Part Number: 800-1256-04
Version: C of 17 March 1986
For: Sun System Release 2.3

SunCGI Reference Manual

Acknowledgements

Copyright © 1984, 1985, 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other-
wise, without prior explicit written permission from Sun Microsystems.

0

Contents

Preface . XV

Chapter 1 INTOQUCHON ...t s ssssosssomsss sttt 3
L1, USINg SUNCGI ..o e onsssesssssssssrssassssssssesssssess st coeeesersessseeseeseseessoes 3
1.2. The SunCGI Lint Library 5
1.3. Overview of SunCGI 5

Initialization and Termination 3
QUEPUL PIMULIVESoooocevee e scssss s ssans s ssmssasssserssceeessosossssessssssmmsssssssmsosesors -6
ARTIDULESccoooccsrsiessassrs s ssssrsssssees s sessmsssssessssssssssss s sosssssssssasssssssessssssssssions 6
Input ... 6
ETTOTS ..ouoovsssussssasmsssssssmsrmsssssiesssssssasssssssossssmssssss ssssssessssass essssasssnssossessnessasssssassassnssasoessr 6
Programming Tips 7
ADPENAICESoooveeecesssrss s sssesssssssss e ssssssssssssssssss s sceteses o sssssrssssssmsssssssssssse s 7
L4, REFEIICESooooo oo rersascscessssmssmesssssessssssssmsaresssssessesssssmemssssesessessossssssess oeeressmeseres 7

Chapter 2 Initializing and Terminating SunCGI) 11

2.1. View Surface Initialization and Selection 11
Open CGI (SunCGI Extension) w12
Open View Surface (SunCGI Extension) 13
Activate View Surface (SunCGI Extension) 16
Deactivate View Surface (SunCGI Extension) 16
Close View Surface (SunCGI Extension) 16
Close CGI (SunCGI Extension) . 16

2.2. View Surface Control w17

VDC Extent 17

- ii—

Contents Continued

2.3. Running SunCGI with SunView

2.4. Interface Negotiation

2.5. Input Capability Inquiries

Chapter 3 Output
3.1. Geometrical OQutput Primitives

Device VIBWDOTLoerrrnsesseeneerssessisesmessins

Clip Indicator

Clip Rectangle

Hard Reset

Reset to Defaults

Clear View Surface

Clear Control

Set Error Warning Mask

Set Up SIGWINCH (SunCGI Extension)

Inquire Device Identification

Inquire Device Class

Inquire Physical Coordinate System

Inquire Output Function Set
Inquire VDC Type

Inquire Qutput Capabilities

Inquire Input Capabilities

Inquire LID Capabilities
Inquire Trigger Capabilities ...

Polyline

Disjoint Polyline

Polymarker

Polygoh

Partial Polygon
Rectangle

........

Circle

Circular Arc Center

Circular Arc Center Close

-y =

33
33
34
34
35
35
36
38
38
38
39

Contents Continued

CITCUIAT ATC 3PU ...coos o coervceerssssaneee s smsms e s sssmssssssss e ssss et assssass 40
Circular Arc 3Pt CIOSEoereermmeencesrsmsessseresssers s sssssssrssssssssssesess s 41
Ellipse 41
Elliptical Arc~ 4
ENpHCal ATC CLOSEcooeesssre e ssssssssssssmssssssensssssssssssssssssssesssssssssssnssssseses 42
3.2. Raster Primitives 42
Text 42
VDM TEXLooovsrerssessssssimmsssssssssesmsesssessssesestssssssessossmsmssss osssssosstessmmssssesastsse o 43
Append Text 43
Inquire Text EXLENt ... s cecsessmssssnemesssosssemtomsssssssstosssstomtsseoes o 43
CRIL AITAY ..ot cmssecssmses s smsnss s sssresssisssssssssssosssssssss s s sessssssssosss o 44
PIXCL AITAY ...oooooooceveninr e scssssssssssssresssssssssss s seessesssssansesess i sasesessssesessmssmsssssons 44
BitBIt SOUICE AITAYcoiisisssssicnmssseenscsemeermesmeresereresessosesesessoresesessossssessssesns 45
BItBIt PAtEITt ATTAY ..o ssesimmssssssmmsens sssmanssssssssrssmssssssssssssessssssssssossasossssssnssons 46
BitBlt Patterned SOUTCE ATTAY ... reerseessemssssseens 46
INQUITE CEIl AITAY ..ottt seesrnr s senms s ssesssssssssssssesssesssssrsesessossssesosis 47
Inquire Pixel Array 47
Inquire Device Bitmap 48
Inquire BitBlt Alignments 48
3.3, Drawing MOAES ..o ssrarsess e sse st sessessessseesssassssssmessrene 43
Set Drawing MOde ... eeeeneeeeresesessssscsmserseesssesssssasorsssssssessons 49
Set Global Drawing Mode (SunCGI Extension) 50
Inquire Drawing Mode 50
Chapter 4 Attributes . 53
4.1. Bundled Attribute Functions 54
Set Aspect Source Flags 56
Define Bundle Index (SUnCGI EXtENSION) ..o oo 56

4.2. Line Attributes 57
Polyline Bundle Index e ST
Line Type 58
Line Endstyle (SunCGI Extension) w58
Line Width Specification Mode 59

Contents Continued

Line Width .
Line Color ..

4.3. Polymarker Attributes

Polymarker Bundle Index

Marker Typc
Marker Size Specification Mode

Marker Size

Marker Color

4.4. Solid Object Attributes

Fill Area Bundle Index

INterior StYle ...

4.5. Solid Interior Fill Attribute

Fill Color

4.6. Hatch and Pattern Attributes

Hatch Index

Pattern Index

Pattern Table

Pattern Reference Point

Pattern Size

.........

Pattern with Fill Color (SunCGI Extension) .,

4.7. Perimeter Attributes

Perimeter Type

Perimeter Width

Perimeter Width Specification Mode

Perimeter Color

..

4.8. Text Attributes

Text Bundle Index

Text Precision

Character Set Index

Text Font Index

Character Expansion Factor

Character Spacing

Character Height

- -

Contents Continued

4,10.

Chapter 5 Input .

0

Fixed Font (SunCGI Extension) 71
TEXE COIOT ..oomoeoerveeenemsceneens st sessssssssssss esmasessssessssssseseseessssssessssstsssssesossenens 71
Character Orientation 71
Character Path ... s sessmssssss s seeseessseesossssssssossos 72
Text Alignment 12
4.9. Color Attributes 74
Color Table 74
Inquiry Functions 75
Inquire Line Attributes 75
Inquire Marker Attributes 75
Inquire Fill Area Attributes S 76
Inquire Pattern AtTIDULESoceeecemsnscsesssssssssses s e e sommeseses - 76
Inquire Text Attributes 77
Inquire Aspect Source FLagsoeoeremnsosunsseossssiossecseesise s 78
................................ 81
5.1. Input Device Initialization 84
Initialize LID 84
Release Input Device 85
ASSOCIALE ..o errererecssmssessasssssssss ssssss s sessmsss s s s ere s 85
Set Default Trigger ASSOCIAHONSovounecocoeemseosesessssssssareessss s 86
Dissociate 86
Set INtal VAIUE ... sessssersssseseesssessssssseeressssmmessessssssssssonon 37
Set VALUATOR Range 27
TEACK QN ..o sttt eesssmesessaseesesseess ssneesssssesessssoes sosmesson 88
Track Off 89
5.2. Synchronous Input a0
Request Input 91

5.3. Asynchronous Input
Initate Request 92
5.4. Event Queue Input 93
Enable Events 95
Await Event 95

-vii—

Contents Continued

Flush EVEnt QUEULEooooooeeveenresesmssssessessrecsrsosessesscessmnmmasesssssssssessesssesssessasennes 96 @
Selective Flush of Event Queue 96
5.5. Miscellaneous Input Functions 97
SAMPLE IPUL oo sessrasmsmmass s ssssserssssssmasmammsmssomssissss s srssare 97
Get Last Requested Input 97
Disable Events . 98
5.6. Stams Inquiries 98
Inquire LID State List 98
Inquire LID State 99
Inquire Trigger State ' 99
Inquire Event QUEUE STALEcereeemeommresmnsrssssessessssesss sesseessnsssasssssses 99
Appendix A Differences between SunCore and SunCGI ... 103
A.l. Output Primitives 103
Qutput Aspects of SunCore not Supported by SunCGI ... 104
Output Features of SunCGI not Available in SunCore 104
A.2. Segmentation , 104
A.3. Differences in Input Functions between SunCore and SunCGI ... 104 O
Appendix B Unsupported Aspects of CGI 107
Appendix C Type and Structure Definitions 111
Appendix D Error Messages 123
D.1. Successful Return (0) 123
D.2, State Errors (1-5) w123
D.3. Control Errors (10-16) 124
D.4. Coordinate Definition (20-24) 124
D.5. QOutput Attributes (30-51) e 125
D.6. Output Primitives (60-70) 127
D.7. Input (80-97) 129
D.8. Implementation Dependent (110-112) 131
D.9. Possible Causes of Visual Errors 131

Contents Continued

an

Appendix E Sample PrOZTAMS ... ssss s iesseessess et 137
E.1. Martini GIassoommmecemmmmsssssssssessrssns 137
E.2, TraCKING BOX .o oooooeooeeteeeecsmeeemmmesseessessesessressesabeesesebemssessessas e esssssosesessasreseeerssessentes 138

Appendix F Using SunCGI and Pixwins 143
F.1. cgipw Functions 143

Open Pixwin CGI 143
Open a CGI Pixwin 143
Close a CGIPIXWINonicinsessssssssansasesesseessosssseiresesssssssons 144
Close Pixwin CGI 144
F.2. USINE COLDW ..o sssssssssemmssssmmssssssemssssssimsssrsmsssss s sssses 144
F3. COipW PUNCHONS ..o senes e esesseseeees oo 145
F.4. EXample PrOFIAM ... eeeeececeeessmsmsmne e ereeesssssssssmsssssesssosssssmssssssssose 147

Appendix G Using SunCGI with Fortran Programs ..., 151
G.1. Programming TiPS ..o sceereessesssessesssessesessesesssssessseseesssseesssoesssssssssssssees 151
G.2. Example Program 152
G.3. FORTRAN Interfaces to SUNCGIoomresiessmersessess e ssssssee 154

Appendix H Short C Binding 173

Table 2-1 SunCGI Default States

Tables

13

Table 2-2 Available View Surfaces

Table 2-3 View Surface Default States ...,

R 15

Table 2-4 Error Warning Masks .

...... 15
.............. 22

Table 2-5 Class Dependent Information

Table 4-1 Default Attributes

.............. 29

...............

Table 4-2 Attribute Source Flag Numbers

54
..... 56

Table 4-3 Available Fonts

..... 70

Table 4-4 Normal Alignment Values

74

Table 4-5 Default Color Lookup Table

74

Table 5-1 Input Devices Offered by SunCGI

...... 82

Table 5-2 Default Trigger Associations

..... 86

Table 5-3 Available Track Types

89

Table A-1 Difference in Output Primitives

103

Table B-1 Unsupported Control Functions

107

Table B-2 Unsupported Input Functions
Table B-3 Non Standard Control Functions

.. 107

108

Table B-4 Non Standard Attribute Functions

.............. 108

Table D-1 Possible Causes of Visual Errors
Table D-2 Primitive-Specific Errors

131

B

Tables Continued

Table D-3 Attribute Errors

Table D-4 Input-specific Errors

Table F-1 List of cgipw Functions

Table F-2 SunCGI Functions not Compatible with cgipw Mode

Table G-1 SunCGI Fortran Binding - Part I
Table G-2 SunCGI Fortran Binding — Part I1

Table G-3 SunCGl Fortran Binding ~ Part I1I

Table G-4 SunCGI Fortran Binding — Part I'V

Table G-5 SunCGl Fortran Binding — Part V

Table H-1 Correspondence Between Long and Short C Names

— xii -

.

Figure 1-1

Figure 2-1
Figure 2-2

Figure 2-3
Figure 3-1

O Figure 3-2

Figure 4-1
Figure 4-2

Figure 5-1
Figure 5-2

Figure 5-3

Figure E-1
Figure E-2

Figure F-1

Figure G-1

Figures
Simple Example Program .. 4
Example Program with Multiple Workstations ... 12
Example Program' with Multiple Normalization
Transformations 18
Example Program with set_up_sigwinch Function ... 24
Example Program with Polygons ... - 37
Example Program with Four Circle Quadrants in Different
000 147 o U 40
Example Program with Bundled Attributes ... 55
Example Program with Bundled Attributes ... 64
CGI Input State MOE] ... oresresreessoeeeesssieen 84
Example Program with LOCATOR Input Device ... 91
Example Program with STRING Input Device ... 94
Martini Glass Example Program 138
Tracking Box Example Program 139
Example cgipw Program 148
Example FORTRAN Program 153

- Xiif —

Controlling Document

Audience

Documentation Conventions

Preface

This document describes SunCGI, an implementation of the ANSI Computer
Graphics Interface (CGI) by Sun Microsystems, Inc. Previously, CGI was known
as the Virtual Device Interface (VDI) standard. Appendix B summarizes the
differences between SunCGI and ANSI CGI.

The CGI standard is currently under development. Future releases of SunCGI
will reflect changes in ANSI CGL

The following document was used in interpreting the CGI standard:

[1] ANSIX3H3 84/85. Information Processing Computer Graphics Virtual
Device Interface (VDI) Functional Description, March 1984,

The intended reader of this document is an applications programmer who is fami-
liar with interactive computer graphics and the C programming language. This
manual contains several example programs that can be used as templates for
larger SunCGI applications.

Italic font is used to indicate file names, function arguments, variables and inter-
nai states of SunCGI. Italics are also used in the conventional manner (to
emphasize important words and phrases). ALL CAPS is used to indicate values in
enumerated types. Bold font is used for the names of Sun software packages.
Function names are printed with constant width font.

Introduction

Introduction

1.1. Using SunCGI ...

1.2. The SunCGI Lint Library
1.3, Overview of SunCGI

Output Primitives

Attributes ...
Programming Tips
Appendices

1.4. References

~ - - NN OV A A W

1.1. Using SunCGI

1

Introduction

SunCGI provides access to low-level graphics device functions without the res-
trictions, benefits, or overhead of higher-level graphics packages like SunCore.
SunCGI is useful for 2D graphics programs which do not require segmentation
or transformations. The absence of segmentation from SunCGI makes drawing
diagrams faster and simpler, but does not provide automatic picture regeneration.
SunCGlI programs are usually smaller and more efficient than SunCore pro-
grams with similar functionality. In addition, SunCGI programs will run on Sun
devices without explicitly specifying the device at compile time. SunCGI pro-
vides output primitives (for example, circles), attributes (for example, sophisti-
cated pattern filling), and input primitives which are not offered by SunCore.
The CGI standard is currently under development, and therefore, CGI has not been
accepted by the X3H3 committee, ANSI, or the computer graphics community.
Only certain models within CGI are supported by SunCGI. Specifically SunCGI
implements input option sets 1, 2, 3, 4, and 6 and output option sets 1 through 6
of the CGI standard. CGI does not support 3D output primitives.

SunCGI does provides output primitives, attribute selection, and input device
management, at a level which is close to the actual device driver; thus affording
speed and flexibility not offered by higher-level graphics packages like SunCore.
SunCGI provides output primitives which are not provided by any of the other
Sun graphics packages: for example disjoint polygons, circles, ellipses, and cell
arrays (which can be thought of as scaled and transformed pixel arrays). CGI also
provides a larger vocabulary of attributes than SunCore. SunCGI also provides
facilities for explicitly binding virtual input devices to physical input devices as
well as explicit management of an event queue .

Here is 2 SunCGI example application program written in C:

3 Version C of 17 March 1986

4

SunCGI Reference Manual

Figure 1-1

3
¢

s ™~ ot

#include <cgidefs.h> '

Ccoor box([5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 1}:

main()

{
Ccoorlist boxlist:
Cint name;
Cvwsurf device;

boxlist.n = 5;
boxlist.ptlist = box;
NORMAL VWSURF {device, PIXWINDD);

open_cgif);
open_vws (&name, &device}:

polyline (&éboxlist);
sleep(10);

close_vws {name} ;

clese_cgi(); @
1

Simple Example Program

SunCGI uses a variety of structures and enumerated types shown in Appendix C.
The file <cgidefs.h> should be included in each SunCGI application pro-
gram to provide necessary definitions and constants.

Here is an example of a command line for compiling box. ¢ to run in the Sun-
View environment:

[% cc box.c -0 box -lcgi -lsunwindow -lpixrect -lm j

The order in which the libraries are linked to the program is important.

All SunCGlI functions can be called by one of two names: the expanded name
(default) or the C language binding name. See Appendix H for information on
the list of names for the shorter C language binding.

As a final note, do not name any user-defined function or variable starting with
the letters _cgi because doing so may disrupt the internal workings of SunCGI.

cgidefs?7.h and using the /usxr/lib/libcgi77.a library to link with.

FORTRAN programmers can access SunCGI functions by using the include file in O
Details of the FORTRAN interface to SunCGI are provided in Appendix G.

Ssun ' " Version C of 17 March 1986

MHCrosysterms

Chapter 1 — Introduction 5

q)1.2. The SunCGI Lint

Library

1.3. Overview of SunCGI

Initialization and Termination

¥

]

SunCGI provides a lint library which provides type checking beyond the capa-
bilities of the C compiler. For example, you could use the SunCGI lint library
to check a program called glass.c with command like this:

(% lint glass.c¢ -lcgil]

Note that the error messages that lint generates are mostly warnings, and may
not necessarily have any effect on the operation of the program. For a detailed
explanation of 1int, see the lint chapter in the Programming Tools manual.

This section provides an overview of the substance of this manual. The four
major sections of the manual (which correspond to chapters) are:

1) view surface initialization and termination (control),
2) output primitives,

3) attributes, and

4} input.

The overview of these chapters contains a brief introduction to the basic concepts
of CGL. The appendices at the end of this manual provide quick reference tables
and descriptions of the interfaces between SunCGI and

1) SunView and

2) FORTRAN.

Chapter 2 describes functions for

1) initializing and terminating the entire SunCGI package and individual view
surfaces,

2) defining the coordinate systems,
3) interface negotiation, and
4) signal trapping,

The first section Chapter 2 describes functions for opening and closing view sur-
faces (which are either windows or screens). SunCGI provides facilities for
writing primitives to multiple view surfaces. Output primitives can be written to
a selected subset of the open view surfaces by using the activat e vwsand
deactivate_vws functions (which turn a view surface on or off without clos-
ing the view surface or affecting the display). The functions discussed in
Chapter 2 also define the range of virtual device coordinates (VDC space) and
device coordinates (screen space). The coordinates of most SunCGI functions
are expressed in terms of VDC space. The limits of both VDC space and screen
space can be defined by the application program.

If you are attempting to run an application program developed on another
vendor’s version of CGl, negotiation functions are provided which describe the
capabilities of SunCGI. The application program can use the information
obtained by using the negotiation functions to call appropriate functions in

sun Version C of 17 March 1986

MiCTosyslems

8 SunCGI Reference Magual

QOutput Primitives

Attributes

Input

Errors

SunCGI to make the application program run correctly. Finally, Chapter 2 @
describes SunCGI’s option for trapping SIGWINCH signals (generated by mani-
pulating the window e¢nvironment which the application program is using).

SunCGI provides functions for drawing geometrical output primitives (for
example, polygons, circles, and ellipses) as well as functions for performing ras-
ter operations. The coordinates of output primitives are specified in VDC space
(with the exception of some raster functions). Geometrical output primitives
include rectangles, polymarkers, circular and elliptical arcs. Geometrical output
primitives are affected by attributes described in Chapter 4 (like fill style and line
width). All output primitives are affected by the drawing mode which deter-
mines how an output primitives is affected by pixels which have been previously
drawn on the screen.

Attribute functions control the appearance of output primitives. Attributes can be
set individually, or in groups which are called bundles. The use of most attri-
butes is fairly straightforward; fill textures require a word of explanation.
Geometrical output primitives can be filled with textures called hatches or pat-
terns. Hatches are simply arrays of color values with each element of the array
corresponding to a pixel. Patterns are arrays of color values which can be scaled
and translated.

SunCGl offers a standard interface for receiving input from the mouse and the

keyboard. The CGI input model is based on the logical input device model in @
GKS. In this system, a logical input device (for example, a LOCATOR device),

is bound to a physical device (for example, the x-y position of the mouse) called

a rigger. Triggers may be associated with logical input devices by the applica-

tion program. Each logical input device has an associated measure (for example,

the measure of a LOCATOR device is the mouse position on the screen). Each

logical input device also has a state which determines how a device handles

input. Each logical input device can be in one of five states:

1) RELEASED {uninitialized),

2) NO_EVENTS (initialized but unable to receive input),

3) REQUEST_EVENT (waiting for one event),

4) RESPOND_EVENT (report one event asynchronously}, and

5) QUEUE_EVENT (put each event at the end of the event queue).

Errors are reported in SunCGI by setting the return value of the function to a
nonzero result and echeing an error message and number on the terminal. How-
ever, error trapping can be controlled by the set_error_warning mask

function. An explanation of each error message (and suggestions for how to
eliminate them) is presented in Appendix D.

microsyslems

@ sun Version C of 17 March 1986

Chapter 1 — Introduction 7

Programming Tips

Appendices

1.4. References

For novice C language users, the syntax of SunCGI may pose some initial
difficulties. When a pointer is specified as an argument to a SunCGI function,
SunCGI usually expects space to be allocated by the application program and
the function argument to be preceded by an ampersand (&). SunCGI uses many
enumerated types. These types are printed by the print £ function as integers.
If you want to print out these values in English, you should use the enumerated
types as indices into a character array which contains appropriate English
equivalents of the enumerated types. Finally, if you are a novice programmer,
copy the example programs in Appendix E and use them as templates to build
your own program with, Further help can be obtained by referring to the tables
at the end of Appendix D. These tables list commonly encountered problems and
how to solve them. ‘

The first five appendices are intended to make SunCGI easier to understand.
This information will probably be particularly useful to novice users. The last
two appendices describe the interfaces:

1. between SunCGI and SunView, and
2. bewween SunCGI and the FORTRAN programming language.

Appendix A explains the difference between SunCGI and SunCore. Appendix
B lists the ANSI CGI standard functions which are not implemented by SunCGI
and the SunCGI functions which are not part of the ANSI CGI standard. Appen-
dix C provides the type definitions used by the SunCGI functions. Appendix D
lists the error messages and possible strategies for eliminating them. Appendix
D also lists possible causes of simple run-time errors. Appendix E describes
sample programs.

The final two appendices describe the interfaces between SunCGI and other Sun
software packages: SunView and FORTRAN. The first of the two interface appen-
dices explains how to call SunCGI from application programs written on top of
SunView. This interface allows SunCGI to write output primitives in different
windows using different attributes. This interface is useful for application pro-
grams which wish to control different areas of the view surface independently.
Appendix G describes the interface to the FORTRAN programming language. The
behavior of each SunCGI function is the same in both C and FORTRAN.

{11 ANSIX3H3. Computer Graphics Virtual Device Interface. March 1984,

[21 3.D.Foley and A. van Dam. Fundamentals of Interactive Computer
Graphics. Addison-Wesley, 1982.

(31 B.W.Kemighan and D.M. Ritchie. The C Programming Language .
Prentice-Hall, 1978.

{4) WM. Newman and R.F. Sproull. Principles of Interactive Computer
Graphics . McGraw-Hill, 1979,

[5]1 V.R.Pratt. Standards and Performance Issues in the Workstation Marke: .
IEEE Computer Graphics and Applications, April 1984,

sun Version C of 17 March 1986

microsysteme

8 SunCGI Reference Manual

[6]
(73
(8]
9]

SunView Programmer’s Guide . Sun Microsystems.
SunView System Programmer’s Guide . Sun Microsystems.
Pixrect Reference Manual . Sun Microsystems.

SunCore Reference Manual . Sun Microsystems.

Il _ Version C of 17 March 1986

2

Initializing and Terminating SunCGI

Initializing and Terminating SunCGI 11
2.1. View Surface Initialization and Selection ... 11
Open CGI (SUNCGI EXENSIONY ...ooovvcenmsmssrrmsmsssmsssssssomsssmssssssesns 12
Open View Surface (SunCGI Extension) 13
Activate View Surface (SunCGl Extension) . 16
Deactivate View Surface (SunCGI Extension) 16
Close View Surface (SunCGI Extension) 16
Close CGI (SunCGI Extension) w16
2.2, View Surface CONtroleomeesessmseesssmeseesse s 17
VDC EXIENL ..ot ssestsns s smnes e 17
Device VIEWPOTT ... s s s smsssssssssssssnes 19

Clip Indicatoroooceeeeeseesseenses o serssessrsss 19
ClipRectangle 20

Hard Reset ... 20

Reset to Defaults : 20

Clear View Surface ... 21

Clear Controi 21

Set Error Warning Mask 22

2.3. Running SunCGI with SunView 22
Set Up SIGWINCH (SunCGI Extension) 23

2.4. Interface Negotiation 24
Inquire Device Identification 25
Inguire Device Class - 25

-

Inquire Physical Coordinate
Inquire Output Function Set
Inquire VDC Type

System

Inquire Output Capabilites
2.5, Input Capability Inquiries

Inquire Input Capabilities

Inquire LID Capabilities

Inquire Trigger Capabilities

25
26
26
27
27
27
28
29

2

Initializing and Terminating SunCGI

The current CGI standard does not provide functions for initializing and terminat-
ing devices. ANSICGI is intended to provide an interface for a single view sur-
face (one per CGI instance). SunCGI extends CGI into the window environment
by allowing a single CGI process to control multiple view surfaces. Six nonstan-
dard functions open_cgi, close_cgi, open_vws, close_vws,
activate_ vws, and deactivate_vws are included in SunCGI.
open_cgi and close_cgi initialize and terminate the operation of the
SunCGI package. A view surface is initialized and terminated with open_vws
and close_vws. A view surface is automatically activated when it is opened.
SunCGlI is capable of handling more than one view surface at once. Qutput pri-
matives can be restricted from a view surface with deactivate_vws.

|
OZ.I. View Surface A view surface is automatically activated when it is opened, However, a view
Initialization and surface can be deactivated (with the deactivate_vws function) when the out-
Selection put stream is not intended to appear on all view surfaces. Subsequent calls to
SunCGI output functions will not apply to deactivated view surfaces! until
activate_vws is called again (see the following example).

O ! However, inputs can be received on deactivated view surfaces.
S
(/%@ u 1 Version C of 17 March 1986
microsystems

12 SunCGI Reference Manual

Figure 2-1

Open CGI (SunCGI
Extension)
Errors
2

/-

#include <cgidefs.h>

main ()

{
Ccoor bot, top, center;
Cint namel, name2, radius;
Cvwsurf devicel, devicel;

bot.x = 5000;

bot.y = 5000;
center.x = 10000; -
center.y = 10000;
radius = 5000;
top.x = 15000;
top.y = 15000;

open_cgi();

NORMAL_ VWSURF (devicel, PIXWINDD);
open_vws (§namel, &devicel);
NORMAL_VWSURF (device2, PIXWINDD);
open_vws (&name2, &device2);

rectangle(&bot, &top):
deactivate_vws (name2) ;
circle (¢er, radius);
activate_vws (namel) ;
circle(¢er, 2*radius}:

sleep{(20);
close_vws (namel};

close_vws (name2) ;
close_cgi{):

Example Program with Multiple Workstations

Cerror open_cgi{)

open_cgi initializes the state of SunCGI to CGOP (CGi OPen). open_cqi

does not initialize input devices but does initialize the event queue . No other CGI
functions can be used without generating an error if open_ cgi has not been
called. SunCGI traps various signals as described in Section 2.3.

ENOTCGCL {1] CGI not in proper state: CGI shall be in state CGCL.

-

Yersion C of 17 March 1986

Chapter 2 — Initializing and Terminating SunCGI 13

Extension)

Table 2-1

Open View Surface (SunCGI

S
@

SunCGI Defaulr States
State | Value

Range of VDC space 0-32767 in both xand y
directions

Clip Indicator CLIP

Clip Rectangle Range of VDC space

Error Warning Mask INTERRUPT

Input Devices Uninitialized

Input Queue EMPTY

Trigger Associations Defaults specific values
listed in Table 5-4

Echo Modes Device specific values
listed in Table 5-5

You may be unfamiliar with some of the entries discussed in Table 2-1, How-
ever, these concepts are explained in the course of this chapter. Further, each of
these concepts are referenced in the index.

Cerror open_vws (name, devdd)
Cint *name; /* name assigned to c¢gi view surface */
Cvwsurf *devdd:; /* view surface descriptor */

open_vws initializes a view surface. The list of available view surfaces is
described below in Table 2-2. open_vws initializes the attributes to their
default values (listed in Table 2-3). The returned argument name is the identifier
which is used to refer this view surface in other SunCGI functions. To reinitial-
ize the state of the view surface without reopening it, use the hard_reset
function.

More than one view surface can be open at one time. Qutput primitives are
displayed on all active view surfaces (view surfaces must be opened before they
are activated). However, input is only echoed on the view surface which is
pointed to by the mouse. Most of the Cvwsur £ fields should be zeroed, as by
the NORMAL_VWSURF macro. Set the view surface type by assigning the dd
(device driver) element of the devdd argument to the name of the appropriate
device driver as in this example:2

Cvwsurf device;
NORMAL_VWSURF (device, BW2DD);
open_vws {&name, &devicej;

Note : The NORMAL_VWSURF macro initializes the dd element of the Cvwsurf
structure and guarantees that the view surface will be opened in the normal
fashion. However, to open a window with some nonstandard parameters, or open
a second window from a graphics tool read the following paragraphs. To use an
existing pixwin , then skip the following paragraphs and read Appendix F instead.

2 Notice that when SunCGI specifies a pointer it usually requires that the argument is prefaced by an &
character when the arguimnent is actuaily used.

sun Version C of 17 March 1986

MICTOSY StaIms.

14

SunCGI Reference Manual

If the view surface of the specified type has been previously initialized and the
type of view surface is a window (PLXWINDD or CGPIXWINDD), a CGI tool (a win-
dow with the name CGI Tool) is opened. Other characteristics of the view surface
can be defined by setting the other elements of the of the devdd argument (which
is of type Cvwsurf).

typedef struct {
char screenname [DEVNAMESIZE]; /* physical screen */
char windowname [DEVNAMESIZE]; /* window */
int windowfd:; /* window file descriptor */
int retained; /* retained flag */
int dd; /* device */
int cmapsize; /* color map size */
char cmapname [DEVNAMESIZE]; /* color map name */
int flags; /* new flag */
char **ptr; /* CGI tool descriptor */
} Cvwsurf;

The elements screenname and windowname specify alternate screens (for exam-
ple, /devicgone() or alternate window (for example, /deviwini(). If these ele-
ments are left blank, the current screen and the current window are used, unless
the dd field implicitly specifies a device (for example CGIDD). The element
windowfd is the window file descriptor for the current device. The current
implementation of SunCGI ignores this element.

If the element retained is nonzero, then the view surface created by open_vws
has a retained window associated with it (that is, if the window is covered up by
another window and then revealed, the picture present before the window was
covered-up will be redisplayed. By default the window created by open vws is
non-retained. That is, if the window is covered-up and then revealed the
covered-portion will be redisplayed as white. However, drawing in non-retained
windows is twice as fast as drawing in retained windows, so the choice of which
type of view surface to open should be carefully considered.

The dd element specifies the view surface type. The cmapsize and the cmap-
name elements determine the size and the name of the colormap. No colormap
is enabled for monochrome devices. The colormap determines the mapping
between color indices and red, green, and blue values. If the colormap specified
by the cmapname element of the devdd argument is the same as a colormap seg-
ment which already exists, then the colormap segment is shared. cmapsize
should be a power of two, less than or equal to 256. Refer to the SunView
Programmer’s Guide for more information about colormaps.

When the flags element is nonzero, no attempt is made to take over the current
graphics subwindow (if one exists), If this flag is set or the graphics subwindow
has already been taken over by SunCGl, then a CGI Tool (a window with the
name View Surface Tool) is created. The prr element specifies the size and
placement of the CGI Tool. ptr is a pointer to an array of characters which

should consist of nine decimal numbers separated by commas. The array takes
the following form:

*nl,nt,nw,nh,il,it,iw,ih, 1"

sun Version C of 17 March 1986
MICIoS!

-

-

-

Chapter 2 — Initializing and Terminating SunCGI 15

Each element of the array should be filled with an integer. The first two elements
specify the x and y coordinates of the upper lefi-hand comner of the CGI Tool.
The third and fourth elements specify the width and height of the CGI Tool. The
fifth through eighth elements specify the position and size of the iconic form of
the CGI Tool. If the ninth element is nonzero, the tool is displayed in its iconic
form. :

Errors ENQTOPOP 5] CGI not in proper state CGI shall be either in state CGOP,
' VSOP, or VSAC.
ENOWSTYP [11] Specified view surface type does not exist.
EMAXVSOP [12] Maximum number of view surfaces already open.
EMEMSPAC [110] Space allocation has failed.

ENOTCCEW [112] Function or argument not compatible with standard CGI.

Table 2-2 Available View Surfaces

Name | Description
PIXWINDD SunView on a monochrome display
CGPIXWINDD SunView on a color display
BW1DD Full screen on a Sun-1 mono-
chrome display
BW2DD Full screen on a Sun-2 or Sun-3

monochrome display

CG1DD Full screen on a Sun-1 color display

CG2DD Full screen on a Sun-2 or Sun-3
color display

GP1DD Full screen on a Sun-2/160 or Sun-
3/160 with optional Graphics Pro-
cessor

Table 2-3 View Surface Default States

State | Value

View Surface Cleared
Device Viewport View Surface

Note : most failures during the opening of a view surface result in error ENOWS -
TYP [11]. The most common reason is missetting (or failing to set) the dd ele-
ment of the Cvwsur £ structure. For example, opening a device surface type
PIXWINDD instead of CGP IXWINDD on a color pixwin, or using CG2DD when
the /devicgtwo* surface is being used by suntools. The NORMAL VWSURF
macro should be used to initialize this structure.

