.

3.1. Sample Program: status.c

This simple program displays two panels, as shown in the picture below:

Figure 3-1: Running status.c

status-)
Date Resources

Select with left mouse button.

1 Also see Figure 8-1 in the Sunwindows Reference Manual,

Revision B of 15 April 1985 31

Panels SunWindows Tutorial

The upper panel is the control panel; the lower panel is for output. The control panel contains
two buttons. Selecting the "Date" button with the mouse causes the current date and time to be
displayed in the output panel. Selecting the "Resources” button causes the tool’s CPU resource
utilization information to be displayed in the output panel.

Before proceeding with the program, let’s set up the make definitions. The source file is called
status.c and we need to include the same libraries as before. Use your favorite editor to place
the following lines in a file named makefile. This may seem like a lot of work, but it saves time
in the long run:

LIBS = -lsuntool -lsunwindow -lpixrect

status: status.o
cc status.o -o status $(LIBS)

Now it’s time to enter the C code. Carefully remaining in the same directory, place the follow-
ing program into a file called status.c (it might be helpful to recycle some code from the last pro-
gramy.

#include <stdio.h>

#include <suntool/tool_hs.h>

#include <suntocl/panel.h>
#include <sys/resource.h>

struct tool *tool:

struct toolsw *control_panel_sw, *output_panel_sw;
Panel control_panel, output_panel;

Panel_item output_item, date_item, rusage_item;

int sigwinched (), date_proc(). rusage_proc():

main(argc, argv)
int argc;
char *argv[]:

1f ((tool = tool_make (WIN_LABEL, argv[O], 0)) == NULL) {
fputs ("Can't make tool\n", stderr):

exit (1) ;

),

/* setup control panel */

if ((control_panel_sw = panel_create(tool, 0)) == NULL) {
fputs ("Can't create control_panel\n", stderr):
exit (1) ;

3

control_panel = control_panel_ sw->ts_data;

date_item = panel_create_item(control_panel, PANEL_BUTTCN,

PANEL_LABEL_STRING, "Date",
PANEL_NOTIFY_PRCC, date proc,
0):
rusage_item = panel_create_item(control_panel, PANEL_BUTTON,
PANEL_LAREL_STRING, "Resources",
PANEL_NOTIFY_PROC, rusage_proc,
Q).
panel_fit_height (control_panel);

32 Revision B of 156 April 1985

SunWindows Tutorial Panels

/* setup output panel */

1f ((output_panel_sw = panel create(tool, 0)) == NULL) {
fputs ("Can't create output_panel\n", stderr):
exit(1);

}

ocutput_panel = output_panel_sw->ts_data;
output_item = panel_create_item(output_panel, PANEL_MESSAGE,
PANEL_LABEL_STRING, "Select with left mouse butten.", 0):

signal (SIGWINCH, sigwinched):

tool_install (toel); /* install tool in window tree */
tool_select (tool, O}); /* main loop to read input */
tool_destroy (tool); /* clean up tool */
}
sigwinched({) /* note window size change and damage repalr signal */
{
tool_sigwinch (teol);
}

date_proc (item, event) /* get and display date and time */
Panel_item ltem;
struct inputevent *event;

{
long clock;
char *ctime():
time (&clock) ;
panel_set (output_item, PANEL_LABEL_STRING, ctime (&clock}, 0):
}
rusage_proc(item, event) /* get and display resource usage */
Panel_item item;
struct inputevent *event;
{
struct rusage rusage;
static char buf[80C]:
getrusage (RUSAGE_SELF, &rusage):
sprintf (buf, "User YD secs %D millisecs: System }D secs ZD millisecs",
rusage.ru_utlime.tv_sec, rusage.ru_utime.tv_usec/1000,
rusage.ru_stime.tv_sec, rusage.ru_stime.tv_usec/1000) ;
panel_set (output_item, PANEL_LABEL_STRING, buf, 0);
¥

First we create the tool by calling tool_make (). Next we set up the two panels. Setting up a
pane! involves several steps. In order to manipulate 2 panel you must have its handle, which is a
variable of type Panel. To obtain a Panel, first create the panel subwindow with
panel_create (), then use the ts_data field of that subwindow. Once you have the panel’s
handle in hand, you can populate the panel with items by calling panel_create_item() .

In status.c, the steps outlined above are followed first for the control panel, then for the out-
put panel. Note that after creating the control panel and its items, there is a call to
panel_fit_height (). This sets the panel’s height to fit the items which have been created
so far within the panel. There is no such call following the creation of the output panel, so the

Revision B of 15 April 1985 3-3

Panels SunWindows Tutorial

output panel extends all the way to the bottom and right edges of the tool.

panel_create_item() (and most other panel routines) take as arguments variable-length,
null-terminated aifribute liats. For example, the call to create the control panel’'s date_item
specifies that the label appearing on the screen will be the string "Date”, and the procedure to be
called when the user selects the item with the mouse is date_proc{). (For details on attri-
butes or other aspects of panels, consult Chapter 8 of the Sunwindows Reference Manual).

date_proc () simply gets the current time, and then calls panel_set () to change the label
of output_item to that time formatted as a string.

Now that you have a makefile and a source file, you simply type make to compile and link
the program:

4 make

cc -¢ status.c

cc status.o -0 status -lsuntool -lsunwindow -lpixrect
Z status

The system responds with the names of the file being compiled, and the modules and libraries
being loaded. When program building is completed, run the program by typing its name,
status. When the tool window comes up, move the mouse arrow and click the left button for
each of the two choices. When you’re done, press the right button over the tool’s namestripe,
bringing up the tool manager menu, and Quit the tool.

3.2. Adding Panel Items

As an exercise, add a panel button that allows the user to quit. Hint: you need to have a
quit_proc () function defined, which looks something like this:

quit_proc(ip, new_value)

Panel_item ip;
int new_value;
struct inputevent *event;
{
/* announce to user that we're quitting */
panel_set (output_item, PANEL_LABEL_STRING, "Bye!", O):
/* terminate tool's execution %/
tocl_done (tool) ;
b

You also need to declare the global variable quit_item (of type Panel_item) and the integer
function quit_proc (). Then you need a few lines to create a panel item for quitting, which
would call the quit procedure above.

A hint on debugging programs using panels: if your program compiles correctly but core dumps
when you execute it, check to see if all of the attribute lists in panel routine calls are properly
formed. In particular, the list must be terminated with a zero. Also, remember that
panel_create () takes one mandatory argument {the tool} followed by an attribute list, while
panel_create_item() takes two mandatory arguments (the panel and the type of the item)
followed by an attribute list.

3-4 Revision B of 15 April 1985

C

C

Chapter 4

Pixrects

This chapter explains how to define and use pizrects, which are rectangles composed of pixels.
Cursors and icons are two objects that use pixrects. A cursor is a 16 by 16 bit pattern that
tracks the position of the mouse. An icon is a larger bit pattern (often 64 by 64) that represents
a closed window. Both cursors and icons are manipulated using routines from the pixrect
library, which provides a device-independent interface to pixel operations on Sun workstations.
Among other things, the library provides routines for displaying text, drawing vectors, and for
painting and transferring pixel rectangles. To the programmer using this library, all pixrects are
described in the same way, and manipulated by the same operations.

A particular pixrect may refer to an entire display, or to small images such as a.character in a
font, or a cursor image. The array containing the pixels may be visible on the display, or it may
be stored in memory or on disk. Peculiarities of specific devices are hidden below the pixrect
interface. Some devices provide hardware support for common operations, while others require
all operations to be performed in software.

First you will run a program that changes the default cursor. Then you will modify the program
so it saves the old cursor, makes a new cursor, and changes back again to the original cursor.
Finally, you will learn to use icons, and modify the status tool from the last chapter so it has a
fancy icon when closed.

4.1. Changing the Cursor

The following program creates a tool window, then changes the mouse arrow into a crosshair.
The crosshair was created with icontool, one of the utilities on a standard Sun system. The
icontool program wrote out a bitmap in hex codes, which gets included into the source code
below. What looks like an illegal external function call to DEFINE_CURSOR () is actually a
macro that creates a cursor structure named crosshair. The DEFINE_CURSOR () macro
takes care of declaring some substructures of the cursor, one of which is a pixrect to hold the
cursor image.

Enter the following program into a file called curser.c:
#include <stdio.h>
#include <suntool/tocl_hs.h>

struct tool *tool;
int sigwinched();

DEFINE_CURSOR (crosshair, 7, 7, PIX_SRC | PIX_DST,
Ox0100, Ox0l1lC0, Ox0100, Ox01C0, Ox0100, 0Ox01l00, Ox0000, OxXFC7E,
Ox0000, O0xQl00Q, 0Ox0100, Ox0100, OxQ100, OxCl00, Ox0100, OxO000):
main(argc, argv) /* create window with crosshalr cursor */

int arge;

Revision B of 15 April 1985 4-1

Pixrects SunWindows Tutorial
char *argv([]:
{
if ((tool = toel_make (WIN_LABEL, argv[0]., ©)) == NULL)} {
fputs ("Can't make tool\n", stderr):;
exit (1);
}
signal (SIGWINCH, sigwinched}:
tool_install (tool); /* in window tree */
win_setcursor (tool->tl_windowfd, &crosshair); /* change cursor */
tool_select (tool, 0O); /* loop for input #*/
tool_destroy (tool); /* tool clean up */
}
sigwinched () /* note window size change and damage repair signal #*/
{
tool_sigwinch(tool);
}

Figure 4-1: Running the cursor program

Most everything here is familiar, except the call to win_setcursor (), which changes the
mouse’s arrow cursor into the crosshair. You need to supply the tool window file descriptor as
the first argument to win_setcursor (), and the address of the crosshair cursor structure as
the second argument. Think of window file descriptors as a low-level way of referring to a win-
dow. Note that no attempt is made to save the old cursor; the next example shows how to save
and restore the old cursor.

Revision B of 15 April 1985

-

SunWindows Tutorial Pixrects

Try moving the mouse crosshair onto the namestripe. Notice how the crosshair disappears —
the cursor is the same color as the namestripe. A raster-op is a method for combining one bit-
map with another. The raster-op specified in the DEFINE_CURSCR () macro above is a logical
OR of the cursor bitmap and the destination window. Change the raster-op so that it is an
exclusive OR of the cursor and destination:

PIX_SRC*PIX_DST,
Now recompile the program. Run it and note how the cursor appears when it moves over the

namestripe (it’s now the opposite of its background). Here is a table of some useful raster-ops:

Table 4-1: Some useful raster-ops

Raster-op Effect
PIX_SRC overwrite destination with source
PIX_SRC | PIX_DST paint destination with source bitmap
PIX_SRC -~ PIX_DST inverted paint of destination with source
PIX_SRC & PIX_DST mask destination with source bitmap
PIX_NOT(PIX_SRC) & PIX_DST mask destination with inverted source
PIX_NOT(PIX_DST) invert destination area

Painting and masking have special meanings here: painting is ORing while masking is ANDing.
The shape of the bitmap is more likely to be preserved in painting than in masking. Since the
cursor and namestripe are both black, and ORing one with one gives one, the cursor disappears
when it’s over the namestripe. By contrast, exclusive ORing one with one gives zero, so the cur-
sor still appears when on the namestripe. If you don’t understand raster-ops, experiment by
modifying the program to use other raster-ops in the table.

For black and white backgrounds, PIX_SRC"PIX_DST is preferable, but for white and grey
backgrounds, PIX_SRC|PIX_DST is the best choice,

In addition to these raster-ops, there are two operations to set and clear pixels. The first is
PIX_SET, which turns a pixe! on (black), and the second is PIX_CLR, which turns a pixel off
{white). By definition, black is one and white is zero.

4.2. Restoring the Old Cursor

Often you want to change back to the old cursor after something happens. The following pro-
gram sets an alarm to go off in five seconds. The resulting SIGALRM calls the
changecursor () routine to restore the old cursor. This alarm mechanism might be used by
software that asks you to confirm an operation that would irreversibly affect a file. If no
confirmation arrives within five seconds, the operation would not be performed, and the software
would return to its normal state. One program that dynamically changes the cursor is
chesstool, which shows an hourglass when you have to wait for the computer to make its next
move.

Cursors are defined on a subwindow-by-subwindow basis. The win_setcursor () routine
should be passed the file descriptor of the window where you want the cursor changed.

