

har shares

Release 2.2 Manual for the Sun Workstation

1. The second second

·	
· · · · · · · · · · · · · · · · · · ·	

Section Sec.

Part Number 800-1318-06 Revision A of 3 October, 1985 \Box 2 . .

Part Number 800-1318-06 Revision: A of 3 October, 1985

Release 2.2 Manual

for the

Sun Workstation

Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043 (415) 960-1300

Credits and Trademarks

Multibus is a trademark of Intel Corporation.

Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Incorporated. Sun-2, Sun2, Sun-2/xxx, Deskside, SunStation, SunCore, SunWindows, and DVMA are trademarks of Sun Microsystems, Incorporated.

UNIX is a trademark of AT&T Bell Laboratories.

DEC is a trademark of Digital Equipment Corporation.

Copyright © 1985 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

Contents

,

Chapter 1 Introduction	3
Chapter 2 New Graphics Processor and Graphics Buffer Options for the Sun-2/160	7
Chapter 3 Installing the 2.2 Release	13
Chapter 4 Fixed Software Bugs	37
Chapter 5 Errata Pages for 2.0 Manuals	45
Chapter 6 Insert Pages for 2.0 Reference Manuals	63
Appendix A Appendix H: for the Programmer's Reference Manual for SunWindows	67
Appendix B Appendix B:Contents of get_arch_f File	97

.

Contents

Chapter 1 Introduction	3
1.1. Supporting Documentation	3
Chapter 2 New Graphics Processor and Graphics Buffer Options for the Sun-2/160	7
2.1. New Hardware Products	7
2.2. New Software Products	7
2.3. Changes to Operating System Software	7
Device Drivers	7
Downloadable GP Microcode	8
gpconfig Command	8
2.4. Changes to Application Software	8
Graphics Libraries	8
SunWindow Tools	8
2.5. Performance Issues	9
Pixrects	9
SunCGI	9
SunCore	9
Chapter 3 Installing the 2.2 Release	13
3.1. What is on the Distribution Tape?	14
3.2. Overview of the Installation Procedure	15
3.3. Boot single user mode	16
3.4. Load the Release Tape	16

3.5. Extract the 2.2 Backup and Upgrade Utilities from Tape	16
3.6. Halt Diskless Clients	17
3.7. Run the 2.2 Backup Utility	17
3.8. Run the 2.2 Upgrade Utility	18
3.9. Loading Optional Software from the Release Tape	20
3.10. Reconfigure your UNIX System Kernel	22
Kernel Reconfiguration for Standalone Systems	23
Kernel Reconfiguration for Servers	24
Kernel Reconfiguration — an Annotated Copy of GENERIC	27
3.11. Uninstalling the 2.2 Release	33
Chapter 4 Fixed Software Bugs	37
4.1. Language Processors	37
Assembler	37
C Compiler	37
FORTRAN	37
4.2. Graphics	38
CGI	38
Pixrects	38
Graphics Processor	38
4.3. Kernel	39
Driver	39
NSF	39
Miscellaneous	39
4.4. Network	40
Protocol	40
Yellow Pages	40
Miscellaneous	40
4.5. Utilities	40
Miscellaneous	40
4.6. Windows	41
Suntools	41
4.7. Miscellaneous Software Fixes	41

Chapter 5 Errata Pages for 2.0 Manuals	45
Chapter 6 Insert Pages for 2.0 Reference Manuals	63
Appendix A Appendix H: for the Programmer's Reference Manual for SunWindows	67
Appendix B Appendix B:Contents of get_arch_f File	97

.

.

·

.

.

Introduction

Introduction	3
1.1. Supporting Documentation	3

Introduction

This document describes Release 2.2 for the Sun Workstation. This is an upgrade release. You must be running either Release 2.0 or 2.1 in order to load this release. Release 2.2 incorporates Release 2.1 with general bug fixes for Release 2.0 and 2.1. The procedures for installing and testing Release 2.2 from a distribution tape are included in this document.

Chapter 2 describes the contents of Release 2.1. This release was restricted to the Sun-2/160 Color Workstation with the new Graphics Processor and Grpahics Buffer options. If you are not using this type of workstation proceed to Chapter 3-Installing the 2.2 Release. This chapter combines installation instructions for workstations now running Release 2.0 as well as those running 2.1. Chapter 4-Software Bug Fixes is new to Release 2.2. Chapter 5-Errata Pages and Chapter 6-Insert Pages contain information pertinent to both Release 2.1 and Release 2.2. Chapter 7 contains Appendix H:SunWindows Examples for the *Programmer's Reference Manual for SunWindows*.

- The following manuals are useful for the installation procedures for Release 2.2.
- [1] System Administration for the Sun-2 Workstation (Part Number: 800-1150).
- [2] Commands Reference Manual for the Sun Workstation (Part Number: 800-1172).
- [3] Installing UNIX on the Sun Workstation (Part Number: 800-1158).
- NOTE If you have the Sun-2/160 Color SunStation with a Graphics Processor, you may want to refer to the two manuals listed below:
 - [4] Hardware Installation Manual for the Sun-2/160 Color SunStation and Sun-2/130 SunStation (Part Number: 800-1144).
 - [5] Sun-2/160 Diagnostic Manual (Part Number: 800-1236). :

1.1. Supporting

Documentation

· ...

7

New Graphics Processor and Graphics Buffer Options for the Sun-2/160

New Graphics Processor and Graphics Buffer Options for the Sun-2/160

2.1. New Hardware Products	7
2.2. New Software Products	7
2.3. Changes to Operating System Software	7
Device Drivers	7
Downloadable GP Microcode	8
gpconfig Command	8
2.4. Changes to Application Software	8
Graphics Libraries	8
SunWindow Tools	8
2.5. Performance Issues	9
Pixrects	9
SunCGI	9
SunCore	9

и

New Graphics Processor and Graphics Buffer Options for the Sun-2/160

This chapter describes the contents of the Release 2.1 which exclusively supported the Sun-2/160 Color Workstation with the new Graphics Processor and Graphics Buffer options. Since these options are VME bus compatible boards that require a color system, Release 2.1 was restricted to the Sun-2/160. IF YOU DO NOT HAVE Sun-2/160 Color Workstation with the new Graphics Processor and Graphics Buffer PROCEED TO CHAPTER 3.

The procedures for installing and testing this special release are incorporated in Release 2.2. A Release 2.0 installation is required before a Release 2.2 upgrade.

The Graphics Processor (GP) and Graphics Buffer (GB) boards are options designed to enhance graphics performance for the Sun-2/160 Color Workstation. These are Eurocard format printed circuit boards that fit into VME slots of the Sun-2/160 card cage.

There are no new software products.

The operating system software changes are included in a device driver for the Graphics Processor, microcode that is downloaded into the Graphics Processor, and a configuration utility that binds frame buffers to a GP board.

The lowest level command interface for the Graphics Processor is not included. The Graphics Processor can only be used through the graphics library routines that have been expanded to communicate with the GP.

The file *gpone.o* is a binary copy of the device driver for the Graphics Processor board. It is installed in the kernel configuration directory during the software installation procedure.

The file *cgtwo.o* is a new binary copy of a device driver for the color frame buffer. It has additional *ioctl*'s for communicating with the Graphics Processor. This device driver is upward compatible with previous versions.

The file *consfb.o* is a new binary copy of the device driver for the console frame buffer. Some applications like *suntools* (1) use /dev/fb as the default frame buffer. This new version allows redirection of the GP frame buffer driver to /dev/fb.

2.1. New Hardware Products

- 2.2. New Software Products
- 2.3. Changes to Operating System Software

Device Drivers

7

Downloadable GP Microcode	The files /etc/gplcg2.1152.ucode and /etc/gplcg2.1024.ucode contain micro- code that is downloaded into the Graphics Processor board when the Sun-2/160 is booted.			
gpconfig Command	The gpconfig command binds specific frame buffers to the Graphics Processor board. Since an individual Graphics Processor board can drive up to four frame buffers, the GP driver must be given certain frame buffer specific information. Chapter 4 includes a manual page, gpconfig (8), that describes the gpconfig com- mand and its arguments. If the Graphics Processor is to be used regularly, the gpconfig command should be added to the file /etc/rc.local.			
2.4. Changes to Application Software	The application software that changed is limited to the graphics libraries listed below. New versions of some of the utilities from Release 2.0 must be recom- piled to run with these new libraries. Release 2.2 will not contain any new utili- ties.			
Graphics Libraries		tes in <i>/usr/lib</i> have been revised to use the Graphics Processor board. ation programs that depend on these libraries should be relinked with versions.		
	SunCGI	The Sun Microsystems implementation of the Computer Graphics Interface (CGI) standard reflects Sun Microsystems interpretation of the March 1984 working draft of CGI. The file <i>libcgi.a</i> is a new version of this graphics library for use with the GP. See <i>Programmer's Reference Manual for SunCGI</i> (Part Number: 800- 1166). Section 4 has an errata page reflecting the new GP device that should be included in this manual.		
	SunCore	SunCore is an implementation of the ACM Core graphics standard with extensions. The file <i>libcore.a</i> is a new version of this graphics library for use with the GP. The file <i>libcoresky.a</i> is a version of this library for use with the GP and a SKY floating point board. See <i>Programmer's Reference Manual for SunCore</i> (Part Number: 800- 1165). Section 4 has an errata page reflecting the new GP device that should be included in this manual.		
	Pixrects	Pixrects is a low-level graphics library for manipulating rectangles of pixels with RasterOps. The file <i>libpixrect.a</i> is a version of this graphics library for use with the GP. See <i>Programmer's Reference</i> <i>Manual for SunWindows</i> — the Sun Window System (Part Number: 800-1167) and <i>Programmer's Tutorial to SunWindows</i> (Part Number: 800-1182).		
SunWindow Tools	There are no new SunWindow tools with this release. Tools from Release 2.0 must be reinstalled with the new graphics libraries described above. This is performed automatically installation utility.			
NOTE	Locally wr	itten tools must be relinked with the new graphics libraries.		

2.5. Performance Issues

Pixrects

SunCGI

SunCore

This release represent the first stage of an ongoing effort to improve graphics performance through the use of the GP. The Pixrects, SunCGI, and SunCore graphics libraries will all provide increased performance. The sections that follow outline the graphics performance improvements resulting from the GP.

Vector pixel rates have increased by about a factor of 5. Solid-filled rectangle rates have increased by more than a factor of 3. RasterOps from one area to another on the frame buffer (e.g. scrolling) have increased by more than a factor of 3. Polygon scan conversion is nearly 10 times faster for certain polygons Pixrects cannot currently exploit the full performance of the GP due to the lack of a batching mechanism.

Sun CGI takes advantage of the Pixrects level performance improvements and also used the GP to perform coordinate transformations from VDC to device coordinates. SunCGI also sends the vectors of a polyline to the GP as a batch of vectors which greatly improves polyline speed.

Since SunCore has floating point world coordinates and a display list, several further performance improvements are achieved with the GP. Vectors can be read out of a retained segment in the display list, 3D images transformed, clipped and drawn at over 20,000 vectors per second. The transformations from floating point world coordinates to NDC space are performed by the GP as well as various matrix multiply operations. These floating point operations are improved by as much as 200 times. 2D and 3D solid color or Gouraud shaded polygons are transformed, clipped, scaled, or rendered by the GP. If a GB board is present, hidden surface elimination for 3D solid or Gouraud shaded polygons is also performed by the GP.

Installing the 2.2 Release

Installing the 2.2 Release	13
3.1. What is on the Distribution Tape?	14
3.2. Overview of the Installation Procedure	15
3.3. Boot single user mode	16
3.4. Load the Release Tape	16
3.5. Extract the 2.2 Backup and Upgrade Utilities from Tape	16
3.6. Halt Diskless Clients	17
3.7. Run the 2.2 Backup Utility	17
3.8. Run the 2.2 Upgrade Utility	18
3.9. Loading Optional Software from the Release Tape	20
3.10. Reconfigure your UNIX System Kernel	22
Kernel Reconfiguration for Standalone Systems	23
Kernel Reconfiguration for Servers	24
Kernel Reconfiguration — an Annotated Copy of GENERIC	27
3.11. Uninstalling the 2.2 Release	33

.

Installing the 2.2 Release

In this chapter, we give directions for installing the Sun 2.2 release software on a Sun system running the 2.0 Release.

NOTE

We recommend that you install the 2.2 Release in single user mode. If you do not, you will be unable to upgrade the following four programs: /etc/inetd, /etc/ypbind, /usr/etc/rpc.mountd, and /usr/lib/lpd. These are multi-user mode processes. You can not overwrite existing active processes.

The directions below assume you are working with the incremental release software on either one 1/4" or 1/2" tape, and support installation on

- Standalone machines with local tape and disk, which can read in the distribution tape via the local tape drive;
- Machines with a local disk, but no local tape drive, that are on a network. Such machines will use the tape drive on another machine (called remote_host or server_name in the procedures) to read the tape;
- Server machines with local tape and disk and with diskless clients, which will use the local drive to install both the server and its clients.

Before beginning installation, there are several important things you should be aware of:

□ If you are already running release 2.0, you must have at least 508KBytes of disk space available on your root partition, and at least 26KBytes available on your /usr partition to do this installation. If you wish to load the optional software included on the tape (manual pages and demonstration executables and source), allow at least another 4.0 MBytes on /usr (22 KBytes for the manual pages, 3.5 MBytes for the demos and 485 Kbytes for the games).

The df(1) command displays information about space available in each file system. You should use this command before installing the 2.2 Release software to make sure that there is enough disk space available for it. For example:

gaia% **df**

Filesystem	kbytes	used	avail	capacity	Mounted on
/dev/xy0a	7437	5470	1223	82%	1
/dev/xy0h	148455	128709	4900	96%	/usr
/dev/xy0g	117327	66896	38698	63%	/usr/misc
[and so on]					

In this example, the *lusr* file system has 4.9 MBytes of disk space available.

- If you are installing a new disk, you must follow the directions in "Installing Unix on the Sun Workstation" (Part Number: 800-1158) for formatting and labeling it.
- □ This upgrade release is for installation only on systems running Release 2.0 or 2.1 software. This release is *incremental* in the sense that you need not re-install the complete operating system.
- This release is intended for installation as a package; you must install the entire release. Sun will not provide direct support for users who wish to install selected portions of the release software.
- You can 'un-install' this release if you have to: a facility has been provided with the release for backing out changes. In most circumstances, you should not find this necessary; however, if you do, please inform Sun Microsystems Technical Support — we'd like to know what went wrong.
- You must build and install a new operating system kernel to complete the installation of the 2.2 release.
- We strongly advise a thorough back-up before beginning installation. See the manual entry dump (8) in the Commands Reference Manual for the Sun Workstation (Part Number: 800-1166).
- In order for the GP and/or the GB to run, the command /etc/gpconfig must be run when the workstation is booted. This command loads the GP and GB boards with their respective microcode. This can be done automatically if the file /etc/rc.local is edited to include the gpconfig command line. See the manual page for gpconfig (8) in Chapter 6 of this document.

Distribution of the 2.2 Release binaries is either on a 1/4" magnetic tape cartridge or a 1/2" nine-track tape. The tapes contain eight files, as follows:

File 1: Boot block.

A general-purpose boot program which knows how to boot from the various devices that can be attached to the Sun Workstation. The PROM monitor boots this general-purpose boot program.

