
sun
microsystems

Writing Device Drivers
for the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Sun Microsystems, SunStation, and Sun Workstation are registered trade
marks of Sun Microsystems, Incorporated. Sun-2 and Sun-3 are trademarks of
Sun Microsystems, Incorporated.

Multibus is a trademark of Intel Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

VMEbus is a trademark of Motorola, Incorporated.

Sun equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause
interference to radio communications. It has been tested and found to comply
with the limits for a Class A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment. Operation of Sun
equipment in a residential area is likely to cause interference in which case the
user at his own expense will be required to take whatever measures may be
required to correct the interference.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part ofthis publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. Device Independence .. 3

1.2. Types of Devices ... 3

1.3. System V Compatibility .. 5

1.4. Major Development Stages.. 6

1.5. Warning To Microcomputer Programmers ... 6

1.6. Address-Space Terminology ... 6

1.7. Manual Overview.. 7

Chapter 2 Hardware Context ... 11

2.1. Multibus Machines ... 11

Multibus Memory Address Space and I/0 Address Space 11

Allocation of Multibus Memory .. 14

Allocation of Multibus I/0 Space ... 15

2.2. VMEbus Machines ... 16

Sun-2 VMEbus Address Spaces... 16

Sun-3 Address Spaces 18

Allocation of VMEbus Memory

2.3.

Multibus Device Peculiarities

Multibus Byte-Ordering Issues 22

Other Multibus-related Peculiarities .. 24

-iii-

Contents - Continued

Other Device Peculiarities ... 25

2.4. OMA Devices .. 27

Sun Main-Bus DVMA ... 27

Chapter 3 Overall Kernel Context ... 33

3.1. The System Kernel ... 33

3.2. Devices as ''Special'' Files ... 34

3.3. Run-Time Data Structures .. 40

The Bus-Resource Interface.. 41

Autoconfiguration-Related Declarations ... 47

Other Kernel/Driver Interfaces ... 48

Chapter 4 Kernel Topics and Device Drivers ... 53

4.1. Overall Layout of a Character Device Driver ... 53

4.2. User Space versus Kernel Space ... 55

4.3. User Context and Interrupt Context .. 55

4.4. Device Interrupts .. 56

4.5. Interrupt Levels ... 57

4.6. Vectored Interrupts and Polling Interrupts.. 58

4.7. Some Common Service Routines... 60

Timeout Mechanisms ... 61

Sleep and Wakeup Mechanism... 61

Raising and Lowering Processor Priorities .. 62

Main Bus Resource Management Routines ... 62

Data-Transfer Functions ... 62

Kernel printf Function .. 63

Macros to Manipulate Device Numbers.. 63

Chapter 5 Driver Development Topics .. 67

5.1. Installing and Checking the Device.. 67

Setting the Memory Management Unit .. 67

Selecting a Virtual Address ... 68

Finding a Physical Address ... 70

-iv-

Contents-Continued

Selecting a Virtual to Physical Mapping ... 70

Sun-2 Address Mapping... 72

Sun-3 Address Mapping... 75

A Few Example PTE Calculations .. 77

Getting the Device Working and in a Known State.................................. 78

A Warning about Monitor Usage .. 79

5.2. Installation Options for Memory-Mapped Devices 80

Memory-Mapped Device Drivers.. 80

Mapping Devices Without Device Drivers .. 81

Direct Opening of Memory Devices .. 85

5.3. Debugging Techniques ... 86

Debugging with print£ .. 87

Event-Triggered Printing .. 89

Asynchronous Tracing ... 90

kadb - A Kernel Debugger .. 91

5.4. Device Driver Error Handling.. 92

Error-Handling Mechanisms.. 92

Error Recovery .. 92

Error Returns .. 93

Error Signals .. 93

Error Logging .. 93

Kernel Panics ... 93

5.5. System Upgrades ... 94

Chapter 6 The ''Skeleton'' Character Device Driver................................... 97

6.1. General Declarations in Driver .. 100

6.2. Autoconfiguration Procedures.. 101

Probe Routine ... 101

Attach Routine.. 103

6.3. Open and Close Routines.. 103

6.4. Read and Write Routines .. 105

Some Notes About the UIO Structure... 106

6.5. Skeleton Strategy Routine .. 107

-v-

Contents -Continued

6.6. Skeleton Start Routine - Initiate Data Transfers .. 108

6. 7. Interrupt Routines .. 11 O

6.8. Ioctl Routine ... 112

6.9. DMA Variations ... ,... 112

Multibus or VMEbus DVMA .. 112

A DMA Skeleton Driver ... 112

Chapter 7 Configuring the Kernel .. 119

7.1. Background Information... 119

7.2. An Example .. 121

7.3. Devices that use Two Address Spaces .. 125

7.4. Booting Kernels on Diskless Workstations.. 126

Appendix A Using the Sun CPU PROM Monitor .. 129

A.1. PROM Monitor Command Syntax ... 129

A.2. PROM Monitor Syntax for Memory and Register Access 129

A.3. PROM Monitor Command Descriptions .. 131

Appendix B Summary of Device Driver Routines .. 137

B.1. Standard Error Numbers... 137

B.2. Device Driver Routines ... 137

.xxattach -Attach a Slave Device ... 137

xxclose -Close a Device .. 138

.xxintr - Handle Vectored Interrupts... 138

.xxioctl - Miscellaneous 1/0 Control... 139

x.unmap - Mmap a Page of Memory .. 140

x.uninphys - Determine Maximum Block Size 141

.xxopen - Open a Device for Data Transfers ... 141

.x.xpoll -Handle Polling Interrupts... 142

.x.xprobe - Determine if Hardware is There ... 142

.xxread - Read Data from Device ... 143

.xxstrategy Routine ... 143

xxwrite - Write Data to Device... 144

-vi-

Contents - Continued

Appendix C Kernel Support Routines ... 147

copy in - Move Data From User to Kernel Space 147

copyout - Move Data From Kernel to User Space 147

CDELAY - Conditional Busy Wait .. 147

DELAY-Busy Wait for a Given Period... 148

iodone - Indicate I/0 Complete.. 148

iowait - Wait for I/0 to Complete ... 148

getkpgmap - get PTE for Virtual Address ... 148

gsigna1- Send Signal to Process Group.. 148

kmem_a11oc-Allocate Space from Kernel Heap........................... 149

kmem_free - Return Space to Kernel Heap... 149

MBI_ADDR-Get Address in DVMA Space... 149

mbre1se - Free Main Bus Resources ... 149

mbsetup - Set Up to Use Main Bus Resources 149

panic - Reboot at Fatal Error .. 150

peek, peekc - Check and Read an Address 150

physio - Block I/0 Service Routine .. 150

poke, pokec - Check and Write an Address 152

print£ - Kernel Printf Function ... 152

pritosp1 -Convert Priority Level... 153

psigna1 - Send Signal to Process ... 153

rma11oc - General-Purpose Resource Allocator 153

rmfree - Recycle Map Resource .. 154

s1eep - Sleep on an Event .. 154

sp1n -Set CPU Priority Level... 155

sp1x - Reset Priority Level ... 155

swab - Swap Bytes .. 155

timeout - Wait for an Interval .. 155

uiomove - Move Data To or From an uio Structure 156

untimeout - Cancel timeout Request .. 156

uprintf - Nonsleeping Kernel Printf Function................................. 156

ureadc and uwritec - uio Structure Read and Write 157

vac _ disab1e _kpage - Stop Caching of a Kernel Page 157

-vii-

Contents - Continued

wakeup - Wake Up a Process Sleeping on an Event........................ 157

Appendix D User Support Routines .. 161

free - Free Allocated Memory ... 161

getpagesize - Return Pagesize ... 161

mmap-Map Memory from One Space to Another............................. 161

munmap- Unmap Pages of Memory .. 162

valloc -Allocate Virtual Memory ... 162

Appendix E Sample Driver Listings ... 165

E.1. Skeleton Board Driver ... 166

E.2. Sun-2 Color Graphics Driver ... 174

E.3. Sky Floating-Point Driver.. 186

E.4. Versatec Interface Driver.. 194

Index.. 207

- viii-

m ;.».$...:;:;».,;,,..;::$::::;.,.,;:.-:.,-:::. , .• •.•,•,•,•,•:•.•:-;.;.;.;.,:;.:...:-. ;.:::::::::::.~~ ,:x x:x::.w...:,;,;.;..,;.;,;,;,.,:.;,;,;.;,;,;,;,;,:

Tables

Table 1-1 VMEbus Address-space Names... 7

Table 2-1 Sun-2 Multibus memory types ... 12

Table 2-2 Sun-2 Multibus Memory Map.. 15

Table 2-3 Sun-2 Multibus 1/0 Map .. 15

Table 2-4 Sun-2 VMEbus Memory Types... 16

Table 2-5 Generic VMEbus (Full Set) ... 18

Table 2-6 Sun-3 VMEbus Address Types.. 18

Table 2-7 16-bit VMEbus Address Space Allocation.. 20

Table 2-8 24-bit VMEbus Address Space Allocation .. 20

Table 2-9 32-bit VMEbus Address Space Allocation (Sun-3 Only) 20

Table 2-10 VMEbus Address Assignments for Some Devices 21

Table 2-11 Vectored Interrupt Assignments ... 22

Table 3-1 A Sample Listing of the /dev Directory .. 35

Table 3-2 Current Major Device Number Assignments... 39

Table 5-1 Sun-2 P'fE Masks ... , ... ,.,;;, .. .;, .. ;;,.. 73

Table 5-2 Sun-3 P'fE Masks 76

Table 5-3 Virtual Memory Devices 82

-ix-

1
.

::,:,:,::::::,._.:,; :::,:::::::::: :.-:.:.-:_.;-::..: .. -..w:w. <«:::-....::::.w»»:~M•:4X.W.!::wJ·:,:4iU...®.:,;. » .. ·-.-.-.:...;.._::::::::.::.;. . ·._. X;. : : : : : : : ·:::::::::::::... :_.::.::::::: :-...:w _.:. ~:,.

Introduction

Introduction ... 3

1.1. Device Independence .. 3

1.2. Types of Devices ... 3

1.3. System V Compatibility .. 5

1.4. Major Development Stages.. 6

1.5. Warning To Microcomputer Programmers... 6

1.6. Address-Space Terminology ... 6

1.7. Manual Overview.. 7

1.1. Device Independence

1.2. Types of Devices

1

Introduction

This manual is a guide to adding software drivers for new devices to the Sun
UNIXt kernel.

One of the UNIX Operating System's major services to application programs is to
provide a device-independent view of the I/0 hardware. In this view, user
processes (application programs), see devices as "special" types of files that can
be opened, closed and manipulated just like regular files. The user process mani
pulates devices as it would files, by making system calls.

Once a system call carries process execution into the UNIX kernel, however, it
becomes clear just how "special" devices really are. The kernel distinguishes
between real files and device special files, and translates operations on the later
into calls to their corresponding device drivers. These drivers control all device
operations; devices do nothing until their drivers tell them to.

Thus, system calls provide the interface between user processes and the UNIX
kernel, while device drivers provide an interface between the kernel itself and its
peripheral devices. Device drivers are thus crucial elements in the UNIX operat
ing system's overall device-independent scheme of things. Device-drivers are the
only parts of the system that know, or care, if a device is DMA (Direct Memory
Access), PIO (Programmed 1/0), or memory-mapped.

The kernel supplied with the Sun system is a configurable kernel, meaning that it
is possible to add new device driver modules to your system by rebuilding your
kernel, even if you don't have access to the system source code. For more infor
mation on how to reconfigure your kernel to include new device drivers, see the
Configuring the Kernel section of this manual, the Adding Hardware to Your
System section of the System Administration Manual and the config(8) man page.

This document is aimed at Sun users who wish to connect new VMEbus or Mul
tibus devices to their system. It does not, however, explain how to write drivers
for all possible Sun devices.

We can classify devices into eight major categories:

t UNIX is a trademark of AT&T Bell Laboratories.

3

4

1. Co-processors.

2. Disks and tapes.

3. Network interface drivers such as Ethernet or X.25.

4. Serial communications multiplexors.

5. General DMA devices such as driver boards for raster-oriented printers or
plotters. DMA devices contain their own processors and, once dispatched,
perform 1/0 independently of the system CPU by stealing memory cycles.

6. Programmed 1/0 devices, that is, devices which send and receive data on the
main system bus under direct control of the system CPU.

7. Frame buffers and other memory-mapped devices. Such devices are typi
cally mapped into user-process memory and then accessed directly.

8. So called pseudo devices, which are actually drivers without associated
hardware devices.

This manual only covers driver development for devices in categories 5, 6, 7 and
8. In these categories, however, will be found the great majority of the devices
which users will want to add to their systems. These include:

o input devices like mice, digital tablets and analog-to-digital converters,

o output and display devices like frame buffers, printers, and plotters,

o and utility peripherals like array and graphics processors.

This manual doesn't support the development of co-processor drivers for the sim
ple reason that co-processors, while certainly devices, are so intimately linked to
the CPU that they are integrated below the driver level of the kernel.

It also excludes tape and disk drivers, or indeed drivers for any structured or
block /10 devices, for such drivers are quite difficult to write well. Most custo
mers will find the structured-device drivers provided with the standard system
software to fill their needs as well, if not better, than drivers that they could
develop themselves. The extensive use of standards within the Sun product line
will allow them to use hardware interfaces already provided by Sun to drive
whatever tape and disk units they wish to use. If this turns out not to be the case,
an experienced driver developer will have to be consulted. (You'll also want to
start with an existing driver, and will thus need a source-code license).

Finally, this manual doesn't discuss the issues relevant to serial communications
and local network interface drivers. Again, such drivers are rather involved, and
users will almost certainly find the Sun product line to contain devices adequate
to their task. (And again, you'll need a source license to go it alone).

This manual is concerned with unstructured or character (as opposed to struc
tured or block) devices. This distinction is often made, but seldom clearly, and it
may be helpful then to consider structured devices as only those upon which
UNIX filesystems can be mounted. Such devices (almost always disks, but tape
drives are possible) support random-access 1/0 by way of the system buffer
caching mechanism. They almost always support a second, character-oriented

1.3. System V
Compatibility

Chapter 1 - Introduction 5

style of 1/0, often called raw 110, but this doesn't make them character devices.
Their drivers tend to implement raw 1/0 with the same mechanisms constructed
for the main task of supporting block 1/0.

Character devices, on the other hand, do not support random-access 1/0, and
filesystems cannot be mounted upon them. Their drivers typically support read
and/or write operations, but these operations are fundamentally different than in
block devices. Sometimes character drivers use mechanisms, routines and struc
tures that are primarily intended for block drivers, but this shouldn't be allowed
to confuse matters; they use them only because it's convenient to do so.1

The techniques described in this manual can also be used to build pseudo-device
drivers. Such drivers can be useful in a variety of ways. They can be used to
implement virtual devices (for example, windows that behave as virtual termi
nals) or for extending the capabilities of the kernel in highly localized and port
able fashions (for example, by building a pseudo device to implement a specific
kind of semaphore facility). What they all have in common is the absence of
hardware; the driver actually implements and controls virtual software devices.

Sun has embarked on a effort aimed at making its operating system compatible
with AT&T's System V UNIX system. In general, this effort will have a negligi
ble impact on the structure of Sun device drivers.

System V compatibility doesn't involve massive driver rewrites because, with
the exception of drivers for pseudo devices, drivers are far more sensitive to the
architectural details of the machines upon which they run than to the details of
the kernels to which they interface. (The System V interface will be built by
rewriting system calls and utilities, and by providing compatibility libraries).

Sun device drivers differ from typical System V drivers because the Sun operat
ing system is evolved from 4.2BSD and, in 4.2BSD, the kernel driver interface
was significantly restructured. This doesn't mean that programmers with experi
ence developing System V drivers will find Sun drivers to be altogether foreign.
In fact, the overall structure of Sun drivers is largely identical to the structure of
System V drivers. Nevertheless, there are differences, and from some perspec
tives they are quite significant. See the Overall Kernel Context chapter of this
manual for the details of the Sun driver/kernel interface.

The greatest differences between Sun drivers and drivers for other systems are
due not to operating system differences but rather to differences between the Sun
Memory-Mangement Unit (MMU) and the MMUs of other systems. Conse
quently, drivers which map addresses require a lot of Sun-specific code.

I To jump ahead for a moment, the kernel routines which, though written for block drivers are also used for
character drivers are physio, mbsetup and mbrelse. The driver xxstrategy routine is also intended
primarily for block devices, though it can be used in character drivers which buffer their 1/0 (typically those
which don't support a tty-style inleiface). In such cases it's not, as it is in block drivers, an entry point, and it
doesn't implement any strategy to speak of. But physic requires its existence, as it does the use of the buf
structure, and so they are used. The main point to keep in mind is that character drivers use block-driver
mechanisms because it's convenient for them to do so, but this doesn't make them block drivers. In particular,
character drivers never have anything to do with the kernel buffer cache.

6

1.4. Major Development
Stages

1.5. Warning To
Microcomputer
Programmers

1.6. Address-Space
Terminology

To add a new device and its driver to the system you must:

1. Get the device hardware into a state where you know it works as advertised.
It is extremely difficult to debug the driver software if the device hardware
isn't first working properly.

2. Write the device driver itself.

3. Add the driver to a kernel's configuration file to specify a system containing
the new driver, and compile this system.

4. Debug the driver.

5. Repeat steps 2 to 4 as necessary. Drivers are often written (and debugged)
by stages, with development proceeding long after early versions are
configured into the kernel.

Sun computers are virtual-address machines, and, as such, their addressing
schemes are far more complex than anything that microcomputer programmers
typically confront. In virtual-address machines, physical addresses have a com
plex and rapidly changing relationship to the virtual addresses which user pro
grams manipulate. The kernel continually maps, remaps and unmaps pages of
virtual memory to accommodate the limits of system physical memory. This
means that the kernel (including its device drivers) cannot assume that any physi
cal address in user memory will not be snatched away by the paging daemon
unless it explicitly locks the physical page containing that address into memory.
The details of how this locking is done will be given later, in discussions of the
kernel support routine physio; for the moment simply note that physical
addresses have a complex and transient relationship to virtual addresses.
Specifically:

o Each user process (and, on Sun-2 machines, the kernel as well) has its own
virtual address space. A user process (or the kernel) can make arrangement
to share memory with another process - that is, to have part of its address
space mapped to the same physical memory as a part of the address space of
another process - but this must be done explicitly.

o In similar regard, a user process can elect to have a bus address mapped into
its address space, but this doesn't happen automatically.

In this manual, we'll adopt a VMEbus address-space naming convention that
makes both address size and data size explicit. The first number in the name
indicates the number of bits in the address and the second number indicates the
number of bits in the data length. For example, the space with a 24-bit address
and a 16-bit data length will be known as vme 2 4 dl 6. This naming convention
is used elsewhere, but others are as well, as indicated in the following table.

~~sun ~~ microsystems

Table 1-1

1.7. Manual Overview

VMEbus Address-space Names

Address-Space Name

vmel6d16
vme24d16
vme32dl6
vmel6d32
vme24d32
vme32d32

Chapter 1 - Introduction 7

Other Name(s)

VME D16A16 and vme16
VME D16A24 and vme2 4
VMED16A32
VMED32A16
VMED32A24
VME D32A32 and vme32

The short names in the second column (vmel 6, vme2 4 and vme32) are com
monly used, but they can seem ambiguous to the novice, and will consequently
be avoided in this manual.

Note that there are two situations where the system expects the name of a
VMEbus address space as input. In these situations, either the vme 16 dl 6 or
the vme 16 forms are acceptable. These situations are:

o within the kernel config file, and

o when naming actual memory devices ("special" files in the / dev direc
tory). See the Mapping Devices Without Device Drivers section of this
manual for more information.

Chapter 2 is an overview of the hardware environment provided by Sun Worksta
tions to their drivers. The emphasis is on bus and address-space related issues.

Chapter 3 is an overview of the kernel environment within which drivers operate.

Chapter 4 covers a number of topics relevant to drivers: address spaces, inter
rupts and so on, in greater detail. It also surveys the most important classes of
services provided by the kernel to its drivers.

Chapter 5 covers development topics, including the initial installation and
checkout of devices, driver debugging and error handling.

Chapter 6 explains how to configure a kernel that contains new drivers.

Chapter 7 provides a detailed discussion of driver for a very simple hypothetical
character device.

Finally, a few appendices are provided. These include a reference on the Sun
PROM monitor, a summary of kernel support functions useful in developing dev
ice drivers, and descriptions of user-level routines useful in driver development.
It also contains a number of annotated driver listings.

Remember, spend as much time as you need in the Sun PROM monitor poking,
prodding and cajoling your device until you're thoroughly familiar with its
behavior. This will save you a lot of grief later. The details on how to proceed
with a monitor checkout of your device are found in the Installing and Checking
the Device section.

8

And finally, note that if you have no previous experience writing UNIX device
drivers, you should expect to seek some advice from the Sun technical support
organization or from an outside consultant experienced with driver development

~~sun
~~ microsystems

2
Hardware Context

Hardware Context .. 11

2.1. Multibus Machines ... 11

Multibus Memory Address Space and I/0 Address Space 11

Allocation of Multibus Memory .. 14

Allocation of Multibus I/0 Space ... 15

2.2. VMEbus Machines... 16

Sun-2 VMEbus Address Spaces... 16

Sun-3 Address Spaces.. 18

Allocation of VMEbus Memory .. 19

The Sun VMEbus to Multibus Adapter ... 21

Interrupt Vector Assignments.. 21

2.3. Hardware Peculiarities to Watch Out For.. 22

Multibus Device Peculiarities .. 22

Multibus Byte-Ordering Issues .. 22

Other Multibus-related Peculiarities .. 24

Other Device Peculiarities ... 25

2.4. DMA Devices .. 27

Sun Main-Bus DVMA ... 27

2.1. Multibus Machines

Multibus Memory Address
Space and 1/0 Address Space

2
Hardware Context

Computer 1/0 architectures are far more dependent upon bus structure than they
are upon CPU type, and device drivers, oriented as they are towards 1/0, must
have intimate knowledge of the bus characteristics of the machines on which
they are running. For example, many Multibus machines do not support vectored
interrupts 2 and thus drivers for interrupt driven devices which are intended to
run on Multibus machines must provide polling facilities. Fortunately, the Sun
kernel provides facilities (described in Other Kernel/Driver Interfaces) by which
a driver can determine the type of the machine upon which it's running.

The MC680XO family of processors do all of their 1/0 via a process known as
"memory mapping." What this means is that the processor sees no difference
between memory and peripheral devices - all input-output operations are per
formed by storing data and fetching data from the same memory space. The Mul
tibus, on the other hand, was originally designed for processors, like those of the
Intel 8080 family, which have two separate address spaces. Such processors
have one kind of instruction for storing data in memory or fetching data from
memory (instructions such as MOV), and another, different kind of instruction
(such as IN and OUT) for transferring data to or from peripheral devices.
Reflecting the architecture of such processors, the Multibus has two address
spaces.

Multibus memory space
is used for memory or devices that look like memory. Many devices -
commonly known as "memory mapped" devices - are designed to be
accessed as memory, and drivers for such devices can "map" them into user
virtual memory space and then perform device 1/0 by simply reading and
writing the device's memory as part of normal address space. Such
memory-mapped drivers tend to be quite simple, and so it's notable that dev
ices not explicitly designed to be memory mapped can, under a restricted set
of circumstances, be driven by memory mapping. The restrictions are, how
ever, fairly severe. Such drivers cannot, for example, have xxioctl

2 The Multibus itself, as it turns out, actually does support vectored interrupts, but not in a way that can
reasonably be used with the MC680XO family of processors)

11

12

Table 2-1

routines. See Mapping Devices Without Device Drivers for more details.
The Sun-2 Color Board is a good example of a device that is designed to be
memory mapped, and a listing of its driver can be found in the Sample
Driver Listings appendix.

Multibus 110 address space
is another "space" entirely separate from normal memory. Typically used as
an area to which device registers can be mapped, 1/0 space was originally
introduced to keep such registers out of limited primary address space by
providing a means of making peripherals, rather than system memory,
respond to the bus whenever given 1/0 control lines were asserted by the
CPU. (Such a setup also reduces hardware costs by keeping the number of
address lines small.) Devices which have their control and status registers
mapped to Multibus 1/0 address space are said to be "1/0 mapped" devices.

The MC680XO family, of course, no longer suffers the addressing limitations that
made the dual-space architecture of the Multibus so attractive. The VMEbus, in
similar regard, is no longer structured around separate "memory" and "1/0"
spaces. (The term "1/0 space" does continue to be used, from time to time, with
reference to VMEbus-based systems and devices. Such use, however, is largely
by way of analogy with Multibus systems, and it shouldn't be taken too literally).

Be aware that while generic Multibus memory space can be either 20-bit or a
24-bit. (Sun normally uses 20-bit Multibus memory addresses, though when a
Multibus card is installed in a VMEbus system with a VMEbus/Multibus adapter,
24-bit addresses are used). In similar regard, a generic Multibus can provide
either a 8 or 16 bit 1/0 space, and Sun uses only the 16-bit Multibus 1/0 space.
Note, however, that some older Multibus boards accept only 8-bit Multibus 1/0
addresses.

Sun Multibus systems actually have four "address spaces," corresponding to the
four types of memory (each type has an identifying number associated with it, a
number which is used by the MMU in computing PTE's (Page Table Entries).
See Sun-2 Address Mapping for details. Though you will seldom deal with the
on-board address spaces, you're best off understanding what they are. The fol
lowing table thus contains not only the two Multibus spaces, but the "on board"
memory and 1/0 spaces as well. It's within these spaces, resident on the CPU
board itself, that UNIX is run.

Sun-2 Multibus memory types

Type Description Address Size Address Range

0 On-Board Memory 23 bits OxO Ox7FFFFF
1 On-Board 1/0 Space 14 bits OxO Ox3FFF
2 Multibus Memory 20 bits OxO OxFFFFF
3 Multibus 1/0 Space 16 bits OxO OxFFFF

The following schematic view of the Sun-2 Multibus may help the driver
developer to visualize the larger hardware context within which drivers operate
(when running on a Sun-2 Multibus machine.)

Figure 2-1

24 bits
CPU -

~

Virtual
Address

(Bus or DVMA)

Chapter 2 - Hardware Context 13

Sun-2 Multibus Address Spaces

16 bits
Multibus

1/0

type -
2 bits 20 bits

Multibus

23 bits Memory
MMU -

~

14 bits OnBoard
1/0

Physical
23 bits OnBoard Address

Memory

Note some significant aspects of addressing layout as indicated in this table.

o The Memory Management Unit is at the center of the picture, a position that
reflects its importance in the addressing scheme of all Sun machines,
VMEbus based as well as Multibus based. (The centrality of the MMU will
become quite clear when you later set out to allocate a physical address to
your device, and then examine/set ~t with the PROM monitor.)

o Secondly, the input address of the MMU is a 24-bit virtual address. It may
originate with the CPU, or come from a DMA bus master; it makes no
difference.

14

Allocation of Multibus
Memory

o The output is a 23-bit physical address and a 2-bit address type. The address
type specifies one of the four address spaces indicated at the right of the
diagram.

o The four address spaces are to the right. The space corresponding to the
incoming virtual address is a function of both the address and the memory
type. Note that only the top two memory spaces (Multibus 1/0 and Multibus
Memory) are accessible by way of the Multibus; the two On-Board memory
spaces are accessed directly and are seldom of concern to non-Sun driver
developers.

Programs can only reference driver address spaces in terms of virtual addresses
which are then translated by the MMU into physical addresses within the
appropriate physical address space.

Here are some notes about the allocation of Multibus Memory resources in the
Sun system.

No devices may be assigned addresses below 256K in Multibus memory space
since the CPU uses these addresses for DVMA.

The table on the next page shows a map of how Multibus Memory space is laid
out in the Sun system. Note that this memory map, as well as all of those that
follow, is only a general guide. To be sure that you are not installing a device at
a location that will put it in conflict with other, already installed devices, it's
necessary to check the configuration of the specific systems into which it will be
installed. The best way to do so is to check the local config file for the physical
addresses of the devices installed within the bus of interest. This will probably
give you enough information, but if you still think that there may be a conflict,
and if you have a Sun source license, you can check the driver header files to
determine the amount of space consumed on the bus by already installed devices.
With the exception of the Sky board, these device can be rearranged. Also note
the possibility that your machine will have devices attached to it, and taking up
bus space, even though those devices do not appear in the config file. This possi
bility exists because the xxrrunap system call can sometimes be used to drive a
device without installing it in the formal sense - see the Mapping Devices
Without Device Drivers section of this manual for more details.

~~sun ~~ microsystems

Table 2-2

Allocation of Multibus 1/0
Space

Table 2-3

Chapter 2- Hardware Context 15

Sun-2 Multibus Memory Map

Address Device

OxOOOOO Ox3FFFF DVMA Space (256 Kilobytes)
Ox40000 - Ox7FFFF Sun Ethernet Memory (#1) (256 Kilobytes)
Ox80000 Ox83800 SCSI (#1) (16 Kilobytes)
Ox84000 Ox87800 SCSI (#2) (16 Kilobytes)
Ox88000 Ox8B800 Sun Ethernet Control Info (#1) (16 Kilobytes)
Ox8COOO - Ox8F800 Sun Ethernet Control Info (#2) (16 Kilobytes)
Ox90000 - Ox9F800 *** FREE *** (64 Kilobytes)
OxAOOOO OxAF800 Sun Ethernet Memory (#2) (64 Kilobytes)
OxBOOOO OxBF800 *** FREE *** (64 Kilobytes)
OxCOOOO OxDF800 Sun Model 100
OxEOOOO OxE1800 3COM Ethernet (#1)
OxE2000 OxE3800 3COM Ethernet (#2)
OxE4000 - OxE7COO *** FREE *** (16 Kilobytes)
OxE8000 - OxF7800 Reserved for Color Devices (64 Kilobytes)
OxF8000 - OxFF800 *** FREE *** (16 Kilobytes)

Multibus I/0 address space is specified in the config file as mbio. From the
PROM monitor, Multibus I/0 space begins at OxEBOOOO, and extends to
OxECOOOO.

Prior to Sun Release 3.0, the system made the assumption that any address lower
than 64K that it found in its config file was a Multibus I/0 address. With the
advent of Release 3.0, this is no longer true; now the bus type of every address
must be explicitly given.

The following table of generic Multibus I/0 usage, like the table above, is
intended only as a guide.

Sun-2 Multibus /JO Map

Address

Ox0040 - Ox0047
OxOOAO - Ox00A3
Ox0200 Ox020F
Ox0400 - Ox047F
Ox0480 - Ox057F
Ox0620 - Ox069F
Ox2000 - Ox200F
OxEE40 - OxEE4F
OxEE60 - OxEE6F

Device Type

Interphase Disk Controllers
CPC TapeMaster Controllers
Archive Tape Drives
Ikon 10071-5 Multibus/Versatec Interface
Systech VPC-2200 Versatec/Centronics Interfaces
Systech MTI-800/1600 terminal Interface
Sky Board
Xylogics 450/451 Disk Controller
Xylogics 472 Multibus Tape Controller

~\sun ~~ microsystems

16

2.2. VMEbus Machines

Sun-2 VMEbus Address
Spaces

VMEbus machine architecture is generally more complex than Multibus machine
architecture - it makes no distinction between 1/0 space and Memory space, but
on the other hand it supports multiple address spaces. It does so for reasons of
both cost and flexibility. The VMEbus was designed to be cost-effective for a
range of applications. It is expensive (in terms of money, power, and board
space) to provide the hardware for a full 32-bit address space. If installed dev
ices only respond to 16-bit addresses, it makes sense to be able to put them all
into a 16-bit address space and save the cost of 16-bits' worth of address
decoders and the like. The 24 and 32-bit address spaces are similar compromises
between cost and flexibility.

The driver writer has to understand which address space his board uses (gen
erally, this is completely out of his/her control), and make an appropriate entry in
the config file. For DMA devices, the driver writer has to know the address space
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space).

The Sun-2 VMEbus machines are based upon the 24-bit subset of the generic
VMEbus -they support only a 16-bit and a 24-bit address space. These address
spaces are known as vme16d16 (16 data bits and 16 address bits) and
vme24dl6 (16 data bits and 24 address bits). Sun-2 VMEbus machines also
contain on-board memory and 1/0 space, of course, but these aren't accessed by
way of the VMEbus and are only barely relevant to the driver developer.

There are four types of memory on Sun-2 VMEbus machines:

Table 2-4 Sun-2 VMEbus Memory Types

Description Address Size Address Range

On-Board Memory 23 bits OxO - Ox7FFFFF
On-Board 1/0 Space 23 bits OxO- Ox7FFFFF
vme24d16 23+1 bits OxO - OxFEFFFF
vme16d16 -Stolen from top 64K ofvme24d16 (OxO-OxFFFF)

The four address spaces are laid out as follows:

CPU

Chapter 2 - Hardware Context 17

Figure 2-2 Sun-2 VMEbus Address Spaces

24 bits
I

Virtual
Address

(Bus or DVMA)

16 bits
vme16d16

~
L

type
2 bits

24 bits vme24d16

MMU
23 bits

'~

23 bits OnBoard
1/0

Physical
23 bits OnBoard

Address
Mem

Note a few details:

o In all Sun-2 and Sun-3 machines, the address input into the MMU is a virtual
address, and may originate with the CPU or a DVMA bus master.

o Unlike Sun-2 Multibus systems, in which each memory type maps cleanly to
one address space, vme24dl6 maps to two different types. Addresses
from OxO to Ox7FFFFF are "type 2" memory, while those from
Ox8000000 and up are "type 3". This is because Sun-2 VMEbus machines
have only 23 output address bits, and this trick is necessary to generate the
full range of a 24-bit address space. (See Sun-2 Address Mapping for more
details).

~\sun
~~ microsystems

18

o Multibus boards, connected to VMEbus to Multibus adapters, can be
plugged into physical memory anywhere within vme2 4dl 6 (which means
that they can also be in vme16dl6).

o The 24 bits in the vme24d16 address space are referred to in the above
table as 23+ 1 bits. This is because, as should be clear in the diagram below,
the Sun-2 MMU outputs only the lower 23 bits of the address, and the 24th
bit is actually one of the MMU's type bits.

o Note especially that vme16d16 is stolenfrom vme24d16. It's selected
by addresses in the form OxFFXXXX, that is, addresses which have the 8
high bits set.

Sun-3 Address Spaces The Sun-3 machines are all based on the full 32-bit VMEbus, so let's begin their
discussion with a listing of the address types supported by the generic VMEbus.

Table 2-5 Generic VMEbus (Full Set)

VMEbus-Space Address Data Transfer Physical Address
Name Size Size Range

vme32d16 32 bits 16 bits OxO - OxFFFFFFFF
vme24d16 24 bits 16 bits OxO - OxFFFFFF
vme16dl6 16 bits 16 bits OxO - OxFFFF
vme32d32 32 bits 32 bits OxO - OxFFFFFFFF
vme24d32 24 bits 32 bits OxO - OxFFFFFF
vme16d32 16 bits 32 bits OxO - OxFFFF

Not all of these spaces are commonly used, but they are all nevertheless sup
ported by the Sun-3 line. The following table indicates their sizes and physical
address mappings within Sun-3 computers.

Table 2-6 Sun-3 VMEbus Address Types

Type

0
1
2
3
2
2
3
3

Address-Space Name

On-board Memory
On-board 1/0
vme32d16

Address Size

32 bits
24 bits
32 bits

Address Range

OxO OxFFFFFFFF
OxO OxFFFFFF
OxO OxFEFFFFFF

vme32d32 32 bits OxO OxFEFFFFFF
vme24d16 -Stolen from top 16M of vme32d16 (OxO - OxFFFFFF)
vmel 6dl 6 - Stolen from top 64K of vme2 4dl 6 (OxO - OxFFFF)
vme2 4d32 - Stolen from top 16M of vme32d32 (OxO - OxFFFFFF)
vmel 6d32 - Stolen from top 64K of vme2 4d32 (OxO - OxFFFF)

The Sun-3 space overlays are much more complex than those of the Sun-2, as is
evident from both the table above and the diagram below. The principle, how
ever, is the same - when a space overlays a larger space, its memory is stolen
from that larger space and is considered by the MMU to be in the the overlaid

Chapter 2 - Hardware Context 19

space. One simply cannot address above OxFFOOOOOO in 32-bit VMEbus
space or above O xFF O O O O in 24-bit VMEbus space.

Figure 2-3 Sun-3 VMEbus Address Spaces

CPU 28
MMU

bits

Virtual
Address

(Bus or DVMA)

Allocation of VMEbus
Memory

type
2 bits

32 bits

Physical
Address

32 bits

32 bits

24 bits

32 bits

vme32d32

vme32d16

OnBoard
1/0

OnBoard
Mem

vme16d32

vme24d32

vme16d16

vme24d16

This section summarizes the typical use of the 16, 24 and 32-bit VMEbus address
spaces by Sun devices. Note well that the usages summarized here are only for
the generic configuration, and there's no guarantee that they match the exact
usage on your machine. They will, however, help you to decide where to attach
your device. The "Allocated From" field shows whether bus space is allocated
from the high end of the given range or from the low end. The idea is to keep the
maximum size "hole" in the middle in case the boundary later needs to be shifted
later.

20

Table 2-7

Table 2-8

16-bit VMEbus Address Space Allocation

Address Range Allocated
From

Description of Use

Ox0000-0x7FFF Low
Ox8000-0xFFFF High

Reserved for OEM/user devices
Reserved for Sun devices

16-bit VMEbus space is mapped into the topmost 64K of 24-bit VMEbus space
at OxOOFFOOOO to OxOOFFFFFF (on the Sun-2) or OxFFFFOOOO to
OxFFFFFFFF (on the Sun-3). Note: The Multibus/VMEbus Adapter will map
the Multibus 1/0 addresses of Multibus cards that use Multibus 1/0 into the same
addresses in the 16-bit VMEbus space. This may place the standard Multibus
addresses for some cards into the OEM/user area in the above table. These
addresses can be changed, if necessary, by physically readdressing the device and
then changing its entry in the config file.

24-bit VMEbus Address Space Allocation

Address Range

OxOOOOOO-OxOFFFFF
OxlOOOOO-OxlFFFFF
Ox200000-0x2FFFFF
Ox300000-0x3FFFFF
Ox400000-0x7FFFFF
Ox800000-0xBFFFFF
OxCOOOOO-OxCFFFFF
OxDOOOOO-OxDFFFFF
OxEOOOOO-OxEFFFFF
OxFOOOOO-OxFEFFFF
OxFFOOOO-OxFFFFFF

Allocated
From

Low
High
(Taken)
High
Low
High

Description of Use

CPU board DVMA space
Reserved by Sun
Reserved for small Sun devices
Reserved for large Sun devices
Reserved for huge Sun devices
Reserved for huge OEM/user devices
Reserved for large OEM/user devices
Reserved for small OEM/user devices
Multibus-to-VMEbus memory space
Reserved for the Future
Stolen by 16-bit VMEbus space

Table 2-9 32-bit VMEbus Address Space Allocation (Sun-3 Only)

Address Range Description of Use

OxOOOOOOOO - OxOOOFFFFF DVMA Space
Ox00100000 - Ox7FFFFFFF Reserved by Sun
Ox80000000 - OxFEFFFFFF Reserved for OEM/user devices
OxFFOOOOOO - OxFFFFFFFF Stolen by vme24dl6

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus
accesses.

Table 2-10

The Sun VMEbus to Multibus
Adapter

Interrupt Vector Assignments

Chapter 2 - Hardware Context 21

VMEbus Address Assignments for Some Devices

Device

VMEbus SKY Board
VMEbus SCSI Board
VMEbus TOD Chip
Graphics Processor
Sun-2 Color Board

Addressing

vmel6dl6
vme24dl6
vme24dl6
vme24dl6
vme24dl6

Addresses Used

Ox8000 - Ox8FFF (Sun-2 only)
Ox200000 - Ox2007FF
Ox200800 - Ox2008FF (Sun-2 only)
Ox210000 - Ox210FFF
Ox400000 - Ox4FF7FF

The VMEbus Sky board occupies addresses 8000-9000 in 16 bit address space,
and it requires that the high nibble of the address be '8'. Unlike other pre
installed devices, it cannot be moved.

This table is, of course, not complete. There are a variety of devices on the bus
in both the Sun-2 and Sun-3, as can be easily determined by examining the
config file. This table, however, does include the standard devices that use a
significant amount of space on the VMEbus. Note that in the Sun-3 several of
them have disappeared, being replaced by on-board devices.

Multibus devices that are to be attached to VMEbus machines must be attached
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul
tibus boards). An adapter can be used to take over one and only one chunk of
vme24dl6. However, that chunk can overlap all or part of vmel6dl6
(because vmel 6dl6 is a proper subset of vme24dl 6). In any case, the
adapter must be told how much space the board attached to it actually expects,
for by default it'll take over a full Megabyte. Note that the Multibus Adapter
supports fully vectored interrupts, and that drivers for Multibus devices attached
by way of adapters need not poll, since the adapters contain switches by which
Multibus devices can be assigned vectors.

The table below shows the assignments of interrupts vectors for those devices
that can supply interrupts through the VMEbus vectored interrupt interface. To
pick one for your device, examine the kernel config file for an unused number in
the range reserved for customer use, OxC8 to OxFF.