Copy the file cursoer.c into a file named restore_cursor.c, which you can edit to lock like the fol-
lowing program. Most of the lines in this program are the same as ones in the last program:

Revision B of 15 April 1985 4-3

Pixrects SunWindows Tutorial

#include <stdio.h>
#include <suntocl/tocl_hs.h>

struct tool *tool;
int sigwinched(), changecursor():

DEFINE_CURSOR (crosshair, 7, 7, PIX_SRC | PIX D3T,
Ox0100, 0Ox0100, Ox0100, Ox0100, OxQ0100, Ox0100, Ox0000, OxFCTE,
0xC000, 0x0100, 0Ox0100, 0x0100, Ox0100, 0x0100, OxQ100, 0x0000) ;
DEFINE_CURSCR (oldcursor, 0, 0, O,
0, 0, 0, 0, 0, 0, 0,0, 0,0,0,0, 0, 0, 0, 0);

main (argec, argv) /* create window with 5 second crosshair cursor */
int arge:
char t*argv[]:.

{
if ((tool = tool_make (WIN_LABEL, argv[0Q], O}) == NULL} {

fputs("Can't make tool\n", stderr);
exit (1) :

}
signal (SIGWINCH, sigwinched):
tool_install (tool); /* in window tree */
win_getcursor (tool->tl_windowfd, &oldcursor); /* save cursor */
win_setcursor (tool->tl_windowfd, &crosshalr); /* change cursor */
signal (SIGALRM, changecursor): /* signal routine */
alarm{5); /* alarm in 5 seconds */
tool_select (tool, 0O): /* loop for input #*/
tool_destroy(tool): /* tool clean up */ (:;>

}

changecursor () /* change cursor back to original image */

{
win_setcursor (tool->tl_windowfd, &oldcursor):

}

sigwinched () /* note window size change and damage repair signal */

{
tool_sigwinch(tool};

}

This program shows the necessary steps for saving the old cursor. Setting the cursor is simple —
all you need is one c¢all to win_setcursor (). But saving the old cursor is more prome to
error. Calling win_getcursor () is not enough — one must allocate space for the cursor
structure and its substructures. The macro DEFINE_CURSOR does this for you. Finally, after
the five second alarm goes off, the UNIX signal mechanism calls the changecursor () function,
which sets the cursor back to what it was originally.

4.3. Changing the Tool Icon

When the status program in the last chapter goes iconic, its icon isn’t very fancy — just the
program’s name in an outline square. A sophisticated tool should have its own icon, so that look-
ing at the icon tells you what the tool does. This isn’t hard to accomplish: first you must use the
icontool program to create an icon and store it in some file (see icontool(1)); then, in your

4-4 Revision B of 15 April 1985

-

SunWindows Tutorial Pixrects

program, declare an array that contains the data in the icontool output file (see below), and
call DEFINE_ICON_FROM_IMAGE (), supplying the desired name of the icon structure and the
name of the array.

unsigned shert icon_image[256] = {

#include <images/status.icon>

}:

DEFINE_ICON_ERCM_IMAGE (icon, icon_image}:
When you create the tool with tool_make (), you must specify the address of the icon strue-
ture as a value paired with the WIN_ICON keyword.

if ((tool = tool_make (WIN_LABEL, argv{0], WIN_ICON, &icon, O)) == NULL) {
fputs ("Can't make tool\n", stderr);
exit(1);

}

Make these changes to the status program. Now compile the program by typing make
status to the shell. Only the status.o module compiles, and then the program will be loaded
from the module and the three libraries.

Now run the program by typing status. The tool comes up in open form. Move the mouse
arrow to the namestripe, click the right button down, and release it inside the Close option.
The tool goes iconic and appears at the edge of your screen. Now move the mouse arrow to the
icon, and click the left button to open the tool. The program works just as it did before, but
now it has an icon of its own.

Figure 4-2: The status program’s icon

Revision B of 15 April 1985 4-5

Chapter 5
Pixwins

A pixrect is a low-level object that defines a rectangle composed of pixels. A pizwin, on the
other hand, is a higher-level object that encapsulates locking and clipping information needed to
support multiple overlapping windows. Pixwin routines are contained in the sunwindow
library.

In order to learn about pixwin library calls, you will modify the status program from a previ-
ous chapter, employing pixwin functions to do fancy graphics. You will move other windows
over top of your tool, thus demonstrating clipping and locking facilities. The output panel will
be replaced by a graphics subwindow in which a clock image and some inverted text will be
displayed.

5.1. Sample Program: status_image.c

Let’s return to the status program presented in the previous chapter. We will modify that
program so it uses pixwin routines to place pixrects on the screen. In particular, it puts up a
clock, rather than merely printing out the time. In order to accomplish this, it’s best to use a
graphics subwindow, which provides a single window (a canvas) on which to write graphical out-
put. Before going any further, however, you need to change your makefile to loock like this; all
you need to add are the two lines to specify how to make status_image:

LIBS = -1lsuntool -lsunwindow -lpixrect

status_image: status_image.o

cc status_image.o -o status_image $(LIBS)
status: status.o

cc status.o -o status $(LIBS)

Now, you have to modify the program so it includes definitions for a clock image. You need the
clock outline, available on-line as a suntools icon image, and the clock hands, available on-line in
the suntools source directory. The clock cutline is declared as a static memory pixrect using the
mpr_static macro call.

Copy the file status.c to 2 file named status_image.c, and edit the new file to look like this:

#include <stdio.h>

#include <suntool/tool_hs.h>
#include <suntool/panel.h>
#include <suntool/gfxsw.h>
#include <sys/resource.h>

struct tool *tool;

struct toolsw *control_panel _sw, *gfx_sw;
struct gfxsubwindow *gfx;

Panel control_panel:

Panel_item date_jitem, rusage_item;

Revision B of 15 April 1985 5-1

Pixwins SunWindows Tutorial

5-2

int sigwinched (), date_proc(), rusage_proc():
unsigned short icon_image[256] = { C:;)
#include <images/status.icon>
}:
DEFINE_ICON_FROM_IMAGE (icon, icon_image);
unsigned short clock_image[256] = { /* clock outline */
#include <images/clocktool.lcon>
¥
mpr_static(clock_pr, 64, 64, 1, clock_image);
#include "/usr/src/sun/suntool/clockhands.h" /* Define struct hand */
#include "/usr/src¢/sun/suntool/clockhands.c” /* Table of hand positions */
main{argc, argv) /* panel subwindow for date or resource usage */
int argc;
char *argv([]:
{
if ((tool = tool_make (WIN_LABEL,argv[0], WIN_ICON, &icon, 0)} == NULL} {
fputs ("Can't make tool\n", stderr):
exit(1):
}
/* setup control panel */
if ((control_panel_sw = panel_create(tool, 0)) == NULL) {
fputs ("Can't create control_panel\n", stderr); |
exit (1) Q
}
control_panel = control_panel_sw->ts_data;
date_ltem = panel_create_item{control_panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Date",
PANEL_NOTIFY_PROC, date_proc,
o) ;
rusage_item = panel_create_item(contreol_panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Resources",
PANEL_NOTIFY_PROC, rusage_proc,
0);
panel_fit_height (control_panel);
/* setup grephics subwindow */
if ((gfx_sw = gfxsw_createtoolsubwindow(tool, "",
TOQOL_SWEXTENDTOEDGE, TOOQOL_SWEXTENDTICEDGE, NULL)) == NULL) {
fputs ("Can't create graphics subwindow\n", stderr);
exit(l):
}
gfx = (struct gfxsubwindow *) gfx_sw->ts_data;
gfxsw_getretained (gfx);
signal (SIGWINCH, sigwinched);
tool_install (tool); /* install tool in window tree */
tool_select (tool, O); /* main loop to read input */
tool_destroy(tool); /* clean up tool */
} -

Revision B of 15 April 1985

SunWindows Tutorial Pixwins

sigwinched () /* note window size change and damage repair signal */
{

O tool_sigwinch(tool);
}

date_proc(item, event) /* put clock in graphics subwindow */
Panel_item item;
struct inputevent tevent;
{
#define DATE_X _OFEFSET 10
#define DATE_Y_OFFSET 10
long clock;
struct tm *local;
struct hands *hand;

time (&clock) ;

local = localtime (&clock); /* get time of day */

/* Initialize the graphics subwindow to grey */

pw_replrop(gfx->gfx_pixwin, O, 0, gfx->gfx_rect.r_width,
gfx->gfx_rect.r_height, PIX_SRC, tool_bkgrd, O, 0);

/* write clock outiine */

pw_write{gfx->gfx_pixwin, DATE_X_OFFSET, DATE_Y_OFFSET,
clock_pr.pr_width, clock_pr.pr_height, PIX SRC, &clock_pr, 0, 0);

/* write hour hand */

hand = &hand_points[{local->tm hour*S + (local->tm.min + 6)/12) ¥% 60);

pw_vector (gfx->gfx_pixwin,

DATE_X_QFFSET + hand->x1, DATE_Y_OFFSET + hand->yl,
O DATE_X_OFFSET + hand->hour_x, DATE_Y OFFSET + hand->hour_y,
PIX_SET, Q);

pw_vector (gfx->gfx_pixwin,
DATE_X_OFFSET + hand->x2, DATE_Y_OFFSET + hand->y2,
DATE_X _OFFSET + hand->hour_x, DATE_Y OFFSET + hand->hour_y,
PIX_SET, 0);

/* write minute hand */

hand = &hand_points[local->tm _min};

pw_vector (gfx->gfx_pixwin,
DATE_X_OFFSET + hand->x1, DATE_Y_OFFSET + hand->yl,
DATE_X_CFFSET + hand->min_x, DATE_Y_OFFSET + hand->min_y,
PIX_SET, 0);

pw_vector (gfx->gfx_pixwin,
DATE_X_OFFSET + hand->x2, DATE_Y_OFFSET + hand->y2,
DATE_X_OFFSET + hand->min_x, DATE_Y_OFFSET + hand->min_y,
PIX_SET, 0):

/* write second hand */

hand = &hand_points[local->tm_sec];

pw_vector (gfx->gfx_pixwin,
DATE_X_OFFSET + hand->sec_x, DATE_Y_OFFSET + hand->sec_y,
DATE_X_ OFFSET + hand->min_x, DATE_Y_OFFSET + hand->min_y,
PIX_SET, 0):;

}

rusage_proc(item, event) /* put resource usage in graphics subwindow */

Panel_item item;
; struct inputevent tevent;

Revision B of 15 April 1985 5-3

Pixwins SunWindows Tutorial

{
#define RUSAGE_X_OFFBET 10
#define RUSAGE_Y_OFFSET 20

struct rusage rusage;
static char buf[80]:

getrusage (RUSAGE_SELF, &rusage);

sprintf(buf, "User %D secs ¥D millisecs; System %D secs %D millisecs”,
rusage.ru_utime.tv_sec, rusage.ru_utime.tv_usec/1000,
rusage.ru_stime.tv_sec, rusage.ru_stime.tv_usec/1000) ;

/* clear screen */

pw_writebackground (gfx->gfx_pixwin, ©, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PIX_CLR);

/* write out time resource usage string in reverse video */

pw_text (gfx->gfx_pixwin, RUSAGE_X_OFESET, RUSAGE_Y_OFFSET,
PIX_NOT(PIX_SRC), NULL, buf);

3

Much of this program should be familiar, since much of it is recycled from the first status pro-
gram. The date_proc () and rusage_proc () functions, however, are quite different.

Figure 5-1: Running the status_image program

status-mnage
fate Resources

First look at rusage_proc. The field gfx_rect contains the dimensions of the graphics
subwindow, which is then cleared by passing the origins and dimensions of the subwindow, along
with the operation PIX_CLR, to pw_writebackground().

-

5-4 Revision B of 15 April 1985

SunWindows Tutorial Pixwins

Now look at date_proc (). After getting the time, it floods the screem with a grey pattern
using pw_replrop (). The clock outline is placed in the subwindow with pw_write (), which
must be given the origins, dimensions, operation PIX_SRC, and address of the clock pixrect.
The final two arguments specify the origin in the source pixrect, usually zero. The hands are
placed on the clock with pw_vector (). Both the hour and the minute hands are elongated tri-
angles, so they have two origins near the center of the clock: x1,y1 and x2,y2. The hour hand
is shorter then the minute hand, so its destination hour_x, hour_y is closer to the center of the
clock than the minute hand’s destination min_x,min_y. The second hand is much simpler,
since it has only the origin sec_x, sec_y, and uses the same destination as the minute hand
does.

5.2. Explicit Locking

Every time a pixwin routines accesses the screen, it needs to get the exclusive right to do so. It
acquires the display lock, accesses the screen and then releases the display lock. Display lock
access is a relatively expensive operation. So, if you can do it only once for a series of pixwin
calls then you can save time by reducing graphics system overhead.

You are now going to optimize the part of your program that displays the clock image. Add the
lines:

/* Do explicit display locking (for efficiency) */
pw_lock (gfx->gfx_pixwin, &gfx->gfx_rect);

right after the call to localtime in date_proc. Also, add the lines:

/* Release display lock */
pw_unlock (gfx->gfx_pixwin);

at the end of the routine date_proc. Now, each of the pixwin calls between pw_lock and
pw_unlock wouldn’t have to gain display access rights and should run quicker. Unfortunately,
you may not notice any difference in the speed because there are not enough pixwin operations
to show the improvement. However, other applications can be sped up significantly by using
explicit display locking.

