
0 

0 

0 

Part Number: 800-1256-04 
Version: C of 17 March 1986 
For: Sun System Release 2.3 

SunCGI Reference Manual 



Acknowledgements 

Copyright© 1984, 1985, 1986 by Sun Microsystems. 

This publication is protected by Federal Copyright Law, with all rights reserved. 
No part of this publication may be reproduced, stored in a retrieval system, 
translated, transcribed, or transmitted, in any form, or by any means manual, 
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other­
wise, without prior explicit written permission from Sun Microsystems. 

0 

0 

0 



0 

0 

0 

Contents 

Preface .................................................................................................................................................... X\' 

Chapter 1 Introduction .......................................................................................................... 3 

I.I. Using SunCGI ................................................................................................................... 3 

1.2. The SunCGI Lint Library ........................................................................................... 5 

1.3. Overview ofSunCGI ..................................................................................................... 5 

Initialization and Termination ............................................................................... 5 

Output Primitives ........................................................................................................ .. 

Attributes .......................................................................................................................... . 

Input ..................................................................................................................................... . 

6 

6 

6 

Errors ................................................................................................................................... 6 

Programming Tips ........................................................................................................ 7 

Appendices ....................................................................................................................... 7 

1.4. References ............................................................................................................................ 7 

Chapter 2 Initializing and Terminating SunCGI ..................... :........................ 11 

2.1. View Surface Initialization and Selection ......................................................... 11 

Open CGI (SunCGI Extension) ............................................................................ 12 

Open View Surface (SunCGI Extension) ....................................................... 13 

Activate View Surface (SunCGI Extension) ................................................. 16 

Deactivate View Surface (SunCGI Extension) ............................................ 16 

Close View Surface (SunCGI Extension) ....................................................... 16 

Close CGI (SunCGI Extension) ........................................................................... 16 

2.2. View Surface Control .................................................................................................... 17 

VDC Extent ...................................................................................................................... 17 

-iii-



Contents Continued 

Device Viewport .......................................................................................................... . 

Clip Indicator ................................................................................................................ .. 

Clip Rectangle ............................................................................................................... . 

Hard Reset ........................................................................................................................ . 

Reset to Defaults .......................................................................................................... . 

Clear View Surface ..................................................................................................... . 

Clear Control .................................................................................................................. . 

Set Error Warning Mask: .......................................................................................... . 

2.3. Running SunCGI with Sun View ............................................................................ . 

Set Up SIGWINCH (SunCGI Extension) ...................................................... . 

2.4. Interface Negotiation ................................................................................................... .. 

Inquire Device Identification ................................................................................. . 

Inquire Device Class ................................................................................................. .. 

Inquire Physical Coordinate System ................................................................. . 

Inquire Output Function Set .................................................................................. . 

Inquire VDC Type ....................................................................................................... . 

Inquire Output Capabilities .................................................................................... . 

2.5. Input Capability Inquiries .......................................................................................... . 

Inquire Input Capabilities ....................................................................................... . 

Inquire LID Capabilities .......................................................................................... . 

Inquire Trigger Capabilities ................................................................................... . 

Chapter 3 Output ...................................................................................................................... . 

3.1. Geometrical Output Primitives .............................................................................. .. 

Polyline .............................................................................................................................. . 

Disjoint Polyline ....... - ................................................................................................ .. 

Polymarker ...................................................................................................................... . 

Polygon .............................................................................................................................. . 

Partial Polygon .............................................................................................................. . 

Rectangle .......................................................................................................................... . 

Circle ................................................................................................................................... . 

Circular Arc Center .................................................................................................... . 

Circular Arc Center Close ....................................................................................... . 

-iv-

19 0 
19 

20 

20 

20 

21 

21 

22 

22 

23 

24 

25 

25 

25 

26 

26 

27 O· 
27 

27 

28 

29 

33 

33 

34 

34 

35 

35 

36 

38 

38 

38 

39 

0 



Contents Continued 

0 Circular Arc 3pt ............................................................................................................. 40 

Circular Arc 3pt Close ............................................................................................... 41 

Ellipse .................................................................................................................................. 41 

Elliptical Arc ................................................................................................................... 41 

Elliptical Arc Close ..................................................................................................... 42 

3.2. Raster Primitives .............................................................................................................. 42 

Text....................................................................................................................................... 42 

VDMText ......................................................................................................................... 43 

Append Text .................................................................................................................... 43 

Inquire Text Extent ...................................................................................................... 43 

Cell Array .......................................................................................................................... 44 

Pixel Array ........................................................................................................................ 44 

BitB!t Source Array ..................................................................................................... 45 

BitB!t Pattern Array .................................................................................................... 46 

BitB!t Patterned Source Array............................................................................... 46 

Inquire Cell Array ......................................................................................................... 47 

Inquire Pixel Array ...................................................................................................... 4 7 

Inquire Device Bitmap ............................................................................................... 48 0 
Inquire BitB!t Alignments ....................................................................................... 48 

3.3. Drawing Modes ................................................................................................................ 48 

Set Qrawing Mode ....................................................................................................... 49 

Set Global Drawing Mode (SunCGI Extension) ......................................... 50 

Inquire Drawing Mode ............................................................................................... 50 

Chapter 4 Attributes ................................................................................................................ 53 

4.1. Bundled Attribute Functions ..................................................................................... 54 

Set Aspect Source Flags ............................................................................................ 56 

Define Bundle Index (SunCGI Extension) ..................................................... 56 

4.2. Line Attributes .................................................................................................................. 57 

Polyline Bundle Index ................................................................................................ 57 

Line Type .......................................................................................................................... 58 

Line Endstyle (SunCGI Extension) .................................................................... 58 

Line Width Specification Mode ........................................................................... 59 

0 

-v-



Contents Continued 

Line Width ........................................................................................................................ 59 0 
Line Color ......................................................................................................................... 59 

4.3. Polymarker Attributes ................................................................................................... 60 

Polymarker Bundle Index ........................................................................................ 60 

Marker Type .................................................................................................................... 60 

Marker Size Specification Mode .......................................................................... 60 

Marker Size ...................................................................................................................... 61 

Marker Color ............................................. · .................................................................... 61 

4.4. Solid Object Attributes ................................................................................................. 61 

Fill Area Bundle Index .............................................................................................. 62 

Interior Style .................................................................................................................... 62 

4.5. Solid Interior Fill Attribute ........................................................................................ 62 

Fill Color ........................................................................................................................... 63 

4.6. Hatch and Pattern Attributes ..................................................................................... 63 

Hatch Index ...................................................................................................................... 64 

Pattern Index .................................................................................................................... 65 

Pattern Table ................................................................................................................... . 

Pattern Reference Point ............................................................................................ . 

65 

65 

Pattern Size ....................................................................................................................... 66 

Pattern with Fill Color (SunCGI Extension) ................................................. 66 

4.7. Perimeter Attributes ....................................................................................................... 66 

Perimeter Type ............................................................................................................... 66 

Perimeter Width ............................................................................................................. 67 

Perimeter Width Specification Mode ................................................................ 67 

Perimeter Color .............................................................................................................. 68 

4.8. Text Attributes .................................................................................................................. 68 

Text Bundle Index ......... · ............................................................................................. 68 

Text Precision ................................................................................................................. 68 

Character Set Index ..................................................................................................... 69 

Text Font Index .............................................................................................................. 69 

Character Expansion Factor .................................................................................... 70 

Character Spacing ......................................................................................................... 70 

Character Height ........................................................................................................... 70 

-1·j-

0 

0 



Contents Continued 

0 Fixed Font (SunCGI Extension) ........................................................................... 71 

Text Color ......................................................................................................................... 71 

Character Orientation ................................................................................................. 71 

Character Path ................................................................................................................. 72 

Text Alignment .............................................................................................................. 72 

4.9. Color Attributes ................................................................................................................ 74 

Color Table ·························-···························································································· 74 

4.10. Inquiry Functions··············-·························································································· 75 
Inquire Line Attributes .............................................................................................. 7 5 

Inquire Marker Attributes ........................................................................................ 7 5 

Inquire Fill Area Attributes ..................................................................................... 76 

Inquire Pattern Attributes ......................................................................................... 76 

Inquire Text Attributes .............................................................................................. 77 

Inquire Aspect Source Flags ................................................................................... 78 

Chapter 5 Input ........................................................................................................................... 81 

0 
5.1. Input Device Initialization.......................................................................................... 84 

Initialize LID ................................................................................................................... 84 

Release Input Device .................................................................................................. 85 

Associate ............................................................................................................................ 85 

Set Default Trigger Associations ......................................................................... 86 

Dissociate .......................................................................................................................... 86 

Set Initial Value ............................................................................................................. 87 

Set VALUATOR Range ........................................................................................... 87 

Track On............................................................................................................................ 88 

Track Off ··-···················-················-················································································ 8 9 

5 .2. Synchronous Input ······-····-·········-··· .. ············································································ 90 
Request Input .................... -............................................................................................ 91 

5.3. Asynchronous Input ·········-···························································································· 92 

Initiate Request ·············-······························································································· 92 

5.4. Event Queue Input ························-······-········································································ 93 
Enable Events ................................................................................................................. 95 

Await Event ····-············-··············--·-···-··-·-···-·-····-··············································· 95 

0 

-vii-



Contents Continued 

Flush Event Queue ...................................................................................................... . 

Selective Flush of Event Queue .......................................................................... . 

5.5. Miscellaneous Input Functions ............................................................................... . 

Sample Input ................................................................................................................... . 

Get Last Requested Input ........................................................................................ . 

Disable Events ............................................................................................................... . 

5.6. Status Inquiries ................................................................................................................ . 

Inquire LID State List ................................................................................. : ............. . 

Inquire LID State ......................................................................................................... . 

Inquire Trigger State .................................................................................................. . 

Inquire Event Queue State ...................................................................................... . 

Appendix A Differences between SunCore and SunCGI .......................... . 

A. I. Output Primitives .......................................................................................................... . 

Output Aspects of SunCore not Supponed by SunCGI ......................... . 

Output Features of SunCGI not Available in SunCore .......................... . 

A.2. Segmentation ......................................................... · ......................................................... . 

A.3. Differences in Input Functions between SunCore and SunCGI ......... . 

Appendix B Unsupported Aspects of CGI ............................................................ . 

Appendix C Type and Structure Definitions ....................................................... . 

Appendix D Error Messages ............................................................................................ . 

D.1. Successful Return (0) .................................................................................................. . 

D.2. State Errors (1-5) ........................................................................................................... . 

D.3. Control Errors (10-16) ................................................................................................ . 

D.4. Coordinate Definition (20-24) ................................................................................ . 

D.5. Output Attributes (30-51) ......................................................................................... . 

D.6. Output Primitives (60-70) ........................................................................................ . 

D. 7. Input (80-97) .................................................................................................................... . 

D.8. Implementation Dependent (110-112) ·-········-······················-···-··········· 

D.9. Possible Causes of Visual Errors················---········ .. ······················-···-· 

-viii -

96 
r"'., 
'-' 

96 

97 

97 

97 

98 

98 

98 

99 

99 

99 

103 
103 

104 

104 

104 

0 104 

107 

111 

123 
123 

123 

124 

124 

125 

127 

129 

131 

131 

0 



Contents Continued 

0 Appendix E Sample Programs ........................................................................................ 137 

E.1. Manini Glass ..................................................................................................................... 137 

E.2. Tracking Box ..................................................................................................................... 13 8 

Appendix F Using SunCGI and Pix.wins ................................................................. 143 

F.1. cgipw Functions.......................................................................................................... 143 

OpenPixwinCGI ......................................................................................................... 143 

Open a CGI Pixwin ...................................................................................................... 143 

Close a CGI Pixwin ..................................................................................................... 144 

Close Pixwin CGI ......................................................................................................... 144 

F.2. Using cgipw ................................................ :.................................................................. 144 

F.3. cgipw Functions .......................................................................................................... 145 

F.4. Example Program............................................................................................................ 147 

Appendix G Using SunCGI with Fortran Programs ....................................... 151 

G.l. Programming Tips ......................................................................................................... 151 

0 
G.2. Example Program ........................................................................................................... 152 

G.3. FORTRAN Interfaces to SunCGI ......................................................................... 154 

Appendix H Short C Binding........................................................................................... 173 

0 

-ix-



0 

0 

0 



0 

Tables 

Table 2-1 SunCGI Default States .......................................................................................... 13 

Table 2-2 Available View Surfaces ..................................................................................... 15 

Table 2-3 View Surface Default States .............................................................................. 15 

Table 2-4 Error Warning Masks............................................................................................. 22 

Table 2-5 Class Dependent Information ............................................................................ 29 

Table 4-1 Default Attributes .................................................................................................... 54 

0 
Table 4-2 Attribute Source Flag Numbers ....................................................................... 56 

Table 4.3 Available Fonts ......................................................................................................... 70 

Table 4-4 Normal Alignment Values .................................................................................. 7 4 

Table 4.5 Default Color Lookup Table ........•.................................................................... 74 

Table 5-1 Input Devices Offered by SunCGI ................................................................ 82 

Table 5-2 Default Trigger Associations ............................................................................. 86 

Table 5.3 Available Track Types .......................................................................................... 89 

Table A-1 Difference in Output Primitives ..................................................................... 103 

Table B-1 Unsupported Control Functions ...................................................................... 107 

Table B-2 Unsupported Input Functions ........•................................................................. 1 OT 

Table B-3 Non Standard Control Functions .................................................................... 108 

Table B-4 Non Standard Attribute Functions ................................................................. 108 

Table D-1 Possible Causes of Visual Errors ·····················································--········ 131 

Table D-2 Primitive-Specific Errors .................................................................................... 132 

0 

-xi-



Tables Continued 

Table D-3 Attribute Errors ....................................................................................................... . 133 0 
Table D-4 Input-specific Errors ............................................................................................. . 133 

Table F-1 List of cgipw Functions .................................................................................. . 145 

Table F-2 SunCGI Functions not Compatible with cgipw Mode ................ . 147 

Table G-1 SunCGI Fortran Binding - Patt I .................................................................. . 154 

Table G-2 SunCGI Fonran Binding -Pan II ................................................................ . 157 

Table G-3 SunCGI Fortran Binding - Pan III .............................................................. . 160 

Table G-4 SunCGI Fortran Binding - Pan IV .............................................................. . 166 

Table G-5 SunCGI Fortran Binding - Pan V ................................................................ . 168 

Table H-1 Correspondence Between Long and Shon C Names ......................... . 173 

0 

0 

-xii-



0 

Figures 

Figure 1-1 Simple Example Program ....................................................... :........................ 4 

Figure 2-1 Example Program with Multiple Workstations ................................... 12 

Figure 2-2 Example Program·with Multiple Normalization 
Transformations ..................................................................................................... 18 

Figure 2-3 Example Program with set_up_sigwinch Function............ 24 

Figure 3-1 Example Program with Polygons ................................................................ 37 

0 Figure 3-2 Example Program with Four Circle Quadrants in Different 
Colors........................................................................................................................... 40 

Figure 4-1 Example Program with Bundled Attributes ........................................... 55 

Figure 4-2 Example Program with Bundled Attributes ........................................... 64 

Figure 5-1 CGI Input State Model ....................................................................................... 84 

Figure 5-2 Example Program with LOCATOR Input Device .................................. 91 

Figure 5-3 Example Program with STRING Input Device ....................................... 94 

Figure E-1 Martini Glass Example Program ................................................................. 13 8 

Figure E-2 Tracking Box Example Program................................................................. 139 

Figure F-1 Example cgipw Program............................................................................. 148 

FigureG-1 Example FORTRAN Program ..................................................................... 153 

0 

- xiii -



0 

0 

0 



0 

Controlling Document 

Q Audience 

Documentation Conventions 

0 

Preface 

This document describes SunCGI, an implementation of the ANSI Computer 
Graphics Interface {CG!) by Sun Microsystems, Inc. Previously, CGI was known 
as the Virtual Device Interface (VDI) standard. Appendix B summarizes the 
differences between SunCGI and ANSI CG!. 

The CG! standard is currently under development. Future releases of SunCGI 
wiIJ reflect changes in ANSI CG!. 

The following document was used in interpreting the CG! standard: 

[l] ANSI X3H3 84/85. Information Processing Computer Graphics Virtual 
Device Interface (VD/) Functional Description. March 1984. 

The intended reader of this document is an applications programmer who is fami­
liar with interactive computer graphics and the C programming language. This 
manual contains several example programs that can be used as templates for 
larger SunCGI applications. 

Italic font is used to indicate file names, function arguments, variables and inter­
nal states of SunCGI. Italics are also used in the conventional manner (to 
emphasize important words and phrases). ALL CAPS is used to indicate values in 
enumerated types. Bold font is used for the names of Sun software packages. 
Function names are printed with constant width font. 



0 

0 

0 



0 

0 

0 

1 
Introduction 

Introduction ....................................................................................................................................... 3 

I.I. Using SunCGI ................................................................................................................... 3 

1.2. The SunCGI Lint Library ........................................................................................... 5 

1.3. Overview of SunCGI ..................................................................................................... 5 

Initialization and Termination ............................................................................... 5 

Output Primitives .......................................................................................................... 6 

Attributes ......................................................................................................................... .. 

Input ..................................................................................................................................... . 

6 

6 

Errors ................................................................................................................................... 6 

Programming Tips ........................................................................................................ 7 

Appendices ....................................................................................................................... 7 

1.4. References ............................................................................................................................ 7 



I 
' I 

Q! 

I 

0 

01 

-



0 

0 

I.I. Using SunCGI 

0 

1 
Introduction 

SunCGI provides access to low-level graphics device functions without the res­
trictions, benefits, or overhead of higher-level graphics packages like Sun Core. 
SunCGI is useful for 20 graphics programs which do not require segmentation 
or transformations. The absence of segmentation from SunCGI makes drawing 
diagrams faster and simpler, but does not provide automatic picture regeneration. 
SunCGI programs are usually smaller and more efficient than Sun Core pro­
grams with similar functionality. In addition, SunCGI programs will run on Sun 
devices without explicitly specifying the device at compile time. SunCGI pro­
vides output primitives (for example, circles), attributes (for example, sophisti­
cated pattern filling), and input primitives which are not offered by SunCore. 
The CG! standard is currently under development, and therefore, CG! has not been 
accepted by the X3H3 committee, ANSI, or the computer graphics community. 
Only cenain models within CG! are supported by SunCGI. Specifically SunCGI 
implements input option sets 1, 2, 3, 4, and 6 and output option sets I through 6 
of the CG! standard. CG! does not support 30 output primitives. 

SunCGI does provides output primitives, attribute selection, and input device 
management, at a level which is close to the actual device driver; thus affording 
speed and flexibility not offered by higher-level graphics packages like Sun Core. 
SunCGI provides output primitives which are not provided by any of the other 
Sun graphics packages: for example disjoint polygons, circles, ellipses, and cell 
arrays (which can be thought of as scaled and transformed pixel arrays). CG! also 
provides a larger vocabulary of attributes than SunCore. SunCGI also provides 
facilities for explicitly binding virtual input devices to physical input devices as 
well as explicit management of an event queue. 

Here is a SunCGI example application program written in C: 

3 Version C of 17 March 1986 



4 SunCGI Reference Manual 

Figure 1-1 

#include <cgidefs.h> 

Ccoor box[5] = { 10000,10000, 
10000,20000, 
20000,20000 
20000,10000, 
10000, 10000 l; 

main() 
{ 

Ccoorlist boxlist; 
Cint name; 
Cvwaurf device; 

boxlist.n = 5·; 
boxlist.ptlist = box; 
NORMAL_VWSURF(device, PIXWINDD); 

open_cgi (); 
open_vws(&narne, &device); 

polyline(&boxlist); 
sleep (10); 

close_vws(narne); 
close_cgi(); 

Simple Example Program 

SunCGI uses a variety of structures and enumerated types shown in Appendix C. 
The file <cgidef s. h> should be included in each SunCGI application pro­
gram to provide necessary definitions and constants. 

Here is an example of a command line for compiling box. c to run in the Sun­
View environment: 

% cc box.c -o box -lcgi -lsunwindow -lpixrect -lrn 

The order in which the libraries are linked to the program is important. 

AIJ SunCGI functions can be called by one of two names: the expanded name 
( default) or the C language binding name. See Appendix H for information on 
the list of names for the shorter C language binding. 

As a final note, do not name any user-defined function or variable starting with 
the letters cgi because doing so may disrupt the internal workings ofSunCGI. 

0 

0 

FORTRAN programmers can access SunCGI functions by using the include file in 0 
cgidef s77. hand using the /usr/ lib/ libcgi 77. a library to link with. 
Details of the FORTRAN interface to SunCGI are provided in Appendix G. 

Version C of 17 March 1986 



01.2. The SunCGI Lint 
Library 

1.3. Overview of SunCGI 

0 
Initialization and Termination 

0 

Chapter I - Introduction 5 

SunCGI provides a lint library which provides type checking beyond the capa­
bilities of the C compiler. For example, you could use the SunCGI lint library 
to check a program called glass. c with command like this: 

(%lint glass.c -lcgi 

Note that the error messages that lint generates are mostly warnings, and may 
not necessarily have any effect on the operation of the program. For a detailed 
explanation of lint, see the lint chapter in the Programming Tools manual. 

This section provides an overview of the substance of this manual. The four 
major sections of the manual (which correspond to chapters) are: 

1) view surface initialization and termination (control), 

2) output primitives, 

3) attributes, and 

4) input. 

J 

The overview of these chapters contains a brief introduction to the basic concepts 
of CG!. The appendices at the end of this manual provide quick reference tables 
and descriptions of the interfaces between SunCGI and 

!) Sun View and 

2) FORTRAN. 

Chapter 2 describes functions for 

!) initializing and terminating the entire SunCGI package and individual view 
surfaces, 

2) defining the coordinate systems, 

3) interface negotiation, and 

4) signal trapping. 

The first section Chapter 2 describes functions for opening and closing view sur­
faces (which are either windows or screens). SunCGI provides facilities for 
writing primitives to multiple view surfaces. Output primitives can be written to 
a selected subset of the open view surfaces by using the activate_ vws and 
deactivate_ vws functions (which turn a view surface on or off without clos­
ing the view surface or affecting the display). The functions discussed in 
Chapter 2 also define the range of virtual device coordinates (VDC space) and 
device coordinates (screen space). The coordinates of most SunCGI functions 
are expressed in terms of VDC space. The limits of both VDC space and screen 
space can be defined by the application program. 

If you are attempting to run an application program developed on another 
vendor's version of CGI, negotiation functions are provided which describe the 
capabilities of SunCGI. The application program can use the information 
obtained by using the negotiation functions to call appropriate functions in 

Version C ,r 17 March 1986 



6 SunCGJ Reference Manual 

Output Primitives 

Attributes 

Input 

Errors 

SunCGI to make the application program run correctly. Finally, Chapter 2 A 
describes SunCGI's option for trapping SIGWINCH signals (generated by man.i- Y 
pulating the window environment which the application program is using). 

SunCGI provides functions for drawing geometrical output primitives (for 
example, polygons, circles, and ellipses) as well as functions for performing ras-
ter operations. The coordinates of output primitives are specified in VDC space 
(with the exception of some raster functions). Geometrical output primitives 
include rectangles, polymarkers, circular and elliptical arcs. Geometrical output 
primitives are affected by attributes described in Chapter 4 (like fill style and line 
width). All output primitives are affected by the drawing mode which deter-
mines how an output primitives is affected by pixels which have been previously 
drawn on the screen. 

Attribute functions control the appearance of output primitives. Attributes can be 
set individually, or in groups which are called bundles. The use of most attri­
butes is fairly straightforward; fill textures require a word of explanation. 
Geometrical output primitives can be filled with textures called hatches or pat­
terns. Hatches are simply arrays of color values with each element of the array 
corresponding to a pixel. Patterns are arrays of color values which can be scaled 
and translated. 

SunCGI offers a standard interface for receiving input from the mouse and the 
keyboard. The CGI input model is based on the logical input device model in Q. 
GKS. In this system, a logical input device (for example, a LOCATOR device), 
is bound to a physical device (for example, the x-y position of the mouse) called 
a trigger. Triggers may be associated with logical input devices by the applica-
tion program. Each logical input device has an associated measure (for example, 
the measure of a LOCATOR device is the mouse position on the screen). Each 
logical input device also has a state which determines how a device handles 
input. Each logical input device can be in one of five states: 

I) RELEASED (uninitialized), 

2) NO _EVENTS (initialized but unable to receive input), 

3) REQUEST_EVENT (waiting for one event), 

4) RESPOND _EVENT (report one event asynchronously), and 

5) QUEUE_EVENT (put each event at the end of the eve111 queue). 

Errors are reported in SunCGI by setting the return value of the function to a 
nonzero result and echoing an error message and number on the terminal. How­
ever, error trapping can be controlled by the set_ error_ warning_ mask 
function. An explanation of each error message (and suggestions for how to 
eliminate them) is presented in Appendix D. 

Vcr,ion C of 17 March 1986 

0 



Q Programming Tips 

Appendices 

0 

1.4. References 

0 

Chapter 1 - Introduction 7 

For novice C language users, the syntax of SunCGI may pose some initial 
difficulties. When a pointer is specified as an argument to a SunCGI function, 
SunCGI usually expects space to be allocated by the application program and 
the function argument to be preceded by an ampersand (&). SunCGI uses many 
enumerated types. These types are printed by the printf function as integers. 
If you want to print out these values in English, you should use the enumerated 
types as indices into a character array which contains appropriate English 
equivalents of the enumerated types. Finally, if you are a novice programmer, 
copy the example programs in Appendix E and use them as templates to build 
your own program with. Further help can be obtained by referring to the tables 
at the end of Appendix D. These tables list commonly encountered problems and 
how to solve them. 

The first five appendices are intended to make SunCGI easier to understand. 
This information will probably be particularly useful to novice users. The last 
two appendices describe the interfaces: 

I. between SunCGI and Sun View, and 

2. between SunCGI and the FORTRAN programming language. 

Appendix A explains the difference between SunCGI and SunCore. Appendix 
B lists the ANSI CG! standard functions which are not implemented by SunCGI 
and the SunCGI functions which are not part of the ANSI CG! standard. Appen­
dix C provides the type definitions used by the SunCGI functions. Appendix D 
lists the error messages and possible strategies for eliminating them. Appendix 
D also lists possible causes of simple run-time errors. Appendix E describes 
sample programs. 

The final two appendices describe the interfaces between SunCGI and other Sun 
software packages: Sun View and FORTRAN. The first of the two interface appen­
dices explains how to call SunCGI from application programs written on top of 
Sun View. This interface allows SunCGI to write output primitives in different 
windows using different attributes. This interface is useful for application pro­
grams which wish to control different areas of the view surface independently. 
Appendix G describes the interface to the FORTRAN programming language. The 
behavior of each SunCGI function is the same in both C and FORTRAN. 

[1] ANSI X3H3. Computer Graphics Virtual Device Interface. March 1984. 

[2] J.D. Foley and A. van Dam. Fundamentals of Interactive Computer 
Graphics. Addison-Wesley, 1982. 

[3] E.W. Kernighan and D.M. Ritchie. The C Programming Language. 
Prentice-Hall, 1978. 

[4] W.M. Newman and R.F. Sproull. Principles of Interactive Computer 
Graphics. McGraw-Hill, 1979. 

[5] V.R. Pratt. Standards and Performance Issues in the Workstation Market. 
IEEE Computer Graphics and Applications, April 1984. 

Ver>ion C of 17 March 1986 



8 SunCGI Reference Manual 

[6] Sun View Programmer's Guide. Sun Microsystems. 

[7) Sun View System Programmer's Guide. Sun Microsystems. 

[8) Pi.xrect Reference Manual. Sun Microsystems. 

[9] SunCore Reference Manual. Sun Microsystems. 

Version C of 17 March 1986 

0 

0 

0 



0 2 
Initializing and Terminating SunCGI 

Initializing and Terminating SunCGI ·················································-························ 11 

2.1. View Surface Initialization and Selection ......................................................... 11 

Open CGI (SunCGI Extension) .......................................................... -................ 12 

Open View Surface (SunCGI Extension) ....................................................... 13 

Activate View Surface (SunCGI Extension)................................................. 16 

Deactivate View Surface (SunCGI Extension)............................................ 16 

Close View Surface (SunCGI Extension) ....................................................... 16 

Q Close CGI (SunCGI Extension) ........................................................................... 16 

2.2. View Surface Control .................................................................................................... 17 

VDC Extent ...................................................................................................................... 17 

Device Viewport ........................................................................................................... 19 

Clip Indicator .................................................................................................................. 19 

Clip Rectangle ................................................................................................................ 20 

Hard Reset ......................................................................................................................... 20 

Reset to Defaults ........................................................................................................... 20 

Clear View Surface ...................................................................................................... 21 

Clear Control ................................................................................................................... 21 

Set Error Warning Mask ···························································-······························ 22 
2.3. Running SunCGI with Sun View............................................................................. 22 

Set Up SIGWINCH (SunCGI Extension) ....................................................... 23 

2.4. Interface Negotiation ..................................................................................................... 24 

Inquire Device Identification ····························································-···-··············· 25 

Inquire Device Class ·····························--·-····-······-·······-·-···································· 25 

0 



Inquire Physical Coordinate System ................................................................. . 25 

Inquire Output Function Set .................................................................................. . 

Inquire VDC Type ....................................................................................................... . 

26 

0 26 

Inquire Output Capabilities .................................................................................... . 27 

2.5. Input Capability Inquiries .......................................................................................... . 27 

Inquire Input Capabilities ....................................................................................... . 27 

Inquire LID Capabilities .......................................................................................... . 28 

Inquire Trigger Capabilities ................................................................................... . 29 

0 

0 



0 

02.1. View Surface 
Initialization and 
Selection 

0 

2 
Initializing and Terminating SunCGI 

The current CG! standard does not provide functions for initializing and terminat­
ing devices. ANSI CG! is intended to provide an interface for a single view sur­
face (one per CG! instance). SunCGI extends CG! into the window environment 
by allowing a single CG! process to control multiple view surfaces. Six nonstan­
dard functions open_cgi, close_cgi, open_vws, close_vws, 
activate vws, and deactivate vws are included in SunCGI. 
open_cgi-;ind close_cgi initialize and terminate the operation of the 
SunCGI package. A view surface is initialized and terminated with open_ vws 
and close_ vws. A view surface is automatically activated when it is opened. 
SunCGI is capable of handling more than one view surface at once. Output pri­
matives can be restricted from a view surface with deactivate_vws. 

A view surface is automatically activated when it is opened. However, a view 
surface can be deactivated (with the deactivate_vws function) when the out­
put stream is not intended to appear on all view surfaces. Subsequent calls to 
SunCGI output functions will not apply to deactivated view surfaces! until 
activate_vws is called again (see the following example). 

l However, inputs can be received on deactivated view surfaces. 

11 Version C of 17 March 1986 



12 SunCGI Reference Manual 

Open CGI (SunCGI 
Extension) 

Errors 

Figure 2-1 

#include <cgidefs.h> 

main () 
{ 

Ccoor bot, top, center; 
Cint namel, name2, radius; 
Cvwsurf devicel, device2; 

bot.x = 5000; 
bot.y = 5000; 
center.x = 10000; 
center.y = 10000; 
radius= 5000; 
top.x = 15000; 
top.y = 15000; 

open_cgi (); 
NORMAL_VWSURF(devicel, PIXWINDD); 
open_vws(&narnel, &devicel); 
NORMAL_VWSURF(device2, PIXWINDD); 
open_vws(&narne2, &device2); 

rectangle(&bot, &top); 
deactivate_vws(narne2); 
circle(&center, radius); 
activate_vws(name2); 
circle(&center, 2*radius); 

sleep(20); 

close_vws(narnel); 
close_vws(narne2); 
close_ cgi () ; 

Example Program with Multiple Workstations 

Cerror open_cgi() 

open_ cgi initializes the state of SunCGI to CGOP (CGi OPen). open_ cgi 
does not initialize input devices but does initialize the event queue . No other CG! 
functions can be used without generating an error if open_ cgi has not been 
called. SunCGI traps various signals as described in Section 2.3. 

ENOTCGCL [!] CGI not in proper state: CGI shall be in state CGCL. 

Version C of 17 March 1986 

0 

0 

0 



0 

0 

0 

Table 2-1 

Open View Surface (SunCGI 
Extension) 

SunCGI Default States 

State I 
Range ofVDC space 

Clip Indicator 
Clip Rectangle 
Error Warning Mask 
Input Devices . 
Input Queue 
Trigger Associations 

Echo Modes 

Chapter 2 - Initializing and Terminating SunCGI 

Value 
0-32767 in both x and y 
directions 
CLIP 
Range of VDC space 
INTERRUPf 
Uninitialized 
E:MPTY 
Defaults specific values 
listed in Table 5-4 
Device specific values 
listed in Table 5-5 

13 

You may be unfamiliar with some of the entries discussed in Table 2-1. How­
ever, these concepts are explained in the course of this chapter. Further, each of 
these concepts are referenced in the index. 

Cerror open_vws(name, devdd) 
Cint *name; /* name assigned to cgi view surface*/ 
Cvwsurf *devdd; /* view surface descriptor*/ 

open_ vws initializes a view surface. The list of available view surfaces is 
described below in Table 2-2. open_ vws initializes the attributes to their 
default values (listed in Table 2-3). The returned argument name is the identifier 
which is used to refer this view surface in other SunCGI functions. To reinitial­
ize the state of the view surface without reopening it, use the hard_reset 
function. 

More than one view surface can be open at one time. Output primitives are 
displayed on all active view surfaces (view surfaces must be opened before they 
are activated). However, input is only echoed on the view surface which is 
pointed to by the mouse. Most of the Cvwsurf fields should be zeroed, as by 
the NORMAL_ VWSURF macro. Set the view surface type by assigning the dd 
( device driver) element of the devdd argument to the name of the appropriate 
device driver as in this example:2 

cvwsurf device; 
NORMAL_VWSURF(device, BW2DD); 
open_vws(&name, &device); 

Note: The NORMAL_ VWSURF macro initializes the dd element of the Cvwsur f 
structure and guarantees that the view surface will be opened in the normal 
fashion. However, to open a window with some nonstandard parameters, or open 
a second window from a graphics tool read the following paragraphs. To use an 
existing pixwin, then skip the following paragraphs and read Appendix F instead. 

2 Notice that when SunCGl specifics a pointer it usually requires that the argument is prefaced by ao & 

character when the argument is actuaUy used. 

Version C of 17 March 1986 



14 SunCGI Reference Manual 

If the view surface of the specified type has been previously initialized and the Q 
type of view surface is a window (PIXWINDD or CGPIXW1NDD), a CG! tool (a win-
dow with the name CG! Tool) is opened. Other characteristics of the view surface 
can be defined by setting the other elements of the of the devdd argument (which 
is of type Cvwsurf). 

typedef struct { 
char screenname[DEVNAMESIZE]; /* physical screen*/ 
char windowname[DEVNAMESIZE]; /*window*/ 
int windowfd; /* window file descriptor*/ 
int retained; /* retained flag*/ 
int dd;, / * device * / 
int cmapsize; /* color map size*/ 
char cmapname[DEVNAMESIZE]; /* color map name*/ 
int flags; /* new flag*/ 
char **ptr; /* CGI tool descriptor*/ 

Cvwsurf; 

The elements screenname and windowname specify alternate screens (for exam­
ple, ldevlcgoneO) or alternate window (for example, ldevlwinJO ). If these ele­
ments are left blank, the current screen and the current window are used, unless 
the dd field implicitly specifies a device (for example CGJDD ). The element 
windo>lfd is the window file descriptor for the current device. The current 
implementation of SunCGI ignores this element. 

If the element retained is nonzero, then the view surface created by open_ vws o 
has a retained window associated with it (that is, if the window is covered up by · 
another window and then revealed, the picture present before the window was 
covered-up will be redisplayed. By default the window created by open_ vws is 
non-retained. That is, if the window is covered-up and then revealed the 
covered-portion will be redisplayed as white. However, drawing in non-retained 
windows is twice as fast as drawing in retained windows, so the choice of which 
type of view surface to open should be carefully considered. 

The dd element specifies the view surface type. The cmapsize and the cmap­
name elements determine the size and the name of the colormap. No colormap 
is enabled for monochrome devices. The colormap determines the mapping 
between color indices and red, green, and blue values. If the colormap specified 
by the cmapname element of the devdd argument is the same as a colormap seg­
ment which already exists, then the colormap segment is shared. cmapsize 
should be a power of two, less than or equal to 256. Refer to the Sun View 
Programmer's Guide for more information about colormaps. 

When the flags element is nonzero, no attempt is made to take over the current 
graphics subwindow (if one exists). If this flag is set or the graphics subwindow 
has already been taken over by SunCGI, then a CGI Tool (a window with the 
name View Surface Tool) is created. The ptr element specifies the size and 
placement of the CGI Tool. ptr is a pointer to an array of characters which 
should consist of nine decimal numbers separated by commas. The array takes 
the following form: 

.. nl,nt,nw,nh,il,it,iw,ih,I" 

~)sun 
~ mr::rosystems 

Version C of 17 March 1986 

0 



0 

Errors 

0 

0 

Chapter 2 - Initializing and Terminating SunCGI 15 

Each element of the array should be filled with an integer. The first two elements 
specify the x and y coordinates of the upper left-hand corner of the CG! Tool. 
The third and fourth elements specify the width and height of the CG! Tool. The 
fifth through eighth elements specify the position and size of the iconic form of 
the CG! Tool. If the ninth element is nonzero, the tool is displayed in its iconic 
form. 

ENOTOPOP [5] 

ENOWSTYP (11] 

EMAXVSOP [12] 

EMEMSPAC (110] 

ENOTCCPW (112] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface type does not exist. 