- File 2: Bootable *diag* program. *diag* is the disk formatting and labeling program.
- File 3: Copyright file.
- File 4: tar file of the backup utility. This tar file contains two files: the backup utility (2.2_backup) which

3.1. What is on the Distribution Tape?

saves the current versions of the files replaced in this upgrade and the listing of files which changed between 2.2 and 2.0 (get_arch_f).

- File 5: tar file of the 2.2 upgrade utility (2.2_upgrade).
- File 6: *tar* file of new 2.2 object A *tar* format file of the 2.2 object files, executable files, and libraries.
- File 7: *tar* file of optional software. With Release 2.2, this includes several new/revised manual pages, gp demos, and gp diagnostics.
- File 8: Copyright file.

3.2. Overview of the Installation Procedure

The object of this procedure is to load the Release 2.2 binaries from the magnetic tape onto your local or network disk subsystem. You will need to have a blank tape for Step 5.

The basic steps in installation are:

- 1. Boot single user mode.
- 2. Load the release tape.
- 3. Extract the 2.2 backup utility and 2.2 upgrade utility.
- 4. If you are installing a server, halt any diskless clients.
- 5. Run the 2.2 backup utility.
- 6. Run the 2.2 upgrade utility.
- 7. Optionally, use the *tar*(1) command to extract the manual pages and/or color demos.
- 8. If you have a Sun-2/160 with a Graphics Processor, edit the file /etc/rc.local to contain a command line for /etc/gpconfig (8).
- 9. Reconfigure your system kernel and reboot.

If you have performed an installation of a Sun system before, you will recall that we use several conventions in the procedures and examples to try and clarify things:

- What the system types at you is printed in typewriter font like this.
- What you type at the system is shown in **boldface typewriter** font like this. Everything shown in boldface should be typed exactly as it appears.
- □ Where parts of a command are shown in *italic text like this*, they refer to a variable which you have to substitute from a selection; it is up to you to make the proper substitution.

The tape variable is important. The values for tape are listed in Table 3-1.

For example, a common configuration would load from a quarter-inch magnetic tape cartridge via an SCSI tape controller. In this case, *tape* would be replaced by *st* (SCSI *Tape*) everywhere.

Now, you are ready to begin the actual installation.

3.3. Boot single user mode To boot single user mode, do the following:

gaia#/etc/shutdown -h >b vmunix -s # /etc/mount /usr

3.4. Load the Release Tape

NOTE If you are installing 2.2 on a network disk server, you must have a tape drive on the server machine.

NOTE We do not guarantee full compatibility between the 4-track 20 MByte and the 9track 45 MByte drives.

> Your chances of successfully reading tapes produced by a different type of drive are increased if you follow the manufacturer's instructions for drive maintenance: clean the drive heads after every use of a new tape and after every eight hours of use.

Load the release tape.

3.5. Extract the 2.2 Backup and Upgrade Utilities from Tape

When you have loaded the tape, use the tar(1) command to extract the 2.2 upgrade, the 2.2 installation utility.

- If you are using a local tape drive, do the following. Remember to replace tape with the appropriate device abbreviation for your tape (ar for the Archive drive, st for an SCSI tape drive, or mt for the nine-track tape):
 - # cd /usr/etc # mt -f /dev/nrtape0 ret [Note: a 1/2" tape drive cannot be retensioned] # mt -f /dev/nrtape0 rew # mt -f /dev/nrtape0 fsf 3 # tar xvpf /dev/nrtape0 x 2.2_backup 3488 Bytes, 7 tape blocks x get_arch_f 3924 Bytes, 8 tape blocks # mt -f /dev/nrtape0 rew # mt -f /dev/nrtape0 fsf 4 # tar xvpf /dev/nrtape0 x 2.2_upgrade 4494 Bytes, 9 tape blocks #

The *ret* option of the mt(1) command will cause the tape drive to wind the tape forward to the end and back to the beginning to get even tension on the tape.

- If you are using a remote tape drive, do the following. Note that, since you are performing a remote process as super-user, the hostname of the local machine (which you are typing commands on) must be in the remote machine's /.rhosts file to avoid permission problems. In addition, each machine must have an entry for the other (name and Internet address) in its /etc/hosts file. Remember to replace tape with the appropriate device abbreviation for the remote tape drive you are using, to replace remote_host with the hostname of the machine this tape drive is attached to, and to replace block size with 20b for a 1/2" tape or 126b for a 1/4" tape:
 - # cd /usr/etc # rsh remote_host mt -f /dev/nrtape0 ret [Note: a 1/2" tape drive cannot be retensioned] # rsh remote_host mt -f /dev/nrtape0 rew # rsh remote_host mt -f /dev/nrtape0 fsf 3 # rsh remote_host dd if=/dev/nrtape0 \ bs=block_size | tar xvpBf x 2.2_backup 3488 Bytes, 7 tape blocks x get_arch_f 3924 Bytes, 8 tape blocks # rsh remote_host mt -f /dev/nrtape0 rew # rsh remote_host mt -f /dev/nrtape0 fsf 4 # rsh remote_host dd if=/dev/nrtape0 \ bs=block_size | tar xvpBf x 2.2_upgrade. 4494 Bytes, 9 tape blocks #

If you get a "Broken pipe" message, you can ignore it.

3.6. Halt Diskless Clients

3.7. Run the 2.2 Backup Utility If you are installing a server, halt all diskless clients.

Next, you run the 2.2 backup utility to save the 2.0 or 2.1 files on your disk that are replaced in this upgrade. This process takes about 20 minutes.

You will now need a blank tape.

The backup utility will not support backup for ND clients. If you have changed any of the following files in the clients' root file systems, you will manually have to dump each client. The files affected are:

/etc/gp1cg2.1024.ucode /etc/gp1cg2.1152.ucode /etc/gpconfig /etc/inetd /etc/mount /etc/nfsd /etc/mount /etc/shutdown -h /etc/umount /etc/ypbind /etc/ypserv /etc/yp/makedbm

/dev/MAKEDEV

You can *tar* these files to blank tape. Whenever you need to uninstall a client, backup your server first then *tar* these files back to the client.

If you are not running 2.1 release, when you do 2.2 backup you will see the following message: tar: filename: no such file or directory for any files that pertain to the 2.1 release. The files affected are:

/etc/gp1cg2.1024.ucode /etc/gp1cg2.1152.ucode /etc/gpconfig /usr/sys/OBJ/gp1_colormap.o /usr/sys/OBJ/gp1_tern_sync.o /usr/sys/OBJ/gp1_rop.o /usr/sys/OBJ/gp1_rop.o /usr/sys/OBJ/gpone.h /usr/sys/OBJ/gpone.o /usr/sys/OBJ/gpone.o /usr/sys/conf/SDST160GP /usr/sys/sun/gpio.h /usr/include/sun/gpio.h /usr/include/gp1_pwpr.h

If you are not using the yellow pages and have moved ypbind to ypbind- you will want to reverse this with the following command before you proceed:

mv /etc/ypbind- /etc/ypbind

There are two parameters with the 2.2_backup utility. (the command is printed on two lines for formatting purposes only; type it as a single line):

/usr/etc/2.2_backup {arimtist}
 {server|tapefull|tapeless server_name}

The backup command and system response for a server machine will look like this:

f(LB/usr/etc/2.2_backup mt server Beginning backup backup: load blank tape to mt and press return. Extracting object files for backup.

NOTE Make sure your tape is write protected after finishing this step.

3.8. Run the 2.2 Upgrade Utility

NOTE Do not run SunWindows during the upgrade procedure.

Load the release tape now.

If you are doing the upgrade on a server, note that the upgrade utility takes care of 2.2 upgrade on your diskless clients, but that it assumes a standard form of the

nd configuration file /etc/nd.local in order to do so. In particular, if there are lines in the server's /etc/nd.local for client partitions which are commented out (lines with a leading '#'), these clients will not have 2.2 installed on them. If you wish to have the 2.2 Release installed on these clients, you must remove the comment symbol from their lines in the file before performing installation on the server. If you do not do this during the initial install, you will have to run through the entire installation procedure again (on the server and all the clients) in order to bring the commented-out client partitions up to date.

Also, if your *letc/nd.local* file has user... lines and/or ether ... lines that refer to non-existent clients, comment out these lines before running the installation utility. Again, the utility will not run to completion if this is not done.

There are two parameters with the 2.2_upgrade utility. (the command is printed on two lines for formatting purposes only; type it as a single line):

```
# /usr/etc/2.2_upgrade {ar|mt|st}
        {server|tapefull|tapeless server_name}
```

□ The first set specifies your tape device:

Table 3-1 Tape Devices

Devices	
ar	Archive quarter-inch tape
mt	Nine-track magnetic tape
st	SCSI tape controller

□ The last designates your machine as a server, standalone with tape drive, or workstation without a tape drive using a another machine's (*server_name*) tape drive:

server
tapefull
tapeless server_name

For example, the installation command and system response for a server machine with a half-inch tape drive would look like this:


```
# /usr/etc/2.2_upgrade mt server
```

Beginning 2.2 install.

. . .

Extracting 2.2 object files.

[and so on ... extraction takes about 20 minutes ...]

Installing new bootable code on server. Beginning 2.2 install on diskless clients. Beginning 2.2 install on client *client_1*. Completed 2.2 install on client *client_1*. Beginning 2.2 install on client *client_2*. Completed 2.2 install on client *client_2*. Beginning 2.2 install on client *client_3*. Completed 2.2 install on client *client_3*. Completed 2.2 install on client *client_3*. Completed 2.2 install on diskless clients. Running ranlib on new libraries.

2.2 install completed. You should now reconfigure and rebuild your kernel.

NOTE

If you are using an SCSI tape for the install, you may get a message like "/dev/nrst0 rewind 1 failed: I/O error" at the beginning or end of the install utility. You can ignore it.

To install the release on a tapeless workstation using the 1/4'' SCSI tape drive on a machine named *hal*, the command line would be:

3.9. Loading Optional Software from the Release Tape

The seventh file on the upgrade tape contains new/revised manual pages, several new color demos and games, and GP diagnostics. You may optionally load this software.

Manual pages take approximately 22 KBytes of space. They are:

gpone (4S) gpconfig (8) nfsmount (2) mount (8) toolplaces (1) st (4S)

Demos take approximately 3.5 MBytes of space. They are:

cframedemo framedemo jumpdemo rotobj shaded showmap stringart DATA/*.vecs READ_ME show flight draw suncube molecule

Games take approximately 485 KBytes of space. They are:

gammontool chesstool

The GP diagnostic program is the file gp1.2.diag. It takes 400 KBytes.

To extract the optional software use the directions that follow.

 \square First forward position the tape with mt(1) to file 7.

cd /usr
mt -f /dev/nrtape0 rew
mt -f /dev/nrtape0 fsf 6

□ Use the appropriate command line arguments to *tar* to select which directories (*demo*, *man*, and/or *games*) you wish load. If you do not specify a directory, *tar* loads the manual pages, demos and games. The complete load takes about 14 minutes, regardless of which options are chosen.

For a machine with a local tape drive:

- # tar xvpf /dev/nrtape0
 loads manual pages, demonstration programs, and games
- # tar xvpf /dev/nrtape0 /stand loads GP diagnostic
- # mt -f /dev/nrtape0 rew

For a machine using a remote tape drive, type the following. Remember to replace *tape* with the appropriate device abbreviation for the remote tape drive you are using, to replace *remote_host* with the hostname of the machine this tape drive is attached to, and to replace *block_size* with 20b for a 1/2" tape or 126b for a 1/4" tape:

cd /usr
<pre># rsh remote_host mt -f /dev/nrtape0 rew</pre>
<pre># rsh remote_host mt -f /dev/nrtape0 fsf 6</pre>
<pre># rsh remote_host dd if=/dev/nrtape0 \</pre>
bs=block size tar xvpBf/man
rsh remote host mt -f /dev/nrtape0 rew

See the above discussion of loading with a local tape drive for an explanation of how to optionally load the manual pages, demonstration programs and/or games with *tar*.

The *dd* command above will print the number of records read in and written out, for example:

6 + 0 records in 6 + 0 records out

This message may be interspersed with the standard error output from *tar* and, in any case, may be ignored. Also, you can ignore the "Broken pipe" message delivered by *tar*.

 \Box If you load the pages, and normally use *catman*(8) to create pre-formatted copies of your online manual pages, then don't forget to re-issue the *catman* command for the new 2.2 pages.

3.10. Reconfigure your UNIX System Kernel

NOTE Changes have been made to the device description lines in the kernel configuration file to allow for the Sun-2/160 GP option.

Finally, to complete the 2.2 Release installation, you must reconfigure your system kernel.

NOTE Changes have been made to the device description lines in the kernel configuration file to allow for the Sun-2/160 GP option.

If you are doing kernel configuration for the first time, you can use the procedures in

Installing UNIX on the Sun Workstation (Part Number: 800-1158).

If you have previously configured a kernel, you can use the following sections to guide you through reconfiguration. The first subsection is an annotated copy of the new *GENERIC* kernel configuration file; read it carefully to make sure you are including the correct device description lines for your system. The second

subsection gives reconfiguration procedures for standalone machines, and the third subsection addresses servers.

For standalone machines, proceed as follows.

Kernel Reconfiguration for

Standalone Systems

1. Change the current directory to /sys/conf:

cd /sys/conf

- 2. Create a kernel configuration file. There are two ways to produce the kernel configuration file.
- Copy the file GENERIC and comment out the lines that don't apply to your system. We'll call the new file SYS_NAME (the name of the system). For example,

cp GENERIC SYS_NAME
chmod +w SYS_NAME

Alternatively, copy the file SDST160GP onto a file called SYS_NAME (the name of the system). This file is a basic Model 160 kernel configuration file. If you have any additional devices on your system, you should add lines to this file as appropriate for your system.

cp SDST160GP SYS_NAME
chmod +w SYS_NAME

- 3. Edit /sys/conf/SYS_NAME to reflect your system configuration. Use the annotated copy of GENERIC provided in the following section for an explanation of these changes. Make sure you are including the proper device description lines for your system.
- 4. Edit the file /etc/rc.local to contain a line for the gpconfig (8) command.

/etc/gpconfig gpone0 -b -f cgtwo0
 for initializing the GP and GB

/etc/gpconfig gpone0 -f cgtwo0
 for initializing the GP only

If you don't want to have the GP and/or GB boards active all the time, you can run the *gpconfig* (8) command interactively.

5. Create the directory ../SYS_NAME (if you haven't already) to contain the kernel image. Remember: since the system build utility /etc/config places its output files there, this directory must have the same name as your system configuration file:

mkdir ../SYS_NAME

6. Still in the /sys/conf directory, run /etc/config. Then change directory to the new configuration directory, and make the new system (remember to substitute your actual system image name for SYS_NAME):

- # /etc/config SYS_NAME
- # cd ../SYS_NAME
- # make depend
- [lots of output]
- # make
- [lots of output]
- 7. Now you can save your old kernel and install your new one:
 - # mv /vmunix /vmunix.old
 - # cp vmunix /vmunix
 - # /etc/shutdown -h

The system goes through the halt sequence, then the monitor displays its prompt, at which point you can boot the system:

> b

The system boots up multi-user, and then you can try things out. gaia#

- 8. If the system appears to work, this completes the upgrade procedure. If performance is slow, check that *gpconfig* has been run properly. If the new kernel doesn't seem to be functioning properly, boot /*vmunix.old*, copy it back to /*vmunix*, and go about fixing your new kernel:
 - # /etc/shutdown -h
 > b vmunix.old -s
 # mv /vmunix /vmunix.oops
 # cp /vmunix.old /vmunix
 # ^D [Brings the system up multi-user]
 gaia#

Kernel Reconfiguration for Servers For server machines, proceed as follows.