5.3. Retained Subwindows

We are using a retained graphics subwindow in status_image. With a retained subwindow,
the system keeps an image of the window in memory. If the window is damaged (for example,
covered and then exposed), the image in memory can be copied back in order to repair the win-
dow. Only a single call is necessary to retain a graphics subwindow:

gfxsw_getretained{gfxsw) ;
The graphics subwindow is the only pre-packaged type that can be retained.

There is more detail on damage and how to repair it in a later chapter.

Revision B of 15 April 1985 5-5

Chapter 6

Input Handlers

The 4.2 BSD system call select () is used for synchronous I/O multiplexing. It waits for some-
thing specific to happen without consuming any resources. You tell it what to wait for. Tradi-
tionally, UNIX I/O has been synchronous — the system blocks during a read or write. By multi-
plexing synchronous I/Q, it is possible to have multiple entities waiting for events simultane-
ously. Originally, select () was invented for networking, but it is also useful for interactive
graphics. In a window system, for example, each subwindow is a separate I/O entity.

In this chapter you will learn how to read input from the mouse by writing your own select
handler. Each subwindow gets notified of input events, such as mouse or keyboard input. The
program explicitly states which events it is interested in receiving. Events ignored by a subwin-
dow go to the tool window. If you want certain monse buttons to have a special effect in a cer-
tain subwindow, you have to enable the events you want to consider for that subwindow.

We will work on a program that allows you to sketch with the mouse. As rectangles appear in a
large sketchpad window, pixels appear in a small proofing window, For this program, we use
retained graphics subwindows because we want repainting to be done for us automatically.

6.1. Sample Program: sketch.c

Before you proceed, modify your makefile so it contains these two lines above the other
dependencies:

sketch: sketch.o
cc sketch.o -o sketch §{LIBS)

The idea behind this tool is to have two subwindows: a large window to act as the sketchpad,
and a small window beside it containing a proofing image of what’s being sketched. Since the
sketchpad and proof will be 40 x 40, we need to make sure the tool window is the right size. The
call to tool_make () has to look something like the following:

tool = tool_make (

WIN_LABEL, argv[0].

WIN_TOP, 100,

WIN_LEFT, 100,

WIN_WIDTH, wsiz + psiz + (TOOL_BORDERWIDTH * 3),

WIN_EEIGHT, wsiz + (font->pf_defaultsize.y +2) + TCOL_BORDERWIDTH,
0):

The window height is (40 * 168) pixels, plus the height of the namestripe (in this case, this is the
height of the font plus 2), plus the size of the bottom border. The window width is (40 * 16) pix-
els, plus 40 for the proof window, plus 15 pixels for three borders. The sketchpad subwindows is
(40 * 18) pixels square, while the proof subwindow is 40 pixels square. In order to make sure the
entire tool window fits on the screen, we position it 100 pixels down from the top, and 100 pixels
from the left edge of the display.

Revision B of 15 April 1985 ' 6-1

Input Handlers

SunWindows Tutorial

Now enter this program into a file called sketch.c:

#include <stdio.h> c)

#include <suntool/tool_hs.h>
#include <suntool/gfxsw.h>

6-2

struct tool *tool;

struct toolsw *sgsw, *pgsw;

struct gfxsubwindow *skaetch, *proof;

int sigwinched (), do_select():

int sqgsiz = 16;
int psiz = 40;

main{argc, argv) /* tool with sketchpad and pixel image */

int argc:
char *argv([]:

struct inputmask mask;
struct pixfont *font;
int wsiz:

wsiz = sqgqsiz * psiz;

font = pw_pfsysopen () ;

if ((toecl = tool_make(
WIN_LABEL, argv[0],
WIN_TOP, 100,

1

WIN_LEFT, 100, O
WIN_WIDTH, wsiz + psiz + (TOOL_BORDERWIDTH * 3),
WIN_HEIGHT, wsiz + (font->pf_defaultsize.y + 2) + TOOL_BORDERWIDTH,
0)) == NULL)
fputs ("Can't make tool\n", stderr}:
exit(1);
}

/* setup sketch subwindow (including select routine} */

if ((sgsw = gfxsw_createtoolsubwindow(tool,"" wsiz,wsiz,0)) == NULL} {
fputs ("Can't create sketch graphics subwindow\n", stderr);
exit(1);

}

sketch = (struct gfxsubwindow *)sgsw->ts_data:

gfxsw_getretained (sketch) ;

sgsw->ts_lo.tlo_selected = do_select;

/* setup mouse buttons for sketch subwindow {can't COR them together) */
input_imnull (&mask) ;
win_setinputcodebit (&mask, MS_LEFT):
win_setinputcodebit (&mask, MS_MIDDLE):
win_setinputcodebit (&mask, LOC_MOVEWHILEBUTDOWN) ;
win_setinputmask {sketch->gfx_windowfd, &mask,
(struct inputmask *)NULL, WIN_NULLLINK):

/* setup proof subwindow */

if ((pgsw = gfxsw_createtoolsubwindow(tool, "", psiz,psiz,0)) == NULL)
fputs ("Can't create proof graphics subwindow\n", stderr):

Revision B of 15 April 1985

-

SunWindows Tutorial Iaput Handlers

exit(1);
}
proof = (struct gfxsubwindow *)pgsw->ts_data;
gfxsvw_getretained (proof) ;

/* normal boilerplate */

signal (SIGWINCH, sigwinched):

tool_install (tool) ; /* in window tree */
tool_select (tecol, 0): /* loop for input */
tool_destroy (tool) ; /* tool clean up */

}

sigwinched () /* note window size change and damage repair signal */
{

}

tool_sigwinch(tool):

do_select (sw, ibits, obits, ebits, timer) /* respond to user input */
caddr_t sw;
int *ibits, *obilits, *ebits;
struct timeval #*#*timer;

struct inputevent le;
static drawval;
int x, y:

input_readevent (sketch->gfx_windowfd, &ie):;
/* if button up, else button down */
if (win_inputnegevent (&ie))
goto done:;
else 1f (ie.le_code == MS_LEFT)
drawval = PIX_SET;
else if (ie.le_code == MS_MIDDLE)
drawval = PIX_CLR:;
/* palint rectangle and dot */
x = le.le_locx - {ie.ie_locx ¥ sqgsiz);
y = le.le_locy - {ie.ie_locy ¥ sgsiz):
pw_writebackground (sketch->gfx_pixwin, x, y, sqsiz-1, sgsiz-1, drawval).
pw_put {proof->gfx_pixwin, x/sqsiz, y/sqsiz, drawval==PIX SET ? 1 : O):
done:
*ibits = *pobits = tebits = O;

Revision B of 15 April 1985 6-3

Input Handlers SunWindows Tutorial

Figure 6-1: Running the sketch program

'
I

In the first setup section, the graphics subwindow pointers for each of the tool subwindows are
set to point at ts_data, and are coerced into pointers to objects of the proper type. Both

graphics subwindows are retained so they can repair themselves if they become damaged (dam-
age will be discussed in a later chapter).

The proper mouse buttons have to be enabled. First, input_imnull (} is called to initialize
the input mask so that all input codes are disabled. Then, the left, middle, and button-down-
move code bits are turned om in the input code mask. Finally, the input mask is set so that
these input events, and no others, are recognized.

Nothing happens in the sketchpad subwindow until the first mouse button is pushed. At that
time, the tool_select () routine calls do_select (), which reads the input event and deals
with it appropriately. This routine is called once for each input event.’

Input events are read with the input_readevent () routine. Pressing the left button yields a
black square (PIX_SET), while pressing the middle button yields a white square (PIX_CLR).
The input event location ie_locx,ie_locy is rounded down to the nearest multiple of
sgsiz. A call to pw_writebackground() draws the 18 x 16 square in the sketchpad window,
whereas 2 call to pw_put () draws the single pixel in the proof window.

6-4 Revision B of 156 April 1985

Chapter 7

Pop-Up Menus

In this chapter you will learn how to create menus which allow users to select one of several
options listed. The SunWindows package provides library routines that make it easy to create a
pop-up menu, which appears on the screen when you push the right-hand mouse button, and
disappears when you release the mouse button. Pop-up menus have the advantage that they
take up screen space only when invoked. In contrast, for example, a panel remains on the
display the entire time the tool runs.

We will continue working on the sketch program, adding an option to clear the window, and
another to blacken the entire window. These options will be choices on a pop-up menu. Because
the pop-up menu will apply only inside the first graphics subwindow, users will still be able to
access the tool manager menu from the namestripe.

7.1. Sample Program: sketch.c

Edit sketch.c and add these lines to the global declarations at the top of the program:

#include <suntcol/menu.h>
#define CLEAR_BUTTON (caddr_t) ‘¢’
#define BLACKEN_BUTTON (caddr_t)}'b'

struct menuitem menu_items[] = {
{ MENU_IMAGESTRING, "clear", CLEAR_BUTTCN },
{ MENU_IMAGESTRING, "blacken", BLACKEN_BUTION }
}:
struct menu menu_body = {
MENU_IMAGESTRING, "Commands",
sizeof (menu_items) / sizeof (struct menuitem),
menu_Jitems, NULL, NULL
}:

struct menu #*menu_ptr = &menu_body;
Two strings, clear and blacken, appear as options in the pop-up menu, which is labeled

Commands. When the clear or blacken options are chosen, the menu_display () library
routine returns a pointer to the menu item containing c or b respectively.

The right mouse button is normally used for popping up the menu. In order to make use of it,
we need to enable it inside the tool subwindow. This line has to be added beneath the other
calls to win_setinputcodebit ():

win_setinputcodebit (&mask, MS_RIGHT);

This routine must be called once for every event being enabled (the event flags cannot be ORed
together). The do_select () routine has to be modified so it does something when the right
mouse button is pushed. All that’s needed is another else if statement and a goto label to
circumvent the normal drawing of rectangles and pixels. Here’s what the routine looks like after

Revision B of 15 April 1985 7-1

Pop-Up Menus SunWindows Tutorial

these modifications:

do_select (sw, ibits, obits, ebits, timer) /* respond to user input */ O
caddr_t sw;
int *ibits, *obits, *eblts;
struct timeval *#*timer;

struct inputevent ie;
statlic drawval;
int %, y;

input_readevent(sketch—>gfx_windowfd, &ie);
/* if button up, else button down */
if (win_inputnegevent (&ie))
goto done;
else if (ie.ie_coda == MS_LEFT)
drawval = PIX_SET;
else if (ie.ie_code == MS_MIDDLE)
drawval = PIX_CLR;
else if (ie.lie_code == MS_RIGHT) {
do_menu (&ie) ;
goto done;
}
/* paint rectangle and dot */
x = le.ie_locx - (le.ie_locx ¥ sqsiz):
y = ie.ie_locy - (ie.le_locy % sqgsiz);
pw_writebackground (sketch->gfx_pixwin, x, y, sgsiz-1, sgsiz-1, drawval};
pw._put (proof->gfx_pixwin, x/sqsiz, y/sqsiz, drawval==PIX _SET ? 1 : 0):
done:
kibits = *obits = *ebits = OQ;
}

The only thing left is to add the do_menu () routine, which performs actions requested from the
pop-up options menu. Add this routine at the end of the program:

do_menu (ie) /* perform reguests issued from pop-up menu */
struct inputevent *ie;

{
struct menuitem *mi;
struct rect r;

if {ml = menu_display(&menu_ptr, ie, sketch->gfx_windowfd)) {
win_getsize (sketch->gfx_windowfd, &r};
if (mi->mi_data == CLEAR_BUTTON) {
pw_writebackground (sketch->gfx_plxwin,
0, 0, r.r_width, r.r_height, PIX_CLR):
pw_writebackground (preof->gfx_pixwin,
0, 0, psiz, psiz, PIX _CLR);
} else if (mi->mi_data == BLACKEN_BUTTON) {
pw_writebackground (sketch->gfx_pixwin,
0, 0, r.r_width, r.r_height, PIX _SET):
pw._writebackground (proof->gfx_pixwin,
0, 0, psiz, psiz, PIX_SET).

} -

7-2 Reviston B of 15 April 1985

SunWindows Tutorial Pop-Up Menus

Now compile the program by typing make, and try out the options on the new pop-up menu.

Figure 7-1: Running the sketch_menu program

sheteh_meng

= [clear
RNEEERE

blacken

7.2. Adding Options to the Menu

As an exercise, add an option to invert the sketchpad and bitmap window. This should be
easy enough if you modify the menuitem structure. Hint: you can use PIX_NOT {PIX_DST) as

an argument to pw_writebackground () to invert a pixwin.