Maximum number of view surfaces already open. 

Space allocation has failed. 

Function or argument not compatible with standard CG!. 

Table 2-2 Available View Surfaces 

Table 2-3 

Name I Description 
PIXWINDD Sun View on a monochrome display 
CGPIXWINDD Sun View on a color display 

BW1DD 

BW2DD 

CG1DD 
CG2DD 

GP1DD 

Full screen on a Sun-1 mono­
chrome display 
Full screen on a Sun-2 or Sun-3 
monochrome display 
Full screen on a Sun- I color display 
Full screen on a Sun-2 or Sun-3 
color display 
Full screen on a Sun-2/160 or Sun-
3/160 with optional Graphics Pro­
cessor 

View Surface Default States 

State I Value 
View Surface 
Device Viewport 

Cleared 
View Surface 

Note: most failures during the opening of a view surface result in error ENOWS­
TYP [11]. The most common reason is missetting (or failing to set) the dd ele­
ment of the Cvwsurf structure. For example, opening a device surface type 
PIXWINDD instead of CGPIXWINDD on a color pixwin, or using CG2DD when 
the ldevlcgtwo* surface is being used by suntools. The NORMAL_VWSURF 
macro should be used to initialize this structure. 

Version C of 17 March 1986 



16 SunCGl Reference Manual 

Activate View Surface 
(SunCGI Extension) 

Errors 

Deactivate View Surface 
(SunCGI Extension) 

Errors 

Close View Surface (SunCGI 
Extension) 

Errors 

Close CGI (SunCGI 
Extension) 

Cerror activate_vws(name) 
Cint name; /* view surface name*/ 

activate_ vws activates the view surface specified by name. Subsequent 
SunCGI calls affect this view surface. Nothing is displayed on a view surface 
unless that view surface is active. Since a view surface is active as soon as it is 
opened, activate_ vws is only need to reactivate a deactivated view surface. 
Note that activating a view surface may reset the state of SunCGI. 

ENOTOPOP [5] 

EVSIDINV [10] 

EVSNOTOP [13] 

EVSISACT [14] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Specified view surface is active. 

Cerror deactivate_vws(name) 
Cint name; /* view surface name*/ 

deactivate_ vws prevents calls to SunCGI functions from having an effect 
on this view surface. The view surface may be reactivated by activate_vws 
at a later time without having to be reopened. Note that deactivating a view sur­
face may reset the state of SunCGI. 

ENOTVSAC [4] 

EVSIDINV [10] 

EVSNOTOP [13] 

EVSNTACT [15] 

CGI not in proper state: CGI shall be in state VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Specified view surface is not active. 

Cerror close_vws(name) 
Cint name; /* view surface name*/ 

close_ vws terminates a view surface. Future SunCGI calls have no effect on 
this view surface. The view surface cannot be reactivated without being reo­
pened. 

ENOTOPOP [5] 

EVSIDINV [10] 

EVSNOTOP [13] 

ENOTCCPW [112] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Function or argumem not compatible with standard CGI. 

Cerror close_cgi() 

close_cgi terminates all open view surfaces, and restores the state of the Sun­
View to the state that it was in before SunCGI was opened. Future SunCGI 
calls will have no effect and will generate errors. 

Ver,ion C of 17 March 1986 

0 

0 

0 



0 
Errors 

2.2. View Surface Control 

0 
VDC Extent 

0 

Chapter 2 - Initializing and Terminating SunCGl 17 

A call to close cgi should be included in the exit routines of an application 
program to guarantee leaving the Sun View and Sun CG I in a stable state. 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

ENOTCCPW [112] Function or argument not compatible with standard CGI. 

The functions described in this section 

I. define the range of world and device coordinates, 

2. control clipping, and 

3. reset selected aspects of the view surface and the internal state of SunCGI. 

Most functions in SunCGI express coordinates in VDC space (Virtual Device 
Coordinate space). In conventional computer graphics terms, VDC space 
corresponds to world coordinate space. The mapping between VDC space and 
screen space is determined by the physical size of the screen in pixels. Screen 
space is set by default to the entire size of the screen or the graphics window 
depending on the device type. The mapping from VDC space to screen space is 
always isotropic (the shape of the rectangle defining screen space is the same 
shape as VDC space). Therefore, VDC space defines the shape of the active view 
surface. The portion of screen space which does not correspond to VDC space is 
ignored. The aspect ratio (the ratio between the height and width) is therefore, 
defined by VDC space and not screen space. 

Cerror vdc_extent(cl, c2) 
Ccoor *cl, *c2; /* bottom left-hand and*/ 

/* top right-hand corner of VDC space*/ 

vdc extent defines the limits of VDC space. The range of the coordinates 
must be between -32767 and 32767 (or an error is generated). VDC space can be 
set by the application program, but it ranges from O to 32767 in both the x and 
they directions by default. Resetting VDC space impacts the display of output 
primitives on all view surfaces. 

Resetting the limits of voe space automatically redefines the clipping rectangle 
to the new limits of voe space, regardless of the value of the clip indicator. 

Changing the mapping from screen space to VDC space allows for translation 
(move) or scaling (zoom in/zoom out) of output primitives. However, no rota­
tion functions are provided by SunCGI, and therefore, must be supplied in the 
application program. The code fragment below translates and zooms in on a rec­
tangle: 

Version C of 17 March 1986 



18 SunCGJ Reference Manual 

Figure 2-2 

Errors 

#include <cgidefs.h> 

main() 
{ 

Cvwsurf device; 
Cint name; 
Ccoor dvl, dv2, lower, upper; 

NORMAL_VWSURF(device, PIXWINDD); 
dvl .x = 0; 
dvl.y O; 
dv2.x 200; 
dv2.y 200; 
lower.x 
lower.y 
upper.x 
upper.y 

= 30; /* rectangle coordinates*/ 
= 30; 

70; 
70; 

open_cgi(); 
open_vws(&name, &device); 
vdc_extent(&dvl, &dv2); 

rectangle(&upper, &lower) ; 
sleep(4); 
dvl.x = O; 
dvl.y O; 
dv2.x 100; 
dv2.y 100; 
vdc_extent (&dvl, &dv2); I* 
rectangle(&upper, &lower); 
sleep(4); 
dvl.x 20; 
dvl.y 20; 
dv2.x 80; 
dv2.y = 80; 
vdc_extent(&dvl, &dv2) ; /* 
rectangle(&upper, &lower) ; 
sleep(20); 

close_vws(name); 
close_cgi () ; 

I* draw initial rectangle 

center rectangle *I 

enlarge rectangle *I 

Example Program with Multiple Normalization Transformations 

*/ 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

EBADRCTD [20] Rectangle definition is invalid. 

Version C of 17 March 1986 

0 

0 

0 



0 

Device Viewport 

Errors 

0 
Clip Indicator 

0 

EVDCSDIL (24] 

ENOTCCPW (112] 

Chapter 2 -- Initializing and Terminating SunCGI 19 

VDC space definition is illegal. 

Function or argument not compatible with standard CG!. 

Cerror device_viewport(name, cl, c2) 
Cint name; /* name assigned to cgi view surface*/ 
Ccoor *cl, *c2; /* bottom left-hand and top right-hand*/ 

/* corner of view surface to map device onto*/ 
/* (expressed in pixels) */ 

device viewport redefines the limits of screen space. If the new limits are 
not less than or equal to the size of the current screen or window size, an error is 
returned. Although device viewport does not redefine the aspect ratio, it 
may redefine which areas of the screen are unused. 

ENOTOPOP [5] 

EVSIDINV [JO] 

EVSNOTOP (13] 

EBADRCTD (20] 

EBDVIEWP [21] 

ENOTCCPW (112] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Rectangle definition is invalid. 

Viewpon is not within Device Coordinates. 

Function or argument not compatible with standard CGI. 

Cerror clip_indicator(cflag) 
Cclip cflag; /* CLIP, NOCLIP or CLIP_RECTANGLE */ 

For some application programs, it is desirable to clip explicitly within the 
viewpon, while other applications may seek to increase efficiency by not check­
ing if the coordinates are within the bounds of the clipping area. 

All SunCGI application programs will run faster if clipping is turned off. How­
ever, clipping is turned on by default to prevent SunCGI from drawing outside 
of the bounds of the window. 

The extent ofvoc may be set with the vdc_extent function. 

The value of the argument cjlag determines whether output primitives are 
clipped before they are displayed. The default state is CLIP. The advantage of 
turning clipping off is that it improves the speed of drawing primitives. How­
ever, if clipping is set to NOCLIP, SunCGI may draw output primitives outside of 
the window or within the bounds of an overlapping window. If clipping is not 
NOCLIP, output primitives are clipped to either the clip rectangle (if cflag equals 
CLIP_RECTANGLE), or the full extent ofVDC space (if cjlag equals CLIP). 

typedef enum 
CLIP, 
NOCLIP, 
CLIP_RECTANGLE 

Cclip; 

Version C of 17 March 1986 



20 SunCGI Reference Manual 

Errors 

Clip Rectangle 

Errors 

Hard Reset 

Errors 

Reset to Defaults 

Errors 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, O 
VSOP, or VSAC. 

ENOTCCPW [112] Function or argument not compatible with standard CGI. 

Cerror clip_rectangle(xrnin, xrnax, ymin, ymax) 
Cint xrnin, xrnax, ymin, ymax; /* bottom left-hand*/ 

/* and top right-hand corner of clipping rectangle*/ 

clip rectangle defines the clipping rectangle in VDC Coordinates. By 
default, the clipping rectangle is set to the borders of VDC space. The 
clip_rectangle function defines the clipping rectangle in VDC space, to be 
used when clipping is set to CLIP_RECTANGLE. The clipping rectangle is 
automatically reset by vdc_extent. 

ENOTOPOP [5] 

EBADRCTD [20] 

ECLIPTOL [22] 

ECLIPTOS [23] 

ENOTCCPW [112] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Rectangle definition is invalid. 

Clipping rectangle is too large. 

Clipping rectangle is too small. 

Function or argument not compatible with standard CG!. 

Cerror hard_reset() 

Device control functions restore the view surface and the internal state of 
SunCGI to a known state. The individual aspects of the device which can be 
reset are the output attributes, the view surface (screen), and the error reporting. 

hard_reset returns the output attributes to their default values; terminates all 
input devices, and empties the event queue and clears all view surfaces. VDC 

space is reset to its default values and the clip indicator is set to CLIP. This func­
tion should be used sparingly because most control, attribute, and input functions 
called before this function will not have any effect on functions called after 
hard reset is called. 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, · 
VSOP, or VSAC. 

Cerror reset_to_defaults() 

reset to defaults returns output atoibutes to defaults (see Table 4-1). 
reset_to_defaults does not clear the screen, reset the input devices, or 
reset the character set index. 

ENOTOPOP [5] 

EVSIDINV [!OJ 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Version C of 17 March 1986 

0 

0 



Q Clear View Surface 

Errors 

Q Clear Control 

Errors 

Q Set Error Warning Mask 

Chapter 2 - Initializing and Terminating SunCGI 21 

Cerror clear_view_surface(name, defflag, index) 
Cint name; /* name assigned to cgi view surface*/ 
Cflag defflag; /* default color flag*/ 
Cint index; /* color of cleared screen *I 

clear_ view_surface changes all pixels in the relevant area of the view sur­
face specified by name to the color specified by the index argument, unless the 
defflag argument is set to OFF. If defflag is equal to OFF, the view surface is 
cleared to color zero. The area of the view surface which is actually cleared is 
determined by the clear_control function. clear_view_surface also 
resets the internal state of SunCGI according to previous calls to the 
clear control function. clear view surface resets the current back-- - -ground color to the color of the cleared view surface. 

ENOTVSAC [4) 

EVSIDINV [10] 

EVSNOTOP [13] 

EVSNTACT [15) 

ECINDXLZ [35] 

EBADCOLX [36] 

CGI not in proper state: CGI shall be in state VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Specified view surface is not active. 

Color index is less than zero. 

Color index is invalid. 

Cerror clear_control(soft, hard, intern, extent) 
Cacttype soft, hard; /* soft and hard copy actions*/ 
Cacttype intern; /* internal action*/ 
Cexttype extent; /* clear extent*/ 

clear_control determines the action taken when clear view surface 
is called. The argument soft can be set to either NO_ OP or CLEAR. The argument 
hard which regulates clearing rules for plotters is ignored (because Sun CG I 
does not currently support hard-copy devices) and is included only for ANSI CG! 
compatibility. The argument intern is set to either RETAIN or CLEAR. This · 
parameter was included to support segmentation storage which is not currently a 
part of ANSI CG!. Therefore, the intern argument is ignored. The argument 
extent determines what area of the screen is cleared. It is set to one of the values 
in the Cexttype enumerated type: 

typedef enum { 
CLIP_RECT, 
VIEWPORT, 
VIEWSURFACE 

Cexttype; 

ENOTOPOP [5] 

ENOTCCPW [ 112] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Function not compatible with CGIPW mode. 

Version C of 17 March 1986 



22 SunCGI Reference Manual 

Errors 

Cerror set_error_warning_mask(action) 
Cerrtype action; /* Action on receipt of an error *I 

set_error_warning_mask3 determines the action taken by SunCGI when 
an error occurs. Three types of action are possible: NO_ACTION, POLL, INTER­
RUPT. If the action argument is set to NO_ACTION, errors are detected internally, 
but not reported. The error number is returned to the caller of a CG! routine. The 
user is advised not to set the action argument to NO_ ACTION. 

POLL and INTERRUPT actions print an error message on the terminal, but also 
return the error number (see Appendix D) so the program can perform exception 
handling. The default error_warning_mask is INTERRUPT. 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

0 

Table 2-4 Error Warning Masks 

2.3. Running SunCGI with 
Sun View 

Error Message Program Error 
Warning Mask Printed Aborted Number Returned 

NO ACTION No No Yes 
POLL Yes No Yes 
INTERRUPT Yes FATAL errorst Non-FATAL errors 

t SunCGI defines no errors as FATAL. All errors are non-fatal so the appli- o 
cation has complete control to abort or perform other processing as desired. ' · 
Therefore, POLL and INTERRUPT are the same in SunCGI. 

SunCGI always traps five signals: SIGINT, SIGCHLD, SIGIO, SIGHUP and 
SIGWINCH. The first four of these cause SunCGI cleanup and program termina­
tion. When using a Graphics Processor option, SunCGI also traps SIGXCPU. 
Previous signal handlers, if any, are saved. When one of these signals occurs, 
SunCGI's signal handler will call the previous signal handler as well as perform­
ing its own processing. The actions of the previous (user installed) signal handler 
may interfere with SunCGI's signal responses, and are hence unsupported. 

Unless a SunCGI application program has opened a retained view surface, over­
lapping another window onto a graphics subwindow will destroy the picture 
below. SunCGI programs can regenerate a display surface by trapping the 
SIGWINCH (SIGnal WINdow CHange) signal. 

It is possible (though unsupported) to install a signal handler for signals after cal­
ling open _pw _ cgi (see Appendix F). Since these signal handlers replace 
SunCGI's handler, the application should save SunCGI's signal handler 
(returned by signal), and call the saved handler when the signal occurs (amid the 
user's own processing). Because the response of the program to the signal then 
depends on the place in the user's own signal handling that SunCGI's handler is 

3 The syntax of set_error_warning_mask in SunCGI is slightly different from the proposed ANSI O· 
standard in that the ANSI definition allows different actions fa different classes of errors. 

Version C of 17 March 1986 



0 

0 
Set Up SIGWINCH (SunCGI 
Extension) 

0 

Chapter 2 - Initializing and Terminating SunCGI 23 

called, results are unpredictable, and may change with a new version of SunCGI. · 

Note that it is not necessary for an application to catch a SIGWINCH signal, since 
SunCGI's set up sigwinch routine offers an easier interface. A user's 
sig_functio-;:. has a different calling semantics from a SIGWINCH in that 
pw _ damaged and pw _ done damaged have already been invoked. 

When a window's contents needs regeneration during execution time, the process 
associated with a window receives a SIGWINCH signal. The application can use 
this signal to determine when a view surface needs to be regenerated. Note: 
Under no circumstances will the user be able to access the SIGWINCH signals gen­
erated when a view surface is initialized. 

When a window obstructs a SunCGI view surface, output to that view surface is 
normally clipped to the exposed portion only (unless the clip indicator is 
NOCLIP). When the obstruction is removed, unless the window is RETAINED, the 
picture must be regenerated by re-running the output generation of the applica­
tions, for that view surface at least An application's SIGWINCH handling func­
tion is called for this purpose. 

When a SunCGI window's size changes during execution, the picture must be 
regenerated. But first, SunCGI updates the transformation used to map voe 
space into screen space. Then, if the affected view surface is RETAINED, the 
retained copy is rewritten onto the view surface. (Because of the size change, 
this may not repair the damage satisfactorily.) Lastly, the application's 
SIGWINCH function is called. 

Cerror set_up_sigwinch(narne, sig_function) 
Cint name; 
Cint (*sig_function) (); /* signal handling function */ 

set_up_sigwinch allows the application program to trap SIGWINCH signals 
for view surface name. sig_function is a pointer to a function returning an 
integer. If sig_function is nonzero, all SIGWINCH signals which are not 
trapped by the internals of SunCGI (from view surface initialization) are passed 
to the function specified by sig_function. 

Toe sig_ function is called when the SIGWINCH signal is received. It is the 
programmer's responsibility to use a flag to determine if it is safe to process the 
signal at this time, or to set a flag indicating that signal processing has been put 
off until later. See the Sun View Programmer's Guide for information on 
SIGWINCH handling. 

Toe sig_function argument is called with a single argument: the name of 
the view surface with which it is associated by the call to set_ up _sigwinch. 
This allows more than one view surface to share the same sig function, and 
d_ifferentiate which view surface needs redisplay. 

Here is an example of a program that uses set up s igwinch. 

Version C of 17 March 1986 



24 SunCGl Reference Manual 

Figure 2-3 

Errors 

2.4. Interface Negotiation 

#include <cgidefs.h> 

Ccoor box[SJ = { 10000,10000 , 
10000,20000 I 

20000,20000 t 

20000,10000 t 

10000, 10000 ) ; 
Cint name; 
extern ·cint redraw(); 
Cvwsurf device; 

main() 
{ 

Ccoorlist boxlist; 

boxlist.n = 5; 
boxlist.ptlist = box; 
NORMAL_VWSURF(device, PIXWINDD); 

open_cgi () ; 
open_vws(&name, &device); 
set_up_sigwinch(name, redraw); 

polyline(&boxlist); 
sleep(lO); 

close_vws(name); 
close_cgi () : 

Cint redraw () 

clear view_surface(name, ON, 0); 

Example Program with set_up_sigwinch Function 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
YSOP, or VSAC. 

CGI is intended to support a 'negotiated device interface' which permits programs 
written on a specific type of hardware to run on other machines. SunCGI only 
allows inquiry of most of the settable modes.4 For example the user may want to 
find out which types of input devices are supported. However, functions for set­
ting color precision, coordinate type, specification mode, and color specification 
are not provided because SunCGI only supports one type of color precision (8-

0 

0 

" The functions which are not suppo~ by SunCGI are classified as non~required by the March 1984 ANSI 0 
co1 standard. See Appendix B. 

Version C of 17 March 1986 



0 

Inquire Device Identification 

Errors 

Q Inquire Device Class 

0 

Errors 

Inquire Physical Coordinate 
System 

Chapter 2 - Initializing and Terminating SunCGI 25 

bit), coordinate type (integers), and color specification (indexed). The width and 
size specifi_cation modes are settable, but the functions which set them are 
described in Chapter 4. However, the inquiry negotiation functions are supported 
so that an application program written for a CG! on another manufacturers' 
workstation can find out whether the SunCGI is capable of running that applica­
tion. 

Cerror inquire_device_identification(name, devid) 
Cint name; /* device name*/ 
Cchar devid[DEVNAMESIZE); /* workstation type*/ 

inquire_device_identification reports which type of Sun Worksta­
tion view surface name is associated with. The argument devid may be set to 
one of the Sun Workstation types described in Table 2-2. The inclusion of the ·· 
name argument deviates from the ANSI standard, but is necessary so that the 
characteristics of individual view surfaces may be inquired. 

ENOTOPOP [5] 

EVSIDINV (10] 

EVSNOTOP (13] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Cerror inquire_device_class(output, input) 
Cint •output, *input; /* output and input abilities*/ 

inquire_device_class describes the capabilities of Sun Workstations in 
terms of the CG! functions they support. 5 Each of the two returned values reports 
the number of functions of each of the two classes which are supported in 
SunCGI. These numbers (the values of input and output) are used to make 
more detailed inquiries by using functions 
inquire_input_capabilitiesand 
inquire_output_capabilities. 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Cerror inquire_physical_coordinate_system(name, xbase, 
ybase, xext, yext, xunits, yunits) 

Cint name; /* name assigned to cgi view surface*/ 
Cint *xbase, *ybase; /* base coordinates*/ 
Cint *xext, *yext; /* pixels in x and y directions*/ 
Cfloat •xunits, *yunits; /* number of pixels per mm. */ 

inquire_physical_coordinate_system reports the physical dimen­
sions of the coordinate system of view surface name in pixels and millimeters. 
inquire_physical_coordinate_system is provided to permit the 
drawing of objects of a known physical size. 

5 The Olllpwl argument does Dot include !he DOD-standard CG! functions. 

Version C of 17 March 1986 



26 SunCGI Reference Manual 

Errors 

Inquire Output Function Set 

Errors 

Inquire VDC Type 

inquire_physical_coordinate_system is also provided to assist in 0 
the computation of parameters for the device_viewport function. xext and 
yext describe the maximum extent of the window in which the application pro-
gram is run. (The window may or may not cover the entire screen.) The number 
of pixels per millimeter is always set to O because the actual screen size of device 
varies between individual monitors. The actual size of the screen may be 
obtained from the number of pixels in the x and y directions from the monitor 
specifications and perform the division in an application program. 

ENOTOPOP [5] 

EVSIDINV [10] 

EVSNOTOP [13] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Cerror inquire_output_function_set(level, support) 
Cint level; /* level of output*/ 
Csuptype *support; /* amount of support*/ 

inquire_output_function_set reports the extent to which each level of 
the output portion of the ANSI CGI standard is supponed. 

typedef enurn { 
NONE, 
REQUIRED_FUNCTIONS_ONLY, 
SOME_NON_REQUIRED_FUNCTIONS, 
ALL_NON_REQUIRED_FUNCTIONS 

Csuptype; 

The standard requires that the level argument be an enumerated type; however, 
for reasons of simplicity only the level number is used by SunCGI. Levels 1-6 
are supponed completely (that is, both required and non-required functions are 
implemented. Level 7 is not supponed at all. Refer to the ANSI standard for the 
precise definition of each level. 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Cerror inquire_vdc_type(type) 
Cvdctype *type; /* type of voe space*/ 

inquire_ vdc_type reports the type of coordinates used by SunCGI in the 
returned argument type. 

typedef enurn 
INTEGER, 
REAL, 
BOTH 

Cvdctype; 

0 

type is always set to INTEGER (32-bit). SunCore is a higher-level graphics sys- 0 
tern with coordinate space expressed in real numbers. 

Version C of 17 March 1986 



0 Errors 

0 

0 

Inquire Output Capabilities 

Errors 

2.5. Input Capability 
Inquiries 

Inquire Input Capabilities 

Chapter 2 - Initializing and Terminating SunCGI 27 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Cerror inquire_output_capabilities(first, num, list) 
Cint first; /* first element*/ 
Cint num; /* number of elements in list to be returned*/ 
Cchar *list[]; /* returned list*/ 

inquire output capabilities lists the output functions in the returned 
argument Ust. The range of the first and num arguments is determined by the 
returned argument output from the inquire_ device_ class function. 

ENOTOPOP [5] 

EINQLTL [16] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Inquiry arguments are longer than list. 

Input devices have a separate class of negotiation functions. Input capability 
inquiries report qualitative abilities as well as quantitative abilities of input dev­
ices. The inquire_ input_ capabilities function repons which devices 
and overall features are supponed by SunCGI. The remaining functions report 
the capabilities of individual devices or features. Input devices are virtual dev­
ices which must be associated with physical triggers (such as mouse buttons). 
Initializing an input device defines the measure used by a device, for example 
initializing a LOCATOR device defines the measure as x-y coordinates. In addi­
tion to being associated with a trigger, each device has selectable screen echoing 
capabilities. Association and echoing capabilities for each input device are 
reponed by the functions described in this section. 

Cerror inquire_input_capabilities(valid, table) 
Clogical *valid; /* device state*/ 
Ccgidesctab *table; /* CGI input description table*/ 

inquire_input_capabilities repons the total number of input devices 
of each class that are supported. The argument valid returns the value L TRUE if 
SunCGI is initialized, and L_FALSE otherwise. If valid is set to L_TRUE, the ele­
ments of table are set to the quantity and quality of inputs supported. All Sun 
Workstations support input at the same level. 

Version C of 17 March 1986 



28 SunCGI Reference Manual 

Errors 

Inquire LID Capabilities 

typedef struct { 
Cint numloc; 
Cint numval; 
Cint numstrk; 
Cint numchoice; 
Cint numstr; 
Cint numtrig; 
Csuptype event_queue; 
Csuptype asynch; 
Csuptype coord_map; 
Csuptype echo; 
Csuptype tracking; 
Csuptype prompt; 
Csuptype acknowledgement; 
Csuptype trigger_manipulation; 

Ccgidesctab; 

Elements of type Cint report how many of each type device is supported, as 
well as how many types of triggers are supported. Elements of type Csuptype 
report how many of the functions of each class are supported. All functions 
except the tracking functions are fully supported. 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Cerror inquire_lid_capabilities(devclass, devnum, 
valid, table) 

Cdevoff devclass; 
Cint devnum; /* device number*/ 
Clogical *valid; /* device supported at all*/ 
Cliddescript *table; /* table of descriptors*/ 

inquire_input_device_capabilities describes the capabilities of a 
specific input device (hereafter, specified device). Toe input arguments devc/ass 
and devnum refer to a specific device type and number. Toe argument valid 
reports whether CG! is initialized. 

typedef struct { 
Clogical sample;' 
Cchangetype change; 
Cint numassoc; 
Cint *trigassoc; 
Cinputability prompt; 
Cinputability acknowledgement; 
Cechotypelst *echo; 
Cchar *classdep; 
Cstatelist state; 

Cliddescript; 

Toe elements of table which are of type Clogical indicate whether an ability 

0 

0 

is present in the specified logical input device. Toe change element reports o 
whether associations are changeable at all (all input devices except string are 
changeable). Toe numassoc and trigassoc elements of table report how many 

()~P.~~ Version C of 17 March 1986 



0 

Table 2-5 

Errors 

Ornquire Trigger Capabilities 

0 

Chapter 2 - Initializing and Terminating SunCGJ 29 

and which triggers may be associated with the specified logical input device. 
The echo argument describes which echo types are supponed.(see Chapter 5 for 
a list of echo types).6 The classdep argument provides class dependent informa­
tion in character form (the type of information is given in Table 2-3). If more 
than one piece of class dependent information is returned, then the pieces of 
information are separated by commas. The state argument repons the initial 
state of the specified device. See the inquire_state_list function. 

Class Dependent Information 

Device Class I Information I Possible Values 
IC LOCATOR Coordinate Mapping Yes, No, Partial 

Native Range xmin, xmax, 
ymin, ymax 

IC_VALUATOR Set Valuator Range yes/no 
IC_STROKE Time Increment Settable yes/no 

Minimum Distance yes/no 
IC CHOICE Range min/max 
IC STRING None None 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Cerror inquire_trigger_capabilities(trigger, valid, tdis) 
Cint trigger; /* trigger number*/ 
Clogical *valid; /* trigger supported at all*/ 
Ctrigdis *tdis; /* trigger description table*/ 

inquire_trigger_capabilities describes how a particular trigger can 
be associated. The argument valid repons whether the device suppons input at 
all. 

typedef struct ( 
Cchangetype change; 
Cassoclid *nurnassoc; 
Cint maxassoc; 
Cpromstate prompt; 
Cackstate acknowledgement; 
Cchar *name; 
Cchar *description; 

Ctrigdis; 

The change element of tdis repons whether the specified trigger can be associ­
ated with a logical input device. The numassoc element of tdis gives supported 
LID associations for this trigger. This consists of n, the number of LID classes 
which can be associated with the trigger, a pointer to an array of n entries telling 
which n device classes can be associated with the trigger, and how many of each 

6 Note that inquire_lid_capabilities returns an enumerated type whereas track_on accepts 
integers. Therefore these values may be different. 

Version C of 17 March '.986 



30 SunCGI Reference Manual 

Errors 

device class is defined. The maxassoc field gives the number ofLID's which o, 
can be concurrently associated with this trigger. SunCGI does not support either 
prompt or acknowledgement for any input device. The name element is simply a 
character form of the trigger name (for example, LEFr MOUSE BlJITON). The 
description element is never filled and is included for standards compatibility. 

ENOTOPOP [5] 

EINTRNEX [86] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Trigger does not exist. 

Version C of 17 March 1986 

0 

0 



0 3 
Output 

Output.................................................................................................................................................... 33 

3.1. Geometrical Output Primitives ................................................................................ 33 

Polyline ............................................................................................................................... 34 

Disjoint Polyline ............................................................................................................ 34 

Polymarker ....................................................................................................................... 35 

Polygon ............................................................................................................................... 35 

Partial Polygon .......................................................................... :.................................... 36 

0 Rectangle ......................................................................................................................... ,. 38 

Circle .................................................................................................................................... 38 

Circular Arc Center ..................................................................................................... 38 

Circular Arc Center Close ........................................................................................ 39 

Circular Arc 3pt ............................................................................................................. 40 

Circular Arc 3pt Close ............................................................................................... 41 

Ellipse .................................................................................................................................. 41 

Elliptical Arc ................................................................................................................... 41 

Elliptical Arc Close ..................................................................................................... 42 

3.2. Raster Primitives .............................................................................................................. 42 

Text ....................................................................................................................................... 42 

VDM Text ......................................................................................................................... 43 

Append Text .................................................................................................................... 43 

Inquire Text Extent ...................................................................................................... 43 

Cell Array ................................................................................. _ ............................... _.. 44 

Pixel Array ........................................................................................................................ 44 

0 



BitB!t Source Array .................................................................................................... . 45 
BitB!t Pattern Array ................................................................................................... . 46 
BitB!t Patterned Source Array .............................................................................. . 46 0 
Inquire Cell Array : ................ : ...................................................................................... . 47 
Inquire Pixel Array ..................................................................................................... . 47 

Inquire Device Bitmap .............................................................................................. . 48 

Inquire BitB!t Alignments ...................................................................................... . 48 
3.3. Drawing Modes ............................................................................................................... . 48 

Set Drawing Mode ...................................................................................................... . 49 
Set Global Drawing Mode (SunCGI Extension) ........................................ . 50 
Inquire Drawing Mode .............................................................................................. . 50 

0 

0 



0 

0 3.1. Geometrical Output 
Primitives 

0 

3 
Output 

SunCGI supports two classes of output primitives: geometrical output primitives 
and ~ter primitives. 

Geometrical Output Primitives 
include arcs, circles, polylines, and polygons. The position of geometrical 
output primitives are always specified in absolute voe coordinates.7 

Raster Primitives 
draw text and scaled and unscaled 2D arrays. The coordinate system for ras­
ter primitives depends on the type of primitive. The drawing mode deter­
mines how output primitives are drawn on top of other output primitives or 
the background. 

Geometrical output primitives are divided into two classes: polygonal primitives 
and conical primitives. Geometrical output primitives are all 2D in keeping with 
the CG! standard. However, polygons with holes (via the partial_polygon 
function) are provided in order to suppon 30 graphics packages. 

Geometrical primitives (except polymarker) are considered either closed or 
not closed. Polymarker uses its own attributes (see Section 4.3). Non-closed 
figures (poly lines, circular arcs, or elliptical arcs) are drawn with a style, width 
and color determined from line attributes (see Section 4.2). Closed figures 
(polygons, rectangles, circles, ellipses, and circular and elliptical closed arcs) use 
the solid object attributes (see Section 4.4). The geometrical information 
specifies the bounduy of a closed figure. The interior of this boundary is filled 
using fill area attributes. The bounduy may be surrounded with a line, drawn 
with perimeter attributes, not the line attributes. For example, a circle of radius 
1000 and a perimeter width of 100 VDC units has its perimeter between the circle. 
of radius 1000 and a concentric circle of radius 1100 (not from 950 through 
1050). 

Most polygonal primitives polyline, (polymarker, polygon, and 
partial_polygon) take one argument of type Ccoorlist: 

7 SunCGI (unlike SunCore) maintains no concept of current position. 

33 V crsion C of 17 March 1986 



34 SunCGI Reference Manual 

Polyline 

Errors 

Disjoint Polyline 

typedef struct 
Cint x; 
Cint y; 

Ccoor; 

typedef struct 
Ccoor *ptlist; 
Cint n; 

Ccoorlist; 

The element ptlist is really a pointer to an array of type Ccoor which contains 
the n coordinates of the points defining the primitive. The style, color, and other 
features of lines, markers, and fill patterns used by geometrical output primitives 
are set by the attribute functions described in Chapter 4. 

The polygons generated by SunCGI may or may not be closed. SunCGI 
automatically assumes the polygon is closed for the purpose of filling. However, 
a polygon must be explicitly closed in order to get all of its edges drawn, so take 
care to generate explicitly closed polygons. The rectangle function impli­
citly generates closed objects. 8 

SunCGI has two classes of conical primitives: circular and elliptical. Each 
class has functions for drawing solid objects, arcs, and closed arcs. Drawing of 
conical primitives is regulated by the same attributes that regulate the drawing of 
polygons and polylines. 

Cerror polyline(polycoors) 
Ccoorlist *polycoors; /* list of points*/ 

polyline draws lines between the points specified by the ptlist element of 
polycoors. polyline does not draw a line between the first and last element 
of the point list To generate a closed polyline, the last point on the list must 
have the same coordinates as the first point on the list. The style, color, and 
width of the lines are set by the polyline_bundle_index, line_type, 
line_color,line_widthandline_width_specification_mode 
functions. If a line segment of a polyline has a length of zero, the line is not 
drawn. To draw a point, use the circle function. If you specify a polyline that 
has less than two points, an error is generated. Similarly, if the number of points 
specified is greater than the maximum number of points (MAXPTS) an error is 
generated. 

ENOTVSAC [4] 

ENMPTSTL [60] 

EPLMTWPT [61] 

CGI not in proper state: CGI shall be in state VSAC. 

Number of points is too large. 

polylines must have at least two points. 

8 A closed portion of a closed figure boundary will not be drawn if it exceeds a clipping boundary. 

Version C of 17 March 1986 

0 

0 

0 



0 

Errors 

Polymarker 

0 
Errors 

Polygon 

Errors 

Chapter 3 - Output 35 

Cerror disjoint_polyline(polycoors) 
Ccoorlist •polycoors; /• list of points*/ 

dis joint_polyline draws lines between pairs of elements in ptlist. The 
line attributes described in Section 4.2 determine the appearance of the 
dis joint_polyline function. If polycoors contains an odd number of 
points, the last point is ignored. As with polyline, if the number of points is 
less than two or greater than MAXPrS, an error is generated. 
dis joint_polyline is typically used to implement scan-line polygon filling 
algorithms. 

ENOTVSAC [4] 

ENMPTSTL [60] 

EPLMTWPT [61] 

CGI not in proper state: CGI shall be in state VSAC. 

Number of points is too large. 

polylines·must have at least two points. 

Cerror polymarker(polycoors) 
Ccoorlist •polycoors; /* list of points*/ 

polymarker draws a marker at each point. The type, color, and size of marker 
are set by the polymarker_bundle_index, marker_type, 
marker_color,marker_size,and 
marker_size_specification_mode functions. If the number of.points 
specified is greater than the maximum number of points, an error is generated. 
polymarker is useful for making graphs such as scatter plots. 

ENOTVSAC [4] 

ENMPTSTL [60] 

CGI not in proper state: CGI shall be in state VSAC. 

Number of points is too large. 

Cerror polygon(polycoors) 
Ccoorlist •polycoors; /* list of points*/ 

polygon displays the polygon described by the points inpolycoors. In addi­
tion, any points added to the global polygon list by the partial_polygon 
function are also displayed. The polygon is filled between edges. Polygons are 
allowed to be self-intersecting. The visibility of individual edges can only be set 
by the partial_polygon function. The style and color used to fill the 
polygon are set by the solid object attribute functions described in Chapter 4. 
The characteristics of the edges are controlled by the perimeter attribute func­
tions. The number of points in the polygon used to determine the error condition · 
of too few or too many points is the total number of points on the global polygon 
list, not the number of points specified in polycoors. After the polygon is 
drawn, the global polygon list is emptied. 

ENOTVSAC [4] 

ENMPTSTL [60] 

EPGMTHPT [62] 

CGI not in proper state: CGI shall be in state VSAC. 

Number of points is too large. 

Polygons must have at least three points. 

Version C of 17 March 1986 



36 SunCGI Reference Manual 

Partial Polygon 

EGPLISFL [63] Global polygon list is full. 

Cerror partial_polygon(polycoors, cflag) 
Ccoorlist *polycoors; /* list of points*/ 
Ccflag cflag; /* CLOSE previous polygon?*/ 

partial_polygon adds elements to the global polygon list without display­
ing the polygon. The partial _polygon function provides the capability of 
drawing multiple-boundary polygons, including polygons with holes. The draw­
ing is actually performed when polygon is called. polygon will close the last 
boundary on the global polygorrlist and add the coordinate list it is passed as the 
final polygon boundary before drawing. 