é& sun Version C of 17 March 1986

microsystanms

16 SunCG! Reference Manual

Activate View Surface
(SunCGI Extension)

Errors

Deactivate View Surface
(SunCGI Extension)

Errors

Cerror activate_vws {name)
Cint name; /* view surface name */

activate_vws activates the view surface specified by name. Subsequent
SunCGI calls affect this view surface. Nothing is displayed on a view surface
uniess that view surface is active. Since a view surface is active as soon as it is
opened, activate vws is only need to reactivate a deactivated view surface.
Note that activating a view surface may reset the state of SunCGI.

ENOTOPOP [5] " CGlnotin proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.

EVSISACT [14] Specified view surface is active.

Cerror deactivate_vws (name)
Cint name; /* view surface name */

deactivate_vws prevents calls to SunCGI functions from having an effect
on this view surface. The view surface may be reactivated by activate vws
at a later time without having to be reopened. Note that deactivating a view sur-
face may reset the state of SunCGI.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC,
EVSIDINV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.

EVSNTACT [15] Specified view surface is not active,

Close View Surface (SunCGI Cerror close_vws (name)

Extension)

Errors

Close CGI (SunCGI
Extension)

Cint name; /* view surface name */

close_vws terminates a view surface. Future SunCGI calls have no effect on
this view surface. The view surface cannot be reactivated without being reo-
pened.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.

ENOTCCPW {112] Function or argument not compatible with standard CGI.

Cerror close_cgil()

close_cgi terminates all open view surfaces, and restores the state of the Sun-
View to the state that it was in before SunCGI was opened. Future SunCGI
calls will have no effect and will generate errors.

é&% sun Version C of 17 March 1986
microsyslems

-

<

-

Chapter 2 — Initializing and Terminating SunCGI 17

-

<; ') _ A call to close__cgi should be included in the exit routines of an application
' program to guarantee leaving the SunView and SunCG] in a stable state.

Errors ENQTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSQOP, or VSAC.

ENOTCCPW [112] Function or argument not compatible with standard CGI.

2.2, View Surface Control The functions described in this section
1. define the range of world and device coordinates,
2. control clipping, and
3. reset selected aspects of the view surface and the internal state of SunCGI.

Most functions in SunCGI express coordinates in VDC space (Virtual Device
Coordinate space). In conventional computer graphics terms, VDC space
corresponds to world coordinate space. The mapping between VDC space and
screen space is determined by the physical size of the screen in pixels. Screen
space is set by default to the entire size of the screen or the graphics window
depending on the device type. The mapping from VDC space to screen space is
always isotropic (the shape of the rectangle defining screen space is the same
shape as VDC space). Therefore, VDC space defines the shape of the active view
surface. The portion of screen space which does not correspond to VDC space is
ignored. The aspect ratio (the ratio between the height and width) is therefore,
O defined by VDC space and not screen space.

VDC Extent Cerror vdc_extent (cl, c2)
Ccoor *cl, *c2; /* bottom left-hand and */
/* top right-hand corner of VDC space */

vdc_extent defines the limits of VDC space. The range of the coordinates
must be between -32767 and 32767 (or an error is generated). VDC space can be
set by the application program, but it ranges from 0 to 32767 in both the x and
the y directions by default. Resetting VDC space impacts the display of output
primitives on all view surfaces.

Resetting the limits of VDC space automatically redefines the clipping rectangle
to the new limits of VDC space, regardless of the value of the clip indicator .

Changing the mapping from screen space to VDC space allows for translation
(move) or scaling (zoom in/zoom out) of output primitives. However, no rota-
tion functions are provided by SunCGI, and therefore, must be supplied in the
application program. The code fragment below translates and zooms in on a rec-
tangle:

$
é%\@ sun Version C of 17 March 1986

microsystems

18 SunCGl Reference Manual

{ | O
#include <cgidefs.h> L

main ()
{
Cvwsurf device;
Cint name;
Ccocr dvl, dvz, lower, upper;

NORMAL VWSURF {device, PIXWINDD);

dvi.x = 0;

dvl.y = 0; -

dv2.x = 200;

dv2.y = 200;

lower.x = 30; /* rectangle coordinates */
lower.y = 30;

upper.x = 70;

upper.y = 70;

open_cgif);
open_vws (&name, &device);
vde_extent (&dvl, &dv2);

rectangle (supper, &lower); /* draw initial rectangle */

sleep(4);

dvl.x = 0; =
dvl.y = 0;: 41i!.
dv2.x = 100;

dv2.y = 100;

vdc_extent (&dvl, &dv2); /* center rectangle */
rectangle (&upper, &lower):;

sleep(4);

dvl.x = 20;
dvl.y = 20;
dv2.x = 80;
av2.y = 80;

vdc_extent {(&dvl, &dv2}); /* enlarge rectangle */
rectangle{&upper, &lower):
sleep(20);

close vws (name);
cleose _cgi();

Figure 2-2 Example Program with Multiple Normalization Transformations

Errors ENOTOPQP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.
EBADRCTD [20] Rectangle definition is invalid. O
<
4%% sun Version C of 17 March 1986
microsystoms

O

Chapter 2 -— Initializing and Terminating SunCGI 19

Device Viewport

Errors

Clip Indicator

EVDCSDIL [24] VDC space definition is illegal.
ENOTCCPW [112] Function or argument not compatible with standard CGI.

Cerror device_viewport (name, cl, c2)

Cint name; /* name assigned to cgi view surface */

Cecoor *cl, *c2; /* bottom left-hand and top right-hand */
/* corner of view surface to map device onto */
/* {(expressed in pixels) */

device_viewport redefines the limits of screen space. If the new limits are
not less than or equal to the size of the current screen or window size, an error is
returned. Although device_viewport does not redefine the aspect ratio, it
may redefine which areas of the screen are unused.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC,

EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.
EBADRCTD [20] Rectangle definition is invalid,

EBDVIEWP [21] Viewport is not within Device Coordinates.

ENOTCCPW [112] Function or argument not compatible with standard CGI.

Cerror clip indicator(cflag)
Cclip cflag; /* CLIP, NOCLIP or CLIP_RECTANGLE */

For some application programs, it is desirable to clip explicitly within the
viewport, while other applications may seek to increase efficiency by not check-
ing if the coordinates are within the bounds of the clipping area.

All SunCGl application programs will run faster if clipping is turned off. How-
ever, clipping is turned on by default to prevent SunCGI from drawing outside
of the bounds of the window.

The extent of VDC may be set with the vdc_extent function.

The value of the argument ¢flag determines whether output primitives are
clipped before they are displayed. The default state is CLIP. The advantage of
turning clipping off is that it improves the speed of drawing primitives. How-
ever, if clipping is set to NOCLIP, SunCGI may draw output primitives outside of
the window or within the bounds of an overlapping window. If clipping is not
NOCLIP, output primitives are clipped to either the clip rectangle (if cflag equals
CLIP_RECTANGLE), or the full extent of VDC space (if ¢flag equals CLIP),

typedef enum {
CLIP,
NOCLIP,
CLIP_RECTANGLE
} Cclip:;

Ssun Version C of 17 March 1986

20 SunCGI Reference Manual

Errors

Clip Rectangle

Errors

Hard Reset

Errors

Reset to Defaults

Errors

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

ENOTCCPW [112] Function or argument not compatible with standard CGI.

Cerror c¢lip rectangle (xmin, xmax, ymin, ymax)
Cint xmin, xmax, ymin, ymax; /* bottom left-hand */
/* and top right-hand corner of clipping rectangle */

¢lip_rectangle defines the clipping rectangle in VDC Coordinates. By
default, the clipping rectangle is set to the borders of VDC space. The
clip_rectangle function defines the clipping rectangle in VDC space, to be
used when clipping is set to CLIP_ RECTANGLE. The chppmg rectangle is
automatically reset by vdc_extent.

ENOTOFPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EBADRCTD [20] Rectangle definition is invalid.

ECLIPTOL [22] Clipping rectangle is too large.

ECLIPTOS [23] Clipping rectangle is too small.

ENOTCCEW [112] Function or argument not compatible with standard CGI.

Cerror hard_reset ()

Device control functions restore the view surface and the internal state of
SunCGI to a known state. The individual aspects of the device which can be
reset are the output attributes, the view surface (screen), and the error reporting.

hard reset returns the output attributes to their default values; terminates all
input devices, and empties the event queue and clears all view surfaces. VDC
space is reset to its default values and the clip indicator is set to CLIP. This func-
tion should be used sparingly because most control, artribute, and input functions
called before this function will not have any effect on functions called after
hard_reset is called.

ENOTOPOP (5] CGI not in proper state CGI shall be either in state CGOP, - -

VSOP, or VSAC.

Cerror reset_to_defaults()

reset_to_defaults returns output attributes to defaults (see Table 4-1).
reset_to_defaults does not clear the screen, reset the input devices, or
reset the character set index.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid,

rrSmll Version C of 17 March 1986

-

-

-

Chapter 2 —~ Initializing and Terminating SunCGl 21

Clear View Surface Cerror clear_view_surface{name, defflag, index)
- Cint name; /* name assigned to cgi view surface */
Cflag defflag; /* default color flag */
Cint index; /* color of cleared screen */

clear_view_surface changes all pixels in the relevant area of the view sur-
face specified by name to the color specified by the index argument, unless the
defflag argument is set to OFF. If defflag is equal to OFF, the view surface is
cleared to color zero. The area of the view surface which is actually cieared is
determined by the clear_control function. clear_view_surface also
resets the internal state of SunCGl according to previous calls to the

clear_ control function. clear_view_surface resets the current back-
ground color to the color of the cleared view surface.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.
EVSNTACT [15] | Specified view surface is not active.
ECINDXLZ [35] Color index is less than zero.

EBADCOLX [36] Color index is invalid.

O Clear Control Cerror clear ceontrol(soft, hard, intern, extent)
Cacttype soft, hard:; /* soft and hard copy actions */
Cacttype intern; /* internal action */
Cexttype extent; /* clear extent */

clear_control determines the action taken when clear view_surface
is called. The argument soft can be set to either NO_OP or CLEAR. The argument
hard which regulates clearing rules for plotters is ignored (because SunCGI
does not currently support hard-copy devices) and is included only for ANSI CGI
compatibility. The argument intern is set to either RETAIN or CLEAR. This
parameter was included to support segmentation storage which is not currently a
part of ANSI CGI. Therefore, the intern argument is ignored. The argument
extent determines what area of the screen is cleared. Itis set to one of the values
in the Cextt ype enumerated type:

typedef enum {
CLIP_RECT,
VIEWPORT,
VIEWSURFACE
} Cexttype;

Errors ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
, VSOP, or VSAC.

ENOTCCPW [112] Function not compatible with CGIPW mode.
Set Error Warning Mask

&
%\%&4 sun Version C of 17 March 1986

microsystems

22 SunCGI Reference Manual

Errors

Table 2-4

2.3. Running SunCGI with
SunView

8L

Cerror set_error_ warning mask{action)
Cerrtype action; /* Action on receipt cf an error */

set_error warning_mask3 determines the action taken by SunCGI when
an error occurs. Three types of action are possible: NO_ACTION, POLL, INTER-
RUPT. If the action argument is set to NO_ACTION, errors are detected internally,
but not reported. The error number is returned to the caller of a CGI routine. The
user is advised not to set the action argument to NO_ACTION.

POLL and INTERRUPT actions print an error message on the terminal, but also
return the error number (see Appendix D) so the program can perform exception
handling. The default exror_warning_mask is INTERRUPT.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.
Error Warning Masks
Error Message Program Error
Warning Mask | Printed Aborted Number Returned
NO_ACTION No No Yes
POLL Yes No Yes
INTERRUPT Yes FATAL errorst Non-FATAL errors

t SunCGI defines no errors as FATAL. All errors are non-fatal so the appli-
cation has complete control to abort or perform other processing as desired.
Therefore, POLL and INTERRUPT are the same in SunCGI.

SunCGlI always traps five signals: SIGINT, SIGCHLD, SIGIO, SIGHUP and
SIGWINCH. The first four of these cause SunCGI cleanup and program termina-
tion. When using a Graphics Processor option, SunCGI also traps SIGXCPU.
Previous signal handlers, if any, are saved. When one of these signals occurs,
SunCGI’s signal handler will call the previous signal handler as well as perform-
ing its own processing. The actions of the previous (user installed) signal handler
may interfere with SunCGI’s signal responses, and are hence unsupported.

Unless a SunCGI application program has opened a retained view surface, over-
lapping another window onto 2 graphics subwindow will destroy the picture
below. SunCGI programs can regenerate a display surface by trapping the
SIGWINCH (SIGnal WINdow CHange} signal.

It is possible (though unsupported) to install a signal handler for signals after cal-
ling open_pw_cgi (see Appendix F). Since these signal handlers replace
SunCGTI’s handler, the application should save SunCGI’s signal handier
(returned by signal), and call the saved handler when the signal occurs (amid the
user’s own processing). Because the response of the program to the signal then
depends on the place in the user’s own signal handling that SunCGI’s handler is

? The syntax of set_error_warning mask in SunCGI is slightly different from the proposed axs!
standard in that the ANSI definition allows different actions for different classes of errors.

n Version C of 17 March 1986
ams

microGyst

Chapter 2 — Initializing and Terminating SunCGI 23

~-

D called, results are unpredictable, and may change with a new version of SunCGI.’

Note that it is not necessary for an application to catch a SIGWINCH signal, since
SunCGI's set_up_sigwinch routine offers an easier interface. A user’s
sig_function has a different calling semantics from a SIGWINCH in that
pw_damaged and pw_donedamaged have already been invoked.

When a window’s contents needs regeneration during execution time, the process
associated with a window receives a SIGWINCH signal. The application can use
this signal to determine when a view surface needs to be regenerated. Nore:
Under no circumstances will the user be able to access the SIGWINCH signals gen-
erated when a view surface is initialized.

When a window obstructs a SunCGI view surface, output to that view surface is
normally clipped to the exposed portion only (unless the clip indicator is
NOCLIP). When the obstruction is removed, unless the window is RETAINED, the
picture must be regenerated by re-running the output generation of the applica-
tions, for that view surface at least. An application’s SIGWINCH handling func-
tion is called for this purpose.

When a SunCGI window’s size changes during execution, the picture must be
regenerated. But first, SunCGI updates the transformation used to map vDC
space into screen space. Then, if the affected view surface is RETAINED, the
retained copy is rewritten onto the view surface. (Because of the size change,
this may not repair the damage satisfactorily.) Lastly, the application’s
SIGWINCH function is called.

Set Up SIGWINCH (SunCGI Cerror set_up_sigwinch(name, sig_function)
Extension) Cint name;
Cint (*sig_function) (); /* signal handling function */

set_up_sigwinch allows the application program to trap SIGWINCH signals
for view surface name. sig_function is a pointer to a function returning an
integer. If sig_function is nonzero, all SIGWINCH signals which are not
trapped by the internals of SunCGI (from view surface initialization) are passed
to the function specified by sig function.

The sig_function is called when the SIGWINCH signal is received. Itis the
programmer’s responsibility to use a flag to determine if it is safe to process the
signal at this time, or to set a flag indicating that signal processing has been put
off until later. See the SunView Programmer’s Guide for information on
SIGWINCH handling.

The sig_function argumentis called with a single argument: the name of
the view surface with which it is associated by the call to set_up_sigwinch.
This allows more than one view surface to share the same sig_function, and
differentiate which view surface needs redisplay.

Here is an example of a program that uses set_up_sigwinch.

Version C of 17 March 1986

&
wn
=

§

24

SunCGl Reference Manual

Errors

2.4. Interface Negotiation

-
#include <cgidefs.h>

Ccoor box[5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

Cint name;

extern Cint redraw(};

Cvwsurf device;

main ()

{

Ccoorlist boxlist:

boxlist.n = 5;
boxlist.ptlist = box:
NORMAL_VWSURF (device, PIXWINDD);

open_cgil);
open_vws (&name, &device}:
set_up_sigwinch(name, redraw);

polyline (éboxlist) ;
sleep(10);

close_vws (name);
close_cgi{);

)

Cint redraw({)
{

clear view surface(name, ON, 0);
)

\

Figure 2-3 Example Program with set_up_sigwinch Function

ENOTOPOP [5]
VSOP, or VSAC,

CGI not in proper state CGI shall be either in state CGOP,

CGlI is intended to support a ‘negotiated device interface’ which permits programs

written on a specific type of hardware to run on other machines. SunCGI only
allows inquiry of most of the settable modes.* For example the user may want to
find out which types of input devices are supported. However, functions for set-
ting color precision, coordinate type, specification mode, and color specification
are not provided because SunCGI only supports one type of color precision (8-

4 The functions which are not supported by SunCGI are classified as nor-required by the March 1984 anst O

cai standard. See Appendix B.

@ sun

Crosystens

Version C of 17 March 1986

Chapter 2 — Initializing and Terminating SunCGI 25

Inquire Device Identification

Errors

: Inquire Device Class

Errors

Inquire Physical Coordinate
System

X

bit), coordinate type (integers), and color specification (indexed). The width and
size specification modes are settable, but the functions which set them are
described in Chapter 4. However, the inquiry negotiation functions are supported
so that an application program written for a CGI on another manufacturers’
workstation ¢an find out whether the SunCGI is capable of running that applica-
tion.

Cerror inquire_device_ identification (name, devid)
Cint name; /* device name */
Cchar devid[DEVNAMESIZE]; /* workstation type */

inquire device_identification reports which type of Sun Worksta-
tion view surface name is associated with. The argument devid may be set to
one of the Sun Workstation types described in Table 2-2. The inclusion of the -
name argument deviates from the ANSI standard, but is necessary so that the
characteristics of individual view surfaces may be inquired.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open,

Cerror inquire_device_class{cutput, input) _
Cint *output, *input; /* output and input abilities */

inquire_device_class describes the capabilities of Sun Workstations in
terms of the CGI functions they support. Each of the two returned values reports
the number of functions of each of the two classes which are supported in
SunCGI. These numbers (the values of inpur and output) are used to make
more detailed inquiries by using functions

inquire input_capabilitiesand
ingquire_output_capabilities.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire_physical coordinate_system(name, xbase,
ybase, xext, yext, xunits, yunits)

Cint name; /* name assigned to cgi view surface */

Cint *xbase, *ybase; /* base coordinates */

Cint *xext, *yext; /* pixels in x and y directions */

Cfloat *xunits, *yunits; /* number of pixels per mm. */

inquire_physical_coordinate_system reports the physical dimen-
sions of the coordinate system of view surface name in pixels and millimeters.
inquire physical_coordinate_system is provided to permit the
drawing of objects of a known physical size.

5 The outpwut argument does pot include the non-standand CGI functions.

qﬁn Version C of 17 March 1986
SIS

26 SunCG] Reference Manual

Errors

Inquire Output Function Set

Errors

Inquire VDC Type

inquire_physical_coordinate_systemis also provided to assist in @
the computation of parameters for the device viewport function. xext and

yext describe the maximum extent of the window in which the application pro-

gram is run. (The window may or may not cover the entire screen.) The number

of pixels per millimeter is always set to because the actual screen size of device

varies between individual monitors. The actual size of the screen may be

obtained from the number of pixels in the x and y directions from the monitor
specifications and perform the division in an application program.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.

EVSNOTOP [13] Specified view surface not open.

Cerror inguire_ocutput_function_ set (level, support)
Cint level; /* level of output */
Csuptype *support; /* amount of support */

inquire output_ function_ set repoits the extent to which each level of
the output portion of the ANSI CGI standard is supported.

typedef enum |{

NONE,
REQUIRED_FUNCTIONS_ONLY, C)
SOME_NON_REQUIRED_FUNCTIONS,

ALL NON_REQUIRED FUNCTIONS
} Csuptype:;

The standard requires that the leve! argument be an enumerated type; however,
for reasons of simplicity only the level numberis used by SunCGIJ. Levels 1-6
are supported completely (that is, both required and non-required functions are
implemented. Level 7 is not supported at all. Refer to the ANSI standard for the
precise definition of each level.

ENOTOPQOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror ingquire vdc_ type (Lype)
Cvdctype *type; /* type of VDC space */

inquire_vdc_type reports the type of coordinates used by SunCGI in the
returned argument sype.

typedef enum {
INTEGER,
REAL,
BOTH

} Cvdctype;

type is always set to INTEGER (32-bit). SunCore is a higher-level graphics sys- @
tem with coordinate space expressed in real numbers.

S ll Version C of 17 March 1986

Chapter 2 — Initializing and Terminating SunCGl 27

O Errors

-

Inquire Qutput Capabilities

Errors

2.5, Input Capability
Inquiries

Inquire Input Capabilities

ENQOTOPOP {5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire output capabilities{first, num, list)

Cint first:; /* first element */

Cint num; /* number of elements in list to be returned */
Cchar *list():; /* returned list */

inquire_output_capabilities lists the output functions in the returned
argument /isz. The range of the first and num arguments is determined by the
returned argument ouzput from the inquire_device_class function.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC. ‘
EINQLTL [16) Inquiry arguments are longer than list.

Input devices have a separate class of negotiation functions. Input capability
inquiries report qualitative abilities as well as quantitative abilities of input dev-
ices. The inquire input capabilities function reports which devices
and overall features are supported by SunCGI. The remaining functions report
the capabilities of individual devices or features. Input devices are virtual dev-
ices which must be associared with physical mriggers (such as mouse buttons).
Initializing an input device defines the measure used by a device, for example
initializing a LOCATOR device defines the measure as x-y coordinates. In addi-
tion to being associated with a trigger, each device has selectable screen echoing
capabilities. Association and echoing capabilities for each input device are
reported by the functions described in this section.

Cerror inquire_ input_capabilities(valid, table)
Clogical *valid; /* device state */
Ccgidesctab *table: /* CGI input description table */

inquire_ input_capabilities repons the total number of input devices
of each class that are supported. The argument valid returns the value L_TRUE if
SunCGl is initialized, and L_FALSE otherwise. If valid is set to L_TRUE, the ele-
ments of table are set to the quantity and quality of inputs supported. All Sun
Workstations support input at the same level.

S ll n Version C of 17 March 1986
ITUCTOE!

28 SunCGI Reference Manua!

Errors

Inquire LID Capabilities

@

typedef struct {
Cint numloc;
Cint numval;
Cint numstrk;
Cint numchoice;
Cint numstr;
Cint numtrig;
Csuptype event_queue;
Csuptype asynch;
Csuptype coord map:;
Csuptype echo;
Csuptype tracking:
Csuptype prompt;
Csuptype acknowledgement:;
Csuptype trigger_manipulation;
} Ccgidesctab;

Elements of type Cint report how many of each type device is supported, as
well as how many types of triggers are supported. Elements of type Csuptype
report how many of the functions of each class are supported. All functions
except the tracking functions are fully supported.

ENQTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire lid _capabilities(devclass, devnum,
valid, table)

Cdevoff devclass;

Cint devnum; /* device number */

Clogical *valid; /* device supported at all */

Cliddescript *table; /* table of descriptors */

inquire_input_device_capabilities describes the capabilities of a
specific input device (hereafter, specified device). The input arguments devclass
and devnum refer to a specific device type and number. The argument valid
reports whether CGI is initialized.

typedef struct f{
Clogical sample;’
Cchangetype change:;
Cint numassoc;
Cint *trigassoc;
Cinputability prompt;
Cinputability acknowledgement;
Cechotypelst *echo;
Cchar *classdep:
Catatelist state;

} Cliddescript:;

The elements of table which are of type Clogical indicate whether an ability
is present in the specified logical input device. The change element reports
whether associations are changeable at all (all input devices except string are
changeable). The numassoc and rrigassoc elements of rable report how many

sun Version C of 17 March 1986

MICIOEYSlams

Chapter 2 — Initializing and Terminating SunCGI 29

Table 2-5

Errors

O Inquire Trigger Capabilities

-

and which triggers may be associated with the specified logica! input device.

The echo argument describes which echo types are supported.(see Chapter 5 for
a list of echo types).6 The classdep argument provides class dependent informa- -
tion in character form (the type of information is given in Table 2-3). If more
than one piece of class dependent information is returned, then the pieces of
information are separated by commas. The state argument reports the inital
state of the specified device. See the inquire state_list function.

Class Dependent Information
Device Class | Information I Possible Values
IC_LOCATOR Coordinate Mapping Yes, No, Partial
Native Range Xmin, xmax,
ymin, ymax
IC_VALUATOR Set Valuator Range yes/no
IC_STROKE Time Increment Settable yes/no
Minimum Distance yes/no
IC_CHOICE Range min/max
IC_STRING None None
ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,

VSOP, or VSAC.

Cerror inquire_trigger_capabilities{trigger, wvalid, tdis)
Cint trigger; /* trigger number */

Clogical *valid:; /* trigger supported at all */

Ctrigdis *tdis; /* trigger description table */

inguire_trigger capabilities describes how a particular #rigger can
be associated. The argument valid reports whether the device supports input at
all.

typedef struct |
Cchangetype change;
Casscoclid *numassoc;
Cint maxassoc;
Cpromstate prompt:
Cackstate acknowledgement;
Cchar *name:
Cchar *description:

} Ctrigdis:

The change element of tdis repons whether the specified trigger can be associ-
ated with a logical input device. The numassoc element of ¢dis gives supported
LID associations for this trigger. This consists of n, the number of LID classes
which can be associated with the trigger, a pointer to an array of n entries telling
which » device classes can be associated with the trigger, and how many of each

6 Note that inquire_lid_capabilities retums an enumerated type whereas track_on accepls
integers. Therefore these values mzy be different.

Sun _ Version C of 17 March 1986

MCTORYStemE

30 SunCGI Reference Manual

device class is defined. The maxassoc field gives the number of LID’s which
can be concurrently associated with this trigger. SunCGI does not support either
prompt or acknowledgement for any input device. The name element is simply a
character form of the trigger name (for example, LEFT MOUSE BUTTON). The

description element is never filled and is included for standards compatibility.

Errors ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

EINTRNEX [86] Trigger does not exist,

w'

MiCIoaystems

|
sun Version C of 17 March 1986

-

Output

Qutput .

3.1. Geometrical Output Primitives

Polyline ...

Disjoint Polyline

Rectangle

Elliptical Arc Close .

--- L

...

3.2, Raster Primitives

Append Text

Inquire Text Extent |

Cell Arréy

Pixel Ammay

33

33
34
34
35
35
36
38
38
38
39
40
41
41
41
42
42
42
43
43

ERS&

3.3. Drawing Modes

BitBlt Source Array

BitBlt Pattern Array

Inquire Pixel Array

Inquire Device Bitmap ..,

Inquire BitBIt Alignments

Set Drawing Mode

Set Global Drawing Mode (SunCGI Extension)

Inquire Drawing Mode

45
46
46
47
47
48
48
48
49
50
50

O 3.1. Geometrical Qutput
Primitives

3

Output

SunCGI supports two classes of output primitives: geometrical output primitives
and raster primitives,

Geometrical Quitput Primitives
include arcs, circles, polylines, and polygons. The position of geometrical
output primitives are always specified in absolute VDC coordinates.”

Raster Primitives
draw text and scaled and unscaled 2D arrays. The coordinate system for ras-
ter primitives depends on the type of primitive. The drawing mode deter-
mines how output primitives are drawn on top of other output primitives or
the background. :

Geometrical output primitives are divided into two classes: polygonal primitives
and conical primitives. Geometrical output primitives are all 2D in keeping with
the CGI standard. However, polygons with holes (via the partial polygon
function) are provided in order to support 3D graphics packages.

Geometrical primitives (except polymarker) are considered either closed or
not closed. Polymarker uses its own attributes (see Section 4.3). Non-closed
figures (polylines, circular arcs, or elliptical arcs) are drawn with a style, width
and color determined from line attributes (see Section 4.,2), Closed figures
(polygons, rectangles, circles, ellipses, and circular and elliptical closed arcs) use
the solid object attributes (see Section 4.4). The geometrical information
specifies the boundary of a closed figure. The interior of this boundary is filled
using fill area attributes. The boundary may be surrounded with a line, drawn
with perimeter attributes, not the line attributes. For example, a circle of radius
1000 and a perimeter width of 100 VDC units has its perimeter between the circle
of radius 1000 and a concentric circle of radius 1100 (not from 950 through
1050).

Most polygonal primitives polyline, (polymarker, polygon, and
partial_polygon) take one argument of type Ccoorlist:

7 SunCGI (unlike SunCore) maintains no concept of current position.

Sun 33 Version C of 17 March 1986

microsystems

34 SunCGI Reference Manual

typedef struct { C)
Cint =x; : -
Cint y; '

} Cecoor;

typedef struct {
Ccoor *ptlist;
Cint n:

} Ccoorlist;

The element pelist is really a pointer to an array of type Ccoox which contains
the n coordinates of the points defining the primitive. The style, color, and other
features of lines, markers, and fill patterns used by geometrical output primitives
are set by the attribute functions described in Chapter 4.

The polygons generated by SunCGI may or may not be closed. SunCGI
automatically assumes the polygon is closed for the purpose of filling. However,
a polygon must be explicitly closed in order to get all of its edges drawn, so take
care to generate explicitly closed polygons. The rectangle function impli-
citly generates closed objects.®

SunCGI has two classes of conical primitives: circular and elliptical . Each
class has functions for drawing solid objects, arcs, and closed arcs. Drawing of
conical primitives is regulated by the same attnbutes that regulate the drawing of
polygons and polylines.

Polyline Cerror polyline{polycoors) @
Cccorlist *polycoors; /* list of points */

polyline draws lines between the points specified by the pzlist element of
polycoors . polyline does not draw a line between the first and last element
of the point list. To generate a closed polyline, the last point on the list must
have the same coordinates as the first point on the list. The style, color, and
width of the lines are set by the polyline_bundle index, line_ type,
line_colox,line_widthand line_width_specification_mode
functions. If a line segment of a polyline has a length of zero, the line is not
drawn. To draw a point, use the circle function. If you specify a polyline that
has less than two points, an error is generated. Similarly, if the number of points
specified is greater than the maximum aumber of points (MAXPTS) an error is
generated.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
ENMPTSTL [60] Number of points is too large.
EPLMTWPT [61] polylines must have at least two points.

Disjoint Pelyline

A closed portion of a closed figure boundary will not be drawn if it exceeds a clipping boundary. @

&%4]_}n Vemsion C of 17 March 1986

O

Chapter 3 — Qutput 35

Errors

Polymarker

Errors

Polygon

Errors

Cerror disjoint_polyline(polyccors)
Cecoorlist *polycoors; /* list of points */

disjoint_ polyline draws lines between pairs of elements in ptlist. The
line attributes described in Section 4.2 determine the appearance of the
disjoint polyline function If polycoors contains an odd number of
points, the last point is ignored. As with polyline, if the number of points is
less than two or greater than MAXPTS, an error is generated.
disjoint_polyline is typically used to implement scan-line polygon filling
atgorithms.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
ENMPTSTIL [60] Number of points is too large.
EPLMTWPT {61] polylines'must have at least two points.

Cerror polymarker{polycoors)
Ccoorlist *polyceoors; /* list of points */

polymarker draws a marker at each point. The type, color, and size of marker
are set by the polymarker_bundle_ index,marker_type,
marker_color,marker_size, and
marker_size_specification_mode functions. If the number of points
specified is greater than the maximum number of points, an error is generated.
polymarker is useful for making graphs such as scatter plots.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
ENMPTSTL [60] Number of points is too large.

Cerror pelygen(polycoors)
Ccoorlist *polycoors; /* list of points */

polygon displays the polygon described by the points in polycoors. In addi-
tion, any points added to the global polygon list by the partial polygon
function are also displayed. The polygon is filled between edges. Polygons are
allowed to be self-intersecting. The visibility of individual edges can only be set
by the partial _polygon function. The style and color used to fill the
polygon are set by the solid object attribute functions described in Chapter 4.
The characteristics of the edges are controlled by the perimeter attribute func-
tions, The number of points in the polygon used to determine the error condition
of too few or too many points is the total number of points on the global polygon
list , not the number of points specified in polycoors. After the polygon is
drawn, the global polygon list is emptied.

ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC.
ENMPTSTL {60] Number of points is too large.
EPGMTHPT [62] Polygons must have at least three points.

Sun | Version C of 17 March 1986

microsystams

36 SunCGI Reference Manual

Partial Polygon

EGPLISFL {63] Global polygon list is full.

Cerror partial_polygon(polycoors, cflag)
Ccoorlist *polycoors; /* list of points */
Ccflag cflag; /* CLOSE previous polygen? */

partial_polygon adds elements to the global polygon list without display-
ing the polygon. The partial_polygon function provides the capability of
drawing multiple-boundary polygons, including polygons with holes. The draw-
ing is actually performed when polygon is called. polygon will close the last
boundary on the global polygon-iist and add the coordinate list it is passed as the
final polygon boundary before drawing.

¢flag controls whether the last polygon in the global polygon list is open or
closed. If ¢flag is set to CLOSE, the last polygon on the global polygon list will
be closed by drawing a visible perimeter edge between the last and the first
points of the 1ast polygon on the global polygon list. If the ¢flag is set to OPEN,
the points in polycoors are appended to the last polygon on the global polygon
list , but an invisible perimeter edge will be drawn between the last point
currently on the global polygon list and the first point in the Ccoorlist. The
visibility of polygon edges can be individually controlled by calling

partial polygon with ¢flag set to OPEN for each invisible edge and with
cflag set to CLOSE for each new boundary. The interpretation of ¢flag is slightly
different than the pseudocode given in the CGI standard. Future versions of CGI
may use a different syntax to offer the capabilities of multiple-boundary
polygons and invisible edges.

The CGI standard specifies that circle, rectangle, ellipse and
close_arc are primitives that may use the global polygon list for filling.
SunCGI does not use the global polygon list in these functions, and therefore
leaves it untouched. These SunCGI routines do nor empty the global polygon
list.

sSun Version C of 17 March 1986

micoeystems

-

C

Chapter 3 — Output

37

Errors

Figure 3-1

-
#include <cgidefs.h>

main ()

{
Ccoor list4]:
Ccoorlist points;
Cint name;
Cvwsurf device;

NORMAL VWSURF {device, PIXWINDD);

open_cgi{):
open_vws (&name, &device};

interior_ style(SOLIDI, ON): .
listf[0].x = 10000;
list[0).y = 10000;
list{1]).x = 10000;
list[1].y = 20000;
list[2].x = 20000;
list{2].y = 20000;
list[3].x = 20000;

list[3].y = 10000;
points.ptlist=1ist;

peints.n=4;
partial_polygon{&points, CLOSE};
1ist[0].x = 12500;

list [0] .y = 12500;
list[1].x = 12500;
list([1].y = 17500;
listf2].x = 17500;
list(2).y = 17500;
list[3].x = 17500;
list[3].y = 12500;

peints.ptlist=1list;
points.n=4;
polygon{&points): /* cut a hole in it */

sleep(10);

close_vws (name) ;
close_cgi();

Example Program with Polygons

An error is detected if the number of points on the global polygon list exceeds
MAXPTS. In this case, the polygon on the global polygon list is drawn, and the
new information is not added. The same error handling applies to polygon.

u Version C of 17 March 1986

38 SunCGI Refersnce Manual

Rectangle

Errors

Circle

Errors

Circular Arc Center

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
ENMPTSTL [60] Number of points is too large.