Revision B of 15 April 1985

Chapter 8

Window Reshaping

In this chapter you will learn how to handle changes in window shape and size. You have to
watch out for the SIGWINCH signal, which informs you that something has changed. Panels
and message subwindows will be updated automatically whenever necessary, but a graphics
subwindow needs attention when its size changes.

Windows may be stretehed or shrunk. Execute the status_image program again. Now move
the mouse arrow to the namestripe, and press the right button to get the pop-up menu. Pick the
Stretch option, and use the left button to extend the program’s window out to the right.
When it redraws, note how the newly exposed part of the graphics subwindow is garbled. In
such a case, the subwindow has been damaged and lacks the proper repair.

While you're at it, use the Stretch option to shrink the window until it’s smaller than the
clock or the process times. Notice how these things are clipped if their image is too big for the
window. (This is not damage, so we don’t need to worry about it.) Stretch the tool window
back to its original size, and notice how the clock or process times reappears.

8.1. SIGWINCH Signal

A SIGWINCH is an asynchronous signal that notifies the window owner process that its image is
incorrect, either due to a size change or for some other reason. This signal is transmitted in four
different situations:

(1) When window size changes after stretching or shrinking.

(2) When part of a window that was covered up becomes uncovered.

(3) When a tool changes from iconic to open. (this is actually an example of (2)).
(4) When a window is first created (this is actually an example of (1)).

A SIGWINCH signal is not transmitted when a window is moved or dragged (unless it becomes
uncovered in the process), or when a window becomes partially obscured. In those cases, tools
don’t have to take special actions.

There are three ways to handle damage: with retained subwindows, redrawing through 2 clipping
list, or selective redrawing from a clipping list. We have already demonstrated the first method
in the sketch example. The second method will be covered by an example in the next chapter.
The third method, used internally by the ttysubwindow, is too complicated for this tutorial.

8.2. SIGWINCH Handlers

The proper place to repair damage is in a SIGWINCH handler routine. In the example below,
you supply a SIGWINCH handler for the graphics subwindow:

Revision B of 15 April 1985 8-1

Window Reshaping SunWindows Tutorial

gfx_sw->ts_io.tio_handlesigwinch = gfx_sigwinch;

Note that a SIGWINCH handler is different from the SIGWINCH signal catching routine
sigwinched. The signal catcher is set up via the call to signal. tool_select() calls the
SIGWINCH handler some time after sigwinched is called by the system.

There are two steps a SIGWINCH handler must take to handle a size change: rescale the con-
tents of the window, and then repaint the image. Some applications assume a window of fixed
size and so don’t need to rescale the window contents. To determine whether a window’s size
has changed, compare the window size with the size the last time a SSIGWINCH arrived.

8.3. Retained Subwindows

Although a retained subwindow relieves you of worrying about simple damage, it does not relieve
you of concerns regarding size changes. Here we show you how to deal with size chapges in a
retained graphics subwindow.

Copy the program status_image.c into a file named status_size.c. Update your make
file to be able to build status_size. Edit your program to look like the following:

#include <stdio.h>

#include <suntocl/tool_hs.h>
#include <suntocol/panel.h>
#include <suntool/gfxsw.h>
#include <sys/resource.h>

struct tool *tool;
struct toolsw *control_panel_sw, *gfx_sw;
struct gfxsubwindow *gfx;

Panel control_panel;
Panel_item date_item, rusage_item, latest_command;
int sigwinched(), date_proc()., rusage_proc(), gfx_sigwinch();

unsigned short icon_image[256] = {
#include <images/status.icon>

}:

DEFINE_ICON_FROM_IMAGE (icon, icon_image):

unsigned short clock_image([256] = { /* clock outline */

#include <images/clocktool.icon>

}:

mpr_static{clock_pr, 64, 64, 1, clock_image):

#include "/usr/src/sun/suntool/clockhands.h” /* Define struct hand */

#include "/usr/src/sun/suntool/clockhands.c" /* Table of hand positions */

main(argec, argv) /* panel subwindow for date or resource usage */
int argc;
char *argv(]:

1f ((tool = tool_make (WIN_LABEL,argv{0], WIN_ICON, &icon, 0)) == NULL)
fputs ("Can't make tool\n", stderr);
exit(1);

8-2 Revision B of 15 April 1985

{

-

SunWindows Tutorial Window Reshaping

}

/* setup control panel */

if ((control_panel_sw = panel_create(tool, 0)) == NULL) {
fputs ("Can't create control_panel\n", stderr):;
exit(1):

}

control_panel = control_panel_sw->ts_data;

date_item = panel_create_item(control_panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Date",
PANEL_NOTIFY_PROC, date_proc,
e} H
rusage_item = panel_create_item(control_panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Resources™,
PANEL_NOTIFY_FPROC, rusage_proc,
0);
panel_fit_height (control_panel) ;

/* setup graphics subwindow */
if ({gfx_sw = gfxsw_createtoolsubwindow(tool, "",
TOOL_SWEXTENDTOEDGE, TOCOL_SWEXTENDTOEDGE, NULL)) == NULL} {

fputs ("Can't create graphics subwindew\n", stderr);
exit(1);

}

gfx = (struct gfxsubwindow *) gfx_sw->ts_data;

gfxsw_getretained (gfx) ;

gfx_sw->ts_ilo.tio_handlesigwinch = gfx_sigwinch;

signal (SIGWINCH, sigwinched);

tool_install (tecol); /* install tool in window tree */
tool_select (tool, 0); /* main loop to read input */
tool_destroy {tool); /* clean up tool */
}
sigwinched {) /* note window size change and damage repair signal */
{
tool_sigwinch(tool);
}

date_proc(item, event) /* put clock in graphics subwindow */
Panel_item item;
struct inputevent *event:;
{
#define DATE_X_OFFSET 10
#define DATE_Y_OFFSET 10
long clock;
struct tm *local;
struct hands *hand;

time (&clock)

local = localtime(&clock); /* get time of day */

/* Initialize the graphics subwindow to grey */

pw_replrop (gfx->gfx_pixwin, 0, O, gfx->gfx_rect.r_width,
gfx->gfx_rect.r_height, PIX_SRC, tool_bkgrd, O, 0);

Revision B of 15 April 1985 8-3

Window Reshaping SunWindows Tutorial

8-4

/* write clock outline */

pw_write(gfx->gfx_pixwin, DATE_X OFFSET, DATE_Y_ COFFSET,
clock_pr.pr_width, clock_pr.pr_height, PIX_SRC, &clock_pr, O, 0):

/* write hour hand */

hand = &hand_points[(lecal->tm hour*5 + (local->tm min + 6)/12) % 60]:;

pw_vector (gfx->gfx_pixwin,
DATE_X OFFSET + hand-»>x1, DATE_Y_OFFSET + hand->yl,
DATE_X_OFFSET + hand->hour_x, DATE_Y_OFFSET + hand->hour_y,
PIX_SET, 0):

pw_vector (gfx->gfx_pixwin,
DATE_X_OFFSET + hand->x2, DATE_Y_OFFSET + hand->y2,
DATE_X_OFFSET + hand->hour_x, DATE_Y_OFFSET + hand->hour_y,
PIX_SET, O):

/* write minute hand */

hand = &hand_points[local->tm._min];

pw_vector (gfx->gfx_pixwin,
DATE_X_OFFSET + hand->x1, DATE_Y_OFFSET + hand->yl,
DATE_X_OFFSET + hand->min_x, DATE_Y_OFFSET + hand->min_y,
PIX_SET, C);

pw_vector (gfx->gfx_plixwin,
DATE_X_OFFSET + hand->x2, DATE_Y_CEFSET + hand->y2,
DATE_X_OFFSET + hand->min_x, DATE_Y OFESET + hand->min_y,
PIX_SET, ©C);

/* write second hand */

hand = &hand_points[local->tm_sec];

pw_vector {gfx->gfx_pixwin,
DATE_X_OFFSET + hand-»>sec_x, DATE_Y_COFFSET + hand->sec_y.
DATE_X_OFFSET + hand->min_x, DATE_Y OFFSET + hand->min_y,
PIX_SET, 0);

latest_command = item;

X

rusage_proc(item, event) /* put resource usage in graphics subwindow */
Panel item item;
struct inputevent *event:;
{
#define RUSAGE_X OFFSET 10
#define RUSAGE_Y_CFFSET 20
struct rusage rusage;
static char buf[80];

getrusage (RUSAGE_SELF, &rusage);

sprintf{buf, "User %D secs %D millisecs; System %D secs %D millisecs"”,
rusage.ru_utime.tv_sec, rusage.ru_utime.tv_usec/1000,
rusage.ru_stime.tv_sec, rusage.ru_stime.tv_usec/1000};

/* clear screen */

pw_writebackground (gfx->gfx_pixwin, 0, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PIX_CLR};

/* write out time resource usage string in reverse video */

O

pw_text (gfx->gfx_pixwin, RUSAGE_X_OFFSET, RUSAGE_Y_OFFSET, PIX NOT(PIX_SRC)

NULL, buf);
latest_command = item;

Revision B of 15 April 1985

-

SunWindows Tutorial Window Reshaping

gfx_sigwinch (sw)

caddr_t sw;

{
/* Let graphics subwindow notice that sigwinched */

gfxsw_interpretesigwinch(gfx) ;
/* Let graphics subwindow update retained pixwin */
gfxsw_handlesigwinch (gfx) ;
/* See if need to redraw the window due to size change */
if (gfx->gfx_flags & CGFX_RESTART) {
gfx->gfx_flags &= “GEX_RESTART;
if {latest_command == date_item)
date_proc (date_item, NULL);
else if (latest_command == rusage_litem)
rusage_proc (rusage_item, NULL);
/* else already clear */

Turn your attention to gfx_sigwinch(). We make a few housekeeping calls to
gfxsw_interpretesigwinch() and gfxsw_handlesigwinch() so that the graphies
subwindow package can notice that 2 SIGWINCH has arrived and also take care of simple dam-
age situations with its retained image. However, if the size has changed, then the flag
GFX_RESTART is set and you need to redraw the graphics subwindow based on the state infor-
mation contained in latest_command.

Revision B of 15 April 1985 8-5

Chapter 9

User-defined Subwindows

In this chapter you will learn how to create user-defined subwindows. There are times when a
pre-packaged subwindow just doesn’t do what you need. For example, a message subwindow
doesn’t provide any control over placement of text within the subwindow. If your application
wanted to vertically center the text in the subwindow then the message subwindow package
couldn’t be used.

Whenever you employ a user-defined subwindow, you need to write your own SIGWINCH
handler. Remember, a SIGWINCH signal is sent to a tool when the window becomes open, when
window size changes, or when part of the window becomes uncovered. In the first two instances,
the entire tocl needs to be redrawn. In the third instance, only the uncovered portion needs
redrawing.

You will write and run a modified version of the program khello.c that you wrote earlier. The
new program will employ your own {user-defined) subwindow in which to draw text instead of
using a message subwindow. The text will be vertically centered in the subwindow instead of at
the top of the subwindow.

9.1. Sample Program: hello_own.c

Before you proceed, modify your makefile so it contains these two lines above the other
dependencies:

hello_own: hello_own.o
cc hello_own.o -o hello_own $(LIBS)

You are replacing the message subwindow in hkello.c with a user-defined subwindow, which is
created with tool_createsubwindow (). With these do-it-yourself subwindows, you have to
explicitly open the pixwin using pw_open. In addition, you must write your own SIGWINCH
signal handler.