1. Change the current directory to /sys/conf:

cd /sys/conf

- 2. Create a kernel configuration file. There are two ways to produce the kernel configuration file.
- Copy the file GENERIC and comment out the lines that don't apply to your system. We'll call the new file SYS_NAME (the name of the system). For example,
 - # cp GENERIC SYS_NAME
 # chmod +w SYS_NAME
- Alternatively, copy the file SDST160GP onto a file called SYS_NAME (the name of the system). This file is a basic Model 160 kernel configuration file. If you have any additional devices on your system, you should add lines to this file as appropriate for your system.

cp SDST160GP SYS_NAME

- # chmod +w SYS_NAME
- 3. Edit /sys/conf/SYS_NAME to reflect your system configuration. Use the annotated copy of GENERIC provided in the previous section for an explanation of these changes. Make sure you are including the proper device description lines for your system.
- 4. Edit the file /etc/rc.local to contain a line for the gpconfig (8) command.

/etc/gpconfig gpone0 -b -f cgtwo0
 for initializing the GP and GB

If you don't want to have the GP and/or GB boards active all the time, you can run the *gpconfig* 8 command interactively.

5. Create the directory ../SYS_NAME (if you haven't already) to contain the kernel image. Remember: since the system build utility /etc/config places its output files there, this directory must have the same name as your system configuration file:

mkdir ../SYS_NAME

- 6. Still in the */sys/conf* directory, run */etc/config*. Then change directory to the new configuration directory, and make the new system (remember to substitute your actual system image name for *SYS_NAME*):
 - # /etc/config SYS_NAME
 - # cd ../SYS_NAME
 - # make depend
 - [lots of output]
 - # make
 - [lots of output]
- 7. If you have a specially configured client kernel, it can be reconfigured now as well:

- # cd /sys/conf
- # cp GENERIC CLIENT_KERNEL_NAME
- # chmod +w CLIENT_KERNEL_NAME
- [Edit CLIENT_KERNEL_NAME to reflect all clients' systems.
- Be especially careful with the device description lines, given above.]
- # mkdir ../CLIENT_KERNEL_NAME
- # /etc/config CLIENT_KERNEL_NAME
- # cd ../CLIENT_KERNEL_NAME
- # make depend
- [lots of output]
- # make
- [lots of output]
- 8. Now you can position yourself in the directory which has the server's kernel in it, save your server's old kernel, install your new one, and try everything out:
 - # cd ../SYS_NAME
 - # mv /vmunix /vmunix.old
 - # cp vmunix /vmunix
 - # /etc/shutdown -h

The system goes through the halt sequence, then the monitor displays its prompt, at which point you can boot the system:

> b

The system boots up multi-user, and then you can try things out. gaia#

- 9. Next, install the appropriate client kernel in /pub.
- If you reconfigured a special client kernel (in Step 5 above), copy it into /pub:
 - # cd /sys/CLIENT_KERNEL_NAME
 [or wherever your client kernel is]
 # cp vmunix /pub/vmunix
- Otherwise place a copy of your server's kernel (if appropriate) in *pub*:

cp /vmunix /pub/vmunix

- 9. If everything appears to work, you can finish by rebooting each of your clients. See the final step in the standalone instructions above if you have problems with your kernel.
- NOTE If you want to run the yellow pages, be sure to move ypbind-back to ypbind.

If performance is slow, check that gpconfig has been run properly.

Kernel Reconfiguration — an Annotated Copy of GENERIC

The following pages provide an annotated copy of the *GENERIC* file shipped with this distribution. You can use the explanations of each line in the file to determine which lines should be included in your own system configuration file.

```
#
# GENERIC SUN
#
machine sun
```

[mandatory.]

cpu "SUN2"

[mandatory.]

ident GENERIC

[mandatory. If you use GENERIC as your system identifier, you may use the swap generic clause in the config line below. If you customize the identifier to SYS_NAME, you must either include an options GENERIC line, or specify at least the device where your root file system lives in place of swap generic. For example, the config line for a standard Sun-2 might read: config vmunix root on xy. See General and Specific System Description Lines, in Installing Unix on the SunWorkstation above, for information. Finally, if SYS_NAME contains both alpha and numeric characters (as in, for example, SDST120), you must enclose the name in double quotes ("SDST120") or you will get a syntax error when you run /etc/config.]

timezone 8 dst

[mandatory. Specifies your timezone. Adjust value accordingly.]

maxusers 4

[mandatory. Number may vary. For most systems, "2" is the proper value for maxusers.

options INET

[mandatory. Controls inclusion of Internet code. See inet (4). You must also include the pseudo-device inet and pseudo-device loop lines below.]

options SYSACCT

[Controls inclusion of code to do process accounting. See acct(2) and acct(5). If you include this line, you must also include the pseudo-device sysacct line below.]

options RPC

[Necessary for the network file system.]

options NFS

[Necessary for the network file system.]

config vmunix swap generic

[mandatory. Specify kernel name and configuration clauses. See Specific System Description Lines, above, for information.]

pseudo-device rpc

[Necessary for the network file system.]

pseudo-device nfs

[Necessary for the network file system.]

pseudo-device pty

[Pseudo-tty's. Needed for network or window system.]

pseudo-device bk

[Berknet line discipline for high speed tty input. See bk(4).]

pseudo-device sysacct

[See options SYSACCT line above.]

pseudo-device inet

[mandatory. See options INET line above.]

pseudo-device ether mandatory.

[ARP code. See arp (4).]

pseudo-device loop

[mandatory. Software loop back network device driver. See lo (4). Must include with 'options INET'.]

pseudo-device nd

[Network disk. Necessary for servers and diskless clients, and for machines serving as remote hosts for remote installation. See *nd*(4).]

pseudo-device win128

[Window system. Number indicates maximum windows. If you include this line, you must also include the pseudo-device dtop, ms, and kb lines just below.]

pseudo-device dtop4

Revision: A of 3 October, 1985

[Maximum number of screens (desktops). Required for window system.]

pseudo-device ms3

[Maximum number of mice. Required for window system. See ms (4).]

pseudo-device kb3

[Maximum number of Sun keyboards. Required if using any Sun keyboard, and for the window system.]

pseudo-device ingres

[Sun MicroINGRES lock device.]

controller mb0 at nexus ?

[mandatory. Main bus code.]

controller ipc0 at mb0 csr all virt 0xeb0040 priority 2 [1st Interphase SMD disk controller. See *ip* (4).]

controller ipc1 at mb0 csr all virt 0xeb0044 priority 2 [2nd Interphase controller.]

disk ip0 at ipc0 drive 0 [1st disk on 1st Interphase controller.]

disk ip1 at ipc0 drive 1 [2nd disk on 1st Interphase controller.]

disk ip2 at ipc1 drive 0 [1st disk on 2nd Interphase controller.]

disk ip3 at ipc1 drive 1 [2nd disk on 2nd Interphase controller.]

controller xyc0 at mb0 csr all virt 0xebee40 priority 2 vector xyintr 72 [1st Xylogics SMD disk controller. See xy (4).]

controller xyc1 at mb0 csr all virt 0xebee48 priority 2 vector xyintr 73 [2nd Xylogics controller.]

disk xy0 at xyc0 drive 0

[1st disk on 1st Xylogics controller.]

disk xyl at xyc0 drive 1

[2nd disk on 1st Xylogics controller.]

disk xy2 at xyc1 drive 0

[1st disk on 2nd Xylogics controller.]

disk xy3 at xyc1 drive 1

[2nd disk on 2nd Xylogics controller.]

```
controller sc0 at mb0 csr 0x80000 priority 2
[1st SCSI controller on a Sun-2/120 or Sun-2/170.]
```

controller sc0 at mb0 csr vme busmem 0x200000 priority 2 vector scintr 64 [1st SCSI controller on a Sun-2/160.]

```
disk sd0 at sc0 drive 0 flags 0
[1st disk on 1st SCSI controller.]
```

```
disk sd1 at sc0 drive 1 flags 0
[2nd disk on 1st SCSI controller.]
```

```
tape st0 at sc0 drive 32 flags 1
[1st SCSI tape.]
```

controller sc1 at mb0 csr 0x84000 priority 2 [2nd SCSI controller.]

```
disk sd2 at sc1 drive 0 flags 0
[1st disk on 2nd SCSI controller.]
```

- disk sd3 at sc1 drive 1 flags 0 [2nd disk on 2nd SCSI controller.]
- tape st1 at sc1 drive 32 flags 1

[2nd SCSI tape.]

device ropc0 at mb0 csr 0xee0800 [mandatory. RasterOp chip. See ropc (4).]

device sky0 at mb0 csr 0x2000 priority 2

[Sky Floating Point board in any Sun-1, Sun-2/120, or Sun-2/170.]

device sky0 at mb0 csr vme busio 0x8000 priority 2 vector skyintr 176 [Sky Floating Point board in a Sun-2/50 or Sun-2/160.]

device zs0 at mb0 csr all virt 0xeec800 flags 3 priority 3 # cpu [CPU serial I/O ports. See zs (4).]

device zs1 at mb0 csr all virt 0xeec000 flags 0x103 priority 3 # video [Sun-2 Video Board ports. Required for Sun-2 keyboard and mouse.]

device zs2 at mb0 csr 0x80800 flags 3 priority 3 [1st two serial I/O ports on 1st SCSI Board.]

device zs3 at mb0 csr 0x81000 flags 3 priority 3 [2nd two serial I/O ports on 1st SCSI Board.]

device zs4 at mb0 csr 0x84800 flags 3 priority 3 [1st two serial I/O ports on 2nd SCSI Board.]

device zs5 at mb0 csr 0x85000 flags 3 priority 3 [2nd two serial I/O ports on 2nd SCSI Board.]

device mti0 at mb0 csr all virt 0xeb0620 flags 0xffff priority 4 vector mtiintr 136 [Systech terminal MUX. See mti(4).]

device ie0 at mb0 csr 0x88000 priority 3 [1st Sun-2 Ethernet Controller on a Sun-2/120 or Sun-2/170.]

device ie0 at mb0 csr vme virt 0x0ee3000 priority 3 [1st Sun-2 Ethernet Controller on a Sun-2/50 or Sun-2/160.]

Revision: A of 3 October, 1985

device iel at mb0 csr 0x8c000 flags 2 priority 3

[2nd Sun-2 Ethernet Controller on a Sun-2/120 or Sun-2/170.]

device ec0 at mb0 csr 0xe0000 priority 3

[1st 3COM Ethernet Controller. See ec (4).]

device iel at mb0 csr vme busmem 0xe88000 priority 3 device ecl at mb0 csr 0xe2000 priority 3

[2nd 3COM Ethernet Controller. See ec (4).]

controller tm0 at mb0 csr all virt 0xeb00a0 priority 3 vector tmintr 96

[1st TAPEMASTER tape controller. See tm (4).]

controller tm1 at mb0 csr all virt 0xeb00a2 priority 3 vector tmintr 97

[2nd TAPEMASTER tape controller. See tm (4).]

tape mt0 at tm0 drive 0 flags 1

[1st 1/2" tape drive on 1st TAPEMASTER controller.]

tape mt1 at tm1 drive 0 flags 1

[1st 1/2" tape drive on 2nd TAPEMASTER controller.]

controllerxtc0 at mb0 csr all virt 0xebee60 priority 3 vector xtintr 100controllerxtc1 at mb0 csr all virt 0xebee68 priority 3 vector xtintr 101tapext0 at xtc0 drive 0 flags 1tapext1 at xtc1 drive 0 flags 2devicear0 at mb0 csr 0x200 priority 3

[1st 1/4" tape drive. See ar (4).]

device ar1 at mb0 csr 0x208 priority 3

[2nd 1/4" tape drive.]

device gpone0 at mb0 csr vme busmem 0x210000 priority 3

[Sun Graphics Processor board.]

device cgtwo0 at mb0 csr vme busmem 0x400000 priority 3

[Sun-2 color graphics interface. Required if gpone config line is present. See cgtwo (4s).]

device cgone0 at mb0 csr 0xec000 priority 3
device cgone0 at mb0 csr vme busmem 0x1ec00 priority 3

[Sun-1 Color Board. See cgone (4s).]

device bwtwo0 at mb0 csr 0x700000 priority 4 [1st monochrome monitor on a Sun-2/120 or Sun-2/170. See bwtwo (4s).]

device bwtwo0 at mb0 csr vme obio 0x0 priority 4 [1st monochrome monitor on a Sun-2/50 or Sun-2/160.]

device bwone0 at mb0 csr 0xc0000 priority 3 [1st monochrome Sun-1 monitor. See bwone (4s).]

device vp0 at mb0 csr 0x400 priority 2

[Ikon Versatec Board. See vp (4).]

device vpc0 at mb0 csr 0x480 priority 2 [1st Systech Centronics/Versatec Board. See vpc (4s).]

device vpc1 at mb0 csr 0x500 priority 2 [2nd Systech Centronics/Versatec Board.]

device pi0 at mb0 csr 0xee2000

[Parallel input. Only used on Sun Models 100U and 150U, for keyboard and mouse.]

device des0 at mb0 csr all virt 0xee1800

[Interface to the AMD8068 Data Ciphering Processor, a hardware implementation of the NBS Data Encryption Standard.]

device tod0 at mb0 csr 0xee1000

[Time of day clock on the Sun-2/120 or Sun-2/170.]

device tod0 at mb0 csr vme busmem 0x200800

[Time of day clock on the Sun-2/160 or Sun-2/50.]

3.11. Uninstalling the 2.2 Release	If you run into problems while running 2.2, you can back out the changes by using the tape which you got after running 2.2 backup. You then reconfigure your kernel, and can run as you were before. Proceed as follows.
NOTE	Optional software is not backed out during the uninstall.
NOTE	If you are 'uninstalling' a network disk server, you must halt all diskless clients before proceeding.

- 1. Load the backup tape, as described in the normal installation procedure above.
- 2. If you have edited *letc/rc.local* to contain a line for the *gpconfig*(8) command, that file should be re-edited to remove or comment out the line.

```
# /etc/shutdown -h
>b vmunix -s
#/etc/mount /dev/nrtape0 /usr
#mt -f /dev/nrtape0 rew
# tar xvpf /dev/nrtape0
```

This takes about 30 minutes.

4. Reconfigure your kernel.

Fixed Software Bugs

Fixed Software Bugs	37
4.1. Language Processors	37
Assembler	37
C Compiler	37
FORTRAN	37
4.2. Graphics	38
CGI	38
Pixrects	38
Graphics Processor	38
4.3. Kernel	39
Driver	39
NSF	39
Miscellaneous	39
4.4. Network	40
Protocol	40
Yellow Pages	40
Miscellaneous	40
4.5. Utilities	40
Miscellaneous	40
4.6. Windows	41
Suntools	41
4.7. Miscellaneous Software Fixes	41

.

-

.