0 

cjlag controls whether the last polygon in the global polygon list is open or 
closed. If cjlag is set to CLOSE, the last polygon on the global polygon list will 
be closed by drawing a visible perimeter edge between the last and the first 
points of the last polygon on the global polygon list. If the cj/ag is set to OPEN, 
the points in polycoors are appended to the last polygon on the global polygon 
list, but an invisible perimeter edge will be drawn between the last point 
currently on the global polygon list and the first point in the Ccoorlist. The 
visibility of polygon edges can be individually controlled by calling 
partial_polygon with cjlag set to OPEN for each invisible edge and with 
cjlag set to CLOSE for each new boundary. The interpretation of cjlag is slightly 
different than the pseudocode given in the CG! standard. Future versions of CGI 
may use a different syntax to offer the capabilities of multiple-boundary 0 
polygons and invisible edges. 

The CGI standard specifies that circle, rectangle, ellipse and 
close_arc are primitives that may use the global polygon list for filling. 
SunCGI does not use the global polygon list in these functions, and therefore 
leaves it untouched. These SunCGI routines do not empty the global polygon 
list. 

Version C of 17 March 1986 

0 



0 

0 

Figure 3-1 

0 
Errors 

#include <cgidefs.h> 

main() 
{ 

Ccoor list[4]; 
Ccoorlist points; 
Cint name; 
Cvwsurf device; 

NORMAL_VWSURF(device, PIXWINDD); 

open_cgi () ; 
open_vws(&name, &device); 

interior_style(SOLIDI, ON); 
list[O] .x 10000; 
list [OJ .y = 10000; 
list [l] .x = 10000; 
list[l].y 20000; 
list [2] .x 20000; 
list [2] .y 20000; 
list [3] .x = 20000; 
list[3].y = 10000; 
points.ptlist=list; 
points.n=4; 
partial_polygon(&points, CLOSE); 
list [OJ .x = 
list[O] .y 
list(l] .x 
list[l] .y = 
list [2] .x 
list [2] .y 
list(3].x = 
list (3] .y = 

12500; 
12500; 
12500; 
17500; 
17500; 
17500; 
17500; 
12500; 

points.ptlist=list; 
points.n=4; 

Chapter 3 - Output 3 7 

polygon(&points); /* cut a hole in it*/ 

sleep(lO); 

close_vws(narne); 
close_ cgi () ; 

Example Program with Polygons 

An error is detected if the number of points on the global polygon list exceeds 
MAXPTS. In this case, the polygon on the global polygon list is drawn, and the 
new information is not added. The same error handling applies to polygon. 

f -

Version C of 17 March 1986 



38 SunCGI Refer,,nce Manual 

Rectangle 

Errors 

Circle 

Errors 

Circular Arc Center 

ENOTVSAC [4] 

ENMPTSTL [60] 

EPGMTHPT [62] 

EGPLISFL [63] 

CGI not in proper state: CGI shall be in state VSAC. 

Number of points is too large. 

Polygons must have at least three points. 

Global polygon list is full. 

Cerror rectangle(rbc, ltc) 
Ccoor *rbc, *ltc; /* corners defining rectangle*/ 

rectangle displays a box with its lower right-hand comer at point rbc and its 
upper left-hand comer at point ltc. Calls to rectangle do not affect the glo­
bal polygon list. The interior of the rectangle (the filled portion) is defined by 
rbc and ltc. The perimeter is drawn outside of this region. The appearance of 
the rectangle is determined by the fill area and perimeter attributes. A rectangle 
with one side coincident with a clipping boundary specifies an interior extending 
to the boundary. Hence, a portion of the perimeter is outside the clipping boun­
dary and is not drawn. 

If the arguments to rectangle would result in a point or a line, the point or 
line is drawn. However, if the arguments to rectangle determine a point, the 
point is drawn with width zero, regardless of the current value of perimeter 
width . If the values of rbc and ltc are reversed, the points are automatically 
reversed and the rectangle is drawn normally. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror circle(cl, rad) 
Ccoor *cl; /*center*/ 
Cint rad; /*radius*/ 

circle draws a circle of radius rad centered at cl. The argument rad is 
expressed in terms of VDC space. The color, form, and visibility of the interior 
and perimeter are controlled by the same solid object attributes which control the 
drawing of polygons and rectangles. 

The argument rad determines the size of the interior of the circle. Therefore, a 
circle with a thick perimeter may be larger than expected. If the radius is zero, a 
point is drawn, and no textured perimeter is drawn, even if the perimeter width is 
large. If the radius is negative, the absolute value of the radius is used. 

Textured circles may possibly contain an incorrect element at one point because 
the digital circumference may not be exactly divisible by the length of the texture 
element. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror circular_arc_center(cl, c2x, c2y, c3x, c3y, rad) 
Ccoor *cl; /*center*/ 
Cint c2x, c2y, c3x, c3y; /*endpoints*/ 
Cint rad; /*radius*/ 

Version C of 17 March 1986 

0 

0 

0 



0 

Errors 

Circular Arc C~nter Close 

0 

0 

Chapter 3 - Output 39 

circular_arc_center draws a circular arc between points c2x, c2y and 
c3x, c3y with circle of radius rad at center cl . Point c2x, c2y is the starting 
point and point c3x, c3y is the ending point. Circular arcs are drawn in a coun­
terclockwise manner. This convention is used to determine the difference 
between the arc formed by the smaller angle determined by c2x, c2y, cl and 
c3x, c3y and the larger angle specified by these same points. Therefore switch­
ing the values of c2x, c2y and c3x, c3y will produce arcs which total 360 
degrees. If rad is negative, the points 180 degrees opposite from c2x, c2y and 
c3x, c3y are used as the endpoints of the arc. 

If the rad is zero, a point is drawn at cl . If either c2x, c2y or c3x, c3y are not 
on the circumference of the circle determined by cl and rad, an error is gen­
erated and the arc is not drawn. The attributes which determine the style, width, 
and color of the arc are the same functions which regulate the drawing of poly­
lines. 

ENOTVSAC [4] 

EARCPNCI [64] 

CGI not in proper state: CGI shall be in state VSAC. 

Arc points do not lie on circle. 

Cerror circular_arc_center_close(cl, c2x, 
c2y, c3x, c3y, rad, close) 

Ccoor *cl; /*center*/ 
Cint c2x, c2y, c3x, c3y; /*endpoints*/ 
Cint rad; /*radius*/ 
Cclosetype close; /* PIE or CHORD *I 

circular_arc_center_close draws a closed arc centered at cl with 
radius rad and endpoints c2x, c2y and 3x, c3y . Arcs are closed with either the 
PIE or CHORD algorithm. The PIE algorithm draws a line from each of the end­
points of the arc to the center point of the circle. SunCGI then fills this region as 
it would any other solid object. The CHORD algorithm draws a line connecting 
the endpoints of the arc and then fills this region using solid object attributes. 
circular_arc_center_close is useful for drawing pie charts (see fol­
lowing example): 

Version C of 17 March 1986 



40 SunCGI Reference Manual 

Figure 3-2 

Errors 

Circular Arc 3pt 

#include <cgidefs.h> 

main() /* draws four quadrants in different colors*/ 
{ 

Ccoor cl; 
Cint name, radius; 
Cvwsurf device; 

cl.x = 16000; /*center*/ 
cl.y = 16000; 
NORMAL_VWSURF(device, CGPIXWINDD); 
radius= 8000; /*radius*/ 

open_cgi () ; 
open_vws(&name, &device); 

interior_style(SOLIDI, OFF); 
fill_color(l); /* color of quadrant 1 */ 
circular_arc_center_close(&cl, 24000, 16000, 

16000, 24000, radius, PIE); 
fill_color(2); /* color of quadrant 2 */ 
circular_arc_center_close(&cl, 16000, 24000, 

8000, 16000, radius, PIE); 
fill_color (3); /* co.lor of. quadrant 3 * / 
circular_arc_center_close(&cl, 8000, 16000, 

16000, 8000, radius, PIE); 
fill_color(4); /* color of quadrant 4 */ 
circular_arc_center_close(&cl, 16000, 8000, 

24000, 16000, radius, PIE); 

sleep(lO); 
close_vws(narne); 
close_cgi (); 

Example Program with Four Circle Quadrants in Different Colors 

ENOTVSAC [4] 

EARCPNCI (64] 

CGI not in proper state: CGI shall be in state VSAC. 

Arc points do not lie on circle. 

Cerror circular_arc_3pt(cl, c2, c3) 
Ccoor *cl, *c2, *c3; /* starting, 

intermediate and ending points*/ 

0 

0 

circular_arc_3pt draws a circular arc starting at point cl and ending at 
point c3 which is guaranteed to pass through point c2 . The line attributes func­
tions described in Section 4.2 detennine the appearance of the 
circular _arc_ 3pt function. If the circular arc is textured (for example, O 
dotted) then the intennediate point may not be displayed. However, if the arc is · 
solid, the intennediate point is always drawn. If the three points are colinear, a 

Version C of 17 March 1986 



0 

Errors 

Circular Arc 3pt Close 

0 
Errors 

Ellipse 

Errors 

Elliptical Arc 

0 

Chapter 3 - Output 41 

line is drawn. If two of the three points are coincident, a line is drawn between 
the two distinct points. Finally, if all three points are coincident, a point is 
drawn. circular_arc_3pt is considerably slower than 
circular_ arc_ center, therefore, you are advised to 
circular_ arc_ center if both functions can meet your needs. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror circular_arc_3pt_close(cl, c2, c3, close) 
Ccoor *cl, *c2, *c3; /* starting, intermediate 

and ending points*/ 
Cclosetype close; /* PIE or CHORD*/ 

circular_arc_3pt_close draws a circular arc starting at point cl and 
ending at point c3 which is guaranteed to pass through point c2 . The solid 
object attributes described in Section 4.4 detennine the appearance of the 
circular_arc_3pt_close function. As with circular_arc_3pt, 
circular_arc_3pt_close is considerably slower than 
circular_arc_center_close; therefore, you are advised to use 
circular_arc_center_close if both functions meet your needs. 

If the three points are colinear, a line is drawn. If two of the three points are 
coincident, a line is drawn between the two distinct points. Finally, if all three 
points are coincident, a point is drawn. In none of these cases will any region be 
filled. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror ellipse(cl, majx, miny) 
Ccoor *cl; /*center*/ 
Cint majx, miny; /* length of x and y axes*/ 

ellipse draws an ellipse centered at point cl with major (x) and minor (y) axes 
of length majx and miny .9 If either majx or miny are zero, a line is drawn. If 
both majx and miny are zero, a point is drawn. The attributes which control the 
drawing of ellipses are the solid object attributes described in Section 4.4. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror elliptical_arc(cl, sx, sy, ex, ey, majx, miny) 
Ccoor *cl;/* center*/ 
Cint sx, sy; /* starting point of arc*/ 
Cint ex, ey; /* ending point of arc*/ 
Cint majx, miny; /* endpoints of major and minor axes*/ 

elliptical_arc draws an elliptical arc centered at cl with major (x) and 
minor (y) axes oflength majx and miny. sx, sy and ex, ey are the starting and 

9 Although the axes are- called the major and minor axes by the standard they are really the .x and y axes. In 
fact, the x axis can either be the major or minor axis, depending on the relative length of they axis. 

Version C of 17 March 1986 



42 SunCGI Reference Manual 

Errors 

Elliptical Arc Close 

Errors 

3.2. Raster Primitives 

Text 

ending points of the arc. An error is generated (and the ellipse is not drawn) if 0 
the points (sx, sy, and ex, ey) are not on the perimeter of the ellipse. Elliptical 
arcs are drawn in a counterclockwise manner. This convention is used to deter-
mine the difference between the arc formed by the obtuse angle determined by 
cl .x, cl .y, sx, sy, and ex, ey and the acute angle specified by these same points. 
Therefore switching the values of sx, sy and ex, ey will produce complementary 
arcs. 

If either majx or miny are zero, a line is drawn. If both majx and miny are zero, 
a point is drawn. Polyline attributes are used to determine the appearance of 
elliptical arcs. 

ENOTVSAC [4] 

EARCPNEL (65] 

CGI not in proper state: CGI shall be in state VSAC. 

A~ points do not lie on ellipse. 

Cerror elliptical_arc_close(cl, sx, sy, ex, 
ey, majx, miny, close) 

Ccoor *cl;/* center*/ 
Cint sx, sy; /* starting point of arc*/ 
Cint ex, ey: I* ending point of arc*/ 
Cint majx, miny; /* endpoints of major and minor axes*/ 
Cclosetype close; /* PIE or CHORD *I 

elliptical_ arc_ close draws an elliptical arc specified by sx, sy, ex, ey 
and majx, miny. The arc is closed with either the PIE or CHORD algorithm. The Q 
same restrictions on sx, sy, ex, and ey are applied to 
elliptical_arc_close as to elliptical_arc. However, 
elliptical_arc_close uses the fill area and perimeter attributes, whereas 
elliptical_arc uses the line attributes. 

If either majx or miny are zero, a line is drawn. If both majx and miny are zero, 
a point is drawn. In neither of these cases will any region be filled. 

ENOTVSAC [4] 

EARCPNEL [65] 

CGI not in proper state: CGI shall be in state VSAC. 

Arc points do not lie on ellipse. 

Raster primitives include text, cell arrays, pixel arrays, and bitblts (bit block 
transfer). Bitblts are pixel arrays (bitmaps) which can be drawn using the various 
drawing modes. The current drawing mode determines how bitblt primitives are 
affected by information which is already on the screen. Raster primitives differ 
from geometrical primitives because their dimensions are not necessarily 
expressed in VDC space. Therefore, you must be careful to consider whether 
position arguments are expressed in VDC space or screen coordinates. 

Cerror text(cl, tstring) 
Ccoor *cl; /* starting point of text (in VDC space) */ 
Cchar *tstring; /*text*/ 

text displays the text contained in tstring at point cl (expressed in VDC space). 
The appearance of text is controlled by the text attributes described in Section 

V mion C of 17 March 1986 

0 



0 
Errors 

VDMText 

Errors 

Append Text 

0 

Errors 

Inquire Text Extent 

0 

Chapter 3 -Output 43 

4.8. Control characters are displayed as blanks, except in the SYMBOL font where 
they may be drawn as pictures of bugs. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror vdm_text(cl, flag, tstring) 
Ccoor *cl; /* starting point of text (in VDC space) */ 
Ctextfinal flag; /* final text for alignment*/ 
Cchar •tstring; /*text*/ 

vdm _ text displays the text contained in tstring at point cl (expressed in VDC 
space). The intended difference between text and vdm_text is that 
vdm_ text allows control characters; however, Sun CG I does not handle control 
characters so text drawn with vdm _ text will appear identical to text drawn 
with the text function. If the flag argument is equal to FINAL, the previous text 
and the appended text are aligned separately. However, if the flag argument is 
equal to NOT_FINAL, the appended and previous text are aligned together. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror append_text(flag~ tstring) 
Ctextfinal flag; /* final text for alignment*/ 
Cchar *tstring; /*text*/ 

append text displays the text contained in tstring after the end of the most 
recently written text. The type of text written depends on the same attributes 
which control the display of texL The flag argument determines whether the 
appended text is aligned with the previous text if the alignment is CONTINUOUS. 
If the flag argument is equal to FINAL, then the previous text and the appended 
text are aligned separately. However, if the flag argument is equal to 
NOT_FINAL, the appended and previous text are aligned together. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror inquire_text_extent(tstring, nextchar, concat, 
lleft, uleft, uright) 

Cchar *tstring; /*text*/ 
Cchar nextchar; /* next character (for kerning) */ 
Ccoor *concat; I* concatenation point*/ 
Ccoor *lleft, *uleft, *uright; 

/* coordinates of text bounding box*/ 

inquire_text_extent determines how large text tstring would be and 
where it would be placed if it were drawn using the current text attributes. The 
nextchar parameter is used to determine the point where text would start if more 
text (starting with ne:ctchar) were appended to the text specified by tstring .10 If 
nextchar equals 'single space ', the last point of the current character is used. 
The argument concat returns the coordinates of the point where appended text 

10 This is a method for accounting for proportional spacing. 

Version C of 17 March 1986 



44 SunCGI Reference Manual 

Errors 

Cell Array 

Errors 

Pixel Array 

would stan. The arguments /left, uleft, and uright return three of the four 0 
comers of the bounding box of text contained in tstring . 

The bounding box is a parallelogram (a rectangle if the character up vector and 
the character base vector are onhogonal). The names of the parallelogram 
comers are correct if no rotation is applied to the text. For some character orien­
tations, the implied relationships do not hold. For example, /left may not be the 
lowest. The founh comer may be easily calculated from the three returned: 

uright->x + lleft->x - uleft->x 
uright->y + lleft->y - uleft->y 

The concatenation point and text alignment parallelogram are returned in VDC 
space, but assume a text position of (0, 0). If the text is to be drawn at a position 
(x, y) then (x, y) must be added to each point to yield the true locations. 

The values of /left, ulejt, and uright are defined by the bounding box of the 
character and therefore may not be at the exact pixel where the character ends or 
begins. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

Cerror cell_array(p, q, r, dx, dy, colorind) 
Ccoor *p, *q, *r; 

/* corners of parallelogram (in VDC space) */ 
Cint dx, dy; /* dimensions of color array*/ 
Cint *colorind; /* array of color values*/ 

cell_array draws a scaled and skewed pixel array on the view surface(s). 
Points p, q and r (expressed in VDC space) define a parallelogram. Line p-q is a 
diagonal and p is the lower left-hand comer. r is one of the remaining two 
comers. dx and dy define the width and the height of the array colorind which 
is mapped onto the parallelogram defined by p , q, and r. 

cell_array is one of the few primitives which depends on the actual size of 
the view surface. Cell arrays are not drawn if the elements of the array would be 
smaller than one pixel. However, because different view surfaces may have dif­
ferent dimensions, a cell array might be drawn on one view surface, but not on 
another smaller view surface. Finally, all cells composing the cell array are the 
same size; therefore, the upper left hand comer of the cell array might be down 
and to the right of point q because of the accumulated error of making all of the 
cells slightly smaller than their floating point size. For example if each cell of a 
3 x 3 cell array is supposed to be 3.333 pixels wide, the actual cell array will be 
nine pixels wide instead of ten. 

ENOTVSAC (4) 

ECELLATS [66] 

ECELLPOS [67) 

CGI not in proper state: CGI shall be in state VSAC. 

Cell array dimensions dx, dy are too small. 

Cell array dimensions must be positive. 

Version C of 17 March 1986 

0 

0 



0 

Errors 

BitBlt Source Array 

0 

Errors 

0 

Chapter 3 - Output 

Cerror pixel_array(pcell, m, n, colorind) 
Ccoor *pcell; /* base of array in VDC space*/ 
Cint m, n; /* dimensions of color array in screen space*/ 
Cint *colorind; /* array of color values*/ 

45 

pixel_array draws array colorind staning at pointpcell (expressed in VDC 
space). m and n (expressed in screen space) define the x and y dimensions of 
the array. Therefore,pixel arrays always have a constant physical size, indepen­
dent of the dimensions of VDC space. The pixel array is drawn down and to the 
right from point pcell. If either m or n are not positive, the absolute value of m 
and n are used. pixel array is not affected by the current drawing mode. 

ENOTVSAC [4] 

EVALOVWS [69] 

CGI not in proper state: CGI shall be in state VSAC. 

Value outside of view surface. 

Cerror bitblt_source_array(pixsource, xo, yo, xe, ye, 
pixtarget,.xt, yt, ·name) 

Cpixrect *pixsource, *pixtarget; 
/* source and target pixel arrays*/ 

Cint xo, yo; 
/* coordinates of source array (in voc·space) */ 

Cint xe, ye; 
/* dimensions of source array (in screen space) */ 

Cint xt, yt; 
/* coordinates of target pixel array (in VDC space) */ 

Cint name; /* view surface name*/ 

bi tblt_source_array moves a pixel array from point (xo, yo) to point 
(xt, yt) using the current drawing mode. Both of these points are expressed in 
VDC space. The size of the pixel array is determined by the xe and ye arguments 
which are expressed in screen space. pixsource and pixtarget are pointers to pix­
rects which must already be created by mem_create.11 These pixrects must be 
the same depth as the view surface: I-bit deep on a monochrome device, 8-bit on 
a color device. The source area of the view surface associated with name is 
saved into pixsource (at 0,0). The target area, after pixsource is applied 
to it, is read into pixtarget pixrect (at 0,0). 

An error is detected if either xe or ye are not positive. If the replicated pattern 
array overlaps with the source array on the screen, the visual result depends on 
the current drawing mode. pixsource and pixtarget may have different contents 
depending on the screen drawing mode (see the set_drawing_mode func­
tion). 

Multiple view surfaces and bitblt's are incompatible, so a name argument must 
be specified. 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

11 Refer to the Pixreel Reference Ma1UMJI for more information about pixrects. 

Version C of 17 March 1986 



46 SunCGI Reference Manual 

BitBlt Pattern Array 

Errors 

BitBlt Patterned Source Array 

EVALOVWS (69] Value outside of view surface. 

Cerror bitblt__pattern_array(pixpat, px, py, pixtarget, 
rx, ry, ox, oy, dx, dy, name) 

Cpixrect *pixpat; /* pattern source array*/ 
Cint px, py; /* pattern extent*/ 
Cpixrect *pixtarget; /* destination pattern array*/ 
Cint rx, ry; /* pattern reference point*/ 
Cint ox, oy; /* destination origin*/ 
Cint dx, dy; /* destination extent*/ 
Cint name; /* view surface name*/ 

bi tblt_pattern_array replicates the pattern (using the current drawing 
mode) stored in pixpat to fill the area of the view surface which is determined by 
ox, oy and dx, dy. The pattern reference point determines the offset of the pat­
tern array from the point zero. The resultant pattern array is displayed at ox, oy . 
The visual result depends on the current drawing mode. 

pixpat is a pointer to a pixrect which must be created and initialized with the 
pattern by the application program. pixtarget is a pointer to a pixrect (with 
same depth as the device) which must already be created by the user, using 
mem _ create. The target area, after pixpat is applied to it, is read into the 
pixtarget pixrect (at 0,0). 

b
Multipl~fiv1d·ew surfaces and bitblt's are incompatible, so a name argument must O·· . 

e spec, e . 

ENOTVSAC [4] 

EVALOVWS [69] 

EPXNOTCR [70] 

CGI not in proper state: CGI shall be in state VSAC. 

Value outside of view surface. 

Pixrect not created. 

Cerror bitblt__patterned_source_array(pixpat, px, py, 
pixtarget, rx, ry, pixsource, sx, sy, ox, oy, 
dx, dy, name) 

Cpixrect *pixpat; /* pattern source array*/ 
Cint px, py; /* pattern extent*/ 
Cpixrect *pixsource; /* source array*/ 
Cint sx, sy; /* source origin*/ 
Cpixrect *pixtarget; /* destination pattern array*/ 
Cint rx, ry; /* pattern reference point*/ 
Cint ox, oy; /* destination origin*/ 
Cint dx, dy; /* destination extent*/ 
Cint name; /* view surface name*/ 

bitblt_patterned_source_array replicates (using the current drawing 
mode) the pattern stored in pixpat to fill the area of the view surface deter­
mined by ox, oy and dx, dy. The source area of the view surface is read into 
the pixrect pointed to by pixsource (which must already be created by the 
user with same depth as the device) at 0,0. The source area is stenciled through o 
the replicated pattern onto the view surface at ox, oy, using the current drawing · 
mode. The target area, after the copy, is read into the pixtarget pixrect. If 

Version C of 17 March 1986 



0 

Errors 

Inquire Cell Array 

0 

Errors 

Inquire Pixel Array 

0 

Chapter 3 -Output 

the replicated pattern array overlaps with the source array on the screen, the 
visual result depends on the current drawing mode. 

47 

Multiple view surfaces and bitblt's are incompatible, so a name argument must 
be specified. 

ENOTVSAC [4] 

EVALOVWS [69] 

EPXNOTCR [70] 

CGI not in proper state: CGI shall be in state VSAC. 

Value outside of view surface. 

Pixrect not created. 

Cerror inquire_cell_array(name, p, q, r, dx, dy, colorind) 
Cint name; /* view surface name*/ 
Ccoor *p, *q, *r; 

/* corners of parallelogram (in VDC space) */ 
Cint dx, dy; /* dimensions of color array*/ 
Cint *colorind; /* array of color values*/ 

Points p, q and r (in VDC space) define a parallelogram with line p-q as the 
diagonal where p is the lower left-hand corner. r is one of the remaining two 
comers. dx and dy define the width and the height of the array colorind which 
contains the colors of the pixels on the screen which lie within the parallelogram 
defined by p, q, and r. Notice that a view surface identifier, name, must be 
specified because the result of this function is highly dependent on the dimen­
sions and contents Q.f the view surface. 

The area of the screen corresponding to the parallelogram is a~sumed to contain a 
regular grid of points. However, if each element of the grid is larger than one 
pixel, the color of the pixel at lower left-hand comer of each element of the grid 
is defined to be the color of the grid element. Therefore, the values contained in 
colorind are highly dependent on the size of the view surface. An error is pro­
duced if the elements of the grid are smaller than one pixel. 

ENOTVSAC [4] 

EVSIDINV [10] 

EVSNOTOP [13] 

EVSNTACT [15] 

ECELLATS [66] 

ECELLPOS [67] 

CGI not in proper state: CGI shall be in state VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Specified view surface is not active. 

Cell array dimensions dx, dy are too small. 

Cell array dimensions must be positive. 

Cerror inquire_pixel_array(p, m, n, colorind, name) 
Ccoor *p; /* base of array in VDC space*/ 
Cint m, n; /* dimensions of color array in screen space*/ 
Cint *colorind; /* array of color values*/ 
Cint name; /* view surface name*/ 

inquire_pixel_array fills array colorind with the values of pixels in the 
area of the screen defined by pointp (expressed in VDC space) and m and n 
(expressed in screen space). The array is filled down and to the right from point 

Version C of 17 March 1986 



48 SunCGI Reference Manual 

Errors 

Inquire Device Bitmap 

Errors 

Inquire BitBlt Alignments 

Errors 

3.3. Drawing J\fodes 

p. If either m or n are not positive, the absolute value of these arguments is 0 
used. 

Multiple view surfaces and bitblt's are incompatible, so a name argument must 
be specified. 

ENOTVSAC [4] 

EVALOVWS [69] 

EPXNOTCR [70] 

CGI not in proper state: CGI shall be in state VSAC. 

Value outside of view surface. 

Pixrect not created. 

Cpixrect *inquire_device_bitmap(name) 
Cint name; /* name assigned to cgi view surface*/ 

inquire_device_bitmap returns the pixrect which corresponds to the view 
surface. The pixrect describes the entire device, even if the view surface is a 
smaller pixwin. If you want to use subareas of this pixrect or manipulate it any 
other way, refer to the Pixrect Reference Manual. 

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP, 
VSOP, or VSAC. 

Cerror inquire_bitblt_alignments(base, width, px, py, 
maxpx, maxpy, name) 

Cint *base; /* bitmap base alignment*/ 
Cint *width; /* width alignment*/ 
Cint *px, *py; /* pattern extent alignment*/ 
Cint *maxpx, *maxpy; /* maximum pattern size*/ 
Cint name; /* name assigned to cgi view surface*/ 

inquire_bi tbl t_alignments reports the alignment criteria which are 
necessary for some implementations. These factors are not critical for SunCGI. 
However, you should keep in mind the appropriate depth for the pixrect when 
talking to a specific device. Therefore the arguments base, width , px, and py 
are always set to zero. The arguments maxpx and maxpy are device dependent 
and determine the maximum size ofa pattern forbitblt_pattern_array 
and bitblt_patterned_source_array. 

Multiple view surfaces and bitblt's are incompatible, so a name argument must 
be specified. 

ENOTVSAC [4] 

EVSIDINV [10] 

EVSNOTOP [13] 

EVSNTACT [15] 

CGI not in proper state: CGI shall be in state VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Specified view surface is not active. 

Drawing modes determine the result of drawing any output primitive on the clear 
screen (background) or on top of a previously drawn object. Drawing modes 
only affect the drawing of bitblt primitives. However, a non-standard 

Version C of 17 March 1986 

0 

0 



0 

Set Drawing Mode 

0 

Errors 

0 

Chapter 3 - Output 49 

set global drawing mode function is provided, which affects all output - - -
primitives except bitblt's. Resetting the drawing mode in the middle of an appli-
cation program only affects those output primitives drawn after the mode is reset. 
The novice user is advised not to reset the drawing mode until the user has writ-· 
ten at least one application program using Sun CG I. 

Cerror set_drawing_mode(visibility, source, 
destination, combination) 

Cbmode visibility; /* transparent or opaque*/ 
Cbitmaptype source; /* NOT source bits*/ 
Cbitmaptype destination; /* NOT destination bits*/ 
Ccombtype combination; /* combination rules*/ 

set_drawing_mode determines the current drawing mode which in turn 
determines how bitblt primitives are displayed. The visibility argument deter­
mines how pixels with index zero are treated. 

typedef enum { 
TRANSPARENT, 
OPAQUE 

Cbmode; 

typedef enum 
BITTRUE, 
BITNOT 

Cbitmaptype; 

typedef enum 
REPLACE, 
AND, 
OR, 
NOT, 
XOR 

Ccombtype; 

If visibility is set to TRANSPARENT, all source pixels with index zero leave the 
destination pixel unchanged, regardless of the operation, whereas if visibility is 
set to OPAQUE, all pixels are treated normally. The arguments source and desti­
nation determine whether the contents of the source and destination pixrects are 
NOTted before the bitblt operation is performed. 

The combination argument determines how the source and destination pixrects 
are combined. If combination is equal to REPLACE, the source pixrect ( after 
optionally being NOT-ted) replaces the destination pixrect. If combination is 
equal to AND, OR, or XOR the source pixrect and the destination pixrect are com­
bined in the indicated Boolean fashion. If combination is equal to NOT, then the 
destination is set to a bitwise NOT operation of the source pixrect 

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP, 
VSOP,orVSAC. 

Version C of 17 March 1986 



50 SunCGI Reference M.mual 

Set Global Drawing Mode 
(SunCGI Extension) 

Errors 

Inquire Drawing Mode 

Errors 

Cerror set_global_drawing_mode(combination) 
Ccombtype combination; /* combination rules*/ 

set_global_drawing_mode determines the current global drawing mode 
which in turn determines how all output primitives except bitblts are displayed. 
The combination argument determines how the source and destination pixrects 
are combined. If combination is equal to REPLACE (the default value) the output 
primitive replaces the destination background. If combination is equal to AND, 
OR, or XOR the output primitive and the information on the screen are combined 
in the indicated Boolean fashion. If combination is equal to NOT, then the desti­
nation is set to a bitwise NOT operation of the source pixrect 

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP, 
VSOP, or VSAC. 

Cerror inquire_drawing_mode(visibility, source, 
destination, combination) 

Cbmode *visibility; /* transparent or opaque*/ 
Cbitmaptype *source; /* NOT source bits*/ 
Cbitmaptype *destination; /* NOT destination bits*/ 
Ccombtype *combina~i·on; /* combination rules */ 

The inquire_drawing_mode returns the values of the four components of 
the current drawing mode . 

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP, 
VSOP, or VSAC. 

Version C of 17 March 1986 

0 

0 

0 



0 4 

Attributes 

Attributes ............................................................................................................................................ 53 

4.1. Bundled Attribute Functions ..................................................................................... 54 

Set Aspect Source Flags ............................................................................................ 56 

Define Bundle Index (SunCGI Extension) ..................................................... 56 

4.2. Line Attributes .................................................................................................................. 57 

Polyline Bundle Index ................................................................................................ 57 

Line Type .......................................................................................................................... 58 

0 Line Endstyle (SunCGI Extension) .................................................................... 58 

Line Width Specification Mode ........................................................................... 59 

Line Width ........................................................................................................................ 59 

Line Color ......................................................................................................................... 59 

4.3. Polymarker Attributes ................................................................................................... 60 

Polymarker Bundle Index ........................................................................................ 60 

Marker Type .................................................................................................................... 60 

Marker Size Specification Mode .......................................................................... 60 

Marker Size ...................................................................................................................... 61 

Marker Color ................................................................................................................... 61 

4.4. Solid Object Attributes ................................................................................................. 61 

Fill Area Bundle Index ................................................ :............................................. 62 

Interior Style .................................................................................................................... 62 

4.5. Solid Interior Fill Attribute ........................................................................................ 62 

Fill Color ........................................................................................................................... 63 

4.6. Hatch and Pattern Attributes ..................................................................................... 63 

0 



Hatch Index ...................................................................................................................... 64 

Pattern Index .................................................................................................................... 65 

Pattern Table .................................................................................................................... 65 0 
Pattern Reference Point ............................................................................................. 65 

Pattern Size ....................................................................................................................... 66 

Pattern with Fill Color (SunCGI Extension) ................................................. 66 

4. 7. Perimeter Attributes ....................................................................................................... 66 

Perimeter Type ............................................................................................................... 66 

Perimeter Width ............................................................................................................. 67 

Perimeter Width .Specification Mode ................................................................ 67 

Perimeter Color .............................................................................................................. 68 

4.8. Text Attributes .................................................................................................................. 68 

Text Bundle Index ........................................................................................................ 68 

Text Precision ................................................................................................................. 68 

Character Set Index ..................................................................................................... 69 

Text Font Index .............................................................................................................. 69 

Character Expansion Factor .................................................................................... 70 

Character Spacing ......................................................................................................... 70 

Character Height ........................................................................................................... 70 

Fixed Font (SunCGI Extension) ........................................................................... 71 0 
Text Color ......................................................................................................................... 71 

Character Orientation ................................................................................................. 71 

Character Path ................................................................................................................. 72 

Text Alignment .............................................................................................................. 72 

4.9. Color Attributes ................................................................................................................ 74 

Color Table ....................................................................................................................... 74 

4.10. Inquiry Functions.......................................................................................................... 75 

Inquire Line Attributes .............................................................................................. 75 

Inquire Marker Attributes ........................................................................................ 75 

Inquire Fill Area Attributes ..................................................................................... 76 

Inquire Pattern Attributes ......................................................................................... 76 

Inquire Text Attributes .............................................................................................. 77 

Inquire Aspect Source Flags ·····--·--·-···--·----·---·---------·-·· 78 

0 



0 

0 

0 

4 
Attributes 

The current attributes determine how output primitives are displayed. Attributes 
are not specific to any view surface, but affect all view surfaces. The default 
attributes are defined in Table 4-1. The current attributes may be set either indi­
vidually or in groups (by changing the index into the bundle table). Example 
programs illustrating these methods of changing attributes are given in Figures 
4-1 and 4-2. 

Each entry in the bundle table specifies a set of attributes for a particular type of 
primitive (for example, solid objects). The method for setting the current attri­
butes depends on the state of the ASF (aspect source flag) for each attribute. For 
individual attribute functions to have an effect, the ASF must be set to INDIV1-
DUAL. If the ASF is set to BUNDLED, the current attribute is defined by the entry 
in the bundle table pointed to by the bundle index . The actual appearance of 
objects also depend on the global drawing mode described in Chapter 3. 

The majority of this chapter is devoted to individual attribute functions. Indivi­
dual attribute functions are grouped according to the output primitives they 
effect: polylines, polymarkers, filled objects, and text. The color_table 
function (which redefines color table entries) is also included in this chapter. 
Finally, functions for obtaining the values of the current attributes are discussed. 

53 Ver.;ion C of 17 March 1986 



54 SunCG! Reference Manual 

Attribute 
All ASF's 

Line Color 
Line Endstyle 
Line Type 

Marker Color 
Marker Size 

Table 4-1 

Specification Mode 

Fill Color 
Fill Hatch Index 
Fill Pattern Index 
Interior Style 

Perimeter Color 
Perimeter Type 
Perimeter Width 

Fontset 
Fixed Font 

Character Base.x 
Character Base .y 
Character Expansion Factor 
Character Height 
Character Path 

Horizontal Text 
Alignment 

Text Continuous 
Alignment.x 

4.1. Bundled Attribute 
Functions 

Default Attributes 0 
I Value I Attribute I Value 

INDIVIDUAL All Bundle Indices I 

I Line Width 0.0 
BEST m Line Width SCALED 
SOLID Specification Mode 

I Marker Size 4.0 
SCALED' Marker Type DOT 

I Number of Pattern 2 
0 Table Entries 
I Pattern Size 300,300 
HOLLOW Pattern Reference Point 0,0 

Pattern with Fill Color OFF 

I Perimeter Width SCALED 
SOLID Specification Mode 
0.0 Perimeter Visibility ON 

I Text Font STICK 
0 

1.0 Character Spacing 0.1 l 
0.0 Character Up.x 0.0 
1.0 Character Up.y 1.0 
1000 Text Color I 
RIGHT Text Precision STRING 

NRMAL Text Continuous 1.0 
Alignment.y 

1.0 Vertical Text NORMAL 
Alignment 

The attribute environment selector functions determine if the current attributes 
are defined individually or by using a set of attributes (bundles). Bundles are 
defined by entries· in the bundle table . The CGI standard specifies the bundle 
table as read-only but SunCGI allows user-definition of entries in the bundle 
table . Each type of primitive has its own index into the bundle table, described 
with its specific attribute functions. 

The following example program illustrates how to change the appearance with 
bundled attributes. The program draws a polyline with a different line style and 
line width. 