Now enter these lines into a file called hello_own.c (you may want to start with hello.c):

#include <stdic.h>
#include <suntoeol/tocl_hs.h>
#include <suntool/msgsw.h>

struct tool *tool;

struct toolsw *my sw;

struct pixwin *my_pixwin:

struct rect my_rect;

int sigwinched{). my_sigwinch():

main{argc, argv) /* print "Hello world!" in user deflined subwindow */

int argc;
char t*argv[]:

Revision B of 15 April 1985 9-1

User-defined Subwindows SunWindows Tutorial

{
if ((tocl = tool_make(WIN_LABEL, argv([0], O)) == NULL) {
fputs ("Can't make tool\n", stderr);
exit (1);
}
/* Create a vanilla subwindow */
if ({my_sw = tool_createsubwindow{tool, "", TOOL_SWEXTENDTOEDGE,
TOOL_SWEXTENDTCEDGE, "Hello world!"™, NULL)) == NULL) {
fputs ("Can't create subwindow\n", stderr).
exit (1) ;
}
/* Open a pixwin with which to draw in the subwindow */
if ((my_pixwin = pw_open(my_sw->ts_windowfd)) == NULL) {
fputs ("Can't open pixwin\n", stderr);
exit(1);
)
/* Remember subwindow size so that we can notice size changes */
win_getsize (my_sw->ts_windowfd, &my_rect):
/* Register a SIGWINCH handler by setting up a function to call */
my_sw->ts_io.tio_handlesigwinch = my sigwinch:
/* Normal boilerplate */
signal (SIGWINCH, sigwinched); /* trap window change signal */
tool_install {tool): /* install tool in window tree */
tool_select (tool, 0O); /* main loop to read input */
tool_destroy(tool); /* after user exits, clean up */
}
sigwinched () /* note window size change and damage repair signal */
{
tool_sigwinch(teool);
}

my_sigwinch(sw) /* deal with subwindow size change and damage repair */
caddr_t sw;

{

struct rect nrect;

/* Determine current size of subwindow */

win_getsize{my_sw->ts_windowfd, &nrect);

/* Prepare pixwin for damage repair */

pv_damaged (my_pixwin};

/* If the size has changed */

if (my_rect.r_width != nrect.r_width ||
my_rect.r_height != nrect.r_height)

-

-

/* Set pixwin clipping to be all visible portion of subwindow */

pw_donedamaged (my_pixwin} ;
/* Clear pixwin */
pvw_writebackground (my_pixwin, O, O, nrect.r_width, nrect.r_helight,
PIX_CLR):

Revision B of 15 April 1985

-

SunWindows Tutorial User-defined Subwindows

/* Draw text, roughly vertically centered */
pv_text (my_pixwin, 10, nrect.r_height/2, PIX_SRC, NULL, "Hello worldi"});
/* Make sure call pw_donedamaged if haven't above */
if (my_rect.r_width == nrect.r_width &&
my_rect.r_height == nrect.r_height)
pw_donedamaged (my_pixwin) ;
else
/* Remember new subwindow size %/
my_rect = nrect;

Figure 9-1: Running the hello_own program

Helle world!

9.2. Using the Clipping List

Much of the time, only part of a window is damaged, for example, when a corner of another win-
dow covers it up. As discussed above, the damaged window receives a SIGWINCH when it
becomes uncovered. At this time, the program should call pw_damaged () to set the clipping
list for its window. This routine determines which area has been damaged, and clips off the rest
of the window. When the window gets refreshed, only the damaged part gets repaired. That is,
pw_write (), which normally writes the whole window, will now write only the damaged part.
Your program can then proceed to repair the entire window, without having to worry about
what part was damaged. Finally, the program should call pw_donedamaged () to inform the
systemn that you’ve repaired the damage.

Revision B of 15 April 1985 9-3

User-defined Subwindows SunWindows Tutorial

The problem with the above method is that when the window size changes, you'll want to
redraw the entire window. The solution is to get the size of the window with win_getsize(),
and see if the window is the same size as it was before receiving the SIGWINCH. If the size is
different after calling pw_damaged(), you must call pw_donedamaged() before redrawing
the window.

Note that if you use this method to repa.if damage, pw_damaged () and pw_donedamaged ()
must be called every time a SIGWINCH arrives.

9.3. Signal Handlers

The my_sigwinch () routine is somewhat tricky. In order to repair damage correctly, we need
to set a clipping list with pw_damaged (). If the window was reshaped, the whole thing needs
redrawing so we do a pw_donedamaged() so that the pixwin refers to the entire subwindow.
We record the width and height, so we will know if window size will have changed the next time
a SIGWINCH comes.

As each pixwin routine is executed, it affects only the screen under the clipping list established
by the latest call to either pw_damaged () or pw_donedamaged (). If only a portion of the
window were damaged, only that part would be repaired. But if the whole window were dam-
aged, the entire window would be redrawn.

Finally, pw_donedamaged () is called, if not called carlier, to restore the clipping list. Calls to
further pixwin routines will now affect the visible portion of the window.

Although tempting, it is critical to not stray from the pattern of calls to pw_damaged () and
pw_donedamaged () as given in my_sigwinch(). Annoying behavior can occur by trying to
do things differently, for example, excessive repainting or show-through color (on a color moni-
tor).

Signal handlers are provided automatically with pre-packaged subwindow types such as panels,
message subwindows, and graphics subwindows. When you need a user-defined subwindow, how-
ever, you are responsible for writing a custom signal handler.

9-4 Revision B of 15 April 1985

Chapter 10

Writing a Simple Canvas Program

This chapter describes a simple canvas program, called canvasflash, that runs in SunWin-
dows. A canvas program is one that owns a single window.

There are several canvas programs you can run from the graphics tool (gfxtool), or from the
shell too!l (shelltool):

e /usr/demo/bouncedemo
¢ /usr/demo/framedemo

¢ Jusr/demo/jumpdemo

e /usr/demo/spheresdemo

The source for these programs resides in /usr/src/sun/suntool, so you can examine their
source code as well.

In SunWindows, such a program is often written using the graphics subwindow package. This
example shows how to use the graphics subwindow package to get a single window on which the
application draws. The graphics subwindow package shields the canvas application from some of
the complexities of window ownership. The graphics subwindow package is by no means the
only vehicle for writing canvas programs. It is simply a mechanism to expedite canvas applica-
tlons.

canvasflash creates a window and draws a vertical line, a white square and a string of text
within the window. Every second it inverts the images within the window. Inverting the line
causes it to appear white and essentially “disappear”’; the text appears in reverse video; and the
white square appears black.

Revision B of 15 April 1985 10-1

Writing a Simple Canvas Program SunWindows Tutorial

jurraphics Tool 2.G: /binfcsh
iteci canvasflias
i

This ls & string written with pw_text.

Figure 10-1: canvasflash Qutput

Eitec! canvas”as!

15 15 & s11ine Rrilien with pe_text.

Figure 10-2: Inverted canvasflash QOutput

With no arguments the program runs indefinitely. To run the program for some number of
iterations, invoke it with the -n number argument where number is the number of iterations:

canvasflash —n number

The source code for this example is provided in the file
/usr/src/sun/suntool/tutorial/canvasflash.c. To compile it, use:

cc —o canvasflash canvasflash.¢ —lsuntool -—-lsunwindow —Ilpixrect

10-2 Revision B of 15 April 1985

SunWindows Tutorial Writing a Simple Canvas Program

10.1. The canvasflash Code

The flow of canvasflash is as follows:
e canvasflash creates a graphics subwindow and clears the window associated with it.

e It loops for a specified number of iterations or forever. Within the loop it checks some flags
used for window housekeeping and reacts appropriately (details later).

e Once everything is in a known state, canvasflash displays the line, square and string of
text. The operator that displays the graphics objects is inverted every iteration.

Here is a listing of /usr/src/sun/suntool/tutorial/canvasflash.c. You may want
to glance at it now; however, it is primarily for reference as you read the subsequent explanation.
Extensive comments have been removed in favor of the accompanying text.

$#include <stdio.h>
#include <suntool/gfx_hs.h>

main(argc, argv)
int argc;
char **argv;
int op:

struct gfxsubwindow *gfx;

/* initialization */

if ((gfx = gfxsw_init (0, argv)) == NULL) {
fprintf (stderr, "Unable to open graphics subwindow.\n");
exit(l);

}

pw_writebackground (gfx->gfx_pixwin, O, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PIX_CLR);

/* display loop %/
while (gfx->gfx_reps--} {

/* check to see if window has changed size or been exposed */
if {gfx->gfx_flags & GEFX_DAMAGED)
gfxsw_handlesigwinch(gfx) ;

/* screen has been corrupted and must be redrawn */
if (gfx->gfx_flags & GFX_RESTART) {
gfx->gfx_flags &= “GEX_RESTART:;
pvw_vritebackground (gfx->gfx_pixwin, ©, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_helight,
PIX_CLR):

/* change raster operation between each iteratioen */
op = (gfx->gfx_reps ¥ 2) ? PIX_SRC : PIX_NOT(PIX SRC):

/* sample pw_* calls */

Revision B of 15 April 1985 10-3

Writing a Simple Canvas Program SunWindows Tutorial

pw_vector (gfx->gfx_pixwin, 5, 5, 5, 100, op, 1);
pvw_wr itebackground (gfx->gfx_pixwin, 25, 25, 75, 75, op}:
pw_text (gfx->gfx_pixwin, 5, 125, op,
NULL, "This is a string written with pw_text.");
sleep(1):
}

/* clean up */
gfxsw_done {(gfx) ;

10.2. External Declarations

This section describes the explicit external declarations that must be included to compile this
program. The first include statement allows the program to access standard error (stderr) for
diagnostic output:

#include <stdio.h>

It also allows the program to use the printf buffered output routines.

The graphics subwindow package that the program uses is part of the suntools library with
include files in /usr/include/suntcol. In the include statement:

#include <suntool/gfx_hs.h>

the _hs construct refers to all header files needed to run a canvas application that is based on
the “gfx’” (graphics) subwindow.

10.3. Initialization

This section describes the set-up undertaken before entering the looping part of the program.
The following code creates a graphics subwindow:

if ({gfx = gfxsw_init {0, argv)) == NULL) {
fprintf (stderr, "Unable to open graphics subwindow.\n");
exit (1)

}

The call to gfxsw_init() parses argv according to the description of arguments to the demo
programs in suntools(l), and returns a handle to a graphics subwindow. The handle is a
pointer to a struct gfxsubwindow which contains fields that the canvas application uses:

gfx_pixwin
is a struct pixwin pointer. A pixwin provides access to a window’s visible surface. A
program displays in the window by operating through the pixwin.

gfx_rect
is a struct rect that describes the current size of the window. This value is updated by
the graphics subwindow manager.

gfx_flags
is an int of window housekeeping flags. These flags, as well as gfx_rect, are updated

10-4 Revision B of 15 April 1985

-

SunWindows Tutorial Writing 2 Simple Canvas Program

asynchronously by the graphics subwindow manager when something happens to affect the
window’s size or visibility.

gfx_reps
is the number of repetitions that a cyclic canvas program may use to count down with. It is

initialized in gfxsw_init to a very large number. If a “—n number” argument sequence is
found in argv, number is used as the number of repetitions.

If the returned pointer is NULL, an error condition exists. The message “‘Unable to open graphics
subwindow.” is displayed, and the program exits.

We then call pw_writebackground()to clear the window:

pvw_writebackground{gfx->gfx_pixwin, O, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PIX_CLR);

It writes zeros, defined as the background color, on its destination, gfx->gfx_pixwin.

10.4. Display Loop

This part of the program loops until the user interrupts the program or until the repetition
counter (gfx->gfx_reps) goes to zero:

while (gfx->gfx_reps--) {

The program is responsible for decrementing this counter to keep track of the number of itera-
tions left to be done.

A graphics subwindow contains a set of housekeeping flags that the program interrogates.

if (gfx->gfx_flags & GFX_DAMAGED)
gfxsw_handlesigwinch{gfx):

The status flag GFX_DAMAGED indicates when part of the window has become exposed or the
window has changed size. Removing an overlapping window or changing the window’s size may
expose a portion of the window, so that its image must then be redrawn. A previously hidden
area of the window is known as damage because the application may need to redraw part of its
lmage.

The standard thing to do when the GFXDAMAGED flag is set is to call
gfxsw_handlesigwinch. Unless the window’s size has changed, this routine can repair the
damage if the graphics subwindow’s pixwin has been made retained.

The graphics subwindow manager sets the GFX_ RESTART flag when the window size changes or
when there is some part of the window for the client to refresh.

if {gfx->gfx_flags & GEX_RESTART) {
gfx->gfx_flags &= “GFX_RESTART;
pw_writebackground {gfx->gfx_pixwin, 0, O,

gfx->gfx_rect.r_width, gfx->gfx_rect.r _height, PIX_CLR);

)

Many canvas applications will scale their contents to current dimensions. The minimum that
needs to be done is to clear the flag and repaint the window. Here we just clear the window.

To flash the demo, we alternate PIX_SRC and PIX_NOT{PIX_SRC) as display operations:

Revision B of 15 April 1985 10-5

Writing a Simple Canvas Program SunWindows Tutorial

op = (gfx->gfx_reps % 2) ? PIX_SRC : PIX_NOT(PIX_SRC);

Each pixwin operation is given a source image, a destination image, and an operator. The opera-
tor determines the relationship between the source image and the destination image. For now, it
is important to note only that PIX.SRC maps its source directly onto its destination.
PIX_NOT(PIX_SRC) inverts its source before mapping it onto the destination.