~~sun ~~ microsystems

22

Table 2-11

2.3. Hardware Peculiarities
to Watch Out For

Multibus Device Peculiarities

Multibus Byte-Ordering Issues

Vectored Interrupt Assignments

Vector Numbers Description

Ox40 thru Ox43 scO, sc? siO, si?-SCSI Host Adapters
Ox48 thru Ox4B xycO, xycl, xyc?- Xylogics Disk Controllers
Ox4C thru Ox5F future disk controllers
Ox60 thru Ox63 tmO, tm 1, tm? - TapeMaster Tape Controllers
Ox64 thru Ox67 xtcO, xtcl, xtc?-Xylogics Tape Controllers
Ox68 thru Oc6F future tape controllers
Ox70 thru Ox73 ec? - 3COM Ethernet Controller
Ox74 thru Ox77 ieO, ie 1, ie? - Sun Ethernet Controller
Ox78 thru Ox7F future ethernet devices
Ox80 thru Ox83 vpc? - Systech VPC-2200
Ox84 thru Ox87 vp?- Ikon Versatec Parallel Interface
Ox88 thru Ox8B mtiO, mti?- Systech Serial Multiplexors
Ox8C thru Ox8F dcpl, dcp?-SunLink Comm. Processor
Ox90 thru Ox9F zsO, zsl -Sun-3 Terminal/Modem Controller
OxAO thru OxA3 future serial devices
OxA4 thru OxA7 pcO, pcl, pc2, pc3-SunIPC
OxA8 thru OxAB future frame buffer devices
OxAC thru OxAF future graphics processors
OxBO thru OxB3 skyO, ? - SKY Floating Point Board
OxB4 thru OxB7 Sun-3 SunLink Channel Attach
OxB8 thru OxC7 Reserved for Sun Use

OxC8 thru OxFF Reserved for Customer Use

There are a variety of device peculiarities that the driver developer must be aware
of. The most common of them are related to the Multibus and Multibus-based
devices, but there are others as well.

The IEEE Multibus is a source of problems for two separate reasons. The first of
these, discussed immediately below, is the fact that the Multibus has a different
notion of byte order than does the Motorola MC680XO family of processors
(which are used in Sun machines). The second is simply that the Multibus has
been around for a long time, and thus brings with it a variety of older devices,
many of which have addressing limitations and other characteristics which make
for a less than perfect fit with the Sun architecture.

Sun processors are all members of the Motorola MC680XO family, and these
processors address bytes within words by what we shall call /BM conventions -
the most significant byte of an word is stored at the lowest addresses byte of the
word. The Multibus, on the other hand, uses DEC conventions - the least
significant byte of an word is stored at the lowest address, and significance

~~sun ~~ microsystems

Chapter 2 - Hardware Context 23

increases with address.

This class of byte-addressing conventions leads to two separate problems,
with two separate solutions:

o The first problem occurs when you're moving a single byte across the inter
face between the MC680XO and the IEEE Multibus. Because the two dev
ices don't agree about the end of the word that the byte actually appears in,
you have to change the byte address before the move - what you want to
do, in effect, is move every byte to the other side of the word which it occu
pies - the most CPU-efficient way of doing so is to toggle the least
significant bit of every byte address.

o The second problem, also related to the Multibus, is a higher level version of
the first. It occurs when 16-bit words with significant internal structure (or
structures that contain 16-bit words) are moved across the bus interface. (If
you write only words, and the device uses only words, there's no problem).
The Multibus/MC680XO byte-ordering incompatibility will cause structures
to be scrambled when they're moved across the bus interface, unless the
bytes within them are physically swapped first.

Here are a few pictures describing the problems in detail:

Motorola (IBM) Byte Ordering

bit 15 bit 0

Byte 0 Byte 1

Multibus (DEC) Byte Ordering

bit 15 bit 0

Byte 1 Byte 0

That is, the MC680XO places byte O in bits 8 through 15 of the word, whereas the
Multibus places byte 1 in those bits. If you did everything with a MC680XO, or
everything on the Multibus, there wouldn't be any conflict, since things would be
consistent. However, as soon as you cross the boundary between them, the byte
order is reversed. Thus, you have to toggle the least significant bit of the address
of any byte destined for the Multibus - this will have the effect of swapping
adjacent addresses and thus reordering the bytes.

To clarify this, consider an interface for a hypothetical Multibus board containing
only two 8-bit 1/0 registers, namely a control and status register (csr) and a data
register (we actually use this design later on in our example of a simple device
driver). In this board, we place the command and status register at Multibus byte
location 600, and the data register at Multibus byte location 601. The Multibus

~~sun ~~ microsystems

24

Other Multibus-related
Peculiarities

picture of that device looks like this:

Hypothetical Board Registers

bit 15

Location 601

DATA

bit 0

Location 600

CSR

But the MC680XO processor family views that device as looking like this:

Hypothetical Board Registers

bit 15

Location 600

CSR

bit 0

Location 601

DATA

&o that if you were to read location 600 from the point of view of the MC680XO
processor, you'd really end up reading the DATA register off the Multibus
instead. So, when we define the skdevice data structure for that board, we define
it by starting with the register definition in the device manual, and then swapping
bytes to take account of the expected byte swapping:

struct skdevice {

} ;

char
char

sk_data;
sk_csr;

I* 01: Data Register * I
I* 00: comma.nd(w) and status(r) * I

This rule (flipping the least significant bit of the address) holds good for all byte
transfers which cross the line between the MC680XO and the Multibus.

o Many Multibus device controllers are geared up for the 8-bit 8080 and Z80
style chips and don't understand 16-bit data transfers. Because ofthis, such
controllers are quite happy to place what's really a word quantity (such as a
16-bit address which must be two-byte aligned in the MC680XO) starting on
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many
don't know about 24-bit addresses), and it often happens that you have to
chop an address into bytes by shifting and masking, and assign the halves or
thirds of the address one at a time, because the device controller wants to
place word-aligned quantities on odd-byte boundaries. Note also that many
Multibus boards are geared up for the 8086 family with its segmented
address scheme. An 8086 (20-bit) address really consists of a 4-bit segment
number and a 16-bit address; you usually have to deal with the 4-bit part and
the 16-bit part separately. For a good example of what we're talking about
here, see the code for vp. c in the Sample Driver Listings appendix to this

~~sun ~~ microsystems

Other Device Peculiarities

Chapter 2 - Hardware Context 25

manual.

o Although there are a myriad of vendors offering Multibus products,
remember that the Multibus is a "standard" that evolved from a bus for 8-bit
systems to a bus for 16-bit systems. Read vendors' product literature care
fully (especially the fine print) when selecting a Multibus board. The
memory address space of the Multibus is supposed to be 20 or 24 bits wide
and the 1/0 address space of the Multibus is supposed to be 16 bits wide. In
practice, some older boards are limited to 16 bits of address space and 8 bits
of 1/0 space. In particular, watch for the following addressing peculiarities:

o For a memory-mapped board, ensure that the board can actually handle
a full twenty bits of addressing. Older Multibus boards often can only
handle sixteen address lines. The Sun system assumes there is a 20-bit
Multibus memory space out there. If the Multibus board you're talking
to can only handle 16-bit addresses, it will ignore the upper four address
lines, and this means that such a board "wraps around" every 64K,
which means that on a Sun the addresses that such a board responds to
would be replicated sixteen times through the one-Megabyte address
space on the Multibus. This may conflict with some other device.

o Some Sun-2 Multibus systems, notably Sun-2/170's, have a backplane
structure that complicates the installation of 24-bit memory-mapped
Multibus. The internal "bus" on these systems (often called the P2 bus)
is divided into multiple segments, each mapped to a portion of the back
plane slots. In such systems, 24-bit memory-mapped devices must be
installed in a different segment than that used by standard Sun-2 dev
ices. See the Sun-21170 Configuration Guide for more information.

o For an I/0-mapped board (one that uses I/0 registers), make sure that
the board can handle 16-bit 1/0 addressing. Some older boards can't
cope and only use eight-bit 1/0 addressing. In our system, the address
spaces of such boards would find themselves replicated every 256 bytes
in the 1/0 address space. Trying to fit such a board into the Sun system
would severely curtail the number of 1/0 addresses available in the sys
tem.

o Finally, watch out for boards containing PROM code that expects to find a
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of
course useless in the Sun system.

There are other device peculiarities of interest to the driver developer that are not
specific to the Multibus and Multibus-based devices. These peculiarities are par
ticularly unfortunate in that they tend to require special handling of various kinds
- byte swapping, bit shuffling, timing delays, etc. - whenever the driver con
tacts the device. Such special handling precludes the most obvious and desirable
means of interfacing the driver to the device, by mapping the device registers
into a C-structure declaration and then accessing them by way of references to
structure fields.

26

o One of the most infuriating of these peculiarities is internal sequencing
logic. Devices with this strange characteristic (a vestige of microcomputer
systems with extremely limited address space) map multiple internal regis
ters to the same externally addressable address. There are various kinds of
internal sequencing logic:

o The Intel 8251A and the Signetics 2651 alternate the same external
register between two internal mode registers. Thus, if you want to put
something in the first mode register of a 8251, you do so by writing to
the external register. This write will however, have the invisible side
effect of setting up the sequencing logic in the chip so that the next
read/write operation refers to the alternate, or second, internal register.

o The NEC PD7201 PCC has multiple internal data registers. To write a
byte into one of them, it's necessary to first load the first (register 0)
with the number of the register into which the following byte of data
will go - you then send that byte of data and it goes into the specified
data register. The sequencing logic then automatically sets up the chip
so that the next byte sent will go into data-register 0.

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a
data pointer register for pointing at the data-register into which a data
byte will go. When you send a byte to the data register, the pointer gets
incremented. The design of the chip is such that you can't read the
pointer register to find out what's in it!

o In fact, it's often true that device registers, when read, don't contain the
same bits that were last written into them. This means that bitwise opera
tions (like register &= -xx_ENABLE)thathavethesideeffectof
generating register reads must be done in a software copy of the device
register, and then written to the real device register.

o Another problem is timing. Many chips specify that they can only be
accessed every so often. The Zilog Z8530 SCC, which has a "write recovery
time" of 1.6 microseconds, is an example. This means that a delay has to be
enforced (with DELAY) when writing out characters with a 8530. Things
can get worse, however, for there are instances when it's unclear what delays
are needed, and in such cases it's left to the driver developer to determine
them empirically.

o And peripheral devices can contain chips that use a byte-ordering convention
different from that used by the Sun system into which they're installed. The
Intel 82586, for example, supports DEC byte-ordering conventions; this
makes it perfectly compatible with Multibus-based, but not VMEbus-based,
Sun machines. Drivers for such peripheral devices will have to swap bytes,
as indicated above, and to take care that, in doing so, they don't inadver
tently reorder the bits in any control fields greater than 16 bits in length.

o Finally, there are some common interrupt-related peculiarities worth noting:

o When a controller interrupts, it does not necessarily mean that both it
and one of its slave devices are ready. Some controllers are designed in
this way, but others interrupt to indicate that the controller or one of its

~~sun ~~ microsystems

2.4. DMA Devices

Sun Main-Bus DVMA

Chapter 2 - Hardware Context 27

devices but not necessarily both is ready.

o Not all devices power up with interrupts disabled and then start inter
rupting only when told to do so.

o While there should be a way to determine that a board has actually gen
erated an interrupt - an attention bit or something equivalent - some
devices have no such thing.

o Finally, an interrupting board should shut off its interrupts when told to
do so (and also after a bus reset). Not all do.

Many device controller boards are capable of what is known as Direct Memory
Access or OMA. This means that the CPU can tell the device controller for such
devices the address in memory where a data transfer is to take place and the
length of the data transfer, and then instruct the device controller to start the
transfer. The data transfer then takes place without further intervention on the
part of the processor. When it's complete, the device controller interrupts to say
that the transfer is done.

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun
Memory Management Unit to allow devices on the Main Bus to perform OMA
directly to Sun processor memory. It also allows Main Bus master devices to do
OMA directly to Main Bus slaves without the extra step of going through proces
sor memory. DVMA works by ensuring that the addresses used by devices are
processed by the MMU, just as if they were virtual addresses generated by the
CPU. This allows the system to provide the same memory protection and map
ping facilities to OMA devices as it does to the system CPU (and thus to pro
grams).

When setting up a driver to support OMA, it's necessary to know the device's
OMA address size. This address size is the primary factor used in determining
which of the system address spaces will host the device. Multibus devices gen
erally have a OMA address size of 20 bits, while VMEbus devices generally have
a 24 or 32-bit OMA address size.

o Since, on Sun-2 Multibus machines, OMA addresses are generally 20-bits
long, the system DVMA hardware responds to the first 256K of Multibus
address space (OxO to Ox3FFFF). When an address in this range appears
on the bus, the DVMA hardware adds OxFOOOOO to it (the system places
the Multibus memory address space at OxFOOOOO in the system's virtual
address space) and then uses the MMU to map to the location in physical
memory that will be used for the data transfer.

o On Sun-2 VMEbus systems, the DVMA hardware responds to the entire
lower Megabyte of VMEbus address space (OxO to OxFFFFF). The sys
tem maps addresses in this range into the most significant Megabyte of sys
tem virtual address space (0 xF O O O O O to O xFFFFFF).

o On Sun-3 systems, the DVMA hardware responds to the lowest Megabyte of
VMEbus address space in both the 24-bit and 32-bit VMEbus spaces. It

28

Figure 2-4

maps addresses in this megabyte into the most significant Megabyte of sys
tem virtual address space (OxFFOOOOO to OxFFFFFFF). The Sun-3
DVMA hardware uses supervisor access for checking protection.

The driver writer must account for these mappings, as should be evident from the
diagram below.

SystemDVMA

OMA Device

t
VMEBUS

l

Slave (f Address in Low Megabyte)
Decoder - 1 Map it to High Megabyte

CPU
\/

:.

On-Board Bus Masters
(like the Ethernet chip)

;;.

I I MMU Buffer

OnBoard
Mem

Device can only make DVMA transfers in memory buffers which are from (or
redundantly mapped into - see below) the low-memory areas reserved as
DVMA space. The memory-management hardware will then recognize refer
ences to these areas and map them into the high Megabyte of system virtual
address space, an area known as DVMA space. Likewise, if a driver needs to
allocate space for a OMA transfer, it must do so by way of a mechanism that

Chapter 2 - Hardware Context 29

guarantees its allocation from DVMA space. There are several ways of making
this guarantee:

o rmalloc can be used with the iopbmap argument. This will get a small
block of memory from the beginning of the DVMA space. Such small
blocks of memory are usually used for control information, and not for large
blocks of data.

o For a large buffer, the driver can statically declare a buf structure (which is
a buffer header that contains a pointer to the data) and then use mbset up
to allocate a buffer for it from DVMA space. This mechanism is primarily
intended for block devices but is perfectly adaptable for use by character
devices that need large DMA buffers.

When dealing with buffers which, like those allocated by mbsetup, are in
DVMA space, the driver itself need do nothing unusual. However, before pass
ing the buffer address to the device, the driver must strip the high bits from its
address. It does so by subtracting the external variable DVMA, which is
declared as a character array and initialized by the system to either O xF O O O O O
(for Sun-2's) or OxFFOOOOO (for Sun-3's). Ifit fails to do so the device will
attempt to use the null address - in the high Megabyte - and the CPU board
will not respond to it. (Note that addresses received by way of mbsetup and
MB I _AD DR do not have to be adjusted in this fashion, as mbset up will have
already adjusted them to be relative to the start of DVMA space). When the dev
ice, in tum, uses the address, the address reference comes down the bus and
through a slave decoder, which adds the machine-specific offset to it to map it
back into the high Megabyte of system virtual memory.

Sun DMA is called DVMA because the addresses which the device uses to com
municate with the kernel are virtual addresses like any others. The driver, as part
of the kernel, is privy to implementation dependent information, and knows that
it must chop off the high-bits of any address intended for the device. This allows
the MMU to recognize the addresses destined for the Main Bus and to act accord
ingly. The device, however, knows nothing of this except that its buffers are
mapped to the high Megabyte of system virtual memory.

User processes, it should be noted, cannot do DVMA directly into their own
address spaces. The kernel, however, provides a way of getting around this limi
tation by supporting the redundant mapping of physical memory pages into mul
tiple virtual addresses. In this way, a page of user memory (or, for that matter, a
page of kernel memory) can be mapped into DVMA space in such a way that
transferred data immediately appears in (or immediately comes from) the address
space of the process requesting the 1/0 operation. All that a driver need do to
support such direct user-space DVMA is to set up the kernel page maps with the
routine mbsetup -the details of the mapping will then be automatically han
dled by the kernel.

If you wish to do DMA over the Main Bus, you must make the appropriate
entries in the kernel memory map. There are two functions, mbsetup and
mbrelse, to help with this chore.

3
Overall Kernel Context

Overall Kernel Context .. 33

3.1. The System Kernel ... 33

3.2. Devices as ''Special'' Files ... 34

3.3. Run-Time Data Structures .. 40

The Bus-Resource Interface.. 41

Autoconfiguration-Related Declarations... 47

Other Kernel/Driver Interfaces ... 48

3.1. The System Kernel

3
Overall Kernel Context

Device drivers are parts of the UNIX system kernel, a fact that must be appreci
ated to understand the ways in which drivers differ from user-level programs.
The kernel is the crucial system program responsible for the control and alloca
tion of system resources, including the processor, primary memory and the 1/0
devices. In most ways it's just like any user program, being a more or less clev
erly constructed structure shaped to its particular goals. In other ways, however,
it's significantly different from a user program:

o For one thing, the kernel is thick with the details of hardware implementa
tion and function. This tends not to be true of user programs, precisely
because the kernel shields them from the need to consider device-specific
details.

o For another, the kernel (and thus its drivers) runs in supervisor mode. This
means that drivers can often perform privileged device operations that can't
be performed by user processes, even if those processes have access to the
necessary device registers.

o The kernel memory context is not paged. The entire kernel, and all of its
drivers, are memory resident at all times. This may change in the future, but
it'll remain possible for drivers to assume that they are resident and station
ary within physical memory.

o Programmers of ordinary user processes rarely need to concern themselves
with physical addresses and virtual-to-physical address mappings. Device
driver developers, however, deal simultaneously with user virtual addresses,
kernel virtual addresses and physical bus addresses. Special functions (see
the Kernel Support Routines appendix) are provided to help drivers with the
various address mappings they're called upon to perform.

o Finally, the kernel provides a far different external interface than do user
processes. It's possible for user processes to communicate with and dispatch
tasks to other user processes by way of system inter-process communications
mechanisms (like signals and pipes) but to do so they must first make special
arrangements with those other processes. The kernel, on the other hand,
exists to provide services to user processes and it provides a special mechan
ism - the system call - by which user processes can call upon it to do so.
This is not to say that user processes and the kernel (that is, the drivers) can't
also use system inter-process communications mechanisms like sockets and
signals. It's certainly possible, for example, to write a driver so that it will

~\sun
~~ microsystems

33

34

3.2. Devices as "Special"
Files

send a signal to a user process as part of its handling of a specified event
However, in the norm, user processes and the kernel communicate by way of
system calls.

Note: system calls are defined in /usr/ sys/ sys/ init sysent. c, which
is shipped with all systems so that users can add system calls if they wish.

System calls can, for all intents and purposes, be understood as calls by user
processes to kernel subroutines; they involve, however, far more profound sys
tem state changes that do regular subroutine calls. When system calls are pro
cessed, the processor is placed in supervisor state (and, in Sun-2 systems, the ker
nel virtual address space replaces the user virtual address space). The user pro
cess is suspended and the kernel begins to run, but since it runs on behalf of that
user process which issued the system call, it can be viewed as that user process
continuing execution in kernel mode. Such "kernel-mode" processes continue to
run (with pauses whenever they sleep or yield to higher-priority process) until the
system call processing is completed. At this time the scheduler is called to
choose the next user process to be dispatched.

Some system calls can be completely processed without calling any device driver
routines. The system call lseek is in this class, it requires only that a software
file position indicator be reset. Like many system calls - those related to pro
cess control, inter-process communication, timing services, and status informa
tion - it can be handled entirely in software. Requests for 1/0, however, usually
involve some action on the part of a peripheral device. In this case the kernel
calls (through a branch table mechanism described below) a routine within the
1/0 device's driver. The driver will then initiate the 1/0 operation and, if neces
sary, sleep until the data is available; in the meantime the kernel will dispatch
another user process.

When a user process issues a system call, execution shifts to the kernel. Then,
for 1/0-related system calls, the kernel distinguishes requests related to regular
named files (that is, files on a block device like a disk) from requests related to
other kinds of 1/0 devices (like terminals or printers). In the interests of unifor
mity, UNIX views these other devices as "special" files which (by convention) are
collected in the ldev directory. These special files are not created in the usual
way. The information in their i-nodes (the system structures that define the state
of files) is quite different from the information maintained for regular files, and,
as a consequence, special files can only be created with the mknod (make a
node) administration command. Instead of the addresses that will locate the con
tents of a regular file on a disk, the i-nodes of special files (devices) contain the
information necessary to determine the corresponding device driver (the major
device number), the device class (block or character), and the minor device
number.

When a file of any type is accessed, the kernel needs to determine which device
driver is responsible for it. To make this determination, it must get the name of
the device associated with the file. From that name it can derive (using a
device-independent kernel subsystem) an i-node and thus a major device number
(as well as a minor device number and a device class).

Table 3-1

Chapter 3 - Overall Kernel Context 35

The connection between the device name and its major number is made by way
of the device entry in the Jdev directory (more specifically, by way of the i-node
information associated with the device entry). The i-node for a device special
file contains a major device number, which is used to index one of the two device
switches. These switches, bdevsw (the block device switch) and cdevsw (the
character device switch) are actually arrays of structures, and the major device
number selects a driver by indexing one of these structures. (The minor device
number is then passed to the driver for local interpretation).

Using the 1 s -1 command on the / de v / directory shows you the i-node
information associated with special files:

A Sample Listing of the Jdev Directory

T per- s own-
y mis- i er
p sions z
e e

C rw--w--w- 1 henry
C rw-r--r-- 1 root
c rw------- 1 root
c rw------- 1 root
c rw-r--r-- 1 root
c rw-rw-rw- 1 root
c rw-rw-rw- 1 root
c rw------- 1 root
c rw------- 1 root

c rw------- 1 root
c rw------- 1 root
b rw------- 1 root
b rw------- 1 root

b rw------- 1 root
b rw------- 1 root

maj- min-
or or

O, 0
3, 1
3, 4
3, 3
3, 0

13, 0
3, 2
9, 0
9, 1

9, 6
9, 7
3, 0
3, 1

3, 6
3, 7

date name

Feb 21 09:45 console
Dec 28 16:18 kmem
Jan 13 23:07 mbio
Jan 13 23:07 mbmem
Dec 28 16:18 mem
Dec 28 16:18 mouse
Feb 22 16:40 null
Dec 28 16:19 rxyOa
Dec 28 16:19 rxyOb

Feb 25 1984 rxyOg
Dec 28 16:19 rxyOh
Feb 25 1984 xyOa
Jan 17 20:12 xyOb

Dec 28 16:19 xyOg
Dec 28 16:19 xyOh

When a user process wishes access to a system service, it makes a system call.
The subsequent flow of control looks somewhat like this:

36

Figure 3-1 Unix /10 Paths

User Process

I
User Space

.......................
\

Kernel Space
I/0-Related Other

System Calls System Calls
..

~
Block (File System) I/0

:

Discriminate File-System 1/0 : File-System
from Raw Device I/0 - - Code :

·························· :
Ra"' 1/0 . :

Device Type-> Switch :

:
: 'f

:

Major# -> Driver
: Resolution to Physical -

Device Operations
:
:
: :

Minor#-> Device ..
:

Hardware

When you add a new device driver you must add entries to one or both of the
device switches. Since we are discussing only character-oriented devices in this
manual, we'll ignore the bdevsw structure and concentrate on the cdevsw
structure. But note that it's common for drivers to appear in both tables; this
happens because block-devices almost always support raw character I/0.

Application programs make calls upon the operating system to perform services
such as opening a file, closing a file, reading data from a file, writing data to a
file, and other operations that are done in terms of the file interface. The operat
ing system code turns these requests into specific requests on the device driver
involved with that particular file. The glue between the specific file operation
involved and the device driver entry-point is through the bdevsw and

~~sun
~~ microsystems

Chapter 3 - Overall Kernel Context 37

cdevsw tables.

Each entry in bdevsw or cdevsw contains pointers to a driver's entry-point
functions. The position of an entry in the structure corresponds to the major dev
ice number assigned to the device. The minor device number is passed to the
device driver as an argument. Usually, the driver uses it to access one of several
identical physical devices, but it is also possible for it to be encoded so that mul
tiple minor numbers indicate the same device, but different operating modes. For
example, one minor number might indicate a specific tape device, as well as the
fact that the device is to be rewound when being closed, while another indicates
the same device without the rewind. A minor number may also indicate a
controller/device pair. Such breadth of interpretation is possible because the
minor number has no significance other than that attributed to it by the driver
itself.

The cdevsw table specifies the interface routines present for character devices.
Each character device may provide seven functions: xxopen, xxclose,
xxread, xxwrite, xxioctl, xxselect, andxxmmap. (While character
drivers sometimes have "strategy" routines, this name is simply a carryover from
the world of block drivers, and cdevsw thus has no xxstrategy entry point).
If you wish calls on a routine to be ignored - for example xxopen calls on
non-exclusive devices that require no setup- the cdevsw entry for that driver
can be given as nulldev; if a call should be considered an error- for exam
ple xxwr i te on read-only devices - nodev, which returns immediately with
an error code, can be used. For terminals, the cdevsw structure also contains a
pointer to an array of tty structures associated with the driver.

Note: the device switch tables do not include pointers to the driver initialization
and interrupt handler functions. Pointers to these functions appear in separate
mbvar structures (discussed below).

Here's what the declaration of an entry in the character device switch looks like.
Each entry (row) is the only link between the main UNIX code and the driver.
The declaration and initialization of the device switches is in
/usr/sys/sun/conf.c:

struct cdevsw {

int (*d_open) ();
int (*d_close) ();
int (*d_read) ();
int (*d_write) ();
int (*d_ioctl) ();
int (*d_stop) ();
int (*d_reset) ();
struct tty *d_ttys;
int (*d_select) ();
int (*d_mmap) () ;

/*
I*
I*
I*
/*
I*
I*
I*
/*
I*

routine to call to open the device * I
routine to call to close the device * I
routine to call to read from the device * I
routine to call to write to the device * I
special interface routine * I
flow control in tty's * I
reset device and recycle its bus resources * I
tty structure * I
routine to call to select the device * I
routine to call to mmap the device * I

struct streamtab *d_str; /* futuresupportforSystemVstreams *I
} ;

Only teletype-like devices (such as the the console driver, the mti driver, and
the z s driver) use the tty structure. All other devices set it to zero.

38

Routines in the kernel call specific driver routines indirectly by way of the table
with the major device number. A typical kernel call to a driver routine will look
something like:

(*cdevsw [major (dev)] .d_open) (pararns ...) ;

And here is a typical line from /usr /sys/sun/ conf. c, which initializes
the requisite pointers in the cdevsw structure:

All the other cdevsw entries between O and 13 appear first

cgoneopen, cgoneclose, nodev, nodev, /*14*/
cgoneioctl, nodev, nodev, O,
seltrue, cgonernrnap,

} ,

Then all the other cdevsw entries from 15 up

In the Sun system, a number of devices in cdevsw are preassigned. The table
below shows the assignments at the time of this writing, though new devices are
always being added. In allocating a major number to the new device which
you're installing, you must make sure that you don't choose one that's already
been allocated. /sys/sun/ conf. c will contain the major device numbers as
currently allocated. Choose yours so it'll go at the end.

~~sun ~~ mlcrosystems

Chapter 3 - Overall Kernel Context 39

Table 3-2 Current Major Device Number Assignments

Major Device Device Device
Number Abbreviation Description

0 en Sun Console
1 not available no device
2 sy Indirect ITY
3 Memory special files
4 ip Raw Interphase Disk Device
5 tm Raw Tapemaster Tape Device
6 vp Ikon Versatec Parallel Controller
7 not available
8 ar Archive Tape Controller
9 xy Raw Xylogics Disk Device

10 mti SystechMTI
11 des DES Chip
12 ZS UARTS
13 ms Mouse
14 cgone Sun-1 Color Graphics Board
15 win Window Pseudo Device
16 ii INGRES lock device
17 sd Raw SCSI disk
18 st Raw SCSI tape
19 nd Raw Network Disk Device
20 pts PseudoITY
21 ptc PseudoITY
22 fb Sun console frame buffer
23 rope RasterOp Chip
24 sky SKY Floating Point Board
25 pi Parallel input device
26 bwone Sunl Monochrome frame buffer
27 bwtwo Sun-2 Monochrome frame buffer
28 vpc Parallel driver for Versatec printer
29 kbd Sun console keyboard driver
30 xt Raw Xylogics 472 Tape Controller
31 cgtwo Sun-2 Color Frame Buffer
32 gpone Graphics Processor
33 sf Raw SCSI Floppy
34 fpa Floating-Point Accelerator
35 not available System V Stream Support
36 xd Xylogics 751 SMD Disk Driver
37 not available System V Stream Support
38 pc Sun PC Driver
39 cgfour Sun-3/110 Color Frame Buffer

40

3.3. Run-Time Data
Structures

If you skip ahead and read the chapter on Configuring the Kernel you'll see a dis
cussion of the procedures by which Sun systems are reconfigured to include new
devices and drivers. There are two major programs involved in this process. The
first is config, which reads the kernel config file and generates the data
structure tables which specify the configuration of the new kernel. You'll also
note, in that chapter, references to the kernel's autoconfiguration process (some
times called autoconf). The autoconfiguration process verifies that the dev
ices specified in the config file are actually installed and working, and adjusts the
kernel data structures accordingly.

The autoconfiguration approach was first introduced in 4. lBSD as part of a larger
kernel rationalization, and it significantly increases the flexibility of the kernel
configuration process, for example, by allowing multiple device controllers to be
driven by the same instance of a driver.

The autoconfiguration process is called by the kernel during its boot-time initiali
zation. It does several things:

o It verifies that the information in the kernel config file is correct; that is to
say, it verifies that the devices which the kernel thinks are installed are actu
ally installed. It does this by calling device-specific xxprobe routines that
are supplied by the driver.

o It completes the initialization of the kernel data structures that were declared
by config and linked into the kernel by way of ioconf. c (a file which
config creates but cannot fully initialize). These structures, which are
defined in <sundev /mbvar. h> and shall hereafter be known as the
mbvar structures, form a good part of the run-time environment of the driver
routines.

o It maps the device registers (or memory) into kernel virtual space.

o It sets up polling interrupts on Multibus systems.

The autoconfiguration code does its work, as its name indicates, without worry
ing the driver developer too much. It's only necessary for the developer to know
what conventions to follow and what options exist. The rest will take care of
itself.

Note: readers who have written only System V drivers will perhaps find this all a
bit mysterious. In System V, as in 4.2BSD, the driver interface to the kernel is
defined primarily by the function switch (either cdevsw or bdevsw) by which
driver routines are called, by the parameters these routines are passed and by
the values they return. So far so good, but then there are the differences. In Sys
tem V drivers, nothing like the mbvar structures exists, and generic kernel struc
tures (like the user structure) are used far more heavily than in 4.2BSD, where
mbvar-like structures are consulted by preference. Sun's operating system is, of
course, derived from 4.2BSD, and its driver interface is quite similar.

The "mb" in the name of the mbvar structures clearly recalls the primary motiva
tion of the kernel rewrite in which they were introduced - to improve the
management of bus resources. The "mb" is derived from the initials of the Mul
tibus, around which older generation Sun machines were built. Newer machines,

The Bus-Resource Interface

Chapter 3 - Overall Kernel Context 41

while built around the VMEbus, nevertheless continue to bear the traces of the
past in these mbvar structure names, names which are now taken to stand for
"Main Bus" rather than for "Multibus".

During the configuration of the kernel, an edifice is built of the mbvar structures
and its initialization is begun. The edifice consists of a structure which
represents the bus itself, two arrays of structures (one representing system con
trollers; the other, devices) and a number of inter-structure field-to-field links of
various kinds.3 The details of the edifice depend upon the information in the ker
nel config file, and upon the compile-time declarations made by the individual
drivers. During boot time, the initialization that conf ig began is completed by
the autoconfiguration process.

Then, at run time, the mbvar structures are used by both the drivers and the ker
nel to manage the bus and its interaction with the devices. The mbvar structures
are linked to each other in quite a complex fashion, for device characteristics and
thus device driver structures vary greatly, and these structures are intended to
support a great variety of access paths: device to controller, device to driver, con
troller to driver, and so on. Driver developers do not, however, need to concern
themselves with the details of the inter-structure links and access paths. Driver
routines will be called by the kernel with pointers to the mbvar structures of
interest to them. They are then free to build that information into whatever local
structures they find most convenient for the representation of whatever access
paths are of interest to them.

So, to sum up, the Sun kernel/driver runtime interface can be seen as being built
in two different sections. One of these sections is composed of the mbvar struc
tures, constructed into interlinked arrays to represent specific kernel
configurations on specific machines. The other is similar to the generic UNIX
kernel/driver interface, consisting as it does of the two device switches, the
user and proc structures, parameter conventions and a few miscellaneous
variables. We'll now discuss the details to these two interfaces.

All controllers are installed on the main system bus, and all slave devices (like
disks and tape drivers) are attached to their controllers.4 Additionally, each con
troller is associated with a device driver, which is really a controller driver. The
mbvar data structures reflect these relationships, not only in terms of the fields
that they contain but in terms of the ways these fields are linked together.

3 It's not always clear just when a device is a "controller", and when it's a "device". The extreme cases are
clear: if a device attaches to the bus, fields interrupts and has other, so-called "slave" devices, then it's a
controller. Likewise, if a device attaches to a controller rather than to the bus, it's a slave device. The confusion
surrounds devices which attach to the device and field interrupts, but which do not have slave devices. Such
"devices" would, in many ways, be better thought of as "controllers" which control only themselves.

4 Sometimes, in this manual, the word "device" will be used in a generic sense to denote either a "free"
device that attaches directly to the system bus rather than to a separate controller, or a regular slave device. This
generic usage occurs, for example, whenever the term "device driver" is used - such programs would more
accurately be described as "controller drivers". In this section, however, we're being extremely precise - free
devices attach to the system bus, and so they're called "controllers", not "devices".

42

The following mbvar structure fields are the ones most relevant to driver
developers.

mb hd

mb et1r

The first data structure, mb _ hd, is the Main Bus header data
structure. There is only one such structure, for Sun systems have
only one Main Bus. It contains a queue of mb _ ct lr structures,
each one representing a controller waiting for DVMA space. The
queue only contains entries when DVMA space is full. It also
contains other bus-status information. For example, if a driver has
exclusive access to the bus, this is noted in mb _ hd. Device
drivers never directly access the fields in mb _ hd.

Each slave-device controller on the Main Bus has a mb ct lr
structure associated with it. (This structure contains all of the
configuration-dependent information which the kernel needs in
interactions with the controller's driver, as well as some status
information. It is mb _ ct lr that is queued onto mb _ hd during
a wait for DVMA space. The following fields within mb_ctlr
are of interest even for character devices (there are others that are
used only by block devices):

me et1r
The controller index for the corresponding controller, for
example, the 'O' in scO. Used to index into arrays of
driver-specific controller status and control structures.

me addr
The address of the controller (control and status registers and
RAM) in bus space.

me_spaee
A bit pattern which identifies the address space within which
the controller is installed.

me intpri
-The interrupt priority level of the controller. This is to be

given in the config file and should never be hardwired in the
driver source code.

me intr
- Pointer to the ve c structure that specifies vectored interrupt

behavior (or NULL if vectored interrupts are not used). If
me_ in tr is set, then the fields within the vec structure
become significant:

v fune
Pointer to the vector-interrupt function.

v vee
Vector number associated with the function in v func.

V vptr
- The 32-bit argument to be passed to the driver vector

interru pt routine. Defaults to the controller number of the

Chapter 3 - Overall Kernel Context 43

interrupting device, though it can be reset within the
driver. It's often set by the driver xxattach routine to
contain a local structure pointer.

me alive
Set to one by the autoconfiguration process if the controller is
determined to be present. Otherwise left at 0.

me mbinfo
Main Bus resource allocation information (Used by
MBI_ADDR, robsetup and robrelse).

mb device "Free" devices (devices with no separate controllers) as well as
"slave" devices, are represented to the kernel bus-management
routines by an instance of the rob_ device structure. (This is as
it has been since 4. lBSD, but it's not ideal - if free devices were
taken as controllers and represented by an rob_ ct lr structure,
then rob_device would only be for slave devices and would
contain fewer fields). rob_ctlr contains all of the
configuration-related data for the free or slave device. If a con
troller has multiple slave devices attached to it, there will be as
many rob_device structures associated with its rob_ctlr
structure. The following fields within rob_device (which are
set by the configuration system and are not normally reset by the
driver) are of interest:

md driver
A pointer to the rob driver structure associated with this
device.

md unit
The device index for the corresponding device, for example,
the 'O' in ndlO. Used to index into arrays of driver-specific
device status and control structures.

md slave
The slave number of the device on its controller.

md addr
The base address of the device (its control/status registers and
perhaps some RAM). For most Multibus devices, this will be
an address in 1/0 space, though for memory-mapped devices
this will be an address in Memory space. For VMEbus
machines, it's the particular address space within which the
device is attached. Unused for devices on controllers.

md_intpri
The Main Bus priority level of the device (the priority that is
passed to pritospl). Used to parameterize the setting of
hardware priorities. Unused for devices on controllers.

md intr
The interrupt vector (if vectored interrupts are used). Unused

44

for devices on controllers.

md_f1ags
The optional flags parameter from the system config file is
copied to this field, to be interpreted by the driver. Only the
driver uses the information in this field. If flags was not
specified in the config file, then this field will contain a 0.

md a1ive
Set by the autoconfiguration process to 1 if xxprobe finds
the device, otherwise it's left at 0. lncidently, if xxprobe
fails to find the device, the autoconfiguration process will also
leave the device position in the xxdini t array (if the driver
has one) at 0. The driver is free to test either variable (in its
xxopen routine) to determine xxprobe's verdict.

mb driver The system assumes that the source code of your driver declares a
mb driver structure named xxdr i ver. This structure contains
information relevant to the device driver as a whole, as opposed to
information about individual devices or controllers. It differs in
several important manners from the device and controller struc
tures. For one thing, it contains a number of pointers to driver
functions. These pointers, like those in cdevsw and bdevsw,
are used by the kernel as entry points into the driver. For another,
it's initialized not by the configuration system, but within the
driver source code itself - if fact, several of the routines in
xxdr i ver are actually called by the kernel autoconfiguration
process to complete the driver-related kernel initialization. (Note:
while the driver has responsibility for initializing the fields in
xxdr i ver, it is still limited, at run time, to reading these fields -
it cannot ever change them).

xxdr i ver must be known more intimately by the driver developer than either
the driver md ctlr structure or the driver md device structure. We'll
therefore give its complete definition:

struct mb driver {

} ;

int (*mdr_probe) ();
int (*mdr_slave) ();
int (*mdr_attach) ();
int (*mdr_go) ();
int (*mdr_done) ();
int (*mdr_intr) ();
int
char
struct
char
struct
short
struct

mdr_size;
*mdr dname;

mb device **mdr_dinfo;
*mdr cname;

mb ctlr **mdr cinfo;
mdr_flags;
mb driver *mdr link;

I* check device/controller installation * I
I* check slave device installation * I
I* boot-time device initialization * I
I* routine to start transfer * I
I* routine to finish transfer * I
I * polling interrupt routine * I
I* amount of memory space needed * I
I* name of a device * I
I* backpointers to mbdinit structs * I
I* name of a controller * I
I * backpointers to mbcinit structs * I
I* want exclusive use of Main Bus * I
I* interrupt routine linked list * I

Chapter 3 - Overall Kernel Context 45

Here is a brief discussion of the fields in the rnb _driver structure that you'll
need to initialize when declaring .xxdr i ver. Note that many of the fields in
rnb_dri ver are for the use of block drivers only -they're presented here as
useful background information.

mdr_probe
is a pointer to the driver xxprobe routine. xxprobe is called for every
controller and every independent device (with no separate controller) given
in the kernel config file. xxprobe determines if the device/controller is
actually installed. If it is, it returns the amount of bus space consumed by
the device/controller to the autoconfiguration process, where this space is
then mapped into system address space. When xxprobe fails, it returns 0.

mdr s1ave
is a pointer to a xxslave function within your driver. xxslave is analo
gous to xxprobe, and serves the same function for devices which are driven
by separate controllers. Unlike xxprobe, however, xxslave exists only
for controllers that may have multiple devices -it's therefore quite rare in
character device drivers.

mdr attach
is a pointer to an xxat tach function within your driver. xxattach is
called during the autoconfiguration process, where it does preliminary setup
and initialization for a device or controller. It's commonly used within disk
and tape drivers to perform setup tasks like the reading of labels, and in
character drivers for tasks like initializing interrupt vectors and reserving
blocks of memory. Initialize this field only if there's an xxat tach routine
in your driver.

mdr_go
mdr done

are pointers to xxgo and xxdone functions within the driver. These func
tions usually don't exist for character drivers, and these fields are conse
quently 0.

mdr intr
is a pointer to a polling interrupt routine within your driver. Such a polling
routine is used for the "auto-vectoring" of interrupts in systems where the
interrupt "vector" can only be based on the interrupt priority. This is the
case on all Multibus machines, and if there's any chance that your driver
will someday be run on a Multibus machine you should include a polling
interrupt routine and plug it in here.

If you have a Sun source license, and take the opportunity it affords to exam
ine a number of drivers, you may note an inconsistency in the naming of
interrupt routines:

o Some drivers have two interrupt routines: a polling interrupt routine
named xxpoll and a vectorinterrupt routine, named.xxintr. In such
cases xxpoll determines the unit number of the interrupting device and
then calls the xxintr to actually handle the interrupt.

46

o Other drivers have only one interrupt routine. The routine is named
xxintr and called from mdr_intr, but it nevertheless contains pol
ling code. This, like the naming of the field mdr _ intr (which really
should be mdr _po 11) is an artifact of early Sun systems, in which
drivers were written for the Multibus only - in these systems xxintr
was the interrupt routine, and it always contained polling code.