EPGMTHPT [62] Polygons must have at least three points.
EGPLISFL [63] Global polygon list is full.

Cerror rectangle(rbec, ltc)
Ccoor *rbc, *ltc; /* corners defining rectangle */

rectangle displays a box with its lower right-hand corner at point rbc and its
upper left-hand comer at point irc. Calls to rectangle do not affect the glo-
bal polygon list. The interior of the rectangle (the filled portion) is defined by
rbe and lic. The perimeter is drawn outside of this region. The appearance of
the rectangle is determined by the fill area and perimeter attributes. A rectangle
with one side coincident with a clipping boundary specifies an interior extending
to the boundary. Hence, a portion of the perimeter is outside the clipping boun-
dary and is not drawn.

If the arguments to rectangle would result in a point or a line, the point or
line is drawn. However, if the arguments to rectangle determine a point, the
point is drawn with width zero, regardless of the current value of perimeter
width . If the values of rbc and ltc are reversed, the points are automatically
reversed and the rectangle is drawn normally.

ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC.

" Cerror circlef{cl, rad)

Ccoor *cl; /* center */
Ccint rad; /* radius */

circle draws a circle of radius rad centered at ¢/ . The argument rad is
expressed in terms of VDC space. The color, form, and visibility of the interior
and perimeter are controlled by the same solid object attributes which control the
drawing of polygons and rectangies.

The argument rad determines the size of the inzerior of the circle. Therefore, a
circle with a thick perimeter may be larger than expected. If the radius is zero, a
point is drawn, and no textured perimeter is drawn, even if the perimeter width is
large. If the radius is negative, the absolute value of the radius is used.

Textured circles may possibly contain an incorrect element at one point because
the digital circumference may not be exactly divisible by the length of the texture
element.

ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC.

Cerror circular_arc_center({cl, c2x, ¢2y, ¢3x, ¢3y, rad)
Ccoor *cl; /* center */

Cint ¢2x, c2y, ¢3x, ¢3y; /* endpoints */

Cint rad; /* radius */

S un) Version C of 17 March 1986

microsysiems

-

-

Chapter 3 — Outpet 39

Errors

Circular Arc anter Close

circular_arc_center draws a circular arc between points ¢2x, c2y and
c3x, c3y with circle of radius rad at center ¢/ . Point ¢2x, ¢2y is the starting
point and point c3x, ¢3y is the ending point. Circular arcs are drawn in a coun-
terclockwise manner. This convention is used to determine the difference
between the arc formed by the smaller angle determined by ¢2x, c2y, ¢/ and
¢3x, c3y and the larger angle specified by these same points. Therefore switch-
ing the values of c2x, c2y and ¢3x, c3y will produce arcs which total 360
degrees. If rad is negative, the points 180 degrees opposite from c2x, ¢2y and
¢3x, ¢3y are used as the endpoints of the arc.

If the rad is zero, a point is drawn at cJ . If either ¢2x, ¢2y or ¢3x, c3y are not
on the circumference of the circle determined by ¢/ and rad, an error is gen-
erated and the arc is not drawn. The attributes which determine the style, width,
and color of the arc are the same functions which regulate the drawing of poly-
lines .

ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC.
EARCPNCI [64] - Arc points do not lie on circle.

Cerror circular_arc_center close(cl, c2x,
c2y, ¢3%, c3y, rad, close)

Cecoor *cl; /* center */

Cint ¢2x, c2y, ¢3x, c3y; /* endpoints #*/

Cint rad; /* radius */

Cclosetype close; /* PIE or CHORD */

circular_arc_center_close draws aclosed arc centered at ¢/ with
radius rad and endpoints c2x, c2y and 3x, ¢3y. Arcs are closed with either the
PIE or CHORD algorithm. The PIE algorithm draws a line from each of the end-
points of the arc to the center point of the circle. SunCGI then fills this region as
it would any other solid object. The CHORD algorithm draws a line connecting
the endpoints of the arc and then fills this region using solid object attributes,
circular_arc_center_close is useful for drawing pie charts (see fol-
lowing example):

N Version C of 17 March 1986

ICTCEYStams

40 SunCGl Reference Manual

Figure 3-2

Errors

Circular Arc 3pt

' ™
#include <cgidefs.h>

main{) /* draws four quadrants in different colors */
{

Ccoor c¢l;

Cint name, radius;

Cvwsurf device;

cl.x = 16000; /* center */

cl.y = 16000;
NORMAL~VWSURF(deVice, CGPIXWINDD) ;
radius = 8000; /* radius */

open_cgil () ;
open_vws (éname, &device}:

interior_style (SOLIDI, OFF}:

£il} color(l); /* color of quadrant 1 */

circular_arc_center_close{&cl, 24000, 16000,
1600C, 24000, radius, PIE):

fill color(2): /* color of quadrant 2 */

circular_arc_center_close(&cl, 16000, 24000,
8000, 16000, radius, PIE);

fill coler(3): /* color of guadrant 3 */

circular_arc_center_close(&cl, 8000, 16000,
16000, 8000, xadius, PIE):

£ill color(4): /* color of quadrant 4 */

circular arc_center close({&cl, 16000, 8000,
24000, 16000, radius, PIE);

sleep(10);
close_vws (name) ;
close_cgi():

Example Program with Four Circle Quadrants in Different Colors

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EARCPNCI [64] Arc points do not lie on circle.

Cerror circular_arc_3pt(cl, ¢2, c3)
Ccoor *cl, *c2, *c3; /* starting,
intermediate and ending points */

circular_arxc_3pt draws a circular arc starting at point ¢/ and ending at
point ¢3 which is guaranteed to pass through point ¢2. The line attributes func-
tions described in Section 4.2 determine the appearance of the
circular_arc_3pt function. If the circular arc is textured (for example,
dotted) then the intermediate point may not be displayed. However, if the arc is
solid, the intermediate point is always drawn. If the three points are colinear, a

é{%& sSun , Version C of 17 March 1986

microsysiems

C

Chapter 3 — Qutput 41

-

O line is drawn. If two of the three points are coincident, a line is drawn between

: the two distinct points. Finally, if all three points are coincident, a point is
drawn, circular_arc_3pt is considerably slower than
circular_arc_center, therefore, you are advised to
circular_arc_center if both functions can meet your needs.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Circular Arc 3pt Close Cerror circular_arc_3pt_close(cl, c2, c3, close)
Ccoor *cl, *c2, *¢3; /* starting, intermediate
and ending points */
Cclosetype close; /* PIE or CHORD */

circular_arc_3pt_close draws a circular arc starting at point ¢/ and
ending at point ¢3 which is guaranteed to pass through point ¢2. The solid
object attributes described in Section 4.4 determine the appearance of the
circular_arc_3pt_close function. As with circular arc_3pt,
circular_arc 3pt_close is considerably slower than
circular_arc_center_close; therefore, you are advised to use
circular_arc_center_close if both functions meet your needs.

If the three points are colinear, a line is drawn. If two of the three points are
coincident, a line is drawn between the two distinct points. Finally, if all three
points are coincident, a point is drawn. In none of these cases will any region be

O filled.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC,

Ellipse Cerror ellipse(cl, majx, miny)
Ccoer *cl; /* center */
Cint majx, miny:; /* length of x and y axes */

ellipse draws an ellipse centered at point ¢/ with major (x) and minor (y) axes
of length majx and miny 2 If either majx or miny are zero, a line is drawn. If
both majx and miny are zero, a point is drawn. The attributes which control the
drawing of ellipses are the solid object attributes described in Section 4.4,

Errors ENOTVSAC [4] - CGI not in proper state: CGI shall be in state VSAC.

Elliptical Arc Cerror elliptical_arc(cl, sx, sy, ex, ey, majx, miny)
Ccoor *cl;:;/* center */
Cint sx, sy: /* starting point of arc */
Cint ex, ey; /* ending point of arc */
Cint majx, miny; /* endpoints of major and minor axes */

elliptical_axrc draws anelliptical arc centered at ¢/ with major (x) and
minor (y) axes of length majx and miny. sx, sy and ex, ey are the starting and

9 Although the axes are called the major and minor axes by the standard they are really the x and y axes. In

O fact, the x axis can either be the major or minor axis, depending on the relative length of the y axis.
%%? S un Version C of 17 March 1986
microsysiams

42 SunCGl Reference Manual

ending points of the arc. An error is generated (and the ellipse is not drawn) if @
the points (sx, sy, and ex, ey) are not on the perimeter of the ellipse. Elliptical

arcs are drawn in a counterclockwise manner. This convention is used to deter-

mine the difference between the arc formed by the obtuse angle determined by
c¢l.x,cly,sx,sy,and ex, ey and the acute angle specified by these same points.
Therefore switching the values of sx, sy and ex, ey will produce complementary

arcs.

If either majx or miny are zero, a line is drawn. If both rmajx and miny are zero,
a point is drawn. Polyline attributes are used to determine the appearance of
elliptical arcs. -

Errors ' ENOTVSAC {4} CGI not in proper state: CGI shall be in state VSAC.
EARCPNEL [65] Arc points do not lie on ¢llipse.

Eiliptical Arc Close Cerror elliptical_arc_close(cl, sx, sy, ex,
ey, majx, miny, close)
Ccoor *cl:/* center */
cint sx, sy; /* starting point of arc */
Cint ex, ey; /* ending point of arc */
Cint majx, miny:; /* endpcints of major and minor axes */
Cclosetype close; /* PIE or CHORD */

elliptical_arc_close draws an elliptical arc specified by sx, sy, ex, ey

and majx, miny. The arc is closed with either the PIE or CHORD algorithm. The G
same restrictions on sx, sy, ex, and ey are applied to

elliptical_arc_close astoelliptical_arc. However,
elliptical_arc_close uses the fill area and perimeter attributes, whereas
elliptical_arc uses the line attributes.

If either majx or miny are zero, a line is drawn. If both majx and miny are zero,
a point is drawn. In neither of these cases will any region be filled.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EARCPNEL [65] Arc points do not lie on ellipse.

3.2. Raster Primitives Raster primitives include text, cell arrays, pixel arrays, and bitblts (bit block
transfer). Bitblts are pixel arrays (bitmaps) which can be drawn using the various
. drawing modes. The current drawing mode determines how bitbit primitives are
affected by information which is already on the screen. Raster primitives differ
from geometrical primitives because their dimensions are not necessarily
expressed in VDC space. Therefore, you must be careful to consider whether
position arguments are expressed in VDC space or screen coordinates.

Text Cerror text(cl, tstring)
Ccoor *cl: /* starting point of text (in VDC space) */
Cchar *tstring; /* text */

text displays the text contained in sstring at point ¢/ (expressed in VDC space). @
The appearance of text is controlled by the text attributes described in Section

@zf sun Version C of 17 March 1986

microsystems

Chapter 3 — Qutput 43

4.8. Control characters are displayed as blanks, except in the SYMBOL font where
they may be drawn as pictures of bugs.
Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
VDM Text Cerror vdm_text {cl, flag, tstring)

Ccoor *cl; /* starting point of text (in VDC space) */
Ctextfinal flag; /* final text for alignment */
Cchar *tstring:; /* text */

vdm_text displays the text contained in tstring at point c/ (expressed in VDC
space). The intended difference between text and vdm_text is that
vdm_text allows control characters; however, SunCGI does not handle control
characters so text drawn with vdm_text will appear identical to text drawn
with the text function. If the flag argument is equal to FINAL, the previous text
and the appended text are aligned separately. However, if the flag argument is
equal to NOT_FINAL, the appended and previous text are aligned together.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Append Text . Cerror append_text (flag, tstring)
Ctextfinal flag; /* final text for alignment */
Cchar *tstring; /* text */

£ append_text displays the text contained in tstring after the end of the most

\v) recently written text. The type of text written depends on the same attributes
which control the display of text. The flag argument determines whether the
appended text is aligned with the previous text if the alignment is CONTINUQUS.
If the flag argument is equal to FINAL, then the previous text and the appended
text are aligned separately. However, if the flag argument is equal to
NOT_FINAL, the appended and previous text are aligned together.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC,

Inquire Text Extent Cerror inquire_ text_ extent (tstring, nextchar, concat,
lleft, uleft, uright}
Cchar *tstring; /* text */
Cchar nextchar; /* next character (for kerning) */
Ccoor *concat; /* concatenation point */
Ccoor *lleft, *uleft, *uright;
/* coordinates of text bounding box */

inquire_text_extent determines how large text tstring would be and
where it would be placed if it were drawn using the current text attributes. The
nexichar parameter is used to determine the point where text would start if more
text (starting with nextchar) were appended to the text specified by estring 10 If
nextchar equals 'single space’, the last point of the current character is used.
The argument concar returns the coordinates of the point where appended text

O 10 This is a method for accounting for proportional spacing.

N
4/{?{9 Sun Version C of 17 March 1986

micosystems

44 SunCGI Reference Manual

Errors

Cell Array

Errors

Pixel Array

would start. The arguments lleft, uleft, and uright return three of the four
corners of the bounding box of text contained in tstring .

The bounding box is a parallelogram (a rectangle if the character up vector and
the character base vector are orthogonal). The names of the parallelogram
corners are correct if no rotation is applied to the text. For some character orien-
tations, the implied relationships do not hold. Forexample, lleft may not be the
lowest. The fourth corner may be easily calculated from the three returned:

uright=->x + lleft->x - uleft->x
uright->y 4+ lleft->y -~ uleft->y

The concatenation point and text alignment parallelogram are returned in VDC
space, but assume a text position of (0, 0). If the text is to be drawn at a position
(x,y) then (x, y) must be added to each point to yield the true locations.

The values of lleft, uleft, and uright are defined by the bounding box of the
character and therefore may not be at the exact pixel where the character ends or
begins.

ENQTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror cell_array(p, g, r, dx, dy, colorind)
Ccoor *p, *qg, *r;:

/* corners of parallelogram (in VDC space) */
Cint dx, dy: /* dimensions of color array */
Cint *colorind; /* array of color values */

cell array draws ascaled and skewed pixel array on the view surface(s).
Points p, ¢ and r (expressed in VDC space) define a parallelogram. Line p-q is a
diagonal and p is the lower left-hand corner. r is one of the remaining two
corners. dx and dy define the width and the height of the array colorind which
is mapped onto the parallelogram defined by p, g, and r.

cell_ array is one of the few primitives which depends on the actual size of
the view surface. Cell arrays are not drawn if the elements of the array would be
smaller than one pixel. However, because different view surfaces may have dif-
ferent dimensions, a cell array might be drawn on one view surface, but not on
another smaller view surface. Finally, all cells composing the cell array are the
same size; therefore, the upper left hand corner of the cell array might be down
and to the right of point ¢ because of the accumulated error of making all of the
cells slightly smaller than their floating point size. For example if each cell of a
3 X 3 cell array is supposed to be 3.333 pixels wide, the actual cell array will be
nine pixels wide instead of ten.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
ECELLATS [66] Cell array dimensions dx, dy are too small.
ECELLPOS [67] Cell array dimensions must be positive.

sSu Version C of 17 March 1986

-

-

Chapter 3 — OQutput 45

C::) Cerror pixel array(pcell, m, n, colerind)
Ccoor *pcell; /* base of array in VDC space */
Cint m, n; /* dimensions of color array in screen space */
Cint *colorind; /* array of color values */

pixel array draws array colorind starting at point pcell (expressed in VDC
space). m and n (expressed in screen space) define the x and y dimensions of
the array. Therefore, pixel arrays always have a constant physical size, indepen-
dent of the dimensions of VDC space. The pixel array is drawn down and to the
right from point pcell, If either m or n are not positive, the absolute value of m
and n are used. pixel array is not affected by the current drawing mode .

Errors ENOTVSAC [4] CGI not in proper state; CGI shall be in state VSAC.
EVALOVWS [69] Value outside of view surface.

BitBIt Source Array Cerror bitblt source_array(pixsource, xo, yo, Xe, Ye,
pixtarget, =t, yt, name)
Cpixrect *pixsocurce, *pixtarget:
/* source and target pixel arrays */
Cint xeo, yo: :
/* coordinates of source array (in VDC space) */
Cint xe, ye;
/* dimensions of gource array {in screen space) */

cint xt, ¥t;
C::} /* coordinates of target pixel array (in VDC space) */
Cint name; /* view surface name */

bitblt_source_array moves a pixel array from point (xe, yo) to point
(xt, yt) using the current drawing mode . Both of these points are expressed in
VDC space. The size of the pixel array is determined by the xe and ye arguments
which are expressed in screen space. pixsource and pixtarget are pointers to pix-
rects which must already be created by mem_create.“ These pixrects must be
the same depth as the view surface: 1-bit deep on a monochrome device, 8-bit on
a color device. The source area of the view surface associated with name is
saved into pixsource (at 0,0). The target area, after pixsource is applied
to it, is read into pixtarget pixrect (at 0,0).

An error is detected if either xe or ye are not positive. If the replicated pattern
array overlaps with the source array on the screen, the visual result depends on

the current drawing mode . pixsource and pixtarget may have different contents _
depending on the screen drawing mode (see the set_drawing_mode func-

ton),
Mutltiple view surfaces and bitblt’s are incompatible, so a name argument must
be specified.
Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC,
O 11 Referto the Pixrect Reference Manual for more information about pixrects.
D
‘%@ sun Version C of 17 March 1986
Mmicrosyslems

46 SunCGI Reference Manual

BitBIt Pattern Array

Errors

BitBIlt Patterned Source Array

EVALOVWS [69] Value outside of view surface.

Cerror bitblt pattern_array(pixpat, px, py, pixtarget,
rx, ry, ox, oy, dx, dy, name)

Cpixrect *pixpat; /* pattern source array */

Cint px, py; /* pattern extent */

Cpixrect *pixtarget; /* destination pattern array */

Cint rx, ry: /* pattern reference point */

Cint ox, oy; /* destination corigin */

Cint dx, dy:; /* destination extent */

Cint name; /* view surface name */

bitblt_pattern_array replicates the pattern (using the current drawing
mode) stored in pixpat to fill the area of the view surface which is determined by
ox, oy and dx, dy. The pattern reference point determines the offset of the pat-
tern array from the point zero. The resultant pattern array is displayed at ox, oy.
The visual result depends on the current drawing mode.

pixpat is a pointer to a pixrect which must be created and initialized with the
pattern by the application program. pixtarget is a pointer to a pixrect (with
same depth as the device) which must already be created by the user, using
mem create. The target area, after pixpat is applied to it, is read into the
pixtarget pixrect (at 0,0).

Maultiple view surfaces and bitbit’s are incompatible, so a name argument must
be specified.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVALOVHWS [69] Value outside of view surface.
EPXNOTCR [70] Pixrect not created.

Cerror bitblt_patterned source_array({pixpat, px, py,
pixtarget, rx, ry, pixsource, sx, sy, 0x, oy,
dx, dy, name)

Cpixrect *pixpat; /* pattern source array */

cint px, py; /* pattern extent */

Cpixrect *pixsource; /* source array */

Cint sx, sy: /* source origin */

Cpixrect *pixtarget; /* destination pattern array */

Cint rx, ry; /* pattern reference point */

Cint ox, oy; /* destination origin */

Cint dx, dy; /* destination extent */

Cint name; /* view surface name */

bitblt_ patterned_source_array replicates (using the current drawing
mode) the pattern stored in pixpat to fill the area of the view surface deter-
mined by ox, oy and dx, dy. The source area of the view surface is read into
the pixrect pointed to by pixsource (which must already be created by the
user with same depth as the device) at 0,0. The source area is stenciled through
the replicated pattern onto the view surface at ox, oy, using the current drawing
mode. The target area, after the copy, is read into the pixtarget pixrect. If

S
é@@ sSun Version C of 17 March 1986

microsysiems

-

-

Chapter 3 — Qutput 47

.

, . the replicated pattern array overlaps with the source array on the screen, the
O visual result depends on the current drawing mode.

Multiple view surfaces and bitblt’s are incompatible, so a name argument must
be specified. '

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVALOVWS [69] Value outside of view surface.
EPXNOTCR [70] Pixrect not created.

Inquire Cell Array Cerror inquire cell array{name, p, g, r, dx, dy, cclorind)
Cint name; /* view surface name */
Ccoor *p, *g, *r;
/* corners of parallelogram {in VDC space) */
Cint dx, dy; /* dimensions of color array */
Cint *colorind; /* array of color values */

Points p, g and r (in VDC space) define a parallelogram with line p-g as the

diagonal where p is the lower left-hand comer., r is one of the remaining two

corners. dx and dy define the width and the height of the amray colorind which -

contains the colors of the pixels on the screen which lie within the parallelogram -

defined by p, ¢, and r. Notice that a view surface identifier, name, must be

specified because the result of this function is highly dependent on the dimen-
O sions and contents qf the view surface.

The area of the screen corresponding to the parallelogram is assumed to contain a
regular grid of points. However, if each element of the grid is larger than one
pixel, the color of the pixel at lower left-hand corner of each element of the grid
is defined to be the color of the grid element. Therefore, the values contained in
colorind are highly dependent on the size of the view surface. An erroris pro-
duced if the elements of the grid are smaller than one pixel.

Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVSIDINV {10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.
EVSNTACT [15] Specified view surface is not active,
ECELLATS [66] Cell array dimensions dx, dy are too small.
ECELLPOS [67] Cell array dimensions must be positive.

Inquire Pixel Array Cerror inquire_pixel array(p, m, n, ceclorind, name)
Ccoor *p; /* basgse of array in VDC space */
Cint m, n; /* dimensions of color array in screen space */
Cint *colorind:; /* array of color values */
Cint name; /* wview surface name */

f inquire pixel_array fills array colorind with the values of pixels in the |
Q‘ } area of the screen defined by point p (expressed in VDC space) and m and n
(expressed in screen space). The array is filled down and to the right from point

/{?f S ll ll Version C of 17 March 1986

microsystens

48 SunCGI Reference Mazoual

Errors

Inquire Device Bitmap

Errors

Inquire BitBlt Alignments

Errors

3.3. Drawing Modes

p. If either m or n are not positive, the absolute value of these arguments is
used.

Multiple view surfaces and bitblt’s are incompatible, so a name argument must
be specified.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.,
EVALOVWS [69] Value outside of view surface.
EPXNOTCR [70] . Pixrect not created.,

Cpixrect *inquire device bitmap (name)
Cint name; /* name assigned to cgi view surface */

ingquire_device_bitmap returns the pixrect which corresponds to the view
surface. The pixrect describes the entire device, even if the view surface is a
smaller pixwin. If you want to use subareas of this pixrect or manipulate it any
other way, refer to the Pixrect Reference Manual

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
. VSOP, or VSAC.

Cerror ingquire_bitblt_alignments(base, width, px, py,

maxpx, maxpy, name) £
Cint *base; /* bitmap base alignment */
Cint *width: /* width alignment */
Cint *px, *py; /* pattern extent alignment */
Cint *maxpx, *maxpy; /* maximum pattern size */
Cint name; /* name assigned to cgl view surface */

inguire_bitblt_alignments reports the alignment criteria which are
necessary for some implementations. These factors are not critical for SunCGl.
However, you should keep in mind the appropriate depth for the pixrect when
talking to a specific device. Therefore the arguments base, width , px, and py
are always set to zero. The arguments maxpx and maxpy are device dependent
and determine the maximum size of a pattern forbitblt_pattern_array
and bitblt_patterned_source array.

Multiple view surfaces and bitblt’s are incompatible, so a name argument must
be specified.

ENQTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EVSIDINV[10] Specified view surface name is invalid.

EVSNOTOP {13] Specified view surface not open.

EVSNTACT {15] Specified view surface is not active.

Drawing modes determine the result of drawing any output primitive on the clear O
screen (background) or on top of a previously drawn object. Drawing modes
only affect the drawing of bitbl: primitives. However, a non-standard

S
/@,{4 sun Version C of 17 March 1986

MICIOSYBLamS

Chapter 3 — Output 49

o set_global drawing mode function is provided, which affects all output
primitives except bitblt’s. Resetting the drawing mode in the middle of an appli-
cation program only affects those output primitives drawn after the mode is reset.
The novice user is advised not to reset the drawing mode until the user has writ--
ten at least one application program using SunCGIL.

Set Drawing Mode Cerror set_drawing mode(visibility, source,
destination, combination)
Cbmode wvisibility; /* transparent or ocpaque */
Chitmaptype source; /* NOT source bits */
Chitmaptype destination; /* NOT destination bits */
Ccombtype combination; /* combination rules */

set_drawing mode determines the current drawing mode which in turn
determines how bitblt primitives are displayed. The visibility argument deter-
mines how pixels with index zero are treated.

typedef enum |
TRANSPARENT,
OPAQUE

} Cbhmode;

typedef enum ({
BITTRUE,
BITNOT

C::) } Chitmaptype:

typedef enum {
REPLACE,
AND,
OR,
NOT,
XOR

} Ccombtype:

If visibility is set to TRANSPARENT, all source pixels with index zero leave the
destination pixel unchanged, regardless of the operation, whereas if visibilizy is
set to OPAQUE, all pixels are treated normally. The arguments source and desti-
nation determine whether the contents of the source and destination pixrects are
NOTted before the birblt operation is performed.

The combination argument determines how the source and destination pixrects
are combined. If combination is equal 10 REPLACE, the source pixrect (after
optionally being NOT-ted) replaces the destination pixrect. If combination is
equal to AND, OR, or XOR the source pixrect and the destination pixrect are com-
bined in the indicated Boolean fashion. If combination is equal to NOT, then the
destination is set to a bitwise NOT operation of the source pixrect.

Errors ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
VSOP, or VSAC.
f{%. grgng Version C of 17 March 1986

50 SunCGl Reference Muinual

Set Global Drawing Mode
{SunCGI Extension)

Errors

Inquire Drawing Mode

Errors

Cerror set_global drawing mode (combination)
Ccombtype combination; /* combination rules */

set_global_drawing_ mode determines the current global drawing mode
which in turn determines how all output primitives except bitblts are displayed.
The combination argument determines how the source and destination pixrects
are combined. If combination is equal to REPLACE (the default value) the output
primitive replaces the destination background. If combination is equal to AND,
OR, or XOR the output primitive and the information on the screen are combined
in the indicated Boolean fashion. If combination is equal to NOT, then the desti-
nation is set to a bitwise NOT operation of the source pixrect.

ENQOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
VSOP, or VSAC.

Cerreor ingquire_drawing mode(visibility., source,
destination, combination)

Cbmode *visibility; /* transparent or opague */

Cbitmaptype *source; /* NOT scurce bits */

Chitmaptype *destination; /* NOT destination bits */

Ccombtype *combinaEion; /* combination rules */

The inquire drawing mode returns the values of the four components of

the current drawing mode .

ENQOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
VSOP, or VSAC,

S u n Version C of 17 March 1986

MCTosyslams

Eoy

-

-

©

Attributes

Attributes

.......................

4.1. Bundled Auribute Functions

Set Aspect Source Flags

Define Bundle Index (SunCGI Extension)
4.2, Line Attributes

Line Endstyle (SunCGI Extension)
Line Width Specification Mode
Line Width ...
Line Color

4.3. Polymarker Attributes

Polymarker Bund!e Index

..

Marker Type
Marker Size Specification Mode
Marker Size
Marker Color ...,
4.4. Solid Object Attributes ...
Fill Area Bundle Index
Interior Style
4.5. Solid Interior Fill Attribute |
Fill Color
4.6. Hatch and Pattern Attributes

54
56
56
57
57
58
58
59
59
59
60
60
60
60
61
61
61
62
62
62
63
63

Pattern Reference Point |

Pattern Size

Pattern with Fill Color (SunCGI Extension)
4,7. Perimeter Atributes
Perimeter Type
Perimeter Width
Perimeter Width Specification Mode
Perimeter Color

4.8, Text Attributes
Text Bundle Index

Text Precision

4.10.

Character Set Index ...

Text Font Index

Character Expansion Factor
Character Spacing
Character Height

Fixed Font (SunCGI Extension)

Text Color

Character Path ..
Text Alignment
4.9. Color Attributes

Color Table

Inquiry Functions
Inquire Line Attributes
Inquire Marker Attributes .,
Inquire Fill Area Attributes
Inquire Pattern Attributes
Inquire Text Attributes
Inquire Aspect Source Flags

..

64
65
65
65
66
66
66
66
67
67
68
68
68
68
69

69

70
70
70
71
7
7
7
72
74

74

75
75
75
76
76
77
78

4

Attributes

The current attributes determine how output primitives are displayed. Attributes
are not specific to any view surface, but affect all view surfaces. The default
attributes are defined in Table 4-1. The current attributes may be set either indi-
vidually or in groups (by changing the index into the bundle table). Example
programs illustrating these methods of changing attributes are given in Figures
4-1 and 4-2.

Each entry in the bundle table specifies a set of attributes for a particular type of
primitive (for example, solid objects). The method for setting the current attri-
butes depends on the state of the ASF (aspect source flag) for each attribute. For
individual attribute functions to have an effect, the ASF must be set to INDIVI-
DUAL. If the ASF is set to BUNDLED, the current attribute is defined by the entry
in the bundle table pointed to by the bundle index. The actual appearance of
objects also depend on the global drawing mode described in Chapter 3.

The majority of this chapter is devoted to individual attribute functions. Indivi-
dual attribute functions are grouped according to the output primitives they
effect: polylines, polymarkers, filled objects, and text. The color_table
function (which redefines color table entries) is also included in this chapter.
Finally, functions for obtaining the values of the current attributes are discussed.

Su 53 Version C of 17 March 1986

54 SunCGI Reference Manual

Table 4-1 Default Auributes
Auntribute | Value Atntribute I Value
All ASF's INDIVIDUAL All Bundle Indices 1
Line Color 1 Line Width 0.0
Line Endstyle BEST_FIT Line Width SCALED
Line Type SOLID Specificadon Mode
Marker Color 1 Marker Size 4.0
Marker Size SCALED" Marker Type DOT
Specification Mode
Fill Color 1 Number of Pattern 2
Fill Hatch Index 0 Table Entries
Fill Pattern Index 1 Pattern Size 300,300
Interior Style HOLLOW Pattern Reference Point 0,0
Pattern with Fill Color OFF
Perimeter Color 1 Perimeter Width SCALED
Perimeter Type . SOLID Specification Mode ,
Perimeter Width : 0.0 Perimeter Visibility ON |
Fontset 1 Text Font STICK
Fixed Font 0
Character Base.x 1.0 Character Spacing 0.1
Character Base.y 0.0 Character Upx 0.0 s
Character Expansion Factor 1.0 Character Up.y 1.0
Character Height 1000 Text Color 1
Character Path RIGHT Text Precision STRING
Horizontal Text NRMAL Text Continuous 1.0
Alignment Alignment.y
Text Continuous 1.0 Vertical Text NORMAL
Alignment.x Alignment

4.1. Bundled Attribute
Functions

The attribute environment selector functions determine if the current attributes
are defined individually or by using a set of attributes (bundles). Bundles are

defined by entries in the bundle table . The CGI standard specifies the bundle
table as read-only but SunCGI allows user-definition of entries in the bundle
table. Each type of primitive has its own index into the bundle table, described
with its specific attribute functions.

The following example program illustrates how to change the appearance with
bundled attributes. The program draws a polyline with a different line style and

line width.

4 sun

iCTORY S eHTS

-

Version C of 17 March 1986

Chapter 4 — Attributes

Figure 4-1

-
#include <cgidefs.h>

Cecoor box([5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 }:
Cbunatt bundle = { DASHED_DOTTED, 1., 4,
X, 6., 4,
PATTERN, 1, 1, 2,
DOTTED, 1.5, 1,
STICK, CHARACTER,
1.3, 06.05, 1 }:

main ()
{
Ccoorlist boxlist:
Cint i, line bundle = 2, name;
Cflaglist flags;
Cvwsurf device:

boxlist.ptlist = box;
boxlist.n = 5;
NORMAL_VWSURF (device, PIXWINDD};

open_cgi();
open_vws (&name, &device};

for (1 = 0; i < 18; i++) {
flags.value(i] = BUNDLED:
flags.num([i] = i;

}

flags.n = 18;

define hundle index(2, &bundle):
set_aspect_source_flags(&flags};
polyline_bundle_index(line_bundle);
polyline (&boxlist):

sleep (10} ;
close_vws (name) ;
close_cgi();

flags.value = (Casptype *) malloc(l8*sizeof (Casptype)):
flags.num = (Cint *) malloc{(l8*sizecf (Cint)):

Example Program with Bundled Attributes

sun

MiCIOayEleme

Version C of 17 March 1986

56 SunCGI Reference Magual

Set Aspect Source Flags

Errors

Table 4-2

Define Bundle Index (SunCGI

Extension)

@

Cerror set_aspect_source_flags (flags)
Cflaglist *flags:; /* list of ASFs */ -

set_aspect_source_flags determines whether individual attributes are
set individually or from bundle table entries. '

typedef struct {
Cint n;
Cint num(]:
Casptype value[]:;
} Cflaglist:

The n element of the £1ags argument determines how many flags are to be set.
The num array of the £1ags argument determines which flags are to be set.
Flag numbers are provided in Table 4-2. Finally, the value array of the flags
argument determines the values of the flags specified in aum . If a value is
assigned to INDIVIDUAL, the individual attribute functions affect the current attri-
bute. If the value of index is BUNDLED, calls to individual attribute functions
have no effect .12 The default bundle index is set to 1 (which initially contains
the default value for the attributes specified in Table 4-1). The default value of
all aspect source flags is INDIVIDUAL.