Fixed Software Bugs

This chapter briefly presents the bugs which are fixed in Release 2.2. The bugs are sorted under general headings: Compiler, Graphics, Kernel, Network, Utilities, Windows, Documentation, and Miscellaneous. As noted in the "Introduction", Release 2.2 is primarily concerned with general system bug fixes, To take advantage of the bug fixes in the libraries, programs should be recompiled.

4.1. Language Processors

Assembler

C Compiler

FORTRAN

The assembler has been corrected to accept compiler lines in the symbol name =. form.

The C compiler now compiles the assignments of address register variables to the bit fields. Previously, the 2.0 compiler failed to do this correctly.

Compiler expressions in the form $< \exp r > \$1 == 0$ no longer generate an illegal instruction tstl #0.

The C compiler no longer produces a fatal error message when compiling a structure declaration with too many initial values.

The C compiler has been fixed so that array subscripts no longer make it loop. In Release 2.0, array subscript fragments could make the C compiler loop and the message compiler error: expression causes compiler loop: try simplifying would appear.

FORTRAN DO-loops with floating point index variables have been corrected. Previously, these caused compile time errors when the -fsky option was used.

FORTRAN arithmetic expressions containing array references now compile correctly when using the -fsky option. Previously, these compiled incorrectly resulting in a segmentation fault at run time.

The f77 compiler generates large offsets in base displacement addressing of common blocks resulting in assembly time errors. This bug has been fixed.

The bad read of list-directed floats has been fixed. list directories that read statements with floating point arguments use to produce incorrect results.

A memory allocation error in the Fortran optomizer has been fixed.

A syntax error in DATA statement that the compiler uses caused an abort. This has now been fixed.

The -Nx option must come before the file name(s), otherwise the flag is used by the loader. This is not a bug in £77 but rather a clarification.

4.2. Graphics

CGI

If a viewport is made smaller than a clip rectangle and then enlarged, the smaller viewport is also enlarged. Previously, when a viewport was made smaller than a clip rectangle, then made larger, the smaller viewport remained.

circular_arc.3pt returns an error message when given collinear or coincident points. Previously, there was no error message when this occurred.

When five view surfaces are opened, and then one is closed, the others stay open. In Release 2.0, the other view surfaces could not be reopened.

The CGI package did not free up the memory which it had allocated once it was done with it.

Now when the expression within the function inquire_text_extent is set to the value string (which indicates raster text), the function no longer returns a message indicating that there is no text. Previously, the function returned a message indicating that there was no text in this file when in fact text did exist.

Bundled attributes now automatically rescale. They did not in the previous release.

pr_rop is now working for 1-bit and n-bit memory pixrects. The bug used to trash the text on a retained pixwin (on a Sun-2/160 color window) when the window redisplayed.

In order to gain full screen access, a program running in a window called fullscreen_init calls to pw_replrop. This program will now expand to full screen access. Previously, it would clip to the boundries of the original pixwin.

Graphics Processor

Pixrects

Circular arcs of width one now display on the Graphics Processor.

The Graphics Processor no longer hangs if the number of polygon vertices is higher than 25.

The hidden surface removal now works using the Graphics Processor without the Graphics Buffer. Previously, there appeared to be a hardware buffer even when it was not present.

A Graphics Processor device driver declaration has been added to /usr/include/pascal/devincpas.h.

3-D polygons in temporary segments drawn on a gpl view surface are now shaded correctly. Previously, due to a bug in /usr/lib/libcore.a, the view surface would sometimes shade unevenly.

4.3. Kernel

o longer hang low in raw ad new tty de or k generated fconfig had broblem. slation tables the user waiting for rith the Xylo- for it. an address
nd new tty de or k generated fconfig had problem. slation tables the user waiting for rith the Xylo- for it. an address
fconfig had problem. slation tables the user waiting for rith the Xylo- for it. an address
the user waiting for ith the Xylo- or it. an address
rith the Xylo- or it. an address
ive file offsets.
system call
and small data
cesses were
en corrected. It
neric kernel way machine.
s such as ad the system
dium resolution
caused the sys- on heavily
-

4.4. Network

Protocol The bug in UDP RPC programs that call to recvfrom after a fork has been fixed. TCP RPC programs no longer hang if the server crashs during a remote procedure call. Gateway system's TCP code decremented an internet packet time-to-live counter by too much, limiting the maximum number of hops of a TCP packet to four. This has been fixed. Yellow Pages Erroneous comparisons of usernames in the password file has been corrected. In Release 2.0, it caused yppasswd to think that names which were only similar were in fact the same. There was a memory leak in ypbind and ypserv; the program allocated memory but did not free it. The bug was in the C library. yp next no longer fails if the input key is zero length (null). /etc/yp/ypinit has been fixed. Previously, it was unable to detect an unset host name or domain name. The yp bind function has been corrected to allow the code to work correctly when compiled on a DEC VAX. The bug in the tftp server which caused file transfers to timeout has been Miscellaneous fixed. Running out of process table space made a machine unable to accept new network connections making programs such as rsh and rlogin timeout. Under these circumstances, the internet daemon would eat up all the rest of the CPU cycles. 4.5. Utilities The vi and ex command : so (source) has been fixed. Using the source command to read and execute a file of vi commands caused vi to loop. The vtroff formatter has been fixed. Previously, it used to generate floating exception messages when asked to draw boxes via -ms .BX commands. Miscellaneous The error response of sendmail has been corrected. The error response of sendmail treated a temporary error like a permanent error. For example, the Release 2.0 responded Deferred: Bad file number on any temporary error involving SMTP. dcheck no longer produces bogus errors after encountering a real one.

The man command will now give the user a usage string citing the valid options instead of crashing.

The /bin/test command, used from the Bourne shell, now recognizes the command-line arguments -b, -c, -g, -k, and -x.

lpd will now parse + entries in /etc/hosts.equiv.

The ftp bug which used to cause files to overwrite has been corrected.

The date computation in makedom has been fixed.

A spurious not on export list error could result from a remote mount from a gateway.

4.6. Windows

Suntools

A long line of input typed to a Suntools shell window no longer locks up that window.

The double pr_destroy in libsuntool/gfxsw.c has been corrected.

In the panel_public.c package in libsuntool, in a routine named shrink_to_fit(), two variables have to be initialized to zero. In the function panel_get(), a third argument has to be defined.

4.7. Miscellaneous Software Fixes In Release 2.0, sysdiag's account name appears in /etc/passwd with a blank password field. This allows over-the-wire diagnostics but also allows a user to log in as sysdiag and become root. If you wish to prevent this, put a "*" in the password slot of passwd file.

•

.

5

Errata Pages for 2.0 Manuals

Errata Pages for 2.0 Manuals	45
5.1. Converting Diskful Workstations to use NFS	56

Errata Pages for 2.0 Manuals

The following pages list errata from the 2.0 Programmer's Reference Manual for SunCore (Part Number: 800-1165), Programmer's Reference Manual for SunCGI (Part Number: 800-1166), System Administration for the Sun-Workstation (Part Number: 800-1150) and Installing Unix on the SunWorkstation (Part Number: 800-1158).

1

•'

.

,

, ,

9

Errata in the 2.0 Release

of the

Programmer's Reference Manual for SunCore

Page(s)	Comments	
B-3	In Section B-2	2, two additional device specifications for the GP board are necessary.
	gpldd	A Sun-2/160 graphics display with a Graphics Processor option.
	gp1pixwindd	A color graphics window within the Suntools window environment running on a Sun-2/160 color graphics display with a Graphics Pro- cessor option.
		ne sentence following these specifications that lists devices capable of e removal should include the new GP devices.

.

Errata in the 2.0 Release

of the

Programmer's Reference Manual for SunCGI

Table 5-1 SunCGI Errata

Page	Comments
2-3	Section 2.1.2 should state that many failures during view surface initialization produce error 11, ENOWSTYP. For example, opening a device surface type PIXWINDD instead of CGPIXWINDD on a color pixwin, or using CG2DD when the <i>/dev/cgtwo*</i> surface is being used by suntcols.
2-5	In Table 2-2, an additional device specification for the GP board is necessary.
	GP1DD for Sun-2/160 graphics display with optional Graphics Processor
2-16	Section 2.3.2.1 should contain the following explanation: The default state is VDC_EXTENT. If clipping is not NOCLIP, output primitives are clipped to either the clip rectangle (if cflag equals CLIP_RECTANGLE) or the full extent of VDC space (if cflag equals VDC_EXTENT). The extent of VDC may be set with the vdc_extent function.
2-19	In Section 2.3.3.4, the <i>extent</i> argument is of the enumerated type Cexttype. The function specification is correct, but the text makes reference to an argument clear_extent incorrectly of type Cclip. The definition of type Cexttype is:
	<pre>typedef enum { CLIP_RECT, VIEWPORT, VIEWSURFACE } Cexttype;</pre>
2-19	In Section 2.3.3.5, the discussion of set_error_warning_mask should contain the follow- ing explanation: SunCGI defines no errors as FATAL. (POLL and INTERRUPT actions are therefore the same). The error number is always returned. A message is printed unless the action is NO_ACTION.

Table 5-1 SunCGI Errata— Continued

Page	Comments
2-20	In Section 2.4.3 The sig_function argument to set_up_sigwinch is a pointer to a func- tion, The complete specification should be:
	Cerror set_up_sigwinch(name, sig_function) Cint name; Cint (*sig_function)(); /* signal handling function */
	The sig_function argument is called with a single argument: the name of the view surface with which it is associated by the call to set_up_sigwinch. This allows more than one view surface to share the same sig_function, and differentiate which view surface needs redisplay.
3-13	Section 3.2.7 the discussion of bitblt_source_array should contain the following expla- nation:
	pixsource and pixtarget are pointers to pixrects which must already be created by the user with mem_create (see the <i>Programmer's Reference Manual for SunWin-</i> <i>dows</i>). These pixrects must be the same depth as the view surface: 1-bit deep on a monochrome device, 8-bit on a color device. The source area of the view surface associ- ated with name is saved into pixsource (at 0,0), possibly NOT-ed, depending on the drawing mode. The target area, after pixsource is applied to it, is read into pixtar- get pixrect (at 0,0).
3-14	In Section 3.2.8, the second paragraph should say: pixpat is a pointer to a pixrect which must be created and initialized with the pattern by the application program. pixtarget is a pointer to a pixrect (with same depth as device) which must already be created by the user, using mem_create. The target area, after pixpat is applied to it, is read into the pixtarget pixrect (at 0,0).
3-14	In Section 3.2.9, the first paragraph should say: bitblt_patterned_source_array replicates (using the current drawing mode) the pattern stored in pixpat to fill the area of the view surface determined by ox, oy and dx, dy. The source area of the view surface is read into the pixrect pointed to by pix- source (which must already be created by the user with same depth as device) at 0,0. The replicated pattern array is AND-ed into the pixsource, and possibly NOT-ed, depend- ing on the drawing mode. The resulting pixrect is copied to the view surface at ox, oy, using the current drawing mode. The target area, after the copy, is read into the pix- target pixrect. If the replicated pattern array overlaps with the source array on the screen, the visual result depends on the current drawing mode.
4-11	The sentence in Section 4.4.2.3 which says: All nonzero entries in colorind are set to 1. should say: For monochrome view surfaces, all nonzero entries in colorind are treated as 1 when used.

.

.

Table 5-1 SunCGI Errata—Contin

Page	Comments
4-12	New Section 4.4.2.6:
	Cerror pattern_with_fill_color(flag) Cflag flag; /* ON to use nonzero pattern elements as fill color */
	Binary patterns are a SunCGI extension that allow the same pattern to be applied in different colors, without redefining the pattern array. pattern_with_fill_color sets a non-standard CGI state <i>pattern with fill color</i> . The default for flag is OFF and each color value in a pattern table entry is used verbatim, as in standard CGI. When a pattern is used while pattern_with_fill_color is ON, the pattern is considered to be a 2D array of flags: where the pattern element is nonzero, the current fill color is used, instead of the actual value of the pattern element. (Where flag is zero, a zero color index is used, just as when the flag is OFF.)
4-20	Section 4.6.1 should say: The default color lookup table size for a color device has 8 entries. The minimum and maximum color table entries are treated specially by pixwins and hence by SunCGI . If they are set to be the same value, the user's values for these two entries are <i>both</i> ignored: they revert to the "inverse" of the normal values: entry 0 becomes white, the maximum entry becomes black.
5-1	The following paragraphs are supplemental to the introduction of logical input devices.
	Each logical input device can be used in one of three ways, distinguished by the three EVENT input device states. To use input synchronously, the application program should call request input. The program blocks until the operator fires a trigger associated with this device (or a timeout occurs). If timeout is -1 , the request will wait forever.
	To receive input asynchronously, the initiate_request function should be used. This function initializes the device so that the measure from the next trigger activation will be recorded in the request register. The program does not block in REQUEST mode. Until the trigger fires, sample_input may be called to get the current measure of the input device. After the trigger fires, get_last_request_input will then return the request register (value) and status.
	To use queued input the enable_events function should be called. This function ini- tializes the device so that trigger activations will result in input events being enqueued onto the event queue. Calls to await_event will return the first event in the event queue. If the event queue is EMPTY, it will wait for a trigger (or until timeout). A call to disable_events will terminate the queuing of input events.
	When initializing the locator or keyboard device, the the xypt field of the Cinrep

Table 5-1 SunCGI Errata—C	Continued
---------------------------	-----------

```
Comments
Page
        The program example in Section 5-1 is wrong. It should be replace by the following example:
5-3
        #include <cgidefs.h>
        #define TEN_SECONDS (10 * 1000 * 1000) /* timeout is in microseconds */
        main()
        {
                 Cawresult stat;
                 Ccoor point;
                 Cinrep ivalue;
                 Cint name;
                 Cint trig;
                 Cvwsurf device;
                 device.dd = PIXWINDD;
                 point.x = 16384; /* put cursor in the middle of the view surface */
                 point.y = 16384;
                 ivalue.xypt = &point;
                 open_cgi();
                 open_vws(&name, &device);
                 initialize lid(IC LOCATOR, 1, &ivalue);
                 /* associate locator with mouse button 1 */
                 associate(2, IC_LOCATOR, 1);
                 /* track with printer's fist: move cursor (fist) to initial point */
                 track on(IC LOCATOR, 1, 1, (Ccoorpair *)0, &ivalue);
                 /* wait up to ten seconds for input */
                 request_input(IC_LOCATOR, 1, TEN_SECONDS, &stat, &ivalue, &trig);
                 if (stat == VALID DATA)
                          printf(" trigger activated at %d %d 0,
                                  ivalue.xypt->x, ivalue.xypt->y);
                 else
                          printf(" trigger not activated 0);
                 /* shut device off */
                 dissociate(2, IC_LOCATOR, 1);
                 release input device (IC_LOCATOR, 1);
                 sleep(10);
                 close vws(name);
                 close cgi();
         }
         Trigger 6, LOC_STILL, has been added. This trigger fires when the mouse doesn't move for about
5-5
         1/5th of a second (or more).
```


. .