In any case, remember that any routine called from mdr _ intr must check
the polling chain, regardless of its name. If you'll not support Multibus
machines, and thus need no polling interrupt routine, put a zero in this field.

mdr size
is the size - in bytes - of the memory required for the device. This field is
initialized with a value identical to that which x.xprobe returns upon suc
cess. This is the amount of space that needs to be mapped into system
memory by the autoconfiguration code.

mdr dname
is the name of the device for which this driver is written. This field, is an
array of pointers to mb _device structures, one for each of the installed
devices. These pointers are filled in during autoconfiguration (see section
below on Autoconfiguration-Related Declarations) and the driver is then
free to use them to access the structures.

mdr dinfo
is pointer to a pointer to a mb _device structure. This pointer is filled in
during autoconfiguration (see section below on Autoconfiguration-Related
Declarations and is necessary to work back from the device unit number to
the correct mb _device structure by way of an index operation.

mdr cname
is the name of a device supported by this driver (for example, sc supports the
devices scO, scl, etc). This field takes the form of a regular null
terminated C string. Fill in this field if you actually have a controller.

mdr cinfo
is pointer to a pointer to a mb _ ct lr structure. This pointer is filled in dur
ing autoconfiguration (see section below on Autoconfiguration-Related
Declarations and is necessary to work back from the device unit number to
the correct mb _ ctlr structure by way of an index operation.

mdr_f1ags
consists of some flags, as follows:
MDR XCLU

The device needs exclusive use of Main Bus while running.
MDR BIODMA

For block devices that do DMA on the Main Bus (the driver calls
mbgo). The kernel needs this information in case it must lock other
DMA devices off the bus.

MDR DMA

~~sun ~~ microsysterns

For (character) devices which, while not transferring large block of data,
do use DMA to transfer blocks of control information. Such drivers call

Autoconfiguration-Related
Declarations

Chapter 3 - Overall Kernel Context 47

mbsetup.
MDR SWAB

1/0 buffers are to be swab'ed- that is, pairs of data bytes are to be
exchanged. (This flag is used to push the swab out of mbgo and
mbdone and down into the Main Bus driver).

MDR OBIO
The device is installed in on-board 1/0 space.

Of these, MDR_XCLU, MDR_SWAB and MDR_OBIO are potentially to be
used for user character devices. These flags must be OR' ed together if you
wish to place any of that information there. Place a zero (0) in this field if
none of the flags apply to your driver.

mdr link
This field is used by the autoconfiguration routines and is not for the driver's
use.

At the top of each driver, after the include statements, is a group of declarations
that are used by the autoconfiguration process to finish the initialization of the
mbvar structures. Here, as an example, are the relevant declarations from the
Sky Floating-Point Driver:

I* Driver Declarations for Autoconfiguration * I
int skyprobe(), skyattach(), skyintr();
struct mb_device *skyinfo[l]; /* OnlySupportsOneBoard *I
struct mb_driver skydriver = {

skyprobe, 0, skyattach, 0, 0, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, 0, 0 1 O,

} ;

The first line declares the names of the autoconfiguration-related entry point rou
tines for the driver. In this case there are only three - skyprobe, sky at
tach and skyintr. These declarations are necessary because, in a few lines,
we will use the names to initialize the driver's mb driver structure.

The second line declares an array (in this case of dimension one) of pointers to
mb_device structures. By the time the driver is linked into the kernel, con
fig will have already declared an array of mb_device structures that contains
an entry for each of the devices named in the kernel config file. When the kernel
is booted, the autoconfiguration process initializes each driver's xxinfo array to
indicate the rob_ device structures corresponding to its devices, with each
device's unit number being used as its subscript into the xxinfo array. The Sky
driver is slightly atypical in that it only supports one device; normally the device
count is provided by conf ig in a macro "NXX" (which is set to the number of
devices noted in the con fig file) would be the subscript in this declaration.

If this was a driver for a controller with slave devices, the second line would be
followed by an analogous one that declared an array of pointers to mb _ ct lr
structures.

The third line both declares and initializes the rob driver structure that
represents this driver. The fields within the structure are described in detail in

~~sun ~~ microsystems

48

Other Kernel/Driver
Interfaces

the previous section.

The kerneVdriver interface is almost entirely contained within the mbvar struc
tures and the parameter conventions of the driver routines. There are, however, a
few other common kerneVdriver interface points, which are given in this section.

The kernel user structure contains a few fields of interest to drivers. This
structure, which maintains status information for the current user process (and
which is swapped in and out with the process it describes), is used far less by Sun
drivers than it is by System V drivers. This is because, in the Sun operating sys
tem, the user structure does not define the characters to be written (or the place
for characters to be read to). The Sun kernel uses uio structures for this pur
pose, and passes them as parameters to the driver xxread and x.xwrite rou
tines. (See Some Notes About the U/0 Structure in the The "Skeleton" Charac
ter Device Driver section of this manual).

Still, two fields within the user structure remain of interest to device drivers.
They are:

u.u_qsav
Is a set jmp environment buffer that can be used by drivers that wish to
save the current stack in preparation for a possible longjmp return.
set jmp and longjmp are useful in drivers that need to intercept signals
being sent to the process, as well as in error handling. For more information,
see the setjmp(3) man page.

u.u error
If an 1/0 operation is not successful, the driver must return an error code
(defined in <errno. h>), which is plugged into u. u _error. From here
it's normally stored in the per-process global variable errno in the user
context.

Note that the user structure contains a pointer, u . u _procp, to the proc
structure for the current process. The proc structure contains the information
that the system needs about a process even when it is swapped out.

Drivers may occasionally need to know what kind of machine they're running
on. They can find out by querying a variable, cpu, which, while not in the
user structure, is available to them by including .. /machine/ cpu. h. This
variable is initialized by the kernel on the basis of information in the ID PROM,
and is set to CPU_SUN2_50, CPU_SUN2_120, CPU_SUN3_50,
CPU SUN3 110, CPU SUN3 160 or CPU SUN3 260. Note that when
compiling fm a Sun-2 system, only the Sun-2 names are available; likewise for a
Sun-3.

DVMA drivers will often need to know the size of kernel DVMA space on the
host machine (See Sun Main-Bus DVMA) so that they can subtract it from system
virtual addresses to get addresses relative to the start of DVMA space. The
external variable DVMA, declared as an array of characters, is available for this
purpose.

Chapter 3 - Overall Kernel Context 49

The external variable hz gives the number of clock ticks per second on the host
system.

Related to the CPU SUNX XX names are the SUNX XX ifdefs. These are set
at compile time on the basis of information in the config file, and can be used to
eliminate code or data that is unnecessary for machines of any particular type. In
general, it's possible (and advised) to write drivers that can compile and run on a
variety of Sun machines with no changes.

~~sun
~~ microsystems

4
Kernel Topics and Device Drivers

Kernel Topics and Device Drivers .. 53

4.1. Overall Layout of a Character Device Driver ... 53

4.2. User Space versus Kernel Space... 55

4.3. User Context and Interrupt Context .. 55

4.4. Device Interrupts .. 56

4.5. Interrupt Levels ... 57

4.6. Vectored Interrupts and Polling Interrupts.. 58

4.7. Some Common Service Routines... 60

Timeout Mechanisms ... 61

Sleep and Wakeup Mechanism ... 61

Raising and Lowering Processor Priorities .. 62

Main Bus Resource Management Routines ... 62

Data-Transfer Functions ... 62

Kernel printf Function .. 63

Macros to Manipulate Device Numbers .. 63

4.1. Overall Layout of a
Character Device
Driver

4
Kernel Topics and Device Drivers

A first step in writing a device driver is deciding what sort of interface the device
should provide to the system. The way in which read and write operations
should occur, the kinds of control operations provided via ioctl, and whether
the device can be mapped into the user's address space using the mmap system
call, should be decided early in the process of designing the driver. (For simple
memory devices that require neither DMA nor an ioctl routine, and that don't
interrupt, it's possible to use the mmap system call to avoid writing a driver alto
gether. See the Mapping Devices Without Device Drivers section of this manual
for more details).

Device drivers have access to the memory management and interrupt handling
facilities of the UNIX system. The device driver is called each time the user pro
gram issues an open, close read, write, mmap, or ioctl system
call, but only the last time the file is closed. The device driver can arrange for
1/0 to happen synchronously, or it can set things up so that 1/0 proceeds while
the user process continues to run.

Here's a brief summary of the parts that comprise a typical device driver. In any
given driver, some routines may be missing. In a complex driver, all of these
routines may well be present. A typical device driver consists of a number of
major sections, containing the routines introduced below.

Initial Declarations
Device drivers, like all C programs, begin with global declarations of vari
ous sorts. These declarations include the structures that the driver will over
lay on the device registers. (These structures are often conveniently declared
to contain unsigned integers and bit fields chosen to access various parts of
the device registers). They also must include the declarations discussed in
the Autoconfiguration-Related Declarations section of the Overall Kernel
Context chapter of this manual.

Autoconfiguration Support
Then come thexxprobe,xxattach and, perhaps,xxslave routines.
These are called at kernel boot time to determine if devices noted as being
present in the config file are actually installed, and to initialize them if they
are. This initialization may include the resetting of the interrupt vector.

~~sun ~~ microsystems
53

54

Opening and Closing the Device
xxopen is called each time the device is opened at the user level; if multiple
user processes open the device, xxopen is called multiple times. xxclose,
in contrast, is called only when the last user process which is using the dev
ice closes it.

Reading to and Writing from the Device
xxread and xxwri te are called to get data from the device, or to send data
to the device. Drivers for tty-like devices will probably structure xxread
and xxwr i te in the terminal-driver style (not described in this manual),
while devices that deal simultaneously with groups of characters will prob
ably have their xxread and xxwri te routines implemented in terms of a
xxstrategy routine. Such xxstrategy routines are in ever way subsets
of block-driver xxstrategy routines -they are integrated with physio
and they use buf structures but they don't have anything to do with the
kernel buffer cache. Character drivers for OMA device are likely to have
strategy routines, but they can be useful for non-OMA devices as well
- as long as the devices do 1/0 in chunks.

Start Routine
xxstart is needed in drivers that queue requests; it's called from xxread,
xxwrite or xxstrategy to start the queue and is also called from
xxintr to send off the next request in the queue.

Mmap Routine
The mmap routine is present in drivers for devices which are operated by
being mapped into user memory - for example, frame buffers.

Interrupt Routines
There are two kinds of interrupt routines: polling (or auto-vectored) routines
and vectored routines. Polling routines are necessary when the host system
doesn't allow unambiguous means of mapping hardware interrupts to dev
ices, as is the case with Multibus-based machines. Vectored-interrupt rou
tines are used on VMEbus-based systems, which can map hardware inter
rupts immediately to devices. Drivers for VMEbus devices that are never
run on Multibus-based systems need only vector interrupt routines, while
drivers for devices which will be run on both Multibus and VMEbus
machines need both types of interrupt routines. In this case the polling rou
tine can determine the interrupting device and then call the vectored routine
to do the rest.

Ioctl Routine
The xxioct l routine is called when the user process does an ioctl sys
tem call. These calls are the great escape hatches in the otherwise generally
uniform UNIX 1/0 architecture. They are not, however, panaceas, and you
should not overuse them to solve problems in driver design. Terminals have
many xxioctl calls, but they're a special case. They have many xxioctl
calls because they' re inherently quite complex and yet UNIX still insists that
they look like files.

~~sun ~~ mlcrosystems

4.2. User Space versus
Kernel Space

4.3. User Context and
Interrupt Context

Chapter 4 - Kernel Topics and Device Drivers 55

The UNIX operating system, being a multi-tasking OS, provides for multiple
threads of control at the user level. (These multiple threads are the various user
processes). At the kernel level, however, things are different. The UNIX kernel
is monolithic monitor type of operating system, and, as such, it cannot be inter
rupted by user processes. Instead, it contains code which allocates its time (and
other resources) among the various user processes, as well as to itself. The kernel
can be interrupted by hardware, but when handling interrupts it doesn't run on
behalf of any individual user process.

Device driver functions are invoked by kernel routines after user processes make
system calls. These functions must be able to move data to or from user virtual
space quickly and easily. Kernel functions are provided to do help it do so, and
to redundantly map memory so that it can be shared by user programs and the
kernel.

Device drivers are parts of the kernel, and they inhabit kernel space:

o In the Sun-3 the kernel uses the top 16 Megabytes of the current 256 Mega
byte context, starting at O xF O O O O O O.

o In the Sun-2 the kernel virtual address space is 16 Megabytes, and is com-
pletely separate from the individual user virtual address spaces.

In general, drivers don't need to consider the details of kernel address-space
implementation. Routines (like copy in and copyout) which deal in multi
ple address spaces will manage the details internally, as will programs like
kadb.

A device driver can usefully be thought of as having a top half and a bottom half.
The top half, consisting of the read, write, and ioctl routines, and of any
other routines which run on behalf of the user process making requests on the
driver, is run at 1/0 request time. The routines in the top half make device
requests that can cause long delays during which the system will schedule a new
user process so that it can continue doing useful work. The bottom half, consist
ing of xxintr and any routines that it may call, is run at hardware interrupt time.

Memory-mapped device are usually not interrupt driven. Their drivers, thus, do
not typically need to include interrupt interrupt routines. Memory-mapped dev
ices operate by being written and read as system memory, and make no split
second demands (interrupt-time demands) upon their users.

After starting an 1/0 request, the top half calls sleep to wait for the bottom
half to indicate (by way of a call to wakeup) that the request has been serviced.
Thus, when a user program issues a read on (say) an ND converter, it is normally
suspended when the top half of the corresponding driver calls sleep to wait
until some input arrives. Alternatively, the top half of the driver can call
iowai t and be put to sleep awaiting the completion of a buffer-oriented 1/0
transfer.

The top half contains not only all the non-interrupt time driver routines, but (for
all practical purposes) the kernel routines above the driver as well. In particular,
it contains the kernel physio routine, which manages the decomposition of

~\sun
~~ microsystems

56

4.4. Device Interrupts

large 1/0 requests into a series of smaller ones that can be handled by the device.

The bottom half may include a xxstart routine, which can be called internally
to start 1/0. This allows the device-specific code to be isolated in one routine.
xxstart is not a driver entry point. It's called from either xxstrategy or
xxintr, depending on whether the device is busy or not.

Consider an ND converter driver that expected the converter to interrupt when a
sample was available. The kernel interrupt handler would detect the device inter
rupt and dispatch xxi n tr, which would then store the sample data in a buffer
and wakeup the user process sleeping in the top half so it process could retrieve
the data. If there was no user process sleeping in the top half, the wakeup
would have no effect, but the next process to read the ND driver would find the
data already there and wouldn't have to sleep.

It must be stressed that, in general, xxintr doesn't run on behalf of the current
user process - this is, in fact, why it's distinguished so clearly from the top half.
This means is that no information about the current user process is available, in
any way, to xxintr. It shouldn't examine, let alone change, any of the variables
in the kernel user structure.

In general, the driver developer has limited control over the interrupt characteris
tics of the device. However, it should be said that some device-interrupt charac
teristics are better than others. In particular, interrupt-processing takes lots of
time, and it's important that devices interrupt as seldom as possible. If, for
example, a device can be made to handle multiple characters for each interrupt it
processes, it should be. It's also preferable that a device not interrupt until its
driver has enabled its interrupts, that it hold its interrupt line high until the driver
asks that it be cleared, and that it remain quiescent after a bus reset (system
boot).

Most hardware devices interrupt, and all interrupts occur at some given priority
level. When an interrupt occurs, the system traps it, suspends the in-process
operation (which may be a process entirely unrelated to the interrupting device or
even the kernel) and resumes execution in the bottom half of the driver associ
ated with the interrupting device. This means that the top half of a device driver
can be interrupted at any time by its bottom half. If they wish to share data, they
must do so in shared data structures, and they must take special provision to see
that those structures remain consistent. An example of such a data structure is a
pointer to a current buffer and a character counter. The top half of the driver
must protect itself so that data structures can be updated as atomic actions, that
is, the bottom half must not be allowed to interrupt during the time that the top
half is updating some shared data structure. This protection is achieved by
bracketing critical sections of code (sections that update or examine shared data
structures) with subroutine calls that raise the processor priority to levels which
can't be interrupted by the bottom half. Such a section of code looks like:

~~sun
~~ microsystems

4.5. Interrupt Levels

Chapter 4 - Kernel Topics and Device Drivers 57

s = spln ();

critical section of code that can't be interrupted

(void)splx(s);

Here we've first raised the hardware priority level and then restored it after the
protected section of code. (Determining the correct hardware priority will be dis
cussed later). One section of code that almost always needs to be protected is the
section where the top half checks to see if there is any data ready for it to read, or
whether it can write data or start the device. Since the device can interrupt at any
time, the section of code that checks for input in this fashion is wrong:

if (no input ready)
sleep (awaiting input, software_priority)

because the device might well interrupt while the if condition is being tested,
or while the preamble code for the sleep function is being executed.

The above section of code must be rewritten to look like this:

s = spln ();
while (no input ready)

sleep (awaiting input, software_priority)
(void)splx(s);

If the top half executes the sleep system call, the bottom half will be allowed
to interrupt, because the hardware priority level is reset to O as soon as the
sleep context switches away from this process.

In many cases it is possible to set the device interrupt level by setting switches on
the board. If so, you must decide what level this device is going to interrupt at.
At first it may seem that your device is very high priority, but you must consider
the consequences of locking out other devices:

o If you lock out the on-board UARTs (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the UNIX
scheduler will be suspended.

o If you lock out the Ethernet (level 3), packets may be lost and retransmis-
sions needed.

o If you lock out the disks (level 2), disk rotations may be missed.

o Level 1 is used for software interrupts and cannot be used for real devices.

In general, it's best to use the lowest level that will provide you with the response
that you need.

58

4.6. Vectored Interrupts
and Polling Interrupts

In Multibus-based Sun-2 machines, the kernel uses only auto-vectored (polling)
intenupts. With auto-vectoring, the intenupt vector associated with a given dev
ice is based solely on the device interrupt priority level. Since many system
configurations will contain more devices than there are intenupt levels, multiple
devices may share the same intenupt level. Still, when processing an intenupt,
the kernel must have a way of determining which device intenupted, and which
driver should process the interrupt. In such configurations, the kernel proceeds
by polling all the drivers at the given intenupt level (in the order that they are
given in the config file), calling each of their polling intenupt routines in tum.
These routines then proceed to interrogate their corresponding devices looking
for the device that has an "attention bit" set, thus indicating that it issued the
intenupt. Devices that don't indicate that they've intenupted can still be
installed - one per system - by putting them at the end of the config file and
thus at the end of the polling chain. Unclaimed intenupts can then be assumed to
be from the last device.

After determining that one of its devices issued an intenupt, the polling routine
services it and returns a non-zero to indicate that it did so (or a Oto indicate that
no device was found to originate the interrupt).

Polling only works if devices which share intenupt levels continue to intenupt
until the driver tells them to stop. This is because the driver polling-interrupt
routine returns to the kernel with an indication of which of the devices it has ser
viced. If two devices (A & B) are polling at the same intenupt level and both
issue an interrupt, device A will always get serviced first. The kernel will then
go on its merry way unless device B continues to intenupt. If it does, then when
device A has been serviced, device B will be serviced. Fortunately, most Mul
tibus boards continue to interrupt until told to stop. VMEbus boards typically do
not, so it's important that they use vectored interrupts.

Sun VMEbus machines, (even those with Multibus devices installed by way of
adapters) can take advantage of vectored intenupts. When handling a vectored
intenupt, the kernel calls the appropriate driver's vector intenupt routine
directly, passing it an argument to identify which of its devices (or controllers)
intenupted.

It's important to realize that a driver can support both vectored interrupts and
polling interrupts. Such a driver can be run on either type of machine, its polling
intenupt routine will determine which device, if any, originated the intenupt, and
then call the vectored interrupt routine to actually service it.

VMEbus devices - if they interrupt - are assigned unique identifying numbers
in the range Ox4 0 to OxFF when they are described in the con fig file. It is
these vector numbers that are used by the kernel to directly identify the intenupt
ing device.

There are cases where no separate polling routine is needed. The first is where a
driver knows that it supports only one device, and that no other device will share
its device's intenupt level. In this case only a xxintr routine need exist. It can
then be specified in mb_driver->mdr_intr for use in the auto-vectored
case and in the conf ig file for the vectored interrupt case. Thus, all
configurations will use the same interrupt routine. Remember, this will only work

~~sun
~~ microsystems

Chapter 4 - Kernel Topics and Device Drivers 59

if there are no other devices of any sort installed at the same interrupt level.

The other case where xxpoll is not needed is when a driver will never support
polling - presumably because it will never be run on a Multibus machine. In
this casex.xintr should be specified in the config file for use as the vectored
interrupt routine, and the auto-vectored (polling) interrupt routine specified in
rnb driver->mdr intr should be 0.

Note that in the first case above, where the device will have an interrupt level to
itself, little need be done to make the driver work with vectored interrupts. One
may simply take a polling interrupt routine, (perhaps renaming it xxintr to
avoid confusion) and install it as the vector interrupt routine by giving its name
in the appropriate place in the config file. This isn't the most efficient thing
to do, for when the routine is called through the kernel's vectoring mechanism, it
will waste the information in its argument (which identifies the device originat
ing the interrupt) and go on to poll its devices. Nevertheless it will work. It's
better, however, if drivers contain both x.xintr and xxpoll routines, so that
they may be easily transported to a variety of systems.

Another issue of concern only to drivers running on VMEbus machines is related
to setting up the interrupt-vector number. When using the VMEbus-Multibus
adapter or certain VMEbus devices, the vector number is set by switches on the
circuit board. But some devices require that software initialize the device by tel
ling it which vector number to use on interrupts. Presently, the only place where
this can be done is in xxattach. The vector number thatxxattach communi
cates to the device is in the rod intr->v vecfieldofthe rnb device - - -
structure - a NULL value in this field indicates that the host machine is Mul-
tibus based and does not support vectored interrupts.

A skeleton for a "typical" driver, one supporting both vectored and polling inter
rupts and using software to set interrupt vectors might look like:

I*
* NXX is computed by configfor each device type.
* It can then be used within the driver source code to
* declare arrays of device specific data structures.
*!

struct xx device xxdevice[NXX];

I*
* Attach routine for a device xx that must be notified of its
* interrupt vector.
*I

xxattach (md)
struct mb_device *md;

register struct xx device *xx &xxdevice[md->md_unit];

I*
* Vector number given in kernel config file and passed by the
* autoconfiguration process during boot.

60

4. 7. Some Common Service
Routines

*!

!*

if (md->md_intr) {

I* so we' LI be using vectored interrupts * I

I* WRITE interrupt number TO THE DEVICE * I
xx->c_addr->intvec = md->md intr->v_vec;

I* Setup argument to be passed to xxattach * /
*(md->md_intr->v_vptr) = (int)xx;

else { / * WRITE auto-vector code TO THE DEVICE * I
xx->c addr->intvec = AUTOBASE + md->md_intpri;

I* any other attach code * I

* Handle interrupt - called from xxpo 11 and for vectored inte"upts.
*!
xxintr (xx)

struct xx_device *xx;

I* handle the interrupt here * I

!*
* Polling (auto-vectored) interrupt routine
*!
xxpoll ()
{

register struct xx device *xx;
int serviced= 0;

I* loop through the device descriptor array * I
for (xx= xxdevice; xx< &xxdevice[NXX]; xx++)

if (! xx->c_present I I
(xx->c_iobp->status & XX_INTR) == 0)
continue;

serviced= 1;
xxintr (xx) ;

return (serviced);

The kernel provides numerous service routines that device drivers can take
advantage of. The most important of these routines can be clustered into the
functional groups given here. These routines, as well as many others, are
described more completely in the Kernel Support Routines appendix to this
manual:

~~sun ~~ microsystems

Timeout Mechanisms

Sleep and Wakeup
Mechanism

Chapter 4 - Kernel Topics and Device Drivers 61

If a device needs to know about real-time intervals,

timeout(func, arg, interval)
int (*func) ();
caddr_t arg;
int interval;

is useful. timeout arranges that after interval clock-ticks, the June is called
with arg as argument, in the style (*func)(arg). Timeouts are used, for example,
to provide real-time delays after function characters like new-line and tab in
typewriter output, and to terminate an attempt to read a device if there is no
response within a specified number of seconds. Also, the specifiedjimc is called
at "software" intenupt priority from the lower half of the clock routine, so it
should conform to the requirements of intenupt routines in general -you can't,
for example, call sleep from within June, although you can call wakeup.
(See also untimeout).

Another key set of kernel routines is sleep and wakeup. The call

sleep(event, software_priority)
caddr_t address;
int priority;

makes the process wait (allowing other processes to run) until the event occurs; at
that time, the process is marked ready-to-run. When the process resumes execu
tion, it has the priority specified by software _priority.

The call

wakeup(event)
caddr_t address;

indicates that the event has happened, that is, causes processes sleeping on the
event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker - it must uniquely identify the device. By convention,
event is the address of some data area used by the driver (or by a specific minor
device if there's more than one).

Processes sleeping on an event should not assume that the event has really hap
pened when they are awakened, for wakeup wakes all processes which are
asleep waiting for the event to happen. Processes which are awakened should
check that the conditions that caused them to go to sleep are no longer true.

Software priorities can range from Oto 127; a higher numerical value indicates a
less-favored scheduling situation. A distinction is made between processes
sleeping at priority less than P z ERO and those at numerically larger priorities.
The former cannot be intenupted by signals. Thus it is a bad idea to sleep with
priority less than P ZERO on an event that might never occur. On the other hand,
calls to sleep with larger priority may never return if the process is terminated
by some signal in the meantime. In general, sleeps at less than P ZERO should
only be waiting for fast events like disk and tape 1/0 completion. Waiting for
human activities like typing characters should be done at priorities greater than
PZERO. Incidentally, it is a gross error to call sleep in a routine called at
intenupt time, since the process that is running is almost certainly not the process

~~sun ~~ microsystems

62

Raising and Lowering
Processor Priorities

Main Bus Resource
Management Routines

Data-Transfer Functions

that should go to sleep.

At certain places in a device driver it is necessary to raise the processor priority
so that a section of critical code cannot be interrupted, for example, while adding
or removing entries from a queue, or modifying a data structure common to both
halves of a driver.

The splx function changes the interrupt priority to a specified level, and then
returns the old value.

For configuration reasons, the pri tospl macro is necessary to convert a Main
Bus priority level to a processor priority level. The Main Bus priority level can
be found in either md->md_intpri or mc->mc_intpri, where it is put by
the autoconfiguration process.

Here's how you normally use the pritospl and splx functions in a
hypothetical strategy routine:

hypo_strategy(bp)
register struct buf *bp;

register struct mb ctlr *me
int s;

hypoinfo[minor(bp->b_dev)];

s = splx(pritospl(mc->mc_intpri));
while (bp->b_flags & B_BUSY)

sleep((caddr_t)bp, PRIBIO);

here is some critical code section

(void)splx(s); I* Set priority to what it was previously * I

Alternatively, spln can be used to set the processor to a certain fixed priority
level.

The routine mbsetup is called when the device driver wants to start up a OMA
transfer to the device, for OMA transfers require Main Bus resources. The
MBI _ ADDR macro can then be used to get the OVMA transfer address.

At some later time, when the transfer is complete, the device driver calls the
mbrelse routine to inform the Main Bus resource manager that the transfer is
complete and the resources are no longer required.

The kernel provides a number of routines designed to transfer data between the
user and kernel address spaces. These include copy in and copyout, general
routines designed to move blocks of bytes back and forth. They also include
uiomove, ureadc and uwritec, routines which are designed to transfer
data to or from a uio structure (see Some Notes About the U/0 Structure for
more details about this structure).

~~sun ~~ microsystems

Kernel printf Function

Macros to Manipulate Device
Numbers

Chapter 4 - Kernel Topics and Device Drivers 63

The kernel provides a print£ function analogous to the print£ function
supplied by the C library for user programs. The kernel print f, however, is
more limited. It writes directly to the console, and it doesn't support printf's
full set of formatting conversions. See the Debugging with print£ section of
this manual for more details on the use of the kernel print f.

A device number (in this system) is a 16-bit number (typedef short
dev _ t) divided into two parts called the major device number and the minor
device number. There are macros provided for the purpose of isolating the major
and minor numbers from the whole device number. The macro

major(dev)

returns the major portion of the device number dev, and the macro

minor (dev)

returns the minor portion of the device number. Finally, given a major and a
minor number x andy, the macro

dev_t makedev(x,y)

returns a device number constructed from its two arguments.

~~sun
~~ microsystems

5
Driver Development Topics

Driver Development Topics ... 67

5.1. Installing and Checking the Device .. 67

Setting the Memory Management Unit.. 67

Selecting a Virtual Address ... 68

Finding a Physical Address ... 70

Selecting a Virtual to Physical Mapping ... 70

Sun-2 Address Mapping ... 72

Sun-3 Address Mapping ... 75

A Few Example PfE Calculations .. 77

Getting the Device Working and in a Known State.................................. 78

A Warning about Monitor Usage .. 79

5.2. Installation Options for Memory-Mapped Devices 80

Memory-Mapped Device Drivers.. 80

Mapping Devices Without Device Drivers .. 81

Direct Opening of Memory Devices .. 85

5.3. Debugging Techniques ... 86
... -;.',.::::

Debugging with printf .. 87 ··t11~::,

Event-Triggered Printing .. 89

Asynchronous Tracing ... 90

kadb - A Kernel Debugger .. 91

5.4. Device Driver Error Handling .. 92

Error-Handling Mechanisms .. 92

Error Recovery .. 92

Error Returns .. 93

Error Signals .. 93

Error Logging .. 93

Kernel Panics ... 93

5.5. System Upgrades ... 94

5.1. Installing and
Checking the Device

Setting the Memory
Management Unit

5
Driver Development Topics

The central processor board (CPU) of the Sun Workstation has a set of PRO Ms
containing a program generally known as the "Monitor". (See the Using the Sun
CPU PROM Monitor appendix for detailed descriptions of the monitor com
mands and their syntax). The monitor has three basic purposes:

1) To bring the machine up from power on, or from a hard reset (monitor 'k2'
command).

2) To provide an interactive tool for examining and setting memory, device
registers, page tables and segment tables.

3) To boot UNIX, stand-alone programs, or the kernel debugger kadb.

If you simply power up your computer and attempt to use its monitor to examine
your device's registers, you will likely fail. This is because, while you may have
correctly installed your device (a process that includes specifying its virtual
memory mapping in the config file) those mappings are UNIX specific, and don't
become active until UNIX is booted. The PROM will, upon power up, map in a
set of essential system devices - like the keyboard - but your device is almost
certainly not among them.

When installing a new device, you '11 use the monitor primarily as a means of
examining and setting device registers. But before even beginning the develop
ment of your driver, it's a good idea to attach your device to the system bus and
use the monitor to manually probe and test it. This will give you a chance to
become familiar with the details of its operation, and to ensure that it works as
you expect it to.

Upon power-up, the PROM monitor:

o Maps the beginning of on-board memory, up to 6 Megabytes, to low virtual
addresses starting at virtual OxO.

o Sun-2 machines only. Maps the bus spaces into virtual address space, for the
purpose of supporting Multibus devices. Multibus IO space is mapped from
OxEBO O O O to O xEBFFFF on Sun-2 Multibus machines. On Sun-2
VMEbus machines, vmel6dl6 is mapped from OxEBOOOO to
OxEBFFFF so that Multibus cards attached by way of VMEbus adapter
cards can be accessed. These two address spaces, Multibus I/0 and
vmel6dl6, are not remapped by the UNIX kernel. This means that, for

67

68

Selecting a Virtual Address

example, that kernel virtual address OxEBEE4 0 can be used to talk to a
device at OxEE4 0 in Multibus IO space without setting up a mapping.
(This shortcut is only possible for the two 16-bit Sun-2 spaces).

Later, using the autoconfiguration process, UNIX makes a pass through the config
file (actually, through the ioconf file that was produced as output by con
fig when it processed the config file. For each device, UNIX selects an unused
virtual address (using an algorithm that doesn't presently concern us) and maps it
into the device's physical address as specified in the config file.

UNIX then calls the .x.xprobe routine for each device, passing it the chosen vir
tual address. In this way, .x.xprobe is kept from having any knowledge of the
physical address to which the device is mapped . .x.xprobe then determines
whether or not the device is present. If it isn't, the virtual address can be reused.

To test a device, ignore the UNIX mappings and use the monitor to manually set
the MMU to map your device registers to a known address in physical memory.
Then you can use the monitor to verify its proper operation. This verification
process will consist primarily of using the monitor's 'O' (open a byte), 'E'
(open a word) and 'L' (open a long word) commands to examine and modify
the device's registers.

The process of setting up the device for initial testing consists of three discrete
steps.

o The selection of an appropriate virtual address for the testing of the device.

o The determination of the physical address of the device, as well as the
address space that it occupies.

o The use of the monitor to map the system's virtual address to the device's
physical address. Detailed discussion of these three steps follow.

Since UNIX initializes the MMU in the course of its autoconfiguration process,
it's possible to test a device by actually installing it, and then booting and halt
ing UNIX. (You can halt UNIX by pressing the 'Ll' and 'A' keys simultaneously,
or, on a terminal console, by hitting the <BREAK> key). Having gotten to the
monitor by this route, the MMU will be initialized to its UNIX run-time state.
You can then use the monitor to test the device, or, if you wish, boot kadb. (A
hard reset-the monitor's 'k2' command-will set the toMMU to its pre- UNIX
power-up state). But while using the UNIX memory maps may occasionally be
useful, it's not what you want to do during the first stages of device integration.

First, it's necessary to understand that the MMU, when mapping a virtual address
to a physical address, is actually mapping to a page of physical memory and an
offset within that page. The low-order bits of a virtual address, those that specify
the offset, do not get mapped - an address that is X bytes from the beginning of
its virtual page will be X bytes from the beginning of whatever physical page it
gets mapped into.

The mapping mechanism is the essentially the same for Sun-2 and Sun-3 sys
tems, although the details of address size and page mapping differ. This can be
seen in the following two diagrams:

~~sun ~~ microsystems

24 bits
Input

Vil tual
Ade ress

28 bits

' Input

Vir tual
Ade ress

Chapter 5 - Driver Development Topics 69

Figure 5-1 Sun-2 Address Mapping

high
MMU

high 23 bits - - -

' 13 12 / Output I~

Phy ~ical
Ade ress

low
11

Figure 5-2 Sun-3 Address Mapping

'
high

MMU
high 32 bits

15 - 19 -/ Output
~

Phy ,ical
Ade ress

low
13

The easiest way to select a virtual address for testing is to use OxEO O O O O
(Sun-2) or OxEOOOOO O (Sun-3). These addresses are unused by the monitor in
both the Sun-2 and the Sun-3, and are thus always available for testing. Further
more, if you use them, or another address in the same Megabyte of memory, then
it won't be necessary to set the segment register. Since doing so is a fairly
involved process, and since there's no need to go through it, we will skip it and

~~sun ~~ microsystems

70

Finding a Physical Address

Selecting a Virtual to Physical
Mapping

assume that you use these addresses. (These addresses, while convenient for test
ing, are not those that the kernel will chose when your device is finally installed).

In selecting O xE O O O O O (or O xE O O O O O O) as your virtual address, you 're only
selecting a virtual page, that is, a page of virtual memory that contains a page of
physical memory. The low-order bits in the address you chose will remain
unchanged. With ' X' representing the unmapped low-order bits, then the test
address OxEOOOOO (Sun-2) or OxEOOOOOO (Sun-3), is really (in binary):

Sun-2: 1110 0000 0000 XXX XXXX XXXX (23 bits)
Sun-3: 1110 0000 0000 OOOX XXXX XXXX XXXX (28 bits)

Your board may be preconfigured to some address. If it is, then use that address
unless it conflicts with the address of an already installed device. If it does,
you'll have to find an unused physical address at which you can install your dev
ice. To do so, examine the kernel config file for the system upon which you are
working. Tables earlier in this chapter show memory layouts corresponding to
typical configurations, but if your system has departed at all from the norm,
you'll have to consult your kernel's config file (to determine where devices have
been installed) and the header files for the corresponding device drivers (to deter
mine how much space they consume on the bus).

When selecting a virtual to physical mapping, it's best if you understand a bit
about the internals of the Memory Management Unit. To this point we've only
stressed that the MMU maps the top bits of the virtual address, leaving the offset
bits unchanged. Now it will be necessary to explain the mapping process in more
detail.

Some new concepts are necessary to discuss the details of virtual to physical
memory mapping.

o The context register (of real significance only on the Sun-2) is a three-bit
register specifying which of eight memory contexts should be used when
mapping virtual addresses to physical addresses. Each UNIX process seg
ment (containing either code, data or stack) is kept within a single memory
context.

o Sun-3s have user and kernel address spaces in the same hardware con
text. That is to say, there is only one virtual address space, a portion of
which is used by the kernel and the rest by user processes.

o Sun-2s, on the other hand, segregate kernel and user processes into
separate hardware contexts with separate address maps. Kernel
processes are run in the supervisor context (context 0) and only
processes in context O have access to the I/0 devices.

o The segment map is used in conjunction with the context register to select
the page map entry group (PMEG) corresponding to the virtual address
being mapped. The eight bits in the segment register specify one of a group
of 256 PMEGs.

~~sun ~~ microsystems

Chapter 5 - Driver Development Topics 71

o Within each page map entry group there are 16 page table entries.

o The page map maps the PMEG returned from the segment mapping with a
second subfield of the incoming virtual address to exactly specify a single
page table entry describing the physical page within which the virtual
address is mapped.

o The page table entry (PTE) is the content of the page map location selected
by the previous mappings. It is the number that, when plugged into the
MMU's internal RAM, causes the MMU to select a given physical page. A
PTE specifies the physical address of a page, as well as its type (e.g., on
board memory space), protection, and the state of its access and modified
flags.

Note (for Sun-2 machines only): when testing your device, it's necessary to
ensure both that you are in supervisor state and that you are in context zero (the
kernel context). The monitor normally initializes to supervisor state, but if you
enter it by way of an abort from UNIX, you' 11 remain in whatever context you
were in at the time of the abort. To be on the safe side, begin all of your monitor
sessions with the command 'S5'. This will put you into supervisor data state and
context zero.just where you want to be. Note one important exception to this
rule: if you've rmnap' ed the device into your (user) program's address space
and want to check that this worked, you must use the 'SJ' command instead of
the 'S5' command. This will put you into context zero in user data state.

72

Sun-2 Address Mapping Note the following diagram of the Sun-2 MMU:

Figure 5-3 Sun-2MMU

supervisor _ Context
- Register user

24 bits 9
Input '\ '\

Vi~ual
Ad ress

..............
:

: :

: :

: :
:

3 : :
:;. : type

: : -: protection _

accessed
Segment 8

: PMEG modified
Map :

~ 12 23 bits - I -
Page /' Output

: Map
:

Phtcal : Ad ress

:
4

11

Note that:

o The lower 11 bits of the incoming virtual address are passed through the
MMU without being mapped - these are the bits that specify the position
within the page, regardless of whether that page is physical or virtual.

o Multiple segment maps can specify the same PMEG, and often do.

-

o The PTE, on the output side of the MMU, specifies a variety of kinds of
status information for the specified page, as well as the top bits of its physi
cal address.

The process of mapping a virtual to a physical address consists, in practice, of
plugging the right number into the right PTE. The monitor provides a simple
means of addressing the right PTE, but you will have to calculate the right value
to plug into it.

~~sun
~~ microsystems

Table 5-1

Chapter 5 - Driver Development Topics 73

On Sun-2 systems, hardware PTEs are 32-bit numbers with the following struc
ture (the UNIX PTE used by software is different on the Sun-2):

V r W X r W X Type a m Unused (8) Physical Page# (12)

I I I I I I

Most of the PTEs that we'll deal with will have similar structures, and so we can
begin by making a "template" bit mask that we can use to construct our standard
PTEs. One acceptable mask will assume values as follows:

V (valid) = 1
rwxrwx = 111111
(a/m) accessed/modified 00
unused= 00000000

Thus, we can see that our template will be:

1 1 1 1 1 1 1 Type 1 1 0 0 0 0 0 0 0 0

I I I I I I I I I I I I I

Physical Page # (12)

This gives us a mask of O xFEO O O O O O (if we assume that the type field is
0000). Now, as already mentioned, there are four types of memory, represented
in the PTE by values of 0, 1, 2 and 3 in the type field indicated above. (Types 0
and 1 have the same meaning in both Multibus and VMEbus machines, but types
2 and 3 do not. Type 2 is used, on Sun-2 VMEbus machines, to designate the
first 8 Megabytes of the 24-bit VMEbus space- OxO to Ox7FFFFF - and
type 3 is used to designate the second 8 Megabytes - O x8 0 O O O O to
O xFFFFFF. (But remember that the top 64K of the 24-bit space is stolen for the
16-bits space). This use of two memory types to designate physical memory is
necessary because the Sun-2 physical address size, 23 bits, is not sufficient to
address all 16 Megabytes of vme24d16.

Sun-2 PTE Masks

Type Description Mask

0 On Board Memory OxFEOOOOOO
1 On Board 1/0 Space OxFE400000
2 (Multibus) Memory Space OxFE800000
3 (Multibus) 1/0 Space OxFECOOOOO
2 (VMEbus) VMEbus Low OxFE800000
3 (VMEbus) VMEbus High OxFECOOOOO

To determine the value which we need to plug into the PTE, we must add the
appropriate mask to the appropriate physical page number, thus giving us the full
32-bit number that we need. Here, we will cease to explain details and simply
give a series of rules for calculating physical page numbers.