0 

Version C of 17 March 1986 



0 

0 

Figure 4-1 

0 

#include <cgidefs.h> 

Ccoor box[5] = { 10000,10000 , 
10000,20000, 
20000,20000 , 
20000,10000 , 
10000, 10000 } ; 

Cbunatt bundle= { DASHED_DOTTED, 1., 4, 
x, 6., 4, 
PATTERN, 1, 1, 2, 
DOTTED, 1. 5, 1, 
STICK, CHARACTER, 
1.3, 0.05, 1 }; 

main () 
{ 

Ccoorlist boxlist; 
Cint i, line_bundle 
Cf lag list flags; 
cvwsurf device; 

boxlist.ptlist = box; 

2, name; 

boxlist.n = 5; 
NORMAL_VWSURF(device, PIXWINDD); 

open_cgi(); 
open_vws(&name, &device); 

Cha.,ter 4 -Attributes 55 

flags.value= (Casptype *) malloc(l8*sizeof(Casptype)); 
flags.nurn = (Cint *) malloc(18*sizeof(Cint)); 
for (i = O; i < 18; i++) ( 

flags.value[i] = BUNDLED; 
flags.nurn[i] = i; 

flags.n = 18; 

define_bundle_index{2, &bundle); 
set_aspect_source_flags(&flags); 
polyline_bundle_index(line_bundle); 
polyline(&boxlist); 

sleep(lO); 
close_vws (name}; 
close_ cgi (} ; 

Example Program with Bundled Attributes 

Version C of 17 March 1986 



56 SunCGI Reference Manual 

Set Aspect Source Flags 

Errors 

Table 4-2 

Define Bundle Index (SunCGI 
Extension) 

Cerror set_aspect_source_flags(flags) 
Cflaglist *flags; /* list of ASFs */ 

set_aspect_source_flags determines whether individual attributes are 
set individually or from bundle table entries. 

typedef struct { 
Cint n; 
Cint num[]; 
Casptype value[]; 

Cflaglist; 

The n element of the flags argument determines how many flags are to be set. 
The num array of the flags argument determines which flags are to be set. 
Flag numbers are provided in Table 4-2. Finally, the value array of the flags 
argument determines the values of the flags specified in num. If a value is 
assigned to INDIVIDUAL, the individual attribute functions affect the current attri­
bute. If the value of index is BUNDLED, calls to individual attribute functions 
have no effect .12 The default bundle index is set to I (which initially contains 
the default value for the attributes specified in Table 4-1 ). The default value of 
all aspect source flags is INDIVIDUAL. 

ENOTOPOP [5] CG! not in proper state CG! shall be in state VDOP, 
VSOP, or VSAC. 

0 

Attribute Source Flag Numbers 0 
Flag I Attribute I Flag I Attribute 

0 line type 9 fill color 
1 line width 10 perimeter type 
2 line color 11 perimeter width 
3 marker type 12 perimeter color 
4 marker width 13 text font index 
5 marker color 14 text precision 
6 interior style 15 character expansion factor 
7 hatch index 16 character spacing 
8 pattern index 17 text color 

Cerror define_bundle_index(index, entry) 
Cint index; /* entry in attribute environment table*/ 
Cbunatt *entry; /* new attribute values*/ 

define_bundle_index defines an entry in the bundle table. The type 
Cbunat t is a structure which contains elements corresponding to all the attri­
butes. If the contents of a bundle table entry are changed, all subsequently 
drawn primitives use the information in the new entry, depending on the relevant 
aspect source flags. You should keep this fact in mind if you are designing 
display list traversal algorithms using SunCGI. 

12 In fact, SunCGI currently produces error 30 when these individual attribute function is called while the 0 
corresponding ASP is BUNDLED. 

Version C of 17 March 1986 



0 

0 Errors 

4.2. Line Attributes 

Polyline Bundle Index 

Errors 

0 

typedef struct { 
Clintype line_type; 
Cfloat line_width; 
Cint line_color; 
Cmartype marker_type; 
Cfloat marker_size; 
Cint marker_color; 
Cintertype interior_style; 
Cint hatch_index; 
Cint pattern_index; 
Cint fill_color; 
Clintype perimeter_type; 
Cfloat perimeter_width; 
Cint perimeter_color; 
Cint text_font; 
Cprectype text_precision; 
Cfloat character_expansion; 
Cfloat character_spacing; 
Cint text_color; 

Cbunatt; 

Chapter4 -Attributes 57 

In addition to the errors listed below, other errors can be detected if any of the 
attribute values are invalid, as specified in later sections. Results are undefined if 
an error occurs. 

ENOTOPOP [5] 

EBBDTBDI [31] 

CG! not in proper state CG! shall be in state VDOP, 
VSOP, orVSAC. 

Bundle table index out of range. 

SunCGI provides for specifying the style, width and color oflines which consti­
tute poly lines, circular arcs, and elliptical arcs. The functions do not affect the 
drawing of the perimeter of solid objects which are set by the perimeter func­
tions. 

Cerror polyline_bundle_index(index) 
Cint index; /* polyline bundle index*/ 

polyline_bundle_index sets the current polyline bundle index to the 
value of index. The contents of the polyline bundle index are line type, line 
width and line color. The line width specification mode and the line endstyle 
attributes are not included in the polyline bundle. If index is not defined, an 
error is generated, and the polyline_bundle_index does not change. If 
the ASF' s for any of these attributes is set to BUNDLED, the current values of these 
attributes are set to the contents of the bundle. 

ENOTOPOP [5] 

EBADLINX [33] 

CG! not in proper state CG! shall be in state VDOP, 
VSOP, or VSAC. 

Polyline index is invalid. 

Version C of 17 March 1986 



58 SunCGI Reference Manual 

Line Type 

Errors 

Line Endstyle (SunCGI 
Extension) 

Errors 

Line Width Specification 
Mode 

Cerror line_type(ttyp) 
Clintype ttyp; /* style of line*/ 

line_type defines the line type forpolylines. The enumerated type Clin­
t ype contains values that correspond to valid line types. 

typedef enum 
SOLID, 
DOTTED, 
DASHED, 
DASHED_DOTTED, 
DASH_DOT_DOTTED, 
LONG DASHED 

Clintype; 

The default line style is SOLID. The actual representation of a line on the screen 
is affected by the line endstyle. DASH_ OOT _ OOTIED actually has three dots 
between dashes. 

ENOTOPOP [5] 

EBTBUNDL [30] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Cerror line_endstyle(ttyp) 
Cendstyle ttyp; /* style of line*/ 

line_endstyle determines how a textured (non-SOLID) line terminates. 
The enumerated type Cendstyle contains values that correspond to valid line 
end styles. 

typedef enum 
NATURAL, 
POINT, 
BEST FIT 

Cendstyle; 

If the endstyle selected is NATURAL, the last component of the line texture (for 
example, a dash or a dot) which can be completely drawn is drawn. Blank space 
at the end of the line may cause the line to not appear as long as specified by the 
starting and ending coordinates. If the endstyle selected is POINT, the last point 
of the line is drawn whether it is appropriate or not. In this case, the endpoints of 
the line always appear on the screen. If the endstyle selected is BEST_AT, the last 
point is always drawn but is extended as far back as the last space if appropriate. 
However, the BEST_ AT endstyle may shorten the space between the last element 
of the line and the element preceding the last element by one in order to guaran­
tee that the line ends on a drawn point The default endstyle is BEST _FIT. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Version C of 17 March 1986 

0 

0 

0 



0 

Errors 

Line Width 

0 

Errors 

Line Color 

Errors 

0 

Chapter 4 -Attributes 59 

Cerror line_width_specification_mode(mode) 
Cspecmode mode; /* pixels or percent*/ 

line width specification mode allows the line width to be 
specified in pixels or as a percentageof voc space according to the value of 
mode The enumerated type Cspecmode contains values that correspond to line 
width specification modes. 

typedef enum { 
. ABSOLUTE, 

SCALED 
Cspecmode; 

If the line width specification mode is changed from ABSOLUTE to SCALED, the 
change in the line width will probably be dramatic. The default line width 
specification mode is SCALED. 

If multiple view surfaces are active, the line width is scaled separately for each 
view surface. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror line_width(index) 
Cfloat index; /* line width*/ 

line_ width determines the width of the lines composing poly lines, circular 
arcs, etc. If the line width specification mode is SCALED, index is expressed in 
percent of voc space and if the x and y dimensions are different, the width is 
calculated on the basis of the range of the x coordinate of VDC space. If the 
parameter setting would result in a line less than one pixel wide, the line width is 
displayed as one pixel wide. The default line width is 0.0 (SCALED). 

ENOTOPOP [5] 

EBTBUNDL [30] 

EBDWIDTH [34] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASP is BUNDLED. 

Width must be nonnegative. 

Cerror line_color(index) 
Cint index; /* line color*/ 

line_color determines the color of the lines. index selects an entty in the 
color lookup table. The default value of index is 1. An error is detected if index 
is not between O and 255. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECINDXLZ [35] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASP is BUNDLED. 

Color index is less than zero. 

Version C of 17 March 1986 



60 SunCG! Reference Manual 

4.3. Polymarker Attributes 

Polymarker Bundle Index 

Errors 

Marker Type 

Errors 

Marker Size Specification 
Mode 

EBADCOLX [36) Color index is invalid. 

The type, size and color of markers (the components of polymarkers) are con­
trolled by the following functions. 

Cerror polymarker_bundle_index(index) 
Cint index; /* polymarker bundle index*/ 

polymarker_bundle_index sets the current polymarkerbundle index to 
the value of index. The contents of a polymarker bundle are marker type, 
marker size and marker color . .J'he marker size specification mode function is 
not included in the polymarker bundle. If index is not defined, an error is gen­
erated, and the polymarker bundle index does not change. If the ASF's for any of 
these attributes is set to BUNDLED, the current values of these attributes are set to 
the values of the corresponding attribute in the bundle. 

ENOTOPOP [5) 

EBADMRKX [37) 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Polymarker index is invalid. 

Cerror marker~type(ttyp) 
Cmartype ttyp; /* style of marker*/ 

0 

m~rker
1
_tythpe sets the mdarkeral1}'.dpe. Toke enumerated type Cmartype con- Q·. . 

tams va ues at correspon to v I mar er types. 

typedef enum 
DOT, 
PLUS, 
ASTERISK, 
CIRCLE, 
X 

Cmartype; 

Note that all marker types appear as a point when the marker size is very small. 
The default marker type is DOT. 

ENOTOPOP [5) CGI not in proper state CGI shall be in state VDOP, 
VSOP,orVSAC. 

EBTBUNDL [30] ASP is BUNDLED. 

Cerror marker_size_specification_mode(mode) 
Cspecmode mode; /* pixels or percent*/ 

marker_size_specification_mode allows the marker size to be 
specified in pixels or as a percentage of VDC space according to the value of 
mode. The enumerated type Cspecmode contains values that correspond to 
valid marker size specifications. 

Version C of 17 March 1986 

0 



Errors 

Marker Size 

Errors 

Marker Color 

0 

Errors 

4.4. Solid Object Attributes 

0 

typedef enum { 
ABSOLUTE, 
SCALED 

Cspecmode; 

Chapter 4 - Attributes 61 

The default marker size specification mode is SCALED. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror marker_size(index) 
Cfloat index; /* marker size*/ 

marker size sets the size of the marker height and marker width. index is 
expressedin percent of VDC space. The default marker size is 4.0 percent of VDC 

space. If the marker size becomes very small, markers of all types are displayed 
as points. An error is detected if index is negative. 

ENOTOPOP [5] 

EBADSIZE [38] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Size must be nonnegative. 

Cerror marker_color(index) 
Cint index; /* marker color*/ 

marker_color determines the color of the markers. index selects an entry in 
the color lookup table. An error is detected if index is not between O and 255. 
The default marker color is 1. 

ENOTOPOP [5] 

EBTBUNDL [30] 

EC INDXLZ [35] 

EBADCOLX [36] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Color index is less than zero. 

Color index is invalid. 

The solid object attribute functions describe how all solid object primitives are 
filled ( colored-in). There are three sets of solid object attribute functions: 

fill area attributes 
The fill area attribute functions determine the general method for filling solid 
geometrical objects. 

hatch and pattern attributes 
determines a pixel array for filling a polygon if the fill style is set to PAT­

TERN. 

perimeter attributes 
determine how the boundary of a geometrical object is displayed if the per­
imeter visibility is ON. 

Version C of 17 March 1986 



62 SunCGI Reference Manual 

Fill Area Bundle Index 

Errors 

Interior Style 

Errors 

4.5. Solid Interior Fill 
Attribute 

Cerror fill_area_bundle_index(index) 
Cint index; /* fill area bundle index*/ 

fill_area_bundle_index sets the currentfill area bundle index to the 
value of index. The contents of the fill area bundle are interior style ,fill color 
hatch index pattern index perimeter type perimeter width and perimeter color. 
The perimeter width specification mode and the pattern attributes are not 
included in the definition of the fill area bundle. If index is not defined, an error 
is generated, and the fill area bundle index does not change. If the ASF's for any 
of these attributes is set to BUNDLED, the current value of the attribute is set to 
the value of the corresponding attribute in the bundle. 

ENOTOPOP [5] 

EBADFABX [39] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Fill area index is invalid. 

Cerror interior_style(istyle, perimvis) 
Cintertype istyle; /* fill style*/ 
Cflag perimvis; /* perimeter visibility*/ 

interior_style sets the fill style for solid objects. The enumerated type 
Clintertype contains values that correspond to valid line types. 

typedef enum 
HOLLOW, 
SOLIDI, 
PATTERN, 
HATCH 

Cintertype; 

If the fill style is set to SOLIDI, the solid object is filled with the currentfi/1 color. 
If istyle is set to PATIERN or HATCH, the solid object is filled with the current 
PATIERN or HATCH style. The PATIERN and.HATCH styles are explained in the 
pattern attributes section. The defaultfi/1 style is HOLLOW. 

interior_style also determines whether the perimeter of the solid object is 
visible according to the value of perimvis (which must be ON or OFF). lf per­
imvis is OFF, the perimeter attributes have no effect. The default value of perim­
eter visibility is ON. 

Be careful when using the interior style function to explicitly specify the per­
imvis argument If you do not specify it, or set it to OFF, the geometrical output 
primitive may not be displayed because the interior style is HOLLOW. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

The following section contains the description of a function that determines the 
color of an interior region if the fill style is not HOLLOW. 

Version C of 17 March 1986 

C 

0 

0 



Q Fill Color 

0 

0 

Errors 

4.6. Hatch and Pattern 
Attributes 

Chapter 4 -Attributes 63 

Cerror fill_color(color) 
Cint color; /* color for solid object fill*/ 

fill_ color determines the color for filling solid objects, if the fill style is not 
set to HOLLOW. 

The default fill style is HOLLOW, so changing the fill color will not have an effect 
without changing the interior style first. The default fill color is 1. An error is 
detected if fill color is not between O and 255. 

ENOTOPOP [5] 

ECINDXLZ [35] 

EBADCOLX [36] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Color index is less than zero. 

Color index is invalid. 

Geometrical primitives can be filled with 2D arrays of color values called pat­
terns. SunCGI supports pre-defined as well as user-defined patterns. The 
definition of patterns is stored in the pattern table. Each entry in the pattern 
table consists of a 2D array of color values and the x and y dimensions of the 
array. The starting position (upper left-hand comer) of the pattern is determined 
by the pattern reference point. 

Two types of patterns are available: PA1TERNs and HATCHes. PATTERNS can be 
scaled and translated. HATCHes can't and simply fill the geometrical output 
primitives with pixel arrays. 

The following example program illustrates how to change the appearance with 
the individual attribute functions. The program draws a polygon and fills it with 
a pattern. 

Version C of 17 March 1986 



64 SunCGI Reference Manual 

#include <cgidefs.h> 

Ccoor box[S] = { 10000,10000, 
1QQQQ,2QQQQ t 

2QQQQ,2QQQQ t 

2QQQQ,1QQQQ t 

10000, 10000 } ; 
Cint pattern[l6] = { 50, 75, 100, 125, 

150, o, o, 175, 
200, O, O, 225., 

main() 
{ 

250, 275, 300, 325 } ; 

Ccoorlist boxlist; 
Cint dx = 250, dy 250, index= 2, name; 
Cvwsurf device; 

boxlist.n = 5; 
boxlist.ptlist = box; 
NORMAL_VWSURF(device, PIXWINDD); 

open_cgi (); 
open_vws(&name, &device); 

interior_style(PATTERN, ON); 
pattern_table(index, 4, 4, pattern); 
pattern_index(index); 
pattern_size(dx, dy); 
polygon(&boxlist); 

sleep(lO); 

close_vws(name); 
close_cgi(); 

Figure 4-2 Example Program with Bundled Attributes 

Hatch Index 

Errors 

Cerror hatch_index(index) 
Cint index; /* HATCH index in the pattern table*/ 

hatch index determines which entry in the pattern table is used to fill solid 
objects when thejill style is set to HATCH. The default hatch index is 0. An 
error is generated if index points to an undefined entry in the pattern table. 

ENOTOPOP [5] 

~)sun 
~ rncrosystems 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Version C of 17 March 1986 

0 

0 

0 



0 

Pattern Index 

Errors 

Pattern Table 

0 

Errors 

Pattern Reference Point 

0 

EBTBUNDL [30] 

ESTYLLEZ [42] 

ENOPATNX [43] 

Chapter 4 - Attributes 65 

ASF is BUNDLED. 

Style (pattern or hatch) index is less than zero. 

Pattern table index not defined. 

Cerror pattern_index(index) 
Cint index; /* PATTERN index in the pattern table*/ 

pattern_index determines which index in the pattern table is used to fill 
solid objects when thefill style is set to PATIERN. The default pattern index is 
1. An error is generated if index points to an undefined entry in the pattern table. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ESTYLLEZ [42] 

ENOPATNX [43] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Style (pattern or hatch) index is less than zero. 

Pattern table index not defined. 

Cerror pattern_table(index, m, n, colorind) 
Cint index; /* entry in table*/ 
Cint m, n; /* number of rows and columns */ 
Cint *colorind; /* array containing pattern*/ 

pattern_ table defines an entry in the pattern table. index defines the entry 
in the table (which must be less than 50). An error is generated if index is out­
side the bounds of the pattern table. m and n define the height and width of the 
pattern (in pixels). The array pointed to by the argument colorind contains the 
actual pattern row-wise from the upper left. For monochrome view surfaces, all 
nonzero entries in color ind are treated as 1 when used. The maximum 
number of elements in a pattern (m x n) is MAXPATSIZE. 

Pattern O is initially defined to be a 3 x 3 matrix which is set to zero at the 
corners and one elsewhere. Pattern O produces simple cross-hatching. Pattern 1 
(which produces a polka-dot pattern) is initially defined to be a 3 x 3 matrix 
which is set to 1 at the center and O elsewhere. 

ENOTOPOP [5] 

EPATARTL [40] 

EPATSZTS [41] 

ESTYLLEZ [42] 

EPATITOL [44] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Pattern array too large. 

Pattern size too small. 

Style (pattern or hatch) index is less than zero. 

Pattern .table index too large. 

Cerror pattern_reference__:point(begin) 
Ccoor *begin; 

pattern_reference_point defines the point in VDC space where the 

Version C of 17 March 1986 



66 SunCGJ Reference Manual 

Errors 

Pattern Size 

Errors 

Pattern with Fill Color 
(SunCGI Extension) 

4.7. Perimeter Attributes 

Perimeter Type 

pattern box begins. The pattern is then replicated over all VDC space. The upper 0 
left-hand comer of the pattern box is determined by begin. The default pattern • 
reference point is (0, 0). pattern_reference_point has no effect if the 
interior style is not set to PATTERN. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror pattern_size(dx, dy) 
Cint dx, dy; /* size of pattern in VDC space*/ 

pattern_size defines the size of the pattern array in VDC coordinates. dx 
and dy determine the size of an element of the pattern in VDC space. 
pattern size therefore allows you to 'stretch' the pattern to a certain size. 
If dx or dy would result in pattern elements less than one pixel wide, 1 is used. 
If the pattern size is larger than the bounds of screen space, the effective pattern 
size is the size of VDC space. The default pattern size is (300, 300). 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror pattern_with_fill_color(flag) 
Cflag flag; /* ON to use nonzero pattern 

elements as fill color*/ 

Binary patterns allow the same pattern to be applied in different colors, without 0 
redefining the pattern array. pattern_with_fill_color sets a non-
standard CG! state pattern with fill color. The default pattern with fill color is 
OFF and each color value in a pattern table entry is used verbatim, as in standard 
CGI. When a pattern is used while flag is ON, the pattern is considered to be a 
20 array of flags: where the pattern element is nonzero, the current fill color is 
used, instead of the actual value of the pattern element. (When pattern with fill 
color is zero, a zero color index is used, just as when the flag is OFF.) 

The following sections contain descriptions of functions that determine the per­
imeter attributes perimeter type, perimeter width , perimeter width specification 
mode and perimeter color. 

Cerror perirneter_type(ttyp) 
Clintype ttyp; /* style of perimeter*/ 

perimeter_type defines the perimeter type for solid objects. The 
enumerated type Clintype contains values that correspond to valid perimeter 
types. 

Version C of 17 March 1986 

0 



0 

Errors 

Q Perimeter Width 

0 

Errors 

Perimeter Width Specification 
Mode 

typedef enum 
SOLID, 
DOTTED, 
DASHED, 
DASHED_DOTTED, 
DASH_DOT_DOTTED, 
LONG DASHED 

Clintype; 

Chapter 4 - Attributes 67 

The default perimeter style is SOLID. Notice that there is no ending style for per­
imeter. The endstyle is controlled by the line_endstyle function. 

As mentioned previously, control of the drawing of the borders of solid objects is 
under the control of the perimeter attribute functions, not the line attribute func­
tions. However, the two sets of functions take the same values. The perimeter 
attributes are essentially the same as the line attributes except that they affect the 
borders of solid attributes. The appearance of a perimeter can be similar to a line 
especially if interior style is set to HOLLOW. Perimeter attribute functions have 
no effect if the perimeter visibility is set to OFF. 

ENOTOPOP [5] 

EBTBUNDL [30] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Cerror perimeter_width(width) 
Cfloat width; /* perimeter width*/ 

perimeter _width determines the width of the perimeters of solid objects. 
index can be expressed in percent of VDC space or pixels. If the perimeter width 
specification mode is set to SCALED and the x and y dimensions are different, the 
perimeter width is calculated on the basis of the range of the x coordinate of 
VDC space. If the parameter setting would result in a perimeter less than one 
pixel wide, the perimeter width is displayed as one pixel wide. The default per­
imeter width is 0.0 (SCALED). 

ENOTOPOP [5] 

EBTBUNDL [30] 

EBDWIDTH [34] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Width must be nonnegative. 

Cerror perimeter_width_specification_mode(mode) 
Cspecmode mode; /* pixels or percent*/ 

perimeter_width_specification_mode allows the 
perimeter_ width to be specified in pixels or as a percentage of VDC space 
according to the value of mode (which can either be ABSOLUTE or SCALED). If 
the perimeter width specification mode is changed from ABSOLUTE to SCALED, 
the change in the line width will probably be dramatic. The default perimeter 
width specification mode is SCALED. 

Version C of 17 March 1986 



68 SunCGI Reference Manual 

Errors 

Perimeter Color 

Errors 

4.8. Text Attributes 

Text Bundle Index 

Errors 

Text Precision 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror perirneter_color(index) 
Cint index; /* perimeter color*/ 

perimeter_color determines the color of the perimeters. index selects an 
entry in the color lookup table. The default value of index is I. An error is 
detected if index is not between O and 255. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECINDXLZ [35] 

EBADCOLX [36] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Color index is less than zero. 

Color index is invalid. 

SunCGI provides a variety of functions for determining how text is written to 
the screen. The most important text attribute is text precision . If text precision 
is set to STRING, firmware characters are used. The fonts, size, spacing, and 
alignment of firmware are more limited than characters drawn with text preci­
sion set to a value other than STRING. Therefore, calls to text attribute functions 
regulating these aspects of text drawing have no effect when text precision is set 
to STRING. 

Cerror text_bundle_index(index) 
Cint index; /* text bundle index*/ 

text_ bundle_ index sets the current text bundle index to the value of index. 
The contents of the text bundle index are text font text precision , character 
expansion factor, character spacing, and text color. The character height 
character orientation character path text alignment and fixed font are not 
included in the definition of the text bundle. If index is not defined, an error is 
generated, and the text bundle index does not change. If the ASF' s for any of 
these attributes are set to BUNDLED, the current values of these attributes are set 
to the contents of the bundle. 

ENOTOPOP [5] 

EBADTXTX [45] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Text index is invalid. 

Cerror text_precision(ttyp) 
Cprectype ttyp; /* text type*/ 

text_precision controls the precision with which text is displayed. The 
enumerated type Cprectype contains values that correspond to valid text pre­
cisions. 

Version C of 17 March 1986 

0 

0 

0 



0 

Errors 

Character Set Index 

0 
Errors 

Text Font Index 

Errors 

0 

typedef enum { 
STRING, 
CHARACTER, 
STROKE 

Cprectype; 

Chapter 4 - Attributes 69 

If the text precision is set to STRING, the firmware character set is used. Note: 
firmware characters cannot be scaled or rotated. 

Characters are clipped, but not in parts (that is, if any portion of the character 
exceeds the clipping boundary the whole character is clipped). If the text preci­
sion is set to CHARACTER, software generated characters are employed and char­
acters are clipped, but not in parts. All text attributes have a visible effect on 
software generated characters. If the text precision is set to STROKE, the CHAR­

ACTER precision capabilities are enabled and characters are clipped in parts. The 
default text precision is STRING. 

ENOTOPOP [5] 

EBTBUNDL [30] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Cerror character_set_index(index) 
Cint index; /* font set*/ 

character set index selects a set of fonts. Although SunCGI supports - -
this function, only set number I is defined. Calls to character_set_index 
with index assigned to a value other than I are ignored. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror text_font_index(index) 
Cint index; /*font*/ 

text_font_index determines the current font. A list of available fonts and 
their availability when text precision is set to STRING is given in Table 4-3. A 
warning about the SYMBOL font: undefined characters are displayed as bugs (the 
six-legged kind). The default font is STICK. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ETXTFLIN [47] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Text font is invalid. 

Version C of 17 March 1986 



70 SunCGI Reference Manual 

Table 4-3 

Character Expansion Factor 

Errors 

Character Spacing 

Errors 

Character Height 

Available Fonts 

Font I String Precision 
ROMAN Yes 
GREEK Yest 
SCRIPT Yes 
OLD ENGLISH No 
STICK Yes 
SYMBOLS No 

t displayed as STICK font. 

Cerror character_expansion_factor(efac) 
Cfloat efac; /* width factor*/ 

character_ expansion_factor determines the width-to-height ratio of 
characters. If efac is greater than 1 the characters appear fatter than they are 
wide. If efac is less than 1 the characters appear slimmer than they are wide. 
The default character expansion factor is 1.0. An error is generated if efac is 
less than 0.01 or greater than 10. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECEXFOOR [48] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASP is BUNDLED. 

Expansion factor is out of range. 

Cerror character_spacing(spcratio) 
Cfloat spcratio; /* spacing ratio*/ 

character_spacing sets the spacing between characters based on the height 
of the characters. The amount of space between characters is obtained by multi­
plying the character height by spcratio. The default character spacing factor is 
0.1. An error is generated if spcratio is less than -10 or greater than 10. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECEXFOOR [48] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASP is BUNDLED. 

Expansion factor is out of range. 

Cerror character_height(height) 
Cint height; /* height in VDC */ 

Toe character height function determines the height of text in VDC units. 
The height is defined as the distance from the top to the bottom of the character. 

Notice that changing the character height implicitly changes the character spac­
ing. 

Version C of 17 March 1986 

I 01 

0 

0 



0 

0 

0 

Errors 

Fixed Font (SunCGI 
Extension) 

Errors 

Text Color 

Errors 

Character Orientation 

Chapter 4 - Attributes 71 

The default character height is 1000. Titis may result in huge characters if VDC 
space is reset from its default range (0-32767). If the x and y dimensions of VDC 
space are different, the height is calculated on the basis of the range of the x 
coordinate of VDC space. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECHHTLEZ [49] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Character height is less than or equal to zero. 

Cerror fixed_font(flag) 
Cint flag; /* fixed or variable width characters*/ 

fixed font allows characters to be of fixed or variable size. lfjlag is 
nonzero-: the characters are of uniform size, otherwise the characters are packed 
proponional to their actual sizes. If the character precision is STRING, this func­
tion has no effect By default SunCGI supports variable width characters. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror text_color(index) 
Cint index; /*color*/ 

text_color determines the color of the text index selects an entry in the 
color lookup table. The default value of index is 1. An error is detected if index 
is not between O and 255. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECINDXLZ [35] 

EBADCOLX [36] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Color index is less than zero. 

Color index is invalid. 

Cerror character_orientation(xbase, ybase, xup, yup) 
Cfloat xbase, ybase, xup, yup; 

/* character base and up vectors*/ 

character_orientation specifies the skew and direction of text The left 
side of the character box lies on an invisible line called the character up vector 
whose slope is determined by xup and yup. 'The bottom of the character box lies 
on an invisible line called the character base uctor whose slope is determined 
by xbase and ybase. 

If the character up vector and the character base vector are not orthogonal, the 
text is distorted. Calls to character_orientation have no effect if text 
precision is set to STRING. The default values for the character up vector and 
the character base vector are xbase - 1.0, ybase - 0.0, xup = 0.0, and yup = 

Version C of 17 March 1986 



72 SunCGI Reference Manual 

Errors 

Character Path 

Errors 

Text Alignment 

1.0. 

The character up vector and the character base vector influence the character 
path and the character alignment. For example, if xbase = -1.0 and the character 
path is RIGIIT, the text is written to the left . 

ENOTOPOP (5] 

ECHRUPVZ (50] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Length of character up vector or character base vector is 
zero. 

Cerror character_path(path) 
Cpathtype path; /* text direction*/ 

character__path specifies the direction in which text is written. The 
enumerated type Cpa th type contains values that correspond to valid character 
paths. 

typedef enum 
RIGHT, 
LEFT, 
UP, 
DOWN 

Cpathtype; 

0 

The actual effect of character__path depends on the character up vector o, 
and the character base vector. RIGIIT specifies that the text is written in the 
direction of the character base vector. For example, if the direction of the char-
acter base vector points left instead of right (xup • -1.0 instead of 1.0), the text 
will be written right-to-left instead of left-to-right which is the usual interpreta-
tion of RIGIIT. LEFT specifies that the text is written in the opposite direction of 
the character base vector. The character up vector and character base vector 
essentially change functions when the character direction is set to UP or DOWN. 
UP specifies that the text is written in the direction of the character up vector . 
DOWN specifies that the text is written in the opposite direction of the character 
up vector. The default character path is RIGIIT. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror text_aligrunent(halign, valign, hcalind, vcalind) 
Chaligntype halign; /* horizontal aligrunent type*/ 
Cvaligntype valign; /* vertical aligrunent type*/ 
Cfloat hcalind, vcalind; 

/* continuous alignment indicators*/ 

text_ aligrunent determines where the text is positioned relative to the start­
ing point specified by the cl argument of the text or vdm_text function. 
halign determines where the character is placed in relation to the x component 
of the starting coordinate of the text position (specified by the cl argument of O 
text). The enumerated type Chaligntype contains values that correspond to 

Version C of 17 March 1986 



0 

0 

0 

valid horizontal alignments. 

typedef en\llTI 
LFT, 
CNTER, 
RGHT, 
NRMAL, 
CNT 

Chaligntype; 

Chapter 4 -Attributes 73 

If the value of halign is LFr, the horizontal position of the text will begin at the 
left edge of the box enclosing the text. Similarly, if the value of halign is RGl:IT, 
the horizontal position of the text will begin at the right edge of the box enclos­
ing the text. If the value of halign is CNTER the horizontal position of the text 
will begin equidistant from the right and the left edges of the text box. NRMAL 
assigns the alignment based on the value of the character path (see Table 4-4). 
If the value of halign is CNT (continuous) the horizontal position of the text is 
determined by the argument hcalind. In this case, the text will begin hcalind 
fraction of the width of the text box from the left edge of the character box. The 
default value of halign is NRMAL 

valign specifies where the character is placed in relation to they component.of 
the text position. The enumerated type Cvaligntype contains values that 
correspond to valid vertical alignments. 

typedef en\llTI 
TOP, 
CAP, 
HALF, 
BASE, 
BOTTOM, 
NORMAL, 
CONT 

Cvaligntype; 

If the value of valign is TOP, the vertical position of the text will begin at the top 
edge of the character box. If the value ofvalign is CAP, the vertical position of 
the text will begin at the cap line of the character.13 Simill\l"ly, if the value of 
valign is BOITOM, the vertical position of the text will begin at the bottom edge 
of the character box. If the value of valign is BASE, the vertical position of the 
text will begin at the baseline of the character.14 If the value of valign is HALF 
the vertical position of the text will begin equidistant from the top and the bottom 
edges of the character box. NORMAL assigns the alignment based on the value of.. 
the character path (see Table 4-4). If the value of valign is assigned to CONT 
(continuous), the vertical position of the text is determined by the argument 
vcalind and will begin vcalind fraction of the height of the character box from 
the bottom edge of the character box. The default value of valign is NORMAL 

13 The cap liM ii defined u the inviaJ.'ble line eoneaponding to tbe top of die average chuxler within a 
font. 

14 The btudiM is defined u the invisible line corresponding to the bottom of the average character within a 
fo!ll. The ba,,lin, does Dot neceuarily correspond to the bottan of a character. For enmple, a the tail of a 
lower.,case g ex.tends below the baseline. 

Version C of 17 March 1986 



7 4 SunCGJ Reference Manual 

Errors 

Table 4-4 Normal Alignment Values 

Character Horizontal Vertical 
Path Normal Normal 

RIGHT LEFT BASELINE 
LEFT RIGHT BASELINE 
UP CENTER BASELINE 
DOWN CENTER TOP 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

4.9. Color Attributes SunCGI supports only one color specification mode - INDEXED. This color 
specification mode means that the red, green, and blue values (hereafter referred 
to as RGB values) are obtained from a table known as the color lookup table. 

Color Table 

The initial values of the color lookup table are provided in Table 4-5. If the dev­
ice is monochrome, nonzero color values are displayed as black; zero is 
displayed as white. 

Table 4-5 Default Color Lookup Table 

Index I Color 
0 black 
1 red 
2 yellow 
3 green 
4 cyan 
5 blue 
6 magenta 
7 white 

Cerror color_table(istart, clist) 
Cint istart; /* starting address*/ 
Ccentry *clist; /* color triples and number of entries*/ 

color_ table defines RGB entries into the color lookup table. The color 
lookup table is initialized based on the depth of the display frame buffer and the 
cmapsize field provided in the Cvwsurf structure provided to open_ vws. A 
monochrome device has an unwritable color map; non-zero color indices are 
displayed as black, zero is displayed as white. A color device gets a color map 
segment with 8 entries if the cmapsize field is zero upon opening the view sur­
face. The 8 default color values are given in Table 4-5. Larger color maps are 
also initialized to evenly spaced RGB values. 

The structure Ccentry contains elements that describe a color map entry. 

Version C of 17 March 1986 

0 

0 

0 



0 

Errors 

Q 4.10. Inquiry Functions 

Inquire Line Attributes 

Errors 

Q Inquire Marker Attributes 

typedef struct { 
unsigned char *ra; 
unsigned char *ga; 
unsigned char *ba; 
Cint n; 

Ccentry; 

Chapter 4 - Attributes 7 5 

The minimum and maximum color table entries are treated specially by Pixwins 
and hence by SunCGI. If they are set to be the same value, the user's values for 
these two entries are both ignored. They revert to the inverse of the normal 
values; entry O becomes white, the maximum entry becomes black. 

The argument istart determines the first entry in the color lookup table to be 
modified. the argument clist contains the color information for entry istart in 
terms of triples of values of numbers ranging between O and 255. The last field 
of clist reports how many entries are to be modified. An error is generated if 
either the indices to the color lookup table are out of range. 

ENOTOPOP [5) CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ECINDXLZ [35) 

EBADCOLX [36) 

Color index is less than zero. 

Color index is invalid. 

The attribute inquiry functions permit examination of the current attributes. 
Attributes are reported in groups corresponding to the class of output primitive 
which they modify. The argument to each inquiry function has its own structure 
type which has an element for each of the individual attributes (see Appendix D). 

Clinatt *inquire_line_attributes() 
/* returns a pointer to line attribute structure*/ 

inquire_line_attributes reports the current line style, line width, line 
color , and polyline bundle index in the appropriate elements of the returned 
value of the function. 

typedef struct { 
Clintype style; 
Cfloat width; 
Cint color; 
Cint index; 

Clinatt; 

inquire_line_attributes returns a NULL(not an error number) in case 
of errors. Errors are printed if the error warning mode is not set to NO_ACTION. 

ENOTOPOP (5) CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Crnarkatt *inquire_rnarker_attributes() 
/* returns a pointer to marker attribute structure*/ 

Version C ofl7 March 1986 



76 SunCGI Reference Manual 

Errors 

Inquire Fill Area Attributes 

Errors 

Inquire Pattern Attributes 

inquire_marker_attributes repons the current marker style, marker 
width , marker color, and polymarker bundle index in the appropriate elements 
of the returned value of the function. 

typedef struct { 
Cmartype type; 
Cfloat size; 
Cint color; 
Cint index; 

Cmarkatt; 

inquire marker attributes returns a NULL (not an enor number) in - - . 
case of enors. Enors are printed if the enor warning mode is not set to 
NO_ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cfillatt *inquire_fill_area_attributes() 

Toe current interior style, perimeter visibility ,fill color, hatch index, pattern 
index ,fill area bundle index, perimeter style, perimeter width, and perimeter 
color can be obtained by using the inquire_fill_attributes function. 

typedef struct { 
Cintertype style; 
Cflagtype visible; 
Cint color; 
Cint hatch_index; 
Cint pattern_index; 
Cint index; 
Clintype pstyle; 
Cfloat pwidth; 
Cint pcolor; 

fillatt; 

inquire_fill_area_attributes returns a NULL (not anenornumber) 
in case of enors. Enors are printed if the enor warning mode is not set to 
NO_ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cpatternatt *inquire_pattern_attributes() 
/* returns a pointer to pattern attribute structure*/ 

inquire_pattern_attributes repons the cu"ent pattern index, row 
count, column count, color list, pattern reference point, and pattern size. 