The following function calls are the meat of the program, as they draw the graphics in the win-
dow:
pw.vector {gfx->gfx_pixwin, 5, 5, 5, 100, op, 1):
pw_writebackground (gfx->gfx_pixwin, 25, 25, 75, 75, op);
pw_text (gfx->gfx_pixwin, 5, 125, op,
NULL, "This is a string written with pw_text.");

pw_vector()
draws a vector onto a destination pixwin. It accepts as arguments the destination, the end-
points of the vector, a raster operation to apply to the source before writing, and a source
value to write (color).

pw_writebackground()
is used to draw a solid square on the display.

pv_text()
writes text in a specified font. It accepts as arguments a destination pixwin, a location
within the destination at which to begin writing (the ¥y component is the baseline, not the
upper edge of the text), a raster operation that specifies how to combine the text with the
destination, a handle to the desired font — typically a pointer to a pixfont structure
acquired by opening the font (or NULL, indicating the default font), and a string of text to
be printed.

The sleep procedure waits for 1 second before returning. This slows the action so that you
can clearly see the flashing,

sleep(1);

10.5. Cleanup

To cleanup before exiting the program, gfxsw_done() frees the resources allocated for the
graphics subwindow.

10-6 Revision B of 15 April 1985

Chapter 11

Writing a More Sophisticated Canvas Program

This chapter describes a canvas program called canvasinput, an interactive extension of
canvas flash, which was described in Writing a Simple Canvas Program. Be sure you under-
stand canvasflash as we discuss only what is different about canvasinput here.

canvasinput creates a retained graphics subwindow and then waits for the user to enter a
command. The user can use the keyboard or the mouse and a menu to specify that either a
vertical line, a black square or a string of text be drawn within the window. He can also clear
the window or terminate the program. The user can enter all commands from the menu. In
addition, he can press the first letter of the name of a menu item to invoke the associated menu
item.

IEEitec! CAnvASINpUT

This is a string written with pw_text.

[vector
square
text
cTear
quit

Figure 11-1: canvasinput Output
The source to this example is provided in the file

/usr/src/sun/suntool /tutorial/canvasinput.c. To compile the source, use:

cc —o canvasinput canvasinput.c —lsuntool —lsunwindow —lpixrect

Revision B of 15 April 1985 11-1

Writing a More Sophisticated Canvas Program SunWindows Tutorial

11.1. The canvasinput Code

The flow of canvasinput is as follows:
e canvasinput gets a graphics subwindow handle.
¢ The subwindow is enabled to receive user input.

e The program calls a notification manager. This manager is given the address of a routine,
canvas_selected, to invoke when input arrives.

s canvas_selected is the guts of this program.

Here is a listing of /usr/src/sun/suntool/tutorial/canvasinput.c. You may want
to glance at it now; however, it is primarily for reference as you read the subsequent explanation.
Extensive comments have been removed in favor of the accompanying text.

#include <stdio.h>

#include <suntool/gfx_hs.h>

#include <suntocol/menu.h>

extern struct menuitem *menu_display():

static struct gfxsubwindow *gfx;

/* Menu Definition */
static struct menuitem menu_items[] = {

{MENU_IMAGESTRING, "vector™,
{MENU_IMAGESTRING, "square®,
{MENU_IMAGESTRING, "taxt",
{MENU_IMAGESTRING, "clear",
{MENU_IMAGESTRING, "quit"®,

static struct menu menu_bedy = {
MENU_IMAGESTRING, "Commands",

(caddr_t) 'v'},
(caddr_t) 's'},
(caddr_t) 't'},
(caddr_t) 'c'},
(caddr_t) 'q'},

sizeof (menu_items) / sizeof (struct menuitem), menu_items,

{struct menu *)NULL, (caddr_t)NULL

}:

static struct menu *menu_ptr = &menu_body:

main{argc, argv)
int argc:
char **argv;

int canvas_selected();
struct inputmask im:

/* Initialization */

if ({(gfx = gfxsw_init (0, argv)) == NULL) {
fprintf (stderr, "Unable to open graphics subwindow.\n"):;

exit (1)

b
input_imnull (&im) ;

im.im_flags |= IM_ASCII | IM_NEGEVENT;
win_setinputcodebit (&im, MENU_BUT};

gfxsw_setinputmask (gfx,

11-2

Revision B of 15 April 1985

SunWindows Tutorial Writing a More Sophisticated Canvas Program

&im, (struct inputmask *)NULL, WIN_NULLLINK, 1, 1);
gfxsw_getretained (gfx)

/* Notification Manager */
gfxsvw_select (gfx, canvas_selected, 0, 0, O, (struct timeval *)NULL):

/* Cleanup */
gfxsw_done (gfx) :

¥

/* Notification Handling */

canvas_selected (gfx, 1bits, obits, ebits, timer)
struct gfxsubwindow *gfx;
int *ibits, *obits, *ebits;
struct timeval *#*timer:

struct menuitem *mi:
struct inputevent ie;

if (gfx->gfx_flags & GFX_RESTART) {
gfx->gfx_flags &= “GFX_RESTART;
pw_writebackground (gfx->gfx_pixwin, 0, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height, PIX CLR):
}
if (*ibits & (1 << gfx->gfx_windowfd)} {
if (input_readevent (gfx->gfx_windowfd, &ie)) {
perror ("canvasinput")
exit (1) :
}
if (ie.ie_code == MENU_BUT && win_inputposevent (&ie) &&
{mi = menu_display(&menu_ptr, &ie, gfx->gfx_windowfd)))
ie.ie_code = (short) mi->mi_data;
switch (ie.ie_code) {
case 'v':
pw_vector (gfx->gfx_pixwin, 5, 5, 5, 100, PIX_SET, 0);

break:;

e ?

case 's':
pw_writebackground (gfx->gfx_pixwin,
25, 25, 75, 75, PIX_SET);
break;
case 't':
pw_text (gfx->gfx_pixwin, 5, 125, PIX_SRC,
{struct pixfont *)NULL,
"fhis is a string written with pw_text.");
break;
case 'c':
pvw_writebackground (gfx->gfx_pixwin, O, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_height,
PIX_CLR);
break;
case 'q':
gfxsvw_selectdone (gfx);
break;
default:

Revision B of 15 April 1985 11-3

Writing a More Sophisticated Canvas Program SunWindows Tutorial

gfxsw_inputinterrupts(gfx, &ie):
}
}

tibits = *oblits = *ebits = 0O;

11.2. External Declarations

This section describes the explicit external declarations, other than the ones described in the
chapter on canvasflash, that must be included to compile this program.

The menu package that the program uses is part of the suntools library with include files in
/usr/include/suntool. The include line:

#include <suntool/menu.h>

contains the data struncture definitions required for using the menu package. The following
external reference to the menu manager procedure is required as well:

extern struct menuitem *menu_display():

11.3. Defining the Menu

This section describes the static structures that make up the menu that is passed to the pop-up
menu manager.

Defining a single menu is a two-step process: first define the menu item array, and second, install
those items in a menu object. A menu item is composed of a type, a display data pointer, and 32
bits of data, which is private to the client of the menu manager:

static struct menuitem menu_items[] = {
{MENU_IMAGESTRING, "vector", {caddr_t) 'v'},
{MENU_IMAGESTRING, "square", {caddr_t)'s'},
{MENU_IMAGESTRING, "text", (caddr_t) 't '},
{MENU_IMAGESTRING, "clear", (caddr_t) 'c'},
{MENU_IMAGESTRING, "quit", (caddr_t) "q'}.
}:

Qur menu items are of type MENU_IMAGESTRING which means that the display data is a string,.
We are using the first character of the display data string as our private data. The character
will be used to identify the menu item returned by the pop-up menu manager.

A menu object contains a title and a description of its menu items:

static struct menu menu_body = {
MENU_IMAGESTRING, "Commands",
slzeof (menu_items) / sizeof(struct menuitem}, menu_items,
{struct menu *)NULL, (caddr_t}NULL
}:
static struct menu *menu_ptr = &menu_body;
The title of our menu is “Commands” and it is of type MENU_IMAGESTRING. The next argument
translates to the number of elements in the menu item array which is followed by the address of
the array. The second to last field is used when displaying multiple menus, and the last field is

11-4 Revision B of 15 April 1985

SunWindows Tutorial Writing a More Sophisticated Canvas Program

reserved for the use of the menu manager.

11.4. Initialization

This section describes the set up {other than that described in the chapter on canvasflash)
undertaken before entering the notification manager.

In SunWindows, each window has an input mask indicating which actions to receive. This
screening reduces the amount of data that an application must process. For instance, if an appli-
cation is not tracking the mouse, it doesn’t need to receive mouse motion events. Also, user
actions not sent to one window may be redirected to another window. The following code sets
up the input mask that we need:

input_imnull (&im) ;
im.im_flags |= IM_ASCII | IM_NEGEVENT;
win_setinputcodebit (&im, MENU_BUT) ;
gfxsw_setinputmask (gfx,
&im, (struct inputmask *)NULL, WIN_NULLLINK, 1, 1):

The call to input_imnull initializes the input mask im to be null. A flag in the mask is set
so that ASCH keyboard input is allowed through the mask. win_setinputcodebit is called
to enable the menu button.

When the menu button goes down, we will call the menu manager to handle interactions with
the user. We know that the menu manager will return when the menu button goes up. A but-
ton going down is called a positive input event and a button going up is called a negative input
event. We get positive events for a button by default when we call win_setinputcodebit.
We enable all negative input events for which we have enabled a corresponding positive input
event in the mask by setting IM_NEGEVENT in the mask flags.

gfxsw_setinputmask sets the mask gfx->gfx_windowfd. This is the mask that we have
defined that the graphics subwindow wuses. The NULL third argument to
gfxsw_setinputmask indicates that we have no desire to dispose of any events already
queued for this window. (There should be nore, since the window hasn’t appeared on the screen
yet.) The WIN_NULLLINK in the fourth argument indicates that the next window to be offered an
input event that the graphics subwindow doesn’t want should be the default, namely its parent.
The last two nonzero arguments indicate that we expect both mouse and keyboard input, respec-
tively.

Note: Don’t confuse the calling sequence of gfxsw_setinputmask with the lower level
win_setinputmask. win_setinputmask is called for windows in general
gfxsw_setinputmask is called for graphics subwindows in canvas programs.

Next we tell the graphics subwindow manager to manage a retained pixwin:
gfxsw_getretalined (gfx);

With a retained pixwin, the graphics subwindow manager maintains a backup copy of the win-
dow image. If part of the graphics subwindow becomes exposed, the graphics subwindow
manager repaints the damaged area from the retained pixwin. Without a retained pixwin, 1t 1s
the programs responsibility to repair the damaged areas. We pay for a retained pixwin with the
extra memory that is allocated for the backup copy of the window image. Also, for every pixwin
write in our program a write is made to the backup image, as well as the window.

Revision B of 15 April 1985 11-5

Writing a More Sophisticated Canvas Program SunWindows Tutorial

11.5. Notification Manager

Now that initialization is done, we are ready to wait for user actions to drive the command inter-
preter of the program. The gfxsw_select routine waits for input.

gfxsw_select (gfx, canvas_selected, 0, O, O, (struct timeval *)NULL);

gfxsw_select is the notification manager for this graphics subwindow. For user actions that
pass through the input mask, gfxsw_select calls canvas_selected.
canvas_selected is czalled when there is input available on the graphics subwindow. It is pos-
sible to have canvas_selected called in other situations, such as output pending, input pend-
ing on devices other than the graphics subwindow, or a timer expiring by defining non-NULL
values to the last four parameters. However, since the last four parameters are NULL, the
notification manager, by default, only waits for input available on the subwindow.

gfxsw_select loops indefinitely and can be terminated by a call to gfxsw_selectdone,
which 1s described below.

11.6. Handling Notifications

This section describes what 1is going on in the canvas_selected routine.
canvas_selected is called when something interesting has happened that the canvas program
should react to.

The graphics subwindow notification manager calls canvas_selected when the size of the
window changes.

if {(gfx->gfx_flags & GFX_RESTART) {
gfx->gfx_flags &= “GFX_RESTART;
pv_writebackground (gfx->gfx_pixwin, 0, O,
gfx->gfx_rect.r_width, gfx->gfx_rect.r_helght, PIX_CLR);
}

The GFX_RESTART flag is set when the size of the window changes. canvasinput clears the
flag and simply clears the window image.

Now we see if input is pending on the graphics subwindow:
1f (*ibits & (1 << gfx->gfx_windowfd}) {

*ibits is a mask of the file descriptors that have input pending. If the bit position that
corresponds to the graphics subwindow is set, there is input pending on the graphics subwindow.

Next, we read a single input event. An input event is a packet of information that describes the
state of the input devices when the event occurred. The input event describes the event
identifier, the position of the mouse, the time of day, and the state of shift buttons.

if (input_readevent (gfx->gfx_windowfd, &ie)) {
perror ("canvasinput") ;
exit (1)

}

The call to input_readevent will fill ie with the next available input event, or draw atten-
tion to a system error. The next step is to begin menu processing if the menu button went
down.