~\sun ~~ microsystems

74

If Sun-2 Multibus:

If Multibus I/0 Space, use Type-3 Template
If Multibus Memory Space, use Type-2 Template

Physical Page Number= Physical Address>> 11

If Sun-2 vme24dl6:

If Physical Address>= Ox800000
Use Type-3 Template
Physical Page Number=

(Physical Address - Ox800000) >> 11

If Physical Address< Ox800000
Use Type-2 Template
Physical Page Number= Physical Address>> 11

If Sun-2 vmel6dl6

Use Type-3 Template
Physical Page Number

(Physical Address+ Ox7FOOOO) >> 11

Chapter 5 - Driver Development Topics 7 5

Sun-3 Address Mapping Consider the following diagram of address mapping on the Sun-3.

supervisor
-user

28 bits
Input

v*ru Ad ress

Figure 5-4 Sun-3 MMU

Context
Register

11

\

..............
:

: :
:
: :

:

3 : :
- type

: : -
protection -

accessed/modified
Segment 8 ::

Map
· PMEG don't cache

::

~ 11112119 24125132_
:: ' -

Page bits / bits

: Map
Phyiicru

: Ad ress

:
4

13

As you can see, the general scheme is the same as it was in the Sun-2, but the
details have changed:

-

o The MMU is getting a 28-bit virtual address as its input, as opposed to a 24-
bit address in the Sun-2.

o The number of mode and permission bits in the PTE has been reduced.

o The number of high-order bi ts reported out of the MMU, and thus the size of
the physical address, is variable. The address size is fixed for any given
Sun-3 machine, and varies only with the model - there are different kinds
of Sun-3 machines and they have different physical address sizes.

On Sun-3 systems, PTEs are 32-bit numbers with the following structure.

76

V w s C Type a m Unused (5) Physical Page Number (19)

I I I

as we did with Sun-2 PTEs, we will make a "template" bit mask that we can use
to construct our standard PTEs. One acceptable mask assumes values as follows:

V (valid) = 1
w/s (write ck/supervisor only) = 11
c (cache/don't cache) = 1
unused= 00000

Thus, we can see that our template will be:

Physical Page Number (19)

This gives us a mask of OxFOOOOOOO (if we assume that the type field is 00).
Thus, the four masks for the four types of memory are:

Table 5-2 Sun-3 PTE Masks

Type Description Mask

0 On Board Memory OxFOOOOOOO
1 On Board 1/0 Space OxF4000000
2 vme16d16 OxF8000000
2 vme24d16 OxF8000000
2 vme32d16 OxF8000000
3 vmel6d32 OxFCOOOOOO
3 vme24d32 OxFCOOOOOO
3 vme32d32 OxFCOOOOOO

To determine the value to be plugged into the PTE, we must add the appropriate
mask to the appropriate physical page number, thus giving us the full 32-bit
number that we need. Here, again, we'll give rules instead of details.

If vme16d16
or vme24dl6
or vme32d16

Use Type-2 Template

If vmel6d32
or vme24d32
or vme32d32

~~sun
~~ microsystems

A Few Example PTE
Calculations

Chapter 5 - Driver Development Topics 77

Use Type-3 Template

If vme32d16
or vme32d32

Physical Page Number Physical Address>> 13

If vme24d16
or vme24d32

Physical Page Number=
(Physical Address +OxFFOOOOOO) >> 13

If vme16d16
or vme16d32

Physical Page Number=
(Physical Address +OxFFFFOOOO) >> 13

Example One: You wish to map a device which you have attached at physical
Ox280008 onto bus type vme24dl6 on a Sun-3. You will map it at virtual
OxEOOOOOO. What is the corresponding PTE?

Well, since we are mapping the device into vme24dl6, we will use
0 xF 8 0 0 0 0 0 0 as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to OxFFOOOOOO. This yields
OxFF280008. In binary, this is:

1111 1111 0010 1000 0000 0000 0000 1000

Shifting this right by 13 yields:

XXXX XXXX XXXX Xlll 1111 1001 0100 0000

Adding the template, 0 xF 8 0 0 0 0 0 0, we get values for the 13 bits that are
undefined from the shift. Thus the PTE is:

1111 0100 0000 0111 1111 1001 0100 0000

Which is OxF407F940.

A final note: we've now calculated the PTE that maps the virtual page beginning
at OxEOOOOOO to the physical page containing Ox280008. To get the virtual
address by which to access the device it's necessary to take the lower 13 bits of
the physical installation address - the bits that are just passed through the MMD
- and add them to virtual O xE O O O O O O. The lower 13 bits of physical
Ox280008 are 0008, and adding them to OxEOOOOOO yields OxE000008,
the virtual address by which the device can be accessed.

Example Two: You wish to map physical OxEE48 on bus type vmel6d32 on
a Sun-3. Using virtual address OxEO O O O O 0, what is the PTE?

~~sun ~~ microsystems

78

Getting the Device Working
and in a Known State

Since we are mapping the device into vme16d32, we will use
OxFCOOOOOO as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to O xFFFFO O O O. This yields
OxFFFFEE48. In binary, this is:

1111 1111 1111 1111 1110 1110 0100 1000

Shifting this right by 13 yields:

XXXX XXXX XXXX Xlll 1111 1111 1111 1111

Adding the template, 0 xFC O O O O O O, we get values for the 13 bits that are
undefined from the shift. Thus the PTE is:

1111 1100 0000 0111 1111 1111 1111 1111

Which is OxFC07FFFF. To get the virtual address by which to access the dev
ice at physical OxEE48, add its lower 13 bits, OxE4 8, to OxEOOOO 00 -this
yields OxEOOOE48.

Before you even think about writing any code you should check out your device.
You must get to know it, finding out early if it has any peculiarities that'll affect
its driver. It may, for example, have addressing and data-bandwidth limitations.
Or, if it's a bus master, it may not implement the release on request bus
arbitration scheme the Sun supports. Know the peculiarities of your device early,
and then test it to verify that it's working before proceeding further with driver
development.

Make sure that the board is set up as specified in the vendor's manual. Device
characteristics which, in general, have to be set properly before the device can
successfully be used include:

a 1/0 register addresses for 1/0 mapped Multibus boards,

a Memory base addresses for Multibus boards that use Multibus memory
space,

a Address and data widths,

a Interrupt levels,

a Interrupt vector numbers for VMEbus device.

Then, take down your system and power it off. Plug the device into the card
cage and attempt to bring the system back up. If you can't boot the system, then
there's a problem. Perhaps the board isn't really working, or perhaps it's
responding to addresses used by other system devices. You must resolve this
problem before proceeding further.

Take down UNIX again and attempt to contact the device using the PROM moni
tor. To do so, you'll need to set up a PTE mapping to device physical installa
tion address. Use the procedures given above to calculate a PTE, then:

a Select the function code that will put you into supervisor data state. To do
so, give the monitor's 's5' command:

~~sun
~~ microsystems

A Warning about Monitor
Usage

Chapter 5 - Driver Development Topics 79

>sS

o Calculate, using the procedures given above, the PTE appropriate to the phy
sical address you've chosen.

o Set the position in the kernel page map that corresponds to your physical
address to contain the calculated PTE. This will map your chosen physical
address, thus putting you in contact with your device. You may then use the
monitor's 'P' command to perform this mapping. The 'P' command takes a
virtual address as its argument, displays the PTE that corresponds to that vir
tual address, and gives you the option of modifying the PTE. For example:

>pF32000

selects the page map entry that corresponds to the virtual address of
OxF 32 0 0 0 and displays it. It also displays a'?', which indicates that you
may type in a new value to replace the one displayed. (See the Using the
Sun CPU PROM Monitor appendix for more details). Note that all virtual
addresses within a page select the same PTE.

Having contacted the device from the monitor, try some of the following:

o Try reading from the device status register(s), if there are any.

o Try writing to the device control and data registers(s), if there are any. Then
try reading the data back to see if it got written properly (this assumes, of
course, that the device allows the reading of these register(s).

o Try actually getting the device to do something by sending it data.

o If the device is a controller with separate slave devices, then switch a slave
on and off and watch for changes in the controller status bits.

Your goal is to try to actually operate the device, for a moment, from the moni
tor. For example, if you have a line printer, try to print a line with a few charac
ters. Be aware that bit and byte ordering issues are critical in this process. The
reason you're doing this is to ensure that the device works and that you under
stand the way it works. When you understand the device's peculiarities, you can
proceed to write a driver for it.

When you use the monitor's 'o', 'e' or '1' commands to open a location, the mon
itor reads the present contents of that location and displays them before giving
you the option to rewrite them. In the best of all possible worlds, this would
present no problems, but many devices don't respond to reads and writes in as
straightforward a fashion as does normal memory.

For example, the Intel 8251 A and the Signe tics 2651 ues the same externally
addressable register to access two separate internal mode registers, and they have
internal state logic that alternates accesses to the external register between the
two internal registers. So suppose that you want to put something in mode regis
ter 1 of the 8251. You open the external register, the monitor displays its con
tents, and you then do your write. If, being cautious, you then read the external
register to check that the data you wrote is there, you'll find that it's not-

~~ SU Il ~~ microsystems

80

5.2. Installation Options
for Memory-Mapped
Devices

Memory-Mapped Device
Drivers

because the read will sequence you on to the second register.

To deal correctly with such devices, it's necessary to use the monitor's "write
without looking" facility and then read the locations back later to check them.
You can write without looking with any of the monitor commands that "open" an
area of memory; all that's necessary is that you enter a value after the
address argument. For example:

>l [address] [value]

This will cause value to be written into address without first reading its
current contents. For more information on hardware peculiarities and the prob
lems that they can cause for the monitor, the Hardware Peculiarities to Watch
Out For section of the Hardware Context chapter.

Memory-mapped devices are the simplest types of devices to write drivers for.
Frequently, however, their essential simplicity isn't obvious from a quick glance
at their source code. This is because many memory-mapped devices are frame
buffers, and frame-buffer drivers must set up and manage the low-level interface
for the Sun window system as well as the standard device interface. Conse
quently, they tend to be littered with declarations and manipulations related to
the "pixrect" (pixel rectangle) system.

Memory-mapped device are most frequently installed into Sun systems with sim
ple drivers that map them into user address space (there are sometimes alterna
tives to such drivers, as you'll see below). Such memory-mapped drivers don't
really do much. Obviously, xxprobe and mmap must be real, for the kernel
must be able to check the device installation and perform the actual device map
ping. And, in addition, .xxintr must be real if the device is interrupt driven.
Butxxopen and.xxclose are usually stubs, and .xxread and xxwrite can be
calls to nulldev.

Keep in mind that the major purpose of a memory-mapped driver is to support
the mmap system call. This is very important because user processes which call
window code must first map the frame buffer into their address space. They do
so with the mmap system call, which is translated by the kernel into a series of
calls to the driver's mmap routine. Each of these calls returns page table entry
information which the kernel needs to map a single page (the next page) of
frame-buffer memory into a virtual address space. Here's the xxmmap code/or
the very simple case of the Sun-I Color Graphics Board.

~~sun ~~ mlcrosystems

Mapping Devices Without
Device Drivers

Chapter 5 - Driver Development Topics 81

I *ARGSUSED* I
cgonemmap(dev,off,prot)

dev_t dev;
off_t off;
int prot;

return (fbmmap(dev,off,prot,NCGONE,cgoneinfo,CG1SIZE));

l*ARGSUSED*I
int fbmmap(dev,off,prot,numdevs,mb_devs,size)

dev t dev;
off_t off;
int prot;
int numdevs;
struct mb device **mb_devs;
int size;

struct mb device *mb dev
register int page;

*(mb_devs+minor(dev));

if (off>= size) return (-1);
page= getkpgmap(mb_dev->md_addr + off) & PG_PFNUM;
return (page);

dev is, of course, the device major and minor number, and off is the offset into
the frame buffer (passed down from the user's mmap system call). prot is also
passed down from the user's call, but it is not currently used. As you can see,
there's bit of shuffling around and then a call to getkpgmap. The PTE
returned by getkpgmap is masked with PG _PFNUM to get rid of extraneous
bits and just leave the Page Frame Number and type fields, which is what
xxmmap is expected to return.

The utility routine gets the address of the frame buffer from the Main Bus device
structure. This is the device installation address as given in the kernel config file.
Next the offset is checked to be sure the user isn't mapping beyond the end of the
frame buffer. Then comes a call to getkpgmap to get a PTE, which is passed
up the stack by fbmmap and cgonemmap.

Under a restricted set of circumstances, it's possible to avoid writing a device
driver altogether by using the mmap system call to overlay the device's registers
and memory onto user memory. Having done this, you can read and write the
registers - as if they were normal user memory - from a user program.

What this really amounts to is piggybacking the new device onto an another, sys
tem standard, virtual memory device (and its driver). The mmap routine of a
system virtual memory device is then used to do the user-device mapping, and
the "installation" is accomplished without the development of a driver specific to
the user device. Instead, a user level program is written, one that calls the mmap
system call.

~~sun ~~ microsystems

82

Table 5-3

The restrictions on this shortcut are, however, fairly severe.

a The device must not require any special handling of the type that would go
into xxioctl.

a The device (including all control registers) must work with user function
codes, since that's what it'll get when mapped into and then accessed from
user space.

a The device must not require any other sort of special handling - it cannot,
for example, be multiplexed, interrupt driven, or do DMA.

a Finally, there are security problems associated with this sort of installation.
Since the system virtual-memory devices are normally owned by and res
tricted to the superuser, your programs will either have to change their per
missions to allow normal users to access them, or will have to run with
superuser privileges. This latter strategy is usually not acceptable in the
long run, because it creates a gaping hole in the security of the system. And
it's far from clear that the first alternative is desirable either.

The virtual-memory devices of interest here are those that support mapping over
the entire range of a virtual address space. They are:

Virtual Memory Devices

Machine Type

Multibus
Multibus
VMEbus
VMEbus
VMEbus (Sun-3 only)
VMEbus (Sun-3 only)
VMEbus (Sun-3 only)
VMEbus (Sun-3 only)

Memory Device Name

mbmem
mbio
vme16dl6
vme24d16
vme32d16
vme16d32
vme24d32
vme32d32

In addition, / dev / fb, a system memory device which, on any given system, is
set up as the local frame-buffer device, can be used as if it were a system
memory devices. On any given system, / dev / fb can be mmap'ed into user
memory and then written, with the effect of writing the local frame buffer
memory.

To use mmap with one of the system memory devices, you must do three things:

a Open the appropriate device.

a Call valloc to get enough page aligned virtual space to store the device's
registers.

a Call mmap to map that virtual space to the physical bus address of your
device, which you must know. (See the Hardware Context chapter for a dis
cussion on how to pick a good physical address from the information in the
system config file).

Chapter 5 - Driver Development Topics 83

The following program uses / dev / fb rather than one of the virtual memory
devices. This makes a good example because it maps the system frame buffer
into user memory so that it can then be written from a user program. It uses the
mmap system call to set things up, but doesn't bother with calling munmap,
because unmapping occurs automatically when the memory device is closed.
This close occurs implicitly when the program ceases execution. (Special care
should, however, be taken when mapping more that 128K of memory - see the
discussion of mmap in the Summary of Device Driver Routines appendix).

Once the device has been mapped into user space it can be treated as a piece of
local user memory. (Remember that memory accesses performed by way of this
mechanism will be reflected - at the device level - as non-privileged (user)
accesses. This is because mmap accesses inherit the privilege of the process that
calls mmap. Thus, if mmap is called from a driver, subsequent memory
accesses will have the standard supervisor data access privilege, but if it's called
from a user process, as described here, subsequent accesses will be non
privileged. Attempts to access supervisor-only device registers without supervi
sor privilege might produce a bus error).

tinclude <stdio.h>
finclude <sys/file.h>
finclude <sys/mman.h>
tinclude <sys/types.h>

I* Width and Height of Frame Buffer in Bytes * I
fdefine WIDTH 1152
fdefine HEIGHT 900

main()
{

int fd, prot, share, offset, pagesize;
unsigned len;
char *addr, *valloc();

I* Open the frame-buffer device * I
if ((fd = open ("/dev/fb", O_RDWR)) < 0)

syserr ("open");

I* Get page size (addresses must be multiples of the page size) * I
pagesize = getpagesize();

I* Compute total number of bytes * I
len = ((WIDTH* HEIGHT)/8);

I* Adjust len to multiple of page size * I
len = pagesize + len - (len % pagesize);

I* Allocate len bytes of page-aligned memory * I
if ((addr = valloc(len)) == 0)

syserr("valloc failed");

prot = PROT_READIPROT_WRITE;

84

share= MAP_SHARED;
offset= O;

I* Map device memory to user space * I
if (mmap(addr, len, prot, share, fd, offset) != 0)

syserr("mmap failed");

writeFB ()

void writeFB() /* Writetoframebuffer *I

char color, *cptr;
int i,j;

color= OxFF;
cptr = addr;
for (i = 0; i < HEIGHT; i++)

color= -color;
for (j = 0; j < WIDTH/8; j++)

*cptr++ = color;

void syserr (msg) / * print system call error message and terminate * I
char *msg;

extern int errno, sys_nerr;
extern char *sys_errlist[];

fprintf(stderr,"ERROR: %s (%d", msg, errno);
if (errno > 0 && errno < sys_nerr)

fprintf(stderr, "; %s)O, sys_errlist[errno));
else

fprintf(stderr,")0);
exit(l);

The memory into which the device has been mapped is allocated with valloc
-this is because valloc guarantees that the memory it returns is aligned on a
page boundary, as mmap requires. len and offset must also be page
aligned, and len must be adjusted to the byte count of the lowest number of
pages that will completely contain the area being mapped.

This program can easily be rewritten to use a system virtual memory device
rather than / dev / fb. Since the standard Sun-2 frame buffer is installed in on
board memory, the appropriate memory device is / dev / obmem. (/ dev / mem
could be used for frame buffers installed in main memory). / dev / obmem isn't
included in the above table since no user devices can ever appear in it. Neverthe
less, it's use involves almost no changes to the code: / dev / obmem is opened
instead of /dev/fb, and offset is initialized to (long) BW2MB_FB (fora
Multibus machine). This offset it defined in <sundev /bw2reg. h>.

Direct Opening of Memory
Devices

Chapter 5 - Driver Development Topics 85

So, despite the plethora of limitations on the sorts of devices that can be installed
by way of mapping them into user space, it's quite an easy thing to do. If your
device characteristics are such that this is an option, you may well wish to take it.
And even if such an installation isn't an attractive long-term option (for example,
because of unacceptable security problems) it may still be attractive as a short
term alternative to driver development. Even in environments where security
considerations make it unacceptable in the long term, it can allow you to get your
device up and running very quickly. Sometimes this counts for a lot.

It should be noted, for the purpose of completeness, that there's another approach
to avoiding driver development, one that's even easier than the use of mmap
described here. That is, it's possible to simply open the virtual memory device
that contains your board, to seek to the location of its registers, and then to read
and write those registers as if they were regular memory.

This approach has most of the same problems as does the use of mmap, though
it will at least insure that the device receives supervisor function codes. It does,
however, introduce a few new problems. It doesn't give you the same degree of
control as does mmap, and you often need that control when dealing with dev
ices. When you use mmap, the device actually becomes part of your user
memory space, and it's left to the compiler to generate exactly the 1/0 accesses
which you implicitly specify in your structure and variable declarations. You
can always access exactly what you want, and the accesses occur directly as
move byte and move word operations. They are thus very fast.

When, however, you simply open a system memory device as a file and then read
and write to it, your communication with your board is mediated by the 1/0 sys
tem. The 1/0 system will always try and do the "right thing" (if you request 1/0
at an odd address or for an odd number of bytes it will perform byte accesses as
appropriate; otherwise it will use short integers), but nevertheless it doesn't give
you the kind of control that can be had using mmap. Furthermore, 1/0 opera
tions involve lots of code, and take hundreds of times as long as mmap, which
uses the MMU to treat device registers and memory as physical memory directly
accessible by low-level store and move instructions.

So the bottom line is that, if you just need to access the device a few times, or if
performance isn't critical, you can do your installation by opening a system
memory device and then seeking to your device registers and memory space.
Otherwise, use mmap or write a driver. If you do decide to use the
open/lseek method, do so directly rather than with the standard 1/0 library.
The standard 1/0 library implements a buffered 1/0 scheme which will add con
siderably to your problems.

The following user program writes the same pattern on system frame-buffer
memory as does the mmap-based routine given above, but it does so by directly
opening the system memory device within which the frame buffer is installed.
The syserr routine is the same as in the above example, but writeFB now
uses the 1/0 system; it's thus much slower than the version above.

#include <stdio.h>
iinclude <sys/types.h>

~~sun ~iW microsystems

86

5.3. Debugging Techniques

#include <sys/param.h>
#include <sys/buf.h>
#include <sundev/mbvar.h>
#include <sundev/bw2reg.h>
#include <sys/file.h>

void syserr();
long lseek();

#define WIDTH 1152
#define HEIGHT 900

main()
{

int fd;

I* Open the system memory device containing the frame buffer * I
if ((fd = open("/dev/obmem",O_RDWR)) < 0)

syserr ("open");

I * Seek to the frame buff er memory * I
if (lseek(fd, (long)BW2MB_FB, L_SET) -lL)

syserr ("lseek");

writeFB (fd);

void writeFB(fd) /* Writetoframebuffer *I
int fd;

char color;
int i,j;

color= OxFF;
for (i = 0; i < HEIGHT; i++)

color= -color;
for (j = 0; j < WIDTH/8; j++) {

if (write(fd, &color, 1) == -1)
syserr ("write");

As described above, it's a good idea to begin debugging by using the monitor to
check that the device has been installed at the intended address, and that it works,
before proceeding to debug your device driver. This allows you to avoid debug
ging the device simultaneously with the driver, an experience that you'd like to
avoid for as long as possible. Alternatively, if you're confident in both your dev
ice and the correctness of your installation, you can simply make a new kernel,
boot it and proceed with debugging. In this case you should put some printf

~~sun ~~ microsystems

Debugging with printf

Chapter 5 - Driver Development Topics 87

messages - see below - into the x.xprobe routine. Then you can at least see
the device get contacted and initialized.

Debugging drivers is significantly more difficult than debugging regular user pro
grams, for a number of reasons:

o In the first place, device drivers are part of the system kernel. This means
that the system is not protected from their errors. Addressing errors, for
example, will frequently produce hardware traps and a system crash.

o As mentioned above, there's the possibility that the device hardware will be
buggy. For this reason, you can't really trust your environment in the same
way as you can when writing a user program on a mature computer system.

o Some devices behave in rather peculiar ways. (See A Warning about Moni
tor Usage above).

o Finally, the debugging environment in the kernel is thinner than it is in user
space. Beginning with Sun Release 3.2, there is a kernel debugger, kadb,
and this is certainly a big step towards making life easier for driver develop
ers. Still, life remains more difficult when debugging in kernel space. It's
possible to prototype drivers in user address space by using techniques simi
lar to those described in the Mapping Devices Without Device Drivers sec
tion of this chapter. The same constraints given there apply to prototyping.
In particular, it's not possible to run an interrupt routine, or to xxprobe for
non-existent devices without generating bus errors from prototype drivers in
user space. If the device generates no interrupts, and if it doesn't do DMA,
the entire driver might be able to be run in user space.

For all of these reasons, you should give extra care to desk-checking your code,
and check a reference manual when not absolutely sure of the meaning of a given
construction. Don't take chances.

Also, make changes incrementally. Don't try to save time be making many
changes at once. You will save time in the long run if you take the time to add
and test a few parts at a time. Keep your feet on solid ground.

Use trace output from printf, as described below. Drivers can act in surpris
ing ways, and the best way to proceed is by making the flow of operations highly
visible.

With the introduction, in Sun release 3.2, of the kernel debugger kadb, the
importance of pr intf in the debugging of device drivers has been significantly
reduced. Still, even with kabd available, printf statements remain useful as
means of providing synchronous tracing of overall driver flow and structure.
kadb can be made to provide a similar sort of tracing (by tying print commands
to strategically chosen breakpoints) but this probably won't altogether eliminate
the printf statement. The printf has long found application in driver
debugging, and, as a matter of taste and experience, some programmers will con
tinue to use it. For this reason, we'll discuss its use in some detail.

The kernel printf sends its message directly to the system console, without
going through the tty driver. As a consequence, the printing is uninterruptible -

88

the characters aren't buffered. Furthermore, printf runs at high priority, and
no other kernel or user process activity takes place while its output is being pro
duced. printf thus radically limits overall system performance (though this
is usually ok while device drivers are being debugged).

There is a second kernel print statement, uprintf. uprintf, however, is
of little use to driver developers. It attempts to print to the current user tty as
identified in the user structure, and prints to the console only if there's no
current user tty (at which point it becomes identical to printf). uprintf
cannot be called from lower-half routines, which run in interrupt context and can
not make any assumptions about the user structure (where uprintf looks to
determine the current user tty). upr intf is most useful for production drivers,
like tape drivers that encounter media errors, which want to report errors not to a
programmer but to the user.

There are occasions in which the use of printf (or uprintf) statements
will change the behavior of your driver. printf statements,for example, can
affect the timing of operations in the driver being tested as well as in other
drivers. The output may be so slow relative to other device operations that inter
rupts are lost and system failures are introduced; thus, it is frequently impossible
to synchronously trace a device interrupt routine. Driver code may begin to fail
only when printfs are introduced, or, even worse, only when printfs are
disabled. If you're debugging a tty driver, you may even face a situation where
printf-based tracing generates new calls to the driver being debugged. Thus,
there are situations in which it cannot be used. In such situations, you should
use kadb or the techniques suggested below in the section on Asynchronous
Tracing.

The best way to use print f statements for tracing driver execution is by set
ting things up so that you can toggle printing by using the kernel debugger,
kadb (see below) to set and reset print-control variables. Doing so is very sim
ple. At the top of the driver source file, include statements like:

Hfdef XXDEBUG
int xxdebug = 0;
fdefine XXDPRINT if (xxdebug > 0) printf
fendif

(It's important that the variables like xxdebug be global, so that you can later
access them freely from the debugger- remember that all drivers are part of one
program, the kernel, and name your print-control variables so as to avoid naming
conflicts).

Then, instead of calling print£ inside the driver routines, call XXDPRINT.
Each call should be in the form:

Hfdef XXDEBUG
XXDPRINT ("driver name ... ", ...) ;
tendif

which will only call printf if XXDEBUG is defined and xxdebug is set to a
value greater than 0.

Event-Triggered Printing

Chapter 5 - Driver Development Topics 89

Make sure that each call to XXDPRINT identifies the driver, for it's possible that
you, or some other programmer, will want to see debugging output from several
drivers at once. And leave the debugging code in for a while after you're done
- bugs may surface later.

Having set things up like this, you can tum the pr int f's on or off at any time
by using kadb to set unset or change the print-control variable xxdebug. Or
you can use adb if you wish, running it at user level in a separate window:

adb -w /vrnunix /dev/kmem

Where /vmunix is an unstripped version of the kernel. {adb won't allow you
to set breakpoints in the kernel, but it will allow you to set and unset variables -
you can change the value of xx debug, or even reset a variable which has
caused your driver to hang). Remember that you' re in the kernel and BE CARE
FUL.

Incidently, / dev / kmem represents the kernel virtual address space, which is
why it's used here. adb - k / vmunix / dev /mem, in contrast, generates a
view of the physical address space, because / dev /mem represents the physical
memory. This latter command is useful for examining core files.

Good places to put print f statements include:

o driver routine entry points

o before critical subroutine calls

o upon reading status information from the device

o before writing of commands or data to the device

o at intermediate points in complex routines

o at routine exit points

Note again that you don't have to restrict yourself to a single xxdebug vari
able, or to binary tests that check to see if a variable is on or off. You can use as
many variables, and as many values for each variable, as necessary to reflect the
functional divisions most appropriate to your driver. It might even be useful to
get truly esoteric, and send certain trace statements directly to the user tty (by
calling upr intf) while the rest use printf and go to the console.

In the above discussion, the xxdebug variable was initialized by the compiler,
and toggled with a debugger. However, it's just as easy to have the driver rou
tines themselves set a trigger variable under pre-chosen conditions.

For example, if you wanted to enable tracing after a given condition had
occurred, you could declare xxdebug, just as was shown above, but define
XXDPRINT somewhat differently:

90

Asynchronous Tracing

#ifdef XXDEBUG
int xxdebug = 0;
#define XXDPRINT(v,msg,al,a2) \

if (xxdebug > (v)) printf(msg,al,a2);
#endif

and then, in the code that checks for the condition:

#ifdef XXDEBUG
if (condition) xxdebug = 1;
#endif

Then to call XXDPRINT:

#ifdef XXDEBUG
XXDPRINT(O,"driver name ... \n",a,b);
#endif

One major disadvantage of using the kernel print f is that its output doesn't
go through a device driver, and thus can't be paused with Control-S or redirected
to a file. It's possible, then, that printf will overwhelm you with output.
There are a number of things that you can do if you run into this problem:

o If you haven't used multivalued print-control variables, then do so. This
gives you more control than you have with simple on/off print control, and
will allow you to reduce the amount to trace noise.

o You can use a debugger to set the global variable noprintf. This will
keep print f's output from being sent to the console, but that output will
still go to a buffer where kernel error messages are kept before being
transferred to /usr / adm/messages. You can examine the message
buffer at your leisure, in one of two different ways:

o From a user window, you can use dmesg.

o From kadb(or adbon /dev/kmem)youcantype msgbuf+8/s.

o It's also possible to reconfigure your system so that it uses a hardcopy termi
nal as its console over a RS-232 line. Then, you won't lose any of the
printf output.

o Best of all, you can get another machine and connect it to your machine over
a RS-232 line. Having done so, use tip to open a window on the second
machine as the console of the test machine. You can then use tip's record
feature (see the tip man page) to make a record of all the stuff that
printf is sending to the test machine's console.

As mentioned above, there are occasions when timing problems forbid the use of
the printf statement. In these cases, its a good idea to give up any attachment
that you might have to print f statements and use kadb.

Or, if you prefer, it's possible to deal with timing problems by using kadb to
patch the noprintf variable, and then to check the message bufferto see
what's going on. Doing so:

kadb - A Kernel Debugger

Chapter 5 - Driver Development Topics 91

o allows you to continue using the debugging code that you installed before
encountering the timing problem, and

o presents you with a sequential list of the events in your driver, a list spelled
out in English phrases and including interrupt-level events.

Or, you can simply use kadb for everything.

kadb is an interactive debugger similar in operation to adb. It's included in
Sun release 3.2 and subsequent releases, but it'll not not work with versions of
the kernel earlier than 3.2. kadb differs in several key respects from adb. It
runs as a standalone program under the PROM monitor, rather than as a user pro
cess in user address space. And it allows you to set breakpoints and single step
in the kernel!

Thus, running a kernel under kadb is significantly different than running it
under adb - k. The 'k' option to adb merely makes it simulate the kernel
memory mappings while kadb actually runs in the kernel address space. And
unlike adb, which runs at user level and as a separate process from the process
being debugged, kadb runs in system space as a coprocess. It shares not only
the kernel address space but its CPU supervisor mode as well.

kadb, for all intents and purposes, is a version of adb. It has the same com
mand syntax and almost the same command set. Thus, you can see the kadb
and adb manual pages, as well as Debugging Tools for the Sun Workstation, for
more details on its use. Note, however, the following points of special interest to
driver developers:

o All interrupts are disabled while interacting with kadb (except non
maskable interrupts). Thus, when using kadb to examine memory, the ker
nel remains stable. However, while single stepped instructions are being
executed, the actual standing priority of the kernel is temporarily restored,
and interrupts can get dispatched, run and return. You won't notice unless
you have a break point set in the interrupt routine, which works just fine.

o kadb is installed so that, when a program is being run under it, an abort
sequence (LI-A) will transfer control not to the PROM monitor but to
kadb itself. Once in kadb, you can abort again and be transferred to the
monitor. The transfer is direct and immediate, so you can use the monitor to
examine control spaces (e.g. page and segment maps) which are not accessi
ble from kadb. The monitor 'c' command will return you to kadb.

o kadb runs in the same virtual memory space as the kernel itself, and with
the CPU in supervisor mode. This means that kadb uses the kernel
memory maps when calculating virtual addresses, and that it can directly
examine kernel structures. This is in contrast to the situation with adb
- k, where software copies of the page table entries are used to map virtual
addresses to physical pages.

o kadb's memory view is almost the same as that resulting from adb
/ vmunix / dev / kmem. In other ways, however, kadb is much dif
ferent. To give just one example: on Sun-3 machines, where users and
supervisors share the virtual address space, kadb allows the user to

92

5.4. Device Driver Error
Handling

Error-Handling Mechanisms

Error Recovery

examine the user virtual address space (this is not true with adb -k).

o Finally, be aware that kadb - as a consequence of the way that adb
works- always does 32-bit memory reads. Even if you tell kadb to read
a byte it will read a long. This leads to a lack of control that can cause prob
lems when reading device registers.

There are various types of errors: "expected" errors like those generated by
xxprobe routines, transient errors in operations that can reasonably be retried,
fatal errors that require controlled shutdowns, and others. The kinds of errors
that you'll face depends upon the kinds of drivers that you write and the peculiar
ities of your devices; few generalizations can usefully be made.

To further complicate matters, the detection and treatment of errors varies greatly
from device to device. You should begin by carefully reading your device
specification manual to determine the error indications that can arise and the
responses that should be made when they do. Most devices have at least an error
bit in the control/status register, and usually more detailed error information is
available. Ideally, you should understand all potential errors, avoid those that
you can and recover from the rest. This ideal isn't always achievable, but try not
to leave any obvious holes. If you do nothing else, check for device errors and
use the kernel pr int f function to report them to the system console.

There are various error reporting and management mechanisms available to the
driver developer. Most of them have already been mentioned as they've become
relevant; here they are collected and summerized:

It's difficult to generalize about error-recovery mechanisms, for they are largely
device specific. It's worth noting, however, that:

o Some errors are worth retrying and some aren't; the matter is entirely device
specific.

o Error-recovery routines should be able to run at the interrupt level. This is
because errors can occur either synchronously or asynchronously with
respect to the dispatch of device commands, and, therefore, recovery rou
tines must be callable from interrupt routines.

o If you do implement error recovery logic, you must do so consistently. The
data structure that contains retry-status information must be global, and must
be protected by critical sections. Error-recovery routines, like interrupt rou
tines in general, must take special pains to protect data-structure integrity;
indeed, they must restore such integrity upon encountering errors they can't
recover from.

~~sun ~~ microsystems

Error Returns

Error Signals

Error Logging

Kernel Panics

Chapter 5 - Driver Development Topics 93

There are three mechanisms by which driver routines can report errors up to their
calling routines. The first, of course, is by way of the values that the driver rou
tines return to their callers. The second is by way of the system error codes they
return in u. u _ error and the third - useful when returning errors from
xxstrategy, xxstart, and xxintr -is the error-reporting mechanism built
into the buffer-header.

It is sometimes desirable to have a driver send a software interrupt to the process
or processes. It's possible, for example, that a device will fail in a unrecoverable
fashion - in this case it's perhaps a good idea to signal the user processes, rather
than merely returning an extraordinary error code. It's also possible (though
rare) for a driver to encounter serious errors from which it can recover by restart
ing the device - user processes may also need to be notified in this case. The
kernel psignal and gsignal routines can signal either a single process or
all the processes in a given process group.

When you use the kernel printf statement to report errors to the console,
those errors are also placed into a system error-message buffer accessible to the
dmesg daemon. dmesg can be, and typically is, run every 30 minutes by the
crontab daemon, for the purpose of appending the messages in the buffer to
/usr / adm/messages. Note that the message buffer is small, and that if a lot
of entries are being written into it, some of them will get lost before being
transferred into /usr / adm/messages.

The most unequivocal way of dealing with an error is to panic when you get it.
The panic routine is provided to help you do so in a somewhat controlled
fashion - panic is called only on unresolvable fatal errors. It prints "panic:
mesg" on the console, and then reboots. (Or, if you're running under the
debugger, it transfers control to kadb). panic also keeps track of whether it's
already been called, and avoids attempts to sync the disks (by flushing all pend
ing write buffers) if it has, since this can lead to recursive panics.

The final production version of a driver should call panic only when "impossi
ble" situations are encountered; lesser errors should be recovered from. During
debugging, though, panic can be used to implement a passable assert mechan
ism.

#ifdef XXDEBUG
if (inconsistent condition)

panic("Assertion Failed: ... ");
#endif

(It's possible to write a fancier assert mechanism, for example by having an
ASSERT macro which calls an assert routine which prints error context
information and then calls panic, but this minimal hack will perhaps do).

Finally, note that in cases where it's very important to halt the system immedi
ately after detecting an inconsistent condition, kadb can be used. The driver
code can test for the inconsistent condition, and then set a debugging variable:

~~sun ~~ microsystems

94

5.5. System Upgrades

if (inconsistent condition)
junk= l;

kabd can then be used to set a breakpoint at the machine instruction generated
from the assignment to junk.

System upgrades generally have minimal effects on user-written device drivers.
The changes that are necessary are rare and release specific.

Some changes must be made if user-written drivers are to work with new release
software. In Release 2.0, for example, there was a minor change in one of the
bus-interface structures. There wasn't much involved in adapting user-written
drivers, but it had to be done.

In other cases, changes are optional. When VMEbus machines were introduced,
for example, drivers had to be adapted to run on them; however, it was possible
to upgrade Multibus machines without rewriting user-written drivers.

In any case, any release upgrades that imply changes - either optional or man
datory - to user-written device drivers will be documented in the System Sum
mary and Change Notes for the release in question.

~\sun
~~ microsystems

The ' 'Skeleton' ' Character Device
Driver

6

The ''Skeleton'' Character Device Driver .. 97

6.1. General Declarations in Driver.. 100

6.2. Autoconfiguration Procedures .. 101

Probe Routine ... 101

Attach Routine.. 103

6.3. Open and Close Routines.. 103

6.4. Read and Write Routines .. 105

Some Notes About the UIO Structure... 106

6.5. Skeleton Strategy Routine .. 107

6.6. Skeleton Start Routine - Initiate Data Transfers .. 108

6.7. Interrupt Routines.. 110

6.8. Ioctl Routine ... 112

6.9. DMA Variations ... 112

Multibus or VMEbus DVMA .. 112

A DMA Skeleton Driver... 112

6
The ''Skeleton'' Character Device

Driver

This chapter presents one of the simplest drivers you could ever hope to
encounter, a driver for an imaginary Multibus character device known as the
"Skeleton" device. Both programmed 1/0 and DMA versions of the driver will
be discussed. There is a complete version of this driver in the Sample Driver
Listings appendix to this manual - the parts are presented piecemeal here with
some discussion of their functions.

What we're doing here is inventing the very simple, 1/0 mapped, Skeleton con
troller. It's actually a "free device" with no separate controller and no separate
slaves. It has a single-byte command/status register, and a single-byte data regis
ter. It's a write-only device. It's not a slow tty-type device -you can provide
vast blocks of data and the Skeleton board gets it all out very fast. It interrupts
when it's ready for a data transfer, and comes up in the power-on state with inter
rupts disabled and everything else in neutral.

Note: the Skeleton device is capable, in both its simple and its DMA variants, of
writing chunks (not to say "blocks") of data in a single operation. It is, therefore,
a character device that can make good use of xxstrategy routines, physio,
bu£ structures and other block-1/0 mechanisms. As explained in Kernel Topics
and Device Drivers, its use of these mechanisms does not make it a block driver.
Rather, its simple needs are a subset of the needs of block drivers, and it's con
venient here for form to follow function.

Let us assume that we've installed the Skeleton board with its control/status
register at Ox 6 0 0 in Multibus 1/0 space - this puts its data register at Ox 601.
The control/status register is both a read and a write register, with bit assign
ments as shown in the tables below.

~~sun ~~ microsystems
97

98

BIT
Read

BIT
Write

7

Inter

rupt

7

6 5

6 5

4

4

3
Device

Ready

3

2

Interface

Ready

2

Reset

1
Error

1

0
Interrupt

Enabled

0
Enable

Interrupt

Here is a brief description of what the bits mean:

When reading from the status register

bit 7 is a 1 when the board is interrupting, 0 otherwise.

bit 3 is a 1 when the device that the board controls is ready for data
transfers.

bit 2 is a 1 when the Skeleton board itself is ready for data transfers.

bit O is a 1 when interrupts are enabled, 0 when interrupts are dis
abled.

When writing to the status register

bit 2 resets the Skeleton board to its startup state - interrupts are
disabled and the board should indicate that it is ready for data
transfers.

bit O enables interrupts by writing a 1 to this bit, disables interrupts
by writing a 0.

The header file for this interface is in skreg. h. By convention, we put the
register and control information for a given device (say xy) in a file called
xyreg. h. The actual C code for the xy driver would by convention be placed
in a file called xy. c. The header file for the Skeleton board looks like this:

Chapter 6 -The "Skeleton" Character Device Driver 99

I*
* Registers for Skeleton Multibus 110 Interface -- note the byte swap

*I
struct sk_reg {

} ;

char sk_data;
char sk_csr;

I* 01: Data Register * I
/* 00:command(w)andstatus(r) *I

I* sk csr bits (read) *I
fdefine SK INTR Ox80 I* Device is Interrupting * I
fdefine SK DEVREADY Ox08 I* Device is Ready * I
fdefine SK INTREADY Ox04 /* Interface is Ready * I
fdefine SK ERROR Ox02 I* Device Error * I
fdefine SK INTENAB OxOl I* Interrupts are Enabled *I

fdefine SK ISTHERE OxOC /* Existence Check;
Device and Interface Ready * I

/* sk_csr bits (write) */
fdefine SK RESET Ox04
fdefine SK ENABLE OxOl

I* Reset Device and Interface * I
I* Enable Interrupts * I

The complete device driver for the Skeleton board consists of the following
parts:

skprobe
is the autoconfiguration routine called at system startup time to determine if
the sk board is actually in the system, and to notify the kernel of its
memory requirements.

skopen and skclose
routines for opening the device for each time the file corresponding to that
device is opened, and for closing down after the last time the file has been
closed.

skwrite
routine that is called to send data to the device.

skstrategy
routine that is called from skwrite via physio to control the actual
transfer of data.

skstart
routine that is called for every byte to be transferred.

skpoll
the polling interrupt routine that services interrupts and arranges to transfer
the next byte of data to the device.