·

Table 5-1 SunCGI Errata—Continued

Page	Comments
5-11	The device specification arguments for get_last_requested_input are wrong. The com- plete specification should be consistent with the other input routines.
	Cerror get_last_requested_input(devclass, devnum, valid, sample) Cdevoff devclass; /* device class and number */ Cint devnum;
	Clogical *valid; /* device status */ Cinrep *sample; /* device value */
F-2	The name and pw arguments for open_cgi_pw are wrong. The complete specification should be:
	Cerror open_cgi_pw(pw, desc, name)
	struct pixwin *pw; /* pixwin */ Ccgiwin *desc; /* CGI pixwin descriptor */
	Cint *name;
F-2	All cgipw input and output primitives use screen (pixel) coordinates, for compatibility with pixwins. As described in <i>Programmer's Reference Manual for SunWindows</i> , pixel coordinates have the upper left corner as the origin for compatibility with Pixwins. Table F-1 should not contain reference to track_on or track_off; the functions cgipw_track_on and cgipw_track_off do not exist.
	The bottom of page F-2 should say desc is a pointer to the pixwin descriptor filled in by the open_cgi_pw function.

,

.

·

.

.

Page	Comments
G-2	The FORTRAN example program is wrong. Here is a version that works.
	program test
	program test
	parameter (ibignum=256)
	integer name
	character screenname* (ibignum)
	integer screenlen
	character windowname* (ibignum)
	integer windowlen
	integer windowfd
	integer retained
	integer dd
	integer cmapsize
	character cmapname* (ibignum)
	integer cmaplen
	integer flags character ptr* (ibignum)
	integer noargs
	integer xc(10),yc(10),n
	integer xc2(2), yc2(2)
	data xc /0,-10,-1,-1,-15,15,1,1,10,0 /
	data yc /0,0,1,20,35,35,20,1,0,0 /
	data xc2 /-12,12/
	data yc2 /33,33/
	call cfopencgi()
	dd = 4
	call cfopenvws (name, screenname, screenlen, windowname, windowlen,
	+ windowfd, retained, dd, cmapsize,
	+ cmapname, cmaplen, flags, ptr, noargs)
	call cfvdcext(-50,-10,50,80) n = 10
	n = 10 call cfpolyline(xc,yc,n)
	n = 2
	call cfpolyline(xc2,yc2,n)
	call sleep(10)
	call cfclosecgi()
	call exit()
	end
G-3	The calling sequence for bitblt_patterned_source_array should say
	bitblt_patterned_source_array(pixpat, px, py, pixsource,
	sx, sy, pixtarget, rx, ry, ox, oy, dx, dy, name)

Table 5-1 SunCGI Errata— Continued

Function	Discussion
vdc extent	cgipw's VDC space is identical to screen space
device viewport	use pw_region prior to open_cgi_pw
clip indicator	when cflag is CLIP_RECTANGLE
clip rectangle	Instead, use pw_region prior to open_cgi_pw
clear control	All clear extents are identical
open vws	Useopen cgi pw
close vws	Use close cgi pw
close_cgi	Use close_pw_cgi

,

Table 5-2 Functions not compatible with CGIPW mode

Revision: A of 3 October, 1985

·

. .

. .

.
Errata in the 2.0 Release

of the

System Administration for the SunWorkstation

Page(s)	Comments
2	In section 1.1 of the tutorial on FSCK-The Unix File System Check Program, the default block size for the 2.0 Release should be 4K with a hardcoded default block size of 4096.
4-24	In Section 4.3 when mail is sent, sendmail checks the files /etc/usr/hosts.equiv and /usr/lib/mailhosts for the name of the host to whom the mail is being sent. If neither of these files recognize the name, sendmail forwards the mail to the mailhost machine.

. .

·

. .

Errata in the 2.0 Release

of the

Installing Unix on the Sun Workstation

Page(s)	Comments
3-2	If you have a 1/4" tape and the > prompt returns instead of Boot, the tape may need retensioning. Try entering:
	>b tape (0,0,100)
	Boot: $tape(0, 0, 0)$
	Boot:
6-10	If your standalone system is not attached to the net, or you are not using the yellow pages server, you will need to bypass the yellow pages in order to continue your installation of UNIX. Move /etc/ypbind to /etc/ypbind- by using the fol lowing command:
	my /etc/ypbind /etc/ypbind-

(

Errata in the 2.0 Release

of the

Installing Unix on the Sun Workstation

Insert Sheets for Chapter 10

5.1. Converting Diskful Workstations to use NFS

This section describes how to convert a diskful workstation to use NFS.

The NFS enables diskful workstations to mount directories from other machines, thus reducing local disk storage needs and allowing them to share common resources.

The conversion process in this section is designed specifically for diskful workstations. To convert servers and diskless clients, use the instructions provided earlier in this chapter.

This procedure uses examples from an upgrade where the diskful workstation named *topnotch* was upgraded to use NFS, and the system *vfree* is its NFS server.

Use the following steps:

(1) Record Vital Information

Before you can proceed, you need to know:

Your local machine name and internet address, your NFS server's machine name and internet address, your user id number (uid) from */etc/passwd*, and your domain name if you are going to use the yellow pages. See Chapter 1 for descriptions of these items (except uid). For example:

topnotch192.9.4.53[These are examples onlyvfree192.9.4.54do not use this information]121

(2) Dump

Dump your entire disk(s).

(3) Follow Install Manual Instructions

Follow the instructions in Chapters 1 through 5 up until the point it tells you to run *setup*. Then, instead of running *setup* go to the next step. Be sure to boot the system in single user mode first:

```
>b vmunix -s
```

(4) Edit fstab

Edit your /etc/fstab file. The entire file should look like the one below. Be sure to substitute the proper value for disk: Note that you may have to use the "ed" editor, as "vi" may not be available (See ed(1)).

/dev/disk0a / 4.2 rw 1 1
/dev/disk0g /private 4.2 rw 1 2
nfs_server_name:/usr /usr nfs rw,hard 0 0

Be sure to replace *nfs_server_name* with the name of your NFS server.

.

.

(

(5) Edit *rc.local*

Edit the file *rc.local*. Replace *noname* with your machine name, and *nodomainname* with your domain name. If you do not use domains, leave the *nodomainname* alone. For example:

/bin/hostname topnotch /bin/domainname nodomainname [Example - do not use this] [Note no domainname]

(6) Edit hosts

Add two lines with the following to your /etc/hosts file:

internet_address machinename NFS_server_internet_address NFS_server_machinename

for example:

192.9.4.53	topnotch	[This is an example only:
192.9.4.54	vfree	do not enter this data]

(7) Add to Server's /etc/hosts

Make sure your internet address and machine name are in the NFS server's /etc/hosts file.

(8) Run newfs

Do the following /etc/newfs (remember to substitute the proper value for disk):

newfs /dev/rdisk0g

(9) Mount diskg

Enter the following mount command:

/etc/mount /dev/disk0g /private

(10) Make new directories

Use mkdir to create the following directories:

```
/private
/private/usr
/private/usr/adm
/private/usr/crash
/private/usr/preserve
/private/usr/spool
/private/usr/tmp
/private/usr/lib
/private/usr/spool/mqueue
```

(11) Move ypbind

Move /etc/ypbind to /etc/ypbind-

(12) Reboot your machine

Now, prepare your machine for halting, by syncing the disks several times take it down, and boot multiuser. Note that the default boot command (>b) should work.

. .

.

· · ·

.

Try out a few things to make sure they work, before you begin the next steps and start restoring your files.

(13) Create files

Use *touch* to create the following new files:

```
/private/usr/adm/lastlog
/private/usr/adm/messages
/private/usr/adm/msgbuf
/private/usr/adm/shutdownlog
/private/usr/adm/usracct
/private/usr/adm/wtmp
```

(14) Restore files

From the dump tape you made earlier, restore your home directory files to /usr2, which is mounted on the 'g' partition. Remember, files dumped as /usr/john must be restored as /usr2/john.

Next, restore the following files individually:

Restore /usr/lib/crontab to /private/usr/lib/crontab.

Restore /usr/lib/aliases to private/usr/lib/aliases.

Restore all of /usr/spool to /private/usr/spool.

(15) Edit crontab

Edit the */private/usr/lib/crontab* file you restored and make three changes: 1) remove or comment out any *find* command that starts at ''/' — the root. 2) remove or comment out any 'calendar' entry. 3) Change a line in *crontab* as follows:

Change:

```
15 4 * * * find /usr/preserve -mtime +7 -a -exec rm -f {} \;
```

Change it by adding a '/' (slash) at the end of preserve:

```
15 4 * * * find /usr/preserve/ -mtime +7 -a -exec rm -f {} \;
```

(16) Install sendmail

Now, you must install *sendmail* as described in the "System Administration Manual". Note that the files /usr/lib/sendmail.main.cf and /usr/lib/sendmail.subsidiary.cf should already be in /usr/lib.

(17) Edit passwd

Next, edit your /etc/passwd to include the uid that you recorded above, and make sure that the home directory field for each user is /usr2 instead of /usr. Note that eventually you will want to assign passwords to both root and yourself; you can do this with passwd.

For example, make sure the field looks like this:

```
zippy:OVceErnaqI:1492:10:Zippy the Hacker:/usr2/zippy:/bin/csh
```


.

.

·

2

. .

(18) Restore more files

Now, restore the following files. Note that, unlike the files restored above, these return to their original locations. The files are: */etc/printcap*, */etc/ttys*, */etc/ttytype*, */etc/remote* (you may have others).

If you do not plan to use the yellow pages, then also restore the following files: /etc/group, /etc/services, /etc/protocols, /etc/networks, and /etc/hosts.

Now, restore other files peculiar to your disk. For example, /usr/lib/emacs should be restored to /usr. Note however, that almost all programs must be recompiled; 1.x binaries do not normally run on a 2.0 system.

.

6

Insert Pages for 2.0 Reference Manuals

,

Insert Pages for 2.0 Reference Manuals

The following pages are reference manual pages for Commands Reference Manual for the Sun Workstation (Part Number: 800-1172) and the System Interface Manual for the Sun Workstation (Part Number: 800-1173).

How you handle the pages is up to you. We recommend inserting them directly into your 2.0 manuals (copying them if necessary); they are numbered accordingly.

New Pages

gpone(4S)	—	Sun-2/160 color graphics processor interface
gpconfig(8)	—	initialize the Graphics Processor
nfsmount(2)		revised
mount(8)	—	revised
st(4S)		revised
toolplaces(1)	_	revised

.

.

.

nfsmount - mount an NFS file system

SYNOPSIS

#include <netinet/in.h>
#include <nfs/nfs.h>

nfsmount(addr, fh, dir, flags, rsize, wsize)
struct sockaddr_in *addr;
fhandle_t *fh;
char *freq;
int flags;
int rsize;
int wsize;

DESCRIPTION

Nfsmount mounts an NFS(4) file system on the directory dir. Addr is the UDP(4) address of the server that owns the file system to mount. Fh is a file handle, obtained from the server, to identify the root directory on the server that is being mounted.

The *flags* argument contains mount flag bits. The *NFSMNT_RDONLY* flag tells whether the file system can be written on; if it is 0 writing is allowed, if non-zero no writing is done.

The NFSMNT_SOFT flag determines whether the remote file system is mounted hard or soft. A soft mount causes an error to be returned when a remote access times out. Hard mounts cause the access to retry until the server responds. A value of 1 indicates a soft mount.

The NFSMNT_RSIZE and NFSMNT_WSIZE flags tell whether the *rsize* and *wsize* parameters are valid. If a flag is set the corresponding parameter is used to set the number of bytes sent in a read or write operation.

RETURN VALUE

Nfsmount returns 0 if the action occurred, -1 if some error occurred.

ERRORS

Nfsmount will fail when one of the following occurs:

[EPERM] The caller is not the super-user or the path name given for *dir* contains characters with the high bit set.

[ENAMETOOLONG]

The path name for *dir* is too long.

[ELOOP] Dir contains a symbolic link loop.

- [ETIMEDOUT] The server at addr is not accessable. This can only happen if the hard flag is set.
- [ENOTDIR] A component of the path prefix in *dir* is not a directory.
- [EBUSY] Another process currently holds a reference to *fh*.

SEE ALSO

mount(2), unmount(2), mount(8)

•

.

.

.

NAME

gpconfig - initialize the Graphics Processor

SYOPNSIS

/etc/gpconfig gpunit [[-b] [-f] fbunit ...]

DESCRIPTION

gpconfig binds cgtwo frame buffers to the Graphics Processor (GP), and loads and starts the appropriate microcode in the GP. For example, the command line:

/etc/gpconfig gpone0 cgtwo0 cgtwo1

will bind the frame buffer boards cgtwo0 and cgtwo1 to the Graphics Processor gpone0. The devices /dev/gpone0a and /dev/gpone0b will then refer to the combination of gpone and cgtwo0 or cgtwo1 respectively.

The same cgtwo frame buffer cannot be bound to more than one GP.

All cgtwo frame buffer boards bound to a GP must be configured to the same width and height.

Note: The gpconfig command should be placed in the file /etc/rc.local if the GP is used regularly.

Note: It is inadvisable to run the *gpconfig* command while the GP is being used. Unpredictable results may occur. If it is neccessary to change the frame buffer bindings to the GP (or to stop using the GP altogether), bring the system down gently, boot single user, and edit the *gpconfig* line in the *letc/rc.local* file and bring the system back up multiuser.

OPTIONS

- -b Configure the GP to use the Graphics Buffer as well. Note: Currently only one GP / frame buffer binding is allowed to use the graphics buffer at a time.
- -f Indicates that the next frame buffer specified is to be used for /dev/fb as well.

FILES

/dev/cgtwo[0-9] /dev/fb /dev/gpone[0-3][abcd] /etc/gpicg2.1024.ucode /etc/gpicg2.1152.ucode /etc/rc.local

SEE ALSO

cgtwo(4S), gpone(4S)

NAME

mount, umount - mount and dismount filesystems

SYNOPSIS

/etc/mount /etc/mount --p /etc/mount --a[fv][t type] /etc/mount [--frv][to type options] [fsname] [dir]

/etc/umount [-av] [fsname | dir] ...

DESCRIPTION

Mount announces to the system that a filesystem *fsname* is to be attached to the file tree at the directory dir. The directory dir must already exist. It becomes the name of the newly mounted root. The contents of dir are hidden until the filesystem is unmounted. If *fsname* is of the form host:path the filesystem type is assumed to be nfs(4).

Umount announces to the system that the filesystem fsname previously mounted on directory dir should be removed. Either the filesystem name or the mounted-on directory may be used.

Mount and umount maintain a table of mounted filesystems in *letc/mtab*, described in *mtab*(5). If invoked without an argument, mount displays the table. If invoked with only one of *fsname* or *dir* mount searches *letc/fstab* for an entry whose *dir* or *fsname* field matches the given argument. For example,

and

```
mount /dev/xy0g
are shorthand for
mount /dev/xy0g /usr
if this line is in /etc/fstab
/dev/xy0g /usr 4.2 rw 1 1
```

mount /usr

MOUNT OPTIONS

- -a Attempt to mount all the filesystems described in *letclfstab*. In this case, *fsname* and *dir* are taken from *letclfstab*. If a type is specified all of the filesystems in *letclfstab* with that type will be mounted.
- -0 The next argument is a string that specifies mount options. Valid options are: ro, rw, quota, noquota, hard, soft, rsize=n, and wsize=n. Hard, soft, rsize=n and wsize=n only make sense on nfs(4) filesystems. Options are separated by commas. The options ro and rw stand for read-only and read-write; rw is the default. Since quotas are not implemented, noquota is the default. With a hard remote mount, mount tries forever if the mountd(8c) server does not respond. Once the filesystem is mounted, access requests will retry forever if the nfsd(8) server does not respond. Hard is the default. With a soft remote mount, if the mountd(8c) server does not respond, mount forks a background copy to retry forever. Once the soft mount completes, access requests will fail with [ETIMEDOUT] if the nfsd(8) server does not respond. The rsize=n and wsize=n options can be used to set the number of bytes in a read or write operation on nfs(4) filesystems.
- --r Mount the specified filesystem read-only. This is a shorthand for: mount -o ro fsname dir

Physically write-protected and magnetic tape filesystems must be mounted read-only, or errors will occur when access times are updated, whether or not any explicit write is attempted.