11-6 Revision B of 15 April 1985

-

SunWindows Tutorial Writing a More Sophisticated Canvas Program

if (le.ie_code == MENU_BUT && win_inputposevent (&le) &&
(mi = menu_display(&menu_ptr, &ie, gfx->gfx_windowfd)))

We want to start menu processing when the right mouse button goes down. ie.ie_code is
equal to MENU_BUT when the input event concerns the right mouse button.
win_inputposevent (&ie) returns true when the input event is positive; that is, the button
went down. When these tests are true the menu manager menu_display is called.

menu_display is responsible for displaying menu(s), tracking the mouse over the menu items,
and returning a menu item handle. A NULL menu item handle is returned if no item was chosen.
menu_display takes a pointer to a menu pointer so that, in the case of stacked menus, the top
menu can be returned via modifying menu_ptr. The input event handle that prompted the
menu action and the graphics subwindow are passed in as well.

If the user made a menu choice, the long word of private data associated with the menu item is
placed in the input event:

ie.ie code = (short) mi->mi_data;

This is done because we know that the private data contains values that are equal to the charac-
ters that are tested for in the following switch statement. Thus, we simulate the case where
the user typed a single character at the keyboard.

The arms of the switch statement on the input event are similar to the code described in the
chapter about the canvasflash program. The default arm of the switch statement is used
to look for and act on some common interrupt character sequences (such as, "C, DEL, "D, "Z,
and control-shift-backslash) used with terminal-based programs:

gfxsw_inputinterrupts(gfx, &ie);

Some programs dynamically change the collection of input and output devices on which they
wish to wait. To accommodate such programs, before returning from canvas_selected back
to the notification manager, the conditions under which canvas_selected will be called again
must be respecified.

*ibits = *obits = #*ebits = O;

Here we make the input{*ibits), output(*obits) and exception(*ebits) masks zero. Since
all the masks are 0, the notification manager, by default, only waits for input available on the
subwindow. Details on mask usage are available iz the reference manual under toolio.

Note: Don’t forget to reset these bits before returning; this is a common programming error.

11.7. Termination and Cleanup

The call to gfxsw_selectdone is made to tell the graphics subwindow notification manager,
gfxsw_select, that it should return to its caller. In this case, gfxsw_select will return to
main after canvas_selected returns. Clean up after returning from gfxsw_select is as
described in the chapter on canvasflash.

Revision B of 15 April 1985 11-7

Appendix A

Glossary

This glossary defines terms used here with meanings different from their common definitions,
terms that introduce concepts specific to programming in the SunWindows environment, and
some standard terms as well.

border
The thin double stripe along the left, bottom, and right side of a tool window.

canvas program
A SunWindows program that owns a single window, and often uses a graphics subwindow.

clocktool
A simple tool that continually updates a circular clock face with the time of day.

cursor
A small image that moves around the screen in response to mouse motions, indicating the
position of the mouse.

damage
The portion of a window that needs to be repainted to restore the window’s image integrity;
exposure of a previously invisible area of a window.

gfztool _
A graphics tool that provides display space for programs that write to the current window,

handle

A pointer to an object.

fcon
A small graphic identifying image that represents rather than displays the contents of a win-
dow.

tcontool
A tool for creating and modifying icon and cursor images.

manager
The software which creates and manipulates 2n object.

men
A displayed list of related items for user choice.

namestripe
The wide stripe across the top of a tool window, generally containing the name of the tool.

Revision B of 15 April 1985 A-1

Glossary SunWindows Tutorial

object
A piece of data, usually a C structure, used by software to implement an abstraction.

overlapping windows
Windows that may obscure one another on the display.

painting
A general term for setting pixel values to form an image; includes painting text as well as
pictures.

pizel
A single displayable point on a screen or in memory; a picture element.

pizrect
A structure that binds together the definition of a rectangle of pixels with the set of opera-
tions are used to manipulate them; an access method for rectangular pixel data.

pizrect layer
The layer of SunWindows that provides a uniform interface to devices which can hold raster
images.

pizwn
A pixel window; an object that encapsulates the locking and clipping information needed to
support a multi-window system.

private data and procedures
Elements of the implementation of a package which are not made available to the package’s
clients. Clients should never have to access these elements and should not be able to detect
any changes to their implementations.

public data and procedures
Elements of the implementation of a package which are defined as its interface to its clients.

rect
A structure that defines a rectangle.

rectlist
A structure that uses a list of rects to define a complex sub-region of a rectangle.

repair
Regenerating the image for a part of a window that has just become visible (and thus is
damaged).

retained window/pizwin
A pixwin on a display that maintains a backup copy in memory of the window’s image. This
allows fast repair of arbitrarily complex images, at the cost of a fixed overhead in painting.

shelltool

A tool window that acts as a 34-line 80-column terminal.

SIGWINCH
A signal to a process that a window has changed.

stacked menus
A set of menus that are all presented at the same time in a display resembling an offset stack
of papers: the header of each menu is visible below and slightly to the left of the header of
the menu behind it, and the items of the top menu are also available for selection.

A-2 Revision B of 15 April 1985

-

SunWindows Tutorial Glossary

subwindow
A window that is subordinate to another. This is established by a structural relationship in
the window database, and implies that the subwindow is contained within and displayed on
top of the other. Subwindows are like tiles composing a tool window.

subwindow abstraction
An implementation that provides subwindows of a particular type with particular capabilities
to clients; an instance of such a subwindow.

subwindow object
A C structure used by a subwindow package to implement a subwindow abstraction.

subwindow handle
A pointer to a subwindow object.

subwindow package
The software that performs a useful service which can be plugged into a tool object because
it meets the programmatic interface requirements of a subwindow object.

suntool layer
The layer of SunWindows that provides the user interface utilities.

suntools
The package that takes over the workstation screen, enabling you to run shelltool, gfxtool,
and clocktool.

SunWindows
The Sun window system.

sunwindow layer
The layer of SunWindows that maintains 2 database of windows, provides imaging, locking
and clipping support for multiple windows, and distributes user inputs among mulitiple win-
dows.

tiling
Arranging elements in a planar figure (such as subwindows within a parent window) in such a
fashion that they cover that figure completely and do not overlap among themselves.

tool
A program written using the suntool library, and including a tool window. More generally, a
program that owns more than one window.

tool window
The underlying window used for presenting the visible image of & tool.

user
A person using the system, as opposed to a programmer.

window
Generally a rectangular display area, along with the process or processes responsible for its
contents; specifically a UNIX} device for multiplexing access to a screen surface.

window management
The activity of changing a window’s size, position, or overlapping relationship with other
windows.

2 { UNIX is a trademark of Bell Laboratories.

Revision B of 15 April 1985 A-3

Appendix B

SunWindows Implementation Overview

This appendix investigates SunWindows from the programmer’s point of view. In particular, it
describes the major components of the SunWindows implementation and their interactions.

Note the distinction between a user — a person who #ses SunWindows, and a programmer who
writes programs to run in the SunWindows environment. In addition, we introduce the term
client to designate software that uses some other software package. A software package presents
a programmatic interface to its clients.

B.1. Architectural Principles

SunWindows is built according to four architectural principles that are important to you as a
PIrOgraminer:

Open-ended
SunWindows is a tool boz and a kit of parts — you can create tools aimed at specific appli-
cation areas by tailoring and gluing together existing SunWindows packages. These tools can
access all the facilities of the workstation that are available to SunWindows itself. Thus
SunWindows is not a closed system aimed only at a single idealized user.

Integrated
SunWindows provides standard packages with which you can expand the facilities available
to the user. The standard packages impose a framework on components. By using these
standard packages and working within the framework, expanded facilities that you or other
people write will exhibit the same level of user-interface integration that the standard Sun
tools provide. In addition, the package-level integration will be consistent across different
implementations.

Layered Implementation

SunWindows is a selectively layered system. The highest (most abstract) layer is called sun-
tool — a collection of utilities that provide a framework and parts kit for constructing user
interfaces. The middle layer, called sunwindow, provides facilities to share and arbitrate
display and input devices between concurrent programs. The lowest (closest to the
workstation’s hardware) layer, called the ptzrect layer, provides primitive access to the Sun
Workstation’s display. In general, the higher and more abstract the layer, the more func-
tionality and generality it provides, at some expense in efficiency. Later sections of this
chapter describe the layers in detail.

Information Hiding
Many of the major packages of SunWindows are implemented with the concepts of data
abstraction in mind. A data abstraction is a collection of subroutines and private data strue-
tures — only the subroutines access the data structures, and the interface to the data
abstraction is defined entirely in terms of the interface that the subroutines provide. This
practice is encouraged to provide flexibility of implementation for both SunWindows itself

Revision B of 15 April 1985 B-1

SunWindows Implementation Overview SunWindows Tutorial

and for programmers writing new tools using SunWindows facilities. For example, SunWin-
dows’ lowest level provides device-independent access to bit-mapped devices in a framework
where new devices can be added with no impact on any existing code using this level. Addi-
tionally, by hiding the implementation information, SunWindows minimizes the impact on
existing code due to reimplementation of the support for a particular bit-mapped device.

B.2. Layers of Implementation

As we mentioned above, there are three layers in SunWindows. Each layer has an associated
library of C routines which you can use to create your programs. The three layers, from the
most abstract to the most system-dependent are:

suntool
implements a multi-window executive and application environment, supporting many user
interface facilities. These facilities include pop-up menus, selections, icons and several
subwindow packages supporting terminal emulation and mouse and display entry of com-
mands and parameters. The associated library is libsuntool.a.

sunwindow®
implements a manager for overlapping windows. This management includes creating and
manipulating windows, maintaining the windows’ images, a stream input format for key-
boards and mice, and distribution of those user inputs. The associated library is
libsunwindow. a.

pizrect :
provides a. device-independent interface to pixel operations. The associated library is
libpizrect.a.

3 Note that the term ‘sunwindow’' refers to the layer or level of implementation while the word
‘SunWindows’ is the name of the Sun window system.

B-2 Revision B of 15 April 1985

C

SunWindows Tutorial SwaWindows Implementation Overview

SunWindows
@ olitware
_ Levels

[USG‘I‘ Programs]

f Suntool

[Sunwindow]

[Pixrect]

Figure B-1: SunWindows Layers

As you can see from the figure, there is programmatic access to any or all of these levels.

B.2.1. Suntool Layer

The suntool layer provides user interface utilities. The name suntool indicates that a client (an
application program) at this level is a tool. Such a client presents a complete user interface
oriented to a particular application.

Several tools are provided with SunWindows. These include:
the shell tool

a terminal emulator,

the graphics tool

which provides display space to simple graphics programs,
the icon tool

used to create and modify cursor and icon images, and

the clock tool
a simple tool that continuously updates a display of the time of day.

Source for these programs, and other SunWindows tools, resides in the directory
/usr/src/sun/suntool/. '

The user interface utilities that the suntool layer provides are:

a standard tool manager
for the region of the display belonging to the tool. This region is enclosed by the
O “window which is the tool’s frame,” a phrase we will shorten to ‘“tool window.” The
tool window identifies the tool by a name stripe at the top of the window and places

Revision B of 15 April 1985 B-3

SunWindows Implementation Overview SunWindows Tutorial

borders around the enclosed subwindows. It also generates a default icon for the tool
if the tool writer does not provide one.

rkiv. N

Kouss
Taol

Figure B-2: Standard Tool Window and a Default Icon

window management
A collection of routines for manipulating the position, size and overlapping structure
of windows. These routines constitute the heart of a window manager for tool win-
dows and subwindows,

an execulive framework
which supplies the main loop of a client program and coordinates the activities of its
various subwindows.

a menyu package
that implements pop-up menus.

a simple prompting facility
that displays client messages to the user.

Sull screen access
for temporarily overriding the input and output hierarchies, Applications of this full
screen access are menu display and item choice, making screen dumps, and displaying
prompts, often in conjunction with awatting user confirmation of some action.

global text selection
for specifying a span of text that may be of interest across window boundaries. This
selection is typically used to make copies within or between windows. Graphic selec-
tions are supported with this mechanism.

Also provided are several subwindow types that can be incorporated in the tool, and an imple-
mentation of a simple tiling mechanism for subwindows. The provided subwindow types are:

terminal emulator subwindow (ttysw)
that provides emulation of a “smart” Sun terminal;

graphics subwindow (gfzaw)
for programs that want to display graphics in the SunWindows environment without
undertaking all the responsibilities of a standard tool. Such programs are called can-
vas programs. The graphics subwindow also provides the ability for a program to
run on top of an existing window.

ponel subwindow (panel)
' which provides sophisticated mouse and display entry of commands and parameters.