The subsections to follow describe these routines in more detail.

100

6.1. General Declarations
in Driver

In addition to including a bunch of system header files, there are some data struc
tures that the driver must define.

#include " .. /h/param.h"
#include .. /h/buf.h"
#include .. /h/file.h"
#include .. /h/dir.h"
#include .. /h/user.h"
#include .. /h/uio.h"
#include .. /machine/psl.h"
#include .. /sundev/mbvar.h"

#include "sk.h" /* filegeneratedby config;
contains the definition of NSK * I

#include "skreg.h" /* registerdefinitions *I

#define SKPRI (PZER0-1) /* softwaresleeppriorityforsk *I

#define SKUNIT(dev) (minor(dev))

struct buf skbufs [NSK]; /* staticbufferheadersfor physic */

I* autoconfiguration-related declarations * I
int skprobe () , skpoll () ; / * kernel interface routines * I
struct mb_device *skdinfo[NSK];
struct mb_driver skdriver = { skprobe, O, O, O, O, skpoll,

sizeof(struct sk_reg), "sk", skdinfo, O, O, O, O,
} ;

I* device state information -- global to driver * I
struct sk_device {

char soft_csr;
struct buf *sk_bp;
int sk count;
char *sk_cp;
char sk_busy;

skdevice[NSK];

I* software copy of csr * I
I* current buf * I
I* number of bytes to send * I
I* next byte to send * I
I* true if device is busy * I

Here's a brief discussion on the declarations in the above example.

sk.h file is automatically generated by config. It contains the
definition of NSK, the number of sk devices configured into the sys
tem.

SKPRI declaration declares the software priority level at which this device
driver will sleep.

SKUNIT macro is a common way of obtaining the minor device number in a
driver. Study just about any device driver and you will find a
declaration like this - it is a stylized way of referring to the minor
device number. One reason for this is that sometimes a driver will
encode the bits of the minor device number to mean things other
than just the device number, so using the SKUNIT convention is an

~~sun ~~ mlcrosystems

6.2. Autoconfiguration
Procedures

Probe Routine

skbufs

Chapter 6 - The ''Skeleton'' Character Device Driver 101

easy way to make sure that if things change, the code will not be
affected.

array is necessary so that the driver will have its own buf headers
to pass to the physio routine. Character drivers should never use
buf headers from the kernel's 1/0 queue. physio will fill in cer
tain fields (only a few, really) before calling xxstrategy with the
buf structure as the argument.

There then follows a series of declarations, one for each of the
autoconfiguration-related entry points into the device driver. In this driver, the
only such entry points we use are skprobe (which probes the Main Bus during
system configuration) and skpoll (the polling interrupt routine).

skdinfo is an array of pointers to the mb_device structures that
correspond to the driver's devices. The autoconfiguration process
will initialize it during kernel boot time.

skdriver
is a definition of the mb driver structure for this driver. An
explanation of the fields in this structure and how they are initialized
appears in the Autoconfiguration-Related Declarations section of
this manual.

This data structure is the major linkage to the kernel. It must be
called driver-namedr i ver where driver-name is the name of the
device driver. config assumes that all device-driver structures
have names in the form driver-namedr i ver.

sk device
is a definition of a structure, global to the driver, that holds driver
specific state information.

Sun device drivers are tightly bound to the Sun autoconfiguration system. They
assume, at compile time, that certain services have been provided for them by
config, and they, in tum, provide boot-time hooks by which the kernel can
determine if the actual system configuration matches that given in its con fig
file.

There are, essentially, two autoconfiguration routines provided by the driver.
The first is xxprobe, the second xxattach. For more information, see the
Overall Kernel Context section of this manual.

There should be a xxprobe function in every driver. During the system boot
each device entry in the config file generates a call to the xxprobe routine in the
corresponding driver. xxprobe has three functions:

1. To determine if a device is present at the address indicated in the config file.

2 To determine if its the expected type of device.

3. To notify the kernel of the system resources required for the device.

102

Under normal circumstances, addressing non-existent memory or 1/0 space on
the Multibus or the VMEbus generates a bus error in the CPU. The kernel, how
ever, supports checking for device existence with a set of functions designed to
probe the address space, recover from possible bus errors, and return an indica
tion as to whether the probe generated a bus error.

These functions are peek, peekc, poke, and pokec. They provide for
accessing possibly non-existent addresses on the bus without generating the bus
errors that would otherwise terminate the process trying to access such addresses.
peek and poke read and write, respectively, 16-bit words (shorts in the Sun
system). pee kc and pokec read and write 8-bit characters. In general, you
will use the character routines for probing single-byte 1/0 registers. See the Ker
nel Support Routines appendix for details on these routines.

Having determined whether the device exists in the system, the xxprobe func
tion returns either:

a the size (in bytes) of the device structure if it does exist. The kernel uses the
value returned from probe to reserve memory resources for that device.
For both 1/0-mapped and memory-mapped devices, probe returns the
total amount of space consumed by the device registers and memory.

o a value of O (zero) if the device does not exist.

Now we can write skprobe:

l*ARGSUSED*I
skprobe(reg, unit)

caddr_t reg;
int unit;

register struct sk_reg *sk_reg;
register int c;

sk_reg = (struct sk_reg *)reg;

I* contact the device * I
c = peekc((char *)&sk_reg->sk_csr);
if (c == -1 I I (c ! = SK_ISTHERE))

return (O);

I* contact the device * I
if (pokec((char *)&sk_reg->sk_csr, SK_RESET))

return (0);

return (sizeof (struct sk_reg));

The reg argument is the purported address of the device, as given in the con
fig file. The unit argument is only needed for controller drivers that must dis
tinguish among multiple slave devices.

The xxprobe routine determines that the device actually exists, resets it to make
sure that it's ready to go, and then returns the amount of bus space that it uses to
the kernel autoconfiguration process. That value is plugged into the md alive

Attach Routine

6.3. Open and Close
Routines

Chapter 6 - The ''Skeleton'' Character Device Driver 103

field in the device structure. md_alive is subsequently used by other driver
(and kernel) functions to check that the device was probed successfully at startup
time. (These routines can also check the device's position in the driver's
xxdini t array (if it has one) to see if it's been initialized).

The second autoconfiguration routine is xxattach. The purpose of xxattach
is to do device-specific initialization. Such initialization may include the issuing
of commands to the actual device hardware, for example, the disabling of its
interrupts, or it may be entirely confined to the initialization of local device
specific structures. It's up to the driver what kind of initialization is done in
xxattach.

The Skeleton device is artificially simple, and it requires no initialization besides
the assignment of SK_ RESET into its control/status register. This assignment,
as you'll note, has already been done in skprobe, where it serves as a doub
lecheck on the correct installation of the device. Since no further initialization is
necessary, the Skeleton driver needs no attach routine.

During the processing of an open call for a special file, the system always calls
the device's xxopen routine to allow for any special processing required
(rewinding a tape, turning on the data-terminal-ready lead of a modem, and so
on). However, the xxclose routine is called only when the last process closes a
file, that is, when the i-node table entry for that file is being deallocated. Thus it
is not feasible for a device driver to maintain, or depend on, a count of its users,
although it is quite simple to implement an exclusive-use device that can't be
reopened until it has been closed.

skopen is quite straightforward. It's called with two arguments, namely, the
device to be opened, and a flag indicating whether the device should be opened
for reading, writing, or both. The first task is to check whether the device number
to be opened actually exists - skopen returns an error indication if not. The
second check is whether the open is for writing only. Since the Skeleton device
is write only, it's an error to open it for reading. If all the checks succeed, sko
pen enables interrupts from the device, and then returns zero as an indication of
success. Here's the code for skopen:

104

skopen(dev, flags)
dev_t dev;
int flags;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

if (unit>= NSK I I md->md_alive 0)
return (ENXIO);

if (flags & FREAD)
return (ENODEV);

sk_reg = (struct sk_reg *)md->md_addr;

I * enable interrupts * I
skdevice[unit] .soft_csr

I * contact the device * I

SK_ENABLE;

sk_reg->sk_csr skdevice[unit] .soft_csr;

return (O);

The first if statement checks if the device actually exists. The first clause

(unit >= NSK)

is necessary because, as root, someone could make a special file that has a minor
device number greater than NSK then try to open it. This actually isn't unusual,
many /dev directories have entries for devices that are not really installed. The
second clause tests to see if the probe routine found the device. Note the use of
the SKUNIT macro to obtain the minor device number - we discussed this ear
lier on. Also note that we' re maintaining a copy

(skdevice[unit] .soft_csr) of the

control/status register in memory. Each time we write the register we'll do so
first it in memory and then in the actual hardware register. We'll do this
doggedly, to make the point that we must protect ourselves from the potential
side effects of inadvertent calculations within registers. For example

csr &= -sK ENABLE

has the side effect of reading the csr register - and patterns read from this regis
ter are not always identical to those written into it. (For more information, see
the Hardware Peculiarities to Watch Out For section of the Hardware Context
chapter).

skclose is quite straightforward, since all it does is disable interrupts:

~~sun ~~ microsystems

6.4. Read and Write
Routines

l*ARGSUSED*I
skclose(dev, flags)

dev_t dev;
int flags;

Chapter 6 - The ''Skeleton'' Character Device Driver 105

register int unit= SKUNIT(dev);
register struct mb_device *rnd;
register struct sk_reg *sk_reg;

rnd = skdinfo[unit];

I* disable interrupts * I
sk_reg = (struct sk_reg *)rnd->rnd_addr;
skdevice[unit] .soft_csr &= -sK_ENABLE;

I* contact the device * I
sk_reg->sk_csr = skdevice[unit] .soft_csr;

skclose could in fact be more complicated than this. It could, for example:

o deallocate resources that were allocated for the device being closed, or

o shut down the device itself, for example by signaling a port to hang up.

The Skeleton device is write-only, but this discussion would apply equally to
reading in such a non-tty oriented character device.

When a read or write takes place, the user's arguments - as well as some
system-maintained information about the file to which the 1/0 operation is to be
performed - are used to initialize two structures - uio and iovec - that
are used for character 1/0. The fields of greatest interest within these structures
are iovec. iov_base, iovec. iov_len, and uio. uio_offset which
respectively contain the (user) address of the 1/0 target area, the byte-count for
the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate xxread or xxwr i te routine is called
- this routine is responsible for transferring data and updating the count and
current location appropriately as discussed below.

For most non-tty devices, x.xread and xxwri te call xxstrategy through the
system physio routine. physio ensures that the user's memory space is
locked into core (not paged out) for the duration of the data transfer. It also pro
vides an automated way of breaking a large transfer into a series of smaller, more
manageable ones. Note that character drivers that use physio must declare an
array of buf structures, one for each of their devices (here the array is named
skbufs). By doing so they avoid any need to use the kernel's buffer cache,
which is provided for the use of system block-structured devices.

x.xwr i te differs from x.xread only in the value of the flag it passes to phy
sic. skwri te looks like this:

106

Some Notes About the UIO
Structure

skwrite(dev, uio)
dev_t dev;
struct uio *uio; See note on the uio structure below

int unit SKUNIT(dev);

if (unit>= NSK)
return (ENXIO);

return (physio(skstrategy, &skbufs[unit], dev,
B_WRITE, skminphys, uio));

The skminphys routine is called by physio to determine the largest reason
able block size to transfer at once. If the user requests a larger transfer, phy
sic will call skstrategy repeatedly, requesting no more than this block size
each time. This is important when DVMA transfers are done. (DVMA is
covered in more detail below). The reasoning is that only a finite amount of
address space is available for DVMA transfers and it is not reasonable for any
device to tie up too much of it. A disk or a tape might reasonably ask for as
much as 63 Kilobytes; slow devices like printers should only ask for one to four
Kilobytes since they will tie up the resource for a relatively long time. Here's the
skminphys routine.

skminphys(bp)
struct buf *bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_count = MAX_SK_BSIZE;

Note that if you don't supply your own minphys routine, you place the name
of the system supplied minphys routine, whose name is minphys, as the
argument to physio in its place, and the system supplied minphys routine
gets used instead. This is not always a good thing, however, for the system rou
tine divides an 1/0 operation into 63K chunks, and this can be too large for
optimum system performance when the device in question is slow (like a
printer).

When the system is reading and writing data from or to a device, the uio sttuc
ture is used extensively (see /usr / include/ sys/uio. h for more informa
tion). The uio structure is generalized to support what is called gather-write
and scatter-read. That is, when writing to a device, the blocks of data to be writ
ten don't have to be contiguous in the user's memory but can be in physically
discontiguous areas. Similarly, when reading from a device into memory, the
data comes off the device in a continuous stream but can go into physically
discontiguous areas of the user's memory. Each discontiguous area of memory is
described by a structure called an iovec (1/0 vector). Each iovec contains a
pointer to the data area to be transferred, and a count of the number of bytes in
that area. The uio structure describes the complete data transfer. uio

~~sun ~if' microaystems

6.5. Skeleton Strategy
Routine

Chapter 6 - The ''Skeleton'' Character Device Driver I 07

contains a pointer to an array of these icvec structures. Thus when you want
to write a number of physically discontiguous blocks of memory to a device, you
can set up an array of icvec structures, and place a pointer to the start of the
array in the uic structure. In the simplest case, there's just one block of data to
be transferred, and the uic structure is quite simple. Note that physic will
call the strategy routine at least once for each icvec contained by the uic
structure.

xxstrategy is called by physic after it's locked the user's buffer into
memory. The name strategy originated in the world of disk drivers, and implied
that the routine could be clever about queuing 1/0 requests (for example, by disk
address) so as to minimize time wasted by the disk. The skstrategy routine
has no such problems, since it doesn't queue 1/0 requests for a random-access
device. Still, a number of tasks remain- skstrategy must check that the
device is ready, initiate the data transfer, and wait for its completion to be sig
naled by the interrupt routine. Note that skstrategy can safely assume that
physic has properly initialized a number of variables -here we'll assume that
the b dev field in the buf has been set to contain the device number.

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk device *sk;
int s;

md skdinfo[SKUNIT(bp->b_dev)];
sk &skdevice[SKUNIT(bp->b_dev)];

s = splx (pritospl (md->md_intpri)) ; /* begin critical section * I
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);

I* set up for first 110 operation * I
sk->sk_busy = l;
sk->sk_bp = bp;
sk->sk_cp = bp->b_un.b_addr;
sk->sc_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr);

(void) splx(s); /* end critical section *I

xxstrategy doesn't actually do any 1/0. It just insures that the device is not
busy (by sleeping on the address of a data structure that is global to the driver)
sets up for the first 1/0 operation and then calls xxskstart to get things rolling.
The critical section is necessary because xxstrategy is trying to acquire the
device on behalf of one, and only one, user process.

108

6.6. Skeleton Start Routine
- Initiate Data
Transfers

xxstart is actually responsible for getting the data to or from the device.
skstart is called once directly from skstrategy to get the very first byte
out to the device. After that, it is assumed that the device will interrupt every
time it is ready for a new data byte, and so skstart is thereafter called from
skintr. Here is one possible skstart routine:

skstart(sk, sk_reg)
struct sk_device *sk;
struct sk_reg *sk_reg;

sk_reg->sk_data = *sk->sk_cp++;

if (--sk->sc_count > 0) {
sk->soft csr = SK_ENABLE;

I * contact the device * I
sk_reg->sk_csr = sk->soft_csr;

This routine will work, but not very efficiently. There's a lot of overhead in tak
ing an device interrupt on every character. Since we know that the device can
accept characters very quickly, it would be much more efficient to give the char
acters quickly, and thus avoid generating unnecessary interrupts. xxstart
should take advantage of device-specific characteristics to win efficiency
enhancements of this type. It can wait for characters, check for ready, etc -
here, we'll just check after each character and give another one if the device is
ready for it. Here's the new, more efficient skstart routine.

~~sun ~~ microsystems

Chapter 6-The "Skeleton" Character Device Driver 109

skstart(sk, sk_reg)
struct sk device *sk;
struct sk_reg *sk_reg;

while(sk->sc_count > 0) { /* stillmorecharacters *I
sk_reg->sk_data = *sk->sk_cp++;
sk->sc_count--;

I* stop giving characters if device not ready * I
I* Note: the soft copy isn't needed for reads * I
I* contact the device * I
if (! (sk_reg->sk_csr & SK_DEVREADY))

break;

I* still more characters * I
if (sk->sc_count > 0)

sk->soft csr = SK_ENABLE;

I* contact the device * I
sk_reg->sk_csr = sk->soft_csr;

else {
I* special case: finished command without taking any interrupts! * I

I * disable interrupts * I
sk->soft csr = O;

I* contact the device * I
sk_reg->sk_csr = sk->soft_csr;
sk->sk_busy = 0;

I* free device to sleeping strategy routine * I
wakeup((caddr_t) sk);

I* free buffer to waiting phys io * /
iodone(sk->sk_bp);

We give characters to the device as long as there are more characters and the
device is ready to receive them. If we run out of characters, we disable intenupts
to keep the device from bothering us and call iodone to mark the buffer as
done.

It may be that the device is not quite quick enough to take a character and raise
the SK_ DEVREADY bit in the time we can decrement and test the counter. If so,
it would be very worthwhile to busy wait for a short time. The reasoning is that
while busy waiting is a waste, servicing an interrupt costs lots more CPU time,
and if busy waiting works fairly often it is a big win. There is a macro DELAY

that takes an integer argument which is approximately the number of
microseconds to delay, so we could add

~~sun ~~ mlcrosystems

110

6.7. Interrupt Routines

DELAY(lO);

just before the while. Clearly this is an area where experimentation with the
real device is called for.

Each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is transformed into a C-compatible call on the device's interrupt rou
tine. After the interrupt has been processed, a return from the interrupt handler
returns from the interrupt itself.

The address of the polling interrupt routine for a particular device driver is con
tained in the per-driver (that is, a mb_driver) data structure for that device
driver. It is installed there during the kernel configuration process based upon
information in the config file.

Since (on Multibus machines) devices typically need to share interrupt levels, it's
the specific driver's responsibility to determine if the interrupt is intended for it
or not. The driver does so by providing a polling interrupt routine that queries the
interrupt state of each of its devices in turn - if a driver doesn't provide such a
routine, it can only run on VMEbus machines. Polling interrupt routines that
determine that an interrupt belongs to one of their devices must notify the kernel
to that effect (after servicing the interrupt) by returning a non-zero value. If a pol
ling interrupt routine determines that an interrupt is not from one of its devices, it
must return a zero value.

It's expected that the device actually indicates when it's interrupting. If there are
any more bytes to transfer, the interrupt routine calls xxstart to transfer the
next byte. If there are no more bytes to transfer, the interrupt routine disables the
interrupt (so that the device won't keep interrupting when there's nothing to do),
and finishes up by calling iodone. (iodone, incidently, is another of the
mechanisms provided primarily for block drivers). Here are the interrupt rou
tines for the Skeleton driver:

skpoll ()
{

register struct sk_reg *sk_reg;
int serviced, i;

serviced= 0;
for (i = 0; i < NSK; i++) { /* tryeachone *I

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;

I* contact the device * I
if (sk_reg->sk_csr & SK_INTR)

serviced= 1;
skintr(i);

return (serviced);

skintr (i)
inti;

Chapter 6-The "Skeleton" Character Device Driver 111

register struct sk_reg *sk_reg;
register struct sk_device *sk;

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;
sk = &skdevice[i];

/* checkforanl!Oerror *I

I* contact the device * I
if (sk_reg->sk_csr & SK_ERROR) {

I* error-retry logic would go here * I

printf("skintr: I/0 errorO);
sk->sk_bp->b_flags I= B_ERROR;
goto error_return;

I* 110 transfer completed * I
if (sk->sc_count == 0)

error return:

I* clear interrupt * I
sk->soft_csr = 0;

I * contact the device * I
sk_reg->sk_csr = sk->soft_csr;
sk->sk_busy = O;

I* free device to sleeping strategy routine * I
wakeup((caddr_t) sk);

I* free buffer to waiting physio * /
iodone(sk->sk_bp);

else
skstart(sk, sk_reg);

skin tr checks the hardware for an error every time it's called, and upon
finding an error, calls print f, flags the error in the I/0 buffer and then returns.
Note that:

o skintr needs the buffer associated with the failed transfer so that it indi
cate the error in its b_flags field.

o A retry attempt could be made before giving up and taking the error return.
Whether or not this is advisable is entirely dependent on the specific device
and error characteristics.

112

6.8. Ioctl Routine

6.9. DMA Variations

Multibus or VMEbus DVMA

A DMA Skeleton Driver

o The error return aborts the 1/0 request that produced the error and then
places both the device and the driver in their normal idle states.

xxioctl is used to perform any tasks that can't be done by xxopen, xxclose,
xxread, or xxwri te. Typical applications are: "what is the status of this dev
ice", or "go into mode X". This device is modeless and has no such special func
tions so we don't have an xxioctl routine.

Devices that are capable of doing DMA are treated differently than the Skeleton
device we've been working with so far. Let's assume that we have a new version
of the Skeleton board; call it the Skeleton II. It can do DMA transfers and we
want to use this feature since it is much more efficient.

The Sun processor board is always listening to the Multibus or VMEbus for
memory references. When there is a request to read or write any address in the
DVMA space (see the Sun Main-Bus DVMA section of the Hardware Context
chapter for more information) the DVMA hardware adds a machine-specific
offset to the address to find the location in kernel virtual memory that contains
the device RAM being used in the transfer.

On Sun-2 Multibus machines, DVMA space consists of all addresses between 0
and Ox3FFFF. On Sun-2 VMEbus machines, it consists of all addresses
between OxO and OxFFFFF. Upon encountering one of these addresses, the
DVMA hardware adds OxFOOOOO to get the system virtual address of the dev
ice RAM.

On the Sun-3, the DVMA space is defined by the address range OxO to
OxFFFFF for 24-bit or 32-bit addressing; its system virtual address is
OxFFOOOOO.

If you wish to do DMA over the Main Bus, you must make entries in the kernel
memory map to map your device's RAM into the appropriate DVMA space. As
you might expect, there are subroutines to help with this chore. rob setup sets
up the kernel memory map and mbrelse clears entries in it to release DVMA
space. Note that all Sun DMA occurs between the bus and kernel virtual address
space - if you wish to do DMA directly into a user buffer, you'll have to first
map that buffer into kernel space, then pass it to rob setup to map it into
DVMAspace.

The addition of DMA to the capabilities of the device opens up several new
options. For the moment, consider only the changes necessary to switch the
driver over to OMA-style 1/0. These changes tum out to be surprisingly straight
forward. First we'll extend the sk _reg structure which defines the device
registers. We'll assume that the Skeleton II board is a bus-master which supports
20-bit transfers, and that the following structure overlays its registers.

struct sk_reg {

} ;

char sk_data;
char sk_csr;
short sk_count;
caddr_t sk_addr;

Chapter 6 - The ''Skeleton'' Character Device Driver 113

I* 01: Data Register * I
I* 00: comma.nd(w) and status(r) * I
I * bytes to be transferred * I
I* 20-bit DMA address * I

Next we assume that bit 5 in the csr is set to initiate a DMA transfer.

#define SK OMA OxlO I* Do DMA transfer * I
and a definition of the maximum DMA transfer for skminphys.

#define MAX SK BSIZE 4096 I* DMA transfer block * I

And we must add another element to the sk_device structure for use by
mbsetup and mbrelse. (The alternative would be to use the mc_mbinfo
structure in the rob_ ct lr structure, but since we don't use that structure for
anything else, this seems more reasonable):

int sk_mbinfo;

Now we change skstrategy to use the DMA feature.

~~sun
~~ microsystems

114

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[SKUNIT(bp->b_dev)];

s = splx (pritospl (md->md_intpri)) ; /* begin critical section * I
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);
sk->sk_busy = 1;
sk->sk_bp = bp;

I* this is the part that is changed * I

I* grab bus resources * I
sk->sk_mbinfo = mbsetup(md->md_hd, bp, 0);

I* plug the remainder * I
sk_reg->sk_count = bp->b_bcount;

I* plug bus transfer address * I
sk_reg->sk_addr = (caddr_t)MBI_ADDR(sk->sk_mbinfo);

I* make sure we didn't overrun the address space limit * I
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF)

printf("sk%d: ", sk_reg->sk_addr);
panic("exceeded 20 bit address");

sk->soft csr = SK_ENABLE I SK_DMA;
sk_reg->sk_csr = sk->soft_csr; /* contactthedevice *I

I* end of DMA-related changes * I

sk->sk_busy = 0;
wakeup ((caddr _ t) sk) ; /* free device to sleeping strategy routine * I
(void) splx (s) ; / * end critical section * I

There are a number of details here that are worth noting:

o skstart is no longer needed and may be completely eliminated.

o The return value from rnbsetup is being saved for use in calls to
MBI ADDR and rnbrelse.

a The 32-bit address returned by MBI _ ADDR is being tested to ensure that it
doesn't exceed the 20-bits limits of the device.

Chapter 6-The "Skeleton" Character Device Driver 115

a All the 1/0 now is started by skstrategy and continues until skpoll
is called-thus we can delete the sk_cp and sc_count fields from the
sk device structure.

a skintr has been simplified. There's no longer any need to check the count
and sometimes call skstart. Instead, iodone is always called and
physio is relied upon to proceed with the transfer.

a Finally, skintr needs to free up the Main Bus resources, so it'll call
mbrelse.

Here are the new skin tr and skpoll routines:

skintr (i)
inti;

register struct mb_device *md;
register struct sk_reg2 *sk_reg;
register struct sk device2 *sk;

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg2 *)md->md_addr;
sk = &skdevice2[i];

I* check/or an 110 error * I
if (sk_reg->sk_csr & SK_ERROR) { /* contactthedevice */

I* error-retry logic would go here * I

printf("skintr: I/0 error\n");
sk->sk_bp->b_flags I= B_ERROR;

I* this is the part that changed * I
sk->soft_csr = O; /* clearinterrupt *I
sk_reg->sk_csr = sk->soft_csr;
mbrelse(md->md_hd, &sk->sk_mbinfo);
iodone (sk->sk_bp); /* free buffer to waiting physic * /

116

skpoll ()
{

register struct mb_device *rod;
register struct sk_reg *sk_reg;
int serviced, i;

serviced= 0;
for (i 0; i < NSK; i++) {

rod= (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)rod->rod_addr;
if (sk_reg->sk_csr & SK_INTR) {

serviced= 1;
skintr(i);

return (serviced);

~~sun
~~ microsystems

7
Configuring the Kernel

Configuring the Kernel ... 119

7 .1. Background Information ... 119

7.2. An Example .. 121

7.3. Devices that use Two Address Spaces .. 125

7.4. Booting Kernels on Diskless Workstations.. 126

7 .1. Background
Information

7
Configuring the Kernel

In this chapter, we'll assume that you've written and debugged your driver. The
next step, obviously, is to build a kernel that includes your new driver. This pro
cess isn't difficult, Sun systems are support easy kernel configuration, even
without access to system source code.

In heterogeneous server/client environments, kernels must be configured in fairly
general ways. For one thing, they must work on both Multibus and VMEbus
machines.for another, they have to tolerate normal variations among system
devices (e.g. client Ethernet boards may be made by either 3COM or Sun). The
GENERIC config file thus contains configuration lines for all common devices for
both bus types. However, if you're configuring a kernel for a known system, you
need not carry around extraneous options -you can tailor your configuration
file as appropriate and thus get a smaller (by JOO kilobytes or more!) and more
efficient kernel.

For additional information on kernel configuration, see the Adding Hardware to
Your System section of the System Administration Manual and the config(8) man
page. (lncidently, config is found in the /usr /etc/directory-so make
sure that your path includes /usr / etc before proceeding).

First, a simple distinction. If your kernel already contains a certain driver, and
you're simply installing a corresponding device, you'll only need to edit the ker
nel config file - all of the installation specific information about devices them
selves is contained in this file. If, however, you'll be adding a new driver to the
kernel, you'll need to edit some additional files:

o The first of these is I us r /sys/sun/con f . c, a C-language source-code
file which contains the definitions of the switches cdevsw and bdevsw,
as well as a bit of initialization infrastructure for the installed devices.

o The second is either files. sun2 or files. sun3 (depending upon
whether your machine is a Sun-2 or a Sun-3). This file tells config where
to find the source code for the kernel and its drivers. The pathnames (e.g.
sundev/sk.c)in files.sun[23] arerelativeto /sys. (It'sokto
keep driver source files in directories other than sundev, but if you do, put
symbolic links in sundev so that files. sun [23] need contain no
references to directories outside of the kernel source subtree).

The discussion in this chapter concerns conf ig, a utility program that is used
in configuring kernels and initializing the kernel/driver inteiface structures.

~~sun ~~ mlcrosystems
119

120

conf ig is altogether different from the autoconfiguration process, sometimes
called autoconfig, which is built into the initialization pass of the UNIX ker
nel, and thus run at system boot time. Autoconfiguration completes the run-time
driver environment initialization that con fig begins,for example by checking
that the devices indicated as present in the kernel config file are actually present
in the running system. Autoconfiguration is discussed in much greater detail in
the Overall Kernel Context section of this manual.

conf ig's goal is to output a set of files that can be directly used to configure a
new kernel. The purpose of the configuration may simply be to install a device
(for which the kernel already contains a driver) or it may be to integrate a new
device and its driver. The kernel configuration system learns of new devices by
way entries in the config file, whereas new drivers are indicated by editing one or
all of the files conf. c, files and files. sun (23). The files output by
conf ig are used in the construction of the new kernel, but so are others, notably
conf. c itself.

a ioconf. c - the major input to the autoconfiguration process. It contains
arraysofmbvarstructures- struct mb_ctlr mbcinit(] and
struct mb_device mbdinit [] -that have been initialized on the
basis of the device and controller information in the config file. (lncidently,
the order of the device declarations in the config file will determine the order
of the structures in ioconf. c, and thus the order in which devices are
polled). The autoconfiguration process assumes that ioconf . c exists and
will complete the initialization of its structures by calling xxprobe, xxat
tach, and xxslave. See the Overall Kernel Context chapter for more
information.

a xx.h - a set of header files, one for each driver. These header files define
macros (e.g. #define NSK 2) that tell the drivers how many devices
they'll be managing. The drivers will use these macros at compile time to
control conditional compilation and to size device tables. When developing
and testing a driver, you should make yourself a fake header file; config
won't have a chance to make one for you until you' re actually installing
your driver.

a mbglue.s - contains assembly-level code that translates from the hardware
interrupt mechanisms to the device-interrupt routines for the installed dev
ices.

a makefile - a makefile that, when executed, will actually make the new ker
nel, compiling and linking files as necessary. Note that the entries in
files. sun (23) referto source files (i.e. sundev/ sk. c), but that if
config fails to find a named source file it will set up to use the correspond
ing object file (from the OBJ subdirectory of the configuration directory)
instead. Thus, config works on both source licensed and object licensed
machines.

7 .2. An Example

Chapter 7 - Configuring the Kernel 121

The example that follows assumes that you're adding a driver for the Skeleton
board (sk. c) to your system. To proceed, you'll need a configuration directory
and a config file for your new kernel. Let's say they're both named SKELETON.
So the first step is to create the configuration file and directory:

example#
example#
example#

cd /sys/conf
cp GENERIC SKELETON
mkdir .. /SKELETON

Then edit the SKELETON config file to reflect the presence, in your system, of
the Skeleton board. As you can see by checking config(8), each line in the file
describes a different device -thus, you'll simply need to add lines that describe
the installation of the Skeleton board. The exact format of those lines will
depend upon the address space within which the board is to be installed.

The address space that's given in the kernel config file will determine the
address-space mappings that are set up by the MMU - the virtual addresses that
the driver receives from the kernel, and then treats as pointers to the device's
registers, will be within the address space given here. What's important is that
the driver writer know and specify, at this point, the number of bits in the device
address, and the number of bits in its data-access length.

The Skeleton board, as we've defined it, is an 1/0-mapped Multibus device with
an eight-bit status and an eight-bit data register. Thus, in a Sun-2 Multibus
machine, it would be installed in 1/0 space; if we put it at offset Ox60 0 within
that space, we'd add the following line to SKELETON:

device skO at mbio? csr Ox600 priority 2

This says that we have a sk device (the first device is always, by convention,
number 0) on the Multibus, which the control/status register (device register) is
at Multibus I/0 address Ox600 (this is passed to xxprobe at boot time), and that
the device will interrupt at level 2.

If our machine is a Sun-2 VMEbus machine, we'll install the Skeleton device
within vme16dl6 by way of a Multibus-VMEbus adapter. We choose
vmel 6dl 6 because it's the smallest address space:

device skO at vmel6d16? csr Ox600 priority 2 vector skintr OxC8

This says that, when plugged into an adapter board, the vector number OxC8 is
set up to route to the skintr routine. (Vector numbers OxC8 through OxFF
are reserved for user devices). Notice that Ox600 within mbio maps directly
to Ox600 within vmel6d16.

On a Sun-3, it would likewise be reasonable to choose the smallest of the avail
able address spaces:

Each of these config-file entries specify the installation of the Skeleton device for
either a Multibus or a VMEbus systems. It's fine for one config file to contain
both entries - con£ ig will know the type of system that it is running on, and
automatically use the right entry.

122

Only very rudimentary error checking is done on the configfile. For example, if
you declare a device attached to a controller, you must declare the controller as
well. Also, a sanity check is done on the timezone and date entries. The check
ing, however, is not comprehensive.

One more point about the config file. During the development process, you prob
ably maintained a file named sk. h, which indicated to your driver how many
devices it had to manage. Now, the number of installed devices will be deter
mined, for each driver, by conf ig, and it will generate the header file for you.

Now, you can go on with the process of building the new kernel. The next step is
to edit conf. c, adding to it the names of the entry point routines for the Skele
ton driver, and then installing those routines into the kernel's character device
switch cdevsw. The following code accomplishes these two purposes:

#include "sk.h"
hf NSK > 0
int skopen(), skclose(), skread(), skwrite(), skmrnap();
#else
#define skopen nodev
#define skclose nodev
#define skread nodev
#define skwrite nodev
#define skmrnap nodev
#endif

struct cdevsw cdevsw[]
{

skopen, skclose, skread, skwrite,
nodev, nodev, nodev, 0,
seltrue, skmmap,

} '

This will add the driver's routines to cdevsw if NSK is greater than O {NSK is,
as already explained, calculated by config). Note well that the position in the
cdevsw where we've installed our routines (the exact position depends, of
course, upon how many device are already installed) is the same as the major
device number which we'll later assign to all devices driven by this driver-the
major number is an index into cdevsw.

The entries in cdevsw are, in order, xxopen, xxclose, xxread, xxwrite,
xxioctl, xxstop and xxreset, a tty structure pointer, and finally,
xxselect and xxmmap. The Skeleton driver doesn't have an xxioctl routine
so this entry is set to nodev, the special routine that always returns an error.
Since our device is not a tty it doesn't have a xxstop routine (used for flow flow

Chapter 7 - Configuring the Kernel 123

control) nor does it have a tty structure. xxreset is never used so all devices
set its entry to nodev. xxselect is called when a user process does a
select(2) system call; it returns 1 if the device can be immediately selected.
Since the Skeleton device is write only and arbitrarily fast, it's always selectable
- so we'll use the default sel true routine that always returns 1.

The next step is to edit the file that tells config how to locate the driver source
code. This source code will not be common to all Sun systems, and thus its path
name will go not into files but into files.sun[23). Assuming that the
driver source has been moved into / sys/ sundev, here's the line you must
add to files. sun [23):

sundev/sk.c optional sk device-driver

This says that the file sundev / sk. c contains the source code for the optional
sk device and that it is a device driver.

After adding these lines to your configuration file, you can run conf ig:

example# config SKELETON

config uses SKELETON, files, and files. sun as input, and generates
a number of files in the .. /SKELETON directory. One of these files is the
makefile that contains a dependency tree for any new C source files you
created during the process of adding new drivers (or whatever) to the kernel.
make will use this as its command file when it is actually executed to produce
the new kernel. When config starts generating the makefile it will notify
you with the message:

Doing a "make depend"

Now you can change directory to the new configuration directory,

example# cd .. /SKELETON
example# make

Now you must add a new device entry to the / dev directory. The connections
between the UNIX operating system kernel and the device driver are established
through the entries in the / dev directory. Using the example above as our
model, we want to install the device for the Skeleton driver.

Device entries are made with one of two shell scripts in the / dev directory.
The first, MAKEDEV, is for standard system devices and should be left as is. The
second, MAKEDEV. local, differs only in that it contains entries for user dev
ices, and it is here that entries for new devices should be placed.

It's worth looking inside MAKEDEV to see the kinds of things it does. The lines
of shell script below reflect what you'd add to MAKEDEV. local for the new
Skeleton device. First, there are some lines of commentary:

124

t ! /bin/sh
f MAKEDEV.local 4.45
t Graphics
t sk* Skeleton Board

86/04/15

Then there's the actual shell code that makes the device entries:

sk*)
unit='expr $i : 'sk)''
/etc/mknod sk$unit c 40 $unit
chmod 222 sk$unit

This code extracts the numeric portion of MAKEDEV. local 's argument and
passes it on to mknod and chmod. In the simplest case, we simply say:

example# MAKEDEV.local skO

MAKEDEV. local then makes the special inode / dev I skO for a character
special device with major device number 40 and minor device number 0, and
then sets the mode of the file so that anyone can write to the device.

Having added the new device entry, you can install the new system and try it out.

example# cp /sys/SKELETON/vmunix /vmunix+
example# halt

The system here goes through the halt sequence, then
the monitor displays its prompt, at which point you can
boot the system in single-user state

> b vmunix+ -s
The system boots up in single user state and
then you can try things out

example#

If the system appears to work, save the old kernel under a different name and
install the new one in /vmunix:

example#
example#
example#
example#

cd /
mv vmunix vmunix
mv vmunix+ vmunix

Make sure that the new version of the kernel is actually called vmunix because
programs like ps and net stat use that exact name in collecting information
they need from runtime tables. If the running version of the kernel is called
something other than vmunix the results from such programs will be wrong.

~~sun
~· microsystems

7 .3. Devices that use Two
Address Spaces

Chapter 7 - Configuring the Kernel 125

Normally, devices interface to the system by way of a single address space.
However, there are exceptions. Some Multibus devices have registers in Mul
tibus 1/0 space and memory in Multibus memory space. And there are any
number of VMEbus devices coming on the market that have memory in 24 or
32-bit VME space while keeping their control and status registers in 16, or even
8-bit, VME space.

Unfortunately, such situations can't currently be handled in a clean fashion
because the kernel configuration program (config) can't cope with dual-space
devices. The xxprobe routine is the core of the problem, since it deals with
only a single space.

There are, fortunately, two ways to work around the problem:

o The first is easier, but rather inelegant. It consists of treating the device as if
it were two devices, and of writing two separate "drivers" for it. So, for
example, if we were to have an new, dual-space, VMEbus version of the
Skeleton device, we'd add the following two lines to the config file:

Skeleton Memory Space
device skmO at vme32d32? csr OxDOOOOOOO priority 3
Skeleton Register Space
device skrO at vme16d16? csr OxDOOO priority 3 vector skintr Ox88

It's also necessary to have two entries in files. sun:

sundev/skm.c
sundev/skr.c

optional skm device-driver
optional skr device-driver

And it's necessary to have a second "driver". Actually, all of the real driver
code goes into skr. c, which manipulates the device registers. The second
driver, skm. c, consists entirely of a probe routine - all its other rou
tines are null.

Both sides of the driver, skr. c and skm. c, include the same register
header file skreg. h. skreg. h contains an external declaration for an
array of structures (one for each instance of the device) that contain what
ever information s kr. c needs from the memory-side probe routine:

extern struct sk_devinfo sk_devinfo[NSK];

All that remains is for the memory-side probe routine to initialize
sk devinfo.

o There's a second procedure for installing dual-space devices. It's a bit
harder to use, but it doesn't require a stub driver containing only a probe
routine.

Pick one of the two device installation addresses for normal treatment in the
config file. It doesn't matter which one you pick, unless the device is a
memory-mapped Multibus device, in which case you must pick the address
in Multibus Memory space. Otherwise just pick the one that's most con
venient for your xxprobe routine to use to test the device installation. The
registers and memory in this first space will then be automatically mapped

126

7 .4. Booting Kernels on
Diskless Workstations

into kernel virtual space (as usual) by the autoconfiguration process.

Then use the config file flags word to communicate the second space
installation address to your driver. The driver will then find that address in
md->md_flags and be able to access it from either the xxattach or
xxslave routine; it's best (for most character devices) to pick it up at
xxattach time. It'll then be necessary to use rmalloc to allocate (from
kernelmap) virtual space for the second-space registers/memory and to
call ma pin to map them into kernel space. (It's the details of calling
mapin that make this approach to dual-space installation more difficult than
the first. These details are not covered in this manual, though you will find
an example call to map in in the Sun-2 Color Graphics Driver listed in the
appendix).

If you're working on a diskless workstation, it's still possible (though awkward)
to develop a driver, link it into a kernel and then boot that kernel on your server.

o On Sun-2 machines, this is possible because you can boot a program (in this
case the new kernel) which is on your private root nd partition. To do so,
give the following command:

> b xx(0,0,40) program_ name

o Where xx indicates either ie, ec, or (on a Sun-3) le, depending upon
which of the Ethernet devices is installed on the diskless workstation.

On Sun-3 machines you can do the same boot by using tftp. See the boot(8s)
man page for more details.

~~sun
~~ microsystems

A
,: -!:!'" ','.!,''

Using the Sun CPU PROM Monitor

Using the Sun CPU PROM Monitor.. 129

A. l. PROM Monitor Command Syntax ... 129

A.2. PROM Monitor Syntax for Memory and Register Access 129

A.3. PROM Monitor Command Descriptions.. 131

A.I. PROM Monitor
Command Syntax

A.2. PROM Monitor
Syntax for Memory
and Register Access

A
Using the Sun CPU PROM Monitor

The monitor understands commands in quite a simple format. The format is:

<verb>< space>*[< argument>]< return>

<verb> is always one alphabetic character; case does not matter.