~)sun 
"ql --

Version C of 17 March 1986 

0 

0 

0 



0 

Errors 

Inquire Text Attributes 

0 

Errors 

0 

typedef struct { 
Cint cur_index; 
Cint row; 
Cint column; 
Cint *colorlist; 
Ccoor *point; 
Cint dx; 
Cint dy; 

patternatt; 

Chapter 4 - Attributes 77 

inquire_pattern_attributes returns a NUU.(not an error number) in 
case of errors. Errors are printed if the error warning mode is not set to 
NO_ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Ctextatt *inquire_text_attributes() 
/* returns a pointer to text attribute structure*/ 

inquire_ text_ attributes reports the current font set, text bundle index, 
font , text precision , character expansion factor , character spacing , text color , 
character height, character base vector, character up vector, character path , 
and text alignment. 

typedef struct { 
Cint fontset; 
Cint index; 
Cint current_font; 
Cprectype precision; 
Cfloat exp_factor; 
Cfloat space; 
Cint color; 
Cint height; 
Cfloat basex; 
Cfloat basey; 
Cfloat upx; 
Cfloat upy; 
Cpathtype path; 
Chaligntype halign; 
Cvaligntype valign; 
Cfloat hcalind; 
Cfloat veal.ind; 

textatt; 

inquire_text_attributes returns a NULl..(not an error number) in case 
of errors. Em>rs are primed if the error warning mode is not set to NO_ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Version C of 17 March 1986 



78 SunCGI Reference Manual 

Inquire Aspect Source Flags 

Errors 

Cflaglist *inquire_aspect_source_flags() 
/* returns a pointer to text attribute structure*/ 

inquire_ aspect_ source_£ lags reports whether attributes are set indivi­
dually by returning all of the values of the ASFs. The element n of the flaglist 
struct is set to 18. The definitions of each flag are in Table 4-2. 

typedef struct 
Cint n; 
Cint *nwn; 
Casptype •value; 

Cflaglist; 

inquire_aspect_source_flags returns a NULL (not an error number) in 
case of enors. Enors are printed if the enor warning mode is not set to 
NO_ACI10N. 

ENOTOPOP [5] COi not in proper state COi shall be in state VDOP, 
VSOP, or VSAC. 

Version C of 17 March 1986 

0 

0 



0 

0 

0 

5 
Input 

Input........................................................................................................................................................ 81 

5.1. Input Device Initialization.......................................................................................... 84 

Initialize LID ................................................................................................................... 84 

Release Input Device .................................................................................................. 85 

Associate ............................................................................................................................ 85 

Set Default Trigger Associations ......................................................................... 86 

Dissociate .......................................................................................................................... 86 

Set Initial Value ............................................................................................................ . 

Set VALUATOR Range .......................................................................................... . 

Track On ........................................................................................................................... . 

Track Off .......................................................................................................................... . 

5.2. Synchronous Input ......................................................................................................... . 

87 

87 

88 

89 

90 
Request Input .................................................................................................................. 91 

5.3. Asynchronous Input ....................................................................................................... 92 

Initiate Request .............................................................................................................. 92 

5.4. Event Queue Input ·······························································-··-----·-·---·········· 93 

Enable Events ··························································-······-·--·····---·······-·-·-····-·-·· 95 

Await Event ·····················································-················-·-·-···-·-·--··-······-··········· 95 

Flush Event Queue ························································-··········-······---·-·····-······ 96 

Selective Flush of Event Queue ···································--····--····-··-···-··--··· 96 

5.5. Miscellaneous Input Functions ................................................................................ 97 

Sample Input ................................................................................... ·-·---········--······ 97 

Get Last Requested Input ......................................................................................... 97 



Disable Events ................................................................................................................ 98 

5.6. Status Inquiries ................................................................................................................. 98 

Inquire LID State List ................................................................................................ 98 0 
Inquire LID State .......................................................................................................... 99 

Inquire Trigger State ................................................................................................... 99 

Inquire Event Queue State ....................................................................................... 99 

0 

0 



0 

0 

0 

5 
Input 

CG! has a collection of functions for managing input devices. The design of these 
functions has two purposes: provide an interface close to the acrual input device 
and maintain portability of applications. CG! accomplishes the first goal with dif­
ferent input device classes and methods of extracting input values. The second 
goal is achieved through CGI's model of logical input devices (LID), an abstrac­
tion whereby logical input devices required by the CG! standard are mapped onto 
the physical devices available to a CG! implementation. This section will intro­
duce some of the terms used in describing the functionality of the CG! input prim­
itives. 

A CGI input device consists of a measure associated with a trigger. A measure 
is the current value of a logical input device. For example, the IC_LOCATOR dev­
ice reports an x-y position. This device is useful for determining a position on 
the screen. A trigger is a physical device used by an operator to accept a current 
value. A trigger fire corresponds to an event on a physical input device. At the 
request of the application program, SunCGI associates a measure with a trigger. 
Table 5-1 has a list of the five logical input devices available to SunCGI applica­
tion programs and the available triggers. For example, a mouse button on a Sun 
workstation is a trigger that can be associated with a IC_LOCATOR device. When 
the mouse button is pressed, the x-y position of the mouse is returned as the 
measure of the IC _LOCATOR input device. 

An input event is the information saved when a trigger fires. This includes the 
measure of a logical input device associated with a trigger. 

81 Version C of 17 March 1986 



82 SunCGI Reference Manual 

Table 5-1 Input Devices Offered by SunCGI 

Device Measure 
Trigger 

Trigger 
Class Number 

IC LOCATOR x-y position in VDC 2 Left mouse button 
space. 3 Middle mouse button 

4 Right mouse button 
5 Mouse movementt 
6 Mouse still:j: 

IC STROKE Array of x-y points in 2 Left mouse button 
VDC space. 3 Middle mouse button 

4 Right mouse button 

IC.VALUATOR Normalized x position. 2 Left mouse button 
3 Middle mouse button 
4 Right mouse button 
5 Mouse movement 
6 Mouse still 

IC CHOICE A non-negative integer 2 Left mouse button 
which represents a 3 Middle mouse button 
selection from a number 4 Right mouse button 
of choices. Zero 
represents "no choice". 

IC_STRING Character string. I Keyboard input ter-
minated a carriage 
retum 

t The Mouse Movement trigger fires when the mouse moves. 

:j: The Mouse Still trigger fires when the mouse does not move for one fifth 
of a second or more. 

The graphical method with which the measure of an input device is displayed is 
called tracking . SunCGI provides several methods of tracking for each input 
device. Table 5-3 has a list of track types available for each input device class. 
Tracking must be explicitly enabled for each device. 

Each input device can be in one of the five states described pictorially in Figure 
5-1. The state of an input device determines the manner in which the application 
program retrieves the measure of the input device. The input functions that allow 
a change of state are listed next IX> the arrows indicating the state change. 

RELEASED 
Before an input device is initialized it is in the RELEASED state. Any input 
function (except initialization) will generate an error in this state. 

NO_EVENTS 

0 

0 

After an input device has been initialized it is in the NO_EVENTS state. An 0, 
application program can extract an input value of an input device in 
NO_EVENTS state. This will result in either the value that the device was 

Version C of 17 March 1986 



0 

0 

0 

Chapter 5 - Input 83 

initialized with or the value the device had when it was in a state where it 
could process events. Tilis is not necessarily the current measure of the 
device and does not change while the device is in this state. 

RESPOND_EVENT 
The RESPOND_EVENT state corresponds with synchronous communication 
between the process that controls the input device and the application pro­
gram. When an application program requests the measure of an input device 
in RESPOND_EVENT state, SunCGI blocks program execution until it can 
fulfill the request. The request_input function will return when the 
trigger fires and tbe input request is satisfied or after a timeout period. The 
input device then reverts to NO_ EVENTS state. 

The function that requests input and puts the input device in 
RESPOND _EVENT state is request input. Wl).en the trigger associated 
with an input device in RESPOND_ EVENT state fires, the measure of that input 
device is then stored in the request register as well as returned by the 
request_input function. 

REQUEST _EVENT 
The REQUEST_EVENT state corresponds with asynchronous communication 
between the process that controls the input device and the application pro­
gram. When an application samples an input device, input handling and pro­
gram execution continue in parallel. Either the requested trigger fires or an 
explicit request is made to disable event processing and return the device to 
NO_EVENTS state. 

When the trigger associated with an input device in REQUEST_ EVENT state 
fires, tli.e measure of that input device is then stored in the request register, a 
buffer with one element per device. The request register can be then be read 
with get_last_requested_event. 

QUEUE EVENT 
When a device is in QUEUE_ EVENT mode, events associated with the indi­
cated device are appended to the event queue, a first-in, first-out (FIFO) 
buffer shared by all input devices. After calling enable_ events, the 
SunCGI application retains program control. While an input device is in 
QUEUE_ EVENT mode, events are simultaneously added to the event queue 
when the program executes. 

await_event returns the event at the head of the event queue. If the 
queue is empty, await_event will wait for the designated trigger to fire 
or a timeout. The application program must process this queue in a timely 
fashion or it will qverjlow. The event queue can be flushed completely or 
for a specific device. The application program must make an explicit request 
to disable event queue processing and return an input device to NO_ EVENTS 
state. 

~~sun 
... 11Ln.a,:11e1Ta 

Version C of 17 March 1986 



84 SunCGI Reference Manual 

Request 
Input 

RESPOND 
EVENT 

timeout 
or 

trigger fire 

Figure 5-1 

5.1. Input Device 
Initialization 

Initialize LID 

Initialize LID 

RELEASED 

NO 
EVENTS 

Release LID 

Initiate 
Request 

Disable 
Events 

or 
trigger fire 

REQUEST 
EVENT 

CG! Input State Model 

Enable 
Events 

QUEUE 
EVENT 

Disable 
Events 

0 

0 

Before input can be processed, an input devices must be initialized and associ­
ated with a trigger. Input device initialization requires at least one active view 
surface. Typically, the procedure for initializing an input device includes calls to 
the initialize_ lid and associate functions which tum on an input dev­
ice and associate it with a specific trigger. 

Cerror initialize_lid(devclass, devnum, ival) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Cinrep *ival; /* initial value of device measure*/ 

initialize_lid initializes an input device and changes its state from 
RELEASED to NO_ EVENTS. 1bis function must be called for an input device 
before it can be referenced by any other input fullCl:ion. The argument devclass 
specifies the desired type of input value. devnum indicates the number of the 
device within that class. The argument ival sets the initial measure of the dev­
ice. 

Toe Cinrep structure contains different elements for each type of measure. Toe i 
appropriate element of Cinrep must be set or an error will be generated. o I 

Version C of 17 March 1986 



0 

Errors 

0 
Release Input Device 

Errors 

Associate 

0 

typedef struct { 
Ccoor *xypt; /*LOCATOR*/ 
Ccoorlist *points; /* STROKE devices*/ 
Cfloat val; /* VALUATOR device*/ 

· Cint choice; /* CHOICE devices*/ 
Cchar *string; /* STRING device*/ 

Chapter 5 - Input 85 

Cpick *pick; /* PICK devices (unsupported) */ 
Cinrep; 

For example, in a LOCATOR device initialization, the .xyptfield of Cinrep must 
be set to the address of a Ccoor allocated by the application program before the 
x and y elements can be set See the example program in Figure 5-2. 

Notice that whenever a device is initialized, no associations with triggers are 
made. This must be done by having the application program call the appropriate 
functions. An error is generated by initialize lid if the device does not" 
exist, if it is already initialized, or if the initial value is out of range. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDALIN [82] 

EBADDATA [95] 

ES TRS I ZE [96] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device already initialized. 15 

Contents of input data record are invalid. 

Length of initial string is greater than the implementation 
defined maximum. 

Cerror release_input_device(devclass, devnwn) 
Cdevoff devclass; /* device type*/ 
Cint devnwn; /* device number */ 

release_input_device releases all associations between a device and its 
triggers, and removes all pending events for the device from the event queue. 
release_input_device changes the state of the specified input device 
from NO_ EVENTS to RELEASED. An error is produced if devclass and devnum 
does not refer to an existing and initialized device. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Cerror associate(trigger, devclass, devnwn) 
Cint trigger; /* trigger number*/ 
Cdevoff devclass; /* device type*/ 
Cint devnwn; /* device number*/ 

15 1be ANSI lltaDdard allO'WI initialized input devices to be re-initialized. SunCGI does not because it is felt 
that re-initializ.atioa is usually a miltak.e. 

Version C of 17 March 1986 



86 SunCGI Reference Manual 

Errors 

Set Default Trigger 
Associations 

associate links a trigger with a specific device. The trigger numbers avail­
able for each device are listed in Table 5-1. Multiple associations are allowed; 
however, some associations are not allowed (for example, IC_LOCATOR may not 
be associated with the keyboard). 

The interaction between an IC_ srROKE device and the trigger requires some addi­
tional explanation. IC_srROKE can only be associated with the mouse buttons. 
The first coordinate in the IC_ srROKE array is entered when the mouse button is 
initially pressed, the last coordinate is entered when the mouse button is released. 
For IC_LOCATOR and IC_ VALUATOR devices, the measure is reported when the 
mouse button is pressed. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINASAEX [83] 

EINAIIMP [84] 

EINTRNEX [86] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not _exist 

Input device not initialized. 

Association already exists. 

Association is impossible. 

Trigger does not exist. 

Cerror set_default_trigger_associations(devclass, devnwn) 
Cdevoff devclass; /* device type*/ 
Cint devnwn; /* device number*/ 

set_default_trigger_associations associates a device with a 
default trigger. The default associations are listed in Table 5-2. The rules for 
trigger association are the same as those for the associate function. 

Table 5-2 Default Trigger Associations 

Errors 

Dissociate 

Device 
Class 

IC_LOCATOR 
IC_srROKE 
IC_VALUATOR 
IC_CHOICE 
IC STRING 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINASAEX [83] 

EINTRNEX [86] 

Trigger 
Trigger Number 

5 Mouse position 
4 Right mouse button 
3 Middle mouse button 
2 Left mouse button 
1 Keyboard 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Association already exists. 

Trigger does not exist. 

Version C of 17 Man:h 1986 

I 

OI 
I 
i 

0 

0 



0 

Errors 

Set Initial Value 

0 

Errors 

Set VALUATOR Range 

0 

Cerror dissociate(trigger, devclass, devnum) 
Cint trigger; /* trigger number*/ 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 

Chapter 5 - Input 87 

dissociate removes the association between a trigger and a specified device. 
If dissociate is called while there are events pending in the event queue for 
the dissociated device, the pending events are discanled. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINNTASD [85] 

EINTRNEX [86] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

association does not exist 

Trigger does not exist. 

Cerror set_initial_value(devclass, devnum, value) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Cinrep *value; /* device value*/ 

set initial value setsthecurrentmeasureofaspecifieddevice. This - -
function resets the position of the track, if the track is appropriate and activated. 
set_initial_ value also resets the request register. 

A pointer element of the Cinrep structure must be set to the address of an 
application program allocated area before the values can be set. For example, in 
Figure 5-2 the following statements were necessary before an initial value could 
be assigned to the LOCATOR device. 

Cinrep ivalue; 
point.x = 16384; 
point.y = 16384; 
ivalue.xypt = &point; 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EBADDATA [95] 

ESTRSIZE (96] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

Contents of input data record are invalid. 

Length of initial string is greater than the implementation 
defined maximum. 

Cerror set_valuator_range(devnum, vmin, vmax) 
Cint devnum; /* device number*/ 
Cfloat vmin, vmax; /* limits of VALUATOR*/ 

set_valuator_range specifies the limits of the IC_VALUATOR. Device 
coordinates are mapped into the JC_YALUATOR range. JC_VALUATOR events 

Vcnion C of 17 March 1986 



88 SunCGI Reference Manual 

Errors 

Track On 

Errors 

which are already on the event queue are not rescaled. These events must be o 
dequeued with either the selective_flush_of_event_queue function 
orflush_event_queue. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Cerror track_on(devclass, devnwn, tracktype, 
trackregion, value) 

Cdevoff devclass; /* device type*/ 
Cint devnwn; /* device number*/ 
Cint tracktype; /* track number*/ 
Ccoorpair *trackregion; /* window for tracking*/ • 
Cinrep *value; /* device value*/ 

Tracking functions determine how the measure of an input device is displayed on 
the view surface. Each class of devices has its own set of possible tracks (given 
in Table 5-3). Although SunCGI allows certain classes of devices to track 
simultaneously, all types of input devices are not allowed to track at once. 
Tracking is not provided in the NO_ EVENTS state unless the track type is 
PRINTERS_FIST. 

track on initiates track (or echo) for a specific device. The trac/aype argu- O· 
ment specifies the type of track to be used. The trackregion argument is not 
used; the device tracks in all areas of the view surface. The argument value is 
used to initialize tracking. The track is initially displayed on the first view sur-
face opened. 

The xypt element of the Cinrep structure must be set to the address of an appli­
cation allocated Ccoor and the Ccoor's x and y fields are set to position the 
cursor. The reference point for IC_ STROKE echos 2 through 5 is the first point in 
the Sl'ROKE array. The reference point for STRING_TRACK echo is the 
append_text concatenation point, and can be changed by calling text or 
append_text. 

ENOTVSAC [4] 

EINECHON [88] 

EINETNSU [91] 

EBADDATA [95] 

ESTRSIZE [96] 

CGI not in proper state: CGI shall be in state VSAC. 

Track already on. 

Track type not supported. 

Contents of input data record are invalid. 

Length of initial string is greater than the implementation 
defined maximum 

Version C of 17 March 1986 

0 



0 

0 

Chapter 5 -Input 89 

Table 5-3 Available Track Types 

Device Number TrackTypet Description 
Class 

IC_LOCATOR so NO_ECHO Default cursor. 
1 PRINTERS_FIST Designate the current position of the IC_LOCATOR device 

with a printer's fist cursor. 

IC_STROKE so NO_ECHO Default cursor. 
1 PRINTERS _FIST Designate the current position of the IC_STROKE device 

with a printer's fist cursor. 
2 SOUD_LINE Draw a line from the origin to the current position in the 

STROKE array. 
3 X_UNE Draw a line from the x-axis to the current position in the 

STROKE array. 
4 Y_UNE Draw a line from the y -axis to the current position in the 

STROKE array. 
5 RUBBER_BAND_BOX Designate the current position of the IC_ STROKE device 

with a rubber band line connecting the initial position 
and the current position in the STROKE array. 

IC VALUATOR so NO_ECHO Default cursor. . 
1 PRINTERS_ FIST Indicate the state of the IC_VALUATOR device with a 

printer's fist cursor. 
2 STRING_TRACK Display a digital representation of the current 

IC_VALUATOR value. 

IC CHOICE so NO_ECHO Default cursor. 
1 PRINTERS_ FIST Indicate the state of the IC_ CHOICE device with a 

printer's fist cursor. 

IC_STRING so NO ECHO Default cursor. 
1 PRINTERS_FIST Indicate the state of the IC_STRING device with a 

printer's fist cursor. 
2 STRING _TRACK Display the current STRING value. 

t The values listed in the Track Type column in Table 5-3 are contained in the enumerated type Cechotype 
returned in the Cstatelist structure by inquire_lid_state_list. They are not used by track_on 
to define a track type. 

Track Off Cerror track_off(devclass, devnum, tracktype, action) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Cint tracktype; 
Cfreeze action; 

track off terminates tracking for a specified input device. The tracktype and 
the action arguments are always ignored. 

0 
Errors ENOTVSAC [4] 

EINDNOEX [80] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Version C of 17 March 1986 



90 SunCGJ Reference Manual 

5.2. Synchronous Input 

EINDINIT (81] Input device not initialized. 

The synchronous input function request_ input allows the application pro­
gram to obtain the currem measure an of input device. This function requires 
explicit identification of an input device ( through the associate function). 

Figure 5-2 contains an example program that illustrates how to use the synchro­
nous input functions to get information from an input device. First, a 
IC_LOCATOR device is initialized and associated with a trigger (the left mouse 
button). The tracking method fl!!" the IC_LOCATOR is defined to be a printer's fist. 
Then measure of the IC_ LOCATOR is requested with a timeout period of ten 
seconds. If the trigger is activated during this period, request_input relllrns 
a valid measure in ivalue . Finally, the JC_ LOCATOR is dissociated from the 
mouse button and released. The program exits. 

YersionC of 17 March 1986 

0 

0 

0 



0 

0 

Figure 5-2 

Request Input 

0 

Chapter 5 - Input 

iinclude <cgidefs.h> 
!define TEN_SECONDS (10 * 1000 * 1000) 

main() 
{ 

Cawresult stat; 
Ccoor point; 
Cinrep ivalue; 
Cint name; 
Cint trigger; 
Cvwsurf device; 

NORMAL_VWSURF(device, PIXWINDD); 
point.x = 16384; 
point.y = 16384; 
ivalue.xypt = &point; 

open_cgi () ; 
open_vws(&narne, &device); 

initialize_lid(IC_LOCATOR, 1, &ivalue); 
associate(2, IC_LOCATOR, 1); 
track_on(IC_LOCATOR, 1, 1, (Ccoorpair *)O, &ivalue); 
request_input(IC_LOCATOR, 1, TEN_SECONDS, 

&stat, &ivalue, &trigger); 
if (stat-= VALID_DATA) 

printf("trigger activated at %d %d \n", 
ivalue.xypt->x, ivalue.xypt->y); 

else 
printf("trigger not activated \n"); 

dissociate(2, IC_LOCATOR, 1); 
release_input_device(IC_LOCATOR, 1); 

close_vws(name); 
close_ cgi () ; 

Example Program with LOCATOR Input Device 

Cerror request_input(devclass, devnum, timeout, 
valid, sample, trigger) 

Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Cint timeout; /* amount of time to wait for input*/ 
Cawresult *valid; /* device status*/ 
Cinrep *sample; /* device value*/ 
Cint *trigger; /* trigger number*/ 

91 

request_ input waits timeout microseconds for activation of a trigger associ­
ated with a specific device. If timeout is negative, the request will wait forever. 

Version C of 17 March 1986 



92 SunCGI Reference Manual 

Errors 

5.3. Asynchronous Input 

Initiate Request 

request_input puts the input device in the RESPOND_EVENT state. If a Q 
trigger is activated within this period, the activating trigger and the device meas-
ure are returned in the trigger and sample arguments respectively. If the trigger 
is not activated within this period, the current device measure is returned in the 
sample argument and trigger is set to zero. Before returning, the input device is 
reset to NO_ EVENTS state. 

request_input returns a device status in the argument valid. This argument 
uses the enumerated type Cawresult (A Wait Result) which contains values 
describing the state of an input device. 

typedef enum { 
VALID_DATA, 
TIMED_OUT, 
DISABLED, 
WRONG_STATE, 
NOT_SUPPORTED 

Cawresult; 

VALID _DATA indicates a trigger is activated within the specified timeout period. 
TIMED_ OUT indicates that a trigger was not activated with a specified period. 
WRONG_STATE indicates SunCGI is not in state VSAC. NOT_SUPPORTED indi­
cates the requestea device is not a legal device. 

If the appropriate field of the sample argument is a pointer, it must be set to an 
application program allocated area. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINEVNEN [94] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Events not enabled. 

This section explains the asynchronous method of input device management 
where the application process and the input device process operate simultane­
ously. The designated input device is sampled with initiate_request and 
the measure of the input device is read with get_last_requested_input. 
Alternatively, the current measure of a device may be read with 
sample_input. 

The example program in Figure E-2 demonstrates how to use the asynchronous 
input functions. 

Cerror initiate_request(devclass, devnum) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 

initiate_request sets up a device so that the measure resulting from the 
next trigger activation will be placed in the request register. 

0 

initiate request puts the device in the REQUEST EVENT state. It then o 
returns to the calling function without waiting for a trigger activation. The value . 
caused by the nigger activation can be obtained by the 

Venion C of 17 March 1986 



0 
Errors 

5.4. Event Queue Input 

0 

0 

Chapter 5 - Input 93 

get_last_requested_input function. 

ENOTVSAC [ 4] 

EINDNOEX [80] 

EINDINIT [81] 

EINNTASD [85] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

No triggers associated with device. 

Toe event queue is a single FIFO buffer that holds events from input devices. 
Since the event queue has a fixed length, it must be processed in a timely fashion . 
or it will overflow. Events can be removed from the event queue in three ways: 
the event at the head of the event queue can be processed with await_event; 
the entire event queue can be emptied with flush_event_queue; and the 
events from a particular device can be removed from the event queue with 
selective_flush_of_event_queue. 

Figure 5-3 contains an example program that illustrates how to use the event 
queue input functions to get information from an input device. First, a IC STRING 
device is initialized and associated with a trigger (the keyboard). Toe tracking 
method for the IC_ S'I'RING is defined to be a string that echos the keyboard input 
on the bottom of the viewpon. Toe IC_STRING is put into the QUEUE_EVENT state 
with enable_events. After the trigger fires, the measure of the IC_STRING 
device is determined with await event. Finally, the LOCATOR is dissociated 
from the mouse button and released. Toe program then exits. 

Ver.ion C of 17 March 1986 



94 SunCGI Reference Manual 

Figure 5-3 

!include <cgidefs.h> 

main() 
( 

Cawresult valid; 
Ccoor point; 
Cdevoff devclass m IC_STRING; 
Ceqflow overflow; 
Cinrep ivalue; 
Cint devnum • l; 
Cint name; 
Cint replost; 
Cint time_stamp; 
Cint timeout• (10 * 1000 * 1000); /* ten seconds*/ 
Cint tracktype m 2; 
Cint trigger= l; 
Cmesstype message_link; 
Cqtype qstat; 
Cvwsurf deviCe; 

NORMAL_VWSURF(device, PIXWINDD); 
po·int .x = 16384; 
point.y = 16384; 
ivalue.xypt = &point; 
ivalue.string = "This is a string"; 

open_cgi () ; 
open_vws(&name, &device); 

initialize_lid(devclass, devnum, &ivalue); 
associate(trigger, devclass, devnum); 
track_on(devclass, devnum, tracktype, 

(Ccoorpair *)O, &ivalue); 
enable_events(devclass, devnum); 
await_event(timeout, &valid, &devclass, &devnum, 

&ivalue, &message_link, &replost, &time_stamp, 
&qstat, &overflow); 

printf("%s\n", ivalue.string); 
disable_events(IC_STRING, devnum); 
dissociate(trigger, IC_STRING, devnum); 
release_input_device(IC_STRING, devnum); 

close_vws(name); 
close_ cgi () ; 

Example Program with STRING Input Device 

Vmion C of 17 March 1986 

0 

0 

0 



Q Enable Events 

Errors 

Await Event 

0 

0 

Cerror enable_events(devclass, devnum) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number *I 

Chapter 5 - Input 

enable events allows a device in NO EVENTS state to put events on the - -event queue. enable_events puts the input device in the QUEUE_EVENT 

95 

state. An error is generated if the device specified by devclass or devnum does 
not exist or is not initialized. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EIAEVNEN [93] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Events already enabled. 

Cerror await_event(timeout, valid, devclass, devnum, 
measure, message_link, replost, time_stamp, 
qstat, overflow) 

Cint timeout; /* input timeout period*/ 
Cawresult *valid; /*status*/ 
Cdevoff *devclass; /* device type*/ 
Cint *devnum; /* device number*/ 
Cinrep *measure; /* device value*/ 
Cmesstype *message_link; /* type of message*/ 
Cint *replost; /* reports lost*/ 
Cint *time_stamp; /* time_stamp */ 
Cqtype *qstat; /* queue status*/ 
Ceqflow *overflow; /* event queue status*/ 

await_event processes the event at the head of the event queue. valid is set 
to WRONG_SfATE if SunCGI is not in state VSAC. If the event queue is EMPTY, 
then await_ event waits timeout microseconds for a trigger to be activated. If 
timeout is less than 0, SunCGI waits until a trigger is activated. valid is set to 
VAUD_DATA if a trigger is activated within the specified timeout period and 
TIMED_ OUT otherwise. 

If either the event queue is not empty or a trigger is activated, the class, number 
and value of the device generating the evem are reported in the returned argu­
ments devclass, devnum and measure. If the appropriate field of the measure 
argument is a pointer, it must be set to an application program allocated area. 

If two events on the evem queue have the same trigger but different values, the 
argumem message_linlc is assigned to SIMULTANEOUS_EVENT_FOU.OWS; other­
wise the argumem message_linlc is set to SINGLE_EVENT. The enumerated type 
Croes st ype contains the following values: 

typedef enum { 
SIMULTANEOUS_EVENT_FOLLOWS, 
SINGLE_EVENT 

Cmesstype; 

The replost and time _stamp arguments should be ignored and are always zero. 
The returned argument qstat reports the queue status after an event is removed 

Version C of 17 March 1986 



96 SunCGI Reference Manual 

Errors 

Flush Event Queue 

Errors 

Selective Flush of Event 
Queue 

Errors 

from the head of the event queue. 

typedef enum { 
NOT_VALID, 
EMPTY, 
NON_EMPTY, 
ALMOST_FULL, 
FULL 

Cqtype; 

qstat is set to EMPTY if the event queue has no pending events. qstat is set to 
NON_EMPTY if the evem queue has events pending, but is not FULL or 
ALMOST_FULL. qstat is set to ALMOST_FUUifthere is room for only one more 
event on the evem queue. qstat is set to FULL if there is no room for more events 
on the event queue. 

The argument overflow indicates whether the event queue has overflowed or not. 
The enumerated type Ceqflow contains the following values: 

typedef enum 
NO_OFLO, 
OFLO 

Ceqflow; 

ENOTVSAC [4] 

EINQOVFL [97] 

CGI not in proper state: CGI shall be in state VSAC. 

Input queue has overflowed. 

Cerror flush_event_queue() 

flush_event_queue discards all events in the evemqueue. The purpose of 
flush_event_queue is to return the event queue to a stable state (NO_OFLO). 
flush_event_queue does not affect the state of input devices. This function 
should be used carefully to avoid throwing away mouse-ahead or type-ahead 
inputs. 

ENOTOPOP [5] CGI not in proper state CGI shall be in either in state 
VDOP, VSOP, or VSAC. 

Cerror selective_flush_of_event_queue(devclass, devnum) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 

selective_flush_of_event_queue discards all events in the event 
queue which were generated by a specified device. 
selective flush of event queue does not affect the state of the 
specified input device.-devclass and devnum must refer to an existing and ini­
tialized device or an error is produced. However, no error is returned if no events 
from the specified device are pending. 

ENOTOPOP [5] CGI not in proper state CGI shall be in either in state 
VDOP, VSOP, or VSAC. 

Version C of 17 March 1986 

0 

0 

0 



0 

0 

0 

S.S. Miscellaneous Input 
Functions 

Sample Input 

Errors 

Get Last Requested Input 

Errors 

EINDNOEX [80] 

EINDINIT [81] 

Input device does not exist 

Input device not initialized. 

Chapter 5 - Input 97 

The functions described in this section can be used with several of the input dev­
ice management techniques described in the previous sections. For example, 
sample_input can be used when a device is in either RESPOND_EVENT or 
QUEUE_EVENT state. Likewise, disable_events can be used in either of 
these states. 

Cerror sample_input(devclass, devnum, valid, sample) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Clogical *valid; /* device status*/ 
Cinrep *sample; /* device value*/ 

sarnple_input reports the current measure of the specified input device in the 
returned argument sample. The returned argument valid reports whether the 
device is initialized and prepared to receive an input. The current measure of the 
device may be set by a queued event, a requested event, or a device initialization 
depending on the state of the input device and the most recent trigger 
activation(s). See the introduction of this chapter for an explanation of the rela­
tionship between the measure of an input device and the state of an input dev­
ice. If the appropriate field of the sample argument is a pointer, it must be set to 
an application program allocated area. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Cerror get_last_requested_input(devclass, devnum, 
valid, sample) 

Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Clogical *valid; /* device status*/ 
Cinrep *sample; /* device value*/ 

get_ last_ requested_ input returns the contents of the request register. 
get_last_requested_input is usually used with 
initiate_request, but request_input also changes. the contents of the 
request register. The returned argument valid indicates whether the device exists 
and is initialized. The returned argument sample reports the event in the request 
register. If no event is in the request register, the initial device value is reported. 
If the appropriate field of the sample argument is a pointer, it must be set to an 
application program allocated area. 

ENOTVSAC [4] 

EINDNOEX [80] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Version C of 17 Man:h 1986 



98 SunCGI Reference Manual 

Disable Events 

Errors 

5.6. Status Inquiries 

Inquire LID State List 

Errors 

EINDINIT [81] Input device not initialized. 

Cerror disable_events(devclass, devnum) 
Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 

disable_events puts the input device in the NO_EVENTS state. If the device 
is in RESPOND -EVENT state, the specified device is returned to NO_ EVENTS state; 
the measure of the device is not changed by disable_ events. If the device 
is in QUEUE_ EVENT state, disable_ events stops the specified device from 
putting events on the event queue. However, existing entries on the event queue 
are not removed and existing associations remain. devclass and devnum must 
refer to an existing and initialized device or an error is produced. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINEVNEN [94] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Events not enabled. 

The current state of the input devices, triggers, and the event queue can be 
obtained by using the functions discussed in this section. 

Cerror inquire_lid_state_list(devclass, devnum, 
valid, list) 

Cdevoff devclass; /* device type*/ 
Cint devnum; /* device number*/ 
Clogical *valid; /* device supported at all*/ 
Cstatelist *list; /* table of descriptors*/ 

inquire_lid_state_list reports the status of a specific input device 
specified by devclass and devnum. The argument valid reports whether the dev­
ice is supported at all. The list argument reports the track, associations, state and 
measure of the device in the appropriate elements of list. When checking the 

· elements of list , first check the state element - if state is RELEASED, the other 
elements of list are undefined. 

typedef struct { 
Clidstate state; 
Cpromstate prompt; 
Cackstate acknowledgement; 
Cinrep *current; 
Cint n; 
Cint *triggers; 
cechotype echotyp; 
Cechostate echosta; 
Cint echodat; 

Cstatelist; 

Version C of 17 March 1986 

0 

0 

0 



Inquire LID State 

Errors 

0 
Inquire Trigger State 

Errors 

Inquire Event Queue State 

0 

Chapter 5 - Input 99 

ENOTVSAC [4] 

EINDNOEX [80] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exisl 

Cerror inquire_lid_state(devclass, devnwn, valid, state) 
Cdevoff devclass; /* device type*/ 
Cint devnwn; /* device number*/ 
Clogical *valid; /* device supported at all*/ 
Clidstate *state; /* table of descriptors*/ 

inquire lid state reports the status of a specific input device specified by 
devclass and devm. The argument valid reports whether the device is sup­
ported at all. The stale argument (of type Clidstate) reports the current state 
of the specified input device. 

typedef enwn { 
RELEASE, 
NO_EVENTS, 
REQUEST_EVENT, 
RESPOND_EVENT, 
QUEUE_EVENT 

Clidstate; 

ENOTVSAC [4] 

EINDNOEX [80] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exisl 

Cerror inquire_trigger_state(trigger, valid, list) 
Cint trigger; /* trigger number*/ 
Clogical *valid; /* trigger state*/ 
Ctrigstate *list; /* trigger description table*/ 

inquire_trigger_state describes the binding between a trigger and an 
input device. If the state element of the returned argument list is INACJ1VE, no 
associations have been made with the trigger. An error is generated if the trigger 
does not exisl 

typedef struct { 
Cactstate state; /*state*/ 
Cassoclid *assoc; /* list of associations*/ 

Ctrigstate; 

ENOTVSAC [4] 

EINTRNEX [86] 

CGI not in proper state: CGI shall be in state VSAC. 

Trigger does not exisl 

Cerror inquire_event_queue_state(qstat, qflow) 
Cqtype * qstat; /* queue state*/ 
Ceqflow * qflow; /* overflow indicator*/ 

inquire_event_queue_state reports the starus of the event queue. qstat 
indicates whether any events are pending. The argument qf/aw reports if the 
event queue is overflowing. 

Vcrsio.1 C of 17 March 1986 



100 SunCGI Reference Manual 

Errors 

typedef enum { 
NOT_VALID, 
EMPTY, 
NON_EMPTY, 
ALMOST_FULL, 
FULL 

Cqtype; 

typedef enum 
NO_OFLO, 
OFLO 

Ceqflow; 

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC. 

! 
I 

ol 

0 

Version C of 17 March 1986 



0 

0 

0 

Differences between SunCore and 
SunCGI 

A 

Differences between SunCore and SunCGI ···-···-·-·-····--·-·-······-················-·· 103 

A.I. Output Primitives ........................................................................................................... 103 

Output Aspects of SunCore not Supported by SunCGI .......................... 104 

Output Fearures of SunCGI not Available in SunCore .......•..•...•.....•.. 104 

A.2. Segmentation ························"·······································································-·-··········· 104 
A.3. Differences in Input Functions between SunCore and SunCGI .......... 104 

• 



0 

0 

! 

i 
; 

0 
I 



0 

A.1. Output Primitives 

0 

Table A-1 

0 

A 
Differences between SunCore and 

SunCGI 

'This appendix provides an introduction to SunCGI for programmers who have 
programming experience with SunCore or graphics packages based on the ACM 
Core Graphics Specification. The three major differences between SunCore and 
SunCGI are in the areas of output primitives, segmentation, and input. While 
SunCore is generally a 'higher-level' package, SunCGI has capabilities which 
are not available in SunCore. 