- -t The next argument is the filesystem type. The accepted types are: 4.2, nfs, and pc; see *fstab*(5) for a description of the legal filesystem types.
- -f Fake a new /etc/mtab entry, but do not actually mount any filesystems.
- -p Print the list of mounted filesystems in a format suitable for use in *letclfstab*.
- -v Verbose mount displays a message indicating the filesystem being mounted.

MAINTENANCE COMMANDS

UMOUNT OPTIONS

- -a Attempt to unmount all the filesystems currently mounted. In this case, *fsname* is taken from *letc/mtab*.
- -v Verbose umount displays a message indicating the filesystem being unmounted.

EXAMPLES

mount /dev/xy0g /usr	mount a local disk
mount ft 4.2 /dev/nd0 /	fake an entry for nd root
mount –at 4.2	mount all 4.2 filesystems
mount t nfs serv:/usr/src /usr/src	mount remote filesystem
mount serv:/usr/src /usr/src	same as above
mount -o hard serv:/usr/src /usr/src	same as above but hard mount
mount - p > /etc/fstab	save current mount state

FILES

/etc/mtab	mount table
/etc/fstab	filesystem table

SEE ALSO

mount(2), nfsmount(2), unmount(2), fstab(5), mountd(8c), nfsd(8c)

BUGS

Mounting filesystems full of garbage will crash the system.

No more than one user should mount a disk partition "read-write" or the file system may become corrupted.

NAME

gpone - Sun-2/160 color graphics processor interface

SYNOPSIS

gpone0 at mb0 csr vme busmem 0x210000 priority 3

DESCRIPTION

The gpone interface provides access to the optional GP graphics processor board.

gpone supports the FBIOGTYPE ioctl which a program can use to inquire as to the characteristics of the display device; see *fbio* (4s).

gpone supports the FBIOGPIXRECT ioctl which allows SunWindows to run on it; see fbio (4s).

The hardware consumes 64 kilobytes of VME bus address space. The GP board starts at standard address 0x210000 and must be configured for interrupt level 3.

FILES

/dev/gpone[0-3][abcd]

SEE ALSO

fbio (4s), mmap (2)

.

.

 \bigcirc

A

Appendix H: for the *Programmer's Reference Manual for SunWindows*

Appendix H: for the Programmer's Reference Manual for SunWindows

67

^

. . .

(

C

.

Appendix H: for the *Programmer's Reference Manual for SunWindows*

The following pages are to be inserted as an appendix to the *Programmer's* Reference Manual for SunWindows.

The SunWindows software provides a rich basis for designing custom userinterfaces. With the window system, the programmer can share the screen's "real estate" amongst several virtual screens called windows. Each of these windows is essentially its own state machine, and so windows can be sensitive to programmer specified input events and take any number of actions in response to the events. Most of the time an input eventually results in some change in the window itself — sometimes drawing or writing something new in the window, and other times changing the window's state with respect to the entire window system.

With software this sophisticated, sometimes it is hard at first to get a handle on the data structures and library routines that make up the windows system. We feel that programming examples are the best way to show how to access specific data structures and call specific routines. Also, programming examples often give a good sense of what SunWindows is intended to do. The *Programmer's Tutorial to SunWindows* gives several good examples for beginners.

This document is meant as a supplement to the *Tutorial* with more advanced examples. None of the programs are useful except as examples of a specific facet of **SunWindows**. They are designed to be short and to the point. The program listings included cover the following subjects:

How to use timers in a tool_select() call (timertool.c)

□ How to change icons dynamically (changing_icon.c)

□ How to find newly exposed area in a window after window damage occurs (rectlists.c)

- How to customize subwindow layout in a window (layout.c)

□ How to manipulate the colormap and color bit-planes in a color window (onewaytomakeacolorbar.c,

anotherwaytomakeacolorbar.c, animation.c)

□ How to use the tool_parse_all() call (parse_all.c)

□ How to find the root window file descriptor from any window (findroot.c)

Each program has approximately fifty lines of code (not counting comment lines, of course), many of which are copied from one program to the next. We suggest typing in the programs to help familiarize yourself with the data structures and calls, and so you can see the programs work. Further, we hope you use these programs as building blocks for your own experimentation with the window system. Each program contains comments explaining how the program works in general. For more information on data structures and routines used, please refer to the *SunWindows Reference Manual*.

This program illustrates how to use subwindow timers. These are briefly described in Section 6.3.1 of the SunWindows Reference Manual.

Each subwindow is described by a toolsw structure. One field in that structure is a pointer to a toolio structure; one of the fields in THAT struct is a pointer to a *timeval* structure. A *timeval* has the following definition (see /usr/include/sys/time.h):

struct	timeval	£
	long	tv_sec;
	long	tv_usec;
};		

tv_sec and tv_usec specify a number of seconds and microseconds.

In a *toolio*, the timeval pointer field is called tio_timer. Ordinarily its value is NULL. When its value is non-null, then the *timeval* gives an amount of time for *tool_select* to wait for input events in the relevant subwindow. If the timer expires before an input event occurs, then control passes to the subwindow's selected routine, just as if there had been an input event. The way to tell whether it was an input event or a timeout that activated the selected routine is to check the fields in timeval. They are dynamically decremented, so if they are both zero you know that a timeout has happened.

This tool has a single subwindow. When you click the left mouse button, it activates a half-second timer in the subwindow. When the timer times out, the cursor image is changed and the timer is restarted. This goes on until you click the left mouse button again, at which point the tool goes into its original state, waiting for a click but not timing anything.

To compile:

cc timertool.c -o timertool -lsuntool -lsunwindow -lpixrect


```
#include <stdio.h>
#include <suntool/tool hs.h>
#include <suntool/msgsw.h>
                                          /* Values for "state" */
#define TIMING
                         1
                         2
#define NOT TIMING
                                          /* The tool */
struct tool *tool;
struct toolsw *subwin;
                                          /* The subwindow */
                                          /* Ditto */
struct msgsubwindow *msw;
struct pixfont *font;
struct inputmask im;
struct timeval timeval;
int sigwinchcatcher(), selected();
int state;
                                         /* Pointers to 8 possible cursors */
struct cursor *cursor array[8];
                                          /* Index of current cursor (0-7) */
int cursor_index;
/* The cursors. See section 4.8.1. of the SunWindows Manual. */
DEFINE CURSOR(cur0, 7, 7, PIX_SRC,
        0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
        0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
DEFINE_CURSOR(cur1, 7, 7, PIX_SRC,
        0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFE7F,
        OxFE7F, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF);
DEFINE CURSOR(cur2, 7, 7, PIX_SRC,
        0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC3F, 0xFC3F,
        0xFC3F, 0xFC3F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
DEFINE_CURSOR(cur3, 7, 7, PIX_SRC,
        0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF81F, 0xF81F, 0xF81F,
        0xF81F, 0xF81F, 0xF81F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
DEFINE_CURSOR(cur4, 7, 7, PIX_SRC,
        OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFOOF, OxFOOF, OxFOOF, OxFOOF,
        OxFOOF, OxFOOF, OxFOOF, OxFOOF, OxFFFF, OxFFFF, OxFFFF, OxFFFF);
DEFINE CURSOR(cur5, 7, 7, PIX_SRC,
        0xFFFF, 0xFFFF, 0xFFFF, 0xE007, 0xE007, 0xE007, 0xE007, 0xE007,
        0xE007,0xE007,0xE007,0xE007,0xE007,0xFFFF,0xFFFF,0xFFFF);
DEFINE CURSOR(cur6, 7, 7, PIX_SRC,
        0xFFFF, 0xFFFF, 0xC003, 0xC003, 0xC003, 0xC003, 0xC003, 0xC003,
        0xC003,0xC003,0xC003,0xC003,0xC003,0xC003,0xFFFF,0xFFFF);
DEFINE CURSOR(cur7, 7, 7, PIX SRC,
        0xFFFF, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
        0x8001,0x8001,0x8001,0x8001,0x8001,0x8001,0x8001,0xFFFF);
main()
Ł
        state = NOT TIMING;
        font = pw pfsysopen();
```


/* Create the tool. */

}

```
tool = tool_make(WIN_LABEL, "Timer Example", 0);
if (tool == NULL) {
        fputs("Can't make the tool.0, stderr);
        exit(1);
}
/* Create and init the subwindow. */
subwin = msgsw createtoolsubwindow(tool,"",
         TOOL SWEXTENDTOEDGE, TOOL SWEXTENDTOEDGE,
         "Click left button to start timing operation.", font);
if (subwin == NULL) {
        fputs ("Can't make the subwindow.0, stderr);
        exit(2);
}
msw = (struct msgsubwindow *)subwin->ts data;
subwin->ts_io.tio_selected = selected;
/* Set up input mask to respond to left-button clicks. */
input_imnull(&im);
win_setinputcodebit(&im,MS_LEFT);
win setinputmask(subwin->ts windowfd, &im, NULL, WIN NULLLINK);
/* Init the array of cursor-pointers. */
cursor index = 0;
cursor_array[0] = &cur0;
cursor_array[1] = &cur1;
cursor array[2] = &cur2;
cursor array[3] = &cur3;
cursor_array[4] = \&cur4;
cursor_array[5] = &cur5;
cursor_array[6] = &cur6;
cursor_array[7] = &cur7;
/* Install the tool */
signal(SIGWINCH, sigwinchcatcher);
tool_install(tool);
/* Main loop. */
tool select(tool,0);
/* Clean up */
tool_destroy(tool);
exit(0);
```

In this routine, there is a left-button click, or a timeout.

If you are in NOT_TIMING state, then it can only have been a click. In this case go to TIMING state and set up the timer for 1/2 second (500,000 microseconds).

If you are in TIMING state, you will have to figure out if you got a timeout or a click. As mentioned above, you do this by seeing if both fields in the timeval are zero. If so, restart the timer and change the cursor. If not, de-activate the

timer and switch to NOT_TIMING state.

```
selected() {
       struct inputevent ie;
       if (state == NOT_TIMING) {
               input_readevent(subwin->ts_windowfd, &ie);
                                                     /* Change state */
               state = TIMING;
               timeval.tv sec = 0;
               timeval.tv_usec = 500000;
               msgsw setstring(msw,
                 "Click left button to halt timing operation.");
       } '
                                                     /* TIMING state */
       else {
                                                     /* If got timeout */
               if (timeval.tv_sec == 0 &&
                   timeval.tv usec == 0) {
                                                     /* Restart timer */
                       timeval.tv_usec = 500000;
                       cursor_index = (cursor_index+1) % 8;
                                                             /* Update */
                                                                      */
                                                             /* the
                       win_setcursor(subwin->ts_windowfd,
                                                            /* cursor */
                         cursor_array[cursor_index]);
               }
                               /* Not timeout, must be click */
               else {
                       input_readevent(subwin->ts windowfd, &ie);
                       subwin->ts_io.tio_timer = NULL; /* Deactivate timer */
                                                      /* Change state */
                       state = NOT TIMING;
                       msgsw setstring(msw,
                         "Click left button to restart timing operation.");
               }
        }
}
/* Standard SIGWINCH handler. */
sigwinchcatcher()
ł
        tool sigwinch(tool);
}
```

This program illustrates how to create an icon without the icontool facility, and how to change it dynamically.

The icon's image is a 64x64 pixrect. After we create it and draw in it (the image is a simple checkerboard pattern), we set up an icon structure. When we create the tool, we specify a pointer to that icon structure.

The tool consists of a single message subwindow. We set up a half-second timer in the subwindow. Please see *timertool.c* elsewhere in this package for details on using timers. When the timer goes off, we check to see if the tool is in iconic form. If so, we toggle the icon's image by XORing its pixrect with an all-1's pattern.

pattern.

Revision: A of 3 October, 1985

```
To compile:
        :cc changing_icon.c -o changing_icon -lsuntool -lsunwindow -lpixrect
#include <stdio.h>
#include <suntool/tool hs.h>
#include <suntool/msgsw.h>
                                         /* The tool itself */
struct tool *tool;
                                         /* The message subwindow */
struct toolsw *msw;
                                         /* Font for writing in msg subwindow */
struct pixfont *font;
                                         /* The icon. */
struct icon icon;
                                         /* Memory pixrect for the icon */
struct pixrect *icon_mpr;
                                         /* The timer */
struct timeval timeval;
int sigwinchcatcher(), selected();
main(argc,argv)
int argc;
char **argv;
ſ
        /* Create and init the icon's memory pixrect. */
        icon mpr = mem create(64, 64, 1);
        if (icon_mpr == NULL) {
                printf("Aborting: cannot create icon's memory pixrect.0);
                exit(1);
        };
        pr rop(icon_mpr, 0,0,32,32, PIX_SET, NULL,0,0);
        pr_rop(icon_mpr, 32,32,32,32, PIX_SET, NULL,0,0);
        /* Init the icon. */
        icon.ic_width = icon.ic_height = 64;
        icon.ic background = NULL;
        icon.ic gfxrect.r_left = 0;
        icon.ic gfxrect.r_top = 0;
        icon.ic_gfxrect.r_width = 64;
        icon.ic_gfxrect.r_height = 64;
        icon.ic mpr = icon_mpr;
        icon.ic_textrect.r_left = 0;
        icon.ic textrect.r_top = 0;
        icon.ic_textrect.r_width = 0;
        icon.ic_textrect.r height = 0;
        icon.ic_text = NULL;
         icon.ic_font = NULL;
         icon.ic_flags = ICON_BKGRDGRY;
         /* Create the tool struct. */
        tool = tool_create("Changing-Icon Tool", TOOL_NAMESTRIPE, NULL, &icon);
```


}

{

}

```
if (tool == NULL) {
                printf("Aborting: cannot create tool.0);
                 exit(1);
        }
        /* Create and init the subwindow. */
        font = pw pfsysopen();
        msw = msgsw_createtoolsubwindow(tool, "", TOOL SWEXTENDTOEDGE,
          TOOL_SWEXTENDTOEDGE, "Please make me iconic.", font);
        if (msw == NULL) {
                printf("Aborting: cannot create subwindow.0);
                exit(1);
        }
        msw->ts_io.tio_selected = selected;
        timeval.tv sec = 0;
                                                  /* Set up the timer */
        timeval.tv usec = 500000;
        msw->ts_io.tio_timer = &timeval;
        /* install the tool */
        signal(SIGWINCH, sigwinchcatcher);
        tool_install(tool);
        /* Main loop. */
        tool select(tool,0);
        /* clean up */
        tool_destroy(tool);
        exit(0);
/* Routine to handle SIGWINCH.
                                  */
sigwinchcatcher()
        tool sigwinch(tool);
```

This is the selected routine. Since there is no input mask to select any input events, the only way to get here is if the timer times out. We restart the timer and, if the tool is in iconic state, we invert the icon. In order to update the icon's

image as it appears on the screen, we have to call tool_display. (See p. 6-8 of the *SunTools Manual* for an explanation of the tl_flags field in the tool struct; we check this field when we see whether or not the tool is iconic. See p. 6-22 for an explanation of tool display.)

selected() {

timeval.tv_usec = 500000; if ((tool->tl_flags & TOOL_ICONIC) == 0) return(0); timeval.tv_usec = 500000; pr_rop(icon_mpr, 0,0,64,64,PIX_NOT(PIX_DST),NULL,0,0); tool_display(tool); }

This program demonstrates how to find out where a window has been damaged. "Damage" occurs either because the window size has changed or because windows above the window this program makes go away. For more information, see Chpt. 3 and Appendix A of the SunWindows Reference Manual (Revision G -- 2.0 release).