B-4 Revision B of 15 April 1985

C

-

-

SunWindows Tutorial SunWindows Implementation Overview

It is the window system analog to entering command-line arguments and typing
mnemonic commands to an application. A option subwindow contains a number of
items of various types, each item corresponding to one parameter.

message subwindow (msgsw)
for displaying textual messages such as error messages and prompts to the user.

empty subwindow {esw)
for tending a window that will be covered by another window. The empty subwin-
dow is thus a place holder.

The following figure shows each of the subwindow types:

terminal emulator subwindow panel subwindow

wraptics Tol 2,00 /binfesh
1¥eck

i @ clear @ unda

iints to paint or clear. Inage Toaded.

File: 4unk/edl o0l.1con,

-
"l.ll-’\‘f

O F113: porder
Q Fi11: border
abe F111:

load: F1311: Proof:
src Sre sre

OHFEEERNE

empty sibwindow

graphics subwindow

Figure B-3: System Subwindow Types

You can also make a custom subwindow from a skeletal version, as we deseribe in the chapter
User-Defined Subwindows.

B.2.2. Sunwindow Layer

The sunwindow layer of the system maintains a database of windows. This database is struec-
tured as a collection of trees, with one tree per display device. Each tree has a root at the top
and descendants toward the bottom. We will use the metaphor of a family tree to describe this
database, since it provides a convenient terminology, and the concept of age is useful for

Revision B of 15 April 1985 B-5

SunWindows Implementation Overview SunWindows Tutorial

describing the locations of windows in the tree. Note, however, that the metaphoer is not exact:
it is possible to change a window’s position in the tree, hence a window’s age is subject to
change.

When one window is located directly above another in the tree, the first is called the parent; the
second is the child A window may have any number of children, but only one parent. All the
child windows of a parent are called siblings. Parents are older than their children, and siblings
have distinct ages, which establishes a total order on them (no twins). The window at the top of
the tree is called the root window; it is the ancestor of all other windows in the tree. The follow-
ing figure shows these relationships.

root =1

/N
//\

older ¢m———t younger

Figure B-4: Window Tree

Each window in the database occupies a region of the display. Child windows usually occupy a
region completely contained within their parent’s region, but should a child’s region extend
beyond the parent’s region, the excess portions of the child’s region are not visible to the user.
Thus, the child’s visible region is clipped so it does not extend beyond its parent’s region.

When two or more windows have regions with a common area, they are said to overlap in that
area. When windows of direct descent overlap in a common area, the youngest of the overlap-
ping windows is visible to the user in that area of the display. Thus, the youngest window
obscures its ancestors where they overlap. When two siblings overlap, the younger sibling
obscures the older sibling. In addition, the younger sibling obscures all of the older sibling’s des-
cendants. By recursively applying these rules, the visible portions of each window are computed.

The sunwindow layer provides facilities to create, destroy, move, stretch and shrink windows. It
provides for repositioning a window at different places in the window tree.

The sunwindow layer allows definitions of a different cursor image to track the mouse in each
window. It also provides inquiry and control over the mouse position. :

B-6 Revision B of 15 April 1985

SunWindows Tutorial SunWindows Implementation Overview

The sunwindow layer provides locking primitives to enable clients to arbitrate access to the
display. Such arbitration is necessary because two or more clients, each running in a separate
user process, may be painting into windows that share a common region of the display. To
guarantee that the user sees the correct display image where the windows overlap or clip, these
separate processes need to have a consistent idea about the positions, sizes and relationships of
the windows in the window tree. The locking primitives ensure that one client cannot change
the window tree while another client is either changing the window tree or painting to the
display.

Various events can make a window’s image incorrect. For example, the following figure shows
two overlapping windows. When the bottom one is brought to the top, the area that was
covered by the top window must be repaired. This area is indicated by the dotted line in the
following figure.

1tec,

—

SR

Figure B-5: Damage

Other examples of damage are the window growing bigger, the window charging from iconic to
standard presentation, or some other window being destroyed that previously had obscured the
window. Most of these events occur in sync with the window’s standard processing, but events
such as another window being destroyed are asynchronous. The incorrect portions of a window’s
image are known as damage. This damage is always composed of previously hidden areas of a
window that have become exposed. When a window’s image becomes incorrect, the window
owner’s process is notified of this problem via UNIX’s asynchronous signaling mechanism. In par-
ticular, a SIGWINCH signal is delivered to the process. Later, when the window process decides to
correct its window image, the sunwindow layer provides calls to determine the current damage
for the window. Windows may either recompute their contents for redisplay, or they may elect
to be retasned. A retained window has a full backup of its image in main memory, and need
merely copy this backup to the display when required. SunWindows also provides facilities for
colormap sharing on color displays.

Revision B of 15 April 1985 B-7

SunWindows Implementation Overview SunWindows Tutorial

The user interacts with multiple windows via 2 single keyboard and mouse. User inputs are
unified into a single stream at this level, so that actions with the mouse and keyboard can be
coordinated. In particular, input events are time-stamped and entered into the queue in the
order they occur, independent of the device which generated them. This unified stream is then
distributed to different windows, according to user or programmatic indications. Windows may
be selective about which input events they will process, and rejected events will be offered to
other windows for processing. This enables termirnal-based programs to run within windows
which will handle mouse interactions for them. Separate collections of windows may reside on
separate screens, and the user input facilities treat them as if they were all on one huge screen.

B.2.8. Pizrect Layer

The pizrect layer of the system provides a umiform interface to devices which can hold raster
images, such as bit-mapped displays and memory. The pixrect layer defines a standard set of
operations on pixels; regardless of the actual device containing the pixels, each operation is
invoked in the same fashion and has the same results. This is similar to UNIX’s system interface
to files, with a single set of operations being used to manipulate file descriptors independent of
the underlying file implementations. The pixrect layer provides a way of defining a rectangular
array of pixels on a device and then binding to the array the specific procedures which provide
the general pixrect operations for that device. A particular pixrect (for pizel rectangle) is a com-
bination of one of these arrays of pixels and the operations used to manipulate the array. This
layer of SunWindows is named after the pixrect structure because that structure is central to the
entire layer.

The concept of a pixrect is very general. A particular pixrect may refer to an entire display, or
to an image as small as a single character in a font, or to a particular cursor image. The array
containing the pixels may be visible on a display, or be stored in memory or (conceivably) on
some mass storage device. Peculiarities of specific devices are hidden below the pixrect inter-
face: some displays use only a single bit per pixel, and display black on white, or green on black;
others user three, eight, or twenty-four bits to describe the color of each pixel. Some displays
address pixels in two dimension, with an origin in the upper left, or bottom left, or center of the
screen; other displays, and most forms of memory, address pixels in a linear fashion, with the
first pixel of one row immediately following the last pixel of the preceding row. Some devices
provide hardware support for common operations, while others require all operations to be per-
formed in software. To the programmer using pixrects, all pixrects are described in the same
way and manipulated by the same operations.

The operations supported by pixrects include: single pixel reads and writes, writing vectors, and
a variety of RasterOps (each of which determines its resulting image by a logical function of
corresponding pixels from source, destination, and (sometimes) mask pixrects). Color pixrects
provide operations for manipulating a colormap, which translates a pixel value to a specific color,
and for isolating the bits of a color pixel’s value, so that an image may be treated in planes
which can be operated on independently. Monochrome pixrects provide the same operations,
without doing very much for them; thus images designed for color displays generally produce
reasonable results on a monochrome display, and vice versa. Where hardware support exists for
a pixrect operation, the implementation takes advantage of it to provide increased efficiency; but
the generality of the interface is not sacrificed. See Pizel Data and Operations in the
Programmer’s Reference Manual for SunWindows for details on the pixrect layer.

A new device may be incorporated in the pixrect layer by providing a new implementation of the
basic operations. The process is akin to adding a new device to the kernel, with the advantage

B-8 Revision B of 15 April 1985

SunWindows Tutorial SunWindows Implementation Overview

that most of the pixrect implementation is in user code.

B.3. Choosing the Appropriate Layer

When you start writing applications to make full use of the bit-mapped display’s capabilities, you
have a number of choices. One of these choices is which level of the SunWindows facilities to
use:

e If you only want to modify the basic user interface presented by the sunteols program, you
can simply rewrite suntools while continuing to use all of the other SunWindows facilities.

e However, if you want to modify the basic appearance of the individual tools, you must replace
portions of the suntool level as well. In general, you can replace individual packages in the
suntool level rather than discarding the entire level.

e If you want to replace the entire user interface that comes with SunWindows, you must
rewrite both the suntools program and all of the suntool level. However, you can still use the
basic input and output sharing and arbitration facilities of the sunwindow and pizrect levels.

¢ If you don’t care about the sharing and arbitration between concurrent processes, you can dis-
card the sunwindow level and simply use the prarect level, thereby keeping the device-
independent pixel access provided by the pizrect level.

You are encouraged to use the highest possible layer of the SunWindows interfaces. Only after
careful consideration should you delve into lower layers, as it lessens the overall integration of
your code with the rest of the system.

Several other interesting possibilities exist: For programs that want to run standalone, you can
use facilities (described in the chapters about canvas programs) that allow a program using only
a single window to be developed and executed within sunteols and then also run outside suntools.
Many of the Sun demonstration programs fit this category and use this facility. For instance,
you can run bouncedemo, the bouncing ball demonstration, outside of SunWindows.

Finally, SunCore is an alternative if SunWindows doesn’t provide what you want. SunCore is
the Sun implementation of the ACM Core graphics standard. The SunCore library provides rou-
tines for:

¢ Three-dimensional floating-point coordinate systems with hidden-surface elimination provided
by the system.

e Flexible viewing transformations and scaling of input coordinates.
o A rich set of primitives such as polygons and shading.
® Display-list segmentation.

Programs using SunCore are more portable than those using SunWindows, but the extra general-
ity and sophistication of the Core is computationally expensive. If you decide to use SunCore,
you need not lose all of the advantages of a window system because SunCore programs can run
both inside and outside of SunWindows. See the Programmer’s Reference Manual for SunCore
for further details on SunCore.

Revision B of 15 April 1985 . B-9

A
accelerators, 1-3
age of window, B-6
attributes, 2-2

B
border, 2-3

C
canvas program, 1-1, B-4
child of window, B-6
client, B-1
clipping, B-6
clock tool, B-3

D
damage, 81, 10-5, B-7
dbxtool, 2-1
DEFINE_CURSCR, 4-1
destination image, 10-6
display locking, 55
display optimization, 5-5

E
empty subwindow, B-5

F

full screen access, B-4

G
gfx_rect, &4
graphics subwindow, B-4
graphics tool, B-3

I
icon, 1-2, 2-1
icon tool, B-3
icontool, 2-1
input event, 11-6
input_readevent, §-4

L
locking, B-7
locking primitives, B-7

Index

M

main loop, B-4

menu, 11-4

menu package, 11-4

message subwindow, B-5
msgsw_createtoolsubwindow, 2-2

N
namestripe, 2-3
negative input event, 11-5

O
overlap, B-6

P
panel subwindow, B-5

parent of window, B-6
PIX_CLR, 4-3
PIX_DST, 43
PIX_NOT, 4-3
PIX_SET, 4-3
PIX_SRC, 4-3
pixrect, 2-3, 4-1
pixrect layer, B-2, B-8
pixwin, 51, 10-4, 10-5
pixwin efficiency, 5-5
pop-up menu, 7-1
positive input event, 11-5
pw_damaged, 9-3
pw_donedamaged, 9-3
pw_lock, 5-5
pw_unlock, 5-5

R
raster-op, 4-3
retained pixwin, 11-56
retained subwindow, 5-5, 8-2
retained window, B-7

S

sample programs
canvasflash.c, 10-3
canvasinput.c, 11-2
cursor.c, 4-1
goodbye.c, 2-5
hello.c, 2-1

sample programs, continued
hello_own.c, 9-1
restore_cursor.c, 4-3
sketch.c, 6-2
status.c, 3-1
status_image.c, 5-1
status_size.c, 82

select(2), 6-1

shell tool, B-3

shelltool, 1-1

SIGWINCH, 2-2

source image, 10-6

scurce to sample programs, 2-1

subwindow, 2-1

subwindow types, B-4

SunCore, B-9

suntool, 2-3

suntool layer, B-2, B-3

suntools, 1-2

sunwindow, 2-3

sunwindow layer, B-2, B-5

SunWindows, 1-1

T
terminal emulator subwindow, B-4
text selection, B-4
tool, 1-1
tool manager, 1-2
tool window, B-3
tool_createsubwindow, 9-1
tool_install, 2-2
tool_make, 2-2
tool_select, 2-2

w

win_getcursor, 4-4
win_setcursor, 4-2
win_setinputcodebit, 7-1
window, 1-1

window age, B-6

window child, B-6

window parent, B-6

— i —