ENOTOPOP {5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
Attribute Source Flag Numbers i
Flag | Anribute | Flag | Attribute
0 line type 9 fill color
1 line width 10 perimeter type
2 line color 11 perimeter width
3 marker type 12 perimeter color
4 marker width 13 text font index
5 marker color 14 text precision
6 interior style 15 character expansion factor
7 hatch index 16 character spacing
8 pattern index 17 text color

Cerror define bundle_index(index, entry)
Cint index; /* entry in attribute environment table */
Cbunatt *entry; /* new attribute values */

define_bundle_ index defines an entry in the bundle table . The type
Cbunatt is a structure which contains elements corresponding to all the attri-
butes. If the contents of a bundle table entry are changed, all subsequently
drawn primitives use the information in the new entry, depending on the relevant
aspect source flags. You should keep this fact in mind if you are designing
display list raversal algorithms using SunCGlI.

12 In fact, SunCGI currently produces efror 30 when these individual attribute function is called while the @
corresponding ASF is BUNDLED.

S ll n) Version C of 17 March 1986

microsysterms

Chapter 4 — Atiributes 57

1"’ Errors

4.2. Line Attributes

Polyline Bundle Index

Errors

L

typedef struct {
Clintype line_type;
Cflcat line_width;
Cint line_color:
Cmartype marker_ type:
Cfloat marker size;
Cint marker_color;
Cintertype interior_style;
Cint hatch_index;
Cint pattern_index:;
Cint £ill color;
Clintype perimeter_type;
Cfloat perimeter_width;
Cint perimeter color;
Cint text_font;
Cprectype text_precision;
Cfloat character_expansion;
Cfleoat character_spacing;
Cint text_color;

} Chunatt;

In addition to the errors listed below, other errors can be detected if any of the
attribute values are invalid, as specified in later sections. Results are undefined if
an error occurs.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBEBDTBDI [31] Bundle table index out of range.

SunCGl provides for specifying the style, width and color of lines which consti-
tute polylines, circular arcs, and elliptical arcs. The functions do not affect the
drawing of the perimeter of solid objects which are set by the perimeter func-
tions.

Cerror polyline bundle index(index)
Cint index; /* polyline bundle index */

polyline_bundle_index sets the current polyline bundle index to the
value of index. The contents of the polyline bundle index are line type , line
width and line color . The line width specification mode and the line endstyle
attributes are not included in the polyline bundle. If index is not defined, an
error is generated, and the polyline bundle_index does not change. If
the ASF’s for any of these attributes is set to BUNDLED, the current values of these
attributes are set to the contents of the bundle.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

EBADLINX [33] Polvline index is invalid.

Su Version C of 17 March 1986

MICIOSYEIoME

58 SunCGI Reference Manual

Line Type

Errors

Line Endstyle (SunCGI
Extension)

Errors

Line Width Specification
Mode

Cerror line type(ttyp)

Clintype ttyp; /* style of line */

line_type defines the line type for polylines. The enumerated type Clin-

“type contains values that correspond to valid line types.

typedef enum {
SOLID,
DOTTED,
DASHED,
DASHED_ DOTTED,
DASH_DOT_DOTTED,
LONG_DASHED

} Clintype;

The default line style is SOLID. The actual representation of a line on the screen
is affected by the line endstyle . DASH_DOT _DOTTED actually has three dots
between dashes.

ENCTOPOP [5]} CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.

Cerror line endstyle(ttyp) _
Cendstyle ttyp:; /* style of line */

line_endstyle determines how a textured (non-SOLID) line terminates. @
The enumerated type Cendstyle contains values that correspond to valid line
end styles.

typedef enum {
NATURAL,
POINT,
BEST_FIT

' } Cendstyle;

If the endstyle selected is NATURAL, the last component of the line texture (for
example, a dash or a dot) which can be completely drawn is drawn. Blank space
at the end of the line may cause the line to not appear as long as specified by the
starting and ending coordinates. If the endstyle selected is POINT, the last point
of the line is drawn whether it is appropriate or not. In this case, the endpoints of
the line always appear on the screen. If the endstyle selected is BEST _FIT, the last
point is always drawn but is extended as far back as the Iast space if appropriate.
However, the BEST_FIT endstyle may shorten the space between the last element
of the line and the element preceding the last element by one in order to guaran-
tee that the line ends on a drawn point. The default endstyle is BEST_FIT.

ENOTOPOP {5} CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

C

&
% r§c un Version C of 17 March 1986

Errors

Line Width

Errors

Line Color

Errors

Chapter 4 — Attributes 59

-~

Cerrcr line_width specification_mode (mcde)
Cspecmode mode; /* pixels or percent */

line_width_specification_mode allows the 1ine_width to be
specified in pixels or as a percentage of VDC space according to the value of
mode The enumerated type Cspecmode contains values that correspond to line
width specification modes.

typedef enum {
"ABSQLUTE,
SCALED

} Cspecmode;

If the line width specification mode is changed from ABSOLUTE to SCALED, the
change in the line width will probably be dramatic. The default line width
specification mode is SCALED.

If mulitiple view surfaces are active, the line width is scaled separately for each
view surface.

ENCTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror line width (index)
Cfloat index; /* line width */

line_width determines the width of the lines composing polylines, circular
arcs, etc. If the line width specification mode is SCALED, index is expressed in
percent of VDC space and if the x and y dimensions are different, the width is
calculated on the basis of the range of the x coordinate of VDC space. If the
parameter setting would resuit in a line less than one pixel wide, the line width is
displayed as one pixel wide. The default Zine widzth is 0.0 (SCALED).

ENOTQPOP [S) CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
EBTBUNDL [30] ASF is BUNDLED.

EBDWIDTH [34] Width must be nonnegative.

Cerror line_color (index)
Cint index; /* line color */

line_color determines the color of the lines. index selects an entry in the
color lookup table. The default value of index is 1. An erroris detected if index
is not between 0 and 253.

ENOTCPOP [5] CGI not in proper state CGI shall be in state VDOP,
VYSOP, or VSAC.
EBRTBUNDL [30] ASF is BUNDLED.

ECINDXLZ [35] Color index is less than zero,

nsk Version C of 17 March 1986

60 SunCGI Reference Manual

4.3. Polymarker Attributes

Polymarker Bundle Index

Errors

Marker Type

Errors

Marker Size Specification
Mode

EBADCOLX [36] Color index is invalid. . ©

The type, size and color of markers (the components of polymarkers) are con-
trolled by the following functions.

Cerror polymarker bundle_index (index)
Cint index; /* polymarker bundle index */

polymarker bundle index sets the current polymarker bundle index to
the value of index. The contents of a polymarker bundle are marker type,
marker size and marker color . The marker size specification mode function is
not included in the polymarker bundle. If index is not defined, an error is gen-
erated, and the polymarker bundle index does not change. If the ASF’s for any of
these attributes is set to BUNDLED, the current values of these attributes are set to
the values of the corresponding attribute in the bundle.

ENOTOQPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

EBADMRKX [37] Polymarker index is invalid.

Cerror marker_type (ttyp)
Cmartype ttyp; /* style of marker */

marker_type sets the marker type. The enumerated type Cmartype con-
tains values that correspond to valid marker types. <‘F :é

typedef enum {
DoT,
PLUS,
ASTERISK,
CIRCLE,
X

} Cmartype:

Note that all marker types appear as a point when the marker size is very §ma11.

The default marker type is DOT.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED,

Cerror marker_size_specification_mode (mode)
Cspecmode mode; /* pixels or percent */

marker_size_ specification_mode allows the marker size to be
specified in pixels or as a percentage of VDC space according to the value of
mode. The enumerated type Cspecmode contains values that correspond to
valid marker size specifications.

-

SU Version C of 17 March 1986

Chapter 4 — Attributes 61

N
\.) typedef enum |
ABSOLUTE,
SCALED
} Cspecmode:;

The default marker size specification mode is SCALED,

Errors ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
Marker Size Cerror marker_size (index)

Cfloat index: /* marker size */

marker_size sets the size of the marker height and marker width . index is
expressed in percent of VDC space. The default marker size is 4.0 percent of VDC
space. If the marker size becomes very small, markers of all types are displayed
as points. An error is detected if index is negative.

Errors ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
EBADSIZE [38] Size must be nonnegative,
Marker Color Cerror marker_color (index)

Cint index; /* marker coler */

marker_color determines the color of the markers. index selects an entry in
the color lockup table. An erroris detected if index is not between 0 and 255.
The default marker color is 1.

Errors ENOTOPCP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,
EBTBUNDL [30] ASF is BUNDLED. .
ECINDXLZ [35] Color index is less than zero.
EBADCOLX [36] Color index is invalid.

4.4. Solid Object Attributes The solid object attribute functions describe how all solid object primitives are
filled (colored-in). There are three sets of solid object attribute functions:

fill area attributes
The fill area attribute functions determine the general method for filling solid
geometrical objects.

hatch and pattern attributes
determines a pixel array for filling a polygon if the fill style is setto PAT-
TERN.

, perimeter attributes
(‘) determine how the boundary of a geometrical object is displayed if the per-
imeter visibility is ON.

é&%? Sun | Version C of 17 March 1986

microsystems

62 SunCGI Reference Manual

Fill Area Bundle Index

Errors

Interior Style

Errors

4.5. Solid Interior Fill
Attribute

Cerror fill area bundle index({index)
Cint index; /* fill area bundle index */

£ill_area_bundle_index sets the current fill area bundle index to the
value of index. The contents of the fill area bundle are interior style, fill color
hatch index pattern index perimeter type perimeter width and perimeter color .
The perimeter width specification mode and the pattern attributes are not
included in the definition of the fill area bundle. If index is not defined, an error
is generated, and the fill area bundle index does not change. If the ASF’s for any
of these attributes is set to BUNDLED, the current value of the attribute is set to
the value of the corresponding attribute in the bundle.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBADFABRX {39] Fill area index is invalid.

Cerror interior_style(istyle, perimvis)
Cintertype istyle; /* £ill style */
Cflag perimvis; /* perimeter visibility */

interior_style sets the fill style for solid objects. The enumerated type
Clintertype contains values that correspond to valid line types.

typedef enum {
HOLLOW,
SQOLIDI,
PATTERN,
HATCH

} Cintertype:

If the fill style is set to SOLIDI, the solid object is filled with the current fill color.
If istyle is set to PATTERN or HATCH, the solid object is filled with the current
PATTERN or HATCH style. The PATTERN and HATCH styles are explained in the
pattern attributes section. The default fill style is HOLLOW.

interior_style also determines whether the perimeter of the solid object is
visible according to the value of perimvis (which must be ON or OFF). If per-
imvis is OFF, the perimeter attributes have no effect. The default value of perim-
eter visibility is ON,

Be careful when using the interior style function to explicitly specify the per-
imvis argument. If you do not specify it, or set it to OFF, the geometrical output
primitive may not be displayed because the interior style is HOLLOW,

ENOTOPOP [5] CGI not in proper state CGI shal! be in state VDOP,
VSOP, or VSAC.

The following section contains the description of a function that determines the
color of an interior region if the fill style is not HOLLOW.

sun Version C of 17 March 1986

Chapter 4 — Attributes 63

O Fil! Color

Errors

4.6. Hatch and Pattern
Attributes

Cerror f£fill color{coelor)
Cint color; /* color for solid object £ill */

£i11 color determines the color for filling solid objects, if the fill style is not
set to HOLLOW.,

The default il style is HOLLOW, so changing the fill color will not have an effect
without changing the interior style first. The default fill color is 1. An error is
detected if il color is not between (and 255.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ECINDXLZ [35] Colorindex is less than zero.
EBADCOLX [36] Color index is invalid.

Geometrical primitives can be filled with 2D arrays of color values called pat-
terns. SunCGI supports pre-defined as well as user-defined patterns. The
definition of patterns is stored in the pattern table. Each entry in the pattern
table consists of a 2D array of color values and the x and y dimensions of the
array. The starting position (upper left-hand corner) of the pattern is determined
by the pattern reference point.

Two types of patterns are available: PATTERNs and HATCHes. PATTERNS can be
scaled and translated. HATCHes can’t and simply fill the geometrical output
primitives with pixel arrays.

The following example program illustrates how to change the appearance with
the individual attribute functions. The program draws a polygon and fills it with
a pattern.

Ssun Version C of 17 March 1986

64 SunCGI Reference Manual

Hatch Index

Errors

Figure 4-2

~

main(}

{

#include <cgidefs.h>

Ccoor box[5]

Cint pattern[l6] = { 50, 75, 100, 125,

Ccoorlist boxlist;
Cint dx = 250, dy = 250, index = 2, name;
Cvwsurf device;

boxlist.n = 5;
boxlist.ptlist = box:
NORMAL_VWSURF (device, PIXWINDD):;

open_cgi(};
cpen_vws (&name, &device);

interior style (PATTERN, ON);
pattern_table(index, 4, 4, pattern):
pattern_index (index);
pattern_size (dx, dy):

pelygon {&boxlist);

sleep(10);

close_vws (name);
close_ecgi();

{ 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 1},

1%0, 0, G, 175,
200' 0; 0' 225!
250, 275, 300, 325 }:

Example Program with Bundled Attributes

Cerrcor hatch_index(index)
Cint index; /* HATCH index in the pattern table */

hatch_index determines which entry in the pattern table is used to filt solid
objects when the fill style is set t0 HATCH. The default hatch index is 0. An
error is generated if index points to an undefined entry in the pattern table.

ENQTOPOP {5]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Version C of 17 March 1986

C

Chapter 4 -— Attributes 65

-

Q EBTBUNDL [30] ASF is BUNDLED.
ESTYLLEZ [42] Style (pattern or hatch) index is less than zero.
ENCPATNX [43] Pattern tablé index not defined.

Pattern Index Cerror pattern_index(index)
Cint index; /* PATTERN index in the pattern table */

pattern_index determines which index in the pattern table is used to fill
solid objects when the fill style is set to PATTERN. The default partern index is
1. Anerroris generated if index points to an undefined entry in the pattern table.

Errors ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ESTYLLEZ [42] Style (pattern or hatch) index is less than zero.
ENOPATNX [43] Pattern table index not defined.

Pattern Table Cerror pattern_table(index, m, n, colorind)
Cint index; /* entry in table */
Cint m, n; /* number of rows and columns */
Cint *colorind; /* array containing pattern */

O pattern_table defines an entry in the pattern table. index defines the entry
in the table (which must be less than 50). An error is generated if index is out-
side the bounds of the pattern table. m and n define the height and width of the
pattern (in pixels). The array pointed to by the argument colorind contains the
actual pattern row-wise from the upper left. For monochrome view surfaces, all
nonzero entries in colorind are treated as 1 when used. The maximum
number of elements in a pattern {m X n) is MAXPATSIZE.

Pattern 0 is initially defined to be a 3 X 3 matrix which is set to zero at the
corners and one elsewhere. Pattern O produces simple cross-hatching. Pattern 1
(which produces a polka-dot pattern) is initially defined to be a 3 % 3 matrix
which is set to 1 at the center and O elsewhere.

Errors ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,
EPATARTL [40] Pattern array too large.
EPATSZTS [41) Pattern size too small.
ESTYLLEZ [42] Style (pattern or hatch) index is less than zero.
EPATITOL [44] Pattern table index too large.

Pattern Reference Point Cerror pattern_reference_point (begin)

f: Ccoor *begin;

pattern_reference_point defines the point in VDC space where the

%\\}? sSun Version C of 17 March 1936

MICrosyslems

66 SunCGIl Reference Manual

Errors

Pattern Size

Errors

Pattern with Fill Color
(SunCGI Extension)

4.7. Perimeter Attributes

Perimeter Type

pattern box begins. The pattern is then replicated over all VDC space. The upper
left-hand corner of the partern box is determined by begin. The default patrern G
reference point is (0, 0). pattern_reference point has no effect if the

interior style is not set to PATTERN.

VSOP, or VSAC.

Cerror pattern_size(dx, dy)

ENOTOPCOP [5] CGI not in proper state CGI shall be in state VDOP,
Cint dx, dy; /* size of pattern in VDC space */
|
;

pattern size defines the size of the pattern array in VDC coordinates. dx
and dy determine the size of an element of the pattern in VDC space.
pattern_size therefore allows you to ‘stretch’ the pattern to a certain size.
If dx or dy would result in pattern elements less than one pixel wide, 1 is used.
If the pattern size is larger than the bounds of screen space, the effective pattern
size is the size of VDC space. The default partern size is (300, 300).

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSQP, or VSAC.

Cerror pattern_with_fill color{flag)
Cflag flag:; /* ON to use nonzero pattern
elements as fill coleor */

Binary patterns allow the same pattern to be applied in different colors, without @
redefining the pattern array. pattern_with_fill color sets a non-

standard CGI state patrern with fill color . The default patrern with fill color is

OFF and each color value in a pattern table entry is used verbatim, as in standard

CGI. When a pattern is used while flag is ON, the pattern is considered to be a

2D array of flags: where the pattern element is nonzero, the current fill color is

used, instead of the actual value of the pattern element. (When pattern with fill

color is zero, a zero color index is used, just as when the flag is OFF.)

The following sections contain descriptions of functions that determine the per-
imeter attributes perimeter type , perimeter width , perimeter width specification
mode and perimeter color .

Cerror perimeter_type (ttyp)
Clintype ttyp: /* style of perimeter */

perimeter_;type defines the perimeter type for solid objects. The
enumerated type Clintype contains values that correspond to valid perimeter

types.

S Version C of 17 March 1986
Tac

©

Chapter 4 — Attibutes 67

Errors

Errors

Perimeter Width Specification
Mode

typedef enum {
SOLID,
DOTTED,
DASHED,
DASHED DOTTED,
DASH_DOT_DQTTED,
LONG_DASHED

} Clintype;

The default perimeter style is SOLID. Notice that there is no ending style for per-
imeter. The endstyle is controlled by the 1ine_endstyle function.

As mentioned previously, control of the drawing of the borders of solid objects is
under the control of the perimeter attribute functions, not the line attribute func-
tions. However, the two sets of functions take the same values. The perimeter
attributes are essentially the same as the line attributes except that they affect the
borders of solid attributes. The appearance of a perimeter can be similar to a line
especially if interior style is set to HOLLOW. Perimeter attribute functions have
no effect if the perimeter visibility is set to OFF.

ENOTOPOP {5} CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

EBTBUNDL [30] ASF is BUNDLED.

Cerror perimeter width (width)
Cflcat width; /* perimeter width */

perimeter width determines the width of the perimeters of solid objects.
index can be expressed in percent of VDC space or pixels. If the perimeter width
specification mode is set to SCALED and the x and y dimensions are different, the
perimeter width is calculated on the basis of the range of the x coordinate of
VDC space. If the parameter setting would result in a perimeter less than one
pixel wide, the perimeter width is displayed as one pixel wide. The default per-
imeter width is 0.0 (SCALED).

ENOTOPOP [5] CGI not Ain proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
EBDWIDTH [34] Width must be nonnegative,

Cerror perimeter width specification_mode (mode)
Cspecmode mede; /* pixels or percent */

perimeter width_specification_mode allows the
perimeter_width to be specified in pixels or as a percentage of VDC space
according to the value of mode (which can either be ABSOLUTE or SCALED), If
the perimeter width specification mode is changed from ABSOLUTE to SCALED,
the change in the line width will probably be dramatic. The default perimerer
width specification mode is SCALED.

sun Version C of 17 March 1986

68 SunCGI Reference Manual

Errors

Perimeter Color

Errors

4.8. Text Attributes

Text Bundle Index

Etrors

Text Precision

ENQTOPCP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

Cerror perimeter_color (index)
Cint index; /* perimeter color */

perimeter color determines the color of the perimeters. index selects an
entry in the color lookup table. The default value of index is 1. An erroris
detected if index is not between O and 255.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ECINDXLZ [35] Color index is less than zero.
EBADCOLY [36] Color index is invalid.

SunCGI provides a variety of functions for determining how text is written to
the screen. The most important text attribute is text precision. If text precision
is set to STRING, firmware characters are used. The fonts, size, spacing, and
alignment of firmware are more limited than characters drawn with text preci-
sion set to a value other than STRING. Therefore, calls to text attribute functions
regulating these aspects of text drawing have no effect when text precision is set
to STRING.

Cerror text_bundle_index (index)
Cint index; /* text bundle index */

text_bundle_index sets the current text bundle index to the value of index.
The contents of the text bundle index are text font text precision , character
expansion factor , character spacing , and text color. The character height
character orientation character path text alignment and fixed font are not
included in the definition of the text bundle. If index is not defined, an error is
generated, and the text bundle index does not change. If the ASF’s for any of
these attributes are set to BUNDLED, the current values of these attributes are set
to the contents of the bundle.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
EBADTXTX [45] Text index is invalid.

Cerror text precision{ttyp)
Cprectype ttyp:; /* text type */

text_precision controls the precision with which text is displayed. The
enumerated type Cprectype contains values that correspond to valid text pre-
cisions.

Version C of 17 March 1986

C

C

-

O

Chapter 4 — Attributes 69

Errors

Character Set Index

Errors

Text Font Index

Errors

typedef enum {
STRING,
CHARACTER,
STROKE

} Cprectype:

If the text precision is set to STRING, the firmware character set is used. Note:
firmware characters cannot be scaled or rotated.

Characters are clipped, but not in parts (that is, if any portion of the character
exceeds the clipping boundary the whole character is clipped). If the text preci-
sion is set to CHARACTER, software generated characters are employed and char-
acters are clipped, but not in parts. All text attributes have a visible effect on
software generated characters. If the text precision is set to STROKE, the CHAR-
ACTER precision capabilities are enabled and characters are clipped in parts. The
default text precision is STRING.

ENCOTOPOP {5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
EBTBUNDL [30] ASF is BUNDLED.

Cerror character_ set_index (index)
Cint index; /* font set */ '

character set_ index selects a set of fonts. Although SunCGI supports
this function, only set number 1 is defined. Calls to character_ set_index
with index assigned to a value other than 1 are ignored.

ENOTOPOP (3] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror text_font_index (index)
Cint index; /* font */

text_font_index determines the current font. A list of available fonts and
their availability when text precision is set to STRING is given in Table 4-3. A
warning about the SYMBOL font: undefined characters are displayed as bugs (the
six-legged kind). The default font is STICK.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ETXTFLIN [47] Text font is invalid.

S ll n Version C of 17 March 1986

70 SunCGI Reference Manual
Table 4-3 Available Fonts —
)
Font | String Precision ”
ROMAN Yes
GREEK Yest
SCRIPT Yes
OLDENGLISH No
STICK Yes
SYMBOQOLS No

Character Expansion Factor

Errors

Character Spacing

Errors

Character Height

T displayed as STICK font.

Cerror character expansion_factor(efac)
Cfloat efac; /* width factor */

character_expansion_factor determines the width-to-height ratio of
characters. If efac is greater than 1 the characters appear fatter than they are
wide. If efac is less than 1 the characters appear slimmer than they are wide.
The default character expansion factor is 1.0. An error is generated if efac is
less than 0.01 or greater than 10,

ENOTOPQP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.

ECEXFOOR [48] Expansion factor is out of range.

Cerror character_spacing(spcratio)
Cfloat spcratio; /* spacing ratio */

character_spacing sets the spacing between characters based on the height
of the characters. The amount of space between characters is obtained by multi-
plying the character height by speratio. The default character spacing factor is
0.1. Anerroris generated if spcratio is less than -10 or greater than 10.
ENQTOFOPF [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

ASF is BUNDLED.

Expansion factor is out of range.

EBTBUNDL [30]
ECEXFOOR [48]

Cerrcr character_ height (height)
Cint height; /* height in VDC #*/

The character_height function determines the height of text in VDC units.
The height is defined as the distance from the top to the bottom of the character.

Notice that changing the character height implicitly changes the character spac-

-

Version C of 17 March 1986

Chapter 4 — Attributes 71

Errors

Fixed Font (SunCGI
Extension)

Errors

Text Color

Errors

Character Orientation

The default character height is 1000. This may result in huge characters if VDC
space is reset from its default range (0-32767). If the x and y dimensions of VDC
space are different, the height is calculated on the basis of the range of the x
coordinate of VDC space.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ECHHTLEZ [49] Character height is less than or equal to zero.

Cerror fixed font (flag)
Cint flag:; /* fixed or variable width characters */

fixed font allows characters to be of fixed or vaniable size. If flag is
nonzero, the characters are of uniform size, otherwise the characters are packed
proportional to their actual sizes. If the character precision is STRING, this func-
tion has no effect. By default SunCGI supports variable width characters.

ENOTOPCP (5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror text_color(index)
Cint index; /* color */

text_color determines the color of the text. index selects an entry in the
color lookup table. The default value of index is 1. Anerroris detected if index
is not between 0 and 255.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

EBTBUNDL [30] ASF is BUNDLED.
ECINDXLZ [35] Color index is less than zero.
EBADCOLX [36] Color index is invalid.

Cerror character_orientation(xbase, ybase, xup, yup)
Cflcat xbase, ybase, xup, yup:;
/* character base and up vectors */

character_orientation specifies the skew and direction of text. The left
side of the character box lies on an invisible line called the character up vector
whose slope is determined by xup and yup. The bottom of the character box lies
on an invisible line called the character base vector whose slope is determined
by xbase and ybase.

If the character up vector and the character base vector are not orthogonal, the
text is distorted, Calls to character_orientation have no effect if text
precision is set to STRING. The default values for the character up vector and
the character base vector are xbase = 1.0, ybase = 0.0, xup =0.0, and yup =

un Version C of 17 March 1986

72 SunCGI Reference Manual

Errors

Character Path

Errors

Text Alignment

@

1.0.

The character up vector and the character base vector influence the character
path and the character alignment. For example, if xbase = -1.0 and the character
path is RIGHT, the text is written to the left.

ENOTOPOP [5] CGI not in proper state CGI shal! be in state VDQOP,
" VSOP, or VSAC.

ECHRUPVZ [50] Length of character up vector or character base vector is
Zero.

—

Cerror character_path (path)
Cpathtype path; /* text direction */

character_path specifies the direction in which text is written, The
enumerated type Cpathtype contains values that correspond to valid character
paths.

typedef enum {
RIGHT,
LEFT,
UF,
DOWN

} Cpathtype:

The actual effect of character_ path depends on the character up vector
and the character base vector. RIGHT specifies that the text is written in the
direction of the character base vector. For example, if the direction of the char-
acter base vector points left instead of right (xup = -1.0 instead of 1.0), the text
will be written right-to-left instead of left-to-right which is the usual interpreta-
tion of RIGHT. LEFT specifies that the text is written in the opposite direction of
the character base vector . The character up vector and character base vector
essentially change functions when the character direction is set to UP or DOWN.
UP specifies that the text is written in the direction of the character up vector.
DOWN specifies that the text is written in the opposite direction of the character
up vector . The default character path is RIGHT.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror text_alignment{halign, wvalign, hecalind, vcalind)
Chaligntype halign; /* horizontal alignment type */
Cvaligntype valign; /* vertical alignment type */
Cfloat hcalind, wvcalind;

/* continuous alignment indicators */

text_alignment determines where the text is positioned relative to the start-
ing point specified by the ¢/ argument of the text or vdm_text function.
halign determines where the character is placed in relation to the x component
of the starting coordinate of the text position (specified by the ¢/ argument of
text). The enumerated type Chaligntype contains values that correspond to

Sun Version C of 17 March 1986
microsystems ‘

C

Chapter 4 — Attributes 73

valid horizontal alignments.

typedef enum {
LFT,
CNTER,
RGHT,
NRMAL,
CNT

} Chaligntype:;

If the value of haliga is LFT, the horizontal position of the text will begin at the
left edge of the box enclosing the text. Similarly, if the value of halign is RGHT,
the horizontal position of the text will begin at the right edge of the box enclos-
ing the text. If the value of kalign is CNTER the horizontal position of the text
will begin equidistant from the right and the left edges of the text box. NRMAL
assigns the alignment based on the value of the character path (see Table 4-4).
If the value of halign is CNT (coantinuous) the horizontal position of the text is
determined by the argument hcalind. In this case, the text will begin hcalind
fraction of the width of the text box from the left edge of the character box. The
default value of halign is NRMAL.

valign specifies where the character is placed in relation to the y component of
the text position. The enumerated type Cvaligntype contains values that
correspond to valid vertical alignments.

typedef enum {
TOP,
CAP,
HALF,
BASE,
BOTTOM,
NORMAL,
CONT

} Cvaligntype:

If the value of valign is TOP, the vertical position of the text will begin at the top
edge of the character box. If the value of valign is CAP, the vertical position of
the text will begin at the cap line of the character.}3 Similarly, if the value of
valign is BOTTOM, the vertical position of the text will begin at the bottom edge
of the character box. If the value of valign is BASE, the vertical position of the
text will begin at the baseline of the character.!4 If the value of valign is HALF
the vertical position of the text will begin equidistant from the top and the bottom
edges of the character box. NORMAL assigns the alignment based on the value of - -
the character path (see Table 4-4). If the value of valign is assigned to CONT
(continuous), the vertical position of the text is determined by the argument
vealind and will begin vcalind fraction of the height of the character box from
the bottom edge of the character box. The default value of valign is NORMAL,

13 The cap line is defined as the invisible line commesponding 10 the top of the average character within 2
font.
14 The baseline is defined as the invisible line corresponding to the bottom of the average character withiz a

font. The baseline does not necessarily correspond to the bottom of & character. For example, a the tail of 2
lower-case g extends below the baseline.

Su E - Version C of 17 March 1986

74 SunCGI Reference Manual

Errors

4,9, Color Attributes

Color Table

Table 4-4

Table 4-5

4

!

Normal Alignment Values

Character | Horizontal Vertical
Path Normal Normal
RIGHT LEFT BASELINE
LEFT RIGHT BASELINE
UpP CENTER BASELINE

DOWN CENTER TOP

ENOTOPRPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

SunCGI supports only one color specification mode — INDEXED. This color
specification mode means that the red, green, and blue values (hereafter referred
to as RGB values) are obtained from a table known as the color lookup table .

The initial values of the color lookup table are provided in Table 4-5. If the dev-
ice is monochrome, nonzero color values are displayed as black; zero is
displayed as white.

Default Color Lookup Table
Index [Color
0 black
1 red
2 yellow
3 green
4 cyan
5 blue
6 magenta
7 white

Cerror color_table(istart, clist)
Cint istart; /* starting address */
Ccentry *clist; /* color triples and number of entries */

color_table defines RGB entries into the color lookup table . The color
lookup table is initialized based on the depth of the display frame buffer and the
cmapsize field provided in the Cvwsur £ structure provided to open_vws. A
monochrome device has an unwritable color map; non-zero color indices are
displayed as black, zero is displayed as white. A color device gets a color map
segment with § entries if the cmapsize field is zero upon opening the view sur-
face. The 8 default color values are given in Table 4-5. Larger color maps are
also initialized 1o evenly spaced RGB values. :

The structure Ccentry contains elements that describe a color map entry.

w
=
=

Version C of 17 March 1986

-

Chapter 4 — Attributes 75

typedef struct {

unsigned char *ra;
unsigned char *ga;
unsigned char *ba;
Cint n;:

} Ccentry;

The minimum and maximum color table entries are treated specially by Pixwins
and hence by SunCGI. If they are set to be the same value, the user’s values for
these two entries are both ignored. They revert to the inverse of the normal
values; entry 0 becomes white, the maximum entry becomes black.

The argument istart determines the first entry in the color lookup table to be
modified. the argument clist contains the color information for entry istart in
terms of triples of values of numbers ranging between 0 and 255. The last field
of clist reports how many entries are to be modified. An erroris generated if
either the indices to the color lookup table are out of range.

Errors ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.,

ECINDXLZ [35] Color index is less than zero.
EBADCOLX [36] Color index is invalid.

O 4.10. Inquiry Functions The attribute inquiry functions permit examination of the current artributes.
Attributes are reported in groups corresponding to the class of output primitive
which they modify. The argument to each inquiry function has its own structure
type which has an element for each of the individual attributes (see Appendix D).

Inquire Line Attributes Clinatt *inquire_line_attributes()
/* returns a pointer to line attribute structure */

inquire line attributes reports the cumrent line style, line width , line
color, and polyline bundle index in the appropriate elements of the returned
value of the function,

typedef struct {
Clintype style;
Cfloat width;
Cint color:
Cint index;

} Clinatt:

inquire line_attributes returns a NULL (not an error number) in case
of errors. Errors are printed if the error wamning mode is not set to NO_ACTION.

Errors ENOTOPROP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.
O Inquire Marker Attributes Cmarkatt *inquire_marker_attributes()

/* returns a pointer to marker attribute structure */

Q;)? sun Version C of 17 March 1986

76 SunCGIl Reference Manual

Errors

Inquire Fill Area Attributes

Errors

Inguire Pattern Attributes

inquire_marker_attributes reports the current marker style , marker
width , marker color , and polymarker bundle index in the appropriate elements
of the returned value of the function.

typedef struct |
Cmartype type:
Cfloat size;
Cint color;
Cint index;

} Cmarkatt;

inquire_marker_attributes returns a NULL (not an error number) in
case of errors. Errors are printed if the error warning mode is not set to
NO_ACTION,

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.,

Cfillatt *inquire_fill area_attributes()

The current interior style , perimeter visibility , fill color , hatch index , pattern
index , fill area bundle index , perimeter style , perimeter width , and perimeter
color can be obtained by using the inquire_f£ill attributes function.

typedef struct {
Cintertype style;
Cflagtype visible;
Cint color;
Cint hatch_index;
Cint pattern_ index;
Cint index;
Clintype pstyle;
Cfloat pwidth:
Cint pcolor;

} fillatt:

inquire fill area attributes returns a NULL (not an error number)
in case of errors. Errors are printed if the error warning mode is not set to
NO_ACTION,

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cpatternatt *inquire pattern_attributes()
/* returns a pointer to pattern attribute structure */

inquire pattern_attributes reports the current pattern index , row
count , column count, color list, pattern reference point , and pattern size

S un Version C of 17 March 1986
[T

-

-

Chapter 4 — Atributes 77

Errors

Inquire Text Attributes

@

Errors

2

|

typedef struct {
Cint cur_index;
Cint row;
Cint column;
Cint *colorlist;
Ccoor *point;
Cint dx;
Cint dy;

} patternatt;

inquire_pattern_attributes returns a NULL (not an error number) in
case of errors. Errors are printed if the error warning mode is not set to
NO_ACTION.

ENOTQPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

Ctextatt *inquire text_attributes()
/* returns a pointer to text attribute structure */

inquire_text_attributes reports the current font set, text bundle index,
font, text precision , character expansion factor , character spacing , text color,
character height , character base vector , character up vector , character path ,
and rext alignment .

typedef struct ({
. Cint feontset;

Cint index;
Cint current font;
Cprectype precision;
Cfloat exp factor;
Cfloat space:
Cint color:;
Cint height:
Cfloat basex:
Cfloat basey:;
Cfloat upx;
Cfloat upy:
Cpathtype path;
Chaligntype halign;
Cvaligntype valign;
Cfloat hcalind:
Cfloat vcalind:

} textatt;

inquire text_attributes retumns a NULL (not an error number) in case
of errors. Emrors are printed if the error warning mode is not set to NO_ACTION.

ENOTOPOP {5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Version C of 17 March 1986

w
=
=

78 SunCGl Reference Manual

Inquire Aspect Source Flags

Errors

-

Cflaglist *inquire_aspect_source_flags ()}
/* returns a pointer to text attribute structure */

inquire_aspect_source_flags reports whether attributes are set indivi-
dually by returning all of the values of the ASFs. The element n of the flaglist
struct is set to 18. The definitions of each flag are in Table 4-2.

typedef struct {
Cint n;
Cint *num;
Casptype *value;
} Cflaglist;

-

incuire_aspect_source_f£flags returns a NULL (not an error number) in
case of errors. Errors are printed if the error warning mode is not set to
NO_ACTION.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC,

u Version C of 17 March 1986

@

-

Input

Input

5.1. Input Device Initialization

Initialize LID

Release Input Device

Associate

Set Default Tri gge} Associations

Dissociate

Set Inital Value

Set VALUATOR Range

Track On

Track Off

5.2. Synchronous Input

Request Input

5.3. Asynchronous Input

Initiate Request

5.4. Event Queue Input
Enable Events

Await Event

Flush Event Queue

Selective Flush of Event Queue

5.5. Miscellaneous Input Functions
Sample Input ...

Get Last Requested Input

81

84
84
85
85
86
86
87
87
38
89
90
91
92
92
93
95
95
96
96
97
97
97

Disable Events

5.6. Status Inquiries

Inquire LID State List

Inquire LID State

Inquire Trigger State

Inquire Event Queue State

98
98
98
99
99
99

P

E

d

Input

CGI has a collection of functions for managing input devices. The design of these
functions has two purposes: provide an interface close to the actual input device
and maintain portability of applications. CGI accomplishes the first goal with dif-
ferent input device classes and methods of extracting input values. The second
goal is achieved through CGI's model of logical input devices (LID), an abstrac-
tion whereby logical input devices required by the CGI standard are mapped onto
the physical devices available to a CGI implementation. This section will intro-
duce some of the terms used in describing the functionality of the CGI input prim-
itives. .

A CGl input device consists of a measure associated with a trigger. A measure
is the current value of 2 logical input device. For example, the IC_LOCATOR dev-
ice reports an x-y position. This device is useful for determining a position on
the screen. A trigger is a physical device used by an operator to accept a current
value. A trigger fire corresponds to an event on a physical input device. Atthe
request of the application program, SunCGI associates a measure with a trigger.
Table 5-1 has a list of the five logical input devices available to SunCGI applica-
tion programs and the available triggers. For example, a mouse button on a Sun
workstation is a trigger that can be associated with a IC_LOCATOR device. When

the mouse button is pressed, the x-y position of the mouse is returned as the
measure of the IC_LOCATOR input device.

An input event is the information saved when a-tn‘gger fires. This includes the
measure of a logical input device associated with a trigger.

w
=
i

81 Version C of 17 March 1986

82

SunCGI Reference Manual

Table 5-1

Input Devices Offered by SunCGI
l();t;z; ¢ Measure ;:i%ee: Trigger
IC_LOCATOR x-y position in VDC 2 Left mouse button
space. 3 Middle mouse button
4 Right mouse button
5 Mouse movement}
6 Mouse stillf
IC_STROKE Array of x-y points in 2 Left mouse button
VDC space. 3 Middle mouse button
4 Right mouse button
IC. VALUATOR Normalized x position. 2 Left mouse button
3 Middle mouse button
4 Right mouse button
5 Mouse movement
6 Mouse still
IC_CHOICE A non-negative integer 2 Left mouse button
which represents a 3 Middle mouse button
selection from a number 4 Right mouse button
of choices. Zero :
represents "no choice”. @
IC_STRING Character string. 1 Keyboard input ter-
minated a carriage
return.

T The Mouse Movement trigger fires when the mouse moves.

¥ The Mouse Still trigger fires when the mouse does not move for one fifth
of a second or more,

The graphical method with which the measure of an input device is displayed is
called rracking . SunCGI provides several methods of tracking for each input
device. Table 5-3 has a list of track types available for each input device class.
Tracking must be explicitly enabled for each device.

Each input device can be in one of the five states described pictorially in Figure
5-1. The state of an input device determines the manner in which the application
program retrieves the measure of the input device. The input functions that allow
a change of state are listed next to the arrows indicating the state change.

RELEASED
Before an input device is initialized it is in the RELEASED state. Any input
function (except initialization) will generate an error in this state.

NO_EVENTS _
After an input device has been initialized it is in the NO_EVENTS state. An
application program can extract an input value of an input device in O
NO_EVENTS state. This will result in either the value that the device was

sun

Version C of 17 March 1986
jarfbutysborion :

Chapter 5 —Input 83

initialized with or the value the device had when it was in a state where it
could process events, This is not necessarily the current measure of the
device and does not change while the device is in this state.

RESPOND_EVENT
The RESPOND_EVENT state corresponds with synchronous communication
between the process that controls the input device and the application pro-
gram. When an application program requests the measure of an input device
in RESPOND_EVENT state, SunCGI blocks program execution until it can
fulfill the request. The request_input function will return when the
trigger fires and the input request is satisfied or after a timeout period. The
input device then reverts to NO_EVENTS state.

The function that requests input and puts the input device in
RESPOND_EVENT state is request__input. When the trigger associated
with an input device in RESPOND_EVENT state fires, the measure of that input
device is then stored in the request register as well as returned by the
request__input function.

REQUEST_EVENT
The REQUEST_EVENT state corresponds with asynchronous communication
between the process that controls the input device and the application pro-
gram. When an application samples an input device, input handling and pro-
gram execution continue in parallel. Either the requested trigger fires or an

explicit request is made to disable event processing and return the device to
NO_EVENTS state.

When the trigger associated with an input device in REQUEST_EVENT state
fires, the measure of that input device is then stored in the request register, a
buffer with one element per device. The request register can be then be read
with get_last_requested_event.

QUEUE_EVENT
‘When a device is in QUEUE_EVENT mode, events associated with the indi-
cated device are appended to the event queue , a first-in, first-out (FIFO)
buffer shared by all input devices. Aftercalling enable_events, the
SunCGI application retains program control. While an input device is in
QUEUE_EVENT mode, events are simultaneously added to the event queue
when the program executes.

await_event returns the event at the head of the event queue. If the

queue is empty, await_event will wait for the designated trigger to fire . .
or a timeout. The application program must process this queue in a timely
fashion or it will overflow. The event queue can be flushed completely or

for a specific device. The application program must make an explicit request
to disable event queue processing and return an input device to NO_EVENTS
state.

sun Version C of 17 March 1986

84 SunCGI Reference Manual

RELEASED

Initialize LTD Release LID

NO

Request
Input

\

timeout
or
trigger fire

RESPOND
EVENT

Figﬁm 5-1

5.1. Input Device
Initialization

Initialize LID

EVENTS

.
Disable

Initiate Events
Request or .
trigger fire

Enable Disable
Events Events

REQUEST QUEUE
EVENT EVENT

-

CGI Input State Model

Before input can be processed, an input devices must be initialized and associ-
ated with a trigger. Input device initialization requires at least one active view
surface. Typically, the procedure for initializing an input device includes calls to
the initialize_lid and associate functions which tumn on an input dev-
ice and associate it with a specific trigger.

Cerror initialize_lid(devclass, devnum, ival}
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Cinrep *ival; /* initial value of device measure */

initialize_lid initializes an input device and changes its state from
RELEASED to NO_EVENTS. This function must be called for an input device
before it can be referenced by any other input function. The argument devclass
specifies the desired type of input value. devaum indicates the number of the
device within that class. The argument ival sets the initial measure of the dev-
ice.

The Cinrep structure contains different elements for each type of measure. The
appropriate element of Cinrep must be set or an error will be generated. o

Ssun Version C of 17 March 1986

Chapter § —Input 85

Errcrs

Release Input Device

Errors

Associate

L

typedef struct {
Ccoor *xypt; /* LOCATOR */ :
Ccoorlist *peints; /* STROKE devices */
Cfleoat val; /* VALUATOR device */
" Cint choice; /* CHOICE devices */
Cchar *string; /* STRING device */
Cpick *pick:; /* PICK devices (unsupported) */
} Cinrep:

For example, in a LOCATOR device initialization, the xyptfield of Cinrep must

be set to the address of a Ccoor allocated by the application program before the
x and y elements can be set. See the example program in Figure 5-2,

Notice that whenever a device is initialized, no associations with triggers are
made. This must be done by having the application program call the appropriate
functions. Anerroris generated by initialize lid if the device does not’
exist, if it is already initialized, or if the initial value is out of range.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNOEX [80] Input device does not exist,

EINDALIN {82] Input device already initialized.!’

EBADDATA {95] Contents of input data record are invalid.

ESTRSIZE [96] Length of initial string is greater than the implementation
defined maximum.

Cerror release_input_device (devclass, devnum)
Cdeveff devclass; /* device type */
Cint devnum; /* device number */

release_input_device releases all associations between a device and its
triggers, and removes all pending events for the device from the event queue.
release input_device changes the state of the specified input device
from NO_EVENTS to RELEASED. An error is produced if develass and devnum
does not refer to an existing and initialized device.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

EINDNCEX {80] Input device does not exist.
EINDINIT {81] Input device not initialized.

Cerror associate(trigger, devclass, devnum)
Cint trigger; /* trigger number */

Cdevoff devclass: /* device type */

Cint devnum; /* device number */

15 The anst standard allows initialized input devices o be re-initialized. SunCGI does not because it is felt
that re-initialization is usually a mistake,

Su Verzion C of 17 March 1986
microsyst ‘

86 SunCGI Reference Manual

Errors

Set Default Trigger
Associations

Errors

Dissociate

Table 5-2

associate links a trigger with a specific device. The trigger numbers avail-
able for each device are listed in Table 5-1. Multiple associations are allowed;
however, some associations are not allowed (for example, IC_LOCATOR may not
be associated with the keyboard).

The interaction between an IC_STROKE device and the trigger requires some addi-
tional explanation. IC_STROKE can only be associated with the mouse buttons.
The first coordinate in the IC_STROKE array is entered when the mouse button is
initially pressed, the last coordinate is entered when the mouse button is released.
For IC_LOCATOR and IC_VALUATOR devices, the measure is reported when the
mouse button is pressed.

ENOTVSAC [4] CGI not in proper state: CGI shz_ill be in state VSAC,
EINDNOEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

EINASAEX [83] Association already exists.

EINAIIMP [84] Association is impossible.

EINTRNEX [86] Trigger does not exist.

Cerror set default_ trigger_associations(devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

set_default_trigger_associations associates a device with a
default trigger. The default associations are listed in Table 5-2. The rules for
trigger association are the same as those for the associate function.

Defaulr Trigger Associations

Device Trigger .
Class Number Trigger
IC_LOCATOR 5 Mouse position
IC_STROKE 4 Right mouse button
IC_VALUATOR 3 Middle mouse button
IC_CHOICE 2 Left mouse button
IC_STRING 1 Keyboard
ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.

 EINASAEX [83] Association already exists.

&

EINTRNEX [86] Trigger does not exist.

sun Version C of 17 March 1986
mictosystems

-

O

Chapter 5 — Input 87

Errors

Set Initial Value

Errors

Set YALUATOR Range

Cerror dissociate(trigger, devclass, devnum)
Cint trigger; /* trigger number */

Cdevoff devclass; /* device type */

Cint devnum; /* device number */

dissociate removes the association between a trigger and a specified device.
If dissociate is called while there are events pending in the event queue for
the dissociated device, the pending events are discarded.

ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC,
EINDNOEX {80] Input device does not exist.

EINDINIT [81] Input device not initialized.,

EINNTASD [85] association does not exist.

EINTRNEX [86] Trigger does not exist,

Cerror set_initial wvalue(devclass, devnum, value)
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Cinrep *value; /* device value */ .

set_initial_value sets the current measure of a specified device. This
function resets the position of the track, if the track is appropriate and activated.
set_initial wvalue also resets the request register.

A pointer element of the Cinrep structure must be set to the address of an
application program allocated area before the values can be set. For example, in
Figure 5-2 the following statements were necessary before an initial value could
be assigned to the LOCATOR device.

Cinrep ivalue;
point.x = 16384;
point.y = 16384;
ivalue.xypt = &point;

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNCEX [80] Input device does not exist.

EINDINIT [81] Input device not initialized.

EBADDATA [95] Contents of input data record are invalid.

ESTRSIZE [96] Length of initial string is greater than the implementation
defined maximum.

Cerror set_valuator_range (devnum, vmin, vmax)
Cint devnum; /* device number */
Cfloat wvmin, vmax; /* limits of VALUATOR */

set_valuator_range specifies the limits of the IC_VALUATOR. Device
coordinates are mapped into the IC_VALUATOR range. IC_VALUATOR events

microsysterms

% un ' Version C of 17 March 1986

88 SunCGl Reference Manual

Errors

Track On

Errors

which are already on the event queue are not rescaled. These events must be
dequeued with either the selective flush of event_queue function
or flush_event_dqueue.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNOEX {80] Input device does not exist.
EINDINIT {81] Input device not initialized.

Cerror track_on{devclass, devnum, tracktype,
trackregion, value)

Cdevoff devclasa; /* device type */

Cint devnum; /* device number */

Cint tracktype; /* track number */

Ccoorpair #*trackregion; /* window for tracking */ -

Cinrep *value; /* device wvalue */

Tracking functions determine how the measure of an input device is displayed on
the view surface. Each class of devices has its own set of possible tracks (given
in Table 5-3). Although SunCGI allows certain classes of devices to track
simultaneously, all types of input devices are not allowed to track at once.
Tracking is not provided in the NO_EVENTS state unless the track type is
PRINTERS_FIST.

track_on initiates track (or echo) for a specific device. The rrackeype argu-
ment specifies the type of track to be used. The trackregion argument is not
used; the device tracks in ali areas of the view surface. The argument value is
used to initialize tracking. The track is initially displayed on the first view sur-
face opened.

The xypt element of the Cinrep structure must be set to the address of an appli-
cation allocated Ccoor and the Ccooxr’s x and y fields are set to position the
cursor. The reference point for IC_STROKE echos 2 through 5 is the first point in
the STROKE array. The reference point for STRING_TRACK echo is the
append_text concatenation point, and can be changed by calling text or
append text.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINECHCON [88] Track already on.

EINETNSU [91] Track type not supported.

EBADDATA [95] Contents of input data record are invalid.

ESTRSIZE [96] Length of initial string is greater than the implementation
defined maximum.

@ sSun Version C of 17 March 1986
microsysterns

-

Chapter 5 —Input 89

O Table 5-3 Available Track Types
IZZ‘:: Number Track Typet Description
IC_LOCATOR <0 NO_ECHO Default cursor.

1 PRINTERS_FIST Designate the current position of the IC_LOCATOR device

with a printer’s fist cursor.
IC_STROKE <0 NO _ECHO Default cursor.

1 PRINTERS_FIST Designate the current position of the IC_STROKE device
with a printer’s fist cursor.

2 SOLID_LINE Draw a line from the origin to the current position in the
STROKE array.

3 X_LINE Draw a line from the x-axis to the current position in the
STROKE array.

4 Y_LINE Draw a line from the y -axis to the current position in the
STROKE array.

5 RUBBER_BAND BOX Designate the current position of the IC_STROKE device
with a rubber band line connecting the initial position
and the current position in the STROKE array.

IC_VALUATOR <0 NO_ECHO Default cursor. - .

1 PRINTERS_FIST Indicate the state of the IC_VALUATOR device with a
printer’s fist cursor.

2 STRING_TRACK Display a digital representation of the current

O IC_VALUATOR value.
IC_CHOICE <0 NC_ECHO Default cursor.

1 PRINTERS_FIST Indicate the state of the IC_CHOICE device with a

printer’s fist cursor.
IC_STRING <0 NC_ECHO Default cursor.

1 PRINTERS_FIST Indicate the state of the IC_STRING device with a
printer’s fist cursor.

2 STRING_TRACK Display the current STRING value.

1 The values listed in the Track Type column in Table 5-3 are contained in the enumerated type Cechotype
returned in the Cstatelist structure by inquire_lid_state_list. They are not used by track_on

to define a wack type.

Track Off

O Errors

Cerror track_off {(devclass, devnum, tracktype, action)
Cdevoff devclass; /* device type */

Cint devnum;

/* device number */

Cint tracktype;
Cfreeze action;

track_off terminates tracking for a specified input device. The fracksype and
the action arguments are always ignored.

ENCTVSAC [4]
EINDNOEX {80]

CGI not in proper state: CGI shall be in state VSAC.
Input device does not exist.

Version C of 17 March 1986

90 SunCGI Reference Manual

5.2. Synchronous Input

EINDINIT [81] Input device not initialized,

The synchronous input function request_input allows the application pro-
gram to obtain the current measure an of input device. This function requires
explicit identification of an input device (through the associate function).

Figure 5-2 contains an example program that illustrates how to use the synchro-
nous input functions to get information from an input device. First, a
IC_LOCATOR device is initialized and associated with a trigger (the left mouse
button). The tracking method for the IC_LOCATOR is defined to be a printer's fist.
Then measure of the IC_LOCATOR is requested with a timeout period of ten
seconds. If the trigger is activated during this period, request_input returns
a valid measure in ivalue. Finally, the IC_LOCATOR is dissociated from the
mouse button and released. The program exits.

Su R Version C of 17 March 1986

-

Chapter 5 —Input 91

8 N
#include <cgidefs.h>
#define TEN_SECONDS (10 * 1000 * 1000)

main ()

{
Cawresult stat;
Cecoor point;
Cinrep ivalue;
Cint. name;
Cint trigger:
Cvwsurf dewvice;

NORMAL VWSURF (device, PIXWINDD}:
point.x = 16384;

peint.y = 16384;

ivalue.xypt = &point;

open_cgi();
open_vws (&name, &device);

initialize_ lid(IC_LOCATOR, 1, &ivalue);
associate (2, IC_LOCATOR, 1);
track_on{IC_LOCATOR, 1, 1, (Ccoorpair *)0, &ivalue):
request_input(IC_LOCATOR, 1, TEN_SECONDS,

&stat, &ivalue, &trigger);
if (stat == VALID DATA)

printf("trigger activated at %d %d \n",

ivalue.xypt->x, ivalue.xypt->vy);

else

printf ("trigger not activated \n");
dissociate(2, IC_LOCATCR, 1):
release_input_device (IC_LOCATOR, 1);

close_vws (name) ;
close_cgi();

Figure 5-2 Example Program with LOCATOR Input Device

Request Input ' Cerror request_input {devclass, devnum, timeout,
valid, sample, trigger)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */
Cint timeout; /* amount of time to wait for input */
Cawresult *valid; /* device satatus #*/
Cinrep *sample; /* device value */
Cint *trigger; /* trigger number */

request_input waits timeout microseconds for activation of a trigger associ-
ated with a specific device. If simeour is negative, the request will wait forever.

.%‘)f sun Version C of 17 March 1986

MICIORystems

92 SunCGI Reference Manual

Errors

5.3. Asynchronous Input

Initiate Request

request_input puts the input device in the RESPOND_EVENT state, Ifa
trigger is activated within this period, the activating trigger and the device meas-
ure are returned in the trigger and sample arguments respectively. If the trigger
is not activated within this period, the current device measure is returned in the
sample argument and trigger is set to zero. Before returning, the input device is
reset to NO_EVENTS state.

request_input returns a device status in the argument valid. This argument
uses the enumerated type Cawresult (AWait Result) which contains values
describing the state of an input device.

typedef enum {
VALID DATA,
TIMED_OUT,
DISABLED,
WRONG_STATE,
NOT_SUPPORTED
} Cawresult;

VALID_DATA indicates a trigger is activated within the specified timeout period.
TIMED_OUT indicates that a trigger was not activated with a specified period.
WRONG_STATE indicates SunCGI is not in state VSAC. NOT_SUPPORTED indi-
cates the requested device is not a legal device.

If the appropriate field of the sample argument is a pointer, it must be set to an
application program allocated area.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNOEX [80] Input device does not exist.

EINDINIT [381] Input device not initialized.

EINEVNEN [94] Events not enabled.

This section explains the asynchronous method of input device management
where the application process and the input device process operate simultane-
ously. The designated input device is sampled with initiate_request and
the measure of the input device is read with get_last_requested input.
Alternatively, the current measure of a device may be read with
sample_input.

The example program in Figure E-2 demonstrates how to use the asynchronous
input functions.

Cerror initiate request (devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

initiate_request sets up a device so that the measure resulting from the
next trigger activation will be placed in the request register.
initiate_request puts the device in the REQUEST_EVENT state. It then
returns to the calling function without waiting for a trigger activation. The value
caused by the trigger activation can be obtained by the

S
/{@ sSun _ Version C of 17 March 1986
miCTosystems

O

-

-

-

Chapter 5 —Input 93

Errors

5.4. Event Queue Input

2

3

get_last_requested_input function.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNOEX [80] Input device does not exist.

EINDINIT {81) Input device not initialized.

EINNTASD [85] No triggers associated with device.

The event queue is a single FIFO buffer that holds events from input devices.

Since the event queue has a fixed length, it must be processed in a timely fashion
or it will overflow. Events can be removed from the event queue in three ways:
the event at the head of the event queue can be processed with await_event;
the entire event queue can be emptied with £1ush_event_queue; and the
events from a particular device can be removed from the event queue with
selective_flush_of_ event_dqueue.

Figure 5-3 contains an example program that illustrates how to use the event
queue input functions to get information from an input device. First, a IC_STRING
device is initialized and associated with a trigger (the keyboard). The tracking
method for the IC_STRING is defined to be a string that echos the keyboard input
on the bottom of the viewport. The IC_STRING is put into the QUEUE_EVENT state
with enable_events. After the trigger fires, the measure of the IC_STRING
device is determined with await_event. Finally, the LOCATOR is dissociated
from the mouse button and released. The program then exits.

w
=
=

Version C of 17 March 1986

94

SunCGI Reference Manual

Figure 5-3

L

I

{

#include <cgidefs.h>

main()

Cawresult valid;

Ccoor peint;

Cdevoff devclass = IC_STRING;

Ceqgflow overflow;

Cinrep ivalue:;

Cint devnum = 1;

Cint name:

Cint replost:

Cint time astamp; ,
Cint timeout = (10 * 1000 * 1000); /* ten seconds */
Cint tracktype = 2;

Cint trigger = 1:;

Cmesstype message_link;

Cqtype gstat;

Cvwsurf device:

NORMAL VWSURF (device, PIXWINDD);
point.x = 16384; *
point.y = 16384;

ivalue.xypt = &point;

ivalue.string = "This is a string”™;

open_cgi();
open_vws (&name, &device);

initialize lid(devclass, devnum, &ivalue);
associate(trigger, devclass, devnum);
track_on{devclass, devnum, tracktype,
(Ccoorpair *)0, &ivalue);
enable_events (devclass, devnum):;
await_event (timeout, &valid, sdevclass, &devnum,
&ivalue, &message_link, &replost, &time_stamp,
&gstat, &overflow);
printf("%s\n", ivalue.string);
disable_events (IC_STRING, devnum);
dissociate{trigger, IC_STRING, devnum);
release_input_device (IC_STRING, devnum);

close_vws (name) ;
close _cgi();

Example Program with STRING Input Device

sun

microsysterns

Version C of 17 March 1986

-

Chapter S —Tnput 95

Enable Events

Errors

Awazit Event

&

Cerror enable_events(devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

enable_events allows a device in NO_EVENTS state to put events on the
event queve. enable_events puts the input device in the QUEUE_EVENT
state. An error is generated if the device specified by devclass or devrum does
not exist or is not initialized.

ENOTVSAC [4] CGI not in proper state; CGI shall be in state VSAC.
EINDNOEX {80] Input device doeé not exist.

EINDINIT [81] Input device not initialized.

EIAEVNEN [93} Events already enabled.

Cerror await_event (timeout, valid, devclass, devnum,
measure, message link, replost, time stamp,
gstat, overflow)

Cint timeout; /* input timeout period */

Cawresult *valid; /* status */

Cdevoff *devclass; /* device type */

Cint *devnum; /* device number */

Cinrep *measure; /* device value */

Cmesstype *message_link; /* type of message */

Cint *replost; /* reports lost */

Cint *time stamp; /* time_stamp */

Cqtype *gstat: /* queue status */

Ceqgflow *overflow; /* event queue status */

await_event processes the event at the head of the event queue. valid is set
to WRONG_STATE if SunCGI is not in state VSAC. If the event queue is EMPTY,
then await_event waits timeout microseconds for a trigger to be activated. If
timeout is less than ¢, SunCGI waits until a trigger is activated. valid is set to
VALID_DATA if a trigger is activated within the specified timeout period and
TIMED_OUT otherwise.

If either the event queue is not empty or a trigger is activated, the class, number
and value of the device generating the event are reported in the returned argu-
ments devclass , devnum and measure . [f the appropriate field of the measure
argument is a pointer, it must be set to an application program allocated area.

If two events on the event queue have the same trigger but different values, the
argument message_link is assigned to SMULTANEOUS_EVENT _FOLLOWS; other-
wise the argument message_link is set to SINGLE EVENT. The enumerated type
Cmesstype contains the following values:

tyvpedef enum {
SIMULTANEQUS_EVENT FOLLOWS,
SINGLE_EVENT

} Cmesstype;

The replost and time_stamp arguments should be ignored and are always zero.
The returned argument gstar reports the queue status after an event is removed

< Sun Version C of 17 March 1986

micros) stems

96 SunCGI Reference Manual

from the head of the event queue. @

typedef enum {
NOT_VALID,
EMPTY,
NCON_EMPTY,
ALMOST_FULL,
FULL

} Cgtype:

gstat is set to EMPTY if the event queue has no pending events. gstat is set to
NON_EMPTY if the event queue has events pending, but is not FULL or

ALMOST FULL. gstar is set to ALMOST_FULL if there is room for only one more
event on the event queue, gstat is set to FULL if there is no room for more events
on the event queue.

The argument overflow indicates whether the event queue has overflowed or not.
The enumerated type Ceqf low contains the following values:

typedef enum {

NO_OFLO,
QFLOC .
} Cegflow; . .
Errors ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. _
EINQOVFL [97] Input queue has overflowed.
Flush Event Queue Cerror f£lush_event_gqueue ()

flush_event_queue discards all events in the event queue. The purpose of
flush_event_queue is to return the event queue to a stable state (NO_OFLO).
flush_event_queue does not affect the state of input devices. This function
should be used carefully to avoid throwing away mouse-zhead or type-ahead

inputs.
Errors ENOQOTOPOP [5] CGI not in proper state CGI shall be in either in state
‘ VDOP, VSOP, or VSAC.
Selective Flush of Event Cerror selective_flush_of_event queue(devclass, devnum)
Queue Cdevoff devclass; /* device type */

Cint devnum; /* device number */

selective_flush_of_event_queue discards all events in the event
queue which were generated by a specified device.
selective_flush_of_event_queue does not affect the state of the
specified input device. " devclass and devnum must refer to an existing and ini-
tialized device or an error is produced. However, no error is returned if no events
from the specified device are pending.

VDOP, VSOP, or VSAC.

|
Errors ENOTCOPOP [5] CGI not in proper state CGI shall be in either in state @ 5
@‘%& sun Version C of 17 March 1986

MICTOsYSioNms

Chapter 5 —Input 97

5.5. Miscellaneous Input
Functions

Sample Input

Errors

Get Last Requested Input

Errors

@

EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.

The functions described in this section can be used with several of the input dev-
ice management techniques described in the previous sections. For example,
sample_input can be used when a device is in either RESPOND_EVENT or
QUEUE_EVENT state. Likewise, disable_ events can be used in either of
these states.

Cerror sample_input {(devclass, devnum, valid, sample)
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Clogical *valid; /* device status */

Cinrep *sample; /* device value */

sample_input reports the current measure of the specified input device in the
returned argument sample. The returned argument valid reports whether the
device is initialized and prepared to receive an input. The current measure of the
device may be set by a queued event, a requested event, or a device initialization
depending on the state of the input device and the most recent trigger
activation(s). See the introduction of this chapter for an explanation of the rela-
tionship between the measure of an input device and the state of an input dev-
ice. If the appropriate field of the sample argument is a pointer, it must be set to
an application program allocated area.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.

Cerror get_last_requested_input (devclass, devnum,
valid, sample)

Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Clogical #*valid; /* device status */

Cinrep *sample; /* device value */

get_last_requested input returns the contents of the request register.
get_last_requested_input is usually used with
initiate_request, but request_input also changes the contents of the - -
request register. The returned argument valid indicates whether the device exists
and is initialized. The returned argument sample reports the event in the request
register. If no event is in the request register, the initial device value is reported.
If the appropriate field of the sample argument is a pointer, it must be set to an
application program atlocated area.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNOEX [80] Input device does not exist,

sun Version C of 17 March 1986

98 SunCGI Reference Manual

EINDINIT [81] Input device not initialized. | @

Disable Events Cerror disable events(devclass, devnum)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */

disable_events puts the input device in the NO_EVENTS state, If the device
is in RESPOND_EVENT state, the specified device is returned to NG_EVENTS state;
the measure of the device is not changed by disable_events. If the device
is in QUEUE_EVENT state, disable_events stops the specified device from
putting events on the event queue. However, existing entries on the event queue
are not removed and existing associations remain. devclass and devaum must
refer to an existing and initialized device or an error is produced.

Ermrors ENOTVSAC {4] CGI not in proper state: CGI shall be in state VSAC,
EINDNOEX [80] Input device does not exist.
EINDINIT [81] Input device not initialized.
EINEVNEN [94] Events not enabled.

5.6. Status Inquiries The current state of the input devices, triggers, and the event queue can be
obtained by using the functions discussed in this section,

Inquire LID State List : Cerror inquire lid state_list (devclass, devnum,
valid, list)
Cdevoff devclass; /* device type */
Cint devnum; /* device number */
Clogical *valid; /* device supported at all */
Cstatelist *1ist; /* table of descriptors */

inquire_lid state_list reports the status of a specific input device
specified by devclass and devnum . The argument valid reports whether the dev-
ice is supported at all. The Jist argument reports the track, associations, state and
measure of the device in the appropriate elements of /isz. When checking the
‘elements of list, first check the szate element — if state is RELEASED, the other
elements of list are undefined.

typedef struct {
Clidstate state;
Cpromstate prompt;
Cackstate acknowledgement:;
Cinrep *current;
Cint n;
Cint *triggers;
Cechotype echotyp;
Cechostate echeosata;
Cint echodat;

} Cstatelist:

Errors

%?4, sun Version C of 17 March 1986
microsysienms

Chapter S—Input 99

Inquire LID State

Errors

o

Inquire Trigger State

Errors

Inquire Event Queue State

o

2

ENOTVSAC [4] CGI pot in proper state: CGI shall be in state VSAC.
EINDNOEX [80] Input device does not exist.

Cerror inquire lid state(devclass, devnum, valid, state)
Cdevoff devclass; /* device type */

Cint devnum; /* device number */

Clogical *valid:; /* device supported at all */
Clidstate *state; /* table of descriptors */

inquire_lid_state reports the status of a specific input device specified by
devclass and devnum. The argument valid reports whether the device is sup-
ported at all. The state argument (of type Clidstate) reports the current state
of the specified input device.

typedef enum |{
RELEASE,
NO_EVENTS,
REQUEST_EVENT,
RESPOND_EVENT,
QUEUE_EVENT

} Clidstate;

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.
EINDNCEX [80] Input device does not exist.

Cerror inquire trigger state(trigger, wvalid, list)
Cint trigger; /* trigger number */

Clogical *valid; /* trigger state */

Ctrigstate *list; /* trigger description table */

inquire_ trigger_state describes the binding between a trigger and an
input device. If the state element of the returned argument list is INACTIVE, no
associations have been made with the trigger. An error is generated if the trigger
does not exist.

typedef atruct |

Cactstate state; /* state */

Cassoclid *assoc; /* list of associations */
} Ctrigstate; :

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC,
EINTRNEX [86] Trigger does not exist.

Cerror inquire event queue_ state(gstat, qgflow)
Cqtype * gstat; /* queue state */
Ceqflow * gflow; /* overflow indicator */

inquire_event_queue_state reports the status of the event queue. gstar
indicates whether any events are pending. The argument gflow reports if the
event queue is overflowing.

sSsun Versio 1 C of 17 March 1986
microsysisnms

100

SunCGl Reference Manual

Errors

@

E

typedef enum {
NOT_VALID,
EMPTY,
NON_EMPTY,
ALMOST_FULL,
FULL

} Cqtype:

typedef enum {
NO_OFLO,
OFLO

} Cegflow;

ENOTVSAC [4]

/)
o
=)

CGI not in proper state: CGI shall be in state VSAC.

Version C of 17 March 1986

0O

C

A

Differences between SunCore and
SunCGlI

Differences between SunCore and SunCGI

A.1. Output Primitives

Output Aspects of SunCore not Supported by SunCGI ...

Output Features of SunCGI not Available in SunCore ...
A.2. Segmentation

A.3. Differences in Input Functions between SunCore and SunCGI ...

103

103
104
104
104
104

A.l. Output Primitives

Table A-1

@

|

A

Differences between SunCore and

SunCGl

This appendix provides an introduction to SunCGI for programmers who have
programming experience with SunCore or graphics packages based on the ACM
Core Graphics Specification. The three major differences between SunCore and
SunCGI are in the areas of output primitives, segmentation, and input. While
SunCore is generally a ‘higher-level’ package, SunCGI has capabilities which

are not available in SunCore.

The major differences in drawing objects to the screen between SunCore and

SunCGI are that

1. SunCGI does not support 3D primitives, and

2. SunCGI does not have floating-point world coordinates or image

transforms, and,

3. SunCGI does not support the concept of current position, and

4. SunCGI does not support textured color lookup table for monochrome dev-

1Ce8.