Each time this program recieves a SIGWINCH, it clears the entire window, loads in the clip list which tells what window "real estate" has been exposed, and draws boxes around each new piece of real estate.

This is the technique used by a program like the shelltool to repaint after window damage occurs. In a tty subwindow, a buffer of all the characters on the screen is maintained. When the rectlist indicates there is new exposed area in the window, the tty subwindow translates the corners of the damage in pixel coordinates to the corners in row and column coordinates. Then it simply re-writes the rows and columns that have been exposed. You can observe this by covering and uncovering a shelltool and watching the way it re-paints.


```
To compile:
 machine% cc rectlists.c -o rectlists -lsuntool -lsunwindow -lpixrect -lm
#include <stdio.h>
#include <suntool/tool hs.h>
#include <suntool/gfxsw.h>
main(argc, argv)
        int argc;
        char **argv;
ſ
        int height, width, vertical_line = 0;
        int x0, x1, y0, y1;
        struct rect rect;
        struct rectnode *rectnode;
        struct rectlist *rectlist;
        /* set up a graphics subwindow */
        struct gfxsubwindow *gfx = gfxsw_init(0, argv);
        struct pixwin *win = gfx->gfx pixwin;
        for (;;) {
                if (gfx->gfx_flags & GFX_DAMAGED) {
                         /* check if window size changed */
                         height = win_getheight(gfx->gfx_windowfd);
                         width = win_getwidth(gfx->gfx_windowfd);
                         /* clear the window */
                         pw writebackground(win, 0, 0, width, height, PIX CLR);
                         /* set up new clip list & lock window during fix */
                         pw damaged(win);
                         rectlist = &win->pw_clipdata->pwcd_clipping;
                         rl_rectoffset(rectlist, &rectlist->rl_bound, &rect);
                         pw lock(win, &rect);
                         /* check if a window has been removed */
                         for (rectnode = rectlist->rl head;
                           rectnode; rectnode = rectnode->rn next) {
                                 rl rectoffset(rectlist, &rectnode->rn_rect,
                                   &rect);
                                 /* draw a square around this rect */
                                 x0 = rect.r left;
                                 x1 = rect right(&rect);
                                 y0 = rect.r_top;
                                 y1 = rect_bottom(&rect);
                                 pw_vector(win, x0, y0, x0, y1, PIX_SET, 1);
```



```
pw vector(win, x0, y1, x1, y1, PIX_SET, 1);
                                   pw_vector(win, x1, y1, x1, y0, PIX_SET, 1);
                                   pw vector(win, x1, y0, x0, y0, PIX_SET, 1);
                           }
                           /* done, so unlock, clear flag, and undo rectlist */
                          pw unlock(win);
                          gfx->gfx flags &= ~GFX_DAMAGED;
                          pw donedamaged(win);
                           /* give the user some idea what to do */
                          vertical line += 20;
                           if (vertical_line > height) vertical_line = 20;
                          pw text(win, 20, vertical_line, PIX_SRC, NULL,
                             "Put windows on this window, and then take them off!")
                  }
         }
}
#ifndef lint
static char sccid[] = "@(#)layout.c 2.0 85/05/20 Copyr 1985 Sun Micro";
#endif
This program illustrates how to defeat the default tiling
algorithm, which as of 2.0 leaves much to be desired. A major
 problem is that you can't lay out subwindows in a tool like this:
               TOOLNAME
```


Section 6.2.5 of the SunWindows Reference Manual says that what you need to do is write your own routine named tool_layoutsubwindows(tool). At link time, this routine will supersede the routine provided in the suntool.a library. The user-supplied version should set up rects to describe the desired layout (one rect per subwindow), and enforce the rects with calls to win_setrect, which is documented in section 4.3.

The only tricky part is figuring out what the coordinates and sizes (which you put in the rects) refer to: should you or should you not figure in the borders? Here's the low-down. The Width and height of the tool (specified in tool_make) include the top namestripe (16 pixels) and the top, left, bottom, and right borders (5 pixels each: 2 black, then 1 white, then 2 more black). Moreover, in order for things to look right, there should be 5 pixels in between all subwindows. All coordinates are relative to the top-left corner of the tool (i.e. the first pixel in the namestripe); dimensions do NOT include borders. Thus the first subwindow goes at (5,18).

Note that instead of using explicit values for the size of the namestripe, border width, and spacing, we could have used the functions tool_stripeheight(), tool_borderwidth()FP, and tool_subwindow spacing(). These are described in section 6.2.5 of the

tool_subwindow_spacing(). These are described in section 6.2.5 of the SunWindows Reference Manual. To compile:

cc layout.c -o layout -lsuntool -lsunwindow -lpixrect


```
#include <stdio.h>
#include <suntool/tool hs.h>
#include <suntool/msgsw.h>
                                        /* The tool. */
struct tool *tool;
                                       /* The subwindows. */
struct toolsw *sw1, *sw2, *sw3;
                                       /* Font for writing in subwins. */
struct pixfont *font;
Routine to handle SIGWINCH. Nothing special. */
sigwinchcatcher()
£
       tool sigwinch(tool);
}
main(argc,argv)
int argc;
char **argv;
ł
        /* Create the tool. */
        tool = tool_make(WIN_LABEL, argv[0],
                         WIN WIDTH, 500,
                         WIN HEIGHT, 428,
                         0);
        if (tool == NULL) {
                printf("Aborting: cannot create tool.0);
                exit(1);
        };
        font = pw_pfsysopen();
        /* Create 3 subwindows. Dimensions don't matter, since we're */
                                                                        */
        /* going to override them and the tiling algorithm.
        sw1 = msgsw_createtoolsubwindow(tool,"",
                TOOL_SWEXTENDTOEDGE, 100,
                "This is the first subwindow.", font);
        sw2 = msgsw_createtoolsubwindow(tool,"",
                TOOL SWEXTENDTOEDGE, 100,
                "This is the second subwindow.", font);
        sw3 = msgsw_createtoolsubwindow(tool,"",
                 TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,
                 "This is the third subwindow.", font);
        if (sw1==NULL || sw2==NULL || sw3==NULL) {
```



```
printf("Aborting: cannot create subwindows.0);
    exit(2);
};
/* Install the tool */
signal(SIGWINCH, sigwinchcatcher);
tool_install(tool);
/* Main loop. */
tool_select(tool,0);
/* Clean up */
tool_destroy(tool);
exit(0);
```

This is our customized version of the layout algorithm. All we do is format rects to tell the subwindows where we really want them to go.

```
tool_layoutsubwindows(t)
struct tool *t;
{
        struct rect rect1, rect2, rect3;
        rect1.r left = 5;
        rect1.r_top = 18;
        rect1.r_width = 100;
        rect1.r_height = 200;
        win_setrect(swl->ts_windowfd, &rect1);
        rect2.r_left = 5;
        rect2.r top = 223;
        rect2.r_width = 100;
        rect2.r_height = 200;
        win_setrect(sw2->ts_windowfd, &rect2);
        rect3.r left = 110;
        rect3.r top = 18;
        rect3.r_width = 385;
        rect3.r_height = 405;
        win_setrect(sw3->ts windowfd, &rect3);
}
#ifndef lint
static char sccid[] = "@(#)onewaytomakeacolorbar.c 2.0 85/05/20 Copyr 1985 Sun Micr
#endif
```


colormap experimentation -- how to manipulate colormap and bit-planes

This program draws 2^{**n} bars of different colors ($0 \le n \le 8$). It loads a gray-scale colormap, enables all the bit-planes it needs for the number of bars it is about to draw, and then draws the bars.

Remember, in the window system, all colors will show up in any given window only when the mouse is in that window.


```
To compile:
  cc onewaytomakeacolorbar.c -o onewaytomakeacolorbar -lsuntool -lsunwindow -lpixrec
#include <stdio.h>
#include <suntool/tool_hs.h>
#include <suntool/gfxsw.h>
main(argc, argv)
        int argc;
        char **argv;
{
        struct gfxsubwindow *gfx = gfxsw_init(0, argv);
        struct pixwin *win = gfx->gfx_pixwin;
        unsigned char red[256], green[256], blue[256];
        int colors, i, height, width, planes;
        char maps[20];
        for (;;) {
        for (colors=2; colors<257; colors *= 2) {
                printf("Number of colors: %d0, colors);
                planes = colors-1;
                /* generate a colormap with 'colors' entries where the
                   Oth entry is black and the color'th entry is white
                   with a gray scale in the intervening values*/
                for (i=0; i<colors; i++) {</pre>
                        red[i] = green[i] = blue[i] = i*255/(colors-1);
                }
                /* find the dimensions of the rect */
                height = win getheight (gfx->gfx windowfd);
                width = win_getwidth(gfx->gfx_windowfd);
                /* make up a colormap name and load it */
                sprintf(maps, "testcolor%d", colors);
                pw_setcmsname(win, maps);
                /* put in the colormap we made above */
                pw putcolormap(win, 0, colors, red, green, blue);
                /* enable all the bit-planes used */
                pw putattributes(win, &planes);
                /* clear the window */
                pw write(win, 0, 0, width, height, PIX_CLR, NULL, 0, 0);
                /* determine the width of the colorbars */
                width /= colors;
                if (width < 1) width = 1;
```



```
/* draw the colorbars -- one for each color we're displaying */
                         for (i=0; i<colors; i++) {</pre>
                                  pw_write(win, i*width, 0, width, height,
                                     PIX SRC PIX COLOR (i), NULL, 0, 0);
                         }
                         sleep(3);
                         /* make and insert the inverse colormap of the first one
                             we made */
                         for (i=0; i<colors; i++) {</pre>
                                   red[i] = green[i] = blue[i] = 255 - (i*255/(colors-1));
                         }
                         pw putcolormap(win, 0, colors, red, green, blue);
                         sleep(3);
                }
                }
       }
      #ifndef lint
      static char sccid[] = "@(#)anotherwaytomakeacolorbar.c 2.0 85/05/20 Copyr 1985 Sun
      #endif
colormap experimentation -- another way to manipulate colormap and bit-planes
                                This program draws 2^{**n} bars of different colors (0 <= n <= 8). It
                                loads a gray-scale colormap and then draws the colorbars. In this
                                 version, the programs tries to write to all the bit-planes each time
                                it writes a bar. However, before it writes the bar, it only enables
                                 the proper set of bit-planes for the color it wants to draw.
                                 Remember, in the window system, all colors will show up in any given
                                 window only when the mouse is in that window.
                                                                                   Revision: A of 3 October, 1985
```

Revision: A of 3 October, 1985

```
To compile:
  cc anotherwaytomakeacolorbar.c -o anotherwaytomakeacolorbar -lsuntool -lsunwindc
#include <stdio.h>
#include <suntool/tool_hs.h>
#include <suntool/gfxsw.h>
main(argc, argv)
        int argc;
        char **argv;
{
        struct gfxsubwindow *gfx = gfxsw_init(0, argv);
        struct pixwin *win = gfx->gfx_pixwin;
        unsigned char red[256], green[256], blue[256];
        int colors, i, height, width, planes;
        char maps[20];
        for (;;) {
        for (colors=2; colors<257; colors *= 2) {
                printf("Number of colors: %d0, colors);
                planes = colors-1;
                /* generate a colormap with 'colors' entries where the
                   Oth entry is black and the color'th entry is white
                   with a gray scale in the intervening values*/
                for (i=0; i<colors; i++) {</pre>
                        red[i] = i*255/(colors-1);
                        green[i] = 255 - (i*255/(colors-1));
                        blue[i] = 250;
                }
                /* find the dimensions of the rect */
                height = win getheight (gfx->gfx windowfd);
                width = win_getwidth(gfx->gfx_windowfd);
                /* make up a colormap name and load it */
                sprintf(maps, "testcolor%d", colors);
                pw setcmsname(win, maps);
                /* put in the colormap we made above */
                pw_putcolormap(win, 0, colors, red, green, blue);
                /* enable all the bit-planes used */
                pw_putattributes(win, &planes);
                /* clear the window */
                pw_write(win, 0, 0, width, height, PIX_CLR, NULL, 0, 0);
                /* determine the width of the colorbars */
```

icrosystems

```
width /= colors;
                         if (width < 1) width = 1;
                         /* draw the colorbars -- one for each color we're displaying
                            Note: this time we write out to all the bit-planes with
                            the pw_write() call, but we only enable some of the
                            bit-planes. This is a different way of making colors */
                         for (i=0; i<colors; i++) {</pre>
                                  planes = i;
                                  pw_putattributes(win, &planes);
                                  pw write(win, i*width, 0, width, height,
                                    PIX_SET, NULL, 0, 0);
                         }
                         sleep(3);
                         /* make and insert the inverse colormap of the first one
                             we made */
                         for (i=0; i<colors; i++) {</pre>
                                  red[i] = 255 - (i*255/(colors-1));
                                   green[i] = i*255/(colors-1);
                                  blue[i] = 250;
                         }
                         pw_putcolormap(win, 0, colors, red, green, blue);
                         sleep(3);
                }
                ł
#ifndef lint static char sccid[] = "@(#)animation.c 2.0 85/05/20 Copyr 1985 Sun Micro"; #endif
                                Copyright (c) 1985 by Sun Microsystems, Inc.
                                Move a square around the screen randomly -- a random walk
                                This program uses "animation", a technique of displaying one bit-plane while
                                drawing to another. This gives the appearance of smooth change from one
                                image to the next. You can sort of see what animation looks like without
                                multiple bit-planes if you run this program on a monochrome display.
                                 A good exercise, however, is to modify this program slightly to use only
                                 one bit-plane so you can see the difference between smooth multi-plane
```

and jumpy single-plane animation.