<space>* means that any number of spaces are skipped here.

< argwnent > is normally a hexadecimal number or a single letter; again, case
does not matter. Square brackets ' []' {ndicate that the argument
portion is optional.

<return> means that you should press the carriage-return key.

When typing commands,< backspace> and< delete> (also called< rubout>,
generated by the key labelled< backtab> on the non-VTlOO Sun keyboard) erase
one character; control-U erases the entire line.

Several of the commands open a memory location, map register, or processor
register, so that you can examine and/or modify the contents of the specified
location. These commands include a, d, e, 1, m, o, p, and r.

Each of these commands takes the form of a command letter, possibly followed
by a hexadecimal memory address or register number, followed by a sequence of
zero or more 'action specifier' arguments. The various options are illustrated
below, using thee command as an example. You type the parts as shown in
bo1d typewriter font, with a< return> at the end of each command.

If no action specifier arguments are present, the address or register name is
displayed along with its current contents. You may then type a new hexadecimal
value, or simply <return> to go on the next address or register. Typing any
non-hex character and < return> gets you back to command level. For registers,
'next' means within the sequence of registers:
DO-D7 the data registers
A0-A6 the address registers
SS the system stack pointer (Note that Sun-3 machines, being based upon

MC68020 processors, actually have three stack pointers: USP is the
user stack pointer, ISP is the interrupt stack pointer and MSP is the
master stack pointer. In general, SS is equivalent to ISP, though this
can change as SR changes).

~~sun ~~ rnicrosysterns
129

130

US the user stack pointer
SF the source function code register
OF the destination function code register
VB the vector base register
SC the system context register
UC the user context register
SR the status register
PC the program counter

For example, the following command sets consecutive locations Ox1234 and
Ox1236 to the values Ox5678 and OxOOOO respectively:

> e1234
001234: 007F? 5678
001236: 51A4? 0
001238: C022? q
>

A non-hex character (such as question mark) on the command line means read
only:

> elOOO?
001000: 007F
>

Multiple nonhex characters read multiple locations:

> elOOO ???
001000: 007F
001002: 0064
001004: 1234
>

A hex number on the command line does store-only:

> elOOO 4567
001000 -> 4567
>

Multiple hex writes multiple locations:

> elOOO 1 2 3
001000 -> 0001
001002 -> 0002
001004 -> 0003
>

Nonhex followed by hex reads, then stores.

> elOOO? 346
001000: 007F -> 0346
>

Finally, reads and writes can be interspersed:

A.3. PROM Monitor
Command
Descriptions

Appendix A - Using the Sun CPU PROM Monitor 131

> elOOO? 1?? 3 4
001000: 007F -> 0001
001002: 0064
001004: 1234 -> 0003
001006 -> 0004
>

Spaces are optional except between two consecutive numbers. When actions are
specified on the command line after the address, no further input is taken from
the keyboard for that command; after executing the specified actions, a new com
mand is prompted for. Note especially that these commands provide the ability
to write to a location (such as an 1/0 register) without first reading from it.

In the descriptions listed below, the command letters in typewriter text
are the commands, and things in italic font represent things that you substitute.
Things in brackets are optional.

A [n][actions]

B [!][args]

Open A-register n (O:s;n::;;1, default zero). A7 is the System
Stack Pointer; to see the User Stack Pointer, use the r com
mand. For further explanation, see PROM Monitor Syntax
for Memory and Register Access above.

Boot. Resets appropriate parts of the system, then bootstraps
the system. This allows bootstrap loading of programs from
various devices such as disk, tape, or Ethernet. Typing 'b?'
lists all possible boot devices. Simply typing 'b' gives you a
default boot, which is configuration dependent. For an expla
nation of the booting options, see System Administration for
the Sun Workstation.

If the first character of the argument is a '! ', the system is not
reset, and the bootstrapped program is not automatically exe
cuted. To execute it, use the 'C' command described below.

C [addr] Continue a program. The address addr, if given, is the
address at which execution will begin; default is the current
PC. The registers will be restored to the values shown by the
A, D, and R commands.

D [n][actions] Open D-register n (O:s;n::;;1, default zero). For a detailed
explanation, see PROM Monitor Syntax for Memory and
Register Access above.

E [addr][actions] Open the word at memory address addr (default zero) in the
address space defined by the 'S' command. For a detailed
explanation, see PROM Monitor Syntax for Memory and
Register Access above.

F [address_ I][address _2][data][size]

~~sun ~ mlcrosystems

Sun-3 only. Fill address space from the lower address
specified by address_ I, up to and including the higher
address specified by address_ 2, with the constant data, of

132

size b, w, or 1, where b specifies a byte pattern, w specifies a
word (16-bit) pattern, and 1 specifies a long word (32-bit)
pattern. 1 (for long word) size is used if the size parameter is
not specified.

G [addr][param] Start the program by executing a subroutine call to the
address addr if given, or else to the current PC. The values
of the address and data registers are undefined; the status
register will contain Ox27 00. One parameter is passed to
the subroutine on the stack; it is the address of the remainder
of the command line following the last digit of addr (and
possible blanks).

Here are some notes on the monitor's g command when
UNIX is in memory:

Typing gO gets a

panic: zero dump.

Typing g4 dumps the kernel stack, giving the saved pro
gram counter and framepointer for each procedure on the
kernel stack as well as the first four arguments passed to
these procedures. This stack trace looks very similar to
the the one you get from UNIX when certain nasty condi
tions rear their ugly head. This tracing facility can be
used at any time without destroying any system state, so
UNIX can be continued.

H Sun-3 only. Display a menu of monitor commands and their
descriptions.

K [number] If number is O (or not given), this does a 'Reset Instruction':
it resets the system without affecting main memory or maps.
If number is 1, this does a 'Medium Reset', which re
initializes most of the system without clearing memory. If
number is 2, a hard reset is performed and memory is
cleared. This causes the PROM-based diagnostics to be run,
a process which can take several minutes.

L [addr][actions] Open the longword at memory address addr (default zero) in
the address space defined by the 'S' command. For a
detailed explanation, see PROM Monitor Syntax/or Memory
and Register Access above.

M [addr] [actions] Opens the Segment Map entry which maps virtual address
addr (default zero) in the current context. The choice of
supervisor or user context is determined by the 'S' command
setting (0-3 = user; 4-7 = supervisor). See PROM Monitor
Syntax for Memory and Register Access above.

o [addr][actions] Opens the byte location specified (default zero) in the address
space defined by the 'S' command. See PROM Monitor Syn
tax for Memory and Register Access above.

~~sun ~~ mlcrosystems

Appendix A - Using the Sun CPU PROM Monitor 13 3

P [addr] [actions] Opens the Page Map entry which maps virtual address addr
(default zero) in the current context. The choice of supervi
sor or user context is determined by the 'S' command setting
(0-3 = user; 4-7 = supervisor). With each page map entry,
the relevant segment map entry is displayed in brackets. See
PROM Monitor Syntax for Memory and Register Access
above.

Q [addr] [actions] Sun-3 only. Opens the EEPROM address specified by addr
(default zero) in the EEPROM address space. All addresses
are referenced relative to the base of the EEPROM in physi
cal address space. The monitor checks to ensure that
specified addresses are within the bounds of the EEPROM
physical address space. This command is used to examine or
modify configuration parameters specifying things such as
the amount of memory to test during self-test, whether to
display a standard banner or a custom banner, if a serial port
(A or B) is to be used for the system console, and so on. See
PROM Monitor Syntax for Memory and Register Access
above.

R [actions] Opens the miscellaneous registers (in order): SS (Supervisor
Stack Pointer), US (User Stack Pointer), SF (Source Function
Code), DF (Destination Function Code), VB (Vector Base),
SC (System Context), UC (User Context), SR (Status Regis
ter), and PC (Program Counter). Alterations made to these
registers (except SC and UC) do not take effect until the next
'C' command. For further explanation, see PROM Monitor
Syntax for Memory and Register Access above.

S [number] Sets or queries the address space to be used by subsequent
memory access commands by setting the function code regis
ter in the CPU. The value in this register determines what
address space is to be used in the subsequent decoding of
addresses. number is the function code to be used, ranging
from I to 7. The most useful values are I (user data), 2 (user
program), 3 (memory maps), 5 (supervisor data), and 6
(supervisor program). If no number is supplied, the current
setting is printed. Upon entry into the monitor, this is set to 5
if the program was in supervisor state, or to 1 if the program
was in user state.

134

U [arg] The U command manipulates the serial ports and switches the
current input or output device. The argument may have the
following values ('{AB}' means that either 'A' or 'B' is
specified):

{AB}

{AB}io

{AB}i
{AB}o
k
ki
s
so
ks, sk
{AB}#

e
ne
uaddr

Select serial port A (or B) as input and output
device
Select serial port A (or B) as input and output
device
Select serial port A (or B) for input only
Select serial port A (or B) for output only
Select keyboard for input
Select keyboard for input
Select screen for output
Select screen for output
Select keyboard for input and screen for output

Set speed of serial port A (or B) to# (such as
1200, 9600, ...)
Echo input to output
Don't echo input to output
Set virtual serial port address

If no argument is specified, the U command reports the current values of
the settings. If no serial port is specified when changing speeds, the
'current' input device is changed.

At power-up, the following default settings are used: The default console input
device is the Sun keyboard or, if the keyboard is unavailable, serial port A. The
default console output device is the Sun screen or, if the graphics board is una
vailable, serial port A. All serial ports are set to 9600 baud.

V [address_J][address_2][size]

w

X

Sun-3 only. Display the contents of addresses from the lower
address specified by address_ J, up to and including the
higher address specified by address_2, in a format specified
by size, where size is one of b, w, or 1, where b specifies byte
format, w specifies word (16-bit) format, and 1 specifies long
word (32-bit) format. 1 (for long word) size is used if the
size parameter is not specified. Type a I RETURN I character
to suspend the display for viewing; type another l RETURN I
character to restart the display. Press the I SPACE I bar to
quit displaying and return to the monitor command mode.

Sun-3 only. Allows a subroutine to be called from the moni
tor. The first argument is the address of the routine, while
subsequent arguments are interpreted as parameters.

Sun-3 only. Present a menu of extended boot-path tests.

B

Summary of Device Driver Routines

Summary of Device Driver Routines .. 137

B.1. Standard Error Numbers... 137

B.2. Device Driver Routines ... 137

xxattach -Attach a Slave Device ... 137

xxc1ose -Close a Device .. 138

xxintr-Handle Vectored Interrupts... 138

xxioctl - Miscellaneous 1/0 Control ... 139

xmimap - Mmap a Page of Memory .. 140

.:ominphys -Determine Maximum Block Size 141

xxopen - Open a Device for Data Transfers ... 141

xxpol1-Handle Polling Interrupts... 142

xxprobe - Determine if Hardware is There ... 142

xxread- Read Data from Device ... 143

xxstrategy Routine ... 143

xxwrite-Write Data to Device... 144

B.1. Standard Error
Numbers

B.2. Device Driver
Routines

.xxattach -Attach a Slave
Device

B
Summary of Device Driver Routines

The system has a collection of standard error numbers that a driver can return to
its callers. These numbers are described in detail in intro(2), the introductory
pages of the System Interface Manual. A complete listing of the error numbers
appears in <sys/errno. h>.

These routines actually compose the bulk of the device driver. Some of them,
like .xxioctl, are optional. Others, like xxprobe, must appear in every driver.
Omitted from this section is the .xxs lave routine, which appears only in block
device drivers.

When a user program makes a system call that involves I/0 devices, it's
translated by the kernel into a call to the appropriate driver routine. However,
when that driver routine is called, its parameters are no longer the same as the
parameters that the user program passed to the system call - they will have been
translated into parameters reflecting the actual run-time environment of the
drivers, an environment set up and initialized by conf ig and the
autoconfiguration process and then maintained by the kernel and the drivers
themselves. For example, a user program will call

write (fileno, address, nbytes)
int fileno;
char *address;
int nbytes;

but the kernel will translate this into

xxwrite(dev, uio)
dev_t dev;
struct uio *uio;

by the time it calls the driver's xxwri te routine .

xxattach (md)
struct mb_device *md;

.xxat tach does boot-time, device-specific setup and initialization. It's com
monly used in disk and tape drivers for setup tasks like reading labels, and in
character drivers for the initialization of interrupt vectors and the reserving of
blocks of memory. Its proper tasks are not limited to the initialization of actual

137

138

xxclose - Close a Device

xxintr - Handle Vectored
Interrupts

hardware devices - xxa t t ach is also used to set up and initialize local data
structures.

When it needs to set a device interrupt-vector number, xxattach finds it in the
md_intr->v_vec field of the mb_device structure. A NULL value in this
field indicates that the host machine is Multibus based and does not support vec
tored interrupts. On VMEbus machines md _ intr->v _ vec is the interrupt
vector number given for the device in the kernel config file and must be present.

xxattach can also be used to set the 32-bit argument that's subsequently passed
to xxintr. This argument (contained in md->v _ vptr) is initially set to the
vector number of the interrupting device, but it's often convenient to reset it to
contain a pointer to a local structure .

.xxclose(dev, flags)
dev_t dev;
int flags;

xxclose does whatever it has to do to indicate that data transfers can't be made
on the device until it's been reopened. This may involve nothing at all, or it may
include resetting and quieting the device, flushing data buffers, and releasing or
unlocking resources (or unlocking the device itself if it's opened exclusively).
Since xxclose is called only when the last user process which is using the dev
ice closes it, xxclose must clean up for all user processes which have had the
device open. xxclose doesn't need to report an error, although it can.flags,
incidently, is the same as it is for xxopen .

.xxintr (ctrl_num)
int ctrl_num;

xxintr is responsible for fielding vectored interrupts from the device. As such,
it is specified (with its interrupt vector) in the kernel config file. As an interrupt
routine, xxintr (and any routines that it calls) is prohibited from calling
sleep.

xxintr receives one 32-bit parameter, which is, by default, the vector number of
the device that interrupted. However, you can arrange for it to receive something
else by changing the value in md->v _ vptr. (See xxattach, above).

In character drivers which, like block drivers, make use of physic and its asso
ciated structures, mechanisms and routines, xxintr is used to indicate when the
device is finished with one chunk and ready for the next xxintr is also respon
sible for error handling and reporting. More specifically:

a xxin tr should check the device for an error every time it's called. It can
also check the driver state against the device state to ensure that the device
is, in fact, doing what the driver expects it to be doing. Upon finding an
"impossible" or unrecoverable error, xxintr should panic. But for regu
lar errors it should call printf (or uprintf), flag the error in the 1/0
buffer, and then return.

xxioct1 - Miscellaneous 1/0
Control

Appendix B - Summary of Device Driver Routines 139

a The error is flagged by setting the B _ ERROR bits in the the buffer
b _flags field (and, if an error code other that E IO is desired, by assign
ing that error code into the buffer b _ error field). The error code will then
be propagated up the the user by way of physio. physio checks to see
if the error flag has been set in the buffer, and if it has, passes the error code
up to the user program, which usually plugs it into the global error register
errno. intr doesn't itself return anything.

a A retry attempt can be made before giving up and taking the error return.
Whether or not this is advisable is entirely dependent on the specific device
and error characteristics.

a The error return should abort the 1/0 request that produced the error and then
place both the device its driver in their normal idle states.

xxioctl(dev, cmd, data, flag)
dev_t dev;
int cmd;
caddr_t data;
int flag;

The device-driver entry routines, taken as a set, are intended to constitute a uni
form abstract interface capable of accommodating all possible 1/0 devices.
Obviously, such devices differ greatly, and thus the need for this routine -
xxioctl is the escape mechanism by which miscellaneous operations are
accommodated.

These functions vary greatly - almost anything is possible. The range of possi
bilities requires a very general interface, and xxioctl has one. The cmd vari
able identifies a specific device control operation, and is typically used by
xxioctl as the index into a switch statement. The data parameter is the real
escape hatch, a pointer to an array up to 127 bytes in length. This array, over
which the driver and its users will overlay a driver-specific structure, can be
treated as both an input parameter by which user programs send data to the driver
and as an output parameter by which the driver returns data to its users. flag is
set to the f_flags field of the file structure. The file structure, together
with the file-mode flags to which its f _ flags field can be set (FREAD,
FWRITE, and so on) is defined in <sys/file. h>. The driver is free to use
flag to make its operation sensitive to the manner in which the file was opened by
the user.

In <sys/ ioctl. h> will be found a collection of macros which encode
parameter size and read/write control information into ioctl command codes.
These macros tell the kernel, on a command by command basis:

a How many of the maximum of 127 bytes in the ioctl parameter are
significant when that parameter is read.

a How many of these bytes are significant when the parameter is written.

a If the parameter bytes should be read into kernel space before calling
xxioctl.

140

xxmmap - Mmap a Page of
Memory

o If they should be read into user space after calling xxioctl.

The Versatec Interface driver in the Sample Driver Listings appendix of this
manual contains some simple examples of the use of these ioctl macros.
(More complex examples can be found in <sys/ ioctl. h>). The Versatec
Interface driver defines two ioctl command codes:

:ftdefine
:ftdefine

VGETSTATE IOR(v, 0, int)
VSETSTATE _IOW(v, 1, int)

The first parameter of the ioctl macros is an ASCII character that serves to
group together each driver's command codes. It must be different for each dev
ice - in this case, it's "v" for "Versatec". The second parameter is the command
code itself. The third is the size of the ioct 1 argument, which cannot exceed
127 bytes. Note that the size is given as the name of the structure which will be
used to interpret the parameter array. The macros _IOR, _row and _IOWR
then use the size of operator to determine the number of bytes consumed by
the structure.

The definitions of such ioctl-related structures, together with the command
code definitions themselves, must be collected into a user accessible include file.
Such include files are usually, though not necessarily, kept in
/usr/include/sys.

When the kernel processes the ioctl system call, translating its parameters
into the terms appropriate to a xxioctl driver routine, it consults the read/write
encode bits in the command code. If the read bit is set, then the argument is read
into an buffer in kernel space, and a pointer to that buffer is passed to the driver
ioctl routine. Likewise, if the write bit is set, the argument is copied back into
user space after command execution is completed.

xxioctl does whatever it has to do, then returns O if there were no errors, an
error code if there were. ENOTTY is the code used if the requested command
did not apply to the device. The kernel passes error codes up to the user pro
gram, which usually plugs them into errno.

xxmrnap(dev, off, protection)
dev_t dev;
off_t off;
int protection;

xxmmap is called for PTE information about the page (at offset off) of dev's
memory. (This information is what the kernel needs to map the page to a virtual
address). xxmmap should first check that off doesn't exceed the device
memory size:

if (off>= XXSIZE)
return (-1);

for this would cause the mapping of an area greater than the device memory.
xxmmap returns a subset of the page table entry (PTE) containing the page frame
number and the page type to its caller in the kernel (it selects out these two fields
by masking the PTE with PG_PFNUM). xxmmap is called iteratively to perform

xxminphys - Determine
Maximum Block Size

xxopen - Open a Device for
Data Transfers

Appendix B - Summary of Device Driver Routines 141

a mapping requested by a call to mmap - the looping and all of its bookkeep
ing, as well as the actual mapping, is performed by the kernel in a way that's
transparent to the driver.

On Sun-3/260 and Sun-3/280 systems, xxmmap should remove kernel pages from
the virtual-address cache. It does this by calling vac_disable_kpage for
every address it's called to remap. For example:

page= getkpgmap(addr + off) & PG_PFNUM;
vac_disable_kpage(addr + off);

xxmmap returns -1 to the kernel if it can't do the mapping, otherwise it returns its
PTE subset. Upon receipt of a -1, the kernel returns the error code E INVAL
(Illegal argument) to the user program, where it's usually plugged into the global
error variable errno.

unsigned xxminphys(bp)
register struct buf *bp;

xxminphys determines a "reasonable" block size for transfers, so as to avoid
tying up too many resources . .xxminphys is passed as an argument to phy
sio. The system version of the xxminphys function, minphys, may be used
by any driver. xxminphys should perform the calculation:

int block; /* some reasonable block sixefor transfers * I

if (bp->b_bcount > block)
bp->b_bcount block;

.uopen(dev, flags)
dev_t dev;
int flags;

xxopen is called each time the device is opened, and may include any device
specific initialization. Typically, it will:

o begin by validating the minor device number and doing other device-specific
error checking.

o Then if everything is ok, it will initialize the device (for example by clearing
registers, enabling interrupts or checking for power-up errors) and possibly
the local data structures. This structure initialization may include locking the
device if it's exclusive use, or allocating driver resources - for example
allocating dynamic buffers that'll be needed later).

o Finally, xxopen will typically wait for the device to come on-line, and
return an error if it doesn't.

The integer argument flags indicates if the open is for reading, writing, or for
both. The constants FREAD and FWRITE (from <sys/ file. h>) are

142

xxpoll - Handle Polling
Interrupts

xxprobe - Determine if
Hardware is There

available to be AND'ed withjlags.

The minor device number encoded in dev is of concern only to the device driver
itself. It can itself be encoded to contain various kinds of information, as needed
by the driver. The driver developer will want to provide macros to break out
encoded subfields. dev may encode a unit or driver number, a special feature, or
an operating mode.

xxopen returns ENXIO (No such device or address) if the minor device number
is out of range, ENODEV (No such device) if an attempt was made to open the
device with an inappropriate mode or EIO (I/0 Error) to indicate an I/0 error in
the course of an attempted initialization. If the open is successful, xxopen
returns 0. The kernel will return the error code to the user program, where it is
usually plugged into the global error variable errno.

xxpoll ()

xxpoll is responsible for fielding non-vectored interrupts from the device. In
situations where multiple devices share the same interrupt level, xxpoll must
determine if the interrupt was actually destined for this driver or not. xxpoll
returns O to indicate that the interrupt was not serviced by this driver, and non
zero to indicate that the interrupt was serviced. It is a gross error for xxpoll to
say that it serviced an interrupt when it did not.

If a device driver handles both vectored interrupts and polling interrupts, xxpoll
typically calls the xxintr routine with the proper arguments, normally the unit
number of the device that interrupted. sleep may never be called from
xxpoll, or, for that matter, from any of the lower-half routines.

xxprobe(reg, unit)
caddr_t reg;
int unit;

xxprobe determines whether the device at the kernel virtual address reg actually
exists and is the correct device for this driver. The method by which it accom
plishes this is impossible to standardize, for devices provide no uniform means of
identification. Indeed, some devices fail to provide even reasonable non-standard
means of identification.

The kernel provides a set of function to help with probing. These functions can
probe an address, recover from the bus error that will occur if no device is
installed at that address, and return with an indication as to whether such a bus
error occurred. These functions are peek, pee kc, poke, and pokec.

It's possible for probe to check the value of the reg parameter to ensure that
the device isn't installed at an address that it can't itself address. The device's
entry in the kernel config file determines which address space it's mapped into,
but it's sometimes possible for the device itself to be configured differently. The
driver can check, for example, that reg doesn't contain an address greater that
OxFFFFF (that is, an address with more than 20 significant bits) if the device is
configured for 20-bit references. ·~~,!!

xxread - Read Data from
Device

xxstrategy Routine

Appendix B - Summary of Device Driver Routines 143

It's also possible for xxprobe to do some device initialization, even though such
initialization is properly the job of xxattach. This can make sense if such ini
tialization allows xxprobe to identify and verify the device, but it should only
do the amount of initialization necessary to determine if the device is really
there. It definitely should not allocate any memory that won't be used if the dev
ice isn't found, and it should not assume that just because it found a device that
the system will choose to include that device in its configuration

If the correct device is found at the probed location, xxprobe returns (sizeof
(struct xxdevice)). (This is the size of the device registers in I/0 space if the
device is an I/0 mapped Multibus device; otherwise it's the size of the device
registers in memory space). If no device is found at the expected location, or if
the device found is not the one that was expected, xxprobe returns a 0. If it
doesn't, the kernel will be incorrectly led to believe that a device is present, and
future attempts to contact it will cause the kernel to panic with a bus error.

xxread (dev, uio)
dev_t dev;
struct uio *uio;

xxread is the high-level routine called (in character device drivers) to perform
data transfers from the device . .xxread must check that the minor device
number passed to it is in range. If the minor device number is out of range,
.xxread returns like so:

if (XXUNIT(dev) >= NXX)
return (ENXIO);

Subsequent actions of xxread differ depending on whether the device is a tty
style character-at-a-time device or a device that buffers its I/0 into blocks.

For block transfers, xxread uses physio, its associated mechanisms, and the
xxstrategy. buf is here an array of locally declared buffers:

return (physio(xxstrategy, &buf[minor(dev)],
dev, B_READ, minphys, uio));

If xxstrategy fails, xxread passes its error code up to the kernel. The kernel
then passes it on to the user program, which usually plugs it into the global error
variable errno.

xxstrategy (bp)
register struct buf *bp;

xxstrategy is a high-level I/0 routine designed to be called from physio.
Its name derives from its role in block-device drivers, where.xxstrategy has
responsibility for reordering the I/0 request queue so as to increase the overall
I/0 bandwidth. In character devices (even those which queue I/0) such reorder
ing is to no advantage, and xxstrategy's major function is structural. It
allows the xxread and xxwr i te routines to share their common code in a rou
tine designed to be called from physio . .xxstrategy returns no error code to
its caller in the kernel. Instead, errors that occur in the course of the I/0

.§,!!1!!

144

xxwrite- Write Data to
Device

operation are reported by xxi n tr by way of the buffer header and passed along
by x.xstrategy.

xxwrite(dev, uio)
dev_t dev;
struct uio *uio;

x.xwr i te is the high-level routine called (in character device drivers) to perform
data transfers to the device. x.xwr it e must check that the minor device number
passed to it is in range. If the minor device number is out of range, x.xwr it e
returns like so:

if (XXUNIT(dev) >= NXX)
return (ENXIO);

Subsequent actions of x.xwr it e differ depending on whether the device is a tty
style character-at-a-time device or a device that buffers its 1/0 into blocks.

For block transfers, x.xwri te uses physic, its associated mechanisms, and the
x.xstrategy. buf is here an array oflocally declared buffers:

return (physio(xxstrategy, &buf[minor(dev)],
dev, B_WRITE, minphys, uio));

If xxstrategy fails, x.xwr i te passes its error code up to the kernel. The ker
nel then passes it on to the user program, which usually plugs it into the global
error variable errno.

C
............... ,.,.,., . ./~,...,:k.;:,,.,. iK~?:w.-.:x:::::-x«:.2,:w.:::. r-::.:::.-:.?:w:-.-. :«::..-:::~-:.-$»: .. -.-.::::::~-::wn:.·. ,:,. ,..,,. . K,,,.,. .. :...: »:-.-. . ..:•:-:-, .:.·.:::.:.:,:.:.:::.:::.:.: .. ::.: .. ::: ..,:: ::,:,:, .. :: ::. . h:: .:.,:~:::.-:,.,.,~<*•

Kernel Support Routines

Kernel Support Routines ... 147

copyin - Move Data From User to Kernel Space 147

copyout - Move Data From Kernel to User Space 147

CDELAY - Conditional Busy Wait .. 147

DELAY - Busy Wait for a Given Period ... 148

iodone - Indicate I/0 Complete .. 148

iowait - Wait for 1/0 to Complete ... 148

getkpgmap - get PTE for Virtual Address ... 148

gsigna1- Send Signal to Process Group.. 148

kmem _a11oc -Allocate Space from Kernel Heap 149

kmem_free-Return Space to Kernel Heap... 149

MBI _ ADDR - Get Address in DVMA Space ... 149

mbre1se - Free Main Bus Resources... 149

mbsetup - Set Up to Use Main Bus Resources 149

panic-Reboot at Fatal Error.. 150

peek, peekc - Check and Read an Address 150

physio - Block I/0 Service Routine .. 150

poke, pokec - Check and Write an Address 152

print£ - Kernel Printf Function ... 152

pritosp1 - Convert Priority Level ... 153

psigna1 - Send Signal to Process ... 153

rma11oc - General-Purpose Resource Allocator 153

rmfree - Recycle Map Resource .. 154

s1eep - Sleep on an Event .. 154

sp1n - Set CPU Priority Level ... 155

sp1x - Reset Priority Level ... 155

swab - Swap Bytes .. 155

timeout - Wait for an Interval .. 155

uiomove - Move Data To or From an uio Structure 156

untimeout - Cancel timeout Request .. 156

uprintf -Nonsleeping Kernel PrintfFunction 156

ureadc and uwritec - uio Structure Read and Write 157

vac _ disab1e _ kpage - Stop Caching of a Kernel Page 157

wakeup - Wake Up a Process Sleeping on an Event........................ 157

copyin - Move Data From
User to Kernel Space

copyout - Move Data From
Kernel to User Space

CDELAY - Conditional Busy
Wait

C
Kernel Support Routines

These routines are in alphabetical order, on the assumption that this will make
them easier to find than any "logical" order.

copy in moves data from the user address space to the kernel address space. It is
commonly used when writing xxioctl routines. See copyout.

copyin(udaddr, kaddr, n)
caddr_t udaddr, kaddr;
u_int n;

where kaddr is a kernel virtual address, udaddr is a user virtual address, and n is
the number of bytes to copy in. Returns O ifno error occurs and EFAULT on a
memory error.

copyout moves data from the kernel address space to the user address space. It
is commonly used when writing xxioctl routines. See copy in.

copyout(kaddr, udaddr, n)
caddr_t kaddr, udaddr;
u_int n;

where kaddr is a kernel virtual address, udaddr is a user virtual address, and n is
the number of bytes to copy out. Returns O ifno error occurs and EFAULT on a
memory error.

CDELAY(condition, time)
int condition, time;

CDELAY is like DELAY (see below) in that it busy waits for a specified number
of microseconds. It differs, however, in that it has a second argument condition.
Each time it goes through its busy-wait loop, CDELAY checks condition, and, if
it's true, it immediately returns. In typical usage, condition is a masked subset of
the bits in a device register.

147

148

DELAY - Busy Wait for a
Given Period

iodone - Indicate 1/0
Complete

iowait - Wait forl/0 to
Complete

getkpgmap - get PTE for
Virtual Address

gsigna1 - Send Signal to
Process Group

DELAY(time)
int time;

DELAY busy waits for a specified minimum number of microseconds. That is, it
just spins around using CPU time. It can be useful in situations where a device is
not quite slow enough to justify having its driver go to sleep. In such cases, it's
useful to busy wait for a short time. The reasoning is that while busy waiting is a
waste, servicing an interrupt costs a lot more CPU time.

DELAY is also useful in introducing pauses between accesses to a device with
write latency. A device register may, for example, require multiple sequential
writes, and yet also require delays between the writes. See vpprobe in the
Sample Driver Listings appendix for an example. See CDELAY.

iodone(bp)
struct buf *bp;

iodone is called to indicate that 1/0 associated with the buffer header bp is
complete. iodone sets the DONE flag in the buffer header, then does a
wakeup call with the buffer pointer as argument. It's called from the bottom
half in place of wakeup. See iowait.

iowait(bp)
struct buf *bp;

iowai t waits on the buffer header addressed by bp for the DONE flag to be set.
iowai t actually does a sleep on the buffer header and is called from the top
half in place of sleep. See iodone.

getkpgmap (addr)
caddr t addr;

getkpgmap takes a kernel virtual address and returns the page table entry of the
physical page that's mapped to it. getkpgmap can do much of the work for
the driver xxmmap routine, though that routine must still mask the value returned
from getkpgmap with PG_ PFNUM to select out only the Page Frame Number
and its memory type.

gsignal(pgrp, sig)
int pgrp;
int sig;

Sends signal sig to all of the processes in the process group pgrp. See ps ig
nal.

kmem a11oc - Allocate
Space from Kernel Heap

kmem _ free - Return Space
to Kernel Heap

MBI ADDR - Get Address in
DVMASpace

mbre1se - Free Main Bus
Resources

mbsetup - Set Up to Use
Main Bus Resources

caddr_t kmem_alloc(nbytes)
u_int nbytes;

Appendix C- Kernel Support Routines 149

Allocates nbytes of contiguous kernel memory and returns a pointer to it. Calls
panic is the request can't be satisfied. Note that kmem _ alloc takes a while,
and shouldn't be used frivolously. Also note that it can't, in system releases
prior to 3.2, be called by probe or attach, since the kernel heap from which
it allocates is not yet initialized. Memory allocated with kmem alloc can be
recycled with kmem _ free.

kmem_free(ptr, nbytes)
caddr_t ptr;
u_int nbytes;

Returns the block (allocated by kmem alloc) at ptr to the kernel heap. If the
block has already been freed, or if ptr doesn't indicate an address within the
heap, kmem_free panics. When the block is freed, it is coalesced with adja
cent free blocks to ensure that the free blocks in the heap are as large as possible.

MBI_ADDR(mb_cookie)
int mb cookie;

MBI_ADDR is a macro that takes the integer that is returned by mbsetup. It
returns a 32-bit virtual address, which may be either in the DVMA space or a
VMEbus address space. This is the transfer address that is then given to the bus
master device, though it may first need to be checked to ensure that it is not
larger than the capacity of the device. See mbsetup and mbrelse.

mbrelse(rnd_hd, mbinfop)
struct mb_hd *mb_hd;
int *mbinfop;

mbrelse releases the Main Bus DVMA resources allocated by mbsetup.
Note that the second parameter is a pointer to the integer returned by mbs et up.

mbsetup(md_hd, bp, flag)
struct mb_hd *mb_hd;
struct buf *bp;
int flag;

mbsetup is called to set up the memory map for a single Main Bus DVMA
transfer. It assumes that bp's fields have been set up to define the transfer, which
is generally true, since physio sets them up before calling the driver xxstra
tegy routine. flag is MB_ CANTWAIT if the caller desires not to wait for map
resources (slots in the map or DVMA space) if none are available - it's highly
unlikely that this will ever happen, but if it does mbsetup will return immedi
ately with a 0. In this case its caller can, presumably, wait before trying again.

150

mbsetup is typically called from the driver strategy routine, so when
physio breaks up a large I/0 request, one result is the generation of a series of
calls to mbsetup. (mbrelse is then called from the driver xxintr routine).
mbsetup, like physio, is intended primarily for the use of block drivers,
though character drivers can use it as long as they don't use buffer headers from
the kernel cache. The buffer is double mapped so that the system will consider it
as being in kernel DVMA space as well as in the address space of the process
being serviced.

Upon success, mbset up returns an integer which must be saved for the call to
mbrelse. This integer can also be passed to MBI ADDR.

panic - Reboot at Fatal Error panic(message)
char *message;

peek, peekc - Check and
Read an Address

physio - Block I/0 Service
Routine

panic can be called upon encountering an unresolvable fatal error. It prints its
message to the system console, and then reboots the system, so don't take its use
lightly. (It does have the sense to avoid the reboot if it's already been called
thus preventing recursive calls to panic). A kernel core image is dumped.

peek (address)
short *address;

peekc (address)
char *address;

peek and peekc are called with an address from which that want to read.
Both peek and pee kc return -1 if the addressed location doesn't exist, other
wise they return the value that was fetched from that location. See poke and
pokec.

physio(strategy, buf, dev, flag, minphys, uio)
void (*strategy) ();
struct buf *buf;
dev t dev;
int flag;
void (*minphys) ();
struct uio *uio;

Character drivers sometimes do block 1/0, and when they do it's convenient for
them to use physio. Such drivers resemble simple block drivers in that they
have xxread and/or xxwrite and xxstrategy routines, call those xxstra
tegy routines indirectly through physio, and use buf structures. Too much,
however, should not be made of the similarity. Character-driver xxstrategy
routines typically implement no strategy, and they are not driver entry points.
And while character drivers can use physio (and mbsetup and iowait
and the few other kernel support routines that manipulate buffer headers) they do
not use buffers from the kernel buffer cache.

~\sun ~~ microsystems

Appendix C - Kernel Support Routines 151

physic serves two major purposes:

o It ensures that pages of user memory are locked down (physically available
and not paged out) during the duration of a data transfer.

o It breaks large transfers (those greater than the value returned by min -
phys) into smaller pieces, thus keeping slow devices from monopolizing
the bus.

If the size of the transfer is greater than the system determined maximum, ph y
s ic calls the driver xxstrategy routine repeatedly, making sure that all
relevant pointers and counters are updated correctly. Basically, physic looks
like:

loop:
error and termination checking;
s = spl6();
while (buf->b_flags & B_BUSY)

buf->b_flags I= B_WANTED;
sleep(buf);

(void) splx();
set up buffer for I/0;
while (more data) {

more buffer I/0 set up;
(*minphys) (buf);
lock buffer into memory;
(*strategy) ();
spl6 () ;
unlock buffer;
if (buf->b_flags & B_WANTED)

wakeup(buf);
(void) splx (s) ;
bookkeeping;

buf->b_flags &= -(B_BUSYIB WANTED);
error checking and bookkeeping;
goto loop:

buf is a buffer header for this device. physic wants exclusive use of this
buffer header and its associated buffer, and when called it checks to see if it has
it. If it doesn't, it will sleep until it gets it. dev is the device to which the
transfer is taking place. flag is B _ READ or B _WRITE to indicate the direction
of the transfer. minphys is a function that determines the amount of data to be
transferred in one call to the xxstrategy routine. uio is a pointer to the uio
structure. physio returns an error code if an 1/0 error occurs, a O upon suc
cess.

152

poke, pokec - Check and
Write an Address

print f - Kernel Printf
Function

poke(address, value)
short *address;
short value;

pokec(address, value)
char *address;
char value;

poke and pokec are called with an address you want to store into, and value is
the value you want to store there. Both poke and pokec return 1 if the
addressed location doesn't exist, and O if the addressed location does exist. See
peek and peekc.

The kernel provides a printf function analogous to the printf function
supplied with C library for user programs. The kernel print f, however, is
more limited than is the version in the C library. It writes directly to the console
tty, its output cannot be easily redirected, and it supports only a subset of
printf's formatting conversions. Furthermore, it's not interrupt driven, and
thus causes all system activities to be suspended while it outputs its message.
Nevertheless, print f is useful as a debugging tool, and for reporting error
messages. See uprintf.

The formatting conversions supported by the kernel printf are:

%x, %X - Hexadecimal numbers
%d, %0 - Decimal numbers
%0, %0 - Octal numbers
%c - Single characters
%s - Strings
%b - Bit values

Note that floating-point conversions are not supported. Also note that a special
format %b is provided to decode error registers. Its usage is:

printf("reg=%b\n", regval, "<base><arg>*");

Where <base> is the output base expressed as a control character. For exam
ple, \ 10 gives octal and \ 2 0 gives hex. Each arg is a sequence of charac
ters, the first of which gives the bit number to be inspected (counting from 1),
and the rest of which (up to a control character, that is, a character<= 32), give
the name of the register. Thus:

printf("reg=%b\n", 3, "\10\2BITTW0\1BITONE\n");

would produce the output:

reg=3<BITTWO,BITONE>

Also note that no conversion modifiers (field widths and so on) are supported -
only a single character can follow the % •

The kernel printf function raises the priority level and therefore locks out
interrupts while it is sending data to the console. And it displays its messages
directly on the console, unless specifically redirected by the TIOCCONS ioctl.

pritosp1 -Convert Priority
Level

psigna1 - Send Signal to
Process

rma11oc - General-Purpose
Resource Allocator

pritospl(value)
int value;

Appendix C - Kernel Support Routines 153

pritospl is a macro that converts the hardware priority level given by value,
which is a Main Bus priority level, to the processor priority level that splx
expects. The Main Bus priority level can be found in either md->md _ int pr i
or mc->mc _int pr i, where it is put by the autoconfiguration process. pr i -
tospl is used to parameterize the setting of priority levels. See spln and
splx.

psignal(p, sig)
struct proc *p;
int sig;

Sends signal sig to the process specified by the proc structure. See gsig
nal.

long rmalloc(mp, size)
struct map *mp;

long size;

rmalloc (for resource map allocator) is a rather specialized sort of resource
allocator. In fact, it doesn't really allocate resources at all, but rather names of
resources (that is, lists of numbers). Such lists are initialized by rmini t and
are called resource "maps". Given such a map, rmalloc can parcel out the
names in it. The relationship of such names to real resources (virtual address
space, physical memory, and so on) is entirely a matter of usage conventions.
Names allocated with rmalloc are recycled with rmfree.

rmalloc is a low-level routine, and shouldn't be used casually. If you just
want some kernel virtual memory, use kmern_alloc. rmalloc is called by
drivers that need to allocate kernel virtual address space during their xxprobe
andxxattach routines. They call it, rather than kmem_alloc, because they
want an address space without physical memory mapped to it.

rminit is not documented here, for device drivers only have occasion to use
two pre-initialized rmalloc maps:

o The map kernelmap (in <sys/map. h>) is used to allocate chunks of
generic kernel virtual address space.

o The map iopbmap (in <sundev /mbvar. h>) contains addresses that
are guaranteed to be in the high Megabyte and thus suitable for use as
DVMA buffer addresses. iopbmap is quite small, and should be used only
for temporary or very small buffers.

154

rmfree - Recycle Map
Resource

sleep - Sleep on an Event

rmfree(mp, size, addr)
struct map *mp;
long size, addr;

rmfree recycles the map resource allocated with rmalloc.

sleep(address, priority)
caddr_t address;
int priority;

sleep is called to put the calling process to sleep, typically while it awaits the
availability of some system resource. address is the address of a location in
memory, usually a field in some global driver structure that is being used as a
"semaphore" (such fields are not true semaphores, see below). priority is the
software priority the calling process will have after being awakened.

sleep must never be called from the interrupt-level side of a driver. This is
because sleep is always executed on behalf of a specific process. It suspends
that process while the scheduler picks and executes another waiting process.
And since, when handling an interrupt, the kernel isn't running on behalf on any
process, it makes no sense to call sleep. Incidently, the kernel will panic if
sleep is called while it's running on the interrupt stack.