However, SunCGI provides a wider variety of geometrical and raster primitives,
and more control over the drawing of text. These differences are summarized in

Table A-1.

Difference in Output Primitives

Feature | SunCore | SunCGI
3D Qutput Primitives Yes No
Current Position Yes No
Textured Color Lookup Tables Yes No
Polygons with Invisible Edges No Yes
Circles and Ellipses No Yes
Cell Ammays No Yes
Character Clipping No Yes

sSun 103

Version C of 17 March 1986

104 SunCG! Reference Manual

Output Aspects of SunCore
not Supported by SunCGI

Output Features of SunCGI
not Available in SunCore

A.2. Segmentation

A.3. Differences in Input
Functions between
SunCore and SunCGI

4

3

SunCGI does not support 3D output primitives, current position, or textured
color lookup tables for monochrome devices. Since 3D output primitives are not
supported, no shading or lighting functions are provided either. Furthermore, no
rotation or translation functions are provided. Therefore, if you want to rotate a
geometrical output primitive, these operations must be done by your application
program.

Since SunCGI does not maintain the current position of the output ‘cursor’, rela-
tive drawing functions such as polygon_rel 3 are not supported. However,
the application programmer can implement this function by specifying all coordi-
nates as a base register plus a constant. The base register can be used by the
application program to maintain the value of the current position.

For monochrome devices, SunCore interprets the entries in the color lookup
table with indices greater than one as patterns. SunCGI interprets all color
lockup table entries greater than zero as black. Patterns in SunCGI are explicitly
specified in the pattern table and invoked by using the PATTERN or HATCH inte-
rior styles. In addition, while patterns in SunCore are all 4 x 4 matrices, patterns
in SunCGI have variable dimensions.

SunCGI offers geometrical and raster primitives not available in SunCore, as
well as increased control over the drawing of text. SunCGI provides circles and
eltipses. SunCGI also supports the cell array which is a raster array whose ele-
ment size is a function of the screen size. SunCGI clips characters in parts if the
text precision is set to STROKE.

SunCGI does not support segmentation. This effect influences the effect of attri-
bute calls. In SunCore, some attributes (for example, highlighting) apply to
entire segments. Since no concept of segmentation exists in SunCGl, these attri-
butes are not offered. Furthermore, SunCGI does not allow the saving or restor-
ing of segments to the screen, so screen repainting functions must be completely
defined by the application program, unless the view surface is initialized as a
retained view surface and is not resized.

SunCore provides device-specific functions for setting input device parameters
and reading input from them. SunCGI provides no device dependent calls.
SunCGI has three methods for obtaining the measure of input devices

1. by first activation (REQUEST EVENT),
2. by most recent activation (RESPOND EVENT), or
3. by mediating input requests through the event queue (QUEUE EVENT).

Furthermore, SunCGI allows the explicit binding of triggers (physical input dev-
ices) to logical input devices.

Version C of 17 March 1986

w
=
=]

Unsupported Aspects of CGI

Unsupported Aspects of CGI 107

Table B-1

Table B-2

B

Unsupported Aspects of CGI

SunCGI does not support certain optional aspects of the proposed draft ANSI CGI
standard. Most notably SunCGI does not support the full constellation of nego-
tiation functions or tracking. SunCGI does not allow the resetting of coordinate
type, coordinate precision or color specification mode because to do so would
greatly reduce the speed of application programs written in SunCGIL. Further-
more, SunCGI does not suppon echoing functions for input, but provides the
tracking functions instead.

Unsupported Control Functions

Function

vde_type

vdc_precision_for_ integer_points
vde_precision_for real points
integer_precision

real _precision
index_precision
color_selection_mode
color_precision
color_index_precision
viewport_specification mode
make_picture current

Unsupported Input Functions

Function
set_prompt_state
set_acknowledgement_state
echo_on
echo_off

echo_update

The following SunCGI functions are nonstandard (that is, are not in the stan-
dards document) and are included to make CGI easier to use. In addition,
SunCGI has non-standard view surface arguments for certain control functions.

d;&% Sun 107 Version C of 17 March 1986
microsystems

108 SunCG! Reference Manual

—

Table B-3 Non Standard Control Functions @

Function
open_cgi
open_vws
activate_vws
deactivate_vws
close_vws
close_cgi

Table B-4 Non Standard Auaribute Functions

Function

define bundle index
line_endstyle
set_global_ drawing_mode
pattern with fill colox
fixed font

The Cinrep structure contains a presently unsupported pick field, for compati-
bility with future segment manipulation capabilities.

o

-

@
)
=

s

!

Version C of 17 March 1986

) C

Type and Structure Definitions

Type and Structure Definitions 111

/*devices*/

#define
#define
$¢define
#define
#define
#define
$define

#define

BW1DD 1
BW2DD 2
CGlCD 3
PIXWINDD 4
CGPIXWINDD 5
GPlDD 6
cG2pD 7

VWSURE_NEWFLG

/* limits */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
¥define
#define

MAXVWS 5
MAXTRIG 6
MRXASSOC 5
MAXEVENTS 1024
MAXAESSIZE 10
MAXNUMPATS 50

C

Type and Structure Definitions

This appendix provides a list of the structures and enumerated types used by
SunCGI functions. In addition, a list of useful constants defined in
<cgiconstants.h>is given

1

/* maximum number of AES table entries */
/* maximum number ¢f pattern table entries */

MAXPATSIZE 256 /* maximum pattern size */

MAXPTS 1024 /*

maximum number of pts per polygon */

MAXCHAR 256 /* maximum number of chars in a string */

OUTFUNS 67 /*

number of output functions */

INFUNS 22 /* number of input functions */

SMALL_CHAR 6 /
DEVNAMESIZE 20

* minimum character size */

The type and structure definitions that follow can be found in the header file
<cgidefs.h>.

typedef enum (
ACK_ON,
ACK_OFF

} Cackstate:;

typedef enum {
ACTIVE,
INACTIVE

‘%%f sun 111

i1 Version C of 17 March 1986

112

SunCGI Reference Manual

¥

:

} Cactstate:

typedef enum {
CLEAR,
NO_oP,
RETAIN

} Cacttype;

typedef enum {
INDIVIDUAL,
BUNDLED

} Casptype:;

typedef struct {
Cint n;
Cdevoff *class;
Cint *assoc;

} Cassoclid;

typedef enum {
VALID_DATA,
TIMED OUT,
DISABLED,
WRONG_STATE,
NOT_SUPPORTED
} Cawresult;

typedef enum ({
BITNOT,
BITTRUE

} Cbitmaptype;

typedef enum {
TRANSPARENT,
OPAQUE

} Cbmode;

typedef struct {
Clintype line type:
Cfloat line_ width;
Cint line_color;
Cmartype marker_ type;
Cfloat marker_size;
Cint marker color;
Cintertype interior style;
Cint hatch_index:
Cint pattern_index;
Cint fill color;
Clintype perimeter type:
Cfloat perimeter width;
Cint perimeter_color;
Cint text_font;
Cprectype text_precision;

w
=

ysloms

Version C of 17 March 1986

-

Appendix C — Type and Structure Definitions 113

Q},}

Cfloat character_expansion;
Cfloat character_spacing:;
Cint text_color;

} Cbunatt;

typedef struct {
unsigned char *ra;
unsigned char *ga;
unsigned char *ba;
Cint n;

} Ceentry:

typedef enum {
OPEN,
CLOSE

} Ccflag:;

typedef struct {
Cint numloc;
Cint numval;
Cint numstrk:
Cint numchoice:
Cint numstzr;
Cint numtrig:;
Csuptype event_gueue;
Csuptype asynch;
Csuptype coord map;
Csuptype echo;
Csuptype tracking;
Csuptype prompt:
Csuptype acknowledgement;
Csuptype trigger manipulation;
} Cegidesctab;

typedef enum {
YES'
NO

} Cchangetype:;

typedef char Cchar;

typedef enum {
NOCLIP,
CLIP,
CLIP_RECTANGLE
} Celip;

typedef enum {
CHORD,
PIE

} Cclesetype:;

typedef enum |

sSunmn

microsysiems

Version C of 17 March 1986

114

SunCGI Reference Manual

@

REPLACE,
AND,
CR,
NOT,
XOR
} Ccombtype:

typedef struct |{
Cint x;
Cint y;

} Ccoor;

typedef struct {
Ccoor *ptlist;
Cint n;

} Ccoorlist;

typedef struct |
Ccoor *upper;
Ccoor *lower;
} Ccporpair:

typedef enum {
IC_LOCATOR,'
IC_STROKE,
IC_VALUATCR,
IC_CHOICE,
IC_STRING,
IC_PICK

} Cdevoff;

typedef enum {
E_TRACK,
E_ECHO,
E_TRACK_OR_ECHO,
E_TRACK_AND_ECHO
} Cechoav;

typedef struct {
Cinrep *echos;
Cint n:;

} Cechodatalst;

typedef enum |
ECHO_OFF,
ECHO_ON,
TRACK_ON

} Cechostate;

typedef struct {
Cechostate *echos:
Cint n:

} Cechostatelst;

sSun

nicrosystems

Version C of 17 March 1986

Appendix C — Type and Structure Defivitions 115

@
(¢ /]

typedef enum {
NO_ECHO,
PRINTERS_FIST,
BIGHLIGHT,
RUBBER_BAND_BOX,
DOTTED_LINE,
SOLID_LINE,
STRING_ECHO,
XLINE,
YLINE

} Cechotype;

typedef struct {
Cint n;
Cechoav *elements;
Cechotype *echos;
} Cechotypelst:

typedef enum {
NATURAL,
POINT,
BEST FIT

} Cendstyle;

typedef enum {
NO_OFLO,
OFLO

} Cegflow;

typedef Cint Cerror:;

typedef enum {
INTERRUPT,
NO_ACTION,
POLL

} Cerrtype:

typedef enum {
CLIP_RECT,
VIEWPORT,
VIEWSURFACE
} Cexttype:

typedef struct {
Cintertype style;
Cflag visible:
Cint color:;
Cint hatch_index;
Cint pattern_index:
Cint index;
Clintype pstyle;
Cfloat pwidth;
Cint pcolor:

un

ysionms

|

Version C of 17 March 1986

116 SunCGI Reference Manual

} Ccfillatt; @

typedef enum {
QFF,
ON

} Cflag;

typedef struct {
Cint n;
Cint *num;
Casptype *value;
} Cflaglist;

typedef float Cfloat:

typedef enum |
FREEZE,
REMOVE

} Cfreeze;

typedef enum {
LFT,
CNTER,
RGHT,
NRMAL,

CNT o |
} Chaligntype: |

typedef enum {
NO_INPUT,
ALWAYS_ON,
SETTABLE,
DEPENDS_ON_LID
} Cinputability:

typedef struct {

Ccoor *xypt:; /* LOCATOR */

Ccoorlist *points; /* STROKE devices */

Cfloat val; /* VALUATOR device */

Cint choice; /* CHOICE devices */

Cchar *string; /* STRING device */

Cpick *pick; /* PICK devices */ -
} Cinrep;

typedef int Cint;

typedef enum {
HOLLOW,
SOLIDI,
PATTERN,

HATCH
} Cintertype:

é&%} sun Version C of 17 March 1986

ICTOSY Sieme.

Appendix C - Type and Structure Definitions 117

@

typedef struct |
Clogical sample:;
Cchangetype change;
Cint numassoc; '
Cint *trigassoc;
Clogical prompt:;
Clogical acknowledgement;
Cechotypelst *echo:
Cchar *classdep:;
Cstatelist state;

} Cliddescript;

typedef enum {
RELEASE,
NO_EVENTS,
REQUEST_EVENT,
RESPOND_EVENT,
QUEUE_EVENT

} Clidstate;

typedef struct {
Clintype style;
Cfloat width;
Cint color;
Cint index;

} Clinatt;

typedef enum {
SOLID,
DOTTED,
DASHED,
DASHED DOTTED,
DASH_DOT_DOTTED,
LONG_DASHED

} Clintype:;

typedef enum {
L_FALSE,
L_TRUE

} Clogical;

typedef struct {
Cmartype type;
Cfloat size:;
Cint c¢olor;
Cint index;

} Cmarkatt:

typedef enum {
DOT,
PLUS,
ASTERISK,
CIRCLE,

sun

microsystems

Version C of 17 March 1986

118 SunCGI Reference Manual

X
} Cmartype;

typedef enum {
SIMULTANEOUS_EVENT_ FQOLLOWS,
SINGLE_EVENT

} Cmesstype:;

typedef enum {
RIGHT,
LEFT,
U,
DOWN

} Cpathtype;

typedef struct {
Cint cur_index;
Cint row;
Cint column;
Cint *colorlist;
Ccoor *point;
Cint dx;
Cint dy:

} Cpatternatt;

typedef struct {
int segid; /* segment */
int pickid; /* pick id */
} Cpick;

typedef struct pixrect Cpixrect;

typedef enum {
STRING,
CHARACTER,
STROKE

} Cprectype;

typedef enum |
PROMPT_OFF,
PROMPT_ON

} Cpromstate;

typedef enum ({
NOT_VALID,
EMPTY,
NON_EMPTY,
ALMOST_FULL,
FULL

} Cqtype:;
typedef enum {
ABSOLUTE,

é%%,) SN Version C of 17 March 1986

micro jystems

Appendix C — Type and Structure Definitions 119

SCALED
} Cspecmode;

typedef struct {
Clidstate state;
Cpromstate prompt;
Cackstate acknowledgement;
Cinrep *current;
Cint n;
Cint *triggers;
Cechotype echotyp:;
Cechostate echosta;
Cint echodat;

} Cstatelist;

typedef enum {
NONE,
REQUIRED_ FUNCTIONS_ ONLY,
SOME_NON_REQUIRED FUNCTIONS,
ALL NON REQUIRED FUNCTIONS

} Csuptype: :

typedef struct {
Cint fontset;
Cint index;
Cint current_font:
Cprectype precision;
Cfloat exp_factor;
Cfloat space;
Cint color;
Cint height:
Cfloat basex;
Cfloat basey:
Cfloat upx;
Cfloat upy:;
Cpathtype path;
Chaligntype halign:
Cvaligntype valign;
Cfloat hcalind;
Cfloat wvcalind;

} Ctextatt:

typedef enum {
NOT FINAL,
FINAL

) Ctextfinal;

typedef struct {
Cchangetype change;
Cassoclid *numassoc;
Cint maxassoc;
Cpromstate prompt;
Cackstate acknowledgement;

sSun Version C of 17 March 1986

120

SvnCGI Reference Manual

4

!

Cchar *name;
Cchar *description;
] Ctrigdis;

typedef struct {
Cactstate state;
Cassoclid *assoc;
} Ctrigstate;

typedef enum {
TOP,
CAP,
HALF,
BASE,
BOTTOM,
NORMAL,
CONT

} Cvaligntype:;

typedef enum {
INTEGER,
REAL,
BOTH

} Cvdctype:

typedef struct ({

Cchar screenname [DEVNAMESIZE]; /* physical screen #*/ C::>
Cchar windowname [DEVNAMESIZE];
Cint windowfd; /* window file */
Cint retained; /* retained flag */
Cint dd; /* device #*/

Cint cmapsize; /* color map size */

/* window */

Cchar cmapname [DEVNAMESIZE]:; /* color map name */

Cint flags; /* new flag */
Cchar **ptr; /* CDI tool descriptor */

} Cwvwsurf;

w
e
=]

Version C of 17 March 1986

¢

O

Error Messages

Error Messages

D.1.
D.2.
D.3.
D4.
D.5.
D.6.
D.7.
D.8.
D.9.

Successful Return (0)

State Errors (1-5) ...

Control Errors (10-16)

Coordinate Definition (20-24)

Output Attributes (30-51) ...

Output Primitives (60-70)

Input (80-97) .

Implementation Dependent (110-112)

Possible Causes of Visual Errors

123

123
123
124
124
125
127
129
131
131

D

Error Messages

This appendix lists the error messages in numerical order. Furthermore, the
probable cause of each error is given in the sentences following the error. In
addition to explaining the error message, an initial suggestion for corrective
action is given. In the title for each group of errors, the range of error numbers is
given in parentheses after the title. If your application program is not behaving
as you want it to, but does not generate error messages, then the table at the end
of this appendix which lists commonly encountered problems and frequent

causes may be helpful.
D.1. Successful Return () NO_ERROR [0] No error.
Q D.2. State Errors (1-5) ENOTCGCL [1] CGI not in proper state: CGI should be in state CGCL. A

call o open_cgi was attempted when cgi was already
open. Elimination of the error can be accomplished by
removing the offending call to open_cgi.

ENOTCGOP [2] CGI not in proper state: CGI should be in state CGOP .
Every function except open_cgi requires that CGI be
open. If this error is received, make sure that your applica-
tion program has called open_cgi, or that it has not
recently called close_cgi

ENOTVSOP [3] CGI not in proper state: CGl should be in state VSOP .
The function which generated the error requires that at
least one view surface be open. Comrective action would
include either removing the most recent call to
close_vws or by including a call to open_vws.

ENOTVSAC [4] CGl not in proper state: CGlI should be in state VSAC .
The function which generated the error requires that at
Ieast one view surface be active. Corrective action would
include either removing the most recent call to
deactivate_vws or by including acall to
activate_vws.

ENOTOPOP [5] CGI not in proper state CGI should be in state CGOP,
O VSOP, or VSAC . The function which generated the error
requires that SunCGI is at least initialized, If this erroris

received, make sure that your application program has

P
wn
o

=)

3‘

123 Version C of 17 M rch 1986

124 SunCGI Reference Manual

D.3. Control Errors (10-16)

D.4. Coordinate Definition
(20-24)

EVSIDINV [10]

ENOWSTYP [11]

EMAXVSOP [12]

EVSNOTOQP [13]

EVSISACT [14]

EVSNTACT [15]

EINQALTL [16]

EBADRCTD [20]

EBDVIEWP [21]

@
wn
=

f=

g.

called open_cgi, or that it has not recently called
close_cgi.

Specified view surface name is invalid. The view surface
name specified by the name argument has never been
opened or if it has been opened, it has since been closed.
Corrective action involves opening the view surface or
changing the value of the name argument.

Specified view surface type does not exist, The application
program has specified a type of view surface which is not
supported by SunCGI. Corrective action involves chang-
ing the type of view surface.

Maximum number of view surfaces already open. An
attempt was made to open a view surface when the max-
imum number of view surfaces is already open. Corrective
action involves removing one call to open_vws.

Specified view surface not open. An attempt was made to
close a view surface which is already closed. Corrective
action involves removing one call to close_vws.

Specified view surface is active. An attempt was made to
activate a view surface which is already activated. Correc-
tive action involves removing one call to

activate vws.

Specified view surface is not active . An attempt was made
to deactivate a view surface which has already been deac-
tivated. Corrective action involves removing one call to
deactivate_vws,

Inquiry arguments are longer than list, A call to inquiry
pegotiation functicn with indices greater than the number
of supported functions was made. The returned list is
always empty. Corrective action may be facilitated by
obtaining the size of the list by using the
inquire_device_class function.

Rectangle definition is invalid . The application program
has made a call to vde_extent or
device_viewport with the coordinates of both comners
equal in the x ory dimensions or both. Corrective action
involves changing one of the arguments to the function
which generated the error so that the values of the two
arguments are different in both the x and y dimensions.

Viewport is not within Device Coordinates . A call to
device_viewport has been made which specifies a
viewport which is larger than the view surface. Corrective
action involves making the arguments to

Version C of 17 March 1986

-

Appendix D — Error Messages 125

O D.5. Output Attributes (30-
51)

@

ECLIPTOL [22]

ECLIPTOS [23]

EVDCSDIL [24]

EBTBUNDL {30]

EBBDTBDI [31]

EBTUNDEF [32]

EBADLINX [33]

EBDWIDTH [34]

17
=

E
:

device_viewport less than the view surface size. The
size of the view surface can be obtained by calling the
inquire_physical_coordinate_system func-
tion.

Clipping rectangle is too large . The clipping rectangle
would exceed the boundaries of VDC space. Corrective
action involves resetting the clipping rectangle to be
within limits of VDC space.

Clipping rectangle is too small . The clipping rectangle
would define an area of screen space smaller than one
pixel. The clipping rectangle remains unchanged. Since
the occurrence of this error is partially a function of the
size of the view surface, changing the size of the view sur-
face may be a viable alternative to changing the size of the
clipping rectangle.

VDC space definition is illegal . One or more of the argu-
ments to the vdc_extent function exceeds the accept-
able limits (-32767 to 32767) or coordinates of the lower-
left hand comer are greater than the coordinates of the
upper-right hand corner. Corrective action involves
changing the arguments to vdc_extent.

ASF is BUNDLED . Error 16 is generated when attempt-
ing to call an individual attribute function when the attri-
butes are specified by entries in the artribute environmen:
table . Calls to these functions have no effect on the
current attributes. Corrective action includes resetting the
attribute environment selector to BUNDLED by using the
set_attribute environment_selector func-
tion,

Bundle table index out of range. The entry in the bundle
table exceeds the size of the table. The only corrective
action is to change the value of the index argument.

Bundle table index is undefined. The entry in the attribuze
environment table specified by the most recent call to
set_attribute_environment_table_index
has not been defined | by SunCGI or the apphcauon pro-
gram.

Polyline index is invalid . The polyline bundle is not
defined. Corrective action involves changing the index
argument o polyline bundle_index, orby
defining the polyline bundle index.

Width must be nonnegative . The width of a perimeter or
line must be greater than or equal to zero. The current
value of the perimeter width or line width remains

Version C of 17 March 1986

126

SunCGI Reference Manual

ECINDXLZ [35]

EBADCOLX [36]

EBADMRKX [37]

EBADSIZE [38]

EBADFABX [39]

EPATARTL [40]

EPATSZTS [41]

ESTYLLEZ {42]

ENOPATNX [43]

-

unchanged. Changing the value of the width argument to a
non-negative value will correct this error.

Color index is less than zero, The value of the index
argument to one of the attribute functions or the color
entry in one of the bundles is negative. Corrective action
involves changing the value of the color.

Color index is invalid. The color index argument to one
of the attribute functions or the color entry in one of the
bundles is not defined in the colormap. Indices in the
color lookup table must be between 0 and 255 for the Sun
8-bit per pixel frame buffer. Any color specification out-
side of this range is ignored. Corrective action involves
changing the value of the color.

Polymarker index is invalid . The polymarker bundle is
not defined. Corrective action involves changing the
index argument to polymarker_bundle_index, or
by defining the polymarker bundle index.

Size must be nonnegative . The size of a marker or line
must be greater or equal to zero. The current value of the
marker size remains unchanged. Changing the value of
the size argument to a non-negative value will correct this
erTor.

Fill area index is invalid . The fill area bundle is not
defined. Corrective action involves changing the index
argumentto £i11_area_ bundle_index,orby
defining the polymarker bundle index.

Pattern array too large. The pattern array must contain
less than 257 elements. The pattern is not entered into the
pattern table. Corrective action involves designing a new
pattern.

Pattern size too small. The pattern size must be at least
two-by-two. The pattern is not entered into the pattern
table. Corrective action could include designing a new
pattern which includes several replications of the original
pattern.

Style (pattern or hatch) index is less than zero. All
indices in the pattern table must be positive. To fix this
mistake, change the argument to the pattern_index or
the hatch_index or the entries in the bundle table.

Pattern table index not defined. The argument to the
hatch_index or pattern_index function or the
entry bundle table should be reset to correspond to 2
defined value.

Version C of 17 March 1986

C

-

C

Appendix D — Error Messages 127

D.6. Output Primitives (60-
70)

EPATITOL [44]

EBADTXTX [45]
EBDCHRIX [46]

ETXTFLIN [47]

ECEXFOCR [48]

ECHHTLEZ [49]

ECHRUPVZ [50]

ECOLRNGE [51]

ENMPTSTL {60}
EPIMTWPT [61]

microsysiens

Pattern table index too large . The index argument to
pattern_table exceeded the bounds of the parrern
table . The pattern is not entered into the pattern table .
Redefining the pattern index to be between one and ten
will eliminate the error.

Text index is invalid. The text bundle is not defined.
Corrective action involves changing the index argument to
text_bundle_index, or by defining the text bundle
index. :

Character index is undefined. All other character indices
besides 1 are undefined in SunCGI. The new character
index is simply ignored. You are advised to ignore the
character_index function entirely.

Text font is invalid . The text fonts range from 1 to 6. All
other integers do not correspond to actual fonts. Correc-
tive action involves changing the argument to the
text_font_index function or resetting the font index
in the text bundle

Expansion factor is out of range . The character expan-
sion factor or the character space expansion factor would
result in a character or a space which would exceed the
bounds of the screen or would result in a character smaller
than the limitations of the character drawing software. To
eliminate this error, reset the offending value to within an
acceptable range (0.1-2.0 are reasonable guidelines).

Character height is less than or equal to zero. The char-
acter height must be positive. Corrective action involves
changing the argument to the character height function or
the element of the text bundle.

Length of character up vector or character base vector is
zero. Both the character up vector and the character base
vector must be nonzero. Corrective action involves chang-
ing the arguments to the character orientation
function or the element of the text bundles.

RGB values must be between 0 and 255 . The red, green,
and biue values are only defined between 0 and 255. The
call w color_table which produced the error is
ignored. Corrective action requires respecifying the values
of the arguments to colox_table.

Number of points is too large . The number of points
exceeds 255. Change the n element of the Ccoorlist
structure to a value less than or equal to 2535,

polylines must have at least two points, Change the n ele-
ment of the Ccoorlist structure to a value greater than

Version C of 17 March 1986

128

SunCGI Reference Manual

EPGMTHPT [62]

EGPLISFL [63]

EARCPNCI [64]

EARCPNEL [65]

ECELLATS [66]

ECELLPOS [67]

ECELLTLS [68]
EVALOVWS [69]

EPXNOTCR [70]

or equal to 2 and add the corresponding points to the ptlist
element.

Polygons must have at least three points, Change the n
element of the Ccoorlist structure to a value greater
than or equal to 3 and add the corresponding points to the
ptlist element.

Global polygon list is full. The number of points on the
global polygon list exceeds 256. The points which exceed
256 are ignored. This error can be corrected by inserting a
call to polygon (which clears the global polygon list by
displaying its contents) before the call to
partial_polygon which caused the overflow.

Arc points do not lie on circle. The starting and ending
points of either an open or close circular arc do not lie on
the perimeter of the circle described by the arguments ¢l
and rad. If this error occurs, the arc is not drawn. Correc-
tive action may include determination of the endpoints
with the application program (for example c2.x =
rad*cos(start_angle);).

Arc points do not lie on ellipse . The starting and ending
points of either an open or close elliptical arc do not lie on
the perimeter of the ellipse described by the arguments ¢/,
c2,and ¢3. If this error occurs, the arc is not drawn,
Corrective action may include determination of the end-
points with the application program (see error 11).

Cell array dimensions dx,dy are too small. The dimen-
sions of the cell array are too small for a cell array element
to be mapped onto one pixel of the view surface. The cell
array is not drawn. This error depends on the physical size
of the view surface as well as the limits of VDC space.
Therefore, corrective action might require changing the
size of the view surface, VDC space, or both.

Cell array dimensions must be positive . Negative cell
array dimensions are not permitted. Corrective action
requires changing the parameters to the cell array func-
tion.

Is not used.

Value outside of view surface. A coordinate of a pixel
array is outside the physical range of the view surface.
The pixel array is not drawn. Change the arguments to the
pixel arrayorbitblt source_array

Pixrect not created. One of the BitBlt functions required
a user-defined pixrect, and that pixrect had not been
created. Corrective action involves creating a pixrect in

Version C of 17 March 1986

Appendix D — Error Messages 129

() your application program before calling the offending
BitBlt function.

D.7. Input (80-97) EINDNCEX {80] Input device does not exist. The input device specification
(specified by the devclass and devnum arguments of most
input functions) does not exist. Corrective action involves
resetting the device specification to a valid device.

EINDINIT {81] Input device not initialized . A call to an input device
function specified a device which was not initialized.
Calls which generate this error have no effect. A call to
initialize_input_device should be inserted
before the call generating the error.

EINDALIN [82] Input device already initialized . An attempt to initialize a
device which has previously been initialized. The parame-
ters to the offending call to
initialize_input_device areignored. Removing
the offending call to initialize input_device
will correct this error.

EINASAEX [83) Association already exists . An attempt is being made to
bind the input device to a trigger to which it has been pre-
viously bound. The status of the input device trigger are
unchanged. This error is purely informational and no

O corrective action is required.

EINAIIMP [84] Association is impossible . An attempt is being made to
bind the input device to a trigger to which it cannot be
bound. Forexample a IC_STRING device cannot be
bound to a mouse button. To eliminate this error, change
the arguments to the offending call of the associate
function.

EINNTASD [85] Association does not exist. An attempt to set-up call an
‘ input function which specifies a device with no associated
triggers was made. The offending call is ignored. Correc-
tive action involves calling associate before the
offending call is issued.

EINTRNEX [86] Trigger does not exist. An attempt was made to associate
or inquire about a trigger which has a number less than one -
or greater than five, The offending call is ignored. To
eliminate the error, change the trigger number.

EINNECHO [87] Input device does not echo. CHOICE devices do not sup-
port echo. Corrective action requires removing the call to
echo_on from the application program.

EINECHON [88] Echo already on. A call to echo_on has been made to a
O device whose echoing ability has already been activated.
To stop generation of the error either remove the offending
call or change the arguments to specify a device whose

é{?y sun : Version C of 17 March 1986

rmicrosysiems

130

SunCGI Reference Manual

@

:

EINEINCP {89]

EINERVWS [90]

EINETNSU [91]

EINENOTO [92]

EIAEVNEN (93]

EINEVNEN [94]

EBADDATA [95]

ESTRSIZE [96]

EINQOVFL [97]

=
e

echo is currently off.

Echo incompatible with existing echos . Although
SunCGI can support certain combinations of echos (such
as IC_STRING and IC_LOCATOR), not all combinations
are supported. The easiest remedy is to remove the most
recent call to echo_on from the application program.

Echoregion larger than view surface . Error 91 is gen-
erated when the rectangle defined by the echoregion argu-
ment exceeds the limits of VDC space. To eliminate this
error, change the values to the echoregion argument to be
within the confines of VDC space.

Echo type not supported. All devices except the
IC_STROKE device only support one type of echo.
Therefore, assigning a value to echotype other than zero or
one will produce an error for any device except
IC_STROKE. Corrective action involves changing the
value of the echotype argument.

Echo not on. The device echoing has not been turmed on.
Either remove the call to echo_off, turn the echo on, or
change the device specification.

Events already enabled. Events have already been
enabled for the specified device. The solution is to remove
the offending call to enable_events.

Events not enabled. Events have not been enabled for the
specified device. The solution is to include a call to
enable_events before a call to the await_event,
sample_event, or request_event function is made
with the specified device as input parameter.

Contents of input data record are invalid .- The value
argument of initialize_lid function is out of range
or is the wrong type. The solution is to change the con-
tents value argument.

Length of initial string is greater than the implementation
defined maximum . The initial string in the value argument
is greater than 80 characters. Shorten the string.

Input queue has overflowed. The event queue can no
longer record input events. Solutions inciude flushing the
event queue or dequeueing events with the
await_event, sample event,or
request_event function.

Version C of 17 March 1986

-

-

Appendix D — Error Messages 131

D.8. Implementation

Dependent (110-112)

D.9. Possible Causes of Visual
Errors

Table D-1

&

EMEMSPAC [110]

Space allocation has failed . A function which was sup-

posed to work has failed. The only action which you can
take is to eliminate other processes which may be using
memory. If you have eliminated all other processes, and
this error is still generated, please contact SUN Microsys-

tems.
ENOTCSTD [111]

Function or argument not compatible with standard CGI .

A function call is not supported by the CGI library.

ENOTCCPW [112]

Function or argument not compatible with CGIPW mode .

A function call is not supported by the cgipw library.

Possible Causes of Visual Errors

Behavior Possible Cause
Segmentation fault for devdd argument for open_vws
open_vws is declared as a pointer (the

address of devdd should be
passed).
No primitives displayed View surface not initialized.
View surface not active.
VDC to device coordinate map-
ping makes objects too small.
Clipping rectangle is too small
and clipping is ON.
Perimeter visibility is set to
OFF and interior style is set to
HOLLOW.
fine colo. orfill colo. issetto
background color.
Primitives displayed on Undesired view surfaces have
undesired view surfaces not been deactivated,
Segmentation fault for inquiry passing variable instead of
functions address (&) of variable.
sSun Version C of 17 March 1986
microsysterns

132

SunCGI Reference Manual

Table D-2

Primitive-Specific Errors

Behavior

Possible Cause

Polylines or polymarkers aren’t
displayed.

Polygon borders aren’t
displayed.

Circles aren't displayed.

Ellipses aren’t displayed.

Text isn’t displayed.

Cell arrays aren’t displayed.

Cell arays aren’t displayed on
all active view surfaces.

Pixel arrays aren’t displayed.

BitBlts aren’t displayed.

Width or size is zero.

Color is the same as back-
ground.
Width is zero.

Color is the same as back-
ground.

Perimeter visibility is set to
OFF.

Width or size is zero.
Color is the same as back-
ground.

‘Width or size is zero.
Color is the same as back-

ground.

Width or size is zero.

Color is the same as back-
ground.

character height is too small.
coordinates are outside the
range of VDC space or the clip-
ping rectangle.

dx or dy arguments are too
small,

Color is the same as back-
ground.

Mapping from cell size to view

surface for smaller view sur-
faces is too small.

Location is outside of view sur-
face or clipping rectangle.
Color is the same as back-
ground.

Width or size is zero.

Color is the same as back-
ground.

Version C of 17 March 1986

-

Appendix D — Error Messages

133

Table D-3

Table D-4

4

§

Attribute Errors

Behavior Possible Cause
Attribute setting has no effect attribute ASF is set to BUN-
DLED. -
Text attributes have no effect text precision is set to CHAR-
ACTER.
_ attribute ASF is set to BUN-
DLED.
PATTERN fill is the same as paztern index. and hatch index
HATCH ‘ are identical
pattern size, is 100 small
PATTERN fill is different on View surfaces are of different
different view surfaces. size,

Input-specific Errors
Behavior Possible Cause
Input device does not report device not initialized

Input device does not echo

Input device does not echo on
whole view surface

echo not initialized
echo region not set to whole
view surface.