The major differences in drawing objects to the screen between SunCore and 
SunCGI are that 

1. SunCGI does not suppon 3D primitives, and 

2. SunCGI does not have floating-point world coordinates or image 
transforms, and, 

3. SunCGI does not suppott the concept of current position, and 

4. SunCGI does not suppott textured color lookup table for monochrome dev-
ices. 

However, SunCGI provides a wider variety of geometrical and raster primitives, 
and more control over the drawing of text These differences are summarized in 
Table A-1. 

Difference in Output Primitives 

Feature I SunCore I SunCGI 
3D Output Primitives Yes No 
Current Position Yes No 
Textured Color Lookup Tables Yes No 
Polygons with Invisible Edges No Yes 
Circles and Ellipses No Yes 
Cell Amys No Yes 
Character Qipping No Yes 

103 Version C of 17 March 1986 



104 SunCGI Reference Manual 

Output Aspects of SunCore 
not Supported by SunCGI 

Output Features of SunCGI 
not Available in SunCore 

A.2. Segmentation 

A.3. Differences in Input 
Functions between 
SunCore and SunCGI 

SunCGI does not support 3D output primitives, current position, or textured 
color lookup tables for monochrome devices. Since 3D output primitives are not 
supported, no shading or li~ting functions are provided either. Furthermore, no 
rotation or translation functions are provided. Therefore, if you want to rotate a 
geometrical output primitive, these operations must be done by your application 
program. 

Since SunCGI does not maintain the current position of the output 'cursor', rela­
tive drawing functions such as polygon_rel_3 are not supported. However, 
the application programmer can implement this function by specifying all coordi­
nates as a base register plus a constant. The base register can be used by the 
application program to maintain the value of the current position. 

For monochrome devices, SunCore interprets the entries in the color lookup 
table with indices greater than one as patterns. SunCGI interprets all color 
lookup table entries greater than zero as black. Patterns in SunCGI are explicitly 
specified in the pattern table and invoked by using the PA1TERN or HATCH inte­
rior styles. In addition, while patterns in SunCore are all 4 x 4 matrices, patterns 
in Sun CG I have variable dimensions. 

SunCGI offers geometrical and raster primitives not available in Sun Core, as 
well as increased control over the drawing of text. SunCGI provides circles and 
ellipses. SunCGI also supports the cell array which is a raster array whose ele­
ment size is a function of the screen size. SunCGI clips characters in parts if the 
text precision is set to STROKE. 

SunCGI does not support segmentation. This effect influences the effect of attri­
bute calls. In SunCore, some attributes (for example, highlighting) apply to 
entire segments. Since no concept of segmentation exists in SunCGI, these attri­
butes are not offered. Furthermore, SunCGI does not allow the saving or restor­
ing of segments to the screen, so screen repainting functions must be completely 
defined by the application program, unless the view surface is initialized as a 
retained view surface and is not resized. 

SunCore provides device-specific functions for setting input device parameters 
and reading input from them. SunCGI provides no device dependent calls. 
SunCGI has three methods for obtaining the measure of input devices 

1. by first activation (REQUEST EVENT}, 

2. by most recent activation (RESPOND EVENT}, or 

3. by mediating input requests through the event queue (QUEUE EVENT). 

Furthermore, SunCGI allows the explicit binding of triggers (physical input dev­
ices) to logical input devices. 

Version C of 17 March 1986 

0 

0 

0 



0 
B 

Unsupported Aspects of CGI 

Unsupported Aspects of CGI ................................................................................. -........... 107 

0 

0 



0 

0 

0 



0 

0 

0 

Table B-1 

B 
Unsupported Aspects of CGI 

SunCGI does not support certain optional aspects of the proposed draft ANSI cm 
standard. Most notably SunCGI does not support the full constellation of nego­
tiation functions or tracking. SunCGI does not allow the resetting of coordinate 
type, coordinate precision or color specification mode because to do so would 
greatly reduce the speed of application programs written in SunCGI. Further­
more, SunCGI does not support echoing functions for input, but provides the 
tracking functions instead. 

Unsupported Control Functions 

Function 
vdc_type 
vdc_precision_for_integer_points 
vdc_precision_for_real_points 
integer_precision 
real_precision 
index_precision 
color_selection_mode 
color_precision 
color_index_precision 
viewport_specification_mode 
make_picture current 

Table B-2 Unsupported Input Functions 

Fune.ion 
set_prompt_state 
set_acknowledgement_state 
echo_on 
echo off 
echo update 

The following SunCGI functions are nonstandard (that is, are not in the stan­
dards document) and are included to make CGI easier to use. In addition, 
SunCGI has non-standard view surface arguments for certain control functions. 

107 Version C of 17 March 1986 



108 SunCGI Reference Manual 

Table B-3 Non Standard Control Functions 

Function 
open_cgi 
open_vws 
activate_vws 
deactivate vws 
close_vws 
close cgi 

Table B-4 Non Standard Attribute Functions 

Function 
define_bundle index 
line_endstyle 
set_global_drawing_mode 
pattern_with_fill_color 
fixed font 

The Cinrep structure contains a presently unsupponed pick field, for compati­
bility with future segment manipulation capabilities. 

Version C of 17 March 1986 

0 

0 

0 



,---------------

0 C 
Type and Structure Definitions 

Type and Structure Definitions .......................................................................................... 111 

0 

0 



0 

0 

0 



0 

0 

0 

C 
Type and Structure Definitions 

This appendix provides a list of the structures and enumerated types used by 
SunCGI functions. In addition, a list of useful constants defined in 
<cgiconstants. h> is given. 

/*devices*/ 
#define BW1DD 1 
#define BW2DD 2 
tdefine CG1DD 3 
tdefine PIXWINDD 4 
tdefine CGPIXWINDD 5 
tdefine GP1DD 6 
tdefine CG2DD 7 

tdefine VWSURF NEWFLG 

/* limits *I 
#define MAXVWS 5 

#define MAXTRIG 6 
#define MAXASSOC 5 
tdefine MAXEVENTS 1024 

1 

tdefine MAXAESSIZE 10 /* maximum number of AES table entries*/ 
#define MAXNUMPATS SO /* maximum number of pattern table entries*/ 
#define MAXPATSIZE 256 I* maximum pattern size*/ 
tdefine MAXPTS 1024 /* maximum number of pts per polygon*/ 
#define MAXCHAR 256 /* maximum number of chars in a string*/ 
tdefine OUTFUNS 67 /* number of output functions*/ 
#define INFUNS 22 /* number of input functions*/ 
#define SMALL_CHAR 6 /* minimum character size*/ 
#define DEVNAMESIZE 20 

The type and structure definitions that follow can be found in the header file 
<cgidef s. h>. 

typedef enum 
ACK_ON, 
ACK_OFF 

Cackstate; 

typedef enum 
ACTIVE, 
INACTIVE 

111 Version C of 17 March 1986 



112 SunCGI Reference Manual 

) Cactstate; 

typedef enum 
CLEAR, 
NO_OP, 
RETAIN 

Cacttype; 

typedef enum 
INDIVIDUAL, 
BUNDLED 

Casptype; 

typedef struct 
Cint n; 
Cdevoff *class; 
Cint *assoc; 

Cassoclid; 

typedef enum 
VALID_DATA, 
TIMED_OUT, 
DISABLED, 
WRONG_STATE, 
NOT_SUPPORTED 

Cawresult; 

typedef enum 
BITNOT, 
BITTRUE 

Cbitmaptype; 

typedef enum { 
TRANSPARENT, 
OPAQUE 

Cbmode; 

typedef struct 
Clintype line_type; 
Cfloat line_width; 
Cint line_color; 
Cmartype marker_type; 
Cfloat marker_size; 
Cint marker_color; 
Cintertype interior_style; 
Cint hatch_index; 
Cint pattern_index; 
Cint fill_color; 
Clintype perimeter_type; 
Cfloat perimeter_width; 
Cint perimeter_color; 
Cint text_font; 
Cprectype text_precision; 

0 

0 

0 

Venion C of 17 March 1986 



0 

0 

0 

App.ndix C -Type and Structure Definitions 113 

Cfloat character_expansion; 
Cfloat character_spacing; 
Cint text_color; 

Cbunatt; 

typedef struct 
unsigned char *ra; 
unsigned char *ga; 
unsigned char *ba; 
Cint n; 

Ccentry; 

typedef enum 
OPEN, 
CLOSE 

Ccflag; 

typedef struct { 
Cint numloc; 
Cint numval; 
Cint numstrk; 
Cint numchoice; 
Cint numstr; 
Cint numtrig; 
Csuptype event_queue; 
Csuptype asynch; 
Csuptype coord_map; 
csuptype echo; 
Csuptype tracking; 
Csuptype prompt; 
Csuptype acknowledgement; 
Csuptype trigger_manipulation; 

Ccgidesctab; 

typedef enum 
YES, 
NO 

Cchangetype; 

typedef char Cchar; 

typedef enum 
NOCLIP, 
CLIP, 
CLIP_RECTANGLE 

Cclip; 

typedef enum 
CHORD, 
PIE 

Cclosetype; 

typedef enum { 

Version C of 17 March 1986 



114 SunCGI Reference Manual 

REPLACE, 
AND, 
OR, 
NOT, 
XOR 

Ccornbtype; 

typedef struct 
Cint X; 
Cint y; 

Ccoor; 

typedef struct 
Ccoor *ptlist; 
Cint n; 

Ccoorlist; 

typedef struct 
Ccoor *upper; 
Ccoor *lower; 

Cc_oorpair; 

typedef enum 
IC_LOCATOR, 
IC_STROKE, 
IC_VALUATOR, 
IC_CHOICE, 
IC_STRING, 
IC PICK 

Cdevoff; 

typedef enum 
E_TRACK, 
E_ECHO, 
E_TRACK_OR_ECHO, 
E_TRACK_AND_ECHO 

Cechoav; 

typedef struct 
Cinrep *echos; 
Cint n; 

Cechodatalst; 

typedef enum ( 
ECHO_OFF, 
ECHO_ON, 
TRACK_ON 

Cechostate; 

typedef struct 
Cechostate *echos; 
Cint n; 

Cechostatelst; 

0 

0 

0 

Version C of 17 Man:h 1986 



0 

0 

0 

typedef enum { 
NO_ECHO, 
PRINTERS_FIST, 
HIGHLIGHT, 
RUBBER_BAND_BOX, 
DOTTED_LINE, 
SOLID_LINE, 
STRING_ECHO, 
XLINE, 
YLINE 

Cechotype; 

typedef struct ( 
Cint n; 
Cechoav *elements; 
Cechotype *echos; 

Cechotypelst; 

typedef enum 
NATURAL, 
POINT, 
BEST_FIT 

Cendstyle; 

typedef enum 
NO_OFLO, 
OFLO 

Ceqflow; 

typedef Cint Cerror; 

typedef enum 
INTERRUPT, 
NO_ACTION, 
POLL 

Cerrtype; 

typedef enum 
CLIP_RECT, 
VIEWPORT, 
VIEWSURFACE 

Cexttype; 

typedef struct { 
Cintertype style; 
Cflag visible; 
Cint color; 
Cint hatch_index; 
Cint pattern_index; 
Cint index; 
Clintype pstyle; 
Cfloat pwidth; 
Cint pcolor; 

Appendix C - Type and SIIUcture Defiritions 115 

Version C of 17 March 1986 



116 SunCGI Reference Manual 

} Cfillatt; 

typedef enum 
OFF, 
ON 

Cflag; 

typedef struct 
Cint n; 
Cint *num; 
Casptype *value; 

Cf lag list; 

typedef float Cfloat; 

typedef enum 
FREEZE, 
REMOVE 

Cfreeze; 

typedef enum 
LFT, 
CNTER, 
RGHT, 
NRMAL, 
CNT 

Chaligntype; 

typedef enum { 
NO_INPUT, 
ALWAYS_ON, 
SETTABLE, 
DEPENDS_ON_LID 

Cinputability; 

typedef struct { 
Ccoor *xypt; /*LOCATOR*/ 
Ccoorlist *points; /* STROKE devices*/ 
Cfloat val; /* VALUATOR device*/ 
Cint choice; /* CHOICE devices*/ 
Cchar *string; /* STRING device*/ 
Cpick *pick; /* PICK devices*/ 

Cinrep; 

typedef int Cint; 

typedef enum 
HOLLOW, 
SOLIDI, 
PATTERN, 
HATCH 

Cintertype; 

0 

0 

0 

Version C of 17 March 1986 



0 

0 

0 

Appendix C -Type and Slructure Definitions 117 

typedef struct { 
Clogical sample; 
Cchangetype change; 
Cint numassoc; 
Cint *trigassoc; 
Clogical prompt; 
Clogical acknowledgement; 
Cechotypelst *echo; 
Cchar *classdep; 
Cstatelist state; 

Cliddescript; 

typedef enum { 
RELEASE, 
NO_EVENTS, 
REQUEST_EVENT, 
RESPOND_EVENT, 
QUEUE_EVENT 

Clidstate; 

typedef struct 
Clintype style; 
Cfloat width; 
Cint color; 
Cint index; 

Clinatt; 

typedef enum 
SOLID, 
DOTTED, 
DASHED, 
DASHED_DOTTED, 
DASH_DOT_DOTTED, 
LONG_DASHED 

Clintype; 

typedef enum 
L_FALSE, 
L_TRUE 

Clogical; 

typedef struct 
Cma.rtype type; 
Cfloat size; 
Cint color; 
Cint index; 

Cmarkatt; 

typedef enum 
DOT, 
PLUS, 
ASTERISK, 
CIRCLE, 

Version C of 17 March 1986 



118 SunCGI Reference Manual 

X 
Cmartype; 

typedef enum 
SIMULTANEOUS_EVENT_FOLLOWS, 
SINGLE_EVENT 

Cmesstype; 

typedef enum 
RIGHT, 
LEFT, 
UP, 
DOWN 

Cpathtype; 

typedef struct 
Cint cur_index; 
Cint row; 
Cint column; 
Cint *colorlist; 
Ccoor *point; 
Cint dx; 
Cint dy; 

Cpatternatt; 

typedef struct 
int segid; /*segment*/ 
int pickid; /* pick id*/ 

Cpick; 

typedef struct pixrect Cpixrect; 

typedef enum { 
STRING, 
CHARACTER, 
STROKE 

Cprectype; 

typedef enum 
PROMPT_OFF, 
PROMPT_ON 

Cpromstate; 

typedef enum { 
NOT_VALID, 
EMPTY, 
NON_EMPTY, 
ALMOST_FULL, 
FULL 

Cqtype; 

typedef enum 
ABSOLUTE, 

0 

0 

0 

Version C of 17 March 1986 



0 

0 

0 

Appendix C - Type and Structure Definitions 119 

SCALED 
Cspecmode; 

typedef struct 
Clidstate state; 
Cpromstate prompt; 
Cackstate acknowledgement; 
Cinrep *current; 
Cint n; 
Cint *triggers; 
Cechotype echotyp; 
Cechostate echosta; 
Cint echodat; 

Cstatelist; 

typedef enurn { 
NONE, 
REQUIRED_FUNCTIONS_ONLY, 
SOME_NON_REQUIRED_FUNCTIONS, 
ALL_NON_REQUIRED_FUNCTIONS 

Csuptype; 

typedef struct { 
Cint fontset; 
Cint index; 
Cint current_font; 
Cprectype precision; 
Cfloat exp_factor; 
Cfloat space; 
Cint color; 
Cint height; 
Cfloat basex; 
Cfloat basey; 
Cfloat upx; 
Cfloat upy; 
Cpathtype path; 
Chaligntype halign; 
Cvaligntype valign; 
Cfloat hcalind; 
Cfloat vcalind; 

Ctextatt; 

typedef enurn 
NOT_FINAL, 
FINAL 

Ctextfinal; 

typedef struct ( 
Cchangetype change; 
Cassoclid *numassoc; 
Cint maxassoc; 
Cpromstate prompt; 
Cackstate acknowledgement; 

Version C of 17 March 1986 



120 SrnCGI Reference Manual 

Cchar *name; 
Cchar *description; 

Ctrigdis; 

typedef struct 
Cactstate state; 
Cassoclid *assoc; 

Ctrigstate; 

typedef enum 
TOP, 
CAP, 
HALF, 
BASE, 
BOTTOM, 
NORMAL, 
CONT 

Cvaligntype; 

typedef enum 
INTEGER, 
REAL, 
BOTH 

Cvdctype; 

0 

typedef struct o 
Cchar screenname[DEVNAMESIZE]; /* physical screen*/ 
Cchar windowname[DEVNAMESIZE]; /*window*/ 
Cint windowfd; /* window file*/ 
Cint retained; /* retained flag*/ 
Cint dd; /*device*/ 
Cint cmapsize; /* color map size*/ 
Cchar cmapname[DEVNAMESIZE]; /* color map name*/ 
Cint flags; /* new flag*/ 
Cchar **ptr; /* CDI tool descriptor*/ 

Cvwsurf; 

Version C of 17 March 1986 

0 



0 D 
Error Messages 

Error Messages ............................................................................................................................... 123 

D.1. Successful Return (0) ................................................................................................... 123 

D.2. State Errors (1-5) ............................................................................................................ 123 

D.3. Control Errors (10-16) ................................................................................................. 124 

D.4. Coordinate Definition (20-24) ................................................................................. 124 

D.5. Output Attributes (30-51) .......................................................................................... 125 

D.6. Output Primitives (60-70) ......................................................................................... 127 

Q D.7. Input (80-97) ..................................................................................................................... 129 

D.8. Implementation Dependent (110-112) ............................................................... 131 

D.9. Possible Causes of Visual Errors ........................................................................... 131 

0 



0 

0 

01 
I 

I 



0 

D.1. Successful Return (0) 

Q D.2. State Errors (1-5) 

0 

D 
Error Messages 

This appendix lists the error messages in numerical order. Furthermore, the 
probable cause of each error is given in the sentences following the error. In 
addition to explaining the error message, an initial suggestion for corrective 
action is given. In the title for each group of errors, the range of error numbers is 
given in parentheses after the title. If your application program is not behaving 
as you want it to, but does not generate error messages, then the table at the end 
ofthis appendix which lists commonly encountered problems and frequent 
causes may be he! pful. 

NO_ERROR [0] 

ENOTCGCL [I] 

ENOTCGOP [2] 

ENOTVSOP [3] 

ENOTVSAC [4] 

ENOTOPOP [5] 

No error. 

CG/ not in proper state: CG! should be in state CGCL. A 
call to open_ cg i was attempted when cgi was already 
open. Elimination of the error can be accomplished by 
removing the offending call to open cgi. 

CG! not in proper state: CG! should be in state CGOP. 
Every function except open_ cgi requires that CGI be 
open. If this error is received, make sure that your applica­
tion program has called open cgi, or that it has not 
recently called close_cgi 

CG! not in proper state: CG/ should be in state VSOP. 
The function which generated the error requires that at 
least one view surface be open. Corrective action would 
include either removing the most recent call to 
close_vws orby including a call to open_vws. 

CG/ not in proper state: CG/ should be in state VSAC. 
The function which generated the error requires that at 
least one view surface be active. Corrective action would 
include either removing the most recent call to 
deactivate_ vws or by including a call to 
activate_vws. 

CG/ not in proper state CG/ should be in state CGOP, 
VSOP, or VSAC. The function which generated the error 
requires that SunCGI is at least initialized. If this error is 
received, make sure that your application program has 

123 Version C of 17 M irch 1986 



124 SunCGI Reference Manual 

D.3. Control Errors (10-16) 

D.4. Coordinate Definition 
(20-24) 

EVSIDINV [10] 

ENOWSTYP [11] 

EMAXVSOP [12] 

EVSNOTOP [13] 

EVSISACT [14] 

EVSNTACT [15] 

EINQALTL [16] 

EBADRCTD [20] 

EBDVIEWP [21] 

called open cgi, or that it has not recently called 
close_cgi. 

Specified view surface name is invalid . The view surface 
name specified by the name argument has never been 
opened or if it has been opened, it has since been closed. 
Corrective action involves opening the vfow surface or 
changing the value of the name argument. 

Specified view surface type does not exist. The application 
program has specified a type of view surface which is not 
supported by SunCGI. Corrective action involves chang­
ing the type of view surface. 

Maximum number of view surfaces already open. An 
attempt was made to open a view surface when the max­
imum number of view surfaces is already open. Corrective 
action involyes removing one call to open_ vws. 

Specified view surface not open . An attempt was made to 
close a view surface which is already closed. Corrective 
action involves removing one call to close_ vws. 

Specified view surface is active. An attempt was made to 
activate a view surface which is already activated. Correc­
tive action involves removing one call to 
activate vws. 

Specified view surface is not active. An attempt was made 
to deactivate a view surface which has already been deac­
tivated. Corrective action involves removing one call to 
deactivate vws. 

Inquiry arguments are longer than list. A call to inquiry 
negotiation function with indices greater than the number 
of supported functions was made. The returned list is 
always empty. Corrective action may be facilitated by 
obtaining the size of the list by using the 
inquire_device_class function. 

Rectangle definition is invalid. The application program 
has made a call to vdc_extent or 
device_ viewport with the coordinates of both comers 
equal in the x or y dimensions or both. Corrective action 
involves changing one of the arguments to the function 
which generated the error so that the values of the two 
arguments are different in both the x and y dimensions. 

Viewpon is not within Device Coordinates. A call to 

device_ viewport has been made which specifies a 
viewport which is larger than the view surface. Corrective 
action involves making the arguments to 

Vcnion C of 17 March 1986 

0 

0 

0 



0 

Q D.S. Output Attributes (30-
51) 

0 

ECLIPTOL [22] 

ECLIPTOS [23] 

EVDCSDIL [24] 

EBTBUNDL [30] 

EBBDTBDI [31] 

EBTUNDEF [32] 

EBADLINX [33] 

EBDWIDTH [34] 

Appendix D - Error Messages 125 

device_ viewport less than the view surface size. The 
size of the view surface can be obtained by calling the 
inquire_physical_ coordinate _system func­
tion. 

Clipping rectangle is too large. The clipping rectangle 
would exceed the boundaries of VDC space. Corrective 
action involves resetting the clipping rectangle to be 
within limits of voe space. 

Clipping rectangle is too small. The clipping rectangle 
would define an area of screen space smaller than one 
pixel. The clipping rectangle remains unchanged. Since 
the occurrence of this error is partially a function of the 
size of the view surface, changing the size of the view sur -
face may be a viable alternative to changing the size of the 
clipping rectangle. 

VDC space definition is illegal. One or more of the argu­
ments to the vdc _ extent function exceeds the accept­
able limits ( -32767 to 32767) or coordinates of the lower­
left hand comer are greater than the coordinates of the 
upper-right hand comer. Corrective action involves 
changing the arguments to vdc_extent. 

ASF is BUNDLED. Error 16 is generated when attempt­
ing to call an individual attribute function when the attri -
butes are specified by entries in the attribute environment 
table. Calls to these functions have no effect on the 
current attributes. Corrective action includes resetting the 
attribute environment selector to BUNDLED by using the 
set_attribute_environment_selector func­
tion. 

Bundle table inde::c out of range. The entry in the bundle 
table exceeds the size of the table. The only corrective 
action is to change the value of the inde::c argument. 

Bundle table index is undefined . The entry in the attribute 
environment table specified by the most recent call to 
set attribute environment table index 
has not been defined by SunCGI or the application pro­
gram. 

Polyline index is invalid. The polyline bundle is not 
defined. Corrective action involves changing the index 
argument to polyline_bundle_index, orby 
defining the polyline bundle index. 

Width must be nonnegative . The width of a perimeter or 
line must be greater than or equal to zero. The current 
value of the perimeter width or line width remains 

VmionC of 17 March 1986 



126 SunCGI Reference Manual 

ECINDXLZ [35] 

EBADCOLX [36] 

EBADMRKX [37] 

EBADSIZE [38] 

EBADFABX [39] 

EPATARTL [40] 

EPATSZTS (41] 

ESTYLLEZ (42] 

ENOPATNX (43] 

unchanged. Changing the value of the width argument to a 0 
non-negative value will correct this error. 

Color index is less than zero. The value of the index 
argument to one of the attribute functions or the color 
entry in one of the bundles is negative. Corrective action 
involves changing the value of the color. 

Color index is invalid. The color index argument to one 
of the attribute functions or the color entry in one of the 
bundles is not defined in the colormap. Indices in the 
color lookup table must be between O and 255 for the Sun 
8-bit per pixel frame buffer. Any color specification out­
side of this range is ignored. Corrective action involves 
changing the value of the color. 

Polymarker index is invalid. The polymarker bundle is 
not defined. Corrective action involves changing the 
index argument to polymarker_bundle_index, or 
by defining the polymarker bundle index. 

Size must be nonnegative . The size of a marker or line 
must be greater or equal to zero. The current value of the 
marker size remains unchanged. Changing the value of 
the size argument to a non-negative value will correct this 
error. 

Fill area index is invalid. The fill area bundle is not 
defined. Corrective action involves changing the index 
argument to fill_area_bundle_index, orby 
defining the polymarker bundle index. 

Pattern array too large. The pattern array must contain 
less than 257 elements. The pattern is not entered into the 
pattern table. Corrective action involves designing a new 
pattern. 

Pattern size too small. The pattern size must be at least 
two-by-two. The pattern is not entered into the pattern 
table. Corrective action could include designing a new 
pattern which includes several replications of the original 
pattern. 

Style (pattern or hatch) index is less than zero. All 
indices in the pattern table must be positive. To fix this 
mistake, change the argument to the pattern_index or 
the hatch_index or the entries in the bundle table. 

Pattern table index not defined. The argument to the 
hatch_index orpattern_index function or the 
entry bundle table should be reset to correspond to a 
defined value. 

VcrsionC of 17 March 1986 

0 

0 



0 

0 

0 

D.6. Output Primitives (60-
70) 

EPATITOL [44] 

EBADTXTX [45] 

EBDCHRIX [46] 

ETXTFLIN [47] 

ECEXFOOR [ 48] 

ECHHTLEZ [49] 

ECHRUPVZ [50] 

ECOLRNGE [51] 

ENMPTSTL (60] 

EPLMTWPT (61] 

Appendix D-ErrorMessages 127 

Pattern table index too large, The index argument to 
pattern table exceeded the bounds of the pattern 
table . The pattern is not entered into the pattern table . 
Redefining the pattern index to be between one and ten 
will eliminate the error. 

Text index is invalid. The text bundle is not defined. 
Corrective action involves changing the index argument to 
text_bundle_index, orby defining the text bundle 
index. 

Char'ac:ter index is undefined. All other character indices 
besides I are undefined in SunCGI. The new character 
index is simply ignored. You are advised to ignore the 
character_index function entirely. 

Text font is invalid. The text fonts range from 1 to 6. All 
other integers do not correspond to actual fonts. Correc­
tive action involves changing the argument to the 
text_font_index function or resetting the font index 
in the text bundle 

Expansion factor is out of range. The character expan­
sion factor or the character space expansion factor would 
result in a character or a space which would exceed the 
bounds of the screen or would result in a character smaller 
than the limitations of the character drawing software. To 
eliminate this error, reset the offending value to within an 
acceptable range (0.1-2.0 are reasonable guidelines). 

Character height is less than or equal to zero. The char­
acter height must be positive. Corrective action involves 
changing the argument to the character height function or 
the element of the text bundle. 

Length of character up vector or character base vector is 
zero • Both the character up vector and the character base 
vector must be nonzero. Corrective action involves chang­
ing the arguments to the character_orientation 
function or the element of the text bundles. 

RGB values must be between O and 255. The red, green, 
and blue values are only defined between O and 255. The 
call to color_ table which produced the error is 
ignored. Corrective action requires respecifying the values 
of the arguments to color_table. 

Number of points is too large. The number of points 
exceeds 255. Change then element of the Ccoorlist 
structure to a value less than or equal to 255. 

polylines must have at least two points. Change the n ele­
ment of the Ccoor list structure to a value greater than 

Version C of 17 March 1986 



128 SunCGJ Reference Manual 

EPGMTHPT [62] 

EGPLISFL [63] 

EARCPNCI [64] 

EARCPNEL [65] 

ECELLATS [66] 

ECELLPOS [67] 

ECELLTLS [68] 

EVALOVWS [69] 

EPXNOTCR [70] 

or equal to 2 and add the corresponding points to the ptlist 0 
element. 

Polygons must have at least three points. Change the n 
element of the Ccoorlist structure to a value greater 
than or equal to 3 and add the corresponding points to the 
ptlist element. 

Global polygon list is full. The number of points on the 
global polygon list exceeds 256. The points which exceed 
256 are ignored. This error can be corrected by inserting a 
call to polygon (which clears the global polygon list by 
displaying its contents) before the call to 
partial_polygon which caused the overflow. 

Arc points do not lie on circle . The starting and ending 
points of either an open or close circular arc do not lie on 
the perimeter of the circle described by the arguments cl 
and rad. If this error occurs, the arc is not drawn. Correc­
tive action may include determination of the endpoints 
with the application program (for example c2.x = 
rad*cos(start_angle);). 

Arc points do not lie on ellipse . The starting and ending 
points of either an open or close elliptical arc do not lie on 
the perimeter of the ellipse described by the arguments cl , 0 
c2 , and c3 . If this error occurs, the arc is not drawn. 
Corrective action may include determination of the end-
points with the application program (see error 11 ). 

Cell a"ay dimensions dx,dy are too small. The dimen­
sions of the cell array are too small for a cell array element 
to be mapped onto one pixel of the view surface. The cell 
array is not drawn. This error depends on the physical size 
of the view surface as well as the limits of VDC space. 
Therefore, corrective action might require changing the 
size of the view surface, VDC space, or both. 

Cell array dimensions must be positive. Negative cell 
array dimensions are not permitted. Corrective action 
requires changing the parameters to the cell array func­
tion. 

Is not used. 

Value outside of view surface. A coordinate of a pixel 
array is outside the physical range of the view surface. 
The pixel array is not drawn. Change the arguments to the 
pixel_arrayorbitblt_source_array 

Pixrect not created. One of the BitBlt functions required 

0 a user-defined pixrect, and that pixrect had not been 
created. Corrective action involves creating a pixrect in 

Version C of 17 March 1986 



0 
D.7. Input (80-97) EINDNOEX [80] 

EINDINIT [81] 

EINDALIN [82] 

EINASAEX [83] 

0 
EINAIIMP [84] 

EINNTASD [85] 

EINTRNEX [86] 

EINNECHO [87] 

EINECHON [88] 

0 

Appendix D - Error Messages 

your application program before calling the offending 
BitBlt function. 

129 

Input device does not exist. The input device specification 
(specified by the devclass and devnum arguments of most 
input functions) does not exist Corrective action involves 
resetting the device specification to a valid device. 

Input device not initialized. A call to an input device 
function specified a device which was not initialized. 
Calls which generate this error have no effect A call to 
initialize_input_device should be inserted 
before the call generating the error. 

Input device already initialized. An attempt to initialize a 
device which has previously been initialized. The parame­
teIS to the offending call to 
initialize_input_device are ignored. Removing 
the offending call to initialize_input_device 
will correct this error. 

Association already exists . An attempt is being made to 
bind the input device to a nigger to which it has been pre­
viously bound. The status of the input device nigger are 
unchanged. This error is purely informational and no 
corrective action is required. 

Association is impossible . An attempt is being made to 
bind the input device to a nigger to which it cannot be 
bound. For example a IC_ STRING device cannot be 
bound to a mouse button. To eliminate this error, change 
the arguments to the offending call of the associate 
function. 

Association does not exist. An attempt to set-up call an 
input function which specifies a device with no associated 
niggers was made. The offending call is ignored. Correc­
tive action involves calling associate before the 
offending call is issued. 

Trigger does not exist. An attempt was made to associate 
or inquire about a nigger which has a number less than one·· 
or greater than five. The offending call is ignored. To 
eliminate the error, change the nigger number. 

Input device does not echo. CHOICE devices do not sup­
port echo. Corrective action requires removing the call to 
echo on from the application program. 

Echo already on. A call to echo_ on has been made to a 
device whose echoing ability has already been activated. 
To stop generation of the error either remove the offending 
call or change the arguments to specify a device whose 

Version C of 17 March 1986 



130 SunCGI Reference Manual 

EINEINCP [89] 

EINERVWS [90] 

EINETNSU [91] 

EINENOTO [92] 

EIAEVNEN [93] 

EINEVNEN [94] 

EBADDATA [95] 

ESTRSIZE [96] 

EINQOVFL [97] 

echo is cum:ntly off. 

Echo incompatible with existing echos. Although 
SunCGI can support certain combinations of echos (such 
as IC_STRING and IC_LOCATOR), not all combinations 
are supported. The easiest remedy is to remove the most 
recent call to echo_ on from the application program. 

Echoregion larger than view surface. Error 91 is gen-
erated when the rectangle defined by the echoregion argu-
ment exceeds the limits of VDC space. To eliminate this 
em>r, change the values to the echoregion argument to be 
within the confines of VDC space. 

Echo type not supported. All devices except the 
IC_STROKE device only support one type of echo. 
Therefore, assigning a value to echotype other than zero or 
one will produce an em>r for any device except 
IC_STROKE. Corrective action involves changing the 
value of the echotype argument. 

Echo not on. The device echoing has not been turned on. 
Either remove the call to echo_ off, turn the echo on, or 
change the device specification. 

0 

Events already enabled. Events have already been 0 
enabled for the specified device. The solution is to remove 
the offending call to enable events. 

Events not enabled . Events have not been enabled for the 
specified device. The solution is to include a call to 
enable_events before a call to the await_event, 
sample_event, or request_event function is made 
with the specified device as input parameter. 

Contents of input data record are invalid . · The value 
argument of initialize_lid function is out of range 
or is the wrong type. The solution is to change the con­
tents value argument. 

Length of initial string is greater than the implementation 
defined maximum . The initial string in the value argument 
is greater than 80 characters. Shorten the string. 

Input queue has overflowed. The event queue can no 
longer record input events. Solutions include flushing the 
event queue or dequeueing events with the 
await_event,sample_event,or 
request_event function. 

Vrnion C of 17 Man:h 1986 

0 



0 D.S. Implementation 
Dependent (110-112) 

D.9. Possible Causes of Visual 
Errors 

EMEMSPAC [110] 

ENOTCSTD [111] 

ENOTCCPW [112] 

Appendix D - Error Messages 131 

Space allocation has failed. A function which was sup­
posed to work has failed. The only action which you can 
take is to eliminate other processes which may be using 
memory. If you have eliminated all other processes, and 
this error is still generated, please contact SUN Microsys­
tems. 

Function or argument not compatible with standard CGI. 
A function call is not supported by the CGI library. 

Function or argument not compatible with CG/PW mode . 
A function call is not supported by the cgipw library. 

Table D-1 Possible Causes of Visual E"ors 

0 

0 

Behavior 
Segmentation fault for 
open_vws 

No primitives displayed 

Primitives displayed on 
undesired view surfaces 

Segmentation fault for inquiry 
functions 

I Possibk Cause 
devdd argument for open vws 
is declared as a pointer ( the 
address of devdd should be 
passed). 

View surface not initialized. 
View surface not active. 
VDC to device coordinate map­
ping makes objects too small. 
Clipping rectangle is too small 
and clipping is ON. 
Perimeter visibility is set to 
OFF and interior style is set to 
HOLLOW. 
line colo . or fill colo . is set to 
background color. 

Undesired view surfaces have 
not been deactivated. 

passing variable instead of 
address ( & ) of variable. 

Version C of 17 March 1986 



13 2 SunCGI Reference Manual 

Table D-2 Primitive-Specific Errors 

Behavior 
Polylines or polymarkers aren't 
displayed. 

Polygon borders aren't 
displayed. 

Circles aren't displayed. 

Ellipses aren't displayed. 

Text isn't displayed. 

Cell arrays aren't displayed. 

Cell arrays aren't displayed on 
all active view surfaces. 

Pixel arrays aren't displayed. 

BitBlts aren't displayed. 

I Possible Cause 

Width or size is zero. 

Color is the same as back­
ground. 

Width is zero. 

Color is the same as back­
ground. 
Perimeter visibility is set to 
OFF. 

Width or size is zero. 
Color is the same as back­
ground. 

Width or size is zero. 
Color is the same as back­
ground. 

Width or size is zero. 
Color is the same as back­
ground. 
character height is too small. 
coordinates are outside the 
range of VDC space or the clip­
ping rectangle. 

dJc or dy arguments are too 
small. 
Color is the same as back­
ground. 

Mapping from cell size to view 
surface for smaller view sur­
faces is too small. 

Location is outside of view sur­
face or clipping rectangle. 
Color is the same as back­
ground. 

Width or size is zero. 
Color is the same as back­
ground. 

Version C of 17 March 1986 

0 

0 

0 



0 

0 

0 

Table D-3 Attribute Errors 

Behavior 
Attribute setting has no effect 

Text attributes have no effect 

PATTERN fill is the same as 
HATCH 

PATTERN fill is different on 
different view surfaces. 

Table D-4 Input-specific Errors 

Behavior 
Input device does not repon 

Input device does not echo 

Input device does not echo on 
whole view surface 

I 

I 

Appendix D - Error Messages 13 3 

Possible Cause 
attribute ASP is set to BUN­
DLED. 

text precision is set to CHAR­
ACTER. 
attribute ASP is set to BUN­
DLED. 

pattern index . and hatch index 
are identical 
pattern size . is too small 

View surfaces are of different 
size. 

Possible Cause 
device not initialized 

echo not initialized 

echo region not set to whole 
view surface. 