A process that has called sleep will be reawakened by any wakeup call
issued with the same address. However it's not guaranteed that, upon waking,
the process will find the resource that it was waiting for to be available. It must,
therefore, check again before proceeding, and go back to sleep if necessary. This
is because the UNIX sleep and wakeup facilities do not constitute true sema
phore primitives in the usual P/V sense. wakeup will wakeup every process
that is sleeping on that event, where a true 'V' semaphore will wake only one
sleeper (the highest priority one or whichever).

Thus in UNIX you always do:

s = spln(high_priority);
while (resource_busy)

sleep(resource, high_priority);
make_resource_busy;
(void) splx(s);

<critical section>

wakeup(resource);

whereas with real semaphores you would simply do:

P(resource);

<critical section>

V(resource);

which is a much simpler and cleaner design.

sp1n - Set CPU Priority
Level

sp1x - Reset Priority Level

swab - Swap Bytes

timeout - Wait for an
Interval

Appendix C - Kernel Support Routines 155

However, semaphores are not easy to use to implement lockouts around hardware
interrupts so UNIX just uses the sleep/wakeup mechanism for both situa
tions.

The spln functions are available for setting the CPU priority level ton, where n
ranges from Oto 7. Note that spl6 actually gets you splS on Sun systems to
avoid lockout of the level 6 on-board UART interrupts. When you allocate a
CPU priority level to your device, choose one that's high enough to give you the
performance you need, but don't overdo it or you'll interfere with the operation
of the system:

o If you lock out the on-board UARTS (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the UNIX
scheduler will be suspended.

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed.

o And if you lock out the disks (level 2), disk rotations may be missed.

The spln functions return the previous priority level.

splx(s)
int s;

splx called with an arguments sets the priority level to s, which was returned
from a previous call to spln, pri tospl, or splx. splx is typically used
to restore the priority level to a previously stored level. splx returns the previ
ous level.

swab(from, to, nbytes)
caddr t from;
caddr t to;
int nbytes;

swab swaps bytes within words. nbytes is the number of bytes to swap, and is
rounded up to a multiple of two. No checking is done to ensure that the from and
to areas do not overlap each other.

timeout(func, arg, interval)
int (*func) ();
caddr_t arg;
int interval;

timeout arranges that after interval clock-ticks,func will be called with arg as
its argument, in the style (*June)(arg). A clock tick is about a fiftieth of a
second; the precise number of clock ticks per second is given in the external vari
able hz. Timeouts are used, for example, to provide real-time delays after func
tion characters like new-line and tab in typewriter output, and to cancel read or

156

uiomove - Move Data To or
From an uio Structure

untimeout - Cancel
timeout Request

uprintf - Nonsleeping
Kernel Printf Function

write requests that have received no response within a specified amount of time
(if there's a lost interrupt or if the device otherwise flakes out). The specified
June is eventually called from the lower half of the clock-interrupt routine, so it
must conform to the requirements of interrupt routines in general. In particular,
it can't call sleep. See untimeout.

uiornove(cp, n, rw, uio)
caddr t cp;
int n;
enurn uio rw rw;
struct *uio;

uiomove is the most common way for device drivers to move a specified
number of bytes between a byte array in kernel address space and an area defined
by a uio structure (which may or may not be in kernel address space). If the
uio _ seg field in the uio structure is set to UIOSEG _ USER, uiomove will
assume the uio pointer to be in user space; if it is UIOSEG_KERNEL, it will
assume it to be in kernel space (see <sys/uio. h>}. uiomove moves n
bytes between the uio structure and the area defined by the cp parameter. The
read/write flag are interpreted as follows: - UIO _ READ indicates a transfer
from kernel to user space (a call to copyout}, and UIO _ WRITE a transfer
from user to kernel space (a call to copy in). uiomove returns O upon suc
cess, -1 upon failure.

For more information about the uio structure, see Some Notes About the U/0
Structure in the The ''Skeleton'' Character Device Driver section of this manual.

untirneout(func, arg)
int (*func) ();
caddr_t arg;

untimeout is called to cancel a prior timeout request.June and arg are the
same as in timeout.

uprintf is like print£, with two important differences. The first is that it
checks to see if the process' "controlling terminal" is open, and ifit is the mes
sage is sent to it rather than to the system console (uprintf consults the user
structure, so it must not be called from the lower-half routines). If there's no
controlling terminal, uprintf executes as would print£. The second differ
ence is that upr intf is interruptible, and thus reasonably efficient.

uprintf is often called from open routines to report errors to the user. It's
used for errors which, like tape-read errors, are likely to indicate operator error
rather than system failure. See printf.

~~sun ~~ microsysterns

ureadc and uwri tee -
uio Structure Read and Write

vac _ disab1e _ kpage -
Stop Caching of a Kernel Page

wakeup- Wake Up a Process
Sleeping on an Event

ureadc(c, uio)
int c;
struct *uio;

Appendix C-Kemel Support Routines 157

urea de transfers the character c into the uio structure (which is normally
passed to the driver when it is called). ureade is normally used when "read
ing" a character in from a device.

uwritec(uio)
struct *uio;

uwri tee returns the next character in the uio structure (which is normally
passed to the driver when it is called), or returns -1 on error. u writ ee is nor
mally used when "writing" a character to a device.

Note that "read" and "write" are slightly confusing in the above contexts, since
ureade actually obtains a character from somewhere and places it into the
uio structure, whereas uwritee obtains a character from the uio structure
and "writes" it somewhere else. The "read" and the "write," then, are from the
perspective of the user program.

ureade and uwri tee replace the routines epass and passe, which are
no longer supported.

vac_disable_kpage(vaddr)
caddr_t vaddr;

Note: this routine is for use on Sun-3/2(j() a~d Sun-3/280 machines only. On all
other machines it does nothing.

Sun-3/260 and Sun-3/280 machines have a write-back virtual address cache.
When more than one virtual page maps to the same physical page, the cache can
cause a data inconsistency unless such pages are removed from it Therefore,
when drivers remap a kernel page, they must call vae _disable_ kpage to
remove it from the virtual-address cache and thus maintain the cache's con
sistency. The kernel page isn't returned to the cache until the kernel is rebooted.
vae_disable_kpage should be called in all driver nunap routines.

wakeup(address)
caddr t address;

wakeup is called when a process waiting on an event must be awakened.
address is typically the address of a location in memory. wakeup is typically
called from the low level side of a driver when (for instance) all data has been
transferred to or from the user's buffer and the process waiting for the transfer to
complete must be awakened. See sleep.

D
User Support Routines

User Support Routines.. 161

free - Free Allocated Memory ... 161

getpagesize - Return Pagesize ... 161

mmap-Map Memory from One Space to Another............................. 161

munmap - Unmap Pages of Memory .. 162

valloc -Allocate Virtual Memory ... 162

free - Free Allocated
Memory

getpagesize - Return
Pagesize

mmap - Map Memory from
One Space to Another

D
User Support Routines

free (ptr)
char *ptr;

free is used to recycle the virtual memory allocated with valloc. (Actually,
it can be used with a variety of memory allocators, including malloc, the most
general purpose of the allocators). See valloc and malloc(3).

int getpagesize()

getpagesize returns the number of bytes in a page. The page size is the sys
tem page size and may not be identical with the page size in the underlying
hardware - it is, however, the pagesize of interest in all of the memory manage
ment functions. See getpagesize(2).

mmap(addr, len, protection, share, fd, off)
caddr_t addr;
int len, protection, share, fd;
off_t off;

mmap maps pages of memory space from the memory device associated with the
file fd into the address space of the calling process. The mapping is performed
one page at a time, by iteratively calling the memory device's mmap routine.

The memory is mapped from the memory device, beginning at off, into the call
ers address space beginning at addr and continuing for len bytes. fd is a file
descriptor obtained by opening the character special device to be mmap'ed. (In
the future, regular files will be allowed). share specifies whether modifications
made to this mapped copy of the page are to be kept private or are to be shared
with other references to the same page - it must currently be set to
MAP_ SHARED. addr, len and off must be multiples of the page size (which can
be found by using getpagesize). For this reason, the local memory space begin
ning at addr should be allocated by using valloc, which returns a properly
aligned buffer. protection specifies the read/write accessibility of the mapped
pages.

Pages are automatically unmapped when/dis closed and can be explicitly
unmapped with munmap. Special care must be taken when unmapping an area

161

162

munmap - Unmap Pages of
Memory

va11oc - Allocate Virtual
Memory

of 128K or more, for when an area that large is mapped in the first place, the ker
nel releases the swap area associated with it. Consequently, when this area is
unmapped, the pages that make it up are marked invalid, and the next call to
valloc will return invalid pages - any attempt to reference those pages will
then produce a segmentation violation. To avoid this problem, do not free
such large chunks; instead call valloc again without calling free. mmap
returns a -1 on error, 0 on success. See mmap(2).

munmap(addr, len)
caddr_t addr;
int len;

munmap causes the pages starting at addr and continuing for len bytes to be
unmapped, that is, to refer only to private pages within the callers address space.
The pages are initialized to zero, unless len is 128K or more, in which case the
pages are marked invalid. Returns a -1 on error, 0 on success. See mmap(2).

char *valloc(size)
unsigned size

valloc is commonly called from user programs that need it to allocate page
aligned virtual memory to pass to mmap. No other allocator can be used with
mmap, since it requires that the space passed to it start on a page boundary. The
memory it allocates is recycled with a call to free. See malloc(2).

E
Sample Driver Listings

Sample Driver Listings .. 165

E.1. Skeleton Board Driver ... 166

E.2. Sun-2 Color Graphics Driver ... 17 4

E.3. Sky Floating-Point Driver.. 186

E.4. Versatec Interface Driver.. 194

E
Sample Driver Listings

The following C-code listings are for sample Sun device drivers. There are four
drivers listed here; the first being the skeleton driver and the other three being
real production drivers. (These three drivers, it should be mentioned, have been
chosen as relatively simple illustrations of the three major types of drivers - not
as software ideals to be closely emulated).

SKELETON
is the driver for the "skeleton board" discussed earlier in this manual.

CG1WO

SKY

is a device driver for the Sun-2 Color Graphics board. It is one of the sim
plest drivers around, being memory mapped.

is a programmed 1/0 driver for the Sky floating-point board, with both pol
ling interrupts and vectored interrupts. However, the interrupt routines don't
do a whole lot.

VP is a driver for the Versatec Printer Interface. It's a fairly good example of a
DMA device driver.

165

166

E.1. Skeleton Board Driver

!*
* (skreg.h) Registers/or Skeleton Board -- note the byte swap
*!

struct sk_reg {
char sk_data; /* OJ: Data Register* I
char sk_csr; /*00:command(w)andstatus(r) *I

} ;

I* sk _ csr bits (read) * I
#define SK INTR
#define SK DEVREADY
#define SK INTREADY
#define SK ERROR
#define SK INTENAB

#define SK ISTHERE

I* sk_csr bits (write) * I
#define SK_RESET Ox04
#define SK ENABLE OxOl

!*

Ox8 0 I* Device is Interrupting* I
Ox08 I* Device is Ready* I
OxO 4 I* Interface is Ready* I
Ox02 I* Device.Error *I
OxO 1 / * Interrupts are Enabled * I

OxOC I* Existance Check; Device and Interface Ready * I

I* Reset Device and Interface * I
I* Enable Interrupts * I

* Further definitions for DMA skeleton board
*!

SK DMA OxlO #define
#define MAX SK BSIZE 4096

I* Do DMA transfer * I
I* DMA tranfer block * I

struct sk_reg2 {

} ;

char sk_data;
char sk_csr;
short sk_count;
caddr t sk_addr;

I* 01: Data Register * I
I* 00: command(w) and status(r) * I
I* bytes to be transferred * I
I* DMA address* I

!*
* (sk.c) The "Skeleton Board" Driver"
*!

I* This listing is not heavily annotated. This is because it's identical to
* the Skeleton driver discussed at length in the main body of the manual.
* It appears here for purposes of completeness.
*I

#include .. /h/param.h"
#include .. /h/buf.h"
#include .. /h/file.h"
#include .. /h/dir.h"
#include .. /h/user.h"
#include .. /h/uio.h"
#include .. /machine/psl.h"
#include .. /sundev/mbvar.h"

#include "sk.h"
#include "skreg.h"

I* file generated by config (defines NSK) * I
I* register definitions * I

#define SKPRI (PZER0-1) /*software sleep priority for sk * I

#define SKUNIT(dev) (minor(dev))

struct buf skbufs[NSK];

int skprobe(), skpoll();

struct mb_device *skdinfo[NSK];

Appendix E - Sample Driver Listings 167

struct mb driver skdriver = { skprobe, O, O, O, O, skpoll,
sizeof(struct sk_reg), "sk", skdinfo, 0, O, 0, O,

} ;

struct sk_device {
char soft_csr;
struct buf *sk_bp;
int sc_count;
char *sk_cp;
char sk_busy;

skdevice[NSK];

I *ARGSUSED* I
skprobe(reg, unit)

caddr_t reg;
int unit;

I* software copy of control/status register * I
I* current buf * I
I* number of bytes to send * I
I* next byte to send * I
I* true if device is busy * I

register struct sk_reg *sk_reg;
register int c;

sk_reg = (struct sk_reg *)reg;

c = peekc((char *)&sk_reg->sk_csr); /* contactthedevice*I

168

if (c == -1 I I (c ! = SK_ISTHERE))
return (0);

if (pokec ((char *) &sk_reg->sk_csr, SK_RESET)) /* contact the device *I
return (0);

return (sizeof (struct sk_reg));

skopen(dev, flags)
dev_t dev;
int flags;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

if (unit>= NSK I I md->md_alive 0)
return (ENXIO);

if (flags & FREAD)
return (ENODEV) ;

sk_reg = (struct sk_reg *)md->md_addr;

I* enable interrupts * I
skdevice[unit] .soft_csr

I * contact the device * I

SK_ENABLE;

sk_reg->sk_csr skdevice[unit] .soft_csr;

return (0);

I *ARGSUSED * I
skclose(dev, flags)

dev_t dev;
int flags;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

I * disable interrupts * I
sk_reg = (struct sk_reg *)md->md_addr;
skdevice[unit] .soft_csr &= -sK ENABLE;

I* contact device * I
sk_reg->sk_csr = skdevice[unit] .soft_csr;

~~sun ~~ microsystems

skminphys(bp)
struct buf *bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_bcount MAX_SK_BSIZE;

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk device *sk;
int s;

Appendix E - Sample Driver Listings 169

md skdinfo[SKUNIT(bp->b_dev)]; /* physioputthedevicenumberintobp *I
sk &skdevice[SKUNIT(bp->b_dev)];

s = splx(pritospl(md->md_intpri)); /*begin critical section*/
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);

I* set up for first write * I
sk->sk_busy = 1;
sk->sk_bp = bp;
sk->sk_cp = bp->b_un.b_addr;
sk->sc_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr);

(void) splx(s);

skwrite(dev, uio)
dev_t dev;
struct uio *uio;

register int unit

if (unit >= NSK)
return (ENXIO);

I* end critical section * I

SKUNIT(dev);

return (physio(skstrategy, &skbufs[unit],
dev, B_WRITE, skminphys, uio));

skstart(sk, sk_reg)
struct sk device *sk;
struct sk_reg *sk_reg;

while (sk->sc _ count > 0) { / * still more characters * I
sk_reg->sk_data *sk->sk_cp++;
sk->sc_count--;

170

I* stop giving characters if device not ready * I
I* Note: the soft copy isn't needed for reads * I
if (! (sk_reg->sk_csr & SK_DEVREADY)) /* contactthedevice *I

break;

if (sk->sc count > 0) { /*still more characters* I
sk->soft csr = SK_ENABLE;
sk_reg->sk_csr = sk->soft_csr; /*contact the device* I

else {
I* special case: finished the command without taking any interrupts! * I
sk->soft_csr = 0; /* disable interrupts* I
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I
sk->sk_busy = 0;
wakeup ((caddr _ t) sk) ; / *free device to sleeping strategy routine * I
iodone (sk->sk_bp); !*free buffer to waiting physic * /

skpoll ()
{

register struct sk_reg *sk_reg;
int serviced, i;

serviced= 0;
for (i = 0; i < NSK; i++) { /*tryeachone*/

sk_reg = (struct sk reg *)skdinfo[i]->md_addr;
if (sk_reg->sk_csr & SK_INTR) { /* contact the device * I

serviced= 1;
skintr(i);

return (serviced);

skintr(i)
int i;

register struct sk_reg *sk_reg;
register struct sk_device *sk;

sk reg= (struct sk_reg *)skdinfo[i]->md_addr;
sk = &skdevice[i];

I* check for an 110 e"or * I
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I

I* e"or-retry logic would go here * I

printf("skintr: I/0 error\n");
sk->sk_bp->b_flags I= B_ERROR;

goto error_return;

Appendix E - Sample Driver Listings 171

if (sk->sc_count == 0) { /* l!Otransfercompleted *I
error return:

sk->soft csr = 0; / * clear interrupt * I
sk_reg->sk_csr sk->soft_csr; / * contact the device * I
sk->sk_busy = 0;
wakeup ((caddr _ t) s k) ; / * free device to sleeping strategy routine * I
iodone (sk->sk_bp); /* free buffer to waiting physic * /

else skstart(sk, sk_reg);

I* DMA VARIATIONS FOUOW * I

struct sk_device {
char soft_csr;
struct buf *sk_bp;
char sk_busy;

I* software copy of control/status register * I
I* current buf * I
I * true if device is busy * I

int sk_mbinfo; I* Information stash for DMA * I
skdevice[NSK];

skstrategy(bp)
register struct buf *bp;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[SKUNIT(bp->b_dev)];

s = splx(pritospl(md->md_intpri));
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);
sk->sk_busy = l;
sk->sk_bp = bp;

I* this is the part that is changed * I

I* grab bus resources * I

I* begin critical section * /

sk->sk mbinfo = mbsetup(md->md_hd, bp, O);

I* the remainder * I
sk_reg->sk_count = bp->b_bcount;

I* plug bus transfer address * I
sk_reg->sk_addr = (caddr_t)MBI ADDR(sk->sk mbinfo);

/* make sure we didn't overrun the address space limit*/
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) {

printf("sk%d: ", sk_reg->sk_addr);
panic("exceeded 20 bit address");

172

sk->soft csr = SK_ENABLE I SK_DMA;
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I

I* end of DMA-related changes * I

sk->sk_busy = 0;
wakeup((caddr_t) sk); /* freedevicetosleepingstrategyroutine *I
(void) splx(s); /*end critical section *I

skpoll ()
{

register struct mb_device *md;
register struct sk_reg *sk_reg;
int serviced, i;

serviced= O;
for (i = 0; i < NSK; i++) {

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

serviced= l;
skintr(i);

return (serviced);

skintr(i)
int i;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[i];

I* check for an 110 error * I
if (sk_reg->sk_csr & SK_ERROR) { /* contactthedevice */

I* error-retry logic would go here * I

printf("skintr: I/0 errorO);
sk->sk_bp->b_flags I= B_ERROR;

I* this is the part that changed * I
sk->soft_csr = 0; /* clearinterrupt */
sk_reg->sk_csr = sk->soft csr;

Appendix E - Sample Driver Listings 173

rnbrelse(md->md_hd, &sk->sk_rnbinfo);
iodone (sk->sk_bp); /* free buffer to waiting physic * /

~~sun ~~ microsystems

174

E.2. Sun-2 Color Graphics Driver

!*
* (cgreg.h) Register definitions for Sun2 (Memory Mapped) Color Board
* Copyright (c) 1983 by Sun Microsystems.Inc
*!

#define CGSIZE (16*1024) I * 16K of address space * I
#define GR bd sel CGXBase I* Select Color Board * I

#define GR x select Ox0800 I* Access a column in the frame buffer * I
#define GR_y_select OxOOOO I* Access a row in the frame buffer * I
#define GR_y_fudge Ox0200 I* Bit 9 not used at all * I
#define GR_update Ox2000 I* Update frame buffer if this bit set * I
#define GR x rhaddr Oxlb80 I* Location to read X address bits A9-A8

Data put into DJ-DO * I
#define GR x rladdr OxlbOO I* Location to read X address bits A7-AO

Data put into D7-DO * I
#define GR_y_rhaddr OxlbcO I* Location to read Y address bits A9-A8 * /
#define GR_y_rladdr Oxlb40 I* Location to read Y address bits A7-AO * I

#define GR setO OxOOOO I* Address Register pair O * I
#define GR setl Ox0400 I* Address Register pair 1 * I

#define GR_red_cmap OxlOOO I* Address to select Red Color Map * I
#define GR_grn_cmap OxllOO I* Addr for Green Color Map * I
#define GR_blu_cmap Ox1200 I* Addr for Blue Color Map * I

#define GR sr select Ox1800 I* Addr to select status register * I
#define GR er select Ox1900 I* Addr to select mask (color) register * I
#define GR fr select OxlaOO I* Addr to select function register * I

I* Pointers to the mask(color), status, and function regs * I
#define GR_creg (u_char *) (GR_bd_sel + GR_cr_select)
#define GR mask (u_char *) (GR_bd_sel + GR_cr_select)
#define GR_sreg (u_char *) (GR_bd_sel + GR_sr_select)
#define GR_freg (u_char *) (GR_bd_sel + GR_fr_select)

I* Bit assignments in the Status Register * I
#define GRWO_cplane OxOO /* Select CMapPlane number zero for R!W * I
#define GRWl_cplane OxOl /* Select CMapPlane number one for RIW * I
#define GRW2_cplane Ox02 /* Select CMap Plane number two for R!W * I
#define GRW3_cplane Ox03 /* Select CMap Plane number three for R!W * I

#define GRVO_cplane Ox04 I* Select CMap Plane number zero for video * I
#define GRVl_cplane Ox05 I* Select CMap Plane number one for video * I
#define GRV2_cplane Ox06 I* Select CMap Plane number two for video * I
#define GRV3_cplane Ox07 / * Select CMap Plane number three for video * I

#define GR inten OxlO I* Enable Interrupts at start of next vertical
retrace Must clear bit to disable * I

~~sun ~~ microsystems

#define GR_paint
#define GR_disp_on
#define GR_vretrace

Ox20
Ox40
Ox80

Appendix E-Sample Driver Listings 175

I* Enable Writing five pixels in parallel * I
I* Enable Video Display * I
I* Unused on write On read, true if monitor in

vertical retrace * I

I* Returns true if the board is in vertical retrace * I
#define GR_retrace (*GR_sreg & GR_vretrace)

I* Function register encodings * I
#define GR_copy OxCC I* Copy data reg to Frame buffer * I
#define GR_copy_invert Ox33 I* Copy inverted data reg to FB * I
#define GR_wr_creg OxFO I* Copy color reg to Frame buffer * I
#define GR wr mask OxFO I* Copy mask to Frame buffer * I
#define GRinv_wr_creg OxOF I* Copy inverted Creg to FB * I
#define GRinv wr mask OxOF I* Copy inverted Mask to FB * I
#define GR ram invert - - Ox55 I* 'Invert' color in Frame buffer * I
#define GR er and dr OxCO I* Bitwise and of color and data regs * I
#define GR clear OxOO I* Clear frame buffer * I
#define GR er xor fb OxSA I* Xor frame buffer data and Creg * I

176

I*
* (cgtwo.c) Sun2 (Memory Mapped) Color Board Driver
* Copyright (c) 1984 by Sun Microsystems, lnc.
*!

!*
*Asa driver for a frame-buffer device, cgtwo.c must provide not only the
* standard device-driver functionality, but also low-level support/or the
* Sun virtual desktop. That is to say.frame-buffer drivers not only
* implement the standard device-driver hardware interface, but also declare,
* initialize and export the pixrect structures which allow the kernel to
* view the frame-buffer memory as a large rectangle within which it can
* rapidly paint a cursor. As a consequence, much of the code here is pixrect
* related, though among the muck you' llfind the operations common to all
* memory-mapped drivers.

*
* The kernel does not context switch frame buffers. despite the/act that some
* of them (including the Sun2 Color Board which this driver controls) do have
* context. In general, the kernel assumes that frame buffers either have no
* context that needs to be switched, or are used in a manner that doesn't
* require them to be context switched. Sun Windows takes the second of these
* tacts, arbitrating frame-buffer access (with pixwin locking) so that no
* process can use the frame buffer while another process has "context" in it.

*
*I

#include "cgtwo.h"
#include "win.h"
#if NCGTWO > 0

#include " .. /h/param.h"
#include " .. /h/systm.h"
#include " .. /h/map. h"
#include " .. /h/buf. h"
#include " .. /h/dk.h"
#include .. /h/vm.h"
#include .. /h/dir.h"
#include .. /h/user.h"
#include .. /h/proc.h"
#include .. /h/conf.h"
#include .. /h/file.h"
#include .. /h/uio.h"
#include .. /h/ioctl.h"
#include .. /h/kernel. h"

I* installed device count -- from conf ig * /

I* general kernel parameters * I
I* miscellaneous kernel variables * I
I* resource allocation maps * I
I* 110 buffers * I
I* system instrumentation * I
I* virtual machine * I
I* directories * I
I* kernel per-process status * I
I* unswapped kernel per-process status * I
I* kernel entry-point switches * I
I* open file information * I
I* uio structures * I
I* ioctl definitions * I
I* kernel global variables * I

/ * . ./machine is a symbolic link set to either . .lsun2 or . .lsun3 * I
#include " .. /machine/mmu. h" /* memory-management unit* I
#include " .. /machine/pte. h" /* page table entries * I

#include " .. /sun/fbio.h" I* frame buffer definitions * I

I* . ./sundev is the device driver source directory * I
#include " .. / sundev /mbvar. h" /*bus-interface definitions* I

I* basic pixrect definitions * I
I* pixrect utilities * I

Appendix E - Sample Driver Listings 177

I* .. lpixrect contains pixrect-related source * I
#include " .. /pixrect/pixrect.h"
#include " .. /pixrect/pr_util.h"
#include " .. /pixrect/memreg.h"
#include " .. /pixrect/cg2reg.h"
#include " .. /pixrect/cg2var.h"

I* rasterop hardware registers * I

Hf NWIN > 0
#define CG2 OPS &cg2_ops
struct pixrectops cg2_ops

cg2_rop,
cg2_putcolormap,
cg2_putattributes,

I* Sun2 color frame buffer definitions * I
I* more Sun2 color frame buffer * I

} ;

#else
#define
#endif

CG2 OPS (struct pixrectops *)O

struct cg2pr cgtwoprdatadefault =
{0/*cgpr_vasetinioctl*/, O, 255, O, 0 };

struct pixrect cgtwopixrectdefault =
{ &cg2_ops, { 0/*setinioctl*I, 0/* set in ioctl */ }, CG2_DEPTH,

0 I * set in ioctl * I } ;

I* Bytes - size of a single page * I
#define CG2PR0BESIZE (NBPG)

I* Bytes - size of the entire device * I
#define CG2TOTALSIZE (sizeof(struct cg2fb)+sizeof(struct cg2memfb))

I* Bytes - size that the kernel needs to address * I
#define CG2EXTRAOFF (sizeof(struct cg2memfb))

I* Bytes - size that the kernel needs to address * I
#define CG2EXTRASIZE (sizeof(struct cg2fb))

int cg2extraclicks = btoc(CG2EXTRASIZE);

struct cgtwoextra {

} ;

unsigned char *cg2x_ropaddr;
int cg2x_hwwidth;
int cg2x_hwheight;
unsigned int cg2x_physaddr;

/* addrof cg2fb (set in cgtwoprobe) * /
I* device width (from resolution) * I
I* device height (from resolution) * I
I* color board VME address * I

struct cgtwoextra cgtwoextra[NCGTWO];
struct pixrect cgtwopixrect[NCGTWO];
struct cg2pr cgtwoprdata[NCGTWO];

I * Driver information for auto-configuration * I
int cgtwoprobe(), cgtwointr();
struct mb device *cgtwoinfo[NCGTWO];

~~sun ~~ microsystems

178

struct mb_driver cgtwodriver = {
cgtwoprobe, 0, O, O, O, cgtwointr,
CG2PR0BESIZE, "cgtwo", cgtwoinfo, 0, O, 0,

) ;

!*
* Prove that the device is a cgtwo board by accessing the rop chip, and do an unusually
* complex mapping. Since the kernel pixrect only uses l .3Meg of the 3.3Meg device
* address space, we save 2Megs of virtual address space in the kernel by only mapping
* the first page and the last 1.3 Meg of the device address space. We map the l.3Meg
* chunk (CGEXTRAOFF) here in cgtwoprobe, and return the number of bytes in a page
* to the kernel autocongiguration process so that it can finish the job.
*!
cgtwoprobe(reg, unit)

caddr_t reg;
int unit;

int a= O, page;
register struct cg2fb *cg2fb;
struct cg2statusreg *status;
u_char testpixel;
short shrt;
int opcount = 0; / * Used only for debugging * I

I* Get physical page number and type of first device page * I
page= getkpgmap(reg) & PG_PFNUM;

I* Allocate virtual memory that device will access * I
if ((a= (int)rmalloc(kernelmap, (long)cg2extraclicks)) 0)

panic("out of kernelmap for cg2");
cg2fb = (struct cg2fb *)kmxtob(a);
cgtwoextra[unit] .cg2x_ropaddr = (unsigned char *)cg2fb;

/ * Mapin only the virtual memory that the kernel will use * I
mapin(&Usrptmap[a], btop(cgtwoextra[unit] .cg2x_ropaddr),

page+btop(CG2EXTRAOFF), cg2extraclicks, PG_VIPG_KW);

/ * ACTUALLY DO THE PROBE: Enable writing to all rop chips * I
if (poke((short *)&cg2fb->ppmask.reg, OxFF))

goto failure;
opcount++;

/*SetSRCopinallchips:cg2_setfunction(cg2fb, CG2_ALLROP, OxCC) */
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .ropregs.mrc_op, OxCC))

goto failure;
opcount++;

/ * Set pixel mode access: cg2fb->status.reg.ropmode = SWWPIX * I
if ((shrt = peek((short *)&cg2fb->status.reg)) == -1)

goto failure;
opcount++;
status= (struct cg2statusreg *)&shrt;
status->ropmode = SWWPIX;

Appendix E- Sample Driver Listings 179

if (poke((short *)&cg2fb->status.reg, shrt))
goto failure;

opcount++;

I* Zero the end masks * I
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .ropregs.mrc_maskl, 0))

goto failure;
opcount++;
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .ropregs.mrc_mask2, 0))

goto failure;
opcount++;

I* Zero the width and opcount * I
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .ropregs.mrc_width, 0))

goto failure;
opcount++;
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .ropregs.mrc_opcount,0))

goto failure;
opcount++;

I*
* Set source alignment shift to zero, set fifo direction to one,
* ie. bus-> srcl -> src2 -> ROPC function unit
*I
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .ropregs.mrc_shift, 1<<8))

goto failure;
opcount++;

I* Load the fifo srcl * I
if (poke((short *)&cg2fb->ropcontrol[CG2_ALLROP] .prime.ropregs.

mrc_source2, 0))
goto failure;

opcount++;

I* Pump src2 into a pixel and load srcl with Ox.FFFF * I
if (pokec((char *)&cg2fb->ropio.roppixel.pixel[O] [O], OxFF))

goto failure;
opcount++;

I* mask every other pixel bit * I
if (poke((short *)&cg2fb->ppmask.reg, OxAA))

goto failure;
opcount++;

I* pump srcl (Ox.F) into the pixel through the ppmask OxAA * I
if (pokec((char *)&cg2fb->ropio.roppixel.pixel[O] [O], 0))

goto failure;
opcount++;

I* read it back * I
if ((testpixel

(u_char)peekc((char *)&cg2fb->ropio.roppixel.pixel[O] [O]))
goto failure;

OxFF)

180

opcount++;
if (testpixel == OxAA) {

switch (cg2fb->status.reg.resolution)
case 0:

cgtwoextra[unit] .cg2x_hwwidth = CG2_WIDTH;
cgtwoextra[unit] .cg2x_hwheight CG2_HEIGHT;
break;

case 1:
cgtwoextra[unit] .cg2x_hwwidth = CG2_SQUARE;
cgtwoextra[unit] .cg2x_hwheight CG2_SQUARE;
break;

default:
printf("CGTWO unknown resolution (%D)\n",

cg2fb->status.reg.resolution);
opcount++;
goto failure;

I* save the physical address of the color board (for the gp later) * /
cgtwoextra[unit] .cg2x_physaddr =

(unsigned int) ((page<< PGSHIFT) & OxFFFFFF);
return (CG2PROBESIZE);

#ifdef DEBUG
printf("CGTWO testpixel was %X instead of OxAA\n", testpixel);
memropc_print(&cg2fb->ropcontrol[CG2_ALLROP] .ropregs);

#endif

failure:
#if defined(DEBUG) I I defined(lint)

printf("CGTWO probe failure (opcount %D)\n", opcount);
#endif

rmfree(kernelmap, (long)cg2extraclicks, (long)a);
mapout(&Usrptmap[a], cg2extraclicks);
return (0);

#ifdef DEBUG
memropc_print(rop)

struct memropc *rop;

printf("ROP CONTROL: dest=%x, src1=%x, src2=%x, pat=%x,\n",
rop->mrc_dest, rop->mrc_sourcel, rop->mrc_source2, rop->mrc_pattern);

printf("mask1=%x, mask2=%x, shift=%x, op=%x\n",
rop->mrc_maskl, rop->mrc_mask2, rop->mrc_shift, rop->mrc_op);

printf("width=%x, opcnt=%x, decout=%x, 11=%x,\n",
rop->mrc_width, rop->mrc_opcount, rop->mrc_decoderout, rop->mrc_xll);

printf("l2=%x, 13=%x, 14=%x, 15=%x\n",
rop->mrc_x12, rop->mrc_x13, rop->mrc_x14, rop->mrc_xlS);

#endif

l*AR.GSUSED* I
cgtwoopen(dev, flag)

dev_t dev;

return (fbopen(dev, flag, NCGTWO, cgtwoinfo));

I* When driver is closed destroy the pixrect *I
l*AR.GSUSED*I
cgtwoclose(dev, flag)

dev_t dev;

register int unit= minor(dev);

Appendix E - Sample Driver Listings 181

if ((caddr_t)&cgtwoprdata[unit] == cgtwopixrect[unix] .pr_data) {
bzero((caddr_t)&cgtwoprdata[unit], sizeof (struct cg2pr));
bzero((caddr_t)&cgtwopixrect[unit], sizeof (struct pixrect));

I*
* cgtwoioctl contains the only pixrect-related code in the whole driver that isn't
* directly related to providing cursor-painting support to the kernel. The command
* codes are defined in fbio. h, normally found in /usr /include/sun.
*I
l*AR.GSUSED*I
cgtwoioctl(dev, cmd, data, flag)

dev_t dev;
caddr_t data;

register int unit= minor(dev);
register struct cg2fb *cg2fb =

(struct cg2fb *)cgtwoextra[unit] .cg2x_ropaddr;

switch (cmd) {

case FBIOGTYPE:
register struct fbtype *fb = (struct fbtype *)data;

fb->fb_type = FBTYPE_SUN2COLOR;
fb->fb_height = cgtwoextra[unit] .cg2x_hwheight;
fb->fb_width = cgtwoextra[unit] .cg2x_hwwidth;
fb->fb_depth = CG2_DEPTH;
fb->fb_cmsize = 256;
fb->fb size= CG2TOTALSIZE;
break;

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;

I* "Allocate" and initialize pixrect data with default * I
fbpr->fbpr_pixrect &cgtwopixrect[unit];
cgtwopixrect[unit] = cgtwopixrectdefault;

182

I*

fbpr->fbpr_pixrect->pr_height = cgtwoextra[unit] .cg2x_hwheight;
fbpr->fbpr_pixrect->pr_width = cgtwoextra[unit] .cg2x_hwwidth;
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgtwoprdata[unit];
cgtwoprdata[unit] = cgtwoprdatadefault;
cgtwoprdata[unit].cgpr_va = cg2fb; /*Fixuppixrectdata*/
cg2fb->status.reg.video_enab = 1; !*Enable video*/
cgtwointclear (cg2fb); /* Clear interrupt* I
break;

case FBIOGINFO:
register struct fbinfo *fbinfo = (struct fbinfo *)data;

I* Hands down color board info to be passed to the GP * I
fbinfo->fb_physaddr = cgtwoextra[unit] .cg2x_physaddr;
fbinfo->fb hwwidth = cgtwoextra[unit] .cg2x_hwwidth;
fbinfo->fb hwheight = cgtwoextra[unit] .cg2x_hwheight;
fbinfo->fb_ropaddr = cgtwoextra[unit] .cg2x_ropaddr;
break;

default:
return (ENOTTY);

return (0);

* Just turn off an interrupting cgtwo board. (Don't need to load color map
* at vertical retrace. Use cg2fb->status.reg.update _cmap instead).
*I
cgtwointclear(cg2fb)

struct cg2fb *cg2fb;

cg2fb->status.reg.inten = O;

I*
* Like most memory mapped devices, the Sun2 color-graphics board is not
* interrupt driven. cgtwointr, however, does clear interrupts, since
* they can be accidently set by any user process which has access to the
* device registers (that is, any process which uses the device by mapping it
* into user space.) The driver must do this to prevent the kernel from
* crashing upon receiving an interrupt it can't handle.
*I
int cgtwointr ()

return (fbintr(NCGTWO, cgtwoinfo, cgtwointclear));

/*ARGSUSED*/
cgtwommap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

Appendix E - Sample Driver Listings 18 3

register int unit= minor(dev);

if (off>= CG2EXTRAOFF) {
I*

#endif

* If the offset puts us into the last 1.3 Mb of frame-buffer memory (the part
* that's already been mapped into kernel address space by cgt wop robe)
* then fbmmap can be used.
*!
caddr t addrsaved cgtwoinfo[unit]->md_addr;
int result;

cgtwoinfo[unit]->md_addr = (caddr_t)cgtwoextra[unit] .cg2x_ropaddr;
result= fbmmap(dev, off-CG2EXTRAOFF, prot, NCGTWO, cgtwoinfo,

CG2EXTRASIZE);
cgtwoinfo[unit]->md_addr = addrsaved;
return (result);

else {
I*
* Here we can't call fbmmap since only the first page and the last 1.3
* Mb of frame buffer memory was mapped into kernel memory space by
* cgt wop robe. So we get the PTE for the first page (which is mapped)
* and then adjust up for the actual offset.
*!
int page;

page= getkpgmap(cgtwoinfo[unit]->md_addr) & PG_PFNUM;
page+= btop(off);
return (page) ;

184

!*
* (jbutil.c) Frame Buffer Driver Support Utilities
* Copyright (c) 1985 by Sun Microsystems, Inc.
*I

!*
* The routines in this file, called from all of the Sun frame buffer drivers,
* perform the essential operations necessary for all memory-mapped drivers.

*I

#include .. /h/param.h" I* machine dependent kernel parameters * I
#include .. /h/systm.h" I* miscellaneous kernel variables * I
#include .. /h/dir.h" I* directories * I
#include .. /h/user.h" I* kernel per-process status * I
#include .. /h/proc.h" I* unswapped kernel per-process status * I
#include .. /h/buf.h" I* 110 buffers * I
#include .. /h/conf.h" I* kernel entry-point switches * I
#include .. /h/file.h" I* regular files * I
#include .. /h/uio. h" I* uio structures * I
#include .. /h/ioctl.h" I* ioctl definitions * I

/ * . ./machine is a symbolic link set to either . .lsun2 or . .lsun3 * I
#include " .. /machine/mmu. h" /*memory-management unit* I
#include " .. /machine/pte. h" /*page table entries * I

I* . ./sundev is the device driver source directory * I
#include " .. / sundev /mbvar. h" /* bus-interface definitions* I

!*
* Makes the necessary error checks and returns. Everything is ok if the
* device predefined in the config file and if the probe routine found it as
* expected.
*!
int fbopen(dev, flag, numdevs, mb_devs)

dev_t dev;
int flag, numdevs;
struct mb device **mb_devs;

register int unit= minor(dev);
struct mb_device *mb_dev = *(mb_devs+unit);

if (unit>= numdevs I I mb dev == 0 I I mb dev->md alive 0)
return (ENXIO) ;

return (0);

!*
*There'll almost always be only one installed device, and more likely than
* not, it won't be interrupt driven, but fbintr is written to be general.
* so it loops. If fbintrfinds an interrupting device, it returns with
* a 1 after calling intclear to turn off the device's interrupt.
*!
int fbintr(numdevs, mb_devs, intclear)

!*

int numdevs;
struct mb_device **mb devs;
int (*intclear) ();

register inti;
register struct mb_device *md;

for (i = 0; i < numdevs; i++) {

I*
* These two tests amount to the same thing, and using them both is
* abitparanoid. lngeneral,ifmd->md_aliveisn't
* set, then the device isn't there •

*I
if ((md = * (mb_devs+i)) NULL)

continue;
if (!md->md_alive)

continue;

if ((*intclear) (md->md_addr)) return (1);

return (0);

Appendix E - Sample Driver Listings 185

* The per-page memory mapping operation involves adding an offset to the device address
* to specify a page address in the virtual space occupied by the device, getting the
* page table entry of that page, and then masking off the unwanted bits. fbmmap
* can only be used if the page has already been mapped (by the kernel autoconfiguration
* process) into kernel virtual space.
*!