W
e

Version C of 17 March 1986

Sample Programs

Sample Programs

137

E.l. Manini Glass
E.2. Tracking Box

137

......... 138

E.1. Martini Glass

E

Sample Programs

The following program draws a martini glass. The program exits after 10
seconds.

sSun 137 Version C of 17 March 1986

138 SunCGI Reference Manual

(| ©
- | #include <cgidefs.h>

Ccoorlist martinilist;

Ccoor glass_coordsf[l10] = { 0,0,
-1¢0,0,
-1,1,
-1,20,
-15,35,
15,35,
1,20,
1,1,
10,0,
0,0 };

Ccocor water_coords{2] = { -12,33,
12,33 };

Cecoor vpll = { =50,-10 };

Cecoor vpur { 50,80 }:

main{)

{
Cvwsurf device;
Cint name;

NORMAL_VWSURF (device, PIXWINDD):

open_cgi(); O

open_vws{&name, &device};
vde_extent (&vpll, &vpur):

martinilist.ptlist = glass_coords;

martinilist.n = 10;

polyline (émartinilist);

martinilist.ptlist = water_coords; ;

martinilist.n = 2;

polyline{&martinilist);

sleep{10);
|
|
1
J
|
|
[

close_vws (name);
close cgi();

Figure E-1 Martini Glass Example Program

E.2. Tracking Box The following program demonstrates the use of the CGI input functions. A
square is displayed on the screen and moved with the mouse. The program exits
if the mouse is still for five seconds.

microcystems

|
I
Q?% sSun . Version C of 17 March 1986 '

Appendix E — Sample Programs 139

-
#include <cgidefs.h> W

#define DEVNUM 1 /* device number */
#define MOUSE_POSITION 5 /* trigger number */
#define TIMEOUT (5 * 1000 * 1000) /* timeout in microseconds */

Ceoor ulc = {1000, 2000};
Ccoor lre = {2000, 1000};

main ()

{
Cint name;
Cvwsurf device:;
Cawresult stat;
Cinrep sample; /* device measure value */
Ccoor samp; /* LOCATOR’s X,y position */
Cint trigger: /* trigger number */

NORMAL VWSURF (device, PIXWINDD);
sample.xypt = &samp;

samp.x = 0;

samp.y = 27000;

open_cgi();
open_vws (&name, &device);
set_global drawing mode (XOR};
initialize_lid (IC_LOCATCR, DEVNUM, &sample);
asscociate (MOUSE_POSITION, IC_LOCATOR, DEVNUM);
rectangle{&lrc, &ulc): /* draw first rectangle */
/* wailt TIMEOUT micro~-seconds for input and check the status */
while (request_input (IC_LOCATOR, DEVNUM, TIMEQUT,
&stat, &sample, &trigger), (stat == VALID DATA}) {
if ((sample.xypt->x != ulc.x) || (sample.xypt->y != lrc.y) } {
rectangle(&lrc, &ulc):
lrc.y = sample.xypt->y; /* move to new location */
lrc.x = (sample.xypt->x + 1000);
ulc.x = sample.xypt->x;
ulec.y {sample.xypt->y + 10900);
rectangle{&lrc, &ulc);

}
}
dissociate (MOUSE_POSITION, IC_ LOCATOR, DEVNUM);
release_input_device (IC_LOCATOR, DEVNUM);
close_vws (name) ;
close_cgi{);

Figure E-2 Tracking Box Example Program

@}, [!‘ Version C of 17 March 1986
ams

Using SunCGI and Pixwins

Using SunCGI and Pixwins 143
F.1. cgipw Functions 143
Open Pixwin CGI 143

Open a CGI Pixwin 143

Close a CGI Pixwin ... 144

Close Pixwin CGI ... 144

F.2. Using cgipw 144
F.3. cgipw Functions 145

F.4. Example Program 147

-

F.1. cgipw Functions

- Open Pixwin CGI

Open a CGI Pixwin

F

Using SunCGI and Pixwins

The CGI standard does not provide facilities for dealing with multiple overiap-
ping windows. An application program can use SunCGI and Pixwins features
through the cgipw functions. These functions combine the richness of CGI’s
primitives with the ability of Pixwins to manage multiple (potentially overlap-
ping) windows.

This appendix assumes familiarity with both SunCGI and Pixwins. See Sun-
View Programmer’s Guide for more information on Pixwins. An example pro-
gram is included at the end of this appendix in Figure F-1.

If you decide to use CGI and Pixwins, you may not use the standard SunCGI
calls. Instead you must use cgipw calls. Forexample, cgipw_polyline
replaces polyline. The first argument of each cgipw function is a pixwin
descriptor of type Ccgiwin. The file <cgipw.h> must be included in the
cgipw application program instead of <cgidefs.h>.

The four functions open_pw_cgi, open_cgi_pw, close_cgi_pw and
close_pw_cgi are necessary for managing the SunCGI - Pixwins interface.

Cerror open_pw_cgi()

open_pw_cgi initializes CGI by setting the attributes to the default values and
setting the VDC to device coordinate mapping to 1:1. Therefore, all input and
output primitives will use device coordinates. The origin of the device coordi-
nates is in the ypper left-hand comner instead of the lower left-hand corner. The
entire window is used, not just a square region within it. No standard errors are
specified for open_pw_cagi. If open_pw_cgi returns a nonzero result, then
the initialization failed. open_pw_cgi corresponds to open_cgi.

Cerror cpen_cgi_pw(pw, desc, name)

struct pixwin *pw; /* pixwin */

Ccgiwin *desc; /* CGI pixwin descriptor */
Cint *name; :

open_cgi_pw informs CGI of the pixwin pointed to by pw. Calls to CGI primi-
tives may then reference this pixwin. However, CGI does not guarantee that a
pixwin exists or is in any other way properly initialized. desc is a pointer to a
CGI pixwin descriptor allocated by the application program and defined by
open_cgi_pw. Itwill be used as the first argument to cgipw functions. Calls

SUn 143 Version C of 17 March 1986
microsystems

144 SunCGI Reference Manual

Errors

Close a CGI Pixwin

Errors

Close Pixwin CGI

Etrors

F.2. Using cgipw

@

may also be made to any pixwin function (see example program). Multiple calls
to open_cgi_pw with pointers to different Ccgiwin structures will allow o
primitives to be displayed on multiple view surfaces by repeating calls to cgipw
functons with different Cegiwin descriptors. Attributes are local to the pixwin
associated with the CGI descriptor passed to the cgipw attribute functions.
open_cgi_pw comresponds to open_vws. open_pw_cgi must be called

prior to open_cgi_pw; otherwise, error 111 is returned. Other errors (as with
open_vws may also be detected.

ENQOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

ENOWSTYP [11] _ Specified view surface type does not exist.
EMAXVSOP [12] Maximum number of view surfaces already open.
EMEMSPAC [110] Space allocation has failed.

Cerror close_cgi_pw(desc)
Ccgiwin *desc; /* CGI pixwin descriptor */

close_cgi_pw takes the CGI pixwin descriptor desc as an argument and
removes it from the list of pixwins that CGI writes to. The pixwin is not closed.
close cgi_pw comresponds to close vws, and may return any of the errors
close_vws detects (except 112). ’

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, @
VSOP, or VSAC.

EVSIDINV [10] Specified view surface name is invalid.
EVSNOTOP [13] Specified view surface not open.

Cerror close_pw_cgi()

close_pw_cgi takes care of leaving CGI in an orderly state. This function
should be called before exiting the application program. close_pw_cgi
corresponds to close cgi. :

ENOTOPCP [5] CGI not in proper state CGI should be in state CGOP,
VSOP, or YSAC.

After calling the two initialization functions (open_pw_cgi and
open_cgi_pw) the application program may catl functions from both the
Pixwins and cgipw libraries. Figure F-1 contains an example program that uses
cgipw functions.

Since cgipw functions use a 1:1 mapping from VDC to device coordinates, attri-

butes in VDC units (such as patrtern size and character height) will be huge

unless they are reset. And because the cgipw origin is the device coordinate

origin, the upper left-hand corner, attributes with direction or position (e.g., pat-

tern reference point and character orientation) have their meaning reversed in O

sun Version C of 17 March 1986
microsystems

O

Appendix F — Using SunCGI and Pixwins 145

F.3. cgipw Functions

Table F-1

the y dimension.

Most cgipw functions do not print error messages even if the error warning
mask is INTERRUPT or POLL. They all return error codes which may be tested.
The application program should not use both SunCGI and window system input
functions, since both SunCGI and the window system share a common event
queue. For example, events handled by a SunCGI function will not be handled
by a window system call after the SunCGI call.

A list of the cgipw functions and their comresponding SunCGI functions is
given in Table F-1 below. If a function is not included in this table, then use the
pnormal SunCGI function except as described below in Table F-2. Most of the
functions listed below are output and attribute functions; however, the tracking
functions are listed 50 that you can control which surfaces input devices echo on.
The arguments of the cgipw functions are the same as those of the SunCGI
functions except that the first argument is always a desc argument of type
Ccgiwin. desc is a pointer to a pixwin descriptor filled in by the
open_cgi_pw function.

Table F-1 contains a list of functions available in cgipw mode. SunCGI func-
tions incompatible with cgipw mode are given in Table F-2.
partial_polygon may be used with cgipw_polygon, but the global
polygon list is freed after use by cgipw_polygon, so calls to

partial polygon must be repeated prior to use of cgipw_polygon on
another view surface,

List of cgipw Functions

SunCGI Function Name |

cgipw Function Name

append_text (flag, tstring}

cell array(p, g, r, dx, dy, colorind)
character expansion_factor(sfac)
character height (height)

character_orientation (xup, yup, xbase,
ybase)

character_path {path)
character_ set_index(index)
character_ spacing(spcratio}
rad)
circular_arec_3pt({ecl, 2, ¢3)

circular_arc_ﬁpt_close(cl, c2, ¢3,
close)

circle (cl,

circula.r_aré_center(cl, c2x, <2y, ¢3x,
c3y, rad)

circular_arc_center_close(cl, c2x,
c2y, c3x, c3y, rad, close)

color_ table(istart, clist)
define_bundle_index (index)
disjoint_pelyline{polyccors)

ellipse{cl, majx, miny)

cgipw_append text (desc, flag, tstring)
cgipw_cell_ array(desc, p, q, r, dx, dy, colorind)
cgipw_character_expansion_factor{desc, sfac)
cgipw_character height (desc, height)

cgipw_character_ orientation{desc, xup, yup, xbase,
ybase)

cgipw_character_path (desc, path)
cgipw_character set_index(desc, index)
cgipw_character_spacing(desc, spcratio)
cgipw_circle (desc, cl, rad)
cgipw_circular_arc_ 3pt (desec, cl, 2, ¢3)

cgipw _circular_ arc_3pt_close (desc, cl, c¢2, ¢3,
close)

cgipw_circular_ arc_center(desc, cl, c2x, <2y, c3x,
c3y, rad)
cgipWw_circular arc center close(desc, cl, c2x,
c2y, c3x, <3y, rad, close)
cgipw_coloxr_table(desc, istart, clist)
cgipw_define bundle_index{desc, index)
cgipw_disjoint_polyline(desc, polycoors)
cgipw_ellipse{desc, cl, majx, miny)

4¥sun

Version C of 17 March 1986

146 SunCGI Reference Manual

Table F-1 List of cgipw Functions— Continued

SunCGI Function Name |

cgipw Function Name

elliptical_arxc(ecl, sx, sy, ex, ey,
majx, miny)
elliptical_arc_close (cl, sx, sy, ex,
ey, majx, miny, close)
£ill_area_bundle_index (index)
£ill_ceoleor(color)

fixed font {index)

hatch_index (index)

inquire_aspect source_flags()
inquire_drawing mode (visibility,
source, destination, combination)

inquire fill area_attributes ()}

inguire line_attributes()

inquire marker attributes()

ingquire pattern attributes (}
inquire_pixel_array({p, m, n, colorind)
inquire_text_attributes()

inquire text_extent (tstring, nextchar,
concat, lleft, uleft, uright)

interior_style (istyle, perimvis)
line_color {index}

line_endstyle (ttyp)

line_ type(ttyp}

line_width (index)
line_width_specification mode (mode)
marker color (index)

marker size{index)

marker_size specification_mode (mode)
marker_ type (ttyp}

pattern_index (index)
pattern_reference point{open)
pattern_size (dx, dy)

perimeter_color (index)
perimeter type (Ltyp)
perimeter_width(widthf

perimeter width_specification mode(mode)

pixel array{pcell, m, n, coclorind}
polygon {polycoors)

polyline (polycoors)
polyline_bhundle index (index)
polymarker (polycoors)

polymarker bundle Index{index)
rectangle (lre, ulc)
set_aspect_source flags(flags)
text (¢cl, tstring)

cgipw_elliptical arc({desc, c¢cl, sx, ay, ex, ey,
majx, miny)

cgipw elliptical_arc_close{desc, c¢l, sx, sy, ex,
ey, majx, miny, close)

cgipw_£fill area_bundle_index (desc, index)
cgipw_£ill color(desc, color)
cgipw_fixed font (desc, index)

cgipw_hatch index(desc, index);

cgipvw_inquire aaspect_source flagas(desc);
cgipw_inquire drawing mode (desc, visibility,
source, destination, combination}
cgipw_inquire fill area_attributes(desc);
cgipw_inquire line_attributes(desc):
cgipw_inquire marker attributes(desc);
cgipw_inquire pattern_attributes (desc);
cgipw_inquire pixel array(desc, p, m, n, coleorind)
cgipw_inquire text attributes(desc);

cgipw_inquire_text_extent (desc, tstring, nextchar,
concat, lleft, uleft, uright)

cgipw_interior_style (desc, istyle, perimvis)
cgipw_line_ color (desc, index)
cgipw_line_endstyle(desc, ttyp)

cgipw_line_ type{desc, ttyp)

cgipw_line width (desc, index)

cgipw_line width_specification_mode (desc, mode)
cgipw_marker color (desc, index)

cgipw_marker size(desc, index)
cgipw_marker_aizg_specificaticn_pnde(desc, mode}
cgipw_marker_type{desc, ttyp)

cgipw_pattern index(desc, index);
cgipw_pattern_reference_point (desc, open)
cgipw_pattern size(desc, dx, dy)
cgipw_perimeter_ color(desc, index)
cgipw_perimeter_type (desc, ttyp)
cgipvw_perimeter width (desc, width)

cgipw_perimeter width specification_mode (desc,
mode)

cgipw_pixel array(desc, pcell, m, n, colorind)
cgipw_polygon (desc, polycoors)

cgipvw_polyline (desc, polycoors)
cgipw_polyline bundle index(desc, index)
cgipw_polymarker{desc, polycoors)
cgipvw_polymarker bundle Index(desc, index)
cgipw_rectangle(desc, lrec, ule)
cgipw_set_aspect_source_flags(desc, flags)
cgipw_text (desc, cl, tatring)

C

4y sun

microsystoms

Version C of 17 March 1986

Appendix F — Using SunCGI and Pixwins 147

Table F-1 | List of cgipw Functions— Continued

SunCGI Function Name | cgipw Function Name
text_alignment (halign, valign, cgipw_text_alignment (desc, halign, valign,
hcalind, vcalind} hecalind, vecalind)
text_bundle_index (index) cgipw_text_bundle index(desc, index)
text_color (index) cgipw_text_color{desc, index)
text_font_index (index) cgipw_text font_index(desc, index)
text _precision (ttyp) : cgipw_text precision(desc, ttyp)
vdm_text{cl, flag, tstring) cgipw_vdin=text (desc, cl, flag, tstring)

Table F-2 SunCGI Functions not Compatible with cgipw Mode

Function | Discussion
clear_control All clear extents are identical
clip indicator when cflag is

CLIP_RECTANGLE
clip_rectangle Instead, use pw_region
prior to open_cgi_pw
close_cgi Use close_pw_cgi
close_vws Use close cgi_pw
device_viewport usepw_region prorto
open_cgi_pw
open_cgi Use open_pw_cgi
open_vws Use open_cgi_pw
partial polygon global polygon list is freed
after cgipw_polygon
vdc_extent cgipw’s VDC space is identi-
cal to screen space

¥.4. Example Program Figure F-1 contains an example program that uses cgipw functions. This exam-
ple uses retained pixwins to ease redisplay after window obstruction (see Section
2.3). This makes the program slower during image generation, because it writes
both on the screen and onto a copy retained in memory.

@z/) sun Version C of 17 March 1986

148

SunCGI Reference Manual

Figure F-1

&

#include <cgipw.h>
#include <suntool/gfxsw.h>

struct pixwin *mypw;
struct gfxsubwindow *mine;

main ()

{
Ccgiwin vpw;
Ccoor bottom;
Ccoor top:
int name;
int op:

mine = gfxsw_init (0, 0);

gfxsw_getretained(mine);

mypw = mine->gfx_pixwin;

pw_writebackground(mypw, 0, 0,
mypw—>pw_prretained->pr_size.x,
mypw->pw_prretained->pr_size.y, PIX_CLR);

open_pw_cgi () ;

open_cgi_ pw{mypw, &vVpw, &name):

op = PIX COLOR(1l) | PIX SRC;:

pw_write (mypw, 0, 0, 100, 100, op, 0, 0, 0);
bottom.x = 300;

bottom.y = 100;

top.x = 200;

top.y = 0;

cgipw_interior_ style(&vpw, SOLIDI, ON);
cgipw_rectangle (&vpw, &bottom, &top);
sleep(10);

close_cgi_pw(&vpw);
close_pw_cgi();

Example cgipw Program

sSsun Version C of 17 March 1986

MCTOsySieme

-

G

Using SunCGI with Fortran Programs

Using SunCGI with Fortran Programs 151
G.1. Programming Tips 151
G.2. Example Program 152

G.3. FORTRAN Interfaces to SunCGI 154

O

G.1. Programming Tips

@

G

Using SunCGI with Fortran Programs

-

All functions provided in SunCGI may be called from FORTRAN programs by
linking them with the 2ibcgi77.a library. This is done by using the /77 com-
piler with a command line like:

[% £77 =o box box.f =lcgi77 =-lcgi -lsunwindow ~lpixrect -lm}

where box. £ is the FORTRAN source program. Note that 1ibegi . a must be
linked with the program (the -1cgi option), and 1ibcgi77 . a must precede it
(the -1cgi77 option).

Defined constants may be referenced in source programs by including

cgidefs?7.h. In a FORTRAN program, this must be done via a source state-
ment like:

include ‘cgidefs77.h’

This include statement must be in each FORTRAN program unit which uses the
defined constants, not just once in each source program file,

In the Sun release of FORTRAN, names are restricted to sixteen characters in
length and may not contain the underline character. For this reason, FORTRAN
programs must use abbreviated names to call the corresponding SunCGI func-
tions. The correspondence between the full SunCGI names and the FORTRAN
names appears later in this appendix. In addition, FORTRAN declarations for all
SunCGI functions appear at the end of this appendix.

* The abbreviated names of the SunCGI functions are less readable than the full
length names because the underline character cannot be used in the FORTRAN
names. However, since FORTRAN doesn’t distinguish between upper-case and ~~
lower-case letters in names, upper-case characters can be used to improve rea-
dability. There is an example of this later in this appendix.

+ Character strings passed from FORTRAN programs to SunCGI cannot be
longer than 256 characters.

* Pointers returned by C functions are handled in FORTRAN as integer*4
values, and exist solely to be passed to other Sun graphics functions.

* FORTRAN passes ail arguments by reference. Although some SunCGI func-
tions receive arguments by value, the FORTRAN programmer need not worry

Su }"1' 151 Version C of 17 March 1986

152 SunCGI Reference Manual

about this. The interface routines in /usr/1ib/1libcgi77.a handle this @
situation correctly. When in doubt, look at the FORTRAN declarations for
SunCGlI functions at the end of this appendix.

» Some SunCGI functions have structures as arguments or return values. These
are handled in FORTRAN by unbundling the structures into separate arguments.
In general, these will be in the same order, and have the same names, as the
members of the C structures. One exception is the Ccoorlist structure,
which is replaced in FORTRAN with an array of x's, and one of y ’s, rather than
an array of x-y pairs. You may need to consult both the C and FORTRAN docu-
mentation to determine which FORTRAN arguments are input values, and which
are output.

+ Since FORTRAN does not distinguish between upper-case letters and lower-case
letters in identifiers, any FORTRAN program unit which includes the |
cgidefs77.n header file cannot use the same spelling as any constant |
defined in that header file, regardless of case.

» The function c£gout cap returns the FORTRAN binding names of the output
capabilities, rather than the C bindings. This is an exception to the rule that
the FORTRAN library provides a transparent interface to the C functions.

G.2. Example Program This example is the FORTRAN equivalent of the very simple program for drawing
a martini glass.

-

. :!
;
. |

S,
% Su Version C of 17 March 1986
microsyst

Appendix G — Using SunCGI with Fortran Programs 153

C

program test
parameter (ibignum=256)

integer name

character screenname* (ibignum)
integer screenlen

character windowname* (ibignum)
integer windowlen

integer windowfd

integer retained

integer dd

integer cmapsize

character cmapname* (ibignum)
integer cmaplen

integer flags

character ptr* (ibignum)
integer noargs

c coordinates of glass
integer xc(10),yc(l0),n
c coordinates of waterline.

integer xc2(2},vyc2(2)

data »xc /0,-10,-1,-1,-15,15,1,1,10,0 /
data yc¢ /0,0,1,20,35,35,20,1,0,0 /
data xc2 /-12,12/

data yc2 /33,33/

c open cgi
call cfopencgi{)
c open a pixwin
dd = 4

call cfopenvws(name,screenname, screenlen,windowname,
+ windowlen,windowfd, retained,dd, cmapsize,
+ cmapname,cmaplen,flags,ptr,noargs)
c reset VDC space
call cfvdcext (-50,-10,50,80)
el draw martini glass and waterline
n=10
call cfpolyline (xc¢,yc,n)
n=2
call cfpolyline(xc2,yc2,n)
c aleep for 10 seconds
call sleep(l0)
c close and exit
call cfclosecgi()
call exit()
end

Figure G-1 Example FORTRAN Program

@?4’ SUN Version C of 17 March 1986

n icrosystams

154 SunCGI Reference Manual

G.3. FORTRAN Interfaces io Note: Although all SunCGI procedures are declared here as functions, each may

SunCGI also be called as a subroutine if the user does not want to check the returned
value.
Table G-1 SunCGI Fortran Binding — Part |
CGI Specification Name | Fortran Binding
Activate View Surface integer function cfactvws (name)
(SunCGI Extension) integer name
Append Text integer function cfaptext (flag, string)
integer flag
character*(*) string
Associate integer function cfassoc(trigger, devclass, devnum)
integer trigger
integer devclass
integer devnum _
Await Event integer function cfawaitev(timeout, wvalid, devclass,

1 devnum, x, y, xlist, ylist, n, val, choice, string,
2 segid, pickid, message_link, replost, time_ stamp,
3 qstat, overflow)
integer timeout
integer wvalid
integer devclass
integer devnum
integer x, y

integer xlist (*)
integer ylist(*)
integer n

real val

integer choice
character* (*) string
integer segid
integer pickid
integer message_link
integer replost
integer time stamp
integer gstat
integer overflow

oSy stems

é{%,,, sun Version C of 17 March 1986

Appendix G — Using SunCGI with Fortran Programs 155

Table G-1 SunCGl Fortran Binding — Part I— Continued
CGI Specification Name | Fortran Binding
BirBIt Pattern Array integer function cfbtblpatarr (pixpat, px, py, pixtarget,
1 rx, ry, ox, oy, dx, dy, name)

BitBlt Patterned Source
Array

integer pixpat
integer px, py
integer pixtarget
integer rx, ry
integer ox, oy
integer dx, dy
integer name

integer function cfbtblpatsocuarr (pixpat, px, p¥y.
1 sx, sy, pixtarget, rx, ry, ox, oy, dx, dy, name)
integer pixpat

integer px, py

integer pixsource

integer sx, sy

integer pixtarget

pixsource,

integer rx, ry
integer ox, oy
integer dx, dy
integer name
BitBlt Source Array integer function cfbtblsouarr(bitscurce, xo, yo, xe, yve,
1 bittarget, xt, yt, name)
integer*4 bitsource, bittarget
integer xo, yo, xe, ye, xt, yt
integer name
Cell Array integer function cfcellarr(px, gx, rx, PY. gY¥, LY,
1 dx, dy, colorind)
integer px, py
integer gqx, qy
integer rx, ry
integer dx, dy
integer colorinad(*)
Character Expansion integer function cfcharexpfac(efac)
Factor real efac
Character Height integer function cfcharheight (height)
integer height
Character Orientation integer function.cfcharorient(bx, by, dx, dy)
real bx, by, dx, dy
Character Path integer function cfcharpath(path)
integer path
Character Set Index integer function cfcharsetix (index)
integer index
ﬁi}% Sun Version C of 17 March 1986
microsystems

156 SunCGI Reference Manual

Table G-1 SunCGI Fortran Binding — Part I— Continued

CGI Specification Name | Fortran Binding
Character Spacing integer function cfcharspacing(efac)
real efac
Circle integer function cfcircle(x, y, rad)
integer x
integer y
integer rad
Circular Arc 3pt Close integer function cfcircarcthreecl(clx, cly, c¢2x, c2y,
i c¢3x, c3y, close)
integer clx, cly, ¢2x, c2y, ¢3x, c3y
integer close
Circular Arc 3pt integer function cfecircarcthree(clx, cly, ¢2x, c2y,
1 c3x, c3y)
integer clx, cly, c¢2x, c2y, ¢3x, ¢3y
Circular Arc Center integer function cfcircarccentcl(clx, cly, ¢2x, c2y,
Close 1 c3x, c¢3y, rad, close)
integer clx, cly, c2x, c2y, ¢3x, c3y
integer rad
integer close
Circular Arc Center integer function cfcircarccent (clx, cly, ¢2x, c2y, c3x,
1 ¢3y, rad)
integer clx, cly, c2x, c2y, c3x, c3y
integer rad
Clear Control integer function cfclrcont (soft, hard, intern, extent)
integer soft, hard
integer intern
integer extent
Clear View Surface integer function cfeclrvws(name, defflag, color)
integer name
integer defflag
integer color
Clip Indicator integer function cfclipind(flag)
integer flag '
Clip Rectangle integer function cfcliprect(xmin, xmax, ymin, ymax)
integer xmin, xmax, ymin, ymax
Close CGI integer function cfclosecgi ()
(SunCGlI Extension)
Close View Surface integer function cfclosevws(name)
{SunCGI Extension) integer name
‘%%4 sun Version C of 17 March 1986
ricrosysiems

Appendix G — Using SunCGI with Fortran Programs

157

Table G-2

SunCGl Fortran Binding — Part II

CGlI Specification Name |

Fortran Binding

Color Tabie

Deactivate View Surface
(SunCGl Extension)

Define Bundle Index
(SunCGI Extension)

Device Viewport

Disable Events

Disjoint Polyline

integer
integer istart
integer ra(*),
integer n

function cfcotable(istart, ra, ga, ba, n)

ga(*), ba(*}

integer
integer

function cfdeactvws (name}
name

integer function cfdefbundix{index, linetype,
i linecolor, marktype, marksize, markcolor, intstyle,
2 batchindex, pattindex, fillcolor, perimtype,
3 perimwidth, perimcolor, t3extfont, textprec,
4 charexpand, charspace, textcolor)

integer index

integer linetype

real linewidth

integer linecolor

integer marktype

real marksize

integer markcolor

integer intstyle

integer batchindex

integer pattindex

integer fillcolor

integer perimtype

real perimwidth

integer perimcolor

integer t3extfont

integer textprec

real charexpand

real charspace

integer textcolor

integer
integer
integer

function cfdevvpt (name, xbot, ybot, xtop, ytop)
name
xbot, ytop

function cfdaevents(devclass,
devclass
devnum

ybot, =xtop,

integer
integer
integer

devnum)

inteéer function cfdpolyline (xcoors, ycoors, n)
integer xcoors(*)
integer ycoors(*)

integer n

linewidth,

©sun

Vewsion C of 17 March 1986

158 SunCGI Reference Manual

Table G-2 SunCG! Fortran Binding — Part [I— Continued o
CGlI Specification Name | Fortran Binding
Dissociate integer function cfdissoc(trigger, devclass, devnum)

integer trigger
integer devclass
integer devnum

Ellipse integer function cfellipse (x, y, majx, miny)
integer x, y
integer majx, miny

Elliptical Arc Close integer function cfelliparccl(x, ¥y, Sx, sy, ex, ey,
1l maix, miny, close)
integer x, vy
integer sx, sy
integer ex, ey
integer majx, miny
integer close

Elliptical Arc integer function cfelliparc(x, y, sx, sy, ex, ey, majx,
1 miny)
integer x, y
integer sx, sy
integer ex, ey
integer majx, miny ::)

Enable Events integer function cfenevents(devclass, devnum)
integer devclass
integer devnum

Fill Area Bundle Index integer function cfflareabundix(index)
integer index
Fill Color integer function cfflcolor(color)
integer color
Fixed Font integer function cffixedfont (index)
(SunCGlI Extension) integer index
Flush Event Queue integer function cfflusheventqu ()
@ su 2 Version C of 17 March 1986

Aopendix G — Using SunCGI with Fortran Programs 159

Table G-2 SunCGlI Fortran Binding — Part Il— Continued

CGlI Specification Name | Fortran Binding

Get Last Requested
Input

Hard Reset
Hatch Index

Initialize LID

Initiate Request

Inquire Aspect Source integer function cfqgasfs(n, num, vals)

Flags

integer function cfgetlastreqginp (devclass, devnum, valid,
1 X, y., xlist, ylist, n, val, choice, string, segid,
2 pickid)

integer devclass

integer devnum

integer wvalid

integer x, vy

integer xlist(*)

integer ylist (*)

integer n

real wval

integer choice

character*(*) string

integer segid

integer pickid

integer function cfhardrst ()

integer function cfhatchix (index)
integer index

integer function cfinitlid(devclass, devnum, x, y, xlist,
1 ylist, n, val, choice, string, segid, pickid)
integer devclass

integer devnum

integer x, y

integer xlist (*)

integer ylist(*)

integer n

real val

integer choice

character* (*} string

integer segid

integer pickid

integer function cfinitreqg(devclass, devnum)
integer devclass
integer devnum

integer n
integer num({*)
integer wvals (*)

Q?y sun Version C of 17 March 1986

160 SunCGI Reference Manual

Table G-2 SunCGI Fortran Binding — Part Il— Continued

CGlI Spéciﬁcation Name]

Fortran Binding

Inquire BitBlt
Alignments

Inquire Cell Array

Inquire Device Bitmap

Inguire Device Class

integer function cfgbtbltalign{base, width, px,
1 maxpx, maxpy, name)

integer base

integer width

integer px

integer py

integer maxpx

integer maxpy

integer name

integer function cfgcellarr (name, px, gx, rX, PY. Y.

1 ry, dx, dy, colorind)

integer name

integer px, py

integer gx, gy

integer rx, ry

integer dx, dy

integer coloxind(*)

integer function cfgdevbtmp(name, map)

integer name
integer*4 map

integer function cfgdevclass (output, input)
integer output, input

PY.