Version C of 17 March 1986 



0 

0 

0' 



0 E 
Sample Programs 

Sample Programs .......................................................................................................................... 137 

E.l. Manini Glass ..................................................................................................................... 137 

E.2. Tracking Box ..................................................................................................................... 138 

0 

0 



0 

0 

0 



0 

E.1. Martini Glass 

0 

0 

E 
Sample Programs 

The following program draws a martini glass. The program exits after 10 
seconds. 

137 Version C of 17 March 1986 



138 SunCGI Reference Manual 

Figure E-1 

E.2. Tracking Box 

#include <cgidefs.h> 

Ccoorlist martinilist; 
Ccoor glass_coords[lO] = { 0,0, 

-10 1 0, 
-1, 1, 
-1,20, 
-15,35, 
15,35, 
1,20, 
1,1, 
10, o, 
0, 0 l; 

Ccoor water_coords[2] = { -12,33, 

Ccoor vpll 
Ccoor vpur 

main() 
{ 

12,33 }; 
-50,-10 } ; 
50,80 }; 

Cvwsurf device; 
Cint name; 

NORMAL_VWSURF(device, PIXWINDD); 

open_cgi () ; 
open_vws(&name, &device); 
vdc_extent(&vpll, &vpur); 

martinilist.ptlist = glass_coords; 
martinilist.n = 10; 
polyline(&martinilist); 
martinilist.ptlist = water_coords; 
martinilist.n = 2; 
polyline(&martinilist); 

sleep(lO}; 
close_vws(name); 
close_ cgi () ; 

Martini Glass Example Program 

The following program demonstrates the use of the CGI input functions. A 
square is displayed on the screen and moved with the mouse. The program exits 
if the mouse is still for five seconds. 

Venion C of 17 March 1986 

0 

0 

0 



0 

0 

0 

#include <cgidefs.h> 
#define DEVNUM 1 /* device number*/ 

/* trigger number*/ 

Appendix E - Sample Programs 

#define MOUSE_POSITION 5 
#define TIMEOUT (5 * 1000 * 1000) /* timeout in microseconds*/ 

Ccoor ulc = {1000, 2000); 
Ccoor lrc = {2000, 1000); 

main() 
{ 

Cint name; 
Cvwsurf device; 
Cawresult stat; 
Cinrep sample; 
Ccoor samp; 
Cint trigger; 

/* device measure value*/ 
/* LOCATOR'S x,y position*/ 
/* trigger number*/ 

NORMAL_VWSURF(device, PIXWINDD); 
sample.xypt = &samp; 
samp.x = O; 
samp.y = 27000;. 

open_cgi () ; 
open_vws(&name, &device); 
set_global_drawing_mode(XOR); 
initialize_lid(IC_LOCATOR, DEVNUM, &sample); 
associate(MOUSE_POSITION, IC_LOCATOR, DEVNUM); 
rectangle(&lrc, &ulc); /* draw first rectangle*/ 

/* wait TIMEOUT micro-seconds for-input and check the status*/ 
while (request_input(IC_LOCATOR, DEVNUM, TIMEOUT, 

&stat, &sample, &trigger), (stat•• VALID_DATA)) 
if ((sample.xypt->x != ulc.x) I I (sample.xypt->y !• lrc.y) ) { 

rectangle(&lrc, &ulc); 
lrc.y = sample.xypt->y; /* move to new location*/ 
lrc.x = (sample.xypt->x + 1000); 
ulc.x = sample.xypt->x; 
ulc.y {sample.xypt->y + 1000); 
rectangle(&lrc, &ulc); 

dissociate(MOUSE_POSITION, IC_LOCATOR, DEVNUM); 
release_input_device(IC_LOCATOR, DEVNUM); 
close_vws(name); 
close_cgi () ; 

Figure E-2 Tracking Box Example Program 

139 

Version C of 17 March 1986 



0 

01 



0 
F 

Using SunCGI and Pixwins 

Using SunCGI and Pix.wins.................................................................................................. 143 

F.1. cgipw Functions .......................................................................................................... 143 

Open Pixwin CGI ......................................................................................................... 143 

Open a CGI Pixwin ...................................................................................................... 143 

Close a CGI Pixwin ..................................................................................................... 144 

Close Pixwin CG! ......................................................................................................... 144 

0 
F.2. Using cgipw ................................................................................................................... 144 

F.3. cgipw Functions .......................................................................................................... 145 

F.4. Example Program ............................................................................................................ 147 

0 



0 

0 

0 



0 

0 
F.1. cgipw Functions 

Open Pixwin CGI 

Open a CGI Pixwin 

0 

F 
Using SunCGI and Pixwins 

The CG! standard does not provide facilities for dealing with multiple overlap­
ping windows. An application program can use SunCGI and Pixwins features 
through the cgipw functions. These functions combine the richness ofCGI's 
primitives with the ability of Pixwins to manage multiple (potentially overlap­
ping) windows. 

This appendix assumes familiarity with both SunCGI and Pixwins. See Sun­
View Programmer's Guide for more information on Pixwins. An example pro­
gram is included at the end ofthis appendix in Figure F-1. 

If you decide to use CG! and Pixwins, you may not use the standard SunCGI 
calls. Instead you must use cgipw calls. For example, cgipw_polyline 
replaces polyline. The first argument of each cgipw function is a pixwin 
descriptor of type Ccgiwin. The file <cgipw. h> must be included in the 
cgipw application program instead of <cgidefs. h>. 

The four functions open_pw_cgi, open_cgi_pw, close_cgi_pw and 
close_pw_cgi are necessary for managing the SunCGI-Pixwins interface. 

Cerror open_J:>w_cgi() 

open_pw_cgi initializes CG! by setting the attributes to the default values and 
setting the voe to device coordinate mapping to 1: 1. Therefore, all input and 
output primitives will use device coordinates. The origin of the device coordi­
nates is in the upper left-hand comer instead of the lower left-hand comer. The 
entire window is used, not just a square region within it. No standard errors are 
specified for open _pw _ cgi. If open_pw _ cgi returns a nonzero result, then 
the initialization failed. open _pw _ cgi corresponds to open_ cgi. 

Cerror open_cgi_J:>w(pw, desc, name) 
struct pixwin *pw; /* pixwin */ 
Ccgiwin *desc; /* CGI pixwin descriptor*/ 
Cint *name; 

open_cgi_pw informs CG! of the pixwin pointed to by pw. Calls to CG! primi­
tives may then reference this pixwin. However, CG! does not guarantee that a · 
pixwin exists or is in any other way properly initialized. desc is a pointer to a 
CG! pixwin descriptor allocated by the application program and defined by 
open_cgi_pw. It will be used as the first argument to cgipw functions. Calls 

143 Version C of 17 March 1986 



144 SunCGI Reference Manual 

Errors 

Close a CGI Pixwin 

Errors 

Close Pixwin CGI 

Errors 

F.2. Using cgipw 

-may also be made to any pixwin function (see example program). Multiple calls o 
to open_cgi_pw with pointers to different Ccgiwin structures will allow 
primitives to be displayed on multiple view surfaces by repeating calls to cgipw 
functions with different Ccgi win descriptors. Attributes are local to the pix win 
associated with the CG! descriptor passed to the cgipw attribute functions. 
open_cgi_pw corresponds to open_vws. open_pw_cgi must be called 
prior to open_cgi_pw; otherwise, error 111 is returned. Other errors (as with 
open_ vws may also be detected. 

ENOTOPOP [5] 

ENOWSTYP [11] 

EMAXVSOP [12] 

EMEMSPAC [110] 

CGI not in proper state CGI shall be either in sta~ CGOP, 
VSOP, or VSAC. 

Specified view surface type does not exist. 

Maximum number of view surfaces already open. 

Space allocation has failed. 

Cerror close_cgi_pw(desc) 
Ccgiwin *desc; /* CGI pixwin descriptor*/ 

close_cgi_pw takes the CG! pixwindescriptordesc as an argument and 
removes it from the list of pixwins that CG! writes to. Toe pixwin is not closed. 
close_cgi_pw corresponds to close_vws, and may return any of the errors 
close_ vws detects (except 112). 

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP, 0 
VSOP, or VSAC. 

EVSIDINV [10] 

EVSNOTOP [13] 

Specified view surface name is invalid. 

Specified view surface not open. 

Cerror close_pw_cgi() 

close _pw _ cgi takes care ofleaving CG! in an orderly state. This function 
should be called before exiting the application program. close_pw_cgi 
corresponds to close_ cgi. 

ENOTOPOP [5] CGI not in proper state CGI should be in state CGOP, 
VSOP, or VSAC. 

After calling the two initialization functions (open_pw_cgi and 
open_cgi_pw) the application program may call functions from both the 
Pixwins and cgipw libraries. Figure F-1 contains an example program that uses 
cgipw functions. 

Since cgipw functions use a 1:1 mapping from voe to device coordinates, attri­
butes in voe units (such as pattern size and character height) will be huge 
unless they are reset. And because the cg i pw origin is the device coordinate 
origin, the upper left-hand comer, attributes with direction or position (e.g.,pat­
tern reference point and character orientation ) have their meaning reversed in 

Version C of 17 Man:h 1986 

0 



0 

0 

0 

F.3. cgipw Functions 

Table F-1 

Appendix F - Using SunCGI and Pixwins 145 

the y dimension. 

Most cgipw functions do not print error messages even if the error warning 
mask is INTERRUPT or POU. They all return error codes which may be tested. 
The application program should not use both SunCGI and window system input 
functions, since both SunCGI and the window system share a common event 
queue. For example, events handled by a SunCGI function will not be handled 
by a window system call after the SunCGI call. 

A list of the cgipw functions and their corresponding SunCGI functions is 
given in Table F-1 below. !fa function is not included in this table, then use the 
normal SunCGI function except as described below in Table F-2. Most of the 
functions listed below are output and attribute functions; however, the tracking 
functions are listed so that you can control which surfaces input devices echo on. 
The arguments of the cgipw functions are the same as those of the SunCGI 
functions except that the first argument is always a desc argument of type 
Ccgiwin. desc is a pointer to a pixwin descriptor filled in by the 
open_cgi_pw function. 

Table F-1 contains a list of functions available in cgipw mode. SunCGI func­
tions incompatible with cgipw mode are given in Table F-2. 
partial_polygon may be used with cgipw _polygon, but the global 
polygon list is freed after use by cgipw _polygon, so calls to 
partial_polygon must be repeated prior to use of cgipw_polygon on 
another view surface. 

List of cgipw Functions 

SunCGI Function Name I cgipw Function Name 
append_text(flag, tstring) 

cell_array(p, q, r, dx, dy, colorind) 

character_expansion_factor(sfac) 

character_height(height) 

character_orientation(xup, yup, xbase, 
ybase) 

character_path(path) 
character_set_index(index) 

character_spacing(spcratio) 

circle(cl, rad) 

circular_arc_3pt(cl, c2, c3) 

circular_arc_3pt_close(cl, c2, c3, 
close) 

circuiar_arc_center(cl, c2x, c2y, c3x, 
c3y, rad) 
circular_arc_center_close(cl, c2x, 
c2y, c3x, c3y, rad, close) 

color_table(istart, clist) 

define_bundle_index(index) 

disjoint_polyline(polycoors) 

ellipse(cl, majx, miny} 

cgipw_append_text(desc, flag, tstring) 
cgipw_cell_array(desc, p, q, r, dx, dy, colorind) 

cgipw_character_expanaion_factor(desc, sfac) 

cgipw_character_height(desc, height) 

cgipw_character_orientation(desc, xup, ~p, xbase, 
ybase) 

cgipw_character_path(desc, path) 
cgipw_character_eet_index(desc, index) 

cgipw_character_spacing(desc, spcratio) 

cgipw_circle(desc, cl, rad) 

cgipw_circular_arc_3pt(desc, cl, c2, c3) 

cgipw_circular_arc_3pt_close(desc, cl, c2, c3, 
close) 

cgipw_circular_arc_center(deac:, cl, c2x, c2y, c3x, 
c3y, rad) 
cgipw_circular_arc_center_close(deac, cl, c2x, 
c2y, c3x, c3y, rad, close) 

cgipw_color_table(desc, iatart, clist) 

cgipw_define_bundle_index(desc, index) 
cgipw_disjoint_polyline(desc, polycoors) 
cgipw ellipse(desc, cl, majx, miny) 

Version C of 17 March 1986 



146 SunCGI Reference Manual 

.----------T-ab_l_e_F_-_i __ u_·s_t o_if_c_g_i_· p-w-.-F_u_nc_no_ns--__ c_o_n_n_·n_u_ea __ -=-------------, o 
SunCGI Function Name I cgipw Function Name 

elliptical_arc(cl, sx, sy, ex, ey, 
majx, miny) 

elliptical_arc_close(cl, sx, sy, ex, 
ey, majx,. miny, close) 
fill_area_bundle_index(index) 
fill_color(color) 

fixed_font(index) 
hatch_index(index) 
inquire_aspect_source_flags() 
inquire_drawing_mode(visibility, 
source, destination, combination) 

inquire_fill_area_attributes() 
inquire_line_attributes() 
inquire_ma.rker_attributes() 
inquire_pattern_attributes() 

inquire_pixel_array{p, m, n, colorind) 
inquire_text_attributes() 
inquire_text_extent(tstring, nextchar, 
concat, lleft, uleft, uright) 
interior_style(istyle, perimvis) 
line_color(index} 

line_endstyle(ttyp) 
line_type(ttyp) 
line_width(index) 

line_width_specification_mode(mode) 
marker_color(index) 
marker_size(index) 

marker_size_specification_mode(mode) 

marker_type(ttyp) 
pattern_index(index) 
pattern_reference_point(open} 
pattern_size(dx, dy) 
perimeter_color(index) 
perimeter_type(ttyp) 
perimeter_width(width) 
perimeter_width_specification_mode(mode) 

pixel_array(pcell, m, n, colorind) 
polygon(polycoora) 
polyline(polycoora) 
polyline_bundle_index(index) 
polymarker(polycoors) 
polymarker_bundle_Index(index) 
rectangle(lrc, ulc) 
set_aspect_source_flags(flags) 
text(cl, tstring) 

cgipw_elliptical_arc(desc, cl, ax, sy, ex, ey, 
majx, miny) 

cgipw_elliptical_arc_close(desc, cl, sx, sy, ex, 
ey, majx, miny, close) 
cgipw_fill_area_bundle_index(desc, index) 
cgipw_fill_color(desc, color) 

cgipw_fixed_font(desc, index) 
cgipw_hatch_index(desc, index); 
cgipw_inquire_aspect_source_flags(desc); 
cgipw_inquire_drawing_mode(desc, visibility, 
source, destination, combination) 
cgipw_inquire_fill_area_attributes(deac); 
cgipw_inquire_line_attributes(desc); 
cgipw_inquire_marker_attributes(desc); 
cgipw_inquire_pattern_attributes(desc); 
cgipw_inquire_pixel_array(desc, p, m, n, colorind) 
cgipw_inquire_text_attributes(desc); 
cgipw_inquire_text_extent(desc, tstring, nextchar, 
concat, lleft, uleft, uright) 
cgipw_interior_style(desc, istyle, perimvis) 
cgipw_line_color(desc, index) 
cgipw_line_endstyle(desc, ttyp) 

cgipw_line_type(desc, ttyp) 
cgipw_line_width(desc, index) 
cgipw_line_width_specification_mode(desc, 
cgipw_marker_color(desc, index) 

mode) 

cgipw_marker_size(desc, index) 

cgipw_marker_size_specification_mode(desc, mode) 
cgipw_marker_type(desc, ttyp) 
cgipw_pattern_index(desc, index); 
cgipw_pattern_reference_point(desc, open) 
cgipw_pattern_size(desc, dx, dy) 
cgipw_perimeter_color(desc, index) 
cgipw_perimeter_type(desc, ttyp) 

cgipw_;perimeter_width(desc, width) 
cgipw_perimeter_width_specificatia,_mode(desc, 
mode) 

cgipw_pixel_array(desc, pcell, m, n, colorind) 
cgipw_polygon(desc, polycoors) 
cgipw_polyline(desc, polycoors) 
cgipw_polyline_bundle_index(desc, index) 
cgipw_polymarker(desc, pcilycoora) 
cgipw_polymarker_bundle_Index(desc, index) 

Cgipw_rectangle(deac, lrc, ulc) 
cgipw_aet_aspect_source_flags(desc, flags) 
cgipw_text(desc, cl, tstring) 

0 

L-------------------------------------0 
Version C of 17 March 1986 



Appendix F - Using SunCGI and Pixwins 147 

Q ~---------=T_a_b_le..,.F_-_1=-Li-·s_t_o_if_c_g_i_· p-w,F_u_nc_no_· _ns--__ c_o_n_ti_n_u_ed---=---..,.-=---------, 
SunCGI Function Name I cgipw Function Name 

0 

0 

text_alignment(halign, valign, 
hcalind, vcalind) 
text_bundle_index(index) 
text_color(index) 

text_font_index(index) 
text_precision(ttyp) 

vdm text(cl, flag, tstring) 

cgipw_text_alignment(desc, halign, valign, 
hcalind, vcalind) 
cgipw_text_bundle_index(desc, index) 
cgipw_text_color(desc, index) 

cgipw_text_font_index(desc, index) 
cgipw_text_J>recision(desc, ttyp) 
cgipw vdm text(desc, cl, flag, tstring) 

Table F-2 SunCGI Functions not Compatible with cgipw Mode 

F.4. Example Program 

Function I Discussion 
clear_ control All clear extents are identical 
clip_indicator when cjlag is 

CLIP _RECTANGLE 
clip_rectangle 

close_cgi 
close vws 
device_viewport 

open_cgi 
open_vws 
partial_polygon 

vdc extent 

Instead, use pw_region 
prior to open_cgi__pw 
Use close__pw_cgi 
Use close_cgi__pw 
use pw _ region prior to 
open_cgi__pw 
Use open__pw_cgi 
Use open_cgi__pw 
global polygon list is freed 
aftercgipw__polygon 
cgipw's voe space is identi­
cal to screen space 

Figure F-1 contains an example program that uses cgipw functions. This exam­
ple uses retained pixwins to ease redisplay after window obstruction (see Section 
2.3). This makes the program slower during image generation, because it writes 
both on the screen and onto a copy retained in memory. 

Version C of 17 March 1986 



148 SunCGI Reference Manual 

Figure F-1 

#include <cgipw.h> 
#include <suntool/gfxsw.h> 

struct pixwin *mypw; 
struct gfxsubwindow *mine; 

main() 
{ 

Ccgiwin vpw; 
Ccoor bottom; 
Ccoor top; 
int name; 
int op; 

mine= gfxsw_init(O, O); 
gfxsw_getretained(mine); 
mypw = mine->gfx_pixwin; 
pw_writebackground(m:(PW, O, O, 

mypw->pw_prretained->pr_size.x, 
mypw->pw_prretained->pr_size.y, 

open_pw_cgi (); 
open_cgi_pw(mypw, &vpw, &name); 
op= PIX_COLOR(l) I PIX_SRC; 

PIX_CLR); 

pw_write(mypw, O, O, 100, 100, op, O, O, O); 
bottom.x = 300; 
bottom.y = 100; 
top.x • 200; 
top.y = O; 
cgipw_interior_style(&vpw, SOLIDI, ON); 
cgipw_rectangle(&vpw, &bottom, &top); 
sleep(lO); 

close_cgi_pw(&vpw); 
close_pw_cgi(); 

Example cgipw Program 

Version C of 17 March 1986 

0 

I 
•I 

0 

0 



0 G 
Using SunCGI with Fortran Programs 

Using SunCGI with Fortran Programs ···········-····················-··········-·········-····-·........ 151 

G.l. Programming Tips ......................................................................................................... 151 

G.2. Example Program ........................................................................................................... 152 

G.3. FORTRAN Interfaces to SunCGI ......................................................................... 154 

0 

0 



0 

0 

0 



0 

0 

G.1. Programming Tips 

0 

G 
Using SunCGI with Fortran Programs 

All functions provided in SunCGI may be called from FORTRAN programs by 
linking them with the libcgi 77. a library. This is done by using the f17 com­
piler with a command line like: 

% f77 -o box box.f -lcgi77 -lcgi -lsunwindow -lpixrect -lrn 

where box. f is the FORTRAN source program. Note that libcgi. a must be 
linked with the program (the -lcgi option), and libcgi 77. a must precede it 
(the -lcgi 77 option). 

Defined constants may be referenced in source programs by including 
cgidefs77. h. In a FORTRAN program, this must be done via a source state­
ment like: 

include 'cgidefs77.h' 

This include statement must be in each FORTRAN program unit which uses the 
defined constants, not just once in each source program file. 

In the Sun release of FORTRAN, names are restricted to sixteen characters in 
length and may not contain the underline character. For this reason, FORTRAN 
programs must use abbreviated names to call the corresponding SunCGI func­
tions. The correspondence between the full SunCGI names and the FORTRAN 
names appears later in this appendix. In addition, FORTRAN declarations for all 
SunCGI functions appear at the end of this appendix. 

• The abbreviated names of the SunCGI functions are less readable than the full 
length names because the underline character cannot be used in the FORTRAN 
names. However, since FORTRAN doesn't distinguish between upper-case and 
lower-case letters in names, upper-case characters can be used to improve rea­
dability. There is an example of this later in this appendix. 

• Char.lcter strings passed from FORTRAN programs to SunCGI cannot be 
longer than 256 characters. 

• Pointers returned by C functions are handled in FORTRAN as integer*4 
values, and exist solely to be passed to other Sun graphics functions. 

• FORTRAN passes all arguments by reference. Although some SunCGI func­
tions receive arguments by value, the FORTRAN programmer need not wony 

151 Version C of 17 March 1986 



152 SunCGl Reference Manual 

G.2. Example Program 

about this. The interface routines in /usr/ lib/ libcgi 77. a handle this 
situation correctly. When in doubt, look at the FORTRAN declarations for 
SunCGI functions at the end of this appendix. 

• Some SunCGI functions have structures as arguments or return values. These 
are handled in FORTRAN by unbundling the structures into separate arguments. 
In general, these will be in the same order, and have the same names, as the 
members of the C structures. One exception is the Ccoorlist structure, 
which is replaced in FORTRAN with an array of x • s, and one of y 's, rather than 
an array of x-y pairs. You may need to consult both the C and FORTRAN docu­
mentation to determine which FORTRAN arguments are input values, and which 
are output 

• Since FORTRAN does not distinguish between upper-case letters and lower-case 
letters in identifiers, any FORTRAN program unit which includes the 
cgidef s 7 7. h header file cannot use the same spelling as any constant 
defined in that header file, regardless of case. 

• The function cfqoutcap returns the FORTRAN binding names of the output 
capabilities, rather than the C bindings. Tiris is an exception to the rule that 
the FORTRAN library provides a transparent interface to the C functions. 

This example is the FORTRAN equivalent of the very simple program for drawing 
a manini glass. 

Venion C of 17 March 1986 

0 

0 

0 



0 

0 

0 
Figure G-1 

C 

C 

Appendix G - Using SunCGI with Fortran Programs 

program test 

parameter (ibignum=256) 

integer name 
character screenname* (ibignum) 
integer screenlen 
character windowname* (ibignum) 
integer windowlen 
integer windowfd 
integer retained 
integer dd 
integer cmapsize 
character cmapname* (ibignum) 
integer cmaplen 
integer flags 
character ptr* (ibignum) 
integer noargs 

coordinates of glass 
integer xc(lO),yc(lO),n 

coordinates of waterline. 
integer xc2(2),yc2(2) 
data XC /0,-10,-1,-1,-15,15,1,l,10,0 / 
data ye /O,O,l,20,35,35,20,1,0,0 / 
data xc2 /-12,12/ 
data yc2 /33,33/ 

c open cgi 
call cfopencgi() 

c open a pixwin 
dd = 4 
call cfopenvws(name,screenname,screenlen,windowname, 
+ windowlen,windowfd,retained,dd,cmapsize, 
+ cmapname,cmaplen,flags,ptr,noargs) 

c reset VDC space 
call cfvdcext(-50,-10,50,80) 

c draw martini glass and waterline 
n • 10 
call cfpolyline(xc,yc,n) 
n - 2 
call cfpolyline(xc2,yc2,n) 

c sleep for 10 seconds 
call sleep(lO) 

c close and exit 
call cfclosecgi() 
call exit() 
end 

Example FORTRAN Program 

153 

Version C of 17 March 1986 



154 SunCGI Reference Manual 

G.3. FORTRAN Interfaces to 
SunCGI 

Note: Although all SunCGI procedures are declared here as functions, each may 
also be called as a subroutine if the user does not want to check the returned 
value. 

Table G-1 SunCGI Fortran Binding-Part I 

CGI Specification Name I 
Activate View Surface 
(SunCGI Extension) 

Append Text 

Associate 

Await Event 

Fortran Binding 
integer function cfactvws(name) 
integer name 

integer function cfaptext(flag, string) 
integer flag 
character*(*) string 

integer function cfassoc(trigger, devclass, devnum) 
integer trigger 
integer devclass 
integer devnum 

integer function cfawaitev(timeout, valid, devclass, 
l devnum, x, y, xlist, ylist, n, val, choice, string, 
2 segid, pickid, message_link, replost, time_stamp, 
3 qstat, overflow) 
integer timeout 
integer valid 
integer devclass 
integer devnum 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 
integer message_link 
integer replost 
integer time_stamp 
integer qstat 
integer overflow 

Venion C of 17 March 1986 

0 

0 

0 



Appendix G - Using SunCGI with Fortran Programs 155 

0 Table G-1 SunCGI Fortran Binding-Part I-Continued 
. ~~------=---:-:-----r--------;:;--:--~-------, 

CGI Specification Name I Fortran Binding 
BitBlt Pattern Array integer function cfbtblpatarr (pixpat, px, PY, pixtarget, 

1 rx, ry, ox, oy, dx, dy, name) 

BitB/t Patterned Source 
Array 

integer pixpat 
integer px, PY 
integer pixtarget 
integer rx, ry 
integer ox, oy 
integer dx, dy 
integer name 

integer function cfbtblpatsouarr(pixpat, px, py, pixsource, 
1 sx, sy, pixtarget, rx, ry, ox, oy, dx, dy, name} 
integer pixpat 
integer px, PY 
integer pixsource 
integer sx, sy 
integer pixtarget 
integer rx, ry 
integer ox, oy 
integer dx, dy 
integer name 

0 BitB/t Source Array integer function cfbtblsouarr(bitsource, xo, yo, xe, ye, 
1 bittarget, xt, yt, name} 

0 

Cell Array 

Character Expansion 
Factor 

Character Height 

Character Orientation 

Character Path 

Character Set Index 

integer*4 bitsource, bittarget 
integer xo, yo, xe, ye, xt, yt 
integer name 

integer function cfcellarr(px, qx, rx, py, qy, ry, 
1 dx, dy, colorind} 
integer px, PY 
integer qx, qy 
integer rx, ry 
integer dx, dy 
integer colorind(*} 

integer function cfcharexpfac(efac) 
real efac 

integer function cfcharheight(height) 
integer height 

integer function cfcharorient(bx, by, dx, dy) 
real bx, by, dx, dy 

integer function cfcharpath(path} 
integer path 

integer function cfcharsetix(index} 
integer index 

Version C of 17 March 1986 



156 SunCGI Reference Manual 

Table G-1 SunCGI Fortran Binding-Part I-Continued 

CGI Specification Name I Fortran Binding 
Character Spacing integer function cfcharspacing (efac) 

real efac 

Circle integer function cf circle (x, y, rad) 
integer x 

Circular Arc 3pt Close 

Circular Arc 3pt 

Circular Arc Center 
Close 

Circular Arc Center 

Clear Control 

Clear View Surface 

Clip Indicator 

Clip Rectangle 

CloseCGI 
(SunCGI Extension) 

Close View Surface 
(SunCGI Extension) 

integer y 
integer rad 

integer function cfcircarcthreecl(clx, cly, c2x, c2y, 
1 c3x, c3y, close) 
integer clx, cly, c2x, c2y, c3x, c3y 
integer close 

integer function cfcircarcthree(clx, cly, c2x, c2y, 
1 c3x, c3y) 
integer clx, cly, c2x, c2y, c3x, c3y 

integer function cfcircarccentcl(clx, cly, c2x, c2y, 
1 c3x, c3y, rad, close) 
integer clx, cly, c2x, c2y, c3x, c3y 
integer rad 
integer close 

integer function cfcircarccent(clx, cly, c2x, c2y, c3x, 
1 c3y, rad) 
integer clx, cly, c2x, c2y, c3x, c3y 
integer rad 

integer function cfclrcont(soft, hard, intern, extent) 
integer soft, hard 
integer intern 
integer extent 

integer function cfclrvws(name, defflag, color) 
integer name 
integer defflag 
integer color 

integer function cfclipind(flag) 
integer flag 

integer function cfcliprect(xmin, xmax, ymin, ymax) 
integer xmin, xmax, ymin, ymax 

integer function cfclosecgi() 

integer function cfclosevws(name) 
integer name 

0 

0 

Version C of 17 March 1986 



Appendix G - Using SunCGI with Fortran Programs 157 

Q ~-------T-ab_1_e~G_-_2 __ s_u_n_c_G_I_F_o_rtr_a_n_B_,_·ndi-·n_g_-_P-=a_r_t,...II-=---------------, 

CGI Specification Name I Fortran Binding 

/ 

0 

0 

Color Table integer function cfcotable (istart, ra, ga, ba, n) 
integer istart 

Deactivate View Surface 
(SunCGI Extension) 

Define Bundle Index 
(SunCGI Extension) 

Device Viewport 

Disable Events 

Disjoint Polyline 

integer ra(*), ga(*), ba(*) 
integer n 

integer function cfdeactvws(name) 
integer name 

integer function cfdef:bundix(index, linetype, linewidth, 
1 linecolor, marktype, marksize, markcolor, intstyle, 
2 batchindex, pattindex, fillcolor, perimtype, 
3 perimwidth, perimcolor, t3extfont, textprec, 
4 charexpand, charspace, textcolor) 
integer index 
integer linetype 
real J.inewidth 
integer J.inecolor 
integer marktype 
real. marksize 
integer markcoJ.or 
integer intstyle 
integer batchindex 
integer pattindex 
integer fiJ.lcolor 
integer perimtype 
real. perimwidth 
integer perimcolor 
integer t3extfont 
integer textprec 
real charexpand 
real charspace 
integer textcolor 

integer function cfdevvpt(name, xbot, ybot, xtop, ytop) 
integer name 
integer xbot, ybot, xtop, ytop 

integer function cfdaevents(devclass, devnum) 
integer devclass 
integer devnum 

integer function cfdpolyline(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

V=ion C of 17 March 1986 



15 8 Sun CG! Reference Manual 

Table G-2 SunCGI Fortran Binding - Part fl- Continued 0 
CGI Specification Name I 
Dissociate 

Ellipse 

Elliptical Arc Close 

Elliptical Arc 

Enable Events 

Fill Area Bundle Index 

Fill Color 

Fixed Font 
(SunCGI Extension) 

Flush Event Queue 

Fortran Binding 
integer function cfdissoc(trigger, devclass, devnurn) 
integer trigger 
integer devclass 
integer devnurn 

integer function cfellipse(x, y, majx, rniny} 
integer x, y 
integer majx, rniny 

integer function cfelliparccl(x, y, sx, sy, ex, ey, 
l rnajx, miny, close} 
integer x, y 
integer sx, sy 
integer ex, ey 
integer rnajx, rniny 
integer close 

integer function cfelliparc(x, y, sx, sy, ex, ey, rnajx, 
l rniny) 
integer x, y 
integer sx, sy 
integer ex, ey 
integer majx, rniny 

integer function cfenevents(devclass, devnurn) 
integer devclass 
integer devnurn 

integer function cfflareabundix(index) 
integer index 

integer function cfflcolor(color} 
integer color 

integer function cffixedfont(index} 
integer index 

integer function cfflusheventqu () 

0 

Version C of 17 Man-h 1986 



0 

0 

0 

A)pendix G - Using SunCGI with Fortran Programs 159 

Table G-2 SunCGI Fortran Binding -Part II-Continued 

CGI Specification Name I 
Get Last Requested 
Input 

Hard Reset 

Hatch Index 

Initialize UD 

Initiate Request 

Inquire Aspect Source 
Flags 

Fortran Binding 
integer function cfgetlastreqinp(devclass, devnum, valid, 
1 x, y, xlist, ylist, n, val, choice, string, segid, 
2 pickid) 
integer devclass 
integer devnum 
integer valid 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfhardrst() 

integer function cfhatchix(index) 
integer index 

integer function cfinitlid(devclass, devnum, x, y, xlist, 
1 ylist, n, val, choice, string, segid, pickid) 
integer devclass 
integer devnum 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfinitreq(devclass, devnum) 
integer devclass 
integer devnum 

integer function cfqasfs(n, num, vals) 
integer n 
integer num ( *) 
integer vals(*) 

Version C of 17 March 1986 



160 SunCGI Reference Manual 

Table G-2 SunCGI Fortran Binding - Part II~ Continued 

~--~------~---------------------------------, CGI Specification Name l Fortran Binding 
Inquire BitB/t integer function cfqbtbltalign (base, width, px, py, 
Alignments 1 maxpx, maxpy, name) 

integer base 

Inquire Cell Array 

Inquire Device Bitmap 

Inquire Device Class 

integer width 
integer px 
integer py 
integer maxpx 
integer maxpy 
integer name 

integer function cfqcellarr(name, px, qx, rx, py, qy, 
1 ry, dx, dy, colorind) 
integer name 
integer px, PY 
integer qx, qy 
integer rx, ry 
integer dx, dy 
integer colorind(*) 

integer function cfqdevbtmp(name, map) 
integer name 
integer*4 map 

integer function cfqdevclass(output, input} 
integer output, input 

Table G-3 SunCGI Fortran Binding-Part III 

CGI Specification Name I 
Inquire Device 
Identification 

Inquire Drawing Mode 

Inquire Event Queue 
State 

Fortran Binding 
integer function cfqdevid(name, devid) 
integer name 
character*(*) devid 

integer function cfqdrawmode(visibility, source, 
l destination, combination) 
integer visibility 
integer source 
integer destination 
integer combination 

integer function cfqevque(qstate, qoflow) 
integer qstate 
integer qoflow 

0 

0 

Vc,sion C of 17 March 1986 



Appendix G - Using SunCGI with fortran Programs 161 

0 Table G-3 SunCGI Fortran Binding-Part Ill-Continued 

·~-~---------------, 

0 

0 

CGI Specification Name I Fortran Binding 
Inquire Fill Area integer function cfqflareaatts (style, vis, color, hindex, 
Attributes 1 pindex, bindex, pstyle, pwidth, pcolor) 

integer style, vis, color 

Inquire Input 
Capabilities 

integer hindex, pindex, bindex 
integer pstyle 
real pwidth 
integer pcolor 

integer function cfqinpcaps(valid, numloc, numval, numstrk, 
1 numchoice, numstr, numtrig, evqueue, asynch, coordmap, 
2 echo, tracking, prompt, acknowledgement, trigman) 
integer valid 
integer numloc 
integer numval 
integer numstrk 
integer numchoice 
integer numstr 
integer numtrig 
integer evqueue 
integer asynch 
integer coordmap 
integer echo 
integer tracking 
integer prompt 
integer acknowledgement 
integer trigman 

Venion C of 17 March 1986 



162 SunCGI Reference Manual 

Table G-3 SunCGI Fortran Binding -Part Ill- Continued 

CG/ Specification Name T Fortran Binding 
Inquire UD State Ust integer function cfqlidstatelis (devclass, devnum, valid, 

Inquire UD State 

1 state, prompt, acknowledgement, x, y, xlist, ylist, n, 
2 val, choice, string, segid, pickid, n, triggers, 
3 echotype, echosta, echodat) 
integer devclass 
integer devnum 
integer valid 
integer state 
integer prompt 
integer acknowledgement 
integer x 
integer y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 
integer n 
integer triggers(*) 
integer echotype 
integer echosta 
integer echodat 

integer function cfqlidstate(devclass, devnum, valid, 
1 state) 
integer devclass 
integer devnum 
integer valid 
integer state 

0 

Version C of 17 March 1986 



Appendix G - Using SunCGI with Fortran Programs 163 

o~-~-~----T_a_b_l...,ec-G--_3 __ s_u_n_c_G_I_F_o_r_tr_a_n_B_,_·nd-in_g_-_P_a=rt,-I_II-__ c-:o'7n_t1-::'n,...u_ed ____________ ----, 

CG/ Specification Name I Fortran Binding 

0 

0 

Inquire UD Capabilities integer function cfqlidcaps (devclass, devnum, valid, 
1 sample, change, numassoc, trigassoc, prompt, 

Inquire Line Attributes 

Inquire Marker 
Attributes 

Inquire Output 
Capabilities 

Inquire Output Function 
Set 

Inquire Pattern 
Attributes 

2 acknowledgement, echo, echotype, n, classdep, state) 
integer devclass 
integer devnum 
integer valid 
integer sample 
integer change 
integer numassoc 
integer trigassoc(*) 
integer prompt 
integer acknowledgement 
integer echo(*) 
integer echotype(*) 
integer n 
character*(*) classdep 
integer state(*) 

integer function cfqlnatts(style, width, color, index) 
integer style 
real width 
integer color, index 

integer function cfqmkatts(type, 
integer type 
real size 
integer color, index 

size, color, index) 

integer function cfqoutcap(first, last, list) 
integer first, last 
character*SO list(*) 

integer function cfqoutfunset(level, support) 
integer level 
integer support 

integer function cfqpatatts(cindex, row, column, colorlis, 
1 x, y, dx, dy) 
integer cindex 
integer row 
integer column 
integer colorlis(*) 
integer x 
integer y 
integer dx 
integer dy 