I* ARGSUSED* I
int fbmmap(dev, off, prot, numdevs, mb_devs, size)

dev_t dev;
off_t off;
int rot;
int numdevs;
struct mb device **mb_devs;
int size;

struct mb device *mb dev
register int page;

if (off>= size)
return (-1);

*(mb_devs+minor(dev));

page= getkpgmap(mb_dev->md_addr + off) & PG_PFNUM;
return (page);

186

E.3. Sky Floating-Point Driver

/*
* (skyreg.h) Sky Floating Point Processor Registers
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

struct skyreg {
u short sky_command;
u short sky_status;
union {

short skyu_dword[2];
long skyu_dlong;

skyu;
#define sky_data skyu.skyu_dlong
#define sky_dlreg skyu.skyu dword[O]

long sky_ucode;
u_short sky_vector; /* VME interrupt vector number* I

} ;

I* command masks * I
#define SKY SAVE Oxl040
#define SKY RESTOR Oxl041
#define SKY NOP Oxl063
#define SKY STARTO OxlOOO
#define SKY STARTl OxlOOl

I * status masks * I
#define SKY !HALT OxOOOO
#define SKY INTRPT Ox0003
#define SKY INTENB OxOOlO
#define SKY RUNENB Ox0040
#define SKY SNGRUN Ox0060
#define SKY RESET Ox0080
#define SKY IODIR Ox2000
#define SKY IDLE Ox4000
#define SKY IORDY Ox8000

~)sun ~ mlcrosystems

I*
* (sky.c) SKY Floating-point Processor Driver
* Copyright (c) 1985 by Sun Microsystems, Inc.
*!

!*
* The Sky driver is quite unusual in that maintains some state information
* in the kernel user structure. This is because the kernel must context
* switch the Sky board among the processes that wish to use it. This is not
* typical, and, in fact, there is currently no way for users to add new
* devices which, like the Sky board, must be context switched by the kernel.
*
* The Sky board is used only with Sun2 machines, and machines with Sky boards
* are known to have only one installed.
*!

!*
* Most device drivers include about the same set of system header files,
* with variation reflecting driver differences in functionality. The system
* include files are located in directories whose location is fixed relative
* to the configuration directories (for both source and object distributions.)
* Note that there is not a sky.hfile included here; the sky board is a
* special case and we know that there's only one installed.
*I

#include " .. /h/param.h"
#include " .. /h/buf.h"
#include " .. /h/file.h"
#include " .. /h/dir.h"
#include " .. /h/user.h"

I* general kernel parameters * I
I* IIO buffers * I
I* open file irif ormation * I
I* file system directories * I
I* kernel per-process status * I

I* . .!machine is a symbolic link set to either . .lsun2 or . .lsun3 * I
#include " .. /machine/pte. h" /* page table entries* I
#include " .. /machine/mmu. h" /*memory management unit* I
#include " .. /machine/ cpu. h" /*architecture-related defs * I
#include " .. /machine/ scb. h" /*system control block* I

I* . .lsundev is the device driver source directory * I
#include " .. / sundev/mbvar. h" /* bus interface definitions* I
#include " .. / sundev/skyreg. h" /* sky register definitions* I

I*
* The ''page" size (for the VME sky board only) is an offset which must be
* added to the device base address to get access to the full set of device
* registers. The second page (page 1) is taken as the supervisor page and
* allows access to all the registers; the first (0) page is the user page and
* does not, thus preventing access to the registers needed to load microcode
* and context switch the device. In user mode it's only possible to access the
* registers needed to control floating-point operations.
*I
#define SKYPGSIZE Ox800

I* auto-configuration information * I

Appendix E - Sample Driver Listings 187

188

int skyprobe(), skyattach(), skyintr();
struct mb_device *skyinfo[l]; l*OnlyoneSkyboard*/
struct mb_driver skydriver = {

skyprobe, O, skyattach, 0, 0, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, O, O, 0,

} ;

I*
* The global variable skyaddr is set in skyprobe to contain the
* base address of the "supervisor page" (page 1) of the Sky board (the base
* address of the device registers.)
*I
struct skyreg *skyaddr;

I*
* These two global variables are used to control extraordinary aspects of the
* Sky driver logic:
* skyinit is set to 1 when the device (during system initialization)
* is opened for microcode loading. When the microcode loader closes the
* device, skyinit is set to 2, indicating that the device is available
* for general use. This mechanism is necessary to handle the special open
* state needed for microcode loading.
* skyisnew is even more peculiar, being necessary only to distinguish
* two slightly different versions of the Sky board.
*I
int skyinit = O, skyisnew = 0;

l*ARGSUSED*/
skyprobe(reg, unit)

caddr_t reg;
int unit;

register struct skyreg *skybase

I* Is something there? * I
if (peek((short *)skybase) -1)

return (0);

I* If so, is it a Sky board? * I

(struct skyreg *)reg;

if (poke((short *)&skybase->sky_status, SKY_IHALT))
return (0);

skyaddr = (struct skyreg *) (SKYPGSIZE + reg);
if (cpu == CPU_SUN2_120 I I

poke((short *)&skyaddr->sky_status, SKY_IHALT))

/ * old VMEbus or Multibus version of the Sky board * I
skyaddr = (struct skyreg *)reg;
skyisnew 0;

else
skyisnew 1;

return (sizeof (struct skyreg));

&~~ sun
~~ microsystems

!*
* If it's the new version of the board, then it has to be told what interrupt
* to respond to. This is true for both vectored and auto-vectored interrupts.
* In the auto-vectored case, the VME interrupt vector is set to be identical
* to the 68000 auto-vector for the appropriate interrupt level. For the old
* version of the Sky board, skyattach does nothing.
*!
skyattach(rnd)

struct rnb device *rnd;

if (skyisnew) {
if (!rnd->rnd_intr) {

I* auto-vectored interrupts * I
(void) poke((short *)&skyaddr->sky_vector,

AUTOBASE + rnd->rnd_intpri);
else {

I* vectored interrupts * I
(void) poke((short *)&skyaddr->sky_vector,

rnd->rnd intr->v_vec);

I *ARGSUSED* I
skyopen(dev, flag)

dev_t dev;
int flag;

inti;
register struct skyreg *s = skyaddr;

if (skyaddr == 0) /* skyprobedidn'tfindthedevice *I
return (ENXIO) ;

if (skyinit == 2)
I*
* skyini t is 2 only when skyclose has previously been
* called. This is true only in the case where skyclose was
* called by the microcode loader, and so it's used here to recognize
* the first time that the device is opened for use by a user
* process. Thus, it's here that the device (and its related
* bookkeeping fields) need to be initialized.
*I
s->sky_status = SKY_RESET;
s->sky_comrnand SKY_STARTO;
s->sky_comrnand = SKY_STARTO;
s->sky_comrnand = SKY_STARTl;
s->sky_status = SKY_RUNENB;
u.u_skyctx.usc_used = l;
u.u_skyctx.usc_crnd = SKY_NOP;

~\sun ~~ microsystems

Appendix E - Sample Driver Listings 18 9

190

for (i=O; i<8; i++)
u.u_skyctx.usc_regs[i] 0;

skyrestore();

else if (flag & FNDELAY)
I*

else

* This open is for the the user program that loads the microcode.
* This is a special case that allows it to open the device, even
* though it isn't initialized.
*I
skyinit = 1;

return (ENXIO);
return (0);

!*ARGSUSED* I
skyclose(dev, flag)

dev_t dev;
int flag;

!*
* Call skysave in case a user aborted and left the board in an
* unclean state. We're really not saving the device state here, but
* rather calling skysave to ensure that the state is safe/or the
* next user.
*!
if (skyinit == 2)

skysave();

!*
* This is not the normal case. skyinit is being set to 2 to indicate to
* skyopen that the device has been initialized.
*!
if (skyinit == 1)

skyinit = 2;
u.u_skyctx.usc_used 0;
return (0);

I *ARGSUSED* I
skyrornap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

if (off)
return (-1);

!*

!*

* If this is a VME Sky board, and the board has been initialized (its
* microcode loaded), then allow the user process to have access only to
* the "user" page. This allows users to do floating-point operations,
* but not to load microcode. The Multibus Sky board doesn't offer such
* protection, so any process can load microcode and screw up other users
* of the board. If this is a VME board, but we've still in the
* microcode-loading state, allow access to the "supervisor" version of
* the registers so we can load the microcode.
*!
off= (off_t)skyaddr;
if (skyisnew && skyinit 2)

off-= SKYPGSIZE;

off getkpgmap((caddr_t)off) & PG_PFNUM;
return (off);

* skyintr is also quite atypical, being used only for error reporting
* and to disable interrupts. It must disable interrupts because they may (on
* the Multibus version for sure) have been accidently set by a user process
* with access to the device registers. The kernel must be able to handle
* all the interrupts which can be generated by all the devices, even if it
* doesn't use them for anything.
*!

!* AR GS USED* I
skyintr(n)

int n;

static u short skybooboo = 0;

Appendix E - Sample Driver Listings 191

if (skyaddr && (skyaddr->sky_status & (SKY_INTENBISKY_INTRPT))) {.
if (skyaddr->sky_status & SKY_INTENB) {

printf("skyintr: sky board interrupt enabled, status Ox%x\n",
skyaddr->sky_status);

skyaddr->sky_status &= -(sKY_INTENBISKY_INTRPT);
return (1);

if (!skybooboo && (skyaddr->sky_status & SKY_INTRPT)) {
printf("skyintr: sky board unrecognized status, status Ox%x\n",

skybooboo = skyaddr->sky_status);
return (O);

return (0);

!*
* skysave does the actual work of saving the device state. It has to
* jump through some hoops to do so, but these hoops are completely device
* specific.
*!
skysave ()

192

register short i;
register struct skyreg *s
register u_short stat;

for (i = 0; i < 100; i++)
stat= s->sky_status;
if (stat & SKY_IDLE) {

u.u_skyctx.usc_cmd
goto sky_save;

if (stat & SKY_IORDY)
goto sky_ioready;

printf("skyO: hung\n");
skyinit = 0;
u.u_skyctx.usc_used = 0;
return;

skyaddr;

SKY_NOP;

I* 110 is ready, is it a read or write? * I
sky_ioready:

s->sky_status = SKY_SNGRUN; /* set single step mode* I
if (stat & SKY_IODIR)

i = s->sky_dlreg;
else

s->sky_dlreg = i;

I*
* Check again since data may have been in a long word.
*I

stat= s->sky_status;
if (stat & SKY_IORDY)

I*

if (stat & SKY_IODIR)
i = s->sky_dlreg;

else
s->sky_dlreg = i;

* Read and save the command register. Decrement it by 1 since it's
* actually Sky program counter and must be backed up.
*I
u.u_skyctx.usc_cmd = s->sky_command - 1;

/*
* Reinitialize the board.
*I

s->sky_status = SKY_RESET;
s->sky_command SKY_STARTO;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_STARTl;
s->sky_status SKY_RUNENB;

I*

* Do the actual context save. (Unrolled loop for efficiency.)
*I

sky_save:
s->sky_command = SKY_NOP; /*setdevicetoacleanmode*/
s->sky_command = SKY_SAVE;
u.u_skyctx.usc_regs[O] s->sky_data;
u.u_skyctx.usc_regs[l] s->sky_data;
u.u_skyctx.usc_regs[2] s->sky_data;
u.u_skyctx.usc_regs[3] s->sky_data;
u.u_skyctx.usc_regs[4] s->sky_data;
u.u_skyctx.usc_regs[S] s->sky_data;
u.u_skyctx.usc_regs[6] s->sky_data;
u.u_skyctx.usc_regs[7] s->sky_data;

skyrestore ()
{

register struct skyreg *s skyaddr;

if (skyinit != 2)
u.u_skyctx.usc_used 0;
return;

s->sky_command SKY_NOP;

I*
* Do the actual context restore.

*I

I * set device to a clean mode * I

s->sky_command = SKY_RESTOR;
s->sky_data u.u_skyctx.usc_regs[O];
s->sky_data u.u_skyctx.usc_regs[l];
s->sky_data u.u_skyctx.usc_regs[2];
s->sky_data u.u_skyctx.usc_regs[3];
s->sky_data u.u_skyctx.usc_regs[4];
s->sky_data u.u_skyctx.usc_regs[S];
s->sky_data u.u_skyctx.usc_regs[6];
s->sky_data u.u_skyctx.usc_regs[7];
s->sky_command = u.u_skyctx.usc_crnd;

~~sun ~~ microsystems

Appendix E - Sample Driver Listings 193

194

E.4. Versatec Interface Driver

!*
* (vcmd.h) Include file for user programs that'll give ioct 1 commands to the
* Ikon 10071-5 Multibus/Versatec interface.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*!

#ifndef IOCTL
#include <sys/ioctl.h>
#endif

#define VPRINT 0100
#define VPLOT 0200
#define VPRINTPLOT 0400
#define VPC TERMCOM 0040
#define VPC FFCOM 0020
#define VPC EOTCOM 0010
#define VPC CLRCOM 0004
#define VPC RESET 0002

!*
* !OR and /OW encode read/write instructions to the kernel within the ioctl - -
* command code. These instructions cause the kernel to read the ioctl
* command argument into user space (_[OR), or to write it into kernel space (_[OW).

*I
#define
#define

VGETSTATE _IOR(v, O, int)
VSETSTATE _IOW(v, 1, int)

!*
* (vpreg.h) Registers for Ikon 10071-5 Multibus/Versatec interface.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*!

!*
* Note that the vpdevice structure actually spans the registers of several
* contiguous IC devices (a 8259 and a 8237.) Only the low byte of each
* (short) word is used.
*!

struct vpdevice {
u short vp_status;
u short vp_cmd;

I* 00: mode(w) and status(r) * I
/* 02: special command bits(w) * I
I* 04: PIO output data(w) (unused)* I

Appendix E-Sample Driver Listings 195

u short vp_pioout;
u short vp_hiaddr;
u short vp_icadO;
u short vp icadl;

I* 06: hi word of Multibus DMA address(w) * I
I* 08: adO of 8259 interrupt controller * I
I* OA: ad] of 8259 interrupt controller * I

I* The rest of the fields are for the 8237 DMA controller * I
u short vp_addr; /* OC: DMA word address* I
u short
u short
u short
u short
u short
u short
u short
u short
u short

} ;

!*

vp_wc;
vp_dmacsr;
vp_dmareq;
vp_ smb;
vp mode;
vp clrff;
vp_clear;
vp_clrmask;
vp_allmask;

I* OE: DMA word count* I
/* JO: command and status (unused)* I
I* 12: request (unused)* I
/* 14: single mask bit (unused)* I
I* 16: dma mode* I
I* 18: clear first/last flip-flop * I
I* IA: DMA master clear * I
I* JC: clear mask register* I
I* IE: all mask bits (unused) * I

* Warning - this is one of those devices in which the read bits are not
* identical to write bits.
*!

I* vp _status bits (read) * I
#define VP IS8237 Ox80 I* 1 if 8237 (sanity checker) * I
#define VP REDY Ox40 I * printer ready * I
#define VP DRDY Ox20 I* printer and interface ready * I
#define VP IRDY OxlO I * interface ready * I -
#define VP PRINT Ox08 I* print mode * I
#define VP NOSPP Ox04 /* not in SPP mode* I
#define VP ONLINE Ox02 I * printer online * I
#define VP NOPAPER OxOl I* printer out of paper * I

I* vp _status bits (write) * I
#define VP PLOT Ox02 I * enter plot mode * I
#define VP SPP OxOl I* enter SPP mode * I

I* vp _ cmd bits * I
#define VP RESET OxlO I* reset the plotter and interface * I

196

#define
#define
#define
#define

VP CLEAR
VP FF
VP EQT
VP TERM

I* vp _mode bits * I

Ox08
Ox04
Ox02
OxOl

#define VP DMAMODE Ox47

!*

I* clear the plotter * I
I* form feed to plotter * I
I* EOT to plotter * I
I* line terminate to plotter * I

I* put interface in DMA mode * I

* These two values are used to set the device (which is reticent to disclose
* that it has issued an interrupt) so that the polling routine can find out.
*!
#define
#define

VP ICPOLL OxOC
VP ICEOI Ox20

!*
* (vp.c) DMA driver for Ikon 10071-5 Versatec matrix printer/plotter driver.
* Copyright (c) 1985 by Sun Microsystems, Inc.
*!

!*
* Most device drivers include about the same set of system header files, with
* variation reflecting driver differences in functionality. The system include
* files are located in directories whose location is fixed relative to the
* configuration directories (for both source and object distributions.) vp.h
* is presumed to be in the configuration directory, where cont ig will have
* left it and from which it is assumed that driver source files (like this one)
* are compiled.
*!

Appendix E - Sample Driver Listings 197

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"vp.h"
.. /h/param.h"
.. /h/dir.h"

I* installed device count -- from config * I
I* general kernel parameters * I

.. /h/user.h"

.. /h/buf.h"

.. /h/systm.h"

.. /h/kernel.h"

.. /h/map.h"

.. /h/ioctl.h"

.. /h/vcmd.h"

.. /h/uio.h"

I* file system directories * I
I* kernel per-process status * I
I* I!O buffers * I
I* miscellaneous kernel variables * I
I* kernel global variables * I
I* resource allocation maps * I
I* ioctl definitions * I
I* for all Versatec interface drivers * I
I* uio structures * I

I* . .!machine is a symbolic link set to either . .lsun2 or . .lsun3 * I
#include " .. /machine/psl. h" / * processor status codes* I
#include " .. /machine/mmu. h" / * memory-management unit* I

I* . .lsundev is the device driver source directory * I
#include " .. / sundev/vpreg .h" /* vp register definitions* I
#include " .. /sundev/mbvar.h" /* bus-interface definitions*/

!*
* Define the Versatec sleeping priority to be lower than PZERO, that is, make
* its sleep be uninterruptible by signals. This is appropriate because the
* events which we'll be waiting/or, slow as they may be, are relatively fast
* and sure (unlike user input) to occur.
*!
#define VPPRI (PZER0-1)

!*
* Define an array o/vp_softc structures, one for each of the NVP
* installed devices. By convention, the names xx_ softc and
* xx_device are used for the private.per-device software state
* structure.
*!
struct vp_softc {

int sc_state;
struct buf *sc_bp;
int sc_mbinfo;

I* current device state * I
I* buffer mapped to device * I
I* stash for mbsetup' s return code * I

198

} vp_softc [NVP];

!*
* sc_state bits- passed in VGETSTATE and VSETSTATE ioctl calls.
* The user-level ioct 1 command codes are in vcmd. h, normally found
* in /usr /include/sys
*!
#define VPSC BUSY 0400000
#define VPSC MODE 0000700
#define VPSC SPP 0000400
#define VPSC PLOT 0000200
#define VPSC PRINT 0000100
#define VPSC CMNDS 0000076
#define VPSC OPEN 0000001

I* no special encoding in minor device number * I
#define VPUNIT(dev) (minor(dev))

!*
* Declare an array of private buf headers, by convention named rvpbuf, one for
* each of the NVP installed devices.
*I
struct buf rvpbuf[NVP];

I* The autoconfig-related declarations. * I
int vpprobe(), vpintr();
struct mb_device *vpdinfo[NVP];
struct mb driver vpdriver = {

vpprobe, O, O, O, O, vpintr,
sizeof (struct vpdevice), "vp", vpdinfo, O, O, O,

} ;

I*
* vpprobe already indi.cates the persnickety nature of the device, a
* nature that will become more clear as we proceed.
*!
vpprobe(reg)

caddr t reg;

register struct vpdevice *vpaddr
register int x;

(struct vpdevice *)reg;

x = peek((short *)&vpaddr->vp_status);

I*
* Note that the device provides a sanity check bit, which
* we can use to ensure that vpprobe is accurate

*I
if (x == -1 I I (x & VP_IS8237) == 0)

return (0);

/ * Now reset the 8259; also return O if reset fails* I
if (poke((short *)&vpaddr->vp_cmd, VP_RESET))

return (0);

!*
* Device-specific magic to shut up the device, by setting the 8259 -- it
* doesn't have enough sense to wait for the driver's instructions, and
* starts interrupting after being reset. Note that even this isn't
* straightforward because of register write latency.
*!
vpaddr->vp_icadO
DELAY(l);
vpaddr->vp_icadl
DELAY(l);
vpaddr->vp_icadl

Ox12; / * ICWJ, edge-trigger * I

OxFF; / * ICW2 - don't care (non-zero) * I

OxFE; / * /RO - interrupt on DRDY edge * I

I* Also reset the 8237 * I
vpaddr->vp_clear = 1;

return (sizeof (struct vpdevice));

vpopen(dev)
dev_t dev;

register struct vp_softc *sc;
register struct rob device *md;
register int s;
static int vpwatch = 0;

!* Do a variety of error checks upon opening the device. Fail if dev
* is greater than the configured number of devices, or if the device
* (which is exclusive open) has already been opened, or ifvpprobe
* failed to find the device as expected.
*
* Note that, if the device wasn't found by the probe routine, both
* vpdinfo [VPUNIT (dev)] andmd->md_alive will be 0. Any given
* driver may chose.for its convenience, to make either test, but it's
* paranoid to -- as is done here -- make both. (All drivers have
* access to md->md_alive; this isn't the case with xxdinfo).
*!
if (VPUNIT(dev) >= NVP I I

Appendix E - Sample Driver Listings 199

((sc = &vp_softc[minor(dev)])->sc_state&VPSC_OPEN) I I
(md = vpdinfo[VPUNIT(dev)]) == 0 I I md->md alive== 0)
return (ENXIO);

!*
* vpwatch is a static local which is set to O the first time
* vpopen is called. This code sets vpwatch to one and then
* calls vptimo -- the effect is that vptimo gets called only once,
* the first time a user process calls vpopen. But if you examine
* vptimo, you' II see that it arranges matters so that it's called
* repeatedly. This helps to keep the device from locking up.
*!
if (! vpwatch) {

~~sun
~~ microsystems

200

!*

vpwatch = 1;
vptimo();

* Initialize softc state variable. Here we are, among other things, setting
* sc->sc_state = VPSC_OPEN, which indicates that the device (which is
* exclusive use) is tied up, and that no one else can open it. We are also
* dispatching two commands, CLRCOM andVPC_RESET.
*!
sc->sc_state = VPSC __ OPEN I VPSC_PRINT VPC_CLRCOM I VPC_RESET;

I* Loop while any command is in process * I
while (sc->sc_state & VPSC_CMNDS)

!*
* This critical section ensures that only one instance of the driver can
* vpwait/vpcmd at any time. vpcmd clears command request
* bits as it processes commands. This is absolutely necessary, since
* vpcmd intends to actually dispatch a command (posted in
* sc->sc_state) to the hardware.
*!
s = splx(pritospl(md->md_intpri));
vpwait (dev) ;
vpcmd (dev);
(void) splx(s);

return (0);

vpclose (dev)
dev_t dev;

register struct vp_softc *sc &vp_softc[VPUNIT(dev)];

sc->sc state= 0;

vpstrategy(bp)
register struct buf *bp;

register struct vp_softc *sc = &vp_softc[VPUNIT(bp->b_dev)];
register struct mb_device *md = vpdinfo[VPUNIT(bp->b_dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;
int s;
int pa, we;

I*
* The hardware doesn't support writes to odd addresses or DMA requests
* of less than two bytes in length.
*I
if (((int)bp->b_un.b_addr & 1) I I bp->b_bcount < 2) {

bp->b_flags I= B_ERROR;
iodone(bp);

~~sun ~~ microsystems

I*

return;

s = splx(pritospl(md->md_intpri));
while (sc->sc_bp != NULL)

sleep((caddr_t)sc, VPPRI);

sc->sc_bp = bp;

vpwait(bp->b_dev);

Appendix E - Sample Driver Listings 201

I* Map next request for the now idle device onto the bus for a DMA transfer* I
sc->sc_mbinfo = mbsetup(md->md_hd, bp, 0);

vpaddr->vp_clear = l;

I* Get the address in DVMA space * I
pa MBI_ADDR(sc->sc_mbinfo);

/*
* Now comes some VERY device-specific code, as we set the DMA transfer
* address on the device.
*!
vpaddr->vp_hiaddr = (pa>> 16) & OxF;
pa= (pa>> 1) & Ox7FFF;
wc = (bp->b_bcount >> 1) - 1;
bp->b_resid = 0;

!*
* Note the 2 sequential 8-bit writes into the same address to indicate
* a 16-bit address!
*!
vpaddr->vp_addr
vpaddr->vp_addr

pa & OxFF;
pa>> 8;

vpaddr->vp_wc = wc & OxFF;
vpaddr->vp_wc = wc >> 8;
vpaddr->vp_mode = VP_DMAMODE;
vpaddr->vp_clrmask = 1;

I*
* By setting the VPSC_BUSY bit in sc->sc_state, we indicate that the device
* is to sleep, and that vpwait is to loop. This is because we want to insure
* that another command doesn't get issued until this DMA transfer is completed.
*/
sc->sc_state I= VPSC_BUSY;

(void) splx(s); I* end of critical section * I

* There is no read routine, as this is a write-only device.
*I

!*ARGSUSED*!

202

vpwrite(dev, uio)
dev_t dev;
struct uio *uio;

I*

if (VPUNIT(dev) >= NVP)
return (ENXIO);

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE,
minphys, uio));

* vpwai t kills time, but not by busy waiting. Instead, it relies on the
* fact that sleep and wakeup aren't proper semaphores, and that ALL
* processes which are sleeping on a channel wake when a wakeup is issued
* on that channel. vpwait' s sleep, then, is awaken by vpintr.
*I
vpwait(dev)

dev_t dev;

register struct vpdevice *vpaddr =
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;

register struct vp __ softc *sc = &vp_softc [VPUNIT (dev)];

for (;;)
if ((sc->sc_state & VPSC BUSY) == 0 &&

vpaddr->vp_status & VP_DRDY)
break;

sleep((caddr_t)sc, VPPRI);

return;

struct pair
char soft;
char hard;

I * software bit * I
I * hardware bit * I

} ;

I*

vpbits[] = {
VPC_RESET,
VPC_CLRCOM,
VPC_EOTCOM,
VPC_FFCOM,
VPC_TERMCOM,
0,

VP_.RESET,
VP_.CLEAR,
VP_EOT,
VP_FF,
VP __ TERM,
O,

* vpcmd is designed to be called after vpwait has returned, thus
* indicating that the hardware is quiet and ready to receive a new command.
* When it's called, it runs through the possible command bits in
* sc->sc state, and,ftnding one set, issues the corresponding hardware
* command to the actual device. At the same time it clears the command from
* sc->sc_state, so that the next time vpcmd is called another
* command will be issued to the hardware. Note that vpcmd waits a long

* time, probably too long.for the device to recover before it returns.
*!
vpcmd(dev)

dev_t;

Appendix E - Sample Driver Listings 203

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr =

(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;
register struct pair *bit;

for (bit= vpbits; bit->soft != 0; bit++)
if (sc->sc_state & bit->soft) {

vpaddr->vp_cmd = bit->hard;
sc->sc state&= -bit->soft;
DELAY (100) ; /* time for DRDY to drop* I
return;

/*ARGSUSED*!
vpioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr_t data;
int flag;

register int m;
register struct mb_device *md = vpdinfo[VPUNIT(dev)];
register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;
int s;

switch (cmd) {

case VGETSTATE:
*(int *)data
break;

!*

sc->sc_state;

* Turn off VPSC _ MODE; restrict the user to resetting it and setting
* VPSC CMNDS
*!
case VSETSTATE:

m = *(int *)data;
sc->sc state=

(sc->sc_state & -vpsc_MODE) (m&(VPSC_MODEIVPSC_CMNDS));
break;

default:
return (ENOTTY); I* "Not a typewriter" * I

204

!*

!*
* More careful handling to make sure that one command doesn't get issued until the
* last one has completed. Wait, then post some state information from
* sc->sc_softc to the hardware, then wait again, then call vpcmd to
* fire off the next command. And all in a critical section!
*I
s = splx(pritospl(md->md_intpri));
vpwait (dev);
if (sc->sc_state&VPSC_SPP)

vpaddr->vp_status = VP_SPPIVP_PLOT;
else if (sc->sc_state&VPSC_PLOT)

vpaddr->vp_status VP_PLOT;
else

vpaddr->vp_status 0;
while (sc->sc_state & VPSC_CMNDS)

vpwait (dev);
vpcmd(dev);

(void) splx(s);
return (0);

* This is really a polling interrupt routine. The code at the top that checks
* the polling chain should really be broken out into a vppoll routine
* that gets plugged into the mb_device structure. The rest of the code
* would then be where it properly belongs, in a vpintr routine that can
* be named in the config file.
*I
vpintr ()
{

register int dev;
register struct mb_device *md;
register struct vpdevice *vpaddr;
register struct vp_softc *sc;
register int found= 0;

for (dev = 0; dev < NVP; dev++)
if ((md = vpdinfo[dev]) == NULL)

continue;
vpaddr = (struct vpdevice *)md->md_addr;

/*
* It's not easy to find out if an interrupt has occurred.

*I
vpaddr->vp_icadO = VP_ICPOLL;
DELAY(l);
if (vpaddr->vp_icadO & Ox80) {

found= 1;

I* Wake up the guilty device * I
DELAY(l);
vpaddr->vp_icadO = VP ICEOI;

&~sun ~~ microsystems

sc = &vp_softc[dev];

!* ls there a command currently dispatched and does the hardware
* say it's done with it?
*!

Appendix E - Sample Driver Listings 205

if ((sc->sc_state&VPSC_BUSY) && (vpaddr->vp_status & VP_DRDY))
sc->sc_state &= -vpsc_BUSY; /* clearbusyindicator*/

!*

if (sc->sc_state & VPSC_SPP) {

I *device-specific mode toggle * I
sc->sc_state &= -vpsc_SPP;
sc->sc_state I= VPSC_PLOT;
vpaddr->vp_status = VP_PLOT;

iodone (sc->sc_bp); /* breakwaitinphysio */
sc->sc_bp = NULL;

!*
* Note that the resources being deallocated here were allocated
* in vpstrategy, in the top half of the driver. This is
* standardformfor DMA drivers.
*!
rnbrelse(md->md hd, &sc->sc_rnbinfo);

wakeup ((caddr _ t) sc) ; / * break loops in vpstrategy AND vpwait * I

return (found);

* vptimo is used to repeatedly kickstart the device, which has a tendency
* to freeze up if left alone too long. It calls vpintr, and then it sets
* up a timer to call vpt imo again (and again, and again ...) to make sure
* that a call to vpintr is always pending. The kernel global hz is set
* to reflect the clock rate of the system processor chip (it's 50 for a Sun3).
*!
vptimo ()
{

int s;
register struct rnb_device *md = vpdinfo[O];

s = splx(pritospl(md->md_intpri));
(void) vpintr();
(void) splx(s);
timeout(vptimo, (caddr_t)O, hz);

Index

6
680XO, 11

A
adb, 89
addresses

convenient testing, 69
DVMA virtual, 17
finding physical, 70
kernel space, 55
mapping of, 68
mapping Sun-2, 69, 72
mapping Sun-3, 69, 75
selection of virtual, 68
space terminology, 6
user space, 55
virtual space warning, 6
virtual to physical mapping, 70

assert mechanism, 93
asynchronous tracing, 90
attach routine, 45, 59, 103, 143
autoconfiguration, 53

and initialization, 40
Skeleton example, 101

autoconfiguration-related declarations, 47

B
bdavaw, 35

definition, 119
block driver mechanisms, 5
bottom half of driver, 55, 56
4.2BSD,40
building a kernel, 119
byte order, 22

C
cdavaw, 35, 122

definition, 119
character driver overview, 53
close routine, 103
commands to PROM monitor

a -open A register, 131
b-boot, 131
c -continue, 131
d-open Dregister, 131
a - open memory, 131

-207-

commands to PROM monitor, continued
f - fill address space, 131
g - go to address, 132
h - display monitor commands menu, 132
k - reset system, 132
l - open longword, 132
m - open segment map, 132
o - open byte location, 132
p - open page map, 133
r - open registers, 133
a - seUquery address space, 133
u - handle serial ports, 134
v - view memory blocks, 134
w- vector command, 134
x - extended boot-path tests, 134

computer architecture, 11
config, 119
config file, 121
configuration, 119, 120

autoconfiguration, 119
conf. c, 122
config file, 121
configuration makefile, 120
device installation, 120
dual address-space devices, 125
example, 121
MAKEDEV shell script, 123
mknod, 124

context registers, 70
controllers, 41
CPU PROM monitor, 67 thru 80

warning, 79
CPU PROM monitor commands

a - open A register, 131
b-boot, 131
c -continue, 131
d-open D register, 131
a - open memory, 131
f - fill address space, 131
g - go to address, 132
h - display monitor commands menu, 132 ·
k - reset system, 132
l - open longword, 132
m- open segment map, 132
o - open byte location, 132
p - open page map, 133
r - open registers, 133
a - seUquery address space, 133

Index - Continued

CPU PROM monitor commands, continued
u - handle serial ports, 134
v -view memory blocks, 134
w - vector command, 134
x - extended boot-path tests, 134

CPU state, 71
critical sections, 56

D
data structures, kernel, 41
debugging techniques, 86
!dev directory, 34
device

as special files, 34
block devices, 34
character devices, 34
checkout, 87
classes, 34
devices and controllers, 41
independence, 3
initial checkout, 78
installation, 124
major numbers, 34
major types, 3
memory-mapped installation, 80
minor numbers, 34
names, 34
number macros, 63
numbers, 34
peculiarities, 22
preassigned devices, 38
slave vrs free devices, 41
testing, 68
tty-like devices, 37
virtual-memory, 82
warnings, 22

diskless booting, 126
DMA,27

devices, 27
DVMA hardware, 27
DVMA space, 28
DVMA variable, 29
Multibus, 112
no user-level DVMA, 29
rmal.l.oc, 29
Skeleton Board DVMA, 112
Sun Main Bus DVMA, 27
VMEbus, 112

DMA devices, 112
dmeag, 90
driver debugging, 87
driver example, 97
driver listings, 165
driver overview, 53
driver routines, 137

.xxattach", 137
xxcl.oae", 138
xxintr", 138
xxioctl.", 139
xxminphya", 141
xxmmap", 140
xxopen", 141

driver routines, continued
xxpol.l.", 142
xxprobe", 142
xxread", 143
xxatrategy", 143
xxwrite", 144

driver source code, 123
drivers

and the kernel, 33
and user processes, 33
kernel interface, 48

dual address-space devices, 125

E
error

handling,92
logging, 93
numbers, 137
recovery, 92
returns, 93
signals, 93

error-handling mechanisms, 92
example driver, 97
Example PTE calculations, 77

F
filesystems, 5
frame buffers, 80

mapping without drivers, 83

G
gatkpgmap, 81

H
hardware peculiarities, 22
heterogeneous networks, 119

I
l/0 paths, 35

-208-

initial checkout, 78
initial declarations, 53
initial device tests, 79
installation of device, 124
interrupt

context, 55
levels, 57
routines, 45, 54

interrupt number, setting, 59
interrupt-related problems, 26
interrupt-vector assignments, 21
interrupts, 56

polling, 58
vectored, 58

intrroutine, 54, 110
ioctl. macros, 139
ioctl. routine, 54, 112

K
kadb,91
kadb - the kernel debugger, 91

and virtual spaces, 91
kernel, 87

booting, 126
buffer cache, 5
config file, 121
configuration, 119
data structures, 41
interface, 40
interface points, 101
kernel/driver interface, 48
memory context, 33
panics, 93
run-time data structures, 40
space, 55

L
limitations of this manual, 4
listings, 165

M
Main Bus, 41
Main Bus resource management, 40
major macro, 63
makaclav macro, 63
MAKEDEV shell script, 123
manual overview, 7
mapping without drivers, examples, 83
mb _ ct1r structure, 42, 59
mb _ device structure, 43, 59
mb _ dri var structure, 44
mb _ hd structure, 42
mbg1ua. s, 120
mbvar structures, 40
MC680XO, ll
memory contexts, 70
Memory Management Unit, 13
memory mapping, 11, 80
memory-mapped device drivers, 80
memory-mapped devices, 55

installation options, 80
minor macro, 63
minphys routine, 106
mknod, 124
mmap,80

direct opening of devices, 85
mmap, 80
installation options, 85
without drivers, 81

mmap routine, 54
MMU

setting the, 67
Sun-2, 72
Sun-3, 75

monitor, 67 thru 80
warning, 79

monitor commands
a - open A register, 131

monitor commands, continued
b-boot, 131
c - continue, 131
d- open D register, 131
a -open memory, 131
f - fill address space, 131
g - go to address, 132

Index Continued

h - display monitor commands menu, 132
k - reset system, 132

-209-

1 - open longword, 132
m- open segment map, 132
o - open byte location, 132
p - open page map, 133
r-open registers, 133
s - seUquery address space, 133
u - handle serial ports, 134
v-view memory blocks, 134
w-vector command, 134
x - extended boot-path tests, 134

Multibus, 11
3.0 changes, 15
adapter, 21
adapter warning, 25
byte-ordering issues, 22
device peculiarities, 22
DMA, 112
1/0 mapped devices, 12
1/0 space, 11
1/0 Space allocation, 15
memory allocation, 14
memory mapped devices, 12
memory space, 11
memory types, 12
MMU, 13
multibus resource management, 62
other peculiarities, 24
Sun-2 Multibus, 13
Sun-2 Multibus memory map, 14

multiple address-space devices, 125

N
noprintf variable, 90

0
open routine, 103

p
P2 bus, 25
Page Map Entry Groups, PMEGs, 71
page maps, 71
Page Table Entries, PTEs, 71
pixrects, 80
PMEGS, 70
po11 routine, 54, 59, 110
polling

restrictions on, 58
polling chain, 46
polling interrupts, 58
print£

debugging with, 87
event triggered, 89
kernel, 87

Index - Continued

print£, continued
restrictions on, 88
uprintf, 88
usage hints, 89
with debuggers, 88

probe routine, 45
probe routine, 101
proc structure, 48
processes, 70
processor priorities

raising and lowering, 62
processor priority, 56
processor state, 71
PROM monitor, 67 thru 80

warning, 79
PROM monitor commands

a - open A register, 131
b-boot, 131
c -continue, 131
d-open D register, 131
a - open memory, 131
f - fill address space, 131
g - go to address, 132
h- display monitor commands menu, 132
k - reset system, 132
l - open longword, 132
m - open segment map, 132
o - open byte location, 132
p - open page map, 133
r - open registers, 133
s - set/query address space, 133
u - handle serial ports, 134
v - view memory blocks, 134
w - vector command, 134
x - extended boot-path tests, 134

PTE, 71
calculations, 77
Sun-2 masks, 73
Sun-2 PTE, 73
Sun-3 masks, 76
templates, 73, 76

R
raising and lowering processor priorities, 62
read routine, 54, 105
register peculiarities, 22
register sequencing logic, 25
register warnings, 22
run-time data structures, 40

s
sample listings, 165
segment maps, 70
semaphores, 154
service functions, 60

data-transfer functions, 62
multibus resource management, 62
printf,63
raise and lower processor priorities, 62
sleep and wakeup, 61
timeout, 61
untimeout, 61

Skeleton driver, 97
Skeleton Driver declarations, 100
sleep system call, 55, 57
sleep and wakeup mechanism, 61
software priorities, 61
start routine, 54, 108
strategy routine, 107
support routines

-210-

CDELAY, 147
copyin, 147
copyout, 147
DELAY, 148
getkpgmap, 148
gsignal, 148
iodona, 148
iowait, 148
kmam alloc, 149
kmam - free, 149
MBI ADDR, 149
mbr;lsa, 149
mbsetup, 149
panic, 150
peak, 150
peekc, 150
physio, 150
poke, 151
pokac, 151
printf, 152
pritospl, 153
psignal, 153
rmalloc, 153
rmfree, 153
sleep, 154
spln, 155
splx, 155
swab, 155
timeout, 155
uiomova, 156
untimeout, 156
uprintf, 156
uraadc, 156
uwritac, 157
vac_disabla_kpaga, 157
wakeup, 157

system calls, 34, 55
system configuration, 119
System DVMA, 28
system memory devices, 82
system reset, 67
system upgrades, 94
System V compatibility, 5
System V differences, 40

T
timeout mechanisms, 61
timing problems, 26
top half of driver, 55
tracing, 90

u
uio structure, 106
UNIX l/0 paths, 35
UNIX source license, 4
upgrades,94
user context, 55
user space, 55
user structure, 48
user-level routines

free, 161
getpagesize, 161
mmap, 161
munmap, 162
valloc, 162

V
vac_disable_kpage,141
valloc routine, 84
vector numbers, 58
vectored interrupts, 58
virtual memory devices, 82
virtual to physical mapping, 70
VMEbus, 16

16-bit allocation, 20
24-bit allocation, 20
32-bit allocation, 20
allocation of VMEbus memory, 19
device address assignments, 20
DMA, 112
generic, 18
Multibus Adapter, 21
Sun-2 VMEbus, 16
Sun-2 VMEbus address spaces, 16
Sun-2 VMEbus memory types, 16
Sun-3 address spaces, 18
Sun-3 VMEbus, 19
Sun-3 VMEbus address types, 18

VMEbus machines, 16

w
write routine, 54, 105

Index - Continued

-211-

Rev

A

B

C

D

E

F

50

A

Date

15 July 1983

15 August 1983

15 November 1983

19 November 1984

15 May 1985

17 February 1986

15 June 1986

15 October 1986

Revision History

Comments

First release of this Manual as part of
the System Internals Manual for the Sun
Workstation.

Minor corrections.

Minor corrections.

Minor corrections.

Separated out of the System Internals
Manual for the Sun Workstation to form
a standalone manual. Added narrative
to deal with VMEbus and support for
vectored interrupts.

Upgrade for release 3.0. Included
details of Sun-3 architecture and 32-bit
VMEbus. Using the CPU PROM
Monitor, much more on address spaces,
mmap, and DVMA. Many bug fixes.

Most of the overall organizatiOr1al

changes necessary for t:l:lyfi.t1~lyef§f611, ... · •.• .. ·.• ... (<.
as well as the bulk o(t:l:li.sw.aIFcfofog~s. I>>

Upgrade for release3.2. ~ajor t•.·< •••. 1 (·

expansion of run-time eri.yiro111rientr . J<
development and debugging sectibnS. /
General restructuring, expansion arid
improvement.

Notes