Table G-3 SunCGl Fortran Binding — Part I1I

CGI Specification Name I Fortran Binding
Inquire Device integer function cfqdevid(name, devid)
Identification integer name

Inquire Drawing Mode

Ingquire Event Queue
State

character* (*) devid

integer function cfgdrawmode {visibility, source,
1 destination, combination)

integer wisibility

integer source

integer destination

integer combination

integer function cfgevque(gstate, goflow)
integer gstate
integer qoflow

6@% sun Version € of 17 March 1986

mictosystems

Appendix G — Using SunCGI with Fertran Programs 161

Table G-3 SunCGI Fortran Binding — Part III— Continued

CGlI Specification Name |

Fortran Binding

Inquire Fill Area
Attributes

Inquire Input
Capabilities

integer function cfgflareaatts(style, vis, color, hindex,
1 pindex, bindex, pstyle, pwidth, pcolor)

integer style, wvis, color

integer hindex, pindex, bindex

integer pstyle

real pwidth

integer pcolor

integer function cfginpcaps{valid, numloc, numval, numstrk,
1 numchoice, numstr, numtrig, evqueue, asynch, coordmap,
2 echo, tracking, prompt, acknowledgement, trigman)
integer wvalid

integer numloc

integer numval

integer numstrk

integer numchoice

integer numstxr

integer numtrig

integer evqueue

integer asynch

integer coordmap

integer echo

integer tracking

integer prompt

integer acknowledgement

integer trigman

e
w
=
=

|

Version C of 17 March 1986

162 SunCGI Reference Manual

Table G-3

-

SunCGl Fortran Binding — Part Ill— Continued

-

CGI Specification Name |

Fortran Binding

Inquire LID State List

Inquire LID State

integer function cfglidstatelis{devclass,
1 state, prompt, acknowledgement, x, y, xlist, ylist,
2 val, choice, string, segid, pickid, n, triggers,

3 echotype, echosta, echodat)

integer devclass

integer devnum

integer wvalid

integer state

integer prompt

integer acknowledgement

integer x

integer y

integer xlist (%)

integer ylist (*)

integer n

real val
integer choice
character* (*)
integer segid
integer pickid
integer n
integer triggers (*)
integer echotype
integer echosta
integer echodat

devnum, wvalid,
n,

string

integer function cfglidstate(devclass, devnum, wvalid,
1 state)

integer devclass

integer devnum

integer valid

integer state

Version C of 17 March 1986

Q¥
w
=~

i

3

Appendix G — Using SunCGI with Fortran Programs 163

Table G-3 SunCGI Fortran Binding — Part Ill— Continued

CGI Specification Name | Fortran Binding

Inquire LID Capabilities integer function cfglidcaps(devclass, devnum, wvalid,

1 sample, change, numassoc, trigassoc, prompt,
2 acknowledgement, echo, echotype, n, classdep, state)
integer devclass

integer devnum

integer wvalid

integer sample

integer change -

integer numassoc

integer trigassoc(?*)

integer prompt

integer acknowledgement

integer echo(*)

integer echotype (*)

integer n

character*(*} classdep

integer state(*)

Inquire Line Attributes ' integer function cfglnatts(style, width, c¢olor, index)

Inquire Marker
Attributes

Inquire Qutput
Capabilities

integer style
real width
integer color, index

integer function cfgmkatts(type, size, color, index)
integer type

real size

integer color, index

integer function c¢fgoutcap(first, last, list)
integer first, last
character*80 list (*)

Inquire Qutput Function integer function cfgoutfunset (level, support)

Set

Ingquire Pattern
Atrtributes

integer level
integer support

integer function cfgpatatts(cindex, row, column, colorlis,
1 X, ¥, dx, dy)

integer cindex

integer row

integer column

integer coleorlis(*)

integer x=

integer y

integer dx

integer dy

Q& sSun Version C of 17 March 1986

microsystems

164 SunCGI Reference Manual

Table G-3 SunCGI Fortran Binding — Part Ili— Continued

CGI Specification Name | Fortran Binding
Inquire Physical integer function cfgphyscsys(name, xbase, ybase, xext, yext,
Coordinate System 1 xunits, yunits)

integer name

integer xbase, ybase

integer xext, yext

real xunits, wyunits
Inguire Pixel Array integer function cfgpixarr(px, py, m, n, colorind, name)

Inquire Text Attributes

Inquire Text Extent

integer px, py
integer m, n
integer colorind(*)
integer name

integer function cfgtextatts(fontset, index, cfont, prec,
1 efac, space, color, hgt, bx, by, ux, uy, path, halign,
2 valign, hfac, cfac)

integer fontset, index, cfont, prec

real efac, space '

integer color, hgt

real bx, by, ux, uy

integer path, halign, valign

real hfac, cfac

integer function cfgtextext(string, nextchar,
1 conx, cony, llpx, llpy, ulpx, ulpy, urpx, urpy)
character* (*) string

charactex* (*) nextchar

integer conx

integer cony

integer 1llpx

integer 1lipy

integer ulpx

integer ulpy

integer urpx

integer urpy

Version C of 17 March 1986

@
un
=

H =]

3

Appendix G — Using SunCGI with Fortran Programs 165

Table G-3

SunCGlI Fortran Binding - Part Ill— Continued

CGI Specification Name |

Fortran Binding

Inquire Trigger
Capabilities

Inquire Trigger State

Inquire VDC Type

Interior Style

Line Color

Line Endstyle
(SunCGI Extension)

Line Type

Line Width Specification
Mode

integer

1 class,
2 name,

integer
integer
integer
integer
integer
integer
integer
integer
integer

function cfgtrigcaps(trigger,
assoc, maxassoc, prompt,
description)

trigger

valid

change

n

class(*)

assoc(*)

maxassoc

prompt

acknowledgement

valid, change,
acknowledgement,

n,

character* (*) name
character* (*} description

integer function cfqgtrigstate{trigger,
1 class, assoc)

valid, state, n,

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

trigger
valid
state

n
class(*)
assoc (*)

function
type
function
istyle
perimvis
function
index

function
ttyp
function
ttyp

function
mode

cfgvdctype (type)

cfintstyle(istyle, perimvis)

cflncolor (index)
cflnendstyle (ttyp)
cflntype (ttyp)

cflnspecmode (mode)

@

|

W
=
-

Version C of 17 March 1986

166 SunCGI Reference Manual

Table G-4

SunCGl Fortran Binding — Part IV

CGI Specification Name |

Fortran Binding

Line Width
Marker Color
Marker Size
Specification Mode
Marker Size
Marker Type
Open CGI

(SunCGI Extension)

Open View Surface
(SunCGI Extension)

Partial Polygon

Pattern Index

Pattern Size

Pattern Table

Pattern Reference Point

integer function cflnwidth (index)
real index '

integer function ¢fmkcolor (index)
integer index

integer function cfmkspecmode (mode)
integer mode

integer function cfmksize (index)
real index

integer function cfmktype (ttyp)
integer ttyp

integer function cfopencgi ()

integer function cfopenvws (name, screenname, windowname,
1 windowfd, retained, dd, cmapsize, cmapname, flags,
2 ptr)

integer name

character* (*) screenname

character* (*) windowname

integer windowfd

integer retained

integer dd

integer cmapsize

character*(*) cmapname

integer flags

character*(*) ptr

integer function cfppolygon(xcoors, ycoors, n, flagq)
integer x=coors(*)

integer ycoors(*)

integer n

integer flag

integer function cfpatix(index)
integer index

integer function cfpatrefpt(x, y)
integer x, y

integer function cfpatsize (dx, dy)
integer dx, dy

integer function cfpattable(index, m, n, colorind)
integer index '
integer m, n

integer colorind(*)

-

Version C of 17 March 1986

Appendix G — Using SunCGI with Fortran Programs 167

O

Table G-4 SunCGl! Fortran Binding — Part [V— Continued

CGI Specification Name | Fortran Binding

Pazttern with Fill Color integer function cfpatfillcolor(flag)

(SunCGI Extension) integer flag

Perimeter Color integer function cfperimcolor (index)
integer index

Perimeter Type integer function cfperimtype (ttyp)
integer ttyp

Perimeter Width integer function cfperimspecmode (mode)

Specification Mode integer mode

Perimeter Width integer function cfperimwidth (index)

real index

Pixel Array integer function c¢fpixarr(px, py, m, n, colorind)
integer px, pYy
integer m, n
integer colorind(*)}

Polygon integer function cfpolygon{xcoors, ycoors, nj
integer xcoors(*)
integer ycoors(*)
integer n

Polyline Bundle Index integer function cfpolylnbundix{index)
integer index

Polyline integer function cfpolyline(xcoors, ycoors, n)
integer xcoors(*)
integer ycoors(*)
integer n

Polymarker Bundle integer function cfpolymkbundix{index)
Index integer index
Polymarker integer function cfpolymarker(xccors, ycoors, n)

integer xcoors(*)
integer ycoors (*)
integer n

Rectangle integer function cfrectangle {xbot, ybot, xtop, vtop)
integer xbot, ybot, xtop, ytop

Release Input Device integer function cfrelidev({devclass, devnum)
integer devclass
integer devnum

@ sun Version C of 17 March 1986
@I

i

168 SunCGI Reference Manval

Table G-5

-

SunCGl Fortran Binding — Part V

CGI Specification Name |

Fortran Binding

Request Input

Reset to Defaults

Sample Input

Selective Flush of Event
Queue

Set Aspect Source Flags

Set Default Trigger
Associations

integer

function cfreqginp(devclass, devnum, timeout,

1 valid, x, y, xlist, ylist, n, val, choice, string,
2 segid, pickid, trigger)

integer
integer
integer
integer
integer
integer
integer
integer

devclass
devnum
timeout
valid

X, Y
xlist (*)
ylist (*)
n

real wval

integex

choice

character*(*) string

integer
integer
integer

integer

integer

segid

pickid

trigger

function cfrsttodefs ()

function cfsampinp (devclass, devnum, valid, x, vy,

1 xlist, ylist, n, val, choice, string, segid, pickid)

integer
integer
integer
integer
integer
integex
integer

real wal

integer

devclass
devnum
valid

X, ¥
xlist (*)
ylist (*)
n

choice

character*(*) string

integer
integer

integer
integer
integer
integer
integer
integer
integer
integer

segid
pickid
function cfsflusheventqu(devclass, devnum)

devclass
devnum

function cfsaspsouflags(fval, fnum, n)
fval(*), fnum(*), n

function cfsdefatrigassoc(deveclass, devnum)
devclass
devnum

4rsu

microsysems

n

0O

-

Version C of 17 March 1986

Appendix G — Using SunCGI with Fortran Programs 169

Table G-3

SunCGI Fortran Binding — Part V— Continued

CGI Specification Name |

Fortran Binding

Set Drawing Mode

Set Error Warning Mask

Set Global Drawing
Mode
(SunCGI Extension)

Set Iniial Value

Set Up SIGWINCH
(SunCGI Extension)

Set VALUATOR Range

Text Alignment

Text Bundle index
Text Color

Text Font Index

integer function cfsdrawmode (visibility, source,
1 destination, combination)

integer wvisibkility

integer source

integer destination

integer combination

integer function cfserrwarnmk (action)
integer action -

integer function cfsgldrawmode (combination)
integer combination

integer function cfsinitval{devclass,
1 xlist, ylist, n, val, choice,
integer devclass

integer devnum

integer x, y

integer xlist(*)

integer ylist(*)

integer n

real val

integer choice

charactexr*(*) string

integer segid

integer pickid

devnum, x, y,
string, segid, pickid)

integer function cfsupsig(name,
integer name
external sig_function

sig_function)

integer function cfsvalrange (devaum,
integer devnum
real mn, mx

mn, mx}

integer function cftextalign(halign,
1 vcalind)

integer halign

integer valign

real hcalind, wvcalind

valign, hcalind,

integer function cftextbundix (index)
integer index

integer function cftextcolor (index)
integer index

integer function c¢itextfontix(index)
integer index

Version C of 17 March 1986

4sun

170 SunCGI Reference Manual

Table G-5

SunCGl Fortran Binding — Part V— Continued

CGI Specification Name |

Fortran Binding

Text Precision

Text

Track Off

Track On

VDC Extent

VDM Text

integerx
integer
integer
integer
integer

function cftextprec{ttyp)
ttyp

function cftext(x, y, string)
X

¥

character* (*) string

integer

function cftrackoff(deveclass, devnum, tracktype,

1l action)

integer
integer
integer
integer

integer

1 exlow, eylow, exup, eyup, x, y, xlist, ylist, n, val,

devclass
devnum
tracktype
action

function cftrackon(develass, devnum, echotype,

2 choice, string, segid, pickid)

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

real val

integer

devclass
devnum
echotype
exlow
eylow
exup
eyup

X ¥
xlist (*)
yligt (*)
n

choice

character* (*) string

integer
integer

integer
integer

integer
integer
integer
integer

segid

pickid

function cfvdcext (xbot, ybot, xtop, ytop)
xbot, vybot, xtop, ytop

function cfvdmtext(x, y, flag, string)
x

Y
flag

character* (*) string

4
w
=

E

=

C

Version C of 17 March 1986

o

Short C Binding

Short C Binding

173

H

Short C Binding

At the time SunCGI was implemented, there was no official ANSI C binding for
CGlL. Sun Microsystems has tried to anticipate the eventual C binding with a set
of shorter function names. The SunCGI binding is inspired by the C language
binding of GKS. These names are contained in the header file <cgicbind.h>
which must be included in an application program using the short C binding.

Table H-1 Correspondence Between Long and Short C Names

Long Name | Short Name

activate_vws ‘Cactvws
append text Captext

c:> associate Cassoc
await_event Cawaitev
bitblt pattern_ array Cbtblpatarr
bitblt_patterned source_array Cbtblpatsouarr
bitblt_source_array Cbhbtblsouarr
cell array Ccellarr
character_expansion_factor Ccharexpfac
character height Ccharheight
character_orientation : Ccharorientation
character_path Ccharpath
character_set_index Ccharsetix
character_spacing , Ccharspacing
circle Ccircle
circular_arc_3pt Ccircarcthree
circular_arc_3pt_close Ccircarcthreecl
circular_arc_center Ccircarccent
circular_arc_center_close Ccircarccentel
clear_control _ Celrcont
clear_ view_surface Cclrvws
clip_indicator Cclipind
clip_rectangle Ccliprect
close_cgi Cclosecgi
close_vws Cclosevws

c:; color_table Ccotable
deactivate vws Cdeactvws

Q&’J Sun 173 Version C of 17 March 1986

Ly]

174

SunCGI Reference Manual

~

Table H-1 Correspondence Between Long and Short C Names— Continued

Long Name | Short Name
define bundle_index Cdefbundix
device_viewport Cdevvpt
disable_events Cdaevents
disjoint_polyline Cdpolyline
dissociate Cdissoc
echo_off Cechooff
echo_on Cechoon
echo_update Cechoupd
ellipse : Cellipse
elliptical arc Celliparc
elliptical_arc_close Celliparccl
enable events Cenevents
f£ill area bundle_index Cflareabundix
£ill color Cflcolor
fixed font Cfixedfont
flush _event_ gueue Cflusheventqu
get_last_requested_input Cgetlastreqginp
hard_reset Chardrst
hatch_index Chatchix
initialize_1lid Cinitlid
initiate_request Cinitreq
inquire_aspect_source_flags Cqgasfs D
inquire_bitblt_alignments Cgbtblalign
inquire_cell_array : Cgcellarr
inguire_device bitmap Cgdevbtmp
inquire device_class Cgdevclass
inquire_device_identification Cgdevid
ingquire_drawing mode Cqgdrawmode
inquire_event_ queue_state Cgevquestate
inquire fill area_attributes Cqgflareaatts
inquire_input_capabilities Cginpcaps
inguire_lid_capabilities Cglidcaps
ingquire_lid_state Cqlidstate
inquire_lid_state_list Cqlidstatelis
inquire_line attributes Cglnatts
inquire_marker_attributes Cgmkatts
inquire_output_capabilities Cqoutcap
inquire_output_function_set Cgoutfunset
inquire_pattern attributes Cgpatatts
inquire_physical_ coordinate_ system Cqphyscsys
inquire_pixel array Cgpixarrx
inguire_text_attributes Cgtextatts
inquire_ text_extent Cqtextext
inguire_trigger_ capabilities Cqtrigecaps
inquire_trigger_state Cgtrigstate O
inguire_vdc_type Cqvdctype

Q?y sSun Version C of 17 March 1986
ystems

Appendix H — Short C Binding

175

Table H-1 Correspondence Between Long and Short C Names— Continued
Long Name ! Short Name
interioxr_style Cintstyle
line_color Clncolor
line_endstyle Clnendstyle
line_ type Clntype
line_width Clnwidth
line width_specification_mode Clnwidthspecmode
marker_color Cmkcolor
marker size Cmksize
marker_ size specification_mode Cmksizespecmode
marker_type Cmktype
open_cgi Copencgi
open_vws Copenvws
partial polygon Cppolygon
pattern_index Cpatix
pattern reference_point Cpatrefpt
pattern size Cpatsize
pattern_table Cpattable
pattern with fill color Cpatfillcoior
perimeter_color Cperimcolor
perimeter_type Cperimtype
perimeter width Cperimwidth
perimeter width_specification_mode Cperimwidthspecmode
pixel_array Cpixarr
polygon Cpolygon
polyline Cpolyline
polyline bundle_index Cpolylnbundix
polymarker Cpolymarker
polymarker bundle_Index Cpolymkbundix
rectangle Crectangle
release_input_device Crelidev
request_input Creginp
reset_to_defaults Crsttodefs
sample input Csampinp
selective_flush_cof_ event_queue Cselectflusheventqu
set_aspect_source_flags Csaspsouflags
set_default_trigger_associations Csdefatrigassoc
set_drawing_mode Csdrawmode
set_error_warning mask Cserrwarnmk
set_global drawing_mode Csgldrawmode
set_initial value Csinitval
set _up_sigwinch Csupsig
set_valuator_range Csvalrange
text Ctext
text_alignment Ctextalign
text_bundle_ index Ctextbundix
text_color Ctextcolor
%:% sSun Version C of 17 March 1986

michosysiems

176

SunCGI Reference Manual

Table H-1 Correspondence Between Long and Shart C Names— Continued

Long Name | Short Name
text_font_index Ctextfontix
text_precision Ctextprec
track_off Ctrackoff
track_on Ctrackon
vdc_extent Cvdcext
vdm_ text : Cvdmtext

l{;}, sSun Version C of 17 March 1986

N

>

Index

Special Characters
<cgiecbind.h>, 173
<cgiconstants.h> 111
<cgidefs.h>, 111

A
Activate View Surface (SunCGI Extension), 16, 154
activate_vws, 16
ANSI, xv
Append Text, 43, 154
append_text, 43
Associate, 85, 154
associations, 27
adding, 86
removing, 87
asynchronous input functions, 92 thru 93
atribute inquiries
inquire_aspect_scurce_flags, 73
inquire_£fill_area_attributes, 76
inquire_line_attributes,75
inquire_marker_attributes, 75
inquire_pattern_attributes 76
inquire text_ attributes, 77
attribute inquiry functions, 75 thru 78
attributes, 53 thru 78
bundled, 54 thru 57
color, 74 thru 75
fill area, 62 thru 63
line, 57 thru 60
pattern, 63 thru 66
perimeter, 66, 68
polymarker, 60 thru 61
solid object, 61 rhru 68
text, 68 shru 74
Await Event, 95, 154
await_event, 95

B
bitbit, 33,42, 49
BitBlt Pattern Array, 46, 154
BitBlt Panterned Source Array, 46, 154
BitBlt Source Array, 45, 154
bitblt_pattern_ array, 46
bitblt_patterned_scurce array, 46
bitblt_source_array,45
bundle table, 54

-177-

bundled attributes, 54 thru 57
define bundle_index, 56
set_aspect_source_flags, 56
bundles, 54

C
Cell Array, 44, 154
cell array,44
cfactvws, 154
cfaptext, 154
cfassoc, 154
cfawaitev, 154
cfbtblpatarr, 154
cfbtblpatsouarr, 154
cfbtblsouarr, 154
cfcellarr, 154
cfcharexpfac, 154
cfcharheight, 154
cfcharozient, 154
cfcharpath, 154
cfcharsetix, 154
cfcharspacing, 154
cfecircarccent, 154
efeircarccentel, 154
cfeircarcthree, 154
cfecircarcthreecl, 154
cfecircle, 154
cfclipind, 154
cfecliprect, 154
cfclosecgi, 154
cfclosavws, 154
cfelreont, 154
cfclrvws, 154
cfeotable, 157
cfdaevents, 157
cfdeactvws, 157
cfdefbundix, 157
cfdevvpt, 157
c¢fdisasoc, 157
cfdpclyline, 157
cfelliparc, 157
cfelliparcel, 157
cfellipse, 157
cfenevents, 157
cffixadfont, 157

Index Continued

cfflareabundix, 157
cfflcolox, 157
cfflusheventqu, 157
cfgetlastreginp, 157
cfhardrst, 157
cfhatchix, 157
cfinitlid, 157
efinitreq, 157
cfintstyle, 160
¢flncoler, 160
cflnendstyle, 160
eflnspecmode, 160
cflntype, 160
cflnwidth, 166
cfmkcolor, 166
cfmksize, 166

cfmk specmode, 166
cfmktype, 166
cfopencgi, 166
cfopenvws, 166
cfpatfillcolor, 166
cfpatix, 166
cfpatrefpt, 166
cfpatsize, 166
cfpattable, 166
cfperimcolor, 166
cfperimspecmode, 166
cfperimtype, 166
cfperimwidth, 166
cfpixarr, 166
cfpolygon, 166
cfpolyline, 166
¢fpolylnbundix, 166
cfpolymarker, 166
cfpolymkbundix, 166
cEfppolygon, 166
cfgasfs, 157
cfgbtbltalign, 157
cfqecellarr, 157
¢fgdevhemp, 157
cfgdevclass, 157
cfqdevid, 160
cfqdrawmode, 160
cfgevque, 160
cfgflareaattas, 160
cfginpcaps, 160
cfqglidcaps, 160
cfglidstate, 160
cfglidstatelis, 160
efglnatts, 160
cfegmkatts, 160
cfgoutecap, 160
cfgout funset, 160
cfgpatatts, 160
cfaphyacays, 160
cfgpixarr, 160
cfgtextatts, 160
cfgtextext, 160

-178-

cfqtrigcaps, 160
cfqtrigstate, 160
cfqvdctype, 160
cfrectangle, 166
cfrelidev, 166
cfreginp, 168
cfrasttodefs, 168
cfsampinp, 168
cfsaspaouflags, 168
cfadefatrigassoc, 168
cfadrawmode, 168
cfserrwarnmk, 168
cfaflusheventqu, 168
cfagldrawmode, 163
cfainitval, 168
cfaupsig, 168
cfavalrange, 168
cftext, 168
cftextalign, 168
cftextbundix, 168
cftextcolor, 168
cfrextfontix, 168
cftextpres, 168
cftrackoff, 168
cfreracken, 168
cfvdcext, 168
cfvdmtext, 168
CGL 3

audience, xv

controlling docurnent, xv
CGITool, 14
CGI type definitions, 111 thru 120
CGI with Pixwins, 143 thru 148
CGI with pixwins

example, 147

functions, 145 thru 147

using cgipw, 144 thru 145
cgipw functions

close_cgi_pw, 144

close_pw_cgi, 144

open_cgi_pw, 143

open_pw_cgi, 143
Character Expansion Factor, 70, 154
Character Height, 70, 154
Character Oriemsation, 71, 154
Character Path, 72, 154
Character Set Index, 69, 154
Character Spacing, 70, 154
character expansion_factor, 70
character_height, 70
character_orientatien,7l
character_path, 72
character set_index, (5
character_spacing, 70
Circle, 38, 154.
circle

area of a, 38

perimeter definition, 38
circle, 38

C

o

Index Continued

Circular Arc 3pt, 40, 154
Circular Arc 3pt Close, 41, 154
Circular Arc Center, 38, 154
Circular Arc Center Close, 39, 154
circular arcs
center, 39
close, 39
direction of drawing, 39
three-point, 40
circular arc_3pt, 40
circular_arc_3pt_close, 4l
circular_arc_center, 38
circular are_center_close, 39
Clear Control, 21, 154
Clear View Surface, 21, 154
clear_control, 21
clear view_surface,2l
Clip Indicator, 19, 154
Clip Rectangle, 20, 154
clip_indicater, 19
clip_rectangle, 20
clipping, 17, 19
Close a CGI Pixwin, 144
Close CGI (SunCGI Extension), 16, 154
Close Pixwin CGI, 144
Close View Surface (SunCGI Extension), 16, 1534
close_cgi, 16
close_cgi_pw, 144
close_pw_cgi, 144
close_vws, 16
color attributes, 74 thru 75
color table, 74
color table, 59, 74, 157
coloxr_table, 74
conical output primitives, 33, 34 thru 42
control errors, 124
coordinate definition errors, 124 thru 125
current position, 103

D
data type definitions, 111 thru 120

Deactivate View Surface (SunCGI Extension), 16, 157

deactivate_vws, 16

Define Bundle Index (SunCG! Extension), 56, 157
define bundle_index, 56

device coordinates {(see screen space), 17
Device Viewport, 19, 157
device_viewport, 19

Disable Events, 98, 157
disable_events,98

Disjoint Polyline, 34, 157
disjoint_polyline, 34

Dissociate, 86, 157

documentation conventions, xv

drawing mode, 6, 42

drawing modes, 48 thru 50

-179-

E
Ellipse, 41, 157
Elliptical Arc, 41, 157
Elliptical Arc Close, 42, 157
elliptical arcs, 41
drawing of, 42
elliptical arc, 4}
elliptical_arc_close, 42
Enable Evenss, 95, 157
enable_events, 95
error, 21
control, 21
CITOrS
control, 124 :
coordinate definition, 124 thru 125
implementation dependent, 131
input, 129 rark 130
output attribute, 125 thru 127
output primitive, 127 thru 129
possibie causes of visual, 131 raru 133
state, 123 rhru 124
event queue, 87, 95
status, 98
event queue input functions, 93 thru 98

F

fill area attributes, 62 thrue 63
Fill Area Bundle Index, 62, 157
Fill Color, 63, 157
£ill area_bundle_ index, 62
£fill_colexr, 63
Fixed Font (SunCGlI Extension}, 71, 157
fixed_ font, 71
Flush Event Queue, 96, 157
flush_event_queue, 96
FORTRAN interface

function definitions, 154 thru 170

Programming Hints, 151 thru 152
using FORTRAN, 151

G
geometrical output primitives, 33, 33 thru 42
Get Last Requested Input, 97, 157
get_last_requested_input, 97
global polygon list, 35, 36

H
Hard Reset, 20, 157
hard_reset, 20
hatch, 63
Hatch Index, 64, 157
hatch_index, 64

1
IC_STROKE, 86
implementation dependent errors, 131
include files, 4
Initialize LID, 84, 157
initialize lid, 84

Index Continued

initializing
activate_vws, 16
close_cgi, 16
close_vws, 16
deactivate vws, 16
open_cgi, 12
open_vws, 13
initializing SunCGI, 12
Initiate Request, 92, 157
initiate_regquest,92
input device, 84
capabilities, 27
status, 98
input device initialization functions, 84 thru 90
input devices
initialization, 84
input errors, 129 rhru 130
input functions
associate, 85
await_event, 95
disable_events, 98
dissociate, 86
enable_events, 95
flush_event gqueue, 96
get_last requested_input, 97
initialize lid, 84
initiate_request, 92
inquire_event_queue_state, 99
inquire_lid_state, 99
inguire_lid state_list,98
inquire_trigger_state, 99
release_input_device, 85
request_input, 91
sample_input, 97
selective_flush of event_queue, 96
set_default_trigger associations, 86
set_initial_value, 87
set_valuator_range, 87
tra ck off, §9
track _on, 88
Inguire Aspect Source Flags, 78, 157
Inquire BitBlt Alignments, 48, 157
Inguire Cell Array, 47, 157
Inquire Device Binnap, 48, 157
Inguire Device Class, 25, 157
Inquire Device Identification, 25, 160
Inquire Drawing Mode, 50, 160
Inquire Event Queue State, 99, 160
Inguire Fill Area Anributes, 76, 160
Ingquire Input Capabilities, 27, 160
Inguire LID Capabilities, 28, 160
Inquire LID Siate, 99, 160
Inquire LID State List, 98, 160
Inquire Line Attribistes, 15, 160
Inquire Marker Attributes, 75, 160
Inquire Cusput Capabilities, 27, 160
Inquire Owpus Function Set, 26, 160
Inquire Pattern Attributes, 76, 160
Inquire Physical Coordinate System, 25, 160
Inguire Pixel Array, 41, 160
Inquire Text Attributes, 17, 160

- 180~

Inguire Text Extent, 43, 160 O

Inguire Trigger Capabilities, 29, 160

Irquire Trigger State, 99, 160

Inquire VDC Type, 26, 160

inquire_
aspect_source_flags, 78
bitblt al:l.gnmenta, 43
cell_array, 47
device bitmap, 48
device class, 25
device_ identification,25

- drawing_mode, 50
event_gueue_state, 99
£fill_area_attributes, 76
input_capabilities, 27
lid capabilities, 28
lid _state_list, 98,99
line _attributes, 75
marker attributes, 75
output_capabilities, 27
cutput_function_set, 26
pattern_attributes, 76
physical_coordinate_system 25
pixel array, 47
text_attributes, 77

- text_extent, 43
trigger capabilities, 29
trigger_state, %9
vde_type, 26

inquiry functions

attributes, 75 thru 78 c :)
interface negotiation, 24 thru 30

inquire_device_class, 25
inquire device identification, 25
inquire_input_capabilities, 27
inquire lid capabilities, 28
inquire_output_capabilities, 27
inquire_ocutput_function_set,26
inquire_physical coordinate_ system 25
inquire trigger capabilities, 29
inquire_vdc_type, 26

Interior Style, 62, 160

interior_style, 62

isottopy, 17

L
line attributes, 57 thru 60
line_cclor, 59
line_endstyle,58
line_type, 58 T
line width, 59
line _width_ specification_mode, 59
polyline bundle_index, 57
Line Color, 59, 160
Line Endstyle (SunCGI Extension}, 58, 160
Line Type, 58, 160
Line Width, 59, 166
Line Width Specification Mode, 59, 160
line_color, 59
line_endstyle, 58 .
line_type, 58 -
line width, 59

Index Continued

line_width specification_mode, 59
Oh‘nking SunCGI, 3

lint library, 5

logical input device, 6

M
Marker Color, 61, 166
Marker Size, 61, 166
Marker Size Specification Mode, 60, 166
Marker Type, 60, 166
marker_color, 6l
marker size, 61
marker_size specification mode, 60
marker type, 60
mesasure, 6

N

negotiation functions, 5
non-retained windows, 14
NORMAL_VWSUREF, 13, 15

o
Open a CGl Pixwin, 143
Open CGl (SunCGlI Extension), 12 166
Open Pixwin CGl, 143
Open View Surface (SunCGI Extension), 13, 166
open_cgi, 12

open_cgi_pw, 143
O open_pw_cgi, 143

open_vws, 13

option sets, 3

output attribute errors, 125 thru 127

output primitive errors, 127 thru 129

output primitives, 3, 6, 33 raru 50, 104
append_text, 43
bitblt _pattern_array, 46
kitblt_patterned_scurce array, 46
bitblt_ source_array,45
cell_array, 44
circle, 38
circular_arc_3pt, 40
circular arc 3pt_close,dl
circular arc_ center, 38
circular arc_center_close, 39
conical, 33, 34 thru 42
disjoint_polyline, 34
drawing modes, 48 thru 50
ellipse, 4l
elliptical_arc, 41
elliptical arc_close 42
geometrical, 33 thru 42
inquire bitblt alignments, 48
ingquire_cell_array,47
inquire_device bitmap, 48
inquire_ drawing mode, 50
inquire _p:.xel_ar.ray, 47
inquire text_ extent,43
partial polygen, 36

o pixel array, 44

polygon, 35

-181 -~

output primitives, continued
polygonal, 33, 33 thru 38
polyline, 34
polymarker, 35
raster, 42 thru 48
rectangle, 38
set_drawing_mode, 49
set_global_drawing_mode, 50
text, 42
vdm text,43

P
Partial Polygon, 36, 166
partial_polygon, 36
pattern, 63
reference point, 65
paitern attributes, 63 thru 66
hatch_index, 64
pattern_index, 65
- pattern_reference_point, 65
pattern_size, 66
pattern_table, 65
pattern with fill color, 66
Pattern Index, 65, 166
Pattern Reference Point, 65, 166
Pattern Size, 66, 166
Pattern Table, 65, 166
Pattern with Fill Color (SunCGI Extension), 66, 166
pattern_index, 65
pattern_reference_point, 65
pattern_size, 66
pattern_table, 65
pattern_with_§1l_color
pattern w.'l.t.h £ill color, 66

endstyle, 67
perimeter attributes, 66 thru 68
perimeter_color, 68
perimeter_ type, 66
perimeter_width, §7
perimeter width_specification_mode, 67
Perimeter Color, 68, 166
Perimeter Type, 66, 166
perimeter visibility, 62
Perimeter Width, 67, 166
Perimeter Width Specification Mode, 67, 166
perimeter_color, 68
perimeter_type, 66
perimeter_width, 67
perimeter_ width specification_mode, 67
pie chart, 39
Pixel Array, 44, 166
pixel_array, 44,45
Pixwins with CGl, 143 thru 148
pixwins with CGI
example, 147
functions, 145 thru 147
using cgipw, 144 thru 145
point
drawing a, 38
Polygon, 35, 166

Index Continued

polygon
with undrawn edge(s), 36
polygonal primitives, 33, 33 thru 38
Polyline, 34, 166
Polyiine Bundle Index, 57, 166
polyline bundle_index, 57
Polymarker, 35, 166
polymarker attributes, 60 rhru 61
marker_color, 61
marker_size, 61

marker_size_ specification_mode, 60

marker_type, 60
polymarker_bundle index, 60
Polymarker Bundie Index, 60, 166

polymarker_bundle_index, 60

R
raster primitives, 33, 42 rhru 48
Rectangle, 38, 166
Release Input Device, 85, 166
release_input_device, 85
Request Input, 91, 168
request register, 92, 97
request_input, 91
Reset to Defaults, 20, 168
reset to_defaults,20
retained windows, 14

S

Sample Input, 97, 168
sample_input, 97
screen space, 3, 17

definition, 19
Selective Flush of Event Queue, 96, 168
selective_flush of event_gueue, 96
Set Aspect Source Flags, 56, 168
Set Defauit Trigger Associations, 86, 168
Set Drawing Mode, 49, 168
Set Error Warning Mask, 22, 168

Set Global Drawing Mode (SunCGI Extension), 30, 168

Set Initial Value, 87, 168

Set Up SIGWINCH (SunCGI Extension), 23, 168

Set VALUATOR Range, 87, 168

set_aspect source_flags, 56

set_default trigger associations, 86

set_drawing_mode, 49

set_error warning_mask, 22

set_global drawing_mode, 50

set_initial wvalue,87

set_up_ sigwinch, 23

set_valuator_range, 87

Short C Binding, 4, 173

SIGWINCH, 6, 22

solid object attributes, 61 thru 68
£1i1l_area_bundle_index, 62
£i1)_color, 63
interior _style, 62

specified device, 28

state errors, 123 rhru 124

-182~

status inquiries, 98 saru 100
Sun Workstation, 25
SunCGI, 3

with SunCGI, 22 thru 24
SunView

set_up_sigwinch, 23

using SunCGI with, 22, 24
synchronous input functions, 90 thru 92

T

Text, 42, 168

Text Aligrment, 72, 168

text attributes, 68 thru 74
character_expansion factor, 70
character_height, 70
character_orientation, 1
character_path, 72
character_set_index, 69
character_spacing, 70
fixed font, 71
text_alignment, 72
text_bundle index, 68
text_color, 71
text_font_index, 69
text_precision, 68

Text Bundie Index, 68, 168

Text Color, 71, 168

Text Font Index, 69, 168

Text Precision, 68, 168

text precision
detailed definition, 68

text, 42
appended, 43

text_alignment, 72

text,42

text_bundle index, 68

text _coler, 71

text_font_index, 69

text precision, 68

textured line, 58

timeout, §3

track, 88

Track Off, 89, 168

Track On, 88, 168

track_off, 89

track_on, 88

tracking, 83 zarx 90

trigger, 6, 27, 86

Trigger
Capabilities, 29
interaction with STROKE device, 86

status, 98
type definitions, 111 thru 120

U
unsupported CGI functions, 107 thru 108

using SunCGI, 3

Index Continued

Ovoc en
DC Extent, 17, 168

VDC space, 5,17

vdc_extent, 17

VDI, xv

VDM Text, 43, 168

vdm_text, 43

view surface, 11
clear control, 21
clearing, 20
default states, 15

view surface control, 17 thru 22
clear controel,21
clear_view_surface, 21
clip indicator, 19
clip rectangle, 20
device viewport, 19
hard_reset, 20
reset_to_defaults,20
set_error_warning_mask,22
vdc_extent, 17

view surfaces, 15
active, 5
initializing, 13
multiple, 5, 13

visual errors
possible causes, 131 shru 133

W
windows
nonretained, 14
retained, 14
world coordinates (see vDC space}, 17

-183-

Revision History

Revision |~ Date | Comments
A 5/15/85 2.0 Production Release.
B 2/17/86 3.0 Production Release.
C 3/17/86 2.3 Production Release.