Version C of 17 Man:h 1986 



164 SunCGI Reference Manual 

Table G-3 SunCGI Fortran Binding - Part II/.- Continued 0 
CG! Specification Name I 
Inquire Physical 
Coordinate System 

Inquire Pixel A"ay 

Inquire Text Attributes 

Inquire Text Extent 

Fortran Binding 
integer function cfqphyscsys(name, xbase, ybase, xext, yext, 
1 xunits, yunits) 
integer name 
integer xbase, ybase 
integer xext, yext 
real xunits, yunits 

integer function cfqpixarr(px, py, m, n, colorind, name) 
integer px, PY 
integer m, n 
integer colorind(*) 
integer name 

integer function cfqtextatts(fontset, index, cfont, prec, 
1 efac, space, color, hgt, bx, by, ux, uy, path, halign, 
2 valign, hfac, cfac) 
integer fontset, index, cfont, prec 
real efac, space 
integer color, hgt 
real bx, by, ux, uy 
integer path, halign, valign 
real hfac, cfac 

integer function cfqtextext(string, nextchar, 
1 conx, cony, llpx, llpy, ulpx, ulpy, urpx, urpy) 
character*(*) string 
character*(*) nextchar 
integer conx 
integer cony 
integer llpx 
integer llpy 
integer ulpx 
integer ulpy 
integer urpx 
integer urpy 

Version C of 17 March 1986 



Appendix G - Using SunCGI with Fortran Programs 165 

Q TableG-3 SunCGI Fortran Binding-Part ll/.-Continued 

---------------------------------------------, CG/ Specification Name I Fortran Binding 

0 

0 

Inquire Trigger 
Capabilities 

Inquire Trigger State 

Inquire VDC Type 

Interior Style 

Line Color 

Line Em/style 
(SunCGI Extension) 

Line Type 

Line Width Specification 
Mode 

integer function cfqtrigcaps(trigger, valid, change, n, 
1 class, assoc, maxassoc, prompt, acknowledgement, 
2 name, description) 
integer trigger 
integer valid 
integer change 
integer n 
integer class(*) 
integer assoc(*) 
integer maxassoc 
integer prompt 
integer acknowledgement 
character*(*) name 
character*(*) description 

integer function cfqtrigstate(trigger, valid, state, n, 
1 class, assoc) 
integer trigger 
integer valid 
integer state 
integer n 
integer class(*) 
integer assoc(*) 

integer function cfqvdctype(type) 
integer type 

integer function cfintstyle(istyle, perimvis) 
integer istyle 
integer perimvis 

integer function cflncolor(index) 
integer index 

integer function cflnendstyle(ttyp) 
integer ttyp 

integer function cflntype (ttyp) 
integer ttyp 

integer function cflnspecmode(mode) 
integer mode 

Version C of 17 March 1986 



166 SunCGJ Reference Manual 

Table G-4 SunCGI Fortran Binding -Part N 0 
CG! Specification Name I 
Line Width 

Marker Color 

Marker Size 
Specification Mode 

Marker Size 

Marker Type 

Open CG/ 
(SunCGI Extension) 

Open View Surface 
(SunCGI Extension) 

Partial Polygon 

Pattern Index 

Pattern Reference Point 

Pattern Size 

Pattern Table 

Fortran Binding 
integer function cflnwidth(index} 
real index 

integer function efmkcolor(index) 
integer index 

integer function cfmkspecmode(mode} 
integer mode 

integer function cfmksize (index} 
real index 

integer function cfmktype(ttyp} 
integer ttyp 

integer function cfopencgi (} 

integer function cfopenvws(name, screenname, windowname, 
1 windowfd, retained, dd, cmapsize, cmapname, flags, 
2 ptr} 
integer name 
character*(*} screenname 
character*(*) windowname 
integer windowfd 
integer retained 
integer dd 
integer cmapsize 
character*(*} cmapname 
integer flags 
character*(*} ptr 

integer function cfppolygon(xcoors, ycoors, n, flag) 
integer xcoors(*) 
integer ycoors(*} 
integer n 
integer flag 

integer function cfpatix(index) 
integer index 

integer function cfpatrefpt (x, y} 
integer x, y 

integer function cfpatsize (dx, dy} 
integer dx, dy 

integer function cfpattable(index, m, n, colorind} 
integer index 
integer m, n 
integer colorind(*} 0 

Version C of 17 March 1986 



0 

Appendix G - Using SunCGI with Fortran Programs 167 

Table G-4 SunCGI Fortran Binding - Part IV-- Continued 

,----,,-------,-,,----,,------------=----,=-=--:-:------------, 
CG! Specification Name I Fortran Binding 
Pattern with Fill Color integer function cfpatfillcolor (flag) 
(SunCGI Extension) integer flag 

Perimeter Color integer function cfperilncolor (index) 

Perimeter Type 

Perimeter Width 
Specification Mode 

Perimeter Width 

Pixel Array 

Polygon 

integer index 

integer function cfperilntype(ttyp) 
integer ttyp 

integer function cfperilnspecmode(mode) 
integer mode 

integer function cfperilnwidth(index) 
real index 

integer function cfpixarr(px, py, m, n, colorind) 
integer px, PY 
integer m, n 
integer colorind(*) 

integer function cfpolygon(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 

0 Polyline Bundle Index 

integer n 

integer function cfpolylnbundix(index) 
integer index 

0 

Polyline 

Polymarker Bundle 
Index 

Polymarker 

Rectangle 

Release Input Device 

integer function cfpolyline(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

integer function cfpolymkbundix(index) 
integer index 

integer function cfpolymarker(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

integer function cfrectangle(xbot, ybot, xtop, ytop) 
integer xbot, ybot, xtop, ytop 

integer function cfrelidev(devclass, devnum) 
integer devclass 
integer devnum 

Venion C of 17 March 1986 



168 SunCGI Reference Manual 

Table G-5 SunCGI Fortran Binding -Part V 

~-------------------------------------------, CG! Specification Name I Fortran Binding 
Request Input integer function cfreqinp (devclass, devnum, timeout, 

Reset to Defaults 

Sample Input 

1 valid, x, y, xlist, ylist, n, val, choice, string, 
2 segid, pickid, trigger) 
integer devclass 
integer devnum 
integer timeout 
integer valid 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*} string 
integer segid 
integer pickid 
integer trigger 

integer function cfrsttodefs() 

integer funct.ion cfsampinp (devclass, devnum, valid, x, y, 

0 

1 xlist, ylist, n, val, choice, string, segid, pickid) O· 
integer devclass 

Selective Flush of Event 
Queue 

Set Aspect Source Flags 

Set Default Trigger 
Associations 

integer devnum 
integer valid 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfsflusheventqu(devclass, devnum} 
integer devclass 
integer devnum 

integer function cfsaspsouflags(fval, fnum, n) 
integer fval(*}, fnum(*), n 

integer function cfsdefatrigassoc(devclass, devnum) 
integer devclass 
integer devnum 

0 

Ven,ion C of 17 March 1986 



Appendix G - Using SunCGI with For1ran Programs 169 

0 ~-------T-ab_l_e,...G_-_s __ s_u_n_C_G_I_F_or_rr_a_n_B_ind-in_g_--=P=-a-rt_v._-:C::-:--on-:tz,..-·n_ue_d------------, 
CGI Specification Name I Fortran Binding 

0 

0 

Set Drawing Mode integer function cfsd.rawmode (visibility, source, 
l destination, combination) 

Set Error Warning Mask 

Set Global Drawing 
Mode 
(SunCGI Extension) 

Set Initial Value 

Set Up SIGWINCH 
(SunCGI Extension) 

Set VALUATOR Range 

Text Alignment 

Text Bundle Index 

Text Color 

Text Font Index 

integer visibility 
integer source 
integer destination 
integer combination 

integer function cfserrwarnmk(action) 
integer action 

integer function cfsgld.rawmode(combination) 
integer combination 

integer function cfsinitval(devclass, devnum, x, y, 
l xlist, ylist, n, val, choice, string, segid, pickid) 
integer devclass 
integer devnum 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfsupsig(name, sig_function) 
integer name 
external sig_function 

integer function cfsvalrange(devnum, mn, mx) 
integer devnum 
real mn, mx 

integer function cftextalign(halign, valign, hcalind, 
l vcalind) 
integer halign 
integer valign 
real hcalind, vcalind 

integer function cftextbundix(index) 
integer index 

integer function cftextcolor(index) 
integer index 

integer function cftextfontix(index) 
integer index 

Version C of 17 March 1986 



170 SunCGI Reference Manual 

Table G-5 SunCGI Fortran Binding - Part V- Continued 

~--------~------------,co---=--,-,,-------------, CGI Specification Name I Fortran Binding 
Text Precision integer function cftextprec (ttyp} 

integer ttyp 

Text integer function cftext (x, y, string} 
integer x 

Track Off 

Track On 

VDC Extent 

VDMText 

integer y 
character*(*} string 

integer function cftrackoff(devclass, devnum, tracktype, 
1 action} 
integer devclass 
integer devnum 
integer tracktype 
integer action 

integer function cftrackon(devclass, devnum, echotype, 
1 exlow, eylow, exup, eyup, x, y, xlist, ylist, n, val, 
2 choice, string, segid, pickid} 
integer devclass 
integer devnum 
integer echotype 
integer exlow 
integer eylow 
integer exup 
integer eyup 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfvdcext(xbot, ybot, xtop, ytop) 
integer xbot, ybot, xtop, ytop 

integer function cfvdmtext(x, y, flag, string) 
integer x 
integer y 
integer flag 
character*(*) string 

0 

0 

0 

Version C of 17 Man:h 1986 



0 H 
Short C Binding 

Short C Binding ............................................................................................................................. 173 

0 

0 



0 ! 

ol 
i 

0 



0 

0 

0 

H 
Short C Binding 

At the time SunCGI was implemented, there was no official ANSI C binding for 
CG!. Sun Microsystems has tried to anticipate the eventual C binding with a set 
of shoner function names. The SunCGI binding is inspired by the C language 
binding of GKS. These names are contained in the header file <cgicbind. h> 
which must be included in an application program using the short C binding. 

Table H-1 Correspondence Between Long and Short C Names 

Long Name 
activate vws 
append_text 
associate 
await event 
bitblt_pattern_array 
bitblt_patterned_source_array 
bitblt_source_array 
cell_array 
character_expansion_factor 
character_height 
character orientation 
character_path 
character set index - -
character_spacing 
circle 
circular_arc_3pt 
circular_arc_3pt_close 
circular arc center - -
circular_arc_center_close 
clear control 
clear_view_surface 
clip_indicator 
clip_rectangle 
close_cgi 
close_vws 
color_table 
deactivate vws 

I 

173 

Short Name 
·cactvws 
Captext 
Cassoc 
Cawaitev 
Cbtblpatarr 
Cbtblpatsouarr 
Cbtblsouarr 
Ccellarr 
Ccharexpfac 
Ccharheight 
Ccharorientation 
Ccharpath 
Ccharsetix 
Ccharspacing 
Ccircle 
Ccircarcthree 
Ccircarcthreecl 
Ccircarccent 
Ccircarccentcl 
Cclrcont 
Cclrvws 
Cclipind 
Ccliprect 
Cclosecgi 
Cclosevws 
Ccotable 
Cdeactvws 

Version C of 17 March 1986 



17 4 SunCGI Reference Manual 

________ T_a_b_I_e_H_-_1 __ c_or_r_e_sp_o_nd_e_nc_e_B_e_iw_e_en_Lo_n_g_a_nd_S_ho_rr_C_N._am_e_s-_C_o_m_in_u_e_d ______ o 
I Long Name 

define_bundle_index 
device_viewport 
disable_events 
disjoint_polyline 
dissociate 
echo_off 
echo on 
echo_update 
ellipse 
elliptical_arc 
elliptical_arc_close 
enable events 
fill_area_bundle_index 
fill color 
fixed font 
flush_event_queue 
get_last_requested_input 
hard reset 
hatch index 
initialize lid 
initiate_request 
inquire_aspect_source_flags 
inquire_bitblt_alignments 
inquire_cell_array 
inquire_device_bitmap 
inquire_device_class 
inquire_device_identification 
inquire_drawing_mode 
inquire_event_queue_state 
inquire_fill_area_attributes 
inquire_input_capabilities 
inquire_lid_capabilities 
inquire_lid_state 
inquire_lid_state_list 
inquire_line_attributes 
inquire_marker_attributes 
inquire_output_capabilities 
inquire_output_function_set 
inquire_pattern_attributes 
inquire_physical_coordinate_system 
inquire_pixel_array 
inquire_text_attributes 
inquire_text_extent 
inquire_trigger_capabilities 
inquire_trigger_state 
inquire vdc type 

Short Name 
Cdefbundix 
Cdevvpt 
Cdaevents 
Cdpolyline 
Cdissoc 
Cechooff 
Cechoon 
Cechoupd 
Cellipse 
Celliparc 
Celliparccl 
Cenevents 
Cflareabundix 
Cflcolor 
Cfixedfont 
Cflusheventqu 
Cgetlastreqinp 
Chardrst 
Chatchix 
Cinitlid 
Cinitreq 
Cqasfs 
Cqbtblalign 
Cqcellarr 
Cqdevbtmp 
Cqdevclass 
Cqdevid 
Cqdrawmode 
Cqevquestate 
Cqflareaatts 
Cqinpcaps 
Cqlidcaps 
Cqlidstate 
Cqlidstatelis 
Cqlnatts 
Cqmkatts 
Cqoutcap 
Cqoutfunset 
Cqpatatts 
Cqphyscsys 
Cqpixarr 
Cqtextatts 
Cqtextext 
Cqtrigcaps 
Cqtrigstate 
Cqvdctype 

0 

0 

Version C of 17 March 1986 



Appendix H - Short C Binding 175 

Q _________ T_a_b_l_e_H_-_1 __ c_o_r_r_es_p_o_nde __ nc_e_B_ezw_e_e_n_Lo_n_g_a~nd-S_ho_rt_C_N_am __ es--__ c_o_n_t_in_u_e_d ______ , 

I 

0 

0 

Long Name 
interior_style 
line color 
line_endstyle 
line_type 
line_width 
line_width_specification_mode 
marker_color 
marker_size 
marker_size_specification_mode 
marker_type 
open_cgi 
open_vws 
partial_polygon 
pattern index 
pattern~reference_point 
pattern_size 
pattern_table 
pattern_with_fill_color 
perimeter_color 
perimeter_type 
perimeter_width 
perimeter_width_specification_mode 
pixel_array 
polygon 
polyline 
polyline_bundle_index 
polymarker 
polymarker_bundle_Index 
rectangle 
release_input_device 
request_input 
reset_to_defaults 
sample_input 
selective_flush_of_event_queue 
set_aspect_source_flags 
set_default_trigger_associations 
set_drawing_mode 
set_error_warning_mask 
set_global_drawing_mode 
set_initial_value 
set_up_sigwinch 
set_valuator_range 
text 
text_alignment 
text bundle index - -
text color 

Short Name 
Cintstyle 
Clncolor 
Clnendstyle 
Clntype 
Clnwidth 
Clnwidthspecmode 
Cmkcolor 
Cmksize 
Cmksizespecmode 
Cmktype 
Copencgi 
Copenvws 
Cppolygon 
Cpatix 
Cpatrefpt 
Cpatsize 
Cpattable 
Cpatfillcoior 
Cperimcolor 
Cperimtype 
Cperimwidth 
Cperimwidthspecmode 
Cpixarr 
Cpolygon 
Cpolyline 
Cpolylnbundix 
Cpolymarker 
Cpolymkbundix 
Crectangle 
Crelidev 
Creqinp 
Crsttodefs 
Csampinp 
Cselectflusheventqu 
Csaspsouflags 
Csdefatrigassoc 
Csdrawmode 
Cserrwarnmk 
Csgldrawmode 
Csinitval 
Csupsig 
Csvalrange 
Ctext 
Ctextalign 
Ctextbundix 
Ctextcolor 

Version C of 17 March 1986 



17 6 Sun CG! Reference Manual 

Table H-1 Correspondence Between Long and Short C Name9-Continued 0 
Long Name 

text font index 
text_precision 
track off 
track on 
vdc_extent 
vdm text 

I Short Name 
Ctextfontix 
Ctextprec 
Ctrackoff 
Ctrackon 
Cvdcext 
Cvdmtext 

0 

0 

Version C of 17 March 1986 



0 

Index 

Special Characters 
<cgicbind.h>,173 
<cgiconstants.h>, 111 
<cgidefs .h>, 111 

A 
Activate View Surface (SunCGI Extension), 16, 154 
activate_vws, 16 
ANSI, xv 
Append Text, 43, 154 
append_ text, 43 
Associate, 85, 154 
associations, 27 

adding, 86 

0 removing, 87 
asynchronous input functions, 92 ,hrw 93 
atlribute inquiries 

inquire aspect source flags,78 
inquire -fill a'rea att'ributes, 76 
inquire-line-attributes,75 
inquire-mark;r attributes,75 
inquire~attern_attributes,76 
inquire_text_attributes,77 

attribute inquiry functions, 75 1/rrw 78 
attributes, 53 1/rrw 78 

bundled, 54 1/rrw 57 
color, 74 1/rrw 75 
fill area, 62 thrw 63 
line, 57 lhrw 60 
pattern, 63 lhrw 66 
perimeter, 66, 68 
polymarker, 60 1hru 61 
solid objec, 6! 1hru 68 
tex, 68 thru 74 

Await Evem, 95, 154 
await_event, 95 

B 
bitbl~ 33, 42, 49 
BitBlt Paztern A"ay, 46, 154 
BitBlt Ptz11erned Solll'ce A"ay, 46, 154 
BitBlt Source Array, 45, 154 
bitblt_pattern_array, 46 

0 bitblt_patterned_source_array, 46 
bitblt_source_array,45 
bundle table, 54 

-177-

bundled lllributcs, S4 llvM 57 
define bundle index, 56 
'aet asPect 8oUrce flags, 56 

bundles, 54 - -

C 
Cell Array, 44, 154 
cell_array,44 
cfactvws, 154 
cfaptext, 154 
cfassoc, 154 
cfawaitev, 154 
cfbtblpatarr, 154 
cfbtblpatsouarr, 154 
cfbtblsouarr, 154 
cfcellarr, 154 
cfcharexpfac, 154 
cfcharheight, 154 
cfcharorient, 1S4 
cfcharpath, 154 
cfcharsetix, 154 
cfcharspacing, 154 
efcircarccent, 154 
cfcircarccentcl, 154 
cfcircarcthree. 154 
cfcircarcthreecl, 154 
cf circle, 154 
cfclipind, 154 
cfcliprect, 154 
cfcloaecgi, 154 
cfcloaevwa, 154 
cfclrcont, 154 
cfclrvws, 154 
cfcotable, 157 
cfdaevents, 157 
cfdeactvwa, 157 
cfdefbundix, 157 
cfdevvpt, 157 
<ffdiasoc, 157 
cfdpolyline, 157 
cfelliparc, 157 
cfelliparccl,157 
cfellipse, 157 
cfenevents, 157 
cffixedfont, 157 



Index Contirwed 

cfflareabundix,157 
cfflcolor, 157 
cfflusheventqu, 157 
cfgetlastreqinp, 157 
cfhardrst, 157 
cfha tchix, 157 
cfinitlid, 157 
cfinitreq, 157 
cfintstyle, 160 
cflncolor, 160 
cflnendstyle, 160 
cflnspecmode,160 
cflntype, 160 
cflnwidth, 166 
cfmkcolor, 166 
cfmksize, 166 
cfmkspecmode, 166 
cfmktype, 166 
cfopencgi, 166 
cfopenvws, 166 
cfpatfillcolor,166 
cfpatix, 166 
cfpatrefpt, 166 
cfpatsize, 166 
cfpattable, 166 
cfperimcolor, 166 
cfperimspecmode, 166 
cfperimtype, 166 
cfperimwidth,166 
cfpixarr, 166 
cf polygon, 166 
cfpolyline, 166 
cfpolylnbundix, 166 
cfpolymarker, 166 
cfpolymkbundix,166 
cfppolygon, 166 
cfqasfs, 157 
cfqbtbltalign, 157 
cfqcellarr, 157 
cfqdevbtmp, 157 
cfqdevclass, 157 
cfqdevid, 160 
cfqdrawmode, 160 
cfqevque, 160 
cfqflareaatts, 160 
cfqinpcaps, 160 
cfqlidcaps, 160 
cfqlidstate, 160 
cfqlidstatelis,160 
cfqlnatts, 160 
cfqmkatts, 160 
cfqoutcap, 160 
cfqoutfunset, 160 
cfqpatatts, 160 
cfqphyscsys, 160 
cfqpixarr, 160 
cfqtextatts, 160 
cfqtextext, 160 

-178-

cfqtrigcaps, 160 
cfqtrigstate, 160 
cfqvdctype, 160 
cfrectangle, 166 
cfrelidev, 166 
cfreqinp, 168 
cfrsttodefs, 168 
cfsampinp, 168 
cfsaspsouflags,168 
cfsdefatrigassoc, 168 
cfadrawmode, 168 
cfserrwarnmk, 168 
cfaflusheventqu, 168 
cfagldrawmode, 168 
cfsinitval, 168 
cfaupsig, 168 
cfsvalrange, 168 
cftext, 168 
cftextalign, 168 
cftextbundix, 168 
cftextcolor, 168 
cftextfontix, 168 
cftextprec, 168 
cftrackoff, 168 
cftrackon, 168 
cfvdcext, 168 
cfvdmtext, 168 
CGl,3 

audience, xv 
controlling document, xv 

CG!Tooi 14 
CGI type definitions, 111 thiv 120 
CGI with Pixwins, 143 lhiv 148 
CGI with pixwins 

example, 147 
functions,145thivl47 
using cgipw, 144 thru 145 

cgipw functions 
close_cgi_pw, 144 
close__pw_cgi, 144 
open_cgi_pw, 143 
open_pw_cgi, 143 

Cwacter E,q,ansion FactlH, 70, 154 
Cwacter Heighl, 70, 154 
Cwacter Oriotation, 71, 154 
Cwacter Path, 72, 154 
C/taracter Sa Irtda, 69, 154 
Cwacter Spacing, 70, 154 
character_expanaion_facto~70 
character_height, 70 
character orientation, 71 
characterJ>ath, 72 
character_eet_index, 69 
character spacing, 70 
Circle, 38, 154-
circle 

area of a, 38 
perimeter definition, 38 

circle,38 

0 

0 

0 



0 Circular Arc 3pt, 40, 154 
Circular Arc3pt Close, 41, 154 
Circular Arc Center, 38, 154 
Circular Arc Center Close, 39, 154 
circular arcs 

center, 39 
close, 39 
direction of drawing, 39 
111=-point, 40 

circular_arc_3pt, 40 
circular_arc_3pt_close,41 
circular arc center, 38 
circular:arc:center_close, 39 
Clear Control, 21, 154 
Clear View Surface, 21, 154 
clear_control, 21 
clear_view_surface,21 
Clip Indicator, 19, 154 
Clip Rectangle, 20, 154 
clip_indicator,19 
clip_rectangle,20 
clipping, 17, 19 
Clcse a CG/ Pixwin, 144 
Close CG/ (SunCG/ Extension), 16, 154 
Close Pixwin CG/, 144 
Close View Surface (SunCG/ Extension), 16, 154 
close_cgi, 16 
close_cgi_pw, 144 

0 closeyw_cgi, 144 
close_vws, 16 
color attributes, 74 thru 15 

color_table, 74 
color table, 59, 74, 157 
color_table, 74 
conical output primitives, 33, 34 thru 42 
control errors, 124 
coordinate definition errors, 124 thru 125 
current position, 103 

D 
data type definitions, 111 thru 120 
Deactivate View Surface (SunCG/ Extension), 16, 157 
deactivate vws,16 
Define Bundle Index (SunCGJ Extension), 56, 157 
define_bundle_index, 56 
device coordinates (see screen space), 17 
Device V~rt, 19, 157 
device_viewport,19 
Disable EvenJs, 98, 157 
disable_events, 98 
Disjoint Polyline, 34, 157 
disjointJ>olyline, 34 
Dissocial., 86, 157 
documentation conventions, xv 
drawing mode, 6, 42 

0 
drawing modes, 48 thru 50 

-179-

E 
Ellipse, 41, 157 
EllipticaIArc,41, 151 
Elliptical Arc Close, 42, 157 
elliptical arcs, 41 

drawing of, 42 
elliptical_arc, 41 
elliptical_arc_close, 42 
Enable EvenJs, 95, 157 
enable_events, 95 
error, 21 

control, 21 
errors 

control, 124 
cooniinate definition, 124 thru 125 
implementation dependent, 131 
input, 129 thru 130 
output attribute, 125 thru 127 
output primitive, 127 thru 129 
possible causes of visual, 131 thru 133 
state, 123 thru 124 

eventqueue,87,96 
status, 98 

event queue input functions, 93 thru 98 

F 
fill area attributes, 62 thru 63 
Fill Area Bundle lnde,; 62, 157 
Fill Color, 63, 157 
fill area bundle index, 62 
fill-colo;, 63 -
Fiud Fo111 (SUIICGI Exunsion), 71, 157 
fixed font, 71 
Flush t;m1 Quae, 96, 157 
flush_event_queue, 96 
PORI'RAN interface 

function definitions, 154 thru 110 
Programming Hints, 151 thru 152 
using l'ORTRAN, 151 

G 
geometrical output primitives, 33, 33 thru 42 
Get Last Requested /npUl, 97, 157 
get_last_requested_input, 97 
global polygon list, 35, 36 

H 
Hard Ruet, 20, 157 
bard _reset, 20 
balch, 63 
Hatch Inda, 64, 157 
batch_index, 64 

I 
IC S'lltOKE, 86 
implementation dependent errors, 131 
include files, 4 
Initialize UD, 84, 157 
initialize_lid, 84 

Index Continued 



Index Continued 

initializing 
activate vws, 16 
close cgI1 16 
close - vws, 16 
deactivate vws, 16 
open cgi, 12 
open:vws, 13 

initializing SuoCGI, 12 
Initiat• Request, 92, 157 
initiate_request, 92 
input device, 84 

capabilities, 27 
status, 98 

input device initialization functions, 84 tJvv 90 
input devices 

initialization, 84 
input errors, 129 thru 130 
input functions 

associate, 85 
await event, 95 
disable events, 98 
dissocia'te, 86 
enable events, 95 
flush ;vent queue, 96 - -get last requested input, 97 
initialize lid, 84 -
initiate re'quest, 92 
inquire ;vent queue state. 99 
inquire -l.id state, 99-
inquire -lid-state list, 98 
inquire -tri9ger st'ate, 99 
release-input de'vice, 85 
request - input:-91 
sample Input, 97 
selectI ve flush of event queue, 96 
set default tri9ge'r assoCiations. 86 
set -initial-value, 87-
aet -valuator' range, 87 
traCk off, 89 -
track:on, 88 

lnquir• Aspect Source Fkigs, 78, 157 
Inquire BitBlt Alignments, 48, 157 
Inquire C•IIA"ay, 47, 157 
Inquir• Device Bitmap, 48, 157 
Inquir• Device Class, 25, 157 
Inquire Devic• Identification, 25, 160 
Inquire Drawing Mode, SO, 160 
Inquire Ev•nl Queue Stat•, 99, 160 
Inquire Fil/Area Attributes, 76, 160 
Inquirelnput Capabiuties, 27, 160 
/nquir• UD Capabilities, 28, 160 
Inquire UD Stat•, 99, 160 
lnquir• UD State List, 98, 160 
Inquire Line AltribUla, 75, 160 
Inquire Marker Attributes, 75, 160 
Inquire D,aput Capabilities, 27, 160 
Inquire Output FunctionS•t, 26, 160 
lnquir• Pattern Attributes, 76, 160 
Inquire Physical Coordinat• System, 25, 160 
Inquir• Pixel Array, 47, 160 
Inquire Text Attributes, 77, 160 

-180-

Inquire Text Extent, 43, 160 
lnquireTrigguCapabililies, 29,160 
lnquir• Trigger State, 99, 160 
lnquir• VDC Type, 26, 160 
inquire 

aspeCt source flags,78 
bitblt-alignments,48 
cell_array, 47 
device bitmap,48 
device - class, 25 
device-identification, 25 
drawing mode, 50 
event qiieue state, 99 
fill_area_attributes, 76 
input_capabilities,27 
lid_capabilities, 28 
lid state list, 98, 99 
line attributes,75 
marker attributes,75 
output-capabilities,27 
output-function set,26 
pattern attributes, 76 
physical coordinate systeJ'I\ 25 
pixel array, 47 -
text ittributes,77 
text - extent, 43 
trig9er capabilities,29 
trigger - state, 99 
vdc_type, 26 

inquiry functions 
aUributes, 75 thru 78 

interface negotiation, 24 thru 30 
inquire device class,25 
inquire - device-identification, 25 
inquire-input Capabilities,27 
inquire-lid capabilities,28 
inquire-outPut capabilitie~27 
inquire-output -function set, 26 
inquire J)hysic'i°l_ coordi'iiate _ system. 25 
inquire trigger capabilities,29 
inquire:vdc_type, 26 

Interior Style, 62, 160 
interior style, 62 
isotropy, 17-

L 
line aunoutes, 57 t1vv 60 

line_ color, 59 
line_endstyle,58 
line_type, 58 
line width, 59 
line-width specification mode, 59 
polyline bundle index, 57 -

Line Color, 59, 160 -
Line Enbyle (Siu€G1 Eztouion), 58, 160 
Line Type, 58, 160 
Line Widlli, 59, 166 
Line Wubh Sp«ification Mode, 59, 160 
line_ color, 59 
line_endstyle, 58 
line_type, 58 
line_width, 59 

0 

0 

0 



Oline_width_specification_mode,59 
linking SunCGI, 3 
lint library, 5 
logical input device, 6 

M 
Marker Color, 61, 166 
Marker Size, 61, 166 
Marker Size Specificalion Mode, 60, 166 
Marker Type, 60, 166 
marker color, 61 
marker-size, 61 
marker=size_specification_mode, 60 
marker_type, 60 
measure, 6 

N 
negotiation functions, 5 
non-retained windows, 14 
NORMAL_VWSURF, 13, 15 

0 
Open a CG/ Pixwin, 143 
Open CG/ (SunCG/ Extension), 12, 166 
Open Pixwin CG/, 143 . 
Open View Surface (SunCG/ Extension), 13, 166 
open_cgi, 12 

0 
open_cgi__pw, 143 
open_pw_cgi, 143 
open vws, 13 
option-;ets, 3 
output attribute errors, 125 thru 127 
output primitive errors, 127 thru 129 
output primitives, 3, 6, 33 thru SO, 104 

append text, 43 
bitblt::,attern_array,46 
bitblt_patterned_source_array,46 
bitblt source array,45 
cell array, 44 -
circle, 38 
circular arc 3pt, 40 
circular-arc-3pt close.41 
circular-arc - center, 38 
circular-arc-center close. 39 
conical, 33, 34 tin 42 -
disjoint_polyline, 34 
drawing modes, 48 thru 50 
ellipse,41 
elliptical arc, 41 
elliptical: arc_ close, 42 
geomelrica!, 33 1/tru 42 
inquire_bitblt_alignments,48 
inquire_cell_array,47 
inquire_device_bitmap, 48 
inquire_ drawing_mocle, 50 
inquire _pixel_array, 47 
inquire_text_extent,43 

0. partial__polygon,36 
pixel_array, 44 
polygon, 35 

Index Continued 

output primitives, continued 
polygonal, 33, 33 thru 38 
polyline, 34 
polymarker, 35 

-181-

raster, 42 '""' 48 
rectangle, 38 
set drawing mode, 49 
set -global drawing mode, SO 
text,42 - -
vdm_text,43 

p 
Partial Polygon, 36, 166 
pa-rtial__polygon, 36 
pat!em,63 

reference point, 65 
pattern attributes, 63 tltru 66 

hatch index, 64 
pattertl_index, 65 
pattern_reference_point,65 
pattern_size, 66 
pattern table, 65 
pattern:with_fill_color, 66 

Pa1tem Index, 65, 166 
PaztunReference Pow, 65, 166 
PartemSize, 66, 166 
Pa1tem Table, 65, 166 
Paltem with Fill Color (SunCG/ Extension), 66, 166 
pattern_index, 65 
pattern_reference_point,65 
pattern_size, 66 
pattern table, 65 
pattern_ with_ fill_ color 

pattern_with_fill_color,66 
perimeter 

endstyle, 67 
perimeter attributes, 66 thru 68 

perimeter_colo~68 
perimeter_type, 66 
perimeter_width, 67 
perimeter _width _specification_ mode, 67 

Perimeter Color, 68, 166 
Perimeter Type, 66, 166 
perimeter visibility, 62 
Perimeter Width, 67, 166 
Perimeter WidthSpecifict,lionMode, 67, 166 
perimeter_color, 68 
perimeter_type, 66 
perimeter_width, 67 
perimeter_width _specification_ mode, 67 
pie chart, 39 
PiMIArray, 44,166 
pixel array, 44, 45 
Pixwins with CGI, 143 t1tru 148 
pixwins with CGI 

example, 147 
functions, 145 ,,.,,. 147 
using cgipw, 144 tlvM 145 

point 
drawing a, 38 

Polygon, 35, 166 



Index Co111inued 

polygon 
with undrawn edge(s), 36 

polygonal primitives, 33, 33 thru 38 
Polyline, 34, 166 
Polyline Bundle Index, 57, 166 
polyline_bundle_index, 57 
Polymarker, 35, 166 
polymarker allributcs, 60 thru 61 

marker color, 61 
marker-size, 61 
marker-size specification mode, 60 
marker-type,-60 -
polymarker_bundle_index, 60 

Polymarker Bundle Index, 60, 166 
polymarker_bundle_index,60 

R 
raster primitives, 33, 42 thru 48 
Rectangle, 38, 166 
Release Input Device, 85, 166 
release input device,85 
Request 1,;;ut, 91, i68 
request register, 92, 97 
request input, 91 
Reset to Defaults, 20, 168 
reset_to_defaults,20 
retained windows, 14 

s 
Sample Input, 97, 168 
sample input, 97 
screen space, 5, 17 

definition, 19 
Selective Flush of Evenl Queue, 96, 168 
selective flush of event queue, 96 
Se: Aspect Source Flags, 5~ 168 -
Sel Default Trigger Associations, 86, 168 
Se: Drawing Mode, 49, 168 
Se: E"or Warning Mask, 22, 168 
Sel Global Drawing Mode (SunCGI Extension), 50, 168 
Se:Inilia/Value,87, 168 
Se: Up SIGWINCH (SunCGI Extension), 23, 168 
Sa VALUATOR Range, 87, 168 
aet_aspect_source_flags,56 
set_default_trigger_associations,86 
set_drawing_mode, 49 
set error warning mask, 22 
se(:global_drawing_mode, SO 
set initial value, 87 
set - up sigwinch, 23 
set valuator range, 87 
SbortC Binding, 4,173 
SJGWINCH, 6, 22 
solid object aunoutcs, 61 thru 68 

fill area bundle index, 62 
fill-color, 63 -
inter'ior_style, 62 

specified device, 28 
state errors, 123 thru 124 

-182-

status inquiries, 98 thrv 100 
Sun Workstation, 25 
SunCGI,3 

with SunCGI, 22 thrM 24 
SunVlew 

set up sigwinch, 23 
using SunCGI with, 22, 24 

synchronous input functions, 90 thrv 92 

T 
Tezt, 42, 168 
Tezt Alignmen1, 72, 168 
text allributcs, 68 thrv 74 

character expansion facto~70 
character-height, 70 -
character - orientation, 71 
characterJath, 72 
character set index, 69 
character - spaCing, 70 
fixed font, 71 
text 'alignment, 72 
text -bundle index, 68 
text - color, 71 
text - font index, 69 
textJ)recision, 68' 

Tezt Bundle Inda, 68, 168 
TeztColcr, 71, 168 
Text Fonl Index, 69, 168 
Tezt Precision, 68, 168 
text precision 

detailed definition, 68 
text, 42 

appended,43 
text_aligrunent,72 
text,42 
text_ bundle_ index, 68 
text color, 71 
tex<)ont_index, 69 
text_precision, 68 
textured line, 58 
timeout, 83 
track, 88 
Trad< Off, 89, 168 
Trad<On, 88, 168 
track off, 89 
track - on, 88 
tracJcin& 88 tlvK 90 
trigger, 6, 27, 86 
Trigger 

Capabilities, 29 
trigger 

interaction with STROKE device, 86 
a1a1Us, 98 

type definitions, 111 thru 120 

u 
unsupported CG! functions, 107 thrv 108 
using SunCGI, 3 

0 

0 

0 



n V 
,-IVDC Extent, 17, 168 

VDC space, 5, 17 
vdc _ extent, 17 
VDI,xv 
VDM Tut, 43, 168 
vdrn _ text, 43 
view surface, 11 

clear control, 21 
clearing, 20 
default states, 15 

view surface controi I 7 ,11n, 22 
clear control, 21 
clear-view surface, 21 
clip indicator, 19 
clip=rectangle, 20 
device viewport,19 
hard re'set, 20 
reset to defaults, 20 
set error warning mask. 22 
vdc=extent', 17 -

view surfaces, 15 
active, 5 
initializing, 13 
multiple, 5, 13 

visual errors 
possible causes, 131 thru 133 

w 

Owindows 
nometained, 14 
retained, 14 

world cocrdinates (see voe space), 17 

0 

Index Continued 

-183-



o· 

0 

0 



0 

Revision History 

Revision I Date I Comments 
A 5/15/85 2.0 Production Release. 

B 2/17/86 3.0 Production Release. 

C 3/17/86 2.3 Production Release. 

0 

0 



0 

0 

0 