SunWindows Examples

```
To compile:
  machine% cc animation.c -o animation -lsuntool -lsunwindow -lpixrect
#include <stdio.h>
#include <suntool/tool hs.h>
#include <suntool/gfxsw.h>
#define RECTX 20
#define RECTY 35
        /* declare all the functions we use to generate random walk */
        long random(), getpid();
        int srandom();
main(argc, argv)
        int argc;
        char **argv;
{
        int posx, posy;
        int old_posx, old_posy;
        int planes;
        int height, width;
#define BCKRND 230
#define BCKGRND BCKRND-10
        /* set up two color maps, red0, green0, blue0, and red1, green1,
           blue1 */
        static unsigned char red0[4] = {0, BCKRND, 0, BCKRND};
        static unsigned char green0[4] = {0, BCKRND, 0, BCKRND};
        static unsigned char blue0[4] = {BCKGRND, BCKGRND, BCKGRND, BCKGRND};
        static unsigned char red1[4] = {0, 0, BCKRND, BCKRND};
        static unsigned char green1[4] = \{0, 0, BCKRND, BCKRND\};
        static unsigned char blue1[4] = {BCKGRND, BCKGRND, BCKGRND, BCKGRND};
        /* set up a graphics subwindow */
        struct gfxsubwindow *gfx = gfxsw init(0, argv);
        struct pixwin *win = gfx->gfx_pixwin;
        /* initialize the randomizing variable */
        srandom((int)(getpid()));
        /* set the colormap name */
        pw_setcmsname(win, "animate");
```

Restart:


```
/* window size may have changed, so get current coordinates */
width = win_getwidth(gfx->gfx_windowfd);
height = win getheight (gfx->gfx windowfd);
old_posx = posx = width/2;
old posy = posy = height/2;
/* put in the red1, green1, blue1 colormap */
pw putcolormap(win, 0, 4, red1, green1, blue1);
/* clear the window */
planes = 3;
pw putattributes (win, &planes);
pw write (win, 0, 0, width, height, PIX_NOT (PIX_SRC), NULL, 0, 0);
/* do some initialization */
planes = 1;
pw putattributes(win, &planes);
pw_write(win, posx, posy, RECTX, RECTY, PIX_SRC, NULL, 0, 0);
planes = 2;
pw_putattributes(win, &planes);
/* draw the thing zillions of times */
for (;;) {
        /* check for damage */
        if (gfx->gfx flags&GFX_DAMAGED) gfxsw_handlesigwinch(gfx);
        if (gfx->gfx_flags&GFX_RESTART) {
                gfx->gfx_flags &= ~GFX_RESTART;
                goto Restart;
        }
        /* draw the next square */
        pw_write(win, posx, posy, RECTX, RECTY, PIX_SRC, NULL, 0, 0);
        /* swap colormaps so the polygon just drawn shows and
           the polygon about to be drawn won't show */
        if (planes == 2) {
                pw putcolormap(win, 0, 4, red1, green1, blue1);
                planes = 1;
        } else {
                pw putcolormap(win, 0, 4, red0, green0, blue0);
                planes = 2;
        ł
        /* wipe out the old square */
        pw putattributes(win, &planes);
        pw write (win, old posx, old posy, RECTX, RECTY,
          PIX NOT(PIX SRC), NULL, 0, 0);
        old_posx = posx;
        old_posy = posy;
        /* determine the next posx and posy */
        if (random() < 1073741824) {
```



```
posx -= random()/268435456 + 1;
} else {
    posx += random()/268435456 + 1;
}
if (random() < 1073741824) {
    posy -= random()/268435456 + 1;
} else {
        posy += random()/268435456 + 1;
}
if (posx < 0) posx = width-1;
if (posx < 0) posx = 0;
if (posy < 0) posy = height-1;
if (posy < 0) posy = height-1;
if (posy > height) posy = 0;
}
```

```
#ifndef lint
static char sccid[] = "@(#)parse_all.c 2.0 85/05/20 Copyr 1985 Sun Micro";
#endif
```

This program illustrates correct use of the "tool_parse_all" call, which is used to extract tool-related command line options from argv.

After we call "tool_parse_all", all parameters left in argv are suitable for parsing. All we do is concatenate them in a string which we display in a message subwindow. Note the use of "tool_free_attribute_list", which releases resources grabbed by "tool_parse_all".

To see the tool in action, type "parse_all", followed by several command line options. Some of these should be tool-related (see Table 6-2 on p. 6-10 of the SunWindows Reference Manual for a list); these will be filtered out by "tool_parse_all" and will affect the tool. The other options will be seen in the message subwindow (a serious tool would parse them).

Sample command line: parse_all -xxx -yyy -width 100 -zzz -heig

To compile:

cc parse_all.c -o parse_all -lsuntool -lsunwindow -lpixrect

Copyright (C) 1985 Sun Microsystems Inc.

#include <stdio.h> #include <suntool/tool_hs.h> #include <suntool/msgsw.h>

struct tool *tool; /* The tool */
struct toolsw *subwin; /* The subwindow */
struct pixfont *font;
int sigwinchcatcher();

```
main(argc, argv)
int argc;
char *argv[];
```

```
char **tool_attributes = NULL;
char *tool_name = argv[0];
char msg_string[80];
argv++;
argc--;
```

```
if(tool_parse_all(&argc, argv, &tool_attributes, tool_name) == -1) {
```

```
tool_usage(tool_name);
exit(1);
```

```
}
msg_string[0] = 0;
while (argc > 0 && **argv == '-') {
    strcat(msg_string, *argv);
    strcat(msg_string, " ");
    argv++;
    argc--;
```

```
}
```

```
tool_free_attribute_list(tool_attributes);
font = pw pfsysopen();
```



```
subwin = msgsw_createtoolsubwindow(tool,"",
	TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,
	msg_string, font);
if (subwin == NULL) {
	fputs("Can't make the subwindow.0, stderr);
	exit(1);
}
```

```
/* Install the tool */
signal(SIGWINCH, sigwinchcatcher);
tool_install(tool);
```

```
/* Main loop. */
tool_select(tool,0);
```

```
/* Clean up */
tool_destroy(tool);
exit(0); }
```

/* Standard SIGWINCH handler. */ sigwinchcatcher() {
 tool_sigwinch(tool); }

#ifndef lint static char sccid[] = "@(#)findroot.c 2.0 85/05/20 Copyr 1985 Sun Micro"; #endif

This program illustrates how to find out what a tool's root window's file descriptor is. This is necessary, for example, if you want to use certain of the Window Manager calls which are documented in section 8.5.1 of the 1.1 SunWindows Reference Manual (section 9.6.1 of the 2.0 Manual).

This program creates a tool with a single message subwindow. When the user clicks the right-hand mouse button, the wmgr_close call is used to shut the tool down to iconic form.

The interesting part is the function get_my_root_fd(). See comments there for details.


```
#include <stdio.h>
#include <sys/file.h>
#include <suntool/wmgr.h>
#include <suntool/tool hs.h>
#include <suntool/msgsw.h>
struct tool *tool;
                                         /* The tool. */
                                        /* The single subwindow. */
struct toolsw *subwin;
struct pixfont *font;
                                        /* Font for writing in the subwin. */
                                        /* Input mask for the subwindow. */
struct inputmask inputmask;
                                        /* "Selected" routine for subwin. */
int subwin selected();
/* Routine to handle SIGWINCH. Nothing special. */
sigwinchcatcher()
{
        tool sigwinch(tool);
}
main()
ł
        font = pw_pfsysopen();
        /* Create the tool. */
        tool = tool create("FINDROOT",
           TOOL NAMESTRIPE | TOOL BOUNDARYMGR,
           NULL, NULL);
        if (tool == NULL) {
                printf("Couldn't create the tool.0);
                exit(1);
        };
        /* Create and init the subwindow. */
        subwin = msgsw_createtoolsubwindow(tool, "",
           TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,
           "Click Right Button to go iconic.", font);
        if (subwin == NULL) {
                printf("Couldn't create the subwindow.0);
                exit(1);
        };
        /* Set up inputmask to accept only RB clicks. */
        input imnull(&inputmask);
        win_setinputcodebit(&inputmask,MS_RIGHT);
        win setinputmask(subwin->ts windowfd, &inputmask,
            NULL, WIN_NULLLINK);
        subwin->ts_io.tio_selected = subwin_selected;
        /* Install the tool. */
        signal(SIGWINCH, sigwinchcatcher);
```


1

ł

}

```
tool install(tool);
/* Main loop. */
tool select(tool,0);
/* Cleanup. */
tool destroy(tool);
exit(0);
```

If we get here, the user must have clicked the right-hand mouse button. This routine calls get my root fd() to figure out the file descriptor of its root window, then calls wmgr close() to close the tool to icon form.

```
subwin_selected()
        struct inputevent ie;
        char c[WIN NAMESIZE];
        int rootfd;
        input readevent(subwin->ts_windowfd, &ie);
        rootfd = get my root_fd(tool->tl_windowfd);
        if (rootfd == -1) {
                printf("get my root_fd() failed.0);
                exit(3);
        ł
        wmgr close(tool->tl windowfd, rootfd);
```

This is the interesting part of the program. This function takes as its argument the file descriptor for a window, and returns the file descriptor of the argument's root window (or -1 if something goes wrong). See section 4.4 of the SunWindows Reference Manual for details on the window hierarchy.

The strategy is to recursively call win_getlink, working our way up the window tree, until we get to the top (i.e. win_getlink returns WIN NULLLINK). The only problem is that win getlink returns a window number, not a file descriptor. To convert the window number to a file descriptor, we first call win numbertoname, which converts the window number to a string such as "/dev/win3". Then we open the device in order to get a file descriptor.


```
get_my_root_fd(fd)
int fd;
{
        int original_fd, parentfd;
        char c[WIN_NAMESIZE];
        original_fd = fd;
        while ( (parentfd = win_getlink(fd,WL_PARENT)) != WIN_NULLLINK ) {
                if (fd != original_fd)
                        close(fd);
                win numbertoname(parentfd,c);
                fd = open(c, 0_RDONLY, 0);
                if (fd == -1)
                        return(-1);
        }
        return(fd);
}
```


B

Appendix B:Contents of get_arch_f File

Appendix B:Contents of get_arch_f File _____ 97

Appendix B:Contents of get_arch_f File

This is a list of the differences between files in Release 2.2 and 2.0.

/bin/as /bin/test /dev/MAKEDEV /etc/gp1cg2.1024.ucode /etc/gp1cg2.1152.ucode /etc/gpconfig /etc/inetd /etc/mount /etc/nfsd /etc/showmount /etc/shutdown /etc/umount /etc/yp/makedbm /etc/ypbind /etc/ypserv /lib/ccom /lib/f1/lib/libc.a /usr/bin/adjacentscreens /usr/bin/clear_colormap /usr/bin/clocktool /usr/bin/coretool /usr/bin/dbxtool /usr/bin/fonttool /usr/bin/gfxtool /usr/bin/icontool /usr/bin/lockscreen /usr/bin/perfmeter /usr/bin/perfmon /usr/bin/screendump /usr/bin/screenload /usr/bin/shelltool /usr/bin/suntools /usr/bin/tektool /usr/bin/toolplaces /usr/diag/sysdiag /usr/etc/in.tftpd /usr/etc/nfsstat

/usr/etc/ping /usr/etc/rpc.mountd /usr/etc/rpc.yppasswdd /usr/etc/trpt /usr/include/cgicbind.h /usr/include/cgiconstants.h /usr/include/cgidefs.h /usr/include/cgipw.h /usr/include/gpl pwpr.h /usr/include/netinet/ip.h /usr/include/nfs/nfs.h /usr/include/nfs/nfs clnt.h /usr/include/pascal/devincpas.h /usr/include/pixrect /usr/include/sun/fbio.h /usr/include/sun/qpio.h /usr/include/suntool /usr/include/usercore.h /usr/lib/font/ftS /usr/lib/font/fttS /usr/lib/f77pass1 /usr/lib/libF77.a /usr/lib/libF77_p.a /usr/lib/libI77.a /usr/lib/libI77_p.a /usr/lib/libc_p.a /usr/lib/libcgi.a /usr/lib/libcgi77.a /usr/lib/libcore.a /usr/lib/libcoresky.a /usr/lib/libdbm.a /usr/lib/libpfc.a /usr/lib/libpfc p.a /usr/lib/libpixrect.a /usr/lib/libsuntool.a /usr/lib/libsunwindow.a /usr/lib/lint/lint1 /usr/lib/lint/llib-lc.ln /usr/lib/lint/llib-lcore.ln /usr/lib/lint/llib-lcurses.ln /usr/lib/lint/llib-lm.ln /usr/lib/lint/llib-lmp.ln /usr/lib/lint/llib-lpixrect.ln /usr/lib/lint/llib-lsuntool.ln /usr/lib/lint/llib-lsunwindow.ln /usr/lib/lpd /usr/lib/sendmail /usr/lib/sendmail.main.cf /usr/lib/sendmail.subsidiary.cf /usr/lib/vwidth /usr/src/sun/suntool/get_view_surface.c /usr/sys/OBJ/bw1 rop.o /usr/sys/OBJ/cg2_colormap.o


```
/usr/sys/OBJ/cg2 rop.o
/usr/sys/OBJ/cgtwo.h
/usr/sys/OBJ/cgtwo.o
/usr/sys/OBJ/conf.o
/usr/sys/OBJ/consfb.o
/usr/sys/OBJ/gp1 colormap.o
/usr/sys/OBJ/gp1 kern sync.o
/usr/sys/OBJ/gpl rop.o
/usr/sys/OBJ/gpone.h
/usr/sys/OBJ/gpone.o
/usr/sys/OBJ/if.o
/usr/sys/OBJ/if ec.o
/usr/sys/OBJ/if ether.o
/usr/sys/OBJ/if ie.o
/usr/sys/OBJ/if loop.o
/usr/sys/OBJ/ioconf.o
/usr/sys/OBJ/ip_icmp.o
/usr/sys/OBJ/ip input.o
/usr/sys/OBJ/ip output.o
/usr/sys/OBJ/kbd.o
/usr/sys/OBJ/keytables.o
/usr/sys/OBJ/kudp_fastsend.o
/usr/sys/OBJ/machdep.o
/usr/sys/OBJ/mem rop.o
/usr/sys/OBJ/mti.o
/usr/sys/OBJ/nfs server.o
/usr/sys/OBJ/nfs subr.o
/usr/sys/OBJ/nfs_vfsops.o
/usr/sys/OBJ/nfs_vnodeops.o
/usr/sys/OBJ/nfs xdr.o
/usr/sys/OBJ/raw ip.o
/usr/sys/OBJ/sc.o
/usr/sys/OBJ/sd.o
/usr/sys/OBJ/st.o
/usr/sys/OBJ/sys generic.o
/usr/sys/OBJ/tcp debug.o
/usr/sys/OBJ/tcp input.o
/usr/sys/OBJ/tcp output.o
/usr/sys/OBJ/tcp_subr.o
/usr/sys/OBJ/tcp_timer.o
/usr/sys/OBJ/tcp_usrreq.o
/usr/sys/OBJ/tty.o
/usr/sys/OBJ/udp_usrreq.o
/usr/sys/OBJ/ufs_alloc.o
/usr/sys/OBJ/ufs nd.o
/usr/sys/OBJ/vers.o
/usr/sys/OBJ/vm drum.o
/usr/sys/OBJ/vm machdep.o
/usr/sys/OBJ/vm pt.o
/usr/sys/OBJ/vm_text.o
/usr/sys/OBJ/xy.o
/usr/sys/conf/GENERIC
/usr/sys/conf/ND120
```


/usr/sys/conf/README /usr/sys/conf/RELEASE /usr/sys/conf/SDST160GP /usr/sys/conf/devices.sun /usr/sys/conf/files /usr/sys/conf/files.sun /usr/sys/conf/makefile.sun /usr/sys/sun/conf.c /usr/sys/sun/fbio.h /usr/sys/sun/fbio.h /usr/sys/sundev/scmb.h /usr/sys/sundev/streg.h /usr/ucb/ex /usr/ucb/ex /usr/ucb/ftp /usr/ucb/man

Revision History

Revision	Date	Comments
03	11 September 1985	Preliminary release of this Release 2.2 Manual.
04	20 September 1985	Preliminary release of this Release 2.2 Manual.
05	30 September 1985	Beta Draft of this Release 2.2 Manual
	. <u></u>	

_

.

.